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Abstract

Flexible navigation in the real world involves the ability to maintain an ongoing

estimate of one’s location in the environment, to use landmarks to help navigate,

and to construct shortcuts and paths between locations. In mammals, these

functions are believed to be performed by a circuit that includes the hippocam-

pus and associated cortical areas. The physiological characterization of the

neural substrates for navigation has progressed rapidly in the last four decades,

together with plausible mechanistic models for the generation of such activity.

However, questions about how the various components of the circuit interact to

perform the overall computations that account for the navigational ability of

mammals remain largely unsolved. We review physiological and anatomical

data as well as models of hippocampal map building and self-localization to

establish what is understood about the brain’s navigational circuits from a

computational perspective. We discuss major areas where our understanding is

incomplete.

14.1 Introduction

Many animals, from insects to mammals, exhibit complex collections of spatial

behaviors for survival, including foraging for food, remembering where home is,

remembering safe routes between home and various known food sources,

improvising new routes back home after an exploratory outbound path to a previ-

ously unvisited location, learning maps of new environments, and setting goal

locations. To be successful, these spatial behaviors must be robust and able to

deal with obstacles that hamper straight paths and occlude views, with novel

environments, and with dynamically changing cues within familiar environments.
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Navigation involves localizing oneself in space, modeling or mapping the

external environment, setting goals, and selecting routes. Self-localization and

mapping have a chicken-and-egg relationship. If a “map” of the environment is

available (i.e., the spatial coordinates for all landmarks are known), then localiza-

tion is not difficult, through reference to a sufficiently dense set of landmarks.

Conversely, if self-motion estimates are precisely integrated to determine location,

then building a map of the environment involves simply visiting and attaching a

coordinate to each landmark. Typically, however, neither is known reliably, and the

problem is to simultaneously localize oneself within an environment while acquir-

ing a map of it, a computationally challenging problem in sequential probabilistic

inference. Goal selection brings into play decision-theoretic questions involving

exploration–exploitation trade-offs (Dayan and Daw 2008). Finding routes home

involves not only knowing where one is and where home is but also the conversion

of those coordinates into the vector pointing to home, as well as deciding when to

follow landmarks and when to follow beeline paths based on internal estimates of

location.

In this chapter, we focus on a small subset of questions related to animal

navigation. We discuss how animals estimate their locations within environments

while building internal models of these environments. In other words, our central

aim here is to describe potential neural substrates for localization and mapping and

to discuss computational efforts to understand the mechanisms underlying how the

brain solves these problems. Other important aspects of goal-directed spatial

behavior, such as selecting spatial goals and routes, are not directly addressed

here (however, such behaviors will depend on the animal’s ability to solve the

problems of localization and mapping, which we discuss here). In what follows,

when we refer to the entorhinal–hippocampal circuit for spatial navigation, we

intend to convey the spatial functions subserved by this circuit without implying

that this is the sole function of the circuit.

We begin with a historical perspective on advances in the field, then summarize

the current state of electrophysiological findings on activity in different parts of the

circuit, briefly describing progress in modeling the mechanisms underlying such

responses, and finally highlight several models of the overall entorhinal–hip-

pocampal spatial navigation circuit that show how the various subcomponents

might contribute to simultaneous self-localization and mapping in the presence of

noisy and ambiguous sensory cues.

14.2 Early Ideas on Animal Navigation: Stimulus-Response
Learning Vs. Map-Based Learning

Experimental work on spatial navigation in the animal literature began in the early

twentieth century. This work was largely confined to observing how rats learned

spatial mazes. Behaviorists believed that spatial learning, like other types of

learning, could only be based on the association of actions and stimuli with rewards.

For spatial learning, this implied that only locations and location-relations
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associated with rewards could be learned. In this view, chaining stimulus-reward

associations could subserve more sophisticated behaviors like navigation along a

route.

Tolman and some of his contemporaries (Tolman 1948; Hebb 1949) observed

that there was much more to spatial learning. A notable study that challenged the

behaviorist point of view was the sunburst maze experiment. In this task, after

preliminary training in a spatially restricted, roughly L-shaped enclosure, rats were

given the choice of many novel radial arms, the sunburst, to move directly to the

end point (Tolman et al. 1946). Interestingly, some rats were observed to take the

shortest radial route corresponding to the beeline path between the starting and end

points. This suggested that rats could improvise paths and shortcuts through regions

they had not previously traversed and thus which had no reward associations.

Tolman reasoned that animals are capable of constructing mental representations

of spatial locations in the environment and relations between them, independent of

reward. He called these representations “cognitive maps.” By construction, cogni-

tive maps could hypothetically provide route information between any two points in

the environment and thus be used to navigate the sunburst maze.

Tolman’s conception of cognitive maps (Tolman 1948) was perceptive, but the

lack of any known neurophysiological basis for such hypothesized computations

contributed to a decline in popularity of the cognitive map hypothesis in the decades

after its proposal (O’Keefe and Nadal 1978). It was not until the 1970s that the

cognitive map theory was dusted off and elaborated upon (O’Keefe and Nadal

1978), in light of the exciting experimental discovery of place cells (O’Keefe and

Dostrovsky 1971).

14.3 Map-Based Navigation Theory Spurred by Discovery
of the Place Cell

Place cells, discovered by O’Keefe and Dostrovsky in the early 1970s (O’Keefe and

Dostrovsky 1971), are neurons in the hippocampus that fire if and only if the animal

is in the immediate neighborhood of a particular location (the place field) in an

environment. Many place cells possess place fields within any given environment.

Because the recording environments (typically 0.5–1 m per dimension) tended to be

covered by different place fields, place cells were hypothesized to form the basis for

spatial mapping. This pointed to the hippocampus as the locus of the cognitive map

for space.

The groundbreaking discovery of place cells prompted the renewal and further

development of the cognitive map hypothesis. O’Keefe and Nadel extensively

reviewed the psychological, behavioral, anatomical, and physiological evidence

for the existence of abstract spatial maps in the brain in their comprehensive and

prescient book on the topic (O’Keefe and Nadal 1978). O’Keefe and Nadel

provided a clear definition of a spatial map as an abstract representation of locations

in an environment, the relationships between them, and the sensory inputs related to

the locations. An important contribution to the cognitive map theory by O’Keefe
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and Nadel (1978) was to elaborate on the problem of ongoing location identifica-

tion. Reasoning that it was sufficiently difficult to estimate location purely from the

observation of shifting angles of visible landmarks relative to the animal, they

hypothesized that another system, sensitive to the movements of the animal, would

be required, Fig. 14.1. This second system was hypothesized to follow the self-

motion of the animal through space, shifting the hippocampal place representation

accordingly. The self-motion drive was suggested to supplement purely external

sensory inputs, which provided cues originating from viewing the world from

different locations and angles. The “internal” system was seen as providing

predictions about what to expect at a particular place that were compared with

the actual sensory input provided by the “external” system. Discrepancies between

expectation and actual input might be conveyed via misplace units (O’Keefe 1976),
whose hypothesized role was to signal mismatches between the two systems,

Fig. 14.1. In the theory, active misplace units would trigger further exploration of

the environment until enough information was acquired to fix the incongruities

between the two inputs and silence the misplace units. Thus, in a way, each system

was seen as providing partially accurate representations of the animal’s location

within the environment, with the interplay between the two suggested as leading to

the formation of a consistent map.

O’Keefe and Nadel (1978) stimulated the rediscovery of the cognitive map

theory by the rest of the scientific community and, at the same time, developed it

into a far more complete framework for understanding the neural substrates of

navigation. However, two key elements were lacking. First, although place cells

offered the first glimpse of the neural substrates for high-level cognitive

representations, all other critical components of the spatial navigation circuit

remained poorly characterized at the time. Second, there were no computational

models of how the appropriate navigational operations could be performed in the

hippocampal circuit. In the next two sections, we describe how empirical work and

theoretical and computational studies have begun to fill in these elements.

DG
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misplace 
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Fig. 14.1 High-level schematic of cognitive map hypothesis of O’Keefe and Nadel. Place cells in

the CA1/CA3 region can be activated by two independent means: through external sensory

(allothetic) cues, which are preprocessed in the DG, and through movement-related (idiothetic)

cues. Mismatches in the two inputs propel the animal toward further exploration
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14.4 Neural Substrates for Navigation

A series of discoveries of cells beautifully tuned to specific spatial and navigation-

specific variables followed the discovery of place cells, laying a more solid neuro-

physiological foundation for our understanding of a cognitive map in the brain. In

parallel, computational and theoretical studies have helped provide mechanistic

explanations for how such neurophysiological responses might arise in the brain.

14.4.1 Head-Direction Cells

In 1983, Ranck discovered head direction (HD) cells (Ranck 1984). HD cells fire

when the animal’s head points in a particular direction, independent of the actual

location of the animal within the environment, Fig. 14.2a. HD cells were found in

many regions of the brain, including the postsubiculum and thalamus (Taube

et al. 1990a, b; Taube 1995). The HD signal is carried to the entorhinal cortex

(EC) through the postsubiculum (van Groen and Wyss 1990; Caballero-Bleda and

Witter 1994; Taube 2007). The specific set of HD cells firing along one direction in

an environment is not fixed by magnetic or compass cues but by a local orienting

stimulus: a white stripe or cue-card placed on an otherwise featureless cylindrical

wall provides a reference angle for the HD cells. If the cue is rotated clockwise, the

preferred firing orientation of all the HD cells rotates clockwise, robustly and

coherently, by a very similar amount (Dudchenko and Taube 1997). HD cells

continue to fire if the lights are switched off, spiking at the appropriate orientations

as the animal moves about the room for an extended period of time (several

seconds) (Mizumori and Williams 1993). Moreover, HD cells can become

decoupled from external cues, while maintaining their tuning curve shapes and

relationships, highlighting the influence of idiothetic cues on HD activity (Knierim

et al. 1995; Yoganarasimha and Knierim 2005). These observations, together with

lesion studies on the vestibular inputs to HD cells (Stackman and Taube 1997),

suggest that HD cells integrate the animal’s head’s angular velocity as signaled by

the vestibular system to arrive at updated estimates of the animal’s head direction.

Head direction estimation is a critical element of any navigational circuit; however,

it is important to note that instantaneous head direction need not directly correspond

to the instantaneous direction of movement of the animal through space (termed

“heading direction”), because the animal can turn its head relative to the forward

direction, to smell, view, or touch peripheral objects.

The remarkable HD cells, when discovered, constituted the best evidence avail-

able then that the brain might compute using continuous attractor dynamics (Skaggs

et al. 1995; Zhang 1996; Seung 1996; Redish et al. 1996): a continuum of stable—

or attracting—neural activity states that can be used, because of their stability, to

store short-term memories of continuous variables and integrate these variables

over time based on motion input (integration is the operation of summing external

inputs, and in the absence of changes in the external input, holding the state

obtained from summing past inputs; therefore, integration requires memory).
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Fig. 14.2 Neural models of grid cells, HD cells, and place cells. (a) Schematic of spatial

responses of four basic cell types of the hippocampal navigation circuit: Place cell (top), grid
cell (second panel), border cell (third panel), and HD cell (bottom). The place, grid, and border cell
panels show the animal’s trajectory (gray trace) as it explores a box environment. Red dots
represent locations at which the cell emitted a spike. The last panel is a polar plot of the firing

rate of an HD cell as a function of the animal’s heading direction. (b) 1D continuous attractor

model of head direction cells: Two populations of conjunctive HD cells (red and green circles),
arranged according to their head direction preferences. Red (green) cells receive vestibular inputs
(red or green boxes) coding for clockwise (counterclockwise) angular head velocity. The conjunc-
tive HD populations project to a population of pure HD cells (black circles). Weights between and

across layers are described in boxes below: Curves represent the weights of one neuron to its

postsynaptic targets. Conjunctive layers receive uniform excitatory input (not shown), causing

formation of stable bump in conjunctive (not shown) and pure HD layers (black curve). The bump

state can be moved around the network by biasing input into the conjunctive layer. (c) 2D

continuous attractor model of grid cells: Four populations of conjunctive grid cells (colored
balls), arranged according to the preferred phases of their grid fields, receive input from speed-

modulated HD cells (colored boxes) that encode animal velocity and project to a population of

pure grid cells (black balls). The conjunctive grid cells inherit these directional preferences, as

indicated by the colored tuning curves (as a function of animal’s heading direction, Θ) in upper
right. Weights between and across layers are shown in the boxes below [same as in (b), only 1d

projections are shown]. If the conjunctive layers are supplied with a uniform excitatory drive, a

stable, multimodal pattern of activity arises (black surface with yellow spots, shown only for the

pure GC layer). The activity pattern can be translated in any direction by biasing input into the

conjunctive layers (encircled colored arrows indicate direction the activity pattern moves if that

conjunctive layer receives biased input). (d) OI model of grid cells: Three velocity-coupled
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Because single-neuron activity states are transient, typically decaying within a

membrane time constant of about 100 ms, models of continuous attractor dynamics

in the brain involve strong recurrent connections that may be excitatory or inhibi-

tory, whose function is to provide a net positive feedback drive that cancels the

tendency of individual neural activities to decay over time (Skaggs et al. 1995;

Ben-Yishai et al. 1995; Zhang 1996; Seung 1996).

The HD system is well modeled by a specific continuous attractor network, with

neurons arranged (conceptually, not necessarily anatomically) along a ring, that

excite or disinhibit each other locally and inhibit each other globally (Ben-Yishai

et al. 1995; Zhang 1996). If the connectivity is the same across the ring, a bump-like

activity state and all translations of the bump are stable states, Fig. 14.2b (Skaggs

et al. 1995; Ben-Yishai et al. 1995; Zhang 1996; Stringer et al. 2002; Boucheny

et al. 2005). Each bump location along the ring represents a specific head orienta-

tion. The network is further hypothesized to possess asymmetrical recurrent con-

nectivity and feedforward inputs signaling angular head velocity, in such a way that

the inputs drive the bump along the ring, with speed and direction proportional to

the angular head velocity. In this way, these bump states can be used to maintain a

representation of the animal’s current heading direction. A specific hallmark of the

continuous attractor network theory is that the preferred orientations of pairs of

neurons should maintain a fixed angular separation relative to each other, even

when the overall orientation preferences rotate or are otherwise changed due to

mismatched angular cues from the external world (Yoganarasimha et al. 2006).

Experiments involving inconsistently rotated external cues cause rotations in the

preferred directions of HD cells, but as predicted by attractor models, their relative

preferred directions remain fixed (Taube et al. 1990b; Yoganarasimha et al. 2006).

14.4.2 The Entorhinal Cortex as Gateway to the Hippocampus

In addition to the hippocampus and the distributed regions where HD cells are

found (Taube 2007), the EC is a key brain area involved in spatial navigation.

Lesion studies have implicated the EC in spatial computation (Ferbinteanu

�

Fig. 14.2 (Continued) oscillators (red, green, and blue; the VCOs could be networks as pictured

here, or single neurons, or dendrites of a single neuron) receive vestibular input whose amplitude is

given by the projection of the animal’s velocity vector onto a specific preferred direction (red,
green, blue arrows). These inputs modulate the oscillation frequency of the VCOs: this is the

actual path integration stage in the OI model. The oscillatory signals are summed, along with a

fourth, velocity-insensitive baseline oscillatory signal (gray), within a single grid cell (black
circle). (e) Place fields driven by sensitivity to distance, direction, and/or angle subtended by

landmarks in the environment (yellow blob represents the active ensemble of place cells, topo-

graphically arranged according to place preference). (f) Place fields formed by summation of

multiple grid cells (black sheets in the MEC indicate different grid cell modules; yellow blobs
indicate active neurons in each module). (g) Place fields formed by summation of BVC inputs,

which convey information about distance and direction to geometric boundaries

14 How Does the Brain Solve the Computational Problems of Spatial Navigation? 379



et al. 1999; Parron and Save 2004a, b; Steffenach et al. 2005; Van Cauter

et al. 2012). The EC is the cortical gateway of inputs to the hippocampus: the

medial and lateral portions of EC (MEC and LEC, respectively) project to the

proximal and distal portions of CA1, respectively, but have overlapping projections

at the dentate gyrus (DG) and CA3 (Witter and Amaral 2004; Witter et al. 2006;

McNaughton and Barnes 1977). Electrophysiological studies in the EC of the freely

moving rat reveal a dissociation in the nature of the LEC and MEC representations

(Deshmukh and Knierim 2011): LEC cells tend to respond to objects in the animal’s

immediate environment (Zhu et al. 1995; Young et al. 1997; Wan et al. 1999;

Deshmukh and Knierim 2011), while cells in MEC ignore object locations and

instead fire at multiple locations in the open field (Barnes et al. 1990; Quirk

et al. 1992; Frank et al. 2000; Fyhn et al. 2004; Wills et al. 2005). Thus, the LEC

and MEC might form the two parallel streams postulated in the cognitive map

hypothesis, carrying external sensory and internal motion-based cues, respectively,

to be synthesized in the hippocampus.

14.4.3 Grid Cells

Less than a decade ago, the MEC was found to contain a class of cells—grid cells—

with astonishing spatial firing characteristics (Hafting et al. 2005): each cell fires at

multiple locations in an environment, and the locations are arranged on the vertices

of an essentially equilateral triangular lattice, Fig. 14.2a. The period of the lattice is

typically determined intrinsically by the cell network and not by the size and shape

of the enclosure (Hafting et al. 2005) [but see Barry et al. (2007)]. Nearby cells

share common grid periods and orientation, and there are a range of distinct periods,

hypothesized to be discretely spaced (Fuhs and Touretzky 2006; McNaughton

et al. 2006; Fiete et al. 2008; Burak and Fiete 2009) and later shown to be so in

Stensola et al. (2012). Grid cells are most commonly found in layer II of MEC. The

postsubiculum, a major source of input to the MEC, terminates in the deep layers

(van Groen and Wyss 1990). Thus, layers III–V of the MEC contain cells respon-

sive to the animal’s head direction, either in the form of pure head direction tuning

or combined head direction and grid-like tuning (the latter are known as “conjunc-

tive” grid cells) (Sargolini et al. 2006). In contrast, grid cells in layer II of the MEC

tend to be insensitive to heading and head direction (“pure” or “non-conjunctive”

grid cells) (Sargolini et al. 2006).

The spatial fields of MEC grid cells can rotate when salient external cues are

rotated (Hafting et al. 2005), and periods of their spatial tuning can resize in

response to a rescaling of a familiar environment (Barry et al. 2007), but other

than firing-rate modulations (Savelli et al. 2008), the spatial locations of grid cell

firing are relatively insensitive to the particulars of the environment. This is in

contrast to the spatial responses in LEC and the hippocampus, which exhibit more

detailed and complex changes to environmental manipulation (Zhu et al. 1995;

Young et al. 1997; Wan et al. 1999; Deshmukh and Knierim 2011; Muller and

Kubie 1987; Leutgeb et al. 2004; Wills et al. 2005; Leutgeb and Leutgeb 2007;
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Colgin et al. 2008). The relative insensitivity of grid cells to external cues and the

stability of their fields in cue-poor environments and darkness (Hafting et al. 2005)

suggest that self-motion is the primary determinant of grid cell firing. For these

reasons, it is widely hypothesized that the grid cell system computes, or at least is

responsive to, a path integrated estimate of the animal’s position (see Chap. 8).

However, direct evidence of the role of grid cells in path integration is lacking.

Most grid cell models rely on the conversion of motion inputs into spatial

representations (Welinder et al. 2008; Giocomo et al. 2011; Zilli 2012). On the

one hand, continuous attractor models of grid cells (Fuhs and Touretzky 2006;

Burak and Fiete 2006, 2009; Guanella et al. 2007; McNaughton et al. 2006),

Fig. 14.2c, posit that strong local recurrent connectivity destabilizes the uniform

activity state in the population and stabilizes a state which displays regular triangu-

lar lattice patterning within the population. The recurrent connections may be

purely inhibitory, as first proposed in Burak and Fiete (2009) and supported by

Pastoll et al. (2013) and Couey et al. (2013), or excitatory with a local inhibitory

surround (McNaughton et al. 2006; Guanella et al. 2007; Burak and Fiete 2009).

Translation invariance of such connectivity stabilizes all translations of this pattern

through the population, and an asymmetric component of the connectivity allows

external inputs signaling animal velocity to drive the pattern in direct proportion to

the direction and speed of the animal’s movements. These models are straightfor-

ward 2D extensions of the 1D continuous attractor models for HD cells (Welinder

et al. 2008; Zilli 2012).

All cells in the continuous attractor network model share the same grid period

and orientation, because their responses are generated by translations of the same

pattern, and all spatial phases are exactly uniformly distributed, consistent with the

data. Disjoint network copies (modules) are required to produce different grid

periods and, because each network is large (consisting of 4,000–40,000 neurons),

leads to the prediction of a few, discrete grid periods within each animal (Fuhs and

Touretzky 2006; McNaughton et al. 2006; Burak and Fiete 2009). This prediction

was recently experimentally verified in Stensola et al. (2012). The fundamental

prediction of continuous attractor models is that the differences in preferred spatial

activation phase between pairs of grid cells will remain stable over time, regardless

of environmental manipulations that induce sizeable distortions in the grid fields, if

the network architecture remains unchanged. Recent analysis of simultaneously

recorded grid cells with similar period and orientation across experiments involving

grid cell distortion (including the environmental stretching experiments of Barry

et al. (2007)) establishes the stability of these predicted relationships and shows that

the grid cell population responses within a single grid network (module) are

confined to a 2D manifold within the high-dimensional state space (Yoon

et al. 2013).

On the other hand are oscillatory interference (OI) models in which interfering

temporal oscillations produce periodically amplitude-modulated activity outputs

(O’Keefe and Burgess 2005; Burgess et al. 2007; Hasselmo et al. 2007; Hasselmo

2008; Blair et al. 2008; Zilli et al. 2009) (see Chap. 12). These amplitude

modulations can be mapped to spatial grid patterns that are invariant to animal
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speed if the frequency of the temporal oscillations is based on animal speed,

Fig. 14.2d. The elementary oscillators are called velocity-coupled oscillators

(VCOs). Whereas in the continuous attractor models, the grid cell network

integrates animal velocity by shifting the phase of the periodic population-level

grid pattern (made possible by asymmetric recurrent connections), integration in

the OI models is performed by the VCOs, because the velocity inputs change their

frequency and thus also increment their phase.

To account for the systematic variation in grid period along the dorsoventral axis

of MEC (Hafting et al. 2005), OI models predict a gradient in the baseline oscilla-

tion frequencies of the VCOs. Empirical study (Giocomo et al. 2007) shows that,

intriguingly, the intrinsic resonance frequency and subthreshold membrane

oscillations of stellate cells in MEC decreases systematically toward the ventral

end along the dorsoventral axis, qualitatively matching the prediction, if the

hypothesized VCOs correspond to subthreshold oscillations in the membrane

potential. However, there are biophysical arguments against identifying membrane

potential oscillations with VCOs (Remme et al. 2010; Fiete 2010). Identifying the

local field potential (LFP) oscillation at theta frequency with the baseline (not

velocity-modulated) oscillator also has some problems, including a mismatch

between the phase fidelity of spatial patterning in grid cells across multiple periods

vs. the tendency of the LFP oscillation to decohere or lose all phase information

after five to six cycles (Welinder et al. 2008). The theta frequency is not linearly

related to grid period across modules (Stensola et al. 2012), as would be predicted

by OI models if baseline oscillations were reflected in the LFP. Bats, which exhibit

grid cell activity, do not display sustained theta oscillations, suggesting a dissocia-

tion between the grid-like spatial tuning and theta oscillations or at least between

the hypothesized VCOs and theta oscillations (Yartsev et al. 2011). Together, these

studies suggest that the LFP theta is not related to VCOs or that the OI models

require revision. Studies showing that grid fields degrade when theta oscillations

are abolished (via lesion to the medial septum) (Brandon et al. 2011; Koenig

et al. 2011) are more consistent with a possible role for the LFP in grid formation.

However, these results are also consistent with continuous attractor models in

which the recurrent circuitry amongst grid cells is predominantly inhibitory

(Burak and Fiete 2009; Couey et al. 2013) and grid patterning requires a spatially

nonspecific excitatory input to drive cells above threshold (Burak and Fiete 2009;

Pastoll et al. 2013; Bonnevie et al. 2013).

Recent intracellular recordings of grid cells (Schmidt-Hieber and Hausser 2013;

Domnisoru et al. 2013) show that grid cell firing fields are clearly correlated with

slow depolarizing voltage ramps that last the duration of the field and that the firing

fields are better predicted by the voltage ramps than by the smaller superimposed

oscillations that are also present during the field. These findings suggest either a

feedforward or feedback synaptic contribution to the spatial patterning of grid cells.

Synaptic contributions to the grid cell response are consistent with continuous

attractor models of grid cells (Fuhs and Touretzky 2006; Burak and Fiete 2006,

2009; McNaughton et al. 2006; Guanella et al. 2007; Welday et al. 2011; Zilli 2012)

as well as other models that involve cell–cell coupling (Kropff and Treves 2008;
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Mhatre et al. 2010) and may also be consistent with versions of OI models that

incorporate lateral network connections (Zilli and Hasselmo 2010; Yoon et al.

2013). More specifically, a recent analysis of simultaneously recorded neurons

shows that grid cells with similar spatial period and orientation (i.e., from a single

network or module) exhibit key signatures of two dimensional continuous attractor

dynamics, as predicted by the continuous attractor models (Fuhs and Touretzky

2006; Burak and Fiete 2006, 2009; McNaughton et al. 2006; Guanella et al. 2007).

Thus, all models of a grid cell population should, to be consistent with the data,

display continuous attractor dynamics across the population.

At the same time, the intracellular studies of grid cells show that individual spike

timings within one firing field are strongly correlated with theta oscillation peaks in

the intracellular voltage. Thus, while network mechanisms determine the spatial

locations of firing fields, the OI mechanisms might be responsible for a more fine-

grained temporal code of spike timing within field (Schmidt-Hieber and Hausser

2013; Domnisoru et al. 2013), including the phenomenon of phase precession

(O’Keefe and Recce 1993; O’Keefe and Burgess 2005; Kamondi et al. 1998;

Magee 2001; Lengyel et al. 2003). Finally, at present both classes of grid cell

models (Welday et al. 2011; O’Keefe and Burgess 2005; Burgess et al. 2007;

Hasselmo et al. 2007; Fuhs and Touretzky 2006; Burak and Fiete 2006, 2009;

Guanella et al. 2007; McNaughton et al. 2006) are subject to the criticism of

complexity in the wiring required to generate grid fields and to the question of

how these architectures may form during development or through experience-

dependent synaptic plasticity, although some progress has recently been made in

understanding how the continuous attractor networks capable of generating grid

cell activity may arise from relatively simple plasticity rules (Widloski and Fiete,

unpublished observations).

There are a number of questions one may ask about grid cells and their down-

stream readouts in the brain. Are homing vectors computed from the grid cell

representation, and if so, where and how is this done? Animals can compute and

execute beeline paths home with the help of visual beacons or landmarks after

executing tortuous outgoing trajectories, a behavior known as homing. There are

some studies that this sort of behavior is EC-dependent (Parron and Save 2004a;

Steffenach et al. 2005). However, while the grid cell output contains the informa-

tion necessary for specifying vector displacement relative to a starting point (e.g.,

home) (Fiete et al. 2008; Sreenivasan and Fiete 2011), it is not coded in a

straightforward or linearly decodable way: the grid cell activity patterns for nearby

locations are nearly maximally distinct from each other, while the activity patterns

for remote locations can be very similar (Fiete et al. 2008; Sreenivasan and Fiete

2011). This fact implies the need for separate nonlinear computations to recover the

metric distance and direction information from the grid code, but it is not clear

which downstream readouts of the MEC might perform these computations. It is

possible that the subiculum, with its relatively uncharacterized role in the spatial

circuit (Sharp 2006), may play a role.

Second, why, if grid cells are producing a path-integrated estimate of location,

do they represent it in a single 2D network response, rather than in two 1D activity
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patterns that increment like a cartesian basis for 2D space. The number of neurons

required to represent a 2D space in a combined representation scales like N2,

whereas the number required in two independent 1D representations scales only

as 2N (Fiete et al. 2008). One problem with representing 2D space with a pair of 1D

representations, each conveying information about one cartesian coordinate, is that

one coordinate and thus one representation remains unchanged for all movements

parallel to the corresponding coordinate axis (Fiete et al. 2008). Thus, the represen-

tation is not “whitened” or decorrelated across locations. A single 2D representation

allows for a more whitened representation of different locations, without inducing

correlations along two specific coordinate axes (Fiete et al. 2008). Whether this gain

is enough to offset the neuron number costs of constructing a single 2D representa-

tion depends on the importance of achieving such decorrelation, another question

that remains to be answered.

Closely related is the question of how the grid cell system represents 1D

environments. Often during real-world navigation, the animal might run along a

wire or along the wall of a hallway and perceive these trajectory segments as

navigating in an inherently 1D environment, even though they are merely 1D

paths embedded in a higher-dimensional world. Intriguing grid cell recordings

from 1D environments (narrow elevated tracks) appear to show irregular, or at

least non-periodic, responses (Brun et al. 2008; Derdikman et al. 2009; Domnisoru

et al. 2013) that in some circumstances appear to be more closely tied to external

cues than are the 2D responses (Brun et al. 2008; Derdikman et al. 2009). Moreover,

the spatial periodicity of 1D responses appears to be much larger than the periods

seen in 2D. These observations raise the question of whether the 1D response is

generated under the same dynamical mechanisms as the 2D response (e.g., whether

the 1D response is simply a 1D slice through a regular 2D grid (Yoganarasimha

et al. (2011); Domnisoru et al. (2013) and unpublished observations by KJ Yoon,

S Lewallen, A Kinkhabwalla, DW Tank, and IR Fiete), or whether 1D dynamics,

and by extension, the grid cell code in 1D environments, is in a distinct dynamical

regime and follows very different rules).

14.4.4 Place Cells

Layers II and III of the EC (both the LEC and the MEC where grid cells and

conjunctive grid cells reside) project to the hippocampus and to areas DG/CA3 and

CA1, respectively (Anderson et al. 2007). All of these target areas contain cells with

place-like fields. Place cells, unlike grid cells, are sensitive to many aspects of the

external environment, including features that animals are known to use for naviga-

tion [see Redish (1999) for a review]. This includes sensitivity to proximal and

distal landmarks (Siegel et al. 2008; Yoganarasimha et al. 2006; Renaudineau

et al. 2007), contextual cues (including nonspatial ones like color and lighting)

(Muller and Kubie 1987; Hampson et al. 1999; Wood et al. 1999, 2000; Hayman

et al. 2003; Komorowski et al. 2009; Manns and Eichenbaum 2009), geometric

boundaries (Lever et al. 2002), and reward associations (Wikenheiser and Redish
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2011). Place cells continue to fire in the absence of visual cues, suggesting that their

activities can be updated through idiothetic cues (Fuhs et al. 2005; Gothard

et al. 1996; Knierim et al. 1996; Taube et al. 1996; Jeffery et al. 1997; Quirk

et al. 1990). These results support the hypothesis by O’Keefe and Nadel that the

hippocampus contains the brain’s spatial map and that this map derives from both

idiothetic and allothetic cues.

Early models of place cells hypothesized that they were driven primarily by

visuo-spatial cues (Zipser 1985; Sharp 1991; Schmajuk 1990; Schmajuk and Blair

1993; Burgess et al. 1994; Benhamou et al. 1995; Prescott 1996). For instance, each

cell might be particularly sensitive to the constellation of cues as seen from some

particular location in the environment and would fire whenever that constellation

was in view, Fig. 14.2e. In accordance with these models, external cues do seem to

play a role in driving place cell activity: some place cells seem to fire based on

landmark location (Deshmukh and Knierim 2013) and are sensitive to external

sensory cues in general, as described above. These external sensory cues might

arrive at the hippocampus through the LEC, given the presence of object/landmark

related cell types found there (Zhu et al. 1995; Young et al. 1997; Wan et al. 1999),

or possibly through the MEC itself.

To account for the continued expression of place fields in darkness and for the

omnidirectionality of place cells in two-dimensional environments, which fire when

the animal approaches a location from diverse angles with diverse views, a number

of models (described in more detail in the following section) invoked the possibility

that place cell activity was at least partially based on path integrated estimates of

location (Touretzky and Redish 1996; Samsonovich and McNaughton 1997;

Balakrishnan et al. 1999; Arleo and Gerstner 2000). Several models placed the

locus of path integration within the CA1/CA3 network itself, suggesting how the

hippocampus might integrate velocity inputs, for example, through the use of

sinusoidal arrays (Touretzky et al. 1993) or continuous attractor networks (Tsodyks

and Sejnowski 1995; Samsonovich and McNaughton 1997). However, lesion

studies (Wan et al. 1993; Van Cauter et al. 2012), the discovery of grid cells

(Hafting et al. 2005), theoretical considerations about the limited spatial range

and resolution of the hippocampal code (Fiete et al. 2008), and models of path

integration by grid cells (Fuhs and Touretzky 2006; Guanella et al. 2007; Burak and

Fiete 2009; Burgess et al. 2007; Hasselmo 2008), point instead to the MEC as the

locus of path integration, leaving to the hippocampus the still-formidable function

of synthesizing information from multiple sensory streams and constructing

associations between them.

Models of place cells that have followed the discovery of grid cells suggest that

place fields are formed by summing and then thresholding the activity of multiple

grid cells with different spacings and orientations, Fig. 14.2f (O’Keefe and Burgess

2005; Rolls et al. 2006; Solstad et al. 2006; Franzius et al. 2007; Hayman and

Jeffery 2008; Savelli and Knierim 2010; Monaco et al. 2011). These models swing

in the opposite direction, seeming to suggest that the primary input to and determi-

nant of place cell firing is based on feedforward idiothetically derived grid cell

activity, rather than external sensory cues or structured lateral connectivity. The
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reality of place cells is likely somewhere in between, if indeed place cells are the

basis of the brain’s cognitive map of space. Thus, they must derive their activity by

combining idiothetic and allothetic cues, as in the more comprehensive, function-

ally motivated models of place cell activity, summarized in the next section.

14.4.5 Other Cells with Strong Spatial Correlates

The spatial circuit contains several other cell types that respond selectively to

external spatial cues. Some cells in the subiculum fire at a fixed perpendicular

distance from environmental borders, even when the environment is resized (Lever

et al. 2009). These cells were predicted to exist by the boundary vector cell (BVC)

model of place cell firing, Fig. 14.2g (O’Keefe and Burgess 1996; Burgess

et al. 2000; Hartley et al. 2000; Barry et al. 2006). According to the BVC model,

place cells are formed by summing multiple BVCs with intersecting firing fields;

BVC activation is clearly related to external features in the environment, and these

cells are hypothesized to be largely driven by external sensory cues. However, it

remains unclear whether in the hippocampus the BVC cells drive place cells or if

place cells dominated by external inputs sum to drive BVCs (Derdikman 2009) (in a

way similar to the Hubel–Wiesel model for V1 orientation tuning from selective

feedforward summation of LGN neurons). Similar to BVCs, the MEC contains

border cells (Solstad et al. 2008; Savelli et al. 2008), which respond by firing

whenever the animal is directly at an environmental boundary. In contrast to

BVCs, these cells do not tend to fire at a finite perpendicular distance away from

the boundary, Fig. 14.2a.

14.4.6 The Responses of Spatial Cells to Changes
in the Environment

The descriptions of neural representations of space described above involved the

static representation of familiar, unchanging environments. How do these

representations change when the environment changes? Real-world navigation

involves representation of novel environments and modified familiar environments.

Thus, it is critical to understand spatial representation under changing conditions.

When an environment is rotated, grid cells (Hafting et al. 2005) and HD cells

(Taube et al. 1990b) continue to be active and coherently rotate their field centers as

a group. Across different familiar environments, the firing fields of grid cells may

additionally display coherent shifts in spatial phase while maintaining regular

periodic tuning (Hafting et al. 2005; Fyhn et al. 2007; Yoon et al. 2013). These

findings suggest that HD and grid cells track angular displacements relative to a

starting angle or linear displacements relative to a starting location, respectively,

roughly independent of context or specific location within the environment. Under

mismatched cue rotations, HD cells rotate coherently (Yoganarasimha et al. 2006),

suggesting that they represent a single best estimate of the external orientation of
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the world. Across diverse familiar environments, grid cells maintain the specific

periodicity of their spatial responses, which suggests that they use a fixed internal

scale to measure displacement.

Place cells, on the other hand, can display a response known as global remapping

(Muller and Kubie 1987; Leutgeb et al. 2004; Wills et al. 2005; Leutgeb and

Leutgeb 2007; Colgin et al. 2008) across environments: when an animal is moved

to a clearly different environment, or the contextual cues in the environment are

made sufficiently different (e.g., change in both the wall color and boundary shape

or both boundary shape and texture), the ensemble of active place cells changes,

and the relationships between their firing fields also changes (see Chap. 9). For

example, one of two cells with overlapping fields might stop firing in the new

environment, while the other continues to fire. In this way, place cells generate

largely independent representations across sufficiently different environments.

Place cells can alternatively display a less dramatic change in their representation,

through rate remapping, in which the relative field amplitudes are differentially

modulated by as much as a factor of 10 in the peak firing rates in response to more

subtle contextual changes (Leutgeb et al. 2005). In rate remapping, the centers of

place fields and their spatial relationships do not change.

What are the mechanisms underlying global and rate remapping? Global

remapping is accompanied by shifts and rotations in the activity patterns of grid

cells in EC neurons (Fyhn et al. 2007), but under rate remapping such changes are

undetectable (Fyhn et al. 2007; Leutgeb et al. 2007). Theoretical (Fiete et al. 2008)

and modeling studies (Monaco et al. 2011) suggest that if shifts or rotations (either

shifts or rotations are sufficient) of grid cell responses are different across the

different grid networks or modules, then the spatial representation undergoes

discontinuous changes, and a procedure for constructing place cells from grid

cells by summing the activities of grid cells from different grid networks will result

in globally remapped place cell responses. This suggests that the orthogonalization

of CA3 representations across environments can be attributed to changes at the

level of the MEC (Leutgeb and Leutgeb 2007). What remains to be tested is

whether global remapping can be observed in CA3 in the absence of such global

remapping in the MEC, which would suggest that perhaps LEC, or perhaps DG,

participate in hippocampal global remapping.

Rate remapping, then, might involve a separate, non grid-cell source, since

consistent shifts or zero shifts in the grid input will produce no differential modula-

tion of place fields under the model where place fields are driven only by grid cells.

There are two likely candidate sources for rate remapping: the DG and the LEC.

The DG is sensitive to subtle changes in environmental context, as revealed by the

morph-box paradigm (Leutgeb et al. 2007), and several studies have shown that

animals with DG lesions are impaired when making place discriminations (Gilbert

et al. 2001; Goodrich-Hunsaker et al. 2008; Morris et al. 2012; Kesner 2013) and

context discriminations (Lee et al. 2004b; McHugh et al. 2007; Tronel et al. 2012;

Kheirbek et al. 2012; Nakashiba et al. 2012). For example, in a fear conditioning

paradigm, animals with DG lesions failed to distinguish between ambiguous

environments (one box in which they were fear conditioned and a second similar
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but unfamiliar box that differs from the first only in some nonspatial cue, like color)

(McHugh et al. 2007). At the same time, the DG is not required for distinguishing

between unambiguously different environments (McHugh et al. 2007) and in some

circumstances does not appear to participate in global remapping (Leutgeb

et al. 2007). These findings point to a role for DG in discriminating between subtle

differences in environment context based on external sensory cues, through some

form of pattern separation, and support the idea that DG might provide the drive for

rate remapping in response to environmental changes that do not invoke global

remapping (Treves et al. 2008). The LEC is also likely involved in rate remapping,

as a recent study has shown that lesioning the LEC impairs the expression of rate

remapping in CA3, even though spatial tuning remains intact (Lu et al. 2013).

To summarize, it is possible that parahippocampal remapping (grid field shifts

and rotations and head direction rotations) elicits the near-orthogonal global

remappings in hippocampus, whereas rate remapping is due to an altogether

different mechanism. This mechanism could be intra-hippocampal (and

DG-dependent) in origin (Leutgeb et al. 2006; Leutgeb and Leutgeb 2007), or

alternatively, might depend on external sensory cues arriving via the LEC

(Deshmukh and Knierim 2011).

What is the computational role of these different types of remapping? Clearly, if

the brain uses cognitive maps of space to navigate, a new or sufficiently different

environment calls for the construction of a new map. On the other hand, a given

map should be capable of modification by smaller or incremental changes to a

familiar environment, without losing the information already built into the present

map or being rewritten by an entirely new map for the environment. Rate and global

remapping may be the hippocampal solutions for these two scenarios, respectively.

Important unanswered questions involve learning what determines the threshold of

similarity before rate remapping gives way to global remapping, how flexible or

adaptable are such thresholds as a function of animal experience in stable and

unstable worlds, which computations and areas are responsible for setting the

threshold, and what are the mechanisms by which global and rate remapping trigger

map plasticity and learning.

14.4.7 Differential Roles of the Hippocampal Subfields
in Localization and Mapping

The data recounted thus far indicate that the hippocampus receives both allothetic

and idiothetic cues and is in a position to encode associations between the two to

generate a map-like representation. These data support the cognitive map hypothe-

sis of O’Keefe and Nadel (1978). But what differentiates the different hippocampal

subfields, and where might the spatial map reside?

It has long been proposed that the DG performs pattern separation to allow, as

discussed above, the disambiguation of relatively similar environments based on

subtle differences (McNaughton and Morris 1987; Treves and Rolls 1992; O’Reilly

and McClelland 1994; Kesner 2007). This hypothesis is supported by
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electrophysiological work (Leutgeb et al. 2007; Marrone et al. 2011; Satvat

et al. 2011) and behavioral studies (McHugh et al. 2007; Tronel et al. 2012;

Kheirbek et al. 2012; Nakashiba et al. 2012; Gilbert et al. 2001; Creer et al. 2010;

Clelland et al. 2009; Sahay et al. 2011; Goodrich-Hunsaker et al. 2008; Morris

et al. 2012; Kesner 2013; Tronel et al. 2012; Lee et al. 2004b). A number of

developmental, physiological, and anatomical factors, including neurogenesis

(Nakashiba et al. 2012; Piatti et al. 2013), sparse firing (Barnes et al. 1990; Jung

and McNaughton 1993; Chawla et al. 2005; Neunuebel and Knierim 2012), large

efficacious mossy terminals (McNaughton andMorris 1987; Henze et al. 2002), and

the anatomical divergence of inputs from EC onto DG (Amaral et al. 2007), are

likely to play a mechanistic role in the pattern separation functionality of this layer,

possibly for the formation of independent (if not completely separated)

representations of relatively similar places and environments [see recent review

articles Aimone et al. (2011), Yassa and Stark (2011), Schmidt et al. (2012), Piatti

et al. (2013), Kesner (2013)].

The functional advantage of such pattern separation is that downstream areas, in

particular CA3, can easily recognize these places as distinct in forming a map and in

forming episodic memories involving these places. Thus, DG may be viewed as a

preprocessor of external sensory inputs that are used downstream in map building.

Computational models of the spatial circuit (some of which are described in the

following section) suggest that the overall spatial map resides in either CA3, CA1,

or both.

According to a number of studies that involve simultaneous recordings in both

areas (Lee et al. 2004a; Leutgeb et al. 2004, 2006), CA3 can respond rapidly to

environmental changes by exhibiting immediate (global and rate) remapping, in

contrast to CA1, whose responses tend to often remain, at least initially, relatively

stable and independent of such contextual changes. These findings are consistent

with earlier studies that showed a lagging response in CA1 to environmental

changes (Bostock et al. 1991; Lever et al. 2002), as well as behavioral studies

showing that NMDARs in CA3, and not CA1, are necessary for rapid memory

acquisition (Lee and Kesner 2002; Nakazawa et al. 2003). In addition to these

differences in the time course of their responses to environmental change, CA3 and

CA1 exhibit differences in their spatial representations: representations across

environments in CA3 are more orthogonalized than those in CA1 (Vazdarjanova

and Guzowski 2004; Leutgeb et al. 2004; Colgin et al. 2010). Moreover, CA3

representations tend to shift coherently when proximal and distal cues are put into

conflict, in contrast to CA1, which shows more variable changes (Lee et al. 2004b).

CA3 and CA1 also differ in their internal anatomy and anatomical inputs: CA3

receives overlapping projections from LEC and MEC, while in CA1 these

projections are well separated (Witter et al. 2006). Since LEC and MEC are

believed to code for complementary aspects of the world [object vs. place; external

sensory information vs. internal sensory information; non-self vs. self (Knierim

et al. (2006), Lisman (2007)], this suggests an associative role for CA3, in this case

binding together different kinds of cues to build episodic or conjunctive

representations of place, context, reward contingency, etc. This is consistent with
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the primate literature on the role of hippocampus in forming associative and

episodic memories (Eichenbaum and Lipton 2008; Buzsáki and Moser 2013). As

variously noted, this associative role is consistent with the extensive recurrent

excitatory collaterals in CA3 (Marr 1971; Hopfield 1982; Lansner 2009). A map

of an environment is commonly understood to mean a representation that encodes

relationships between pairs of locations and the relationships between landmarks in

the environment and their locations. By this definition and based on the associ-

ational role of CA3, it’s likely that some version of a map of space resides in CA3.

The map could in principle either encode detailed metric (distance) and geometric

(angle) information relating different locations or encoding more qualitative topo-

logical information that preserves relative distances and other topological features

(Muller et al. 1996; Balakrishnan et al. 1999). Recent mathematical analysis of the

CA3 code suggests the latter, that the CA3 map appears to be more topological than

geometric and metric (Dabaghian et al. 2012).

A large fraction of the lateral connections in CA3 are directed rather than

reciprocal (Muller et al. 1996; Buzsáki 2006), suggesting the possibility that CA3

is further involved in the associative learning of location sequences between place

cells. These place cell sequences would correspond to routes or trajectories between

locations in the external environment. Indeed, studies report the existence of

various sequence-playback events, including replay and preplay of place field

sequences when animals are quiescent, sleeping, or about to start running down a

path (Foster and Wilson 2006; Johnson and Redish 2007; Diba and Buzsáki 2007;

Davidson et al. 2009; Karlsson and Frank 2009; Dragoi and Tonegawa 2011). The

function of such playback events may be related to route memorization, recall, and

planning (Hasselmo 2012).

O’Keefe and Nadel hypothesized that CA1 functions as a mismatch detector, or

comparator, comparing predictions derived from the map with direct observations

(O’Keefe and Nadal 1978). Mismatch detection is a form of novelty detection, and

there is some empirical support for this hypothesis. CA1, but not CA3 or DG,

showed marked increases in expression of the immediate early gene Fos, a marker

for recent neural activity and plasticity, after animals were exposed to environmen-

tal novelty (VanElzakker et al. 2008). In addition, CA1 cells appear to primarily

respond to combinations of input from CA3 and EC, not separately: only when

inputs from CA3 and EC arrive concurrently at the proximal and distal portions of a

CA1 pyramidal cell dendrite, respectively, does a dendritic plateau potential,

necessary for burst firing and plasticity, triggered (Takahashi and Magee 2009).

In the comparator view, CA1 is comparing the learned associations or predictions

from CA3 with the sensory cue-driven outputs of EC to decide whether to fire. On

the other hand, with inputs from MEC and LEC terminating on different cells of

CA1 (Witter et al. 2006), it is unclear whether and how the MEC and LEC inputs

may be combined and integrated within CA1.

Thus, spatial computation within the hippocampus might function as follows: In

a familiar environment, sensory sensory cues, through the perforant path, retrieve a

learned topological map in CA3 that contains relative spatial information about

different locations, together with “handles” to other variables like context, salience,
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and reward contingencies. This map may be compressed in the sense that it lacks

geometric and metric information about the environment (angles and distance

between locations and landmarks) (Dabaghian et al. 2012). This retrieved map

generates predictions about location based on learned knowledge of commonly

taken past routes and relative locations, which may then be compared, may then be

compared in CA1 against the sensory-based inputs arriving from the EC (Hasselmo

and Wyble 1997), to perform self-localization and possibly influence, via feedback,

the map in CA3 (Sik et al. 1994), Fig. 14.3. The role of CA1 in this view is as a user

of the spatial map to perform localization during navigation. Finally, the more

mysterious of the hippocampal subfields, the subiculum, contains cells of diverse

spatial tuning, including place cells (Barnes et al. 1990; Sharp and Green 1994),

with some cells whose field locations appear to be invariant to environmental

context (Sharp 2006; Kim et al. 2012). From a computational point of view,

many important functions, including the computation and incorporation of metric
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Fig. 14.3 Self-localization and mapping in the hippocampal circuit. Spatial representations and

computations in the hippocampal circuit: External sensory information and idiothetic cues are

relayed to the hippocampus through the LEC and MEC, respectively. These areas convey

information about location given the sensory data. The perforant path, via layer II of the EC,

projects to both DG and CA3, where allothetic and idiothetic cues from LEC and MEC, respec-

tively, are mixed (indicated by the shading of the cells) and used, together with the internal

recurrent connectivity of CA3, which encodes a topological map of the environment, to generate a

prediction of the animal’s current location. For self-localization, the prediction from CA3 is

compared in CA1 against the direct sensory input conveyed from EC. Output from CA1 may be

used to correct the PI in the MEC via the subiculum (Sub) or to alter the map in CA3 (gray arrow
with question-mark, where the question mark highlights the lack of a direct connection from CA1

back to CA3), possibly through EC
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information into navigation calculations (for instance as needed in homing and map

building), have yet to be assigned neural loci, some of which may be performed by

the subiculum.

In the following sections, we explore computational models that seek to explain

how the different areas combine into an entorhinal–hippocampal circuit that is

capable of solving the navigational tasks of localization and mapping.

14.5 Computational Models of the Cortical-Hippocampal
Circuit for Spatial Navigation

Empirical findings do not yet provide a complete answer for how the components of

the brain’s spatial navigation circuit work together to perform the computations

necessary for localization and mapping. In this section we review three computa-

tional models from amongst a number of such models that incorporate, to greater or

lesser extent, the neurophysiological findings on codes for space in the brain to

obtain a functioning circuit for localization and mapping. These models help drive a

better understanding of how the circuit might work, while highlighting the gaps in

our knowledge.

A notable early model that incorporated both allothetic and idiothetic cues, and

identified the brain areas likely to be involved in map building and self-localization,

was presented in Redish and Touretzky (1998). Redish and Touretzky reasoned that

the path integrator (PI) resides outside the hippocampus (Touretzky and Redish

1996). In Redish and Touretzky (1998), which forms one of a series of models

involving both allothetic and idiothetic drive to place cells (Wan et al. 1993;

Touretzky and Redish 1996; Redish and Touretzky 1997), a spatial map is

constructed in a composite CA1/CA3 network. Local view and PI inputs are

associated at the level of the EC layer, which then projects to CA1/CA3,

Fig. 14.4a (see caption for details of model). The CA1/CA3 network is endowed

with recurrent connectivity and learns a topological representation of the environ-

ment through the formation, by associative plasticity, of lateral connections

between pairs of place cells with nearby field centers. Learning takes place under

idealized circumstances, in which there is no ambiguity in the visual input, and the

PI is error-free. After map formation, the system is capable of self-localization with

noisy cues (including noise in the PI): the topological map arrives at a single

estimate of location from ambiguous and possibly conflicting sensory cues (both

PI cues and visual cues) through winner-take-all (WTA) dynamics in the CA1/CA3

network. The field center of the winner place cells represents a guess of the animal’s

location, which can be used to reset the PI. The neural dynamics of this model are

relatively realistic, incorporating rate-based neurons with biophysical time

constants that support attractor dynamics in the PI, the local view network, and

CA1/CA3. Associations between the allothetic and idiothetic (PI) inputs are formed

in a high-level sensory area that is distinct from the CA1/CA3 network, but it is not

entirely clear if performance would be hurt by shifting these associations to the

CA1/CA3 network, as would seem more consistent with a modern understanding of
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the circuit. It is also unclear how the system would perform if the inputs during map

learning were noisy and unreliable, as is the case in the real world. Indeed, the

problems of localization and mapping become particularly difficult when both must

be solved simultaneously in a noisy world: map development without accurate

location coordinates and localization without an accurate map.

Arleo and Gerstner proposed a multilayer model (Arleo and Gerstner 2000),

similar to that of Redish and Touretzky (Touretzky and Redish 1996), with a focus

on how maps might be built over the course of exploration from noisy and

ambiguous multimodal (allothetic and idiothetic) sensory cues. Here, the PI (a set

of neurons with Gaussian tuning curves, whose firing is determined based on an

integrated estimate of animal location, without a neural network model of the

integration process; this area is referred to by the authors as mEC) is subject to
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Fig. 14.4 Hippocampal circuit models. (a) Model of (Redish and Touretzky 1998): Sub/PaS

(subiculum/parasubiculum) and HLS (high-level sensory areas), respectively, represent path

integration-based (unimodal bump on gray sheet; in this and other panels, neurons are arranged

topographically according to place preference) and local view-based location estimates (the view-

based estimate may be unimodal or multimodal, depending on the ambiguity of the visual cues).

These regions project to EC. Sub/PaS projections to EC are fixed (solid line), whereas HLS

projections to EC are learned (dotted line). This enables a mapping of the HLS representation

into PI coordinates so that inputs from the HLS and PI representation match. EC projects one-to-

one to CA1/CA3. During exploration, coactive CA1/CA3 cells become recurrently coupled

through Hebbian plasticity (dotted lines). The learned weights in CA1/CA3 are excitatory and,

coupled with global inhibition, facilitate winner-take-all (WTA) dynamics (red cell is winning
cell), which can be used to reset the PI (red arrow) through one-to-one projections back to

Sub/PaS. (b) Model of (Arleo and Gerstner 2000): Allothetic input drives a collection of snapshot

cells, each connected to a random assortment of visual filters. Snapshot cells project to superficial

EC cells (sEC) through plastic synapses (dotted line), creating a sparse representation of visual

location signatures in sEC. Idiothetic cues drive a unimodal bump in the medial EC (mEC).

Together, mEC and sEC drive CA1/CA3. During learning, when too few CA1/CA3 cells are active

at a location, a new cell is added to the sEC and CA1/CA3 layers, with random initial weights to

and from the EC layers. The weights between the CA1/CA3 and EC layers undergo Hebbian

plasticity. Inset, when the path integration error exceeds a certain threshold, the animal moves

toward familiar territory (e.g., toward home) to recalibrate the PI. Once the territory is sufficiently

familiar, the position estimate in CA1/CA3 resets the PI
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error accumulation. The visually derived (allothetic) input to the system is nonmet-

ric, meaning that it does not directly encode animal position in allocentric

coordinates, Fig. 14.4b. This allothetic sensory input is computed [in a network

referred to as the superficial EC (sEC)] from snapshot cells, which encode

ego-centric pictures of the world. Snapshot cell firing rates are determined by the

sum of the projections of the visual input scene onto a select group of visual filters.

Unlike previous models, this model does away with the need for assuming explicit

landmark identification from visual inputs, because the snapshot cells use simple

linear filters to generate visual input-determined fingerprints for different locations.

A downstream layer, the CA1/CA3 network, receives input from sEC and mEC

and constructs a map of the environment in the form of place cells that are activated

by the combination of the external sensory cues (from sEC) and the corresponding

PI inputs (from mEC), for each location. This is achieved by updating the sEC and

mEC input strengths to active cells in the CA1/CA3 layer through Hebbian

learning. New place cells are added when a location is sufficiently unfamiliar

(i.e., when an insufficient number of the existing CA1/CA3 cells are activated).

At any given time, the preferred locations of the active ensemble of CA1/CA3 cells,

as driven by the mEC and sEC, are averaged to represent the animal’s location in

the environment. The PI, which accumulates error over time by design, passes its

inconsistencies to the map being learned, if uncorrected. The model mitigates the

likelihood of any resulting discontinues in the map by assuming that the trajectory

during map learning in unfamiliar environments consists of short exploratory

excursions that loop back quickly to a familiar location, a hypothesis supported

by behavioral evidence (Eilam and Golani 1989; Golani et al. 1993; Tchernichovski

et al. 1998; Whishaw et al. 2006; Wallace et al. 2006). At familiar locations

(determined by the number of active CA1/CA3 cells), the PI coordinates are

reset, Fig. 14.4b, resulting in a PI whose error is effectively bounded.

A further development of this line of models, triggered by the discovery of grid

cells (Hafting et al. 2005; Fiete et al. 2008), was provided by Sreenivasan and Fiete

2011. Theoretical considerations show that the grid cell code makes possible

corrections of noise-driven errors resulting from the neural path integration process,

even without the help of external landmarks (Sreenivasan and Fiete 2011). The

readout layer for error-correction, equated with CA1, receives feedforward path-

integrated inputs from the multiple-scaled grid cell networks and performs WTA

dynamics. The winner place cell represents the estimated location, and the estimate

thus formed is approximately a maximum-likelihood estimate of location given the

noisy PI inputs of all spatial periods. The specific multi-period grid cell code

ensures that the accuracy of this estimate of location is high, compared to if the

PI inputs were coded simply as unimodal or more place cell-like representation [this

is because of the specific, very perturbation-sensitive representation of different

locations by the collective grid cell code; see Sreenivasan and Fiete (2011) for

details]. Return projections from CA1 to grid cells (via intervening areas) would

then reset the PI. The same return projections can correct the PI if the CA1 WTA

dynamics were run based on visual or other allothetic inputs instead of grid cell

inputs. A notable feature of the model is its separation of the roles of CA1 and CA3:
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CA3 inputs are hypothesized to provide internal guesses or predictions to CA1 that

constrain the set of possible locations from which CA1 selects the winner for the

current time-step. CA3 predictions are based on the last estimate of location,

combined with learned knowledge about physical boundaries in the environment,

about commonly taken past routes in the environment, and about physical

constraints of the world, such as the impossibility of spontaneously tunneling

between remote locations. CA3’s constraints on CA1 are enforced by a coincidence

rule, so that EC feedforward input can only allow a CA1 place cell to win in the

WTA dynamics if the cell also simultaneously receives a CA3 input signifying that

the cell represents a possible location for the present time-step. Thus, CA3 inputs

are “enablers” of CA1 firing. External sensory cues, when present, are assumed to

enter CA3, thus contributing to the prediction of possible locations.

The three models described above have several features in common; a notable

shared element is that they all view location estimation as a process of computing at

each time a single best guess, then updating that single guess in the next time-step.

A contrasting approach, as widely used in robotic SLAM (Simultaneous Localiza-

tion and Mapping) systems (Meyer and Filliat 2003; Durrant-Whyte and Bailey

2006), is to always represent a probability distribution over possible locations and

then update that distribution over time (Balakrishnan et al. 1999). The representa-

tion and updating of probabilities can allow for far more robust and accurate

location estimation in a noisy world, than possible by updating and storing only a

single best guess.

The models covered here represent a small sample of the dozens of hippocampal

spatial models introduced over the last 3 decades. A notable omission from the

computational perspective in this review are ratSLAM algorithms (Milford and

Wyeth 2010), which meld insights from robotic SLAM with the physiology of the

hippocampus. These algorithms achieve impressive performance in localization

and mapping, but many complex computational steps are performed without plau-

sible biological implementation. We have highlighted a particular set of models

because they illustrate some of the problems involved in mapping and self-

localization in a transparent way. What conclusions do we draw from these models,

and what gaps remain?

One important insight from these models is that combining information from

multiple sources—external landmark-based sensory cues, self-motion-based cues,

and information about previously visited locations—can greatly enhance one’s

ability to self-localize, both in adding precision to one’s estimate as well as

functioning in a compensatory fashion when a subset of cues are absent. Simulta-

neously, the models highlight the incompleteness of our knowledge in how the

spatial circuit performs this information fusion: they lack the rich dynamics that the

hippocampus expresses across environments and under different behaviors and at

best provide caricatures of the different components of the circuit and their roles in

navigation.

14 How Does the Brain Solve the Computational Problems of Spatial Navigation? 395



Conclusions

Our knowledge of how the brain performs localization and mapping is rapidly

growing, thanks in large part to the discovery of various cell types that represent

different pieces of spatial information in decipherable ways. In concert, our

understanding on a mechanistic level of the underlying neural circuits for each of

these cell types is also rapidly expanding, and the evidence of this is the

agreement between computational predictions about neural activity from circuit

models of cells (e.g., HD cells and grid cells) and the data. However, there are at

least three major areas that deserve more attention from the communities of

theorists and experimentalists: one is to determine the role and mechanisms

of cell types whose codes are not easy to decipher but which make up a large or

possibly even majority fraction of principal cells in areas like the MEC (Zhang

et al. 2013; Sargolini et al. 2006; Boccara et al. 2010; Mizuseki et al. 2009).

Some of these cells have firing patterns that correlate with spatial location and

associated spatial variables, and others do not. The second is to resolve the

mechanisms through which temporal oscillation dynamics in the theta and

gamma bands obtain and represent spatial information. It is clear that neural

firing rates convey spatial information through the tuning curves of grid cells,

HD cells, and place cells; it is also clear that oscillations strongly influence spike

timing and convey spatial information (Brown et al. 1998; Mizuseki et al. 2009;

Domnisoru et al. 2013; Schmidt-Hieber and Hausser 2013; Royer et al. 2012;

Jadhav et al. 2012; Reifenstein et al. 2012). However, are these spike time

representations fundamental to the spatial circuit, in the sense that computations

within the circuit are based on detailed spike timing and coincidences, or are the

spike time outputs merely readouts, translated into a phase code, of the rate-

based dynamics of the network? The third is the question of how the different

cell types and areas of the spatial circuit work together to combine incomplete

data and predictions about spatial location in order to arrive at the high-quality

spatial inference that is a hallmark of navigating animals. Related to this third

question, we will in a separate review discuss spatial navigation in the robotics

field of SLAM (Durrant-Whyte and Bailey 2006) as it may relate to the problems

faced by the brain in solving the same challenges. We seek to understand how

the brain solves the sequential probabilistic inference problems of navigation

that have been identified as computationally difficult in robotic SLAM. In this

way, we may gain insight into some of the more mysterious aspects of neural

representation in the spatial circuit.

In this chapter we have focused on exploring how the brain’s navigational

circuit solves the problems of map building and self-localization in novel and

familiar environments. Despite this focus, it bears emphasizing that the hippo-

campus does not likely exist solely or even primarily to serve this function. Even

in seeking to learn the role of the hippocampal circuit in navigation, it might be

profitable to take the bigger view of the hippocampus’ general computational

role (Buzsáki and Moser 2013), because its spatial role may be understood as a

special case of the general functions it performs. Given its intrinsic organization
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and anatomical relationship with the cortex, the hippocampus appears to orga-

nize, index, and enable access to the brain’s contents for fast, efficient retrieval

(Teyler and DiScenna 1986; McNaughton et al. 1996; Leutgeb and Leutgeb

2007; Teyler and Rudy 2007). In this view, the role of the hippocampus in the

brain is akin to the role of a librarian (Buzsáki 2006): given vague or partial

information about a book (or an event or thing), the librarian (hippocampus) can

retrieve the full record and return a pointer to the book (or the full memory of the

event or thing). This is consistent with the autoassociative pattern-completion

role usually ascribed to CA3 (Grossberg 1969, 1971; Hopfield 1982; Amit 1994;

McClelland and Rumelhart 1985; McNaughton and Morris 1987; Treves and

Rolls 1992). To understand the elevation of the spatial variable, we might build

on the analogy. The full record kept by the librarian includes a title, author

names, a summary, a publication date, a publisher, number of copies in the

library, and importantly, a call number. The call number is a privileged indexing

variable: one author can have multiple books and multiple books may share a

title, etc., but each book has a unique call number, and this number further

specifies where on the shelves to find the book. On the shelves, books placed

near each other address related topics, and thus the call number conveys seman-

tic meaning that goes beyond simply providing a unique identifier. Similarly,

whereas the full record of an episode consists of a place, a time, context, valence,

reward contingency, and landmarks, the place or location index is privileged. It

is an efficient locator of a memory, and, in general, records with similar spatial

labels will tend to have important relationships to each other because of the

spatiotemporal continuity of the world.

The spatial roles of the hippocampus in mapping and self-localization are

perfectly consistent with the view of hippocampus as a general indexing

machine for episodic memory (Teyler and DiScenna 1986): mapping, which

involves the acquisition of information about external sensory landmarks and

contexts and their association with internal sensory inputs at specific locations

and with each other, is a spatial form of memory storage. Self-localization,

which involves the recall of spatial associations and memories when some

semblance of the sensory inputs is reencountered in noisy or ambiguous form,

is a spatial form of retrieval.
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Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York, NY

398 J. Widloski and I. Fiete
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