
Chapter 3

Constraint and Dynamic Analysis of Compliant

Mechanisms with a Flexible Multibody
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Abstract The models used in the conceptual phase of the mechatronic design

should not be too complicated, yet they should capture the dominant system

behaviour. Firstly, the awareness and possibly the avoidance of an overconstrained

condition is important. Secondly, the models should reveal the system’s natural

frequencies and mode shapes in a relevant frequency range. For the control system

synthesis the low frequent behaviour up to the cross-over frequency needs to be

known. Furthermore, the closed-loop system can be unstable due to parasitic modes

at somewhat higher frequencies.

In this chapter the applicability of a multibody modelling approach based on

non-linear finite elements is demonstrated for the mechatronic design of a compliant

six DOF manipulator. A kinematic analysis is applied to investigate the exact

constrained design of the system. From dynamic models the natural frequencies

and mode shapes are predicted and a state-space model is derived that describes the

system’s input-output relations. The models have been verified with experimental

identification and closed-loop motion experiments. The predicted lowest natural

frequencies and closed-loop performance agree sufficiently well with the experi-

mental data.

3.1 Introduction

In high precision equipment the use of compliant mechanisms is favourable as

elastic joints offer the advantages of no friction and no backlash. For the conceptual

design of such mechanisms there is no need for very detailed and complex models

that are time-consuming to analyse. Nevertheless the models should capture the
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dominant system behaviour which must include relevant three-dimensional

motion and geometric non-linearities, in particular when the system undergoes

large deflections. More specifically, we distinguish two phases in the modelling

approach of which a kinematic design is the first phase. Typical design

considerations for this phase aim at detecting and where necessary avoiding

overconstrained or underconstrained design in line with so-called Exact Constraint

Design principles [1–3]. The dynamic system performance is considered in the

second design phase. It involves the computation of the natural frequencies and the

accompanying mode shapes, which are closely related to the required closed-loop

bandwidth and stability of the mechatronic system [4, 5].

In [6–9] we discussed the use of the SPACAR software for these design phases.

It offers a multibody approach based on non-linear finite elements. The sound

inclusion of the non-linear effects at the element level [10] appears to be very

advantageous. Only a rather small number of elastic beam elements is needed to

model e.g. wire flexures and leaf springs accurately. In particular for the kinematic

analysis to check the constraints only a single flexible beam element is used for

each flexure. In a dynamic analysis the natural frequencies are computed and more

beam elements may be used to obtain more accurate results at higher frequencies or

for larger deflections. The non-linear model can be linearised in a number of

configurations throughout the complete operational range of the mechanism to

obtain a series of locally linearised models in terms of the independent degrees of

freedom, e.g. state space models for control system design [11]. Numerically

efficient models are obtained as the number of independent degrees of freedom is

rather small. Consequently, the approach is particularly well suited during the early

(mechatronic) design phase, where time consuming computations would severely

hamper the design progress.

This chapter is an extension of a paper earlier presented [8]. The modelling

approach will be applied for the analysis and MIMO control system synthesis of a

parallel kinematic precision manipulator with six kinematic degrees of freedom

(DOF) as is described in the next section. Numerical results are presented in

Sect. 3.3 and are verified with experimental data. Finally conclusions are drawn.

3.2 Six DOF Manipulator

Figure 3.1 shows a six DOF hexapod-like flexure-based manipulator [12]. It is an

scaled-up version of a micromanipulator originally designed to be manufactured with

MEMS technology. It has to translate and rotate the end effector in all directions. It is

difficult to accurately measure the motion of the small micromanipulator which is not

more than a few mm in size. Sensors can be integrated much easier in the scaled-up

manipulator which has a largest outer dimension of 540mm. The large version should

give insight in the dynamic behaviour of the micromanipulator and therefore the

restrictions in the mechanical design resulting from the MEMS fabrication method

have been preserved.
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In the scaled-up manipulator six voice coil actuators (VCMs) are applied to drive

the position and orientation of the end effector. In the MEMS design it is essential

that each actuator is constrained to a purely translational motion. In the scaled-up

version this motion is also enforced by straight guidances that assure that the

motion of each VCM is exactly in one in-plane direction. Each VCM is equipped

with a contact-free optical incremental encoder to measure the actuator displace-

ment for colocated feedback control. The motions of a pair of VCMs are transferred

via in-plane leaf springs to an intermediate body, such that this body can move in

the in-plane directions. In total three of these intermediate bodies support three

slanted leaf springs that are connected to the end effector. In this way the three

times two in-plane actuated translations of the intermediate bodies enable

translations and rotations of the end effector in all six DOF. E.g. the horizontal

translations of the end effector are realised with identical motions of all three

intermediate bodies. To accomplish a vertical translation of the end effector, the

three intermediate bodies move radially towards the centre of the set-up. These

motions and the rotations are outlined in more detail by Brouwer et al. [12].

In general, the relations between the linear VCM displacements and the position

and orientation of the end effector are highly non-linear. These relations can be

measured with a sensor system that is mounted on the end effector. This sensor

system (not shown in Fig. 3.1) includes an optical sensor to measure the displace-

ment in one long-stroke direction, while the parasitic displacements in the

perpendicular directions and the rotations are measured with capacitive sensors.

End effector
Slanted leaf spring
Intermediate body

In-plane leaf spring
Optical sensor

Straight guidance
Voice coil actuator

Fig. 3.1 Six DOF hexapod-like manipulator with flexible joints [12]
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3.3 Numerical Modelling

A numerical model of the manipulator needs to account for the flexures in the

system. More specifically each straight guidance consists of leaf springs and a wire

spring. The end effector is mounted on the three slanted leaf springs. In the

modelling approach implemented in SPACAR flexible beam elements are used for

all flexures. This beam element will be outlined first before the kinematic and

dynamic analyses are presented.

3.3.1 Spatial Flexible Beam Element

The location of the beam element is described by the positions of the end nodes

p and q, as well as their orientations. Essential is the definition of physically

meaningful deformation modes of the element that are invariant for rigid body

motions of the element. As there are 12 independent nodal coordinates and six rigid

body degrees of freedom, six independent deformation modes can be defined. For

the spatial flexible beam one deformation mode coordinate e1 is taken to describe

the elongation, e2 for torsion and four modes e3–6 for the bending deformations

of the element [10, 13]. Figure 3.2 illustrates five of these deformation modes.

The deformation mode coordinates are defined in such a way that geometrically

non-linear effects due to interaction between deformation modes are included.

Consequently, accurate models can be obtained with a relatively small numbers

of elements even for the case when large deflections are considered [10, 13]. Each

of the deformation mode coordinates can be defined to be constrained or released.

/

ε

ε
ε

ε
ε

Fig. 3.2 Deformations e2–e6 of the spatial beam element (Reprinted from [14])
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If a deformation mode coordinate is released, i.e. not constrained, constitutive

equations have to be specified for the stress resultants, which are dual to the

deformations. These constitutive equations may express simply linear elastic

behaviour based on the element stiffness properties.

3.3.2 Kinematic Model and Exact Constrained Design

Numerical models of the system can be made with a varying level of complexity.

With a kinematic SPACAR model it can be verified that the manipulator satisfies exact

constraint design. In this model each wire flexure and leaf spring is modelled with

a single flexible beam element. All deformation modes with a high stiffness are

considered to be rigid, i.e. having constrained deformation mode coordinates.

The deformation modes with low stiffnesses are allowed to deform. Then it appears

that a Jacobian matrix can be assembled which must be square and full rank in order

to satisfy exact constraint design: otherwise the system is underconstrained or

overconstrained [7, 9].

The straight guidances of the manipulator, Fig. 3.3, are overconstrained by

design to increase the stiffness in the out-of-plane direction. This is confirmed in

the kinematic analysis and these parts are manufactured accurately to minimise the

internal stresses [12]. A six DOF kinematic model confirms the exact constraint

design of the end effector motion, Fig. 3.4.

Note that for this kinematic analysis the masses and stiffnesses do not play a role.

These are of course relevant in the dynamic analysis to be discussed next.

3.3.3 Dynamic Model and Natural Frequencies
with Mode Shapes

Natural frequencies and mode shapes are obtained from dynamic models. The

simplest dynamic model is derived from the kinematic model outlined above in

which mass and stiffness properties are added. In the applied modelling approach

the non-linear equations of motion can be linearised in any valid configuration of

the system. From the mass and stiffness matrices the (configuration dependent)

natural frequencies and mode shapes are computed. A state space model is derived

after defining the system’s inputs, the VCM forces, and outputs, the colocated

sensor positions. As the simplest dynamic model has six DOF, only the six lowest

natural frequencies of the manipulator can be obtained from this model and a

twelfth order state space model is found.

For control system synthesis also higher natural frequencies and their mode

shapes must be known [4]. These so-called parasitic modes involve deformations in

the directions of the larger stiffnesses. In the dynamic model they can be accounted

for by releasing deformation mode coordinates associated with deformations in
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these directions. In the previous six DOF model these deformations were prescribed

zero and now these released deformation mode coordinates give rise to additional

degrees of freedom. Furthermore, the system should be evaluated in configurations

throughout the manipulator’s workspace. The six deformation modes of the flexible

beam element offer only an accurate approximation for a limited set of element

deformations. If more complex deformations are expected, the approximation can

be improved by increasing the number of elements in each flexure. Obviously, both

improvements of the dynamic model result in an increased number of DOF.

For the considered manipulator a model has been made in which three or four

beam elements are used for each wire flexure of leaf spring. This model has 870

DOF which result in many natural frequencies that are far outside the frequency

range of interest. To reduce the number of DOF the model is first simplified by

reducing the number of beam elements that is used for the flexures. If the lower

natural frequencies of the reduced order model are identical or close to the natural
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Fig. 3.3 Schematic model of each straight guidance. The lines in the solid parts represent rigid

elements. The lines in the flexures ABC, EFG, IJK, NOP, S, T, X and Z are flexible beam elements.

The dashed lines are connections between elements that are apart for a clearer view. In the points 1,
16, 23 and 25 the guidance is fixed to the world. The motion of body H is guided. Lever U assures

that the stroke of the intermediate body L is half of the stroke of body H (From [15])
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frequencies of the 870-DOF model in this range, the simplification is accepted.

In this way the number of DOF could be reduced to 420. A further simplification is

possible by constraining deformations. The longitudinal stiffness of the flexures is

rather high and it appears that a model with all elongations e1 prescribed zero results
in 315 DOF without loss of accuracy. Similarly also part of the bending deforma-

tion modes with a high stiffness can be considered rigid and finally a 237-DOF

model is obtained. Table 3.1 lists the numerical values of the ten lowest natural

frequencies of both the extended 870-DOF and the reduced 237-DOF models.

As can be seen in the table the lowest six natural frequencies of the reduced

model are almost identical to the natural frequencies of the large model. For the

higher natural frequencies somewhat larger differences are found. For the control

system synthesis, in particular the seventh natural frequency is relevant which

differs by about 6%. In Fig. 3.5 these natural frequencies can be recognised as

the peaks in the graph of the system’s singular values or principal gains as functions

of the frequency. In this analysis the VCM forces are the system’s inputs and the

colocated sensors are the outputs. The lowest natural frequencies are damped due to

the actuator’s back-EMF.
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Fig. 3.4 Schematic model of the end effector. The lines in the solid intermediate bodies and end

effector represent rigid elements. The lines in the flexures A, D, E, H, I, L, M, N and O are flexible

beam elements. The dashed lines are connections between elements that are apart for a clearer

view. In the points 1, 5, 6, 10, 11 and 15 purely translational motions are prescribed which cause

in-plane motion of the intermediate bodies C,G and K. As a result, the out-of-plane leaf springsM,

N andOmove the end effector (points 16–19) in all translational and rotational degrees of freedom
(From [15])
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Table 3.1 First ten natural frequencies (in rad/s) of the large and reduced models as well as the

experimentally identified natural frequencies. Note that the experimentally observed 7th and 8th

natural frequency are not present in the models

Mode 870-DOF 237-DOF Mode Exp.

1 59.3 59.3 1 55.3

2 59.9 59.9 2 56.0

3 84.3 84.5 3 79.6

4 86.8 86.8 4 83.0

5 122.0 122.2 5 116.1

6 124.6 125.1 6 120.2

7 225

8 285

7 658 697 9 565

8 844 917

9 908 1001 10 1050

10 1074 1303

SYS237

Fig. 3.5 Singular values of the transfer matrix of the 237-DOF SPACAR-model near the equilibrium

configuration (From [15])
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The linearised models of the mechanical system are well-suited for control

system synthesis. The following steps are taken. At first the cross-over frequency

of the feedback controller is determined from performance requirements. Assuming

this cross-over frequency will be well below the unwanted higher natural

frequencies, the closed-loop performance can be evaluated from the controller

combined with the low frequent behaviour of the mechanical system [4], i.e. the

six lowest natural frequencies. For this purpose a linearised six DOF model that

accounts for the lowest six natural frequencies in Table 3.1 is well-suited. As an

example we consider a PID-like feedback controller that should track a third order

motion profile during 1 s with an error of less than 0.1% of the amplitude. This can

be accomplished with a cross-over frequency of about 300 rad/s. Secondly, the

closed-loop performance can be improved with feedforward control. A feedforward

control input can be computed by applying a stable inverse approximation of a low

frequent model of the mechanical system to the desired motion profile.

Finally the robust stability of this closed-loop system can be evaluated.

In particular the first parasitic natural frequency may violate stability requirements

in an H1 controller design strategy [4]. Obviously for this purpose a model of the

mechanical system like the 237-DOF model is needed that is sufficiently accurate

above the cross-over frequency. This model can also be used in closed-loop

simulations to validate the controller design.

3.4 Experimental Results

An experimental set-up with the manipulator of Fig. 3.1 has been realised. As

outlined in Sect. 3.2 it is actuated with six VCMs. Colocated sensors measure the

actuator displacements. MIMO system identification has been carried out with a

black-box multivariable output error subspace (MOESP) model identification

method [15–17]. A 21st order model is found that identifies the lowest natural

frequencies as well as the first parasitic modes. These natural frequencies are

included in Table 3.1 and are combined with the 237-DOF model in Fig. 3.6.

It appears that the six lowest natural frequencies agree quite well between the

numerical model and experimental data. Also the natural frequency of the first

parasitic mode agrees reasonably well. However, two additional natural frequencies

are found in the identification that are not included in the models. Probably these

modes arise from suspension modes of the frame that are not accounted for in the

numerical models. In Fig. 3.6 these modes are visible, but their amplitudes are

rather small. Overall it is concluded that the numerical models provide an adequate

prediction of the experimental results.

The designed feedback and feedforward controller has been tested for a motion

of the end effector of 6 mm displacements in the horizontal x, y-plane. Figure 3.7
shows the tracking error of the actuator displacements during this motion. It appears
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21st  order identification estimate
SPACAR - model (SYS237)

Fig. 3.6 Singular values of the transfer matrix of the 21st order identification estimate and the

SPACAR-model near the equilibrium configuration (From [15])

Fig. 3.7 Measured tracking error of the actuator displacements during a 6 mm displacement of the

end effector in the x, y -plane (From [15])
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that they remain below the desired 0.1% although the signal is quite noisy. This is to

a large extend caused by a 50 Hz disturbance from the mains.

Finally, the motion of the end effector has been analysed with the sensor

mounted on the end effector. This sensor can measure a long stroke in one direction

and small deviations in the other directions as well as rotations. The x axis of the

coordinate system is aligned with the direction of the long stroke. The linearised

manipulator model has been used to compute the actuator displacements needed for

linear displacements of the end effector in the x direction of 1 mm and 4 mm,

respectively. Figure 3.8 shows the actually measured motion of end effector. It is

found that the real displacement matches reasonably with the intended motion, but

it is somewhat smaller than expected. Furthermore, unwanted rotations are

observed. To some extend both effects can be caused by a small misalignment

between the coordinate systems of the manipulator and the sensor. However, it is

also noted that the deviations increase more than linearly when the amplitude of the

end effector displacement is increased. This could be caused by the non-linear

behaviour of the manipulator which is not yet included in the model currently used

to compute the needed actuator displacements.

Fig. 3.8 Measurements of the end effector motion during 1 mm (top) and 4 mm (bottom)
x-displacements of the end effector. The left graphs show the long stroke motion in the x direction;
the right graphs show all three rotations of the end effector for both displacements (From [15])
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3.5 Conclusions

The design of a mechatronic system of the six DOF compliant manipulator in

Fig. 3.1 demonstrates the proposed modelling approach for this purpose. The

formulation is based on a nonlinear finite element description for flexible multibody

systems. The flexible beam elements account for geometric nonlinear effects such

as geometric stiffening and interaction between deformation modes. Flexible joints

like wire flexures and leaf springs can be modelled adequately using only a few

number of flexible beam elements. In this way, a rather low dimensional system

description can be obtained which includes the non-linear behaviour that occurs at

large deflections.

In a kinematic analysis only a single flexible beam element is used for each wire

and sheet flexure and the exact constrained design of the system is examined. In

particular overconstrained conditions are detected and if necessary the design can

be modified to avoid these overconstraints. For the dynamic analysis a maximum of

four flexible beam elements is used for each flexure. The number of DOF is reduced

by prescribing deformations with high stiffness and in rigid parts to be zero. In any

configuration of the manipulator the natural frequencies and mode shapes can be

computed. Furthermore, an input-output state space model can be derived to design

and evaluate the control system. The modelling approach is well suited for

mechatronic design, i.e. the mechanical design as well as control system synthesis.
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