
Chapter 15

Vibration Control and Structural Damping of a
Rotating Beam by Using Piezoelectric Actuators

Christian Zehetner and Georg Zenz

Abstract In this paper, the application of piezoelectric vibration control in flexible

multibody systems is studied and verified. Exemplarily, beam-type structures are

considered that are subject to inertial and external forces. The equations of motion

for three-dimensional flexible and torsional vibrations are presented considering the

influence of piezoelectric actuation strains. In the framework of Bernoulli-Euler

beam theory the shape control solution is derived, i.e. the distribution of actuation

strains such that the flexible displacements are completely compensated. For the

experimental verification, a laboratory model has been developed, in which the

theoretical distribution of actuation strains is discretized by piezoelectric patches.

A suitable control algorithm is implemented within a dSpace environment. Finally,

the results are validated by numerical computations utilizing ABAQUS and

HOTINT, and verified by experimental evaluation.

15.1 Introduction

Recently, the interest in vibration compensation by means of distributed actuation

has increased rapidly. On the one hand, structures become more and more

light-weighted, on the other hand there are considerable advances in the develop-

ment of materials suitable for such kinds of actuators and sensors. This paper

concentrates on the application of piezoelectric transducers in order to control

flexible vibrations in beams, which are important components of many multibody

systems.

Piezoelectric transducers can be used for sensing and actuation, utilizing either

the direct or the converse piezoelectric effect, respectively [1]. An efficient possi-

bility for realisation is to apply piezoelectric patches on the surfaces of beams.
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Depending on the type of the piezoelectric material, and on the position of the patch

on the beam, such transducers can be used for sensing and actuation of bending and

torsional modes. Vibration compensation by piezoelectric materials has been

extensively treated in the literature. The exact compensation of flexible

displacements by distributed actuation has been denoted as shape control, for a

review see Irschik [2].

An exact solution in the framework of Bernoulli-Euler beam theory for the

complete compensation of plane bending vibrations under influence of rigidbody

motions has been presented by Zehetner and Irschik [3]. Torsional vibration control

has been investigated by Zehetner and Krommer [4], where it has been shown how

piezoelectric transducers can be used for torsional sensing and actuation. A com-

parison of some specific piezoelectric materials for the application of torsional

actuation and sensing has been shown in [5].

There are several possibilities for the practical realisation of the spatial distribu-

tion, i.e. the shape of the actuators and sensors. For instance, shaped piezoelectric

layers can be applied on the beam. Other possibilities would be shaped electrodes or

functionally graded material properties. These strategies enable the exact distribu-

tion of the necessary actuation strains, but are very extensive. Thus, patch

approximations are more suitable for practical applications. A patch approximation

for the control of vibrations of a rotating beam has been investigated numerically by

Zehetner and Gerstmayr [6], and first experimental results have been presented in

[7] and [8].

Goal of this work is the derivation and verification of a mechanical model for the

control of three-dimensional flexural and torsional beam vibrations caused by

external forces and inertial forces due to rigidbody motions. The theoretical results

are validated by numerical computations using the finite element software ABAQUS
and the multibody dynamics simulation code HOTINT, mainly developed by

Gerstmayr [9].

Finally, the theoretical results are verified by experimental investigations. For

this sake, a laboratory model has been set up, in which 48 piezoelectric patches are

applied on a rectangular hollow beam. The beam is fixed on a motor, such that it

performs a rotational rigid body motion. Within a dSpace environment control

algorithms are implemented and tested. It turns out that the flexible vibrations can

be reduced significantly, and that theoretical, numerical and experimental results

show a very good coincidence.

15.2 Piezoelectric Actuators and Sensors

Piezoelectric layers can be used as actuators and sensors in various ways. Here, we

consider piezoelectric patches that are attached on the surfaces of a beam. We

distinguish between two operational modes:
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• Extensionmode. The electric field component in thickness direction corresponds

to extension strains as shown in Fig. 15.1. Bending actuators and sensors are

realized by placing such devices symmetrically on the upper and lower surface of

the beam and applying an electric field in opposite direction (extension and

contraction). Such a behaviour is provided e.g. by the piezoelectric ceramic

PZT (lead zirconate titanate). Extension with a predominating axis can be

realized by makro-fiber composites (MFC) consisting of PZT stripes embedded

in epoxy-substrate. Torsional actuation and sensing can be realized by placing

such layers at an angle of 45� with respect to the rod axis as shown in Fig. 15.1.

• Shear mode. The electric field in thickness direction corresponds to shear strains
as shown in Fig. 15.2. Such a behaviour is shown e.g. by the piezoelectric

material ADP (ammonium dihydrogen phosphate). The shear mode can be

utilized for torsional sensing and actuation as shown in Fig. 15.2.

15.3 Constitutive Equations

The constitutive equations for piezoelectric materials relate the mechanical strain

e ¼ ½exx eyy ezz gyz gxz gxy�T, stress s ¼ ½sxx syy szz tyz txz txy�T, electrical field E ¼
½Ex Ey Ez�T and dielectric displacement D ¼ ½Dx Dy Dz�T , cf. Tauchert [10], in the

form

s ¼ Q � e� dEð Þ; (15.1)

y
x

z
Ez

Uel

45°

Bending

Torsion

Fig. 15.1 Piezoelectric extension mode

y
x

z
Ez Uel

Torsion

Fig. 15.2 Piezoelectric shear mode
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D ¼ h � Eþ ds; (15.2)

where Q is the 6 � 6 matrix of elasticity coefficients, d the 6 � 3 matrix

of piezoelectric coefficients and h the 3 � 3 matrix of dielectric coefficients.

The coefficients of the matrices depend on the specific type of piezoelectric

material. Examples for PZT, ADP and MFC are summarized in the Appendix.

In beam-type structures it is assumed that the stress components syy, szz and tyz
can be neglected, such that (15.1) and (15.2) reduce to

sxx ¼ Q11 ðexx � e0xxÞ;
txz ¼ Q55ðgxz � g0xzÞ;
txy ¼ Q66ðgxy � g0xyÞ; ð15:3Þ

and

Dz ¼ �33ðEz � E0
z Þ; (15.4)

where Q11 ¼ S�1
11 is the effective Young modulus, S11 is the first component of the

compliance matrix S ¼ Q�1. In (15.3), e0xx, g
0
xz and g

0
xy are piezoelectric eigenstrains

representing the converse piezoelectric effect, cf. Mura [11] for the definition of

eigenstrains. Accordingly, E0
z is the electric eigenfield, a generalized formulation

for the direct piezoelectric effect which has been introduced by Irschik et al. [12].

Eigenstrains and the eigenfield depend on the material properties, e.g. for PZT

there is

e0xx ¼ d31Ez; g0xy ¼ g0xz ¼ 0; E0
z ¼

d31
�33

sxx; (15.5)

and for ADP

e0xx ¼ 0; g0xy ¼ d36Ez; g0xz ¼ 0; E0
z ¼

d36
�33

txy: (15.6)

Assuming that the piezoelectric transducers are relatively thin, the electric

field components in the plane of the layers are neglected Ex ¼ Ey ¼ 0, and the

electric field is constant in thickness direction and proportional to the applied

voltage Uel,

Ez ¼ Uel

hL
; (15.7)

hL is the thickness of the piezoelectric layer.
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15.4 Kinematics

Figure 15.3 shows a flexible beam fixed to a rigid base in point B. A floating

reference frame is introduced with origin in point B. In the undeformed configura-

tion, x coincides with the beam axis, and ðy; zÞ is the cross-sectional plane. The

position of B with respect to an inertial frame is described by the position vector

xBðtÞ, and the orientation of the floating frame by the rotation matrix ABðtÞ. Hence,
xB and AB represent the rigidbody motion of the beam.

The deformed beam axis is given by the flexible displacements uðx; tÞ, vðx; tÞ,
wðx; tÞ as shown in Fig. 15.3. According to Bernoulli-Euler beam theory the cross-

sections remain undeformed and perpendicular to the beam axis. According to Saint

Venant’s theory of torsion, the cross-section performs a rigidbody rotation around

the beam axis with the torsional angle wðx; tÞ , and an axial displacement (cross-

sectional warping) expressed by Saint Venant’s warping function ’ðy; zÞ . It has
been shown by Zehetner [13] that eigenstrains cause an additional cross-sectional

warping which can be formulated by the warping function f0ðy; z; e0ðtÞÞ. Thus, the
displacement field of the beam is expressed by

u ¼
u� yv0 � zw0 þ w0’

v� zw
wþ yw

2
4

3
5þ

f0

0

0

2
4

3
5� 1

2

2wðyw0 � zv0Þ
zv0w0 þ yðv02 þw2Þ
yv0w0 þ zðw02 þ w2Þ

2
4

3
5: (15.8)

The first term represents the displacements according to linear Bernoulli-Euler

beam theory and Saint Venant’s theory of torsion. The second term stands for the

additional cross-sectional warping due to eigenstrains, and the third term contains

second order terms which enable the consideration of dynamic stiffening effects

and stability investigations.

For laminated cross-sections as shown in Figs. 15.1 and 15.2, the Saint Venant

warping function ’ðy; zÞ is given by the boundary value problem

x

y

z
u

v

w

c

B

Fig. 15.3 Moving cantilever beam, ideally fixed on a rigid base
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Q66

@2’

@y2
þ Q55

@2’

@z2
¼ 0;

@A : Q66

@’

@y
� z

� �
ny þ Q55

@’

@z
þ y

� �
nz ¼ 0;

@I : Q66

@’

@y
� z

� �
ny þ Q55

@’

@z
þ y

� �
nz

� �� �
¼ 0;

’½ �½ � ¼ 0; ð15:9Þ

ny and nz are the components of the outer normal vector. A derivation can be found

e.g. in Rand and Rovenski [14]. Besides the boundary conditions at the boundary

@A of the cross-section, interface conditions have to be satisfied at the interface @I
between two layers in order to obtain continuous displacement and stress

distributions. In this context, the notation �½ �½ � stands for the difference of a quantity
at the interface.

The additional warping functionf0ðy; z; e0ðtÞ is expressed by a similar boundary

problem

Q66

@2f0

@y2
þ Q55

@2f0

@z2
¼ 0;

@A : Q66

@f0

@y
� g0xy

� �
ny þ Q55

@f0

@z
� g0xz

� �
nz ¼ 0;

@I : Q66

@f0

@y
� g0xy

� �
ny þ Q55

@f0

@z
� g0xz

� �
nz

� �� �
¼ 0;

f0
� �� � ¼ 0; ð15:10Þ

the derivation as well as an analytical solution for rectangular laminated cross-

sections can be found in Zehetner [13]. Note that (15.9) and (15.10) hold for any

kind of laminated cross-sections and material behaviour according to Sect. 15.3.

15.5 Equations of Motion

The equations of motion for the beam in Fig. 15.3 can be derived e.g. by applying

D’Alembert’s principle. A detailed derivation can be found in Zehetner [15]. As

excitations we consider inertial forces due to rigidbody motions as well as

distributed and concentrated external forces. With the kinematical assumptions in

(15.8) and the constitutive equations in (15.3) we obtain the equations of motion for

longitudinal, transversal and torsional beam vibrations

248 C. Zehetner and G. Zenz



f ex � Na0 ¼ mð€uþ a1Þ � ðA11u
0Þ0;

f ey þMa
z
00 ¼ mð€vþ a2Þ þ ðD22v

00Þ00 � ðNv0 � 1
2
Mxw

00Þ0 þ ðMywþ 1
2
Mxw

0Þ00;
f ez �Ma

y
00 ¼ mð€wþ a3Þ þ ðD11w

00Þ00 � ðNw0 þ 1
2
Mxv

00Þ0 þ ðMzw� 1
2
Mxv

0Þ00;
me

x �Ma
x
0 ¼ Ixð€wþ a1Þ � ðC11w0Þ0 þMzw

00 þMyv
00; ð15:11Þ

with kinematic boundary conditions for the clamped end,

x ¼ 0 : u ¼ v ¼ v0 ¼ w ¼ w0 ¼ w ¼ w0 ¼ 0; (15.12)

and dynamic boundary conditions at the free end,

x ¼ L : Fe
x þ Na ¼ A11u

0;

Fe
y �Ma

z
0 ¼ �ðD22v

00Þ0 þ Nv0 � 1
2
Me

xw
00 � ðMywþ 1

2
Mxw

0Þ0;
Me

z þMa
z ¼ D22v

00 þMywþ 1
2
Mxw

0;

Fe
z þMa

y
0 ¼ �ðD11w

00Þ0 þ Nw0 þ 1
2
Mxv

00 � ðMzw� 1
2
Mxv

0Þ0;
Me

y þMa
y ¼ �D11w

00 �Mzwþ 1
2
Mxv

0;

Me
x þMa

x ¼ C11w0: ð15:13Þ

In (15.11)–(15.13), f ex , f
e
y , f

e
z and me

x are effective distributed external forces and

torque per unit length, respectively. These effective quantities consider external

forces and inertial forces due to the rigidbody motion. Fe
x, F

e
y, F

e
z, M

e
x, M

e
y and Me

z

are external concentrated forces acting at the free beam end, e.g. joint forces

or manipulator forces. m is the mass per unit length, A11 the longitudinal stiffness,

D11 and D22 are the bending stiffnesses, and C11 is the torsional stiffness. a1, a2, a3
and a1 are accelerations corresponding to the flexible displacements u, v, w and w,
for details see Ref. [15].

The influence of the piezoelectric effect is represented by the actuating force and

moments Na, Ma
z , M

a
y and Ma

x . Using the piezoelectric material PZT we obtain

Na ¼ Uel

hL

Z
A

Q11 d31 dA;

Ma
z ¼

Uel

hL

Z
A

Q11 d31y dA;

Ma
y ¼

Uel

hL

Z
A

Q11 d31z dA: ð15:14Þ

On the other hand, using patches made of the material ADP, and using the

substitution f0 ¼ f
0
Uel, we obtain the actuating torque

Ma
x ¼ �Uel

hL

Z
Ap

Q66d36z dA�
Z
A

Q55

@ f
0

@z
y� Q66

@ f
0

@y
z

 !
dA

 !
: (15.15)
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15.6 Shape Control

From (15.11)–(15.13) we can immediately derive relations for the actuating forces

and moments in order to compensate the external excitations (shape control), i.e.

homogenous equations of motion are obtained if the left hand sides of

(15.11)–(15.13) vanish, hence

Na0 ¼ f ex ; Ma
z
00 ¼ �f ey ; Ma

y
00 ¼ f ez ; Ma

x
0 ¼ me

x

x ¼ L : Na ¼ �Fe
x; Ma

z
0 ¼ Fe

y; Ma
z ¼ �Me

z ;

Ma
y
0 ¼ �Fe

z ; Ma
y ¼ �Me

y; Ma
x ¼ �Ma

x : ð15:16Þ

Integrating (15.16) yields the spatial distribution of actuating forces and

moments in order to compensate external excitations and the influence of the

rigidbody accelerations. If the motion starts from rest (homogenous initial

conditions), and if no buckling effects occur, then the elastic displacements are

compensated exactly. Note that buckling phenomena can also be investigated since

second order terms are considered in the equations of motion.

A common strategy for the practical realisation of distributed actuation is an

approximation by a patch discretisation [16]. The latter will be discussed in more

detail by means of the examples in the subsequent section.

15.7 Examples

In order to verify the theoretical results of the above sections, two examples are

considered. First, a flexible manipulator is studied numerically, and secondly,

numerical and experimental results concerning a rotating beam are presented.

15.7.1 Flexible Manipulator—Numerical Simulations

Figure 15.4 shows a flexible manipulator: A flexible beam is fixed on a rigid base

moving in z-direction with the acceleration a3. At the free beam end, the massM is

fixed with its center of gravity located at a distance of r with respect to the beam

axis. The effective excitations due to the acceleration a3 are represented by

f ez ¼ �ma3ðtÞ; Fe
z ¼ �Ma3ðtÞ: (15.17)

In the following, it is assumed that the influence of the tip mass M dominates,

such that the distributed force f ez is neglected. Moreover, longitudinal and transver-

sal vibrations in y-direction are neglected. Due to the forceFe
z, transversal vibrations
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in z-direction and torsional vibrations are excited. Inserting (15.17) into (15.16) and
integrating yields the actuating bending momentMa

y and the actuating torqueMa
x as

Ma
yðx; tÞ ¼ �LMa3ðtÞ 1� x

L

� 	
; Ma

xðx; tÞ ¼ �Mra3ðtÞ: (15.18)

The spatial distribution of Ma
y is linear with respect to the longitudinal coordinate

x , and Ma
x is constant. The realisation of actuation is shown in Fig. 15.4. Two

piezoelectric layers are bonded ideally on the surfaces of the beam: One layer

made of ADP is placed on the back side of the beam, using an electrode with

constant width. On the second side, a PZT layer is attached. The width of the

electrode corresponds to the linear spatial distribution of the actuating moment Ma
y

in (15.18). The voltage of the actuators is obtained from (15.14) and (15.15).

In order to verify (15.18), a Finite Element model has been implemented using

ABAQUS. The beam and the piezoelectric layers have been discretized by

3D-continuum elements of type C3D8R (reduced integration) and C3D8E (piezo-

electric elements). As actuator voltage, the results of beam theory are applied. Note

that this simulation model considers several electro-mechanical coupling effects

and refinements in contrast to beam theory. Thus, this model is supposed to be

suitable for a validation of the theoretical results.

The numerical results for the tip deflection wðx ¼ LÞ and the torsional angle

wðx ¼ LÞ are shown in Fig. 15.5, for the case with and without actuation. The

results show a significant reduction of the amplitude due to the actuation. The

remaining vibrations are caused by the mass of the beam which has been

neglected. All in all the results show a good coincidence between theoretical

and Finite Element solution.

x

y

z
flexible beam

mass M

rigid plate

ADP

PZT

electrode

a3

rigid base

r

Fig. 15.4 Flexible manipulator
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15.7.2 Rotating Beam—Experimental Verification

As a second example, a rotating beam with rectangular hollow cross-section is

considered as schematically shown in Fig. 15.6. The according laboratory setup is

shown in Fig. 15.7. On the beam, i.e. inside and outside of the hollow cross-section,

a number of 48 piezoelectric patches has been applied. In order to reduce the

number of circuits for the electrical power supply, groups of three patches have

been connected. Between these groups strain gauges have been applied for sensing.

For monitoring, an acceleration sensor has been placed at the free beam end.

The effective excitation of the beam is the transversal distributed inertial force

per unit length

f ez ¼ �rAx2€’; (15.19)

caused by the rigidbody rotation angle ’ðtÞ. Inserting into (15.16) and integrating

with respect to the axial coordinate x yields the actuating moment

Ma
y ¼ 1

3
rAL3€’ 1� xð Þ2 1þ 1

2
x


 �
: (15.20)

This cubic spatial distribution is discretized by means of four groups of three

patches as shown in Fig. 15.8. The actuating moment of a piezoelectric patch is

obtained from (15.14). With the Young modulus of the patchEp, the width b and the
height h of the beam, we obtain the actuating bending moment of the i-th patch

Ma;i
y ¼ 1

2
Epd31bðhþ hLÞkiUelðtÞ; (15.21)

where the gains ki are weighting factors in order to realize the cubic distribution of

the actuating moment as given in (15.20). Following the strategy presented in Ref.

[16], the coefficients are found to be k1 ¼ 1, k2 ¼ 1
2
, k3 ¼ 1

5
and k4 ¼ 1

28;5.
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Fig. 15.5 Numerical simulation results for the beam end x ¼ L
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Figure 15.9 shows the control strategy consisting of two parts: First, the feed

forward shape control Mf f
a is implemented with an estimation of the rigidbody

acceleration €’.
Due to several uncertainties of the system it is not possible to completely

compensate the vibrations by feed forward control only. Thus, strain gauges between

the patches are used as sensors to measure the average curvature �k. The error of the
curvature ek, i.e. the difference of prescribed and measured curvature, is the input of

the feedback controller. As a first account, a P-control law has been implemented.

For monitoring, the acceleration aL ¼ aðx ¼ LÞ of the free beam end is measured.

beam

patches

k1 k2 k3 k4

k1 k2 k3 k4

Uel

Uel

Fig. 15.8 Patch discretisation

Fig. 15.7 Experimental setup

z

x

piezopatches

substrate

M

strain gauges

motor + gear

Fig. 15.6 Rotating beam with piezoelectric patches
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In order to optimize the control parameters, a simulation model has been

implemented using the multibody dynamics simulation code HOTINT. The

model is based on a Finite Element Formulation using Bernoulli-Euler beam

elements which considers large deformation strains as well as the varying stiffness

due to the piezoelectric patches. A motor model is implemented considering

stiffness, damping and friction. The parameters of the simulation model have

been calibrated to the experiment using appropriate identification strategies.

As a first investigation, the motor angle has been prescribed in sinusoidal

form, the frequency coinciding with the first eigenfrequency of the beam, f 1 ¼ 20

Hz. Figure 15.10 shows a comparison of simulation (left picture) and experiment

(right picture) for the tip acceleration of the beam. In both cases, the amplitude of

the vibration is reduced significantly. The results show a very good coincidence

even in the considered resonant case.

As a second example, a triangular velocity profile has been prescribed as

rigidbody motion. Figure 15.11 shows the measured time response and the

Ma

Rotating
beam

+
–

Ma
ff

aL

feed
forward

feedback
e

+

–

D11
–1

Fig. 15.9 Control strategy
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m
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L
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m
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2 )
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Fig. 15.10 Time response for harmonic excitation of the first eigenfrequency
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frequency response of the tip acceleration, i.e. at the free beam end. The result

shows that the amplitude of the vibration is reduced significantly with the

implemented control strategy.

15.8 Conclusions

In this paper, piezoelectric vibration control of three-dimensional flexural and

torsional beam vibrations has been treated. External and inertial forces due to

rigidbody motions are considered as excitations. The equations of motion have

been derived in the framework of Bernoulli-Euler beam theory, and an extension of

Saint Venant’s theory of torsion. Laminated cross-sections and the influence of

piezoelectric strains are considered. In the framework of beam theory, an exact

shape control solution has been presented, i.e. the distribution of piezoelectric

actuation strains in order to completely compensate the elastic beam vibrations.

For the practical realisation, a patch approximation has been introduced. The

theoretical results have been verified by means of numerical and experimental

investigations, showing a very good coincidence. The results also show that a

significant reduction of the flexible vibrations is possible with the presented

strategy.
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Appendix

Lead zirconate titanate (PZT)

Q ¼

Q11 Q12 Q13 0 0 0

Q12 Q11 Q13 0 0 0

Q13 Q13 Q33 0 0 0

0 0 0 Q55 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666664

3
7777775
; d ¼

0 0 d31
0 0 d32
0 0 d33
0 d24 0

0 0 d15
0 0 0

2
6666664

3
7777775
: (15.22)

Ammonium dihydrogen phosphate (ADP)

Q ¼

Q11 Q12 Q13 0 0 0

Q12 Q11 Q13 0 0 0

Q13 Q13 Q33 0 0 0

0 0 0 Q55 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666664

3
7777775
; d ¼

0 0 0

0 0 0

0 0 0

d25 0 0

0 d25 0

0 0 d36

2
6666664

3
7777775
: (15.23)

Macro fiber composite (MFC)

Q ¼

Q11 Q12 Q13 0 0 Q16

Q12 Q11 Q13 0 0 Q16

Q13 Q13 Q33 0 0 Q36

0 0 0 Q55 Q45 0

0 0 0 Q45 Q55 0

Q16 Q16 Q36 0 0 Q66

2
6666664

3
7777775
; d ¼

d11 d12 0

d12 d11 0

d13 d13 0

0 0 d35
0 0 d35
d16 d16 0

2
6666664

3
7777775
: (15.24)
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