
Chapter 11

Automated Kinematics Reasoning for Wheeled

Mobile Robots

Michael Hofbaur, Christoph Gruber, and Mathias Brandstötter

Abstract Control schemes for wheeled mobile robots typically assume a specific

mobility capability of a drive and implicitly use the drive’s kinematics within its

control procedures. This makes it difficult to deal with faults in the drive and to handle

drives with diverse geometry and functionality that might even change during opera-

tion of a robot. As a consequence, we propose a model-based control scheme that

builds upon an automated analysis of a robotic drive and on an on-line deduction of the

drive’s kinematics. We achieve this functionality through (1) the introduction of

steering-angle independent, generalized variants of the rolling and sliding constraints

for wheeled mobile robots and (2) the corresponding reformulation of kinematic

analysis. This leads to a computationally efficient algorithm that deduces the (inverse)

kinematics of a drive for its mode of operation or failure. Fault tolerant and robust

behavior, however, is only one aspect of our control architecture. On-line kinematics

analysis enables us to easily handle robots that change in geometry or functionality

such as self-configuring modular robot systems and teams of cooperative robots.

11.1 Introduction

Wheeled mobile robots utilize a variety of application specific drives with different

geometries and functionalities such as differential drives, drives with steered

standard wheels or omni-directional drives with mecanum wheels, for example.

This implies drive-specific kinematic capabilities. A controller uses the drive’s

kinematics to translate the requested robot motion into the appropriate actuation

of the drive’s wheels in terms of their rotational velocity and, whenever applicable,

their steering angles.
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Once in operation, the control law and also higher-level control layers, such as

the path-planner, will use the drive’s (inverse) kinematics implicitly through the

implemented control algorithms. It is thus often impossible for such controllers to

adapt their control laws once the kinematics of the drive changes significantly. Such

a situation can occur in the case of a fault in the drive, for example, an impaired

steering actuator. Another situation would be due to a geometry or functional

adaption of the drive, for example, a drive that widens its base to increase stability

or decreases its wheel distance to move through confined spaces [4]. Another

realistic scenarios with implications to a drive’s kinematics could be the adaption

of the robot’s number of wheels to deal with varying payload situations [8] or multi-

robot transport [2]. Of course, one can solve such operational situations through

specifically designed controllers that can account for pre-defined operational

modes. However, it would be desirable to handle such situations in a more general

and generic way.

To overcome these difficulties we propose a model-programmed control scheme

that integrates control-design and control-execution within one intelligent solver

for control. More precisely, the controller performs kinematic analysis for the drive

on the basis of a drive-model at run-time (e.g. whenever the drive changes in

geometry and functionality). As a side effect, we obtain a controller that is always

aware of the drive’s kinematic capabilities and that can perform re-configurations in

the drive to automatically compensate for or recover from fault situations and notify

a higher-level controller to re-plan the desired robot path according to the currently

valid kinematic capabilities of the drive.

The key component of our control architecture is a kinematics reasoning engine
that operates within the stringent time-constraints of real-time drive control. It thus

implements the kinematic analysis and control design procedures as computation-

ally efficient algorithm.

11.1.1 Background and Related Research

Kinematics in robot drives is a well-studied field. A detailed analysis of the

underlying mechanism can be found in text-books (e.g. [10]) and various

publications (e.g. [1, 3]). In the latter reference, Campion et al. provide an unified

framework that classifies robot drives according to their degree of mobility and

degree of steerability and provides general procedures for the analysis of the robot-

kinematics. However, almost all papers describe analysis and design procedures

that are applied at the design stage of a robot and thus, assume functionally

reasonable drives with dedicated topology. We intend to extend this scope to handle

faults in the drive and drives with adaptive geometry/functionality. Faults, in

particular, change the kinematics significantly and it is easily possible that one

ends up with a degenerated robot with impaired mobility. Nevertheless it is

important for an autonomous robot to cope with such situations as well. One can

also find applications of robots with varying geometry or dynamically adaptive
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number of wheels (e.g. see [4, 8]). However, these systems typically apply

specialized drive controllers that handle few operational conditions. Our approach

goes beyond this scope. We intend to provide a generic model-programmed control

scheme in the spirit of [11] that can be applied to a wide spectrum of robot drives

and thus, automatically include special situations such as anticipated and non-

anticipated faults, re-configurable drives and multi-robot control scenarios.

11.2 Preliminaries

Wheeled mobile robots (WMR) provide mobility and load capabilities through

various wheel arrangements as shown in Fig. 11.1. Many approaches, documented

in literature, e.g. [3, 7], classify robots in terms of the wheels (steered-, unsteered-,

mecanum-wheels) and their geometric arrangements and derive the kinematics

accordingly. The basis for the robot’s kinematics are the so called rolling and sliding
conditions for the robot’s wheels (e.g. see [3]) that we summarize in the following:

Focusing on the movement of the robot and neglecting the robot’s pose within a

global reference frame we can directly consider the robot with respect to a robot-

body fixed reference frame SR : fOR; xR; yRg . The robot’s velocity with respect to

an inertial frame expressed in the this robot-body frame SR is a vector

_x ¼
_x
_y
_y

2
4

3
5; (11.1)

where _x and _y denote the longitudinal velocities and _y denotes the angular velocity.

a) b) c) d) e)

f) g) h)

Fig. 11.1 Wheeled mobile robot examples
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Let us define the drive through its model that encodes the geometric alignment

of the robot’s wheels. We will use W to denote the set of n wheels in a drive

(n ¼ jW j) and specify the wheel alignment in terms of the wheel contact point

expressed by the polar coordinates li and ai relative to SR and the wheel radius ri
as shown in Fig. 11.2a for a wheel. The kinematics of a drive defines the

possible movements for a drive and relates _x to the rotational velocities _’i and

steering angles bi of the wheels Wi 2 W. The basis for a drive’s kinematics is

given through the rolling and sliding constraints. We introduce them for a

centered orientable (steered) standard wheel Wi. The rolling constraint

ri _’i ¼ sinðai þ biÞ� cosðai þ biÞ �li cosðbiÞ½ � _x (11.2)

¼ jTi ðbiÞ _x (11.3)

encodes the velocity v perpendicular to the wheel axis and relates the rotational

velocity _’i of the wheel with the robot’s velocity _x. The sliding constraint

0 ¼ cosðai þ biÞ sinðai þ biÞ li sinðbiÞ½ � _x (11.4)

¼ cTi ðbiÞ _x (11.5)

assures that there is no motion perpendicular the wheel plane. The rolling and

sliding constraints of fixed oriented standard wheels are conceptually the same,

except that bi is fixed and not time-dependent.

To derive the rolling and sliding constraints for the complete drive, one

combines the individual row vectors jTi and cTi to form the matrices

a b

Fig. 11.2 Robot wheel geometry and body-fixed reference frame SR
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J1ðbÞ ¼
jT1 ðb1Þ

..

.

jTn ðbnÞ

2
64

3
75; C1ðbÞ ¼

cT1 ðb1Þ
..
.

cTn ðbnÞ

2
64

3
75 : (11.6)

This leads to the overall rolling and sliding constraints for the robot

J1ðbÞ _x ¼ J2 _’ (11.7)

C1ðbÞ _x ¼ 0; (11.8)

where J2 ¼ diagð½ri�Þ combines the wheel radii ri into a constant diagonal matrix.

Of course, we allow a mixture of wheels with nc centered orientable (steerable)

standard wheels and nf fixed oriented standard wheels1 so that n ¼ nc þ nf . In that

sense, we can group wheels accordingly and obtain

J1ðbsÞ ¼ J1cðbsÞ
J1 f

� �
; C1ðbsÞ ¼ C1cðbsÞ

C1 f

� �
: (11.9)

The vector bs ¼ ½b1; . . . ; bnc �T combines all (time varying) steering angle

parameters biðtÞ for the nc centered orientable wheels.

The sliding constraintC1ðbsÞ _x ¼ 0 is satisfied if _x 2 kerðC1ðbsÞÞ. If we consider
two centered orientable standard wheels, then 1 � rank ðC1ðbsÞÞ � 2. If we add

more wheels, then the rank of C1ðbsÞ can increase up to 3, meaning that no motion

might be possible! To avoid that, one has to choose the steering angles bs so that

rankðC1ðbsÞÞ � 2. This demand on the rank of C1ðbsÞ corresponds to the existence

of a common intersection of all wheel axles at a finite distance from the robot center

for rankðC1ðbsÞÞ ¼ 2 or at infinity for rankðC1ðbsÞÞ ¼ 1. In a perfectly controlled

and actuated robot, this intersection defines the instantaneous center of rotation
(ICR) of the robot-body motion (see Fig. 11.2b).

It is the task of the robot’s low-level kinematics controller to maintain the

steering angles and rotational speeds synchronously such that all wheel axles

intersect and the sliding and rolling constraints define the appropriate ICR for the

desired motion _x. However, this will only work if the path-planner or any other

high-level control authority restricts itself to motion set-points _x that are possible

according to the drive’s kinematics.

1 It is straight forward to include mecanum wheels as well. The associated details are given in the

Appendix.
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11.3 Kinematics Reasoning

Our goal is to provide a generally applicable mechanism for the low level controller

so that it can handle a large variety of drives with different geometric wheel

alignments and wheel types. I.e. we are seeking for a computationally efficient

algorithm that derives the kinematics or better the inverse kinematics from a model

of the drive.

Definition 11.1. We define the model of a robot drive in terms of the tuple SR;Wh i
that specifies the robot-body fixed reference frame and the set of wheel models

W ¼ fW1; . . . ;Wng . Each wheel model defines a tupleWi ¼ Ti;Gi;Mih iwhere Ti

details the wheel type {standard-fixed, standard-steered, mecanum},Gi specifies the

wheel’s geometry within SR in terms of the polar coordinates fli; ai; big , the wheel

radius ri and gi for mecanum wheels. Finally,Mi captures the set of operational and

fault modes for a specific wheel, e.g. {actuated, non-actuated, blocked-steering,

blocked-rotation, . . .g.
We allow the model to evolve over time. This includes a dynamically changing

set of wheels and adaptations in wheel geometry. Furthermore, in our control

architecture we use an additional functional unit that estimates the mode of opera-

tion or failure for each wheel and its associated actuators. Mode-estimation and

fault detection, however goes beyond the scope of this paper and we refer the

interested reader to [9].

Given the drive model and a mode specification that captures the operational/

fault condition for a drive at a specific time point, we are interested to analyze a

drive beyond the classification in terms of its degree of mobility and degree of

steerability. In fact, it is our goal to explicitly compute the spaceBof admissible and
controllable motions that fully describes the mobility capabilities and drive

characteristics of a wheeled mobile robot.

We use this explicit knowledge in two ways. Firstly, we provide this information

to higher-level control so that a path-planner automatically takes the kinematic

constraints of a drive into account. Secondly, we enable our low-level controller to

check, whether a drive command from the path-planner is admissible for the drive

in its current mode of operation/failure. This can be done by evaluating the

condition:

_x 2 B : (11.10)

A violation of (11.10) indicates an incompatible drive command that would

infringe the kinematic constraints and thus, cannot be executed as desired by the

low level controller. We therefore propose a control architecture that extends

the low-level drive controller with an additional kinematics reasoning unit which
(a) analyzes the kinematics of a drive during on-line operation of the robot,

(b) provides the inverse kinematics for the low level controller and (c) checks

drive commands on the basis of the condition (11.10). An invalid drive command is
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thus captured and the kinematics reasoning unit can (d) either stop the robot and

notify the path-planner about the failure to execute a desired drive command or (e)

compute a re-configuration that maintains the operation of the robot to some extend

in that it overrules the path-planner and deduces an alternative set-point _x
�
withinB.

The basis for this operation of the robot drive controller is not a hard wired inverse

kinematics model that provides the basis to compute the set-points for the wheel’s

steering anglesbi and angular velocities oi ¼ _’i but a general procedure that derives

the inverse kinematics from the drive geometry and its present operational/fault

condition. We achieve this functionality through introducing a generalized form of

the rolling and sliding conditions that we call qualitative rolling and sliding
constraints.

11.3.1 Kinematic Analysis with Qualitative Rolling and Sliding
Constraints

The key algorithm for the kinematics reasoning procedure is the deduction ofB. The
kinematics of robot drives are typically described in terms of the rolling and sliding
constraints given above in (11.7) and (11.8) where the matrices J1 and C1 depend

upon the (time-varying) steering angles bs ¼ ½b1; . . . ; bns �T . In our kinematics
reasoning unit, however, we want to decide, whether a velocity command _x is

admissible and controllable or not – independently from the steering angles of the

wheels in the drive. Therefore, we take a more detailed look at the meaning of

steering angle-independency for rolling and sliding constraints exemplary for a

drive with nc standard centered orientable (steered) wheels and nf fixed oriented

standard wheels.

Admissible movements for a robot are well understood and documented in

literature [3, 7, 10]. Given the sliding constraint

C1ðbsÞ _x ¼ 0 (11.11)

we deduce the admissible movements through null-space analysis of C1, i.e.

kerðC1ðbsÞÞ � R3: (11.12)

The typical approach to obtain a steering angle independent analysis is to focus on

the robot’s unsteered wheels, as one can always select appropriate steering angles bs
so that the steered wheels do not impose additional constraints.2 We generalize this

notion and provide qualitative constraints that dynamically capture the kinematics

of a drive at its specific operational condition. Each wheel Wi 2 W contributes a

mode-specific qualitative sliding constraint cTq;i for the combined matrix

2Of course, this only holds for steered wheels with unconstrained steering angles.
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Cq ¼
cTq;1

..

.

cTq;n

2
64

3
75 : (11.13)

For example, a standard wheel with blocked steering (at angle bi) contributes the
usual sliding constraint

cTq;i :¼ cosðai þ biÞ sinðai þ biÞ li sinðbiÞ½ � : (11.14)

A wheel with blocked steering and blocked rotation provides an additional con-

straint perpendicular to the wheel’s axis (i.e. in rolling direction) so that we use

cTq;i :¼
cosðai þ biÞ sinðai þ biÞ li sinðbiÞ

cosðai þ bi þ p
2
Þ sinðai þ bi þ p

2
Þ li sinðbi þ p

2
Þ

� �
: (11.15)

A wheel with blocked rotation and operational steering leads to an analogous,

steering angle independent constraint

cTq;i :¼
cosðaiÞ sinðaiÞ li sinð0Þ

cosðai þ p
2
Þ sinðai þ p

2
Þ li sinðp

2
Þ

� �
(11.16)

that prevents all movements of the robot except a rotation at the wheel’s contact

point. A fully operational centered orientable steered wheel, on the other hand, does

not impose any constraint as noted above. We express this fact by using a null-

vector

cTq;i :¼ 0 0 0½ � (11.17)

for the qualitative sliding constraint matrix Cq.

Combining the mode dependent qualitative sliding constraints for all wheels

Wi; i ¼ 1; . . . ; n , provides Cq which generalizes C1 f that specifies the sliding

constraints for fixed orientation wheels. This allows us to obtain the space of
admissible motions Z for a specific configuration and mode of operation/failure of

the drive through the null-space analysis

Z ¼ kerðCqÞ � R3 : (11.18)

We now intend to provide an analogous analysis for the space S of controllable
movements, i.e. the velocities _x 2 S that one can actuate through the motorized

wheels in the drive. The implication of wheel actuation, i.e. _’i 6¼ 0 is captured

through the rolling constraint

J1ðbsÞ _x ¼ J2 _’ : (11.19)
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A null-space analysis of J1ðbsÞ

_�x 2 �S1 ðbsÞ ¼ ker J1ðbsÞð Þ ; (11.20)

however, provides the complement �S1 to the space of controllable movements.

Let us analyze this fact with one single wheelWi at geometric position li; aih i as
shown in Fig. 11.2a to capture this implication in detail. Recall, that the wheel

defines the following row

jT1;i bið Þ ¼ sin ai þ bið Þ � cos ai þ bið Þ � li cos bið Þ½ � (11.21)

in the matrix J1 bsð Þ of the rolling constraint. The null-space of jT1;i bsð Þ has

dimension 2. This can be argued by simple linear algebra: Let _x 2 X ¼ R3. Then,

(11.19) is a linear map f ð _xÞ : X ! R in the single wheel case. Thus,

dim kerðf Þð Þ þ dim imðf Þð Þ ¼ dim Xð Þ ¼ 3 (11.22)

holds. The question of interest is now: How does the steering angle bi influence the
null-space of jT1;iðbsÞ ? For this purpose, we re-write the rolling constraint in a

factorized form that follows from the addition theorems of trigonometry

jTb;iðbiÞjTq;i _x ¼ r1 _’i (11.23)

where

jTb;iðbiÞ ¼ cosðbiÞ sinðbiÞ½ � (11.24)

and

jTq;i ¼
sinðaiÞ �cosðaiÞ �li
cosðaiÞ sinðaiÞ 0

� �
: (11.25)

Note that, until now, we have not made any changes to the rolling constraint. As

mentioned before are we interested in the following question: Which motion set-

points _x are not controllable for any steering angle b? The answer is found in the

factorized rolling constraint (11.23), which emphasizes:

�S ¼ kerðjTq;iÞ � kerðjTb;iðbiÞ jTq;iÞ
� kerðjT1;iðbiÞÞ
� �S1ðbiÞ : ð11:26Þ
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Since jTq;i does not depend on bi, its null-space kerðjTq;iÞ delivers exactly the motion

set-points,3 which are non-controllable through wheelWi for any steering angle bi .
Note that ðkerðjTq;iÞÞ ¼ 1 . This means, that the space of qualitatively non-

controllable velocities �Shas one dimension less than �S1ðbiÞ. Thereby, the qualitative
rolling constraint is less restricting than the effective rolling constraint, as it allows

the steering angle to take the appropriate value. This corresponds to the apparent

gain of a degree of freedom for the choice of controllable motion set-points.

If one thinks of X as three-dimensional space, the base vectors of �S1ðbiÞ span a

plane (cf. 11.20). Any general velocity _�xcan be depicted into components parallel to

the plane and orthogonal to it. The parallel components violate the rolling con-

straint. Hence, all velocities having a non-zero component parallel to the plane are

not controllable. Consistently, the set of controllable velocities is a straight line

through the origin, which is orthogonal to the plane.

The set �S has one degree of freedom – which corresponds to a straight line – and

lies in �S1ðbÞ, independent of the steering angle b . Hence, with varying steering

angle, the plane �S1ðbÞ rotates around an axis �S through the origin (see Fig. 11.3).

How can this result be interpreted, especially when there is more than one

wheel? Again, we stack all qualitative rolling constraints to form Jq

Fig 11.3 Planes �S1ðbÞ at
different steering angles of

one single wheel at a ¼ p=4
and l ¼ 1. The rotation axis of

the planes defines �S

3More detailed analysis shows, that these are those motion set-points, which place the ICR in the

wheel contact point.
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Jq ¼
jTq;1

..

.

jTq;n

2
64

3
75 (11.27)

and analyze the null-space of Jq to obtain those motion commands, that cannot be

actuated independently from the choice of the steering angles. However, this does

not mean that velocity set-points that are not in this null-space can be driven! The

non-controllable motions must be understood in a way similar to “non-controllable

due to steering-angle independent under-actuation”. Let us give the following

examples: Consider a robot with:

1. One fixed standard wheel: kerðJqÞwill contain all motions that are not parallel to

the rolling plane of the wheel.

2. One centered orientable standard wheel: kerðJqÞwill contain only those motions,

that place the ICR in the contact point of the wheel.

3. One fixed standard wheel and one centered orientable wheel: kerðJqÞwill always
be empty. The steered wheel is always able to turn the robot about the contact

point of the fixed oriented wheel into the proper direction and execute a

requested motion command.

4. Two centered orientable standard wheels: kerðJqÞ will always be empty.

5. Three fixed wheels, aligned in a way that they block any motion: kerðJqÞ will
always be empty, meaning that all velocities are controllable – although no

velocity can be driven! The disability of executing any motion will be handled

by the sliding constraint.

6. Three fixed wheels, co-aligned in a way so that the rolling planes of the wheels

are parallel: kerðJqÞ will contain all motions that are not parallel to the rolling

planes of the wheels.

The specification of jTq;i in (11.4) describes a centered orientable standard wheel

in the nominal case. A wheel with blocked steering simply acts as an unsteered

wheel so that jTq;i becomes jTq;i ¼ jT1;iðbiÞ . The situation for a drive with impaired

rotational actuation (e.g. a freely spinning wheel or a wheel with blocked rotation)

implies that the wheelWi cannot contribute to the robot’s motorization. We express

this fact through the null-vector jTq;i ¼ ½0 0 0� . Table 11.1 summarizes the variants

of jTq;i for operational and fault conditions together with the qualitative sliding

constraints introduced above.

Summing up, our approach for kinematics reasoning proceeds as follows:

1. At the current time-point tk , use the mode estimate mðtkÞ (provided through an

estimation/diagnosis unit) and the currently valid drive’s modelMðtkÞ to deduce
the matrices of the rolling and sliding constraints fCq; Jq;C1ðbsÞ; J1ðbsÞ; J2g.

2. Compute the space of the admissible motions Z through

Z ¼ kerðCqÞ � R3 : (11.28)
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3. Compute the space of non-controllable motions �S through

�S ¼ kerðJqÞ � R3 : (11.29)

4. Whenever the two spaces intersect, i.e. Z \ �S 6¼ ; , we have to refine the

admissible velocities Z to exclude those movements that cannot be actuated

through the robot’s wheels. By computing the complement of �S

S ¼ kerð�STÞ � R3 ; (11.30)

where �S denotes the matrix of basis vectors for �S, we obtain the controllable
velocities so that, finally, the intersection

Z \ S ¼: B (11.31)

defines the space of admissible and controllable velocities for a given mode of

operation or failure of the robot.

5. Validate a drive command through checking

_x 2 B ;

Table 11.1 Qualitative rolling and sliding constraints for a standard wheel

Mode of operation jTq cTq

OK: actuated rotation and operational steering sinðaÞ cosðaÞ
�cosðaÞ sinðaÞ

�l 0

2
4

3
5
T

0

0

0

2
4

3
5
T

Fault 1: actuated rotation and blocked steering sinðaþ bÞ
�cosðaþ bÞ
�l � cosb

2
4

3
5
T

cosðaþ bÞ
sinðaþ bÞ
l � sinb

2
4

3
5
T

Fault 2: freely spinning wheel and blocked

steering
0

0

0

2
4

3
5
T

cosðaþ bÞ
sinðaþ bÞ
l � sinb

2
4

3
5
T

Fault 3: blocked rotation and operational

steering
0

0

0

2
4

3
5
T

cosðaÞ �sinðaÞ
sinðaÞ cosðaÞ
0 l

2
4

3
5
T

Fault 4: freely spinning wheel and operational

steering
0

0

0

2
4

3
5
T

0

0

0

2
4

3
5
T
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provide fCq; Jq; Z; �S; S;Bg to higher-level control and compute the steering

angles bs and rotational speeds _’ for all steered and/or actuated wheels on the

basis of fC1ðbsÞ; J1ðbsÞ; J2g.
The introduction of the qualitative sliding and, in particular, the qualitative

rolling constraints enables us to re-formulate the well-known argument on null-

space analysis of C1 (e.g. see [3, 10]) into an efficient algorithmic form that allows

on-line drive-space and control/motorization analysis. The computations rely on

several null-space computations (e.g. via singular-value decomposition) and the

vector-space intersection (11.31) (e.g. with the Zassenhaus algorithm [12]). Illustra-

tive examples for drive space computations can be found in [5]. All operations can be

implemented efficiently so that one can utilize the reasoning concept directly within

the drive’s control loop and thus, reactively adapt the drive’s control mechanism to

the kinematics for the onset of operational modes and faults in the drive.

11.3.2 Applications

Our kinematics reasoning capability provides adaptivity and a sense of self-aware-
ness to the low level robot drive controller. I.e. it can validate and execute velocity

set-points that are commanded through a higher-level controller for an adaptive

robot drive. This is particularly important for autonomously dealing with faults in

the drive.

For example, in [5] we demonstrated an efficient way to recover from a faulty

steering actuator through geometric reasoning on the basis of the admissible and

controllable velocity space B . A blocked steering in an omni-directional robot

leads to the loss of one-degree of freedom, so that we cannot choose the robot’s

velocity _x ¼ ½ _x _y _y�T arbitrarily. B degenerates to a two-dimensional subspace, i.e.

a plane as shown in Fig. 11.4. Using this knowledge, on can easily compute a

feasible drive command, e.g. with adapted rotational speed _Y ! _Y
�

through

projecting the desired velocity _x onto the plane as shown in Fig. 11.4. This re-

configuration procedure maintains the longitudinal velocities _x and _y and thus,

maintains the robot’s movement along the planned path.

Another aspect of self-awareness can be drawn from the qualitative rolling

constraint matrices/vectors jTq;i . As we mentioned earlier, the null-spaces of jTq;i
indicate critical velocities that put the ICR at wheel contact points. They capture

the singularities of the drive. Providing this information to the path-planner, it

is possible to actively avoid these critical velocities during operation of the

drive. Furthermore, we were able to show that the qualitative rolling constraint

matrices ( jTq;i ) provide valuable information for robot-drive diagnosis as they

allow one to formulate a kinematics-aware diagnosis and mode estimation

procedure [9].

We use our control concept to deal with an onset of drive configurations

which we can form with our modular robot platform [6] that allows us to configure
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a large variety of robot drives and, in particular, re-configurable robots from

hexagonal drive modules. Figure 11.5 shows such a compound robot-drive and its

reconfiguration schematically. Controlling such an adaptive drive with a potentially

large number of wheels is surely non-trivial. Our model-based approach with

Fig. 11.4 Drive command adaption _x ! _x
�
to maintain the longitudinal velocities _x; _y (cf. [5])

Fig. 11.5 Reconfigurable robot drive built from hexagonal drive modules
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kinematic reasoning as its key component, however, allows us to deal with time-

variant robot topologies and functionalities so that we can straightforwardly handle

such complex robot-drives.

11.4 Conclusions and Outlook

Traditional kinematics analysis techniques are well suited for off-line robot drive

design. Our intention, however, was to build a generic robot controller that can be

applied to a wide variety of robot drives. Therefore, we presented a scheme for

automated reasoning that analyzes and deduces the kinematics of a robot drive. Our

algorithmic solution builds upon qualitative sliding and rolling constraints. These

constraints represent steering-angle independent constraints that allow us to effi-

ciently analyze a robot drive in terms of its admissible and controllable movements

as well as its singularities. An efficient algorithmic formulation enables us to

perform kinematics reasoning within the control-loop during the run-time of the

robot. As a consequence, we can directly deal with drives that adapt in terms of

geometry and functionality, as well as with typical faults that, otherwise, signifi-

cantly change the kinematic behavior of the drive. Performing kinematics reasoning

within the controller of the robot drive leads to a sense of self-awareness. This

enables interesting new perspectives for robot control, such as intelligent,

kinematics-aware path planning and alternative approaches for re-configurable

robots and coordinated control of multi-robot systems.

To achieve these goals, we are currently working on a re-formulation of kinematics

reasoning as distributed algorithm. This functionality, together with an autonomous

modeling capability will enable us to deal with complex robot structures even more

easily. Another line of research is the integration of kinematics reasoning with higher-

level drive control. For example, we intend to use the drive’s self-awareness to deduce

appropriate mobility classifications that enables a hybrid control algorithm to sche-

dule, or even deduce on-line, the appropriate control strategy to maintain an autono-

mous and robust behavior of a robot.
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Appendix

Qualitative Rolling and Sliding Constraints for an
Omni-Directional Mecanum Wheel

It is straight forward to provide qualitative sliding constraints for Mecanum wheels

as well. If one considers a mecanum wheel with the geometry as shown in Fig. 11.6,

one obtains the standard rolling and sliding constraints as

r _’ cosðgÞ ¼ sinðaþ bþ gÞ�cosðaþ bþ gÞ �l cosðbþ gÞ½ � _x
¼ jT _x ;

0 ¼ cosðaþ bþ gÞ sinðaþ bþ gÞ l sinðbþ gÞ½ � _x�r _’ sinðgÞ �rr
�’r

¼ cT _x :

Note that a fully operational mecanum wheel (actuated or freely spinning) does

not impose any constraints on the robot’s movement as the rotation of the individual

rolls ensures the sliding constraint 1.32. We express this fact in terms of a qualita-

tive constraint with cTq :¼ 0 0 0½ � . The rolling constraint is time-invariant as

mecanum wheels are typically used without active steering. Therefore, we obtain

jTq :¼ sinðaþ bþ gÞ �cosðaþ bþ gÞ �l cosðbþ gÞ½ � . However, a blocked

mecanum wheel exhibits a behavior, where the individual rolls act like non-

actuated standard wheels at bþ gþ p
2
. The according qualitative sliding constraint

is thus

cTq :¼ cosðaþ bþ gþ p
2
Þ sinðaþ bþ gþ p

2
Þ l sinðbþ gþ p

2
Þ� �

:

We summarize the matrix entries cTq and j
T
q for the qualitative constraint matrices

Cq and Jq in Table 11.2.

Fig. 11.6 Mecanum wheel geometry
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Table 11.2 Qualitative rolling and sliding constraints for an omni-directional mecanum wheel

Mode of operation jTq cTq

OK: actuated rotation sin aþ bþ gð Þ
� cos aþ bþ gð Þ
�l � cos bþ gð Þ

2
64

3
75
T

0

0

0

2
64

3
75
T

Fault 1: blocked rotation 0

0

0

2
64

3
75
T

cos aþ bþ gþ p
2

� �

sin aþ bþ gþ p
2

� �

l � sin bþ gþ p
2

� �

2
66664

3
77775

T

Fault 2: freely spinning 0

0

0

2
64

3
75
T

0

0

0

2
64

3
75
T
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