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Preface

This book contains the contributions presented during the Workshop on Multibody
System Dynamics, Robotics and Control, which took place at the Johannes Kepler

University of Linz, Austria, in September 2011. The workshop aimed at bringing

together international scientists with an outstanding expertise in mechanics and

control, with emphasis on the application to advanced machines and robotic

systems. The international character of the workshop was deepened by the partici-

pation of widely renowned scientists from Europe. The workshop continued a series

of international workshops, which started with the Japan-Austria Joint Workshop
on Mechanics and Model Based Control of Smart Materials and Structures in

September 2008 and the Russia-Austria Joint Workshop on Advanced Dynamics
and Model Based Control of Structures and Machines in April 2010; both took

place in Linz, Austria.

This series of workshops is organized within the framework of the Area

Mechanics and Model Based Control of the Austrian Center of Competence
in Mechatronics (ACCM). This peer-reviewed center of competence served as the

steering organisation for the workshop series. Mechanics and Model Based Control

are rapidly expanding scientific fields and fundamental disciplines of engineering,

particularly in Mechatronics. They share demanding mathematical and/or system-

theoretic formulations and methods. One challenge in Mechanics and Model Based

Control is to use the ever-increasing computer power with respect to both

the simulation of complex physical phenomena in mechanics and the design and

real-time implementation of novel control systems. From a strategic point of view,

the key objectives of the workshop series are:

• Enabling the interchange of ideas from multibody system dynamics, robotics

and control

• Clarification of expectations of researchers in the field of mechanics from

advanced control theory and vice versa

• Development of joint international research proposals and teams

• Encouragement of collaborations among industry and universities across the

borders of the participating countries
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The main topics of the present Workshop on Multibody System Dynamics,
Robotics and Control were:

• Time/energy optimal path planning for robotic systems

• Optimization in multibody dynamics

• Novel control concepts for flexible multibody systems and robots

• Humanoid robots

• Mobile robots

• Wire robots

• Vibration control for flexible robots

• Control in biomechanics

We believe that the workshop will finally result into the creation of research

teams within europe. Such teams should push the frontiers of advanced dynamics

and model-based control of machines and robotic systems to new dimensions,

resulting in the advanced design of future applications.

The undersigned editors of the present book entitledMultibody SystemDynamics,
Robotics and Control are happy to present the following 17 full-length papers. It is

hoped that these contributions will further stimulate the international research and

cooperation in the field. The present book is aimed as a third volume of a future

Series in Research on Advanced Methods of Mechatronics.

March 2012 Hubert Gattringer
Johannes Gerstmayr
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Chapter 1

Time-Optimal Path Planning Along Specified

Trajectories

Francisco Geu Flores and Andrés Kecskeméthy

Abstract Time-optimal motion planning along specified paths is a well-

understood problem in robotics, for which well-established methods exist for

some standard effects, such as actuator force limits, maximal path velocity, or

sliding friction. This paper describes some extensions of the classical methods

which consider, on the one hand side, additional non linear constraints such as

sticking friction, acceleration limits at the end-effector, as well power limits for the

overall system, and on the other, general paths featuring smooth interpolation of

angular acceleration as well as arbitrary multibody systems comprising multiple

loops. The methods are illustrated with two applications from robotics and the

mining industry.

1.1 Introduction

The problem of computing the time-optimal motion of a manipulator along a

prescribed spatial path under forces, velocities and acceleration constraints has

been thoroughly studied in the past. The basic idea of most solution algorithms is

based on the pioneer work by Dubowsky, Bobrow and Gibson [1] as well as Shin

and McKay [7], and the modifications proposed by Pfeiffer and Johanni [5] and

Shiller and Lu [6]. It consists in mapping both the multibody differential equations

and the system constraints to a one-dimensional motion along the prescribed path in

order to define the maximally allowed accelerations at each point on the path, and to

seek, by means of forwards and backwards integrations, the optimal set of points

where the optimal acceleration must switch from a maximum to a minimum or vice
versa.

F. Geu Flores (*) • A. Kecskeméthy

Universität Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany
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Messner, Gattringer and Bremer [4] extend these ideas to handle jerk constraints.

Moreover, by applying methods of optimal control, they avoid searching for the

switching points with backwards and forwards integrations, thus rendering very

efficient, online-suitable code. However, their method is restricted to non-singular

arcs, as well as systems for which the state of vanishing velocity is always feasible,

thus limiting both search space and application domain. Although such cases are

very special, they do happen in practice, two corresponding examples being shown

in this paper.

A further recent approach is the reformulation of the problem as a convex

optimal control problem by Verscheure, Demeulenaere, Swevers, De Schutter

and Diehl [9]. This approach yields a very efficient and stable offline procedure.

However, by considering only constraints that are linear in €s and _s2, the application
domain is additionally limited with respect to [7].

In summary, research on optimal-time path planning can be viewed as being

focused on two directions. One is to develop new time-optimal algorithms as a basis

for finding time-optimal paths between two configurations. In this setting, the

aforementioned motion planning algorithm is used as an internal loop for comput-

ing the minimal-time motion after each path geometry variation. The second

direction is to extend the systems for which time-optimal motion planning can be

performed, both from the viewpoint of the multibody modeling as well as from the

viewpoint of the regarded constraints.

This paper considers the second aim, extending the robotic modeling environ-

ment to arbitrary multiloop systems with general rigid-body motion interpolation

options, as well as by adding sticking friction and global power limits to the set of

allowable constraints. This allows for applying the method to a broader set of

industrial problems and for easily generating the constraints of the path-planning

algorithm regardless of the complexity of the kinematical structure. For motion

interpolation along a prescribed path, we consider both interpolation along the

spatial path between key poses of the end-effector (including smooth angular

acceleration interpolation) as well as interpolation in generalized-coordinates

(i.e. joint space), between which the user can switch. The flexibility of the method

is shown by means of two examples in the mining industry and the field of robotics

respectively. Further papers will consider the optimization of path geometry.

1.2 Spatial Paths in Multibody Systems

1.2.1 Kinetostatic Transmission Elements

A mechanical system can be regarded as a sequence of kinetostatic transmission

elements mapping motion and forces from one set of state objects — the ‘input’

variables q
in
— to another set of state objects — the ‘output’ variables q

out
([3]).

2 F. Geu Flores and A. Kecskeméthy



These state objects can be spatial reference frames and/or scalar variables, includ-

ing associated velocities, accelerations and generalized forces.

The overall transmission behavior of a kinetostatic transmission element

comprises a motion transmission traversal consisting of the three sub-operations

position : q
out

¼ ’ðq
in
Þ

velocity : _q
out

¼ J’ _q
in

acceleration : €q
out

¼ J’ €qin þ _J’ _q
in

(1.1)

where J’ ¼ @’=@q
in

represents the Jacobian of the element, as well as force

transmission traversal consisting, for ideal transmission elements, of the sub-

operation:

force : Q
in
¼ J’

TQ
out
: (1.2)

Any (passive) physical or mathematical object that maps a set of input state

objects to a set of output state objects without loss or increase of mechanical power

can be regarded as a kinetostatic transmission element.

1.2.2 Spatial Motion Parametrization

Let a general spatial path be given by the pose of an output frame KE ¼ PðsÞ
2 SEð3Þ, with the translation part parametrized by vector DrðsÞ and the rotation

part described by a rotation matrix DRðsÞ, both measured with respect to a basis

frameK1. Let the coordinate s be the path length ofDrðsÞ. The spatial pathPðsÞ can
be modelled as a kinetostatic transmission element mapping the velocity _s along the
path to the end-effector twist tE and, by duality, the wrench wE acting at the end-

effector to a generalized force Qs along the path, as shown in Fig. 1.1.

The pose ofKE can be computed as a function of the pose of the basis frame K1

and the path coordinate s as

RE ¼ R1 DR

rE ¼ DRT r1 þ Drð Þ; (1.3)

where general vectors are assumed to be decomposed in the target frame and Ri

denotes the rotation matrix transforming coordinates with respect to frame Ki to

coordinates with respect to frame K0.

1 Time-Optimal Path Planning Along Specified Trajectories 3



The velocity transmission then takes the form

oE

vE

" #
¼ Jg

o1

v 1

" #
þ JP _s; with Jg ¼

DRT 0

�DRTfD�r DRT

" #
; (1.4)

where Jg is the rigid-body Jacobian, JP is the Jacobian mapping the path velocity _s
along the spatial path to the twist at the output frame KE, and ~a refers to the skew-

symmetric matrix generated by a three-dimensional vector a ¼ ax ay az
� �T

.

The acceleration transmission can be written as

_o E

a E

" #
¼ Jg

_o 1

a 1

" #
þ �

0

2 ~o�
2
1DR

TD r

2
4

3
5þ JP €sþ JP0 _s2 þ

2 ~�o1 0

0 22 ~�o1

" #
JP _s; (1.5)

where (.)0 denotes a derivative with respect to the path coordinate s.
According to Eq. 1.2, the force transmission yields

t1

�f 1
Qs

2
64

3
75 ¼ JTg

JPT

" #
tE

�f E

" #
: (1.6)

A complete description on how DrðsÞ and DRðsÞ can be defined can be found in

[8]. In the examples presented in this paper, the function DrðsÞ is obtained by

interpolating key poses with quintic B-splines, using the DIERCKX curve-fitting

routines [2] with prescribed boundary conditions for positions, tangents and curva-

ture. The orientationDRðsÞof the output frame along the curve is then prescribed as a

function of the geometry of the curve DrðsÞ and additional elementary rotations with

respect to the natural directions of the curve, prescribed as cubic B-spline functions of

K0

K1

KE

s

r1

rE

Δr

ΔR

R1

RE

curve
joint

ṡ

Qs

tE

wE

Fig. 1.1 Spatial joint as a kinetostatic transmission element

4 F. Geu Flores and A. Kecskeméthy



the path coordinate s. Nevertheless, these equations also hold for more general path

parametrizations.

Let ’�q
be the direct kinematics of the manipulator with n degrees of freedom

with serial or closed kinematical topology, described by n independent joint

coordinates qi, collected in the vector q
�
2 R n. If the spatial path PðsÞ of the end-

effector is contained in its workspace, the system can be understood as a closed

chain with one degree of freedom, as shown in Fig. 1.2a. The corresponding joint

motion is, hence, described by the equations

q
�
¼ ’

q
�1 PðsÞð Þ

_q
�
¼ J’

�1JP _s

€q
�
¼ J’

�1JP€sþ J
0
’

�1
JP þ J’

�1J
0
P

h i
_s2;

(1.7)

where J’ ¼ @’
q

@= q
�
represents the transmission Jacobian of the manipulator.

1.2.3 Joint Motion Parametrization

For some applications where the interpolated pose of the end-effector does not have

to fulfill any geometrical constraints along the given spatial path, or for the special

case of manipulators with limited degrees of freedom, the interpolation of motion

in joint coordinates can be of advantage. In these cases, the motion can be given

as q
�
¼ �

�
ðsÞ 2 Rn , which can also be represented as a kinetostatic transmission

element mapping the motion progress, described by a motion coordinate sðtÞwhich
is now not the path coordinate, to the joint motion q

�
ðtÞ and end-effector motion

KEðtÞ, as shown in Fig. 1.2b.

K1

KE
β1

β2

βj
βp

q1
q2

qi
q6

Θ1, m1 Θ2, m2

Θk, mk Θr, mr s = s0

s = sf

P

curve
joint

inverse
kinematics

ṡ

Qs

tE

wE

q̇

Q

joint
motion

direct
kinematics

ṡ

Qs

q̇

Q

tE

wE

a) spatial motion parametrization

b) joint motion parametrization

Fig. 1.2 Motion parametrization using (a) target coord. or (b) joint coord
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In this case the corresponding end-effector motion is described by the equations

KE ¼ ’q

�
�ðsÞ�

�t E ¼ J’J� _s

_
�t E ¼ J’J�€sþ J

0
’J� þ J

0
’J�

h i
_s2;

(1.8)

where J� ¼ @�
�

@s= represents the transmission Jacobian of �
�
with respect to the

motion coordinate s.
For both cases described above, the velocities and accelerations at the indepen-

dent manipulator joints and the end-effector have the general form

_q
�
¼ qJs _s : �t E ¼ EJs _s;

€q
�

¼ qJs €sþ qJ
0
s _s : _�t E ¼ EJs €sþ EJ

0
s _s:

(1.9)

1.3 Time-Optimal Motion Generation

1.3.1 Formulation of the Time-Optimal Problem

Let the dynamics of a multibody system be described by the differential equations

in minimal form

Mðq
�
Þ€q
�
þ b

�
ðq
�
; _q
�
Þ þ Q

�e
ðq
�
; _q
�
Þ þ Q

�
G
ðq
�
Þ ¼ �Q

�
; (1.10)

where M is the n � n mass matrix of the multibody system, b
�
ðq
�
; _q
�
Þ is the

n-dimensional vector containing the centripetal and Coriolis terms,Q
�
G
ðq
�
Þ is an

n-dimensional vector containing the projection of the gravitational forces on the

generalized coordinates, Q
�e
ðq
�
; _q
�
Þ is an n-dimensional vector containing the projec-

tion of general external forces, andQ
�
is an n-dimensional vector collecting the

generalized actuator forces.

Let the velocities _q
�
, accelerations €q

�
, and generalized actuator forces Q at the

joints be constrained by equations of the form

_q
�

min q
� �

� _q
�
� _q

�

maxðq
�
Þ

€q
�

minðq
�
; _q
�
Þ � €q

�
� €q

�

maxðq
�
; _q
�
Þ

Q
�

minðq
�
; _q
�
Þ � Q

�
� Q

�

maxðq
�
; _q
�
Þ;

(1.11)

6 F. Geu Flores and A. Kecskeméthy



and the velocities �t E and accelerations _
�tE at the end-effector be constrained by

equations of the form

�t
min
E KEð Þ � �t E � �t

max
E KEð Þ

_�t
min
E KE; �tEð Þ � _�t E � _�t

max
E KE; �t EÞ:ð

(1.12)

With the relations Eq. 1.9, the equations of motion described in Eq. 1.10 can be

written in terms of the motion coordinate s as

��mðsÞ€sþ c s; _sð Þ þ �dðsÞ ¼ ���Q; (1.13)

with

��mðsÞ ¼ MðsÞ qJs
�c s; _sð Þ ¼ MðsÞ qJ0

s þ �
��bðsÞ

h i
_s2 þ ��Qe s; _sð Þ

��dðsÞ ¼ ��QGðsÞ;
(1.14)

where the coefficients mi and ci represent the effective inertia and velocity forces at
every independent joint respectively, and the term ��b ��q; _��qð Þ in Eq. 1.10 can be written
as ��

�bðsÞ _s2, with �
��bðsÞ depending only on the configuration s.

Furthermore, Eq. 1.9 allows for all constraints of the form described in Eqs. 1.11

and 1.12 to be collected in the vector inequality

��̂b1 s; _sð Þ � �̂�mðsÞ €s � ��̂b2 s; _sð Þ; (1.15)

where ��̂b1, ��̂b2 and �̂�m are vectors in Rl and l is the number of constraints.

The left and right terms of this inequality define the set of admissible states

s; _s½ �T and can be written as the scalar inequality

g s; _sð Þ � 0; (1.16)

with g s; _sð Þ ¼ max b̂1j s; _sð Þ � b̂2j s; _sð Þ� 	
, for all j ¼ 1; 2; � � � ; ‘.

For all constraints j for which m̂jðsÞ does not vanish, Eq. 1.15 further limits the

acceleration €s along the spatial path, since it must hold

b̂1j s; _sð Þ
jm̂jðsÞj � sgn m̂jðsÞ

� �
€s � b̂2j s; _sð Þ

jm̂jðsÞj ; (1.17)

or compactly

lj s; _sð Þ � €s � uj s; _sð Þ; (1.18)

1 Time-Optimal Path Planning Along Specified Trajectories 7



where lj s; _sð Þ and uj s; _sð Þare the lower and upper bounds of the j-th constraint,

functions of the state s; _s½ �T. These equations can be rewritten as the one dimensional

inequality

L s; _sð Þ � €s � U s; _sð Þ; (1.19)

where L s; _sð Þ ¼ max lj s; _sð Þ� 	
andU s; _sð Þ ¼ min uj s; _sð Þ� 	

for all j ¼ 1; 2; � � � ; ‘ for
which m̂jðsÞ 6¼ 0.

The time optimal problem consists in finding the monotonically increasing

function sðtÞ which minimizes the total time needed to travel from s0 to sf, without
violating Eq. 1.19 or Eq. 1.16.

In this paper, further constraints that match Eq. 1.15 but are nonquadratically

nonlinear in _s are investigated. These stem from linear constraints at the end-

effector accelerations in the form

jA KEð Þ��_t E KE; ��t Eð Þj � ��_t
max
E ; (1.20)

whereA KEð Þ is a 6� 6 matrix depending on the manipulator configuration, as well

as a limit for maximally allowed power consumption

j
��
_qTðq

�
; _q
�
Þ��Qðq

�
; _q
�
; €
��
qÞj � Pmax: (1.21)

1.3.2 Computation of the Dynamic Constraints

By using the object-oriented approach described in [3], the aforementioned

dynamic constraints can be easily computed at every state ½s; _s�T.
Let the transmission of motion from the motion coordinate s to the mass and

force elements be given by a kinetostatic transmission element ’S, denoted global

kinematics. The concatenation of position, velocity, acceleration and force trans-

mission functions of the global kinematics yields the inverse dynamics ’D�1

S of the

system, which maps the generalized coordinates and their time derivatives to a set

of residual generalized forces

��
�Q ¼ ’D�1

S ðs; s: ; s::Þ ¼ ���mðsÞ s
::���cðs; s:Þ � ��dðsÞ; (1.22)

at the input of the global kinematics. These residual forces can be used to generate

��m; ��c , and ��d of Eq. 1.13 at every configuration s by the following simplified

procedure:

(a) Computation of ��d: Set, at the input of ’
D�1

S , the generalized velocities to _s ¼ 0

and the generalized accelerations tos
:: ¼ 0. Then, the terms ��m s

::
and ��c of Eq. 1.13

vanish and the residual vector obtained at the input is exactly���d.

8 F. Geu Flores and A. Kecskeméthy



(b) Computation of ��c: Eliminate the term ��d in the calculation of’
D�1

S by ‘switching

off’ the gravitational forces
��
QG, and set, at the input of ’D�1

S , the generalized

velocities to _s ¼ 1and the generalized accelerations tos
:: ¼ 0. Then, the term ��m s

::

of Eq. 1.13 vanishes and the residual vector obtained at the input is exactly���c.
(c) Computation of ��m: Similarly, eliminate the term ��d in the calculation of’

D�1

S
and

set the input acceleration to s
:: ¼ 1. Then, the resulting force

��
�Q is exactly� ��m.

The Jacobian matrices can be computed similarly, using only the force trans-

mission functions, as proposed by [3]. Consider a kinetostatic element such as the

one defined in Sect. 1.2.1. Setting all force components at the output of the

transmission element besides the jth-one equal to zero, and the jth-one equal to

one, yields a vector of generalized forces at the input the transmission element

which is identical to the jth-column of the transposed Jacobian, thus to its jth-row.

1.3.3 Solution of the Time-Optimal Problem

Equations 1.19 and 1.16 form a set of velocity and acceleration limits at every

configuration s. These limits determine an admissible region in the plane _s� s
::
for

each configuration s. Figure 1.3 shows typical admissible regions for two particular

cases: (a) functions lj, uj linear in _s2 , and (b) functions lj, uj that are generally

quadratic in _s. For the case of lj, uj linear in _s2 one can define one simple interval

½ _smin; _smax� of admissible velocities for every configuration s. This assumption is not

valid in general, since the admissible region could consist of not connected sub-

regions leading to a set not connected admissible velocity intervals (I1, I2 in

Fig. 1.3b).

The time optimal problem becomes particularly simple if all constraints are

linear in _s2. In this case, constraint equations of the form Eq. 1.15 can be written as

�̂�c1ðsÞ _s2 þ ^
��d1ðsÞ � �̂�mðsÞ s

:: � �̂�c2ðsÞ _s2 þ ^
��d2ðsÞ (1.23)

a) lj , uj linear in s2

s̈ s̈

ṡ ṡṡmax ṡmaxṡmin ṡmin

velocity
limit

u1(s, ṡ) u1(s, ṡ)

u2(s, ṡ)

l1(s, ṡ)
l1(s, ṡ)

l2(s, ṡ)

l2(s, ṡ)

b) lj , uj quadratic in

s̈

ṡ

u3(s, ṡ)

u2(s, ṡ)

l1(s, ṡ)

I1 I2

s

Fig. 1.3 Admissible acceleration region for given configuration s

1 Time-Optimal Path Planning Along Specified Trajectories 9



The function gðs; _sÞ is linear in _s2, which means that the admissible regions in the

plane _s� s
::
are simply connected and the set of admissible states has no holes in its

interior. This allows for the definition of the functions _sminðsÞ and _smaxðsÞ describing
the maximally and minimally allowed admissible velocities _s as a function of the

motion coordinate s.
In many applications, the lower limiting curve _sminðsÞ is required to be zero along

the whole spatial path, so that all multibody system configurations are feasible at

rest. However it actually does not need to be so in order for the time-optimal

problem to have a feasible solution, as shown in Sect. 1.4.2.

The states that lie on the upper limiting curve _smaxðsÞ are classified in:

(a) Sinks, if Uðs; _sÞ ¼ Lðs; _sÞ > _smax d _smax=ds
(b) Source, if Uðs; _sÞ ¼ Lðs; _sÞ< _smax d _smax=ds
(c) Tangent points, elsewhere.

Moreover, the tangent points at which the velocity constraints described in

Eq. 1.16 are active are called singular points, or singular arcs if they are connected.

The solution to the time optimal motion is a sequence of branches of maximal

accelerations and maximal decelerations that lies in the feasible region and touches

tangentially the upper limiting curve. At states ½s; _s�T that lie inside the feasible

region, the solution consists of segments with maximal acceleration Uðs; _sÞand
segments with maximal deceleration Lðs; _sÞ. At singular points, the extremal

accelerations are further bounded by the upper limiting curve tangent d _smax=ds.
With these definitions, the following algorithm based on the one proposed by [6]

has been constructed:

Step 0: Check if the initial state s0 and the final state sf are feasible for the given

initial velocity _s0 and final velocity _sf respectively. If not, the problem has no

feasible solution.

Step 1: Set a counter k to 1. Integrate the equation s
:: ¼ maxfljðs; _sÞg backwards in

time from the final state s ¼ sf, _s ¼ _sf until leaving the feasible region. Name the

computed deceleration curve _sdðsÞ.
Step 2: Integrate the equation s

:: ¼ minfujðs; _sÞg forwards in time from the initial

state s ¼ s0 , _s ¼ _s0 until leaving the feasible region. Name the computed

acceleration curve _sakðsÞ. If the acceleration curve _sakðsÞ crosses the lower limiting

curve _sminðsÞ, the problem is not feasible and the algorithm should be terminated.

Else, continue.

Step 3: If _sakðsÞ crosses the deceleration curve _sdðsÞ terminate the algorithm: the

intersection of both curves is the only switching point Sk. Otherwise, continue.
Step 4: Search forwards on the upper limiting curve _smaxðsÞ for the next tangency

point Sk+1. The point Sk+1 is a switching point candidate.

Step 5: Integrate the equation s
:: ¼ maxfljðs; _sÞ; _smaxd _smax=dsg backwards in time

from the state Skþ1 until crossing one of the acceleration curves _sa‘ ðsÞ, with
1 � ‘ � k. The intersection of both curves is the switching point S‘. Set k ¼ ‘.
Disregard the candidates Sr, with r � ‘.

Step 6: Integrate the equation s
:: ¼ minfujðs; _sÞ; _smax d _smax=dsg forward in time from

the state Sk until leaving the feasible region. Add one to the counter k. Name the

10 F. Geu Flores and A. Kecskeméthy



computed acceleration curve _sakðsÞ. If the acceleration curve _sakðsÞ crosses the

lower limiting curve _sminðsÞ, the problem is not feasible and the algorithm should

be terminated. Else, go to step (3).

Figure 1.4 shows how a typical solution looks like.

For more general functions lj, uj , the feasible region may be composed of several

unconnected regions of admissibility. In this case, the computation of the set of

admissible states requires the solution of the scalar inequality Eq. 1.16, which

involves the search for the zeros of gðs; _sÞ for given configurations s. This is

possible only if enough information on the nature of the nonlinearities is available,

as in the example presented in Sect. 1.4.1. If this is the case, all tangent points on the

boundary of the admissible states can be computed. This allows for the construction

of a directed graph containing a set of trajectories which connect the tangent points

with the initial and final states, the highest of which yields the time-optimal motion.

1.4 Application Examples

1.4.1 Loading Cycles of Backhoe Excavators

As a first example, consider the computation of the minimal time that an excavator

would need to move along a typical load and haul path without violating the

maximally allowed actuator forces as well as the maximally allowed overall

hydraulic power consumption. A typical backhoe excavator consists of an under

carriage, an upper carriage, a boom, a stick and a shovel (see Fig. 1.5). Its

kinematical structure comprises three independent planar kinematical loops

contained in the boom-stick plane as well as an independent rotation around a

vertical axis.

The given path is interpolated in joint space using third order B-splines and it is

assumed that the excavator starts its motion from and finishes it at rest. The

dynamic constraints comprise the maximal hydraulic forces at the four actuators

Qmin
i � ��Q � Qmax

i ; i ¼ 1; 2; :::; 4; (1.24)

12

3

4

5

S2 S4

S7

S1

S3

S5

S6

S8

ss0 sf

ṡ
unfeasible region ṡmax (s)

ṡmin(s)

Fig. 1.4 Time-optimal

solution algorithm

(no islands)
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which leads to constraint equations of the form Eq. 1.19 with functions ljðs; _sÞ; ujðs; _sÞ
linear in _s2, as well as the maximal hydraulic power

j��_qT��Qj � Pmax; (1.25)

which together with Eqs. 1.9, 1.13, and 1.14 leads to

�Pmax

m̂ðsÞ _s �
b̂ðs; _sÞ
m̂ðsÞ � s

:: � Pmax

m̂ðsÞ _s�
b̂ðs; _sÞ
m̂ðsÞ : (1.26)

with

m̂ ¼ qJ
T
s MðsÞqJs > 0 (1.27)

b̂ ¼ qJ
T
s [MðsÞqJs

0 þ �
��bðsÞ� _s2 þ qJs

T

��
QGðsÞ: (1.28)

In this case, the function gðs; _sÞ of Eq. 1.16 has, for a given configuration s, at the
most three zeros, all of which can be computed exactly. The representation of the

acceleration constraints in the s
::� _s plane is shown in Fig. 1.5. The force constraints

form parabolas with vertices on the s
::
axis, whereas the power constraints approach

hyperbolically to a similar parabola.

The time optimal solution is plotted in Fig. 1.6. The plots show alternating

horizontal plateaus which are to be seen through the different curves, which

indicates that at least one of the maximally allowed forces or the maximal power

consumption is always used.

1.4.2 Waiter-Motion Problem for a Given Spatial Path

As a second example, consider the so called “generalized waiter-motion problem”.

The well-known task consists in moving a tablet carrying a number of glasses from

K0

KE

s

P

q1(s)

q3(s)

q2(s)

q4(s) s̈

ṡṡmax

force
constraints

power
constraints

Fig. 1.5 Loading cycle of a backhoe excavator
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an initial poseK0
E to a final poseKf

E as fast as possible such that objects placed on it

do not slide (see Fig. 1.7). The problem is solvable in closed form for the case of one

single glass, but leads to a yet unsolved complex problem for the case of few glasses

placed at different positions on the tablet.

The task considered here is the computation of the fastest motion along a

prescribed spatial path given as a spatial interpolation of key poses of KE. One set

of constraints is given as limits in the joint velocities and accelerations in the form

_
��
qmin � _

��
q � _

��
qmax

€
��
qmin � €

��
q � €

��q
max

(1.29)

with _qmin
i ; _qmax

i ; €qmin
i and €qmin

i constant. These values are typically provided by the

manufacturer and are usually pre-programmed in the robot controller as soft-limits.

A second set of constraints is given by the sticking (‘no sliding’) condition for

every object k on the tablet
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Fig. 1.6 Optimized backhoe excavator loading cycle
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Fig. 1.7 Generalized waiter-motion with no-sliding constraints
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âk � n
kâkk2

� cosa; with âk ¼ ak þ
��
g; (1.30)

where ��a
k is the acceleration of object k and

��
g is the gravity vector, ��n is the normal

vector of the tablet plane, and m0 ¼ tana is the dry friction coefficient between

plane and objects. These k additional dynamic constraints can be rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½âkx�

2 þ ½âky�
2

q
� m0â

k
z ; with âk ¼ k Js s

::þ kJ
0
s _s

2 � RT
k ��g; (1.31)

where kJs is the Jacobian mapping the linear velocities _s along the spatial path to the
velocities of object k, and Rk is the transformation matrix from the inertial frame to

the local coordinate frame of object k.
Clearly, equations of the form Eq. 1.31 are nonlinear in the unknowns s

::
, which

makes their treatment with the previous methods infeasible. However, it is possible

to approximate these constraints by replacing the friction cone by a friction

polyhedra (Fig. 1.7) given by the equations

1Þ jâkxj � m0â
k
z

2Þ �
âk
x

tanð’iÞ
þ âky

�����
����� �

m0â
k

z

sinð’iÞ
;

(1.32)

defined by the discretization angles ’i ¼ ip
2p�1 , with i ¼ 1; 2; :::; 2p�1 � 1, for each

âkz . Note that this approximation can be arbitrarily refined by choosing a

sufficiently large integer p.
Equation 1.32 together with Eq. 1.29 form a system of constraints that are linear

in _s2 , so that simply connected admissible acceleration regions are granted. The

solution for the case of four objects symmetrically distributed on the tablet and a

friction pyramid approximation with p ¼ 4 is shown in Fig. 1.8. The plot at the

right shows the accelerations of the fourth glass (k ¼ 4).
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Fig. 1.8 Optimized waiter-motion along given trajectory
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The small violations of the sticking condition are a consequence of the pyramid

of friction approximation. They can be quantified by defining the friction correction

Dm (see Fig. 1.9), which is the smallest increase of the actual friction coefficient m0
that makes the computed motion feasible. As shown by the numerical experiments

shown in Fig. 1.9, by increasing the integer p the accuracy of the constraint

equations can be increased arbitrarily, although at expense of exponentially increas-

ing CPU time.

1.5 Conclusions

This work extends classical fixed-geometry time-optimal path planning methods by

(1) allowing for the consideration of sticking conditions and overall power con-

sumption constraints, and (2) the allowing for general paths featuring smooth

interpolation of angular acceleration as well as arbitrary multibody systems com-

prising multiple loops. The paper shows how the concept of motion interpolation as

a kinetostatic transmission element allows for an efficient method to generate the

transmission equations that lead to the formulation of the solution algorithm. The

constraints can be straightforwardly constructed in terms of velocities,

accelerations and forces at any place along the kinematical skeleton. The practical

applicability of these extensions is illustrated by two applications from robotics and

mining industry.
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y]2 in m/s2

â
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Chapter 2

Efficient Online Computation of Smooth

Trajectories Along Geometric Paths for Robotic

Manipulators

Lukas Messner, Hubert Gattringer, and Hartmut Bremer

Abstract This paper presents a fast computation method for time-optimal robot

state trajectories along specified geometric paths. A main feature of this new

algorithm is that joint positions can be generated in realtime. Hence, not only

joint velocities and accelerations limits but also constraints on joint jerks and

motor torques can be considered. Jerk limits are essential to avoid vibrations due

to (not-modeled) gear or structure flexibilities. For the limitation of motor torques a

complete dynamic robot model including Coulomb and viscous friction is used. The

underlying optimal control problem is found by projecting the problem onto the

geometric path. The resulting state vector contains path position, speed and acce-

leration while path jerk is used as input. From optimal control theory it follows that

the path jerk has to be chosen at its boundaries, which can be computed for each

state in each step. Continuous state progress is assured via so called test trajectories

which are additionally computed in each step. As an example the algorithm is

applied to a six-axis industrial robot moving along a straight line in Cartesian space.

2.1 Introduction

Despite the fact that in the last decades big effort has been put into the development

of path planning techniques, most of these methods are not used in industry and the

capabilities of robots are often not fully exploited. One reason for this is, that most

algorithms are designed for an offline computation of a desired trajectory for the

robot’s joints qdðtÞ although an online computation is desirable for mainly two

reasons: (1) A movement described with a robotic program should start without

computation delays and (2) a flexible production system should be able to react on

unforeseeable events in realtime.
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Typically, the general online path planning problem leads to a realtime optimal

control problem [5]. Unfortunately, current industrial realtime environments are not

powerful enough to solve the general problem (e.g. for a six axis robot) using state

of the art techniques, like model predictive control (MPC) [9]. However, in this

paper a typical industrial case with a predefined geometric path qðsÞ is considered
(e.g. defined by a robotic program). Therefore, it is known that the optimal control

problem can be greatly reduced by projecting it onto the path parameter s. This
separation of the geometric path planning problem, including the inverse kine-

matics, and the dynamic path planning problem for finding a course in timesðtÞwas
firstly introduced by Bobrow et al. [3] and is called decoupled approach [15]. The

resulting control setup is also depicted in Fig. 2.1.

There exist many well studied methods for solving the optimal control problem

arising from the decoupled approach which can be divided into dynamic program-

ming [2, 11], direct solution methods [8, 13, 18] and indirect solution methods

[3, 17]. However, only few existing methods are designed for realtime usage and

they often do not fulfill all industrial demands. For example vibration avoiding

smoothing techniques like jerk limitations are not considered in Pardo-Castellote’s

approach [15]. Other methods do not consider a dynamic robot model for the

consideration of actuator torques (e.g. [7] or [1]) or they are limited to special

geometric paths like straight lines [14].

This paper presents an algorithm which overcomes the realtime problem by not

solving the optimal control problem for the whole path at once, but only for a short

distance in each step. Firstly, the problem is projected onto the geometric path by

introducing a path position, speed and acceleration state vector (Sect. 2.2). With

path jerk as input, it is shown that desired joint limits can be formulated as pure state

or mixed input state inequality conditions for that system. In Sect. 2.3, possible

input values are derived from Pontryagin’s Maximum Principle [16]. Thereafter, a

time discretization is introduced and continuable states are defined. Finally, in

Sect. 2.4 test trajectories are used to check for continuable states. These trajectories

Fig. 2.1 The decoupled approach. A geometric path qðsÞ from a geometric path planner is the

basis for a time parametrization in the dynamic path planner. The feedback controller is then

tracking so computed reference trajectories qdðtÞ
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form the key computation for the presented discrete online algorithm. To demon-

strate the performance of the method, results for a six-axis industrial robot are

shown in Sect. 2.5.

2.2 Problem Statement

In the following, a geometric path

qðsÞ ¼ q1ðsÞ; . . . ; qnðsÞ½ �T s 2 ½s0; se� (2.1)

is given for a fully actuated robotic manipulator with n joints q1; . . . ; qn . It is
assumed that qðsÞ is at least three times differentiable with respect to the arbitrarily

chosen path parameter s.
For the limitation of actuator torques or forces Ü , a nonlinear dynamic model is

used in the general form

Ü ¼ MðqÞ€qþ Cðq; _qÞ _qþGðqÞ þ D _qþ Dc signð _qÞ (2.2)

with the mass matrixM, the Coriolis and centrifugal force matrix C, which is linear

in _q and the gravity force vector G. Viscous friction is considered with D _q and

Dc signð _qÞ are Coulomb friction torques and forces [4].

2.2.1 Optimal Control Problem

For a given geometric path (2.1) the whole path planning problem is reduced to the

task of finding a function sðtÞ. It will be shown that constraints and an optimization

criterion for this function lead to an optimal control formulation in the form

min
uðtÞ

J :¼
Z te

0

lðxðtÞ; uðtÞÞdt (2.3)

subject to _x ¼ fðx; uÞ; xð0Þ ¼ x0; xðteÞ ¼ xe; (2.4)

hðxÞ � 0

gðx; uÞ � 0

�
t 2 ½0; te�; (2.5)

where J is a cost functional, f denotes a dynamic system and h and g consider pure

state and mixed input-state inequality conditions [5].
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Herein, the pure time optimal case will be considered by choosing lðxðtÞ; uðtÞÞ ¼ 1.

Furthermore, limitations on joint speeds, accelerations, jerks and motor torques will

be taken into account with

hðxÞ ¼

_qðx1; x2Þ � _qmax
� _qðx1; x2Þ þ _qmin
€qðx1; x2; x3Þ � €qmax
�€qðx1; x2; x3Þ þ €qmin
Üðx1; x2; x3Þ � Ümax

�Üðx1; x2; x3Þ þ Ümin

2
6666664

3
7777775
; (2.6)

gðx; uÞ ¼
:::
qðx1; x2; x3; uÞ � jmax
�:::
qðx1; x2; x3; uÞ þ jmin

� �
; (2.7)

by selecting path position, speed and acceleration as components of the state vector

x ¼ x1; x2; x3½ �T ¼ s; _s; €s½ �T and u ¼ :::
s as input of the dynamic system fðx; uÞ ¼

x2; x3; u½ �T . Dependencies on system input and state components in (2.6), and (2.7)

can be easily seen by expanding the time derivatives

_qðx1; x2Þ ¼ q0ðx1Þ x2 (2.8)

€qðx1; x2; x3Þ ¼ q00ðx1Þ x22 þ q0ðx1Þ x3 (2.9)

:::
qðx1; x2; x3; uÞ ¼ q000ðx1Þ x32 þ q00ðx1Þ3x2x3 þ q0ðx1Þ u ; (2.10)

using the differential operator ð:Þ0 :¼ @ð:Þ
@s . For the actuator torques and forces, the

dynamic equation (2.2) is rewritten to

Üðx1; x2; x3Þ ¼ a0ðx1Þ þ a1ðx1Þ x2 þ a2ðx1Þ x22 þ a3ðx1Þ x3 ; (2.11)

with purely s-depending parameters

a0ðx1Þ ¼ Gðqðx1ÞÞ þ Dc signðq0ðx1ÞÞ
a1ðx1Þ ¼ Dq0ðx1Þ
a2ðx1Þ ¼ Mðqðx1ÞÞ q00ðx1Þ þ Cðqðx1Þ; q0ðx1ÞÞ q0ðx1Þ
a3ðx1Þ ¼ Mðqðx1ÞÞ q0ðx1Þ :

For an efficient computation of the inequality conditions (2.6), and (2.7) the

existence of purely s-depending parameters is advantageous because a preparation

(e.g. using a spline approximation) is possible in advance.
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2.3 Optimal System Inputs

For solving an optimal control problem (2.3), (2.4), and (2.5) various techniques

exist [5]. Similar to indirect solution methods optimality conditions derived from

Pontryagin’s Maximum Principle give useful information for the choice of optimal

system inputs. Therefore, a Hamiltonian is introduced as

Hðx; u; lÞ :¼ l0lþ lTfðx; uÞ ¼ l0 þ l1x2 þ l2x3 þ l3u ; (2.12)

for the problem (2.3), (2.4), and (2.5) with Lagrangian Multipliers l0; . . . ; l3 [5].
For an optimal solution ðx�; u�; l�Þ of a problem (2.3), (2.4), and (2.5) the first

necessary condition is given by [6]

Hðx�; u�; l�Þ � Hðx�; u; l�Þ : (2.13)

This means that for an optimal point ðx�; l�Þ on the trajectory, the optimal input

u ¼ u� has to minimize the Hamiltonian Hðx�; u; l�Þ . Hence, the optimality

condition (2.13) for the Hamiltonian (2.12) can be rewritten to

u� ¼
umaxðx�Þ; if l�3 < 0

uminðx�Þ; if l�3 > 0

undefined; if l�3 ¼ 0

;

8<
: (2.14)

assuming upper and lower bounds umaxðxÞ and uminðxÞ for the input u can be defined
according to the inequality conditions (2.5) and the system equation (2.4). Addi-

tional optimality conditions could give more information about the Lagrangian

Multiplier l3, but it is known that pure state constraints lead to complex switching

point analysis [5]. However, assuming no singular arcs [5] exist with l�3 ¼ 0 on a

non empty time interval ðt1; t2Þ � ½t0; te�, the information given by the optimality

condition (2.14) is already very useful because it means that u� can only be either

umaxðxÞ or uminðxÞ.

2.3.1 Discretization

In this section a discretization of the original problem (2.3), (2.4), and (2.5) is used

to subsequently define a discrete online algorithm.

With sample times tk ¼
Pk
i¼0

Ti, k ¼ 0; . . . ; n, a piecewise constant inputuðtÞ ¼ uk,

t 2 ½tk; tkþ1� and discrete states xk ¼ xðtkÞ , a time discretization of the system

equation (2.4) is given by [10]
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xkþ1 ¼ Akxk þ bkuk ;

Ak ¼
1 Tk

T2
k

2

0 1 Tk

0 0 1

2
64

3
75 ; bk ¼

T3
k

6

T2
k

2

Tk

2
664

3
775 : ð2:15Þ

Inequality conditions (2.5) can be written as

gðxk; ukÞ � 0

hðxkÞ � 0
; k ¼ 0; . . . ; n ; (2.16)

which means that the original inequality conditions (2.5) must hold at discrete time

steps tk; k ¼ 0; . . . ; n; but not in between. This simplification is common for many

methods and in practice small enough sample times Tk deliver satisfying results.

2.3.2 Input Bounds

In this section a computation rule for the input bounds umaxðxÞ and uminðxÞ, defined
in the beginning of Sect. 2.3, shall be found.

The set of allowed input values uk is clearly limited by the mixed input-state

constraints gðx; uÞ. In the discrete case pure state constraints hðxÞ can be taken into

account by considering the next step hðxkþ1ðxk; ukÞÞ where uk automatically appears.

To avoid time consuming computations for a lower and upper bound of a so defined set

Sk ¼ uk 2 R; gðxk; ukÞ � 0; hðxkþ1ðxk; ukÞÞ � 0f g ;

it is useful to introduce a uk independent Taylor series estimation of the next state

~x ¼ Akxk þ bk0. Together with inequality conditions (2.6), and (2.7), this approxi-

mation lead to a set of linear inequality conditions for uk, namely

~Sk ¼ uk 2 R; bk;min � ak uk � bk;max

� �
with

ak ¼
q0
~a3 Ts

~q0Ts

~q0 T
2
s

2

2
664

3
775 ; b k; min

max
¼

jmin
max

� ðq000 x32;k þ q003x2;kx3;kÞ
Ü min

max
� ð~a0 þ ~a1 ~x2 þ ~a2 ~x22 þ ~a3 x3;kÞ

€qmin
max

�ð~q00x22;k þ ~q0x3;kÞ
_qmin
max

�~q0ðx2;k þ x3;kTsÞ

2
6664

3
7775

and ~:ð Þ denoting values computed with the estimated state ~x. This directly gives

a simply to compute estimation for uk;max and uk;min with uk;min � inf ~Sk
� �

and

uk;max � sup ~Sk
� �

.
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2.3.3 Not Allowed States

In addition to the rule, how to compute uk;max and uk;min (see Sect. 2.3.2) it has to be
clarified when to use uk;max and when uk;min. When looking at the objective function,

which can be rewritten as

J ¼
Xn�1

k¼0

Tk ¼
Xn�1

k¼0

Zx1;kþ1

x1;k

1

x2
dx1; (2.17)

choosing uk;max would be obviously the best to maximize the path speed x2.
Additionally, it has to be considered that a sequencexk; uk 2 Sk; k ¼ j; jþ 1; . . . ,

can potentially end in an empty set Sk ¼ fg, which would mean that a not allowed

state is reached and one of the inequality conditions (2.16) is violated.

States xj belonging to a special subset N � R
3 which can be continued with a

sequence uk; k ¼ j; jþ 1; . . . ; without reaching a not allowed state shall be called

continuable states. Clearly, only continuable states should be considered but it is

difficult to find a simple condition for xj 2 N due to the infinite horizon of the

previous condition. However, if a finite trajectory xk; uk 2 Sk; k ¼ j; . . . ;m� 1;
which ends in a rest position xm ¼ x1;m 0 0½ �T can be found, it means that with

uk ¼ 0; xk ¼ xm and Sk ¼ Sm�1 6¼ fg for all k � m this rest position can be

continued and it is a sufficient condition for a continuable state xj . A method for

computing such short trajectories for testing if a state is continuable or not, is

introduced in the subsequent section.

2.4 A Discrete Online Algorithm

In the previous Sect. 2.3 conditions for optimal system inputsuk are found. Based on
those conditions, the idea for the online algorithm is to test in each step uk;max as

input and to check if the resulting next state is continuable. Therefore, in the

subsequent section, so called test trajectories are introduced.

2.4.1 Test Trajectories

As described in Sect. 2.3.3, if a test trajectory x ¼ ð�x0; . . . ; �xm; �u0; . . . ; �umÞ with a

given start state �x0 and a desired rest position �xm;d ¼ sr;d 0 0½ �T can be found, it

means that all states �xj; j ¼ 0; . . . ;m of such a test trajectory are continuable states.

Choosing the input at the boundaries in three time intervals t1, t2 and t3 in the form
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�uj ¼
�uj;max if tj 2 ½0; t1Þ
�uj;min if tj 2 ½t1; t1 þ t2Þ
�uj;max if tj 2 ½t1 þ t2; t1 þ t2 þ t3Þ

8<
: (2.18)

result in a trajectory with three degrees of freedom t1, t2 and t3 (Fig. 2.2). Finding
correct values for Ü ¼ ½t1; t2; t3�T to end in the desired rest position �xm;d is a two

point boundary value problem (2PBVP). Therefore, known methods like single

shooting [5] can be applied. In case of a free rest position sr;d and fixed interval

time t1, the 2PBVP reduces to a unknown �Ü ¼ ½t2; t3�T.
It is clear that such a test trajectory does not exist for a not continuable state �x0

(see Sect. 2.3.3). But if it exists, all states �x0; . . . ; �xm are known to be continuable.

This test for continuable states is the basis for the online algorithm defined in the

following section.

2.4.2 The Algorithm

Now the idea for an algorithm solving the optimal control problem (2.3), (2.4), and

(2.5) is to use a maximum path jerk uk;max in each step as input for the discrete

system (2.15) except the test trajectory computation fails. A detailed algorithm is

described in the following.

1. Start with x0 ¼ ½ s0 0 0 �T and k ¼ 0.

2. Try to compute a test trajectory xk ¼ ð�xk;0; . . . ; �xk;mk
; �uk;0; . . . ; �uk;mk

Þ with

�xk;0 ¼ xk, fixed interval t1 ¼ Ts and a free end position sr;d.
3. If the test trajectory xk exceeds the end position se, recompute the test trajectory

with fixed end position �xk;mk ;d ¼ se 0 0½ �T and free interval length t1 . If
successful, go to 7.

4. If xk was not computed successfully, take the previous test trajectory but without

the first state, thus

xk ¼ ð�xk�1;1; . . . ; �xk�1;mk�1
; �uk�1;1; . . . ; �uk�1;mk�1

Þ:

x̄0 x̄s1

x̄s2 x̄m

τ1 τ1 + τ2 τ1 + τ2 + τ3

t

x2

ūj,max

ūj,max

ūj,min

Fig. 2.2 Test trajectory for

an initial state �x0 . The
solution of the 2PBVP is

depicted with the solid line.

Inappropriately chosen time

intervals t1, t2 and t3 lead to a
final state which is not a rest

position (dashed line)
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5. Output xk ¼ �xk;0 , uk ¼ �uk;0 and choose xkþ1 ¼ �xk;1.
6. Increase k by one and go to 2.

7. Output the whole test trajectory until the end of the path xkþj ¼ �xk;j , uk ¼ �uk;j for
j ¼ 0; . . . ;mk.

The evolution of the algorithm is also shown in Fig. 2.3. An iteration step of the

algorithm always includes a test trajectory computation. Therefore, it is useful to

know that, due to small iteration steps, time intervals t2 and t3 from a previous step

k � 1 can be assumed to be good starting values for the 2PBVP in the actual step k.
In each iteration step, a path jerk uk;max is used as long as test trajectories are

computed successfully. If the computation fails, the algorithm stays on the last

successfully computed test trajectory until a new test trajectory is found. Therefore,

uk;max is used whenever possible, otherwise uk;min is taken as input for the discrete

system (2.15). This means that the necessary condition for optimality (Sect. 2.3) is

fulfilled.

σ

σ

σ

σ

σ̇

σ̇

σ̇

σ̇

uk,max

uk,max

uk,max

uk,max

uk,min

uk,min

uk,min

uk,min

σ̇max

σ̇max

σ̇max

σ̇max

σ0

σ0

σ0

σ0

σe

σe

σe

σe

¯
k,0x

k,1

k,mk

ξk

ξk

ξk

ξk

ξk−1

x̄

k,1x̄
k    1,2x̄

x̄

¯
k,0x

¯
k,0x

¯
k,0x

k,1

k,mk

x̄

k,1x̄

x̄

k,mkx̄

Fig. 2.3 Three consecutive

iterations and the last step of

the algorithm. The presence

of dynamic limits is

represented by the dashed line
_smax. In the first two steps it

can be seen that a test

trajectory is computed

successfully without violating

the limit. Therefore, the state
�xk;1 is continuable and can be

outputted. In the third step

this is not the case and a state

from the previous test

trajectory �xk�1;2 is taken

instead. The figure on the

bottom shows the last step in

which the test trajectory

reaches the end of the path
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2.4.3 Realtime Capability

The fact that each iteration step of the algorithm presented in Sect. 2.4.2 outputs a

new path position sk ¼ x1;k (and therefore also joint positions qðskÞ) makes this

algorithm capable for realtime usage. Therefore, it is important to guarantee a

maximum computation time for each step which is smaller than the chosen cycle

timeTs. This is possible if the maximum computation time for a single test trajectory

is limited by choosing a maximum trajectory length and a limitation of iterations for

the 2PBVP. Exceeding these limits can be treated like a not successful test trajec-

tory computation in the algorithm.

Experiments show, that for typical robotic applications (see Sect. 2.5) small

enough sample times can be reached. Even smaller sample times, potentially

needed for feedback controller, can be realized by simply resampling the result

using (2.15), see [10]. Additionally, feed forward strategies [12] can be easily

provided with set speeds, accelerations and torques resulting from (2.8), (2.9) and

(2.11).

Due to the fact that the last point of each test trajectory �xk;mk
is at the same time

the most advanced point on the path, it is possible to change any information

beyond that point like speed limits or the geometric path qðsÞ; s > �xk;mk
, without

influencing the result. This means, that a geometric path can be prepared in the

background while the algorithm is running and features like online speed adjust-

ment (override) can be easily realized. In practice, it is also advantageous that in

each time step a test trajectory is present which can bring the robot as fast as

possible to a stop if required (e.g. emergency stop).

2.5 Example

In this section the presented algorithm is applied to a six-axis robot controlled by a

standard industrial PC with a 1.4 GHz processor. For limiting motor torques, a full

dynamic model with identified parameters is used. Velocity limits are taken from

manufacturer’s data sheet, acceleration limits are not needed (due to torque

limitations) and jerk limits are derived from experimental results such that

vibrations are extensively avoided.

A C-implementation of the algorithm for the standard controller reveals possible

sample times smaller than Ts ¼ 2:4 ms. This means that the realtime condition for

the computation time of each iterations step is never violated.

In the following, a MATLAB-implementation of the presented algorithm is used

to be able to compare the results with other state of the art (offline) methods. As

an example, a geometric path is computed from an inverse kinematic transforma-

tion of a straight line in Cartesian space with fixed orientation of the tool center

point (see Fig. 2.4). The resulting speed profile _sðtÞ and all consecutive test

trajectories computed with a sample time Ts ¼ 10 ms are depicted in Fig. 2.5.
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Corresponding axis speeds, torques and jerks are shown in Figs. 2.6, 2.7, and 2.8.

Comparing the results reveals that always one of the limits is active (Sect. 2.3).

Now, two state of the art offline methods are applied to the same problem to proof

the performance of the presented algorithm. For the first method a B-Spline

approximation of the function sðtÞ is used similar to Ref. [18]. For minimizing

the equidistantly chosen time intervals of the knot vector, this results in a

parametrization of the original optimal control problem (2.3), (2.4), and (2.5).

The second method, a modified implementation of the multiple shooting method

as described in Ref. [13], is also a direct method. Time optimization is achieved

σe

σ0

Fig. 2.4 A geometric path for a six-axis robot moving along a straight line

time in s

σ̇
in

1 s

0.5

1.0

1.5

2.0

0
0.1 0.2 0.3 0.4 0.6 0.7 0.80.50

Fig. 2.5 Path speed _s ¼ x2 and all consecutively generated test trajectories over time
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/
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,i 1
2
3
4
5
6
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

Fig. 2.6 Normalized axis velocities
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by minimizing the time interval between each multiple shooting node. Both

methods are implemented in MATLAB and an SQP method is used to solve the

nonlinear optimization problems.

The comparison of the three methods in Fig. 2.9 shows only small deviations

which can be explained with different parameterizations and discretizations.

A detailed comparison is given in Table 2.1. Although, due to MATLAB implemen-

tations, computation times have to be interpreted carefully, the comparison shows

that the presented method seems to be very efficient and delivers satisfying results in

realtime. Furthermore, the offline methods tend to fail for long geometric paths,

time in s

τ i
/
τ m

a
x

,i 1
2
3
4
5
6

0.5

1

−1

−0.5

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

Fig. 2.7 Normalized motor torques
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Fig. 2.8 Normalized axis jerks

Online algorithm
Spline parametrization
Multiple shooting
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0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.90.50

Fig. 2.9 Comparison of path speed _s ¼ x2 over time for three solution methods: (1) the presented

algorithm, (2) a direct method using a spline parametrization and (3) a multiple shooting method
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whereas the presented algorithm is just running longer according to longer travel

times.

2.6 Conclusion

The algorithm presented in this paper is an iterative online method for solving the

problem of finding trajectories for the joint positionsqðtÞ for a predefined geometric

path. Therefore, time optimality and dynamic limits on joint speeds, accelerations,

jerks and torques have to be considered. The method is directly derived from an

optimality condition (Sect. 2.3) leading to lower and upper bounds for the path jerk

(Sect. 2.3.2) as input for a discrete time system (Sect. 2.3.1). Further analysis on the

existence of not allowed states show that a test for continuable states is necessary.

Therefore, so called test trajectories are introduced, which form the basis of the

presented algorithm (see Sect. 2.4.1). The main advantage of this method compared

to other approaches is that a new path position (and therefore joint positions) can be

outputted in each iteration step, which allows a realtime usage. An example shows

that excellent results can be achieved, which is confirmed by a comparison with two

other state of the art methods (Sect. 2.5).

For a future work deeper analysis on the optimality of the algorithm is planned.
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Chapter 3

Constraint and Dynamic Analysis of Compliant

Mechanisms with a Flexible Multibody

Modelling Approach

R.G.K.M. Aarts

Abstract The models used in the conceptual phase of the mechatronic design

should not be too complicated, yet they should capture the dominant system

behaviour. Firstly, the awareness and possibly the avoidance of an overconstrained

condition is important. Secondly, the models should reveal the system’s natural

frequencies and mode shapes in a relevant frequency range. For the control system

synthesis the low frequent behaviour up to the cross-over frequency needs to be

known. Furthermore, the closed-loop system can be unstable due to parasitic modes

at somewhat higher frequencies.

In this chapter the applicability of a multibody modelling approach based on

non-linear finite elements is demonstrated for the mechatronic design of a compliant

six DOF manipulator. A kinematic analysis is applied to investigate the exact

constrained design of the system. From dynamic models the natural frequencies

and mode shapes are predicted and a state-space model is derived that describes the

system’s input-output relations. The models have been verified with experimental

identification and closed-loop motion experiments. The predicted lowest natural

frequencies and closed-loop performance agree sufficiently well with the experi-

mental data.

3.1 Introduction

In high precision equipment the use of compliant mechanisms is favourable as

elastic joints offer the advantages of no friction and no backlash. For the conceptual

design of such mechanisms there is no need for very detailed and complex models

that are time-consuming to analyse. Nevertheless the models should capture the
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dominant system behaviour which must include relevant three-dimensional

motion and geometric non-linearities, in particular when the system undergoes

large deflections. More specifically, we distinguish two phases in the modelling

approach of which a kinematic design is the first phase. Typical design

considerations for this phase aim at detecting and where necessary avoiding

overconstrained or underconstrained design in line with so-called Exact Constraint

Design principles [1–3]. The dynamic system performance is considered in the

second design phase. It involves the computation of the natural frequencies and the

accompanying mode shapes, which are closely related to the required closed-loop

bandwidth and stability of the mechatronic system [4, 5].

In [6–9] we discussed the use of the SPACAR software for these design phases.

It offers a multibody approach based on non-linear finite elements. The sound

inclusion of the non-linear effects at the element level [10] appears to be very

advantageous. Only a rather small number of elastic beam elements is needed to

model e.g. wire flexures and leaf springs accurately. In particular for the kinematic

analysis to check the constraints only a single flexible beam element is used for

each flexure. In a dynamic analysis the natural frequencies are computed and more

beam elements may be used to obtain more accurate results at higher frequencies or

for larger deflections. The non-linear model can be linearised in a number of

configurations throughout the complete operational range of the mechanism to

obtain a series of locally linearised models in terms of the independent degrees of

freedom, e.g. state space models for control system design [11]. Numerically

efficient models are obtained as the number of independent degrees of freedom is

rather small. Consequently, the approach is particularly well suited during the early

(mechatronic) design phase, where time consuming computations would severely

hamper the design progress.

This chapter is an extension of a paper earlier presented [8]. The modelling

approach will be applied for the analysis and MIMO control system synthesis of a

parallel kinematic precision manipulator with six kinematic degrees of freedom

(DOF) as is described in the next section. Numerical results are presented in

Sect. 3.3 and are verified with experimental data. Finally conclusions are drawn.

3.2 Six DOF Manipulator

Figure 3.1 shows a six DOF hexapod-like flexure-based manipulator [12]. It is an

scaled-up version of a micromanipulator originally designed to be manufactured with

MEMS technology. It has to translate and rotate the end effector in all directions. It is

difficult to accurately measure the motion of the small micromanipulator which is not

more than a few mm in size. Sensors can be integrated much easier in the scaled-up

manipulator which has a largest outer dimension of 540mm. The large version should

give insight in the dynamic behaviour of the micromanipulator and therefore the

restrictions in the mechanical design resulting from the MEMS fabrication method

have been preserved.
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In the scaled-up manipulator six voice coil actuators (VCMs) are applied to drive

the position and orientation of the end effector. In the MEMS design it is essential

that each actuator is constrained to a purely translational motion. In the scaled-up

version this motion is also enforced by straight guidances that assure that the

motion of each VCM is exactly in one in-plane direction. Each VCM is equipped

with a contact-free optical incremental encoder to measure the actuator displace-

ment for colocated feedback control. The motions of a pair of VCMs are transferred

via in-plane leaf springs to an intermediate body, such that this body can move in

the in-plane directions. In total three of these intermediate bodies support three

slanted leaf springs that are connected to the end effector. In this way the three

times two in-plane actuated translations of the intermediate bodies enable

translations and rotations of the end effector in all six DOF. E.g. the horizontal

translations of the end effector are realised with identical motions of all three

intermediate bodies. To accomplish a vertical translation of the end effector, the

three intermediate bodies move radially towards the centre of the set-up. These

motions and the rotations are outlined in more detail by Brouwer et al. [12].

In general, the relations between the linear VCM displacements and the position

and orientation of the end effector are highly non-linear. These relations can be

measured with a sensor system that is mounted on the end effector. This sensor

system (not shown in Fig. 3.1) includes an optical sensor to measure the displace-

ment in one long-stroke direction, while the parasitic displacements in the

perpendicular directions and the rotations are measured with capacitive sensors.

End effector
Slanted leaf spring
Intermediate body

In-plane leaf spring
Optical sensor

Straight guidance
Voice coil actuator

Fig. 3.1 Six DOF hexapod-like manipulator with flexible joints [12]
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3.3 Numerical Modelling

A numerical model of the manipulator needs to account for the flexures in the

system. More specifically each straight guidance consists of leaf springs and a wire

spring. The end effector is mounted on the three slanted leaf springs. In the

modelling approach implemented in SPACAR flexible beam elements are used for

all flexures. This beam element will be outlined first before the kinematic and

dynamic analyses are presented.

3.3.1 Spatial Flexible Beam Element

The location of the beam element is described by the positions of the end nodes

p and q, as well as their orientations. Essential is the definition of physically

meaningful deformation modes of the element that are invariant for rigid body

motions of the element. As there are 12 independent nodal coordinates and six rigid

body degrees of freedom, six independent deformation modes can be defined. For

the spatial flexible beam one deformation mode coordinate e1 is taken to describe

the elongation, e2 for torsion and four modes e3–6 for the bending deformations

of the element [10, 13]. Figure 3.2 illustrates five of these deformation modes.

The deformation mode coordinates are defined in such a way that geometrically

non-linear effects due to interaction between deformation modes are included.

Consequently, accurate models can be obtained with a relatively small numbers

of elements even for the case when large deflections are considered [10, 13]. Each

of the deformation mode coordinates can be defined to be constrained or released.

/

ε

ε
ε

ε
ε

Fig. 3.2 Deformations e2–e6 of the spatial beam element (Reprinted from [14])
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If a deformation mode coordinate is released, i.e. not constrained, constitutive

equations have to be specified for the stress resultants, which are dual to the

deformations. These constitutive equations may express simply linear elastic

behaviour based on the element stiffness properties.

3.3.2 Kinematic Model and Exact Constrained Design

Numerical models of the system can be made with a varying level of complexity.

With a kinematic SPACAR model it can be verified that the manipulator satisfies exact

constraint design. In this model each wire flexure and leaf spring is modelled with

a single flexible beam element. All deformation modes with a high stiffness are

considered to be rigid, i.e. having constrained deformation mode coordinates.

The deformation modes with low stiffnesses are allowed to deform. Then it appears

that a Jacobian matrix can be assembled which must be square and full rank in order

to satisfy exact constraint design: otherwise the system is underconstrained or

overconstrained [7, 9].

The straight guidances of the manipulator, Fig. 3.3, are overconstrained by

design to increase the stiffness in the out-of-plane direction. This is confirmed in

the kinematic analysis and these parts are manufactured accurately to minimise the

internal stresses [12]. A six DOF kinematic model confirms the exact constraint

design of the end effector motion, Fig. 3.4.

Note that for this kinematic analysis the masses and stiffnesses do not play a role.

These are of course relevant in the dynamic analysis to be discussed next.

3.3.3 Dynamic Model and Natural Frequencies
with Mode Shapes

Natural frequencies and mode shapes are obtained from dynamic models. The

simplest dynamic model is derived from the kinematic model outlined above in

which mass and stiffness properties are added. In the applied modelling approach

the non-linear equations of motion can be linearised in any valid configuration of

the system. From the mass and stiffness matrices the (configuration dependent)

natural frequencies and mode shapes are computed. A state space model is derived

after defining the system’s inputs, the VCM forces, and outputs, the colocated

sensor positions. As the simplest dynamic model has six DOF, only the six lowest

natural frequencies of the manipulator can be obtained from this model and a

twelfth order state space model is found.

For control system synthesis also higher natural frequencies and their mode

shapes must be known [4]. These so-called parasitic modes involve deformations in

the directions of the larger stiffnesses. In the dynamic model they can be accounted

for by releasing deformation mode coordinates associated with deformations in
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these directions. In the previous six DOF model these deformations were prescribed

zero and now these released deformation mode coordinates give rise to additional

degrees of freedom. Furthermore, the system should be evaluated in configurations

throughout the manipulator’s workspace. The six deformation modes of the flexible

beam element offer only an accurate approximation for a limited set of element

deformations. If more complex deformations are expected, the approximation can

be improved by increasing the number of elements in each flexure. Obviously, both

improvements of the dynamic model result in an increased number of DOF.

For the considered manipulator a model has been made in which three or four

beam elements are used for each wire flexure of leaf spring. This model has 870

DOF which result in many natural frequencies that are far outside the frequency

range of interest. To reduce the number of DOF the model is first simplified by

reducing the number of beam elements that is used for the flexures. If the lower

natural frequencies of the reduced order model are identical or close to the natural
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Fig. 3.3 Schematic model of each straight guidance. The lines in the solid parts represent rigid

elements. The lines in the flexures ABC, EFG, IJK, NOP, S, T, X and Z are flexible beam elements.

The dashed lines are connections between elements that are apart for a clearer view. In the points 1,
16, 23 and 25 the guidance is fixed to the world. The motion of body H is guided. Lever U assures

that the stroke of the intermediate body L is half of the stroke of body H (From [15])
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frequencies of the 870-DOF model in this range, the simplification is accepted.

In this way the number of DOF could be reduced to 420. A further simplification is

possible by constraining deformations. The longitudinal stiffness of the flexures is

rather high and it appears that a model with all elongations e1 prescribed zero results
in 315 DOF without loss of accuracy. Similarly also part of the bending deforma-

tion modes with a high stiffness can be considered rigid and finally a 237-DOF

model is obtained. Table 3.1 lists the numerical values of the ten lowest natural

frequencies of both the extended 870-DOF and the reduced 237-DOF models.

As can be seen in the table the lowest six natural frequencies of the reduced

model are almost identical to the natural frequencies of the large model. For the

higher natural frequencies somewhat larger differences are found. For the control

system synthesis, in particular the seventh natural frequency is relevant which

differs by about 6%. In Fig. 3.5 these natural frequencies can be recognised as

the peaks in the graph of the system’s singular values or principal gains as functions

of the frequency. In this analysis the VCM forces are the system’s inputs and the

colocated sensors are the outputs. The lowest natural frequencies are damped due to

the actuator’s back-EMF.
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Fig. 3.4 Schematic model of the end effector. The lines in the solid intermediate bodies and end

effector represent rigid elements. The lines in the flexures A, D, E, H, I, L, M, N and O are flexible

beam elements. The dashed lines are connections between elements that are apart for a clearer

view. In the points 1, 5, 6, 10, 11 and 15 purely translational motions are prescribed which cause

in-plane motion of the intermediate bodies C,G and K. As a result, the out-of-plane leaf springsM,

N andOmove the end effector (points 16–19) in all translational and rotational degrees of freedom
(From [15])
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Table 3.1 First ten natural frequencies (in rad/s) of the large and reduced models as well as the

experimentally identified natural frequencies. Note that the experimentally observed 7th and 8th

natural frequency are not present in the models

Mode 870-DOF 237-DOF Mode Exp.

1 59.3 59.3 1 55.3

2 59.9 59.9 2 56.0

3 84.3 84.5 3 79.6

4 86.8 86.8 4 83.0

5 122.0 122.2 5 116.1

6 124.6 125.1 6 120.2

7 225

8 285

7 658 697 9 565

8 844 917

9 908 1001 10 1050

10 1074 1303

SYS237

Fig. 3.5 Singular values of the transfer matrix of the 237-DOF SPACAR-model near the equilibrium

configuration (From [15])
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The linearised models of the mechanical system are well-suited for control

system synthesis. The following steps are taken. At first the cross-over frequency

of the feedback controller is determined from performance requirements. Assuming

this cross-over frequency will be well below the unwanted higher natural

frequencies, the closed-loop performance can be evaluated from the controller

combined with the low frequent behaviour of the mechanical system [4], i.e. the

six lowest natural frequencies. For this purpose a linearised six DOF model that

accounts for the lowest six natural frequencies in Table 3.1 is well-suited. As an

example we consider a PID-like feedback controller that should track a third order

motion profile during 1 s with an error of less than 0.1% of the amplitude. This can

be accomplished with a cross-over frequency of about 300 rad/s. Secondly, the

closed-loop performance can be improved with feedforward control. A feedforward

control input can be computed by applying a stable inverse approximation of a low

frequent model of the mechanical system to the desired motion profile.

Finally the robust stability of this closed-loop system can be evaluated.

In particular the first parasitic natural frequency may violate stability requirements

in an H1 controller design strategy [4]. Obviously for this purpose a model of the

mechanical system like the 237-DOF model is needed that is sufficiently accurate

above the cross-over frequency. This model can also be used in closed-loop

simulations to validate the controller design.

3.4 Experimental Results

An experimental set-up with the manipulator of Fig. 3.1 has been realised. As

outlined in Sect. 3.2 it is actuated with six VCMs. Colocated sensors measure the

actuator displacements. MIMO system identification has been carried out with a

black-box multivariable output error subspace (MOESP) model identification

method [15–17]. A 21st order model is found that identifies the lowest natural

frequencies as well as the first parasitic modes. These natural frequencies are

included in Table 3.1 and are combined with the 237-DOF model in Fig. 3.6.

It appears that the six lowest natural frequencies agree quite well between the

numerical model and experimental data. Also the natural frequency of the first

parasitic mode agrees reasonably well. However, two additional natural frequencies

are found in the identification that are not included in the models. Probably these

modes arise from suspension modes of the frame that are not accounted for in the

numerical models. In Fig. 3.6 these modes are visible, but their amplitudes are

rather small. Overall it is concluded that the numerical models provide an adequate

prediction of the experimental results.

The designed feedback and feedforward controller has been tested for a motion

of the end effector of 6 mm displacements in the horizontal x, y-plane. Figure 3.7
shows the tracking error of the actuator displacements during this motion. It appears
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21st  order identification estimate
SPACAR - model (SYS237)

Fig. 3.6 Singular values of the transfer matrix of the 21st order identification estimate and the

SPACAR-model near the equilibrium configuration (From [15])

Fig. 3.7 Measured tracking error of the actuator displacements during a 6 mm displacement of the

end effector in the x, y -plane (From [15])
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that they remain below the desired 0.1% although the signal is quite noisy. This is to

a large extend caused by a 50 Hz disturbance from the mains.

Finally, the motion of the end effector has been analysed with the sensor

mounted on the end effector. This sensor can measure a long stroke in one direction

and small deviations in the other directions as well as rotations. The x axis of the

coordinate system is aligned with the direction of the long stroke. The linearised

manipulator model has been used to compute the actuator displacements needed for

linear displacements of the end effector in the x direction of 1 mm and 4 mm,

respectively. Figure 3.8 shows the actually measured motion of end effector. It is

found that the real displacement matches reasonably with the intended motion, but

it is somewhat smaller than expected. Furthermore, unwanted rotations are

observed. To some extend both effects can be caused by a small misalignment

between the coordinate systems of the manipulator and the sensor. However, it is

also noted that the deviations increase more than linearly when the amplitude of the

end effector displacement is increased. This could be caused by the non-linear

behaviour of the manipulator which is not yet included in the model currently used

to compute the needed actuator displacements.

Fig. 3.8 Measurements of the end effector motion during 1 mm (top) and 4 mm (bottom)
x-displacements of the end effector. The left graphs show the long stroke motion in the x direction;
the right graphs show all three rotations of the end effector for both displacements (From [15])
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3.5 Conclusions

The design of a mechatronic system of the six DOF compliant manipulator in

Fig. 3.1 demonstrates the proposed modelling approach for this purpose. The

formulation is based on a nonlinear finite element description for flexible multibody

systems. The flexible beam elements account for geometric nonlinear effects such

as geometric stiffening and interaction between deformation modes. Flexible joints

like wire flexures and leaf springs can be modelled adequately using only a few

number of flexible beam elements. In this way, a rather low dimensional system

description can be obtained which includes the non-linear behaviour that occurs at

large deflections.

In a kinematic analysis only a single flexible beam element is used for each wire

and sheet flexure and the exact constrained design of the system is examined. In

particular overconstrained conditions are detected and if necessary the design can

be modified to avoid these overconstraints. For the dynamic analysis a maximum of

four flexible beam elements is used for each flexure. The number of DOF is reduced

by prescribing deformations with high stiffness and in rigid parts to be zero. In any

configuration of the manipulator the natural frequencies and mode shapes can be

computed. Furthermore, an input-output state space model can be derived to design

and evaluate the control system. The modelling approach is well suited for

mechatronic design, i.e. the mechanical design as well as control system synthesis.
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Chapter 4

Sensor Data Fusion for the Localization

and Position Control of One Kind

of Omnidirectional Mobile Robots

Peter Eberhard and Qirong Tang

Abstract This contribution deals with the problem of sensors and sensor data

fusion for mobile robots localization and position control. For this, the robot

internal odometry is first corrected and used for position control. Then, an extended

Kalman filter based on the corrected odometry and a novel North Star navigation

system is designed in a distributed manner. The estimated information from the

extended Kalman filter is feed back to the desired poses for further accelerating and

precising the position control process. Finally, after the analysis of data flows and

uncertainties, the whole developed scheme is verified by experiments on an omni-

directional mobile robot.

4.1 Introduction

Localization is a fundamental and key issue for mobile robots since it is the

prerequisite for many abilities, e.g., path planning, navigation and execution of

tasks. Besides traditional sensor based methods, there are also many new theoretical

approaches for solving this problem such as, using probabilistic [1, 2], topology

[3, 4, 5] and fuzzy logic [6, 7]. No matter what kind of methods are used, when

facing real robots one must deal with the used sensors and the resulting sensors data.

Although some methods are very mature in theory, it is still difficult to utilize and

validate them under realistic conditions or with combinations of other strategies.

Sources of difficulties come, e.g., from restrictions like sensors precision, environ-

ment noise, uncertainties of the robot system. For these reasons, researchers rarely

use just one method or sensor for robot localization, but instead hybrid strategies

which are based on several kinds of methods based on hardware and software.
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Usually the localization is mobile robots oriented, typically for differentially

driven mobile robots. However, in recent years omnidirectional mobile robots

attracted researchers interest due to their unique features. This study presents

methods for the localization of one kind of omnidirectional mobile robots, the

Festo Robotino, and the scheme is valid for all of the individuals in the robot group

which is used for our purpose of searching a target in an environment. Some

researches focus on similar robots and localization questions, e.g., [8, 9], but they

pay more attention to the path planning issue. The investigations described in

[10, 11, 12, 13, 14] focus on multi-robot collaborative localization but unfortu-

nately they neither consider to improve the accuracy of sensors nor individual

measurements before used for localization. Thus, they have to pay more efforts

on data post-processing. The robot trajectories in these studies are neither optimal

nor under an unified movement guidance. To the contrary, they directly use the

available sensors even with high noises or uncertainties. The study [14] contributes

its decentralized architecture and [10] uses a minimum entropy approach to mini-

mize sensor uncertainty. The work in [13] is oriented for an outdoor environment

where the global positioning system (GPS) is applied. However, GPS doesn’t

effectively work inside of the buildings. The research in [11] and [12] performs

localization by relying on the probabilistic approaches of Markov localization and

maximum likelihood estimation, respectively. As a result, these studies for multi-

robot localization greatly increase the burden for positioning and also involve more

interferences. Other researches study differentially driven robots and there are only

few researches that concern the localization for omnidirectional mobile robots with

consideration of robot sensors and swarm behavior first.

Section 4.2 introduces some common concepts and states the reason of localiza-

tion, then the overall position control scheme and the used sensors are described in

Sect. 4.3. After the introduction of Kalman filters the detailed sensor data fusion and

localization processes are shown in Sect. 4.4. Experiments with a real robot and

results analysis are performed in Sect. 4.5 while Sect. 4.6 gives conclusions.

4.2 Some Common Concepts

For a better understanding, it is necessary to introduce some common concepts such

as, e.g., control points and measurements, localization and navigation, controller

and robots position control. A classical feedback control diagram is illustrated in

Fig. 4.1 which is used in the following.

4.2.1 Control Points and Measurement

The control points in our case are referred to the desired position points which are

generated by robot swarm under mechanical PSO algorithm. The controller manip-

ulate points sometimes are also called control variables. They are generated by the
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system controller and act on the controlled plant directly or through an actuator to

manipulate the concerned variable to approach the reference variable.

The controlled plant show certain behavior, and the system should have some

sensors to measure it. Thus, the system needs some devices to perform

measurements, then compare the obtained information to the references. In this

study, the sensors are the robots internal odometer and the external North Star system.

4.2.2 Navigation Strategies and Classification

For mobile robot research one can not avoid the topic of localization and naviga-

tion. The former one answers the question ‘Where am I?’ to the robot, i.e., provides

the position, orientation and additional information like the environment and info

about other robots. The latter one is a comprehensive strategy which guides the

robot (hopefully in an optimal way) and includes also environment detection and

obstacle avoidance yielding a collision free path. Table 4.1 lists some basic

methods for localization and navigation. Details can be found in the mentioned

publications or in [15].

Robot motion planning belongs to robot navigation which includes location,

path planning, and obstacle avoidance. However, these three different topics are

often considered at the same time and are summarized in the term ‘motion

planning’ in practical applications.

4.2.3 Controller and Robot Position Control

According to the measurements by sensors and the reference values, see Fig. 4.1, the

controller adjusts values of the actuator so as to alter the status of the controlled plant.

Robot position control is based on the fact that a controller is considered which

focuses on robot positioning, trajectory tracking and so on. Please distinguish this

to the general position control concept which usually takes into account a servo

position control with emphasize on controlling the pulse inputs.

4.2.4 Why Do We Need Localization?

One of the project goals is to use a group of omnidirectional mobile robots to search

a target in an environment and the main guidance mechanism is based on the

Fig. 4.1 Classical feedback control

4 Sensor Data Fusion for the Localization and Position Control. . . 47



mechanical Particle Swarm Optimization (PSO) which is an extension from the

basic PSO and includes some of robots mechanical properties [16]. This scheme

uses the mechanical PSO to generate the search trajectory. Then the robots further

perform fine tuning for obstacle avoidance and mutual avoidance locally. A main

demand of this method is, that it requires the robots current velocities, the self-best

positions as well as the swarm-best positions, i.e., it heavily relies on the pose of

each robot. Thus, the localization with acceptable accuracy becomes important.

4.3 Position Measurement and Control

To successfully perform some motions, e.g., the trajectory tracking on mobile

robots where the trajectory is generated by a mechanical PSO algorithm, one

must also consider the robots localization abilities. Unfortunately, in reality a

controller can not arbitrarily accurate command the robots to the positions and

usually the robots lack accurate positioning functionality. In some cases it is even

very difficult to obtain a precise position from robots.

Originally Robotinos can only roughly obtain their position information by using

motor encoders if used without help from external positioning equipment. Such a

measurement, however, can not get meet the requirement. Therefore, this study

builds a systematic hybrid strategy for the localization. Combined with control

techniques, it enables to drive robot to a desired position within an acceptable

accuracy. This section first of all shows the overall scheme for robot position

control and then goes on with a detail research of the sensors involved in the

measurements for localization.

4.3.1 Overall Position Control Scheme

The overall scheme for the localization and position control of a single Robotino is

shown in Fig. 4.2.

Table 4.1 Robot navigation strategies and motion planning

localization relative dead reckoning
absolute imaging, laser, GPS

local APF, genetic algorithms, fuzzy logic
path

global

environment graph methods, free-space
planning modeling methods, grid methods

path search A* algorithms [23],
D* optimal algorithms [24]

obstacle VFH [25], APF [26], VFH+ [27], VFH* [28]avoidance
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The scheme consists of one internal controller and one external controller. First

of all, a partially fixed PID controller which can directly control the DC motor is

adjusted and used as an internal controller. The robot’s ‘actual’ position and

orientation are measured by not only on-body encoders but also an external North

Star system. The measured pose is then processed in an extended Kalman filter

(EKF). Data fusion in the EKF gives an estimated position and orientation which

are compared to the desired. This forms the closed-loop feedback control which

contains here also the external controller. The resulting deviation ½Dx Dy Df�g goes
on to drive the robot. By using such a hybrid strategy the localization accuracy of

the robots can be improved. The scheme is valid for all the robots in the group since

each robot runs on its own.

4.3.2 State Variable Feedback

From Fig. 4.1 one can see that a proportional feedback control law

u ¼ �K � yþ r (4.1)

is used. This scheme is also known as output feedback. However, the output

feedback design has many difficulties for pole placement, see details, e.g., in [17]

and [18]. Another basic control scheme is to use all the states as outputs, then it

becomes state variable feedback with the control law

u ¼ �K � xþ r: (4.2)

Fig. 4.2 Scheme of accurate localization

4 Sensor Data Fusion for the Localization and Position Control. . . 49



Benefiting from high quality sensors and techniques like Kalman filters and

observers, to measure all of the state variables directly or indirectly becomes

possible. Most important, the state variable feedback is simple for pole placement,

see also in [17] and [18]. In this study, it considers the robots pose (2D position, one

orientation) as state variables. Actually, by a reasonable observer, it also can

include pose rates. In the following this study will focus on the sensors which are

used for state measuring.

4.3.3 Internal Odometer and Its Enhancement

Odometry is the measurement of wheel rotation with use of many different methods

that are integrated in the drive system and continually updates with incremental

wheel information. The position and orientation then can be determined easily by

time integration added to the previously known position.

4.3.3.1 Odometry Mechanism

The Festo Robotino is a holonomic mobile robot which contains three omni drive

units with 120
�
between each. The robot and its main components are shown in

Fig. 4.3, the structure of Robotino base and coordinates can be seen in Fig. 4.4.

After simple derivation one can get the kinematic relation between wheel speed

and global velocity by

_xg ðtÞ
_yg ðtÞ
_fg ðtÞ

2
4

3
5 ¼ r

�sinðfgðtÞ þ a1Þ cosðfgðtÞ þ a1Þ R
�sinðfgðtÞ þ a2Þ cosðfgðtÞ þ a2Þ R
�sinðfgðtÞ þ a3Þ cosðfgðtÞ þ a3Þ R

2
4

3
5
�1

�
o1ðtÞ
o2ðtÞ
o3ðtÞ

2
4

3
5 (4.3)

Fig. 4.3 Festo Robotino and its main components
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where r is the wheel’s radius, R is the distance from the wheel’s center to the center

of the robot, and oiðtÞði ¼ 1; 2; 3Þ are the wheels angular velocities. The geometry

angle fg and aiði ¼ 1; 2; 3Þ are illustrated in Fig. 4.4, and ½ _xg _yg
_fg�

T
represents the

global velocity of the robot. Odometry can estimate the robots position and orien-

tation over time by

xgðt1Þ
ygðt1Þ
fgðt1Þ

2
4

3
5 ¼

xgðt0Þ
ygðt0Þ
fgðt0Þ

2
4

3
5þ

ðt1
t¼t0

_xg ðt0Þ
_yg ðt0Þ
_fg ðt0Þ

2
4

3
5dt: (4.4)

The so called ‘odometry’ in this study is based on the robots motor encoders (see

the drivetrain of the Robotino in Fig. 4.5) and the kinematics relationships (4.3) and

(4.4). The rotation of robot wheels is measured with the highest possible resolution.

Fig. 4.4 Geometry diagram and kinematic relations of Robotino base

Fig. 4.5 Robotino drivetrain
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In each small time step the distance driven by a robot is calculated by (4.4). Thus,

the current position of the controlled robot relative to its starting point can be

calculated. The time integration is actually calculated as counting the number of

beam interruptions caused from the toothed interrupter disc. So, if one considers

this in a discrete way together with first order Taylor series expansion, it results in

xgðkÞ
ygðkÞ
fgðkÞ

2
4

3
5 ¼

xgðk � 1Þ
ygðk � 1Þ
fgðk � 1Þ

2
4

3
5þ Dt rTðk � 1Þ �

o1ðk � 1Þ
o2ðk � 1Þ
o3ðk � 1Þ

2
4

3
5 (4.5)

where Dt is the size of time step, typically in our case Dt ¼ 0:01s . The matrix

T(k – 1) includes the structure matrix and the rotation matrix from robot local

coordinates to global coordinates which can be governed by

Tðk� 1Þ ¼
�sinðfgðk� 1Þ þ a1Þ cosðfgðk� 1Þ þ a1Þ R

�sinðfgðk� 1Þ þ a2Þ cosðfgðk� 1Þ þ a2Þ R

�sinðfgðk� 1Þ þ a3Þ cosðfgðk� 1Þ þ a3Þ R

2
64

3
75
�1

¼
�sinða1Þ cosða1Þ R

�sinða2Þ cosða2Þ R

�sinða3Þ cosða3Þ R

2
64

3
75

0
B@

�
cosðfgðk� 1ÞÞ sinðfgðk� 1ÞÞ 0

�sinðfgðk� 1ÞÞ cosðfgðk� 1ÞÞ 0

0 0 1

2
64

3
75
1
CA

�1

¼
cosðfgðk� 1ÞÞ �sinðfgðk� 1ÞÞ 0

sinðfgðk� 1ÞÞ cosðfgðk� 1ÞÞ 0

0 0 1

2
64

3
75 �

�sinða1Þ cosða1Þ R

�sinða2Þ cosða2Þ R

�sinða3Þ cosða3Þ R

2
64

3
75
�1

:

4.3.3.2 Odometry Error Correction

Robot odometry is used for pose measurement since it is an internal ‘sensor’ system

and is convenient for practical utilization. However, this method only yields good

performance for short distance motions. Errors and especially disturbances will be

accumulated and affect the robot’s odometry results. This is obvious for long

distance travels or under adverse conditions.

There are mainly two kinds of error sources. One kind comes from the robot

itself and another one is from outside. The former one includes the errors of robot’s

unequal wheel radii, unequal wheel distances, and misalignment of wheel angles

and so on. These errors can be corrected since one can just measure the actual data

from the real robot as precisely as possible and use them for the odometry calcula-

tion. Thus, (4.4) is extended to
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xgðt1Þ
ygðt1Þ
fgðt1Þ

2
4

3
5 ¼

xgðt0Þ
ygðt0Þ
fgðt0Þ

2
4

3
5þ

ðt1
t¼t0

Texðt0Þ �
ðr þ er1Þo1ðt0Þ
ðr þ er2Þo2ðt0Þ
ðr þ er3Þo3ðt0Þ

2
4

3
5

0
@

1
Adt (4.6)

with

Texðt0Þ ¼
�sinðfgðt0Þ þ a1 þ em1

Þ cosðfgðt0Þ þ a1 þ em1
Þ Rþ ed1

�sinðfg ðt0Þ þ a2 þ em2
Þ cosðfgðt0Þ þ a2 þ em2

Þ Rþ ed2
�sinðfgðt0Þ þ a3 þ em3

Þ cosðfgðt0Þ þ a3 þ em3
Þ Rþ ed3

2
4

3
5
�1

:

Here eri ; edi and emi
i ¼ 1; 2; 3ð Þ , represent small deviations because of unequal

wheel radii, unequal wheel distances and misalignment of wheel angles, respec-

tively. A further investigation focusing on this is done at the institute which can be

found in [19]. By this way, the error sources from robot itself can be reduced. This

kind of odometry correction actually is a fine step of model modification which

provides a more accurate odometry calculation.

However, during tests and experiments we noticed that the error sources from

outside play a more important role, among them the wheel slippage is a key aspect.

This means the robot moves less than the odometer counted because of slippage.

Thus, this study also attempts to construct a slippage correction to the odometry

calculation. One should know that there are many different kinds of global motions

that can be performed by the used robot. Most important, its omnidirectional feature

makes it possible to generate coupled motions, e.g., moving in x direction in the

global frame probably due to an actuation in y direction together with a spinning in

the robot’s body frame. So, it is a troublesome task to build a uniform correction

factor. However, if one changes the idea to work in the robot’s local frame the

question becomes easier. This is so, because either in the global or local frame all

the movements are the combinations of two basic motion forms. These are the

translational move (x and y directions) and the rotation. The important difference is

if considered in a local frame, that one specific basic motion form always invokes

the same wheel combination (also the same motors combination). Based on this

principle, this research focuses on robot’s body frame and for each of calculated

steps a correction is made before projecting the motion to the global frame.

With this idea, a large number of experiments under different ground conditions

need to be done since different kinds of grounds keep different slippery extents,

although all of them only allow the same basic motion types. During one motion

tests the other types of motion are isolated. After testing, one group of correction

factors can be recommended for a specific ground, which in a discrete way can be

governed by

_xcl ðkÞ
_ycl ðkÞ
_f
c

l ðkÞ

2
4

3
5 ¼ Fc � S�1

l �
ðr þ er1Þo1ðkÞ
ðr þ er2Þo2ðkÞ
ðr þ er3Þo3ðkÞ

2
4

3
5dt (4.7)
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where

Fc ¼
f c1 0 0

0 f c2 0

0 0 f c3

2
4

3
5; Sl ¼

�sinða1 þ em1
Þ cosða1 þ em1

Þ Rþ ed1
�sinða2 þ em2

Þ cosða2 þ em2
Þ Rþ ed2

�sinða3 þ em3
Þ cosða3 þ em3

Þ Rþ ed3

2
4

3
5:

Here _xcl ðkÞ; _ycl ðkÞ and _f
c

l ðkÞ are the corrected local frame velocities of robot. From

(4.7) one can see that the correction factors neither depend on step size nor the

angular velocity of wheels. It is a diagonalized constant correction matrix without

coupling from different dimensions. Such form of correction is what we pursue

since it then only needs some simple tests to get the correction factors for a specific

robot on a specific ground. This study uses a group of correction factors on a

carpeted ground, in [19] a relatively smooth ground was also investigated.

Although this slippage correction improves the accuracy of robots odometry,

one can not completely avoid all of the error sources. Therefore, one goes on to add

other solutions, e.g., the following North Star measurements.

4.3.4 External North Star Measurements

It is advantageous to add another sensor, typically an odometry independent sensor,

to attain the robot pose. This kind of standalone data is also used for later

performing data fusion in the Kalman filter.

4.3.4.1 The North Star Navigation System

This study uses a novel external positioning sensor, the North Star system. It

enables position and heading awareness in mobile robots, and can be applied in

many position tracking applications in a variety of indoor situations. It breaks the

‘line-of-sight’ barrier of previous light beacon systems with simplicity and reliability.

The concept of how this system does its measurements is illustrated in Fig. 4.6.

The North Star system is an infrared (IR) light based positioning device. When a

projector (see Fig. 4.7) emits IR light which is reflected by the ceiling, the IR

detector (see Fig. 4.8) which is mounted on the Robotino can receive the light

signals and takes such signals as uniquely identifiable landmarks. By this, the robot

can determine its relative position and direction. Of course the robot requires

calibration and coordination before starting. This North Star positioning system is

valid for several robots simultaneously by using different channels identified by

varied frequency ranges. This also improves the positioning accuracy since it

reduces the coordination errors compared to the situation of where each robot has

its own global frame.
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4.3.4.2 North Star Calibration

For odometry, there is no special calibration process since it only needs to refresh

fast enough. However, the North Star needs calibration including building the

coordinates before it can be used for measuring the robot pose. If several robots

are used, they can share the same global coordinates. They need to gain the

relationship between the changed pose and the changed infrared lights. Therefore,

the calibration is done by performing a desired motion with exactly known position

Fig. 4.7 North Star projector (two emitter clusters)

Fig. 4.6 Illustration of North Star pose measurement
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and orientation changing traces. Meanwhile the North Star detector which is

mounted on the Robotino records the infrared light changes corresponding to the

robot motion. With triangulation calculus, the calibration purpose is achieved. The

recording and calculus processes can be done by the North Star system itself, so one

only needs to design a specific calibration motion and tell to the North Star.

4.4 Localization through Sensor Data Fusion in Extended

Kalman Filters

Up to now, this study uses two methods to measure robot pose. Now the questions

are, e.g., how to use the gained pose information for robot position control, how to

weight the measurements from different sensors? From another side, we want to

improve the position accuracy of robots while not putting too much burden on the

external hardware. Thus, using methods to perform sensor data fusion will be a

good choice.

4.4.1 Sensor Data Fusion

Both the odometry and NS system provide position and orientation measurements

of the robot. However, their accuracies are not very satisfactory even with further

correction. Besides of the errors and uncertainties from odometry, the NS system

will inevitably involve noises, too. For example, the North Star detector will

exhibit nonlinear absolute localization responses and this nonlinearity will increase

as the IR projector’s light spots move away from the center of the detectors view field.

Fig. 4.8 North Star detector
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Additionally, position and orientation errors will also be produced when the

detector is tilted from the plane of localization environment, e.g., the floor.

Due to above reasons, it is necessary to perform a pose correction based on the

information from odometry and NS system. The most commonly used method in

robotics to cope with this problem is the Kalman filter.

4.4.2 Kalman Filter and Extended Kalman Filter

In 1960, Rudolph E. Kalman published his famous paper [20] in which a recursive

solution to the discrete-data filtering problem was described. Kalman filtering is

a recursive process, rather than an electronic filter. In most cases, the Kalman filter

is used for estimating the state of processes. A Kalman filter is an estimator for what

is called linear-quadratic-problem, which is the problem of estimating the instanta-

neous ‘state’ of a linear dynamic system perturbed by white noise [21]. Kalman

filters have been the subject of extensive research and application, particularly in

the area of autonomous or assisted navigation. This kind of estimation fits very well

to the localization and position control for robot where the pose state of robot is

a critical requirement. The robot obtains its poses through continually measuring by

internal odometry and external North Star system, but neither the odometry nor

North Star alone has a satisfactory accuracy since both of them contain noises.

Therefore, it needs a method to weight the measurements and tries to fuse the

information from both sides of measurements including the reduction of the noises

affection.

Kalman filters address the general problem of trying to estimate the statex 2 <n

of a discrete time controlled process that is governed by the linear difference

equation

xðkÞ ¼ A � xðk � 1Þ þ B � uðk � 1Þ þ wðk � 1Þ (4.8)

with a current measurement z 2 <m which is

zðkÞ ¼ H � xðkÞ þ vðkÞ: (4.9)

Here k is the time step, the n � nmatrix A relates the state at the previous step k – 1

to the state of at current step k and depends on the odometry integration equation,

see (4.4). Here n is the dimensions of the system. In practical implementation A
might change with each time step, e.g., the robot’s odometry update in this study

since the orientationfg in matrix T in (4.5) might change. The formulation of A for

the Robotinos can be seen in the following nonlinear part. The n � l matrix B
relates the optional control input u 2 <l to the state x while the m � n matrix H
relates the state x to the measurement z. For this study the state x includes the x
position, y position and orientation of the robot which are the states concerned by

our investigation. Please distinguish to the mechanical systems state vectors in
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which usually the velocities are also included. Furthermore, here the odometry uses

the internal encoders information to update, thus, there is no outside control input,

i.e., B can vanish. The form of matrix H depends on the external sensor used for

measurement, usually it contains the information like signal conversion, scaling,

and so on. In this study, the external measurement is performed by the North Star

system which directly provides the pose result thusH turns to be an unit matrix. The

random variables w(k) and v(k) represent the process and measurement white noise,

respectively. These noises satisfy the conditions of independent and according to

normal probability distributions

pðwÞ � Nð0;QÞ;
pðvÞ � Nð0;RÞ: (4.10)

Matrices Q and R are the process noise covariance and measurement noise covari-

ance, respectively, and both of them might change. In our case, Q essentially

depends on the noise of reading the motor speeds and R depends on the measure-

ment noise from North Star. Robot’s odometry contains an integration function.

Qualifying Kalman filter to be used for the robot pose estimation needs to make a

discretization of the odometry update as shown in (4.5).

The Kalman filter’s recursive processes include not only the update of the

differential equation (4.8), but also of the measurements and noises. This is in

line with the concept of sensor data fusion since it needs to consider the information

from different sensors. For our robot pose estimate case, one sensor is the internal

odometry and another is the external North Star system. So, if the robot’s pose

update (estimate) is according to the Kalman recursive processes, it can fuse the

useful information from both odometry and North Star. This is also the main reason

why we use Kalman filters for the robot pose estimate.

The recursive processes of Kalman filters mainly consist of two parts, one part is

the prediction and another part is the correction. The former one projects the current

state estimate ahead over time and estimates the error covariance to obtain the

a-priori estimate, noted as x(k)– for step k with the help of a ‘super minus’. The

correction part is responsible for incorporating a new measurement into the a-priori

estimate so as to correct the projected estimate and obtain the a-posteriori estimate,

noted as x̂ðkÞ. A set of specific mathematical equations can be built to describe the

prediction process by

prediction
xðkÞ� ¼ A � x̂ðk � 1Þ þ B � uðk � 1Þ
PðkÞ� ¼ A � Pðk � 1Þ � AT þ Qðk � 1Þ

�
(4.11)

and the correction by

correction
KðkÞ¼ PðkÞ� �HT � ðH � PðkÞ� �HT þ RðkÞÞ�1

PðkÞ ¼ ðI � KðkÞ �HÞ � PðkÞ�
x̂ðkÞ¼ xðkÞ� þ KðkÞ � ðzðkÞ �H � xðkÞ�Þ

8<
: : (4.12)
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Except the notations of P, K and I, all others used in (4.11) and (4.12) have the same

definitions as in (4.8), (4.9), and (4.10). Here I is an unit matrix, P(k)– is the a-priori
estimate error covariance which is defined by

PðkÞ� ¼ E eðkÞ�ðeðkÞ�ÞT
h i

(4.13)

where E is the operation symbol for mathematical expectation and eðkÞ� �
xðkÞ � xðkÞ�. The similar definition is given to P(k). However, the prediction

and correction of P during the Kalman recursive processes are according to

the respective equations in (4.11) and (4.12). The expressions in (4.11) and

(4.12) for P are equivalent to the definition in (4.13) when the filter uses the

optimal Kalman gain which is nearly always the case in practice, but they are

in a clearer recursive form. Another important item in (4.12) is the so called

Kalman gain or Kalman blending factor K which is used for guaranteeing to

minimize the a-posteriori error covariance of P(k). Furthermore, the Kalman

gain is also used for weighting the a-priori estimate and the measurement as

shown in the a-posteriori equation. Specifically for this study, K is used for

weighting the pose estimates from odometry and North Star. One form for the

iteration of K is shown in (4.12), for more details see [22].

Originally, Kalman filters are designed for linear processes and the external

measurement also should be linear. However, most practical problems are nonlin-

ear, i.e., the system differential equation (4.8) becomes

xðkÞ ¼ f xðk � 1Þ; uðk � 1Þ;wðk � 1Þð Þ: (4.14)

The measurement equation (4.9) is then governed by

zðkÞ ¼ h xðkÞ;vðkÞð Þ: (4.15)

Here f is the nonlinear function which relates the state at step k – 1 to step k while
h is the nonlinear measurement function. Something akin to the Taylor series

expansion, researchers linearize the estimation by using partial derivatives (Jaco-

bian matrices) of the process and measurement. Thus, the extended Kalman filter

(EKF) was developed, see details in [21]. Finally, a set of mathematical equations

for the EKF can be described as

prediction

xðkÞ� ¼ f ðx̂ðk � 1Þ; uðk � 1Þ; 0Þ
PðkÞ� ¼ �AðkÞ � Pðk � 1Þ � �ATðkÞ

þ WðkÞ � Qðk � 1Þ �WTðkÞ
;

8<
: (4.16)

correction

KðkÞ ¼ PðkÞ� � �HTðkÞ � ð �HðkÞ � PðkÞ� � �HTðkÞ
þVðkÞ � RðkÞ � VTðkÞÞ�1

PðkÞ ¼ ðI � KðkÞ � �HðkÞÞ � PðkÞ�
x̂ðkÞ ¼ xðkÞ� þ KðkÞ � ðzðkÞ � hðxðkÞ�; 0ÞÞ

:

8>><
>>: (4.17)
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Here �AðkÞ; �HðkÞ;WðkÞ and V(k) are all Jacobian matrices containing partial

derivatives

�Ai; j ðkÞ ¼ @f i
@xj

ðx̂ðk � 1Þ; uðk � 1Þ; 0Þ; (4.18)

�Hi; j ðkÞ ¼ @hi
@xj

ðxðkÞ�; 0Þ; (4.19)

Wi; jðkÞ ¼ @f i
@wj

ðx̂ðk � 1Þ; uðk � 1Þ; 0Þ; (4.20)

Vi; jðkÞ ¼ @hi
@vj

ðxðkÞ�; 0Þ: (4.21)

Usually the nonlinear function f is computationally expensive. Thus, researchers

use approximation to the nonlinear processes and measurements.

4.4.3 Robotino Sensor Data Fusion for Localization

The investigated robot pose estimation is a nonlinear process thus it uses an

extended Kalman filter. Using Taylor series expansion, we can perform the a-

priori estimate according to (4.5). Additionally, if one writes the wheels angular

velocities together with wheels radii and geometric structure of Robotino, then the

a-priori estimate can be rearranged to

xgðkÞ�
ygðkÞ�
fgðkÞ�

2
64

3
75¼

x̂g ðk� 1Þ
ŷg ðk� 1Þ
f̂g ðk� 1Þ

2
64

3
75

þDt

cosðf̂gðk� 1ÞÞ �sinðf̂g ðk� 1ÞÞ 0

sinðf̂g ðk� 1ÞÞ cosðf̂g ðk� 1ÞÞ 0

0 0 1

2
64

3
75 �

_xcl ðk� 1Þ
_ycl ðk� 1Þ
_f
c

l ðk� 1Þ

2
64

3
75 ð4:22Þ

where _xcl ðk � 1Þ; _ycl ðk � 1Þ and _f
c

l ðk � 1Þ are the last step’s velocities given in the
robot body frame. It is necessary to emphasize, here the used velocities in the local

frame are already corrected according to (4.7). For the extended Kalman filter to

perform the recursion for robot pose estimate one needs to know the functions f and
h explicitly. Based on (4.22), one can write the three dimensions individually which

yields
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ð4:23Þ

ð4:24Þ

ð4:25Þ

Next, for obtaining the a-priori estimate of error covariance P(k)– one first needs to
calculate Jacobian matrices �AðkÞ and W(k) according to (4.18) and (4.20) combined

with the process functions of (4.23), (4.24), and (4.25). In our application this yields

�AðkÞ¼ �Ai; jðkÞ
� �

3�3
¼

@f x
@ x̂g ðk�1Þ

@f x
@ ŷg ðk�1Þ

@f x

@ f̂g ðk�1Þ
@f y

@ x̂g ðk�1Þ
@f y

@ ŷg ðk�1Þ
@f y

@ f̂g ðk�1Þ
@f f

@ x̂g ðk�1Þ
@f f

@ ŷg ðk�1Þ
@f f

@ f̂g ðk�1Þ

2
66666666664

3
77777777775

¼
1 0 �Dt sinðf̂g ðk�1ÞÞ _xcl ðk�1Þ�Dt cosðf̂gðk�1ÞÞ _ycl ðk�1Þ

0 1 Dt cosðf̂g ðk�1ÞÞ _xcl ðk�1Þ�Dt sinðf̂g ðk�1ÞÞ _ycl ðk�1Þ
0 0 1

2
6664

3
7775; ð4:26Þ

WðkÞ ¼ Wi; jðkÞ
� �

3�3
¼

@f x
@ _xcl ðk � 1Þ

@f x
@ _ycl ðk � 1Þ

@f x

@ _f
c

l ðk � 1Þ
@f y

@ _xcl ðk � 1Þ
@f y

@ _ycl ðk � 1Þ
@f y

@ _f
c

l ðk � 1Þ
@f f

@ _xcl ðk � 1Þ
@f f

@ _ycl ðk � 1Þ
@f f

@ _f
c

l ðk � 1Þ

2
66666666664

3
77777777775

¼
Dt cosðf̂g ðk � 1ÞÞ �Dt sinðf̂g ðk � 1ÞÞ 0

Dt sinðf̂g ðk � 1ÞÞ Dt cosðf̂g ðk � 1ÞÞ 0

0 0 Dt

2
6664

3
7775: ð4:27Þ
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According to (4.20) the entries of W are the partial derivatives of f with respect

to w. However, practically w is always calculated through the variables of the noise

sources. In robot navigation, if odometry is used as the internal pose sensor, then

usually the considered noises are contained in robot’s body velocities. In our case,

originally the noise is mainly from robot’s motor speed, however it is transferred

and reflected on robot’s velocity. Thus, in our applications, the entries of matrix

W become the partial derivatives of f with respect to _xcl ðk � 1Þ; _ycl ðk � 1Þ and
_f
c

l ðk � 1Þ. Of course here the noises don’t include the noises which are already

eliminated by odometry correction.

With �AðkÞ and W(k) one can calculate the prediction covariance

PðkÞ� ¼ �AðkÞ � Pðk � 1Þ � �AT ðkÞ þWðkÞ � Qðk � 1Þ �WTðkÞ: (4.28)

Here Q(k – 1) is the process noise covariance, see Sect. 4.4.5 for details. After the

calculation of P(k)– the extended Kalman filter gets into the processes of correction,

i.e., the correction of the robot pose will be performed. For this the Kalman gain

matrix must be calculated resulting in

KðkÞ ¼ PðkÞ� � ðPðkÞ� þ RðkÞÞ�1
(4.29)

since both �HðkÞ and V(k) are unit matrices in this application, see Sect. 4.4.2 and

(4.21). Here, the matrix R(k) is the measure noise covariance and it is one of the

uncertainty sources. In Sect. 4.4.5 it will be determined.

Finally it performs the a-posteriori pose correction which will in each step be

feed back to the desired pose for position control

x̂g ðkÞ
ŷg ðkÞ
f̂g ðkÞ

2
4

3
5 ¼

xgðkÞ�
ygðkÞ�
fgðkÞ�

2
4

3
5þ KðkÞ �

zxðkÞ
zyðkÞ
zfðkÞ

2
4

3
5�

xgðkÞ�
ygðkÞ�
fgðkÞ�

2
4

3
5

0
@

1
A: (4.30)

For the next step it updates the prediction covariance, here simplified to

PðkÞ ¼ ðI � KðkÞÞ � PðkÞ�: (4.31)

Here zx; zy and zf are the three dimensions of pose information measured by the

North Star system and I is a 3 � 3 unit matrix. From a mathematical point of view,

in (4.30) K(k) is just a scaling factor to the two items, thexðkÞ� and z(k). However,
physically the Kalman gain weights the two sensors measurements, the odometry

and North Star, by considering both of the sensors noises and uncertainties.

Through this method, the sensors data are fused into the a-posteriori estimate of

x̂g ðkÞ having information from both odometry and North Star.
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4.4.4 Data Flow Analysis

It is necessary to further clarify the data flows during this robot position control

which is based on sensor data fusion in EKF. When the robot receives motion

command for driving along one desired trajectory it immediately calls the algorithm

which is listed in Algorithm 1. Here the trajectory consists of many control points

xdðiÞ in which i is the index for the position points on the desired trajectory. This

study tries to design the algorithm for general purpose. Specifically speaking, if the

position control purpose is only for the robot to reach a final position and it doesn’t

care about the robot’s trajectory, then one can directly give the final desired point

xdðfinalÞ to the robot. Otherwise, give the position points on the desired trajectory

one by one to the robot which means the robot should traverse all of these points so

as to track this trajectory. The more position points are given, the more accurate

trajectory will be performed by the robot, but of course within the restrictions of

computational power and hardware.

Algorithm 1 is the pseudo-code for our experiments. In addition to the EKF

algorithm itself, here the processes for position control are also shown which are

directly oriented to the implementation and involved hardware.

Algorithm 1. Robot position control based on sensor data fusion in EKF

1: /* initialize: get system information and initial conditions (including robot initial pose x̂g ð0Þ,
read in initial motor speed ½om1

ð0Þ;om2
ð0Þ;om3

ð0Þ� and EKF start up conditions Pð0Þ;
Qð0Þ;Rð0Þ), specify time stepDt, step k ¼ 0, control point notation i ¼ 1, calculate initial

deviation Dxgð0Þ, define tolerance threshold E for position error*/

2: while DxgðkÞ > E or i < final do

3: if DxgðkÞ 	 E then
4: i ¼ i þ 1

5: input: the new control point xdðiÞ from the desired trajectory

6: calculate the new pose deviation DxgðkÞ ¼ xdðiÞ � x̂g ðkÞ
7: end if

8: drive (or compensate) the robot pose due to DxgðkÞ
9: update EKF step index k ¼ k þ 1

10: convert last step’s motor speeds to wheels speeds ½o1ðk � 1Þ;o2ðk � 1Þ;o3ðk � 1Þ�
11: calculate robot velocity in body coordinates, including odometry correction due to (4.7)

12: perform the a-priori pose estimation xgðkÞ� by odometry, (4.22), and store the current robot

velocity _xg ðkÞ
13: calculate Jacobian matrices �AðkÞ and W(k) by (4.26) and (4.27)

14: if k ¼ 1 then

15: use Q(0) as the covariance of process noise

16: else

17: read in last step’s motor speeds, update the covariance of process noise Q(k – 1) by (4.32)

and (4.33)

18: end if

19: calculate prediction covariance PðkÞ�, (4.28)
20: update the covariance of measurement noise R(k), (4.34)

21: calculate Kalman gain matrix K(k), (4.29)

22: read in the external measurement z(k) from North Star system

(continued)
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23: perform the a-posteriori pose correction, get x̂g ðkÞ by (4.30)

24: compare the EKF estimated pose x̂g ðkÞwith the control pointxdðiÞ, refresh deviationDxgðkÞ
25: update prediction covariance P(k) for next step, (4.31)

26: get the three motors current speeds ½om1
ðkÞ;om2

ðkÞ;om3
ðkÞ�

27: end while

28: output: final pose x̂g ðkÞ and velocity _xg ðkÞ (the information provided for mechanical PSO’s

iteration in our upper level algorithm)

4.4.5 Uncertainty Analysis

There are many kinds of uncertainties during the data fusion for robot localization

and position control, some of them are known and some are not. In this study,

basically the uncertainties come from two parts. One part is the robot and its

motion, i.e., the values of physical parameters, uneven terrain, slippery floor and

so on. Another kind of uncertainty is from the sensor measurement data. There are

no specific methods (formulae or procedures) to determine the covariance matrices

Q(k) and R(k). The relatively effective way is by trials and relying on experience.

First, it is important to choose a reasonable initial value. Here, the process noise

covarianceQ(k) is mainly due to the robot’s velocity noise which is essentially from

the robot’s motors. As such, it is possible to get the basic noises information from

the DC motors data sheet and some simple tests. Such tests can be performed by

giving a planned constant motor speed value to one specific motor, and let the motor

run for a long time until we consider it is running stable. Then, we let the encoder

read back the current actual value of motor speed which will be used for odometry

calculation. By comparing the read in actual value and the planned value one can

get an idea about the noise range of the motor. With the drivetrain relationships, the

noise from the motors can be converted to the global pose noise which is formulated as

QðkÞ ¼ cpQ̂ðkÞ (4.32)

with

Q̂ðkÞ ¼ Ttrans �
covðN1ðkÞ;N1ðkÞÞ 0 0

0 covðN2ðkÞ;N2ðkÞÞ 0

0 0 covðN3ðkÞ;N3ðkÞÞ

2
64

3
75

¼ Ttrans �
DðN1ðkÞÞ 0 0

0 DðN2ðkÞÞ 0

0 0 DðN3ðkÞÞ

2
64

3
75 ð4:33Þ
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where cp is a scaling factor, NiðkÞði ¼ 1; 2; 3Þ is a vector which contains the i-th
motor’s process noises sequence up to the current step while covðNiðkÞ;NiðkÞÞ is
the i-th motor’s noise covariance. The scalers DðNiðkÞÞ represent the variance and
mathematically covðNiðkÞ;NiðkÞÞ ¼ DðNiðkÞÞ . Here Ttrans is a transformation

matrix which includes the information of time step Dt and the conversion from

motor speeds to robot’s global velocities.

We still left the question of how to get the noises vector NiðkÞ. By simple tests

one already knows the range of motor noise, this can be used for calculating the

initial value Q(k). However, the motor noise (velocity noise) counted into the robot

odometry calculation is changing during the robot’s movement. So the more precise

way is to update it in each step. This is done by comparing the real time read in

motor speed with the nominal motor speed which is computed by the current pose

deviation DxgðkÞ and inverse kinematics. Here the nominal motor speed actually is

the command value one gives to the motor controller. By this the motor process

noises can be estimated. Worth to be noticed, here it only obtains the execution

process noises of the motors, and the encoders are not possible to count the

uncertainties like the wheel slippage, so this part of noise without consideration

of slippage noise. Wheels slippage noise partially is handled (eliminated) by the

odometry correction, and the residual part is transmitted finally to the robot velocity

noise together with motor execution noise. Other noises and uncertainties can be

considered in the scaling factor cp which is convenient to be adjusted.

From (4.32) and (4.33) one can see that the motor covariances are assumed to be

diagonal, however its contribution to the EKF pose estimation is not in a diagonal

way. One reason is its transformation matrix Ttrans, and another reason is from the

second item of (4.28) where the Jacobian matrix W and its transpose couple the

different dimensions of Q(k). This is actually physically reasonable.

Akin to the process noise covariance, the measure noise covariance in this

application is governed by

RðkÞ ¼ cm

covðX1ðkÞ;X1ðkÞÞ covðX1ðkÞ;X2ðkÞÞ covðX1ðkÞ;X3ðkÞÞ
covðX2ðkÞ;X1ðkÞÞ covðX2ðkÞ;X2ðkÞÞ covðX2ðkÞ;X3ðkÞÞ
covðX3ðkÞ;X1ðkÞÞ covðX3ðkÞ;X2ðkÞÞ covðX3ðkÞ;X3ðkÞÞ

2
4

3
5
(4.34)

where

X1ðkÞ ¼ fDxgð1Þ;Dxgð2Þ; � � � ;DxgðkÞg;
X2ðkÞ ¼ fDygð1Þ;Dygð2Þ; � � � ;DygðkÞg;
X3ðkÞ ¼ fDfgð1Þ;Dfgð2Þ; � � � ;DfgðkÞg;

are the corresponding noise sequences of North Star measured x, y positions and f
orientations, cm is a scaling factor. Here R(k) directly contributes in a coupled

way (non-diagonal). Now the question is left how to get the noise (error) sequences

½DxgðiÞ;DygðiÞ;DfgðiÞ�; ði ¼ 1; 2; � � � ; kÞ , which can basically describe the noise
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during the North Star measurements. One gets help from the North Star data sheets.

Here one takes the orientation noise as an example, see Fig. 4.9.

Figure 4.9 shows the standard deviation of the orientation errors of the North

Star system with different ceiling height and different distances from the origin.

Usually, in a specific experiment room with a fixed ceiling height, the robot moving

in different locations gains different position and orientation noises, so the measure

noise covariance is changing. As we can see from Fig. 4.9, the standard deviation of

orientation error changes approximately from 0.15
�
to 2.8

�
as the distance changes

from 0 to 4 m in a room with a ceiling around 3 m high. Obviously, from Fig. 4.9

one can see that this is a nonlinear relationship. However, such trends can be

represented by a polynomial interpolated curve. The input of this curve is the

current distance from the robot to the origin, in this case we get it from xgðkÞ� .
By this the sequence of measure noise for robot orientation is obtained. With the

current noises sequence, one can calculate the noises covariance easily. Similarly,

the covariances for position noises can be obtained, too.

Both Q(k) and R(k) are updated in each step during the EKF recursion. This is

different to other traditional EKF applications where usually the covariance matrices

for process noise and measure noise are fixed. Refreshing them in each step gives us a

relatively closer value to the true noises.

Fig. 4.9 The North Star orientation noise when used 4 LEDs in projector (data from information

of Evolution Robotics, Inc.)
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4.5 Experiments and Results Analysis

In this section the previously described method is verified on a real physical

Robotino robot, and then the obtained results are compared to the results from

motions without performing sensor data fusion, including no feedback and only

odometry feedback position control. Additionally, the method presented by this

study is also briefly compared to the traditional navigation method, the simulta-

neously localization and mapping (SLAM).

4.5.1 Experimental Setup

4.5.1.1 Environment Requirements

The experiments are performed in an indoor environment which has a carpeted, flat

ground. The room ceiling is around 3 m high and it’s better to keep few objects in

the room because we want to reduce the reflecting interferences from objects.

Furthermore, it is also necessary to keep away as good as possible light sources

including the daylight. A representative experimental environment is illustrated in

Fig. 4.10.

4.5.1.2 Experiment Arrangement

Three groups of experiments are designed in which one group is done without

position feedback control and the other two groups are all performed with closed

loop feedback control. The open loop group uses an input-state equations-output

style. The second group of experiments only uses the corrected odometry for

measurement, and the measured results are feed back for position control. For

comparisons, the third group is performed with sensor data fusion using an

extended Kalman filter where the pose information is not only from the odometry

but also from the North Star system. Then, the estimated pose is used for the

position feedback control. Each group of experiments is organized with six kinds

of motions and each motion gets 20 runs. Complex motions are combined from

such basic types. The motion types and experiment dimensions are illustrated in

Fig. 4.11.

The six kinds of motions are: M1 move forward 1 m in global x direction, M2

rotate with a half circle, M3 move diagonal with (D1m, D1m), M4 spin at the

original place 360
�
, M5 move in�y direction with 1 m and M6 again move forward

1 m in x direction.
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4.5.2 Localization and Position Control Experiments

Through the designed three groups of experiments this study aims to investigate

how much the described approaches can improve localization and position control

quality.

4.5.2.1 Open Loop Position Control

Open loop position control means the robots are moving by assigning specific

velocities and running time, there are no actual pose measurement and no state

Fig. 4.10 Environment for localization and position control experiments

Fig. 4.11 Motion types
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feedback. One typical run for moving forward 1 m in x direction of the open loop

position control is shown in Fig. 4.12.

4.5.2.2 Odometry Based Feedback Position Control

The second group of experiments uses only the measurements from the corrected

odometry. This is a single sensor relied position control method. The parameters

used in the odometry calculation for error sources are

er ¼ ½er1 ; er2 ; er3 �T ¼ ½�0:16mm; 0:12mm;�0:03mm�T ;
ed ¼ ½ed1 ; ed2 ; ed3 �T ¼ ½�2mm; 2mm;�10mm�T ;
em¼ ½em1

; em2
; em3

�T¼ ½3�; 2�; 2��T ;

the nominal values are

r ¼ 40mm; R ¼ 135mm;

and for the odometry correction matrix we use Fc ¼ diagð0:77 0:77 1:01Þ. A more

complete description of the corrected odometry can be found in [19].

4.5.2.3 Localization and Closed Loop Position Control with Odometry

and North Star Data Fusion in EKF

In the third group of experiments one needs information from both odometry and

North Star. The obtained results are then fused by the extendedKalman filter. Through

full view partially zoom view

a

b

Fig. 4.12 Open loop position control for motion M1
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this the improved pose information can be obtained. The used initial covariances

of process and measure noise are Qð0Þ ¼ diagð10�4; 10�4; ð3� p=180Þ2Þ and

Rð0Þ ¼ diagð6:76� 10�4; 6:76� 10�4; ð7� p=180Þ2Þ , respectively. They all

have the units ½m2; m2; rad2�. The odometry has a start up error of 1 cm for

the x and y directions and 3� for the orientation error. Similarly, the North Star

initial error is estimated as ½2:60cm; 2:60cm; 7�� where a bigger orientation error

is used since the North Star system has a worse measurement for the orientation

at the beginning although the robot is near to the origin at that time and according

to Fig. 4.9 this value is only around 0.2�. The initial estimate error covariance is

Pð0Þ ¼ diagð10�4m2; 10�4m2; ðp=60Þ2 rad2Þ and the time step is Dt ¼ 0:01s. For
the North Star noises fitting curves we tried 3-rd order, 4-th order and 5-th order

polynomials, and we find the 4-th order polynomial is reasonable which for x, y
directions and orientation noises are

sx ¼ �0:0010dis4 þ 0:0128dis3 � 0:0285dis2 þ 0:0265disþ 0:0003;
sy ¼ �0:0007dis4 þ 0:0054dis3 � 0:0098dis2 þ 0:0066disþ 0:0025;
sf ¼ �0:0729dis4 þ 0:5625dis3 � 1:1271dis2 þ 0:8375disþ 0:1500:

Here dis represents the current distance from the origin to the robot. With above

North Star noise expressions, one can update the noise covariance R(k) for each
step. The odometry related values used in this group of experiments are exactly the

same as in Sect. 4.5.2.2 for odometry feedback position control.

4.5.3 Result Analysis and Comparisons

Each of the six motions is performed with 20 runs and we compare their average

values for the three different groups. The statistical results can be seen in Fig. 4.13.

One can see that the positioning accuracy is improved by using odometry or EKF

based localization. Taking motion M1 as an example, in the odometry feedback

case, the final position error is 0.3 cm in average. This is further improved by the

EKF based closed loop position control where the localization error is only 0.1 cm

in average. It is assumed that the controller can drive exactly according to the

feedback localized poses which means the final 0.3 cm or 0.1 cm errors come from

the localization, rather than from the controller. Thus, the experiment results can

directly represent the localization quality.

The errors are increasing as the robot is moving away from the origin, i.e., this

leads to bigger deviations for long distance movements. This can be seen from

motions M1 and M6 in Fig. 4.13. For these two motions, although they perform the

same behavior, the errors from all of the three groups of experiments are increased.

However, the EKF based one shows the highest robustness since it keeps the

smallest deterioration rate.

The robot orientation result is still not satisfactory since the orientation error is

more sensitive compared to the translational error because of the omnidirectional

feature, see e.g., the results of M4. From motion M4 one also can see that the
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‘odometry only’ feedback control there even obtains a better result than the EKF

based one. This is because the odometry, especially our corrected odometry, has a

good localization quality in the spinning motion, whereas the North Star system has

a worse orientation measurement especially when the robot moves away from its

origin. Basically, the EKF based feedback control can further improve the transla-

tional positioning accuracy compared to the odometry based case, however the

orientation accuracy is slightly worse than in the case where only odometry is used.

In the following some comparisons to a traditional method are performed. In

most of the cases, researchers use simultaneously localization and mapping

(SLAM) method. It actually has become a de-facto standard for robots navigation

and related tasks. The so called SLAM is a technique used by robots and autono-

mous vehicles to build up a map within an unknown environment (without a priori

knowledge) or to update a map within a known environment (with a priori knowl-

edge from a given map) while at the same time keeping track of their current

locations. However, this method is computational costly, especially for the

unknown environment mapping. It usually needs many vision techniques and

image processing knowledge which are not suitable for our application since the

calculation ability on the robot itself is very restricted.

As such, this investigation avoids the SLAMmethod, at least avoids the mapping

part. With PSO’s powerful search ability this becomes possible. The mechanical

PSO is guiding the robot (generating trajectories) and the robot is handling some

things locally such as, e.g., obstacle avoidance and localization. By this method, it

is neither necessary to obtain the environment information precisely nor fully. With

the help of corrected odometry or corrected odometry and North Star data fusion in

the extended Kalman filter, the localization quality is improved.

Fig. 4.13 Statistical results of open loop, odometry based closed loop and EKF based closed loop

position control experiments
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4.6 Conclusions

This contribution investigates the robot localization. For this purpose, methods

based on corrected odometry and North Star measurements are developed. Then,

improve positioning accuracy by sensor data fusion in the extended Kalman filters.

Two measurement channels for EKF data fusion are the corrected odometer and the

external North Star system. The data flows and uncertainties during the localization

process are analyzed. Finally, the developed methods are verified by robot position

control experiments with one group of open loop runs, one group of ‘odometry

only’ closed loop feedback runs and one group of EKF based closed loop feedback

runs. The experimental results carried out by an omnidirectional robot on a carpet

ground under six kinds of motions demonstrate the feasibility of odometry based or

EKF based closed loop feedback control for improving robot positioning accuracy.

Due to the localized information, the robot pose control can be performed success-

fully. For an application where the pose accuracy is not a strict requirement, the

control based on the corrected odometry is a good and sufficient choice. For the

case where higher accuracy is a necessity, and the environment allows to perform

sensor data fusion, then the EKF based pose control will be a nicer choice although

with limitation for improving the orientation accuracy. From the comparisons, one

can see that the proposed techniques show promising results when compared to the

no localization case.
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Chapter 5

Modelling and Control of Infinite-Dimensional

Mechanical Systems: A Port-Hamiltonian

Approach

Markus Schöberl and Andreas Siuka

Abstract We consider a port-Hamiltonian representation for infinite-dimensional

systems described by partial differential equations. Then the control by intercon-

nection method is applied, by using a finite-dimensional controller system

interacting via an energy port at the boundary of the infinite-dimensional system.

This will be demonstrated by means of a heavy chain system, modelled as a

partial differential equation. Furthermore, we sketch the stability proof in the

infinite-dimensional setting. To motivate for the presented ideas we recapitulate

the well-known concepts for finite-dimensional systems as well, but mainly as

a starting point for the discussion of the infinite setting.

5.1 Introduction

Port-controlled Hamiltonian systems with Dissipation (PCHD systems) are very

popular in system theory since this special representation of the system equations

highlights the physics used in a remarkable way. In many applications the Hamil-

tonian corresponds to the total energy of the system and the PCHD structure reveals

how the energy is conserved and/or dissipated by corresponding physical elements.

This representation is also widely utilized in control, mainly with regard to concepts

where the control strategy is based on the analysis of the power flows. These

investigations have been extensively exploited in the case of finite dimensional

systems described by ordinary differential equations (ODEs), see [1] and references

therein. A key advantage of PCHD systems in the finite-dimensional case is the

fact that the system structure is directly linked to stability theory, since it can be

deduced that the equilibrium corresponding to a minimum of the positive definite
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Hamiltonian is stable in the sense of Lyapunov. If asymptotic stability cannot be

concluded by using the Hamiltonian it is common to make use of La-Salle’s

Invariance principle, see e.g. [2].

The Hamiltonian picture mentioned above is however not limited to model

finite-dimensional systems but it is also adequate for the infinite-dimensional

case, e.g. systems described by partial differential equations (PDEs). The PCHD

concept in the PDE case is not unique and several approaches exist in the

literature, see for example [3–8]. The approach used in this contribution is

based on a setting also used in [9] which has been adapted for our purposes

(non-trivial boundary conditions and introducing in- and outputs) in [7, 8, 10, 11].

The advantage of a Hamiltonian representation also for systems described

by PDEs is the fact that many ideas and concepts well-known from the ODE

case can be copied and/or adapted. However, a main drawback is the loss of

the direct link to stability theory – this is much more involved than in the finite-

dimensional case, and tools such as semi-group theory become indispensable,

see e.g. [12, 13].

In this paper we want to analyze the control by interconnection concept, where

the focus is laid on the PDE case. To motivate for the ideas we recapitulate the ODE

scheme first, where we present the example of a pendulum with end-mass whose

suspension point can move in the horizontal direction. This system with two

degrees of freedom (pendulum angle and position of suspension point) will be

modeled in a Hamiltonian fashion and a controller will be designed to stabilize the

system in the downward position with a prescribed position of the suspension point.

It is easy to show that the closed loop system structure which will be again

Hamiltonian leads directly to the stability arguments. Then to shift to the PDE

case we will replace the pendulum by a chain and apply the same controller design

procedure adapted to the PDE case. It will be then shown that the stability proof is

much harder compared to the ODE case. Beside these two examples the theoretical

concepts will be touched but not worked out in detail, concerning the control

of infinite-dimensional systems with the control by interconnection technique

based on our system representation the reader is referred to [10, 11] or for more

details concerning the ODE case to [1] and references therein.

This paper is organized as follows. In Sect. 5.2 we present the well-known case

of Port-controlled Hamiltonian Systems in the case of ordinary differential

equations. Then the concept of Casimir functions and the control by interconnection

technique are recapitulated. The pendulum system with an end-mass is used to

demonstrate the presented concepts. The third section is then focused on the PDE

case where the same considerations as before are carried out but adapted to work

also for infinite-dimensional systems. Instead of the pendulum system a heavy

chain system modeled as a partial differential equation will be used. A sketch of

the stability proof is presented subsequently. Finally, in the fourth section a

summary and a discussion is given.
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5.2 The Finite-Dimensional Case

In this section we will analyze Port-controlled Hamiltonian systems with Dissipa-

tion (PCHD systems). We will sketch the well known system representation as well

as the control by interconnection method, which is based on finding Casimir

functions for the closed-loop system.

5.2.1 Modeling and Control in a Hamiltonian Setting

Let us introduce a state manifoldX equipped with coordinates (xa), a ¼ 1, . . . , n ¼
dim (X ). A PCHD system, see [1, 14] can be formulated as

_x ¼ ðJðxÞ � RðxÞÞð@xHÞT þ GðxÞu
y ¼ GTðxÞð@xHÞT

(5.1)

with the Hamiltonian1 H 2 C1ðXÞ. The maps J, R and G correspond to the

interconnection J (skew-symmetric), the damping R (symmetric and positive

semi-definite), and the input map G (we will suppress the dependence on x in J, R
and G in the forthcoming). System inputs are denoted by u and accordingly for the

outputs we use y.
Let us consider a vector field v on X (possibly depending on the input u), i.e.

v ¼
Xn
a¼1

vaðx; uÞ@a ; @a ¼ @

@xa
:

Then the change ofH in the direction ofv (Lie-derivative) reads asvðHÞ ¼ ð@xHÞ v
and with v ¼ _x we obtain

vðHÞ ¼ �ð@xHÞRð@xHÞT þ yTu (5.2)

where we write _H ¼ vðHÞ in this special case. Obviously the relation (5.2) shows

how the Hamiltonian is affected along solutions of the system, namely by dissipa-

tion and the collocation of the inputs and outputs. Additionally it is obvious that for

u ¼ 0 we have _H � 0 which gives the desired link to Lyapunov stability if H is

positive definite and serves as a Lyapunov function candidate for a desired

equilibrium.

1Here C1(X ) denotes the set of smooth functions on X .
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5.2.1.1 Casimir Functions

A Casimir function for the system (5.1) is a function C 2 C1ðXÞ such that

_C ¼ ð@xCÞ _x ¼ ð@xCÞGu (5.3)

holds independently of the Hamiltonian H, see [1]. This leads to the partial

differential equation @xCðJ � RÞ ¼ 0 in the unknown function C. If in particular

ð@xCÞGu ¼ 0 then C is a constant of the motion since then _C ¼ 0.

5.2.1.2 Control by Interconnection

The focus of this part is to present the well-known control by interconnection

method, which is based on the idea to couple PCHD systems via their energy

ports. One system is to be controlled and the other one acts as the controller. Let

us consider the system of the form

_x ¼ ðJ � RÞð@xHÞT þ Gu

y ¼ GTð@xHÞT
(5.4)

together with

_xc ¼ ðJc � RcÞð@xcHcÞT þ Gcuc

yc ¼ GT
c ð@xcHcÞT

(5.5)

serving as the controller with the controller Hamiltonian Hc. The next step is to

interconnect these two systems in a power preserving fashion, such that

yTuþ yTc uc ¼ 0 (5.6)

is met. One choice to fulfill the relation (5.6) is a classical feedback of the form

uc ¼ Ky ; u ¼ �KTyc: (5.7)

Interconnecting (5.4) and (5.5) by means of (5.7) gives again a PCHD-System of

the form

_xcl ¼ ðJcl � RclÞð@xclHclÞT

with xcl ¼ ðx; xcÞ meeting

_Hcl ¼ �ð@xHÞRð@xHÞT � ð@xHcÞRcð@xcHcÞT � 0
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where the Hamiltonian of the closed loop reads as

Hcl ¼ HðxÞ|ffl{zffl}
Plant

þ Hc xcð Þ|fflfflffl{zfflfflffl}
Controller

:

Casimir functions of the closed-loop, which are conserved quantities, since

ucl ¼ 0, take the form

Ccl ¼ Ccl x; xcð Þ:

We are interested in m functions of the special form

Cl
cl ¼ xlc þ ClðxÞ ; l ¼ 1; . . . ;m

with m � n, since this allows for a relation of some of the plant and the controller

states.

The Hamiltonian of the closed loop can be written as

Hcl ¼ HðxÞ þ Hcðxlc ; xmc Þ ; m ¼ mþ 1; . . . ; nc

with xc ¼ ðxlc ; xmc Þ, where this decomposition of the controller states is in connection

with the ansatz forCl
cl and since

_Ccl ¼ 0we obtain with xlc þ ClðxÞ ¼ kl the desired
connection between some of the controller states and the plant states, where k
follows from the initial conditions of the plant and the controller. This allows for a

shaping of Hcl, such that possibly a desired equilibrium of the closed loop

corresponds to the minimum of Hcl.

5.2.2 Example: The Pendulum with End-Mass

Let us consider a pendulum of length l and mass m whose suspension is allowed to

move in horizontal direction (degree of freedom called x). The pendulum angle

measured from the downward vertical position is denoted by f and additionally an

end-mass me is attached. With _x ¼ v and _f ¼ o the kinetic energy is of the form

T ¼ 1

2
ðmþ meÞv2 þ 1

2
ðmþ 2meÞlov cosðfÞ þ 1

2
ðme þ m

3
Þl2o2

and the potential energy reads as

V ¼ � m

2
þ me

� �
glð1� cosðfÞÞ:
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The mass matrix can be deduced as

M ¼
mþ me

m

2
þ me

� �
lcosðfÞ

m

2
þ me

� �
lcosðfÞ me þ m

3

� �
l2

2
64

3
75

and the Hamiltonian can be written as

H ¼ 1

2
pTM�1pþ V

with p ¼ ½pv po�T ¼ M
v
o

� �
:

The corresponding Hamiltonian representation follows as

_x
_f

_pv

_po

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
6664

3
7775

@xH

@fH

@pvH

@poH

2
6664

3
7775þ

0

0

1

0

2
6664

3
7775F

y ¼ 0 0 1 0½ �

@xH

@fH

@pvH

@poH

2
6664

3
7775;

where F is the control input acting on the suspension point. For the controller

system we choose a system of dimension 2 which is given as

_qc
_pc

� �
¼ 0 J12

�J12 0

� �
� 0 0

0 r

� �� �
@qcHc

@pcHc

� �
þ Gc1

Gc2

� �
uc

yc ¼ Gc1@qcHc þ Gc2@pcHc

with the controller Hamiltonian

Hc ¼ 1

2
k1p

2
c þ

1

2
k2q

2
c ; k1; k2 > 0:

From the power conserving interconnection F ¼ �yc and uc ¼ y, with respect to
the simple choice K ¼ I (identity matrix I) we obtain the following closed-loop

system
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_x
_f
_pv
_po
_qc
_pc

2
6666664

3
7777775
¼

0 0 1 0 0 0

0 0 0 1 0 0

�1 0 0 0 �Gc1 �Gc2

0 �1 0 0 0 0

0 0 Gc1 0 0 J12
0 0 Gc2 0 �J12 0

2
6666664

3
7777775
�

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 r

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

�

@xH
@fH
@pvH
@poH
@qcHc

@pcHc

2
6666664

3
7777775
:

The choice J12 ¼ 0 and Gc1 ¼ Gc2 ¼ 1 enables us to find the closed-loop

Casimir function

Ccl ¼ x� qc

which has the consequence that for xjt¼ 0 ¼ qcjt¼ 0 we have x(t) ¼ qc(t) in the

closed-loop due to _Ccl ¼ 0. From the positive definite Hamiltonian

Hcl ¼ 1

2
pTM�1pþ V þ 1

2
k1p

2
c þ

1

2
k2q

2
c

and

_Hcl ¼ �rðkcpcÞ2 � 0

we conclude that the equilibrium qc ¼ x ¼ f ¼ pc ¼ o ¼ v ¼ 0 is stable in the

sense of Lyapunov. For the proof of asymptotic stability La-Salle’s invariance

principle can be employed [2], but since the counterpart in the PDE case is much

more sophisticated, we also skip this part here.

5.3 The Infinite-Dimensional Case

The case of infinite-dimensional systems described by partial differential equations

is much more involved compared to the finite-dimensional case. One of the quite

obvious differences is the fact that we have to deal with Hamiltonian densities, e.g.

quantities that can be integrated but it should be noted that they may depend on

derivative variables in general. In this contribution we restrict ourselves to the case

of mechanical systems with a one dimensional spatial domain, denoted by D .

Furthermore instead of a state manifold X we have to introduce a state bundle also
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denoted by X fibred over D such that we have dependent coordinates x and

independent ones denoted by X. The state of the system is then a mapping x ¼ FtðXÞ
for each t corresponding to the time.

The Hamiltonian density reads as

H ¼ H X; x; xXð ÞdX

with a volume element dX on D where xX denotes the derivative variables, i.e. if

x ¼ FtðXÞ is given then xX corresponds to @XFtðXÞ. In the special case where H
corresponds to an energy density, then the total energy at an instant of time can be

obtained by
R
D HðX; x; xXÞdX where a solution for x ¼ FtðXÞ has to be plugged in.

5.3.1 Modeling and Control: The Infinite Setting

A port controlled Hamiltonian system then takes the form of

_x ¼ ðJ � RÞðdHÞT þ Gu

y ¼ GTðdHÞT
(5.8)

and additional boundary conditions, see [10] and references therein.

Remark 1. The differential geometric interpretation of the system (5.8) is quite
sophisticated and additional explanation can be found e.g. in [8, 10, 11]. Further-
more the maps J, R and G can be differential operators as well in this scenario, but
we will exclude this case here for simplicity.

The Hamiltonian in this setting is a density H ¼ HdX as mentioned above and

the variational derivative d acts on HdX in the following manner

ðdHÞa ¼ ðdaHÞdX

with

daH ¼ @aH� dX@
X
aH ; @a ¼ @

@xa
; @X

a ¼ @

@xaX

where dX denotes the total derivative with respect to the independent variable X and

reads in our first order scenario as

dX ¼
Xn
a¼1

ð@X þ xaX@a þ xaXX@
X
a Þ

where xXX denote derivative variables of second order.
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Let us consider in analogy to the finite-dimensional case a vector field which is

used to measure the change of the Hamiltonian, i.e. the Hamiltonian density since

we are dealing with field theories. We use a (generalized) vertical vector field v.
Then we find2

_H ¼
Z
D

dxHð Þv dX þ
Z
@D

@X
x H

	 

v dXB (5.9)

where v ¼ _x anddXB denotes the boundary (only two points X ¼ 0 and X ¼ L in our

setting, since D will be one dimensional). Here the notation

dxH ¼ dx1H; . . . ; dxnHð Þ; @X
x H ¼ @H

@x1X
; . . . ;

@H
@xnX

� �

is used. Plugging in explicitly the PDEs (5.8), then (5.9) takes the form

_H ¼
Z
D
� dxHð Þ RðdxHÞT dX þ

Z
D
yTu dX þ

Z
@D

@X
x H

	 

_x dXB

where again the dissipation and the collocation become apparent. In contrast to the

finite-dimensional case the additional expression on the boundary appears, which in

many applications forms a boundary port.

5.3.1.1 Casimir Functionals

In the case of partial differential equations we consider Casimir densities

(or functionals) and we restrict ourselves to the first order case only, i.e. C ¼ CdX
such that C depends on first order derivatives. Using (5.9) where we replace H by C
and setting v ¼ _x the relation (in analogy to (5.3))

_C ¼
Z
D
ðdx C GuÞdX

is obtained provided
R
D ðdxCÞðJ � RÞðdxHÞTdX ¼ 0 is met and an additional

boundary expression vanishes.

This leads to the following two conditions for the Casimir density

dxC J � Rð Þ ¼ 0 (5.10)

@X
x C _x

	 
��
@D ¼ 0 (5.11)

2 Formally the prolongation of v is used to derive _H see [10] for details.
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which have to be fulfilled. If in addition
R
D ðdxCGuÞdX ¼ 0 is met, then the density

is again a conserved quantity.

5.3.1.2 Control by Interconnection

In this section we discuss the interconnection (in a power conserving manner) of

finite-dimensional Hamiltonian systems with an infinite-dimensional one, where we

restrict ourselves to spatial domains which are one dimensionalX ¼ 0; L½ � as well as
to boundary control, see also [10, 11]. The boundary of the infinite-dimensional

system is decomposed such that @D ¼ Da [ Du is met, where Da denotes

the actuated boundary (X ¼ L) and Du is the unactuated boundary (X ¼ 0).

The coupling will be performed by interconnecting the systems via energy ports.

We will analyze the coupling of a finite-dimensional controller system with the

infinite-dimensional system at Da . The infinite-dimensional system are partial

differential equations in Hamiltonian representation modeled as

_x ¼ ðJ � RÞðdHÞT (5.12)

where the control enters through the actuated boundary Da. From (5.9) it becomes

obvious that the energy port at the boundary (if it exists) can be expressed by

@X
x H _x

��
@D ¼ yT@ u@: (5.13)

Here u∂ and y∂ denote collocated inputs and outputs where the assignment of

input or output is not unique, see [8] for more details. In the sequel we want to couple

a finite-dimensional controller system at the actuated boundary (denoted by a).
The relation (5.13) for this configuration reads as

@X
x H _x

��
Da

¼ yT@;a u@;a: (5.14)

A power conserving interconnection has to fulfill the relation

yTc uc þ yT@;a u@;a ¼ 0 (5.15)

where yc and uc denote the collocated port variables of the finite-dimensional

controller system that reads as

_xc ¼ ðJc � RcÞð@xcHcÞT þ Gcuc

yc ¼ GT
c ð@xcHcÞT

(5.16)
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and is modeled on the manifold X c . The interconnection is chosen according to

(5.15) as a feedback interconnection in the form

uc ¼ K y@;a ; u@;a ¼ �KT yc (5.17)

with an appropriate map K.
Now we are able to exploit the benefits of the control by interconnection

technique as described for the ODE case in the last chapter. To this end we analyze

Casimir functionals for the coupled systems in order to relate the states of the

controller with the plant. We now have to find quantities of the form CI ¼ CcþR
D CdXwithCc 2 C1ðX cÞ. The change of CI along solutions of the interconnected

system (we assume again the existence of a solution) should vanish, i.e. ĊI ¼ 0

since we are in a closed loop scenario and no further inputs are present.

The remarkable fact of this procedure and in special the choice for CI is

the relation of (some of) the controller states with quantities of the plant to be

controlled since CI is a constant along the solutions of the interconnected system,

i.e. xc ¼ � R
D CdX þ k where k depends on the initial conditions only. The Hamil-

tonian of the interconnected system HI ¼ Hc þ
R
D HdX can be used for stability

investigations provided that it serves as a Lyapunov function candidate, where

in this context the connecting term xc ¼ � R
D CdX þ k plays an extraordinary

important role.

5.3.2 Example: The Heavy Chain System with End-Mass

In this section we demonstrate the proposed method using the heavy chain system

with an end-mass me exposed to gravity (acceleration due to gravity is denoted by g).
We introduce the following bundle structureX ! D; ðX;w; pÞ ! X, where X is the

coordinate of the one-dimensional spatial domain, w denotes the deflection and p the
temporal momentum. The boundary ∂D consists of two points only, namely X ¼ 0

and X ¼ L where L is the length of the chain. Approximately, the system can be

modeled by the partial differential equation r€w ¼ dXðPðXÞwXÞ which can also be

stated as

_w ¼ p

r
_p ¼ dXðPðXÞwXÞ

(5.18)

where r is the mass (line) density and the force in the chain reads as PðXÞ ¼ grXþ
gme. We consider the boundary conditions of the form

PðXÞwXjX¼0 ¼ me €wjX¼0 ; PðXÞwXjX¼L ¼ F (5.19)

and F serves as the control input at the actuated boundary at X ¼ L.
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In a Hamiltonian setting we obtain with x ¼ (w, p) the desired representation

_w
_p

� �
¼ 0 1

�1 0

� �
dwH
dpH

� �

with

dwH ¼ �dXðPðXÞwXÞ; dpH ¼ p

r

and the Hamiltonian density reads as

H ¼ 1

2r
p2 þ 1

2
PðXÞw2

X: (5.20)

The total energy can be evaluated from

H ¼
ZL
0

� 1

2r
p2 þ 1

2
PðXÞw2

X

�
dX þ 1

2me
p2e

with pe ¼ me _wjX¼ 0 :
Let us now investigate the control by interconnection problem where we use a

finite-dimensional controller system of the form (5.16) where we choosedimðX cÞ ¼ 2

with xc ¼ ðqc; pcÞ.

Jc ¼ 0 J12
�J12 0

� �
; Rc ¼ 0 0

0 r

� �
; r> 0; Gc ¼ Gc;1

Gc;2

� �

and the Hamiltonian of the finite-dimensional controller system can be chosen as

Hc ¼ 1

2
k1p

2
c þ

1

2
k2q

2
c ; k1; k2 > 0:

The power conserving interconnection is given as

F ¼ u@;a ¼ �yc ; uc ¼ y@;a ¼ _wjX¼L

and consequently the coupled system read as

_w
_p
_qc
_pc

2
664

3
775 ¼

0 1 0 0

�1 0 0 0

0 0 0 J12
0 0 �J12 �r

2
664

3
775

dwH
dpH
@qcHc

@pcHc

2
664

3
775þ

0

0

Gc;1

Gc;2

2
664

3
775 _wjX¼L
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with

PðXÞwXjX¼0 ¼ me €wjX¼0 ; PðXÞwXjX¼L ¼ �k2ðqc � qcdÞ � k1pc:

For CI we make the ansatz

CI ¼ qc þ
Z L

0

CdX (5.21)

and from _CI ¼ 0 we obtain

_CI ¼ _qc þ
Z L

0

dxCð Þ _xdX þ @X
x C

	 

_xjL0 : (5.22)

Choosing J ¼ 0 and Gc,1 ¼ Gc,2 ¼ 1 then with

C ¼ � 1

L
dXðXwÞ ¼ � 1

L
ðwþ XwXÞ

we see that (5.22) simplifies to

_wjX¼L �
X

L
_w

����
L

0

¼ 0:

The Casimir CI for the closed loop is then obtained from (5.21) as

CI ¼ qc �
1

L
Xw

����
L

0

¼ qc � wjX¼L ¼ k; (5.23)

where k depends on the initial conditions only since ĊI ¼ 0.

The Hamiltonian of the interconnected system can be written as

HI ¼
Z L

0

1

2r
p2 þ 1

2
PðXÞw2

X

� �
dX þ 1

2me
p2e þ

1

2
k1p

2
c þ

1

2
k2q

2
c

and

_HI ¼ �rk21p
2
c � 0:

This is formally the same result as in the finite-dimensional case. Unfortunately

it is not possible to conclude that the desired equilibrium is stable – we will have to

dig deeper using arguments from functional analysis, which will be presented in the

forthcoming.
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5.3.2.1 Sketch of the Stability Proof

We start to formulate again the closed loop system in a manner appropriate for the

following investigations, i.e. we have that

_pm ¼ PðXÞwXjX¼0

_pc ¼ �rk1pc þ
p

r

����
X¼L

_w ¼ p

r
_p ¼ dXðPðXÞwXÞ

with the boundary conditions of the form

PðXÞwXjX¼0 ¼ me €wjX¼0; PðXÞwXjX¼L ¼ �k2ðwjX¼LÞ � k1pc:

For the following analysis we have to define a function space, which will be

denoted by Z meeting3

Z ¼ fz ¼ ðpm; pcw; pÞjpm; pc 2 R; w 2 H1; p 2 L2g

which is a Hilbert space, however equipped with the (equivalent) inner product

of the form

z; �zh iHI
¼

Z L

0

� 1

r
p�pþ PðXÞwX �wX

�
dX þ 1

me
pm �pm þk1pc �pc þk2wðLÞ�wðLÞ

which is connected to the closed loop Hamiltonian HI.

Remark 2. In Z the natural inner product is given as

z; �zh in ¼
1

2
pm �pm þ 1

2
pc �pc þ

1

2

Z L

0

ðw�wþ wX �wXÞdX þ 1

2

Z L

0

p�p dX

inducing the natural norm zk k2n ¼ z; zh in: Since we are using z; �zh iHI
we have

to fulfill

C1 zk k2n � zk k2HI
�C2 zk k2n ; C1;C2 > 0

3Here Hk with k ¼ 0, 1, 2, . . . denote the Sobolev spaces over the domain (0, L) which roughly

speaking consists of functions whose derivatives up to order k are quadratic integrable in the sense
of Lebesque, i.e. L2. In particular we have H0 ¼ L2.
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in order to show the equivalence of the norms with zk k2HI
¼ z; zh iHI

: Meeting the
lower bound can be shown easily using the following inequality

C3

ZL
0

w2dX�w2ðLÞ ; C3 � 0

whereas for the upper bound the Sobolev embedding Theorem has to be applied, see
also [15] and references therein.

Next we formulate the so-called Cauchy problem with _z ¼ Az reading as

_pm
_pc
_w
_p

2
664

3
775 ¼

PðXÞwXjX¼0

�rk1pc þ pðLÞ
r

pðXÞ
r

@XðPðXÞ@XwðXÞÞ

2
6664

3
7775

with

DðAÞ ¼ fpm; pc;w; pj; pm; p;c 2 R;w 2 H2; p 2 H1; pm ¼ me
p

r

����
X¼0

;

PðXÞwXjX¼L ¼ �k2ðwjX¼LÞ � k1pcg:

The proof of stability is based on the following scheme: If A generates a

contracting C0 semi-group T(t) then from z(t) ¼ T(t)z0 and

TðtÞk k ¼ sup
z02Zn0

TðtÞz0k kHI

z0k kHI

� 1

we obtain finally

zðtÞk kHI
� TðtÞk kHI

z0k kHI
� z0k kHI

from which we conclude stability of the desired equilibrium in the sense of

Lyapunov with regard to �k kHI
: To show that A in fact generates a contracting

C0 semi-group we will apply a variant of the so-called Lümer Phillips Theorem,

see [12, 13, 16, 17], which means in our concrete setting, that A has to be a

dissipative operator, and its inverse has to exist and must be bounded. A is

dissipative, since z;Azh iHI
� 0 follows by _HI ¼ �rk21p

2
c � 0 and concerning

A�1 we construct the inverse of �z ¼ Az by applying partly the integrating by

parts technique. In fact, from
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�pm
�pc
�w
�p

2
664

3
775 ¼

PðXÞwXjX¼0

�rk1pc þ pðLÞ
r

pðXÞ
r

@XðPðXÞ@XwðXÞÞ

2
6664

3
7775

we deduce p ¼ r�w and pc ¼ � 1
rk1

ð�pc ��wðLÞÞ. Furthermore from

Z X

0

�pðZ1ÞdZ1 ¼ PðXÞ@XwðXÞ � Pð0Þ@Xwð0Þ
¼ PðXÞ@XwðXÞ � �pm

we easily derive

Z L

X

1

PðZ2Þ
Z Z2

0

�pðZ1ÞdZ1dZ2 ¼ wðLÞ � wðXÞ �
Z L

X

�pm
PðZ2Þ dZ

2:

In order to obtain w(X) we have to determine w(L) which can be done by

evaluating

Z L

0

�pðZ1ÞdZ1 þ �pm ¼ PðLÞ@XwðLÞ ¼ �k2wðLÞ � k1pc

leading to

wðLÞ ¼ � 1

k2

Z L

0

�pðZ1ÞdZ1 þ
� 1

rk2
ð�pc � �wðLÞÞ

�
� �pm

k2
:

Finally we find

wðXÞ ¼ � 1

k2

Z L

0

�pðZ1ÞdZ1 þ
� 1

rk2
ð�pc ��wðLÞÞ

�
� �pm

k2

�
Z L

X

1

PðZ2Þ
Z Z2

0

�pðZ1ÞdZ1dZ2 �
Z L

X

�pm
PðZ2Þ dZ

2

which guarantees that A�1 exists and is bounded for bounded �z and z ¼ A�1�z.

Remark 3. The analysis of the asymptotic stability in the infinite-dimensional
setting can be performed again by using La Salle’s principle, however compared
to the ODE scenario the approach is much more involved in the PDE case,
see [13, 17] and references therein.

90 M. Schöberl and A. Siuka



5.3.3 Simulation Result

Finally in Figs. 5.1 and 5.2 we present a simulation result of the controlled heavy

chain system. The control objective is to stabilize the chain around a desired

equilibrium (set-point) where the initial condition does not correspond to the

desired set-point equilibrium.

We consider the simple but demonstrative case where the physical parameters

L ¼ 1; r ¼ 2:7; g ¼ 10;me ¼ 1

and the parameters of the controller are chosen as k1 ¼ 400, k2 ¼ 10, r ¼ 0.1.

Furthermore wdjX¼L ¼ 0. The initial conditions for the plant were chosen as

0
0.2

0.4
0.6

0.8
1 0

5
10

15
20

−0.5

0

0.5

1

X t

w

Fig. 5.1 Simulation results for the deflection w
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Fig. 5.2 Simulation results for the closed loop Hamiltonian HI
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wjt¼0 ¼ 1 ; pjt¼0 ¼ 0 , and for the controller qcjt¼0 ¼ 1; pcjt¼0 ¼ 0 such that

k ¼ 0 follows immediately.

5.4 Conclusion

In this paper the port-Hamiltonian concept has been used with respect to the desire

to obtain a modelling which stresses the physics behind the system equations

together with the focus on energy based control concepts leading to stable closed-

loop systems. This has been applied to systems described by ODEs first and then in

a second step the concepts have been adapted to problems described by partial

differential equations. The most interesting fact is that from the perspective of the

design process the finite- and the infinite-dimensional case are very similar, which

is no longer true when the proof of stability is the task.

Acknowledgement M. Schöberl is an APART fellowship holder of the Austrian Academy of

Sciences.
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Chapter 6

Passivity-Based Tracking Control of a Flexible

Link Robot

Peter Staufer and Hubert Gattringer

Abstract This contribution addresses modeling and control of highly complex

nonlinear mechanical systems such as an articulated robot with two flexible links

and three flexible joints. We employ the Projection Equation in subsystem formu-

lation, a very efficient method for modeling repeating assemblies and beam

elasticities and apply a Ritz expansion to obtain ordinary differential equations of

motion. For model-based control design, the small elastic deformations of the

beams are approximated with linear springs and dampers in a lumped element
model. On this basis, a control design with two degrees of freedom is proposed: a

flatness-based feed forward and a passivity-based feedback control technique of

interconnection and damping assignment. Further, we deal with acceleration and

angular rate measurements to compute all system states used in the feedback loop.

Finally, the proposed strategies are validated by measurements from a fast straight

line in space and a ball catching scenario.

6.1 Introduction

Lightweight structures may offer a good trade-off between high acceleration (and

thus short cycle times) on the one hand and good tracking accuracy on the other.

However, reducing inertia parameters and the weight of robots may lead to a loss in

stiffness, resulting in elastic deformations and vibrations at the tool center point

(TCP). Therefore, rational model-based control design must avoid or compensate

for this weakness.

In industrial setups, effective vibration suppression requires further

measurements, in addition to motor position detection at each servo drive. For

this purpose, we propose using acceleration and angular rate sensors, as they are

inexpensive and easy to mount.

P. Staufer (*) • H. Gattringer

Institute for Robotics, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
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6.1.1 Modeling

A very comprehensive survey of the most commonly used modeling techniques and

approaches for flexible robotic manipulators can be found in Ref. [1]. The

Langrange formalism of the second kind and the Hamilton representation are

well-established methods (Refs. [3, 4] provide excellent overviews). In contrast

the Projection Equation is a very effective procedure by means of modeling the

complex dynamics of highly nonlinear systems [2]. The Projection Equation is

usually used for mechanical systems consisting of a large number of bodies with

many degrees of freedom. The elastic links of the robot are assumed to be Euler-

Bernoulli beams, and elasticities are modeled with Ritz Ansatz functions.

Conventionally, dealing with energy-based control concepts requires analytic

procedures using energy functionals. As mentioned above, a reduced model in

which the elasticities are approximated with lumped elements (LEM) is introduced,

also called mass-spring-damper models or virtual spring-damper-elements, see
Refs. [5] or [6].

6.1.2 Tracking Control

Flexible manipulator control has been the focus of extensive research (e.g., see

Refs. [7, 8]). Some practical examples can be found in Refs. [9, 10], where linear

robots with flexible beams were considered. In Ref. [11], robot similar to that

considered in our work was discussed, although we use the flatness-based approach

to solve the tracking problem, see Ref. [12]. In Ref. [13], a general algorithm for the

inverse dynamics computation of robots with elastic links/joints was presented, but

there are some uncertainties in the elastic system – which are discussed below – that

prevent an exactly linearizing tracking control from achieving the desired results. In

the present work, we therefore propose a control structure with two degrees of
freedom (2DoF) for solving the tracking problem. Such an approach allows design-

ing the feedforward part independently of the feedback part. The feedforward

control is based on the flatness approach, while the feedback control of the

remaining tracking error dynamics builds upon energy-based concepts. Many

different approaches regarding this technique can be found in the literature. A

general overview of passivity-based control can be found in Refs. [14, 15]. The

fundamental idea of these approaches is energy preservation. Roughly speaking,

energy ports of external inputs and collocated outputs are considered. These ports

describe the power exchange between the system environment and the system

dynamics. On this basis, we propose the interconnection and damping assignment –
passivity based control (IDA-PBC) approach.
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6.2 Setup

Figure 6.1 shows the mechanical setup under consideration. Fast trajectories and

the influence of gravity result in two bending and torsional deflections of both arms.

Triple-axis analog angular rate and acceleration sensors are mounted on the elbow

and on the TCP to improve accuracy and minimize vibration. This sensor pack is

called IMU (internal measurement unit) – a low-cost product that operates on a

micro-electro-mechanical system (MEMS) principle. The three synchronous

motors of the robot are powered by servo drives with a common cascaded motor

joint control. Communication with a central computing unit and the servo drives is

realized via a very fast Ethernet Powerlink bus.

6.3 System Dynamics

As mentioned in the introduction, various modeling procedures are used in this

contribution. The Projection Equation and the canonical Hamilton Equations serve

as the fundamental bases for a Ritz Model and a LEM.

6.3.1 Methods

The equations of motion in configuration space can be written as

M€qþ gðq; _qÞ ¼ Q; (6.1)

with the mass matrixM, minimal coordinates q and their time derivatives, the vector

of nonlinearities g, and the generalized force vector Q. In state space, this reads

_x ¼ fðx; uÞ
y ¼ hðxÞ ð6:2Þ

with the state vector xT ¼ ðqT _qTÞ, the output vector y, and the input vector u.

6.3.1.1 Projection Equation

The Projection Equation for NB bodies is given by

XNB

i¼1

@Rvc

@ _q

� �T
@Rvc

@ _q

� �T� �
i

R _pþ R ~vIR Rp� Rf
e

R
_Lþ R ~vIR RL� RM

e

� �
i

¼ 0; (6.3)
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see Ref. [2] for details. This method projects the linear and angular momenta Rp and

RL respectively, the impressed forces Rf
e and impressed moments RM

e, formulated

in an arbitrary reference frame R, using the Jacobian matrices ð@Rvc=@ _qÞi and
ð@Rvc=@ _qÞi (in terms of the selected minimal velocities _q ) into the direction of

unconstrained motion. Variables Rvc and Rvc denote respectively the linear and

angular velocities of the center of gravity for each body i. For repeating system

modules as in our case (the upper arm and forearm, for instance), it is convenient to

use the subsystem formulation of the Projection Equation:

XN
n¼1

@ _yn
@ _q

� �T

Mn €yn þGn _yn �Qe
n

� � ¼ 0; (6.4)

combining similar segments of the rigid-elastic multibody system in a modular

way. Each subsystem n is associated with describing velocities _yn, a mass matrix

Mn, a matrix of Coriolis and centrifugal terms Gn, and generalized forces Qe
n. For

elastic multibody systems, however, _yn in the Projection Equation (6.4) contain

spatial derivatives of the holonomic minimal velocities _q, due to the dependencies

on space and time of the bending functions and torsion. A Ritz approximation for

the distributed parameters is applied to obtain ordinary differential equations; see

Ref. [2] for details.

Fig. 6.1 The elastic articulated robot is driven by three synchronous motors and Harmonic Drive
gears for base, shoulder and elbow. The lightweight upper arm and forearm have square hollow

cross-sections
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6.3.1.2 Canonical Hamiltonian Equations

Using the canonical Hamilton Equations requires the Legendre transformation

p ¼ @T

@ _q

� �T

¼ MðqÞ _q; (6.5)

where T denotes the kinetic energy and p the generalized momenta. Therefore, _q
must be replaced with _q ¼ MðqÞ�1

p in the Hamiltonian function, which leads to

Hðq; pÞ ¼ Tðq; pÞ þ VðqÞ; (6.6)

with the potential energy V. We thus yield for the Hamilton Equations

_x ¼ 0 E

�E �Rm

� � @Hðq;pÞ
@q

� 	T

@Hðq;pÞ
@p

� 	T

0
B@

1
CAþ 0

Q

� �
; (6.7)

with xT ¼ ðqT pTÞ. If the system representation with an affine system input u can be

given in

_x ¼ JðxÞ � RðxÞð Þ @H

@x

� �T

þ GðxÞu

y ¼ GðxÞT @H

@x

� �T

; ð6:8Þ

the system is called a port-controlled Hamiltonian system with dissipation (PCHD).
In this context,Q ¼ BðxÞu withGðxÞT ¼ ð0BðxÞTÞ is applied. The output vector y
is defined as a collocated output to the input vector u. The product of these variables

yT u characterizes an energy port and represents the power flow into the system

from the environment, while JðxÞ ¼ �JðxÞT represents the internal power flow and

RðxÞ ¼ RðxÞT the dissipative effects in the system. More details can be found in

Ref. [16].

6.3.2 Ritz Model

Here we present how – building on the foundations outlined in Sect. 6.3.1.1 – the

equations of motion can be computed by decomposing the system into subsystems.

The nth -subsystem of the Ritz model includes a motor-gear device and an elastic

beam as is the case for the upper arm and the forearm pictured in Fig. 6.2. The vector

of describing velocities of such a subsystem,
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_yTn ¼ vTo vT
F OM OA _qTR


 �
n
; (6.9)

contains the guiding velocities vo;vF and the relative angular velocities OA , OM .

The latter represent the arm and motor rotations relative to the moving frame.

In this context for an infinitesimal element dm, the vector to the center of

gravity is written as rTc ¼ ðx vðx; tÞ wðx; tÞÞ and the vector of rotation angles as

wT ¼ ð#ðx; tÞ � w0ðx; tÞ v0ðx; tÞÞ . For an approximation of the elastic deflection

vðx; tÞ ¼ vðxÞTqu in the Ry-direction and wðx; tÞ ¼ wðxÞTqw in the Rz-direction as

well as #ðx; tÞ ¼ qðxÞTq# for torsion in the Rx-direction, Ritz Ansatz functions are
introduced. Therefore, _yn also contains the time derivatives of the Ritz coordinates

qTR ¼ ðqTv qTw qT#Þ. All shape functions as well as the infinitesimal mass element dm
and the infinitesimal moments of inertia dJ are defined piecewise in order to include
the rigid parts (x< LA and x> LB ) of the link. The gear torque depends on the

difference between arm and motor angles qA � qM with the gear elasticity kG .
Finally, the motor unit is considered with mM and JM . The angular velocities are

defined as OA ¼ _qA and OM ¼ iG _qM with the gear ratio iG. The resulting ordinary

differential equations of motion are given in form of (6.1) with qT ¼ ðqTM qTA qTelÞ,
qTM 2 R

3 , qTA 2 R
3 and qTel 2 R

10 , where five Ritz coordinates are included for

each arm. More information on the modeling of elastic robots can be found in Refs.

[17, 18].

6.3.3 Lumped Element Model

Alternatively, we propose a relatively simple model – based on lumped elements –

for control design. This technique is justified since the considered elastic robot

fulfills the assumption of small elastic deformations. Various investigations have

shown that only three springs are essential for good concordance with the real

model: k1 , k2 , and k3 for elasticity in the base, the shoulder, and in the elbow

respectively (see Fig. 6.3). Obviously, all torsional effects and the elasticity in the

Fig. 6.2 An elastic

subsystem which includes a

motor-gear device and an

elastic beam such as the upper

arm and the forearm

100 P. Staufer and H. Gattringer



z-direction of the forearm are neglected in this model. In order to reintroduce these

effects, a position-dependent spring stiffness for the base k1ðqA2; qA3Þ (determined

experimentally) is suggested. The equations of motion can be decomposed into a

system of differential equations for motor movements (subscriptM) and a system of

arm equations (subscript A)

QM ¼ MM €qM þ QA þQF (6.10)

QA ¼ MA €qA þ GA _qA þ QG;A (6.11)

QA ¼ KðqM � qAÞ; (6.12)

with a motor torque vectorQM, a friction vectorQF, and a vector with gravitational

dependences QG;A . The algebraic (6.12) links (6.10) to (6.11), where K denotes

the stiffness matrix. The equations listed above constitute the fundamental basis for

the following control design.

6.3.4 Model Verification

Clearly, mathematical description and experiment must coincide for model-based

control design. In order to obtain a meaningful comparison, the desired reference

trajectory is selected in the following manner: In the first part of verification, each

axis is moved separately. In the second part, a straight line in space with a length

Fig. 6.3 Lumped Element Model limited to the first deformation mode
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of 2.1 m and a duration of 1.2 s is tracked. For a comparative study in terms

of dynamic model matching, the same cascaded PD motor joint parameters are used

in simulation and experiment. The plots in Fig. 6.4 show that simulation and

experimental results for both the Ritz model and the LEM are strongly concordant.

Since the Ritz model typically includes numerous parameters, the model is very

close to the experiment, but also sensitive to parameter uncertainties. The LEM, in

contrast, is relatively straightforward, as it depends only on a few parameters;

hence, it is suitable for control design.

6.4 Computation of the Arm Positions and Velocities

If the LEM is used for control design, the feedback loop requires knowledge

of the state vector

xT ¼ ðqTM qTA _qTM _qTAÞ: (6.13)

Fig. 6.4 Simulated and measured TCP accelerations
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Motor positionqM and motor velocity _qM are available on each servo drive. Next

we show a straightforward calculation of the unknown arm position qA and arm

velocity _qA with the installed IMUs. The main idea is a rebuild of the equations of

motion with the acceleration sensors

iaIMU;i�1 ¼ ðax;i ay;i az;iÞT¼ i _vi þ i ~vIi ivi � igi (6.14)

and the angular rate sensors

ivIMU;i�1 ¼ ðox;i oy;i oz;iÞT ¼ ivIi (6.15)

with i ¼ 2 for the upper arm frame and i ¼ 3 for the forearm frame (Fig. 6.3). In the

first step, the mathematical model with NB bodies is divided into N1 driving units

and N2 arm units. In the considered configuration, the interconnections between

these units equate to spring forces with

QA ¼ KðqM � qAÞ: (6.16)

These findings can easily be taken into account in the Projection Equation (6.3),

by replacing the projection in the direction of unconstrained motion with the

projection in arm-space according to

XN2

i¼1

@ivc

@ _qA

� �T @ivc

@ _qA

� �T� �
i

i _pþ i ~vIi ip� if
e

i
_L þ i ~vIi iL� iM

e

� �
i

¼ QA; (6.17)

where QA appears on the right-hand side. If we treat the beam and the tip body as

one unit, there are two arm units (upper arm unit and forearm unit), and therefore

N2 ¼ 2. If the IMUs are mounted at li , we yield with (6.14) and (6.15) and ipi ¼
mi ivi, if

e
i ¼ mi igi, iLi ¼ iJi ivIi, M

e ¼ 0:

QA ¼
X3
i¼2

@ivc

@ _qA

� �T
@ivc

@ _qA

� �T� �
i

�

mi iaIMU; i�1

iJi i _vIMU;i�1 þ i ~vIMU; i�1 iJi ivIMU;i�1

� �
: ð6:18Þ

Taking (6.16) into account, the arm position can be computed solving (6.18)

recursively, which is shown in the next steps. However, since the considered robot

features two heavy tip bodies on each link, all arm inertia can be neglected, because

the Steiner term dominates. Further, on the elbow and on the TCP lumped elbow

massm2 and lumped tip body massm3 are assumed respectively. For this reason, the

IMUs are mounted on the endpoint of each link, and we obtain
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QA �
X3
i¼2

@iv

@ _qA

� �T

i

mði _v þ i ~vIi iv� igÞ
� 

i

� m2

@2v2

@ _qA

� �T

2aIMU1 þ m3

@3v3

@ _qA

� �T

3aIMU2; ð6:19Þ

and

QA1 ¼ �m2 cosðqA2Þl2 az2 � m3 az3 cosðqA2Þl2 þ cosðqA2 þ qA3Þl3ð Þ
QA2 ¼ m2 l2 ay2 þ m3ðsinðqA3Þl2 ax3 þ ðcosðqA3Þl2 þ l3Þay3Þ
QA3 ¼ m3 l3 ay3: ð6:20Þ

Based on the above findings and on (6.16), this problem can be solved by starting

with the last line. In summary, the arm positions qA can be computed as a function of

the motor positions and the acceleration measurements at the elbow and the TCP. In

order to obtain the arm velocities, only the analog rate sensors are considered. The arm

velocities _qA are included linearly in ivIMU; i�1. Therefore we yield

vIMU ¼ 2vIMU1

3vIMU2

� �
¼ @vIMU

@ _qA

� �
_qA ¼ JðqAÞ _qA : (6.21)

With the pseudoinverse of J, we obtain the arm velocities in a very straightfor-

ward manner.

6.5 Tracking Control Framework

Several solutions to the tracking problem can be found in the literature. We use a

2DoF control scheme based on the LEM: a flatness based feedforward control uFF
using qA as the flat output y and a passivity-based tracking error feedback control

uFB: For simplicity, we employ a quasi-static tracking error system obtained

by linearization along trajectory qd (abbreviated LTV: linear time variant system),

with _qd ¼ €qd ¼ 0 and _pd ¼ 0 . Thus, the tracking error dynamics in Hamilton

representation can be written as

_xe ¼ _e
_pe

� �
¼ 0 M�1

e

�KP �RmM
�1
e

� �
e

pe

� �
þ 0

Be

� �
ue; (6.22)

with e ¼ q� qd, pe ¼ p� pd and

Me ¼ MM 0

0 MA

� �
; Rm ¼ DM 0

0 DA

� �
; KP ¼ KA �KA

�KA KA þKG

� �
; (6.23)
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where KP contains the spring stiffness matrix KA and the gravity force matrix

KG:The following abbreviations are used: DM ¼ diagð½dM1; dM2; dM3�Þ, DA ¼
diagð½dA1; dA2; dA3�Þ, KA ¼ diagð½k1; k2; k3�Þ, GT

e ¼ ð0BT
e Þ.

6.6 IDA-PB Control

In this section, we focus on the control design of port-controlled Hamiltonian

systems of the tracking error dynamics

_xe ¼ J� Rð Þ @He

@xe

� �T

þ Geue; ye ¼ GT
e

@He

@xe

� �T

; (6.24)

see also (6.8). The fundamental idea is based on the formulation of a target for the

closed loop systems, such as

_xe ¼ Jd � Rdð Þ @Hd

@xe

� �T

: (6.25)

Obviously, this results in

_xe ¼ J� Rð Þ @He

@xe

� �T

þGeue

¼! Jd � Rdð Þ @Hd

@xe

� �T

;

(6.26)

setting the original plant of the tracking error system in (6.24) equal to the desired

system in (6.25). Computing the control law directly with

Geue ¼ Jd � Rdð Þ @He

@xe

� �T

� J� Rð Þ @Hd

@xe

� �T

(6.27)

and the pseudoinverse of Ge , by some rearranging is apparently simple. Clearly,

in the case of a non-full rank matrix Ge (i.e. if the system is underactuated), there

are general limitations, which are shown next. In accordance with the literature

[14, 19], damping injection

Geue ¼ GeuI þ Jd � Rdð Þ @Hd

@xe

� �T

� J� Rð Þ @He

@xe

� �T

; (6.28)
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with an additional input uI is introduced. Roughly speaking, a proportional

feedback of the collocated output y with

uI ¼ �DI y ¼ �DIG
T
e

@Hd

@xe

� �T

(6.29)

is added. Thus, we obtain

Geue ¼ Jd � Rd


 � @Hd

@xe

� �T

� J� Rð Þ @He

@xe

� �T

(6.30)

with the new damping matrix Rd ¼ Rd þGe DI G
T
e . Up to this point, the approach

involves numerous design parameters, such as Hd > 0; Jd ¼ �JTd ; Rd ¼ RT
d ; DI

and is therefore unsuitable from the design perspective. Typically, simplification is

achieved by means of the IDA-PBC, which assumes a physical representation of the

desired closed loop system, with

Hd ¼ 1

2
eTKd eþ 1

2
pTeM

�1
d pe > 0 (6.31)

and

Jd ¼ �JTd ¼ 0 M�1
e Md

�MdM
�1
e S22d

" #
; Rd ¼ RT

d ¼ 0 0

0 R22d þ BeDIB
T
e

� �
: ð6:32Þ

Adding these equations and referring to (6.26) and (6.30), we can calculate

_xe ¼
0 E

�E �Rm

� � @He

@e

� �T

@He

@pe

� �T

0
BBB@

1
CCCAþ 0

Be

� �
ue

¼! 0 M�1
e Md

�M�1
e Md S22d � ðR22d þ BeDIB

T
e Þ

" # @Hd

@e

� �T

@Hd

@pe

� �T

0
BBB@

1
CCCA:

(6.33)

Satisfying the first constraint – the so-called matching condition of the

generalized momenta – becomes

_e ¼ @He

@pe

� �T

¼ M�1
e pe ¼! M�1

e Md
@Hd

@pe

� �T

¼ M�1
e MdðM�1

d peÞ ¼ _e: (6.34)
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As already mentioned, we obtain with the left-hand annihilator B?
e implying

B?
e Be ¼ 0 the non-actuated projected space

B?
e

�
@He

@e

� �T

þRm
@He

@pe

� �T

� MdM
�1
e

@Hd

@e

� �T

þ ðJ22d � R22dÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
JR

@Hd

@pe

� �T�
¼ 0;

(6.35)

for an underactuated system. Commonly, these are partial differential equations

and can be split for the LTV system into e-dependent and pe-dependent constraints

B?
e ðKP �MdM

�1
e KdÞ ¼ 0 (6.36)

B?
e ðRm þ JRM�1

d MeÞ ¼ 0; (6.37)

and results in a coefficient comparison. Nevertheless, proof of the stability remain

outstanding and implies for Hd > 0 (viz. Md; Kd > 0) in

_Hd ¼ � @Hd

@pe

� �
R22d þ BeDIB

T
e


 � @Hd

@pe

� �T

¼ � _eT MeM
�1
d R22d þ BeDIB

T
e


 �
M�1

d Me _e � 0; ð6:38Þ

if R22d þ BeDIB
T
e � 0. Choosing the design parameters is complex and not intui-

tive. For the elastic robot we use

Md ¼
K1MM 0

0 K�1
2 MAðqA;dÞ

" #
;

Kd ¼
K3 �KA K2

�K2KA K2 ðKA þKGÞ

� �
; ð6:39Þ

and

J22d ¼ 0 � 1
2
D2

1
2
D2 0

� �
; R22d ¼ 0 1

2
D2

1
2
D2 K�1

2 DA

� �
; (6.40)

with DI ¼ D1 , where all constraints are fulfilled, with K1;K2;K3;D1;D2 > 0 .

The structure of

MA ¼
ma11 0 0

0 ma22 ma23

0 ma23 ma33

2
4

3
5 (6.41)
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makes satisfying the constraints in (6.23) easy by choosing two identical entries in

K2 ¼ diagð½k21; k22; k22�Þ. Permutation then yields

M�1
d Me ¼ K�1

1 0

0 K2

� �
; MdM

�1
e ¼ K1 0

0 K�1
2

� �
; (6.42)

which always results in a diagonal form and provides decoupled constraints.

Finally, we obtain the IDA-PBC control law for the tracking error system

ue ¼ Bþ
e KAðeM � eAÞ �K1 K3 eM þK1 K2 KA eAð

þ ðDM � BT
eD1 Be K

�1
1 Þ _eM �D2 K2 _eA

�
: ð6:43Þ

with (6.30) and the pseudo inverse Bþ
e : Analysis of the above equation shows

that the cascaded motor joint control with very short cycle time is preserved with

Fig. 6.5 TCP accelerations tracking a straight line
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some rearranging. However, since the control concept requires knowledge of arm

positions and velocities, which result from relatively complex calculations, the

control scheme cannot be implemented entirely on the servo drives.

6.7 Experiments

As mentioned in the introduction, we verified the control strategy experimentally

in a fast straight line in space and a ball catching scenario.

6.7.1 Straight Line in Space

First, we tested the suggested concept for a straight line in space with the

following TCP trajectory performance specifications: length approx. 2.1 m, dura-

tion 1.05 s, maximum velocity 5 m/s, and maximum acceleration 18 m/s2. Fig-

ure 6.5 shows the desired TCP accelerations and those achieved with a common

motor joint control (PD) and with the suggested flatness-based feedforward control

in combination with the IDA-PBC feedback control design (IDA). Clearly, the PD

motor joint control cannot be used for fast applications because of the high

oscillations at the TCP. The proposed control concept, in contrast, suppresses

vibration considerably.

6.7.2 Ball Catching Scenario

In this section, we demonstrate the versatility of a lightweight structure – such

as the considered elastic robot. Since we have only three joints, orientation cannot

be controlled independently. Thus, we selected the setup shown in Fig. 6.6. The task

of the robot was to overtake and then catch the object with the mounted hat. This

process took 0.6 s from the start command to the catch and required approximately

Fig. 6.6 Ball catching setup:

The ball leaves the mount as

the robot moves sideways,

and accelerates towards the

ground
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1.4 m in gravitational direction from start to end position. The resulting TCP

acceleration in the y-direction (along which gravity is acting) is shown in

Fig. 6.7. At approximately t ¼ 0.6 s – when the ball is being caught – the measured

acceleration deviates from the ideal. Figure 6.8 shows an image sequence of this

scenario.

6.8 Interpretation and Conclusion

In summary, a wide range of techniques are required to handle elastic vibrations for

tracking fast trajectories with satisfying accuracy. We started with a detailed model

of the complex elastic multibody systems introducing Ritz Ansatz functions for

the distributed parameters. Due to the complexity of the system an efficient method

for modeling repeating assemblies, namely the Projection Equation in subsystem

representation is used. In contrast, a relatively simple model – the LEM – is

adequate for control design. Our control concept requires knowledge of arm

positions and velocities. To this end, we propose a technique in which acceleration

and angular rate sensors, mounted on the elbow and on the TCP can be used, to

derive these system states. The Projection Equation forms the basis of this

approach.

In a 2DoF control scheme, we use a flatness-based feedforward control and a

passivity-based feedback control. For the latter, the IDA-PBC feedback controller

was designed and resulted in a feasible feedback loop. Experimental results showed

a great improvement in terms of vibration damping.

In conclusion this approach to vibration suppression in highly nonlinear systems

is focused on techniques that meet the industrial demand for a lower-level imple-

mentation on common industrial hardware. We have shown that model-based

control using acceleration and angular rate sensors meets this demand.

Fig. 6.7 TCP accelerations in gravitational direction during ball catching
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Chapter 7

Norm-Optimal Iterative Learning Control

for a Pneumatic Parallel Robot

Dominik Schindele and Harald Aschemann

Abstract Iterative learning control is a popular method for accurate trajectory

tracking of systems that repeat the same motion many times. This paper presents a

norm-optimal iterative learning control scheme for a fast two-degree-of-freedom

parallel robot driven by two pairs of pneumatic muscle actuators. The robot consists

of a light-weight closed-chain structure with four moving links connected by

revolute joints. The two base joints are active and driven by pairs of pneumatic

muscles by means of toothed belt and pulley. The proposed control has a cascade

structure. The internal pressure of each pneumatic muscle is controlled by a fast

underlying control loop. Hence, the control design for the outer control loop can be

simplified by considering these controlled muscle pressures as ideal control inputs.

The angles of the active joints as well as the corresponding angular velocities

represent the controlled variables of the outer loop. The implemented ILC algo-

rithm takes advantage of actual state information as well as of data from previous

trials. Experimental results from an implementation on a test rig show an excellent

control performance.

7.1 Introduction

Pneumatic muscles are innovative tensile actuators consisting of a fibre-reinforced

vulcanised rubber tubing with appropriate connectors at both ends. The working

principle is based on a rhombical fibre structure that leads to a muscle contraction in

longitudinal direction when the pneumatic muscle is filled with compressed air.

This contraction can be used for actuation purposes. Pneumatic muscles are low

cost actuators and offer several further advantages in comparison to classical

pneumatic cylinders: significantly less weight, no stick–slip effects, insensitivity

D. Schindele (*) • H. Aschemann

University of Rostock, Rostock 18059, Germany
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to dirty working environment, and a higher force-to-weight ratio. A major advan-

tage of pneumatic drives as compared to electrical drives is their capability of

providing large maximum forces for a longer period of time. In this case electrical

drives are in risk of overheating and may result in increasing errors due to thermal

expansion. Different kinematics actuated by pneumatic muscles have been

investigated by the authors so far, such as a high-speed linear axis [5] or a delta

parallel robot [13]. Applications with pneumatic muscles of other researchers are

presented e.g. in [17], where a proxy-based sliding mode control for a 2-dof serial

manipulator has been proposed, or in [18], where an adaptive control structure for a

platform connected by a spherical joint to the base with three pneumatic muscles

has been introduced.

In this contribution a norm-optimal iterative learning control (NOILC) approach

is applied to a two-degree-of-freedom parallel robot actuated by four pneumatic

muscles. Parallel kinematics are well known for providing high stiffness, and

especially for the capability of performing fast and highly accurate motions of the

end-effector. The parallel robot shown in Fig. 7.1 is characterised by a closed-chain

kinematic structure formed by four moving links and the robot base. All joints are

revolute joints, two of which – the cranks – are actuated by a pair of pneumatic

muscles, respectively. The coordinated contraction of a pair of pneumatic muscles

is transformed into a rotation of the according crank by means of a toothed belt and

a pulley. The mass flow rate of compressed air into and out of a pneumatic muscle is

provided by a separate proportional valve for each pneumatic muscle. The pneu-

matic muscles are characterised by dominant nonlinearities, namely the force

characteristic and the volume characteristic.

The paper is structured as follows: first, the modelling of the mechatronic system is

addressed. For the nonlinear characteristics of the pneumatic muscle, i.e. the muscle

Fig. 7.1 Test rig of the parallel robot

114 D. Schindele and H. Aschemann



volume and the muscle force, polynomial descriptions are used in terms of contraction

length and internal muscle pressure. Second, a cascade control scheme for the parallel

robot is proposed. The inner control loops involve a fast pressure control for each

muscle, respectively. The outer control loop contains an iterative learning control of the

two crank angles as well as the corresponding velocities as controlled variables and

provides the reference pressures for the inner pressure control loops. The iterative

learning control (ILC) algorithm proposed in this paper is based on a norm-optimal

principle exploiting optimal feedback and feedforward actions, see [1]. Finally, the

proposed control strategy has been implemented and investigated at the test rig of

the Chair of Mechatronics, University of Rostock. At which, desired trajectories for the

end-effector position can be tracked with high accuracy.

7.2 Modelling of the Parallel Robot

The modelling of the pneumatically driven parallel robot involves the mechanical

subsystem and the pneumatic subsystem, which are coupled by the torques resulting

from the tension forces of a pair of pneumatic muscles, respectively. The control-

oriented multi-body model of the mechanical part consists of three rigid bodies

(Fig. 7.2): the two cranks as actuated links with identical properties (mass mA ,

reduced mass moment of inertia w.r.t. the actuated axis JA;red, length of the link lA,
pulley radius r) and the end-effectorE (massmE), which can be modelled as lumped

mass. The inertia properties of the remaining two links with length lP , which are

designed as light-weight construction, shall be neglected in comparison to the other

links. The inertial xz-coordinate system is chosen in the middle of the straight line

that connects both base joints with distance 2a, as depicted in (Fig. 7.2). The motion

of the parallel robot is completely described by introducing two generalised

coordinates q1ðtÞ and q2ðtÞ that denote the two crank angles, which are combined

in the vector q ¼ ½q1; q2�T. Analogously, the vector of the end-effector coordinates
is defined as rE ¼ ½xE; zE�T .

The end-effector position rE follows for given crank angles q from the direct

kinematics rE ¼ rEðq; k3Þ. Each vector q allows for two different positions of the

end-effector. For this reason, the configuration parameter k3 as shown in Fig. 7.2 is

introduced, which takes this ambiguity into account. The velocity, acceleration and

the jerk of the end-effector can be obtained by subsequent differentiations

_rE ¼ J q; k3ð Þ _q; (7.1)

€rE ¼ J q; k3ð Þ€qþ _J q; k3ð Þ _q; (7.2)

:
€rE ¼ J q; k3ð Þ :€qþ 2 _J q; k3ð Þ€qþ €J q; k3ð Þ _q; (7.3)

with J q; k3ð Þ ¼ @rE
@q denoting the Jacobian.

For a given end-effector position rE the corresponding crank angles result from

the inverse kinematics q ¼ qðrE; k1; k2Þ . Analogue to the direct kinematics the
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configuration parameters k1 and k2 account for the given ambiguity (Fig. 7.2).

Considering the direct kinematics, the angular velocity, acceleration and jerk of the

crank angles can be calculated

_q ¼ J�1 q; k3ð Þ _rE; (7.4)

€q ¼ J�1 q; k3ð Þ €rE � _J q; k3ð Þ _q� �
; (7.5)

:
€q ¼ J�1 q; k3ð Þ :

€rE �2 _J q; k3ð Þ€q� €J q; k3ð Þ _q�:�
(7.6)

To determine the according equations of motion for the actuated links,

Lagrange’s equations can be applied

d

dt

@T

@ _qi

� �
� @T

@qi
þ @U

@qi
¼ Qn

i ; (7.7)

where T denotes the kinetic energy, U the potential energy and Qi the generalised

torques. Evaluating (7.7) leads to the following form of the equations of motion

MðqÞ €q þ kðq; _qÞþGðqÞ ¼ Qnðq; u; zÞ; (7.8)

with the symmetric mass matrix MðqÞ , the vector of centrifugal and Cori-

olis terms kðq; _qÞ and the gravity torque vector GðqÞ: The vector of the

generalised torques Qnðq; u; zÞ ¼ t1 � tU1; t2 � tU2½ �T consists of the drive

torques ti ¼ r FMil pMil; qið Þ � FMir pMir; qiÞð �½ and the disturbance torques tUi ,
whereas the index i ¼ 1; 2f g denotes the drive under consideration. The vector

x

z

r

a a

q1(t) q2(t)

mElP lP

mA, JA,red, 1A
k1 = 1

k1 = -1
k3 = -1

k2 = 1

k3 = 1

k2 = -1

Fig. 7.2 Two-degree-of-freedom parallel robot driven by pneumatic muscles (left). Ambiguity of

the direct and inverse kinematics (right)
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of input variables is given by u ¼ pM1l; pM1r; pM2l; pM2r½ �T, the vector of distur-

bance torques by z ¼ tU1; tU2½ �T .

7.3 Modelling of the Pneumatic Actuators

The parallel robot is equipped with four pneumatic muscle actuators. A mass flow

_mMij – the index j ¼ l; rf g stands for the left or right pneumatic muscle of each

drive – into the pneumatic muscle leads to an increase in internal pressure pMij ,

associated with a contraction D‘Mij of the muscle in longitudinal direction. This

contraction effect can be exploited to generate forces. The contraction lengths of the

pneumatic muscles are related to the generalised coordinates, i.e. the crank angles qi.
The position of the crank angle, where the corresponding right pneumatic muscle is

fully contracted, is denoted by qi0 . Consequently, by considering the transmission

consisting of toothed belt and pulley, the following constraints hold for the contrac-

tion lengths of the muscles

D‘Mil qið Þ ¼ r qi � qi0ð Þ; (7.9)

D‘Mir qið Þ ¼ D‘M;max � r qi � qi0ð Þ: (7.10)

Here, D‘M;max is the maximum contraction given by 25% of the uncontracted

length. The force characteristic FMijðpMij;D‘MijÞ of the pneumatic muscle yields the

resulting static tension force for given internal pressure pMij as well as given

contraction length D‘Mij. This nonlinear force characteristic has been identified by

static measurements and, then, approximated by the following polynomial

description

FMijðpMij;D‘MijÞ ¼
�FMij ðpMij;D‘MijÞ if �FMij > 0

0 else

�
; (7.11)

with

�FMij ¼
X3
m¼0

am D‘mMij

� �
pMij �

X4
n¼0

bn D‘nMij

� �
: (7.12)

As the maximum internal pressure is limited by a maximal value of pMij;max ¼ 7

bar, the ideal gas equation pMij ¼ rMij RTMij can be utilised as accurate description

of the thermodynamic behaviour of the compressed air. Here, the density rMij ,

the gas constant R, and the thermodynamic temperature TMij are introduced.

The thermodynamic process can be described as a polytropic change of state

pMij=rnMij ¼ const:, where n ¼ 1:26 denotes the identified polytropic exponent.
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The volume characteristic of the pneumatic muscle can be accurately approximated

by the polynomial function

VMij D‘Mij; pMij

	 
 ¼ X3
k¼0

ak D‘kMij

� �
pMij þ

X3
l¼0

bl D‘lMij; (7.13)

where the coefficients ak and bl have been identified by measurements. Finally, the

state equation for the internal muscle pressure follows directly from a mass flow

balance in combination with the pressure-density relationship [4]

_pMij ¼
n

VMij þ n
@VMij

@pMij
pMij

uMij � @VMij

@D‘Mij

dD‘Mij

dqi
pMij _qi

� �
; (7.14)

where uMij ¼ RTMij _mMij denotes the input variable. Usually, the temperatureTMij is

not measured but approximated by the constant temperature T0 of the ambiance [8].

7.4 Cascaded Control Structure

For control design a cascaded structure has been chosen. The mechanical subsystem

(7.8) is controlled by an outer control loop, whereas the pneumatic subsystem (7.14)

is controlled by an underlying control loop. In this way the complexity at control

design is reduced and a fast control of the internal muscle pressures is ensured.

The proposed control structure is depicted in Fig. 7.3. The nonlinear characteristic

of the proportional valves has beenidentified by measurements, see [5], and is

compensated by its approximated inverse valve characteristic (IVC) in each input

Fig. 7.3 Cascaded control structure
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channel. Hence, the variableuMij can be used as new control input for the underlying

pressure control. For control design of the internal muscle pressures the differential

flatness of the pneumatic subsystem is exploited to compensate all nonlinearities

and a control Lyapunov function is designed to stabilise the dynamics of the

tracking error eij ¼ pMijd � pMij , cf. [15] for details. The control design for the

outer control loop can be simplified by considering the internal muscle pressures

pMij as ideal control inputs. The controlled variables of the outer loop are

represented by the crank angles qi as well as the corresponding velocities _qi . For
this control loop a norm-optimal iterative learning control approach is employed as

proposed in [1] or [14]. For this purpose the tracking error of the k-th trial is stored

in the memory and is utilised by the ILC controller to improve the control perfor-

mance of the k þ 1ð Þ-th trial. Thus, remaining model uncertainties can be

compensated iteratively.

7.5 Norm-Optimal Iterative Learning Control

ILC is a method for improving the tracking behaviour of repetitive motion tasks.

For this purpose the tracking error of the actual trial is employed to improve the

control behaviour for the future trials [9]. Repetitive tasks can be found in many

industrial applications, such as automated manufacturing systems, chemical pro-

cesses or robotics. Since iterative learning control was introduced by [3], a lot of

different algorithms have been derived. An overview of ILC is presented in [7] or

[10]. Several control disciplines have had an influence on the area of ILC, such as

the optimal control theory, see e.g. [16]. The norm-optimal iterative learning

control (NOILC) employed in this paper is described in detail in [1]. Often, ILC

is a pure feedforward control strategy. In contrast, the ILC algorithm presented in

this contribution can be considered as a combination of previous cycle feedback,

which can be interpreted as a feedforward action, and current cycle feedback. For

the control design a discrete-time system representation in the following form is

considered

xjðk þ 1Þ ¼ f xjðkÞ; ujðkÞ
	 
 ¼ AxjðkÞ þ BujðkÞ;

yjðkÞ ¼ h xjðkÞ
	 
 ¼ CxjðkÞ ð7:15Þ

with the state vector xjðkÞ , the input vector ujðkÞ and the output vector yjðkÞ .
The index j denotes the current trial and k ∈ ℕ0, ð0 � k � NÞ stands for

the discrete-time index. Introducing the super-vectors1 y ¼ yTj ð1Þ;
h

yTj ð2Þ; � � � ; yTj
ðNÞ�T and u ¼ uTj ð0Þ; uTj ð1Þ; � � � ; uTj ðN � 1Þ

h iT
as well as the matrix G as

1 The super-vectors are marked by the omission of the time argument.
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G ¼
CB 0 � � � 0

CAB CB � � � 0

..

. ..
. . .

. ..
.

CAN�1B CAN�2B � � � CB

2
664

3
775; (7.16)

the system (7.15) can be stated in the form

y ¼ Gu; (7.17)

for vanishing initial conditions. Then for a desired reference trajectory yd the

tracking error is given by

e ¼ yd � y ¼ yd � Gu: (7.18)

The problem to be solved now is to determine the optimal solution u� of the

minimisation problem

u� ¼ argmin
u

ek k2 ¼ argmin
u

yd � Guk2: (7.19)

In the ideal case, when the design model matches the real system exactly, the

solution of (7.19) can be found in one step u� ¼ G�1yd if G is invertible. In the

given case of an imperfect system model with remaining uncertainties and

disturbances, however, an iterative solution is needed, which is performed on the

plant during its operation as an experimental procedure here. Thus, an algorithm is

considered, which aims at reducing the norm of the tracking error at each iteration

step jk. For this purpose the norm-optimal problem, which has to be solved for the

iterated inputs ujþ1, is formulated as

ujþ1 ¼ argmin
ujþ1

Jjþ1 ujþ1

	 

; (7.20)

with a quadratic cost function Jkþ1 according to

Jjþ1 ¼ 1

2
eTjþ1Qejþ1 þ ujþ1 � uj

	 
T
R ujþ1 � uj
	 
h i

: (7.21)

Considering the necessary optimality condition

@Jjþ1

@ujþ1

¼ �GTQejþ1 þ R ujþ1 � uj
	 
¼! 0; (7.22)

the optimal control input results in

ujþ1 ¼ uj þ R�1GTQejþ1: (7.23)
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This solution, however, is anti-causal. To obtain a causal solution, the cost

function can be reformulated as follows

Jjþ1 ¼ 1

2

XN
k¼1

eTjþ1ðkÞQðkÞejþ1ðkÞ
"

þ
XN�1

k¼0

ujþ1ðkÞ � ujðkÞ
	 
T

RðkÞ ujþ1ðkÞ � ujðkÞ
	 
#

¼ h0 xjþ1ðNÞ
	 
þXN�1

k¼0

f0 xjþ1ðkÞ; ujþ1ðkÞ; ujðkÞ
	 


; ð7:24Þ

with the weighting matrices QðkÞ and RðkÞ are chosen symmetric and positive

definite. For solving the given optimisation problem, the maximum principle of

Pontryagin is employed. By utilising the Hamiltonian Hjþ1 with the adjoint states

cjðkÞ

Hjþ1 ¼ �f0 xjþ1ðkÞ; ujþ1ðkÞ; ujðkÞ
	 
þ cT

jþ1 k þ 1ð Þ f xjþ1ðkÞ; ujþ1ðkÞ
	 


(7.25)

the origin system can be described by the following costate system, cf. [6]

xjþ1 k þ 1ð Þ ¼ @Hjþ1

@cjþ1 k þ 1ð Þ ¼ Axjþ1ðkÞ þ Bujþ1ðkÞ; (7.26a)

cjþ1ðkÞ ¼
@Hjþ1

@xjþ1ðkÞ ¼ ATcjþ1 k þ 1ð Þ þ CTQðkÞejþ1ðkÞ; (7.26b)

with the terminal condition cjþ1ðNÞ ¼ � @h0
@xjþ1ðNÞ ¼ CTQðNÞejþ1ðNÞ . Further, the

necessary optimality condition

@Hjþ1

@ujþ1ðkÞ ¼ 0 ¼ RðkÞ ujðkÞ � ujþ1ðkÞ
	 
þ BTcjþ1 k þ 1ð Þ (7.27)

leads to

ujþ1ðkÞ ¼ ujðkÞ þ R�1ðkÞBTcjþ1 k þ 1ð Þ: (7.28)

Under the assumption of a full state knowledge, the following ansatz for the

adjoint equations is made

cjþ1ðkÞ ¼ �KðkÞ xjþ1ðkÞ � xjðkÞ
	 
þ jjþ1ðkÞ: (7.29)
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By inserting (7.29) in (7.26), it can be shown, that the postulated solution (7.29)

and the formal solution are equal, if KðkÞ and jjþ1ðkÞ are satisfying specific

equations. The matrix gain KðkÞ can be calculated in descending sample order as

solution of the discrete matrix Riccati equation

KðkÞ ¼ ATK k þ 1ð ÞAþCTQ k þ 1ð ÞC� ATK k þ 1ð ÞB
� BTK k þ 1ð ÞBþR k þ 1ð Þ	 
�1

BTK k þ 1ð ÞA; (7.30)

with the terminal condition KðNÞ ¼ CTQðNÞC . The feedforward term jjþ1ðkÞ ,
depending on the tracking error of the previous trial, is also computed in descending

sample order

jjþ1ðkÞ ¼ AT I � K k þ 1ð ÞB BTK k þ 1ð ÞBþ R k þ 1ð Þ	 
�1
BT

h i
� jjþ1 k þ 1ð Þ þ CTQðkÞejðkÞ; (7.31)

with the terminal condition jjþ1ðNÞ ¼ CTQðNÞejðNÞ. Finally, the update law for the

control input results from (7.28) and (7.26)

ujþ1ðkÞ ¼ ujðkÞ � BTK k þ 1ð ÞBþ R k þ 1ð Þ	 
�1
BT

� K k þ 1ð ÞA xjþ1ðkÞ � xjðkÞ
	 
þ jjþ1 k þ 1ð Þ

h i
: (7.32)

The block diagram of the NOILC-algorithm is depicted in Fig. 7.4. Including

current cycle feedback in the ILC control law (7.32) results in an improved

robustness. Regarding the implementation, the matrix gain KðkÞ has to be calcu-

lated only once at the initialisation of the ILC algorithm. The evaluation of (7.31),

which depends on the control error of the previous trial, can be performed after the

end of every trial. Only the equation for the input update (7.32), which involves

both feedback and feedforward actions, have to be evaluated during each sample

Fig. 7.4 Block diagram of the NOILC-algorithm
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time step. In [1] and [11], it is shown that the algorithm converges exponentially

with the following convergence rate

ejþ1

  � 1

1þ s2
ej

 ; (7.33)

with s satisfying the condition GR�1GTQ � s2I. As a result the convergence rate
can be affected by the weighting matricesQ andR. The presented NOILC algorithm

supposes a full knowledge of the system states. This implies that all system states

are either measurable or can be observed. A similar algorithm for continuous time

systems is presented in [2].

7.6 NOILC Applied to the Parallel Robot

As basis for the NOILC approach, the state-space representation of a linear

discrete-time system is needed. Hence, a linearisation and a subsequent

discretisation of the state-space equation

_q
€q

� �
¼

"
_q

M�1ðqÞðQn q; u; zð Þ � kðq; _qÞ � GðqÞÞ

#
; y ¼ Cx ¼ x; (7.34)

with x ¼ q; _q½ �T ; u ¼ pM1l; pM1r; pM2l; pM2r½ �T is mandatory. For this purpose the

system is linearised along a desired trajectory using a first-order Taylor series

expansion, whereas the explicit Euler method is employed for time discretisation.

To further reduce the computational effort at each time step, constant terms

appearing in the ILC algorithm can be combined and calculated only once at

initialisation of the algorithm. Such an approach is also presented in [12] as fast

NOILC (F-NOILC). As the original system model of the high-speed linear axis is

nonlinear, the error made by a linearisation of the system as well as the error

resulting from disregarding model uncertainties and disturbances z have to be

compensated by the learning law. The proposed algorithm achieves good conver-

gence and yields excellent tracking performance as shown by experimental results

in Sect. 7.7 even though the controlled system is nonlinear.

7.7 Experimental Results

Both tracking performance and steady-state accuracy w.r.t. the end-effector posi-

tion rE have been investigated by experiments at the test rig of the Chair of

Mechatronics, University of Rostock. It is equipped with four pneumatic muscles.

The internal pressures of the muscles are measured by piezo-resistive pressure

7 Norm-Optimal Iterative Learning Control for a Pneumatic Parallel Robot 123



sensors. The crank angles qi are obtained by two rotary encoders providing high

resolution. The control algorithm has been implemented on a dSpace real-time

system with a sample rate of 1 ms. The desired value for the time derivative of the

internal muscle pressure is obtained by a model-based calculation using only

desired values, i.e.

_pMijd ¼ _pMijd q; _q; €q;
:::
q; pMid; _pMidð Þ: (7.35)
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Here pMid and _pMid denote the desired mean pressure and its time derivative for

the left and the right drive. The desired trajectories for the end-effector position and

its corresponding time derivatives are obtained from a trajectory planning module

that provides synchronous time optimal trajectories. For the experiments the trajec-

tory shown in Fig. 7.5 have been used. The maximum velocities are approx. 0.9 m/s
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Fig. 7.7 Long-term performance of the NOILC approach
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and the maximum accelerations are approx. 5 m/s2. In Fig. 7.6, the root-mean

square (RMS) errors

eRMS;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

xdðkÞ � xðkÞð Þ2
vuut ; eRMS;z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

zdðkÞ � zðkÞð Þ2
vuut (7.36)

are depicted for one run with ten iterations. Already after three cycles the RMS

error of both axes is below 0.5 mm. The robustness of the control algorithm is

investigated by applying an external disturbance to the robot, as shown in the right

part of Fig. 7.6. The system remains stable, and after only a few iterations the RMS

error is as small as before. To achieve also a good long-term performance the

signals uk are filtered offline between the separate trials by a low-pass filter with

zero-phase distortion. Thus, unreproducible effects are faded out and an increase of

the error after several iterations is avoided. An experiment with 100 iterations, see

Fig. 7.7, shows that the system remains stable also for a large number of iterations,

and the RMS error remains bounded. The chronological sequence of the tracking

errors of the controlled variables eq1 and eq2 are depicted in Fig. 7.8, whereas the

tracking errors in the workspace ex and ez are shown in Fig. 7.9 for one trial in each
case. Here, the errors were recorded during the tenth iteration. As can be seen, the

maximum error in the workspace during the acceleration and deceleration intervals
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is approx. 1.5 mm, whereas the maximum steady-state error is below 0.9 mm.

Hence, the tracking behaviour is significantly improved as compared to non-

learning model-based control approaches, such as sliding-mode control, cf. [15].

7.8 Conclusion

In this paper an iterative learning control approach for trajectory control is

presented for a 2-dof parallel robot driven by pneumatic muscles. The modelling

of this mechatronic system leads to a system of eight nonlinear first-order differen-

tial equations. For the nonlinear characteristics of the pneumatic muscles

polynomials serve as good approximations. The control has a cascaded structure:

while the internal muscle pressures represent the controlled variables for the inner

control loop, the crank angles and the corresponding velocities are controlled in the

decoupling outer loop. For the outer control loop a norm-optimal learning controller

was designed. The implemented NOILC algorithm uses informations of the state

variables of the current trial as well as the previous trial and offer exponential

convergence rates. Experimental results emphasize the excellent closed-loop per-

formance with maximum position errors of approx.1.5 mm.
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Chapter 8

Balance and Posture Control for Biped Robots

Maximo A. Roa and Christian Ott

Abstract This work presents an overview of a new approach for balance and

posture control by regulating simultaneously the center of mass position and

trunk orientation of a biped robot. After an unknown external perturbation deviates

the robot from a desired posture, the controller computes a wrench (force and

torque) required to recover the desired position and orientation, according to a

compliance control law. This wrench is distributed to predefined supporting contact

points at the feet. The forces at these points are computed via a constrained

optimization problem, adopted from the grasping literature, which minimizes the

contact forces while including friction restrictions and torque limits at each joint.

8.1 Introduction

The goal of obtaining biped robots able to interact with humans in everyday tasks and

environments, calls for a proper control system that allows the robot to balance

(compliantly) in the presence of unknown external perturbations. Such balance, i.e.

the control of the linear and angular momentum of the system, is achieved through the

application of suitable contact forces to the ground, using the finite support area of the

feet [12]. Traditional approaches use a dynamics based walking pattern generator that

provides desired trajectories for the underlying position controllers. The execution of

such trajectories requires the addition of force sensors in the feet for implementing a

Zero Moment Point (ZMP) control loop. In this way, a large range of stepping and

walkingmotions can be generated. Several position-based balance compensators have

been developed, although in general they require the measurement of force at every

expected point of interaction with the external environment, which increases the

computational load and creates time delays in the controller [1, 7, 20, 22].
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Joint torque sensing and control allows sensitive compliance and impedance

control [14], but requires additional instrumentation in the drive units. Torque

sensing has been applied explicitly in the hydraulic humanoid robot CB [3] and

implicitly via serial elastic actuators in [17]. At DLR, joint torque sensors are

integrated in an electrically driven biped robot based on the torque controlled

drive units of the DLR-KUKA Light-Weight Robot (Fig. 8.1), which can be

position or torque controlled [15].

Passivity-based impedance and compliance controllers based on joint torque

sensing have been traditionally applied to manipulation tasks [1, 14]. The applica-

tion of such framework to biped balancing control was first proposed in [9]. This

controller provides gravity compensation, making the robot compliant and thus

facilitating physical interactions and adaptation to unknown external forces. It sets

a ground reaction force able to compensate perturbations on the robot position, and

transforms the desired force to joint torques directly. It is able to cope with an

arbitrary number of interaction points with the environment, but does not require

force measurement at such points and does not use inverse kinematics or dynamics.

The controller was tested both in simulation and on a real humanoid [3], and has

Fig. 8.1 DLR-Biped: a biped walking machine with torque controlled joints
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been extended to compensate for yaw perturbations and to provide adaptability to

unknown rough terrain [8].

More recently, a dynamic balance force controller was proposed for determining

full body joint torques based on the desired motion of the Center of Mass (COM),

combined with some desired virtual task forces [21]. The approach controls the

motion of the COM and the angular momentum of the robot by computing suitable

contact forces via a quadratic optimization problem. The mapping of the contact

forces to the joint torques is solved considering the nonlinear multi-body dynamics

of the system. In addition to the force distribution, the control of internal forces

during multicontact interaction tasks was studied in [19], based on the concept of a

virtual-linkage model, which provides a representation of the internal and COM

resultant forces with respect to reaction forces on the supporting surfaces.

A balancing controller based on the independent control of the desired ground

reaction force and center of pressure at each support foot was also proposed [11],

which allows dealing with different ground geometry. The approach minimizes

ankle torques while generating desired rates of change of momenta. The perfor-

mance of the approach is shown with simulated experiments.

This work presents an overview of a new approach for a posture controller able

to deal with unknown external perturbations by distributing the required balancing

forces among predefined contact points [16]. The approach is strongly based on the

observation that the problems of grasping an object and balancing a robot are

fundamentally similar, in the sense that both try to achieve a desired wrench Fo

(on the object in the grasping case, on the robot in the balancing case) based on the

application of suitable forces at the contact points fi (at the fingertips or at the feet).
Figure 8.2 illustrates such similarity. By using the basic theory of grasping, the

force required to counteract external perturbations is distributed to the contact

points; the final solution is obtained via a constrained optimization problem. The

approach is validated in simulation, and tested on the DLR biped.

a b

W

O

f1

f1

f2

f2

Fo

Fo

Fig. 8.2 Force distribution is fundamentally similar in (a) Grasping and (b) Balancing
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8.2 Grasping Basics

An object is grasped for resisting external perturbations or to manipulate it in a

dexterous way. The fulfillment of such tasks depends on the selection of suitable

forces fi applied at contact points Pi such that they produce a desired net wrench Fo

on the object [13]. Each contact location is described by its relative position rp and
orientation Rp with respect to the object reference frame O, commonly located at

the COM of the object (Fig. 8.3).

In general, a fingertip can only apply forces in certain directions, described by

a contact model. The friction properties at the fingertip are commonly

described using Coulomb’s friction model, which states that slippage is avoided

when f t � mf n , where f n and f t are the magnitudes of the normal and tangential

components, respectively, and m is the friction coefficient. Therefore, the set of

allowable contact forces at the contact point is

F i ¼ f i 2 R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ix þ f 2iy

q
� m fiz ; fiz � 0

���n o
(8.1)

Geometrically,F i represents a friction cone with axis along the surface normal and a

semiangle of’ ¼ atan (m). Besides the friction constraints, the forces must also fulfill

the positivity restriction, i.e. the fingers can push but cannot pull the object.

The generalized force Fi that can be applied at a contact point is described by

Fi ¼ Bi fi, with Bi being the wrench basis that characterizes the contact model. For

instance, for a frictional point contact, the applied wrench is

Fi ¼

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

2
6666664

3
7777775

fix
fiy
fiz

2
4

3
5 ¼ Bi fi (8.2)

O
x

y

z

rp

Pi

xp

yp

zp

fi

Fig. 8.3 Object and contact coordinate frames
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The wrench exerted by a single contact on the object, expressed in the object

coordinate frame, is given by

FOi
¼ AdTopBi fi ¼ Gi fi (8.3)

where Gi ¼ AdTopBi is called the contact map. AdTop is the transpose of the adjoint

matrix for the homogeneous transformation from the frame P to O, given by

AdTop ¼
Rp 0

r̂p Rp Rp

� �
(8.4)

with r̂p the cross product matrix for the vector rp ¼ xp yp zp
� �T

, given by

r̂p ¼
0 �zp yp
zp 0 �xp
�yp xp 0

0
@

1
A (8.5)

The total wrench FO on the object is the sum of the contributions from each one

of the � contacts, expressed in the same coordinate frame O,

FO ¼ G1 . . .G�

� 	 f 1
..
.

f �

2
64

3
75 ¼ GfC (8.6)

where G is the grasp map, given by

G ¼ AdTop�1
B1 � � �AdTop� B�

h i
(8.7)

Assuming � frictional point contacts, the grasp map is further simplified to

G ¼ Rp1 � � � Rp�

r̂p1 Rp1 � � � r̂p� Rp�

� �
(8.8)

8.3 Dynamic Model

The unconstrained dynamics of a biped robot can be described using the velocity

vector v ¼ ð·T ;vT ; _qTÞT , where · 2 R3 and v 2 R3 are the linear and angular

velocities of a frame B attached to a base link (e.g. trunk) with respect to the world

coordinate frame W , and _q 2 Rn are the angular velocities for the n joints of the
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robot. Let rb 2 R3 andRb 2 SOð3Þ be the position and orientation of the base frame

B; then, the dynamical model is

MðqÞ _yþ Cðq;yÞyþ pðq;RbÞ ¼
0

0

Ü

0
@

1
Aþ

X
k¼fr;lg

JkðqÞTFk (8.9)

where M(q), C(q, y)y, and p(q, Rb) are the robot’s inertia matrix, the vector of

centrifugal and Coriolis terms, and the vector of gravity terms, respectively;Ü 2 Rn

is the vector of actuator torques, and Fk 2 R6 are the body wrenches acting at the

robot’s right (k ¼ r) and left foot (k ¼ l). Moreover, JkðqÞ ¼ ½AdkbðqÞ JbkðqÞ�, with
Adkb(q) being the adjoint matrix for the homogeneous transformation between the

feet and the base link, and JbkðqÞ is the body Jacobian for the feet [13].

This dynamical model is further simplified if the COM velocity _rC is used instead

of the velocity of the base link [23]. Then, y is replaced by yC ¼ ð _rTC;vT ; _qTÞT via

y ¼
·
v
_q

0
@

1
A ¼

RT
b

B r̂C ðqÞ �JBCðqÞ
0 I 0

0 0 I

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

_rC
v
_q

0
@

1
A

|fflfflffl{zfflfflffl}
yC

(8.10)

where JBCðqÞ ¼ @BrCðqÞ=@q , and BrCðqÞ is the COM position represented in the

coordinate frame B. With these new coordinates, the dynamic model is transformed to

mI 0

0 �MðqÞ
� �

_yC þ
0

�Cðq;yCÞyC

� �
þ mg

0

� �
¼

0

0

Ü

0
B@

1
CAþ

X
k¼fr;lg

�Jk ðqÞTFk

(8.11)

where m is the total mass, and �MðqÞ and �Cðq;yCÞyC are terms resulting from the

coordinate transformation (8.10). The resulting Jacobian matrices are given by
�Jk ðqÞ ¼ Jk ðqÞA, with k ¼ {r, l}, and can be partitioned as

�Jk ðqÞ ¼ RT
k

0

� �
Adkb

Br̂C
I

� �
JbkðqÞ � Rkb JBCðqÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

JckðqÞ

2
64

3
75 (8.12)

The COM dynamics emerges from the first three equations in (8.11), i.e.

m €rC þ mg ¼
X
k¼r;l

Rk f k (8.13)
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and it is influenced by the force components fk from the contact wrenchesFk ¼ ( fk, tk).
The last n equations in (8.11) provide a kinetostaticmapping of the contact wrenchesFr,

Fl at the right and left foot to the joint torques Ü via

Ü ¼ JcrðqÞTFr þ JclðqÞTFl (8.14)

The representation provided in (8.11), which gives the interaction of the isolated

COM dynamics with the remaining multibody dynamics, was previously used for

the design of a force based COM balancing controller [9]. In the following section,

we extend the controller from [9] by adding a posture controller for the base

orientation, and using the force distribution framework described in Sect. 8.2.

8.4 Balancing Controller

This section presents a balancing controller which regulates the position of the

robot’s total COM inW, rC 2 R3, and the orientation Rb of the base link. Figure 8.4

shows the structure of the proposed controller. Basically, given a desired equilibrium

position rdC for the COM position and a desired orientation Rd of the trunk, we

compute a desired wrench FGA to be applied to the robot. That wrench is distributed

to forces fC 2 R3� at the � supporting contact points at the feet. In order to realize the
desired contact forces, we compute the resulting contact wrenches Fr and Fl at the

right and left foot, and map these contact wrenches to corresponding joint torques Üd

via (8.14), thus avoiding the use of inverse kinematics or dynamics. The resulting

joint torques are commanded to an underlying joint torque controller [1]. Further

details are provided below.

8.4.1 Object Force Generation

A biped robot with multiple contacts with the ground can be analyzed as a series of

contact forces applied at the contact points, which generate a net wrench on the

robot according to (8.6). The force component of the net wrench is called the

ground reaction force fGR. For the balancing controller, it is more convenient to

consider a desired wrench that must be applied at the COM of the robot, which must

be generated through forces applied at the contact points. The net force that must be

generated is called ground applied force fGA, defined as fGA ¼ �fGR.
To keep the desired COM position, we obtain a desired ground applied force f dGA,

given by the task of recovering the initial position (according to a compliance

control law) while providing gravity compensation, i.e.

f dGA ¼ mðgþ €rdCÞ � KP rC � rdC
� �� DP _rC � _rdC

� �
(8.15)
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where m is the total mass of the robot, g is the gravity vector, KP, DP > 0 are the

proportional and differential gain matrices, and rdC , _rdC , and €rdC are the desired

position, velocity and acceleration of the COM.

To deal with the orientation perturbations, let d and e be the scalar and vector

part of the quaternion representation ofRdb ¼ RT
dRb, withRb andRd the current and

desired trunk orientation. The required torque for a torsional spring acting to align

Rb to Rd can be derived from a potential function VO ¼ 2eTKre, and is given by

Ü r ¼ �2 dIþêð ÞKre , with Kr 2 R3�3 a symmetric and positive definite stiffness

matrix. This relation can be verified by using the principle of virtual work [2]. Thus,

a PD-like orientation controller for the trunk is given by

Üd
GA ¼ RwbðÜ r � Drðv�vdÞÞ (8.16)

with Dr 2 R3�3 being a symmetric and positive definite damping matrix.

Finally, the desired force and torque from (8.15) and (8.16) are combined to get

the net desired wrench FGA ¼ ð f dGA ; Üd
GAÞT .

8.4.2 Contact Force Distribution

Consider a biped robot with � contact points with the ground (Fig. 8.5), and let

ri ¼ ½xi; yi; zi�T with i ¼ 1; :::; � be the position of the contact points with respect to
the COM (i.e. in the coordinate frame O). The robot only interacts with the

environment through forces fi at the � frictional contact points. Each contact

force is described as f i ¼ ½ fix ; fiy ; fiz �T , and all the contact forces are stacked in

the contact force vector fC 2 R3�.

The desired net wrench on the robot, FGA, must be generated through suitable

contact forces fC; the relation between them is given by (8.6) (FGA ¼ GC fC), with
GC the contact map (i.e. the grasp map applied to walking robots). For instance, for

the case of a robot standing on flat ground, the coordinate frame at each contact

point can be chosen parallel to the world frame W , and GC 2 R6�3� gets the

simplified form

Force
Distribution

Force
Mapping

Torque
Control

Robot
Dynamics

Object Force
Generation

IMU
Kinematics

FGA τm

τ

q
τd

rd
C , Rd

fC

rC , Rb

Torque controlled robot [1]

Fig. 8.4 Overview of the balancing controller
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GC ¼ I3�3 � � � I3�3

r̂p1 � � � r̂p�

� �
(8.17)

For a given FGA, the corresponding contact forces can be computed as

fC ¼ G#
CFGA (8.18)

with G#
C ¼ GT

CðGCG
T
CÞ�1

the pseudoinverse of the contact map. This solution

minimizes the Euclidean norm of the contact forces under the constraint (8.6).

The solution to this problem has also been considered in the grasping community as

the minimization of the grasping forces that ensure a stable grasp [6, 18]. These

optimization procedures include the friction cone restrictions, and guarantee that

the equilibrium (8.6) is always fulfilled. However, in the case of the balancing

problem the wrench FGA on the object is a control command resulting from (8.15)

and (8.16), which might not be exactly met. In order to ensure that all constraints

are fulfilled, a different approach is required for this optimization problem.

8.4.3 Force Distribution Using Unilateral Constraints

To get a desired net wrenchFGA, the distribution of contact forces according to (8.18)

in general does not guarantee that the positivity restriction and the friction constraints

(8.1) at the contact points are fulfilled. As an alternative, the contact forces can be

computed with a constrained multi-objective optimization problem. The main objec-

tive is to achieve a desired force on the COM, which can be formulated as the

minimization of the cost function J1ð fCÞ ¼ jj½I 0�ðFGA � GC fCÞjj22 . Getting the

object torque is a secondary objective, with an objective function J2ð fCÞ ¼ jj½0 I�
ðFGA � GC fCÞjj22 . Additionally, a third objective is the minimization of the

Euclidean norm of the contact forces, i.e. J3ð fCÞ ¼ f TC fC . The three objectives

are combined in a single objective function J( fC)

a b

WW

BB
COMd

COM

Od

ri
rC

fi

Fr

Fl

FGA mg

xx
yy zz

Fig. 8.5 Contact positions and forces for a biped robot: (a) Location of the COM; (b) Forces
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Jð fCÞ ¼ a1J1ð fCÞ þ a2J2ð fCÞ þ a3J3ð fCÞ (8.19)

where a1; a2; a3 > 0 are the corresponding weights for the three objectives. By

choosinga3 << a2 << a1, the first objective is selected as the main priority task and

the third objective acts mainly as a regularization of the Hessian for the objective

function. The minimization of J( fC) subject to restrictions arising from a polyhedral

approximation to the friction cone (8.1) and from the positivity constraints

represents a quadratic optimization problem, given by

minfC f TCQ fC þ pTfC (8.20)

where

Q ¼ a3I þ GT
C

a1I 0

0 a2I

� �
GC (8.21)

p ¼ �GT
C

a1I 0

0 a2I

� �
FGA (8.22)

Note that the positivity and friction constraints force the ZMP to lie within the

support polygon. Based on (8.14), additional restrictions such as torque limits at

each joint can also be included in the problem statement.

The proposed approach assumes that all the predefined contacts are active at

every moment, and therefore distributes the desired wrench to all the contact points.

To guarantee that each contact is always active on the real robot, a lower limit for

the contact force can be preset to some positive value.

8.5 Experiments

The balancing controller was tested in simulations using OpenHRP3 [10], and in

experiments with the DLR Biped [15] (Fig. 8.1). The DLR Biped has six degrees of

freedom per leg, a 6-DOF force-torque sensor (FTS) in each foot, position and

torque sensors at each joint, and an inertial measurement unit (IMU). The FTS

information is not used, since the proposed control scheme does not require any

measurement of the contact forces at the feet.

8.5.1 Implementation Details

The origin of the world coordinate frame W was chosen to be in the middle point

between the two feet. The trunk orientation and angular velocity are measured via
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the IMU. As the IMU shows considerable drift in the yaw rotation, we approximate

the yaw angle between the world frame and the trunk by comparing the trunk

orientation to the baseline between the right and left foot.

The proportional gain matrix Kp for the controller was chosen as a diagonal

matrix with stiffness values of kh ¼ 900 N/m in the horizontal (x and y) directions,
and kv ¼ 3,000 N/m in the vertical (z) direction. The damping gain matrix Dp was

chosen as a diagonal matrix with the elements set to dh ¼
ffiffiðp
mkhÞ2 � 0:8 for the

horizontal components, and dv ¼
ffiffiðp
mkvÞ2 � 0:2 for the vertical component. The

rotational stiffness and damping matrices were set to Kr ¼ 100I[Nm/rad] and

Dr ¼ 50I[Nms/rad]. The same controller gains were used in the simulations and

in the experiments.

The constrained optimization problem from Sect. 8.4.3 was solved using the

open source software qpOASES [5]. The values of the weights for the multi-

objective optimization are chosen as a1 ¼ 1, a2 ¼ 10�3 and a3 ¼ 10�6. With � ¼ 8

frictional contact points, the computation time for the optimization of 3� ¼ 24

components in fC took less than 200 ms on the onboard 2.8 GHz mobile CPU

running under the real-time operating system VxWorks.

8.5.2 Simulation

As an example of the behavior of the controller, a simulation of an external

perturbation was performed. The desired COM velocity is set to _rdC ¼ 0, and a

lateral force of 70 N was applied during 50 ms at the hip (Fig. 8.6). This force

applies also a torque on the base link, since it is not exerted at the COM. Figure 8.7a

shows the COM error resulting from this simulation. The components of the contact

forces are displayed in Fig. 8.7b. At t � 0.25s the vertical forces at the right foot (in
blue) reach their lower limit of 4 N set in the optimization algorithm from

Sect. 8.4.3.

8.5.3 Experimental Evaluation

An experiment of physical interaction with a human is shown in Fig. 8.8, where

the trunk of the robot is pushed to create different perturbations in position and

orientation. Figure 8.9a shows the corresponding COM error for pushes in x and y.
Figure 8.9b shows the corresponding contact forces generated by the balancing

controller. In this example, the non-negativity constraints on the vertical force

components act over a longer duration compared to the simulated experiment, as

the human interaction acts as a low frequency disturbance.

Finally, note that in the derivation of the controller there was no assumption for

the robot to be on flat ground. When the global trunk orientation can be obtained

from an onboard IMU, the controller can deal with uneven terrain. Figure 8.10
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presents a time sequence of the behavior of the robot mounted on top of a balancing

board, and subjected to perturbations coming from a human.

8.6 Summary

This chapter has presented an optimization based balancing algorithm for biped

robots, which regulates the position of the COM and the orientation of the trunk. It

allows to distribute a net wrench, required to recover a desired posture, onto a

predefined set of contact points. The approach was verified in simulation and in

experiments with a torque controlled robot. The balancing controller, including the

approach for distributing the contact force, is general enough to be applied to a

biped robot in different contact situations, such as single or double support phases.

70N

t = 0.2s t = 0.3s t = 0.5s t = 1.0s

Fig. 8.6 Balancing experiment in OpenHRP
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Fig. 8.7 Results for the simulated lateral force disturbance: (a) COM error in x (blue), y (black),
and z (red); (b) Contact force components at the right (blue) and left (red) feet
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It can also be applied to multi-legged robots or to multi-point contact situations, for

instance, to balance forces created when a humanoid robot manipulates an object or

interacts with the environment.

a b

c d

Fig. 8.8 Compensatory motions for different perturbations applied to the robot: (a) in x; (b) in y;
(c) in z; (d) in yaw. Filled rectangles are overimposed as an aid to perceive the displacement of the

robot
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Fig. 8.9 Results for the experiment of physical human interaction: (a) COM error in x (blue),
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Grebenstein M, Hirzinger G (2010) Development of a biped robot with torque controlled

joints. In: IEEE-RAS international conference on humanoid robots, pp 167–173

16. Ott C, Roa M, Hirzinger G (2011) Posture and balance control for biped robots based on

contact force optimization. In: IEEE-RAS international conference on humanoid robots,

pp 26–33

17. Pratt J, Krupp B (2008) Design of a bipedal walking robot. In: Proceedings of the 2008 SPIE,

vol 6962

18. Saut J, Remond C, Perdereau V, Drouin M (2005) Online computation of grasping force in

multi-fingered hands. In: IEEE/RSJ international conference on intelligent robots and systems,

pp 1223–1228

19. Sentis L, Park J, Khatib O (2010) Compliant control of multicontact and center-of-mass

behaviors in humanoid robots. IEEE Trans Robotics 26(3):483–501

20. Setiawan S, Hyon S, Yamaguchi J, Takanishi A (1999) Physical interaction between human

and a bipedal humanoid robot - realization of human-follow walking. In: IEEE international

conference on robotics and automation, pp 361–367

21. Stephens B, Atkeson CG (2010) Dynamic balance force control for compliant humanoid

robots. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1248–1255

22. Sugihara T, Nakamura Y (2002) Whole-body cooperative balancing of humanoid robot using

COG jacobian. In: IEEE/RSJ international conference on intelligent robots and systems,

pp 2575–2580

23. Wieber PB (2006) Holonomy and nonholonomy in the dynamics of articulated motion. In: Fast

motions in biomechanics and robotics, vol 340, Lecture notes in control and information

sciences. Springer, Berlin/Heidelberg, pp 411–425

8 Balance and Posture Control for Biped Robots 143



Chapter 9

Robot-Based Testing of Total Joint

Replacements

Christoph Woernle, Michael Kähler, Roman Rachholz, János Zierath,

Sven Herrmann, Robert Souffrant, Daniel Kluess, and Rainer Bader

Abstract Instabilities of artificial joints are prevalent complications in total joint

arthroplasty. In order to investigate failure mechanisms like dislocation of total hip

replacements or instability of total knee replacements, a novel test approach is

introduced by means of a hardware-in-the-loop (HiL) simulation combining the

advantages of an experimental with a numerical approach. The HiL simulation is

based on a six-axes industrial robot and a musculoskeletal multibody model. Within

the multibody model, the anatomical environment of the correspondent joint is

represented such that the soft tissue response is considered during an instability

event. Hence, the robot loads and moves the real implant components according to

the data provided by themultibodymodel while transferring back the relative displace-

ment of the implant components and the resisting moments recorded. HiL simulations

provide a new biomechanical testing tool which enables comparable and reproducible

investigations of various joint replacement systems with respect to their instability

behaviour under realistic movements and physiological load conditions.
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9.1 Introduction

Instability of artificial joints is still one of the most prevalent reasons for revision

surgery (Fig. 9.1). With regard to total hip replacements (THR), dislocation of the

femoral head represents a major reason for revision procedures [3]. Mechanisms

linked to the dislocation process involve prior prosthetic or bony contact

(impingement), and spontaneous separation due to dynamic forces. Similarly,

instability and adverse kinematics in total knee replacements (TKR) has been

reported as one of the most important reasons for implant failure [2]. As TKRs

are by design less constrained than THRs, relative movement between joint partners

is governed by restraining ligament and muscular forces. Therefore, instability

mechanisms are given by excessive relative movement between the femoral and

tibial component due to insufficient implant position and surrounding soft tissue

and hence resulting in unstable articulation.

Clinical and biomechanical studies addressed the issue of THR and TKR

instability highlighting several influencing factors. Soft tissue condition, implant

position, and implant design have each been frequently regarded as major factors.

However, clinical studies make it difficult to study causes and effects systematically

as many factors cannot be kept constant. While in vivo measurements of instability-

associated manoeuvres are discouraged by ethical and technical reasons, cadaver

studies make it difficult to systematically evaluate influencing factors on joint

instability under reproducible boundary conditions. Moreover, numerical studies

contain numerous simplification and idealisations concerning friction, material

behaviour, and boundary conditions.

Fig. 9.1 Failures of total joint replacements. (a) Dislocation of a total hip replacement (THR).

(b) Unstable total knee replacement (TKR)
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In order to overcome the limitations of experimental and numerical instability

analyses, both approaches are combined in a hardware-in-the-loop (HiL) simulation

[4, 5, 7, 11]. It is based on a highly flexible mechatronic test system consisting of a

musculoskeletal multibody model and an industrial robot as actuator system. In this

work, the fundamental concept of the HiL joint simulator is described both for

THRs and TKRs. The major goal is to enable comparable investigations of different

THR and TKR designs with respect to instability under reproducible, physiological-

like boundary conditions which accounts for the soft tissue response during insta-

bility scenarios.

9.2 Physical Test Setup

A six-axes industrial robot (TX 200, Stäubli Tec-Systems GmbH, Bayreuth,

Germany) equipped with a six-dimensional force-torque sensor (ATI Industrial

Automation, Apex, NC, USA) is used as actuator system of the physical setup

(Fig. 9.2). The robot is capable of generating both the range of motion and the

reaction forces necessary for THR and TKR loading. The implant components are

attached to the endeffector and an elastically compliant support, respectively, by

specifically designed mounting devices. The elastic support is used for force/torque

control of the robot. It consists of three serially arranged prismatic joints with

orthogonal axes and springs restraining the displacements along the axes and

providing compliance in the three translational directions. Likewise, rotational

compliance is simultaneously achieved by the translational stiffness of the support.

a b

TKR

FTS

Fig. 9.2 Physical test setup. (a) Industrial robot with a TKR. (b) Robot endeffector with femoral

component of the TKR and 6D force-torque sensor (FTS) and elastically compliant support with

tibial component of the TKR and position sensors
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Force/torque control is realised by outer force regulating control loops that

generate the control input for the inner position and velocity controllers. This

control method requires a physical compliance somewhere in the kinematical

chain closed by the environmental contact of the robot which is ensured by the

compliant support. The force regulating control loops enable the robot movement

until the actual forces and torques, respectively, measured by the six-dimensional

force-torque sensor coincide with the corresponding desired values [9]. Position

control is provided by the robot controller (CS8C HP, Stäubli Tec-Systems GmbH,

Bayreuth, Germany) running with a control cycle of 4 ms in its standard configura-

tion. It basically consists of cascaded position/velocity feedback loops complemented

by a feed-forward inverse dynamics controller.

The displacements along the prismatic axes of the compliant support are measured

by three displacement sensors (MSK 5,000, SIKO, Buchenbach, Germany) attached

to the framework. Thus, the relative displacements between the implant components

can be recorded by comparing the position of the endeffector with respect to the

compliant support.

9.3 Functional Principle of the HiL Joint Simulator

For HiL simulation of total joint replacements, the robot interacts with a simulation

computer on which a biomechanical multibody model is running. The functional

principle of the HiL concept is based on complementary sets of free and constrained

directions of the artificial joint under investigation as described in the following for

THRs and TKRs.

9.3.1 Principle of HiL Testing of a THR

Considering the spatial load case for an artificial hip joint according to Fig. 9.3, the

three rotations of the femur relative to the pelvis with rotation angles summarised in

vector Ì 2 R
3 are free within the anatomical range of motion. The three transla-

tional movements of the femoral head center with coordinates summarised in vector

z 2 R
3 are treated as constrained directions. For an actual time instant t, the

multibody model delivers values of the rotation angles Ì in the free directions

and of the reaction forces in the constrained directions, summarised in the vector

f r 2 R
3. Soft tissue forces f s comprising passive ligament and capsule forces and

active muscle forces as well as gravitational and inertial forces are also taken into

account. Both rotation angles Ì and reaction forces f r are transferred to the robot

controller. Hence, the robot rotates the femoral component into the position �Ì and

applies the reaction forces �f r onto the endoprosthesis. In the case of ideal

transmission of the magnitudes, the robot values �Ì and �f r are identical with the

corresponding values Ì and f r of the model. However, in reality differences occur
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due to limited dynamic bandwidth of the controlled robot, signal delay times, and

other errors.

To close the HiL control loop, the displacement components of the femoral head

center z 2 R
3 are measured and fed back to the multibody model. Another loop is

closed by the resisting forces in the unconstrained directions, here the torque

components Ü f 2 R
3 along the coordinates �Ì , which are also measured and fed

back to the multibody model. The resisting torques Ü f could be caused by friction

forces in the THR. Again disturbances of the measurements and the signal

transmissions cause differences between the actual robot values Ü f and z and the

corresponding transferred values �Ü f and �z.
The robot is able to apply the reaction force components �f

r
if the endoprosthesis

withstands these loads in the corresponding directions. Then, no relative transla-

tional displacement occurs, thusz ¼ 0. Otherwise, the femoral head is moved out of

the acetabular cup by a displacement z indicating a dislocation event.

9.3.2 Principle of HiL Testing of a TKR

For HiL testing of artificial knee joints according to Fig. 9.4, the same testing

principle with different free and constrained directions is applied. Here, the free

robot rotates femoral head by β

resisting torques τ f (friction)

forces/torque f r  applied by robot calculates constraint forces/torque f r

THR ,,finds“ its position/orientation altered position/orientation   to model

calculates rotations β

femur

pelvis

Kinematics

τ f β β

Forces

applies torques    to modelτ f

f s

Kinematics

f r
f r

Forces

τ f

Fig. 9.3 HiL simulation for testing THRs with illustration of the exchanged values between the

musculoskeletal multibody model (right) and the actuator system (left) at the kinematic and force

levels
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directions are the rotations of the femur with angles b1 (internal/external rotation) and
angle b2 (flexion/extension) summarised in vector Ì 2 R

2 . The three translational

directions and the remaining rotational direction of the femoral joint center with

coordinates summarised in vector z 2 R
4 are treated as the constrained directions.

9.3.3 Musculoskeletal Models

In the HiL joint simulation the musculoskeletal model simulates the anatomical

environment of the artificial joint which is not physically available. The objective of

the model is to calculate the reaction forces f r in the artificial joint for a given

human motion. It also has to account for the soft tissue response during an

instability event. Hence, capsular, ligament and muscle structures and their respec-

tive forces have to be incorporated into the model as well as geometric proportions

and inertial properties of the skeletal system.

A musculoskeletal model consists of several skeletal segments linked to a kine-

matic chain. Depending on the joint under investigation and on the load case specific

musculoskeletal models are built up. The models are implemented using the

multibody simulation package SIMPACK (v8.9, Simpack AG, Gilching, Germany).

Kinematics

robot rotates femoral component by β1,β2

resisting torques τ ,  (friction) applies torques           to model

forces/torque      applied by robot

f

calculates constraint forces/torque f r

TKR ,,finds“ its position/orientation altered position/orientation   to model

calculates rotations β1,β2

f
1

f
2

Forces Forces

tibia

femur

Kinematics

τ

, f
1τ f

2τ

τ

f
1τ

f
2τ

β1

β2

β1

β2

f s

f r

1
f
2τ

f r

f r

Fig. 9.4 HiL simulation for testing TKRs with illustration of the exchanged values between the

musculoskeletal multibody model (right) and the actuator system (left) at the kinematic and force

levels
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9.4 HiL Testing a Total Hip Replacement

A humanmotion that is prone to dislocation of total hip replacements (THR) is a deep

squat leading to a high flexion angle. For HiL simulation of this scenario, a musculo-

skeletal model is used that is symmetrical with respect to the sagittal plane [6].

9.4.1 Musculoskeletal Model for THR Testing

According to Fig. 9.5, the musculoskeletal model used for these investigations

represents the right lower extremity of the human body. It consists of the bone

structures and the soft tissue comprising capsule, ligaments, and muscles.

9.4.1.1 Coordinates

The kinematic chain consists of the foot assumed to be ground-fixed, tibia and

fibula modeled as one rigid body, femur, and pelvis. The chain contains a universal

β2

β3

β4

β5

R

Joints:

R − revolute

a b

P − prismatic

U − universal

S − spherical

R (patella - femur)

R (femur - tibia)

U (tibia-foot)

β1

β6

β7

S

β8

P

q2

q3

q1

P

Fig. 9.5 Multibody model of the lower extremity for THR testing. (a) Multibody topology.

(b) Musculoskeletal model
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ankle joint (U), a revolute knee joint (R), and a hip joint. The hip joint is modelled

by a kinematic subchain consisting of three orthogonal prismatic joints and three

revolute joints with co-intersecting axes being equivalent to a spherical joint (S).

According to Fig. 9.5, the revolute joints with rotation angles b4, b5, b6 enable the
free hip joint motions: internal/external rotation, flexion/extension, and abduction/

adduction. The coordinates of the prismatic joints are constrained by the

measurements �z provided by the robot, see Fig. 9.3.

The symmetry condition is achieved by means of a fictive planar joint in the

sagittal plane, connecting the pelvis by two prismatic (P) and a revolute (R) joint

with the ground. The constraint forces and torques of the planar joint represent the

reaction forces between the modeled right lower extremity and its left counterpart

that is not included in the model.

To the pelvis a single rigid body is attached by a revolute (R) joint representing

the trunk. The patella is relevant for the direction of certain muscle forces

influencing the hip motion. In the model the patella is connected with the femur

by a revolute (R) joint. Thus, the multibody model has altogether eleven joint

degrees of freedom and one kinematical loop. According to the Chebychev-

Grübler-Kutzbach criterion, the overall degree of freedom of the model is f ¼ 5.

If the kinematical loop is cut at the planar joint, the position of the spanning tree

is described by the eight joint coordinates Ì ¼ ½b1 . . . b8�T. The cut planar joint

leads to three implicit loop closure constraints for Ì at the position, velocity, and

acceleration levels, respectively,

gðÌ; �zÞ ¼ 0; (9.1)

GðÌ; �z Þ _Ì ¼ 0 with G ¼ @g

@Ì
2 R

3;8; (9.2)

GðÌ; �zÞ €Ìþ ��gðÌ; _Ì; �zÞ ¼ 0 with ��g ¼ _G _Ì 2 R
3: (9.3)

The constraints depend on the measured displacements �z in the constrained

directions of the hip joint, see Fig. 9.3. Their time derivatives _�z and €�z are neglected
as the dynamics of the displacements in the constrained directions is not physically

based but governed by the force controller of the robot. This assumption is

considered to be acceptable as long as the displacements �z are small.

The motion of the system is described by f ¼ 5 independent or minimal

coordinates q. Here, the three coordinates q1, q2, q3 of the planar joint, the rotation
angle of the trunk b7, and the rotation angle of the patella b8 are chosen, thus
q ¼ ½q1 q2 q3 b7 b8�T. The joint coordinates Ì of the spanning tree can then be

expressed in terms of the minimal coordinates q by means of the explicit loop

closure conditions
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Ì ¼ Ìðq; �zÞ; (9.4)

_Ì ¼ Jðq; �zÞ _q with J ¼ @Ì

@q
2 R

8;5; (9.5)

€Ì ¼ JðqÞ €q þ ��hðq; _q; �zÞ with ��h ¼ _J _q 2 R
8: (9.6)

The free and constrained directions in the space of the joint coordinates Ì are

orthogonal,

GJ ¼ 0: (9.7)

9.4.1.2 Soft Tissue Kinematics and Forces

In the multibody model, the soft tissue structures are included as force elements.

Ligaments and joint capsules are described by passive, viscoelastic forces, while

muscles are modeled by active force laws. The length and rate of length of the soft

tissue elements appearing in the force laws are kinematically expressed in terms of

the joint coordinates Ì and their time derivatives.

If a soft tissue structure i acts along a straight line between two skeletal

attachment points Pi and Qi according to Fig. 9.6, its length si and the length rate

_si are expressed by

si ¼
ffiffiffiffiffiffiffiffi
sTi si

q
; _si ¼ sTi _si

si
with si ¼ rQi � rPi: (9.8)

The position and velocity of points Pi and Qi can be expressed in terms of the

joint coordinates Ì of the spanning tree and the measured relative displacements of

the implant components �z, thus rPiðÌ; �zÞ, rQiðÌ; �zÞ, and

_rPi ¼ JPi _Ì; _rQi ¼ JQi _Ì with JPi ¼ @rPi
@Ì

; JQi ¼ @rQi
@Ì

: (9.9)

The soft tissue length and its time derivative are then obtained in terms of Ì and �z,
thus siðÌ; �zÞ and

_si ¼ Jsi ðÌ; �zÞ _Ì with Jsi ¼
sTi JQi � JPi

� �
si

� @si
@Ì

2 R
1;8: (9.10)

According to the force law to be applied, the soft tissue force depends on si , _si
and an activation input ui, thus f

s
i ðsi; _si; uiÞ. Appropriate force laws are described in

[1, 10]. By means of the Jacobi matrix Jsi from (9.10) the equivalent joint torques

Ü s
i ¼ ½tsi; 1 . . . tsi; 8 �T around the eight joint axes are obtained,
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Ü s
i ¼ JsTi f si : (9.11)

The kinematics of soft tissues that are extended over more than one joint is

described in [1, 11].

9.4.1.3 Equations of motion

The equations of motion of the multibody model shown in Fig. 9.5 are in terms of

the joint coordinates Ì 2 R
8

M Ì; �zð Þ €Ì ¼ Ü c Ì; _Ì; �z
� �þ Ü s Ì; _Ì; �z; uÞ þ �Ü f þ Ü r:

�
(9.12)

The mass matrix M 2 R
8;8 is obtained under the assumption that the soft tissue

masses are added to the masses of the corresponding skeletal bodies. Dynamic

wobbling of the muscle masses is neglected. The vector Ü c 2 R
8 contains the

torques of the centrifugal and Coriolis forces as well as gravity forces with respect

to the joint axes. The vector Ü s 2 R
8 is the sum of all soft tissue torques Ü s

i from

(9.11) where u is the vector of all activation inputs. The vector �Ü f incorporates the

resisting torques fed back from the robot into the model, see Fig. 9.3. The vector

Ü r 2 R
8 includes the torques of the constraint forces at the cut planar joint that are

expressed by means of the Jacobi matrixG 2 R
3;8 from (9.2) and the vectorÕ 2 R

3

with the reaction force coordinates (Lagrange multipliers) of the planar joint,

Ü r ¼ GTðÌÞ Õ: (9.13)

The equations of motion in the joint coordinates Ì consist of the differential

equations (9.12) and the loop closure constraints (9.1), (9.2), and (9.3).

QiQi

PiPi

Si

rQi

rPi

fi
s

a b

Fig. 9.6 Soft tissue between two skeletal points Pi and Qi. (a) Geometry. (b) Soft tissue force
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9.4.1.4 Inverse Dynamics

Dislocation scenarios are analysed for given human motions that are measured by a

motion capture system. It is assumed that the independent coordinates q(t) are

measured. The joint coordinates Ì(t) of the multibody model are then obtained from

the explicit loop closure constraints (9.4), (9.5), and (9.6). In order to obtain the

reaction forces in the hip joint appearing in Fig. 9.3, it is first necessary to get the

active muscle forces associated with the given motion by means of an inverse

dynamic calculation. Because of redundancy of the active muscle groups, the

muscle forces cannot be uniquely determined. Another source of redundancy of

the actuation forces is the closed kinematical loop of the model that represents

human motions with both feet attached to the ground.

For inverse dynamics calculation, the soft tissue torques Ü s in (9.12) are split up

into passive torquesÜpðÌ; _Ì; �zÞdue to viscoelastic forces and active torquesÜ a due

to active forces f a, thus Ü s ¼ Üp þ Ü a. If there are m active forces f ai , the overall

active torques Ü a are

Ü a ¼ Ja Tf a with Ja ¼
Ja1
..
.

Jam

2
64

3
75 2 R

m;8; f a ¼
f a1
..
.

f am

2
64

3
75 2 R

m (9.14)

with the Jacobi matrices Jai determined analogous to Jsi in (9.11).

For known joint coordinates Ì and their time derivatives, the active torques Ü a

are obtained from (9.12). First the reaction force coordinates Õ are eliminated by

left-multiplicating (9.12) with the transposed Jacobi matrix J of the explicit loop

closure constraints (9.5) under consideration of the orthogonality (9.7). Together

with (9.14), this leads to an underdetermined system of f ¼ 5 linear equations for

the m > f active muscle forces f a,

A f a ¼ b with A ¼ JTJaT; b ¼ JT M €Ì � Ü c � Üp � Ü f
� �

: (9.15)

A common way to find a physiologically based solution for the active forces f a is
to regard the linear system of equations (9.15) as an equality constraint of a static

optimisation problem minimising a cost function Ið f aÞ . A typical definition is a

quadratic cost function

I f að Þ � f a TQ f a ¼! min
f a

(9.16)

with a positive definite weighting matrixQ 2 R
m;m. Examples for the definition ofQ

and also for other cost functions are discussed in [1]. With the obtained active

forces f a the reaction force components f r in the actual position of the hip joint are

calculated.
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9.4.2 Results of THR Testing

As an example a deep squat leading to a high flexion angle up to about 110� and an
adduction angle of about 15� is considered. The outcome of the HiL simulation with

the motion of the artificial hip joint (Alloclassic System, Zimmer GmbH,

Winterthur, Switzerland) in comparison to the multibody model is shown in

Fig. 9.7. Shortly after the 90� position, an anterior impingement (physical contact

between prosthetic neck and anterior rim of the acetabular cup) occurs, followed by

a posterior dislocation of the femoral head in the 110� position. The comparison

between two orientations of the acetabular cup (45� and 60� inclination together

with 0� anteversion) showed an anterior impingement at about 90� flexion in both

cases while a dislocation of the femoral head occurred at higher flexion angles.

9.5 HiL Testing of a Total Knee Replacement

HiL testing of a total knee replacement is shown for a passive flexion movement

whereby different conditions of the anterior cruciate ligament (ACL) are considered

with respect to the stability of the TKR.

anterior impingement posterior dislocation

90°0° 110°

Fig. 9.7 Motion of the total hip replacement in comparison with the multibody model during HiL

simulation of a deep squat with flexion angles changing from 0� (standing position) over 90� to

110� (45� inclination of the acetabular cup)
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9.5.1 Musculoskeletal Model for TKR Testing

Adapted to the load case considered in the following, the musculoskeletal model

represents the lower right extremity of the human body with the TKR implanted

(Fig. 9.8).

9.5.1.1 Coordinates

The model has an open-chain topology with pelvis and femur kept fixed, the tibia

connected with the femur by the tibio-femoral joint and the patella connected with

the femur by the patello-femoral joint. The ankle joint is kept fixed. The tibio-

femoral joint is modelled by a kinematic subchain consisting of three orthogonal

prismatic joints and three revolute joints with co-intersecting axes. According to

Fig. 9.4, two revolute joints correspond to the free internal/external rotation and

flexion motion described by two rotation angles b1 and b2 while the coordinates of
the four other joints are constrained by the measurements �z provided by the robot.

The patello-femoral joint is modelled with one translational degree of freedom. The

patella is bound on a spatial trajectory with respect to the femur whereby its

position is described by the arc length b3.

9.5.1.2 Soft Tissue Kinematics and Forces

Soft tissue and muscle forces are calculated in analogy to the musculoskeletal model

for THR simulation in Sect. 9.4.1. Ligament structures of both joints are represented as

nonlinear spring-damper combinations following force-displacement characteristics

β1

β3

β2

a b

Fig. 9.8 Musculoskeletal model of the lower extremity for TKR testing. (a) Multibody topology

with tibio-femoral joint. (b) Patello-femoral joint with one degree of freedom
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derived from in vitro measurements [8]. Moreover, the four quadriceps muscle

components (Mm. rectus femoris, vastus medialis, lateralis and intermedius muscles)

are included by Hill type muscle elements [10] whereas only passive muscle forces are

considered within this example.

9.5.2 Results of TKR Testing

A passive flexion movement of a bicondylar unconstrained TKR (Multigen Plus

knee, Lima Lto, San Daniele, Italy) is simulated with two different conditions of the

anterior cruciate ligament (ACL) implemented into the multibody model: with and

without all ACL bundles [5]. In most cases all ACL bundles are resected during

implantation of bicondylar TKRs due to implant design. The considered load case

emulates a postoperative passive mobilisation of the knee joint by a physical

therapist without muscle activity.

The HiL simulation is carried out for both conditions of the anterior cruciate

ligament (ACL) from 0� to 90� flexion at constant internal/external rotation of 0�.
According to the given angles and the reaction forces/torques calculated by the

multibody model, the robot rotates the femoral component and applies the load to

the tibial component. By feeding back the measurements �z to the multibody model,

the tibia was shifted and orientated in the constrained directions with respect to the

femur influencing the elongation of the incorporated ligaments (Fig. 9.9). Due to

the interdependency between measurements and calculated reaction forces by

the elongation of ligaments, the different conditions of the ACL (with and without

ACL bundles) result into different outcomes of the relative displacement of the

femoral component with respect to the tibial polyethylene liner. Considering

0° 30° 60° 90°

Fig. 9.9 Motion of the total hip replacement in comparison with the multibody model during HiL

simulation of a bicondylar unconstrained TKR without ACL bundles showing conformity between

positioning of robot and multibody model at different flexion angles
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anterior/posterior translation, the femoral component tends to shift in anterior

direction at flexion angles below 20� when the ACL bundles are incorporated.

Contrarily, the femoral component shifts only in posterior direction when all ACL

bundles are removed.

9.6 Conclusion

The presented approach of HiL simulation provides a highly flexible, state-of-the-

art test system. It allows analysis and comparison of different joint replacement

systems with respect to their behaviour in case of joint instability under physiologi-

cal and reproducible load conditions. This includes the complex soft tissue response

during such an event. Hence, it is possible to gain visual insights into the process of

instability events due to the attachment of the real implant components on the

physical setup and the post-processing of the multibody model. This is exemplarily

demonstrated for a THR by simulating a deep squat movement and for a TKR by

simulating a flexion movement with different soft tissue conditions. The HiL

simulations show that the change in ligament structures alters the load situation

and, thus, the kinematics of the artificial joint.

To further develop the HiL test method more instability-associated manoeuvres

for both THRs and TKRs will be investigated under different ligament and muscle

conditions. Subsequently, influencing factors such as implant design and position-

ing as well as soft tissue resection can be investigated systematically on the basis of

realistic load case scenarios. Due to the incorporation of real contact conditions

within this approach, the outcomes of the measured relative motion provide a basis

for evaluating the performance of each THR or TKR system, respectively. The

results yield more precise insights and data of the process leading to artificial joint

instability. In this manner, the proposed HiL simulations can assist in the improve-

ment of endoprosthetic design, preoperative planning, the choice of appropriate

endoprosthetic components, and surgical treatment for given bony and soft tissue

structures in case of primary, revision, and tumour surgery.
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Chapter 10

Dynamics and Control of the Biped Robot Lola

Thomas Buschmann, Valerio Favot, Markus Schwienbacher,

Alexander Ewald, and Heinz Ulbrich

Abstract This paper gives an overview of the dynamics and control of the humanoid

walking robot Lola. A brief analysis of the robot’s multibody dynamics motivates our

approach to biped walking control. After a brief description of the robot Lola we

outline the architecture of its hierarchical walking control system.We also present the

real-time planning method for center of gravity trajectories and the model-based

hybrid position/force control module that acts as a basis for the stabilizing walking

controller.

10.1 Introduction

From an economic point of view, the development of humanoid robots is motivated

by the broad potential for service applications. A human-like shape and (some)

human-like skills promise universal service robots in the original sense of Karel Č

apeks play “Rossum’s Universal Robots”. For these machines, biped locomotion is

an essential skill. A further reason for developing humanoid robots is the fact that

legged machines potentially are more flexible than wheeled or tracked vehicles,

since they can step over or onto obstacles instead of driving around them. During

the past decades, significant research efforts have been aimed at developing human-

like legged locomotion.

The fastest biped robots are developed by companies, such as Honda’s Asimo

[1], Toyota’s running robot [2] and the robot Petman from Boston Dynamics [3].

The robots of the HRP-series are developed by Japan’s AIST in cooperation with

Kawada industries (HRP-2 [4], HRP-3 [5] and HRP-4 [6]). Other notable

developments are the Wabian-2 [7] and HUBO [8] robots.
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Currently, the fastest bipeds are developed by Honda. By improving both the

hardware design and walking pattern generation and control Takenaka et al.

achieved very fast running with a Honda-prototype at 10 km/h [9–12]. This

technology was integrated into the newest Asimo-robot which is capable of running

at 9 km/h [13]. Boston Dynamics has shown very fast walking with the DARPA-

funded Petman prototype [3], but the control algorithms and details of the hardware

design are regarded as company secrets.

In the following we give an overview of the walking control system developed

for our biped robot Lola. This article contains material from previous publications

[14–16], with an additional section on walking dynamics.

10.2 System Overview

Lola is 180 cm tall and weighs approximately 60 kg. Figure 10.1 shows a picture of

Lola, the kinematic structure and a table of the actuated joints. The kinematic

structure is based on anthropometric data and features active toe and pelvis joints.

Lola was designed for light weight, high effective stiffness and low leg inertia.

While major segments are very stiff, Lola’s feet are equipped with viscoelastic

contact elements that are deformed during walking and have a strong influence

on walking dynamics. The actuators are based on brushless kit motors that are

combined with reduction gears and sensors to compact drive units with a high

torque density. The robot is equipped with incremental encoders on the motor side

and absolute encoders on the link side. An inertial measurement unit (IMU) is

mounted on the upper body and six axis force/torque sensors (FTS) are integrated

into the feet. Figure 10.2 shows Lola’s electronics architecture. Nine local

controllers implement protocols and interfaces required for the various sensors

and servo controllers and communicate with the central onboard PC via the fast

real-time Ethernet communication system Sercos-III. A detailed description of the

mechanical design, sensors and electronics is given in [15, 17].

10.3 Aspects of Biped Robot Dynamics

Humanoid robots such as Lola are complex mechatronic systems and there always

is a trade-off between modeling depth and accuracy on the one hand and computa-

tional efficiency on the other hand. Experience with the robots Lola and Johnnie has

shown that the major dynamical effects on biped locomotion for this type of robot

are, in decreasing order of importance:
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Fig. 10.1 The biped robot Lola (left) has 25 actively driven joints. The kinematic structure is

shown on the right

Fig. 10.2 Lola has a sensor actuator network with nine local controllers. Sensors are read out by

both motor controllers and local controllers. The onboard PC is connected to the local controllers

via the fast real-time Ethernet-based Sercos-III system. Trajectory planning and stabilizing control

run on the onboard PC
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1. Rigid body mechanics of segments, motor shafts and gears,

2. Unilateral, compliant foot-ground contact,

3. Gear elasticity,

4. Drive friction,

5. Non-linear kinematics in ankle and knee joints and

6. Electrical motor dynamics.

Items (1), (3), (4) and (5) lead to a set of second order ODEs describing the

multibody dynamics. We use the Newton-Euler method to obtain a minimal

coordinate representation of the system.

The contact model (2) adds a set of first order ODEs describing the deformation

of the contact layer and complementarity conditions for unilateral contacts and

coulomb friction. Finally, the electrical motor dynamics (6) add another set of first

order ODEs [18].

To motivate the design of our control system, we focus on the first two effects,

leading to the following system equations:

MTT MTJ

MJT MJJ

� �
€qT
€qJ

� �
þ hT

hJ

� �
¼ 0

WÜ ;J

� �
Ü þ WÕ;T

WÕ;J

� �
Õ (10.1)

The minimal coordinates are denoted by qT ¼ ðqTT ; qTJ Þ , the lower index

T denotes torso DoFs and the lower index J joint angles. The actuator torques are

denoted by Ü , Õ are the contact forces and all other forces are summed up in the

vector h. The matricesWt andWl are Jacobians for projecting actuator and contact

forces into the unconstrained directions.

The Jacobian for the actuator forces is rank deficient, i.e., the robot is

underactuated. This means that stable walking using a simple joint-level trajectory

tracking controller is very difficult and not robust, since it is not possible to directly

control the upper body DoFs.

On the other hand, a high-gain joint control loop has the advantage of canceling

gear friction, which is temperature, load and speed dependent and difficult to

identify accurately. A hierarchical approach therefore seems promising. A low-

level joint tracking controller can provide robustness against modeling errors and

simplify robot dynamics. Higher layers can build on this to provide robustness

against disturbances and deal with the problem of underactuation.

As a limiting case, we can assume perfect tracking for the joint position controller

and replace the joint angles qJ in (10.1) with the desired joint angles qJ;d. Since the

joint angles are now known, we can omit their equations of motion (EoMs), leaving

us with just six equations:

MTT €qT þ h?J ¼ Wl;TÕ (10.2)

The modified vector h?J contains the forces due to the joint angle motion qJ ,

which acts as a parametric excitation. Obviously, we can control the unactuated

DoFs qT and thereby stabilize the robot by manipulating the contact forces Õ. This
observation motivates our hierarchical control system that stabilizes the overall
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system dynamics by controlling a subset of contact forces via an underlying

position control loop, while at the same time tracking a subset of task-space

trajectories.

10.4 Control System

This section describes Lola’s control system architecture, the planning algorithm

for center of gravity trajectories and the hybrid position/force control method.

10.4.1 Control System Architecture

Lola’s controller is designed as a hierarchical system whose individual components

are selected and parameterized by a finite state machine. The structure of the system

is shown in Fig. 10.3.

The model-based design makes the system applicable to any position-controlled

biped with inertial and force sensing. Adaptation of the walking controller to a new

robot mainly consists of providing a description of the robot as a multibody system.

After that, only a small number of parameters must be adjusted in experiments to

Fig. 10.3 The architecture of Lola’s walking control system. Õ are contact forces, x task-space

coordinates, qJ joint angles and w is the upper body orientation. Indices id and d indicate ideal and
modified references, no index is used for sensor data
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account for different sensor characteristics, etc. We have successfully used the

system in experiments with the robots Lola and Johnnie [19].

The desired walking behavior is input via a graphical user interface (GUI) or a

joystick. We have also combined the walking controller with a computer vision

system to demonstrate autonomous locomotion in unknown environments [20].

The user input, typically a desired walking speed or step length, is converted into

a sequence of steps. The step sequence describes both the footstep locations and

other critical gait parameters such as step duration and ground clearance for the

swing leg. Continuous walking patterns and contact force trajectories are calculated

online based on the step sequence (see Sect. 10.4.2). A stabilizing controller

modifies the reference trajectories based on IMU and FTS feedback. It compensates

modeling errors, disturbances and uneven terrain. The modified force and position

trajectories are converted to desired joint trajectories by a hybrid position/force

control. The lowest level in the control hierarchy is a high-gain joint position

control loop.

10.4.2 Real-Time CoG-Trajectory Planning

Lola’s reference trajectories are planned in task-space. This section outlines the

method for calculating center of gravity (CoG) trajectories, a central component of

the online planning system.

There are three major difficulties in walking pattern generation for biped robots:

First, the unilateral foot-ground contact leads to inequality constraints for the

physically feasible contact forces. Second, the system is inherently unstable and

small disturbances can lead to an exponential divergence of the trajectories of an

unstabilized robot. Third, the complexity of a full multibody model means that a

naive application of, e.g., an optimal control approach to planning is currently not

suitable for real-time control.

To enable real-time planning we therefore use a reduced robot model consisting

of three point masses (see Fig. 10.4). Two masses are used to approximate the

inertial effects of the legs while the third mass accounts for the rest of the robot.

This model gives significantly better results than the more widely used inverted

pendulum model with one point mass.

The basic algorithm for calculating CoG-trajectories is a two-stage process.

First, a physically feasible contact force trajectory that minimizes the rate of change

is calculated by quadratic programming. Then, a the CoG-trajectory is obtained by

solving a boundary value problem (BVP) for the reduced robot model [21].

The initial position and velocity for the BVP is given by the current references

for the CoG position and velocity. The desired state at the end of the planning

horizon is set to the initial state of a periodic reference gait. This periodic reference

is itself calculated using the two-stage process described above, where the boundary
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conditions are set to ensure a periodic solution. The boundary conditions guarantee

a stable trajectory by forcing convergence to a periodic and therefore stable orbit.

Using periodic reference steps has previously been proposed by Tajima [2],

Takenaka [10] and others.

10.4.2.1 Solving the Boundary Value Problem

The EoM for the simplified robot model in the lateral plane are given by:

mz€y� mðgþ €zÞy ¼ �ðTx þ DTx;legÞ (10.3)

Fig. 10.4 Visualization of the reduced robot model for real-time planning. Masses at the feet

model the leg dynamics, a third point mass represents the remaining mass. The gray foot trajectory

is assumed to be known, the black trajectory for the “upper body” mass is determined using the

proposed method
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Herem denotes the “upper body” mass, y is the lateral position of this point, g is
the gravity acceleration, Tx the contact moment about the x-axis and DTx;leg is the
moment generated by the legs (see [21]).

This is a simple, linear EoM. However, since the coefficients are not constant

and the right hand side can be quite complex, there is no closed form solution in the

general case. We therefore propose solving the BVP using a collocation method

[22] with cubic splines as basis functions. This approach is very flexible and simple

to implement and gives sufficiently accurate results. The collocation method

reduces (10.3) to a linear algebraic equation that can easily be solved in real-

time. The entire planning process takes less than 1 ms on Lola’s onboard computer.

Equation (10.3) is a second order ordinary differential equation. For a given right

hand side, it is therefore in general not possible to satisfy boundary conditions for

positions and velocities at the beginning and at the end of the trajectory. Two

additional free parameters are needed to obtain a well-posed problem.

We propose using two parameters g1; g2 that act as weights for shape functions
that modify the optimal contact force trajectory in order to satisfy the boundary

conditions [21]. The set of equations for calculating the unknown spline parameters

p for the approximate solution of the EoM and the additional parameters g1; g2 is

given by:

Bpþ b0 ¼ Tx þ DTxðg1; g2Þ (10.4)

Gpþ g0 ¼ 0 (10.5)

The first line is obtained by requiring that the approximate solution satisfy the

EoM (10.3). The vector Tx contains the values of the ideal contact moments at the

Fig. 10.5 Example of a lateral-plane trajectory calculated with the proposed method. The gray

line shows the periodic reference yper and the black line y the reference for next two steps

168 T. Buschmann et al.



collocation points. The modification of the contact momentsDTxðg1; g2Þ is linear in
the unknown parameters gi. The second line contains conditions for the position and
velocity at the beginning and end of the trajectory.

Figure 10.5 shows a solution obtained with this method (black line) together

with a periodic reference (gray line) toward which it converges.

Note that the mass and position of the “upper body” in the reduced model (10.3)

are not equivalent to the actual mass and position of the robot’s torso. Rather, the

distribution is chosen to minimize the difference of the contact forces calculated

using the full multibody model. The reference CoG for the walking controller is set

to the CoG of the reduced order model.

10.4.3 Hybrid Force/Position Control

The stabilizing control is based on manipulating a subset of contact forces while

tracking reference trajectories described in task-space coordinates. To control the

contact forces, the reference trajectories are modified along some task-space

dimensions. That is, a hybrid position/force control with inner position control

loop is used. A related control approach was previously proposed by [23]. See [24]

for a more complete list of related work.

The subsets of task space trajectories (x) and contact forces (Õ) that should be

tracked are selected using binary matrices Sx; Sl. The control law is derived from

the chosen error dynamics:

Sl D _ÕþKl DÕ
� � ¼ 0 (10.6)

The contact is modeled using a set of linearly elastic point contacts. This leads to

a linear relationship between _x; _Õ and the generalized velocities _q:

_Õ ¼ rqÕ
� �

_q (10.7)

_x ¼ rqx
� �

_q (10.8)

From these equation, we derive a modification of the ideal reference trajectories

byD _xl for controlling the contact forces without modifying the position controlled

task space dimensions Sxx:

D _xl ¼ ½Sl rqÕ
� �ð�Sx rqx

� �Þ#�# al Sl ½Kl;FF _Õd1 þKl ðÕd �ÕÞ�
n o

þax ½�Sx Klx ðxd �xÞ� (10.9)
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Here �Si is the complement ofSi andKl;FF is a gain factor. The matricesal;ax are

gains for blending between position and force control, which is used for disabling

force control for the swing leg. Figure 10.6 illustrates the method for calculating the

trajectory modification D _xl . See [24] for a more detailed derivation of the control

law and a list of related work in walking and interaction control.

10.5 Experimental Results

This section summarizes some of the experimental results obtained with the

robot Lola.

One of our research goals is to improve the walking speed of biped robots. The

maximum walking speed we have demonstrated in experiments with Lola is

approximately 3.6 km/h. Figure 10.7 shows Lola walking at 3.5 km/h. This is

slow compared to human walking, but still makes Lola one of the fastest electrically

driven biped walkers. However, both Honda and Toyota have shown significantly

faster running and Boston Dynamics has shown faster walking with a hydraulic

biped (see [16] for a more detailed discussion).

Autonomous, vision guided navigation has been a second area of research. Using

a vision system developed at the Institute for Autonomous Systems Technology,

University of the Bundeswehr Munich, we have demonstrated autonomous naviga-

tion in unknown environments using only onboard vision (see Fig. 10.8.and [20]).

More recently, we have been addressing the issue of locomotion over rough,

unmodelled terrain. Using a reactive replanning strategy Lola is capable of walking

over 4 cm high, unmodelled obstacles (see Fig. 10.9).

Fig. 10.6 Proposed method of modifying task-space trajectories for hybrid position/force control
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Fig. 10.7 Lola walking at 3.5 km/h

Fig. 10.8 Lola autonomously navigating an unknown environment [20]
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10.6 Conclusion

This paper gave an overview of the control methods developed for and

implemented on the biped robot Lola. The walking controller is implemented as a

hierarchical system running on the onboard computer and local controllers. We

have adopted a model-based approach to walking control and demonstrated the

applicability of the proposed methods with the robots Lola and Johnnie. Real-time

planning and stabilizing control allow the robot to quickly react to changing

environments by replanning its steps, to resist external disturbances such as uneven

terrain and to achieve fast and stable walking.
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Chapter 11

Automated Kinematics Reasoning for Wheeled

Mobile Robots

Michael Hofbaur, Christoph Gruber, and Mathias Brandstötter

Abstract Control schemes for wheeled mobile robots typically assume a specific

mobility capability of a drive and implicitly use the drive’s kinematics within its

control procedures. This makes it difficult to deal with faults in the drive and to handle

drives with diverse geometry and functionality that might even change during opera-

tion of a robot. As a consequence, we propose a model-based control scheme that

builds upon an automated analysis of a robotic drive and on an on-line deduction of the

drive’s kinematics. We achieve this functionality through (1) the introduction of

steering-angle independent, generalized variants of the rolling and sliding constraints

for wheeled mobile robots and (2) the corresponding reformulation of kinematic

analysis. This leads to a computationally efficient algorithm that deduces the (inverse)

kinematics of a drive for its mode of operation or failure. Fault tolerant and robust

behavior, however, is only one aspect of our control architecture. On-line kinematics

analysis enables us to easily handle robots that change in geometry or functionality

such as self-configuring modular robot systems and teams of cooperative robots.

11.1 Introduction

Wheeled mobile robots utilize a variety of application specific drives with different

geometries and functionalities such as differential drives, drives with steered

standard wheels or omni-directional drives with mecanum wheels, for example.

This implies drive-specific kinematic capabilities. A controller uses the drive’s

kinematics to translate the requested robot motion into the appropriate actuation

of the drive’s wheels in terms of their rotational velocity and, whenever applicable,

their steering angles.
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Once in operation, the control law and also higher-level control layers, such as

the path-planner, will use the drive’s (inverse) kinematics implicitly through the

implemented control algorithms. It is thus often impossible for such controllers to

adapt their control laws once the kinematics of the drive changes significantly. Such

a situation can occur in the case of a fault in the drive, for example, an impaired

steering actuator. Another situation would be due to a geometry or functional

adaption of the drive, for example, a drive that widens its base to increase stability

or decreases its wheel distance to move through confined spaces [4]. Another

realistic scenarios with implications to a drive’s kinematics could be the adaption

of the robot’s number of wheels to deal with varying payload situations [8] or multi-

robot transport [2]. Of course, one can solve such operational situations through

specifically designed controllers that can account for pre-defined operational

modes. However, it would be desirable to handle such situations in a more general

and generic way.

To overcome these difficulties we propose a model-programmed control scheme

that integrates control-design and control-execution within one intelligent solver

for control. More precisely, the controller performs kinematic analysis for the drive

on the basis of a drive-model at run-time (e.g. whenever the drive changes in

geometry and functionality). As a side effect, we obtain a controller that is always

aware of the drive’s kinematic capabilities and that can perform re-configurations in

the drive to automatically compensate for or recover from fault situations and notify

a higher-level controller to re-plan the desired robot path according to the currently

valid kinematic capabilities of the drive.

The key component of our control architecture is a kinematics reasoning engine
that operates within the stringent time-constraints of real-time drive control. It thus

implements the kinematic analysis and control design procedures as computation-

ally efficient algorithm.

11.1.1 Background and Related Research

Kinematics in robot drives is a well-studied field. A detailed analysis of the

underlying mechanism can be found in text-books (e.g. [10]) and various

publications (e.g. [1, 3]). In the latter reference, Campion et al. provide an unified

framework that classifies robot drives according to their degree of mobility and

degree of steerability and provides general procedures for the analysis of the robot-

kinematics. However, almost all papers describe analysis and design procedures

that are applied at the design stage of a robot and thus, assume functionally

reasonable drives with dedicated topology. We intend to extend this scope to handle

faults in the drive and drives with adaptive geometry/functionality. Faults, in

particular, change the kinematics significantly and it is easily possible that one

ends up with a degenerated robot with impaired mobility. Nevertheless it is

important for an autonomous robot to cope with such situations as well. One can

also find applications of robots with varying geometry or dynamically adaptive
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number of wheels (e.g. see [4, 8]). However, these systems typically apply

specialized drive controllers that handle few operational conditions. Our approach

goes beyond this scope. We intend to provide a generic model-programmed control

scheme in the spirit of [11] that can be applied to a wide spectrum of robot drives

and thus, automatically include special situations such as anticipated and non-

anticipated faults, re-configurable drives and multi-robot control scenarios.

11.2 Preliminaries

Wheeled mobile robots (WMR) provide mobility and load capabilities through

various wheel arrangements as shown in Fig. 11.1. Many approaches, documented

in literature, e.g. [3, 7], classify robots in terms of the wheels (steered-, unsteered-,

mecanum-wheels) and their geometric arrangements and derive the kinematics

accordingly. The basis for the robot’s kinematics are the so called rolling and sliding
conditions for the robot’s wheels (e.g. see [3]) that we summarize in the following:

Focusing on the movement of the robot and neglecting the robot’s pose within a

global reference frame we can directly consider the robot with respect to a robot-

body fixed reference frame SR : fOR; xR; yRg . The robot’s velocity with respect to

an inertial frame expressed in the this robot-body frame SR is a vector

_x ¼
_x
_y
_y

2
4

3
5; (11.1)

where _x and _y denote the longitudinal velocities and _y denotes the angular velocity.

a) b) c) d) e)

f) g) h)

Fig. 11.1 Wheeled mobile robot examples

11 Automated Kinematics Reasoning for Wheeled Mobile Robots 177



Let us define the drive through its model that encodes the geometric alignment

of the robot’s wheels. We will use W to denote the set of n wheels in a drive

(n ¼ jW j) and specify the wheel alignment in terms of the wheel contact point

expressed by the polar coordinates li and ai relative to SR and the wheel radius ri
as shown in Fig. 11.2a for a wheel. The kinematics of a drive defines the

possible movements for a drive and relates _x to the rotational velocities _’i and

steering angles bi of the wheels Wi 2 W. The basis for a drive’s kinematics is

given through the rolling and sliding constraints. We introduce them for a

centered orientable (steered) standard wheel Wi. The rolling constraint

ri _’i ¼ sinðai þ biÞ� cosðai þ biÞ �li cosðbiÞ½ � _x (11.2)

¼ jTi ðbiÞ _x (11.3)

encodes the velocity v perpendicular to the wheel axis and relates the rotational

velocity _’i of the wheel with the robot’s velocity _x. The sliding constraint

0 ¼ cosðai þ biÞ sinðai þ biÞ li sinðbiÞ½ � _x (11.4)

¼ cTi ðbiÞ _x (11.5)

assures that there is no motion perpendicular the wheel plane. The rolling and

sliding constraints of fixed oriented standard wheels are conceptually the same,

except that bi is fixed and not time-dependent.

To derive the rolling and sliding constraints for the complete drive, one

combines the individual row vectors jTi and cTi to form the matrices

a b

Fig. 11.2 Robot wheel geometry and body-fixed reference frame SR
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J1ðbÞ ¼
jT1 ðb1Þ

..

.

jTn ðbnÞ

2
64

3
75; C1ðbÞ ¼

cT1 ðb1Þ
..
.

cTn ðbnÞ

2
64

3
75 : (11.6)

This leads to the overall rolling and sliding constraints for the robot

J1ðbÞ _x ¼ J2 _’ (11.7)

C1ðbÞ _x ¼ 0; (11.8)

where J2 ¼ diagð½ri�Þ combines the wheel radii ri into a constant diagonal matrix.

Of course, we allow a mixture of wheels with nc centered orientable (steerable)

standard wheels and nf fixed oriented standard wheels1 so that n ¼ nc þ nf . In that

sense, we can group wheels accordingly and obtain

J1ðbsÞ ¼ J1cðbsÞ
J1 f

� �
; C1ðbsÞ ¼ C1cðbsÞ

C1 f

� �
: (11.9)

The vector bs ¼ ½b1; . . . ; bnc �T combines all (time varying) steering angle

parameters biðtÞ for the nc centered orientable wheels.

The sliding constraintC1ðbsÞ _x ¼ 0 is satisfied if _x 2 kerðC1ðbsÞÞ. If we consider
two centered orientable standard wheels, then 1 � rank ðC1ðbsÞÞ � 2. If we add

more wheels, then the rank of C1ðbsÞ can increase up to 3, meaning that no motion

might be possible! To avoid that, one has to choose the steering angles bs so that

rankðC1ðbsÞÞ � 2. This demand on the rank of C1ðbsÞ corresponds to the existence

of a common intersection of all wheel axles at a finite distance from the robot center

for rankðC1ðbsÞÞ ¼ 2 or at infinity for rankðC1ðbsÞÞ ¼ 1. In a perfectly controlled

and actuated robot, this intersection defines the instantaneous center of rotation
(ICR) of the robot-body motion (see Fig. 11.2b).

It is the task of the robot’s low-level kinematics controller to maintain the

steering angles and rotational speeds synchronously such that all wheel axles

intersect and the sliding and rolling constraints define the appropriate ICR for the

desired motion _x. However, this will only work if the path-planner or any other

high-level control authority restricts itself to motion set-points _x that are possible

according to the drive’s kinematics.

1 It is straight forward to include mecanum wheels as well. The associated details are given in the

Appendix.
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11.3 Kinematics Reasoning

Our goal is to provide a generally applicable mechanism for the low level controller

so that it can handle a large variety of drives with different geometric wheel

alignments and wheel types. I.e. we are seeking for a computationally efficient

algorithm that derives the kinematics or better the inverse kinematics from a model

of the drive.

Definition 11.1. We define the model of a robot drive in terms of the tuple SR;Wh i
that specifies the robot-body fixed reference frame and the set of wheel models

W ¼ fW1; . . . ;Wng . Each wheel model defines a tupleWi ¼ Ti;Gi;Mih iwhere Ti

details the wheel type {standard-fixed, standard-steered, mecanum},Gi specifies the

wheel’s geometry within SR in terms of the polar coordinates fli; ai; big , the wheel

radius ri and gi for mecanum wheels. Finally,Mi captures the set of operational and

fault modes for a specific wheel, e.g. {actuated, non-actuated, blocked-steering,

blocked-rotation, . . .g.
We allow the model to evolve over time. This includes a dynamically changing

set of wheels and adaptations in wheel geometry. Furthermore, in our control

architecture we use an additional functional unit that estimates the mode of opera-

tion or failure for each wheel and its associated actuators. Mode-estimation and

fault detection, however goes beyond the scope of this paper and we refer the

interested reader to [9].

Given the drive model and a mode specification that captures the operational/

fault condition for a drive at a specific time point, we are interested to analyze a

drive beyond the classification in terms of its degree of mobility and degree of

steerability. In fact, it is our goal to explicitly compute the spaceBof admissible and
controllable motions that fully describes the mobility capabilities and drive

characteristics of a wheeled mobile robot.

We use this explicit knowledge in two ways. Firstly, we provide this information

to higher-level control so that a path-planner automatically takes the kinematic

constraints of a drive into account. Secondly, we enable our low-level controller to

check, whether a drive command from the path-planner is admissible for the drive

in its current mode of operation/failure. This can be done by evaluating the

condition:

_x 2 B : (11.10)

A violation of (11.10) indicates an incompatible drive command that would

infringe the kinematic constraints and thus, cannot be executed as desired by the

low level controller. We therefore propose a control architecture that extends

the low-level drive controller with an additional kinematics reasoning unit which
(a) analyzes the kinematics of a drive during on-line operation of the robot,

(b) provides the inverse kinematics for the low level controller and (c) checks

drive commands on the basis of the condition (11.10). An invalid drive command is
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thus captured and the kinematics reasoning unit can (d) either stop the robot and

notify the path-planner about the failure to execute a desired drive command or (e)

compute a re-configuration that maintains the operation of the robot to some extend

in that it overrules the path-planner and deduces an alternative set-point _x
�
withinB.

The basis for this operation of the robot drive controller is not a hard wired inverse

kinematics model that provides the basis to compute the set-points for the wheel’s

steering anglesbi and angular velocities oi ¼ _’i but a general procedure that derives

the inverse kinematics from the drive geometry and its present operational/fault

condition. We achieve this functionality through introducing a generalized form of

the rolling and sliding conditions that we call qualitative rolling and sliding
constraints.

11.3.1 Kinematic Analysis with Qualitative Rolling and Sliding
Constraints

The key algorithm for the kinematics reasoning procedure is the deduction ofB. The
kinematics of robot drives are typically described in terms of the rolling and sliding
constraints given above in (11.7) and (11.8) where the matrices J1 and C1 depend

upon the (time-varying) steering angles bs ¼ ½b1; . . . ; bns �T . In our kinematics
reasoning unit, however, we want to decide, whether a velocity command _x is

admissible and controllable or not – independently from the steering angles of the

wheels in the drive. Therefore, we take a more detailed look at the meaning of

steering angle-independency for rolling and sliding constraints exemplary for a

drive with nc standard centered orientable (steered) wheels and nf fixed oriented

standard wheels.

Admissible movements for a robot are well understood and documented in

literature [3, 7, 10]. Given the sliding constraint

C1ðbsÞ _x ¼ 0 (11.11)

we deduce the admissible movements through null-space analysis of C1, i.e.

kerðC1ðbsÞÞ � R3: (11.12)

The typical approach to obtain a steering angle independent analysis is to focus on

the robot’s unsteered wheels, as one can always select appropriate steering angles bs
so that the steered wheels do not impose additional constraints.2 We generalize this

notion and provide qualitative constraints that dynamically capture the kinematics

of a drive at its specific operational condition. Each wheel Wi 2 W contributes a

mode-specific qualitative sliding constraint cTq;i for the combined matrix

2Of course, this only holds for steered wheels with unconstrained steering angles.

11 Automated Kinematics Reasoning for Wheeled Mobile Robots 181



Cq ¼
cTq;1

..

.

cTq;n

2
64

3
75 : (11.13)

For example, a standard wheel with blocked steering (at angle bi) contributes the
usual sliding constraint

cTq;i :¼ cosðai þ biÞ sinðai þ biÞ li sinðbiÞ½ � : (11.14)

A wheel with blocked steering and blocked rotation provides an additional con-

straint perpendicular to the wheel’s axis (i.e. in rolling direction) so that we use

cTq;i :¼
cosðai þ biÞ sinðai þ biÞ li sinðbiÞ

cosðai þ bi þ p
2
Þ sinðai þ bi þ p

2
Þ li sinðbi þ p

2
Þ

� �
: (11.15)

A wheel with blocked rotation and operational steering leads to an analogous,

steering angle independent constraint

cTq;i :¼
cosðaiÞ sinðaiÞ li sinð0Þ

cosðai þ p
2
Þ sinðai þ p

2
Þ li sinðp

2
Þ

� �
(11.16)

that prevents all movements of the robot except a rotation at the wheel’s contact

point. A fully operational centered orientable steered wheel, on the other hand, does

not impose any constraint as noted above. We express this fact by using a null-

vector

cTq;i :¼ 0 0 0½ � (11.17)

for the qualitative sliding constraint matrix Cq.

Combining the mode dependent qualitative sliding constraints for all wheels

Wi; i ¼ 1; . . . ; n , provides Cq which generalizes C1 f that specifies the sliding

constraints for fixed orientation wheels. This allows us to obtain the space of
admissible motions Z for a specific configuration and mode of operation/failure of

the drive through the null-space analysis

Z ¼ kerðCqÞ � R3 : (11.18)

We now intend to provide an analogous analysis for the space S of controllable
movements, i.e. the velocities _x 2 S that one can actuate through the motorized

wheels in the drive. The implication of wheel actuation, i.e. _’i 6¼ 0 is captured

through the rolling constraint

J1ðbsÞ _x ¼ J2 _’ : (11.19)
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A null-space analysis of J1ðbsÞ

_�x 2 �S1 ðbsÞ ¼ ker J1ðbsÞð Þ ; (11.20)

however, provides the complement �S1 to the space of controllable movements.

Let us analyze this fact with one single wheelWi at geometric position li; aih i as
shown in Fig. 11.2a to capture this implication in detail. Recall, that the wheel

defines the following row

jT1;i bið Þ ¼ sin ai þ bið Þ � cos ai þ bið Þ � li cos bið Þ½ � (11.21)

in the matrix J1 bsð Þ of the rolling constraint. The null-space of jT1;i bsð Þ has

dimension 2. This can be argued by simple linear algebra: Let _x 2 X ¼ R3. Then,

(11.19) is a linear map f ð _xÞ : X ! R in the single wheel case. Thus,

dim kerðf Þð Þ þ dim imðf Þð Þ ¼ dim Xð Þ ¼ 3 (11.22)

holds. The question of interest is now: How does the steering angle bi influence the
null-space of jT1;iðbsÞ ? For this purpose, we re-write the rolling constraint in a

factorized form that follows from the addition theorems of trigonometry

jTb;iðbiÞjTq;i _x ¼ r1 _’i (11.23)

where

jTb;iðbiÞ ¼ cosðbiÞ sinðbiÞ½ � (11.24)

and

jTq;i ¼
sinðaiÞ �cosðaiÞ �li
cosðaiÞ sinðaiÞ 0

� �
: (11.25)

Note that, until now, we have not made any changes to the rolling constraint. As

mentioned before are we interested in the following question: Which motion set-

points _x are not controllable for any steering angle b? The answer is found in the

factorized rolling constraint (11.23), which emphasizes:

�S ¼ kerðjTq;iÞ � kerðjTb;iðbiÞ jTq;iÞ
� kerðjT1;iðbiÞÞ
� �S1ðbiÞ : ð11:26Þ

11 Automated Kinematics Reasoning for Wheeled Mobile Robots 183



Since jTq;i does not depend on bi, its null-space kerðjTq;iÞ delivers exactly the motion

set-points,3 which are non-controllable through wheelWi for any steering angle bi .
Note that ðkerðjTq;iÞÞ ¼ 1 . This means, that the space of qualitatively non-

controllable velocities �Shas one dimension less than �S1ðbiÞ. Thereby, the qualitative
rolling constraint is less restricting than the effective rolling constraint, as it allows

the steering angle to take the appropriate value. This corresponds to the apparent

gain of a degree of freedom for the choice of controllable motion set-points.

If one thinks of X as three-dimensional space, the base vectors of �S1ðbiÞ span a

plane (cf. 11.20). Any general velocity _�xcan be depicted into components parallel to

the plane and orthogonal to it. The parallel components violate the rolling con-

straint. Hence, all velocities having a non-zero component parallel to the plane are

not controllable. Consistently, the set of controllable velocities is a straight line

through the origin, which is orthogonal to the plane.

The set �S has one degree of freedom – which corresponds to a straight line – and

lies in �S1ðbÞ, independent of the steering angle b . Hence, with varying steering

angle, the plane �S1ðbÞ rotates around an axis �S through the origin (see Fig. 11.3).

How can this result be interpreted, especially when there is more than one

wheel? Again, we stack all qualitative rolling constraints to form Jq

Fig 11.3 Planes �S1ðbÞ at
different steering angles of

one single wheel at a ¼ p=4
and l ¼ 1. The rotation axis of

the planes defines �S

3More detailed analysis shows, that these are those motion set-points, which place the ICR in the

wheel contact point.
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Jq ¼
jTq;1

..

.

jTq;n

2
64

3
75 (11.27)

and analyze the null-space of Jq to obtain those motion commands, that cannot be

actuated independently from the choice of the steering angles. However, this does

not mean that velocity set-points that are not in this null-space can be driven! The

non-controllable motions must be understood in a way similar to “non-controllable

due to steering-angle independent under-actuation”. Let us give the following

examples: Consider a robot with:

1. One fixed standard wheel: kerðJqÞwill contain all motions that are not parallel to

the rolling plane of the wheel.

2. One centered orientable standard wheel: kerðJqÞwill contain only those motions,

that place the ICR in the contact point of the wheel.

3. One fixed standard wheel and one centered orientable wheel: kerðJqÞwill always
be empty. The steered wheel is always able to turn the robot about the contact

point of the fixed oriented wheel into the proper direction and execute a

requested motion command.

4. Two centered orientable standard wheels: kerðJqÞ will always be empty.

5. Three fixed wheels, aligned in a way that they block any motion: kerðJqÞ will
always be empty, meaning that all velocities are controllable – although no

velocity can be driven! The disability of executing any motion will be handled

by the sliding constraint.

6. Three fixed wheels, co-aligned in a way so that the rolling planes of the wheels

are parallel: kerðJqÞ will contain all motions that are not parallel to the rolling

planes of the wheels.

The specification of jTq;i in (11.4) describes a centered orientable standard wheel

in the nominal case. A wheel with blocked steering simply acts as an unsteered

wheel so that jTq;i becomes jTq;i ¼ jT1;iðbiÞ . The situation for a drive with impaired

rotational actuation (e.g. a freely spinning wheel or a wheel with blocked rotation)

implies that the wheelWi cannot contribute to the robot’s motorization. We express

this fact through the null-vector jTq;i ¼ ½0 0 0� . Table 11.1 summarizes the variants

of jTq;i for operational and fault conditions together with the qualitative sliding

constraints introduced above.

Summing up, our approach for kinematics reasoning proceeds as follows:

1. At the current time-point tk , use the mode estimate mðtkÞ (provided through an

estimation/diagnosis unit) and the currently valid drive’s modelMðtkÞ to deduce
the matrices of the rolling and sliding constraints fCq; Jq;C1ðbsÞ; J1ðbsÞ; J2g.

2. Compute the space of the admissible motions Z through

Z ¼ kerðCqÞ � R3 : (11.28)
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3. Compute the space of non-controllable motions �S through

�S ¼ kerðJqÞ � R3 : (11.29)

4. Whenever the two spaces intersect, i.e. Z \ �S 6¼ ; , we have to refine the

admissible velocities Z to exclude those movements that cannot be actuated

through the robot’s wheels. By computing the complement of �S

S ¼ kerð�STÞ � R3 ; (11.30)

where �S denotes the matrix of basis vectors for �S, we obtain the controllable
velocities so that, finally, the intersection

Z \ S ¼: B (11.31)

defines the space of admissible and controllable velocities for a given mode of

operation or failure of the robot.

5. Validate a drive command through checking

_x 2 B ;

Table 11.1 Qualitative rolling and sliding constraints for a standard wheel

Mode of operation jTq cTq

OK: actuated rotation and operational steering sinðaÞ cosðaÞ
�cosðaÞ sinðaÞ

�l 0

2
4

3
5
T

0

0

0

2
4

3
5
T

Fault 1: actuated rotation and blocked steering sinðaþ bÞ
�cosðaþ bÞ
�l � cosb

2
4

3
5
T

cosðaþ bÞ
sinðaþ bÞ
l � sinb

2
4

3
5
T

Fault 2: freely spinning wheel and blocked

steering
0

0

0

2
4

3
5
T

cosðaþ bÞ
sinðaþ bÞ
l � sinb

2
4

3
5
T

Fault 3: blocked rotation and operational

steering
0

0

0

2
4

3
5
T

cosðaÞ �sinðaÞ
sinðaÞ cosðaÞ
0 l

2
4

3
5
T

Fault 4: freely spinning wheel and operational

steering
0

0

0

2
4

3
5
T

0

0

0

2
4

3
5
T
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provide fCq; Jq; Z; �S; S;Bg to higher-level control and compute the steering

angles bs and rotational speeds _’ for all steered and/or actuated wheels on the

basis of fC1ðbsÞ; J1ðbsÞ; J2g.
The introduction of the qualitative sliding and, in particular, the qualitative

rolling constraints enables us to re-formulate the well-known argument on null-

space analysis of C1 (e.g. see [3, 10]) into an efficient algorithmic form that allows

on-line drive-space and control/motorization analysis. The computations rely on

several null-space computations (e.g. via singular-value decomposition) and the

vector-space intersection (11.31) (e.g. with the Zassenhaus algorithm [12]). Illustra-

tive examples for drive space computations can be found in [5]. All operations can be

implemented efficiently so that one can utilize the reasoning concept directly within

the drive’s control loop and thus, reactively adapt the drive’s control mechanism to

the kinematics for the onset of operational modes and faults in the drive.

11.3.2 Applications

Our kinematics reasoning capability provides adaptivity and a sense of self-aware-
ness to the low level robot drive controller. I.e. it can validate and execute velocity

set-points that are commanded through a higher-level controller for an adaptive

robot drive. This is particularly important for autonomously dealing with faults in

the drive.

For example, in [5] we demonstrated an efficient way to recover from a faulty

steering actuator through geometric reasoning on the basis of the admissible and

controllable velocity space B . A blocked steering in an omni-directional robot

leads to the loss of one-degree of freedom, so that we cannot choose the robot’s

velocity _x ¼ ½ _x _y _y�T arbitrarily. B degenerates to a two-dimensional subspace, i.e.

a plane as shown in Fig. 11.4. Using this knowledge, on can easily compute a

feasible drive command, e.g. with adapted rotational speed _Y ! _Y
�

through

projecting the desired velocity _x onto the plane as shown in Fig. 11.4. This re-

configuration procedure maintains the longitudinal velocities _x and _y and thus,

maintains the robot’s movement along the planned path.

Another aspect of self-awareness can be drawn from the qualitative rolling

constraint matrices/vectors jTq;i . As we mentioned earlier, the null-spaces of jTq;i
indicate critical velocities that put the ICR at wheel contact points. They capture

the singularities of the drive. Providing this information to the path-planner, it

is possible to actively avoid these critical velocities during operation of the

drive. Furthermore, we were able to show that the qualitative rolling constraint

matrices ( jTq;i ) provide valuable information for robot-drive diagnosis as they

allow one to formulate a kinematics-aware diagnosis and mode estimation

procedure [9].

We use our control concept to deal with an onset of drive configurations

which we can form with our modular robot platform [6] that allows us to configure
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a large variety of robot drives and, in particular, re-configurable robots from

hexagonal drive modules. Figure 11.5 shows such a compound robot-drive and its

reconfiguration schematically. Controlling such an adaptive drive with a potentially

large number of wheels is surely non-trivial. Our model-based approach with

Fig. 11.4 Drive command adaption _x ! _x
�
to maintain the longitudinal velocities _x; _y (cf. [5])

Fig. 11.5 Reconfigurable robot drive built from hexagonal drive modules
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kinematic reasoning as its key component, however, allows us to deal with time-

variant robot topologies and functionalities so that we can straightforwardly handle

such complex robot-drives.

11.4 Conclusions and Outlook

Traditional kinematics analysis techniques are well suited for off-line robot drive

design. Our intention, however, was to build a generic robot controller that can be

applied to a wide variety of robot drives. Therefore, we presented a scheme for

automated reasoning that analyzes and deduces the kinematics of a robot drive. Our

algorithmic solution builds upon qualitative sliding and rolling constraints. These

constraints represent steering-angle independent constraints that allow us to effi-

ciently analyze a robot drive in terms of its admissible and controllable movements

as well as its singularities. An efficient algorithmic formulation enables us to

perform kinematics reasoning within the control-loop during the run-time of the

robot. As a consequence, we can directly deal with drives that adapt in terms of

geometry and functionality, as well as with typical faults that, otherwise, signifi-

cantly change the kinematic behavior of the drive. Performing kinematics reasoning

within the controller of the robot drive leads to a sense of self-awareness. This

enables interesting new perspectives for robot control, such as intelligent,

kinematics-aware path planning and alternative approaches for re-configurable

robots and coordinated control of multi-robot systems.

To achieve these goals, we are currently working on a re-formulation of kinematics

reasoning as distributed algorithm. This functionality, together with an autonomous

modeling capability will enable us to deal with complex robot structures even more

easily. Another line of research is the integration of kinematics reasoning with higher-

level drive control. For example, we intend to use the drive’s self-awareness to deduce

appropriate mobility classifications that enables a hybrid control algorithm to sche-

dule, or even deduce on-line, the appropriate control strategy to maintain an autono-

mous and robust behavior of a robot.
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Appendix

Qualitative Rolling and Sliding Constraints for an
Omni-Directional Mecanum Wheel

It is straight forward to provide qualitative sliding constraints for Mecanum wheels

as well. If one considers a mecanum wheel with the geometry as shown in Fig. 11.6,

one obtains the standard rolling and sliding constraints as

r _’ cosðgÞ ¼ sinðaþ bþ gÞ�cosðaþ bþ gÞ �l cosðbþ gÞ½ � _x
¼ jT _x ;

0 ¼ cosðaþ bþ gÞ sinðaþ bþ gÞ l sinðbþ gÞ½ � _x�r _’ sinðgÞ �rr
�’r

¼ cT _x :

Note that a fully operational mecanum wheel (actuated or freely spinning) does

not impose any constraints on the robot’s movement as the rotation of the individual

rolls ensures the sliding constraint 1.32. We express this fact in terms of a qualita-

tive constraint with cTq :¼ 0 0 0½ � . The rolling constraint is time-invariant as

mecanum wheels are typically used without active steering. Therefore, we obtain

jTq :¼ sinðaþ bþ gÞ �cosðaþ bþ gÞ �l cosðbþ gÞ½ � . However, a blocked

mecanum wheel exhibits a behavior, where the individual rolls act like non-

actuated standard wheels at bþ gþ p
2
. The according qualitative sliding constraint

is thus

cTq :¼ cosðaþ bþ gþ p
2
Þ sinðaþ bþ gþ p

2
Þ l sinðbþ gþ p

2
Þ� �

:

We summarize the matrix entries cTq and j
T
q for the qualitative constraint matrices

Cq and Jq in Table 11.2.

Fig. 11.6 Mecanum wheel geometry
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Table 11.2 Qualitative rolling and sliding constraints for an omni-directional mecanum wheel

Mode of operation jTq cTq

OK: actuated rotation sin aþ bþ gð Þ
� cos aþ bþ gð Þ
�l � cos bþ gð Þ

2
64

3
75
T

0

0

0

2
64

3
75
T

Fault 1: blocked rotation 0

0

0

2
64

3
75
T

cos aþ bþ gþ p
2

� �
sin aþ bþ gþ p

2

� �
l � sin bþ gþ p

2

� �

2
66664

3
77775

T

Fault 2: freely spinning 0

0

0

2
64

3
75
T

0

0

0

2
64

3
75
T
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Chapter 12

Automatic Parameter Identification

for Mechatronic Systems

Rafael Ludwig and Johannes Gerstmayr

Abstract Simulations of the behaviour of complex mechatronic systems require

optimal simulation parameters for obtaining realistic results. For highly accurate

mechatronic simulations, an algorithm for searching the optimal parameters is

required. In the field of robotics the identification based on minimization of the

residuum with least square methods is state of the art. This chapter describes a

special algorithm for automatic parameter identification for mechatronic systems,

based on the theory of genetic optimization, which works also in case of multiple

local minima of the simulation error distribution. Nominal parameters of a

simulated belt drive are identified in time and frequency domain highly accurate.

Special treatment of the simulation error in frequency domain leads to reduced

identification effort. Finally, the algorithm for automatic parameter identification

searches real robot parameters up to high accuracy. The automatic parameter

identification algorithm leads to accurate simulation results, even though the

measurement contains noise and also time delays.

12.1 Overview

Mechatronic systems like robots have high demands for speed and accurate posi-

tioning. Such mechatronic systems require detailed models of the components e.g.

gear boxes, the controller and the elasticity and damping of mechanical parts.

The coupling of trajectory planning and parameterized simulation for robots and

have been implemented in [12, 13]. In many cases, certain system parameters are

unknown, due to a variety of component suppliers. In previous work [14], an

identification method for minimization of the error in time domain is described.

This chapter describes the algorithm for automatic parameter identification, which
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operates in time and frequency domain. Numerical tests for suitability and the

identification of real mechatronical system parameters are content of this chapter,

where the excellent behavior of the automatic parameter identification is shown

without using algebraic manipulation of the system equations.

In the presence of noise,1 evolution in nature is very effective, see [6]. If more

than one (local) minimum exists in the simulation error, also called cost function,

Newton’s method must be initialized near the global minimum to find the best

parameters. The advantage of genetic algorithms is their independence of initial

conditions. In literature, different genetic algorithms are used for path planning like

in [4, 10, 18], optimization of the controller parameters, see [1], parameter estima-

tion [17, 20, 21, 22], tracking [15] but also image processing, compare [6].

Furthermore, problems with limited possibilities of parameter combination exist,

see [1], and algorithms with binary parameters, named genes.

A direct approach to parameter identification is to manipulate and transform the

model equations into the Laplace domain like in [7, 8]. The algebraic effort

increases with the complexity of the model equations. In order to get enough

information about the behavior about the system, the system input must be chosen

carefully, see [5, 11].

Genetic algorithms are very suitable for parameter estimation, especially if the

model equations representing the mechatronic system, are not fully known. There-

fore a comparison of many different models can be easily done without algebraic

manipulations for the identification. In this chapter, the implementation and appli-

cation of a special algorithm for automatic parameter identification of mechanical

and controller parameters of a robot are described, i.e. searching the correct

parameters of the mechatronic system in a bounded parameter space. The Discrete

Fourier Transformation is useful for computation of the joint velocities based on

postion signals and for application of ideal filters depending on the sample rate of

measured drive torque, see [16].

In the present chapter the original data of the trajectory planning and the

recorded torque of the electrical drives is used by the automatic parameter identifi-

cation. The equations of motion of the robot are assembled in a successive way,

using the method like in [2, 19]. The multibody code HOTINT, described in [9],

allows the coupled simulation of flexible multibodies, sensors, actuators and con-

troller circuits. Thus, the mechatronic models and the automatic parameter identifi-

cation are implemented within this code. The mechatronic system needs to be given

in parametric form in any kind of simulation environment, which could be

MATLAB, DYMOLA or similar, as well. However, the proposed automatic

parameter identification does not need to know the structures of the mechatronic

systems. Our proposed identification is named automatic because the parameter

identification does not need algebraic manipulation of the system equations of the

mechatronical systems, so the mathematical models and the number of parameters

and also the parameter names can be switched very easy by the user. The proposed

1Note: Noise is contained in measurement data of mechatronic systems.
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automatic parameter identification uses a shooting method for the first parameter

generation. A special algorithm based on the theory of genetic optimization

generates parameters of the following generations. Newton’s method is an alterna-

tive for computation of following generations, but it requires differentiable cost

function distributions with respect to the parameters, which is not always given in

real mechatronic systems.

The structure of the present paper is organized as follows. In Sect. 12.2, our

proposed identification for mechatronic systems is described. Cost functions based

on the L2-norm in time and frequency domain are described. As example for a

mechatronic system, a very simple belt drive model with well known nominal

parameters is shown in Sect. 12.3. In order to show the advantages of the use of

weights and cost functions in frequency domain, the results of the automatic

parameter identification using cost functions in time and frequency domain are

contained in this section. The identification of the nominal parameters is difficult,

because the parameter search intervals are chosen very large and the belt drive

model is undamped. This causes very sharp peaks in the amplitude spectrum of the

cost function in frequency domain. Our proposed algorithm is applied to the

identification of drive parameters of a real robot in Sect. 12.4 based on recorded

drive torque, i.e. containing measurement delay and noise.

12.2 Automatic Parameter Identification Algorithm

The algorithm for automatic parameter identification, in the following denoted as

identification, searches the optimal model parameter vector uopt in a systematic

way. Especially if multiple minima appear in the cost function, see Sect. 12.2.1, the

algorithm has a big advantage in comparison with Newton’s method, where often

only a local minimum is found near the initial conditions. The identification is easy

to use and has only a few user defined options like the components of the parameter

vector uopt, containing the parameters of the mechatronic system to optimize and

the search limits of the components. In the parameter space P, the first generation
g ¼ 1 of parameters is uniformly distributed.

The mean quadratic output errors egc , shortly e, result from simulation with the

child parameter vectors ugc. The index c represents the number of a child parameter

vector of the generation g. In the first generation

c ¼ ð1; 2; :::;NfirstÞ; (12.1)

with firstNfirst initial values, while in further generations, g> 1, the children are out

of the set

c ¼ ð1; 2; :::;NcNsÞ: (12.2)

Here, Ns is the number of surviving parameters and Nc is the number of children of

each generation. The child parameter set of generation,
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g ¼ ð1; 2; :::;NgÞ; (12.3)

is defined as

Cg ¼ ug1; ug2; :::; ugNsNc
� �

; (12.4)

where Ng is the maximal number of generations.

The surviving parameter set

Sg ¼ ug1; ug2; :::; ugNs
� �

(12.5)

contains the surviving parameter vectors ugs with index

s ¼ ð1; 2; :::; NsÞ; (12.6)

which are chosen during the selection process, see Sect. 12.2.3. The surviving

parameter vectors ugs are parents of the next generation of child parameter vectors,

using the principle of mutation

ugs ! uðgþ1Þc; (12.7)

i.e. described in Sect. 12.2.4.

The mean quadratic output errors of the next generations are computed in the

time or frequency domain, see Sect. 12.2.1. After a maximal number of generations

is computed, the algorithm for identification stops and the optimal model parameter

vector uopt with the lowest cost function results.

12.2.1 Computation of Cost Function

The M-dimensional measured system output vector ymesðtjÞ depends on discrete

time points tj , j¼(1, 2, . . ., Nt). This vector is the base of the computation of the

M-dimensional vector of mean quadratic simulation errors e depending on the child

parameter vector ugc. By use of the corresponding vector of simulation outputs

ysim ugc; tj
� �

, the error vector results to

e ugc; tj
� � ¼ ymesðtjÞ � ysim ugc; tj

� �
: (12.8)

After each simulation, the cost function, i.e. the simulation error,

egc ¼
XM
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt�1

j¼0

ek ugc; tj
� �� �2vuut (12.9)
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is evaluated and stored. The goal of the algorithm for identification is the search of

the optimal parameter vector uopt such that the cost function value is minimal. The

number of optimized parameters N is the dimension of the parameter spaceP � RN.

Due to the fact, thatRN is infinite and the identification process has to be finished

in finite time, the components ygci of the parameter vectors ugc are limited by the user,

ugci ¼ ½yi;min; yi;max�: (12.10)

The Eigenfrequencies of mechatronic systems are very important. In order to

give the cost function in specific frequency intervals more or less influence (e.g.

near the Eigenfrequencies), the cost function is transferred in the frequency domain.

Using Parseval’s theorem for discrete Fourier Transform (DFT) and the symmetric

characteristic of its output2 (12.9) can be rewritten as

egc ¼ 1

2

XM
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê
k

0 ugcð Þ
��� ���2 þ 2

XNt=2b c

j¼1

Ê
k

j

h i2vuut : (12.11)

Note, that Ê
k

j are the amplitudes in the frequency domain, see Fig. 12.1. Each

amplitude belongs to a specific frequency. The application of frequency dependent

weight factorswk is obtained using the transformation Ê
k

j ! wk Ê
k

j and (12.11). The

use of factors wk 6¼ 1 leads to a modified distribution of the cost function values in

the parameter space P.
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Fig. 12.1 The difference of the measured and simulated output amplitude spectra leads to the

error Ê, which allows the application of ideal filters in form of weights in frequency domain

2 If the DFT is applied to signals with real values, the result constists of conjugate complex values.
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12.2.2 Initialization

The user defined number of uniform distributed parameters of the first generation of

the identification is called initial population size. The likelihood to find the global

minimum, but also the computational effort depends on the initial population size.

During the initialization, the user defines certain optimization settings, e.g. limits

and number of parameters, see Fig. 12.2.

12.2.3 Selection Process

After the cost function values egc are computed with (12.9) or (12.11), the set of

surviving parameters Sg is defined, which contains parameter vectors ugc with the

lowest cost function values egc. The majority jSgj of this set is defined by the user. In
order to keep the best parameters in generations ðg>1Þ, the survivors of the previous
generation are also considered during the selection process.

12.2.4 Mutation

The values of the mutated parameters, also called child parameters, are located

close to their parent parameters, i.e. the surviving parameters. The first generation is

uniform distributed

Fig. 12.2 Initialization of the parameters of the automatic parameter identification, e.g. names,

limits and number of parameters are very easy to handle
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ygci ¼ yi;min þ yi;max � yi;min
� �

rgci ; rgci 2 ½0; 1�; (12.12)

with new random values rgci for every component ygci of each parameter vector.

Related to the inverse formula of standard normal distribution, the function

sðxÞ ¼ sgn x� 1
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log 2 x� 1

2

�� ��� �q
if 0 � x< 1

2
or 1

2
< x � x

0 if x ¼ 1
2

(
(12.13)

is used for parameter mutation. The mutated parameters uðgþ1Þc for the next

generation gþ 1 are computed with the user defined range reduction factor x 2�0; 1�.
This factor is smaller than one in order to have decreasing influence to the distance

between the child parameters and the surviving parameters

yðgþ1Þc
i ¼ ygsi þ yi;max � yi;min

� �
s r

gc
i

� �
xðg�1Þ: (12.14)

After (12.14), each child parameter yðgþ1Þc
i is compared with its limits yi;min and

yi;max. In case of an exceeded limit, the child parameter yðgþ1Þc
i is set to this limit. In

case of multiple minima of the cost function in P, the identification possibly

searches with too many child parameters near the wrong minima. Therefore, a

modified strategy of the selection process is shown in Sect. 12.2.5.

12.2.5 Modified Strategy for Selection Process

In order to be able to take influence on the selection process, an extended strategy

for dealing with more than one multiple (local) minima of the cost function is

showed in this section. Since the identification possibly searches near a local

instead of the global minima of the simulation error in P. The identification should

find several local minima at different locations in parameter space, also if the

parameters with lowest cost function of the actual generation are located very

close together. Therefore, the strategy of 12.2.4 is modified.

After all parameters of the generation are sorted with respect to their cost

functions, the parameter vector leading to the lowest cost function is added to the

set Sg. All other sorted parameters ugc 2 Cg have a distance d ugcð Þ, which has to be
bigger than a minimal allowed distance dmin;0x

ðg�1Þ to all parameters in Sg,

d ugcð Þ ¼ min
ugs 2 Sg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ygci � ygsi
yi;max � yi;min

� 	2

vuut
0
@

1
A> dmin;0x

ðg�1Þ: (12.15)

12 Automatic Parameter Identification for Mechatronic Systems 199



Note, that the minimal allowed distance is decreasing every generation g, so it is
possible to find minima of the cost function, which are located very close to other

minima during the identification. The case of one dimensional parameter identifi-

cation, the minimal distance factor has to be chosen

dmin;0 < 1; (12.16)

for good results of the identification. In N-dimensional parameter spaces, the

minimal distance factor should be also chosen smaller than the diagonal of normed

parameter space,

dmin;0 <
ffiffiffiffi
N

p
: (12.17)

12.3 Application of Identification at Belt Drive

For a comparison of the results of the identification with cost function in time

(compare [14]) and frequency domain, a belt drive simulation with exactly known

parameters (axial stiffness model is according to [3]) is investigated, see Fig. 12.3.

The initial angle of the driving gear ’1 and the angle of the driven gear ’2 are zero.

According to [23] the assumption of small axial strains of the belt and a linear

distribution of the displacement with respect to the initial belt lengths liðx0Þ is applied

liðx0Þ ¼ li0: (12.18)

Following terms are assumed to be small

r

k10

k30

x0

k20

EA

J1

1

l10 l20

J2

M1 r

m

x

ϕ ϕ2

Δ

Fig. 12.3 Belt drive model with stiffnesses, driving gear (index 1) and driven gear (index 2), axial

belt stiffness EA and spring lengths li0
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Dx � li0;
’1r � li0;
’2r � li0:

(12.19)

The displacements between initial and actual belt lengths depend on the rail

displacement Dx, the angle of the driving gear ’1 and the driven gear ’2 yield

Du1 ¼ r’1 þ Dx;
Du2 ¼ �r’2 � Dx;
Du3 ¼ rð’2 � ’1Þ:

(12.20)

The stiffnesses of the belt result to

ki0 ¼ EA

li0
8i 2 1; 2f g; k30 ¼ EA

l10 þ l20
: (12.21)

The Lagrange equations of motion of the system can be written as

d

dt

@L

@ _qj
¼ @L

@qj
þ Qj; qj 2 ’1; ’2; xf g; (12.22)

in which the Lagrangian

L ¼ 1

2
m _x2 þ J1 _’2

1 þ J2 _’2
2 �
X3
i¼1

ki0Dui2
 !

(12.23)

consists of the potential energy of the belt depending on Dui from (12.20), and the

quadratic terms of the kinetic energy of the gear inertias Ji and the rail mass m. The
principle of virtual work applied to the driving torque M1 leads to the generalized

forces

dW ¼ M1d’1 ) Q1 ¼ M1: (12.24)

The equations of motion follow to

J1€’1 ¼ r k30r ’2 � ’1ð Þ � k10 r’1 þ Dxð Þ½ � þM1;

J2€’2 ¼ �r k20 r’2 þ Dxð Þ þ k30r ’2 � ’1ð Þ½ �;
m€x ¼ �k20 r’2 þ Dxð Þ � k10 r’1 þ Dxð Þ:

(12.25)

In order to rotate the driving gear with a prescribed angle ’1d, it is necessary to

add a controller to the system. Therefore a P-controller is used to compute the

driving torque

M1 ¼ Pð’1d � ’1Þ: (12.26)
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The mass and stiffness matrices of the controlled system are

M ¼ diagðJ1; J2; J3Þ; (12.27)

K ¼
k10r

2 þ k30r
2 þ P �k30r

2 k10r
�k30r

2 k20r
2
2 þ k30r

2 k20r
k10r k20r k10 þ k20

0
@

1
A: (12.28)

The parameters for the nominal simulation are shown in Table 12.1. The

Eigenfrequencies result to

detðK� o2MÞ ¼ 0 ) o1;2 ¼ �
ffiffiffiffiffiffi
C1

p
;o3;4 ¼ �

ffiffiffiffiffiffi
C2

p
;o5;6 ¼ �

ffiffiffiffiffiffi
C3

p
: (12.29)

If the controller parameter is set to zero P ¼ 0 Nmrad�1, C1 is also zero. C2 and

C3 are positive values. The first Eigenfrequency depends strongly on the value of P
and the initial position.With P ¼ 45Nmrad�1 and x0 ¼ (0, 0.1, 0.2, 0.3, 0.4, 0.5) m,

the first Eigenfrequencies result to (81.7, 78.2, 75.4, 73.1, 69.8) Hz.

12.3.1 Identification of Nominal Belt Drive Parameters Using
Cost Function Weights in Time Domain

In real systems, it is often hard to get the correct controller values, therefore the

controller value is identified. The axial stiffness EA of the belt is also a parameter for

the identification, since the real material behaviour usually differs from the values of

data sheets due to tolerances. As measurement data, the angle’1 and torqueM1 of the

driving gear from a reference simulation are used in order to test the identification

algorithm. The reference angle ’1d was prescribed in form of small steps in order to

get a good excitation of the undamped system i.e. shown in Fig. 12.4.

Due to high frequency in the angle signal of the driving gear, i.e. shown in

Fig. 12.4, a sampling interval of 0.2 ms was chosen as simulation time.

In following, the influence of the number of surviving parameters is shown. The

parameters are searched in the intervalsEA 2 ½1:5� 105; 2:5� 105�N andP 2 ½30;
60� Nm rad�1. The distribution of the cost function e has several local minima, see

Table 12.1 Nominal parameters of belt drive simulation

Parameter Symbol Value Unit

Initial spring length of k10 l1;0 0.1875+x0 m

Initial spring length of k20 l2;0 0.7875-x0 m

Axial stiffness EA 2� 105 N

Moment of inertias J1, J2 1� 10�1 kg m2

Radius r 1� 10�3 m

Rail mass m 0.948 kg

Controller gain P 45 Nm rad�1
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Fig. 12.5. For the case of minimal distance factor is set to zero, the best parameter

set was found correctly with eight surviving parameters after 1,700 computations.

Tests with high minimal distance factor dmin;0 ¼ 0:5 and jSgj ¼ 8 are shown in [14].

With jSgj ¼ 20 and high minimal allowed distance factor dmin;0 ¼ 0:5, the identifi-
cation of the parameters is shown in Fig. 12.6. Due to the high value, only 2,100

simulations are finally needed, even though jSgj is increased to maximal 20 survivors

for each generation. In this case, the optimized parameters EAopt ¼ 200; 056 N and

Popt ¼ 45:0145 Nmrad�1 are very close to the nominal parameters. The number of

simulations is bigger in case of dmin;0 ¼ 0:5, so the value zero is better for this

identification, see Table 12.2. The simulation error and the tested parameters during

the identification are shown in Fig. 12.6. Remarkable are the high number of local

minima in Fig. 12.6 with respect to the axial stiffness EA.
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Fig. 12.4 Step like reference angle ’1d and sinusoidal angle ’1 of driving gear i.e. used for the

computation of the cost function of the identification. The driving torqueM1 is proportional to the

difference of these angles
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Fig. 12.5 Distribution of the cost function e computed in time domain, using (12.9), within

limited parameter space P
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The big influence of the axial stiffness to a phase shift of the gear angle is reason

for this behavior. Nevertheless, with a sufficient number of initial values, survivors

and child parameters, the original values can be retrieved easily.

12.3.2 Identification of Nominal Belt Drive Parameters Using
Cost Function Weights in Frequency Domain

In order to get faster convergence of the identification, the frequency dependent

weight factors, described in (12.11) ff, are used. The modified distribution of the

cost function in parameter space P and an result3 of the identification is computed.

The optimal parameters EAopt ¼ 200; 416N, Popt ¼ 45:0077Nm rad�1 , compare

Figs. 12.7 and 12.8, located very close to the nominal parameters, are found in 3rd
generation 2 after only 180 computations. The weights wk ¼ 1 is used in frequency

intervals I1 ¼ ½70; 100�Hz and I2 ¼ ½450; 550�Hz, wherein the Eigenfrequencies

of the system are located. For all other frequency intervals, the weight factors

wk ¼ 0 are applied. If the intervals are set extremely close to the Eigenfrequencies

Table 12.2 Settings of identification algorithm using cost function in time domain

Identification parameter Value

Initial population size 1,000

Cardinality jSgj of surviving parameter seta 8 and 20

Number of children of each survivor 8

Number of generations g 12

Range reduction factor x 0.5

Minimal allowed distancea dmin;0 0 and 0.5
aMultiple identifications with these parameters are done for test purpose
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Fig. 12.6 Cost function distribution obtained by (12.9) based on time domain from identification

of axial stiffness EA and controller gain P using dmin;0 ¼ 0:5 and jSgj ¼ 20

3 Inital population size ¼ 100, Ns ¼ 10, Nc ¼ 10, x ¼ 0.5, dmin;0 ¼ 0.1
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Fig. 12.7 Cost function distribution (top) and result of the identification after only 180

simulations (bottom) obtained after use of frequency dependent weight factors wk , EA nominal:

200; 000N, EA identified: 200; 416N

12 Automatic Parameter Identification for Mechatronic Systems 205



30 40 50 60
0

1

2

3

4

5

6
x 10

−3

P (Nm/rad)

e 
(r

ad
)

30 35 40 45 50 55 60
0

1

2

3

4

5

6
x 10

−3

P (Nm/rad)

e 
(r

ad
)

Fig. 12.8 Cost function distribution (top) and result of the identification after only 180

simulations (bottom) obtained after use of frequency dependent weight factors wk, P nominal:

45 Nm rad�1, P identified: 45.0077 Nm rad�1
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I1 ¼ ½80; 84�Hz and I2 ¼ ½473; 476�Hz, and the weights wk ¼ 3 for the interval I2
the distribution of the cost function is more flat and the global minimum is more

dominant, see Fig. 12.9.
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Fig. 12.9 Dominant global minima in cost function distribution obtained after use of frequency

dependent weight factors wk, which are unequal zero only in interals very close to Eigenfre-

quencies, different weight factors are used (I1 ¼ ½80; 84�Hz, I2 ¼ ½473; 476�Hz, wk ¼ 18k 2 I1 ;
wk ¼ 38k 2 I2; wk ¼ 08k =2 I1 [ I2)
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12.4 Application of the Identification to a Real Robot

with Parallel Kinematics

As final example, the algorithm is applied for an identification of parameters of a

real robot, see Fig. 12.10, from recorded data containing noise and quantification

effects. Nonlinear behavior of stiffnesses and friction, time delays, different robot

kinematics and controller circuit are hard be investigated with conventional analyt-

ical identification methods.

The algorithm for identification identifies several parameters containing time

delay within the environment of the multibody code HOTINT, which allows the

simulation of complex robot motions in real time. As short summary of the simula-

tion environment, see also [12, 13, 14], the robot simulation computes dynamic

motions of serial robots with arbitrary number of rotational and translational robot

links. Robots with parallel kinematics are also implemented in HOTINT.

In this section, the recorded motor torque contains high frequencies of

oscillations, so this torque is chosen as output ymesðtjÞ according to (12.8). The

simulated motor torque ysim ugc; tj
� �

consists of the electric motor torque, viscous

and static friction. The components of the parameter vectors and the limits of the

definition of the parameter spaceP � R5 are shown in Table 12.3. In order to create

difficult conditions for the identification, the search intervals of the parameters are

chosen very large. Due to this reason, some of the child parameter vectors ugc

contain also overcritical values of the relative damping zG > 1. The time delay DT
denotes the transfer times between measuring the motor torque and writing it into a

data file. The electric motor torque is multiplied with the gear factor. This leads to

an equivalent force which acts on the rail additionally to the gravitation force. A

multiplication of the drive inertia with the square of the gear factor leads to

equivalent mass me of the moment of inertia of the motor results. The rail mass

mrail is well known from the data sheet. The rail mass and the equivalent mass from

drive inertia JD are connected by a spring damper element with stiffness cG and gear

damping

dG ¼ 2zG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
memrailcG
me þ mrail

r
; (12.30)

representing the mechanical gear effects. For better physical interpretation, the

relative gear damping zG is identified. Constraint equations with Lagrange parame-

ter are used to keep the rod lengths constant. The rods are mounted between rails

and tool and are assumed as massless. The identification uses the settings shown in

Table 12.4.
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The cost function in frequency domain is used for the identification of several

different parameters of the real robot. The Discrete Fourier Transformation of the

cost function between 4 and 7 s is used to identify the drive parameters of the robot.

The result of the identification is shown in Table 12.5. The identification progress

and the simulation with the identified parameters from Table 12.5 and the measure-

ment are shown in Figs. 12.11 and 12.12.

Table 12.3 Limits of drive parameters of robot with parallel kinematics for identification

Parameter Symbol yi;min yi;max Unit

Measurement delay DT 0 0.1 s

Gear stiffness cG 1� 102 3� 105 N/m

Rel. gear damping zG 0 2 1

Tool mass mt 1 2 kg

Drive inertia JD 5� 10�5 15� 10�5 kg m2

Table 12.4 Settings for identification of robot parameters

Identification parameter Value

Time window for Discrete Fourier Transformation ½4; 7�s
Frequency window I ½0; 50�Hz
Nonzero frequency dependent weight factors wk 2 I 1

Initial population size 20

Cardinality jSgj of surviving parameter set 20

Number of children of each survivor 20

Number of generations g 10

Range reduction factor x 0.5

Minimal allowed distance dmin;0 0

Fig. 12.10 The parameters of a linear drive of a Festo tripod, see also http://www.festo.de, robot

are identified. A highly dynamic pick and place motion was chosen to get a good excitation for the

measurement
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Table 12.5 Identified parameters with cost function in frequency domain and frequency depen-

dent weights

Parameter Symbol Identification result Unit

Measurement delay DT 2:489� 10�2 s

Gear stiffness cG 2:252� 105 N/m

Rel. gear damping zG 3:68� 10�1 1

Tool mass mt 1.92 kg

Drive inertia JD 8:6� 10�5 kg m2

Cost function residual e
gc
min 0.124 Nm

Domain has lower residual

0.5 1 1.5 2 2.5 3

x 10
5

0.1

0.15
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0.3

cG (N/m)

e 
(N

m
)

Fig. 12.11 The gear stiffness cG is shown here with the corresponding cost function values e using
a very large search interval during the parameter identification of several parameters. The

frequency dependent weights wk are set to 1 in the interval I ¼ [0,50] Hz, and zero otherwise
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Fig. 12.12 Simulated motor torque of simulations based on identified parameters, compare

Table 12.3, and measured motor torque show high conformance
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12.5 Conclusions

The chapter describes an algorithm for identification based on the theory of genetic

optimization, which allows the identification of parameters of simple and complex

mechatronic systems with large parameter ranges without algebraic manipulation

of the dynamic equations. As extension of the computation of the cost function in

the time domain, a strategy for searching optimal parameters in frequency domain

is shown. The algorithm is tested by means of finding nominal parameters of a belt

drive, which are exactly known. The use of frequency dependent weights improves

the distribution of the cost function and the optimal parameters are found faster.

The automatic parameter identification is used to search a list of user-defined

parameters of a real robot. The result of the final simulation using the identified

parameters is compared with recorded drive torque and shows high conformance.
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Chapter 13

Crane Operators Training Based

on the Real-Time Multibody Simulation

Mohamad Ezral Baharudin, Pasi Korkealaakso, Asko Rouvinen,

and Aki Mikkola

Abstract This paper introduces a real-time multibody simulation approach. Two

main sections have been described in depth and include a description of flexible

bodies and modeling of a hydraulic system. In flexible bodies, the bodies are

modelled using the floating frame of reference formulation. The equation of motion

for the body is developed using the principle of virtual work. Penalty method is

used when there are constraints in the mechanical system. The hydraulic system is

modelled using lumped fluid theory. Two types of components, valves and hydrau-

lic cylinders, are introduced for modelling. A numerical example is developed

using two Craig-Bampton modes deformation modes modelled as flexible bodies.

13.1 Introduction

Products of mechanical industry, such as mobile machines and cranes, contain

several different technology areas such as mechanics, actuators and control

systems. These subsystems are in close interaction with each other as is shown in

Fig. 13.1. In case of cranes, the actuators are often handled, in principle, as

hydraulics. The hydraulic actuators are assembled on the mechanism to produce

forces acting on the mechanism. The mechanism is typically a system of bodies,

which converts the forces ofthe actuators into constrained motion. Electronics,

together with the control algorithm that defines the way the structure behaves, can
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be used in both open and closed loop control systems and are integrated into machine

systems in order to increase productivity and ergonomics.

In most cases, solution time of the traditional simulation methods used in

the product development processes are not synchronized to real-time. Accordingly,

a simulation of a few seconds is allowed to take several hours of real time

computation. In these systems, the control signals of the simulated system must

be pre-defined and, for this reason, user interaction is described more or less

experimentally based on measured data. When the simulation is executed, synchro-

nous to real-time, the operator can produce a control signal during simulation.

However, real-time solution requirements often force a simplification to be made in

the simulation model. In practice, the real-time model can be considered as a trade-

off between efficiency and accuracy.

The objective of this paper is to introduce a general simulation approach that can

be applied for the real-time simulation of hydraulically driven cranes. The

introduced approach is based on the use of the floating frame of reference formula-

tion and is coupled with the lumped fluid theory, which allows for the description of

hydraulic circuits. The floating frame of reference formulation can be used together

with modal reduction methods. This feature allows for the optimization of the

computational efficiency, such that solution time can be synchronized with real-

time. In the section of numerical examples, the introduced simulation approach is

applied to create real-time simulation models for two cranes.

13.2 Description of Flexible Bodies

In this section, the description of flexible bodies is shortly explained. In this study,

the flexible bodies are modeled using the floating frame of reference formulation.

The formulation can be applied to bodies that experience large rigid body

translations and rotations; as well as elastic deformations. The method is based

on describing deformations of a flexible body with respect to a frame of reference.

The frame of reference, in turn, is employed to describe large translations and

rotations. The deformations of a flexible body with respect to its frame of reference

can be described with a number of methods, whereas in this study, deformation is

described using linear deformation modes of the body. Deformation modes can be

Fig. 13.1 Real-time

simulation model
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defined using a finite element model of the body [1, 2]. Figure 13.2 illustrates the

position of particle Pi in a deformed body i.
The position of particle Pi of the flexible body i can be described in a global

coordinate system using the vector rP
i

as follows:

rP
i ¼ Ri þ Ai �uP

i ¼ Ri þ Aið�uPi

0 þ �uP
i

f Þ (13.1)

where Ri is the position vector of the frame of reference, Ai is the rotation matrix of

body i, �uP
i

is the position vector of particle Pi within the frame of reference, �uP
i

0 is

the undeformed position vector of the particle within the frame of reference, and

�uP
i

f is the displacement of particle Pi within the frame of reference due to the

deformation of body i. In this study, the rotation matrix Ai is expressed using Euler

parameters yE
iT ¼ ½ yEi

0 yE
i

1 yE
i

2 yE
i

3
�T in order to avoid singular conditions

which are problematic when three rotational parameters are used, such as in the

case of Euler and/or Bryant angles [3]. The rotation matrix can be written using

Euler parameters as follows:

Ai ¼ 2

1
2
� yE

i

2

� �2

� yE
i

3

� �2

yE
i

1 y
Ei

2 � yE
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0 y
Ei

3 yE
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1 y
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2
66664

3
77775

(13.2)

The following mathematical constraint must be taken into consideration when

Euler parameters are applied:

yE
i

0

� �2

þ yE
i

1

� �2

þ yE
i

2

� �2

þ yE
i

3

� �2

¼ 1 (13.3)

Fig. 13.2 The position of the

particle Pi in global

coordinate system
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The deformation vector �uP
i

f can be described using a linear combination of the

deformation modes

�uP
i

f ¼ CPi

R q
i
f (13.4)

Where CPi

R is the modal matrix whose columns describe the translation of

particle Pi within the assumed deformation modes of the flexible body i [4], and

qif is the vector of elastic coordinates. Consequently, the generalized coordinates

that uniquely define the position of point Pi can be represented with vector pi as

follows:

pi
T ¼ RiT yE

iT
qif

T
h iT

(13.5)

The velocity of particle Pi can be obtained by differentiating the position

description (13.1) with respect to time

_rP
i ¼ _R

i �Ai ~�u
Pi

0 þ ~C
Pi

R q
i
f

� �
�oi þAiCPi

R _qif (13.6)

Where �oi is the vector of local angular velocities. In (13.6), the generalized

velocity vector can be defined

_qi
T ¼ _R

iT
�oiT _qif

T
h iT

(13.7)

By differentiating (13.6) with respect to time, the following formulation for the

acceleration of particle Pi can be obtained:

€rP
i ¼ €R

i þAi ~�oi ~�oi
�uP

iþAi ~_�o
i
�uP

i þ 2Ai ~�oi _�u
PiþAi €�u

Pi

(13.8)

where ~�oi
is a skew-symmetric representation of the angular velocity of the body in

the frame of reference, €R
i
is the vector that defines the translational acceleration

of the frame of reference, Ai ~�oi ~�oi
�uP

i

is the normal component of acceleration,

Ai ~_�o
i
�uP

i

is the tangential component of acceleration, 2Ai ~�oi _�u
Pi

is the Coriolis

component of acceleration and Ai €�u
Pi

is the acceleration of particle Pi due to the

deformation of body i.
When deformation modes are used with the floating frame of reference, rotations

due to body deformation are usually ignored. However, in order to compose all of

the basic constraints, rotation due to body deformation must be accounted for. The

vector �vif due to deformation at the location of particle Pi within the frame of

reference can be expressed

�vif ¼ APi

f �vi (13.9)
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Where �vi is defined in the undeformed state at the location of particle Pi, andAPi

f

is a rotation matrix that describes the orientation due to deformation at the location

of particle Pi with respect to the reference frame. Note that all components in (13.9)

are expressed in the reference frame. The rotation matrix APi

f can be expressed

as follows:

APi

f ¼ Iþ ~eP
i

(13.10)

In (13.10), I is a (3 � 3) identity matrix and ~eP
i

is a skew symmetric form of

the rotation change caused by deformation. Rotation changes due to deformation

can be represented as the following:

eP
i ¼ CPi

y q
i
f (13.11)

Where CPi

y is the modal transformation matrix whose columns describe rotation

coordinates of pointPiwithin the assumed deformationmodes of the flexible body i [4].

13.2.1 Equations of Motion

The equations of motion can be developed using the principle of virtual work.

When the floating frame of reference formulation is employed the virtual work done

by inertial forces can be written as follows:

dWii ¼
Z
Vi

rid rP
iT

€rP
i

dVi (13.12)

where drP
i

is the virtual displacement of the position vector of a particle, €rP
i

is the

acceleration vector of the particle defined in (13.8), ri is density of body i, and Vi is

volume of body i. The virtual displacement of the position vector can be expressed

in terms of virtual displacement of generalized coordinates as follows:

d rP
iT ¼ dRiT dyi

T
dqif

T
h i I

� ~�u
PiT

AiT

CPi

R

T
AiT

2
4

3
5 (13.13)

By substituting the virtual displacement of position vector (13.13) into the

equation of virtual work of the inertial forces (13.12), and by separating the

terms related to acceleration from the terms related quadratically to velocities,

the following equation for the virtual work of inertial forces can be obtained:
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dWii ¼ dqi Mi €qiþ Qvi
� �

(13.14)

Where Mi is the mass matrix and Qvi is the quadratic velocity vector. The mass

matrix can be expressed as follows:

Mi ¼
Z
Vi

ri
I �Ai ~�u

Pi

AiCPi

R

~�u
PiT

~�u
Pi � ~�u

PiT

CPi

R

sym CPi

R

T
CPi

R

2
6664

3
7775dVi

ð13:15Þ

And, correspondingly, the quadratic velocity vector takes the form

Qvi ¼
Z
Vi

ri
Ai ~�oi ~�oi

�uP
i þ2Ai ~�oi

CPi

R _qif

�~�u
PiT

~�oi ~�oi
�uP

i �2 ~�u
PiT

~�oi
CPi

R _qif

CPi

R

T
~�oi ~�oi

�uP
i þ2C Pi

R

T
~�oi

CPi

R _qif

2
664

3
775dVi (13.16)

The virtual work of the externally applied forces can be written as:

dWei ¼
Z
Vi

drP
iT
FPi

dVi ¼ dqi
T
Qei (13.17)

Where FPi

is external force per unit mass and Qei is the vector of generalized

forces which can be expressed as follows:

Qei ¼

PnF
j¼1

Fi
j

PnF
j¼1

~�u
i
j A

iT Fi
j

PnF
j¼1

Ci
j

T
AiT Fi

j

2
66666664

3
77777775

(13.18)

whereFi
j is the j-th force component acting on body i, ~�u

i
j is a skew symmetric matrix

of the location vector of the j-th force components, andCi
j includes the terms of the

modal matrix associated with the node to which the j-th force component applies.

The elastic forces can be defined using the modal stiffness matrix Ki and modal

coordinates. The modal stiffness matrix is associated with the modal coordinates

and the matrix can be obtained from the conventional finite element approach using

the component mode synthesis technique [4]. The virtual work of elastic forces can

be written as follows:

dWsi ¼ d qif
T
Kiqif (13.19)

218 M.E. Baharudin et al.



Accordingly, the vector of elastic forces can be represented as follows:

Q f i ¼
0

0

Kiqif

2
4

3
5 (13.20)

Using (13.14), (13.17) and (13.19), the equation of virtual work, including

inertial, external and internal force components, can be written as follows:

dqi Mi€qi þQvi þQ f i �Qei
h i

¼ 0 (13.21)

The terms inside the brackets can be used to form unconstrained Newton-Euler

equations as follows:

R
Vi

riIdVi � R
Vi

riAi~�u
Pi

dVi
R
Vi

riAiCPi

R dV
i

R
Vi

ri~�uP
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Pi

dVi �R
Vi
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CPi

R dV
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sym
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R dV
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Equations of motion in this form are referred to as Generalized Newton-Euler

equations in [4], where Newton-Euler equations of rigid bodies are extended to

flexible bodies.
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13.2.2 Integration of the Equations of Motion

Due to the use of Generalized Newton-Euler equations as a description of dynam-

ics, the equations of motion are expressed using the angular velocity and angular

acceleration vectors. Equation (13.22) can be solved to obtain angular accelerations

in the body frame, which can be integrated with angular velocities. However, the

problem arises when the coordinates describing the orientation of the body have to

be solved. This is due to the fact that angular velocities cannot be directly integrated

with the parameters which uniquely describe the orientation of the body. For this

reason, a new set of variables p is defined, containing the orientation coordinates of

the body reference frame. In order to integrate the position level coordinates, a

relationship between the first time derivative of Euler parameters and the vector of

angular velocities defined in the body reference frame can be made through the

following linear expression:

_y
Ei

¼ 1

2
�G
iT
�oi (13.23)

where the velocity transformation matrix �G
i
can be written as follows:

�G
i ¼

�yE
i

1 yE
i

0 yE
i

3 �yE
i

2

�yE
i

2 �yE
i

3 yE
i

0 yE
i

1

�yE
i

3 yE
i

2 �yE
i

1 yE
i

0

2
64

3
75 (13.24)

The time derivatives of the body variables to be integrated can be stated using

vector _p as follows:

_pi
T ¼ _R

iT _y
EiT

_qif
T

h iT
(13.25)

which can be integrated to obtain position level generalized coordinates p.

13.2.3 Description of Constrained Mechanical Systems

In this section, the penalty method used in this study is briefly described. Mechani-

cal joints that restrict motion possibilities of interconnected bodies can be described

with constraint equations [5]. To satisfy a set of m constraint equations related to

generalized coordinates, the following equation must be fulfilled:

C q; tð Þ ¼ 0 (13.26)
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where C is a vector of constraints of the system and t is time. In the penalty method,

the constraints are combined to the equations of motion by employing penalty

terms. This procedure leads to a set of n differential equations as follows:

Mþ CT
qaCq

� �
€q ¼ Qe �Qv �Q f � CT

qa Qc þ 2Om _Cþ O 2C
� 	

(13.27)

where Cq is the Jacobian matrix of the constraint equations and a, O and m are

m � m diagonal matrices and contain penalty terms, natural frequencies and

damping ratios for constraints, respectively. If the penalty terms are equivalent to

each constraint, the matrices are identity matrices multiplied with a constant

penalty factor [6].

A drawback associated with the penalty method is that large numerical values

for penalty factors must be used, which may lead to numerical ill-conditioning and

round-off errors. However, the method can be improved by adding penalty terms or

correction terms, which are zero when constraint equations are fulfilled. Using this

approach, equations of motion can be written as follows:

Mþ CT
qaCq

� �
€q ¼ Qe �Qv �Q f � CT

qa Qc þ 2Om _Cþ O 2C
� 	þ CT

ql
� (13.28)

where l* is the vector of penalty forces. Since the exact values of l* are not known
in advance, an iterative procedure should be used as follows:

l�iþ1 ¼ l�i � a Cq€qi þQc þ 2Om _Cþ O 2C
� 	

(13.29)

where l* ¼ 0 is used for the first iteration. Using this equation, the forces caused by

errors in constraint equations at iteration i þ 1 can be defined and compensated. In

this case, the penalty terms do not need to have large numerical values. An iterative

procedure can be applied directly to (13.28), which leads to the following

expression:

Mþ CT
qaCq

� �
€qiþ1 ¼ M€qi � CT

qa Qc þ 2Om _Cþ O 2C
� 	

(13.30)

In the case of the first iteration, M€q0 ¼ Qe �Qv �Q f, the leading matrix of

(13.29) is a symmetric and positive definite, which makes the solution of the

equation efficient. This formulation behaves satisfactorily also in singular

configurations of a mechanical system.

13.3 Modelling of Actuators

In this study, crane systems are assumed to be driven with hydraulic actuators.

Hydraulic actuators can be modelled using the lumped fluid theory, in which the

hydraulic circuit is divided into volumes where pressures are assumed to be equally
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distributed. In this approach, the pressure waves in pipes and hoses are assumed to

be insignificant [7]. The hydraulic pressure in each hydraulic volume i can be

described as

_pl ¼
Bei

Vi

Xnc
j¼1

Qij (13.31)

where Bei is the effective bulk modulus of volume i, (13.31), Qij is the outgoing or

incoming flow rate of volume i and nc is the total number of flows related to volume i.
The effective bulk modulus defines the flexibility of the hydraulics and it can be

calculated as follows:

Bei ¼ 1

1

Boil
þ
Xnc
j¼1

Vj

ViBj
þ
Xnh
k¼1

Qij

Vk

ViBk

(13.32)

In (13.32), nh is the total number of pipes and hoses related to volume i. The bulk
modulus of oil, Boil, accounts for the amount of non-dissolving air in oil and it is a

function of pressure. The maximum value is typically Boilmax ¼ 1.6e9Pa. It is
important to note that the bulk modulus Bj of component j is also dependent on

the component type.

13.3.1 Modelling of Valves

For modelling purposes, a valve is assumed to consist of several adjustable

restrictor valves which can each be modelled separately [8]. With small pressure

differences (pressure difference < 1 bar), the flow over the restrictor is thought to

be laminar, whereas with larger differences, it is thought to be turbulent. When

using the semi-empiric modelling method, the flow over the restrictor can be

written as follows:

Q ¼ CvU
ffiffiffiffiffi
dp

p
(13.33)

whereCv is the semi-empiric flow rate constant and defines the size of the valve and

U is a variable that defines the spool or poppet position. For a number of valve

types, the variable U can be defined using a first order differential equationas

follows:

_U ¼ Uref � U

t
(13.34)
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where Uref is the spool reference position and t time constant describing the

dynamics of the valve spool.

13.3.2 Modelling of Hydraulic Cylinders

A hydraulic cylinder can be modeled by simply using the dimensions of the

cylinder and the pressure obtained from (13.31). The motion of the hydraulic

cylinder produces a flow rate to the hydraulic volume I as follows

QjA ¼ � _xAA

QjB ¼ _xAB

(13.35)

where AA is the area of cylinder piston side and AB is the area on cylinder piston rod

side, _x is the velocity of the stroke of the cylinder, as depicted in Fig. 13.3.

The force produced by the hydraulic cylinder can be written as

Fs ¼ p1A1 � p2A2 � Fm (13.36)

where Fm is the total friction force of the cylinder and p1 and p2 are pressures acting
in the cylinder chambers. The friction force is a function of pressures, cylinder

efficiency, � and velocity. The friction force can be described in a simple case as

follows:

Fm ¼ p1A1 � p2A2ð Þ 1� �ð Þ f _xð Þ (13.37)

The velocity dependent co-efficient, f _xð Þ, can be described using a spline-curve

as shown in Fig. 13.4.

Fig. 13.3 Hydraulic cylinder transform hydraulic pressure into a mechanical force
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13.3.3 Numerical Example

The numerical example is based on a Liebherr LTM 1030 mobile crane and is

shown in Fig. 13.5. The simulation model of the crane consists of eight bodies, of

which four are modelled as flexible bodies using two Craig-Bampton deformation

modes for each body. The model includes several force components related to wind

loads of hooks and booms, hydraulics, the engine and a rope system using a particle

based approach is modelled as well.

Since the model under investigation is used in training simulators, the hydraulic

model is a simplified version of the actual hydraulics shown in Fig. 13.6.

Hydraulic circuits consist of hydraulic cylinders, pressure compensated propor-

tional directional valves, pressure relief valves and pumps – in case of lift circuits,

two counter balance valves are used. Figures 13.7 and 13.8 show examples of a

simple work cycle, in Fig. 13.7 the valve control signal and spool opening are

presented. Figure 13.8 presents the flow rates through the lift circuit valve and the

pressure rates of cylinder chambers are shown in Fig. 13.9.

The simulation of the system was modelled using MeVEA Real-Time Simula-

tion environment. The environment offers the possibility of off-line simulation for

more detailed models or, alternatively, real-time simulation and visualization for

simplified models [9]. The environment is compatible with MeVEA Full Mission

Solution, which offers a motion platform and visualization environment combined

with user interface – including an operators seat, joysticks, and pedal etc. case

specific instrumentation [10].

Fig. 13.4 The velocity dependent friction co-efficient
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13.4 Simulation Environment

In order to simulate the actual environment of the mobile crane, the dynamic model

must be presented with visualization and physical feedback. This implementation

required a number of mechanical actuators, interfaces, software and a high perfor-

mance computer as shown in Fig. 13.10.

Fig. 13.5 Mobile crane in virtual construction site

Fig. 13.6 Simplified hydraulic system of a mobile crane
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Fig. 13.7 Lift circuit valve control signal and reference control signal

Fig. 13.8 Flow rates through the lift valve during work cycle
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Fig. 13.9 Lift circuit cylinder pressure rates

Fig. 13.10 Real-time simulation environment
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The high performance computer is required to solve equations of motion and

hydraulic circuits in real-time. The simulation results can be sent out to the

actuators of a motion platform via I/O interfaces and a computer. These are the

most critical aspects, where the response time should be minimized in order to

sustain the feel and sensation of real-time feedback. The accuracy of feedback and

parameters involved in the numerical analysis should also be taken into account.

The visualization of the working environment was carried out using 3D devel-

opment software. All the machine components were designed with the actual

dimensions, and to get a realistic result, the actual environment images were also

added. All the components were treated separately in such that they have their own

dedicated local coordinate system. These local coordinate systems were

synchronised with the dynamic model system in a computer and were connected

to another computer, which acted as a main controller for receiving and controlling

all of the input and output data. The main controller reacted based on the calculation

obtained from the dynamic model. It controls the position and velocity of the

actuators, as well as visualization aspects.

The simulator motion platform used in this project has six DOFs. This platform

has translational and rotational movements. Additional actuator may require a high

performance computer in order to ensure that the modelling process is sufficient

enough to generate fast data. Accurate inverse kinematic models of the platform

also need to be developed to get correct acceleration rates.

13.5 Conclusion

In the real-time simulation, a machine needs to be considered as a coupled system

that consists of mechanical components and actuators. This study introduced a

general simulation approach that can be applied for the real-time simulation of

hydraulically driven cranes. The introduced approach was based on the use of the

floating frame of reference formulation and was coupled with the lumped fluid

theory for the modeling of hydraulic circuits. The floating frame of reference

formulation can be used together with modal reduction methods. The introduced

simulation approach was applied to create real-time simulation models of a mobile

crane. The simulation model of the crane consists of eight bodies, of which four are

modelled as flexible bodies using two Craig-Bampton deformation modes for each

body. The model includes several force components related to the wind load of

hooks and booms, hydraulics, the engine and modelling of rope system using a

particle based approach. The simulation model of the crane was embedded into

real-time simulation environment that consists of visualization, motion platform

and an I/O interface. The real-time simulation environment allows for merging a

user to the simulation model in a realistic manner.
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Chapter 14

On a Momentum Based Version of Lagrange’s

Equations
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Abstract The present contribution intends to promote an alternative form of

Lagrange’s Equations, which rests upon the notion of momentum. We first present

a short derivation of the proposed momentum based version of Lagrange’s

Equations. From this derivation it becomes apparent that the derivatives of the

kinetic energy with respect to the generalized coordinates must cancel out in the

original kinetic energy based version of Lagrange’s Equations, and thus need not to

be computed. The presented momentum based formulation of Lagrange’s

Equations is valid for deformable bodies, modeled in the framework of the Ritz

approximation technique, where rigid-body degrees-of-freedom may be present.

After having stated this momentum based version of Lagrange’s Equations, we

restrict to plane motions of rigid bodies, and demonstrate our proposed formulation

for the case of a rotational degree of freedom, where we present an additional

connection to the notion of momentum of the rigid body, particularly to angular

momentum. Finally, we present the exemplary application to systems consisting of

two rigid bodies, namely the pendulum with a point mass and movable support, and

the Sarazin pendulum consisting of a rigid rotating disc and an attached point mass.
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14.1 Introduction

Since their discovery, Lagrange’s Equations have appealed engineers and

researchers from both, the application point of view, as well as from theoretical

reasons. For a derivation of these relations, which has inspired the present contri-

bution, see the book by Ziegler [13]. A collection of solved problems was presented

by Gignoux and Silvestre-Brac [5]. In their original form, see [13] and [5], the

dynamic terms in Lagrange’s Equations refer to the notion of kinetic energy. It is

the scope of the present contribution to promote an alternative form of Lagrange’s

Equations, which rests upon the notion of momentum. Subsequently, we first

present a short derivation of the proposed momentum based version of Lagrange’s

Equations. From this derivation it becomes apparent that the derivatives of the

kinetic energy with respect to the generalized coordinates must cancel out in the

original kinetic energy based version of Lagrange’s Equations, and thus need not to

be computed. The presented momentum based formulation of Lagrange’s

Equations is valid for deformable bodies, modeled in the framework of the Ritz

approximation technique, where rigid-body degrees-of-freedom may be present.

After having stated this momentum based version of Lagrange’s Equations, we

restrict to plane motions of rigid bodies, and demonstrate our proposed formulation

for the case of a rotational degree of freedom, where we present an additional

connection to the notion of momentum, particularly to angular momentum, of the

rigid body. Finally, we present the exemplary application to systems consisting of

two rigid bodies, namely the pendulum with a point mass and movable support, and

the Sarazine pendulum consisting of a rigid rotating disc and an attached rigid

pendulum. A more general derivation of the proposed momentum based formula-

tion in the framework of the Lagrange or material description of continuum

mechanics, and the application to deformable bodies that move in three-

dimensional space, will be presented in a forthcoming contribution [7].

14.2 The Original Kinetic Energy Based form of Lagrange’s

Equations

In the Ritz approximation technique, see Ziegler [13], the actual position vector

from a space-fixed origin of some material particle of a generally deformable body is

parameterized by a finite set of time-dependent generalized coordinates qk ¼ qkðtÞ,
k ¼ 1; . . . ; l. For the sake of brevity, we take these coordinates as independent from
one another, and we study the skleronomic case. Following [13], this functional

dependency of the position vector is written as

r ¼ r q1ðtÞ; . . . ; qkðtÞ; . . . ; qlðtÞð Þ: (14.1)
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The velocity of the particle becomes

v ¼
Xl
k¼1

@r

@qk
_qk; (14.2)

where a superimposed dot stands for the derivative with respect to time. The

following useful relations do hold in the present context, see Ziegler [13],

@r

@qk
¼ @v

@ _qk
;

d

dt

@r

@qk

� �
¼ d

dt

@v

@ _qk

� �
¼ @v

@qk
: (14.3)

As is well-known, the original kinetic energy based formulation of Lagrange’s

Equations, see Chap. 10 of Ziegler [13] for its derivation, reads:

Qk ¼
d

dt

@T

@ _qk

� �
� @T

@qk
; k ¼ 1; . . . ; l: (14.4)

The k-th generalized force is denoted by Qk. The kinetic energy T follows as the

integral over the mass m of the body, or the system of bodies under consideration:

T ¼
Z
m

1

2
v � v dm: (14.5)

The derivation of (14.4) in Chap. 10 of Ziegler [13] holds for deformable bodies

with a conserved mass, where rigid-body degrees of freedommay be present. For an

extension of (14.4) for deformable bodies with a time-variable mass, see Irschik and

Holl [6].

14.3 The Proposed Momentum Based form of Lagrange’s

Equations

The momentum based form of Lagrange’s Equations, which we propose to use, reads

Qk ¼
Z
m

@v

@ _qk
� dv
dt

dm; k ¼ 1; . . . ; l: (14.6)
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For a short-handed derivation of this formulation, it is only necessary to note that

d

dt

@T

@ _qk

� �
¼
Z
m

d

dt

@

@ _qk

1

2
v � v

� �� �
dm ¼

Z
m

d

dt

@v

@ _qk
� v

� �
dm

¼
Z
m

d

dt

@r

@qk
� v

� �
dm ¼

Z
m

d

dt

@r

@qk

� �
� v dmþ

Z
m

@r

@qk
� dv
dt

dm

¼
Z
m

@v

@qk
� v dmþ

Z
m

@v

@ _qk
� dv
dt

dm

¼ @T

@qk
þ
Z
m

@v

@ _qk
� dv
dt

dm: ð14:7Þ

In order to derive this result, the definition of the kinetic energy in (14.5) has

been used, and the integrals over the conserved mass m and the derivatives have

been interchanged. Also, the derivatives with respect to time and generalized

coordinates have been interchanged. The chain rule of differentiation has been

applied, and (14.3) has been utilized. Substituting (14.7) into (14.4) it follows that

Qk ¼
d

dt

@T

@ _qk

� �
� @T

@qk
¼
Z
m

@v

@ _qk
� dv
dt

dm; k ¼ 1; . . . ; l: (14.8)

This proves (14.6). We call the latter relation a momentum based version of

Lagrange’s Equations, since the elementary momentum carried by a material

particle is v dm , and since we wish to emphasize that Lagrange’s Equations are

nothing else then a mathematical consequence of the Fundamental Law of Dynamics,

see Ziegler [13] for the latter. The momentum based formulation of Lagrange’s

Equations stated in (14.6) has distinguished predecessors in the literature.

For systems of mass points and rigid bodies, we mention the formalism by Kane,

[10, 11] and the geometrical derivation by Casey [3, 4]. Also the projection

equation proposed by Bremer in elastic multi-body dynamics, [1, 2] involves the

notion of momentum. The present derivation yields a momentum based formulation

in the framework of the formulation given in Chap. 10 of the book of Ziegler [13]

for the kinetic energy based version, i.e. for deformable bodies, where however

rigid-body degrees of freedom may be present, and where rigid bodies and mass

points are included as special cases. In this sense, the momentum based version in

(14.6) may be considered as a reformulation and small extension of results that were

presented earlier in Refs. [1–4, 10, 11]. Also, for the sake of brevity, we above have

restricted to the case of independent generalized coordinates. However, our above

derivation of (14.6) clearly demonstrates that and why the derivatives of the kinetic

energy T with respect to the generalized coordinates qk must cancel out from the

original kinetic energy based formulation, (14.4), and thus need not to be computed,

see (14.7). In this sense, (14.6) represents nothing else than a compact version of
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Lagrange’s Equations. This will be demonstrated subsequently for the case of a

plane motion of a rigid body, where a further connection to the notion of momen-

tum will be assigned to the right hand side of (14.6).

14.4 Plane Motion of a Rigid Body

Consider some rigid body in a state of plane motion. In a space-fixed Cartesian

coordinate system, the unit vector perpendicular to the plane of motion is denoted

as ey, while the plane is spanned by the unit vectors ex and ez. In order to describe

the motion, we use the notation of Chap. 10 of the book by Ziegler [13]. The

absolute velocity vector of a material particle in the body is written as

v ¼ vA þv� r0 ¼ vA þ _’ey
� �� r0: (14.9)

This is also known as Euler’s formula of the kinematics of a relative motion,

Ziegler [13]. The absolute velocity vector of some body-fixed reference point A is

vA, and r0 is the relative position vector pointing from A to the particle under

consideration. In the present case of a rigid plane motion, the angular velocity

vector of the body is v ¼ _’ey
� �

, where the angle of rotation of the body from a

space-fixed direction is denoted as ’.
Following Chap. 10 of Ziegler [13], the kinetic energy of the body is written as

T ¼ 1

2
vA � vAð Þmþ vA � _’ey

� �� � � Z
m

r0 dmþ 1

2

Z
m

_’ey
� �� r0
� � � _’ey

� �� r0
� �

dm:

(14.10)

Subsequently, we utilize the relations

Z
m

r0dm ¼ r0Sm (14.11)

and

Z
m

ey � r0
� � � ey � r0

� �
dm ¼ i2S þ s2

� �
m; (14.12)

where r0S is the position vector pointing from A to the center of mass S. The distance
between A and S is denoted s, and is is the radius of gyration about the center of mass,

see Chap. 7 of Ziegler [13]. Note that both, s and iS, do not depend on time. We now

take the rotation angle ’ as an independent generalized coordinate and compute the

corresponding kinetic energy terms in the traditional version of Lagrange’s

Equations, (14.4). In doing so, we assume that vA may depend on ’ and ’̇, and that

r0S is a function of ’. We thus obtain from (14.10) the following expression
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d

dt

@T

@ _’
¼ d

dt

 
@vA
@ _’

� vAmþ @vA
@ _’

� _’ey
� �� �

�
Z
m

r0 dm:

þ vA � ey
� � � r0S mþ _’ i2 þ s2

� �!

¼ d

dt

 
@vA
@ _’

�
Z
m

vA þ _’ey
� �� r0

� �
dm:

þ vA � ey
� � � r0Smþ _’ i2 þ s2

� �!

¼ d

dt

@vA
@ _’

� �
� Jþ @vA

@ _’
� d
dt
Jþ d

dt
vA � ey

� �
� r0Sm

þ vA � ey
� � � d

dt
r0Smþ €’ i2S þ s2

� �
m: ð14:13Þ

The total momentum or impulse of the body, see Chap. 7 of Ziegler [13], is the

vector

J ¼
Z
m

v dm ¼
Z
m

vA þ _’ey
� �� r0

� �
dm ¼ vA þ _’ey

� �� r0S
� �

m: (14.14)

Utilizing (14.3) and noting that for the plane motion under consideration

d

dt
r0S ¼ _’ey

� �� r0S; (14.15)

we arrive at

d

dt

@T

@ _’
¼ @vA

@ ’
� J� _’ vA � r0Sð Þmþ @vA

@ _’
� d
dt
Jþ ey � mr0S � d

dt
vA þ d

dt
HA

� �
:

(14.16)

The total relative angular momentum of the rigid body in plane motion about A,
see Chap. 7 of Ziegler [13] for definition, is the vector

HA ¼ _’ ey
� � Z

m

r0 � r0 dm ¼ _’ey
� �

i2S þ s2
� �

m: (14.17)

Proceeding with the kinetic energy based version of Lagrange’s Equations,

(14.4), we obtain from (14.10) that
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@T

@ ’
¼ @vA

@ ’
� vA þ @vA

@ ’
� _’ey
� �� �

� r0S þ vA � _’ey
� �� � � @ r0S

@ ’

� �
m

¼ @vA
@ ’

�
Z
m

vA þ _’ey
� �� r0

� �
dmþ vA � _’ey

� �� � � ey � r0S
� �

m

¼ @vA
@ ’

� J� _’ vA � r0S
� �

m; ð14:18Þ

where we have used (14.14) and the fact that in a rigid plane motion

@r0S
@’

¼ ey � r0S : (14.19)

Substituting (14.18) in (14.16), we find that

d

dt

@T

@ _’
¼ @T

@’
þ @vA

@ _’
� d
dt
Jþ ey � mr0S � d

dt
vA þ d

dt
HA

� �
: (14.20)

This again gives evidence for the fact that the derivative of the kinetic energy

with respect to the generalized coordinate, in the present case (14.18), does cancel

out from Lagrange’s Equations, (14.4), and needs not to be computed, see (14.7) for

a more general setting. However, (14.20) also demonstrates that Lagrange’s

Equations can be assigned with a clear mechanical meaning in terms of the notions

of momentum and relative angular momentum of the body as a whole. Indeed, from

(14.9) we obtain

@v

@ _’
¼ @vA

@ _’
þ ey � r0: (14.21)

The proposed momentum based version of Lagrange’s Equations, (14.6), thus

yields

Z
m

@v

@ _’
� d
dt
v dm ¼ @vA

@ _’
� d
dt
Jþ

Z
m

ey � r0
� � � d

dt
v dm

¼ @vA
@ _’

� d
dt
Jþ ey �

Z
m

r0 � d

dt
v dm; ð14:22Þ

where we have used (14.14). Using (14.9), there is

Z
m

r0 � d

dt
v dm ¼ mr0S � d

dt
vA þ

Z
m

r0 � d

dt
_’ey
� �� r0
� �

dm: (14.23)

14 On a Momentum Based Version of Lagrange’s Equations 237



In accordance with Chap. 1 of Ziegler [13], the kinematics of a relative motion

yields

d

dt
_’ey
� �� r0
� � ¼ €’ey

� �� r0 þ _’2 ey � r0
� �

ey � r0
� �

: (14.24)

Thus, using (14.17), we obtain

Z
m

r0 � d

dt
_’ey
� �� r0
� �

dm ¼ €’ey
� � Z

m

r0 � r0 dm ¼ €’ey
� �

i2S þ s2
� �

m ¼ d

dt
HA:

(14.25)

Substituting (14.25) into (14.22) yields

Z
m

@v

@ _’
� d
dt
v dm ¼ @vA

@ _’
� d
dt
Jþ ey � mr0S � d

dt
vA þ d

dt
HA

� �
; (14.26)

which, when compared with (14.20), gives evidence for the correctness of (14.8).

Compare also the three-dimensional result that was given by Casey [4] for the case

that A is the center of mass, and the velocity of A does not depend on the rotational

speed.

For the sake of comparison with two subsequent benchmark examples, we write

out (14.26) in terms of the rotational generalized coordinate ’. Substituting

vA ¼ _xA ’; _’ð Þex þ _zA ’; _’ð Þez (14.27)

and

r0S ¼ s sin’ex þ cos’ezð Þ (14.28)

into (14.26) and using (14.14) and (14.17), we eventually obtain

Z
m

@v

@ _’
� d
dt
v dm ¼ @ _xA

@ _’
€xA þ s €’ cos’� _’2 sin’Þ� ���

þ @ _zA
@ _’

€zA � s €’ sin’þ _’2 cos’
� �� �

þs €xA cos’� €zA sin’ð Þ þ €’ i2S þ s2
� �!

m:

(14.29)

Note that, in deriving this result, no terms appear to cancel out.
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14.5 Plane Pendulum with a Movable Support

As a first example, we consider the case of a plane pendulum with a vertically

moving support, treated in Sect. 10.2.2 of Ziegler [13]. The system consists of two

rigid bodies, a point mass m1, which can perform a translational motion in the

direction of ez only, and a rigid pendulum with mass m, the latter being linked to the
point mass at the point A, see Fig. 14.1. This system has two independent degrees of

freedom, the vertical displacement zA of the link A, and the rotation angle ’ of the

pendulum. Since the movement of the support A in the direction of ex is constrained,

xA ¼ 0, and since zA is an independent degree of freedom, there is

@ _xA
@ _’

¼ 0; €xA ¼ 0;
@ _zA
@ _’

¼ 0: (14.30)

The problem was treated by the original kinetic energy based version of

Lagrange’s equations in Sect. 10.2.2 of Ziegler [13], where the following results

were obtained:

@T

@’
¼ �ms _zA _’ cos’ (14.31)

and

d

dt

@T

@ _’

� �
¼ m s2 þ i2S

� �
€’� ms €zA sin’þ _zA _’ cos’ð Þ: (14.32)

Note that the notation zA ¼ zq was used in Sect. 10.2.2 of Ziegler [13].

Substituting (14.31) and (14.32) into the original kinetic energy based version of

Lagrange’s equations, (14.4), it is seen that (14.31) indeed does cancel out. The

result is:

m, i (rigid pendulum)S

x

z

z (t)A

m1

s

S

c

t

A

Fig. 14.1 Vertical pendulum
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d

dt

@T

@ _’

� �
� @T

@’
¼ �ms€zA sin’þ m s2 þ i2S

� �
€’: (14.33)

We now proceed to the proposed momentum based version, (14.29). The

momentum based scalar quantities considered in the latter are additive, like the

kinetic energy terms in the original version used in [13], such that the momentum

based quantities in (14.29) can be computed separately for the single bodies under

consideration, and can be added afterwards. For the point mass m1, there is no

rotation to be considered, such that the point mass does not contribute to (14.29).

Hence, it is sufficient to take into account the pendulum only. Substituting (14.30)

into (14.29), we directly obtain Ziegler’s result, (14.33). This gives evidence for the

correctness of (14.29).

14.6 The Sarazin Pendulum in Plane Motion

As a second example, we consider the case of a Sarazin pendulum, treated in Sect.

10.7, exercise A 10.3 of Ziegler [13]. The system consists of two rigid bodies, a disc

with mass m1, rotating about its space-fixed center of mass, and a rigid pendulum

with mass m2, the pendulum being linked to the disc at the point A. Both bodies

move in the same plane. The system has two independent degrees of freedom. In

order to be compatible with (14.29), we choose the absolute rotation angle ’ of the

pendulum, and the relative rotation angle c between the two bodies, see Fig. 14.2.

Note that the absolute rotation angle of the disc and the relative rotation angle were

used as degrees of freedom in Sect. 10.7, exercise A 10.3 of Ziegler [13].

From Fig. 14.2 it is seen that

xA ¼ R sin ’� cð Þ; zA ¼ R cos ’� cð Þ (14.34)

such that

@ _xA
@ _’

¼ R cos ’� cð Þ; @ _zA
@ _’

¼ �R sin ’� cð Þ (14.35)

and

€xA ¼ R €’� €c
� �

cos ’� cð Þ � R _’� _c
� �2

sin ’� cð Þ;

€zA ¼ �R €’� €c
� �

sin ’� cð Þ � R _’� _c
� �2

cos ’� cð Þ: ð14:36Þ

Applying (14.29) separately for the two bodies under consideration and adding

the results, where (14.34) and (14.36) are substituted for the pendulum, we obtain
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Z
m

@v

@ _’
� d
dt
v dm ¼ m1i

2
1 €’� €c
� �

þ m2 R2 €’� €c
� �

� sR 2 _’ _c� _c
2

� �
sinc

�

þsR 2€’� €c
� �

coscþ €’ i22 þ s2
� ��

: ð14:37Þ

An equivalent expression was given in Sect. 10.7, exercise A 10.3 of Ziegler

[13], as a result of the original kinetic energy based version of Lagrange’s

equations. (Due to the different meaning of ’, our ’ must be replaced by ð’þ cÞ
in (14.37) in order to obtain Ziegler’s expression.) This equivalence again gives

evidence for the correctness of (14.29).

14.7 Conclusion

In Sect. 14.3 above, the proposed momentum based version of Lagrange’s

Equations, (14.6), has been derived from the original kinetic energy based version,

(14.4). The derivation, see (14.7), demonstrates that and why the derivatives of the

kinetic energy with respect to the generalized coordinates must cancel out from the

kinetic energy based version of Lagrange’s Equations. The presented momentum

based formulation of Lagrange’s Equations is valid for deformable bodies, modeled

in the framework of the Ritz approximation technique, where rigid-body degrees-

of-freedom may be present. In Sect. 14.4 above, the formulation has been worked

out for rigid bodies in plane motion, where an additional mechanical meaning has

been attached in terms of total momentum and total relative angular momentum of

the rigid bodies, (14.26), see (14.29) for an explicit formulation. Finally, the

application to two systems consisting of two rigid bodies has been presented,

namely the pendulum with a point mass and movable support, and the Sarazin

pendulum consisting of a rigid rotating disc and an attached point mass, see

1 1

2 2

z

s

R

m , i

m , i

S2

S1

A

x

Fig. 14.2 Sarazin pendulum
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Sects. 14.5 and 14.6. The question, why certain terms do cancel out in the original

kinetic energy based version of Lagrange’s Equations became apparent to the

senior author when working as a young assistant of Professor Franz Ziegler. An

industrial research project, performed in the framework of ACCM and concerning

rapidly rotating deformable bodies, see [8, 9, 12], recently has given the opportunity

to the present authors to reconsider this question and to work out the above solution.

A more general presentation of the proposed momentum based formulation in the

framework of the Lagrange or material description of continuum mechanics, and

the application to deformable bodies that move in three-dimensional space, will be

presented in a forthcoming contribution [7].
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Chapter 15

Vibration Control and Structural Damping of a

Rotating Beam by Using Piezoelectric Actuators

Christian Zehetner and Georg Zenz

Abstract In this paper, the application of piezoelectric vibration control in flexible

multibody systems is studied and verified. Exemplarily, beam-type structures are

considered that are subject to inertial and external forces. The equations of motion

for three-dimensional flexible and torsional vibrations are presented considering the

influence of piezoelectric actuation strains. In the framework of Bernoulli-Euler

beam theory the shape control solution is derived, i.e. the distribution of actuation

strains such that the flexible displacements are completely compensated. For the

experimental verification, a laboratory model has been developed, in which the

theoretical distribution of actuation strains is discretized by piezoelectric patches.

A suitable control algorithm is implemented within a dSpace environment. Finally,

the results are validated by numerical computations utilizing ABAQUS and

HOTINT, and verified by experimental evaluation.

15.1 Introduction

Recently, the interest in vibration compensation by means of distributed actuation

has increased rapidly. On the one hand, structures become more and more

light-weighted, on the other hand there are considerable advances in the develop-

ment of materials suitable for such kinds of actuators and sensors. This paper

concentrates on the application of piezoelectric transducers in order to control

flexible vibrations in beams, which are important components of many multibody

systems.

Piezoelectric transducers can be used for sensing and actuation, utilizing either

the direct or the converse piezoelectric effect, respectively [1]. An efficient possi-

bility for realisation is to apply piezoelectric patches on the surfaces of beams.

C. Zehetner (*) • G. Zenz
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Depending on the type of the piezoelectric material, and on the position of the patch

on the beam, such transducers can be used for sensing and actuation of bending and

torsional modes. Vibration compensation by piezoelectric materials has been

extensively treated in the literature. The exact compensation of flexible

displacements by distributed actuation has been denoted as shape control, for a

review see Irschik [2].

An exact solution in the framework of Bernoulli-Euler beam theory for the

complete compensation of plane bending vibrations under influence of rigidbody

motions has been presented by Zehetner and Irschik [3]. Torsional vibration control

has been investigated by Zehetner and Krommer [4], where it has been shown how

piezoelectric transducers can be used for torsional sensing and actuation. A com-

parison of some specific piezoelectric materials for the application of torsional

actuation and sensing has been shown in [5].

There are several possibilities for the practical realisation of the spatial distribu-

tion, i.e. the shape of the actuators and sensors. For instance, shaped piezoelectric

layers can be applied on the beam. Other possibilities would be shaped electrodes or

functionally graded material properties. These strategies enable the exact distribu-

tion of the necessary actuation strains, but are very extensive. Thus, patch

approximations are more suitable for practical applications. A patch approximation

for the control of vibrations of a rotating beam has been investigated numerically by

Zehetner and Gerstmayr [6], and first experimental results have been presented in

[7] and [8].

Goal of this work is the derivation and verification of a mechanical model for the

control of three-dimensional flexural and torsional beam vibrations caused by

external forces and inertial forces due to rigidbody motions. The theoretical results

are validated by numerical computations using the finite element software ABAQUS
and the multibody dynamics simulation code HOTINT, mainly developed by

Gerstmayr [9].

Finally, the theoretical results are verified by experimental investigations. For

this sake, a laboratory model has been set up, in which 48 piezoelectric patches are

applied on a rectangular hollow beam. The beam is fixed on a motor, such that it

performs a rotational rigid body motion. Within a dSpace environment control

algorithms are implemented and tested. It turns out that the flexible vibrations can

be reduced significantly, and that theoretical, numerical and experimental results

show a very good coincidence.

15.2 Piezoelectric Actuators and Sensors

Piezoelectric layers can be used as actuators and sensors in various ways. Here, we

consider piezoelectric patches that are attached on the surfaces of a beam. We

distinguish between two operational modes:
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• Extensionmode. The electric field component in thickness direction corresponds

to extension strains as shown in Fig. 15.1. Bending actuators and sensors are

realized by placing such devices symmetrically on the upper and lower surface of

the beam and applying an electric field in opposite direction (extension and

contraction). Such a behaviour is provided e.g. by the piezoelectric ceramic

PZT (lead zirconate titanate). Extension with a predominating axis can be

realized by makro-fiber composites (MFC) consisting of PZT stripes embedded

in epoxy-substrate. Torsional actuation and sensing can be realized by placing

such layers at an angle of 45� with respect to the rod axis as shown in Fig. 15.1.

• Shear mode. The electric field in thickness direction corresponds to shear strains

as shown in Fig. 15.2. Such a behaviour is shown e.g. by the piezoelectric

material ADP (ammonium dihydrogen phosphate). The shear mode can be

utilized for torsional sensing and actuation as shown in Fig. 15.2.

15.3 Constitutive Equations

The constitutive equations for piezoelectric materials relate the mechanical strain

e ¼ ½exx eyy ezz gyz gxz gxy�T, stress s ¼ ½sxx syy szz tyz txz txy�T, electrical field E ¼
½Ex Ey Ez�T and dielectric displacement D ¼ ½Dx Dy Dz�T , cf. Tauchert [10], in the

form

s ¼ Q � e� dEð Þ; (15.1)

y
x

z
Ez

Uel

45°

Bending

Torsion

Fig. 15.1 Piezoelectric extension mode

y
x

z
Ez Uel

Torsion

Fig. 15.2 Piezoelectric shear mode
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D ¼ h � Eþ ds; (15.2)

where Q is the 6 � 6 matrix of elasticity coefficients, d the 6 � 3 matrix

of piezoelectric coefficients and h the 3 � 3 matrix of dielectric coefficients.

The coefficients of the matrices depend on the specific type of piezoelectric

material. Examples for PZT, ADP and MFC are summarized in the Appendix.

In beam-type structures it is assumed that the stress components syy, szz and tyz
can be neglected, such that (15.1) and (15.2) reduce to

sxx ¼ Q11 ðexx � e0xxÞ;
txz ¼ Q55ðgxz � g0xzÞ;
txy ¼ Q66ðgxy � g0xyÞ; ð15:3Þ

and

Dz ¼ �33ðEz � E0
z Þ; (15.4)

where Q11 ¼ S�1
11 is the effective Young modulus, S11 is the first component of the

compliance matrix S ¼ Q�1. In (15.3), e0xx, g
0
xz and g

0
xy are piezoelectric eigenstrains

representing the converse piezoelectric effect, cf. Mura [11] for the definition of

eigenstrains. Accordingly, E0
z is the electric eigenfield, a generalized formulation

for the direct piezoelectric effect which has been introduced by Irschik et al. [12].

Eigenstrains and the eigenfield depend on the material properties, e.g. for PZT

there is

e0xx ¼ d31Ez; g0xy ¼ g0xz ¼ 0; E0
z ¼

d31
�33

sxx; (15.5)

and for ADP

e0xx ¼ 0; g0xy ¼ d36Ez; g0xz ¼ 0; E0
z ¼

d36
�33

txy: (15.6)

Assuming that the piezoelectric transducers are relatively thin, the electric

field components in the plane of the layers are neglected Ex ¼ Ey ¼ 0, and the

electric field is constant in thickness direction and proportional to the applied

voltage Uel,

Ez ¼ Uel

hL
; (15.7)

hL is the thickness of the piezoelectric layer.
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15.4 Kinematics

Figure 15.3 shows a flexible beam fixed to a rigid base in point B. A floating

reference frame is introduced with origin in point B. In the undeformed configura-

tion, x coincides with the beam axis, and ðy; zÞ is the cross-sectional plane. The

position of B with respect to an inertial frame is described by the position vector

xBðtÞ, and the orientation of the floating frame by the rotation matrix ABðtÞ. Hence,
xB and AB represent the rigidbody motion of the beam.

The deformed beam axis is given by the flexible displacements uðx; tÞ, vðx; tÞ,
wðx; tÞ as shown in Fig. 15.3. According to Bernoulli-Euler beam theory the cross-

sections remain undeformed and perpendicular to the beam axis. According to Saint

Venant’s theory of torsion, the cross-section performs a rigidbody rotation around

the beam axis with the torsional angle wðx; tÞ , and an axial displacement (cross-

sectional warping) expressed by Saint Venant’s warping function ’ðy; zÞ . It has
been shown by Zehetner [13] that eigenstrains cause an additional cross-sectional

warping which can be formulated by the warping function f0ðy; z; e0ðtÞÞ. Thus, the
displacement field of the beam is expressed by

u ¼
u� yv0 � zw0 þ w0’

v� zw
wþ yw

2
4

3
5þ

f0

0

0

2
4

3
5� 1

2

2wðyw0 � zv0Þ
zv0w0 þ yðv02 þw2Þ
yv0w0 þ zðw02 þ w2Þ

2
4

3
5: (15.8)

The first term represents the displacements according to linear Bernoulli-Euler

beam theory and Saint Venant’s theory of torsion. The second term stands for the

additional cross-sectional warping due to eigenstrains, and the third term contains

second order terms which enable the consideration of dynamic stiffening effects

and stability investigations.

For laminated cross-sections as shown in Figs. 15.1 and 15.2, the Saint Venant

warping function ’ðy; zÞ is given by the boundary value problem

x

y

z
u

v

w

c

B

Fig. 15.3 Moving cantilever beam, ideally fixed on a rigid base
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Q66

@2’

@y2
þ Q55

@2’

@z2
¼ 0;

@A : Q66

@’

@y
� z

� �
ny þ Q55

@’

@z
þ y

� �
nz ¼ 0;

@I : Q66

@’

@y
� z

� �
ny þ Q55

@’

@z
þ y

� �
nz

� �� �
¼ 0;

’½ �½ � ¼ 0; ð15:9Þ

ny and nz are the components of the outer normal vector. A derivation can be found

e.g. in Rand and Rovenski [14]. Besides the boundary conditions at the boundary

@A of the cross-section, interface conditions have to be satisfied at the interface @I
between two layers in order to obtain continuous displacement and stress

distributions. In this context, the notation �½ �½ � stands for the difference of a quantity
at the interface.

The additional warping functionf0ðy; z; e0ðtÞ is expressed by a similar boundary

problem

Q66

@2f0

@y2
þ Q55

@2f0

@z2
¼ 0;

@A : Q66

@f0

@y
� g0xy

� �
ny þ Q55

@f0

@z
� g0xz

� �
nz ¼ 0;

@I : Q66

@f0

@y
� g0xy

� �
ny þ Q55

@f0

@z
� g0xz

� �
nz

� �� �
¼ 0;

f0
� �� � ¼ 0; ð15:10Þ

the derivation as well as an analytical solution for rectangular laminated cross-

sections can be found in Zehetner [13]. Note that (15.9) and (15.10) hold for any

kind of laminated cross-sections and material behaviour according to Sect. 15.3.

15.5 Equations of Motion

The equations of motion for the beam in Fig. 15.3 can be derived e.g. by applying

D’Alembert’s principle. A detailed derivation can be found in Zehetner [15]. As

excitations we consider inertial forces due to rigidbody motions as well as

distributed and concentrated external forces. With the kinematical assumptions in

(15.8) and the constitutive equations in (15.3) we obtain the equations of motion for

longitudinal, transversal and torsional beam vibrations
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f ex � Na0 ¼ mð€uþ a1Þ � ðA11u
0Þ0;

f ey þMa
z
00 ¼ mð€vþ a2Þ þ ðD22v

00Þ00 � ðNv0 � 1
2
Mxw

00Þ0 þ ðMywþ 1
2
Mxw

0Þ00;
f ez �Ma

y
00 ¼ mð€wþ a3Þ þ ðD11w

00Þ00 � ðNw0 þ 1
2
Mxv

00Þ0 þ ðMzw� 1
2
Mxv

0Þ00;
me

x �Ma
x
0 ¼ Ixð€wþ a1Þ � ðC11w0Þ0 þMzw

00 þMyv
00; ð15:11Þ

with kinematic boundary conditions for the clamped end,

x ¼ 0 : u ¼ v ¼ v0 ¼ w ¼ w0 ¼ w ¼ w0 ¼ 0; (15.12)

and dynamic boundary conditions at the free end,

x ¼ L : Fe
x þ Na ¼ A11u

0;

Fe
y �Ma

z
0 ¼ �ðD22v

00Þ0 þ Nv0 � 1
2
Me

xw
00 � ðMywþ 1

2
Mxw

0Þ0;
Me

z þMa
z ¼ D22v

00 þMywþ 1
2
Mxw

0;

Fe
z þMa

y
0 ¼ �ðD11w

00Þ0 þ Nw0 þ 1
2
Mxv

00 � ðMzw� 1
2
Mxv

0Þ0;
Me

y þMa
y ¼ �D11w

00 �Mzwþ 1
2
Mxv

0;

Me
x þMa

x ¼ C11w0: ð15:13Þ

In (15.11)–(15.13), f ex , f
e
y , f

e
z and me

x are effective distributed external forces and

torque per unit length, respectively. These effective quantities consider external

forces and inertial forces due to the rigidbody motion. Fe
x, F

e
y, F

e
z, M

e
x, M

e
y and Me

z

are external concentrated forces acting at the free beam end, e.g. joint forces

or manipulator forces. m is the mass per unit length, A11 the longitudinal stiffness,

D11 and D22 are the bending stiffnesses, and C11 is the torsional stiffness. a1, a2, a3
and a1 are accelerations corresponding to the flexible displacements u, v, w and w,
for details see Ref. [15].

The influence of the piezoelectric effect is represented by the actuating force and

moments Na, Ma
z , M

a
y and Ma

x . Using the piezoelectric material PZT we obtain

Na ¼ Uel

hL

Z
A

Q11 d31 dA;

Ma
z ¼

Uel

hL

Z
A

Q11 d31y dA;

Ma
y ¼

Uel

hL

Z
A

Q11 d31z dA: ð15:14Þ

On the other hand, using patches made of the material ADP, and using the

substitution f0 ¼ f
0
Uel, we obtain the actuating torque

Ma
x ¼ �Uel

hL

Z
Ap

Q66d36z dA�
Z
A

Q55

@ f
0

@z
y� Q66

@ f
0

@y
z

 !
dA

 !
: (15.15)
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15.6 Shape Control

From (15.11)–(15.13) we can immediately derive relations for the actuating forces

and moments in order to compensate the external excitations (shape control), i.e.

homogenous equations of motion are obtained if the left hand sides of

(15.11)–(15.13) vanish, hence

Na0 ¼ f ex ; Ma
z
00 ¼ �f ey ; Ma

y
00 ¼ f ez ; Ma

x
0 ¼ me

x

x ¼ L : Na ¼ �Fe
x; Ma

z
0 ¼ Fe

y; Ma
z ¼ �Me

z ;

Ma
y
0 ¼ �Fe

z ; Ma
y ¼ �Me

y; Ma
x ¼ �Ma

x : ð15:16Þ

Integrating (15.16) yields the spatial distribution of actuating forces and

moments in order to compensate external excitations and the influence of the

rigidbody accelerations. If the motion starts from rest (homogenous initial

conditions), and if no buckling effects occur, then the elastic displacements are

compensated exactly. Note that buckling phenomena can also be investigated since

second order terms are considered in the equations of motion.

A common strategy for the practical realisation of distributed actuation is an

approximation by a patch discretisation [16]. The latter will be discussed in more

detail by means of the examples in the subsequent section.

15.7 Examples

In order to verify the theoretical results of the above sections, two examples are

considered. First, a flexible manipulator is studied numerically, and secondly,

numerical and experimental results concerning a rotating beam are presented.

15.7.1 Flexible Manipulator—Numerical Simulations

Figure 15.4 shows a flexible manipulator: A flexible beam is fixed on a rigid base

moving in z-direction with the acceleration a3. At the free beam end, the massM is

fixed with its center of gravity located at a distance of r with respect to the beam

axis. The effective excitations due to the acceleration a3 are represented by

f ez ¼ �ma3ðtÞ; Fe
z ¼ �Ma3ðtÞ: (15.17)

In the following, it is assumed that the influence of the tip mass M dominates,

such that the distributed force f ez is neglected. Moreover, longitudinal and transver-

sal vibrations in y-direction are neglected. Due to the forceFe
z, transversal vibrations
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in z-direction and torsional vibrations are excited. Inserting (15.17) into (15.16) and
integrating yields the actuating bending momentMa

y and the actuating torqueMa
x as

Ma
yðx; tÞ ¼ �LMa3ðtÞ 1� x

L

� 	
; Ma

xðx; tÞ ¼ �Mra3ðtÞ: (15.18)

The spatial distribution of Ma
y is linear with respect to the longitudinal coordinate

x , and Ma
x is constant. The realisation of actuation is shown in Fig. 15.4. Two

piezoelectric layers are bonded ideally on the surfaces of the beam: One layer

made of ADP is placed on the back side of the beam, using an electrode with

constant width. On the second side, a PZT layer is attached. The width of the

electrode corresponds to the linear spatial distribution of the actuating moment Ma
y

in (15.18). The voltage of the actuators is obtained from (15.14) and (15.15).

In order to verify (15.18), a Finite Element model has been implemented using

ABAQUS. The beam and the piezoelectric layers have been discretized by

3D-continuum elements of type C3D8R (reduced integration) and C3D8E (piezo-

electric elements). As actuator voltage, the results of beam theory are applied. Note

that this simulation model considers several electro-mechanical coupling effects

and refinements in contrast to beam theory. Thus, this model is supposed to be

suitable for a validation of the theoretical results.

The numerical results for the tip deflection wðx ¼ LÞ and the torsional angle

wðx ¼ LÞ are shown in Fig. 15.5, for the case with and without actuation. The

results show a significant reduction of the amplitude due to the actuation. The

remaining vibrations are caused by the mass of the beam which has been

neglected. All in all the results show a good coincidence between theoretical

and Finite Element solution.

x

y

z
flexible beam

mass M

rigid plate

ADP

PZT

electrode

a3

rigid base

r

Fig. 15.4 Flexible manipulator
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15.7.2 Rotating Beam—Experimental Verification

As a second example, a rotating beam with rectangular hollow cross-section is

considered as schematically shown in Fig. 15.6. The according laboratory setup is

shown in Fig. 15.7. On the beam, i.e. inside and outside of the hollow cross-section,

a number of 48 piezoelectric patches has been applied. In order to reduce the

number of circuits for the electrical power supply, groups of three patches have

been connected. Between these groups strain gauges have been applied for sensing.

For monitoring, an acceleration sensor has been placed at the free beam end.

The effective excitation of the beam is the transversal distributed inertial force

per unit length

f ez ¼ �rAx2€’; (15.19)

caused by the rigidbody rotation angle ’ðtÞ. Inserting into (15.16) and integrating

with respect to the axial coordinate x yields the actuating moment

Ma
y ¼ 1

3
rAL3€’ 1� xð Þ2 1þ 1

2
x


 �
: (15.20)

This cubic spatial distribution is discretized by means of four groups of three

patches as shown in Fig. 15.8. The actuating moment of a piezoelectric patch is

obtained from (15.14). With the Young modulus of the patchEp, the width b and the
height h of the beam, we obtain the actuating bending moment of the i-th patch

Ma;i
y ¼ 1

2
Epd31bðhþ hLÞkiUelðtÞ; (15.21)

where the gains ki are weighting factors in order to realize the cubic distribution of

the actuating moment as given in (15.20). Following the strategy presented in Ref.

[16], the coefficients are found to be k1 ¼ 1, k2 ¼ 1
2
, k3 ¼ 1

5
and k4 ¼ 1

28;5.
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Fig. 15.5 Numerical simulation results for the beam end x ¼ L
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Figure 15.9 shows the control strategy consisting of two parts: First, the feed

forward shape control Mf f
a is implemented with an estimation of the rigidbody

acceleration €’.
Due to several uncertainties of the system it is not possible to completely

compensate the vibrations by feed forward control only. Thus, strain gauges between

the patches are used as sensors to measure the average curvature �k. The error of the
curvature ek, i.e. the difference of prescribed and measured curvature, is the input of

the feedback controller. As a first account, a P-control law has been implemented.

For monitoring, the acceleration aL ¼ aðx ¼ LÞ of the free beam end is measured.

beam

patches

k1 k2 k3 k4

k1 k2 k3 k4

Uel

Uel

Fig. 15.8 Patch discretisation

Fig. 15.7 Experimental setup

z

x

piezopatches

substrate

M

strain gauges

motor + gear

Fig. 15.6 Rotating beam with piezoelectric patches
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In order to optimize the control parameters, a simulation model has been

implemented using the multibody dynamics simulation code HOTINT. The

model is based on a Finite Element Formulation using Bernoulli-Euler beam

elements which considers large deformation strains as well as the varying stiffness

due to the piezoelectric patches. A motor model is implemented considering

stiffness, damping and friction. The parameters of the simulation model have

been calibrated to the experiment using appropriate identification strategies.

As a first investigation, the motor angle has been prescribed in sinusoidal

form, the frequency coinciding with the first eigenfrequency of the beam, f 1 ¼ 20

Hz. Figure 15.10 shows a comparison of simulation (left picture) and experiment

(right picture) for the tip acceleration of the beam. In both cases, the amplitude of

the vibration is reduced significantly. The results show a very good coincidence

even in the considered resonant case.

As a second example, a triangular velocity profile has been prescribed as

rigidbody motion. Figure 15.11 shows the measured time response and the
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Fig. 15.10 Time response for harmonic excitation of the first eigenfrequency
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frequency response of the tip acceleration, i.e. at the free beam end. The result

shows that the amplitude of the vibration is reduced significantly with the

implemented control strategy.

15.8 Conclusions

In this paper, piezoelectric vibration control of three-dimensional flexural and

torsional beam vibrations has been treated. External and inertial forces due to

rigidbody motions are considered as excitations. The equations of motion have

been derived in the framework of Bernoulli-Euler beam theory, and an extension of

Saint Venant’s theory of torsion. Laminated cross-sections and the influence of

piezoelectric strains are considered. In the framework of beam theory, an exact

shape control solution has been presented, i.e. the distribution of piezoelectric

actuation strains in order to completely compensate the elastic beam vibrations.

For the practical realisation, a patch approximation has been introduced. The

theoretical results have been verified by means of numerical and experimental

investigations, showing a very good coincidence. The results also show that a

significant reduction of the flexible vibrations is possible with the presented

strategy.
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Appendix

Lead zirconate titanate (PZT)

Q ¼

Q11 Q12 Q13 0 0 0

Q12 Q11 Q13 0 0 0

Q13 Q13 Q33 0 0 0

0 0 0 Q55 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666664

3
7777775
; d ¼

0 0 d31
0 0 d32
0 0 d33
0 d24 0

0 0 d15
0 0 0

2
6666664

3
7777775
: (15.22)

Ammonium dihydrogen phosphate (ADP)

Q ¼

Q11 Q12 Q13 0 0 0

Q12 Q11 Q13 0 0 0

Q13 Q13 Q33 0 0 0

0 0 0 Q55 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666664

3
7777775
; d ¼

0 0 0

0 0 0

0 0 0

d25 0 0

0 d25 0

0 0 d36

2
6666664

3
7777775
: (15.23)

Macro fiber composite (MFC)

Q ¼

Q11 Q12 Q13 0 0 Q16

Q12 Q11 Q13 0 0 Q16

Q13 Q13 Q33 0 0 Q36

0 0 0 Q55 Q45 0

0 0 0 Q45 Q55 0

Q16 Q16 Q36 0 0 Q66

2
6666664

3
7777775
; d ¼

d11 d12 0

d12 d11 0

d13 d13 0

0 0 d35
0 0 d35
d16 d16 0

2
6666664

3
7777775
: (15.24)
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Chapter 16

Multibody Dynamics Approaches

to Biomechanical Applications to Human

Motion Tasks

Jorge A.C. Ambrosio

Abstract Applications of multibody dynamics or control to human mobility,

impact biomechanics, ergonomics or health and medical cases require that reliable

models of human body, including all relevant anatomical segments and a represen-

tation of the musculoskeletal system, are developed. The system state variables are

available either to a control algorithm or to appraise the internal forces or even to

evaluate performance indexes associated to the particular task. Here, a biomechani-

cal model of the human body is presented and applied to demonstrate the basic

modeling requirements. A strategy for the control of the biomechanical model

motion, based on a distributed hierarchical control, is proposed. The biomechanical

model is used to study zero momentum maneuvers, such as those of an astronaut in

space or of a high-platform diver. Recognizing that the internal driving forces in the

human body result from the musculoskeletal system and not from torque actuators, a

procedure to evaluate the muscle forces is presented. Muscle activation dynamics

models and optimization techniques are part of the proposedmethodology. A human

locomotion task demonstrate the procedure and to show the relation betweenmuscle

forces and the joint torques used in the control model.

16.1 Introduction

Biomechanical models of different animals may be required to plan their motion

either for coordination studies, training practices, ergonomics, health applications

or others. The use of joint torque actuators, as in robotic applications, may simplify

the dynamic description of the problem but presents difficulties in terms of the

significance of their relation to muscle forces. For animals with exoskeleton, such

as crabs, the musculoskeletal system is composed basically of pairs of muscles, for

J.A.C. Ambrosio (*)

Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
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each joint, that act as push-rods and for which the relations between joint torques

and muscle forces is unique [1, 2]. For animals with an internal skeleton, such as the

mammalians, the musculoskeletal system is complex and highly redundant [2]. In

this case the relations between muscle forces and joint torques are not obvious.

When considering motion coordination activities of humans the independent con-

trol of the joint torques is already a complex task, in the limit of the feasibility,

being the independent control of the muscle forces with the objective of planning

general human motions unfeasible. Therefore, a procedure to break the problem of

human motion planning into manageable problems is of upmost importance.

The first step is the construction of a biomechanical model of the human body that

can be used in the coordination studies foreseen in this work. The biomechanical

models applied on the study of the human locomotion require that the major

anatomical segments of the human body are represented by rigid bodies. The bio-

mechanical model used is composed of 16 anatomical segments represented by

16 rigid bodies with their physical characteristics obtained from a human anatomic

database to ensure its biofidelity [3]. The anatomical joints are represented either by

kinematic joints or by contact joints in the multibody model, depending on the

objectives of the analysis. The ligaments and other passive tissues required to provide

stability or stiffness to the anatomical joints are typically represented as spring-damper

elements with linear or nonlinear characteristics. In the biomechanical model used

here the anatomical joints are modeled as mechanical joints and the ligaments are

substituted by a torque penalization of any relative motion that is excessive [3].

A methodology suitable to the control large scale system is necessary to allow

for planning general purpose motion of the human body [4]. A decentralized and

hierarchical control is used here to implement a feasible controller [5]. This model

has three stages of controllers of increasing complexity: low-level controllers to act

on the individual joints; intermediate controllers to coordinate the prescribed

motion of each limb; a high-level controllers to select the motion of the limbs

and the period of time in which they have to take place. The execution of a large

number of maneuvers is then planed using optimal decision approaches [6]. In this

work, a strategy for the angular reorientation of multibody systems using zero

momentum turns is presented to demonstrate the decentralized and hierarchical

control implemented. Space satellites with movable antennas, astronauts, divers or

the cat self-aligning reflex are examples of these types of systems [5, 7–9].

The biomechanical model is driven through the motion defined by the control

strategy, or acquired experimentally, by joint actuators that drive the degrees-of-

freedom of the biomechanical model associated with joints, or by muscle actuators

that drive the degrees-of-freedom of the joints crossed by the muscles. Being the

motion of the biomechanical model the same, there is equivalence between the joint

torques and the muscle forces. The use of optimization procedures that allow for the

calculation of the redundant muscle forces, generated in a particular muscle appa-

ratus of the human body is the key methodology to obtain such equivalence. The

problem of finding the internal forces of the biomechanical system that lead to a

prescribed motion can be defined as an optimal problem where the objective is to

find suitable joint net-moments-of force or muscle forces [10–13]. The problem can
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be solved by an inverse dynamic analysis where the objective is simply to minimize

the physiological or metabolic criteria, being the motion and contact forces with the

external environment the data required for the optimal problem. Here a Hill type

muscle model is applied, being the force produced by the muscle contractile

element calculated as a function of the muscle activation, maximum isometric

peak force, muscle length and muscle rate of shortening. The equations of motion

of the biomechanical system and the performance criteria used in de optimization

procedure are expressed in terms of muscle activations instead of muscle forces

[14, 15]. The procedure is exemplified through the application of the methodology

described in this work to a motion acquired in the Lisbon Biomechanics Laboratory.

16.2 Overview of the Multibody Formulation

A multibody system is defined as a collection of rigid and/or flexible bodies

constrained by kinematic joints and eventually acted upon by a set of internal

and/or external forces. Different sets of coordinates can be used to describe the

multibody system such as those presented in Fig. 16.1. Using Cartesian coordinates,

shown in Fig. 16.1a, the position and orientation of each body i in the space is

described by a position vector ri and a set of rotational coordinates pi organized

in a vector as [16]

qi ¼ ½rT ; pT �Ti (16.1)

A multibody system with nb bodies is described by a set of coordinates as

q ¼ ½qT1 ; qT2 ; � � � ; qTnb�
T

(16.2)

The dependencies among system coordinates, which result from the existence of

mechanical joints interconnecting the several bodies, are defined through the

introduction of kinematic relationships written as

F q; tð Þ ¼ 0 (16.3)

where t is the time variable, which is used only for the driving constraints. The

second time derivative of (16.3) with respect to time yields

€F q; _q; €q; tð Þ ¼ 0 � Fq €q ¼ g (16.4)

whereFq is the Jacobian matrix of the constraints, €q is the acceleration vector and

g is the vector that depends on the velocities and time.

The equations of motion for a constrained multibody system (MBS) of rigid

bodies, such as the biomechanical model, are written as
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M€q ¼ gþ gðcÞ (16.5)

where M is the system mass matrix, €q is the vector that contains the state

accelerations, g is the generalized force vector, which contains all external forces

and moments, and gðcÞ is the vector of constraint reaction equations. The joint

reaction forces can be expressed in terms of the Jacobian matrix of the constraint

equations and the vector of Lagrange multipliers

gðcÞ ¼ �FT
ql (16.6)

wherel is the vector that contains m unknown Lagrange multipliers associated with

m holonomic constraints. Substitution of (16.6) in (16.5) yields

M€qþFT
ql ¼ g (16.7)

In dynamic analysis, a unique solution is obtained when the constraint equations

are considered simultaneously with the differential equations of motion with proper

set of initial conditions. Therefore, (16.4) is appended to (16.7), yielding a system

of differential algebraic equations that are solved for €q and l. This system is given

by

M FT
q

Fq 0

� �
€qr
l

� �
¼ g

g

� �
(16.8)

The solution of the multibody equations of motion and their integration in time is

depicted in Fig. 16.2. The set of differential algebraic equations of motion, (16.8)

does not use explicitly the position and velocity equations associated to the kine-

matic constraints, (16.3) and time derivative, respectively. Thus, in order to

Fig. 16.1 Types of coordinates: (a) Cartesian coordinates, (b) joint coordinates, (c) natural

coordinates
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stabilize or keep under control the constraints violation, (16.8) is solved by using

the Baumgarte Stabilization Method or the augmented Lagrangean formulation,

and eventually complemented by using the coordinate partition method, and the

integration process is performed using a predictor–corrector algorithm with vari-

able step and order.

16.3 Biomechanical Model of the Skeletal System

A biomechanical model suitable for human motion analysis requires that the

different anatomical segments and their relative mobility are described, the muscle

activation and corresponding forces are represented and that the skeletal-muscle

apparatus is included in the model. In what follows a description of each part of the

biomechanical model is provided.

The biomechanical model of the human body is defined using 16 anatomical

segments and their corresponding rigid bodies is presented in Table 16.1 and

illustrated in Fig. 16.3 [3]. Considering this kinematic structure, an open loop

topology can be identified, with a base body described by rigid body number 1,

and five kinematic branches defined by the four limbs and the head/neck. The model

has 44 degrees-of-freedom that correspond to 38 rotations about 26 revolute joints

and 6 universal joints, plus 6 degrees-of-freedom that are associated with the free

body rotations and translations of the base body. The model presented is only one of

many that can be used to the biomechanical analysis of different human motion

tasks. Due to the kinematic structure, where no spherical joints is used it can be

applied in inverse dynamic analysis. However, its application to a particular

individual requires that its anatomical segments are properly scaled. In the present
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Fig. 16.2 Flowchart with the forward dynamic analysis of a multibody system
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work, the scaling procedure used calculates for each anatomical segment, non-

dimensional scaling factors, based onmeasured data from the subject and equivalent

data from the 50th percentile human male. These scaling factors are defined as [17]:

Table 16.1 Physical characteristics of anatomical segments and rigid bodies for the 50th-

percentile human male

Description Body Length CM location Mass Moments of inertia

i Li mð Þ di mð Þ ddi mð Þ mi kgð Þ ðIxx=Iyy=IzzÞi 10�2�� �
Lower torso 1 0.275 0.064 0.094 14.200 26.220/13.450/26.220

Upper torso 2 0.294 0.101 0.161 24.950 24.640/37.190/19.210

Head 3 0.128 0.020 0.051 4.241 2.453/2.249/2.034

R upper arm 4 0.295 0.153 – 1.992 1.492/1.356/0.248

R lower arm 5 0.250 0.123 – 1.402 1.240/0.964/0.298

Hand 13 0.185 0.093 0.045 0.489 0.067/0.146/0.148

L upper arm 6 0.295 0.153 – 1.992 1.492/1.356/0.248

L lower arm 7 0.376 0.180 – 1.892 1.240/0.964/0.298

Hand 14 0.185 0.093 0.045 0.489 0.067/0.146/0.148

R upper leg 8 0.434 0.215 – 9.843 1.435/15.940/9.867

R lower leg 9 0.439 0.151 – 3.626 1.086/3.830/3.140

Foot 15 0.069 0.271 0.035 1.182 0.129/0.128/2.569

L upper leg 10 0.434 0.215 – 9.843 1.435/15.940/9.867

L lower leg 11 0.439 0.151 – 3.626 1.086/3.830/3.140

Foot 16 0.069 0.271 0.035 1.182 0.129/0.128/2.569

Neck 12 0.122 0.061 – 1.061 0.268/0.215/0.215

The dimensions and positions of the center of mass locations, with respect to the proximal joint

with reference to Fig. 16.3.
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Fig. 16.3 Biomechanical model with 16 anatomical segments: (a) model topology, (b) length and

center of mass of each anatomical segment
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wLi ¼
Ln

th

i

L50
th

i

; wmi
¼ mnth

i

m50th

i

; wIi ¼ wmi
� w2Li (16.9)

where wLi , wmi
and wIi are respectively the scaling factors of the length, mass and

moments of inertia calculated for segment i. It should be noted that if the length and
mass of each segment of the subject are not available, the calculation of wLi and wmi

can be performed using the ratio between heights and the ratio between total body

weights, respectively. The length scaling factor is used to scale all the dimensions,

including the location of each center-of-mass. This procedure should only be used

to scale subjects of the same gender and with anthropometric characteristics not far

from the reference model.

16.4 Task Targeted Control of the Biomechanical System

The motion of the basic biomechanical model of the human body, presented in

Fig. 16.3 and Table 16.1, can be driven by torques applied at the anatomical joints.

Although the human body has a complex musculoskeletal system to develop the

internal forces that lead to its motion it is accepted that a torque equivalent exists for

each anatomical joint at any instant [18]. Due to the high complexity of the multi-

body biomechanical system the use of global control through full state feedback is

not recommended [4]. A decentralized and hierarchical control scheme is proposed

here based on the work presented in Refs. [5, 19]. Three levels of control are defined:

based on an optimal strategy, the high level controller chooses the best set of

maneuvers to achieve a given result; the intermediate controllers ensure the coordi-

nation of the local controllers to ensure that the set of maneuvers defined by the high-

level controller are achieved in the proper sequence; the low level controllers actuate

each joint using a variable gain PD controller, as described in Fig. 16.4. Note that in

each control level other control strategies can be used instead of the ones proposed

here. However, the hierarchical structure of the control remains unchanged.

16.4.1 Low-Level Control

The low level control is applied to each joint of the biomechanical model with the

objective that its joint angle follows a prescribed time history. The kinematic

topology of the biomechanical system is represented by a base body connected to

other rigid bodies by kinematic joints, forming five open-loop chains. The base

body, i.e. the lower torso, has six degrees-of-freedom (dof) and connects to other

bodies in the chain with revolute joints, each of them with one dof, or with universal

joints, which have two dof each.
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Each degree-of-freedom is controlled by an independent variable gain PD con-

troller [20]. Each pair of bodies is connected by a joint actuated by a single

independent control torqueTij. A simplified representation of the dynamic equations

of the one dof joint, disregarding Coriolis and centrifugal accelerations and joint

reaction forces, is

J0ij €yij ¼ Tij (16.10)

where

J0ij ¼ Ji Jj
Ji þ Jj

(16.11)

yij ¼ yj � yi (16.12)

where yij is the relative angle between adjacent body segments and Ji is the inertia
moment of body i and of all bodies that follow in the kinematic chain, as seen in

Fig. 16.5.

The control law applied is proportional-derivative (PD) on angular position:

Tij ¼ �kPij yij � yref ij
� �� kDij

_yij (16.13)

where kP and kD are constant gain constants for the proportional and derivative

parts of the controller, respectively, and yref ij is the desired angular position on

the joint ij imposed by the intermediate controller.

Low Level
controller

Apollo:
Multi-body system

simulator

High Level
controller

Intermediate
Level

controller

Fig. 16.4 Block diagram of the control structure

qi

Ji

Jj

I j I p

I ii

j p

q j
qij

J’ij

Fig. 16.5 Simplified model of the relative rotation between two bodies, in which the doted arrows

indicate the bodies use in the evaluation of Ji and Jj
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The simplified model of a system with feedback is described by the second order

linear differential equation given by

J
0
ij
€yij þkij

D _yij þ kij
Pyij ¼ kij

Pyref ij (16.14)

A more common form of presenting the equilibrium equation for a second order

system is

€yi þ 2zi oni
_yi þ o2

ni yi ¼ 0 (16.15)

in which the damping coefficient zni and natural frequency oni are written as

zi ¼
kij
D

2oni J
0
ij

; o2
ni ¼

kPij
J
0
ij

(16.16)

Equation 16.16 is the key to define the controller gains. The choice for kDij is done
such a way that the system becomes slightly over damped. Rearranging the terms in

(16.16) and substituting them in (16.13) results in the control law:

Tij ¼ � J0ij o2
ij yij � yref ij
� �� a

ffiffiffi
2

p
J
0
ijoij

_yij; a � 1 (16.17)

whereoij is the angular frequency of the controller and a is the over-damping term.

Note that the angular frequency of the controller, which needs to be adjusted for

each particular joint, defines how stable and fast is the response of the system with

feedback.

Due to the kinematic chain of the multibody system, the equivalent moment of

inertia varies if any of the bodies that precede the current joint changes its center of

mass. Referring to Fig. 16.5, the update of the moments of inertia, in each time

step, is

Ji ¼ uTij

X
k2Si

AT
k Ik Ak

( )
uij þ

X
k2Si

mk d
2
ij;k (16.18)

where uij is a unitary vector collinear to the axis of the joint ij, Si is the set of bodies
that precede to body i in the kinematic chain, Ak is the coordinate transformation

matrix from the local body referential to the global referential and dijk is the

distance between the axis of joint ij and the center of mass of body k given by

dij;k ¼ rij;k � rTij;kuij

� �
uij

			 			 (16.19)
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where rij;k ¼ rk � rij is the spatial position of joint ij. Note that the update of the

equivalent inertia moments, for each configuration of the kinematic chain,

constitutes in fact a variation in the control gains.

In order to avoid that the controllers develop an unrealistic moment a saturation

moment is adopted for each controller, defined as

Fij Tij

� � ¼ �Tij max if Tij <� Tij max

Tij if Tij



 

 � Tij max

Tij max if Tij > Tij max

8<
: (16.20)

The thresholds used for the control saturation can be based on physiological

reasoning. It must be emphasized that such threshold may vary by large amounts for

different individuals.

16.4.2 Intermediate-Level Control

The intermediate control, after receiving from the higher level control the definition

of the maneuver that the whole body is supposed to develop and the time period in

which it has to be developed, defines for each local controlled the reference angle

and a law for its variation in time. The type of maneuvers that are supervised by the

intermediate controller are exemplified in Fig. 16.6. Each of the maneuvers, such as

opening and closing arms, is designed and stored in a library of maneuvers that is

made available to the high-level controller.

Each of the maneuvers that an intermediate controller supervises has costs,

which are specified here in terms of energy consumption. The energy function

associated to a particular maneuver is the sum of the energy consumed by all the

low-level controllers, under the supervision of the intermediate-level controller, to

perform the rotations required for the particular maneuver. A simplified measure of

the energy necessary for a PD low-level controller to develop a prescribed rotation

by recognizing that (16.14) has an analytical solution of the type

yðtÞ ¼ yref þ C1e

�kD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q
2 J t þ C2e

�kDþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q
2 J t (16.21)

Assuming that the initial conditions are yð0Þ ¼ _yð0Þ ¼ 0 the solution of (16.21)

for the constants C1 and C2 is
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C1 ¼ �
�kDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q yref ¼ a1yref

C2 ¼ �
kDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2 �4JkP

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q yref ¼ a2yref

(16.22)

Substituting (16.22) in (16.21) results in

yðtÞ¼yref 1þa1e
�kD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q
2J tþa2e

�kDþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDð Þ2�4JkP

q
2J t

0
BB@

1
CCA¼yref ’ðtÞ (16.23)

upon substitution of (16.23) into (16.13) results in the equation for the torque

applied in the joint by the low-level controller as

TðtÞ ¼ �kPyref ’ðtÞ � 1ð Þ � kDyref _’ðtÞ ¼ yref �TðtÞ (16.24)

A measure of the energy used by the controller in a given time interval tf is

Ztf
0

TðtÞyðtÞdt ¼ y2ref

Ztf
0

�TðtÞ’ðtÞdt ¼ y2ref Eðtf Þ (16.25)

Fig. 16.6 Typical maneuvers handled by the intermediate controllers, from left to right: (1) initial

posture; (2) legs opening/closing; (3) arms opening/closing; (4) upper body clockwise/counter-

clockwise rotation
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Assuming a constant gain for the PD controllers and a constant activation time

(16.25) shows that the energy used in each low-level controller is proportional to

the square of the reference angle that the intermediate-level controller associates to

its action. Therefore, the energy required for each complete maneuver of an

intermediate-level controller is obtained as the sum of all energies used in the

low-level controllers under its supervision.

16.4.3 High-Level Control

Given an objective for the human motion task the high-level controller has to plan

the different maneuvers that the intermediate-level controllers have to supervise.

A library of maneuvers, such as arm stretching, legs opening, arms folding, legs

stretching, body torsion clockwise or any other, provides the high-level controller

the choice of basic maneuvers that can be used to compose the more complex

motion. For instance, for zeromomentum turns of the human body about the vertical,

side or front axis the sequence of maneuvers depicted in Fig. 16.7 are devised.

The collection of maneuvers available to the high-level controller may be large

having different sequences to achieve the same result. The high-level controller

selects the sequence that minimizes a cost function defined as.

f E i; yð Þ ¼ di yj j þ ci 1þ floor yj j=ymax ið Þð Þ; i 2 X; Y; Zf g
floorðxÞ ¼ n : n � x ^ x� n< 1; n 2 IN

(16.26)

Change inertia
moment

Bend the trunk

Change inertia
moment

Bend the trunk

Rotation maneuver
about X

Change inertia
moment

Bending about
the hips

Change inertia
moment

Bending about
the hips

Rotation maneuver
about Y

Change inertia
moment

Trunk torsion

Change inertia
moment

Trunk torsion

Rotation maneuver
about Z

Implementation and repetition of maneuvers

Low level controllers

High level controller (decision on the
maneuvers and on their repetition)

Fig. 16.7 Schematic description of the high-level controller planning of the sequences of

maneuvers to be supervised by the intermediate level controllers

270 J.A.C. Ambrosio



where ci represent the cost due to the positioning of the body segments such a way

that the next maneuver may be performed, and dijyj represents the cost of develop-
ing the next maneuver in line. The graph in Fig. 16.8 shows how the energy

requirements increase with the complexity of the planned maneuvers. It should be

noticed that often it is necessary that several repetitions of the sequence of

maneuvers must be done to achieve the final objective. Notice also that the

intermediate controller simply guarantees that the maneuver assigned by the high

level controller is fulfilled, being its cost known beforehand.

The design of the library of the basic maneuvers, to be supervised by the

intermediate controllers, may be more or less elaborate. Each one of the maneuvers

may be optimal, by given criteria, or simply designed to achieve an end result. The

optimal design of these maneuvers constitutes a topic in itself and, therefore, is not

the subject of this work. In what follows it is assumed that a collection of

maneuvers, such as those depicted in Fig. 16.6, are available for the high-level

controller to select.

16.5 Application to the Human Body Attitude in Zero Gravity

The self-aligning reflex of the cat, the alignment of a high-platform diver or the

pirouettes of a skater, are some of the best known maneuvers that involve zero-

momentum turns [5, 7, 9].

The sequence described in Fig. 16.9a illustrates the maneuvers involved in the

self-alignment reflex of the cat, characterized by successions of torsion-bending

tasks while in Fig. 16.9b describes torsion tasks with changes in the inertia

moments, associated with human body alignments.

For the human body self-alignment zero momentum turns the change in the

inertia moments of the upper and lower parts of the body are achieved by stretching

and closing arms or legs. For instance, the realignment of the body in the sagittal

plane, i.e., about the Y axis, is achieved with the maneuvers depicted in Fig. 16.10

while those shown in Fig. 16.11 lead to a realignment about the Z axis.

ci

di

qmax i

Repetition
# 1

Repetition
# 2

Cost due to change of
moment of inertia

Cost due to torsion.

q

f
E
(i, )q

Fig. 16.8 Energy cost function associated to a particular zero angular momentum turns motion for

which a repetition is necessary
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Fig. 16.9 Maneuvers that involve zero-momentum turns: (left) torsion-bending as in the cat self-

aligning reflex; (right) torsion with variation of the inertia moments for human re-orientation tasks

Fig. 16.10 Zero angular momentum maneuvers illustrating a rotation in Y axis

Fig. 16.11 Zero angular momentum maneuvers illustrating a rotation in Z axis
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As an application of the methodology the spatial change of attitude of a

biomechanical model in a zero gravity environment is selected. A model initially

facing the X-axis is required to rotate 60	 counter clockwise, resulting in the

motion illustrated by Fig. 16.12. The general purpose multibody code APOLLO

is used [21]. In what follows no particular effort is put in using optimized gains for

the low-level controllers. In setting up the gains the physiological characteristics of

the human body model must be accounted for [22].

In Fig. 16.13 the change of the angles due to the control strategy adopted are

represented as a function of time. The corridors shown in the picture correspond to

the range for which a particular low level controller is not active because the

corresponding joint angle is in the neighborhood of the target.

t = 0s t = 3s t = 8.5s t = 12s t = 20s t = 24s

Fig. 16.12 Initial, intermediate and final position of biomechanical model: top view; front view
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Fig. 16.13 Change of angles during maneuvers for shoulder, torso and leg. The dotted lines
represent the limits of the angles within which there is no active control
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The evolution of the total moments of inertia about Z-axis for upper torso and the

upper extremities of the biomechanical model and for the lower torso and lower

extremities, respectively, are presented in Fig. 16.14. It is observed that the varia-

tion of the inertia moment of the lower torso and legs is more important that the

variation of the upper torso inertia. As a consequence, the rotation of the lower torso

is much smaller than the upper torso while the control is trying to reposition the

biomechanical model.

The orientation of the body in the alignment task is depicted in Fig. 16.15. It is

observed that the upper and lower torso start with an equal orientation of 0	, i.e., the
biomechanical model is looking along the X axis and both finish with an equal

orientation of 60	, reaching the goal set for this motion task.

It should be noted that the individual maneuvers supervised by the intermediate-

level controllers are selected among the few maneuvers designed and made avail-

able to the high-order controller, none of them being optimal. The collection of

maneuvers implemented, at this time, only allows for zero-momentum turns about
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the principal axis and not about an arbitrary axis. Nevertheless, it the implementa-

tion of other human motion tasks can be done following the same procedure defined

here.

Another aspect of the procedure described concerns the relations between the

gains and the physiologic characteristics of the models. Higher gains for the low-

level controllers lead to a higher speed at which a task is developed but may also

result in unrealistic torques that are not possible with the musculoskeletal system.

Therefore an appraisal of the relation between torques at the anatomical joints and

forces in the muscles must be devised. Here, the relation between these torques and

the muscle forces is done for the locomotion system in a gait task. The same

methods used hereafter can be applied to obtain the muscle forces necessary to

develop other human motion tasks and evaluate the feasibility of the torques

required by the low-level controllers.

16.6 Inverse Dynamic Analysis of the Biomechanical System

The inverse dynamic analysis of the biomechanical system consists in finding the

internal forces that lead to a known motion of the system. The kinematics of the

human subject, who is represented by the biomechanical model, is obtained either

by using a set of cameras and motion reconstruction techniques or by designing it,

such as the decentralized hierarchical control does. When the muscle forces are

represented by their joint torque equivalents, or net moments-of-force, the number

of unknown torques is equal to the number of equations of motion and, for each

time frame, the inverse dynamic problem is determined.

However, the human muscle system is highly redundant, being possible to

identify several muscles that guide the same degree-of-freedom of the same

anatomical joint. In this case, for each time frame, there are many solutions for

the muscle force sharing and the inverse dynamic problem is not determined. The

solution of the muscle force sharing problem requires the use of optimization

techniques to relate the muscle activity with a merit function that represents the

objective of the motion. Therefore, for a given motion there is a unique set of joint

torques that causes it. By using an optimization approach, for the given motion

there is a distribution of muscle forces that best fits the kinematics of the bio-

mechanical model. Consequently, the muscle forces evaluated in this form and the

joint torques are uniquely related. This relation between joint torques and muscle

forces allows appraising the feasibility of the control torques necessary to achieve a

given maneuver.
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16.6.1 The Deterministic Problem: Joint Torques

16.6.1.1 Inverse Dynamic Analysis

The inverse dynamics problem can be setup using the multibody equation of

motion, described by (16.7). Let it be assumed that the prescribed motion of the

model is fully known and consistent with the kinematic constraints of the bio-

mechanical model. Let the force vector be partitioned into a vectors of know forces

gknown and unknown forces gunknown. In (16.7) the only unknowns are the Lagrange

multipliers l and the unknown applied forces funknown. Equation 16.20 is rearranged

as

FT
q � CT

h i
l
funknown

� �
¼ �M€qþ gknownf g (16.27)

where matrix C is used to map the space of the forces into the space of coordinates

that describes the system being its structure dependent on the type of applied force.

The solution of (16.27), highlighted in Fig. 16.16, is obtained for a finite number of

time instants which depends on the sampling of the system kinematics. The solution

obtained for a particular time instant is fully independent of that in any other instant.

The solution of the linear system of (16.27) is unique if the number of indepen-

dent kinematic constraints and unknown forces is equal to the number of

coordinates of the biomechanical system. Otherwise, the solution is not unique

due to the redundant set of forces and/or constraints used and the solution of the

problem has to be obtained by defining suitable criteria and using optimization

methodologies. The use of this type of approaches is exemplified by Silva and

Ambrósio [23].
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Fig. 16.16 Schematic description of the procedure used in the solution of the inverse dynamics

problem
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16.6.1.2 Kinematic and Kinetic Data Acquisition

The data required for the inverse dynamic analysis of the biomechanical model has

to be designed, as the controller does, or acquired experimentally. The setup for the

data acquisition process is depicted in Fig. 16.17 and it is used here to collect the data

that is used to show the relation between the joint torques and the muscle forces.

For a case of gait analysis, used here to exemplify the procedure, the trial starts at

the time step just before right heel contact with the floor, and continues until the

subsequent occurrence of the same event in the same foot. During the stride period,

the subject walks over three force plates that measure the ground reaction forces for

both feet [23, 24]. The gait analysis of a 25-year-old male subject with a height of

1.70 m and a total body mass of 70 kg wearing running shoes is used here. A total

number of 66 frames are recorded with a sampling frequency of 60 Hz. The trial has

a total duration of 1.083 s that corresponds to a walking cadence of approximately

111 steps per minute, which is a normal cadence stride [22].

16.6.1.3 Results of the Application to the Evaluation of the

Joint Torques

The inverse dynamic analysis is performed using the kinematic and dynamic data

collected from the trial described. From this analysis, the net moments of force

developed by the joint actuators at the joints of the biomechanical model are

calculated. In particular, the net moments of force obtained for the joint actuators

of the right ankle and knee joints are presented in Fig.16.18. The net moments-of-

force, for the joints represented, are within the expected values reported in the

literature for a normal cadence stride period [22]. The joint torques in all other

anatomical joints is also obtained in the process, but not represented here for the

sake of conciseness.
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Fig. 16.17 Kinematic and kinetic data acquisition in an experimental environment: (a) Experi-

mental setup; (b) Anatomical landmarks
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Note that the motion generated by the distributed and hierarchical controller can

be viewed as the motion acquired with the setup described. In this case, being the

inverse dynamic analysis performed, the net moments-of-force obtained would be

the joint torques developed by the low-level controllers. Therefore, in what follows,

this equivalency is used to emphasize the relations between the muscle forces and

the joint torques, but by using the gait analysis in the process.

16.6.2 The Redundant Problem: Muscle Forces

The evaluation of the physiological merits of the solutions obtained requires that

the biomechanical models used for the skeletal system are appropriate and do not

eliminate the possibility of different muscle activation patterns. The muscle system

modeled must also be complete enough to represent the actions required for the task

and the muscle model supporting the analysis must be able to represent the muscle

dynamics. The model used for the muscle activation dynamics and the strategies

used to solve the muscle force sharing problem are described here.

16.6.2.1 Muscle Apparatus for the Locomotion System

The muscle apparatus implemented in the biomechanical model must be able to

represent the human motion being studied. For the human locomotion a muscle

apparatus, with 35 muscle actuators can be used to simulate the right lower

extremity, as depicted by Fig. 16.19. The physiological information regarding the

muscle definition is obtained from the literature [25–27] and compiled in a muscle

database. This information consists in the maximum isometric force, resting length,

Fig. 16.18 Net moment-of-force, i.e., torques, for the right ankle, knee and hip
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attachment points, wrap-around bodies and the local coordinates of the origin,

insertion and via points.

The detailed muscle system model referred to and implemented in references by

Silva [23] and by Yamaguchi [25] is not necessary for many application cases. In

many study cases only part of the muscles referred are used in the supporting

models, or different muscles are grouped together based on their functions.

16.6.2.2 Hill-Type Muscle Model

The Hill muscle model, applied to the simulation of the muscle contraction dynam-

ics, depicted in Fig. 16.20, is composed of a contractive element (CE) and a passive

element (PE) contributing to the total muscle force FmðtÞ. A series elastic element

(SEE), associated with cross-bridge stiffness, is not included as it can be neglected

in coordination studies not involving short-tendon actuators [28].

In the Hill muscle model, the contractile properties of the muscle tissue are

controlled by its current length lmðtÞ, rate of length change _lmðtÞ and activation

amðtÞ. The force produced by the active Hill contractile element, for muscle m, is.

Fm
CEðamðtÞ; lmðtÞ; _l

m ðtÞÞ ¼ Fm
l ðlmðtÞÞFm

_l
ð _lm ðtÞÞ

Fm
0

amðtÞ (16.28)

whereFm
0 is the maximum isometric force andFm

l ðlmðtÞÞ andFm
_l
ð _lm ðtÞÞ represent the

muscle force-length and force-velocity dependency [24, 28]

Fig. 16.19 Muscles of the locomotion apparatus used in the biomechanical model
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where lm0 is the muscle resting length and _l
m

0 is the maximum contractile velocity,

above which the muscle cannot produce force. A carpet plot of the force-length and

force-velocity relations is presented in Fig. 16.21.
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Fig. 16.20 Contraction dynamics using a hill-type muscle model
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Fig. 16.21 Carpet plots of the force-length and force-velocity relationships for the contractile

element
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The passive element is independent of the activation and it only starts to produce

force when stretched beyond its resting length lm0 . The force produced by the passive
element is approximated by [24]

Fm
PEðlmðtÞÞ ¼

0 lm0 > lmðtÞ
8

Fm
0

lm
3

0

lm � lm0
� �3

1:63lm0 � lmðtÞ � lm0

2Fm
0 lmðtÞ � 1:63lm0

8><
>: (16.31)

A muscle actuator equation associated to each contractile element is accom-

plished multiplying each actuator equation by a proper scalar factor. The Lagrange

multiplier associated to such actuator is the muscle force or activation.

16.6.2.3 Redundant Muscle Force Solution by Optimization

The internal system of forces in the human body is highly redundant due to the large

number of muscles that can team up in different ways to achieve the same motion. It

can be argued that the muscle force sharing has the objective of fulfilling some

criteria of optimality, referred here asF 0ðaÞ. Being that the case, the corresponding
optimization problem is formulated mathematically as

minimize F 0ðaÞ

subject to FT
q � CT

h i l

funknown

� �
� �M€qþ gknowng ¼ 0f

�
0 � a � 1 ð16:32Þ

where funknown ¼ f að Þ vector represents the history of muscle forces for all muscles

and for all time frames, described by Hill model [29].

In the optimization problem the muscle forces are often used as design variables

[10, 14]. Due to the relatively large range of variation of the muscle forces these

variables often lead to problems for the optimizer algorithms to converge, leading

to erroneous results. Taking into account the muscle contraction dynamics,

described by the Hill muscle model, all quantities involved depend solely on the

muscle physiology, on the kinematics of the muscle and on its activation, which is

within the range [0,1]. Because the muscle physiological parameters are known

beforehand and the kinematic quantities, length and velocity, are directly associated

to the state variables of the biomechanical model the only unknowns are the muscle

activations.

A procedure to discretize activation profiles is to sample the muscle activation

functions at given points, the time frames of the inverse dynamic analysis, and

interpolating the values between sampling points by piecewise linear functions,

leading to
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aðtÞ ¼ Ai þ t� tið ÞAiþ1 � Ai

tiþ1 � ti
; i ¼ 0; . . . n; t 2 ti; tiþ1½ ½ (16.33)

where ti are the time frames, Ai are the sampling values and a(t) is the resulting

activation function. By using the sampled values Ai as design parameters, the

optimization routine can find the best fit. This approach, shown in Fig. 16.22a, is

called input sampling and leads to a large number design parameters (number of

muscles � number of samples) can pose problems to the convergence of the

optimizer [30].

Another approach, proposed by Strobach et al. [30], employs a limited number

of exponential functions that render smooth bump behavior. The goal of the

optimization is to determine location, amplitude and width of these exponential

bumps, and therefore using them as design parameters. For a n-bump activation

profile the function is

aðtÞ ¼ A 1 e
�C1ðt�T1Þ2 þ A 2 e

�C2ðt�T1Þ2 þ . . .þ An e
�Cnðt�T1Þ2 (16.34)

This approach is denoted as C1 and its principle is depicted in Fig. 16.22b.

Notice that experimental observations of muscle activation patterns, obtained by

EMG, show that for a given task only a limited number of bumps exist, generally

one or two. Assuming that each muscle has two bumps for the activation function,

the number of design variables for the C1 approach is 2� 3 bump properties �
number of muscles, which is a much smaller number of design variables than in the

discrete activation profile approach.

Using a piecewise linear function, the design variables used in this work to

represent the muscle activation of themmuscles in the n time steps are arranged in a

mn � 1 vector, called vector of global muscle activation, arranged as

a ¼ a11; . . . ; a
1
j ; . . . ; a

1
n; . . . ; a

i
1; . . . ; a

i
j; . . . ; a

i
n; . . . ; a

m
1 ; . . . ; a

m
j ; . . . ; a

m
1

h iT
(16.35)

being aij the activation of the ith muscle for time tj.

Fig. 16.22 Functions representing muscle activation profiles: (a) piecewise linear function; (b) a

two-bump activation function using the C1 approach
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16.6.2.4 Objective Functions for Biomechanics

The most common objective functions used in biomechanics are those associated to

physiological criteria. The idea is that a cost function must reflect the inherent

physical activity or pathology and to include relevant physiological charac-

teristics and functional properties, such as the maximum isometric force or the

electromyographic activity [31]. The sum of the square of the individual muscle

forces fulfills the objective of energy minimization. This cost-function, which does

not include physiological or functional capabilities, is defined as [31]

F 0ðaÞ ¼
Xnma
m¼1

Fm
CE

� �2
(16.36)

Crowninshield and Brand [13] introduced a function based on a quantitative

force-endurance relationship and on experimental results, which includes physio-

logical information, namely the value of the physiological cross sectional area of

each muscle. This function, reported to predict co-activation of muscle groups in a

physiologically realistic manner, is given by

F 0ðaÞ ¼
Xnma
m¼1

smCE
� �3

(16.37)

Developments in the study of human gait suggest that metabolic cost models

lead to better predictions of human gait patterns [32]. Based on the work by

Umberger et al. [32] Schiehlen and Ackerman [33] propose an objective function

that describes the metabolic costs of transport for all n muscles involved in a given

gait cycle as

F 0ðaÞ ¼ 1

DS

Xn
i¼1

Zte
t0

_E uiðtÞ; aiðtÞ; vCEi ðtÞ; lCEi ðtÞ; f CEi ðtÞ; pi
� �

dt (16.38)

where DS is the distance traveled in the gait cycle, t0; te½ � the period of time for the

gait cycle, sampled into m instants, _E the total metabolic energy, uiðtÞ represents the
muscle neural excitation, aiðtÞ is the muscle activation function, vCEi ðtÞ the muscle

shortening velocity, lCEi ðtÞ the muscle length, f CEi ðtÞ the muscle force and pi
represents all parameters required for muscle i in the Hill model.

16.6.2.5 Numerical Solution of the Optimization Problem

In contrast with the traditional time-independent static optimization methods that

do not take into account the entire motion, i.e., each time discretization is indepen-

dently solved [34, 35], in case of using the metabolic cost objective function
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depicted by (16.38) the evaluation of the muscle forces is done for the complete

motion data at the same time. This implies that the optimization problem, initially

depicted by (16.32), is now re-written as

min F 0ðaÞ ¼ 1

DS

Xn
i¼1

Zte
t0

_E uiðtÞ; aiðtÞ; vCEi ðtÞ; lCEi ðtÞ; f CEi ðtÞ; pi
� �

dt

sub: to
FT

q � CT
h i l

funknown

� �
� �M€qþ gknownf g

 �
t

¼ 0; t ¼ 1; :::; n

0 � at � 1; t ¼ 1; :::; n

8<
:

(16.39)

The optimization method selected to solve the muscle force sharing problem is

based on the use of a sequential quadratic programming method (SQP), such as the

one implemented in the DOT library [36]. In the computational implementation of

the optimization procedure it is recognized that the equality constraints equations

represent a set of linear equations on the control variables, represented by the vector

of Lagrange multipliers. Hence, the gradients of these equations can be obtained

analytically as:

rlf
m
n ¼ @f

@l
¼ FT

q (16.40)

This result reveals that there is no need to calculate the sensitivities by finite

differences or any other numerical method, because these quantities are already

known, in analytical form, needing only to be introduced in the optimization

process, without any further calculation.

The dimension of the optimal problem includesm� nvariables,ndof � nequality
constraints and m� n inequality constraints. Clearly, the size of the problem is

proportional to the number of time frames used in the analysis, which can put serious

challenges to the optimization methods that can be selected to solve the problem.

16.6.2.6 Results of the Application to the Evaluation

of the Muscle Forces

The data collected for the gait case depicted in Fig. 16.17 is used to evaluate the

muscle forces and the anatomical joint reaction, using the optimization problem

described by (16.39). The results are fully described in the work by Rodrigo et al.

[15] being only a selected number of muscles shown in Figs. 16.23, 16.24, and

16.25. By observing the muscle forces obtained it is noticed that the muscular

control of the hip joint, for which the net-moments of force are shown in Fig.16.18,

during stance period is fundamentally controlled by the extensor (Gluteus Maximus,
Semimembranosus, Semitendinosus and Aductor Magnus) and abductor muscles
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(Gluteus Maximus, Medius and Minimus and Tensor Fasciae Latae),while during

oscillation, flexor muscles do the job (Aductor Longus, Brevis and Magnus, Psoas,
Ilı́aco, Sartorius and Rectus Femoris). Furthermore, the participation of adductor

muscles is limited to the transition period between stance and oscillation (Aductor
Longus, Brevis and Magnus and Quadratus Femoris).

Diverse muscles selectively supervise the muscular knee joint control throughout

gait cycle, rendering the stability and mobility necessary to walk while remaining

inactive as long as possible, to follow an energy conservation strategy. Among all

these muscles, some of them get involved exclusively on knee joint, as is the case of

the Vastus Intermedius Lateralis and Medialis and Rectus Femoris, as extensor

muscles. The remaining muscles flex the knee while supervising the hip joint control,

i.e., Bı́ceps Femoris, Gracilis, Sartorius, Semimembranosus, Semitendinosus, Tensor
Fasciae Latae. Also linked to the knee, though mainly acting on ankle joint control,

the Gemelli muscles help to flex the knee joint [23, 33].

m
m

Fig. 16.24 Activation (left) and force (right) patterns for selected muscles of the right leg

associated to the knee joint (HS – Heel Strike, TO – Toe-Off)

m
m

m

Fig. 16.23 Activation (left) and force (right) patterns for selected muscles of the right leg

associated to the hip joint (HS – Heel Strike, TO – Toe-Off)
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The muscle activity pattern of ankle joint is also discussed in view of the

sequence of phases of the gait cycle. While the plantar flexor muscles mainly act

during the stance phase through the Flexor Digitorum Longus, Flexor Hallucis
Longus, Gastrocnemius medial and lateral heads, Peroneus Brevis, Peroneus
Longus, Soleus, Gemelli and Tibialis Posterior, the dorsiflexor muscles operate at

oscillation phase using the Extensor Hallucis Longus, Extensor Digitorum Longus,
Peroneus Tertius and Tibialis Anterior, with exception of eccentric activity of

dorsiflexor muscles, posterior to foot impact during the stance period of gait

cycle. Among all plantar flexor muscles of ankle joint, the Soleus is the main flexor,

accounting for about 93% of total capacity, in agreement with its function of shock

absorptor due to the foot initial contact. The second most important muscles in

flexing are the Gemelli muscle. Concerning the dorsiflexor muscles, the force

intensity of Tibialis Anterior is larger than that of the other muscles.

The analysis of the muscle functions for each anatomical joint show a relation

between the muscle forces and the joint kinematics. This type of analysis can be

made for any kind of motion, provided that the proper musculoskeletal representa-

tion is implemented in the biomechanical model. Examples of the application of this

type of approach to other parts of the human body are available in Refs. [26, 27].

m
m

m

Fig. 16.25 Activation (left) and force (right) patterns for selected muscles of the right leg

associated to the ankle joint (HS – Heel Strike, TO – Toe-Off)
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16.7 Conclusions

The application of control strategies to human motion coordination motion

planning requires not only that suitable biomechanical models are available but

also that the internal forces developed by the musculoskeletal system are properly

described. When the joint torques are used as representatives of the muscle forces

the control of the human body requires that a controller is associated to each one of

the biomechanical system degrees of freedom making the motion planning a

difficult task to control. When the individual muscles of the human body have to

be controlled independently, if physiologically reasonable, the control task would

be virtually impossible. This work shows that by decentralizing and implementing a

hierarchical structure in the control it is possible to devise a strategy to design

human motion. The feasibility of the joint torques developed by the controllers can

only be evaluated by estimating the muscle forces necessary to obtain the joint

torques. Here, a methodology based on the use of a detailed musculoskeletal model,

a representation of the muscle activation dynamics by the Hill muscle model and an

optimization procedure is proposed to obtain the individual muscle forces and the

corresponding joint torques. By uniquely associating the muscle forces and the joint

torques to a particular motion, obtained by the control strategy outlined, it is

possible to evaluate the motion feasibility. The procedures outlined can be further

developed by using the muscle force sharing evaluation integrated in the control

system associated to the low-level PD controller gains. Such strategy is the object of

further developments of the work presented here.

References

1. Ambrósio J, Lopes G, Silva M (1999) Reconstruction of the spatial motion of biomechanical

systems by means of computer vision and multibody dynamics. In: Kecskemethy A, Schneider

M, Woernle C (eds) Advances in multibody systems and mechatronics, Technische Univ.

Graz, Institute fur Mechanik und Getriebelehere, Austria, pp 407–426

2. Zielinska T (2004) Biological aspects of locomotion. In: Pfeiffer F, Zielinska T (eds) Walking:

biological and technological aspects. Springer, Wien, pp 1–29

3. Silva M, Ambrósio J, Pereira M (1997) Biomechanical model with joint resistance for impact

simulation. Multibody Syst Dyn 1:65–84

4. Sandell N, Varaiya P, Athans M, Safonov M (1978) Survey of decentralized control methods

for large scale systems. IEEE Trans Automat Contr 23(2):108–128

5. Tsai D, Arabyan A (1991) Decentralized and hierarchical control of articulated multibody

systems. Technical Report CAEL-91-2, Computer-Aided Engineering Laboratory, Depart-

ment of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona

6. Russel S, Norvig P (1995) Artificial intelligence, a modern approach. Prentice Hall,

Englewood-Cliffs

7. Garriott OK (2011) Conservation Laws in Zero G, ST0046; Opportunities in zero gravity,

ST0046, Textbook Tapes, Inc. http://www.textbooktapes.com

8. Kane TR, Headrick MR, Yatteau JD (1972) Experimental investigation of an astronaut

maneuvering scheme. J Biomech 5:313–320

16 Multibody Dynamics Approaches to Biomechanical Applications to Human. . . 287

http://www.textbooktapes.com


9. Kane TR, Scher MP (1970) Human self-rotating by means of limb maneuvers. J Biomech

3:39–49

10. Seireg A, Arvikar R (1989) Biomechanical analysis of the musculoskeletal structure for

medicine and sports. Hemisphere, New York

11. Buchanan TS, Shreeve DA (1996) An evaluation of optimization techniques for the prediction

of muscle activation patterns during isometric tasks. J Biomech Eng 118:565–574

12. Tsirakos D, Baltzopoulos V, Bartlett R (1997) Inverse optimization: functional and physiologi-

cal considerations related to the force-sharing problem. Crit Rev Biomed Eng 25(4–5):371–407

13. Crowninshield R, Brand R (1981) Physiologically based criterion of muscle force prediction in

locomotion. J Biomech 14(11):793–801
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Chapter 17

Application Examples of Wire Robots

Tobias Bruckmann, Wildan Lalo, and Christian Sturm

Abstract Wire Robots have become both a wide research field as well as

a promising subject to application projects. The Chair of Mechatronics at the

University Duisburg-Essen has been successful in the setup of prototypes in several

application fields. Within this paper, two projects taking advantage from the special

properties of wire robots are presented: The first project aims at the development of

a wind tunnel suspension system. The second project focuses on the realization of a

revolutionary storage and retrieval machine for high racks. Using the mechatronic

approach of simulation-based development, major aspects of modeling, simulation,

design, trajectory planning and practical realization are discussed.

17.1 Introduction

Parallel kinematic machines have major advantages compared to serial manipulators

in terms of precision, load distribution and stiffness. On the other hand, classical

parallel kinematics (e.g. the Stewart-Gough platform) have a relatively small

workspace compared to serial systems of the same overall construction volume.

In 1985, Landsberger and Sheridan [14] presented the concept of a parallel tendon-

based manipulator where the conventional linear actuators (e.g. hydraulic cylinders)

are replaced by wires and motor-driven winches. This leads to a number of interesting

properties, avoiding the drawbacks of the classical parallel kinematics:
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• The flexibility of wires allows very large changes in the length of the kinematic

chain, for example by coiling the wire on a winch drum. Therefore, the

workspace of a wire robot may become extremely large. As an example, wire-

suspended cameras [2] may span a complete sports stadium.

• The coiling can be done by extremely fast motor-driven winches. Usually, the

loads are comparably lightweight. Since the moving mass of the wire robot is

nearly negligible, very high accelerations and velocities can be realized.

• The mechanical components needed are simple and of industrial grade and

maturity. No complex joints are used.

• A wire is a unilateral constraint. Therefore, wires can transmit only tension

forces and thus at least m ¼ n þ 1 wires are needed to tense a system having

n degrees-of-freedom [16].

Wire-driven parallel robots (or simply wire robots) have made a long way

from pure fundamental research—mainly done by the very active community of

researchers working on kinematic analysis and design—and are now subject to

numerous application projects (e.g. EU-project CableBOT: Parallel Cable Robotics

for Improving Maintenance and Logistics of Large-Scale Products).

At the Chair of Mechatronics, already two application projects based on wire

robot technology could be realized: The first project was done in close cooperation

with experts on wind tunnel experiments. Here, the development of the design and

the control concept are described. The second project is a large public-funded

project where a revolutionary storage and retrieval machine for high racks is

developed. This project aims at the realization of a demonstrator within a fully

working intralogistics environment and therefore, components of industrial grade

are used. Within this project, the geometrical design, the design engineering, the

control concept and the virtual prototyping have been subject to intensive work.

17.2 Dynamics Modeling of Wire Robots

Taken from [6], the platform pose x ¼ BrT ’ # c
� �

and the base points Bbi;

i ¼ 1 � i � m are referenced in the inertial frame B . Contrarily, the platform

connection points pi are referenced in the platform-fixed coordinate frame P . The

orientation of the platform referenced in the base frame is defined by the rotation

matrix BRP. For simplicity, Roll-pitch-yaw angles are used.

Assuming the wires are led by point-shaped guidances (e.g. small ceramic eyes)

from the winches to the platform, the base vectors Bbi are constant. Now the vector

chain pictured in Fig. 17.1a delivers
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Bli ¼ Bbi � Br � BRP
Ppi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Bpi

; 1 � i � m: (17.1)

immediately. Hence, the length of the ith wire can be calculated by

li ¼ Bbi � Bpi
�� ��

2
; 1 � i � m: (17.2)

Assuming a base frame B and a platform-fixed frame P , the accumulated

wrench wwire of the wires forces f acting onto the platform can be written as

wwire ¼ fwire Üwire½ �T ¼ Pm
i¼1

f i
Pm
i¼1

pi � f i

� �T
: (17.3)

Since the forces act along the wires

f i ¼ f i �
li
lik k2

¼ f i � ·i; ð1 � i � mÞ (17.4)

holds. It follows

wwire ¼ ·1 . . . ·m

p1 � ·1 � � � pm � ·m

� � f1
..
.

fm

2
64

3
75f ¼ ATf : (17.5)

The Newton-Euler equations lead to

mp€r ¼ f E þ fwire (17.6)

a b

Fig. 17.1 Simple modeling of a wire robot
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I _VþV� ðIVÞ ¼ Üwire þ ÜE; (17.7)

with

mp: the mass of platform,

I∈ℝ3�3: inertia tensor defined with respect to the inertial system B which is an

expression of rotation angles,

V: angular velocity of the platform in B ,

fE: vector of external forces,

ÜE: vector of external torques.

Equation 17.6 can be rewritten by

mpE 0

0 I

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Mp

€r
_V

� �
|fflffl{zfflffl}
€x

þ 0

V� ðIVÞ
� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

gC

� f E
ÜE

� �
|fflffl{zfflffl}
gE|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�w

¼ ATf : (17.8)

with

Mp: mass matrix of platform,

E: indentity matrix,

gC∈ℝn�1: Cartesian space vector of Coriolis and centrifugal forces and torques,

gE ∈ ℝn�1: vector of the generalized applied forces and torques, not including

the resultants of wire tensions.

Taking wire minimum and maximum force limits fmin and fmax, respectively, into
account [5] it follows

ATf þ w ¼ 0 with (17.9)

fmin � f � fmax (17.10)

Obviously (17.9) represents an underdetermined system of linear equations. Its

solution space is r ¼ m � n-dimensional. Hence isolating the force distribution

f leads to

f ¼ �AþTwþHÕ; (17.11)

where AþT denotes the Moore-Penrose Pseudo-Inverse of AT. In other words, the task

of finding a feasible wire force distribution is equivalent to the task of finding Õ ∈ ℝr

such that f > fmin, with fmin > 0 holds. Note that H is the nullspace or kernel of

AT defined as
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H :¼ h1 : : : hr½ �; (17.12)

where

AThi ¼ 0; 1 � i � r: (17.13)

17.3 Realization of a Wind Tunnel Suspension System

The concept of using a wire robot suspension system in wind tunnels was proposed

by Lafourcade et al. [13] and Yaqing and Xiongwei [24]. In their applications, the

very small thickness of the wires turned out to be extremely advantageous since the

air flow in the windtunnel is not disturbed. This is important since the suspension

system should not influence the results of the aerodynamical experiments

performed. Noteworthy, in their applications the mass of the moved airplane

models was comparably low.

In the project presented here, the original parallel wire robot concept is modified:

Instead of winches and wires, linear actuators and rail systems are used while

tendons of fixed length connect the skids on the rails with the end effector. This

leads to a kinematical structure comparable to a conventional parallel manipulator

with additional redundant legs and results in a kinematical redundancy.

The project is done in close cooperation with the Technical University

Hamburg-Harburg, where ship models must be moved on defined trajectories

within a wind tunnel. The experiments require the motion of heavyweight payloads

up to 100 kg with a frequency of up to 0.5 Hz for the translational degrees-of-

freedom and up to 2.5 Hz for the rotational degrees-of-freedom. This demands for a

high drive power which is additionally raised by the need for internal tension.

Therefore, an energy-saving concept had to be found.

Additionally, a wide range of rotational motions should be possible to realize

arbitrary maneuvers. This leads to the problem of finding an adequate geometry

design. Due to architectural limitations in the wind tunnel, the geometry of the

supporting frame is fixed.

In [20] two different design concepts were investigated. The first one uses a

rail-based system with eight wires of constant length. The configuration of this

mechanism is shown in Fig. 17.2. Each skid is connected to the model by a wire of

constant length. Although two skids share one rail, every skid is separately operated

by a SEW EURODRIVE DC motor via a belt drive. Noteworthy, the use of linear

drives for wire robots was introduced by Merlet [15] who proposed that idea both

for very high loads and extremely high accelerations and velocities using pulleys.

The second concept is based on the common and well known motor winch approach

as it is used e.g. at the SEGESTA-prototype of the University Duisburg-Essen in

Duisburg, Germany [10], or the IPANEMA-prototype of the Fraunhofer Institute for

Manufacturing Engineering and Automation (IPA) in Stuttgart, Germany [17].

A comparison of the characteristics of both systems has shown, that the winch

based system provides a larger translational workspace, while the rail-based system
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allows for the use of motors with a considerably lower power consumption. For the

application, the rotational movements of the model are of larger interest. Therefore,

although having a smaller workspace, the rail-based still affords a wide range of

ship maneuvers. Due to the lower power consumption a decision for the rail-based

system was made. Additionally, due to its intrinsic modularity, the suspension

system installed can be easily adapted to the specific needs of each experiment.

17.3.1 Modeling of the Rail-based System

According to [20] the kinematics of the introduced system is given by

qi ¼ �ðrSi � rCi
ÞnRi þ ð�1Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððrSi � rCi

ÞnRiÞ2 � ðrSi � rCi
Þ2 þ l2i

q
(17.14)

with

qi: position of the skid i,

li: length of wire i,

nRi: unit vector in direction of the rail i,

rCi: vector to ith wire attachment point on the ship model

rSi: vector to a reference point on rail i,

The dynamical equations of motion of the end effector have been introduced in

Sect. 17.2. Due to the fact that the presented robot is twofold redundant, (17.8)

represents an under-determined system of linear equations. Therefore the calculation

of the wire force distribution is not straightforward. Fast motions of the end effector

are desired to be generated. According to that fact a minimum positive solution of the

wire force distribution is desired in order to reduce the motor power consumption and

the applied load on the mechanical components. Additionally, the unilateral

properties of the wires have to be taken into account: On the one hand, wires have

a limited breaking load, on the other hand, the wires need a defined minimum tension

Fig. 17.2 Principle of application
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to avoid slackness. The force distribution can be formulated as a constrained

quadratic optimization problem with

minimize
Xm
i¼1

f 2i

s:t: fmin � f � fmax ^ ATf þ w ¼ 0: (17.15)

For the application, a real-time capable active set method has been used to solve

the quadratic optimization problem.

Each wire is driven by a combination of a skid and a DC motor. For the

dynamical equations of the skid subsystem

Ms€qþ Ds _qþ Tf ¼ f s (17.16)

with

Ms: inertia matrix of the skids,

Ds: diagonal matrix of coulomb friction between skid and rail,

q: vector of the skid positions,

T: diagonal matrix that projects the wire force components into the direction of

the skid movement,

fs: skid driving force vector

holds. Motor and skid are connected by a gear belt. The elasticity of the wires are

considered as a massless spring-damper system. The dynamical equations of the

DC motors can be described by

Mm
€uþ Dm

_uþ � f s ¼ u (17.17)

with

Mm: inertia matrix of the drive units including crown gear and motor,

Dm: diagonal matrix of coulomb friction at the crown gear bearing,

�: radius of the crown gear,

u: vector of motor shaft angles,

u: electromechanical driving torque vector.

By use of the Jacobian

J ¼ @q

@x
(17.18)

of the manipulator, with the dynamics of the whole system can be derived in

the form
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MeqðxÞ€x þ Nðx; _xÞ ¼ �ATT�1Ü ¼ Fv (17.19)

with

Meq: inertia matrix of the whole system,

N: vector containing all velocity dependent terms and external forces,

Fv: virtual force wrench to drive the system due to a given trajectory.

17.3.2 Control

The most common control approach for wire based parallel kinematic system

allows for the use of a PD joint control of the individual actuator while having

rather small end effector loads. Within the introduced application ship models with

a weight up to 100kg are going to be actuated. Due to the comparably high payload,

this approach is not sufficient. By only controlling the actuator joints, qi in this case,
end effector and wire forces are not part of the controller loop. Experiments with the

prototype SEGESTA have shown, that this approach still provides good results with

respect to end effector pose error, but leads to unrequested, since uncontrolled, high

wire forces. The intended approach has first been introduced by [23]. Another

control loop, that uses a model of the inverse dynamics of the whole system, is

superposed to the common joint control law. With

Fv ¼ MeqðxÞaþ Nðx; _xÞ (17.20)

a model of the system dynamics is used to linearize around the current working

point. Substituting (17.19) with (17.20) leads to

€x ¼ a (17.21)

which can be considered as a new system input. Equation 17.21 has the character of

a linearized and decoupled system of second order. By choosing a control law of the

form

a ¼ €xd þ KPx xd � xÞ þ KDx _xd � _xÞðð (17.22)

the closed-loop control is realized in Cartesian space by use of the current pose of

the end effector and therefore considers end effector dynamics and wire forces

Fv ¼ MeqðxdÞ €xd þ KPxex þ KDx _exÞ þ Nðxd; _xdÞ:ð (17.23)

In order to save processing power, the inertia matrix Meq and the vector N are

calculated by use of the desired states xd and _xd. The resulting virtual force vector

Fv has to be mapped onto the motor torques. This is done by use of the active set

method according to (17.15). While the previous control approach considers the

system dynamics, joint control
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Üq ¼ KPq qd � qÞ þ KDq _qd � _qÞ þ Ü s _qdÞðð	
(17.24)

is needed to compensate for the known static friction forces working on the

actuators. Now (Fig. 17.3)

Ü ¼ Üq þ Ü k (17.25)

is used for computing the motor torque command, with Ü k ¼ f Fv;A
TÞ	
. The end

effector with an assumed mass of 100 kg has to perform oscillating movements

along the z-axis with an amplitude of 0.1m at 0.25Hz and around the local x-axis

with an amplitude of 30� at 2.5Hz. Within Fig. 17.4 the simulated time history of

the pose error is shown. Considering the dimensions of the wind tunnel test bed with

L ¼ 5.2m, B ¼ 3.8m, H ¼ 2.2m and the assumed length of the wires with

l ¼ [1.9 1.9 1.9 1.6 1.6 1.6 1.6]Tm a quite remarkable control quality

has been achieved. Figure 17.4 represents the time history of the wire forces

which stay below a desired maximum value of 2,000N (Fig. 17.5).

17.4 Development of Storage and Retrieval Machine

for High Racks

Intralogistics systems are a rapidly growing market having a major influence onto

production costs of industrial goods. Industrial goods must be stored, reorganized

and delivered—whether for internal production purposes or external distribution.

Nowadays high racks and storage retrieval machines are widely used where goods

are usually stored in standardized containers.

Fig. 17.3 Control scheme
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High racks are very effective in storing goods on small footprints. Additionally

they allow the application of fully automated storage and retrieval machines. But

the conventional setup shows one drawback: The higher the racks are, the heavier

the storage and retrieval machine becomes due to stiffness requirements. While the

containers or goods to be moved are often very lightweight (in case of small-parts

warehouse, below 50kg), the storage and retrieval machine may weight up to 2t.

The reason for this poor mass ratio between cargo and transport system is mainly

related to the serial structure of the storage and retrieval machine: In a kinematical

sense, the storage and retrieval machine consists of two prismatic joints connected

by links—namely, a skid on a rail carrying the lifter mechanism.

Usually a parallel system has the potential to massively reduce the moved

masses, but in the application at hand, a conventional parallel kinematic approach
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usually would suffer from a very limited workspace. But since Landsberger and

Sheridan [14] presented the concept of a wire-based parallel kinematic machine,

this drawback can be efficiently avoided. In the project presented here, a wire-based

storage and retrieval machine is developed: The German Federal Ministry of

Education and Research started the largest European logistics research initiative

ever—the “EffizienzCluster LogistikRuhr” framework. Within this framework,

a sub-project called “Storage Retrieval Machine based on the Stewart-Gough-

Platform” will develop a storage retrieval machine using a parallel wire robot.

The basic idea of the project is to suspend only the lightweight transport platform

with a gripper by eight pre-stressed tendons in a parallel configuration. There is a

number of—mostly well-known—advantages expected due to this concept:

• A wire robot can be easily adapted to different load ranges and goods to be

carried.

• A wire robot is intrinsically lightweight. This reduces the energy consumption or

allows faster movements, respectively. Explicitly, the so-called single cycle time

(travel time), defined as the time to move the platform from the input/output

point to a storage position and back, and the double cycle time, defined as the

time to move the platform from the input/output point to a storage position, to

another storage position and back to the input/output point, are crucial. The

serial structure of the conventional storage retrieval system requires racks which

are usually very long compared to their height. Wire robots take advantage from

the opposite ratio. This allows very large storage capacities on the same base

footprint, allowing for extremely high storage capacities.

• The mechanical structure of the wire robot system is simple and can be realized

using cheap components from stock. On the other hand, a complex control

system including computerized winches must be developed.

Presently, there is a number of upcoming application projects for wire robots

which also base on these properties. These projects cover a wide application range

including e.g. suspension systems for wind tunnels [3, 4, 8, 13, 20], aquatic

applications [1], positioning of large-scale telescope receivers [21, 22] and assembly

of solar power plants [18].

The idea of using a wire robot for high storage retrieval machines was already

presented in the past by Hassan and Khajepour [12]. They propose and optimize a

geometrical configuration, calculate the wrench-closure workspace and perform a

stiffness analysis. Within the presented project, one of the first steps was the develop-

ment of a virtual prototype. It allows first estimations of the expected performance and

energy consumption. The model uses massless wires with an E-module of 65GPa and

a diameter of 5mm, assuming linear elasticity and damping.

17.4.1 Power Requirements

First of all, the dimensioning of the motor winches had to be defined. That was done

based upon the desired performance defined in Table 17.1.
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A test trajectory was specified covering a variety of typical platform movements.

The path is shown in Fig. 17.6a and its trajectory in Fig. 17.6b.

Based on inverse kinematics calculations, the lengths, velocities and

accelerations of each wire were derived. The results are shown in Fig. 17.6c.

Based upon the given trajectories, the corresponding dynamics were computed

which lead to the platform wrench that had to be provided by the wires to perform

the desired maneuver. Having the platform wrench at hand, wire force distribution

for each point of the trajectory were computed where a minimum wire force

fmin ¼ 100N was specified. The results are shown in Fig. 17.6d.

Having the wire force and the wire velocities at hand, winch rotary speeds

(Fig. 17.6e) and torques (Fig. 17.6f) could be evaluated. As shown in Fig. 17.6g, h the

drive and power supply requirements according to Table 17.2 could be derived.

17.4.2 Optimal Trajectory Generation

To evaluate the full potential of the wire-driven system, an optimal control

approach was chosen to generate optimal trajectories. Optimal trajectories may be

defined in the sense of shortest time, least peak power, lowest energy consumptions,

or weighted combinations of these. Since the optimal control strategy is based on

the dynamics of the wire robot according to (17.8) the optimal trajectory is best

adapted for this particular robot.

17.4.2.1 Optimal Control Problem

First of all, the problem of optimal control is introduced. The nonlinear state space

model of a dynamic system is given by

_x ¼ f ðt;xðtÞ; uðtÞÞ (17.26)

where xðtÞ 2 Rn are the state variables, uðtÞ 2 Rm the control variables, f : Rn�
Rm � ½0; tf � ! Rn is continuously differentiable within the time interval 0 � t �
tf and t; tf 2 R . In the problem at hand, a minimum time trajectory is desired,

Table 17.1 Drive and power

requirements
Property Value

Maximum jerk 25ms3

Maximum acceleration 5ms2

Maximum velocity 6ms
Mass of platform including load 100kg
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whereby the final time tf is not known a priori. For this reason, a transformation to the

normed time interval [0, 1] is necessary. Thereby, tf becomes part of the variables to be

optimized, such that we seek a control function u(t) which minimizes the objective

function

min
xðtÞ;uðtÞ;tf

fðxð1Þ; tf Þ þ
Z 1

0

tf � f 0ðt;xðtÞ; uðtÞÞ dt (17.27a)

s:t: _x ¼ tf � f ðt;xðtÞ; uðtÞÞ (17.27b)

xð0Þ ¼ x0; xð1Þ ¼ xf (17.27c)

gðxðtÞ; uðtÞ; tf Þ � 0; (17.27d)

hðxðtÞ; uðtÞ; tf Þ ¼ 0; t 2 ½0; 1� (17.27e)

where f : Rn ! R and f 0 : Rn � Rm � ½0; 1� ! R are continuously differentiable.

Moreover, (17.27c) describes the initial and final constraints of the trajectory.

By (17.27d) and (17.27e) we can consider equality as well as inequality constraints

of the state and control variables as well as the final time.
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Table 17.2 Drive and power

requirements
Property Symbol Value

Maximum speed nmax 1,050min�1

Maximum torque tmax 86Nm

Maximum power per drive pmech, mot, max 7kW

Maximum overall power pmech, total, max 30kW
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Due to the time-continuous state and control variables the optimal control

problem according to (17.27) is in principle an infinite dimensional optimization

problem and cannot be solved analytically. For this reason, we have to resort to

numerical solution methods which can be divided into direct and indirect methods.

In the present paper, a direct method is applied which is based on the finite

discretization of the time interval [0, 1] where the state and control variables are

approximated according to [11]. Detailed information on optimal control and its

numerical solution can also be found in [9, 19].

17.4.2.2 Trajectory Constraints

Before setting up the optimal control problem for this specific robot, several

technical requirements need to be provided for the optimal trajectory.

Firstly, the platform orientation has to be parallel to the floor and rack throughout

the trajectory such that VðtÞ; _VðtÞ; €VðtÞ; :::
VðtÞ ¼ 0. For this reason (17.8) becomes

a differential-algebraic system of equations according to

mp€r ¼ AT
t f þ f E; 0 ¼ AT

r f þ ÜE; (17.28a)

where AT ¼ ½AT
t ;A

T
r �T is separated into a “translational” and “rotational” structure

matrix.

It is obvious that at start and final position the platform velocity and acceleration

are zero. Since the platform accelerations are explicitly given in the boundary

conditions, they must be integrated into the state variables. In addition, we may

consider minimum force changes during the optimization process. For this purpose

the platform jerk as well as the force changes are defined to be the control variables.

Thus, we obtain the system of DAEs

_x1; _x2; _x3; _x4½ �T ¼ x2;x3; u1; u2½ �T (17.29a)

0 ¼ AT
r x4 þ f e; (17.29b)

0 ¼ 1
m AT

t x4 þ Ü e

	 
� x3; (17.29c)

where x1 ¼ r, x2 ¼ _r, x3 ¼ €r and x4 ¼ f . Note the additional algebraic (17.29c)
which essentially describes NEWTON’S equation. We obtain the following boundary

conditions

x1ð0Þ ¼ r0; x2ð0Þ ¼ 0; x3ð0Þ ¼ 0; x4ð0Þ ¼ f 0; (17.30a)

x1ð1Þ ¼ rf ; x2ð1Þ ¼ 0; x3ð1Þ ¼ 0; x4ð1Þ ¼ f f ; (17.30b)
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whereby the wire force distributions f0 and ff are determined from the static wire

force calculation in (17.9) by setting the time derivatives of w to zero and solving

for f. Moreover, we have some additional constraints which have to be valid for

t ∈ [0, 1]. Thereby, the platform is not allowed to move beyond the length and

height of the rack while considering its maximum velocity, acceleration and jerk.

Furthermore, the limited wire forces are to be considered as well. Thus, we have the

linear

rmin � x1ðtÞ � rmax; fmin � x4ðtÞ � fmax (17.31)

and nonlinear

x2
2ðtÞ � v2max; x2

3ðtÞ � a2max; u21ðtÞ � r2max (17.32)

constraint inequalities for this optimal control problem.

17.4.2.3 Objectives

The following objectives are useful to be considered. Firstly, it is reasonable to

decrease the final time tf as much as possible, such that simply

fðtf Þ ¼ tf : (17.33)

Moreover, we would like to keep the driving power as low as possible:

f 0;1ðx1ðtÞ;x2ðtÞ;x4ðtÞÞ ¼
�
xT
4 ðtÞ _lðx1ðtÞ;x2ðtÞÞ

�2

; (17.34)

where _lðx1ðtÞ;x2ðtÞÞ is the wire length change as described in [7]. It may also be

desirable to minimize the wire force distributions in order to consume minimum

energy according to f 0; 2ðx4ðtÞÞ ¼ x2
4ðtÞ. Further objective criteria such as minimum

changes of the wire force distribution andminimum platform jerk can be considered.

One can also apply a weighted linear combination of the different criteria to an

overall objective according to:

min
xðtÞ;uðtÞ;tf

a0 fðxð1Þ; tf Þ þ
Xm
i¼1

ai

Z 1

0

tf � f 0;i ðt;xðtÞ; uðtÞÞ dt; (17.35)

where ai, 0 � i � m are the corresponding weighting factors.
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17.4.2.4 Simulation Results

The optimal trajectories discussed in the following are compared to a reference

trajectory which is a straight line from start to final point under the same boundary

constraints, maximum platform velocity, acceleration and jerk as well as force

limitations and zero platform orientation. This straight line trajectory is generated

such, that the platform moves as fast as possible from start to final position.1

The following simulation results are based on the desired parameters vmax ¼ 6 m
s,

amax ¼ 5 m
s2, rmax ¼ 30 m

s3, fmin ¼ 100 N and fmax ¼ 5,000 N. The weighting factors

of the objective criteria are set to a0 ¼ 103 and a1 ¼ 10�5 for the minimum time

and consumed power.

Figure 17.7 shows a PTP trajectory from the lower left to the upper right corner

of the rack. While the simulation time of the straight line trajectory needs about
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Fig. 17.7 Diagonal trajectory

1 There exists an analytical solution to this trajectory which is also easy to implement.
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2.75 s, the optimal trajectory requires about 2.798 s which is approximately 4.71 %

slower than the former. However, the peak power consumption of each motor can

generally be reduced. For instance, the second motor needs a peak power of about

6.73 kW for the straight line trajectory, whereas for the optimal trajectory a peak

power of about 5.16 kW is required. This equals a peak power reduction of about

23.26 % and consequently means that smaller motors can be applied for this

particular robot. Accordingly, the overall peak power consumption can be reduced

by about 21.91 %. Moreover, the energy needed to perform this trajectory can be

decreased by about 11.73 %.

The following simulation results in Fig. 17.8 show a horizontal trajectory from

the upper left to upper right corner of the rack.

The solid lines depict the trajectory and its power and energy consumption for

the same weighting factors used above. Concerning this trajectory one can see a

time increase of about 28.46 %, however a power and energy saving of about

66.77 % and 43.72 % compared to the straight line trajectory. This time increase

may be too much despite the improved power and energy consumption. For this
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308 T. Bruckmann et al.



reason a higher weight of the time factor can decrease the trajectory time to only

4.1941 % as can be seen by the dash-dotted lines. Of course, power as well as

energy consumption are then reduced to 33.22 % and 30.17 %, respectively.
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