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          9.1   Introduction 

 In pre-clinical studies, cell-based therapies improve functional outcome in a variety 
of diseases of the central nervous system (Chopp et al.  2008  ) . Many different types 
of stem cells, including bone marrow stromal (BMS) cells, embryonic stem (ES) 
cells, fetal neural stem (FNS) cells, and umbilical cord blood cells, have been tested 
(Bliss et al.  2010  ) . Human trials indicate that stem cell treatments are safe and well 
tolerated (Nelson et al.  2002 ; Savitz et al.  2005 ; Kondziolka et al.  2000,   2004,   2005  ) . 
However, before clinical cell transplantation becomes mainstream, the ideal route 
and time of delivery, as well as the mechanisms of action need to be identi fi ed. Such 
studies would bene fi t from serial long-term imaging of transplanted cells with high 
spatial resolution, sensitivity and functional information. The technique should not 
impact the therapy, having no in fl uence on cell differentiation, survival, physiology, 
migration, or mechanisms of action. Additionally, the ideal imaging tool would be 
able to differentiate viable from dead cells. Several technologies have been used for 
in vivo neural stem cell imaging, including MRI, positron emission tomography 
(PET), optical imaging, and single-photon emission computed tomography 
(SPECT). The relatively high spatial resolution, sensitivity, availability, and lack of 
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ionizing radiation has made MRI one of the most frequently used imaging modali-
ties for in vivo stem cell tracking. 

 For MR imaging, cells must be preloaded with a contrast agent, such as gadolin-
ium-rhodamine dextran (Modo et al.  2004  ) , superparamagnetic iron oxide (SPIO) 
(Arbab et al.  2004 ; Guzman et al.  2007  ) , or ultrasmall superparamagnetic iron oxide 
(USPIO) particles (Guzman et al.  2008 ; Bulte et al.  2002  ) . The most common tech-
nique for labeling cells is using SPIO in combination with a transfection agent such 
as Lipofectamine or protamine sulfate. The SPIO strongly affects the T 

2
  relaxation 

time, resulting in hypointensities on the MR images. Several studies have used MRI 
to longitudinally track transplanted iron-labeled cells in different animal models 
including stroke (Modo et al.  2004 ; Guzman et al.  2007,   2008 ; Bulte et al.  2002 ; 
Hoehn et al.  2002 ; Zhang et al.  2003 ; Franklin et al.  1999  ) . However, if transplanted 
cells divide or migrate away from each other, the SPIO signal becomes diluted 
(Berman et al.  2011  ) . In addition, since SPIO is inert it is not destroyed when stem 
cells die or are phagocytosed by macrophages after transplantation (Bliss et al. 
 2007  ) . Thus SPIO can be detected with MRI long after all transplanted cells have 
died (Berman et al.  2011  ) . Moreover, many parts of the brain are naturally rich in 
paramagnetic iron (ferritin and hemosiderin) which cannot be distinguished from 
SPIO with MRI. These issues raise concern over the usefulness of long-term MRI 
tracking of SPIO-labeled cells following transplantation. 

 Synchrotron rapid-scanning X-ray  fl uorescence mapping (RS-XRF) can both 
map and quantify total iron in tissues, but it must be used with discretion. 
Quanti fi cation of iron in individual histological sections will allow for the study of 
changes in SPIO concentration. The following review will identify the key 
strengths and weaknesses of using RS-XRF to identify SPIO-labeled stem cells, 
will outline the current  fi ndings, and lastly indicate the future potential for this 
technology.  

    9.2   Cell Tracking with SPIO 

    9.2.1   Issues with Tracking SPIO-Labeled Cells 

 Cell death and division are two major issues when imaging SPIO-labeled stem cells. 
In a recent study by the Walczak group, SPIO-labeled stem cells were injected into 
the brains of immunocompetent and immunode fi cient mice (Berman et al.  2011  ) . 
Serial MR imaging of the transplanted cells showed a more intense and persistent 
signal detection in the immunocompetent mice, in which no surviving transplanted 
cells could be identi fi ed. Whereas, the immunode fi cient mice had a more rapid 
reduction in MR T2 signal detection over time, corresponding to a rapid prolifera-
tion and migration of transplanted cells, which was con fi rmed with biolumines-
cence imaging and immunohistochemistry. 

 There is con fl icting evidence regarding the degree of clearance/persistence of 
SPIO signal following the death of labeled cells. Guzman et al.  (  2007  )  showed 
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that SPIO-labeled NSCs killed with repeated freeze-thaw cycles prior to injection 
were nearly completely cleared, whereas the living cells injected into the contral-
ateral hemisphere remained detectable. Similar  fi ndings were also described when 
using rodent neural stem cells (Zhang et al.  2003  ) . When SPIO-labeled cells are 
injected directly into the cisterna magna, no iron-positive cells were detected with 
Prussian blue staining, suggesting that all iron from the labeled cells is cleared 
(Zhang et al.  2004  ) . However, other studies have found a persistent MRI signal 
after the death of transplanted SPIO-labeled cells (Winter et al.  2010 ; Gonzalez-
Lara et al.  2011  ) . 

 Previous research has shown that some cell lines undergo asymmetric cell divi-
sion, resulting in a sharp drop-off in SPIO label in one population of cells and not in 
another (Walczak et al.  2007  ) . In this study, SPIO-labeled C17.2 cells were injected 
into the lateral ventricle of neonatal shiverer mice; the cells retaining the most SPIO 
remained at the lateral ventricles, whereas the cells with less SPIO migrated away 
from the ventricles and rapidly had undetectable levels of iron labeling. Quanti fi cation 
of iron in individual cells with XRF would allow for precise measurements of the 
loss of iron in migrating cell populations. 

 MR imaging of SPIO-labeled cells is impaired in injury models with a strong 
in fl ammatory response (Vandeputte et al.  2011  ) . In the photothrombotic model of 
stroke, T2*-weighted images have hypointensities resulting from the accumulation 
of endogenous iron containing in fl ammatory cells and glial scar formation at the 
border of the injury. The images from the non-cell-treated animals were indistin-
guishable from those treated with SPIO-labeled stem cells (Vandeputte et al.  2011  ) . 
The combination of RS-XRF and immunohistochemistry could allow for the dif-
ferential quanti fi cation of iron in in fl ammatory and SPIO-labeled transplanted stem 
cells.  

    9.2.2   Tracking Cells After Different Methods of Transplantation 

 Intravascular and stereotactic cell transplantation are two major methods of stem 
cell transplantation (Pendharkar et al.  2010  ) . Stereotactic transplantations inject the 
cells directly into the brain, either parenchyma or intracisternally. Intravascular 
transplantations inject cells into the periphery either intra-arterially, typically into 
the blood vesicles supplying the brain, or intravenously. Each transplantation 
method has a unique pattern of cell distribution and engraftment (Pendharkar et al. 
 2010  ) . Several studies have compared the different transplantation methods, 
although generalizations across these studies are dif fi cult as there are differences in 
injury models, cell type, treatment delay, and other factors that can alter distribution 
and engraftment results (Auriat et al.  2011  ) . Comparison of intraventricular, intra-
parenchymal, and intravenous transplantations indicated that the greatest number of 
cells engrafted in the brain is found following the intraparenchymal injection (Jin 
et al.  2005  ) . If we compare just the vascular delivery methods, intra-arterial injec-
tions have a far greater engraftment of NPCs in the ischemic brain than intravenous 
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injection (Pendharkar et al.  2010 ; Li et al.  2010  ) . Similar results have been found 
after intra-arterial compared to intravenous transplantation of mesenchymal stem 
cells (Walczak et al.  2008  ) . The differences in engraftment and distribution with 
different transplantation methods have implications for the ease with which cells 
can be detected with MRI. SPIO-labeled stem cells, transplanted in a variety of 
ways, have been identi fi ed in the ischemic rat brain with MRI (Guzman et al.  2007 ; 
Li et al.  2010 ; Walczak et al.  2008  ) . However, with diffuse distribution after intra-
vascular delivery, more sensitive monitoring is required. The cellular resolution and 
high sensitivity of RS-XRF make it ideal for identifying small quantities of iron in 
SPIO-labeled stem cells.   

    9.3   Rapid-Scanning X-Ray Fluorescence Mapping 

 X-ray  fl uorescence is a quantitative technique for mapping element distribution. 
Other established techniques can quantify element concentrations at low levels 
with high accuracy such as inductively coupled plasma mass spectrometry 
(ICP-MS) and atomic emission spectroscopy (AE). However, these technologies 
require the isolation and puri fi cation of the target structure; this can be a dif fi cult 
task and may result in contamination artifacts. Recent developments with third-
generation synchrotrons, which can generate spatially coherent high-brilliance 
X-rays, have resulted in the ability to quantify elements nondestructively, allowing 
for the mapping of elements in hydrated tissue sections and whole cells with high 
sensitivity and micron resolution (Paunesku et al.  2006  ) . The high sensitivity of 
this technology, both in terms of localization and quanti fi cation, make it ideal for 
studying iron in transplanted stem cells. 

    9.3.1   Basic Principles of X-Ray Fluorescence 

 A tissue slice or whole mount is raster scanned in a collimated beam of hard X-rays 
having an energy above that needed to eject core-shell electrons from all elements 
of interest (Fig.  9.1 ). A higher shell electron  fi lls the electron hole resulting in the 
emission of a photon equal to the difference in binding energies of the two shells 
involved. Each binding energy is proportional to the squared nuclear charge, mean-
ing that the emitted photon energy is unique for each element. The emitted photons 
are detected and used to identify and quantify the elements present in the sample. 
The X-ray beam can be focused allowing for high-resolution images (Fahrni 
 2007  ) .  

 Rapid-scanning X-ray  fl uorescence mapping (RS-XRF) is a new imaging tech-
nique developed at the Stanford Synchrotron Radiation Lightsourse (Popescu et al. 
 2011  ) . The primary advantage of rapid scanning is that large samples can be mapped 
in a reasonable time. Emission spectra are collected at each point and by selecting 
the appropriate energy ranges, multiple elements can be mapped simultaneously. 
The X-ray  fl uorescence counts can be further quanti fi ed by  comparison with XRF 
standards.  
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    9.3.2   Biological Applications of XRF 

 Previously, XRF has been used in the mapping of clinical postmortem tissue in 
various patient populations (Szczerbowska-Boruchowska et al.  2011,   2012  )  and 
in animal models (Chwiej et al.  2011  ) . Of particular interest are neurodegenera-
tive diseases, in which irregular distributions of various elements are thought to 
be important. For instance, abnormal metal distribution of elements such as Cu, 
Fe, and Zn have been suggested to play a role in neurodegenerative disorders 
including Alzheimer’s disease, Parkinson’s disease,and amyotrophic lateral scle-
rosis. Metal deposits can be nondestructively mapped in brain tissue and indi-
vidual cells (Tomik et al.  2006 ; Chwiej et al.  2005 ; Szczerbowska-Boruchowska 
et al.  2012  ) , and relationships between metals can be easily identi fi ed with co-
localization and quanti fi cation. Animal models can also be assessed with RS-XRF 
to identify element distribution following brain injury (Silasi et al.  2012 ; Auriat 
et al.  2012  ) . Sensitive mapping and quanti fi cation of metals can be particularly 
useful in the assessment of treatments, such as therapeutic chelators, which alter 
metal levels in the brain (Auriat et al.  2012 ; Popescu and Nichol  2011  ) . Quantitative 
and topographic mapping of element distributions with RS-XRF would be par-
ticularly useful for identifying how speci fi c the chelators are as well as how chela-
tion of one metal may alter the distribution of other metals. At the cellular level, 
XRF has been used to examine the mechanisms of pluripotency and differentia-
tion in embryonic and induced pluripotent stem cells (Cardoso et al.  2011  ) . 
Elemental maps at the atomic level indicated that phosphorus and sulfur levels 
rise and consistent patterns of element polarization within the cells are observed 
during neural differentiation.   
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  Fig. 9.1    Bohr atom model. X-ray  fl uorescence imaging involves the excitation of the sample with 
an X-ray, leading to the ejection of a core-shell electron from the atom ( a ). An electron from a 
higher shell falls down to  fi ll the electron hole, resulting in the emission of a photon of an energy 
equal to the difference in binding energies of the two shells involved in the transition ( b ) (Reprinted 
from Fahrni  (  2007  )  with permission from  Current Opinion in Chemical Biology )       
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    9.4   Sample Preparation 

 The high sensitivity of XRF makes samples highly sensitive to contamination. 
Throughout the processing of tissue samples, care must be taken to avoid introduc-
ing any foreign elements. Solutions used to process samples should be prepared 
with ultrapure water (Auriat et al.  2012 ; Hackett MJ et al.  2012  ) . For the study of 
SPIO-labeled stem cells in tissue, brains can be  fi xed and cryostat-sectioned using a 
Te fl on-coated blade. Sections should be placed on metal-free plastic coverslips such 
as Thermanox. Our group has previously imaged blank Thermanox coverslips and 
found them to be low in all elements of interest for our samples. It is also critical to 
keep sectioned tissue in an atmosphere free of dust and other contaminants, because 
any partials on the samples will be observed in the resulting image (Fig   .  9.2 ).   

    9.5   Cellular Iron Quanti fi cation in SPIO-Labeled 
Stem Cells 

 Our recent  fi ndings indicate that it is possible to use RS-XRF to characterize 
the migration of SPIO-labeled neural stem cells and to correlate these  fi ndings 
with MRI. 
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  Fig. 9.2    Illustration of one of the typical sample setups used in RS-XRF. The crystal monochro-
mator is used to select the desired X-ray energy, which is then focused with a Fresnal zone plate. 
Apertures of varying sizes are used to control the spot size of the beam. The sample is moved 
through the beam; this raster scanning across the area of interest results in a quantitative element 
map (Reprinted from Fahrni  (  2007  )  with permission from  Current Opinion in Chemical Biology )       
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 The scanning was completed at the Stanford Synchrotron Radiation Lightsource 
(SSRL) on beamline 2–3. The 13-keV beam was oriented at 45° to the vertically 
mounted samples and 90° to the detector. Sections from the injured hemisphere 
were imaged at up to a 3- m m resolution with a 200-ms dwell time, allowing for 
the identi fi cation of individual cells. Quanti fi cation was completed by comparing 
the signal intensity of the samples to the signal from standards of known 
 concentrations (Micromatters Inc., Sault Ste. Marie, ON, CAN). Analysis of the 
SPIO-labeled hNPCs at high resolution showed that on average stem cells con-
tained about 7 pg of iron (Fig.  9.3 ).  

 The nondestructive nature of RS-XRF imaging means that after imaging, the 
same sections can be labeled with immunohistochemical markers. Recent advances 
at SSRL now allow for simultaneous mapping of  fl uorescent immunohistochemical 
markers and RS-XRF imaging, facilitating the identi fi cation of speci fi c cell types.  
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  Fig. 9.3    RS-XRF image of SPIO-labeled stem cells injected stereotactically into an ischemic 
mouse brain. The high-resolution ROI correspond to the areas identi fi ed in the ischemic hemi-
sphere. Concentrations of iron are color coded, with red being the highest level and blue being the 
lowest. The color legend for XRF images represents pg/cm 2  iron       
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    9.6   Future Directions for RS-XRF 

 The synchrotron rapid-scanning XRF imaged cells at high resolution and allowed 
for iron quanti fi cation in individual cells. These are highly promising results, indi-
cating that XRF will be useful for future studies identifying parameters important to 
monitoring SPIO-labeled stem cells in vivo. With the ability to accurately map and 
quantify iron levels in individual cells, it will be possible to determine the concen-
tration of iron in different populations of transplanted stem cells. The development 
of genetically encoded reporters, whereby speci fi c protein expression causes the 
formation of suitable contrast agents, will likely be important in future research. 
Endogenous and persistent generation of cellular contrast would be highly bene fi cial 
for studies of stem cell transplantation, ensuring the speci fi c and persistent imaging 
of surviving cells. Several MRI reporter genes are being developed, including those 
expressing iron homeostasis proteins such as transferrin receptor (Weissleder et al. 
 2000  )  and ferritin (Genove et al.  2005 ; Cohen et al.  2005  ) , as well as the use of the 
genes present in magnetotactic bacteria (magA) (Zurkiya et al.  2008 ; Goldhawk 
et al.  2009  ) . RS-XRF could play an important role in the development of new 
reporter genes, accurately quantifying the iron signal in individual cells, helping to 
ensure that the threshold for MRI detection is met.      
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