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Abstract Schizophrenia alters basic brain processes of perception, emotion, and

judgment to cause hallucinations, delusions, thought disorder, and cognitive

deficits. Unlike neurodegeneration diseases that have irreversible neuronal degen-

eration and death, schizophrenia lacks agreeable pathological hallmarks, which

makes it one of the least understood psychiatric disorders. With identification of

schizophrenia susceptibility genes, recent studies have begun to shed light on

underlying pathological mechanisms. Schizophrenia is believed to result from

problems during neural development that lead to improper function of synaptic

transmission and plasticity, and in agreement, many of the susceptibility genes

encode proteins critical for neural development. Some, however, are also expressed

at high levels in adult brain. Here, we will review evidence for altered neurotrans-

mission at glutamatergic, GABAergic, dopaminergic, and cholinergic synapses in

schizophrenia and discuss roles of susceptibility genes in neural development as

well as in synaptic plasticity and how their malfunction may contribute to patho-

genic mechanisms of schizophrenia. We propose that mouse models with precise

temporal and spatial control of mutation or overexpression would be useful to

delineate schizophrenia pathogenic mechanisms.

Keywords Excitatory synaptic transmission • Inhibitory synaptic transmission •

Neuromodulators • Schizophrenia • Schizophrenia susceptibility genes

D.-M. Yin • Y.-J. Chen • A. Sathyamurthy •

W.-C. Xiong • L. Mei (*)

Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health

Sciences University, 30912 Augusta, GA, USA

e-mail: lmei@georgiahealth.edu

M.R. Kreutz and C. Sala (eds.), Synaptic Plasticity,
Advances in Experimental Medicine and Biology 970,

DOI 10.1007/978-3-7091-0932-8_22, # Springer-Verlag/Wien 2012

493

mailto:lmei@georgiahealth.edu


22.1 Introduction

Schizophrenia alters basic brain processes of perception, emotion, and judgment to

cause hallucinations, delusions, thought disorder, and cognitive deficits. It is a mental

disorder that affects 0.5–1% of the population worldwide with devastating

consequences for affected individuals and their families and is the seventh most

costly illness in the USA. Unlike neurodegenerative diseases such as Alzheimer’s

disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS) that have

irreversible neuronal degeneration and death, nerve cells in schizophrenia generally

do not degenerate or die. Because of the lack of pathological hallmarks, schizophre-

nia remains to be one of the least understood psychiatric disorders.With identification

of schizophrenia susceptibility genes, recent studies have begun to shed light on

underlying pathological mechanisms. All brain functions depend on the function of

synapses, connections between neurons. It is now widely believed that schizophrenia

results from problems during neural development that lead to improper function of

synaptic transmission and plasticity (Eastwood 2004; McCullumsmith et al. 2004;

Mirnics et al. 2001; Nikolaus et al. 2009; Stephan et al. 2006). Intriguingly, many of

the schizophrenia susceptibility genes encode proteins that have been implicated in

synapse formation and/or function. This chapter focuses on the relationship between

synaptic transmission and schizophrenia. We will first review evidence for altered

neurotransmission at glutamatergic, GABAergic, dopaminergic, and cholinergic

synapses in schizophrenia and discuss the roles of susceptibility genes in neural

development and synaptic plasticity and how their malfunction may contribute to

the pathogenic mechanisms of schizophrenia.

22.2 Altered Synaptic Transmission in Schizophrenia

22.2.1 The Glutamatergic Pathway

The interest in alterations of glutamatergic neurotransmission as potential patho-

logical mechanisms in schizophrenia was raised when phencyclidine (PCP) was

found to reduce noncompetitively excitation of neurons by NMDA (Anis et al.

1983). Earlier, PCP had been shown to produce transient psychotic symptoms in

healthy individuals including thought disorder, blunted affect, and cognitive

impairments that resemble those in schizophrenic patients (Fauman et al. 1976;

Luby et al. 1959). Ketamine, a PCP derivative and a dissociative anesthetic drug,

was also able to generate in healthy individuals transient schizophrenia-like (posi-

tive and negative) symptoms and impair cognitive functions that depend on the

prefrontal cortex (PFC) (Adler et al. 1999; Krystal et al. 1994; Lahti et al. 2001;

Malhotra et al. 1997). In schizophrenic patients, ketamine exacerbates preexisting

symptoms (Lahti et al. 1995; Malhotra et al. 1997). Taken together, these results

suggest a role of reduced glutamatergic function in schizophrenic pathology.
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In agreement with this hypothesis were findings that glutamate levels, which

inversely correlate with the severity of positive symptoms (Faustman et al. 1999),

are significantly lower in the cerebrospinal fluid (CSF) and in brain tissues of

schizophrenic patients (Kim et al. 1980; Tsai et al. 1995). Glutamate release from

synaptosomes prepared from frozen brain samples of schizophrenics was reduced in

response to NMDA or kainic acid (Sherman et al. 1991b). In addition, postmortem

analysis shows reduced mRNA and enzymatic activity of glutamate carboxypepti-

dase II (GCP II), the enzyme that degrades the neuropeptide N-acetylaspartyl-
glutamate (NAAG), which is a reversible antagonist of NMDA receptors (Hakak

et al. 2001; Tsai et al. 1995). It is controversial whether levels of NMDA or AMPA

receptors are reduced in schizophrenics. Increased mRNA levels were reported in

some studies (Akbarian et al. 1996; Dracheva et al. 2001; Kristiansen et al. 2006)

while other studies showed a decrease (Akbarian et al. 1995, 1996; Dracheva et al.

2001; Kristiansen et al. 2006; Mirnics et al. 2000). Morphologically, dendritic

length and dendritic spine density are reduced in the cerebral cortex of

schizophrenic patients (Garey et al. 1998; Glantz and Lewis 2000) although the

density of pyramidal neurons was shown to be increased in the dorsal lateral PFC

(DLPFC) in schizophrenics (Selemon and Goldman-Rakic 1999).

Adult rodents, when treated with NMDA antagonists, become hyperactive

(Nabeshima et al. 1983; Sturgeon et al. 1979) and are impaired in prepulse inhibi-

tion (Bakshi and Geyer 1995; Bakshi et al. 1994), a behavioral deficit thought to

model psychotic symptoms. They are also deficient in social interactions, a negative

symptom (Sams-Dodd 1995, 1996) and cognition functions such as working mem-

ory (Jentsch et al. 1997). Mutant mice which expressed 5% of normal level of NR1

showed behavioral deficits relevant to schizophrenia including hyperactivity,

impaired social interaction, and cognitive dysfunction, which can be ameliorated

by antipsychotic treatments (Mohn et al. 1999).

Glutamatergic synapses are present on projection cells as well as interneurons.

Both could be the target of “glutamatergic hypofunction.” Interestingly, in acutely

prepared hippocampal slices, GABAergic interneurons were tenfold more sensitive

to NMDA receptor inhibitors than were pyramidal neurons (Grunze et al. 1996).

Therefore, GABAergic interneurons should be more vulnerable than pyramidal

cells to glutamatergic hypofunction. Hypoactivity of GABAergic neurons would

result in impaired inhibition of projection cells and thus cognitive deficits. When

the essential subunit of NMDA receptor NR1 was selectively eliminated in

parvalbumin (PV)-positive interneurons, mutant mice are impaired in spatial work-

ing memory, but their spatial open field exploratory activity and their social activity

are normal (Korotkova et al. 2010). Interestingly, when NR1 is ablated in about

50% of cortical interneurons during postnatal development, mutant mice exhibit

novelty-induced hyperlocomotion and are impaired in mating and nest building

(Belforte et al. 2010). These observations suggest that NMDA receptors in different

types of interneurons could have distinct functions. Metabotropic glutamate

receptors have also been implicated in schizophrenia. Pretreatment with

LY354740, a selective agonist for metabotropicglutamate 2/3 (mGlu2/3) receptors,

attenuated the disruptive effects of PCP on locomotion, stereotypy, working
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memory, and cortical glutamate efflux (Moghaddam and Adams 1998). These

results suggest that mGlu2/3 receptor agonists have antipsychotic properties and

may provide a new alternative for the treatment of schizophrenia.

22.2.2 The GABAergic Pathway

Dysfunctions of GABA transmission have also been implicated in the processes

leading to psychosis (Keverne 1999; Lacroix et al. 2000). Psychotic symptoms in

schizophrenia have been found to be correlated with reduced GABAergic inhibition

in the medial temporal region (Busatto et al. 1997). GABAergic interneurons,

representing about 20–30% of neocortical neurons, are a population that is

extremely heterogeneous, varying in morphology, expression of markers, laminar

distribution, and electrophysiological properties (Ascoli et al. 2008; Markram et al.

2004). Embedded in the network of principal cells, they innervate different domains

of these neurons. For example, basket cells target the somata and proximal

dendrites, chandelier cells form axoaxonic synapses on the axon initial segments.

Somatostatin (SOM)-positive or Martinotti interneurons innervate distal dendrites

and presumably regulate other inputs of principle cells. Thus, it is generally

believed that GABAergic interneurons play a critical role in controlling cell

excitability, spike timing, synchrony, and oscillatory activity in the mammalian

central nervous system (McBain and Kauer 2009). Albeit fewer in number than

principal cells, a single GABAergic neuron can innervate multiple principle cells

and thus could potentially alter the activity of thousands of downstream neurons.

In situ hybridization studies demonstrated overall reduced levels of the 67-kDa

isoform of glutamic acid decarboxylase (GAD67), the primary enzyme of GABA

synthesis, in the PFC area 9 of the left hemisphere of schizophrenic brains (Akbarian

et al. 1995). Similar results were obtained in a better controlled study of PFC area 9 of

the right hemisphere (Volk et al. 2000). The reduction in GAD67 expression may not

be due to antipsychotic medications because long-term treatment with haloperidol did

not affect GAD67 mRNA expression in the PFC of monkeys (Volk et al. 2000).

Moreover, the activity of GAD was significantly reduced in nucleus accumbens,

amygdala, hippocampus, and putamen from schizophrenic postmortem brains (Bird

et al. 1977). In agreement, GABA release from synaptosomes of schizophrenic brains

was decreased (Sherman et al. 1991a, b). These results suggest that decreased GAD67

mRNA expression in the association regions of the neocortex may be a frequent

feature of schizophrenia. Moreover, the binding of [3H]nipecotic acid, a ligand for

labeling GABA uptake sites, was reported to be reduced in schizophrenic brains

(Reynolds et al. 1990; Simpson et al. 1989). In addition, also the mRNA and protein

levels ofGAT1 (GABAmembrane transporter 1), a protein responsible for reuptake of

released GABA into nerve terminals, are reduced in the DLPFC of subjects with

schizophrenia (Lewis et al. 1999; Volk et al. 2001).

Early studies reported a loss of small neurons in cortical layer II (Benes et al.

1991). However, subsequent studies failed to see a significant reduction of GAD67-
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positive neurons (Akbarian et al. 1995; Volk et al. 2000). Similarly, parvalbumin

(PV)-positive interneurons were found to be reduced (Beasley and Reynolds 1997)

or unchanged (Woo et al. 1997) in DLPFC in schizophrenia. Nevertheless, evidence

appeared to be compelling that GABAergic function is reduced in the DLPFC of

schizophrenic patients. Maybe as a compensatory mechanism, expression of

GABAA receptor in superficial layers of the cortex of schizophrenic brains was

increased (Benes et al. 1992; Hanada et al. 1987).

Intriguingly, GABAergic alternation in schizophrenia appears to be interneuron

type specific. GAD67 expression is normal in 70% of GABAergic interneurons in the

DLPFC but reduced or undetectable in the remaining 30% GABAergic neurons

(Akbarian et al. 1995; Volk et al. 2000). The affected interneurons express PV,

whereas those expressing calretinin appeared to be normal (Hashimoto et al. 2003).

PV-positive neurons include basket cells that form perisomatic synapses onto pyrami-

dal neurons and chandelier cells that form characteristic linear arrays of terminals

(termed cartridges) on the axon initial segments of pyramidal neurons. GAT1 levels

appear to be selectively reduced in chandelier axon cartridges in the DLFC of

schizophrenic patients (Woo et al. 1998). On the other hand, GABAA receptors are

upregulated on the postsynapticmembranes facing the axon initial segments, probably

to compensate deficient GABAergic transmission (Volk et al. 2002).

Reduced GABA signaling from chandelier cells to pyramidal neurons could

contribute to the pathophysiology of working memory dysfunction. Networks of

PV-positive GABA neurons, formed by both chemical and electrical synapses, give

rise to oscillatory activity in the gamma band range, the synchronized firing of a

neuronal population at 30–80 Hz (Whittington et al. 2011). Thus, decreased inhibitory

GABA transmission in schizophrenic patientsmight contribute to psychotic symptoms

in schizophrenia. Consistent with this hypothesis, disinhibition of the ventral hippo-

campus by the GABAA antagonist picrotoxinwould result in similar psychosis-related

behavioral disturbances such as hyperactivity and decreased PPI (Bast et al. 2001).

22.2.3 The Cholinergic Pathway

The association of cholinergic pathways with schizophrenia was as ancient as the

illness was diagnosed. Schizophrenic patients are often heavy smokers (Lohr and

Flynn 1992), and acetylcholine-induced convulsion and atropine-induced coma

were used to treat schizophrenia (Forrer and Miller 1958). Substantial evidence

has accumulated over the years that suggests the involvement of dysfunction,

mostly hypofunction, of cholinergic transmission in schizophrenia (Neubauer

et al. 1975; Tandon et al. 1989). Acetylcholine modulates transmission of various

neurotransmitters including glutamate, GABA, dopamine, and serotonin. Postmor-

tem studies of brains of schizophrenic patients were ambiguous about protein levels

and activity of choline acetyltransferase (ChAT), the enzyme crucially involved in

the synthesis of acetylcholine, and AChE, the enzyme that degrades acetylcholine.

Protein or activity levels were reported as increased, decreased, or unchanged.
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A more recent study suggested decreased levels of ChAT mRNA and a decreased

number of ChAT-positive cells in striatum, particularly in the ventral striatum (Holt

et al. 1999, 2005).

Acetylcholine acts by stimulating two types of receptors in the brain: nicotinic

and muscarinic receptors. For neuronal nicotinic receptors, there are nine a and

three b subunits; the predominant subtypes are the homomeric a7 and heteromeric

a4 b2 subtypes (Paterson and Nordberg 2000). There are five types of muscarinic

receptors (M1–5), each encoded by an individual gene. A region of chromosome

15, 15q13-14, that contains the a7 AChR subunit gene has been associated with

schizophrenia, and SNPs have been described in the promoter region of the a7
subunit gene (Freedman et al. 1997). Studies using postmortem tissue suggest a

decreased density of the a7 nicotinic subtype in the brains of schizophrenics

(Freedman et al. 1995; Kucinski et al. 2010; Marutle et al. 2001). However, a7
AChR null mutant mice are normal in prepulse inhibition, water maze test, and fear

conditioning except for increased anxiety in the open field test (Paylor et al. 1998).

Animal studies demonstrate that a7-specific agonists can ameliorate positive and

negative symptoms, improve learning and memory (water maze and Y maze), and

attentional deficits (auditory gating) (Thomsen et al. 2010; Tregellas et al. 2011). In

patients with schizophrenia, a7 agonists appeared to have procognitive effects

(Thomsen et al. 2010). These observations suggest that this receptor subtype may

be responsible for the inheritance of a pathophysiological aspect of the illness.

As mentioned above, many schizophrenic patients are extremely heavy nicotine

users, even in comparison with other psychiatric patients (de Leon et al. 1995;

GABA
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Dopamine, DA

Dopamine, DA

Normal neurotransmission

Decreased neurotransmission
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Dopamine, DA
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Increased neurotransmission
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b

Fig. 22.1 Neurotransmitter pathways in schizophrenia
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Hamera et al. 1995). a7 subunit mRNA and protein levels are lower in

schizophrenic nonsmokers compared to control nonsmokers and are brought to

control levels in schizophrenic smokers (Mexal et al. 2010). Intriguingly, several

types of sensory processing deficits, including auditory sensory processing and eye-

tracking abnormalities, could be normalized by nicotine, delivered as gum, or by

smoking (Adler et al. 1993; Olincy et al. 1998). These observations suggest that

schizophrenic patients may smoke to self-medicate endogenous behavioral deficits

(Goff et al. 1992).

Initial investigations with quinuclidinyl benzilate (QNB), an antagonist that

binds to all five subtypes of muscarinic receptors, were inconsistent on levels of

muscarinic receptors in brains of schizophrenic patients. Ligand-binding studies

with pirenzepine, an M1-specific antagonist, revealed consistently decreased levels

in the DLPFC tissues from subjects with schizophrenia (Scarr et al. 2009). A

reduction of pirenzepine binding may be schizophrenia-specific because it was

not observed in patients with bipolar disorder or major depression (Zavitsanou

et al. 2004). In primates, M1 muscarinic receptors are located postsynaptically in

noncholinergic asymmetric and cholinergic symmetric synapses in cortical layers

III and V/VI (Mrzljak et al. 1993). They may modulate the cholinergic input from

the basal forebrain and intrinsic cortical cholinergic activity (Zhang et al. 2006).

M1 mutant mice were normal in hippocampal learning and memory (Miyakawa

et al. 2001; Shinoe et al. 2005) but were impaired in behavioral tasks requiring

interactions between the hippocampus and cortex (Anagnostaras et al. 2003).

22.2.4 The Dopaminergic Pathway

The original dopamine hypothesis of schizophrenia, proposed over 40 years ago,

associates hyperactivity of dopamine transmission with schizophrenia. It was based

on effective antipsychotic drugs that appear to act by blocking dopamine D2

receptors and their antipsychotic potency as usually positively correlated with

their D2 antagonistic activity (van Rossum 1966). Drugs which inhibit the reuptake

of dopamine such as amphetamine can induce schizophrenia-like psychosis in

nonpsychotic subjects (Angrist and Gershon 1970; Bell 1973; Gardner and Connell

1972) and exacerbate psychotic symptoms in schizophrenic patients (Laruelle et al.

1999; Lieberman et al. 1987). It was then believed that schizophrenia is associated

with hyperactivity of subcortical mesolimbic D2 pathways in the brain. In support

of this notion, positron emission tomography studies indicate that schizophrenia is

associated with elevated amphetamine-induced synaptic dopamine concentrations

(Breier et al. 1997; Laruelle et al. 1996). Striatal dopamine overactivity was

observed in patients with “at risk mental states” (ARMS) that might eventually

lead to the outbreak of psychosis (Howes et al. 2006).

D2-dependent antipsychotics are effective for positive symptoms but not nega-

tive symptoms and cognitive deficits in schizophrenic patients. These functions are

mainly controlled by the neocortex where the density of D2 receptors is several
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times lower than that of D1 receptors (De Keyser et al. 1988; Hall et al. 1994). D1

receptor–mediated signaling regulates the critical patterns of sustained neuronal

firing in the DLPFC during working memory tasks (Sawaguchi 2001; Williams and

Goldman-Rakic 1995) and has been shown to be critical for cognitive functions

subserved by the DLPFC, such as executive cognition and working memory

(Sawaguchi and Goldman-Rakic 1991, 1994). Recent postmortem and imaging

studies have suggested that the mesocortical dopaminergic projection to the PFC

may be hypoactive (Toda and Abi-Dargham 2007). Dopaminergic axons from

mesocortical regions were reduced in the DLPFC of schizophrenic patients (Akil

et al. 1999). Probably to compensate for the reduced dopaminergic input, D1

receptor binding in the DLPFC was increased in in vivo imaging studies of drug-

free and drug-naive schizophrenia subjects (Abi-Dargham et al. 2002). In some

case, the D1 receptor binding was decreased in schizophrenic patients (Okubo et al.

1997). In summary, the D1 upregulation does not actually contribute to the

impairment of working memory as D1 receptor antagonist worsen cognitive deficits

in schizophrenia (Abi-Dargham and Moore 2003).

22.3 Functions of Schizophrenia Susceptibility Genes

in Synapse Formation and Transmission

Many of the schizophrenia susceptibility genes have been implicated in neural

development. In addition, recent evidence suggests that they may also regulate

neurotransmission and synaptic plasticity. A comprehensive overview about the

synaptic function of various schizophrenia susceptibility genes is given below.

22.3.1 D2 DR

Brain imaging studies have found an increase in the density and occupancy of D2

receptors in the striatum of schizophrenic patients (Abi-Dargham et al. 1998; Abi-

Dargham et al. 2000; Wong et al. 1986). Also, several studies suggest that at least in a

subpopulation of patients the observed increase in D2 receptor binding may be

genetically determined (Hirvonen et al. 2004, 2005; Lawford et al. 2005; Zvara

et al. 2005). D2 receptors are localized at the postsynaptic membrane of medium

spiny neurons in the striatum (Gerfen 1992). In the PFC,where the expression levels of

dopamine transporters are low (Sesack et al. 1998), the D2 receptor is localized at

dopaminergic terminals to control the reuptake and the release of dopamine (Usiello

et al. 2000) and at GABAergic terminals to control the release of GABA (Tseng and

O’Donnell 2004). These D2 receptors are thought to fine-tune the firing of pyramidal

neurons. Consistent with a major function of D2R as autoreceptors, the ability of

dopamine to inhibit the firing of neurons in the midbrain or to inhibit the dopamine

500 D.-M. Yin et al.



release in striatal projection areas is lost in D2RKOmice (Mercuri et al. 1997; Rouge-

Pont et al. 2002). However, no in vivo genetic studies clarified the functions of D2

receptor inGABAergic interneurons. Overexpression of D2 receptor inmedium spiny

neurons in the striatum causes impairments in cognitive processes in the transgenic

mice (Kellendonk et al. 2006). The transgenic mice are also impaired in incentive

motivation that relates to negative symptoms. Interestingly, the cognitive, but not

motivational, deficits persisted long after D2 receptor expression was switched off,

suggesting that transient expression during prenatal development was sufficient to

cause cognitive deficits in adulthood.

22.3.2 DISC1

The disrupted in schizophrenia (DISC) gene locus was first identified as a risk factor

for major mental illness through study of a large Scottish family in which a balanced

translocation between chromosomes 1 and 11 cosegregates with schizophrenia, bipo-

lar disorder, and recurrent major depression (Millar et al. 2000; St Clair et al. 1990).

This translocation directly disrupts the DISC1 protein and leads to a C-terminal

truncated mutation of DISC1 (Millar et al. 2000). In addition to the translocation,

several putative pathogenic mutations have been identified through sequencing

DISC1 exons in patients (Song et al. 2008). DISC1 seems to serve as a scaffolding

protein interacting with many proteins ranging from transcription factors,

phosphodiesterases, and proteins implicated in cytoskeletal and centrosomal organi-

zation (Kamiya et al. 2008; Millar et al. 2003, 2005; Miyoshi et al. 2003; Morris et al.

2003; Ozeki et al. 2003). Consistent with this idea, studies in cell culture as well as in

Drosophila and mice suggest that DISC1 may be involved in neuronal migration,

positioning, differentiation, and neurite extension (Duan et al. 2007; Kamiya et al.

2005). DISC1 is expressed at the postsynaptic membrane of asymmetric synapses in

human neocortex (Kirkpatrick et al. 2006). Mutant mice were generated to carry a

25-bp deletion in exon 6 of the Disc1 gene, which express a truncated DISC1 protein

mimicking the mutant DISC1 found in the Scottish family (Kvajo et al. 2008). These

mice exhibit fewer synaptic spines in the dentate gyrus, deficits in short-term plasticity

at CA3/CA1 synapses, and impaired working memory (Kvajo et al. 2008). Depletion

of DISC1 in newborn neurons in adult mice causes their mispositioning and

accelerated formation of dendritic spines and synapses. DISC1-deficient newborn

neurons also exhibit enhanced excitability (Duan et al. 2007).

22.3.3 DTNBP1/Dysbindin

Both linkage and association studies have implicated dystrobrevin-binding protein

1 (Dysbindin or DTNBP1) as a promising susceptibility gene for schizophrenia

(Kirov et al. 2004; Schwab et al. 2003; Straub et al. 1995, 2002; Tang et al. 2003).
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mRNA or protein levels of dysbindin were decreased in prefrontal cortex (PFC) and

hippocampus (Talbot et al. 2004; Tang et al. 2009; Weickert et al. 2004, 2008) from

schizophrenic patients. Dysbindin is a member of a protein complex, known as

biogenesis of lysosome-related organelle complex 1 (BLOC-1). This complex is

involved in vesicle trafficking and dendritic branching (Ghiani et al. 2010). In

cultured neurons, increase and suppression of dysbindin expression can promote

and inhibit glutamate release, respectively (Numakawa et al. 2004). The Sandy

mice, which lack dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding

dysbindin) (Li et al. 2003), have a decreased rate of vesicle release, a correlated

decrease in vesicle pool size, and an increased thickness of the postsynaptic density

(Chen et al. 2008). In Sandy mice, deep-layer pyramidal neurons in the PFC showed

reduced miniature and evoked EPSCs, and impaired paired-pulse facilitation,

suggesting that dysbindin may regulate excitatory transmission in the PFC possibly

by a presynaptic mechanism (Jentsch et al. 2009). Decreased levels of dysbindin are

associated with reduction in NMDA-evoked currents in PFC pyramidal neurons and

in NR1 expression (Karlsgodt et al. 2011). The Sandy mice showed mild deficit in

spatial working memory (Jentsch et al. 2009), which appears to correlate with levels

of NR1 expression (Karlsgodt et al. 2011).

22.3.4 NRG1 and ErbB4

Several linkage studies in independent populations have identified neuregulin 1

(NRG1) and its receptor ErbB4 as susceptibility genes of schizophrenia

(Nicodemus et al. 2006; Norton et al. 2006; Stefansson et al. 2002, 2003; Yang

et al. 2003). NRG1 isoforms (types I and IV) and the ErbB4 isoform (JMa, CYT1)

are expressed at higher levels in the PFC and hippocampus of schizophrenic

patients (Hashimoto et al. 2004; Law et al. 2007; Law et al. 2006; Silberberg

et al. 2006). Another group reported a marked increase in NRG1-induced ErbB4

activation in the prefrontal cortex in schizophrenia, while the total level of NRG1

and ErbB4 did not alter (Hahn et al. 2006). NRG1 is a family of EGF

domain–containing trophic factors that acts by activating ErbB tyrosine kinases

(Mei and Xiong 2008). In vitro studies suggest that NRG1-ErbB4 signaling may

regulate neuronal migration and gene expression of NMDA and GABA receptors

(Mei and Xiong 2008). However, these notions were challenged by studies of

mutant mice (Barros et al. 2009; Brinkmann et al. 2008; Chen et al. 2010a;

Gajendran et al. 2009).

ErbB4 in rodents is enriched in GABAergic interneurons (Fazzari et al. 2010;

Huang et al. 2000; Lai and Lemke 1991; Vullhorst et al. 2009; Yau et al. 2003).

During development, NRG1-ErbB4 appears to play a role in the formation of

excitatory synapses on GABAergic interneurons and inhibitory synapses on pro-

jection cells (Fazzari et al. 2010; Ting et al. 2011). Both NRG1 and ErbB4 are

expressed in adult brain. Acute treatment of hippocampal slices with soluble NRG1

suppresses the induction of long-term potentiation (LTP) (Huang et al. 2000).
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Evidence suggests that this effect is mediated by enhanced GABAergic transmis-

sion. We have recently demonstrated that NRG1 acts to promote GABA release and

thus control the firing of pyramidal neurons and suppresses long-term potentiation

(LTP) (Chen et al. 2010b; Huang et al. 2000; Wen et al. 2010; Woo et al. 2007).

Ablation of ErbB4 in parvalbumin-positive interneurons causes schizophrenia-

relevant phenotypes in mutant mice including hyperactivity, impaired prepulse

inhibition, and working memory deficits (Wen et al. 2010).

In addition to inhibitory neurons, ErbB4 is highly expressed in midbrain dopa-

minergic neurons in rodents, monkeys, and humans (Abe et al. 2009; Steiner et al.

1999; Zheng et al. 2009). NRG1 has been shown to promote dopamine release in

the striatum, hippocampus, and medial prefrontal cortex (Kato et al. 2010; Kwon

et al. 2008; Yurek et al. 2004). In vitro studies suggest that NRG1 enhances the

survival of dopaminergic neurons (Zhang et al. 2004). However, mutant mice

where ErbB4 is ablated in the entire brain showed normal structure of the substan-

tial nigra pars compacta and no deficits in motor performance, suggesting that

ErbB4 is not required for the development or survival of dopaminergic neurons

(Thuret et al. 2004). It will be interesting to generate dopaminergic neuron–specific

ErbB4 mutant mice to determine whether NRG1-ErbB4 signaling is important for

neurotransmission at dopaminergic synapses.

It is controversial whether NRG1 regulates excitatory synapse formation in pyra-

midal neurons and glutamatergic transmission. Overexpression of ErbB4 and suppres-

sion of its expression by ErbB4 shRNA promoted or inhibited the formation of

glutamatergic synapses in pyramidal neurons of neonatal hippocampal slices

(Li et al. 2007), suggesting a potential role in excitatory synapse formation. However,

when ErbB4 is ablated specifically in CaMKII-positive neurons, it had no effect on

basal glutamatergic transmission (Chen et al. 2010b). Acute treatment of soluble

NRG1 did not alter paired-pulse facilitation (PPF) (Huang et al. 2000; Iyengar and

Mott 2008), suggesting no effects of NRG1 on glutamate release. However, NRG1

mutant mice showed altered PPF and short-term plasticity (Bjarnadottir et al. 2007).

Treatment with NRG1 decreased NMDAR-mediated excitatory postsynaptic currents

in PFC slices and reduced whole-cell NMDAR currents in acutely isolated PFC

pyramidal neurons by elevating intracellular Ca2+ and stimulating ERK activity

(Gu et al. 2005). In hippocampal slices, however, NRG1 appeared to have little effect

on NMDAR- or AMPAR-mediated basic transmission (Chen et al. 2010b). In human

postmortem hippocampal tissues, NRG1 could attenuate ligand-induced phosphoryla-

tion of NMDA receptors and its association with signaling partners (Hahn et al. 2006).

NRG1 regulates the expression of the a7 nicotinic acetylcholine receptors

(nAChRs) (Liu et al. 2001; Sandrock et al. 1997; Usdin and Fischbach 1986;

Yang et al. 1998). Consistent with these reports, decreased a7 nAChR mRNA

and protein in schizophrenic patients is associated with the genetic variation of

NRG1 (Mathew et al. 2007). Recent studies of NRG1 mutant mice indicate that

type III NRG1 regulates the axonal targeting of a7 nAChR and is required for the

enhancement of hippocampal transmission by nicotine (Hancock et al. 2008;

Zhong et al. 2008).

22 Synaptic Dysfunction in Schizophrenia 503



22.3.5 Future Directions

It is clear that synaptic transmission and plasticity are disrupted in schizophrenia.

The disruption could be caused by problems that occurred during neural develop-

ment and/or after brain wiring is complete. Interestingly, Rett syndrome–like

neurological deficits of MeCP2 mutant mice can be reversed in adult stage (Guy

et al. 2007). It would be important to determine whether this occurs to mutant mice

of schizophrenia candidate genes, which would require the reversible transgenic or

knockout strategies. Tet-Off system is commonly used to overexpress individual

genes which can be reversed by doxycycline (Mayford et al. 1996). Tamoxifen-

inducible Cre mice were generated to reactivate the genes by removing the loxP-

STOP-loxP cassette (Guy et al. 2007; Hayashi and McMahon 2002). Another

important question is to demonstrate the deficit in neural circuitry in schizophrenia.

For example, recent studies showed impaired hippocampal-prefrontal synchrony in

a genetic mouse model of schizophrenia which has the microdeletion on the human

chromosome 22 (Sigurdsson et al. 2010). More recent paper reported that the

efficacy of ventral hippocampus input to the nucleus accumbens is reduced in the

type III NRG1 heterozygotes mutant mice (Nason et al. 2011). The third question to

be addressed is how the dysfunction of different types of GABAergic interneurons

contributes to the schizophrenia. Optogenetics, a new emerging technique which

enables the activation or inactivation of different types of neurons with spatial and

temporal control (Boyden et al. 2005; Gradinaru et al. 2009; Petreanu et al. 2009), is

obviously of great advantage to address this question. Recent study demonstrated

the critical roles of parvalbumin-positive interneurons in gamma-frequency syn-

chronization in vivo using optogenetics (Sohal et al. 2009). Finally, how can we test

the hypothesis that a synaptic defect is responsible for schizophrenia in humans? A

direct way would be to study synaptic behavior in the brains of affected individuals,

but this can not yet be done in the intact human brain. A possible alternative route

involves the production of induced pluripotent stem cells (Takahashi et al. 2007; Yu

et al. 2007) from adult cells derived from schizophrenic patients and then inducing

these iPS cells to form neurons and synapses. The neuronal culture is also poten-

tially useful in screening the individual antischizophrenia drugs.
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