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PREFACE

The manipulation of colloidal particles and fluids in microsystems
by using electrical forces has many existing and potential applications.
The electrical manipulation at the micrometre scale presents the ad-
vantages of voltage-based control and dominance over other forces.
The latter is a clear example of the scaling laws of physical systems:
in the range above a few millimetres the electrical forces are rather
ineffective, but in the micrometre (and submicrometre) scale the elec-
trical forces dominate.

The present book contains the Lecture Notes of a CISM Advanced
School on “Electrokinetics and Electrohydrodynamics in Microsys-
tems”, held in Udine, Italy, on 22nd-26th June 2009. The aim of
the book is to provide a state-of-the-art knowledge on both theoretical
and applied aspects of the electrical manipulation of colloidal particles
and fluids in microsystems. The book covers the following topics: Di-
electrophoresis (DEP), Electrowetting, Electrohydrodynamics (EHD)
in microsystems, and Electrokinetics of fluids and particles.

The first three chapters of this book are dedicated to Dielectrophore-
sis. Chapter I, by Tao Sun and Hywel Morgan, presents an overview
of the basis of Dielectrophoresis and its applications for the manipula-
tion and characterization of particles. Chapters II and III, by Nicolas
G. Green, examine in depth the theory of Dielectrophoresis. Chap-
ter II provides the basics of Quasi-electrostatics from the perspective
of Dielectrophoresis and Chapter III discusses the forces produced by
the interaction of electric fields with the induced dipole moments on
particles.

Chapter IV, by Pablo Garćıa-Sánchez and Frieder Mugele, is ded-
icated to Electrowetting, where fluid handling is achieved by subdivid-
ing the liquid into discrete droplets that are manipulated by electrical
forces. The chapter introduces briefly basic concepts of wetting and
discusses in detail the fundamental physics behind the electrowetting
phenomenon. The second part of the chapter reviews applications
of Electrowetting in Lab-on-Chip, Optics, displays and microfluidic
devices.

Chapter V, by Antonio Ramos, provides an overview of Electro-
hydrodynamic pumping in microsystems. The chapter presents first
the basic equations of Electrohydrodynamics in the micrometre scale.



Subsequently, five different EHD micropumps are studied and com-
pared: from those that employ forces in the liquid bulk to those that
employ forces in the electrical double layer.

Chapter VI, by Chuan-Hua Chen, is devoted to Electrohydrody-
namic Stability in the context of the ohmic model. Many EHD sys-
tems, such as leaky dielectric liquids or electrolytic solutions, fall into
the ohmic regime. The chapter presents first a derivation of the EHD
equations in the ohmic regime. Afterwards, basic concepts of EHD
stability are illustrated using two model problems: the electrokinetic
mixing flow and the EHD cone-jet flow.

The last chapter of the book covers an important part of electro-
microfluidics: fluid flows generated by electrical forces in the double
layer. Chapter VII, by Martin Z. Bazant, presents an introduction to
Induced Charge Electrokinetic (ICEK) Phenomena, where the applied
electric field acts on its own induced-charge in an electrolytic solution
near a polarizable surface. The chapter discusses the basic physics
behind ICEK of colloidal particles (induced charge electrophoresis)
and fluids (induced charge electroosmosis).

I would like to take this opportunity to thank all the contributors
to this book for their valuable time and the excellence of their work.
My sincere thanks are also extended to Prof. Giulio Maier, rector
of CISM, to Prof. Paolo Serafini for his help in the editorial work,
and to all the CISM staff in Udine. Finally, I would like to acknowl-
edge the help of my colleagues at the University of Seville, Antonio
Castellanos, Alberto T. Pérez and Antonio González, in the process
of preparing both the CISM course and this book.

Antonio Ramos
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AC Electrokinetic Micro- and Nano-particle
Manipulation and Characterization

Tao Sun and Hywel Morgan

School of Electronics and Computer Science
University of Southampton, SO17 1BJ, UK

Abstract Automated or remote manipulation and characterization
of particles is a key element in microfluidic devices. Microelectrodes
integrated into microfluidic devices can generate large electric fields
and field gradients using low voltages. The field gradients can be
used to actively drive the motion of particles by dielectrophoresis. In
this chapter, the basis of AC electrokinetics is reviewed and example
applications for manipulation and characterization of particles are
provided.

1 Introduction

Microfluidics involves the manipulation of fluids and particles within a mi-
croscale chip. Physical parameters that characterize microfluidics include
Reynolds number, diffusion, fluidic resistance, surface area to volume ratio
and surface tension (Beebe et al., 2002; Stone et al., 2004). Within microflu-
idic systems, the manipulation of particles is of fundamental importance in
bioanalytical science and biotechnology. Manipulation involves a range of
processes including patterning, focusing, sorting, trapping, handling and
separation. These operations call on a wide range of techniques such as
hydrodynamic focusing (Lee et al., 2001; Rodriguez-Trujillo et al., 2007),
electrophoresis (Lacher et al., 2001; Kremser et al., 2004), optical tweezer
(Ashkin et al., 1986; Ashkin, 1997), acoustic standing waves (Wiklund et al.,
2006; Laurell et al., 2007), magnetism (Pamme, 2006) and AC electrokinet-
ics (Pohl, 1978; Pethig, 1979; Morgan and Green, 2003). Characterization of
particles within microfluidic systems provides a quantitative and analytical
approach to interrogate the physico-chemical properties of particles, such
as size, permittivity and conductivity. In terms of cell handling a number
of different methods can be combined to produce a complex technologi-
cal platform. In this chapter, we describe AC electrokinetic principles and
techniques whereby electric fields are used to manipulate and characterize
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particles. We show how a combination of electric fields and hydrodynam-
ics can be used to manipulate particles. The main focus of the chapter
is devoted to explaining the principles and applications of dielectrophoresis
(DEP). Examples of applications of various AC electrokinetic techniques are
given, including a short overview of single cell impedance analysis methods.

2 AC electrokinetics

AC electrokinetics describes the general behavior of polarisable particles in
an AC electric field.

2.1 Polarized Particle

If a homogeneous solid dielectric sphere (for example a solid particle
with a radius of R) sits in a homogeneous dielectric medium, charges will
accumulate at the interface between the particle and the medium. When an
electric field is applied, positive and negative charges are pulled in opposite
directions, which gives rise to an effective or induced dipole moment across
the particle. The mechanism of the formation of this induced dipole, p, is
the first approximation for a polarized particle in an electric field, called
the dipole approximation. The net force, F, and torque, Γ on this polarized
particle can be calculated from the induced dipole moment, and these are
given by:

F = p · ∇E (1)

Γ = p×E (2)

The operator · is the dot product; the operator × the cross product, and
∇ the gradient of (the field). If the electric field is uniform, the net force
on the dipole (particle) is zero. For a dipole at some random orientation to
the field, the torque will tend to align the dipole (particle) with the electric
field.

To quantitatively calculate the effective dipole moment, analysis is per-
formed using spherical coordinates {r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϑ ≤ 2π} with
the particle located in a homogeneous and parallel electric field along the
negative z-axis, as shown in figure 1.

The potential distributions inside the particle φp and in the medium φm

are given by (Lorrain et al. 1988):

φp = −
(

3ε̃m
ε̃p + 2ε̃m

)
E0 cos θ (3)

φm = −
[
1− R3

r3

(
ε̃p − ε̃m
ε̃p + 2ε̃m

)]
E0 cos θ (4)
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Figure 1. Diagram showing a spherical particle locating in an homogeneous
and parallel electric field along with the z-axis.

where ε̃ = ε − jσ/ω is the complex permittivity, j2 = −1 and ω is the
angular frequency. The subscripts p and m refer to particle and medium
respectively. E0 is the amplitude of the applied electric field.

The potential of the effective dipole moment Peff can be considered as
an increment in the potential distribution of the applied field, with Peff

given by:

Peff = 4πε̃m

(
ε̃p − ε̃m
ε̃p + 2ε̃m

)
R3E (5)

According to equation 5, the effective dipole moment is frequency-dependent
where the dependence is characterized by the Clausius-Mossotti factor f̃CM :

f̃CM =
ε̃p − ε̃m
ε̃p + 2ε̃m

(6)

The Clausius-Mossotti factor provides a quantitative evaluation of the po-
larisability of the particle and the suspending medium. If the particle is
not solid, e.g. has a shell like a cell, as shown in figure 2a then the particle
complex permittivity ε̃p is a function of the dielectric properties of the shell
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(membrane) and the inside (cytoplasm). This is given by:

ε̃p = ε̃mem

γ3 + 2
ε̃i − ε̃mem

ε̃i + 2ε̃mem

γ3 − ε̃i − ε̃mem

ε̃i + 2ε̃mem

with γ =
Ri + d

Ri
(7)

where ε̃mem is the complex permittivity of the membrane, ε̃i the internal
properties, and the cell has inner radius Ri and membrane thickness d.

For a cell in suspension, the dielectric properties of the suspending sys-
tem has two intrinsic relaxation frequencies. The first relaxation occurs at
low frequencies and is due to (Maxwell-Wagner) polarization of the cell
membrane-suspending medium interface. The second relaxation, occurs
at higher frequencies, and is due to polarization between the suspending
medium and the cell cytoplasm, where the cell membrane capacitance is in
effect short-circuited.

Figure 2b shows these two relaxations as the real and imaginary parts of
the Clausius-Mossotti factor of a cell suspended in a medium with different
conductivities (see legends for details). It clearly shows that the imaginary
part has two peaks, each corresponding to the two relaxations.

2.2 Dielectrophoresis

The phenomenon of DEP originates from the interaction of the induced
dipole moment with the applied electric field. In a field gradient there is a
net force on the polarized particle that causes it to move towards either the
high or low electric field regions depending on the particle (and suspend-
ing medium) properties. According to equation 1, two conditions must be
satisfied for DEP to occur. First there must be a difference between the
polarisability of the particle and medium so that an induced dipole moment
is established across the particle. Secondly, the electric field must be non-
uniform. Figure 3 shows the field configuration when a particle sits in a
non-uniform electric field depending on the particle polarisability. When
the particle polarisability is greater than the suspending medium, the par-
ticle behaves as a conductor and the electric field vectors bend towards the
particle, meeting the surface at right angles. The field inside the particle is
nearly zero, as shown in figure 3a. The converse is shown in figure 3b, where
the particle polarisability is less than the medium. The field vectors now
bend around the particle as if it were an insulator. When the polarisability
of the particle and electrolyte are the same it is as if the particle does not
exist and the field lines are parallel and continuous everywhere. The im-
balance of forces on the induced dipole gives rise to particle movement, i.e.
DEP. When the polarisability of the particle is greater than its surrounding
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Figure 2. (a) Diagram showing a single shell spherical particle, representing
a cell in suspension. (b) Plot showing a spectrum of the real and imaginary
parts of the Clausius-Mossotti factor for a particle in an electrolyte, calcu-
lated for different suspending medium conductivities. The following param-
eters were used: εo = 8.854× 10−12 Fm−1, Ri = 3× 10−6 m, d = 5× 10−9

m, εm = 80εo, εmem = 5εo, σmem = 10−8 Sm−1, εi = 60εo, σi = 0.4 Sm−1.

medium, the direction of the dipole is with the field and the particle expe-
riences a positive DEP force (pDEP); the particle moves towards the high
field region. The opposite situation gives rise to negative DEP (nDEP); and
the particle moves away from regions of high electric fields.

The time-averaged dielectrophoretic force on the dipole is given by:

〈FDEP 〉 = 1

2
Re
[
(p̃ · ∇)Ẽ∗

]
=

1

2
υRe

[
α̃(E · ∇)Ẽ∗

]
(8)

where p̃ is the induced dipole moment phasor, υ the volume of the particle,
α̃ the effective polarisability and ∗ indicates complex conjugate.

If the non-uniform electric field has no spatially dependent phase, the
dielectrophoretic force simplifies to:

〈FDEP 〉 = 1

4
υRe [α̃]∇|Ẽ|2 (9)

For a spherical particle, equation 9 becomes:

〈FDEP 〉 = πεmR3Re
[
f̃CM

]
∇|Ẽ|2 (10)
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Figure 3. Diagram showing the principle of dielectrophoresis (DEP), which
only occurs in a non-homogeneous electric field. (a) particle more polariz-
able than the medium; positive dielectrophoresis (pDEP) (b) particle less
polarizable than the medium; negative dielectrophoresis (nDEP).

According to equation 10, if the electric field is uniform, the gradient of
the magnitude of the field is zero (∇|Ẽ|2 = 0), which means that there is
no DEP force. The frequency dependence and the direction of the DEP
force are governed by the real part of the Clausius-Mossotti factor. If the

particle is more polarisable than the medium, (Re
[
f̃CM

]
> 0), the particle

is attracted to high intensity electric field regions (pDEP). Conversely, if the

particle is less polarisable than the medium, (Re
[
f̃CM

]
< 0), the particle

is repelled from high intensity field regions (nDEP).

2.3 Travelling wave dielectrophoresis

Note that the simplification of equation 8 to equation 9 is based on the
assumption that the non-uniform electric field has no spatially dependent
phase. In contrast, in electric fields with spatially varying phases, equation
8 can be expanded as:

〈FDEP 〉 = 1

4
υRe [α̃]∇|Ẽ|2 − 1

2
υIm

(
∇× (Re[Ẽ]× Im[Ẽ])

)
(11)

Equation 11 shows that the dielectrophoretic force consists of two compo-
nents; the first term on the right is the DEP force; the second term is called
the travelling wave DEP (twDEP) force. In this case a field with spatially
varying phase can be generated with a travelling electric field as shown in
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figure 4 for an interdigitated electrode array energized with a four phase AC
signal. This twDEP force propels a particle along the electrode array. If
there is no spatially varying phase, the imaginary part of the electric field is
zero (Im[Ẽ] = 0), which means that there is no twDEP. In order for twDEP
to be effective, the frequency of the excitation voltage and the conductivity
of the medium should be chosen to satisfy two conditions: (a) the particle
must experience nDEP so that it can be levitated above the electrode ar-
ray and (b) the imaginary part of the Clausius-Mossotti factor has to be
non-zero.

Figure 4. Diagram showing the principle of travelling wave DEP (twDEP).
The consecutive phase-shifted signals generate a travelling electric field.

2.4 Electrorotation

When a dipole sits in a field, the interaction between the electric field
and this dipole moment leads to a torque on the particle. There is a finite
time (or phase delay) between the application of the electric field and the
establishment of the dipole moment. If the field vector now changes direc-
tion, the vector of the dipole moment will try to follow the changing of field
vector. If the field vector rotates then the particle will also rotate. The
time-averaged rotating torque is given by:

〈ΓROT 〉 = 1

2
Re
[
p̃× Ẽ∗

]
= −υIm[α̃]

(
Re[Ẽ]× Im[Ẽ]

)
(12)

For a spherical particle, this becomes:

〈ΓROT 〉 = −4πεmR3Im[f̃CM ]|Ẽ|2 (13)
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Equation 13 shows that the frequency-dependent property of the ROT
torque depends on the imaginary part of the Clausius-Mossotti factor. The
particle will rotate with or against the electric field, depending on whether
the imaginary part of the Clausius-Mossotti factor is negative or positive.
If the charge relaxation time constant of the particle is smaller than that
of the medium (τp = εp/σp < τm = εm/σm), the particle rotates with the
changing direction of the field. If τm < τp, the particle rotates against the
field. In a viscous medium, the particle rotates at a constant angular veloc-
ity. The ROT torque can be measured indirectly by analysis of this angular
velocity, which is given by (Arnold and Zimmerman 1988)

RROT (ω) = −εmIm[f̃CM ]|Ẽ|2
2η

ξ (14)

where RROT (ω) is the rotation rate and ξ is a scaling factor that is intro-
duced to consider that neither the viscosity η nor the electric field strength
are precisely known. A typical four-electrode configuration used for ROT
experiments is shown in figure 5. Here the rotating electric field is generated
by four sine waves in phase quadrature.

Figure 5. Diagram showing a typical set up of electrorotation (left) and
an image of a chip for electrorotation (right).

The frequency spectra of both the DEP force and ROT torque (given by
figure 2) can provide information on the dielectric properties of particles in
suspension. The relationship between DEP and ROT can be examined using
Argand diagrams (Wang et al., 1992, 1993), where the real and imaginary
parts of the Clausius-Mossotti factor are mapped onto the complex plane
as a function of frequency.
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3 Micro-particle Manipulation

Micro-particles in suspension can be manipulated using DEP. The force
depends on the magnitude of the field and the gradient, together with the
particle volume. The direction of the force depends on the Clausius Mossotti
factor, which is a measure of the polarisability of the particle in the sus-
pending medium and importantly varies with the frequency of the applied
potential (as shown in figure 2). Particle manipulation and separation have
been achieved using a wide range of different electrode configurations. In
this section, we review three classical electrode configurations that have
been used for DEP manipulation: castellated electrodes, polynomial elec-
trodes and interdigitated electrodes, the later used for field flow fraction
(FFF) separation. We then describe recent applications of insulator-based
DEP for particle sorting and the use of nDEP for single particle trapping.

3.1 Classical Electrode Configurations

A castellated electrode is shown in figure 6a. The electrodes are designed
such that regions of the both positive and negative DEP can be found
simultaneously. The array was first used by Pethig’s group (Price et al.,
1988; Burt et al., 1989) to dielectrophoretically collect particles. Typical
electrode dimensions are 10 to 100 μm width and gap. The field is maximum
at the electrode tips and minimum in the gaps between electrodes as shown
in the figure 6b. This electrode array has been widely used both to separate
and to characterize the DEP behavior of particles. Particle experiencing
pDEP collect on the tips, and those experiencing nDEP in the gaps.

High field points
Positive DEP Low field points

Negative DEP

Figure 6. Schematic diagram of a castellated electrode, where typical elec-
trode gap and spacing is 10 μm to 100 μm (left) and (b) an electric field
plot showing the high field regions at the electrode tips.
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The polynomial electrode design is shown figure 7 and has four electrodes
arranged around a centre point, with the edges defined by a hyperbolic
function in the centre, with parallel edges out to an arbitrary distance. The
principle underlying this electrode design has been described by Huang et al.
(1992). In the centre there is a region of almost uniform field gradient;
particles can be trapped here by nDEP. At the electrode edges the field
gradient is maximum. The polynomial electrode has been used for trapping
and characterising a range of biological particles and also nano-particles
(Green et al., 2000).

Figure 7. Schematic image of an electrode array defined by a polynomial,
used for trapping cells in the centre by negative DEP.

The interdigitated electrode array (figure 8) is often used in DEP sep-
aration systems, since it generates a DEP force that decays exponentially
from the surface. Depending on the applied frequency, the force either pulls
particles towards the electrode edges or pushes particles away under nDEP.

When configured appropriately, this electrode array can also be used for
twDEP. Here four AC signals phase shifted by 90o are sequentially applied
to the electrodes.

A knowledge of the electric field and field gradient is required to analyse
and predict the behavior of particles in these electrode systems. The sim-
plest electrode array is the interdigitated device (figure 8), and the electric
field for this system can be determined in a number of ways, including us-
ing numerical methods or analytical approaches such as Schwarz-Christoffel
Mapping (Sun et al., 2007). In this paper, full analytical solutions were
given for the electric field, the dielectrophoretic and travelling-wave dielec-
trophoretic forces for the interdigitated electrode arrays.
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Figure 8. Schematic diagram of an interdigitated electrode array used for
DEP (as in the diagram) or also for travelling wave DEP, where the elec-
trodes are addressed by four phase shifted sine waves.

The interdigitated electrode array has been used to develop a DEP based
separation system. Using a technique called Field Flow Fraction (FFF)
(Rousselet et al., 1998; Gascoyne and Vykoukal, 2004) a deterministic force
is combined with a fluid flow to provide a method for particle fractionation.
Figure 9 shows a DEP-FFF system. Particles are introduced into the system
and when the electric field is switched on, they experience a nDEP which
pushes them up and away from the electrodes. This forces is balanced by a
downward acting gravitational (buoyancy) force.

Depending on a combination of volume, mass density and polarisabil-
ity, different particles move to different equilibrium positions in the system.
When a laminar flow is applied, the fluid carries particles out of the device
at a rate that depends on their original equilibrium position. Since differ-
ent types of the particles are transported at different rates, a heterogeneous
sample can be separated and fractionated along the channel. Recent ex-
amples of this technique include device for separating complex mixtures of
different blood cells.
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Figure 9. Diagram showing the principle of hyper-layer DEP FFF sys-
tem. Particles are separated in the vertical direction by a balance of nDEP
and gravitational forces. A parabolic fluid flow is applied and particles are
fractionated.

3.2 Insulator-based DEP

Dielectrophoresis does not always have to be performed with conduct-
ing metal electrodes. The electric field can be modulated using insulating
structures placed within a conducting electrolyte fluid. 3D insulating-post
arrays (Lapizco-Encinas et al., 2004a,b) have been used to trap and separate
live and dead bacteria. In this case large DC voltages are applied across the
length of a microchannel. The insulating posts in the channel create ob-
structions in the pathways of the electric field producing non-uniformities
in the electric field distribution in the channel, causing particle DEP. A
continuous-flow dielectrophoretic spectrometer system has also been devel-
oped based on an insulating DEP technique using 3D geometries (Hawkins
et al., 2007). Different field gradients were generated within a structure by
fabricating devices with constrictions in a channel as shown in figure 10.
These constriction in depth create regions of different field gradient. The
device is able to continuously separate particles, as shown in figure 10.

3.3 Single cell trapping

Single cell trapping is important in many applications of biotechnology,
such as the study of cell-cell interaction, drug screening and diagnostics.
Cells can be trapped at regions of high electric fields (electrode edges or
tips) by pDEP, but this requires that the cells are re-suspended in a low
conductivity buffer (see figure 3). When cells are suspended in a high con-
ductivity physiological buffer, they only experience nDEP. Electric field
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Figure 10. (a) Schematic showing the insulating-post geometry, which
incorporates a curved constriction in the channel depth (b) Image showing
separation of 2 μm (pseudo-colored green) and 3 μm particles (pseudo-
colored red). The 2 μm particles pass the ridge without deflection, while
the 3 μm particles are deflected due to higher DEP mobility. Reprinted
with permission from (Hawkins et al. 2007), c© 2007 American Chemical
Society.

cages that generate nDEP forces to trap single cells were first introduced
by Fuhr et al. (1992). Since then single cell trapping systems have been
widely studied. Müller et al. (1996) used planar quadrupole electrode con-
figuration to trap and concentrate micrometer and sub-micrometer parti-
cles. A 3-D microelectrode system (Müller et al., 1999) consisting of two
layers of electrode structures was designed to focus, trap and separate cells
and latex beads using nDEP. Schnelle et al. (1999, 2000) fabricated an AC
cage with octode electrode to trap cells against a fluid stream. Voldman
et al. (2001, 2002) and Voldman (2003) developed multiple single cell DEP
traps, and a review of cell manipulation technologies based on DEP forces
has been published by Voldman (2006). Various electrode geometries such
as the quadrupole and octopole electrode, nDEP microwells, point-and-lid
geometry and ring-dot geometry were described and evaluated.

A novel design of particle trap that uses nDEP (Thomas et al., 2009)
is shown in figure 11. The array of single cell trap consists of a metal ring
electrode and a surrounding ground plane - figure 11a. This ring electrodes
creates a closed electric field cage in the centre (figure 11) and can be used
to trap single cells, using “one wire per trap”. Figure 11c shows 15 μm
diameter beads trapped against. The behavior of the trap as a function of
the fluid flow has been characterized (Thomas et al., 2009).
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Figure 11. (a) Diagram showing the structure of a ring electrode. (b) Nu-
merical simulation showing DEP force vectors and electric field distribution
in the ring trap. (c) Four 40 μm diameter ring traps from an array of 48
traps. Single beads are captured by nDEP. Reprinted with permission from
(Thomas et al., 2009), c© 2009 Royal Society of Chemistry.

4 Micro-particle Characterization

4.1 Particle characterization

Apart from manipulating particles, DEP has also been used to charac-
terize the dielectric properties of particles. Since the dielectrophoretic force
is proportional to the effective polarisability (Clausius-Mossotti factor) of
the particle, measurement of the force on a particle can be directly used to
determine the permittivity and conductivity of the particle. In practice, it
is difficult to measure the dielectrophoretic force on a particle from many
reasons, including the effect of electrically induced fluid flow, interaction
of a particle with a surface, or Brownian motion for small particles. An
alternative is to measure the frequency at which the DEP is zero, or the
cross-over frequency (Green and Morgan, 1999; Hughes and Morgan, 1999;
Ermolina and Morgan, 2005; Jones, 1995). At this frequency, the real part
of the particle polarisability is the same as the suspending medium and the
dielectrophoretic force is zero. This point can be measured as a function of
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medium conductivity and provides sufficient information to determine the
dielectric properties of the suspended particles. This type of measurements
involves observing the motion of single particles experiencing DEP using
a fluorescence microscope. Depending on the applied frequency, particles
move either towards an electrode under positive DEP or away from an
electrode under negative DEP. At a particular frequency (or frequencies)
the DEP force is zero and the particle will remain stationary, i.e. when
Re[f̃CM ] = 0. If the properties of the suspending fluid are known, then the
effective complex permittivity of the particle can be calculated. According
to equation 10, the crossover frequency is defined to be the frequency point
that the real part of the Clausius-Mossotti factor equals zero;

fcross =
1√
2π

√
σm − σp

εp − εm
fMW (15)

with

fMW =
1

2πτMW
(16)

τMW =
εp + 2εm
σp + 2σm

(17)

where fcross is the cross-over frequency, fMW is the Maxwell-Wagner re-
laxation frequency and τMW is the Maxwell-Wagner time constant of the
relaxation.

In a typical experiment, the zero force or cross-over frequency is mea-
sured for different suspending medium conductivities spanning two to three
decades. For a solid homogeneous spherical particle, a frequency vs. con-
ductivity map can be plotted as shown in figure 12. For frequencies and
conductivities corresponding to the shaded area only positive DEP is ob-
served. For all other regions, for example at high conductivities when the
particle’s effective polarisability is always less than the suspending medium,
only negative DEP is observed.

Recently, an evolution of zero force characterization has been devel-
oped, called iso-dielectric separation (IDS) technology (Vahey and Vold-
man, 2009), as shown in figure 13. In this methodology, particles are di-
electrophoretically concentrated to a region along an electrical conductivity
gradient where the effective polarisability of particles goes to zero. By
measuring this isodielectric position and operating with an appropriate fre-
quency and amplitude of the applied voltage, a mixture of particles and
cells can be separated and simultaneously characterized.
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Figure 12. A plot showing the zero force point (cross-over frequency) varies
with suspending medium conductivity for a 557 nm diameter particle with
relative permittivity 2.55 and conductivity 10 mSm−1.

4.2 DEP for microfluidic systems

Many biomedical and diagnostic applications require fast and accurate
analysis of single particles. For example, blood contains many types of
cell that can be discriminated on the basis of their optical and/or electrical
properties. Morgan et al. (2006) designed and built a device to measure both
the optical and electrical-impedance properties of cells at high speed using
a microfabricated cytometer. For efficient and high-speed characterization
of single particles, the particles need to be focused into the centre of a fluid
stream. This can be accomplished using DEP, as shown in figures 14 (a) and
(b), where four thin (100 nm) electrodes are fabricated on the base and lid
of a microchannel (Holmes et al., 2006). Using a high frequency (20MHz)
voltage, the electric field generated by the electrodes produces nDEP force
onto the particles pushing particles away from the electrode edges. As
the gap between the electrodes decreases, the particles are gradually forced
into a narrow focused beam, in which single particles are well aligned, as
demonstrated in figure 14 (c).

In this way the properties of the single particles can be measured using
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Figure 13. Particles with different electrical properties (i.e. conductivity)
go along with different trajectories in an electrical conductivity gradient
environment under DEP. Reprinted with permission from (Vahey and Vold-
man, 2009), c© 2009 American Chemical Society.

fluorescence spectroscopy or electrical impedance spectroscopy, as shown in
figure 15a. Particles pass through a laser and scatter light: the amount
of scatter depends on particle size and shape. Particles can also be labeled
with fluorescent antibodies that emit light when excited by the laser. Simul-
taneously, the electrical impedance of single particles can be measured. This
is done by fabricating chips with microelectrodes precisely positioned in the
microchannel. The electrodes are a similar size to a particle (typically 10
μm to 20 μm wide, with similar gaps) and are energized with an AC signal
of a few hundred millivolts. Particles flow through the impedance detection
region, confined by the microelectrodes, one at a time, so that sensitive cir-
cuitry can determine the electrical properties of single cells (Morgan et al.,
2007). This type of impedance spectroscopy can discriminate between cells
without resorting to labeling. Figure 15b shows the simultaneously mea-
sured fluorescent signal and impedance signal of a 5.49 μm bead, while a
higher impedance amplitude signal of a 7.18 μm bead is also captured.
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Figure 14. (a) Schematic showing the four focusing electrodes in top-down
and cross-sectional view. (b)Diagram showing the principle of 3D dielec-
trophoretic focusing. (c) Photograph showing the focusing of 6 μm diameter
latex beads. Reprinted with permission from (Holmes et al., 2006), c© 2006
Elsevier.

A challenge in single particle impedance analysis was to develop a way
of measuring a broad band of frequencies at once, in the time it takes a
particle to pass through the detection zone. This has been resolved by
exciting the cells using a pseudo-random binary signal, maximum length
sequences. Impedance data of single particle distributed at 512 frequencies
can be measured within 1 ms (Sun et al., 2007a,b).

5 Nanoscale DEP

The forces acting on particles in suspension can be categorized as stochas-
tic, i.e. Brownian motion, and deterministic, such as viscous drag, gravita-
tional or dielectrophoretic. When an electric field is applied to a fluid there
are other electric-field induced forces (electrohydrodynamic) in the systems.
The Brownian motion of a particle arises from the thermal energy of the
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Figure 15. (a) Diagram showing the simultaneously optical and electrical
characterization for single particle analysis in a microchip. (b) Plot showing
the fluorescent and impedance signal of a single 5.49 μm bead. The 7.18
μm has no fluorescent signal but displays higher impedance amplitude.

system, which causes the particles to move in a random way. There is very
little that can be done to control Brownian motion, other than cooling or
increasing the viscosity of the liquid. In contrast to stochastic force, the
deterministic forces are not random and can be controlled.

5.1 Navier-Stoke’s equation and the Stoke’s drag force

The Navier-Stokes equation is the equation of motion for the fluid and is
derived from conservation of momentum arguments. For an incompressible
Newtonian fluid, the Navier-Stokes equation is:

ρm
∂u

∂t
+ ρm(u · ∇)u = −∇p+ η∇2u+ f (18)

where ρm is the mass density, u is the velocity of the fluid, t is time, p is the
pressure, η is the viscosity and f is the total applied force (force per unit
volume) acting on the fluid.

The ratio of the inertial term, ρm(u · ∇)u, to the viscous term, η∇2u
is the Reynolds number (Re), a parameter that is used to characterize mi-
crofluidic systems:

Re =
ρmu0l0

η
(19)

with l0 a length scale and u0 a typical velocity. For low values of Reynolds
number (Re
 1) the viscous term dominates, whilst for high values (Re� 1)
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the inertial term dominates. In microfluidic systems, microfabricated chan-
nels and chambers are used to guide the fluid through the device. Typical
dimensions for these channels vary between 10μm and 1 mm. The flow in
such channels is generally laminar i.e. the fluid flow follows streamlines and
is free of turbulence.

For a particle moving in the fluid, the fluid exerts a drag force on the
particle that affects the velocity of the particle. The force is known as the
Stokes force

Fη = −fu (20)

where the constant f is the friction factor, a factor that depends on particle
parameters such as size, shape and surface characteristics. For a spherical
particle of radius R, the Stokes force is given by:

Fη = −6πηRu (21)

5.2 Gravitational force

For a particle with a mass density of ρp, suspended in a medium with
density of ρm, the effective mass of the particle is equal to the volume
of the particle times the difference in mass densities between the particle
and the suspending medium. In a gravitational field, the magnitude of the
gravitational force, Fg is given by:

Fg =
4

3
πR3(ρp − ρm)g (22)

where g is the gravitational acceleration.
The gravitational force is counteracted by the Stoke’s drag force, there-

fore substitute equation 21 into 22 to give the sedimentation velocity of the
particle:

ug =
2

9

R2(ρp − ρm)g

η
(23)

The magnitude of this velocity is variable, for example a 500 nm latex
sphere has a mass density of 1050 kg/m3 giving a sedimentation velocity
of only 7 nm/s, indicating the particle moves a distance of the order of
its diameter in a minute. However, for a cell, which is much greater, the
sedimentation velocity can approach 1 to 10 μm/s in water. Although the
gravitational forces acting on sub-micron particles are small, they are not
insignificant and cannot always be ignored.

5.3 Electric field induced forces (electrohydrodynamics)

There are two major forces that can be induced through the interaction
of the applied electric field with the fluid. The first is the electrothermal
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force, which is due to the interaction between the electric field and the
gradients of the dielectric properties (permittivity and conductivity) of the
fluid. These gradients in dielectric properties are generally caused by heat-
ing of the fluid, either directly from the electric field (Joule heating) or from
some other external sources. This interaction gives rise to an electrothermal
body force (Ramos et al., 1998). A second force is due to the interaction
between the applied electric field and the induced free charges in the elec-
trical double layer between the electrode and the electrolyte, which causes
the fluid to move, a flow called AC electroosmosis (Ramos et al., 1998). At
low frequencies, the potential applied to a metal electrode causes charge ac-
cumulation in the electrode-electrolyte double layer. In AC electrokinetics,
the difference between electrothermal flow and AC electroosmosis is gener-
ally observed in the frequency domain. At low frequencies (< 100 kHz), AC
electroosmosis dominates the fluid flow. As the frequency increases, this
flow diminishes so that above 100 kHz, the behavior of the fluid is domi-
nated by electrothermal force. However, the latter force is only substantial
if there is significant temperature gradients in the fluid, for example due to
Joule heating in a fluid of high electrical conductivity. Detailed descriptions
on electrothermal and electroosmotic effects can be found elsewhere (Ramos
et al., 1998; Castellanos et al., 2003; Morgan and Green, 2003).

5.4 Scaling laws

In order to move particles in a deterministic manner a knowledge of the
forces acting on the particles is required. Importantly, the displacement due
to the deterministic force should dominate over the random or stochastic
force. The two main forces that act on particles in addition to DEP are
gravitational and Brownian motion. The relative scale of these forces is often
difficult to determine, but can be evaluated analytically for some simple
geometries. In particular one of the easiest geometries is a semi-infinite
parallel plate structure, consisting of two coplanar rectangular electrodes
with an infinitely small gap, as shown in figure 16a (Castellanos et al., 2003).
In this geometry, the field as a function of radial distance (r) is E = V/r,
where V is the amplitude of the applied voltage and r is the distance to
the centre of the gap. The influence of Brownian motion, gravity and DEP
on a single particle can be calculated for this electrode structure, and the
results are summarized in figure 16b (Castellanos et al., 2003). This plot
shows the displacement of a particle during a time interval of one second
as a function of particle radius, R. For an electrode gap of 25μm, and
with an applied potential of 5 volts, it can be seen that the displacement
due to Brownian motion is greater than that due to DEP for a particle



22 Tao Sun and Hywel Morgan

less than 0.4μm diameter. Also, gravity is less important than DEP for
any particle sizes, since both scale as R2. The deterministic manipulation
of particles smaller than 0.4μm can be achieved if the magnitude of the
applied voltage is increased, or the characteristic length of the system r is
reduced. One simple scaling law comes from the relationship between field
gradient and electrode gap. For example, reducing the electrode gap by one
order of magnitude increases the DEP force by three orders of magnitude.
Although figure 16b shows that it is relatively easy to move small particles
simply by increasing the electric field, this assertion assumes that there
are no other forces. This is generally not the case, since depending on the
frequency and the conductivity of the suspending medium there is often an
electrohydrodynamic force on the fluid.

Figure 16. (a) Simple electrode geometry consisting of two parallel plate
electrodes with a small gap used to calculate the typical particle displace-
ments. (b) Particle displacement in one second versus particle radius for a
particle of mass density 1050 kgm−3. The characteristic length used in this
figure is r = 25 μm. Reprinted with permission from (Castellanos et al.,
2003), c© Institute of Physics.

5.5 Nano-particle separation

Polymer particles do not behave as perfect insulators. They have a
net surface charge density and are characterized by a surface conductance.
Charges move along the surface, giving rise to a surface conductance, Ks,
which is related to an equivalent bulk conductivity of the particle through:

σp = 2Ks/R (24)
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According to this equation, surface conductance plays a significant role in
determining the conductivity in small sized (< 1μm) particles since it is in-
versely proportional to particle radius. At low frequencies, small polystyrene
particles are generally more polarisable than the suspending medium and
experience pDEP. At high frequencies, the properties of the system are
dominated by permittivity, the particles have a much lower permittivity
that water, they are less polarisable and therefore experience nDEP. Sep-
aration of sub-micrometre particles can be achieved in a number of ways,
and was demonstrated using electrodes such as castellated or polynomial
(Green et al., 2000). Apart from size-based separation, a mixture of the
same size particles can be separated because of differences in surface charge
densities, as given by equation 24.

Figure 17. Schematic of surface-modified latex particles (above) and pho-
tograph (below) showing separation of unmodified and protein conjugated
216 nm diameter latex particles due to positive DEP forces of different mag-
nitude. The protein-conjugated beads form pearl chains between the tips
of the castellated electrode array. The unmodified particles (brighter in
the picture) experience a significantly stronger positive DEP force and are
attracted to the electrode tips. Reprinted with permission from (Morgan
et al., 1999), c© 1999 Elsevier.

One method of differentiating the same sized particles is to modify their
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surface conductance by functionalizing the surface of the particles. Binding
of molecules such as proteins to small (100n m) beads changes the surface
conductance such that there is a measurable change in DEP behavior. Fig-
ure 17a shows a schematic diagram of binding antibodies to the surface
to nano-sized latex beads, figure 17b shows the separation of a mixture
of 200 nm beads. The red beads are conjugated with antibody, and form
pearl chains between the electrodes, while green beads are un-conjugated,
experience a stronger DEP force and collect on the tips of the electrodes.

More recently, DEP has been used to manipulate and trap a range of
micro and nano-particles, including DNA molecules of various length, for
further details see for example (Tuukkanen et al., 2007; Wälti et al., 2007),
and combinations of DEP and electrohydrodyanmic forces have also been
used to trap and concentrate nano-particles, e.g. (Bown and Meinhart,
2006).

6 Conclusions

In AC electric fields, the electrokinetic forces act on the induced dipole in
a particle causing particle movement or rotation. When the electric field
acts on the fluid, electrohydrodynamic forces occur, and these are either AC
electroosmosis or electrothermal forces that arise from gradients in conduc-
tivity and/or permittivity. The DEP force depends on the gradient of the
energy density, which changes on the length scale of the electrodes and is a
short range effect. The DEP force can be modulated by changing the fre-
quency and electrical properties of the suspending medium. The electroki-
netic forces scale in a complex manner with system dimensions, frequency,
field, etc. In separation systems, the buoyancy force can be significant (as
in FFF) but often the magnitude of this force is much lower than the other
forces for micron sized particles. AC electrokinetic manipulation of parti-
cles and fluids is a powerful enabling technology which will continue to find
many applications in microfluidic systems.
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Abstract This chapter discusses the basics of electrostatic and
quasielectrostatic systems from the perspective of charges and forces
on charges. The fundamental equations and physical concepts are
discussed along with relevant constructs such as the electric field
and dipole moments. Polarisation and dielectrics are discussed in
detail, outlining the mechanisms and special cases relevant to elec-
trokinetic phenomena.

1 Introduction

An introduction to dielectrophoresis and electromechanics in general re-
quires a discussion of the background theory, in this case the static approx-
imation to Maxwell’s equations. There are a large number of textbooks in
this area which can be consulted for further information: a few suggested
examples are given in the bibliography at the end of the chapter (Strat-
ton, 1941; Maxwell, 1954; Bleaney and Bleaney, 1962; Kraus, 1984; Lorrain
et al., 2000). This chapter will discuss electrostatics and the small cur-
rent approximation termed quasi-electrostatics. It will cover the basics of
electric fields, dielectrics and polarisation and, more importantly for elec-
tromechanics, the additional polarisation arising at the interface between a
particle and a suspending fluid. An applied electric field both generates this
polarisation charge and then acts on it to produce a force, which produces a
number of effects including dielectrophoresis. The chapter begins with the
basic equations required in order to describe polarisation and dielectrics,
then adds successive layers of complexity to the behaviour of real systems
and non-homogeneous materials.

1.1 Charge and forces on charges

In this discussion, it is assumed that charges are either stationary (elec-
trostatics) or have small velocities and accelerations. The movement of
the charge does not change the electric field and magnetic fields are small,
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Figure 1. The electric field lines (solid), direction of the electric field (ar-
rows) and equipotential lines (dashed) for a negative point charge.

giving the quasi-electrostatic approximation. The force exerted by a sta-
tionary point charge Q1 on a second stationary point charge Q2 is described
by Coulomb’s law

F12 =
Q1Q2

4πεor2
r̂12 (1)

where r is the separation of the charges and the unit vector r̂12 points from
Q1 to Q2. The constant εo is referred to as the permittivity of free space
and has the value 8.854×10−12 Farads/metre (F/m). The force is attractive
if the two charges are opposite in sign and repulsive if they have the same
sign. The unit of charge is the Coulomb(C).

1.2 Electric field and electrical potential

The electric field strength E from a charge Q, is the force per unit charge
that produces the Coulomb force on an arbitrary unit positive test charge,
so that:

E =
Q

4πεor2
r̂12 (2)

The direction andmagnitude of the field for a negative point charge is shown
by the dotted lines and vectors in figure 1.

The electric potential is defined to be the scalar φ such that the electric
field is given by E = −∇φ. The unit of electric potential is Volts (V) defined
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by the relationship Volts = Joules/Coulomb (V=J/C) and the unit of E is
therefore V/m. The lines of constant potential for a point charge are also
shown in figure (1).

1.3 Basic equations: Gauss, Poisson, Laplace

The basic electrostatic equations which underpin electrical and electroki-
netic systems are based on distributions of charge in a material, of which
there are two basic types: free and bound. Those charges sufficiently free to
move through the material from atom to atom give rise to currents. Those
that are bound to atoms and molecules are responsible for the polarisa-
tion of the material. The fundamental electrostatic equations relate these
different types of charge to the electric field and electrical potential.

Gauss’s Law relates E to the volume electric charge density ρ and in
differential form this is:

∇ ·E =
ρ

εo
(3)

Substituting for the potential gives Poisson’s equation

∇2φ = − ρ

εo
(4)

In most cases, the charge density is zero, giving Laplace’s equation

∇2φ = 0 (5)

We will now examine the physical origin and behaviour of the two types of
charge, starting with bound charges.

2 Bound charges, polarisation and dielectrics

A dielectric material is a material that contains charges which polarise un-
der the influence of an applied electric field. These charges are bound within
the material and can only move short distances when the field is applied, the
negative and positive charges moving in opposite directions to form induced
dipoles. Some materials also consist of molecules with permanent dipoles
which polarise by orienting with the field, an example of which is pure water.
A fundamental discussion of dipoles and polarisation is necessary to derive
the equations for dielectrics but this is also the physical mechanism respon-
sible for electrokinetic and electromechanical forces (Jones, 1995; Morgan
and Green, 2003).
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2.1 Dipoles

The electrical dipole is formed from a simple distribution of charges: two
charges of the same magnitude Q and opposite sign, separated by a distance
d. The dipole moment is the vector p where

p = Qd (6)

and the vector d is the displacement vector from the negative to the positive
charge. The dipole moment has units of Coulomb-metre or Debye (where 1
Debye = 3.33 × 10−30 C m). In spherical polar co-ordinates, the potential
of a dipole is

φ =
p · r̂

4πεor2
=
|p| cos θ
4πεor2

(7)

and the electric field is

E =
|p|

4πεor3
(2 cos θr̂+ sin θθ̂) (8)

Both expressions are only valid for large distances (r � d) and the dipole
field falls off as the inverse third power of r. Close to the dipole, the field
expression contains terms with a higher order power of r. A plot of the field
and potential from a simple dipole are shown in figure (2).

2.2 Dielectrics

A dielectric material is a material that contains charges which polarise
under the influence of an applied electric field. These charges are bound
within the material and can only move short distances when the field is
applied, the negative and positive charges moving in opposite directions
to form induced dipoles. This type of material is referred to as non-polar
(Grant et al., 1978; Pethig, 1979).

The molecules of some materials can also possess permanent dipole mo-
ments. Water for example has a dipole moment of 1.8 Debye, arising from
the structure shown in figure (3). The two hydrogen atoms in the molecule
are on the same side of the oxygen atom as shown, making a bond angle of
106o. In this molecule, the oxygen is slightly electronegative and the two
protons slightly electro-positive so that the molecule has a dipole moment
pointing from the oxygen atom to the point midway between the two hy-
drogen atoms. Permanent dipoles polarise by orienting with the field and
materials containing this type of molecule are termed polar materials.

The average dipole moment of the molecules of a material is proportional
to the magnitude of the field, i.e.

pav = αE′ (9)
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Figure 2. The electric field lines (solid), direction of the electric field (ar-
rows) and equipotential lines (dashed) for a simple dipole consisting of two
opposite charges. The large grey arrow indicates the direction of the dipole
moment.

Figure 3. The electric field lines (solid), direction of the electric field (ar-
rows) and equipotential lines (dashed) for a simple dipole consisting of two
opposite charges. The large grey arrow indicates the direction of the dipole
moment.
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Figure 4. Schematic diagram of the displacement of the electron cloud
around a positive nucleus under and applied field. The separation of the
centres of negative charge and the positive nucleus produces a dipole.

where E′ is the local electric field in the vicinity of the dipole. The propor-
tionality α is called the polarisability (average dipole moment per unit field
strength) and is a measure of the response of the dielectric to the electric
field. It has units of (CV−1m2) or (Fm2).

In a dielectric consisting of n molecules per cubic metre, the polarisation
P (the dipole moment per unit volume) is

P = npav = nαE′ (10)

The polarisation and the displacement of the charge gives rise to a net charge
at points in the dielectric or at the surface. These charges are referred to
as bound or polarisation charges. The bound volume charge density ρb is
given by

ρb = −∇ ·P (11)

2.3 Polarisation mechanisms

There are several molecular polarisation mechanisms that can occur
when an electric field is applied to a dielectric:
• Electronic polarisation αe: In an electric field, the centre of charge of
the electron cloud in an atom moves slightly with respect to the centre
of charge of the nucleic charges. For an applied field of 106−107 V/m
(compared to the internal field of the atom which is of the order of
1011 V/m), the displacement is of the order of 108 times the diameter
of an atom.
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• Atomic αa: In a crystalline solid such as potassium chloride, the ions
of different sign move in different directions when subjected to an
electric field. The small displacement of the charges in the lattice
causes atomic polarisability.

• Orientational αd: As described earlier in this chapter, manymolecules
possess permanent dipole moments. Orientational polarisation is the
polarisation arising from the alignment of these permanent dipoles in
polar dielectrics.

• Interfacial polarisation αi: In addition to local molecular processes,
cumulative long-range charge transport causes polarisation of dielectrics.
At interfaces between different materials or locations where the dielec-
tric is inhomogeneous (internal interfaces) or at the surface, causing
macroscopic distortion of the field. Similarly, relatively long-range
transport of ions occurs along and around the surface of polyelec-
trolytes. This manifests itself as an increase in the charge storage
capacity of the dielectric or an increase in the permittivity of the
dielectric. This is the basis of interfacial polarisation. It has an im-
portant role to play in AC electrokinetics, since it is the origin of the
induced dipole on particles. This will be discussed in greater detail.

Assuming that the polarisability mechanisms act independently, then
the total polarisability of a dielectric is the sum of the polarisabilities.

αT = αe + αa + αo + αi (12)

Each polarisability has its own characteristic frequency response, which will
be discussed later.

2.4 The electric flux density

Considering the free ρf and bound ρb charge densities separately, Gauss’s
law can be written as

∇ ·E =
ρf + ρb

εo
(13)

Using equation (11) for the bound charge density, this can be re-written as

∇ · (εoE+P) = ρf (14)

The vector D = εoE + P is called the electric flux density (in C/m2) and
its divergence is equal to the free volume charge density

∇ ·D = ρf (15)
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2.5 The electric susceptibility and the relative permittivity

Most dielectrics are linear, with P proportional to E such that

P = εoχaeE (16)

where χae is the electric susceptibility of the dielectric. Therefore,

D = εo(1 + χae)E = εoεrE (17)

where εr = 1 + χae is a dimensionless number referred to as the relative
permittivity of the dielectric. The permittivity of the dielectric ε = εoεr is
the constant of proportionality between D and E.

3 Charge, currents and Ohm’s law

So far, the dielectrics have been assumed to be ideal with only bound charge
responding to the applied field. In general, a real dielectric will contain
some free charge which will also respond. The free charge is not bound to a
particular location in the material and moves through it in response to an
applied electric field. The electric current density, J (charge per unit time:
A/m2) contribution from a charge carrier is given by

J = ρvc (18)

where ρ is the density and vc the mean drift velocity of the charge carrier.
The mean drift velocity is normally proportional to the electric field:

vc = μE (19)

which defines μ, the mobility of the charge in the electric field (in units of
m2/Vs). Substituting this into equation (18) gives

J = nqcμE (20)

where n is the number density of the carrier (m−3) and qc is the charge of
the carrier.

The electrical conductivity, σ (S/m), of the material is defined by Ohm’s
Law:

J = σE (21)

If there is only one charge carrier in the material, for example residual
charge in a dielectric where the electrons separate from the material leav-
ing bound positive charges with zero mobility, equation 20 gives the total
current density for the material and the conductivity is given by σ = nqcμ.
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3.1 Water electrolytes and conductivity

The relationship between the current density and the electrical conduc-
tivity of an aqueous solution of ions is more complicated since the current
can be carried by many different types of ion, each with a different mobility.
The current density for each ion of type j, with valence zj is

Jj =

{
zjFcjμjE
zjnjqμjE

(22)

This expression includes the normal expression in electrochemistry with F
the Faraday (9.6487×104C/mol), cj the molar concentration (mol/l), μj

the mobility of the ion, and the equivalent expression to equation (20),
with nj the number density of the ion). Comparison of the two expressions
for in equation (22) demonstrates that the Faraday is NAq, where NA is
Avogadro’s number (6.02252× 1023 mo1−1).

The ionic conductivity λj (Sm2/mol) is defined as

λj = zjFμj (23)

and the conductivity of the solution is given by the sum of the contributions
of each ion

σ =
∑
j

λjcj (24)

For a symmetrical electrolyte (such as KCl) with ionic conductivities λ+

and λ−, the conductivity is given by

σ = (λ+ + λ−)c = Λc (25)

where Λ is the molar conductivity (Sm2/mol). At low concentrations (c→
0), the ions can move freely without interaction and the molar conductivity
is a constant value, referred to as the limiting conductivity Λc=0

Λc=0 = F (μ+ + μ−) (26)

The molar conductivity is constant for molarities up to approximately 10−3

Molar (M). For higher concentrations, the ions interact with each other and
the molar conductivity is influenced by higher order effects. This means
that at low concentrations, the conductivity is directly proportional to the
concentration

Using potassium chloride (KCl) as an example, the mobilities of the
potassium K+ and the chloride Cl− ions are almost the same, with μK+ =
7.62 × 10−8 m2/Vs, and μCl− = 7.91 × 10−8 m2/Vs (CRC handbook).
Therefore, for KCl, Λc=0 = F (μ++μ−) = 9.6485×104(7.62×10−8+7.91×
10−8) = 0.01498 (Sm2/mol) and 1 mM KCl has a conductivity of 14.98
×10−8S/m at 298K.
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3.2 Mobility and hydration radius

The mobility of the ion is related to its diffusion constant Dj (m2/s), by
the Einstein equation:

μj = Dj
q

kBT
= Dj

F

RT
(27)

where R = NAkB is the (molar) gas constant (8.3143 JK−1mol−1) and kB
is the Boltzmann constant. The diffusion constant of each ion is given by

Dj =
kBT

6πηaj
=

qRT

6πFηaj
(28)

where aj is the radius of the ion. However, when an ion is placed in water,
ion-water interactions produce a change in the properties of the medium
close to the ions. This interaction is responsible for the ion remaining in
solution, and when the suspending medium is water, the process is known
as solvation or hydration. The water molecules have a large dipole moment
and are highly polarisable: this high polarisability that water is such a
good solvent for ions. When an ion is placed in water, the charge produces
a local field which polarises the water molecules around it. This region of
polarised water is referred to as the ionic atmosphere: a region that screens
the ion from the other ions in the medium, ensuring electroneutrality on
the global scale. Locally, the electrical potential resulting from the ion falls
off exponentially with distance, and the length scale is given by the Debye
length (the distance at which the potential falls to 1/e of its maximum
value), written as λD or κ−1 where, for a monovalent ion

κ =

√
q2no

εkBT
≡
√

1

D

σ

ε
(29)

In this expression ε = εoεr, and no is the number density of ions in the
bulk.

The creation of the polarised ionic atmosphere produces a region around
the ion that has very different properties from the bulk fluid. The polar
molecules in this region are prevented from responding to an applied field
and, as the ion moves, its atmosphere moves with it, so that the moving
object is bigger than the naked ion. The radius of the solvated or hydrated
ion is called the hydration radius and is the one that should be used for
determining diffusion constants and mobilities.
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3.3 The charge relaxation time

An important characteristic of an electrolyte is the time required for an
ion to move a distance of the order of the Debye length by diffusion. This
is called the charge relaxation time and is given by

τq =
1

Dκ2
(30)

Substituting for the Debye length and the conductivity in this expression,
the charge relaxation time is also

τq =
ε

σ
(31)

The angular frequency associated with this time ωq = 1/τq, is referred to
as the charge relaxation frequency.

3.4 The charge conservation equation

The charge conservation equation relates the rate of change with respect
to time of the volume charge density ρ to the current density J

∇ · J = −∂ρ

∂t
(32)

In the steady state, the right hand side of this equation is zero and
therefore ∇ · J = 0. This equation is used in conjunction with Gauss’s Law
to include the effect of conductivity on charging processes in real dielectrics.

4 Quasi-electrostatics: AC fields and complex
permittivity

This section examines the polarisation of a dielectric with a permittivity ε
and conductivity σ in response to an applied AC electric field of frequency
f and angular frequency ω = 2πf . It introduces the concept of complex
permittivity, which describes the frequency dependent response of the di-
electric to the field. Also introduced is the idea of using equivalent circuits,
consisting of electrical components, to represent a physical system.

As discussed, Gauss’s Law is used to calculate electric fields and forces.
A harmonic AC field, will be defined using phasor notation as:

E = Re
[
Ẽeiωt

]
(33)

This is related to an equivalent complex potential defined by

φ = Re
[
φ̃eiωt

]
(34)
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by the expression Ẽ = −∇φ̃. Gauss’s Law can then be expanded for real
dielectrics using the charge conservation equation for the free charge. In
a harmonic field of angular frequency ω, the operator ∂/∂t = iω and the
charge conservation equation is

∇ · Jf = −∂ρf
∂t

→ ∇ · σE = −iωρf (35)

assuming that the free charge is solely the responsible for the conductivity.
This can be substituted into Gauss’s Law as follows

∇ ·D = ρf ⇒ ∇ · (εE) = −∇ ·
( σ

iω
E
)
⇒ ∇ ·

(
ε+

σ

iω
E
)
= 0

to give
∇ · (ε̃E) = 0 (36)

where ε̃ is the complex permittivity given by:

ε̃ = εoεr − i
σ

ω
(37)

Another way of considering this problem is to calculate the total cur-
rent in the dielectric. There are two current densities, the conduction Jd

(equation 21) and the displacement Jd = ∂D/∂t = iωεE. The total current
density is given by the sum of the two

J = (σ + iωε)E = σ̃E (38)

where σ̃ is the complex conductivity.
A simple circuit model can be used to illustrate the relationship between

permittivity, conductivity and polarisation. Considering a simple parallel
plate capacitor, shown in figure (5), with area A and separation d, which
contains a homogeneous dielectric. The plates of the capacitor have a po-
tential φ of angular frequency ω applied between them. With a loss-free
dielectric of permittivity ε filling the gap, the impedance is

Z =
1

iωC
(39)

where i2 = −1 and C = ε(A/d) is the capacitance (F). If the dielectric is
lossy (figure 6) and has both a permittivity and conductivity, the current in
the circuit is the same as if the circuit were replaced with a loss-free capacitor
(capacitance C), in parallel with a resistor of resistance R = (1/σ)(d/A).
The total impedance of the circuit is then

Z =
1

1/R+ iωC
=

R

1 + iωRC
=

R

1 + iωτc
(40)
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Figure 5. Schematic diagram of a simple parallel plate capacitor containing
an ideal dielectric.

Figure 6. Schematic diagram of a simple parallel plate capacitor containing
an dielectric which has a permittivity and a conductivity. Also shown is the
equivalent circuit for this capacitor consisting of a resistor and capacitor in
parallel.
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where τc is the charge relaxation time. This demonstrates the significance
of the charge relaxation frequency: below it, free charge and conduction
are largely responsible for polarisation; and above it, the permittivity dom-
inates. Putting the expressions for R and C into this equation, it can be
re-written

Z =
1

σA
d + iω εA

d

=
1

iω

1
εA
d + σA

iωd

=
1

iω

1(
ε− iσ

ω

)
A
d

=
1

iωC1
(41)

where

C1 = ε̃
A

d
(42)

4.1 Energy in a dielectric

In a lossy dielectric the total current is given by the sum of Jf = σE
and Jd = iωεE. A useful expression is the loss tangent given by the ratio
of the two:

tanδ =
σ

ωε
(43)

where δ is the angle between the conduction and displacement currents,
referred to as the loss angle, which for a perfectly insulating (ideal) dielec-
tric, is zero. If the complex permittivity is written as ε̃ = ε′ − iε′′, the loss
angle can also be written as tanδ = ε′′/ε′. In general, the imaginary part
ε′′ pertains to the dissipation of energy as heat and the real part ε′ to the
storage of energy. The energy stored in a non-ideal dielectric is given by

U =
1

2

∫
υ

ε′|E|2dυ =
1

2

∫
υ

Re
[
D̃ · Ẽ∗

]
dυ (44)

4.2 Summary

Looking again at the polarisationP, for a real dielectric, both conduction
and displacement currents flow, and both free and bound charges separate
and result in polarisation. This results in a phase lag between the driving
field and the induced polarisation, with the polarisability now a complex
quantity:

P = εo

(
ε̃

εo
− 1

)
E = nα̃E (45)

The complex permittivity is often written as ε̃ = ε′ − iε′′ to include further
complex terms arising from relaxation mechanisms.
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5 Dielectric relaxations

The polarisation of a dielectric involves the movement of charge to create
dipoles. The rate of this movement is finite and as a result each polarisation
mechanism has a different characteristic time associated with it: the period
required to achieve maximum polarisation. At the frequency for which the
period of the field and the characteristic time are the same, maximum energy
is dissipated by the system. Below this frequency maximum polarisation
and energy storage occurs. Above this frequency the polarisation no longer
reaches its maximum and at very high frequencies, the mechanism does not
respond to the field and no polarisation occurs. For example water, which
has a relative permittivity of ∼80 below 108 Hz, has a relaxation frequency
of 2× 1010 Hz. At frequencies greater than 1011 Hz, the permanent dipoles
are not able to orient with the field and the permittivity of water drops to
∼2. The fall in polarisability results in a decrease in energy storage (and
permittivity) and is referred to as a dielectric relaxation.

5.1 Orientational relaxation

Of the basic polarisation mechanisms outlined previously, orientational
polarisation has the longest relaxation time. Atomic and electronic polar-
isation will align with the field up to frequencies of the order of 1014 Hz
and we can consider them to be constant. The polarisation due to these
mechanisms is of the form of equation (16)

Pae = εoχaeE (46)

The orientational polarisation has a characteristic relaxation time τor
associated with the time taken for the permanent dipoles to re-orient with
the field and is given by

Por =
εoχor

1 + iωτor
E

where χor is the low frequency limit for the orientational susceptibility. The
total frequency dependent polarisation is then

Ptot = εo

(
χae +

χor

1 + iωτor

)
E (47)

At the low frequency limit χ = χae+χor = εs−1, where εs is the relative
permittivity measured in a static electric field. At the high frequency limit
χ = χae = ε∞ − 1, where ε∞ is the relative permittivity at sufficiently
high frequency that no orientational polarisation occurs. As a result, χor =
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εs − ε∞ and equation (47) can be written as

Ptot = εo(ε̃d − 1)E (48)

where ε̃d is a complex term given by

ε̃d = ε∞ +
εs − ε∞
1 + iωτor

(49)

The total complex permittivity of the dielectric is therefore

ε̃ = εo

(
ε∞ +

εs − ε∞
1 + iωτor

)
− i

σ

ω
(50)

Writing this in the form ε̃ = ε′ − iε′′, ε′ and ε′′ are given by the Debye
relations

ε′ = εo

(
ε∞ +

εs − ε∞
1 + ω2τ2or

)
(51)

ε′′ = εo

(
(εs − ε∞)ωτor

1 + ω2τ2or

)
+

σ

ω
(52)

As discussed previously, a non-zero ε′′ implies a phase lag between D and
E. This has important ramifications for energy dissipation in the system.
When the loss part of the complex permittivity is zero, D and E are in phase
and any energy required to produce polarisation of the material in one half-
cycle of the field is given back to the driving source in the second half-cycle.
In other words, the amount of energy lost through the loss mechanism per
cycle is negligible.

When ε′′ is non-zero, energy is dissipated in the system by two mech-
anisms. Firstly, if the dielectric is non-ideal and has a finite conductivity,
then energy is lost through Joule heating, the second term on the r.h.s. of
equation (52). Secondly, energy is lost due to the electrical conductivity
that arises from the relaxation mechanism: the first term on the r.h.s. of
equation (52). The electric field orients the dipoles against the randomising
effects of Brownian motion. At high frequencies no energy is lost since there
is insufficient time for the dipoles to orient with the field and no energy is
stored. At low frequencies the dipoles are oriented and work is done in
moving the dipoles in a viscous medium. The power lost per cycle of AC
field is low but this increases with frequency, since the number of cycles
per second increases. It reaches a maximum at the characteristic angular
frequency ωor = 1/τor, when the time required for maximum orientation of
the dipoles is exactly equal to one half-cycle of the field. Maximum energy
dissipation from this mechanism occurs at this frequency.
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Figure 7. Plot of the variation of the real ε′ and imaginary ε′′ parts of the
complex permittivity as a function of dimensionless frequency. The solid
line indicates the behaviour of an ideal relaxation with single frequency τ
and the dotted line, the behaviour of a spread of relaxation times.

The variation of ε′ and ε′′ with ω gives a dispersion in the relative per-
mittivity as shown by the solid line in figure (7). It can be seen that the
width of the loss peak extends over approximately four decades in frequency
and that for a single Debye-type relaxation the width of the peak at half
height is 1.14 decades in frequency.

Such dielectric loss peaks can be analysed to obtain a great deal of infor-
mation about the molecular material under investigation. For example the
width of the loss peak is often wider than the 1.14 decades characteristic of
the ideal Debye behaviour, where there is only a single relaxation time. Cole
and Cole modified equation (50) to account for a distribution in relaxation
times more representative of experimental samples as follows

ε̃ = εo

(
ε∞ +

εs − ε∞
1 + i(ωτor)

(1−β)

)
− i

σ

ω
(53)

where β equals 0 for a single relaxation time and tends to 1 for an infinite
number of relaxation times. A distribution in relaxation times means that
the dispersion occurs at a frequency equal to the average of the relaxation
times, but is broader than for a single relaxation time. This is shown by
the dotted line in figure (7).
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Figure 8. Plot of the variation of the imaginary ε′′ versus tje real ε′ parts
of the complex permittivity on a Cole-Cole plot. Again, the solid line indi-
cates the behaviour of an ideal relaxation with single frequency τ and the
dotted line, the behaviour of a spread of relaxation times. Also shown is
the relationship between the spread parameter β and the angle θ measured
on the plot, which is used in characterisation of the relaxation.

A useful method of analysing this type of data is by using a Cole-Cole
plot (Cole and Cole, 1941), where the imaginary part ε′′ is plotted against
the real part ε′. For a single relaxation, the plot is a semicircle with its
centre on the horizontal axis, as shown by the solid line in figure (8). If the
plot forms an arc of a circle with the centre below the axis, then there is
a distribution of relaxation times as shown by the dotted line in the figure
for β = 0.1. The relationship between the angle θ and the parameter β is
shown in the figure. The interrelationship between the real and imaginary
components of the complex permittivity can be quantitatively described by
the Kramers-Krönig relationships

ε′(ω)− ε∞ =
2

π

∞∫
0

�ε′′(�)

�2 − ω2
d� (54)

ε′′(ω) =
2ω

π

∞∫
0

ε′(�)− ε∞
�2 − ω2

d� (55)

where � is a dummy frequency variable over which ε′′ has to be integrated
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to find ε′ or vice versa. The Kramers-Krönig relations show that if either
the real or the imaginary component of the complex permittivity is known,
then the other can be derived from the above equations. Practically, the
Kramers-Krönig relationships can be used to equate the real and imaginary
components of the polarisability of a system.

6 Interfacial Polarisation

Real systems often consist of a number of different dielectrics each with dif-
ferent electrical properties: in dielectrophoresis for example, the system is a
suspension of dielectric particles in a dielectric fluid. When an electric field
is applied to the system, surface charge accumulates at discontinuities (or
interfaces) between the dielectrics due to the differences in electrical prop-
erties. Since the polarisabilities of each dielectric are frequency dependent,
the magnitude of the surface charge is also frequency dependent and the
total complex permittivity of the system exhibits dispersions solely due to
the polarisation of the interfaces. This is referred to as Maxwell-Wagner
interfacial polarisation.

If the system consists of a single dielectric particle and a suspending
fluid, the distribution of the surface charge density around the closed surface
of the particle gives rise to an induced dipole moment. The action of an
electric field on this dipole gives rise to ponderomotive forces and torques;
the basis of AC electrokinetics. This will be discussed in a subsequent
chapter, with the remainder of this chapter discussing the phenomena of
interfacial polarisation and the implications for modelling and analysing
materials.

6.1 Interfacial polarisation

The mechanism of interfacial polarisation using the parallel plate ca-
pacitor is shown in figure (9), which contains two lossy dielectrics with
different electrical properties. Extending the simple model presented previ-
ously, this capacitor can be modelled as the equivalent circuit shown. The
two dielectrics have permittivities ε1 and ε2 and conductivities σ1 and σ2,
respectively. The impedance of the whole circuit is

Z = Z1 + Z2 =
R1

1 + iωR1C1
+

R1

1 + iωR2C2
(56)

This can again be re-written as a single capacitance with a complex per-
mittivity. The resulting complex permittivity contains a dispersion arising
solely from the difference in the permittivities and conductivities of the two
dielectrics. Using the Debye formulations (equations (51) and (52)), this
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Figure 9. Schematic diagram of a simple parallel plate capacitor containing
two dielectric slabs both of which have a different permittivity and a con-
ductivity. Also shown is the equivalent circuit for this capacitor consisting
of two parallel resistors/capacitor circuits in series.

complex permittivity is

ε̃ = ε′ − iε′′ = εo

[
εhf +

εlf − εhf
1 + ω2τ2

]
− iεo

[
(εlf − εhf )ωτor

1 + ω2τ2
+

σ

εoω

]
(57)

where εhf is the high frequency permittivity, εlf the low frequency per-
mittivity, τ the relaxation time and σ the system conductivity, each given
by

εhf =
dε1ε2

d1ε2 + d2ε1
(58)

εlf =
d(d1ε1σ

2
2 + d2ε2σ

2
1)

(d1σ2 + d2σ1)
2 (59)

τ = εo
d1ε2 + d2ε1
d1σ2 + d2σ1

(60)

σ =
dσ1σ2

d1σ2 + d2σ1
(61)

6.2 The induced effective dipole moment of a particle

An applied field causes charge to build up at the interface between two
dielectrics of different permittivity and/or conductivity. This is equally
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Figure 10. Schematic diagram of the polarisation of a particle in a uniform
electric field for when the particle is (a) more polarisable and (b) less po-
larisable than the medium. The dipole is parallel to the field if the particle
is more polarisable and anti-parallel if less polarisable.

true irrespective of the geometry of the system. For a dielectric particle
suspended in a dielectric fluid, when the electric field is applied, charge of
opposite sign accumulates at either side of the particle as shown in figure
(10). When the polarisabilities of the two dielectrics are different, the net
charge at the interface is non zero and the sign of the net charge is opposite
on either side of the particle. This induced or effective dipole moment
depends on the properties of both the particle and the suspending medium
(or electrolyte), and on the frequency of the applied field. This section
will discuss the polarisation and induced dipole moments of solid spherical
particles, ellipsoids and more complicated shelled particles.

6.3 The effective dipole moment of a spherical particle

The simplest case is that of a homogeneous solid dielectric sphere of
radius a suspended in a homogenous dielectricmedium, shown schematically
in figure (11). The applied electric field far from the origin is taken to
be uniform and anti-parallel to the z-axis i.e. E = −Eẑ. Without loss
of generality, the sphere can be assumed to have its centre at the origin,
making the problem axially symmetric and two-dimensional in spherical
polar co-ordinates.

For ideal dielectrics, the Laplace equation for the electrical potential can
be solved using Legendre polynomials, an exercise that can be found in
electromagnetism textbooks. Gauss’s law gives the boundary condition for
the potential at the surface of the sphere (r = a)

εmEm · n̂− εpEp · n̂ = 0⇒ εm
∂φm

∂r

∣∣∣∣
r=a

− εp
∂φp

∂r

∣∣∣∣
r=a

= 0 (62)
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Figure 11. Schematic diagram of a spherical particle showing the rela-
tionship between cartesian and spherical polar coordinates. The applied
uniform electric field is assumed to lie along the z-axis, making the problem
axially symmetric about this axis.

where the subscripts p and m refer to particle and suspending medium. The
solutions for the potential inside and outside the dielectric sphere are

φp = −
(

3ε̃m
ε̃p + 2ε̃m

)
Er cos θ (63)

φm =

[(
ε̃p − ε̃m
ε̃p + 2ε̃m

)
a3

r3
− 1

]
Er cos θ (64)

The external potential in the medium can be re-written as

φm = Ea3
(

ε̃p − ε̃m
ε̃p + 2ε̃m

)
cos θ

r2
− Er cos θ (65)

This is the scalar sum of the potential due to the applied field (second term
on the right hand side) and the potential of a dipole moment (first term,
right hand side). By inspection, the dipole moment is

p = 4πεm

(
ε̃p − ε̃m
ε̃p + 2ε̃m

)
a3E (66)



Electrostatics and Quasielectrostatics 51

This is the effective dipole moment of the sphere. It is sometimes rewritten
in terms of the volume of the sphere ν and a complex effective polarisability
α̃ so that

p = υα̃E (67)

Using this equation, the magnitude of the dipole for a particle can be
calculated. Taking for example a field of 106 V/m, the dipole moment of a
particle such as a cell is of the order of 10−19 Cm. This is equivalent to a
charge of 10−14 C located at the poles of the cell.

From equations (66) and (67) the effective polarisability is therefore

α̃ = 3εm

(
ε̃p − ε̃m
ε̃p + 2ε̃m

)
= 3εmf̃CM (68)

The magnitude of the polarisability, and therefore the effective dipole mo-
ment of the particle, is frequency dependent. This dependence is described
by the factor

f̃CM (ε̃p, ε̃m) =
ε̃p − ε̃m
ε̃p + 2ε̃m

(69)

This is referred to as the Clausius-Mossotti factor. It is complex, describing
a relaxation in the effective polarisability of the particle with a relaxation
time of

τMW =
εp + 2εm
σp + 2σm

(70)

The angular frequency ωMW = 2πfMW = 1/τMW is often referred to
as the Maxwell-Wagner relaxation frequency since the dispersion in the
dipole moment is caused by interfacial polarisation. The real part of the
Clausius-Mossotti factor reaches a low frequency limiting value of (σp −
σm)/(σp + 2σm), i.e. it depends solely on the conductivity of the particle
and suspending medium. Conversely, the high frequency limiting value is
(εp− εm)/(εp +2εm) and the polarisation is dominated by the permittivity
of the particle and suspending medium. The imaginary part is zero at high
and low frequencies, and at the relaxation frequency fMW has a value

1

2

(
εp − εm
εp + 2εm

− σp − σm

σp + 2σm

)
(71)

The frequency variation of the real and imaginary parts of the Clausius-
Mossotti factor is shown in figure (12). In general, the real part of the
Clausius-Mossotti factor is bounded by 1 and -1/2, and the imaginary part
bounded by -3/4 and 3/4.
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Figure 12. Plot of the real (solid line) and imaginary (dotted line) parts of
the Clausius-Mossotti factor as a function of frequency for arbitrary values of
permittivity and conductivity. The plot describes a single Debye relaxation.

Figure 13. Schematic diagram of cross section of a single shelled particle
with two internal permittivities and conductivities. The shell model allows
this internal structure to be analysed as a homogeneous sphere with a new
value for permittivity and conductivity, both of which are now frequency
dependent.
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6.4 The shell model for biological particles

Biological particles, such as cells and some types of viruses, have a com-
plicated internal structure. The common approach to theoretically mod-
elling cells is to use a concentric multi-shell model (Irimajiri et al., 1979;
Gimsa et al., 1991; Huang et al., 1992; Jones, 1995). The simplest case is
that of a single shelled particle, which is shown schematically in figure 13),
demonstrating the principle of the shell model in that the internal structure
and properties are combined to give an equivalent homogeneous particle
which is described by the standard equations.

This system has two intrinsic relaxation frequencies, one for each of
the two interfaces. In this case the effective polarisability and the dipole
moment are given by

α̃ = 3ε1f̃CM,23 = 3εm

(
ε̃23 − ε̃1
ε̃23 + 2ε̃1

)
(72)

p = 4πε1f̃CM,23a
3
1E (73)

and the particle complex permittivity ε̃23 in the Clausius-Mossotti factor
f̃CM,23 is given by

ε̃23 = ε̃2

[
γ3
12 + 2

(
ε̃3 − ε̃2
ε̃3 + 2ε̃2

)]/[
γ3
12 −

(
ε̃3 − ε̃2
ε̃3 + 2ε̃2

)]
(74)

where the factor γ12 = a1/a2. This representation is equivalent to a homoge-
neous spherical particle of radius a1 and permittivity ε̃23 given by equation
(74). The frequency variation of effective polarisability and magnitude of
the dipole moment is again described by the Clausius-Mossotti factor, in
this case f̃CM,23, the real and imaginary parts of which are plotted in figure
(14)

The model can be extended to multiple shells by using equation (74)
sequentially for each shell. Figure (15) shows an example with two shells
and the variation of the real and imaginary parts of ε̃23 for this particular
case.

6.5 The effective dipole moment of an ellipsoidal particle

Themore general case of an ellipsoidal particle is also relevant sincemany
particles are not spherical. The full calculation of the electrical potential
around the particle and the corresponding dipole moment can be found in
a number of textbooks (Stratton, 1941; Schwarz et al., 1965; Griffin, 1970;
Miller and Jones, 1994; Jones, 1995).
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Figure 14. Plot of the real (black lines) and imaginary (grey lines) parts
of the Clausius-Mossotti factor for a single shell (solid lines) and a two shell
(dashed lines). Typical values for a human biological cell were used.

Figure 15. Schematic diagram of cross section of a multi shelled particle
with various internal permittivities and conductivities. The shell model al-
lows this internal structure to be analysed by consecutively treating each
shell as a homogeneous sphere with a new value for permittivity and con-
ductivity, until the problem is reduced to a homogeneous sphere.
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Consider a homogeneous, ellipsoidal, dielectric particle where the half
lengths of the major axes are a1, a2 and a3. The effective polarisability,
α̃n = 3εmK̃n, is different for each principal axis n (where n = 1, 2, 3). K̃n

is a frequency dependent factor equivalent to the Clausius-Mossotti factor,
given by

K̃n =
ε̃p − ε̃m

3(An(ε̃p − ε̃m) + ε̃m)
(75)

An is called the depolarising factor for the axis n given by

An =
1

2
a1a2a3

∞∫
0

ds

(s+ a2n)B
(76)

where B =
√

(s+ a21) + (s+ a22) + (s+ a23) and s is an arbitrary distance
for integration.

The dipole moment of the ellipsoidal particle for each different axis can
then be written as

pn =
4πa1a2a3

3
εm

[
ε̃p − ε̃m

ε̃p +An(ε̃p − ε̃m)

]
En (77)

where En is the component of the electric field in the n direction. Each axis
of the particle also has an associated relaxation time, given by

τn =
Anεp + (1−An)εm
Anσp + (1−An)σm

(78)

7 Mixture theory

The theory linking the response of the particle mixture to that of the in-
dividual particle and the suspending solution was first derived by Maxwell
(1954), and an elegant derivation of the mixture formula is given by Jones
(1995). Assuming we have N spherical particles dispersed in a spherical
region of the suspending medium at a volume fraction ϕ as shown in figure
(16), the Principle of Superposition and equation (66) gives that the total
dipole moment of the spherical region must be given by

peff = Np

= 4εmfCMa3E

= 4Nπεm

(
ε̃p − ε̃m
ε̃p + 2ε̃m

)
a3E

(79)
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Figure 16. Schematic diagram of how a suspension of N particles can be
treated as a homogenous sphere in deriving Maxwell’s Mixture Theory.

Similarly equation (66) can be used to give a dipole moment for the whole
sphere in terms of the effective dipole as

peff = 4πεm

(
ε̃eff − ε̃m
ε̃eff + 2ε̃m

)
R3E (80)

Equating these two expressions gives Maxwell’s mixture formula:(
ε̃eff − ε̃m
ε̃eff + 2ε̃m

)
= N

a3

R3

(
ε̃p − ε̃m
ε̃p + 2ε̃m

)
(

ε̃eff − ε̃m
ε̃eff + 2ε̃m

)
= ϕ

(
ε̃p − ε̃m
ε̃p + 2ε̃m

) (81)

where ϕ = N a3

R3 is the volume fraction. This is more often written as

ε̃mix = ε̃m
1 + 2φf̃CM

1− φf̃CM

= ε̃m
1 + 2φ

(
ε̃p−ε̃m
ε̃p+2ε̃m

)
1− φ

(
ε̃p−ε̃m
ε̃p+2ε̃m

) (82)

This equation gives the dielectric increment due to the particles and this
is added to the permittivity of the suspending medium to give the total
complex permittivity of the suspension. This is valid under the condition
that the volume fraction is small (i.e. ϕ 
 1). Further developments have
been proposed to take into account the effect of high particle concentrations
(Hanai et al., 1975; Hanai and Koizumi, 1976; Hanai et al., 1979; Zhang
et al., 1993). Dielectric spectroscopy measurements of the variation in the
complex permittivity of a suspension of dielectric particles with frequency
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Figure 17. Schematic plot of the many different types of relaxation phe-
nomena which occur in dielectric materials and the approximate frequency
ranges in which they are found.

have been the accepted method for determining the effective polarisability
and the induced effective dipole moment of individual particles.

8 Conclusion

In this chapter, the basic equations of quasi-electrostatic systems and the
behaviour of charges have been discussed. The behaviour of collections of
dipoles and the macroscopic properties of dielectrics formed from a collec-
tion of molecular dipoles have been discussed. The induced polarisation of
particles in AC electric fields have also been discussed and expressions for
the dipolemoment of particles of different geometries and internal structures
have been derived. The successive physical mechanisms have been detailed,
with successively complex models being presented. In general, relaxations
due to interfacial polarisation occur at frequencies below those for orienta-
tional and electronic polarisation. A plot of the real and imaginary parts
of the complex permittivity of an arbitrary system, taking into account all
the different polarisation mechanisms, would be expected to resemble figure
(17)
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Dielectrophoresis and AC Electrokinetics

Nicolas G. Green

School of Electronics and Computer Science, University of Southampton,
Highfield, Southampton, SO17 1BJ, United Kingdom

Abstract This chapter discusses the forces produced by the inter-
action of non-uniform electric fields with the induced moments of
the particle, focussing mainly on dielectrophoresis. Other AC elec-
trokinetic effects will be discussed: a field with rotating field vector
gives rise to a torque on a particle, referred to as electrorotation;
and a field with a spatially varying phase (rather than magnitude)
gives rise to travelling wave dielectrophoresis. Expressions will be
derived for the different forces and torques and describe the result-
ing movement of the particles. The frequency dependent behaviour
will be discussed and presented as a mechanism of determining the
dielectric properties of a particle, as well as manipulating and sep-
arating different types of particle.

1 Introduction

Electrokinetics in general refers to the movement of particles suspended in
fluids due to the action of electric fields. The interaction of non-uniform
electric fields, i.e. one which has a spatial variation in magnitude, with
the induced moments of the particle produces a movement termed dielec-
trophoresis. In general AC electric fields are used since the dielectrophoretic
force has a non-zero time average.

In general, any field non-uniformity produces electrokinetic motion: a
field with rotating field vector gives rise to a torque on a particle and rotation
referred to as electrorotation; and a field with a spatially varying phase
(rather than magnitude) gives rise to travelling wave dielectrophoresis. In
the following sections, we derive expressions for the different forces and
torques and describe the resulting movement of the particles. The frequency
dependent behaviour will be discussed and presented as a mechanism of
determining the dielectric properties of a particle, as well as manipulating
and separating different types of particle.
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1.1 A note on Electrophoresis

Electrophoresis is the movement of a particle with a non-zero net charge
produced by the Coulomb force. Biological particles and most particles
which suspend well in water have a finite surface charge density (usually
negative, due to the presence of acid groups on the surface) and observation
of the movement of these particles in a uniform electric field is used both
to characterise and also to separate particles.

The Coulomb force on a particle is given by the product of the electric
field and the charge on the particle

FEP = QE =

∫
S

σqdSE (1)

where Q is the total charge on the particle which, if the particle has a surface
charge density σq, is given by the integral of this charge density over the
closed surface S of the particle. In an AC electric field, the movement due
to this force is oscillatory with zero time-average.

Many particles, including biological particles, when suspended in an elec-
trolyte, are surrounded by an electrical double layer consisting of counter-
ionic charges. This screens the particle surface charge, so that the force on
the particle is not described exactly by equation (1).

2 Force on an induced dipole: Dielectrophoresis
(DEP)

Dielectrophoresis is the motion of a particle produced by the interaction
of a non-uniform electric field with the induced effective dipole moment
of the particle (Pohl, 1978) as discussed in the previous chapter. If the
field is uniform, the force on each of the two poles of the dipole is equal and
opposite and there is no movement. If the field is non-uniform, however, the
two forces are not equal and the particle moves, which will be demonstrated
using a simple point and plane geometry (figure 1) as an illustration.

When the particle is more polarisable (figure 2a) more charge is induced
on the inside of the interface and the dipole points in the same direction
as the applied field. Both poles experience a force attracting them towards
their facing electrode but the pole facing the point electrode is in a higher
field strength region and experiences a stronger force. As a result, the
particle is pulled in the direction of increasing field strength, an effect called
negative dielectrophoresis.

If the particle is less polarisable (figure 2b), more charge is induced on
the outside of the interface in the fluid medium and the dipole points in
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Figure 1. Schematic diagram of the simple non-uniform electric field pro-
duced by a point and plane electrode geometry.

the opposite direction to the field. Both poles experience a repulsive force
from the facing electrode but again, the pole facing the point electrode
experiences a stronger force and the particle is pushed in the direction of
decreasing field strength. This is referred to as negative dielectrophoresis.

The figure also shows the arrangement of charges and the dipole for the
potential difference applied in one direction and on the bottom, the other
direction. This represents the two halves of an AC cycle, demonstrating
that while the charges change sign in each half cycle, as does the direction
of the dipole, since the electric field also changes direction, the net force on
the particle points in the same direction. Thismeans that since the charge is
induced by the field, the Coulomb force in this case is second order with the
field and the time averaged dielectrophoretic force is non-zero. In AC fields
therefore, dielectrophoresis has a non-zero effect and can be used across a
wide range of frequencies.

2.1 Translational force on a dipole in a non-uniform field

The expression for the force can be derived following Jones (1995). Fig-
ure (3) shows a dipole p = Qd in a non-uniform electric field E. As shown
by the figure, the two charges each experience a different value of electric
field so that the dipole will experience a net force given by

F = QE(r+ d)−QE(r) (2)

where the vector r is the position of the negative charge, as shown in the
figure. If the length of the vector d is small compared with a typical dimen-
sion of the non-uniformity of the electric field, E can be expanded around
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Figure 2. Schematic diagram of the polarisation and the induced dipole
produced for the two cases: (a) particle more polarisable than the medium,
with the induced dipole parallel to the field and (b) particle less polarisable
than the medium, with the induced dipole anti-parallel to the field. When
the dipole is parallel to the field, the Coulomb forces on the two poles are
towards the nearest electrode but since the field on the point electrode side
is stronger the particle is pulled in that direction. When the dipole is anti-
parallel, the Coulomb forces on the two poles are repulsive but the field
on the point electrode side is still stronger, the particle is repelled from
that electrode. The top two diagrams show the arrangement of charges for
the potential applied in one direction and the bottom two the arrangement
when the potential is applied the other way around.
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Figure 3. An arbitrary dipole in an arbitrary electric field experiences a
difference electric field (magnitude and direction) on each of it’s two poles.

r using the vector Taylor series

A(x+ dx) = A(x) + dx · ∇A+ higher order terms (3)

and the force on the dipole becomes

F = QE(r) +Q(d.∇)E+ higher order terms−QE(r) (4)

or

F = QE(r) +Q

(
dx

∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z

)
E+ higher order terms−QE(r)

(5)
Substituting for the dipolemoment and neglecting the higher order terms

gives the well-known expression for the force on the dipole

FDEP = (p · ∇)E (6)

This equation tells us that the force is zero if the electric field is uniform,
i.e. only in a non-uniform field can dielectrophoresis occur.
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Equation (6) gives the total force on the particle only if the length of
the dipole is smaller than a typical dimension of the field non-uniformity,
an assumption referred to as the dipole approximation. In other words,
if the magnitude of the electric field does not vary significantly across the
dimensions of the dipole, this expression for the force is correct. If this
assumption does not hold or the particle is in a field null, then multipole
force terms must be considered. A full derivation of the higher order terms
is an involved process and has been performed exhaustively by Jones (1985,
1995); Jones and Washizu (1994); Washizu and Jones (1996). An alternative
and more exact method is to use the Maxwell stress tensor. This requires
an exact solution for the potential in the system and the integration of the
stress tensor around the particle to give the force (Jones, 1995; Wang et al.,
1994).

2.2 Dielectrophoresis in an AC field

This section will derive the force on the particle considering the case of
an electric field with a spatially varying field magnitude and constant phase,
which is the common method of deriving the dielectrophoretic force. In the
next sections, the more general case of electric field with a spatially varying
magnitude and phase will be considered (Morgan and Green (2003)).

Assuming an applied potential of a single frequency ω, then the time
dependent values in the system can be represented using phasors. An arbi-
trary, harmonic potential can be defined as φ(x, t) = Re[φ̃(x)eiωt] where
i2 = −1, x is the position, the tilde indicates a complex phasor (φ̃ =
φR + iφI) and Re[...] indicates the real part of.

The electric field is then given by E(x, t) = Re[Ẽ(x)eiωt] where the
vector Ẽ = −∇φ̃ = − (∇φR + i∇φI) is the corresponding phasor. If the
phase is constant across the system, the field phasor can be assumed to be
real without loss of generality (i.e. Ẽ = E = −∇φR).

The dipole moment of the particle is therefore p̃ = υα̃Eeiωt and the
time-averaged force on the particle is (from equation (6))

〈FDEP 〉 = 1

2
Re[(p̃ · ∇)E∗] (7)

where * indicates complex conjugate. In this case, the phasors are real, and
the time-averaged force is

〈FDEP 〉 = 1

2
υRe[α̃](E · ∇)E (8)

Using the following vector identity

∇(A ·B) = (A · ∇)B+ (B · ∇)A+B× (∇×A) +A× (∇×B) (9)
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and the fact that the field is irrotational (∇×E = 0) gives

〈FDEP 〉 = 1

4
υRe[α̃]∇(E ·E) (10)

This is the dielectrophoretic force, which is commonly written as

〈FDEP 〉 = 1

4
υRe [α̃]∇|E|2 (11)

or using root-mean-square (RMS) values for the field:

〈FDEP 〉 = 1

2
υRe [α̃]∇|Erms|2 (12)

which is also the expression for the force in a DC field. Here we will not use
RMS designations and equation (11) will be used as the expression for the
DEP force, where E is the amplitude of the electric field.

Inspection of this equation shows that the dielectrophoretic force de-
pends on the volume of the particle and the gradient of the field magnitude
squared (proportional to the energy density in the field). These two param-
eters can vary greatly in typical experimental conditions. The force also
depends on the real part of the effective polarisability and therefore, on
the permittivity and conductivity of both the particle and the suspending
medium, as well as the frequency of the applied electric field.

For a spherical particle, the variation in the magnitude of the force with
frequency is given by the real part of the Clausius-Mossotti factor (equation
(68) of previous chapter). Substituting for the effective polarisability of a
sphere (equation (67) of previous chapter), the full expression for the time-
averaged DEP force is

〈FDEP 〉 = πεma3 Re

[
ε̃p − ε̃m
ε̃p + 2ε̃m

]
∇|E|2 (13)

where the parameters have been defined previously.

2.3 Dielectrophoretic behaviour

Examination of the DEP force expressions shows that the magnitude of
the force depends on several important factors.

First, it depends on the particle volume (a3), an important factor as the
range of particle radii of interest is broad: 100 μm down to 10nm, which is
12 orders of magnitude in volume.

Second it depends on the permittivity of the suspending medium, which
is usually relatively high, for example ∼ 80εo for water, but can be as low
as ∼ 2εo in oil.
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Figure 4. The Clausius-Mossotti factor for a shelled particle similar to a
biological cell plotted as a function of frequency separately as real (solid
line) and imaginary (dashed line) parts. Where the real part is positive, the
particle will experience positive DEP in a non-uniform field and where it is
negative, it will experience negative DEP.

Third, it depends on the gradient of the field strength squared, which is
proportional to the energy of the particle in the field. This is the main con-
trollable parameter for handling smaller and smaller particles: the gradient
in the field can be increased by reducing the dimensions of the electrodes,
thereby increasing the curvature of the electric field.

Lastly, the real part of the Clausius-Mossotti factor defines the frequency
dependence and direction of the force. Positive DEP occurs if the polaris-
ability of the particle is greater than the suspending medium (Re[f̃CM ] > 1)
and the particle moves towards regions of high electric field strength. Neg-
ative DEP occurs if the polarisability of the particle is less than the sus-
pending medium (Re[f̃CM ] < 1) and the particles are repelled from regions
of high field strength. The force depends through the Clausius-Mossotti
factor, on the permittivity and conductivity of both the particle and the
suspending medium, and therefore on the frequency of the applied electric
field.

Figure (4) shows a typical plot of the Clausius-Mossotti factor as a func-
tion of frequency. Where the real part is positive, this particle will expe-
rience positive DEP and will be attracted to regions of high field strength.
Likewise if the real part is negative, then the particle will experience nega-
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Figure 5. Schematic cross-section diagram of a simple array of interdigi-
tated electrodes with alternate potentials applied generating a non-uniform
electric field between each consecutive pair. This is a commonly used elec-
trode design and has two types of planes of symmetry: a plane of even
symmetry in the middle of each electrode and a plane of odd symmetry in
the centre of each gap. Also shown are the effective dipole moments of two
particles placed on these planes of symmetry and the approximate forces on
the poles of each dipole.

tive DEP. For the particle shown in the figure, which is typical of a biological
cell, it experiences negative DEP at low frequencies, positive DEP in the
middle frequency range and negative DEP at high frequencies.

2.4 A note on the direction of the DEP force

It was state previously that the dielectrophoretic force arises from a dif-
ference in the strength of the field acting on the two halves of the dipole
induced in the particle. This is the picture most commonly used to ex-
plain dielectrophoresis because of its simplicity. However, it is also a trifle
misleading about the direction of the DEP force in that it implies that
the direction is towards the electrode. In fact the force is driven by the
curvature of the electric field not the magnitude.

To illustrate, consider the electrode array drawn schematically in fig-
ure (5). This is the interdigitated electrode array, which will be discussed
in more detail later, consisting of a row of finger electrodes with alternate
signals applied along the array. The diagram shows roughly the field lines
generated by this array in cross-section demonstrating the repeated pattern
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and the planes of symmetry in the centres of the electrodes and the gas be-
tween the electrodes. Two particles are drawn on these planes of symmetry
along with the orientation of the induced dipole for positive DEP. For the
particle on the left, the situation is similar to the simple picture outlined
previously. The pole closest to the electrode experiences a stronger force
than the pole away from the electrode and therefore moves towards the elec-
trode. In this case, the electric field, the dipole moment and the DEP force
are all lined up. However, the reason that the field strength is greater close
to the electrode and weaker further away in the vertical direction (away
from the electrodes entirely) is due to the curvature of the field bending it
round to the next electrode.

In addition, for the second particle over the centre of the gap, the field
strengths at the two poles of the dipole are equal since the field is symmet-
rical. The reason that there is a DEP force here is that the field is curved
across the particle and the field vectors point downwards on either side of
the particle. The sum of these two vector forces is a resultant that points
straight down towards the substrate between the electrodes, not towards
an electrode. The force maps for this electrode design and others will be
discussed later.

2.5 Dielectrophoresis in a fluid

A fluid exerts a viscous drag force Fη on a particle as it moves given by:

Fη = −fv (14)

where v is the velocity of the particle and f is the friction factor of the
particle. When the particle is subjected to an external force, for example
the dielectrophoretic force, it will accelerate until the drag force is equal
to the applied force after which it moves at the terminal velocity for the
applied force. This movement is described by:

v =
FDEP

f

(
1− e−

t
τm

)
(15)

where τm = m/f is referred to as the momentum relaxation time. For times
much greater than this time, the particle moves at the terminal velocity:

vDEP =
FDEP

f
(16)

For biological cells at the largest scale where dielectrophoresis is applied,
the momentum relaxation time is of the order of microseconds, signifying
that the particles are always observed to move at a velocity proportional to



Dielectrophoresis and AC Electrokinetics 71

the applied dielectrophoretic force. In general, the dielectrophoretic velocity
is

vDEP =
υRe[α̃]∇|E|2

f
(17)

with dielectrophoretic mobility μDEP defined as the terms in front of the
electric field term so that

μDEP =
υRe[α̃]

f
(18)

For a spherical particle, the friction factor is f = 6πη a where η is the
dynamic viscosity of the fluid so that the dielectrophoretic velocity is

vDEP =
πa3εm Re[f̃CM ]∇|E|2

6πηa
(19)

and the mobility is

μDEP =
a2εm Re[f̃CM ]

6η
(20)

Examination of these equations reveals that the observable effect of di-
electrophoresis only scales with radius squared not cubed, a fact that allows
smaller particles to be successfully manipulated.

3 Dielectrophoresis in a field with a spatially
dependent phase

For a general AC field, such as that generated by the application of multiple
potentials of different phase, the derivation of the dielectrophoretic force is
more involved. The electric field in this case is E(x, t) = Re[Ẽ(x)eiωt], where
the vector Ẽ = −∇φ̃ = − (∇φR + i∇φI) is the corresponding complex
phasor. The expression for the time-averaged force on the particle can then
be derived from equation (7) noting that the vectors now consist of complex
components. The equation for the force is

〈FDEP 〉 = 1

2
Re[(p̃ · ∇)Ẽ∗] =

1

2
υRe[α̃(Ẽ · ∇)Ẽ∗] (21)

Using the following vector identity and the fact that the electric field is
irrotational (∇× Ẽ = 0)

∇(A ·B) = (A · ∇)B+ (B · ∇)A+B× (∇×A) +A× (∇×B)

∇(Ẽ · Ẽ∗) = (Ẽ · ∇)Ẽ∗ + (Ẽ∗ · ∇)Ẽ+ Ẽ∗ × (∇× Ẽ) + Ẽ× (∇× Ẽ∗)
(22)
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giving
∇(Ẽ · Ẽ∗) = (Ẽ · ∇)Ẽ∗ + (Ẽ∗ · ∇)Ẽ (23)

as well as the following vector identity and the fact that the field has zero
divergence (Gauss’s law) in a homogeneous dielectric

∇× (A×B) = (B · ∇)A− (A · ∇)B+ (∇ ·B)A− (∇ ·A)B

∇× (Ẽ× Ẽ∗) = (Ẽ∗ · ∇)Ẽ− (Ẽ · ∇)Ẽ∗ + (∇ · Ẽ∗)Ẽ− (∇ · Ẽ)Ẽ∗
(24)

giving
∇× (Ẽ× Ẽ∗) = (Ẽ∗ · ∇)Ẽ− (Ẽ · ∇)Ẽ∗ (25)

then the force expression (equation 21) becomes on combination and sub-
stitution of equations (23) and (25)

〈FDEP 〉 = 1

4
υRe[α̃]∇(Ẽ · Ẽ∗)− 1

2
υ Im[α̃](∇× (Ẽ× Ẽ∗)) (26)

where Im [...] is the imaginary part of the function. This can be re-written
as

〈FDEP 〉 = 1

4
υRe[α̃]∇

∣∣∣Ẽ∣∣∣2 − 1

2
υ Im[α̃](∇× (Re[Ẽ]× Im[Ẽ])) (27)

where
∣∣∣Ẽ∣∣∣2 =

∣∣∣Re[Ẽ]
∣∣∣2 +

∣∣∣Im[Ẽ]
∣∣∣2. If there is no spatially varying phase,

the phasor of the electric field can be taken to be real (i.e. Im[Ẽ] = 0), the
second term on the right hand side of equation (27) is then zero and the
expression for the force becomes that of equation (11). However, if there is
a spatially varying phase, as in the case of travelling wave dielectrophoresis,
the complete force expression must be used. The first term in the force
expression depends on the frequency in the same manner as equation (11)
and has a similar form. The second term in the force equation depends,
however, on the imaginary part of the effective polarisability, or rather the
imaginary part of the Clausius-Mossotti factor. This force is zero at high
and low frequencies, rising to a maximum value at the Maxwell-Wagner
interfacial relaxation frequency.

Note that the form of equation (27) given here is different from that gen-
erally given in the literature (e.g. Wang et al. (1994)) but is equivalent and
lends itself readily to numerical simulation. Another point to note is that
in the presence of electrode polarisation, the potential across the medium is
no longer real, it becomes complex and has an imaginary component which
is not parallel with the real part. Therefore, equation (11) cannot be used
to determine the dielectrophoretic force and equation (27) should be used
instead.
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Figure 6. Schematic diagram of a linear travelling wave dielectrophoresis
array and the consecutive phase-shifted signals required to generate the
travelling electric field. Also shown are the approximate field lines for time
t = 0, the electric field and the dipole moment induced in the particle
together with the force on the particle.

3.1 Travelling wave Dielectrophoresis (twDEP)

As mentioned previously, one example of a phase varying field that is
used in the literature is the travelling electric field, as illustrated in figure
(6). The sequentially phase-shifted AC voltages generate an electric field
with a spatially dependent phase.

From equation (27) the complete expression for the force consists of two
components, one of which is the DEP force and another that depends on
the phase of the field. In a travelling electric field, both of these components
exist, so that the full DEP force is given by

〈FDEP 〉 = 1

4
υRe[α̃]∇

∣∣∣Ẽ∣∣∣2 − 1

2
υ Im[α̃](∇× (Re[Ẽ]× Im[Ẽ])) (28)

The two components can be considered separately; a dielectrophoretic
force, given by the first part of the r.h.s. and an additional twDEP force
which propels the particle in the opposite direction to the moving field vec-
tor, given by the second half of the r.h.s. of this equation. Generally, for
twDEP to be effective, the frequency and conductivity must be chosen to
fulfil two criteria: (a) the particle is levitated above the electrodes by a neg-
ative DEP force and (b) the imaginary part of the Clausius-Mossotti factor
is non-zero so that the particle moves along the track. These conditions are
illustrated in figure (7), which shows a plot of the real and imaginary parts
of the Clausius-Mossotti factor calculated for a latex particle suspended in
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Figure 7. Plot of the real and imaginary parts of the Clausius-Mossotti
factor for a solid homogeneous particle plotted as a function of frequency.
In the frequency range shown by the grey area, particles in a travelling wave
array will experience sufficient dielectrophoretic repulsion to levitate, and
a large enough imaginary part to produce a finite translational force along
the array.

a very low conductivity medium. Examination of the frequency dependence
of both the real and imaginary parts shows three distinct regions, indicated
by the shaded parts of the plot. At low frequencies, particles are pulled onto
the electrode array by positive DEP forces, so that although the imaginary
part is non-zero, twDEP does not occur in practice. At very high frequen-
cies, particles are levitated above the electrodes, but now the imaginary part
is zero so that no twDEP occurs. Only in the mid frequency range, where
both the real part is substantially high and the imaginary part is non-zero,
can twDEP occur.
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Figure 8. Schematic diagram of the Coulomb force acting on the two poles
of a fixed dipole when there is a angle between the dipole moment and the
applied field. The two forces act in the direction of the field and therefore
act to rotate the dipole into alignment with the field.

4 Torques: electrorotation and electro-orientation

In addition to the force on a dipole, if the dipole moment is at an angle to
the applied electric field, a torque will be produced acting to align the two.
While in AC electrokinetic systems, the dipoles are induced on particles
and are not fixed, two related phenomena result from this type of torque:
electrorotation and electro-orientation. The expressions given here are all
first order only. Expressions for the electrorotational torque incorporating
higher order terms have been covered both by Washizu and Jones (1996).

When a dipole sits in a uniform electric field, each charge on the dipole
experiences an equal and opposite force tending to align the dipole parallel
to the field, i.e. it experiences a torque. Immediately after applying the elec-
tric field, it takes a finite amount of time for the dipole moment to become
aligned with the field vector; in other words a time delay exists between
the establishment of the field and the formation of the dipole. Therefore, if
the field vector changes direction, the induced dipole moment vector must
realign itself with the electric field vector, causing particle rotation.

Figure (8) shows the forces on the two poles of a dipole and the resultant



76 Nicolas G. Green

Figure 9. A schematic diagram of an electrorotation setup. Four signals,
successively 90texto out of phase are applied to four electrodes encircling
the particle.

rotation. The torque on this dipole is found from:

ΓROT =
d

2
×QE+

−d
2
× (−QE)

= Qd×E

= p×E

(29)

This torque is at the root of both electrorotation, which occurs in a rotating
electric field, and electroorientation which occurs when the particle is non-
spherical.

4.1 Electrorotation (ROT)

Normally, electrorotation is used to analyse particle by applying a ro-
tating or circularly polarised electric field created by the superposition of
two 90o phase-shifted AC signals as shown schematically in figure (9). The
electric field induces a dipole which continuously tries to align itself with the
rotating electric field vector. As a result, the particle experiences a constant
torque and rotates asynchronously around its axis. The torque is zero when
the phase angle between the particle’s polarisation vector and the applied
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Figure 10. Schematic diagram showing how the induced dipole moment of
a particle lags behind a rotating applied electric field.

field is zero and maximum when the phase angle is 90o as shown in figure
(10). If the induced dipole moment lags behind the field, then the direction
of rotation is with the field and vice versa for a moment that leads the field.

For a harmonic AC electric field, the time-averaged first order torque on
the particle is

〈ΓROT 〉 = 1

2
Re[p×E∗] (30)

Following the definitions given previously for the electric field and the in-
duced effective dipole moment, the torque can be written as

〈ΓROT 〉 = 1

2
υRe[α̃(Ẽ× Ẽ∗)] = −υ Im[α̃](Re[Ẽ]× Im[Ẽ]) (31)

A quick consideration of a locally rotating field vector:

Ẽ = E(x̂− iŷ)⇒
{

Re[Ẽ] = Ex̂

Im[Ẽ] = −iEŷ

Re[Ẽ]× Im[Ẽ] = det

⎛
⎝ x̂ ŷ ẑ

E 0 0
0 −E 0

⎞
⎠ = −E2ẑ

(32)
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gives the normal expression for the ROT torque:

〈ΓROT 〉 = −υ Im[α̃]|E|2ẑ (33)

and for a spherical particle:

〈ΓROT 〉 = −4πεma3 Im

[
ε̃p − ε̃m
ε̃p + 2ε̃m

]
(Re[Ẽ]× Im[Ẽ]) (34)

and

〈ΓROT 〉 = −4πεma3 Im

[
ε̃p − ε̃m
ε̃p + 2ε̃m

]
|E|2ẑ (35)

The electrorotational torque for a particle is governed by the permittivity
of the suspending medium, the volume of the particle and the applied field
magnitude squared. More importantly, the torque is frequency dependent
through the effective polarisability. For example, for the spherical shelled
particle previously shown in figure (4), the imaginary part of the Clausius-
Mossotti factor peaks at the Maxwell-Wagner interfacial frequency so that
a single electrorotational peak is found for each interface. In this case, one
of the peaks is co-rotational with the field and one is counter-rotational.

Similar to the situation for dielectrophoresis, in a viscous fluid, the rota-
tion rate arising from the electrorotational torque has an acceleration phase
and a terminal rate phase given by:

RROT =
ΓROT

fθ
(36)

where fθ = 8πη a3 is the rotational friction factor and for a sphere,

RROT = −εm|E|2
2η

Im
[
f̃CM

]
ẑ (37)

Note that the steady state rotation rate is now independent of particle size,
depending only on the differences in the dielectric properties.

Examination of equation (31) shows a similar field phase dependency to
travelling wave dielectrophoresis. In fact, travelling wave dielectrophoresis
and electrorotation always occur together, making electrorotational obser-
vations across a broad range of frequencies challenging.

4.2 Electroorientation

Electroorientation is the orientation of a non-spherical particle with the
electric field. Without going into much detail, using the dipole moment for
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each axis from the previous chapter (equation (77)), with α, β, γ represent-
ing the directions of the three principal axes and the particle volume given
by υ = (4/3)πaαaβaγ :

p̃α = 3υεmK̃αẼα

p̃β = 3υεmK̃βẼβ

p̃γ = 3υεmK̃γẼγ

(38)

There are then three torque components:

〈Γ〉α =
1

2
Re
[
p̃β × Ẽ∗γ − p̃γ × Ẽ∗β

]
〈Γ〉β =

1

2
Re
[
p̃γ × Ẽ∗α − p̃α × Ẽ∗γ

]
〈Γ〉γ =

1

2
Re
[
p̃α × Ẽ∗β − p̃β × Ẽ∗α

] (39)

which can be manipulated to give

〈Γ〉α = 2υεm(Lγ − Lβ)EβEγ Re
[
K̃β − K̃γ

]
〈Γ〉β = 2υεm(Lα − Lγ)EγEα Re

[
K̃γ − K̃α

]
〈Γ〉γ = 2υεm(Lβ − Lα)EαEβ Re

[
K̃α − K̃β

] (40)

The electroorientational torque has a complicated frequency dependent be-
haviour arising from the sum of the three individual torque components,
which can in principle result in a non-spherical particle aligning with any
of its major or minor axes parallel to the applied field.

5 Particle-particle interaction

The basic derivations of the AC electrokinetic forces so far have assumed
that the particles are isolated entities, or at least are sufficiently separated
from each other that they do not interact. However, in many situations this
is not true and particle-particle interactions must be considered.

From basic electrostatics, when two or more particles with the same sign
of charge are suspended in an insulating medium, Coulomb’s law states that
they will always repel each other. However, the situation in an electrolyte
is a little more complicated, since there is free charge which moves in the
applied electric field and screens the particle’s charge. The consequence is
that the field produced by the particle charge rapidly decays with distance
into the suspendingmedium, so that any long-range electrostatic interaction
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Figure 11. Schematic diagram of the attractive force between two fixed
dipoles aligned by an applied uniform electric field.

with other particles does not occur. The only interaction that can occur is
when the particles are very close; in this case both electrostatic interactions
and Van der Waals forces contribute to the total interaction force between
the particles. These effects are important in determining the stability of
colloids.

5.1 Two fixed dipoles

As a qualitative example, consider two fixed dipoles suspended in a uni-
form electric field. Both dipoles align with the field in the same direction, as
shown schematically in figure (11). If the dipoles are close enough, each of
the charges in one dipole experiences a different force from the two charges
in the other dipole. The positive charge of one dipole ”feels” an attractive
force from the negative charge on the second dipole and vice versa. The
action of this attractive force is to pull the dipoles together to form a chain.
The rapid decay of the dipole field with distance ensures that the force
imbalance rapidly goes to zero with increasing separation of the dipoles.

5.2 Induced dipoles

In the case of polarisable particles and induced dipoles rather than fixed
dipoles, then similar effects occur. A quantitative approach to the issue of
particle-particle interaction can be found, for example, in (Jones, 1995) and
(Giner et al., 1999). This section presents only a qualitative summary using
field simulations for illustration.

The behaviour of a particle in an electric field can be phenomenologically
predicted by examining the electric field distribution. This is equally true
for examining the behaviour of two particles interacting as the formation of
the induced dipole produces a non-uniform field around a particle. Particle-
particle interactions can therefore be thought of as one particle experiencing
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Figure 12. The magnitude of the electric field around two particles aligned
along a horizontal applied electric field. In (a) both particles are much
more polarisable than the surrounding medium i.e. they experience positive
DEP. In (b) both particles are much less polarisable than the medium and
experience negative DEP.

dielectrophoresis in the non-uniform field produced by the other particle
and vice-versa. Two dimensional simulations can be used to illustrate some
interesting phenomena of particle-particle interaction.

For two particles aligned along the direction of a uniform electric field,
the distribution in the field magnitude around the particles is shown in fig-
ure (12). There are two interesting cases to consider. The first is shown
in figure (12a), where both particles are much more polarisable than the
surrounding medium (e.g. conducting particles in a relatively low conduc-
tivity electrolyte at low frequencies). The field strength inside the particle
is low and there are low field strength regions on either side of the particles.
However, there are high field strength regions at the poles of the particles,
along the axis of the applied field. This is particularly obvious in the re-
gion between the two particles. Since both particles experience positive
dielectrophoresis, they will always move towards high field regions and, as
this figure shows, they will therefore move towards each other. The second
case is when both particles are much less polarisable than the suspending
medium, as shown in figure (12b). The strong field regions are at the sides
of the particles and the field strength outside the particles at the poles is
low. Since both particles experience negative dielectrophoresis, they should
move away from high field regions and therefore move towards each other.
In both cases the particles will line up along the direction of the electric
field and, if there is a large number of particles, chains will form.
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Figure 13. The magnitude of the electric field around two particles aligned
perpendicular to a horizontal applied electric field. In (a), both particles
are much more polarisable than the surrounding medium and experience.
positive DEP. In (b) both particles are much less polarisable than the sus-
pending medium and experience negative DEP.

For the same two particles aligned perpendicular to the applied field,
figure (13a) shows the electric field magnitude around the more polarisable
particles. The regions of strong electric field are again at the poles of the
particles and along the direction of the field. This time there is a significant
region of low field strength between the two particles. Since the particles
experience positive dielectrophoresis, they will be pushed away from the
low field region; in other words they repel each other. This arrangement is
therefore unstable; the particles move into the arrangement shown in figure
(12a). The same situation occurs for the less polarisable particles shown in
figure (13b). These particles experience negative dielectrophoresis and are
attracted to the low field regions, which in this case are at the poles along
the field axis. They are also pushed away from the high field region, which
is between the particles. The stable configuration is therefore that shown
in figure (12b).

There is a third case that can be imagined: two different particles, one
more polarisable and the second less polarisable than the electrolyte. In
this case, one particle experiences positive dielectrophoresis and the other
negative dielectrophoresis. The electric field magnitude is shown in figure
(14), for two particles aligned along the field or perpendicular to the applied
field. When the particles are aligned along the field, figure (14a), the more
polarisable particle is attracted towards the high field points around the
other particle, which are located at the sides of the particle along the axis
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Figure 14. The magnitude of the electric field around two different parti-
cles, one more polarisable and the other less polarisable than the medium,
in a horizontal applied electric field. Two arrangements are shown, (a)
the particles aligned parallel to the field and (b) the two particles aligned
perpendicular to the field.

perpendicular to the applied field. It is also repelled from the low field
region between the two particles. The less polarisable particle on the right
is likewise attracted to the sides of the particle along the perpendicular axis,
since the low field regions around the more polarisable particle are there.
The dielectrophoretic movement suggests that alignment along the field is
unstable in this situation and that alignment across the field is preferred.
Examining (14b), which shows the two particles aligned perpendicular to
the field, it can be seen that the more polarisable (lower) particle would
be attracted towards the less polarisable (upper) particle as there are high
field regions between the two. The less polarisable particle is also attracted
to the more polarisable particle because of the low field region between the
particles. The stable arrangement is, therefore, alignment along the axis
perpendicular to the applied field.

To summarise, for two or more particles of similar nature, the arrange-
ment is the formation of long chains aligned along the applied field lines.
If, however, there is a mixture of particle types, some of which experience
positive and some negative dielectrophoresis, chains of like particles would
form along the field lines. In addition, alternate unlike particles would align
perpendicular to the field lines. This behaviour is illustrated and shown
experimentally in figure (15), showing the different chains comprising dif-
ferent particle types, and showing a still video image of latex particles and
yeast cells interacting as has been outlined. This has also been observed in
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Figure 15. Schematic diagram and still video image of how a mixture
of particles experiencing both positive and negative dielectrophoresis align
in an applied electric field E. Like particles form pearl chains along the
field lines and unlike particles align perpendicular to the applied field and
alternately according to the type of DEP the particle is experiencing. The
still video image shows 15microm particles experiencing negative DEP and
yeast cells moving under positive DEP.

the literature: (Giner et al., 1999).
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Abstract Electrowetting has become widely used to control the
wettability of solid surfaces in microsystems. In this chapter, we
briefly introduce basic concepts of wetting and we discuss in de-
tail the fundamental physics behind the electrowetting phenomenon.
We compare the different theoretical approaches to the electrowet-
ting equation, i.e. the thermodynamic derivation and the elec-
tromechanical interpretation. The effects of using AC signals are
discussed and the limits of validity of the electrowetting equation
for increasing voltage are presented (contact angle saturation and
contact line instabilities). In the second part of this chapter, we re-
view applications where electroweting has shown itself as a powerful
tool, like electrowetting-based displays and lenses. Special attention
is dedicated to the use of electrowetting in microfluidic devices.

1 Introduction

As dimensions of physical systems are smaller, the surface-to-volume ra-
tio increases rapidly and surface forces become, relatively, more important.
Thus, the surface tension (i.e. the tendency of a given interface to minimize
its area) has an increasingly importance as we reduce the volume of liquid
we are dealing with. For example, the shape of droplets resting on solid
substrates depends on the wettability and topography of the latter. The
droplet morphology adjusts itself to find the configuration of minimum en-
ergy. As shown in Gau et al. (1999), several metastable states can exist for
complex topographies and the liquid can abruptly change for one morphol-
ogy to another when some parameteres are varied (see Figure 1a)). Two
inmiscible fluids coflowing in a microchannel also illustrate the importance
of wettability in microsystems. Figure 1b) shows a phase diagram of the
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flow patterns observed by Dreyfus et al. (2003). They studied two distinct
situations. When the outer fluid completely wets the walls, they found well
structured flow patterns. However, if the outer fluid partially wets the walls,
no stable flow patterns are identified.

Figure 1. Two examples on the importance of wall wettability in microflu-
idic systems. a) An array of hydrophilic stripes on a hydrophobic substrate.
For a low amount of water the stripes are uniformly covered by the liquid,
forming channels of constant cross section (Left). For higher volumes, the
channels develope a single bulge as soon as the contact angle exceeds a
certain characteristic value (Right), (reproduced with permission from Gau
et al. (1999), c© 1999 AAAS). b) Flow patterns observed for two inmiscible
coflowing fluids in a microchannel. If the outer fluid completely wets the
walls, well structured flow patterns are found (Left). However, if the outer
fluid only partially wets the walls, no clear flow structures are identified
(Right), (reproduced with permission from Dreyfus et al. (2003), c© 2003
American Physical Society).

From these examples, it is clear that the control of surface tension is a
powerful tool for manipulating fluids in the micrometer range. Surface ten-
sion can be modified in several ways (chemically, gradients in temperature,
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electrically...). In this chapter we show how the wetting of solid substrates
by conducting liquids can be tuned by adequately placing electrodes, a
phenomenon that has been named electrowetting (Mugele and Baret, 2005;
Quilliet and Berge, 2001). Electrical control of the effective surface tension
presents several advantages against other methods, electrowetting provides
reversible changes of the contact angle in excess of 90o with actuation speeds
on the scale of milliseconds. This capability has made of electrowetting the
most popular tool for “digital” microfluidic systems, which are based on the
manipulation of discrete drops in a microfluidic chip (Fair, 2007). Manipu-
lation of drops includes generating, moving, merging, splitting and mixing.
In the second part of this chapter we will show how electrowetting has be-
come a versatile tool for all these operations. In the first part of the chapter,
we will briefly introduce the basic concepts of wetting and describe in detail
the fundamentals of electrowetting.

2 Physics of Electrowetting

Electrowetting generally refers to the reduction of the contact angle upon
application of an electric field. In this section we aim to give a global view of
the current knowledge on the fundamental physics behind this phenomenon.
We do not only describe electrowetting by introducing the “classical” ther-
modynamic derivation of Lippmann equation. Important consequences arise
when the phenomenon is studied more in detail and, therefore, we also in-
troduce the recent electromechanical interpretation as well as other aspects
that make electrowetting a much richer and intriguing problem. We start
the section by introducing premilinary concepts as surface tension and con-
tact angle. We have also included a note about the work by Lippmann,
where the relation between surface tension and electric field was described
for the first time.

2.1 Basics of Wetting

Surface Tension. Young-Laplace Law. As already stated in the intro-
duction to the chapter, the surface tension γ 1can be intuitively understood
as the tendency of a given interface to minimize its area and, therefore,
is a crucial quantity when working with small amount of liquids (drops).
Physically, the surface tension is a property of a given interface between

1In most texts, surface tension is denoted either by σ or γ. In other chapters of this

text σ refers to the liquid conductivity. Therefore, we choose γ for surface tension.
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Figure 2. a)Microscopic interpretation of surface tension. Molecules at
the surface cannot form as many bonds with neighbours as the molecules in
the bulk can form. b)Surface tension as a force per unit length. The force
required to strecth the liquid film is F = γ/2w.

two materials and it is defined as the Gibbs free energy G per unit area of
that interface A, at given pressure p and temperature T :

γ ≡
(
∂G

∂A

)
p,T

(1)

SI units for surface tension are [γ] = J ·m−2 = N ·m−1 and, as a typical
value, the surface tension for air-water at 20 oC and 1 atm is 72mN ·m−1.

Fig. 2a) shows the microscopic interpretation of the origin of surface
tension between a liquid and a gas. Molecules in the bulk of the liquid
experience intermolecular forces, forming chemical bonds (i.e. hydrogen
bridges, etc) between neighbours. Molecules at the surface cannot form as
many bonds as those in the bulk and, therefore, bringing one molecule from
the bulk to the interface implies the rupture of some bonds that are not
later created. A certain amount of energy is then required and that is the
origin of surface tension: it costs energy to form a surface.

It is also convenient to interpret surface tension as a force per unit length.
In Fig. 2b), the force F acts on a liquid film over a distance ΔL, chang-
ing its total surface area. The work exerted on the film corresponds to
W = FΔL and it must be equal to the increase of surface energy of the
stretched film Gsurf = 2γwΔL, where the factor 2 is because the film has
a surface both on the top and on the bottom. Surface tension can be then
written as γ = F/2w, with the meaning of a force per unit length trying to
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minimize the liquid surface.

As a consequence of surface tension, a discontinuity in hydrostatic pres-
sure P arises at curved interfaces between inmiscible fluids. This jump in
pressure is given by the Young-Laplace law, which reads:

ΔP = γ

(
1

R1
+

1

R2

)
(2)

where R1 and R2 are the radii of curvature of the interface.

Contact Angle. Young-Dupré equation. In electrowetting, we usu-
ally deal with droplets on solid substrates. In most cases, the droplets are
aqueous salt solutions with a typical size of the order of 1mm or less 2. The
enviroment fluid can be either air or another immiscible liquid, frequently
an oil, that we designate vapour phase. The contact angle, θ, is a property
of the contact line between the three inmiscible phases, the three-phase
contact-line (TCL) (see Figure 3a)), and it is defined as the angle between
the solid/liquid and the liquid/gas interface. For a droplet at rest3, and in
the absence of an external electric field, the value of θ is designated as θY ,
the Young angle. As stated by the Young-Dupré equation, θY is determined
by surface tensions of the three interfaces: solid-liquid γsl, liquid-vapour γlv
and solid-vapour γsv.

cos(θY ) =
γsv − γsl

γlv
(3)

Expression 3 can be found from figure 3(b) imposing that, at equilibrium,
the energy has to be stationary with respect to any infinitesimal diplace-
ment of the TCL. Following de Gennes (1985), a displacement dx involves
a change in free energy per unit length, w, given by:

1

w
dG = γsldx− γsvdx + γlvcos(θ)dx (4)

and the equilibrium condition implies γsl − γsv + γlvcos(θ) = 0.

Since surface tension can be understood as a force per unit length,
a mechanistic interpretation of the equilibrium contact angle can be ob-
tained if we impose equilibrium of these forces at the TCL: Vertical com-
ponents are equilibrated, while the balance of horizontal components reads

2for this droplet size, we can neglect gravity versus surface tension
3for example, the advancing and receding angle in a moving drop can be different, see

section on contact angle hysteresis
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Figure 3. a)The contact angle θ is defined as the angle between the
solid/liquid and the liquid/gas interfaces. b) Small displacement dx of the
contact line from the equilibrium position at a contact angle θ.

γsl − γsv + γlvcos(θ) = 0, which corresponds with expression 3.

Systems with contact angles θ < 90o are often called hydrophilic, while
those with θ > 90o are called hydrophobic. Complete wetting refers to the
case θ = 0 and superhydrophobicity is usually employed when θ > 150o.

2.2 The Electrowetting Equation

Electrowetting is generally used to denote the reduction of the contact
angle upon application of an electric field. The most common electrowetting
setup is that in Figure 4a), where a drop of conducting liquid (salty water)
is placed on top of one electrode coated with an insulating material. The
dielectric layer was first used by Berge (1993) and the advantage is twofold:
(1) it avoids Faradaic reactions that would otherwise occur at bare elec-
trodes, allowing to increase significantly the applied voltage, and (2) highly
hydrophobic dielectric layers are usually employed because Young’s angle
is high and, therefore, the electrowetting effect can be used to decrease it
within a wide range. The wire on top of the droplet is used to establish the
voltage difference, for instance, by means of a battery. Figure 4b) shows the
dependence of the contact angle on the magnitude of the voltage. For a wide
range of values, the reduction of the contact angle is correctly described by
the so-called Electrowetting Equation, which reads:

cos(θ) = cos(θY ) +
1

2

εdε0U
2

dγlv
(5)

where θY is the contact angle when no electrical signal is applied (Young
angle), d and εd are, respectively, the thickness and dielectric constant of
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the insulating layer and U the electrical potential applied to the electrodes.
For voltages higher than ∼ 250V in Figure 4, the contact angle does not
follow this trend and, instead, tends to a constant value. This is known as
contact angle saturation and it will be discussed in section 2.6. The remain-
ing of this section is dedicated to the interpretation of equation 5.

Figure 4. a) Generic electrowetting setup: a wire is immersed in a sessile
drop that rests on top of an electrode covered by an insulator. At zero
voltage the contact angle θY is high (dashed line). The contact angle is
reduced θ upon application of a voltage U . b) Typical electrowetting curve.
The cosine of contact angle shows a parabolic increase with voltage up
to a certain value above which saturation is observed (reproduced with
permission from Mugele and Baret (2005), c© 2005 Institute of Physics).

2.3 Electrochemical derivation

The electrowetting equation (5) is usually denoted as Young-Lippmann
equation because it can be derived by combining Young equation (3) and
Lippmann equation for the reduction of solid-liquid interfacial tension. Lipp-
mann investigated the capillary depression of mercury in electrolyte-filled
glass capillaries at variable voltages U , the electrocapillary effect (see section
2.7), and interpreted his results as an effective reduction of the mercury-
electrolyte surface tension. Upon application of an electric field, electri-
cal charges accumulate at the mercury-electrolyte interface, building up an
electrical double layer (EDL) and accumulating electrostatic energy as in a
capacitor. This redistribution of charge is a spontaneous proccess leading
to a reduction of free energy of the interface and, consequently, to a reduc-
tion of surface tension. We can therefore write ρsl = −∂γeff

sl /∂U , where
ρsl is the surface charge. Considering a constant capacitance per unit area
C of the electrical double layer, ρsl = CU and γeff

sl (U) = γsl − (1/2)CU2.



92 Pablo García-Sánchez and Frieder Mugele

Inserting this relation into Young’s formula for the contact angle, we find:

cos(θ) = cos(θY ) +
1

2

CU2

γlv
(6)

which coincides with equation 5 if the capacitance of the EDL is written as
C = εwε0/dH , with εw the dielectric constant of the electrolyte and dH the
typical thickness of the EDL.

It is interesting to note that we have found the Lippmann relation for a
metal-electrolyte interface, while equation 5 was written for electrowetting
on a dielectric (EWOD). Young-Lippmann equation for EWOD was first
derived by Berge (1993) and it is also demonstrated by minimizing the free
energy. In this case the electrical double layer builds up at the insulator-
droplet interface and the total capacitance corresponds to the association
in series of this double layer and the insulator, with capacitance per unit
area given by εdε0/d, where εd is the permittivity of the insulator and d its
thickness. The capacitance of the insulator is usually much smaller than the
capacitance of the EDL, which can then be neglected. Therefore, equation
6 is also valid for EWOD if the specific capacitance of the electrical double
layer C is replaced by that of the insulating layer.

This thermodynamic interpretation provides a correct description of elec-
trowetting at macroscopic scales, i.e. the contact angle changes accordingly
to Young-Lippman equation. In a previous section, the Young angle was
interpreted as the necessary angle for mechanical equilibrium of the TCL.
This view is still valid if we assume that the effective solid-liquid interfacial
tension decreases upon application of the electric field and a smaller contact
angle is required to find a new equilibrium.

2.4 Electromechanical interpretation and fine structure of the
three-phase contact line

The thermodynamic approach in the previous section represents, proba-
bly, the simplest way of finding the dependence of the contact angle on the
applied voltage. However, it does not provide a mechanical picture of how
electrical forces modify the shape of the droplet. Furthermore, it does not
clarify what is the origin of the effective or equivalent solid-liquid interfacial
tension. Recent theoretical and numerical works have addressed this issue
(Buehrle et al., 2003; Mugele and Buehrle, 2007) and it has been shown
that the reduction of the contact angle can be understood from the balance



Fundamentals of Electrowetting and Applications in Microsystems 93

Figure 5. Drop of conductive liquid in a generic electrowetting setup. The
zoomed region shows the air-liquid interface near the three-phase contact
line. The electric field (arrows) acts on induced charges at the interface and,
as a result, the drop surface is bent.

of electrostatic and Laplace pressures. In effect, let us consider Figure 5
where the electrical force is shown to deform the air-liquid interface. The
stresses of electrical origin on the liquid can be found from the Maxwell
Stress tensor (Stratton (1941)):

Tij = ε(EiEj)− 1

2
εδij |E|2 (7)

where δij is the Kronecker delta and i, j = x, y, z. Since the liquid is con-
sidered a perfect conductor, tangential stresses at the liquid surface are
zero. Being nj the components of the normal vector to the liquid surface,
the normal component of the stress (electrical pressure) is Tijnj = Pel =
(ε/2)|E(r)|2 and, in equilibrium, must be balanced by the Laplace pressure
(eq. 2):

Pel = (ε/2)|E(r)|2 = ΔPL = 2γκ(r) (8)

where κ(r) is the local mean curvature of the drop surface at r, κ(r) ≡
(1/2)(1/R1 + 1/R2).

Buehrle et al. (2003) solved eq. 8 and found the drop profile for an air-
liquid interface on a dielectric layer of thickness d and assuming that the
contact angle remains equal to Young angle θY , i.e. the electric field does
not change the local contact angle, see Fig. 6a). The drop shape asymp-
totically approaches the apparent contact angle θA, which is the angle we
observe in the macroscopic scale. Fig. 6b) shows the numerical results
for a given apparent contact angle and increasing electrowetting number
η = εdε0U

2/(2γlvd). In this way, the theoretical profile for a system with a
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given Young angle θY is revealed by finding the curve for that θY and the
corresponding electrowetting number.

Interestingly, these computations predict that the curvature of the drop
surface changes within typical distances of the thickness of the insulator.
This was experimentally tested by Mugele and Buehrle (2007) with elec-
trodes coated with insulating layers of different thicknesses. Figures 7a),b)
and c) show experimental drop shapes close to the contact line for elec-
trowetting number η = 1 and three different thicknesses: 10, 50, 150μm.
In each case, a constant curvature is approached for distances larger than
the thickness of the insulator (represented by the white bar). Figure 7d),
e) and f) correspond to a constant thickness of 150μm and increasing elec-
trowetting number. Young’s angle remains unchanged. These results recon-
cile the thermodynamic and electromechanical interpretations of electrowet-
ting: The local contact angle does not depend on the applied voltage, only
the apparent contact angle for distances larger than the typical length for the
electric field. The “true” solid-liquid interfacial tension remains constant.
This has been recently confirmed down to the nanoscale with an experimen-
tal setup based on a surface force apparatus (Gupta et al., 2010).

Figure 6. a)Schematic representation for the problem of finding the equi-
librium drop shape. The apparent contact angle θA is fixed. b)Equilibrium
surface profile for θA = 60o and increasing electrowetting number η =
εdε0U

2/(2dγlv). Reproduced with permission from Buehrle et al. (2003),
c© 2003 American Physical Society.

Another important result of the electromechanical interpretation is that
the total force per unit length of the contact line does not depend on the
drop shape. Following Jones (2002), we calculate the total force on the
liquid by integrating the Maxwell stress tensor (eq. 7) on the surface Σ in
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Figure 7. a),b) and c) are experimental drop shapes close to the contact
line for η = 1 and d = 10, 50, 150μm, respectively. A constant curvature
is approached for distances larger than the thickness of the insulator, rep-
resented by the white bar. d), e) and f) correspond to a constant thickness
of 150μm and increasing electrowetting number, η = 0, 0.5, 1. Young angle
remains unchanged. Reproduced with permission from Mugele and Buehrle
(2007), c© 2007 IOP Publishing Ltd.

fig. 8.

f =

∫
Σ

TijnjdS (9)

The surface can be chosen large enough so that the electric field on it is zero
everywhere but in the line A to B in the insulator (the liquid is assumed to
be a perfect conductor). This contribution yields a net force on the drop in
the x direction. The total force per unit length of contact line w results:

f/w = (1/2)εdε0(U
2/d) (10)

Note that the total force per unit length is not dependent on the drop
shape, as mentioned above. Expression 10 can be found either by inte-
grating the Maxwell stress tensor or by using an electric-circuit model with
lumped elements (Jones, 2002, 2005). The same methods can be also ap-
plied to find the net electrical force on dielectric liquids. In any case, no
precise location for the electrical force is specified and the net force is not
related to a change in contact angle. Thus, as pointed out by Jones (2002),
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the term electrowetting should be restricted to the change in contact angle,
while the net force on the center of mass of the drop is an independent
phenomenon, which should more conveniently be referred to as liquid di-
electrophoresis. Also, a solid dielectric body partially inserted between two
electrodes experiences a force pulling the body into the gap.

Figure 8. The total force per unit length of contact line can be computed
by integrating the Maxwell stress tensor on the surface Σ.

2.5 Effect of AC signals and internal flows in AC electrowetting
experiments

The theoretical analysis in the previous section corresponds to static
conditions. The electrical signal was assumed to be constant (DC voltage)
and the equilibrium droplet shape was found. Electrowetting also occurs
with AC signals, the liquid response depends only on the time average of
the applied voltage for signals with periods shorter than the hydrodynamic
response time of the droplet4. The energy minimization argument is also
applicable for AC voltages, the contact angle is given by eq. 5 but the
amplitude of the voltage U has to be replaced by the root-mean-square
value Urms:

cos(θ) = cos(θY ) +
1

2

CU2
rms

γlv
(11)

However, at frequencies around the typical hydrodynamic response of the
droplet, surface standing waves are generated on the droplets, see Figure
9. In Oh et al. (2008), these oscillations patterns were theoretically repro-
duced by assuming an electrical force at the TCL with frequency double of

4for millimeter-sized droplets, AC signals at frequencies exceeding a few hundred hertz
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the electric field.

Figure 9. Surface drop oscillations patterns in AC electrowetting. Images
are obtained after superimposing 50 frames (reproduced with permission
from Oh et al. (2008), c© 2008 American Chemical Society).

For even higher frequencies, typically above kHz, the liquid may not
longer behave as a perfect electrical conductor. Jones et al. (2004) experi-
mentally demonstrated this effect in a modification of Pellat’s experiment
that includes dielectric coatings on the vertical electrodes, see Figure 10.
They measured the height of rise of different liquids between the two coated
electrodes upon application of AC voltages and they showed that this height
h decreases for increasing frequency above a critical value, ωc, which depends
on the liquid conductivity . Figure 10a) also includes the RC-circuit model
used by Jones et al. (2004) to describe the dependence of h with the applied
frequency. The liquid is modelled as resistor in parallel with a capacitor and
the dielectric layers as capacitors. The total electrical force on the liquid
can be derived from this circuit model and the height of rise is found by
balancing this force with gravity. Figure 10b) shows the reduced height of
rise, K(ω) = h(ω)/U2

rms (where Urms is the rms-amplitude of the applied
AC signal) for liquids of different conductivities. The circuit model cor-
rectly predicts the frequency dependence. Interestingly, they also observed
a saturation of h for high voltages which they related to the saturation of
contact angle (section 2.6).

Electrowetting experiments with AC signals in the common needle-subs-
trate configuration are also affected by the finite value of the liquid conduc-
tivity. For example, Mugele et al. (2005) observed that the contact angle
depends both on the frequency of the signal and on the position of the
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Figure 10. a)Variation of Pellat experiment where the electrodes are coated
with a dielectric layer. The circuit model is used to compute the net elec-
trical force on the liquid. b)Frequency dependence of reduced height of rise
K(ω) = h(ω)/U2

rms for three different liquids, (reproduced with permission
from Jones et al. (2004), c© 2004 American Chemical Society).

needle. Kumar et al. (2006) studied a system where the complications of
the needle-substrate geometry were avoided, see Figure 11a). The drop was
sandwiched between two planar electrodes separated by a distance l. One
of the electrodes was coated with a dielectric layer of thickness d and the
contact angle was measured as a function of amplitude and frequency of
the AC voltage. Figure 11b), c) and d) show measurements for three dif-
ferent conductivities: 5, 70 and 300μS/m, respectively. No effect of the
frequency up to 100 kHz was observed for the highest conductivity (Fig-
ure 11d)), however, for the other two conductivities, the contact angle was
strongly dependent on frequency. As in the previous example of Figure 10,
a circuit model can be used to analyze the electrical problem. As shown in
Figure 11e), the liquid is modelled as a resistor in parallel with a capaci-
tance, while the dielectric layer is modelled by a capacitor. According to
Young-Lippmann equation, the contact angle must be a function of the rms
voltage drop in the dielectric layer, which we can write as a fraction of the
rms-amplitude of the applied signal, f(ω) · Urms. The contact angle then
becomes a function of the frequency of the applied signal ω. The circuit
model in Figure 11e) correctly describes this frequency behaviour.

Another effect of using AC signals with potential applications is the ap-
pearance of internal flows. For frequencies of the order of the drop hydro-
dynamic resonance (as in Figure 9), the drops periodically oscillate between
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Figure 11. a)Scheme of experimental setup used by Kumar et al. (2006) for
studying the effect of AC voltages. b), c) and d) are measurements of the
contact angle versus the voltage amplitude for three different conductivities:
5, 70 and 300μS/m, respectively. In each case, the frequency of the signal
was gradually increased from DC (blue triangles) to 100 kHz (red circles).
e) Circuit model to describe the frequency dependence in AC electrowetting

Figure 12. Internal flows in AC electrowetting. a)For frequencies around
the typical hydrodynamic resonance of the drop, capillary waves occur at
the drop surface which, in turn, generate fluid flow. b)The motion disap-
pears when the frequency is increased. c)At higher frequencies, depending
on liquid conductivity, the fluid flow is generated by electrothermal effect
(images reproduced with permission from Ko et al. (2008), c© 2008 Ameri-
can Chemical Society).
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states of high and low contact angle. Despite the periodicity of this mo-
tion, there is a symmetry breaking in the drop shape between the spreading
and the receding phase, which causes a time-averaged net flow inside the
drop. This motion can be observed in Figure 12a), where a superposition
of several frames shows the trajectory of fluorescent beads suspended in
the liquid. These beads act as flow tracers, indicating the direction and
magnitude of the generated flows. Mugele et al. (2006) demonstrated effi-
cient mixing within droplets by this mechanism. Figure 13 shows different
stages of the mixing process: (a) the fluorescent dye is injected on top of
the drop and, (d) rapid mixing is achieved upon application of AC signals.
The time interval between (a) and (d) is around 2 seconds. This flow can be
described using a model based on capillary wave-driven Stokes drift (Staicu
and Mugele, unpublished).

Figure 13. Fluorescent dye is used to visualize different stages of themixing
achieved with AC electrowetting. The frequency of the signal was around
80Hz. (Reproduced with permission from Mugele et al. (2006), c© 2006
American Institute of Physics).

Figure 12b) shows that the fluid flow ceases if the frequency is increased.
However, for AC signals of somewhat higher frequencies (depending on liq-
uid conductivity) a different type of fluid flow arises, Figure 12c). The
origin of the flow in this case is due to the so-called electrothermal effect
(Garćıa-Sánchez et al. (2010); Lee et al. (2009)). The liquid is no longer
a perfect conductor at these frequencies, as mentioned above. The electric
field then penetrates and Ohmic currents generate changes in temperature
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by Joule effect which in turn give rise to gradients in liquid conductivity.
The action of the electric field on these conductivity gradients induces free
charge in the liquid bulk. Thus, a net electrical body force appears, driving
the flow. Nichols and Gardeniers (2007) used the high-frequency flows for
demonstrating mixing of drops in a microfluidic device.

2.6 Limiting effects: contact angle saturation and contact line
instabilities

The Young-Lippmann equation predicts a parabolic dependence of the
contact angle on the applied voltage. However, experiments show that the
contact angle does not follow this trend for sufficiently high voltages. As
we noted in previous sections, θ saturates to a certain value and no further
decrease with increasing voltage is observed, this phenomenon is known
as Contact Angle Saturation. For example, Figure 4b) shows Lippmann
behaviour (parabolic) up to voltages around 250 volts. The contact angle
slightly decreases if higher voltages are applied and it remains around 60o.
This saturation angle depends on specific properties of the materials and is
usually around 30o and 80o (Berge, 1993; Vallet et al., 1999; Welters and
Fokkink, 1998; Peykov et al., 1998).

Another interesting observation at high voltages is the luminescence of
the contact line when using salty solutions (Vallet et al., 1999), see Figure
14. During these experiments, the authors monitored the electrical cur-
rent and found a series of short spikes simultaneous to the emission of light
pulses, indicating discrete discharge processes. They also showed that the
emission spectrum changes for different ambient gases, as expected if the
light comes from the dielectric breakdown of the gas. Contact angle satura-
tion and light emission appear around the same voltage and it seems clear
that both phenomena are caused by the strong divergence of the electric
field near the three-phase contact line.

Dielectric breakdown of the insulating layer is one consequence of in-
creasing electric fields. The relation between contact angle saturation and
dielectric breakdown has been studied by Papathanasiou and co-workers
(Papathanasiou and Boudouvis, 2005; Papathanasiou et al., 2008; Drygian-
nakis et al., 2009). Using a standard needle-substrate configuration, these
authors found leakage currents through the insulating layer for voltages
around and above those of contact angle saturation. These currents indicate
the breakdown of the insulator which, consequently, does not longer behave
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Figure 14. Light emission from the contact line at high voltages with salty
solutions. The insulating layer is made of a film of PTFE 50μm thick and
the voltage amplitude is 950V. a) top view and b) side view. The scale bars
are 1mm (reproduced with permission from Vallet et al. (1999), c© 1999
Springer).

as such. In another work (Drygiannakis et al., 2009), the authors presented
a model where elements of the dielectric are considered conductive when
the local electric field exceeds the dielectric strength of the material. Re-
sults are shown in Figure 15a), finger-like structures of conductive material
appear, increasing their size for increasing voltages. The resulting electric
field at the contact line is lower than in the case of a perfect insulator and,
consequently, the change of contact angle is diminished. They used this
model to fit experimental measurements, showing a very good agreement in
a wide range of voltages, Figure 15b).

A different approach to the phenomenon of contact angle saturation was
proposed by Peykov et al. (1998). The authors stated that the reduction
of the effective solid-liquid surface tension, as predicted by the thermody-
namic interpretation of electrowetting, should be limited because a system
with negative surface tension is unstable. In other words, Lippmann equa-
tion should fail for voltages at which the solid-liquid surface tension changes
sign. Despite the model is in good agreement with several experimental ob-
servations (Quinn et al., 2005; Berthier et al., 2007; Berry et al., 2006), the
validity of this criterion is not well founded for severeal reasons (Mugele,
2009), mainly because the true solid-liquid interfacial tension remains un-
changed, as shown in section 2.4.

Another limiting effect at high voltages is the emission of small drops
from the three-phase contact line when working with low conductivity liq-
uids, like pure water or ethanol-water mixtures. This phenomenon was first
observed by Vallet et al. (1999) and reproduced in Mugele and Herminghaus
(2002), (see Figure 16). In the same article, Vallet et al. (1999) proposed
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Figure 15. a)Electric potential distribution (up) and electric field (down)
near the contact line for four different values of the applied voltage. b)
Contact angle versus applied voltage for a substrate of SiO2 with thickness
1μm and coated with a teflon layer of 20 nm. The model fits experimental
values above saturation: points 1,2,3 and 4 correspond with those indicated
in (a). (Reproduced with permission from Drygiannakis et al. (2009), c©
2009 American Chemical Society).

that the accumulation of charge at the contact line can generate transverse
modulations on its shape. For sufficiently high voltages, these modulations
can become unstable and small drops are ejected. Interestingly, a full nu-
merical analysis of the 3D system by Fontelos and Kindelan (2008) shows
instabilities that break the axial symmetry of the drop, however, the struc-
ture of the three-phase contact line is not correctly described in their model.

As a summary of this section, several effects limit the validity of the
Young-Lippmann equation when the voltage increases. A unified descrip-
tion of the different phenomena is difficult, since specific material properties
determine the behaviour of the different systems. In any case, electrowet-
ting at high voltages is an open field for fundamental research.
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Figure 16. Contact line instability at high voltage amplitudes. Small drops
are emitted from the contact line. The inset shows a zoomed view of the
contact line area. (Reproduced with permission from Mugele and Baret
(2005), c© 2005 IOP Publishing Ltd).

2.7 Note: Electrocapillary effect and Lippmann experiment

First experiments relating capillary effects and electric fields are due to
Gabriel Lippmann, who published his results in 1875 with the name “Rela-
tions entre les Phénomenes Électriques et Capillaires” (Lippmann, 1875).
Lippmann not only described the fundamental research that he performed,
he also envisioned applications as, for example, an electrometer that was
later used in the first electrocardiogram. We refer to Mugele and Baret
(2005) for a complete translation to English of Lippmann’s original work.
In this note, we concentrate on describing the basic findings that led him to
the foundations of the electrocapillary phenomenon, i.e. the basis of modern
electrowetting.

Figure 17a) shows a scheme of the experimental setup used by Lipp-
mam. The mercury in reservoir (A) penetrates into the glass capillary
(GG’), where it undergoes a depression. Diluted sulfuric acid fills the upper
part of this capillary tube, which is connected to the beaker (B) filled with
the same acidic solution. Sulfuric acid is a better electrical conductor than
pure water and it also wets glass better. Jurin’s law establishes a relation
between the interfacial tension and the capillary depression h (see fig. 17b))
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in a capillary tube of radius R (ρgh = 2γ/R), assuming a constant contact
angle of mercury on glass of 180o.

Figure 17. a)Experimental setup used by Lippmann. A voltage difference
is applied to wires α and β and, as a result, the position of meniscus (M)
changes (reproduced from Lippmann (1875)). b)Schematic representation
of the phenomenon. Electrical charges accumulate at the mercury/acidic-
solution interface, changing the surface energy and, consequently, the sur-
face tension.

Platinum wires (α and β) make electrical connections. At the bottom of
the beaker B lies a layer of mercury where the wire β is immersed. In this
way, Lippmann could vary the voltage drop at the mercury-water interface
(M) by applying a voltage difference between the platinum wires. The result
of varying this voltage is that the position of the meniscus M changes and,
as a consequence of Jurin’s law, a change of interfacial tension is inferred.
Lippmann readily interpreted this observation as a coupling between cap-
illarity and electrical phenomena, as originally established in his paper as
the first law:
the capillary constant at the mercury/diluted sulfuric acid interface is a
function of the electrical difference at the surface.
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Lippmann used both the terms capillary constant and interfacial ten-
sion indistinctily. He recognized that the redistribution of charge at the
water-mercury interface was responsible for the change in surface energy
and then in interfacial tension, Fig. 17b). As in section 2.2, we can write
the surface charge as ρsl = −∂γeff/∂U , and considering a constant ca-
pacitance per unit area C of the electrical double layer, ρsl = CU and
γeff (U) = γ − (1/2)CU2. Interestingly, Grahame (1947) used a similar
setup for determining the differential capacitance of the electrical double
layer at the interface between mercury and different electrolytes.

3 Applications of Electrowetting in microsystems

From electronic paper to liquid lenses and Lab-on-a-Chip devices, elec-
trowetting is showing itself as a succesfull strategy for performing all kinds
of operations with liquids in the field of microtechnology. As shown in the
preceding section, electrowetting is a flexible method for controlling surface
tension and, as a consequence, applications are numerous and increasing
everyday. In this section, we make an overview of the most relevant appli-
cations, providing basic references to the reader and putting more emphasis
on applications where fundamental physics appears.

3.1 Electrowetting for microfluidic operations: dispensing, split-
ting, merging, mixing and transporting of drops

Microfluidics, defined as the control andmanipulation ofminute amounts
of liquids within microchannels, can be broadly divided in two groups: con-
tinuous microfluidics and digital microfluidics. While the former is based
on continuous streams of liquids, digital microfluidics5 refers to the use of
discrete amounts of one liquid (droplets) dispersed in another liquid or air.
By using discrete unit-volume droplets, a microfluidic function can be re-
duced to a set of repeated basic operations (Cho et al., 2003). Figure 18
shows a scheme of a generic “digital-microfluidic circuit” and the operations
required for performing Lab-on-a-Chip functions: Drops have to be gener-
ated from liquid reservoirs (dispensing). We might want to split a given
drop or, perhaps, to merge two of them. Mixing of the two drops is likely
to be the operation required after merging. Also, moving a drop from one
place to another (transporting) is, obviously, another important operation.

5the name digital microfluidics is given in analogy to digital electronics, where electrical

signals are represented with discrete voltage levels or “bits”.
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Figure 18. Generic digital-microfluidic circuit. Drops are generated from
the reservoirs (m × n), later transported over the circuit and combined to
perform Lab-on-a Chip functions. (Right) Basic operations with drops are
also shown (reproduced with permission from Cho et al. (2003), c© 2003
IEEE).

Among the different ways of actuating droplets, electrowetting is the
most common platform for performing digital microfluidics. Arrays of indi-
vidually addressable electrodes allow the realization of all basic operations
in configurable systems and with fast actuation times. Fair (2007) and
Miller and Wheeler (2009) review the recent achievements in application of
electrowetting to droplet-based microfluidics. We introduce here the basic
electrode structures that have been proposed and demonstrated in the lit-
erature. For example, Figure 19 shows a schematic diagram of the standard
setup for translating drops (Pollack et al., 2000). The drop is sandwiched
between two plates coated with insulating layers. At the top there is an elec-
trode (usually a transparent ITO electrode to view through) coated with a
hydrophobic insulator and connected to ground. The bottom plate consists
of a series of electrodes coated by a hydrophobic layer that can be individ-
ually activated. In this way, as shown in Figure 19, the contact angle of
the drop on top of a specific electrode can be modified and, consequently,
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a net force is applied on the centre of mass of the drop 6. By sequentially
activating the electrodes, Pollack et al. (2000) demonstrated drop velocities
up to 30mm/s for signals of 40-50V. In Pollack et al. (2002), the authors
demonstrate formation, mixing, and splitting of drops with volume ranging
from nanoliters to microliters by using the same kind of actuator of Fig-
ure 19. Scaling the drop velocity with the different quantities is a current
topic of research. In principle, the force on the drop has to overcome the
contact angle hysteresis (section 3.2) and the net velocity will result from a
balance of the electrostatic force with the contact line friction and bulk vis-
cous forces. However, the agreement between experiments and theoretical
predictions is poor.

Figure 19. Schematic diagram of an array of electrodes for moving drops.
The top plate is the reference electrode and electrodes at the bottom can
be sequentially activated.

Mixing can be achieved by translating the drops along electrode arrays
(Paik et al., 2003). Viscous drag with the walls generates flows within the
drops. Efficient mixing has also been shown by exploiting EW-induced in-
ternal flows (see Figure 13 in section 2.5 and description therein). These
flows generate efficient mixing on top of a single electrode, with the advan-
tage that no lateral translations are required. However, a wire is required
to be immersed in the drops. Malk et al. (2010) have recently shown EW-
induced internal flow with coplanar electrodes. Yi and Kim (2006) also
demonstrated all basic operations with coplanar electrode structures, i.e.
electrodes only on the bottom plate. Electrowetting microfluidics on a sin-

6in accordance to Jones (2002), this net force on the centre of mass should be referred

as liquid dielectrophoresis, while electrowetting should be restricted to the change of

contact angle. However, the nomenclature is confusing in literature and most authors

working in drop manipulation use the term electrowetting to name the net motion of

the drop.
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gle planar substrate is also posible, see for instance Cooney et al. (2006).

3.2 Electrowetting-induced reduction of contact angle hysteresis

It was mentioned in the preceding section that we must overcome the
contact angle hysteresis before translating drops on solid substrates. In ef-
fect, the triple contact line gets pinned because of random forces caused by
surface heterogenities and, as a consequence, the TCL is immobile not only
when the CA is Young’s angle but within a given range (de Gennes, 1985):

θrec < θ < θadv (12)

θadv is called the advancing contact angle and it is measured when the
liquid-solid contact area increases. θrec is the receding contact angle and
it is measured when this area shrinks, see Figure 20a). Contact angle hys-
teresis is defined as the difference between the two, θadv − θrec, and it is a
measure of the amplitude range of the pinning forces, as depicted in Figure
20b).

Figure 20. a) Advancing contact angle is the minimum CA at which the
solid-liquid increases. Oppositely, the receding contact angle corresponds to
the maximum CA at which the solid-liquid shrinks. b) Solid surface with
roughnes and the role of random pinning forces: its variability range gives
rise to a range of CA’s within the contact line is immobile.

Droplet motion can only occur when both the CA on the leading edge of
the droplet exceeds the advancing contact angle and, also, when the CA on
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the trailing edge is smaller than the receding one. Evidently, diminishing
the CA hysteresis is desirable when moving drops. For example, it has been
shown that immersing the liquid droplet into an oil environment greatly re-
duces the hysteresis. Contact angle hysteresis can be also diminished if, as
suggested by Johnson and Dettre (1964), vibrational energy is added to the
drop and, thus, the energy barriers introduced by the surface heterogeneity
can be overcome. For example Volpe et al. (2002) used acoustic excitation
for shaking the drops.

When moving drops with electrowetting, a threshold voltage is gener-
ally required to overcome the pinning forces on the solid substrate, see e.g.
Pollack et al. (2000). However, Li and Mugele (2008) showed that the con-
tact angle hysteresis almost disappears with increasing AC voltage, while
it remains constant for DC. Their experimental setup consisted in a drop
of NaCl water solution on top of a teflon-coated ITO electrode. The con-
tact line was forced to advance/retract by infusing/withdrawing liquid with
a syringe at a sufficiently low rate to avoid dynamics effects. The drop
was electrically grounded by means of the syringe needle. Figure 21 shows
measurements of the advancing and receding CA for DC (open symbols)
and AC voltages (filled symbols) as a function of the electrowetting number
(η ≡ (ε0εdU

2)/(2dγlv)). For DC voltage, it can be seen that the difference
between θadv (open diamonds) and θrec (open triangles) remains constant.
However, for AC signals the difference diminishes for increasing η, i.e. am-
plitude of the voltage.

The reduction in CA hysteresis with AC voltage can be explained if we
consider that the electrical force on the triple contact line can be written
as fel(t) = η(1 − cos(2ωt)) (Li and Mugele, 2008). This force contains a
DC component equal to η and oscillating part of the same amplitude and
frequency 2ω. As mentioned in section 2.5, millimeter-size drops cannot
follow the electric field oscillations for frequencies higher than a few tens of
Hertz and the apparent contact angle is given by Urms. However, contact
line pinning occurs at a much smaller scale at which the liquid can respond
much faster, e.g. for frequencies in the kHz range (as in Li and Mugele
(2008)). The electrical force fe pulls from the contact line in the advancing
direction and therefore, it helps to advance but not to recede.
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Figure 21. Cosine of advancing and receding CA’s versus electrowetting
number. Open symbols are experimental results for DC voltages and dotted
lines correponds to the theoretical model. Filled symbols are measurements
with AC signals and dashed line is the expectation of the theoretical model.
Reproduced with permission from Li and Mugele (2008), c© 2008 American
Institute of Physics.

3.3 Electrowetting on complex surfaces

The wettability and topography of solid substrates determine the pos-
sible morphologies of drops resting on solid substrates (Herminghaus et al.
(2008) and references therein). The liquid adjusts its shape to a configu-
ration of minimum energy and, as shown in the introduction (Figure 1a)),
abrupt morphological transitions can occur when some parameter (e.g. con-
tact angle) is varied in the system. The contact angle can be modified in
several ways (chemically, gradients in temperature,...) and, of course, by
using electrowetting. 7

The ability of Electrowetting for modifying the shape of a drop was
demonstrated by Klingner and Mugele (2004) using a hydrophobic substrate
with a stripe electrode, see Figure 22a). This system was theoretically stud-
ied in Brinkmann and Lipowsky (2002) and they found a first-order phase
transition between two shapes: a bulge-like and a cylindrical shape. Fig-
ure 22b) shows the phase diagram as a function of the reduced volume V
(V = V/L3, where L is the stripe width) and the contact angle on the stripe

7In applications, we usually deal with drops much larger than the thickness of the

insulator on the electrode. Therefore, for computing the global shape of the drop, we

can ignore the fine structure of the triple contact line and only consider the apparent

change in wall wettability caused by the applied potential.
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θs. The region below the continuous line corresponds to states with cylinder
shape and the region to the right of the dashed line to bulge-like shapes.
The critical point of the transition is V = 2.85 and θs = 39.2. Klingner and
Mugele (2004) tested this theory by controlling the wettability of the stripe
(θs) with electrowetting. When increasing the voltage for a drop of given
volume, they observed the transition from the cylinder shape, filled symbols
in Figure 22b), to bulges, open symbols. Figure 22c) are snapshots of the
side and top views of the experiment.

Figure 22. a) Schematic representation of a water droplet resting on a
hydrophobic substrate with a stripe electrode. b) Phase diagram: solid
and dashed lines represent instability lines for the bulge and cylinder mor-
phologies, respectively. c) Side and top view video snapshots at voltages
of 0, 250, 300, and 310V, respectively. Reproduced with permission from
Klingner and Mugele (2004), c© 2004 American Institute of Physics.

Krupenkin et al. (2004) demonstrated electrowetting-induced transitions
from superhydrophobic (Cassie-Baxter) to hydrophilic (Wenzel) states on
textured surfaces, see Figure 23.

Baret et al. (2005) studied the filling of grooves from feeding droplets
by using electrowetting. Figure 24 shows images of a droplet on top of the
grooves for several voltages. For low voltages, the liquid hardly penetrates
the grooves. The curvature of the finger tips decreases with voltage and,
above a certain threshold, the pressure equals the pressure in the droplet
and filling starts. It might be expected a discontinuous increase of the fin-
ger length (from zero to infinity) at the threshold voltage, However, due to



Fundamentals of Electrowetting and Applications in Microsystems 113

Figure 23. Pictures a-d show the wetting transition when the voltage ap-
plied to the drop increases. SEM Image: Array of nanopillars 350 nm
diameter. Reproduced with permission from Krupenkin et al. (2004), c©
2004 American Chemical Society.

finite-conductivity effects, the voltage drop in the liquid bulk increases with
this length, limiting the effect of electrowetting.

Figure 24. Filling of grooves from feeding droplets by using electrowetting.
Above a certain threshold, the pressure equals the pressure in the droplet
and filling starts. Reproduced with permission from Baret et al. (2005), c©
2005 American Chemical Society.
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3.4 Electrowetting-assisted drop generation in microchannels

Drop generation in microchannels has become a major issue in microflu-
idics research (Stone et al., 2004). Digital microfluidics (section 3.1) relies
on our ability to generate drops in a controlled manner. Micrometer-size
drops are also used in disparate applications like synthesis of novel ma-
terials or performance of logic operations in microfluidic devices (Cheow
et al., 2007). Well established microfluidic techniques, such as T-junctions
(Thorsen et al., 2001) and flow focusing devices (FFD’s) (Anna et al., 2003),
are commonly used for generating drops of one liquid (dispersed phase) into
the continuous flow of another (continuous phase). These methods allow
for high drop-throughput, however, they are not useful for controlling the
moment at which the drops are produced. Moreover, the sizes of the drops
and their production rate in these devices are fixed for given flow rates of
the two liquids.

Figure 25. a) Scheme of a microfluidic network for flow focusing. Oil and
water are injected at controlled pressures PO and PW , respectively. b) Image
of the generation of a water drop. c) Side view of the junction area in a FFD
including an ITO electrode for EW functionality. The electrode is grounded
and the application of AC voltages to water allows for controlling the shape
of the water-oil interface. Reproduced with permission from Malloggi et al.
(2007), c© 2007 IOP Publishing Ltd.

Electrowetting has been proved as a versatile tool for “drop on-demand”
generation (Malloggi et al., 2007) and for controlling both the size and pro-
duction rate (Malloggi et al., 2008; Gu et al., 2008). Figure 25 shows a
scheme of a flow focusing device: oil (continuous phase) is injected at pres-
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sure PO at one inlet and water (dispersed phase) is injected at another
inlet at pressure PW . The two fluids meet at the channel junction and
water drops are generated in a competition between viscous and capillary
stresses, figure 25b). Malloggi et al. (2007) modified this device by embed-
ding teflon-coated ITO electrode at the bottom of the junction, allowing for
local control of the wall wettability by means of voltage pulses, Figure 25c).
Walls are hydrophobic and, when electrical signals are applied, the shape of
the oil-water interface is modified since contact angle of water is reduced.

Figure 26. Depending on the values of control parameteres, three differ-
ent operating regimes are found for a FDD: jetting, drop formation and a
stable water/oil interface. The inclusion of electrowetting allows for con-
trolling the onset of drop generation, i.e. the minimum water pressure for
a given oil pressure is a function of the voltage amplitude U , hatched area
in figure. Reproduced with permission from Malloggi et al. (2007), c© 2007
IOP Publishing Ltd.

Figure 26 describes the three basic operation modes as a function of the
three control parameteres: PW , PO and the voltage amplitude U . A stable
water/oil interface is found if the water pressure PW is too low for a given
oil pressure PO. Oppositely, a jet of water is produced if PW is much higher
than PO. For intermediate pressures, water drops are formed. Electrowet-
ting can be used to tune this pressure range, as shown in Figure 26 where the
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hatched area increases for increasing voltage amplitude. In effect, the water
pressure to generate a drop has to be sufficient to overcome the oil pressure
plus the Laplace pressure due to the interface curvature, PW ≥ PO +ΔPL.
We reduce the interface curvature by means of electrowetting (Figure 25c))
and, therefore, the minimum water pressure to generate drops is smaller
for greater voltage amplitudes U . From an applied perspective, this means
that we can choose values of PW and PO for having a water/oil stable inter-
face but, when a voltage pulse is applied, drops are generated, i.e. drop-on
demand generation. Finally, Figure 27 shows pictures of an EW-enhanced
flow focusing device with a small orifice of ≈ 50μm (Gu et al., 2008). The
flow rate of oil is fixed and a great variety of drop generation modes are
observed depending on the values of PW and U .

Figure 27. Images of the drop generation in a flow focusing device with
electrowetting functionality. The orifice in the device is 50μm and the oil
pressure is fixed. The size and production rate of the drops can be tuned by
changing the water pressure PW and voltage amplitude U . Reproduced with
permission from Gu et al. (2008), c© 2008 American Institute of Physics.
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3.5 Electrowetting and optical applications

Applications related to optics is the field where electrowetting has grown
most rapidly and may have a major impact in commerciable products. The
focal length of an optical lens depends on its curvature. One advantage of
a liquid lens, in contrast with solid ones, is that the shape of the liquid is
non-permanent and controlling its curvature allows for controlling the focal
length. Berge and Peseux (2000) first proposed electrowetting as the way
of controlling the curvature of liquid lenses. Figure 28a) shows a scheme of
a liquid lens with electrowetting-controlled focal length. Figure 28b) shows
the dioptries as a function of the applied voltage. Recently, liquid lenses
with variable focal lens have become commercially available and they are
being integrated in mobile phones and cameras 8

Figure 28. a) Schematic representation of a liquid lens: liquid 1 is an
oil and liquid 2 is water. The curvature of the interface can be tuned by
applying a voltage (shapes A and B). b) Dioptries of the lens as a function of
the voltage amplitude. Reproduced with permission from Berge and Peseux
(2000), c© 2000 Springer.

Displays based on electrowetting have experienced a major advance in
the very few last years. Hayes and Feenstra (2003) introduced the principle
of an electroweting display by constructing a single pixel, Figure 29. When
the voltage is off, a coloured oil film is present but when the voltage is on,
the layer retracts and the pixel changes state. By using three of these films
independently actuated, it is possible to switch between different colours

8visit http://www.varioptic.com for information on EW-based lenses
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9. The company liquavista currently develops an e-reader technology with
video speed and colour capability. Since these displays are based on reflec-
tion of ambient light, they can be operated in sunlight without any back
lighting (in contrast to LCD displays). Other groups in this field include
Heikenfeld (Heikenfeld et al., 2009) and Steckl (You and Steckl, 2010).

Figure 29. Working principle of an electrowetting display. a) If no voltage
is applied, a coloured oil film occupies the whole area on top of the hy-
drophobic coating. b) When the voltage is applied, the oil retracts and the
pixel changes its state. Pictures in c) and d) are photographs corresponding
to cases a) and b), respectively. Reproduced with permission from Hayes
and Feenstra (2003), c© 2003 Macmillan Publishers Ltd: Nature.

3.6 Other applications

Many other applications of electrowetting are being explored and here
we can justmentioned a few of particular interest. Figure 30 shows a scheme
of a “liquid-state” Field-Effect Transistor demonstrated by Kim and Steckl
(2007). The device consists of three electrodes, the one in the middle is
for electrowetting and plays the role of a gate electrode in a MOSFET-like
transistor. The two on the sides are the source and the drain, respectively.
When a certain voltage is applied to the gate electrode, the electrolyte re-
moves the insulating oil and occupies the region between source and drain,

9visit http://www.liquavista.com for information on EW-based displays
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forming a channel for the conduction of electricity.

Figure 30. Liquid-state Field Effect Transistor. (a) corresponds to the
“Off” state: The insulating oil occupies the region between electrodes. (b)
”On” state: when a voltage is applied to the gate electrode, the water
occupies the region between electrodes and a conducting channel is formed.
Reproduced with permission from Kim and Steckl (2007), c© 2007 American
Institute of Physics.

Pumping of liquids in microsystems by means of electrowetting was first
described by Beni et al. (1982). They reported an electrowetting-based ef-
fect that they named Continuous Electrowetting (CEW). Figure 31 shows
a scheme of the setup consisting in a slug of mercury inserted in a capillary
filled with (H2SO4). Note the similarity with the experiment by Lippmann
(section 2.7). By applying a few volts, a charge density is induced at the
mercury-electrolyte interface. The charge density is not homegeneous and,
thus, a gradient in surface tension occurs resulting in a net force in the slug
that drives the motion. Yun et al. (2002); Lee and Kim (2000) reported
pumping of liquids in microsystems by means of CEW.

As mentioned in the introduction, wall wettability is a fundamental pa-
rameter in 2-phase flows in microchannels. Huh et al. (2003) reported an
example of how electrowetting can be used to manipulate an air-water two-
phase flow. Figure 32 shows a scheme of a flow focusing device where air
is used to focus a stream of water. Electrowetting is applied by means of
electrodes occupying half of the channel and the water stream is displaced
towards the side on top of electrodes.
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Figure 31. Scheme of the setup used by Beni et al. (1982) for demonstrating
the Continuous Electrowetting Effect. A slug of mercury is inserted in a
capillary tube and a voltage drop is applied. The surface tension at the
electrolyte(H2SO4)-slug is not homogeneous and a net force appears on the
slug.

Figure 32. A stream of water is focused by air flowing on the sides (a).
Upon application of a voltage to the electrodes, the stream of water is
diverted (b). Reproduced with permission from Huh et al. (2003), 2003
American Chemical Society.
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4 Conclusions

Major advances in electrowetting on dielectric have occurred in the past
two decades, both in theory and in applications. From a theoretical per-
spective, the development of the electromechanical interpretation has been
a major leap forward. It is by now clear that the drop shape is determined
by the balance between capillary and electrical stresses and that this bal-
ance results in a macroscopic apparent contact angle in agreement with the
“classical“ thermodynamic approach (section 2.4). The number of applica-
tions is growing fast and some devices, like EW-based displays and lenses,
are already commercially available products. Electrowetting is commonly
used in many Lab-on-a-Chip devices and has become the most versatile tool
for digital microfluidic operations.
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Abstract The electrical manipulation of fluids in microsystems has
many existing and potential applications. This chapter reviews five
different ways of electrohydrodynamic actuation in microdevices.
First, we describe the basic equations of Electrohydrodynamics in
the microscale, providing some basic concepts of electrical conduc-
tion in liquids. We also deal with some basic fluid-mechanical as-
pects that are common for micropumps. Then, five different electro-
hydrodynamic micropumps are studied and compared: from those
that employ forces in the liquid bulk to those that employ forces in
the electrical double layer.

1 Introduction

Microfluidics deals with the pumping, control and manipulation of micro-
litre to pico-litre volumes of fluids. The typical length of the system ranges
from 100 nm to 1 mm. In our case, we are going to deal with liquids in
microsystems: sub-continuum effects that are important for gases in mi-
crofluidics (or, in general, in nanofluidics) are not important here. The
continuum assumption of fluid mechanics is a good approximation in our
case since the Knudsen number (molecular mean free path length divided
by typical length) is much smaller than one.

Liquid manipulation can be subdivided loosely into: digital microfluidics
where the liquid is divided into droplets (e.g. electrowetting) and continuous
microfluidics where the liquid is transported inside conduits. In this chapter,
we deal with continuous microfluidics.
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Possible applications of microfluidics are (Stone et al., 2004; Laser and
Santiago, 2004): dispensing therapeutic agents into the body; cooling of mi-
croelectronic devices; handling of liquids in space exploration, where minia-
turization is required; micropropulsion for small satellites, as another po-
tential application of microfluidics in space; handling of liquids for the Lab-
on-a-chip technology, i.e. micro-devices for chemical or biological analysis
of chip-format.

Microfluidic transport can sometimes be achieved by passive mechanisms
such as surface tension or gravity. Other applications employ macroscale
pumps: syringe pumps, pressure/vacuum chambers and valves. However,
many applications would benefit from an on-chip active micropump. Ac-
cording to Laser and Santiago (2004), there are two categories of microp-
umps: (a) displacement pumps, which exert pressure forces on the working
fluid by one or more moving boundaries and (b) dynamic micropumps,
which exert forces directly on the liquid, without moving parts. The piezo-
electric or the electro-wetting micropumps are examples of displacement
pumps. Most of electrohydrodynamic (EHD) micropumps are dynamic
pumps: they use electric forces directly on the liquid. The piezo-actuated
micropump is an integrated pump design that has been studied intensively
over the years. In this, a membrane is displaced to create a pulsating flow
that is rectified using valves. However, the moving parts make the fabri-
cation and operation delicate. In this context, EHD micropumps can work
as on-chip active pumps with no moving parts. In addition, the local EHD
pumping of microflows in otherwise pressurised microsystems can have many
applications, such as stirring (Sigurdson et al., 2005) or sorting (Dittrich and
Schwille, 2003).

In all EHD dynamic micropumps, electric current flows through the
working liquid. Different EHD actuation techniques appear depending on
liquid electrical properties (mainly, the electrical conductivity). Here we
will analyse five different ways of EHD actuation in microsystems: in three
of them electric forces are applied in the liquid bulk (the injection, con-
duction and induction pumps (Seyed-Yagoobi, 2005)) and in the other two
electric forces are applied in the double layer (the electroosmotic and ac
induced-charge electroosmotic pumps). One of the objectives of the present
work is to study different possibilities of EHD pumping, analysing the EHD
actuation for different liquid electrical conductivities: from very insulating
liquids to strong electrolytes.

This chapter is organised as follows. First, the main equations of Elec-
trohydrodynamics in microsystems are provided, together with some impor-
tant concepts of electrical conduction in liquids. Fluid-mechanical aspects
that are important for micropumps are also given. Then, these concepts
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are applied to analyse five different strategies of EHD pumping of fluids in
microsystems. Finally, the EHD micropumps that have been analysed are
compared.

1.1 EHD equations in the microscale

Electrical equations. We consider systems where magnetic effects are
negligible in front of electric effects. For these systems, the magnetic energy
density B2

0/2μ is much smaller than the electric energy density εE2
0/2, where

B0 and E0 are typical magnetic and electric field amplitudes, respectively,
and μ and ε are, respectively, the liquid magnetic permeability and electrical
permittivity. B2

0/2μ 
 εE2
0/2 is equivalent to stating that in our system

cB0 
 E0, with c = 1/
√
εμ the speed of electromagnetic waves in the liquid.

Let us see when the magnetic field intensity B0 generated by the currents
in our system is much smaller than E0/c so that we can neglect magnetic
effects. From Ampère-Maxwell law

∇×B = μj+ με
∂E

∂t
(1)

we can estimate B0 ∼ max(μjl, μεωEl), where ω and l are typical frequency
and length, respectively. Using Ohm’s law, j = σE, the ratio of cB0/E0 is

cB0

E0
∼ max(μcσl, ωl/c). (2)

For liquid conductivity σ 
 10 S/m, typical system length l ∼ 100μm, and
nonmagnetic fluids, we have μcσl
 0.377/

√
εr < 1, where εr is the relative

permittivity of the liquid. In microsystems, ωl/c is much smaller than one
up to frequencies of the order of 10 GHz. In this situation of cB0 
 E0, the
electric field that drives the current can be considered to be irrotational. In
effect, Faraday’s law ∇×E = −∂B/∂t can be approximated by ∇×E = 0
if

|∂B/∂t|
|∇ ×E| ∼

ωB0

E0/l
<

ωl

c

 1. (3)

Therefore, working with fluids with conductivities smaller than 10 S/m,
with applied ac signals of frequencies up to 10 GHz, the electric fields in our
microsystem hold the quasi-electrostatic limit of Maxwell equations (Castel-
lanos, 1998; Haus and Melcher, 1989):

∇ · (εE) = ρ (4)

∇×E = 0 (5)
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∇ · j+ ∂ρ

∂t
= 0 (6)

with ρ the volume charge density.

Mechanical equations. For incompressible fluids, the mechanical equa-
tions reduce to the Navier-Stokes equations

∇ · u = 0 (7)

ρm
∂u

∂t
+ ρm(u · ∇)u = −∇p+ η∇2u+ f (8)

where ρm is the mass density, η the dynamic viscosity, u the fluid velocity,
p the hydrostatic pressure and f represents any body force density applied
to the liquid. In the microscale, the convection term ρm(u · ∇)u is usually
negligible in front of the diffusion term η∇2u. The ratio between convection
and diffusion is measured by the Reynolds number Re = ρmul/η and this
is much less than one in many situations in microfluidics (Stone et al.,
2004). For water and taking typical values in microsystems, u ∼ 10−3

m/s, l ∼ 10−4 m, we obtain Re ∼ 0.1. Under steady-state conditions, the
momentum equation is then

0 = −∇p+ η∇2u+ f . (9)

We are interested in cases where the main body force density is of elec-
trical origin. When an electric field is present in a liquid, electric forces are
exerted on it. The electric volume force density is (Stratton, 1941)

fE = ρE− 1

2
E2∇ε+

1

2
∇
[
E2ρm

(
∂ε

∂ρm

)
T

]
(10)

where the first term is the Coulomb force, the second term is the dielectric
force, and the third is the electrostriction. The latter is the gradient of
a scalar and can be incorporated into a redefined pressure for an incom-
pressible fluid. The Coulomb term is the body force exerted on a medium
that contains free charge. The dielectric term is the force exerted on an
nonhomogeneous dielectric liquid by an electric field. The Coulomb force
is the term primarily responsible for generating pumping in Electrohydro-
dynamics, although we will see that the dielectric term can sometimes be
important.

Temperature equation. Together with the electrical and mechanical
equations, the energy equation is required, which can be related to the
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temperature distribution T through (Castellanos, 1998)

ρmcp

(
∂T

∂t
+ u · ∇T

)
= k∇2T +E · j′. (11)

Here cp and k are, respectively, the specific heat at constant pressure and
the thermal conductivity and j′ is the current density measured in the rest
frame of the fluid element. In the previous equation we have neglected the
heat generation due to viscous dissipation and considered moderate heat
dissipation, where fluid properties such as ρm, cp, k are assumed to be
constant.

In many situations in microsystems, heat convection is small compared
to heat diffusion, as demonstrated by the small value of the Peclet number.
This is, taking typical values u < 100μm/s, l < 100μm,

|ρmcpu · ∇T |
|k∇2T | ∼ Pe =

ρmcpul

k
< 0.07 (12)

for aqueous solutions. Therefore, the temperature equation in the steady-
state reduces to

0 = k∇2T +E · j′. (13)

1.2 Some concepts of electrical conduction in liquids

Electrical current density. Charge carriers in liquids are electrons and
ions (Schmidt, 1994). Except for liquid metals or extremely pure dielectric
liquids where electrons can survive without being trapped by molecules,
charge in liquids is carried by ions in dissolution (Castellanos, 1998).

Free charge density ρ and ion concentration ni are related as ρ =
∑

i qini,
where qi is the ion charge. Under the action of an electric field, ions acquire
a velocity given by v = μE, where μ is the mobility of the ion. A good
picture is to consider the ions as spheres affected by viscous friction. This
provides an expression for the mobility as μ = q/6πaη (Stokes-Einstein
relation), where a is the hydrodynamic radius of the solvated ion and η the
dynamic viscosity of the surrounding liquid. The ion charge is q = ze, where
e is the charge of a proton and z is the valence. The mobility of ions in
liquids is usually between 10−7 to 10−9 m2/Vs. Ion motion is also affected
by molecular diffusion and convection, so the electric current in the liquid
bulk can be written as

j =
∑
i

qi(niμiE−Di∇ni + niu) (14)

where Di is the diffusion coefficient of an ion, and u the velocity of the
fluid. Diffusion and mobility coefficients are linked by Einstein’s relation,
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Di/μi = kBT/qi, where kB is the Boltzmann’s constant and T is the abso-
lute temperature.

In many situations common for dielectric liquids in microsystems, the
diffusion current is negligible in front of the electro-migration current. If we
compare diffusion and migration, |D∇n|/|μnE| ∼ D/μEl, with l a typical
distance. The ratio D/μ = kBT/q ∼ 0.025 V at room temperature and
E · l (typical increment of voltage in the bulk) is usually much greater than
0.025 V. However, for electrolytes, the diffusion current can be important
close to the electrodes and walls, where double layers are formed.

For electrolytes the convective current is usually much smaller than the
conduction current. In effect, the ratio between convective current and
electro-migration current is of the order of

ρu∑
i qiniμiE

∼ ∇ · (εE)u∑
i qiniμiE

∼ εu∑
qiniμil

∼ εu

σl
(15)

where σ is the equilibrium liquid conductivity. For electrolytes, this ratio is
much smaller than one. For insulating dielectric liquids, the ratio between
convection and ion-migration velocities, u/μE, can be greater or smaller
than one.

Conservation of species. Species conservation equations for ions and
molecules must be included to complete the description of our system (Sav-
ille, 1997):

∂ni

∂t
+∇ · (niμiE−Di∇ni + niu) = ri (16)

where ri is the rate of production due to chemical reactions since the neutral
species act as a source for ions in the bulk (μi = 0 for neutral species). Some
examples are:

- In unipolar injection, there is only a single ionic species, and there is
no production of charges in the bulk r1 = 0. The ions are produced
(or consumed) at the electrodes.

- For strong electrolytes, the majority of ions come from the dissociation
of neutral salt and this is fully dissociated. There are no reactions in
the bulk (ri = 0 per each ionic species). Electrochemical reactions
take place only at the electrodes.

- For a weak binary z-z electrolyte, there are three species: the positive
and negative ions, and the neutral molecule that dissociates into them.
Ions are produced (or consumed) by reactions at the electrodes and
by homogeneous chemical reactions in the bulk,

−r0 = r+ = r− = kdn0 − krn+n− (17)
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where kd and kr are the dissociation and recombination rate constants
and n0, n+ and n− are the concentrations of neutral, positive and
negative species, respectively.

Liquid conductivity. Ions in dielectric liquids are originated from disso-
ciation of impurities (or electrolytes) in the liquid bulk, or of the liquid itself
(Castellanos, 1998). True electrolytes, also called ionophores, are ionic crys-
tals, while potential electrolytes, also called ionogens, react with the solvent
to form ions (Castellanos, 1998):

(A+B−) � A+ +B− (true electrolyte),

C +D � (A+B−) � A+ +B− (potential electrolyte).

In both cases, in order to understand some features of conduction, a good
model is a liquid with three species: a neutral species that dissociates into
ions so that in equilibrium kdn0 = krn+n−.

The conductivity of a dielectric liquid depends strongly on its dielectric
constant. Ions recombine if the energy of Coulomb attraction is greater
than the thermal energy kBT at the point of closest approach of the ions.
The equilibrium constant K ≡ kd/kr = n+n−/n0 is proportional to

K ∝ exp{− e2

4πε(a+ + a−)kBT
} (18)

where a+ and a− are the radius of positive and negative solvated ions, re-
spectively (Saville, 1997). The distance at which Coulomb attraction energy
equals kBT is called the Bjerrun distance, lB = e2/4πεkBT (Castellanos,
1998). Because the liquid dielectric constant εr affects strongly the probabil-
ity to occur dissociation through the exponential factor exp{−lB/(a++a−)},
polar liquids (where εr � 2) tend to have all impurities dissociated. In
contrast, in non-polar liquids (where εr ∼ 2) the equilibrium is displaced
towards the neutral species.

Continuity of electrical current. In order to establish a dc current
in a liquid, electrons should be transferred from the metal electrodes to
the molecules in the liquid and viceversa. This can happen by electron
emission from surface irregularities, from electrochemical red-ox reactions
at the surface or by other means. From the mathematical point of view, the
different mechanisms can be described by similar parameters (Zhakin, 1998).
A simple pictures is to consider that neutral molecules can be charged at
the electrodes and that ions can be discharged (see figure 1). This together
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Figure 1. Simple picture of conduction in liquids.
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Figure 2. Current-Voltage characteristic for a semi-insulating dielectric
liquid.

with the homogeneous reactions of ion production in the bulk form a simple
dissociation-injection picture of conduction in liquids (Zhakin, 1998).

The current-versus-voltage characteristic for a semi-insulating dielectric
liquid is typically of the form shown in figure 2 (Schmidt, 1994; Zhakin,
1998). It can be roughly divided into three regions. At low voltages (re-
gion I), the current is linear with voltage, ions are produced by dissociation
of impurities (or electrolytes) in the liquid and they are discharged at the
electrodes (at the cathode X++ e− → X and at the anode X−− e− → X).
As the voltage increases (electric fields around 105 V/m), ions generated
from the dissociation of impurities can not be created as fast as they are
neutralized at the electrodes and the current density reaches saturation (re-
gion II). This region II is always present in gases but is ill-defined or may
not be present in dielectric liquids. At higher voltages, a steep increase
in the current is observed (region III). The beginning of region III can be
due to enhancement of dissociation by the electric field strength. Neverthe-
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less, at further increase of the electric field strength, ion injection from the
electrodes becomes the dominant process. The ion injected at the cathode
X + e− → X− (or at the anode X − e− → X+) is neutralized at the oppo-
site electrode. The current usually follows a quadratic law I ∝ V 2, which
is typical of space-charge-limited emission. Finally, at electric fields of suf-
ficient high strength (of the order of 100 MV/m), breakdown takes place.
The breakdown electric field is very dependent on the liquid, impurities and
geometry.

V(t)

CDL CDLCb

RDL RDLRb

Figure 3. Circuit model for ac currents. The double layer behaves as a
capacitor with a resistor in parallel.

In the case of ac currents, the charging of the double layer at the elec-
trodes should be considered (Bard and Faulkner, 2001). In order to un-
derstand the electrical behaviour of the double layer at the electrode/liquid
interface, this can be modelled as a leaky capacitor (a capacitor and a re-
sistor in parallel) connected to a resistive liquid bulk (see fig. 3). The
charging of the capacitor CDL models the charging of the double layer,
while the current through the resistor RDL represents the Faradaic current.
If the frequency of the applied ac voltage is high enough, the voltage drop
across the double layer can be below the threshold voltage for appearance of
the electrochemical reactions at the electrodes. Typically, this will happen
for angular frequencies much greater than the reciprocal charging time of
the double layer, i.e. ω � 1/RbulkCDL (with Rbulk and CDL typical values
for the bulk resistance and double layer capacitance, respectively). In this
situation, the charging of the double layer guarantees the continuity of the
electric current with no need of Faradaic currents.
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1.3 Some concepts of pumps

At low Reynolds numbers, typical of microsystems, the equations relat-
ing fluid velocities to forces and pressure gradients are linear. This linearity
allows for the classical representation of microfluidic networks in terms of
equivalent electrical circuits: resistors and generators. Flow-rate Q and
pressure drop Δp are equivalent to electrical current intensity I and poten-
tial drop ΔV , respectively. The force that moves the liquid is commonly
concentrated in a small region of the microfluidic system, this constitutes
the micropump. This is equivalent to the generator in an electrical circuit.
The microchannels are equivalent to resistors. For a microchannel outside
the micropump, the volume flow-rate Q is linearly related to the pressure
difference Δp between the inlet and outlet of the channel. For a straight
channel of circular cross-section we have

Q = Δp
πD4

128ηL
(19)

where D is the diameter and L the length of the channel.
Two important parameters of a pump are: the maximum pressure Δpmax

and the maximum flow-rate Qmax that the pump can generate. The max-
imum pressure is the pressure difference required to stop the flow that the
pump generates. The maximum flow-rate is obtained when the pump actu-
ates without an external load, that is, when the pressure difference between
the inlet and outlet of the pump is zero. In many situations, there is a lin-
ear relation between flow-rate and back pressure under constant operating
conditions

Q = Qmax

(
1− Δp

Δpmax

)
. (20)

Power consumption and energy efficiency are important operational pa-
rameters of pumps (Laser and Santiago, 2004). When comparing different
pumps, we would prefer the one that consumes less power for obtaining
a given flow rate or a given pressure. The energy efficiency is defined as
the maximum delivered hydraulic power divided by the consumed (input)
power

eff =
(ΔpQ)max

Pin
(21)

where Pin is the input power. When, under constant operating conditions,
there is a linear relationship between Δp and Q, the maximum energy effi-
ciency can be calculated as

eff =
1

4

QmaxΔpmax

Pin
. (22)
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Let us consider as an example a homogeneous volume force f applied
to a liquid in a pipe of diameter D and length L. The generated pressure
is fL, which is also the one required to stop the flow Δpmax = fL. The
maximum flow-rate is Qmax = fLπD4/128ηL. The flow-rate if there is a
back pressure Δp is

Q = (fL−Δp)
πD4

128ηL
= Qmax

(
1− Δp

Δpmax

)
. (23)

The minimum input power should be the mechanical power that the force
is providing Pin =

∫
fuLdS = fLQ, where u is the liquid velocity and S is

the cross-sectional surface area. Therefore, the maximum energy efficiency
is

eff =
1

4

QmaxΔpmax

Pin
=

1

4

Δpmax Qmax

fLQmax/2
=

1

2
(24)

where the setQ = Qmax/2 and Δp = Δpmax/2 gives the maximum hydraulic
power.

2 Electrohydrodynamic Micropumps

2.1 Injection micropump

The injection micropump is also known as ion-drag pump. Ions emitted
from one electrode (the emitter) are collected in the other electrode (the
collector). Since ions move at the terminal velocity v = μE (ion inertia
is negligible) the electric force acting on them is transmitted directly to
the liquid by viscous friction. The typical working fluid for this pump is a
very insulating liquid. Stuetzer (1959, 1960) and Pickard (1963a,b) studied
theoretically and experimentally the performance of this kind of pumps. In
microsystems, Richter, Sandmier and co-workers (Richter and Sandmaier,
1990; Richter et al., 1991) fabricated ion-drag micropumps made of two
opposite metallic grids through which the pumped fluid moves. Ion-drag
micropumps made of co-planar microelectrodes have been studied by Ahn
and Kim (1998) and Darabi et al. (2002).

Theoretical analysis. Let us consider two opposite metallic grids sub-
jected to a potential difference V and placed inside a tube of circular cross-
section of diameterD(see fig. 4). Inside the tube there is an insulating liquid
that is pumped by the ion-drag mechanism. We consider that only one type
of ions exists and these are injected at x = 0 and collected at x = L. We,
therefore, restrict ourselves to study the case of unipolar injection. Ions are
injected from the emitter, rather than from the collector, either because of
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V

emitter collector

x = 0 x = L

Figure 4. Scheme of injection pump.

the difference between molecule-ion energy barriers at emitter and collector
or because the local electric field at the emitter is much greater than the
one at the collector due to the presence of sharp edges or points. We further
simplify the problem by considering a one-dimensional model and assuming
that the diffusion of ions is negligible. The latter is a good approximation
for dielectric liquids since the ratio of diffusion to electromigration current
is of the order of kBT/eV 
 1 (see section 1.2). In the one-dimensional
approximation, the electric field, the liquid velocity, the current, etc. are
directed along the axis of the pipe.

For this geometry, the total electric force per unit area exerted on the
liquid (the generated pressure) is

Δpg =

∫ L

0

(
ρE − E2

2

∂ε

∂x

)
dx =

∫ L

0

1

2

∂εE2

∂x
dx =

εE2

2

∣∣∣∣
x=L

− εE2

2

∣∣∣∣
x=0
(25)

where we have used that ρ = ∂(εE)/∂x. The generated pressure is also the
pressure difference required to stop the flow that the pump generates, i.e.
the maximum pressure Δpmax. The result says that the generated pressure
is equal to the difference between electrical energy density at the outlet and
inlet of the pump. This is a straightforward result using the Maxwell stress
tensor and it is not restricted to the injection pump case. The objective
now is to find the electric field in the system.

In the steady-state, the equations for the electric field are

0 =
∂j

∂x
=

∂ρ(μE + u)

∂x
(26)

∂E

∂x
=

ρ

ε
. (27)
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In this one-dimensional model, u is the average velocity in a cross-section
of the pipe and is a constant of x due to mass conservation. The value of u
is obtained a posteriori after finding the generated pressure and imposing
a given back pressure. The current density is then

j = ρ(μE + u) = (μE + u)
∂εE

∂x
. (28)

From here we can obtain the electric field strength as

E(x) =

[
2jx

εμ
+

(
E0 +

u

μ

)2
]1/2

− u

μ
(29)

and the charge density as

ρ(x) =
j/μ[

(E0 + u/μ)
2
+ 2jx/εμ

]1/2 (30)

where E0 = E(0) is the electric field at the emitter. In the previous expres-
sions u > 0, which is the case when the liquid is moved by the electric field.

The current j for given u and E0 can be determined from V =
∫ L

0
E(x) dx.

A certain charge injection law should be given in order to eliminate E0.
The expressions say that the charge density decreases from the emitter to

the collector, while the field strength E increases. Injection of large amounts
of charge has a limit, since the charge already present in the system repels
the incoming charge. When the field at the emitter is too low, charge can no
longer be removed from the emitter, and the pump reaches its space charge
limit (Crowley et al., 1990). For space-charge-limited emission (SCLE), the
electric field at the emitter is much smaller than the average field, E0 

V/L, and this is the boundary condition that we are going to consider to
close our problem (E0 ≈ 0). The result is an implicit equation for j

V =
εμ

3j

⎧⎨
⎩
[
2jL

εμ
+

(
u

μ

)2
]3/2

−
(
u

μ

)3
⎫⎬
⎭− uL

μ
. (31)

Once we know the electric current we can calculate the generated pressure
as a function of V and u. The generated or maximum pressure for space-
charge-limited emission (SCLE) becomes

Δpmax =
1

2
εE2

L =
ε

2

⎧⎨
⎩
[
2jL

εμ
+

(
u

μ

)2
]1/2

− u

μ

⎫⎬
⎭

2

(32)
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where EL = E(L) is the field at the collector. We can now obtain the liquid
velocity u as a function of the external back pressure Δpout at different
applied potentials V , taking into account that Δpmax is balanced by the
pump internal hydrodynamic resistance plus the external back pressure:
Δpmax = RinQ + Δpout, where Rin = 128ηL/πD4 is the hydrodynamic
resistance and Q = uπD2/4 is the flow-rate.

Let us analyse two limits: a) the liquid velocity is much smaller than
the ion migration velocity (u 
 μV/L); and b) the liquid velocity is much
greater (u � μV/L). Here V/L is an estimate of the electric field in the
pump. When u 
 μV/L, the current density is j ≈ ρμE and the final
expressions for the current density, electric field, generated pressure and
maximum flow-rate are

j =
9

8

μεV 2

L3
, (33)

E(x) =
3V

2L

√
x

L
, (34)

Δpmax =
9

8

εV 2

L2
, (35)

Qmax =
9

8

εV 2

L3

πD4

128η
. (36)

When u � μV/L, the current density is j ≈ ρu which implies that ρ is a
constant of x and E is a linear function of x. The final expressions are

E(x) =
2V x

L2
, (37)

j =
2uεV

L2
, (38)

Δpmax =
2εV 2

L2
, (39)

Qmax =
εV 2

L3

πD4

64η
. (40)

Here Δpmax is the maximum pressure at negligible flow-rate but still u �
μE.

Let us see the ratio between the delivered hydraulic power and the con-
sumed power. The consumed power is Pin = IV = jSV and the maximum
energy efficiency for the case u
 μV/L is

eff =
1

4

ΔpmaxQmax

IV
=

1

4

umax

μV/L
=

9

1024

εV D2

L2ημ
(41)
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where umax = 4Qmax/πD
2. The maximum energy efficiency for the case

u� μV/L is

eff =
1

4

ΔpmaxQmax

IV
=

1
2Δpmax

1
2Qmax

S2εuV 2/L2
=

1

2
(42)

where the consumed power when the pump is providing maximum hydraulic
power is obtained for Q = Qmax/2 and Δp = Δpmax/2.

In a general case, there is some residual conductivity σ and then the
current density may be written as j = ρ(u + μE) + σE. The term σE
represents the ordinary bipolar conduction, in which charge carriers are not
produced by injection but by dissociation of impurities in the bulk. The
consumed power can be approximated by Pin = jSV = ρ(u + μE)SV +
σESV , where E and ρ are here the mean electric field and mean charge
density, respectively, (Crowley et al., 1990). The energy efficiency can be
written in an approximate formula that contains the limiting cases

eff ∼ 1

2(1 + α1 + α2)
(43)

where the coefficients α1 and α2 are given by

α1 =
2μV/L

umax
, (44)

α2 =
σE

ρumax
∼ σL/ε

umax
. (45)

The coefficients α1 and α2 represent the losses due to electromigration
and residual conduction, respectively. Here we have used the estimate
ρ ∼ εV/L2 that comes from Gauss’s law. For high efficiency, the ions
should go from emitter to collector at the fluid velocity rather than due
to electromigration (μV/L 
 umax). In addition, the liquid should arrive
at the collector in a time L/umax much shorter than the time the charges
take to relax ε/σ. The reciprocal of α2 has the form of an electric Reynolds
number uε/σL (Melcher and Taylor, 1969). It represents the ratio between
convection current and conduction current.

Some experimental features. Darabi and Wang (2005) working with
refrigerant HFE-7100 at 180 V obtained pressures of the order of 300 Pa,
flow-rates of the order of 30 mm3/s and a maximum energy efficiency
of around 0.0015. They used an array of co-planar interdigitated saw-
tooth/plane electrodes. The saw-tooth electrode (the emitter) produces
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high electric field at the tips, thus resulting in higher charge injection for a
given applied voltage. The array consisted of 200 pairs of emitter/collector
electrodes. The gap between emitter and collector was 20 μm and the av-
erage electric field between electrodes was of the order of 5× 106 V/m.

The system studied by Darabi et al. cannot be analysed using the simple
expressions we wrote above. For electric fields of the order of 5× 106 V/m
and a dielectric permittivity of ε = 7.4ε0, naively we could expect that the
generated pressure per electrode pair was of the order of εE2 ∼ 1600 Pa and
because there were 200 stages the total generated pressure could have been
3.2× 105 Pa. This is three orders of magnitude greater than the pressures
measured in these experiments. The main reason for such big difference
comes from the difference in geometry. In the experimental system, the
microelectrodes are co-planar and the electric force is only applied in a
small region of the pump channel, of the order of the size of electrodes and
gap. In addition, the force is applied near the walls (where we have the
no-slip boundary condition) so that viscous shear stresses are very strong.
In fact, Darabi and Rhodes (2006) analysed the previous experiments using
numerical computations of the complete model and found good agreement
with the experiments.

Kazemi et al. (2009) studied injection micropumps with different designs
(planar and 3D microelectrodes) and HFE-7100 as working fluid. The best
performance was obtained with arrays of asymmetric 3D electrodes (metallic
pillars). The 3-D asymmetric micropump generated a maximum pressure
of 2240 Pa at an applied voltage of 900 V. It was also the micropump that
consumed less power for a given generated pressure.

A problem when working with injection pumps is that charge injection
tends to change the chemical composition of both working liquid and elec-
trodes due to electrochemical reactions. The pump life and run-to-run re-
peatability can then be affected. According to Zhakin (1998), the choice of
the working liquid, the electrode material and the ionizing groups that enter
into the electrochemical reactions is an important requirement in order to
have reproducible results. According to Darabi and Wang (2005), electrode
degradation was observed using the HFE-7100 fluid, however, no noticeable
electrode degradation was observed using liquid nitrogen.

2.2 Conduction micropump

This kind of EHD actuation is based upon the Coulomb force on non-
equilibrium charged layers adjacent to electrodes that appear in the con-
duction regime. The representative working fluid is a semi-insulating liquid.
For electric fields less than 107 V/m, ions from dissociation of impurities
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or electrolytes are responsible of conduction. Ions generated in the bulk
move by electromigration towards the electrodes where they are discharged.
Near them, charged layers appear due to ion generation not balanced by
recombination. These non-equilibrium charged layers are of opposite sign
to that of the adjacent electrode and are called heterocharge layers (Atten
and Seyed-Yagoobi, 2003; Seyed-Yagoobi, 2005). The heterocharge layer
thickness is typically much greater than the Debye length and this is why
we include this kind of EHD flow among those that are originated by elec-
tric forces in the liquid bulk. Atten and Seyed-Yagoobi (2003) and Jeong
and Seyed-Yagoobi (2002, 2004) reported EHD conduction pumping in the
millimeter scale. Pearson and Seyed-Yagoobi (2009) reported recently in
Electrostatics Joint Conference a micro-scale EHD conduction pump.

Theoretical analysis. Let us consider the geometry shown in fig. 5: two
parallel perforated electrodes immerse in a semi-insulating dielectric liquid.
The electrode placed at x = 0 is subjected to a potential V and the electrode
placed at x = L is grounded.

VV

D

x = 0 x = L

Figure 5. Scheme of conduction pump.

The analysis considers a bipolar conduction model where a neutral species
n0 dissociates reversibly into univalent positive n+ and negative n− ions
(Atten and Seyed-Yagoobi, 2003; Feng and Seyed-Yagoobi, 2004). There
are several simplifications in the model:

• The neutral species is so abundant and the rate of dissociation so small
that the concentration of neutral species is considered to be constant.

• Ions are discharged at the electrodes; no charge injection is considered.

• Diffusion and convection of ionic species is negligible.

• A one-dimensional geometry is considered.

The governing 1D-equations in the steady-state are:

∂μ+n+E

∂x
= kdn0 − krn+n− (46)
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∂μ−n−E
∂x

= −kdn0 + krn+n− (47)

and
∂E

∂x
= e

n+ − n−
ε

(48)

where kd and kr denote the dissociation and recombination rates, respec-
tively. At equilibrium kdn

eq
0 = krn

eq
+ neq

− and neq
+ = neq

− = neq.
The boundary conditions are n+ = 0 at x = 0 and n− = 0 at x = L,

and
∫ L

0
E(x) dx = V , with V the potential difference between electrodes.

The boundary condition for ions comes from the fact that ion injection is
not allowed in the model. In effect, let us consider the positive electrode,
negative ions are arriving at it and discharge but no positive ion can come
from it (see figure 6). Therefore, at x = 0 the flux of positive ions μ+n+E =
0 which implies that n+ = 0 for finite E. This also implies that near the
positive (negative) electrode the majority of ions are negative (positive).

Figure 6. Ion fluxes near positive electrode in conduction regime.

These equations were solved approximately by Thomson and Thom-
son (1928). The approximate solution is valid under the assumption that
the thickness of the heterocharge layer λ is much smaller than the dis-
tance between electrodes L (this situation is called the quasi-ohmic regime).
This means that the liquid is considered to be electroneutral in the liquid
bulk except for a small region near the electrodes, the heterocharge lay-
ers. In the bulk the electric field Eb and the concentrations of ionic species
n+ = n− = neq are constant. The approximation consists on neglecting the
recombination in the heterocharge layers (krn+n− is very small near the
electrodes). Let us call λ+ the thickness of the heterocharge layer adjacent
to the positive electrode, the approximate solution for x ≤ λ+ is

μ+n+E = kdn0x μ−n−E = −kdn0x+Const. (49)

This constant is determined from the continuity of electric current along x

μ−n−E = (μ+ + μ−)neqEb − kdn0x (50)
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where (μ+ + μ−)neq = σ/e with σ the bulk conductivity. For x ≥ λ+, the
liquid is assumed to be electroneutral

μ+n
eqEb = kdn0λ+ at x = λ+ . (51)

The thickness λ+ is then

λ+ =
μ+n

eqEb

kdn0
=

μ+Eb

krneq
(52)

and, equivalently, for the charge layer adjacent to the negative electrode,

λ− =
μ−Eb

krneq
. (53)

The thickness of the charge layer can be seen as the distance that an ion,
under the action of the electric field, travels without recombination, tak-
ing into account that tc = 1/krn

eq ≈ ε/σ is the charge relaxation time
(Langevin, 1903).

Gauss’s law can now be integrated inside the charge layer, 0 ≤ x ≤ λ+.
Multiplying the equation by E and substituting the terms En+ and En−
we get

ε

e

∂E2/2

∂x
=

kdn0x

μ+
− (μ+ + μ−)neqEb − kdn0x

μ−
. (54)

The result for the electric field is (Pontiga, 1992)

E = Eb

√
1 + (1− x/λ+)2μ+/μ− (55)

where we have used that E(λ+) = Eb and neq/krn0 = ε/σ. The value of
the electric field in the bulk is close to V/L for λ+/L 
 1 and λ−/L 
 1,
typically, when εV/eneqL2 
 1. The charge density is

ρ = −εEb

λ+

(1− x/λ+)μ+/μ−√
1 + (1− x/λ+)2μ+/μ−

(56)

and we can see that the charge layer sign is opposite to that of adjacent
electrode. Therefore, Coulomb force is directed towards the electrode. The
generated pressure in the charge layer of thickness λ+ is (recall eq. 25)

Δp+g =
ε

2
(E2

b − E2
0) = −

ε

2
E2

b

μ+

μ−
. (57)

An equivalent expression can be deduced for the other heterocharge layer
and we have

Δp−g =
ε

2
E2

b

μ−
μ+

. (58)
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And the total pressure generated is

Δpg =
ε

2
E2

b

(
μ−
μ+

− μ+

μ−

)
. (59)

The difference in mobility between positive and negative ions is responsible
for the appearance of a net pressure.

In practice, in order to have a pressure difference even in the case of
equal mobilities, the electrodes are made non-symmetric (Atten and Seyed-
Yagoobi, 2003; Jeong and Seyed-Yagoobi, 2002; Feng and Seyed-Yagoobi,
2004). Feng and Seyed-Yagoobi (2004) used a perforated disc electrode
against a ring electrode (see fig. 7). The Coulomb force generated near the
perforated disc electrode is mainly axial while the Coulomb force generated
near the ring electrode is mainly radial. The liquid is driven by the axial
force while the radial force is balanced by the reaction of the pipe wall. This
electrode configuration working as conduction pump always drives the liq-
uid towards the perforated electrode. According to Feng and Seyed-Yagoobi
(2004), the pressure generated at zero flow rate for this configuration and
μ+ = μ− is Δpmax = 0.85εV 2/L2, which is of the order of the expressions
previously obtained for only one electrode, eq. (57). For finite flow rate,
assuming that the convection current can be neglected, the previous gener-
ated pressure leads to a maximum average fluid velocity and flow-rate given
by

umax = 0.85
εV 2

L3

D2

32η
Qmax = 0.85

εV 2

L3

πD4

128η
. (60)

Figure 7. Scheme of conduction pump used in (Feng and Seyed-Yagoobi,
2004).

The consumed power for quasi-ohmic regime (λ 
 L) can be written
as IV = σV 2πD2/4L and the maximum energy efficiency in the limit of
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negligible convection current is

eff =
ΔpmaxQmax

4IV
≈ 0.2

umaxε

σL
≈ 0.2

ε2V 2D2

32L4ησ
. (61)

We can see that energy efficiency is of the order of the ratio between con-
vection and conduction currents (the electric Reynolds number). This is
usually very small in microsystems, so that the energy efficiency should be
small. In order to increase the energy efficiency, we can increase V , or de-
crease σ, but there is a limit because these expressions are only valid for
λ = μεV/σL 
 L. When λ � L, the recombination of ions is also negli-
gible in the bulk and the regimen of saturation of current is reached. Ions
are removed on the electrodes at the same rate that are produced in the
bulk, which leads to j = ekdn0L. In the regime of current saturation, there
is a small variation of electric field between electrodes and the generated
pressure saturates.

Some experimental features. Feng and Seyed-Yagoobi (2004) working
with refrigerant HCFC-123 at 10 kV in a millimeter scale micropump ob-
tained Δpmax ∼ 270 Pa, Qmax ∼ 4000mm3/s, umax = 5 cm/s. The power
consumption was around 0.25 watts and energy efficiency around 0.001. The
estimated thickness of the heterocharge layer was around 100 μm which is
much greater than the estimated Debye length λD = 1μm, as it should be.
Pearson and Seyed-Yagoobi (2009) working with refrigerant HCFC-123 at
4 kV for a micrometer scale micropump obtained Δpmax ∼ 500 Pa, and a
power consumption around 0.09 watts. The gap between electrodes was 250
μm.

In practice, we can increase the voltage or reduce the dimensions to
increase the generated pressure. But then we can reach either the satura-
tion regimen or the regime of charge injection. In some geometries the ap-
pearance of charge injection is manifested by the liquid changing direction.
For instance, in the point-plane configuration of Atten and Seyed-Yagoobi
(2003), the liquid moves towards the point electrode below 17.5 kV by the
conduction mechanism and moves from the point to the plane for higher
voltages due to the injection mechanism. To avoid charge injection, sharp
edges should be avoided.

Because electric fields are not so high as compared to the case of the
injection pump, the electrodes and liquids are subjected to much less degra-
dation, which is an advantage.
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2.3 Induction micropump

Induction pumping is based on the forces upon charges induced in a
liquid by the electric field due to a gradient or discontinuity of the electric
conductivity. Typically, an ac travelling-wave electric field attracts or repels
these induced charges, leading to fluid flow. Melcher (1966) introduced the
concept of EHD induction pumping. He used a semi-insulating liquid and
charges were induced at the air/liquid interface. Melcher and Firebaugh
(1967) carried out EHD induction pumping acting on induced charges in
the liquid bulk. They imposed a conductivity gradient using a temperature
gradient and the liquid was then subjected to a travelling-wave potential.
Liquid conductivity is generally a function of temperature because ionic mo-
bilities depend on temperature and because the dissociation rate of neutral
molecules depends also on temperature. The temperature gradient can be
imposed externally or it can also be obtained by Joule heating generated
by the imposed electric field. In microsystems, the EHD induction microp-
umps fabricated by Fuhr and co-workers (Fuhr et al., 1992; Müller et al.,
1993; Fuhr et al., 1994) employed Joule heating to establish the temperature
gradient. Water saline solutions were used as working fluids, which are very
difficult (if not impossible) to pump using EHD induction at the macroscale.
More recently, Felten et al. (2006) carried out induction pumping using an
externally imposed gradient of temperature in a microdevice. Unidirectional
motion can also be obtained with an array of electrodes subjected to a single
phase ac signal either with an imposed longitudinal temperature gradient
(Green et al., 2000a; González et al., 2006; Stubbe et al., 2007; Holtappels
et al., 2009) or using Joule heating and asymmetric electrodes (Wu et al.,
2007). In microsystems, most of flows originated by induction pumping are
electrothermal flows (Ramos et al., 1998).

Theoretical analysis. An induction pump which does not require a trav-
elling wave signal can be fabricated with two parallel perforated electrodes
subjected to both a potential difference and a temperature difference. This
is a simplified version of an electrothermal pump using an imposed longitu-
dinal gradient of temperature (Stubbe et al., 2007).

Let us consider the geometry of fig. 8: the electrode at x = 0 is subjected
to potential V0 and a temperature T0 and the electrode at x = L is subjected
to potential zero and temperature TL. We simplify the problem assuming:
• the problem is unidimensional;
• the liquid is quasi-electroneutral; in the bipolar conduction model this
means |n+ − n−| 
 neq, which leads to j = σE, with σ = e(μ+ +
μ−)neq;

• negligible convection both of charge and temperature;
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VV

D

x = 0 x = L

Figure 8. Scheme of induction pump.

• linear variation between T0 and TL so that σ(x) = σ1 + ax, ε(x) =
ε1 + bx, with a = (dσ/dT )(dT/dx) and b = (dε/dT )(dT/dx).

Since the electrical current j = σE is a constant of x and
∫ L

0
E dx = V0 we

obtain

E =
aV0

σln(1 + aL/σ1)
. (62)

The induced charge in the bulk is

ρ =
∂εE

∂x
= σE

∂

∂x

( ε
σ

)
= E(b− aε/σ). (63)

The generated pressure is (recall eq. 25)

Δpmax =
1

2

a2V 2
0

(ln[1 + aL/σ1])
2

(
ε(L)

σ(L)2
− ε(0)

σ(0)2

)
. (64)

For small increments of temperature so that Δσ 
 σ and Δε 
 ε, the
expression simplifies to

Δpmax =
1

2
ε1

V 2
0

L2
(2α− β)(T0 − TL) (65)

where α = (1/σ)(dσ/dT ) and β = (1/ε)(dε/dT ). For water saline solutions,
α = 0.02K−1 and β = −0.004K−1 at room temperature. If T0 > TL it
can be seen that the induced charge is positive and that the electric force
and generated pressure are directed from high to low temperature. In this
limit of small increment of temperature, the maximum average velocity and
flow-rate are

umax =
1

2

ε1V
2

L3

D2

32η
(2α− β)(T0 − TL) Qmax = umax

πD2

4
. (66)

The consumed power is either equal to Pin = IV , if the temperature gradient
is generated by Joule heating, or to Pin = IV + q̇ where q̇ is the input
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of power required to establish the external gradient of temperature. The
maximum energy efficiency is then

eff =
ΔpmaxQmax

4(IV + q̇)
∼ ε2V 2

0 D
2(αΔT )2

128ησL4(1 + q̇/IV0)
≈ 1

4

(umaxε/σL)αΔT

1 + q̇/IV0
(67)

where we have neglected β in front of α as a first approximation since for
water-saline solutions α� |β|.

We can see that the maximum pressure and flow-rate are somewhat
smaller than for the previous two mechanisms of EHD pumping for the same
applied voltage and geometry. In effect, ΔT should be of the order of 10 K
or less and the generated pressure is of the order of Δpg ∼ ε(V 2/L2)αΔT <
0.2ε(V 2/L2) for water. The energy efficiency is very small, being propor-
tional to the product of two small numbers: the electric Reynolds number
and αΔT/(1 + q̇/IV ).

In practice, in order to avoid Faradaic reactions, ac voltages of high
enough frequency are applied. The time-average electric force is different
from zero because it is quadratic with voltage. The expressions are the same
substituting V0 by Vrms for applied signals with frequencies ω 
 σ/ε.

This geometry induces an electrothermal flow for ω � σ/ε, when the
liquid behaves as a perfect dielectric. Properly, this case is not induction
pumping since no charges are induced; the force actuating here is the di-
electric force. For ω � σ/ε, it can be seen that the electrothermal flow goes
from low to high temperature (contrary to the case with ω 
 σ/ε) and the
pressure generated is Δpmax ≈ 1

2ε1β(T0 − TL)V
2
rms/L

2.
The analysis of the travelling-wave (TW) experiments is somewhat dif-

ferent. Let us consider the geometry depicted in fig. 9: a straight channel
of rectangular cross-section with an array of microelectrodes on the bot-
tom that are subjected to a TW potential V0 cos(ωt − kx), where k is the
wavenumber. There is a vertical gradient of temperature that creates ver-
tical gradients of conductivity and permittivity in the liquid. This electric
field wave induces a charge wave that lags behind the voltage wave due to
the finite time in which charge is induced in the bulk. Maximum longitudi-
nal force is obtained at a frequency around ω = σ/ε (reciprocal of the charge
relaxation time). At much higher frequencies, negligible charge is induced,
and at much lower frequencies, there is negligible delay between the induced
charge and the TW signal and, therefore, negligible longitudinal force.

Solving Laplace’s equation for the potential in the case of w � h� 1/k,
and small ΔT , Δε and Δσ gives (using phasors)

φ(x, y, t) = V0e
i(ωt−kx)−ky. (68)
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Figure 9. Scheme of TW induction pump.

For small variations in σ and ε the phasor of induced charge is (Ramos
et al., 1998)

ρ ≈ −ε∇σ − σ∇ε

σ + iωε
·E . (69)

The time-averaged Coulomb body force is 〈f〉 = 1
2Real[ρE

∗], where E∗ is
the complex conjugate of E. The vertical force is compensated by pressure
while the longitudinal force generates the fluid flow:

〈fx〉 = 1

2
ε(β − α)

dT

dy
k2V 2

0 e
−2ky ωτ

1 + (ωτ)2
(70)

where τ = ε/σ. This force is maximum at ωτ = 1. Integrating the lon-
gitudinal component of Stokes equation with no applied pressure (that is
0 = η∂2ux/∂y

2 + 〈fx〉), we obtain for ωτ = 1

ux ≈ u0(1− e−2ky − y/h); u0 =
ε(α− β)dTdy V

2
0

16η
. (71)

The maximum flow-rate generated is

Qmax =
u0hw

2
(1− (kh)−1) ≈ u0hw

2
≈

εα dT
dy hwV

2
0

32η
(72)

where we have neglected β in front of α. To stop this flow the pressure
required is

Δpmax =
12ηQmaxL

wh3
≈ 6ηu0L

h2
≈

3εαdT
dy LV

2
0

8h2
(73)
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where L is the total length of the array. The dissipated power is

Pdis =
1

2

∫
σ|E|2dv =

wLσkV 2
0

2
. (74)

And the maximum energy efficiency is

eff ∼ 3ε2α2(ΔT )2V 2
0

256kh3ησ(1 + q̇/IV )
=

3

8

(umaxεk/σ)αΔT

k2h2(1 + q̇/IV )
(75)

where q̇ is already included in IV when the temperature gradient is gener-
ated by Joule heating.

According to these expressions, in order to increase the generated pres-
sure and energy efficiency, the height of the channel can be reduced. If we
compare the energy efficiency of this TW induction pump with previous
geometry that uses a single ac signal, we can see that the energy efficiency
for the TW induction pump is inversely proportional to k2h2, which is much
greater than one. The fact that the electric force is only applied near the
electrodes (in a layer with thickness of the order of k−1) reduces the energy
efficiency by the factor of 1/(k2h2).

Some experimental features. Felten et al. (2006) fabricated a TW in-
duction micropump driven by a four-phase TW potential working at fre-
quencies in the range 1-10 MHz and voltages in the range 4-10 V. They
employed water saline solutions of conductivity σ = 0.01 S/m. The charac-
teristic dimensions of the pump were h = 50μm, w = 100μm, λ = 2π/k =
80μm, L = 240μm. Using both temperature fields produced by the electric
wave itself and by external Peltier elements, they observed velocities near
100 μm/s, for Vpp = 10 V and f = 2 MHz.

Iverson and Garimella (2009) employed a three-phase TW potential
working with frequencies in the range 10-300 kHz and voltages around 30
V. The working fluid was saline solution of conductivity σ = 6× 10−4 S/m.
The characteristic dimensions of the pump were h = 50μm, w = 5 mm,
λ = 2π/k = 72μm, L = 10 mm. A typical velocity was u = 100μm/s,
for V = 30 V and f = 122 kHz using Joule Heating. They also employed
external sources of heat to produce the temperature field. Pressure heads
of the order of 10 Pa were obtained.

The generated pressure can be increased by increasing the applied volt-
age. However, this cannot be so high that Joule heating is excessive. An
estimation of the temperature rise due to Joule heating is ΔT ∼ σV 2

rms/κ
with κ the thermal conductivity (Ramos et al., 1998). For a voltage of 10
V, typical of induction pumping in microsystems, the increment of temper-
ature may be excessive for σ ≥ 1 S/m (temperature rise of the order or
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greater than 100 K, so that boiling can be expected). EHD instabilities also
limit the maximum voltage, destroying the pattern of σ by convection and
disrupting the pumping mechanism (Melcher and Firebaugh, 1967).

Because electric fields are not so high, the electrodes and liquids are
not subjected to a degradation comparable to ion injection. Fuhr et al.
(1994) using coating on electrodes obtained good reproducibility over several
months.

Energy efficiency can be quite low. This, however, may not be a limita-
tion because total consumed power can be low.

2.4 Electroosmotic micropump

Electrical double layers are formed at solid/liquid interfaces because of
differences in electrochemical potentials between the solid and liquid phases
(Hunter, 1981). The solid surface becomes charged and ions in solution of
opposite charge (counterions) are attracted until they screen the electric
field created by the surface charge. At equilibrium, the liquid is electroneu-
tral except for a charged layer adjacent to the solid surface. The charac-
teristic thickness of this layer is the Debye length, λD, and it is the result
of the balance between the electrostatic forces and thermal diffusion. The
Debye length is given by

λD =

√
εkBT

e2
∑

i z
2
i n
∞
i

(76)

where zi and n∞i are, respectively, the valence and number density of ionic
species i in solution. For the case of a symmetric electrolyte, the Debye
length can be written as λD =

√
εDav/σ, where Dav = (D+ + D−)/2 is

the mean ion diffusion coefficient. As an example of a spontaneous double
layer, in the case of silica-based ceramics, like glass, with Si–OH groups
at the surface, a fraction of the Si–OH bonds change into Si–O– releasing
H+ when immersed in water. Therefore, we have a negative surface charge
balanced by positive counterions.

When an electric field is applied along the surface, the Coulomb force
causes the motion of the mobile ions of the double layer dragging the fluid
with them. This is called Electroosmosis and it is considered as a superficial
phenomenon since the thickness of the Debye layer is very small (1-100
nm in water). Therefore, the electroosmotic (EO) pump actuates upon
the electrical double layer that spontaneously develops between a liquid in
contact with a solid.

The EO phenomena have been known for 200 years (F.F. Reuss discov-
ered electroosmosis in 1809). Flows generated by EO pumping are used in
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a range of applications, including soil remediation or contaminant removal
from groundwater, and have been used in chemical and biological analy-
sis since a long time. Pretorius et al. (1974) proposed electroosmosis for
high-speed chromatography. In miniaturized systems for chemistry and life
sciences, a number of important techniques make use of EO pumping: flow
injection analysis (Dasgupta and Liu, 1994), on-chip electrophoretic sepa-
ration (Manz et al., 1994) and on-chip liquid chromatography (Jacobson
et al., 1994). Yao and Santiago (2003) presented a detailed description of
the history and development of EO pumps that are able to generate high
pressure.

Theoretical analysis. Rice and Whitehead (1965) studied theoretically
the electrokinetic flow in a cylindrical capillary, which is a simple geometry
where EO pumping can be observed (see fig. 10). Consider a cylindrical
capillary of radius a, with the wall of the capillary at potential ζ, the zeta
potential. The Gouy-Chapman-Stern model describes the electrical double
layer as divided into a compact layer and a diffuse layer (Hunter, 1981). The
Stern or compact layer is formed of absorbed species onto the wall, while
the ions of the Gouy-Chapman diffuse layer are mobile. The zeta potential
is the electric potential at the plane separating these two layers.

a)=

a z
r

E

a)=

Figure 10. Scheme of double layer and applied electric field for electroos-
mosis in a capillary.

Inside the capillary there is an electrolyte. For simplicity, we consider a
symmetric 1-1 electrolyte with bulk ionic concentration equal to n∞. The
Boltzmann distribution of ions gives

n+ = n∞ exp

[
− eφ

kBT

]
n− = n∞ exp

[
eφ

kBT

]
(77)
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and the Poisson-Boltzmann equation is, for this cylindrical geometry,

1

r

∂

∂r

(
r
∂φ

∂r

)
= −ρ(r)

ε
=

2en∞
ε

sinh

(
eφ

kBT

)
. (78)

In the Debye-Hückel approximation (Hunter, 1981), eφ/kBT 
 1, the
Poisson-Boltzmann equation becomes

1

r

∂

∂r

(
r
∂φ

∂r

)
=

φ

λ2
D

(79)

where λD =
√

εkBT/2e2n∞ is the Debye length. The solution for this
equation that holds the boundary condition at r = a and is finite at r = 0
is

φ(r) = ζ
I0(r/λD)

I0(a/λD)
ρ = − ε

λ2
D

φ (80)

where I0(x) is the zero-order modified Bessel function of the first kind. For
values of a/λD � 1, the solution is such that potential and charge are only
different from zero near the wall.

When an electric field is applied axially the liquid is set into motion. The
equation of liquid motion for an applied electric field, Ez, and no applied
pressure gradient is

η

r

∂

∂r

(
r
∂u

∂r

)
+ Ezρ = 0. (81)

With the boundary condition of no-slip at the capillary wall, u(a) = 0, the
velocity distribution is

u(r) = −εζEz

η

(
1− I0(r/λD)

I0(a/λD)

)
. (82)

In the case that the radius is much greater than the Debye length, a� λD,
the velocity varies from zero at the wall to the asymptotic value us =
−εζEz/η inside a very thin layer of the order of λD. The liquid bulk inside
the capillary moves as a plug flow with velocity us, known as the electroos-
motic slip velocity. The slip velocity expression, us = −εζEz/η, is also valid
for the case ζ > kBT/e.

The flow-rate at zero applied pressure is

Qmax =

∫ D/2

0

u(r)2πrdr =
πD2εζEz

4η
F (a∗) (83)

where a∗ = a/λD, D = 2a, and

F (x) =

(
1− 2I1(x)

xI0(x)

)
. (84)
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The pressure difference between the capillary ends required to balance this
flow-rate is

Δpmax =
32εζEzL

D2
F (a∗). (85)

The function F (x) tends to one for x→∞, that is for a� λD (see fig. 11).
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Figure 11. The functions F (a∗) and (F (a∗)/a∗)2.

The input power is IV . The current intensity is the sum of conduction
and convection currents

I =
πD2σEz

4
+

∫ D/2

0

ρ(r)u(r)2πrdr (86)

where σ = e(μ+n+ + μ−n−) = e(μ+ + μ−)n∞ everywhere, even inside the
double layer, in the approximation eφ/kBT 
 1. Neglecting the advection,
we can write an expression for the maximum energy efficiency as

eff =
1

4

ΔpmaxQmax

IVapp
=

V

Vapp

8ε2ζ2

D2ησ
F (a∗)2 (87)

where Vapp is the applied external voltage and V = EzL is the effective
voltage responsible for the electrokinetic flow. The applied voltage Vapp in-
cludes, in addition to EzL, the potential drop required to start the Faradaic
reactions at the electrodes and the junction voltages at inlet and outlet of
the capillary. In the limit of very thin diffuse layer, a∗ � 1, the maximum
efficiency is eff = 8ε2ζ2/D2ησ. In this limit, the efficiency can be increased
by decreasing the diameter of the capillary D and by decreasing the ionic
concentration of the working fluid (notice that the product ση is almost in-
dependent on viscosity because of Walden’s rule). According to expression
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(87), the efficiency as a function of D is maximized when D is of the order of
λD. In effect, assuming the other parameters are constant, expression (87)
is proportional to F (a∗)2/(a∗)2 which has a maximum for a∗ ≈ 2.54, that
is D ∼ 5λD. According to Yao and Santiago (2003), maximum efficiency is
obtained for D ∼ λD also in the general case when advection current can be
important. The model we have described neglects any surface conduction.
For a� λD, the effects of such surface conduction on the energy efficiency
should be negligible as the main contribution to electrical current comes
from the bulk current. For a 
 λD, the surface conduction would further
increase the consumed power without increasing the hydraulic power. This
means that surface conduction should not change the trend that the energy
efficiency would decrease for a
 λD.

In order to increase the generated pressure, the capillary diameter can
be reduced, however, this reduces the flow-rate. In practice, EO pumps
that generate high pressure make use of porous structures so that each pore
acts as a tortuous capillary of small diameter (Yao and Santiago, 2003;
Yao et al., 2003; Wang et al., 2006). The porous structure can be seen as
a bundle of capillaries; the generated pressure is high because D is small
and the flow-rate is high because of parallelization. From the bundle-of-
capillaries model, the theoretical maximum pressure of a porous structure
is still given by expression (85) with D the characteristic diameter of the
pore. The maximum flow rate is given by (Yao and Santiago, 2003)

Qmax = −ψL2

L2
e

εζA

η
F (a∗) (88)

where A is the cross-sectional area of the structure, ψ is its porosity (void
volume divided by total volume of the porous medium), Le is the character-
istic length of the tortuous path of the pores and L the length of the porous
structure. From these expressions the number (4ψAL2)/(L2

eπD
2) can be

seen as an effective number of EO capillaries with diameter D. The energy
efficiency of a porous structure will be given approximately by that of one
capillary since in the model, both Q and I are proportional to the number
of capillaries in parallel and Δp and V are the same for all the capillaries.
Therefore, QΔp/IV should be independent of the number of capillaries.

Some experimental features. Yao et al. (2003) employed a porous glass
EO micropump with sodium borate buffer as working fluid (volume of mi-
cropump around 1300 mm3). Experiments conducted at 100 V provided:
maximum pressure around 105 Pa, maximum flow-rate around 500 mm3/s.
The maximum energy efficiency was investigated for different pore radius:
it was around 0.0025 for a = 0.5μm and 0.0005 for a = 1.2μm. The Debye
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length was around 13 nm, much smaller than the pore radius and, therefore,
the efficiency improved as the pore radius was decreased as expected.

Wang et al. (2006) employed a porous structure made of silica-based
monoliths inside a 100 μm diameter capillary (0.5 mm3 micropump). They
conducted experiments with deionized water as working fluid at 6 kV and
obtained: maximum pressure around 3×105 Pa, maximum flow-rate around
0.05mm3/s. The maximum energy efficiency was around 0.004 with a =
2μm and Debye length was λD = 0.1μm. They also used acetonitrile as
working fluid and they obtained energy efficiency of 0.022. The main differ-
ence for the efficiency improvement was due to the smaller conductivity of
acetonitrile (σ(water) ∼ 10−4 S/m and σ(aceton.) ∼ 10−6 S/m) as expected
from theory.

The electrochemical reactions at the electrodes required to maintain the
electrical current can be problematic: electrolysis generates gas bubbles
and the redox reactions will eventually change the pH. Traditionally, some
of these problems are avoided by separating the electrodes from the EO
pumping channels with an ion exchange system (Dasgupta and Liu, 1994).
The electrodes are placed in reservoirs separated from the channels and the
exchange of ions is allowed but not of fluid. The reservoirs are filled with
buffers to reduce the changes in pH.

Joule heating can also be problematic. The estimated power dissi-
pated by a capillary is Pdis ∼ σE2πa2L and this should be equal to the
heat flux through the lateral surface 2πaLκ∂T/∂r and the inlet and outlet
surfaces πa2κ∂T/∂z. If we consider that the lateral surface of the cylin-
der is at constant temperature, the estimated temperature rise is ΔT ∼
(σV 2a2)/(2κL2). The temperature rise can be very high for conductivities
greater or around 1 S/m. Temperature increments around 50 K were mea-
sured for EO flow in a capillary filled with electrolyte of conductivity 0.2
S/m with an applied electric field of 15 kV/m (Xuan et al., 2004).

EO micropumps usually require high voltage (traditionally in the kilovolt
range) and this can be a drawback, especially for portable chips. Takamura
et al. (2003) fabricated a low voltage EO pump that produces high pressure
(around 25 kPa at 10 V) by using a cascade pump design, which is mainly
a set of EO micropumps connected in series (one after the other) which are
connected to the same applied dc voltage.

2.5 AC Electroosmotic micropump

In general, there are two ways of charge generation at a solid surface in
contact with a liquid: (i) a chemical mechanism, when a difference in elec-
trochemical potentials between phases charges the solid surface and (ii) an
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electrostatic mechanism, when a solid metal surface gets charged because
it is subjected to a potential difference with respect to the bulk electrolyte.
The Alternating Current Electroosmotic micropump, also known as Induced
Charge Electroosmotic micropump, actuates upon the diffuse charge in the
double layer that is induced between an electrolyte in contact with an elec-
trode that is subjected to a potential (Ramos et al., 1999; Ajdari, 2000;
Bazant and Squires, 2004). The electrical current coming from the bulk
electrolyte charges the electrical double layer at the electrode/electrolyte
interface. Meanwhile, the electric field component tangential to the inter-
face produces a force on the induced charge in the diffuse layer that sets the
liquid into motion (Green et al., 2000b; González et al., 2000; Green et al.,
2002). Typically, unidirectional flow is obtained by arrays of asymmetric
pairs of electrodes subjected to a single phase ac signal, known as ACEO
pump, (Brown et al., 2001; Ramos et al., 2003; Studer et al., 2004) or by
arrays of symmetric electrodes subjected to a travelling-wave signal, known
as TWEO pump, (Cahill et al., 2004; Ramos et al., 2005).

Theoretical analysis. Let us analyse the flow generated by an array
of electrodes subjected to a travelling-wave potential (see fig. 12). We
consider that the number of electrodes in a wave-length is high so that the
travelling-wave potential at the level of the electrodes, z = 0, is given by
V (x, t) = V0 cos(kx − ωt), where ω is the frequency of the applied signal
and k is the wave-number.

We are going to apply the linear approximation of the double layer
(Debye-Hückel approximation). We also assume that the electrodes are per-
fectly polarizable, i.e. the applied potential is low enough so that Faradaic
currents from the electrodes to the liquid are absent. Above the electrodes,
the bulk electrolyte is electro-neutral characterized by its conductivity σ.
The electric current follows Ohm’s law j = σE and the electric potential
holds Laplace’s equation ∇2φ = 0. The frequency of the applied signal is
much smaller than the reciprocal charge relaxation time ω 
 σ/ε, so that
the electrode/electrolyte double layer is in quasi-equilibrium.

The ohmic current charges the double-layer capacitance and this is ex-
pressed by the following boundary condition (using phasors)

σ
∂φ

∂z
= iωCDL(φ− V0e

−i(kx−ωt)) (89)

where V0e
−i(kx−ωt) is the applied potential amplitude, CDL is the double

layer capacitance and φ is the potential just outside the double layer. The
capacitance is given by the series combination of the compact layer capac-
itance Cs and the Debye layer capacitance Cd: C−1

DL = C−1
s + C−1

d . The



160 Antonio Ramos

L

electrolyte

x

z
hy

w

V0cos( t-kx)V0cos( t kx)
Figure 12. Scheme of TWEO pump.

Debye-Hückel theory gives the value of the diffuse double layer capacitance
as Cd = ε/λD. In complex notation, the potential solution in the bulk is

φ =
iΩV0

1 + iΩ
e−i(kx−ωt)−kz Ω =

ωCDL

kσ
. (90)

The electroosmotic slip velocity for electrical double layers in quasi-
equilibrium on perfectly polarizable electrodes is given by us = −εExζ/η
(Levich, 1962), where ζ is the potential drop across the diffuse double layer
and Ex the tangential electric field just outside the diffuse layer. Although
in our problem both ζ and Ex are oscillating functions in time, there is a
non-zero time-averaged slip velocity. The induced zeta potential can be re-
lated to the total double-layer potential drop by ζ = Cs(V − φ)/(Cs +Cd).
The time-averaged slip velocity is 〈us〉 = − 1

2εRe[Exζ
∗]/η (Cahill et al.,

2004; Ramos et al., 2005):

〈us〉 = Λ
εkV 2

0

2η

Ω

1 + Ω2
with Λ =

Cs

Cs + Cd
. (91)

The TWEO slip velocity has a maximum as a function of frequency at Ω = 1
given by

〈us〉max = Λ
εkV 2

0

4η
. (92)

The frequency of maximum velocity is ωmax = kσ/CDL, which is the charac-
teristic frequency of an RC circuit, where R = 1/kσA is the characteristic
bulk resistance and C = ACDL the double layer capacitance (A, typical
surface area).
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Taking into account the nonslip velocity condition at z = h, the maxi-
mum flow-rate generated is

Qmax = Λ
εkV 2

0

8η
wh. (93)

The pressure required to stop this flow is

Δpmax =
12ηQmaxL

wh3
= Λ

3εkV 2
0 L

2h2
. (94)

Since in our theoretical model we have neglected charge advection, the
mechanical power

∫
ρE · udτ has also been neglected. Therefore, the input

power is mainly equal to the consumed power by Joule heating. For Ω = 1
we have

Pin ≈ 1

2

∫
σ|E|2 dτ =

σ

2

∫ ∞
0

k2V 2
0 e
−2kz dzwL =

σkV 2
0 wL

4
. (95)

An estimate of the mechanical power is ρEuλDLw and this is much smaller
than Joule heating if (Λuε)/(σλD)
 1. In this limit, the maximum energy
efficiency is

eff =
1

4

QmaxΔpmax

Pin
=

3Λ2ε2V 2
0 k

16σηh
=

3Λumaxε

2σh
. (96)

The energy efficiency should be much smaller than one for negligible charge
advection, since it is the product of two small numbers (Λuε)/(σλD) and
λD/h. In order to increase the generated pressure, or the energy efficiency,
we can reduce h, increase kL, or increase the applied voltage. Increasing kL
means increasing the total number of electrodes in the array. Decreasing h
has the drawback that reduces the flow-rate. If we increase the applied volt-
age, the threshold for occurrence of Faradaic reactions can be reached. At
this point, the double layer starts to leak charge which reduces the expected
velocity. Numerical computations show saturation of induced velocity with
voltage due to Faradaic reactions (Olesen et al., 2006). Even without the
appearance of electrochemical reactions, the induced ζ potential saturates
due to the nonlinearity of the double layer capacitance and steric limitations
due to the finite size of ions (Bazant et al., 2009).

For both the ACEO pump or the TWEO pump, the linear theory (Ramos
et al., 2003, 2005) predicts that the maximum flow-rate is of the form
Qmax = ΓwhΛεV 2

0 /η�, where � is the minimum feature size of the electrode
structure and Γ is a geometrical nondimensional factor. This factor can be
optimized by using 3D electrodes (Bazant and Ben, 2006; Garćıa-Sánchez
and Ramos, 2008).
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Some experimental features. Yang et al. (2009) performed experi-
ments on TWEO and ACEO pumping using the same microelectrode array
by changing the electrical connections of gold microelectrodes. The ACEO
velocity was around five times smaller than the TWEO velocity for the
same applied voltage. The TWEO slip velocity was around 480 μm/s for a
TW signal of amplitude 1.5 volts peak to peak and frequency 1 kHz. The
working liquid was a saline solution of 100μM KCl in water.

Huang et al. (2010) fabricated an ACEO micropump made of (3D) asym-
metric stepped electrodes. The array consisted of 6012 pairs of these elec-
trodes placed in a long serpentine microchannel. Using an ac signal of ampli-
tude 1 Volt rms at a frequency of 1 kHz, the pump was capable of generating
a maximum pressure of 1.4 kPa (much higher than previous ACEO pumps)
and an effective slip velocity over the electrodes of 1.3 mm/s (which trans-
forms to a maximum flow-rate of 1.7×10−3 mm3/s). The working fluid was
distilled water. Under these conditions, the power consumption was 4.8 mW
and, therefore, the maximum energy efficiency that is estimated from these
values is eff ∼ 10−7. This is rather small compared to energy efficiencies
for distilled water of EO micropumps and to the theoretical value using the
effective velocity in equation (96), the latter suggests that there is room for
experimental improvement. Since the ACEO pump operates at low voltage
and power, it can be integrated in miniaturized portable devices.

As we said previously, we can raise the voltage to increase the pumping
but there is the limitation of Faradaic reactions generation. Experimen-
tally, it is observed that the fluid velocity saturates and can even changed
direction with voltage (flow reversal) (Studer et al., 2004; Garćıa-Sánchez
et al., 2006). For the TWEO micropump, the appearance of flow reversal
seems to be linked to the threshold voltage for Faradaic reactions (Garćıa-
Sánchez et al., 2008). For even higher voltages, electrochemically generated
bubbles appear. This problem can be reduced by using a dielectric coating
on the electrodes, although this reduces the generated slip velocity for a
given applied voltage.

The working fluids are typically low ionic strength solutions (< 100 mM),
well below physiological salt concentrations. Since the pump should oper-
ate at voltages below the ionization potentials, the working liquid is not
expected to suffer changes in its electrical properties, which is an advan-
tage.
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3 Comparisons

3.1 Liquid electrical conductivity

The ionic strength or electrical conductivity of the working liquid is an
important parameter in order to choose a certain EHD micropump. For
instance, very insulating liquids (σ 
 10−10 S/m) are, very difficult if not
impossible, to manipulate by the EHD induction mechanism because this
requires a certain level of conductivity. At the other conductivity limit, liq-
uid metals such as mercury can not be actuated by applying electric forces
in the bulk. In continuous microfluidics, liquid metals can be actuated
by magnetohydrodynamic micropumps (Jang and Lee, 2000). In digital mi-
crofluidics, they can be actuated by applying electric forces at their surfaces
(Lee et al., 2002), which requires the presence of a dielectric where the elec-
trical energy is stored. Let us analyse the ranges of conductivity that each
EHD micropump can actuate.

The ion-drag micropump can actuate very insulating liquids. We do
not expect that this mechanism is appropriate for liquids with residual con-
ductivity such that the charge relaxation time (ε/σ) is much smaller than
the typical ion transient time d/μE. If the charge relaxation time is very
small compared to the time that the ion takes to travel from the emit-
ter to the collector, the bulk region where there is both free charge and
electric force becomes very small. Using typical values for microsystems
(μ ∼ 10−7 m2/(sV), E ∼ 105 V/m, d ∼ 10−4 m, ε ∼ 7 × 10−10 F/m), the
estimation says that the conductivity of working fluid should not be much
greater than σ = 10−7 S/m.

The conduction micropump actuates liquids with a certain degree of
conductivity, which should not be so small that the saturation regime is
reached very soon. If the thickness of the heterocharge layer λ is much
greater than the distance between electrodes L, the recombination of ions is
negligible in the bulk and the saturation current regime is reached. As we
said when we analysed this pump, the generated pressure saturates at this
regime. The condition λ� L says that we do not expect a proper actuation
of the conduction pump if conductivity σ 
 μεV/L2. There should be an
upper limit of conductivity because for high conductivity the Debye length
can be of the same order than the heterocharge layer thickness. In this limit,
the diffusion current is not negligible and the approximations that we used to
analyse the conduction pump are not applicable. Therefore, the conduction
pump mechanism requires λ � λD, which leads to σ 
 μεeE2/kBT . This
limit does not imply that for a given experiment there will not be EHD
pumping beyond a certain conductivity, but it implies that the analysis of
the possible EHD actuation should include ion diffusion. Using a value of
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L = 100μm, we obtain a range of conductivities between 10−10 and 4×10−7

S/m for an applied voltage of 10 V, and a range of conductivities between
10−9 and 4× 10−5 S/m for an applied voltage of 100 V.

The induction pump requires the existence of gradients of conductivity
to operate. We have analysed the mechanism of induction under the as-
sumption that we only need to consider the conductivity σ of the liquid
rather than the full model that considers the conduction due to the differ-
ent ionic species. This is, we have used in the analysis the Taylor-Melcher
leaky dielectric model (Saville, 1997). In order to employ only the clas-
sical Ohm’s law in the charge conservation equation, the liquid should be
quasi-electroneutral. For binary electrolytes, this means that the difference
between positive and negative ion densities must be much smaller than the
total number density of ions, |n+ − n−| 
 n+ + n−. The estimate of the
charge density from Gauss’s law ρ = e(n+ − n−) ∼ εE/L leads to

n+ − n−
n+ + n−

∼ εE

eL(n+ + n−)
∼ μEε

σL

 1. (97)

Therefore, the electrical conductivity has a lower bound given by μεE/L.
For E ∼ 105 V/m, L ∼ 10−4 m, the conductivity should be much greater
than 10−9 S/m. An upper bound for the conductivity comes from the
problems originated by Joule heating. The increment of temperature is
estimated from temperature equation to be of the order of σV 2

rms/κ. We
expect that boiling temperature is reached when this number is around 100
K. For the typical voltages required to generate significant flow, around 10
V, the condition says that boiling temperature can be reached for conduc-
tivities around 1 S/m.

The electroosmotic pumping requires the presence of a double layer at
a solid wall. There is no electroosmosis without ions in solution and an
interesting question is when the ionic concentration is so small that elec-
trokinetic flow is negligible. If the liquid ionic strength is very small, the
Debye length becomes very large and the typical electric field inside the
double layer (∼ kBT/eλD) can be of the same order or smaller than the
applied field. In this case, the distribution of ions in the double layer would
be very distorted by the applied electric field. Especially in electroosmosis
through a porous structure when the electric field lines are bent following
the tortuous paths, we expect that induced charge near the walls are of the
same order or greater than the intrinsic charge. Therefore, we do not expect
that electroosmosis can work properly at very low conductivity. Tentatively,
we propose that a condition for proper actuation is kBT/eλD � E, which
leads to σ � μeεE2/kBT . This parameter combination has appeared before
as an upper bound for the conductivity of working fluid in the conduction
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pump. If we take E ∼ 104 V/m and μ ∼ 10−7 m2/Vs, the condition implies
that σ should be much greater than 10−7 S/m for water and greater than
10−8 S/m for a liquid with ε = 2ε0. Barz et al. (2010) studied the elec-
trokinetic flow for a nonpolar liquid (dodecane) varying the ionic strength
(adding OLOA) and, interestingly, they found some limitations at the low-
est ionic strengths they investigated. The electric field inside the double
layer of the OLOA-dodecane solution with lowest ionic strength was of the
order of ζ/λD = 6 × 104 V/m, somewhat greater than the applied electric
field ∼ 104 V/m, which may indicate that they are close to the limit we have
proposed for proper actuation. With respect to limitations of electroosmotic
pumping at high conductivities, we can see in the literature that classical
electrokinetic methods present difficulties in obtaining ζ potentials for ionic
concentrations higher than 0.1 M (σ ∼ 1 S/m). The ζ potentials are close
to zero at high ionic strengths (Kosmulski and Rosenholm, 2004). When
the ionic strength is high, the Debye length becomes very small. A sim-
ple model of fixed surface charge qs leads to a reduction of the ζ-potential
with ionic concentration of the form ζ = qsλD/ε ∼ 1/

√
n∞. Therefore, to

pump a significant flow of an electrolyte with high conductivity, we need
to increase the applied voltage, which leads to an increase in Joule heat-
ing because of two factors: conductivity and voltage. It seems that there
are fundamental and practical limitations for the electroosmotic pumping
of liquids with conductivities much greater than 1 S/m.

The ac electroosmotic pumping of electrolytes with conductivities greater
than 0.1 S/m has not been reported. This is an upper bound for conductiv-
ity much more restrictive than for the dc electroosmotic pump. It seems that
there are fundamental limitations around this conductivity value related to
ionic Steric effects at high electrolyte concentrations (Bazant et al., 2009) as
well as problems with the generation of Faradaic reactions (Garćıa-Sánchez
et al., 2008). According to the Gouy-Chapman-Stern model, the potential
across the metal/electrolyte interface is shared between the Stern layer and
the diffuse layer. For a fixed imposed double-layer potential, the increase
of conductivity decreases the diffuse-layer potential and, therefore, the slip
electroosmotic velocity decreases. In order to generate a given flow-rate
while the electrolyte conductivity is increased, we need to raise the applied
voltage, which can easily generate Faradaic reactions. With respect to a
lower bound of conductivity in ACEO pumping, we can expect a similar
condition than for dc electroosmotic pumping, i.e. the electric field inside
the double layer should be much greater than the electric field in the bulk.
This condition can be written now as σ � (μeεV 2)/(L2kBT ). For V ∼ 1 V,
L ∼ 2× 10−5m, μ ∼ 10−7 m2/Vs, the conductivity should be greater than
σ ∼ 10−7 S/m for water and greater than σ ∼ 4× 10−9 S/m for a nonpolar
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liquid with ε = 2ε0. For a given experimental setup, EHD pumping below
this conductivity may exist although the analysis of the possible electroki-
netic flow can not be performed using ACEO theory and the full system of
equations is required.

3.2 Mechanical characteristics

For typical values in microsystems, in order to have water flowing with
average velocity in the range between 100 μm/s and 10 mm/s inside mi-
crochannels with cross-section 100μm × 100μm (Q between 0.001 to 0.1
mm3/s) and lengths between 10 and 100 mm, a pressure difference in the
range 4 to 4000 Pa is required. Figures 13 and 14 show selected experi-
mental values given in the literature for maximum pressure and flow-rate,
respectively. We can see that some EHD micropumps are able to generate
pressures and flow-rates inside the ranges that we have proposed.

Injection

Conduction

Induction

Electroosmosis

AC Electroos.

Figure 13. Selected maximum pressure values from different EHD pumping
experiments. Some values were obtained from the measured maximum flow-
rate multiplied by estimated hydrodynamic resistance.

EO pumps can provide these pressures and flow-rates. They are typically
made of porous structures. We recall here that EO pumping in a pipe of
small diameter (∼ 1μm) can generate high pressure, although the generated
flow-rate will be small. The porous structures generate high pressure while
not decreasing the flow-rate because they can be visualized as a bundle of
tortuous narrow capillaries in parallel.

The EHD injection and conduction pumps can generate enough pressure
and flow-rate for typical applications, with higher pressure values for the
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Injection

Conduction

Induction

Electroosmosis

AC Electroos

Figure 14. Selected maximum flow-rate values from different EHD pump-
ing experiments. Some values were obtained from the measured maximum
pressure divided by estimated hydrodynamic resistance.

injection pump. While for the injection pump maximum pressure is limited
by electric breakdown, for the conduction pump maximum pressure is lim-
ited by the maximum electric field before ion injection takes place. Thus
the conduction pump operates at lower electric field amplitudes generating
lower pressures. In the figure the flow-rates for the conduction pumps are
greater than for the injection pumps, but this is only due to the fact that
the conduction pumps have greater dimensions.

The ACEO pump of Huang et al. (2010) generates high pressure and
moderate flow-rate. They managed to increase maximum pressure by two
orders of magnitude compared to prior ACEO pumps. This was possible
because they used 3D micro-electrodes covering the bottom of a long ser-
pentine channel with small height. To increase the flow-rate, the width of
the channel with electrodes could be increased or several devices in parallel
could be employed.

The experiments of induction pumping in microsystems have not pro-
vided high pressures. Theoretically, it should be possible to increase pres-
sure by reducing the height and increasing the length of the operating part
of the device as was done by Huang et al. (2010) for the ACEO micropump.

3.3 Applications

The pumping of refrigerant, insulating liquids has been devised for its
use in cryogenic cooling microsystems (Darabi and Wang, 2005; Foroughi
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et al., 2005; Pearson and Seyed-Yagoobi, 2009). In order to improve the per-
formance of electronics and sensors, cryogenic cooling has become a widely
adopted technique because it can increase signal-to-noise ratio of sensors.
Therefore, injection and conduction pumps are suitable for the pumping
of refrigerant liquids. According to Darabi et al. (2002), other promising
application of these EHD micropumps is its use in fuel injection loops.

The induction micropump as well as the dc electroosmotic micropump
are suitable for pumping of biofluids for the Lab-on-Chip, since the work-
ing fluid conductivity can be as high as 1 S/m. The maximum pressure
obtained experimentally by the induction micropump was not high, which
limits its applications. This is not the case for the electroosmotic microp-
ump, which can generate high pressure. Its potential applications include
the replacement of high-pressure pumps in micro-total-analysis-systems: for
drug delivery, sample analysis, separation, and mixing processes. Closed-
loop electroosmotic microchannels have also been devised as cooling systems
for microelectronics (Jiang et al., 2002).

The ACEO micropump can generate sufficient pressure for certain ap-
plications in biomedical or chemical analysis. An important advantage of
the ACEO pump compared to other EHD micropumps is that the voltage
required for operation is quite low (around 1 volt). This is an important
feature for portable devices. However, the working fluid should be a dilute
electrolyte (conductivity σ ≤ 0.1 S/m). Huang et al. (2010) used water as
a working fluid and, thanks to the high pressure generated, indirect manip-
ulation of biological fluids was demonstrated.

Although generating high pressure can be difficult for certain EHD mi-
cropumps, the generation of localized flows in a microdevice does not require
high pressure and have many potential applications such as stirring and mix-
ing of analytes (Sigurdson et al., 2005) or diversion of cells (Dittrich and
Schwille, 2003). Induction or ACEO pumping with microelectrodes inside
the microchannel can be very suitable for the generation of these microflows
since they operate with ac voltages, avoiding electrochemical reactions that
would deteriorate the electrodes and change the physical properties of the
actuated liquid.

4 Concluding remarks

In this chapter we have described different ways of electrical actuation of
liquids in the microscale. The main equations of Electrohydrodynamics in
microsystems were presented. Basic concepts of electrical conduction in flu-
ids and fluid-mechanical aspects of micropumps were also provided. Then,
these concepts were applied to analyse five different strategies of inducing
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fluid flow in microsystems using electric fields. The intention has been to
study the physical mechanisms as well as the mathematical descriptions of
electrohydrodynamic pumping in microsystems: from strategies that em-
ploy forces in the liquid bulk to those that employ forces in the electrical
double layer. It should be noted that there exists other EHD mechanisms
to induce fluid flow in microsystems which have not been mentioned in this
chapter, such as: electroosmosis of second kind (Mishchuk et al., 2009),
EHD actuation on ionic concentration gradients (Morgan et al., 2007), or
EHD induced flow by Onsager effect (Ryu et al., 2010).

Each EHD pump has certain characteristics that make it more suitable
for certain applications. For example, the electrical properties of the work-
ing liquid, especially the electrical conductivity or ionic strength, determine
the EHD mechanism that is more suitable for actuation. In the previous
section we have analysed the range of conductivity that each micropump
can actuate properly. The injection and conduction micropumps seem to
be more appropriate for insulating and semi-insulating liquids, while the dc
and ac electroosmotic micropumps seem to be more suitable for electrolyte
liquids. The induction micropump can be used for liquids in a wide range
of ionic concentrations, as far as the liquid have some conductivity.

Other considerations that are important for the choice of an EHD pump
are: the voltage amplitude required to operate the pump (a portable device
would require low voltage and power); the generation of gases by electro-
chemical reactions and of heat by the Joule effect (which can deteriorate the
microdevices and compromise reproducibility), or the required mechanical
properties of the micropump such as its maximum pressure and maximum
flow-rate (the electroosmotic micropump seems to meet best the require-
ment of very high pressure for drug delivery or sample analysis in micro-
total-analysis-systems).
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Electrohydrodynamic Stability

Chuan-Hua Chen∗
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Abstract Stability of electrohydrodynamic flows is essential to a
variety of applications ranging from electrokinetic assays to electro-
spray ionization. In this series of lecture notes, a few basic concepts
of electrohydrodynamic stability are illustrated using two model
problems, electrokinetic mixing flow and electrohydrodynamic cone-
jet, respectively wall-bounded and free surface flow. After a review
of the governing equations, spatiotemporal analysis of the two exam-
ple problems is presented using linearized bulk- or surface-coupled
models. The operating regimes for these flows are discussed within
the framework of electrohydrodynamic stability.

1 Introduction

Electrohydrodynamic transport phenomena are fundamental to a variety
of engineering applications such as electrokinetic assays, electrospray ion-
ization, electro-coalescence and mixing, electrostatic printing and spinning.
Although unstable flow is desired in certain applications (e.g. in mixing),
a stable flow is typically the preferred state (e.g. in assays and ionization).
In either case, the demarcation between the stable and unstable states is of
practical importance. The theme of these lecture notes is to develop a sys-
tematic methodology in identifying such stability boundaries of electrohy-
drodynamic flows. The topics have been selected mainly for their pedagog-
ical value in illustrating the basic concepts in continuum electromechanics
and hydrodynamic stability, often motivated by practical applications and
backed by experimental observations. Although the governing equations
and analysis methodology should be of general applicability, no attempt
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has been made to comprehensively review the rapidly expanding field of
electrohydrodynamic stability. Extensive coverage of electrohydrodynamics
and the associated flow stability can be found in Melcher and Taylor (1969);
Melcher (1981); Saville (1997); Fernandez de la Mora (2007); Chang and Yeo
(2010). In addition, an educational film developed by Melcher (1974) offers
many intuitive insights on electrohydrodynamics.

2 Basics of Electrohydrodynamics

Electrohydrodynamics deals with the interaction of electric and flow fields
where the Ohmic model is frequently an excellent approximation (Melcher
and Taylor, 1969; Saville, 1997). In this section, we first present an intuitive
derivation of the Ohmic model and clearly identify the assumptions behind.
We then offer some physical insights on the Maxwell stress tensor which
plays the crucial role of coupling the electrostatics and hydrodynamics. Fi-
nally, we discuss the governing equations for both surface- and bulk-coupled
models. The surface-coupled model takes essentially the same form as in
Melcher and Taylor (1969) and Saville (1997), while the bulk-coupled model
takes roots in Levich (1962) and Melcher (1981).

2.1 Ohmic model

Electrohydrodynamic systems can usually be approximated as electro-
quasistatic (Saville, 1997). In the absence of external magnetic fields, mag-
netic effects can be ignored completely. The electrostatic field is solenoidal,

∇×E = 0. (1)

The electric field (E) obeys the Gauss’s law, which for electrically linear
medium reduces to,

∇ · εE = ρf , (2)

where ε is the permittivity, and ρf is the free charge density. The free charge
density is related to the current (i) by the charge conservation equation,

∂ρf
∂t

+∇ · i = 0. (3)

In the Ohmic model, or the so-called leaky dielectric model (Saville,
1997), an Ohmic constitutive law of the conduction current is assumed
(Melcher and Taylor, 1969),

i = iC + iO = ρfv + σE, (4)
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where iC = ρfv is the convection current, iO = σE is the Ohmic current, v
is the fluid velocity, and σ is the electrical conductivity. The Ohmic model
can be derived from the electro-diffusive transport of individual charged
ions (Melcher, 1981; Saville, 1997; Levich, 1962). We assume for algebraic
simplicity a monovalent binary electrolyte which is fully dissociated with
constant properties (Chen et al., 2005). For derivations involving multiva-
lent electrolyte and chemical reaction, see Levich (1962) and Saville (1997),
respectively. In the Ohmic model, bulk quantities of conductivity and charge
density are tracked instead of individual ions. The charge density (ρf ) and
electric conductivity (σ) are related to the ionic concentrations through

ρf = F (c+ − c−), (5)

σ = F 2(c+m+ + c−m−), (6)

where F is the Faraday constant, c± is the cationic/anionic molar concen-
tration, and m± is the ionic mobility (in molN−1 ms−1).

The key simplifying assumption in the derivation is electro-neutrality,
which can be assumed in the limit of (Chen et al., 2005)

Θ1 =
Fm+ρf

σ
=

c+ − c−
c+ + m−

m+
c−

 1, (7)

where Θ1 represents the ratio of cationic and anionic concentration differ-
ence (which contributes to the charge density) to the total concentration
of ions (which contributes to the electrical conductivity). Applying the
Gauss’s law,

Θ1 =
Fm+ρf

σ
∼ Fm+∇ · εE

σ
∼ ε/σ

Lr/m+FE
∼ τe

τr
, (8)

where τe = ε/σ is the charge relaxation time, m+FE is by definition the
electro-migration velocity of the cation, Lr is a reference length scale over
which the electric field varies (typically the smallest length scale of the elec-
trohydrodynamic system), and τr is the time scale to travel Lr by electro-
migration. Therefore, electro-neutrality is an excellent approximation for
most electrolyte solutions (typically with σ > 10−4 S/m) with fast charge
relaxation (typically with τe < 10 μs), because the charge relaxation time is
much shorter than the electrohydrodynamic time scale of interest (typically
with τr > 1 ms). When the electrolyte solution is approximately neutral,

c+ � c− = c; | c+ − c− | 
 c, (9)
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where c is the reduced ionic concentration (Levich, 1962). Under electro-
neutrality, the conductivity is proportional to this reduced concentration
by

σ = F 2(m+ +m−)c. (10)

To derive the governing equation for conductivity, we start from the
Nernst-Planck equations for ionic species (Levich, 1962),

∂c+
∂t

+∇ · c+v = D+∇2c+ −m+F∇ · c+E, (11)

∂c−
∂t

+∇ · c−v = D−∇2c− +m−F∇ · c−E, (12)

where D± is the ionic diffusivity. The diffusivity and mobility is related by
Einstein’s relation D± = RTm± where R is the universal gas constant and
T is the absolute temperature. Subtracting Eqs. 11 and 12 and noting the
electro-neutrality condition,

(D+ +D−)F∇ · cE � RT (D+ −D−)∇2c, (13)

where the equality holds to the leading order of ionic concentrations. Sub-
stituting Eq. 13 to Eq. 11 and noting Eq. 10, the electro-diffusion equation
becomes

∂σ

∂t
+∇ · σv = Deff∇2σ, (14)

where Deff is an effective diffusivity,

Deff =
2D+D−
D+ +D−

. (15)

To derive the equation for charge density, we subtract Eqs. 11 and 12
again in an exact manner,

∂(c+ − c−)
∂t

+∇·(c+−c−)v = ∇2(D+c+−D−c−)−F∇·(m+c++m−c−)E,

(16)
or in terms of bulk quantities,

∂ρf
∂t

+∇ · (ρfv + iD + σE) = 0, (17)

where the diffusive current iD = −F∇(D+c+−D−c−) � −(D+−D−)F∇c
(Levich, 1962). Eq. 17 reduces to the the charge conservation equation in
the Ohmic regime,

∂ρf
∂t

+∇ · ρfv = −∇ · σE, (18)
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when the diffusive current can be neglected, i.e.

Θ2 =

∣∣∣∣ iDiO
∣∣∣∣
 1. (19)

In electrohydrodynamic systems, the diffusive current is usually much smaller
than the Ohmic conduction current. The ratio of the two currents scales as,

Θ2 =

∣∣∣∣ iDiO
∣∣∣∣ ∼ (D+ −D−)F∇c

(m+ +m−)F 2cE
∼ D+ −D−

D+ +D−
RT

F

∇c

Ec
∼ RT/F

ELr
∼ ΦT

Φr
,

(20)
where ΦT = RT/F (25 mV at room temperature) is the thermal voltage
driving the diffusive current, and Φr is the reference voltage drop along a
concentration gradient. Since the applied electric field is typically high in an
electrohydrodynamic system, the diffusive current can be safely neglected
(i.e. Eq. 19 is valid) for most practical cases. For example, with a field of
105 V/m, Θ2 
 1 for a diffusive interface as thin as 1 μm.

The Ohmic model consists of the conservation equations for conductiv-
ity (Eq. 14) and charge density (Eq. 18). Physically, the material derivative
of conductivity and charge density is balanced by the divergence of an ef-
fective diffusive flux and Ohmic current flux, respectively. The underlying
assumptions in the Ohmic model are instantaneous charge relaxation (Eq. 7)
and negligible diffusive current (Eq. 19).1 Both assumptions hold for most
practical electrohydrodynamic systems driven by direct-current (DC) fields,
where the time scale of interest is typically above 1 ms and the length scale
of interest is typically above 1 μm. With rapid charge relaxation, the elec-
trolyte solution is approximately electro-neutral in the bulk and the cations
and anions are almost always paired together, as the difference in cationic
and ionic concentrations is very small compared to the background con-
centration of electrolytes. Consequently, conductivity becomes a conserved
material property with an effective diffusivity averaging the cationic and
anionic properties. Note that the Ohmic model does not work inside elec-
tric double layer, where the net charged layer has a typical thickness of well
below 1 μm.

2.2 Maxwell stress

The electrostatics and hydrodynamics are coupled together through the
Maxwell stress tensor. In vacuum, the Coulombic force density exerted on

1Although we have assumed constant properties (D± and m±) in the derivation, the

Ohmic model consisting of Eqs. 14 and 18 are generally believed to hold for cases with

non-constant properties, e.g. due to temperature gradients.
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free charges can be rearranged noting the solenoidal nature of the electro-
static field (Panofsky and Phillips, 1962),

fe0 = ρfE = (∇ · ε0E)E

= ∇ ·
(
ε0EE− 1

2
ε0E

2I

)
= ∇ ·Te

0, (21)

where ε0 is the permittivity of vacuum, I is the identity matrix, and Te
0 is

the Maxwell stress (or electric stress) tensor in vacuum.
The derivation of Maxwell stress tensor for a dielectric medium is rather

complicated (Melcher, 1981; Panofsky and Phillips, 1962). Here, we sum-
marize salient points of the Maxwell stress tensor and refer the readers to
Melcher (1981) for details. The electrical force density can be derived us-
ing either the Kelvin approach or the Korteweg-Helmholtz approach. The
Kelvin force density is useful for appreciating the underlying microscopic
electromechanics, while the Korteweg-Helmholtz force density is more use-
ful for predicting the consequences of electromechanical coupling (Melcher,
1974). The Kelvin force density is the sum of the Coulombic force exerted
on free charges and the polarization force exerted on the dipoles (Melcher,
1981),

feK = ρfE+P · ∇E = (∇ · εE)E+ (ε− ε0)E · ∇E

= ∇ ·
(
εEE− 1

2
ε0E

2I

)
= ∇ ·Te

K , (22)

where P is the polarization density, and Te
K is the Maxwell stress tensor

corresponding to the Kelvin force density. The key concept due to Kelvin is
that the polarization force is exerted on the dipoles (P), not on individual
polarization charges (−∇ ·P) (Melcher, 1981). The Korteweg-Helmholtz
force density stems from thermodynamic principles. For an electrically lin-
ear medium with polarization dependent on mass density (ρ) and tempera-
ture (T ) alone, the force density can be shown to be,

feKH = ρfE− 1

2
E2∇ε+∇

[
1

2
ρ

(
∂ε

∂ρ

)
T

E2

]

= ∇ ·
[
εEE− 1

2
εE2I+

1

2
ρ

(
∂ε

∂ρ

)
T

E2I

]
= ∇ ·Te

KH , (23)

where the last term is the electrostriction force density associated with vol-
umetric change in the material; See Melcher (1981, Sec. 3.7) for a detailed
derivation. The Kelvin and Korteweg-Helmholtz force densities are different
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by the gradient of a scalar,

feK − feKH = ∇
[
1

2
(ε− ε0)E

2 − 1

2
ρ

(
∂ε

∂ρ

)
T

E2

]
, (24)

which can be absorbed into a lumped pressure. The difference represents
the interaction between dipoles, which is omitted in the Kelvin derivation.
For incompressible flow, where pressure becomes a “left-over” variable, any
two force densities differing by the gradient of a scalar pressure will give rise
to the same incompressible deformation (Melcher, 1981). Both force den-
sities, if used consistently, will yield the same answer as far as incompress-
ible mechanical deformation is concerned. Because the actual electric force
distributions of the two approaches are ususally very different, we stress
that the same force density should be used consistently; See an example in
Melcher (1981, Sec. 8.3).

Hereon, we shall restrict our discussions to the practically important
case of electrically linear, incompressible dielectric medium, and consistently
adopt the Korteweg-Helmholtz force density,

fe = ρfE− 1

2
E2∇ε

= ∇ ·
(
εEE− 1

2
εE2I

)
= ∇ ·Te. (25)

When the permittivity is that of vacuum, the Maxwell stress tensor Te in
Eq. 25 reduces to Te

0 in Eq. 21. This similarity enables us to take advantage
of the “bisect rule” graphically shown in Figure 1 (Panofsky and Phillips,
1962, Sec. 6-5). The bisect rule is useful in graphically identifying the
direction of electric stress when the field direction is known. A few example
applications of the bisect rule are shown in Figure 2.

From the Korteweg-Helmholtz force density in Eq. 25 and the corre-
sponding bisect rule in Figure 2, it is apparent why a leaky dielectric is
necessary to support any tangential electric stress at electrostatic interfaces
(Melcher and Taylor, 1969). For a perfect conductor such as the charged
drop in (a), the Coulombic force is always along the electric field which is
perpendicular to the interface. For a perfect dielectric such as a dielectric
jet in (b), the polarization force is always along the permittivity gradient
which is again perpendicular to the interface. For a leaky dielectric with
finite, non-zero conductivity and permittivity, a tangential shear stress can
develop such as in the electrified cone in (c), where the electric field at 45◦

to the surface normal gives rise to a shear force along the conical surface.
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E

Fe

n

Figure 1. The bisect rule: the electric field (E) bisects the angel between
the normal to the surface (n) and the direction of the resultant force (Fe)
acting on the surface (dS). In a dielectric medium with a local permittivity
of ε, the magnitude of the electric force is F e = T edS = 1

2εE
2dS. After

Panofsky and Phillips (1962).

+
++

+

+
+

+

+

E
Fe n

(a) (b) (c)

Figure 2. Example applications of the bisect rule: (a) on a charged con-
ducting drop, the surface normal is along the direction of the electric field,
hence the Coulombic repulsion is also along the direction of the electric
field; (b) on a dielectric liquid jet, the surface normal is perpendicular to
the electric field, hence the polarization force is perpendicular to the elec-
tric field and pointing outward; (c) on a leaky dielectric cone, the surface
normal is at 45◦ to the electric field, hence the (total) electric force is along
the tangential direction of the cone which is also at 45◦ to the electric field.
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2.3 Governing equations

To summarize, the electrohydrodynamic leaky dielectric model consists
of the following equations:

∇×E = 0, (26a)

∇ · εE = ρf , (26b)

∂ρf
∂t

+∇ · ρfv = −∇ · σE. (26c)

∇ · v = 0, (26d)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+ μ∇2v + ρfE− 1

2
E2∇ε, (26e)

where p is the pressure and μ is the dynamic viscosity. The electric body
forces in the momentum equation (Eq. 26e) include both a Coulombic and
a polarization component. These equations are valid for incompressible,
electrically linear leaky dielectrics with rapid charge relaxation and negligi-
ble diffusive current, for example, aqueous electrolyte solutions. The set of
governing equations (26) is closed if the distribution of material properties
(ε, σ, μ) is either given or modeled with additional equations.

We have employed the electro-neutrality assumption in the derivation of
the Ohmic model, but kept the charge density in the governing equations.
Although the material derivative of ρf may often be neglected in the charge
conservation equation (Eq. 26c), it will not be appropriate to neglect the
Coulombic body force term ρfE in the momentum equation (Eq. 26e) be-
cause this force drives the electrohydrodynamic flow. Combining the charge
conservation equation (Eq. 26c) and the Gauss’s law (Eq. 26b) (Melcher,
1974),

Dρf
Dt

=
ρf
τe
− σE ·

(∇σ

σ
− ∇ε

ε

)
. (27)

In regions of uniform conductivity and permittivity, the net free charge
decays with the charge relaxation time for an observer following a particle
of fixed identity (Melcher and Taylor, 1969):

ρf = ρf,0e
−t/τe . (28)

Therefore, unless an element of material having uniform properties can be
traced along a particle line to a source of net charge, it supports no net
charge (Melcher and Taylor, 1969). In inhomogeneous material, however,
free charge density can be generated by an electric field component along
the gradients of conductivity and/or permittivity.
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Systems having nonuniform properties can be modeled either as a bulk
region with continuously varying properties or as adjoining regions with
piecewise uniform properties (Melcher, 1981; Hoburg and Melcher, 1976).
Since interesting electrohydrodynamics often happen at material interfaces,
we shall discuss two approaches to close the problem depending on the
interfacial sharpness (Hoburg and Melcher, 1976).

In the bulk-coupled model for a diffusive interface, additional equations
of the materials properties must be added. For example, in aqueous elec-
trolytes the permittivity is essentially constant but the conductivity varia-
tion can be significant; in this case, the “conservation” equation of conduc-
tivity from the Ohmic model can be used,

∂σ

∂t
+∇ · σv = Deff∇2σ. (29)

In the surface-coupled model for a sharp interface, the material proper-
ties are usually piecewise constant on either side of the interface; However,
jump conditions are needed to relate the interfacial and bulk properties.
Except for the empirical no-slip condition (Eq. 30e), the following jump
conditions can be obtained by integrating the differential equations across
the interface (Melcher and Taylor, 1969; Melcher, 1981; Saville, 1997; Leal,
2007),

n× ‖E‖ = 0, (30a)

n · ‖εE‖ = qs, (30b)

∂qs
∂t

+∇s · (qsv) = −n · ‖σE‖, (30c)

n · ‖v‖ = 0, (30d)

n× ‖v‖ = 0, (30e)

n ‖p‖ = n · ‖Tm +Te‖+∇sγ − γn(∇s · n), (30f)

where ‖ . ‖ denotes the jump in a variable across the interface, n denotes
the outward normal vector, subscript s denotes surface quantities, qs is the
surface charge density, ∇s = (I−nn)·∇ is the surface gradient operator, and
γ is the surface tension. In the stress balance (Eq. 30f), the surface gradient
of surface tension gives rise to a tangential force while surface tension on a
curved surface leads to a normal force (Leal, 2007, p. 78). The viscous and
electric stress tensors are

Tm = μ(∇v +∇vT ); Te = εEE− 1

2
εE2I. (31)
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On a surface with an outward normal n and orthogonal tangential vectors
t1 and t2, the normal and tangential Maxwell stress components are

n · ‖Te · n‖ = 1

2
‖ε(E · n)2 − ε(E · t1)2 − ε(E · t2)2‖, (32a)

ti · ‖Te · n‖ = ‖εE · n‖(E · ti). (32b)

From Eq. 32b, we note again that neither a perfect dielectric (qs = 0) nor a
perfect conductor (Et = 0) can support a tangential Maxwell stress (Chang
and Yeo, 2010).

The above set of jump conditions (Eq. 30) implies that a sharp material
interface can support a surface charge density, but not a surface mass density
(Melcher, 1981, p. 7.8).2 The jump condition for surface charge density
(Eq. 30c) can be further expanded as

∂qs
∂t

+∇s · (qsvs) + qsn · v(∇s · n) = −n · ‖σE‖, (33)

where the surface velocity vs = (I− nn) · v, and the surface curvature κ =
∇s · n = 1/R1 + 1/R2 where R1 and R2 are the principal radii of curvature
of the surface, e.g. κ = 2/R for a sphere and 1/R for a cylinder. The term
involving the surface curvature accounts for the variation of qs due to the
dilation of the surface (Leal, 2007, p. 93). Note that unlike the surface charge
convection, the bulk charge convection does not enter into the balance of
surface charge density because bulk free charges never reach the interface by
convection (Melcher, 1981, p. 2.18). The jump condition for surface charge
density (Eq. 30c) assumes negligible surface diffusion current and surface
Ohmic current, in other words, the surface convection current is assumed to
dominate. Although the negligence of the surface diffusion current appears
to be consistent with negligible bulk diffusion current, the negligence of the
surface conduction current is not entirely justifiable from first principles.
However, the simplified jump condition in the form of Eq. 30c is often
sufficient to model electrohydrodynamic phenomena, see for example the
literature reviewed in Saville (1997) and Zeng and Korsmeyer (2004).

2.4 Model problems of electrohydrodynamic stability

We shall now apply the governing equations of electrohydrodynamics to
two model problems, electrokinetic mixing flow and electrohydrodynamic

2Electrical double layer is not considered here because the Ohmic model does not apply

within the double layer. The inclusion of double layer may also disrupt the continuation

of tangential electric fields (Melcher, 1981, p. 2.16).
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cone-jet (Figure 3). Both problems are motivated by a broad range of prac-
tical applications, typically with a working fluid of relatively high conduc-
tivity (� 10−4 S/m) where the Ohmic model holds. Since deionized water
has a conductivity of approximately 10−4 S/m when equilibrated with car-
bon dioxide in the atmosphere, the “high-conductivity” regime encompasses
all practical aqueous solutions (see also discussions below around Eq. 49).

The model problems are chosen to represent two extreme scenarios. In
the electrokinetic mixing flow discussed here, two miscible working fluids are
driven by an electric field approximately parallel to the material interface.
In contrast, in the electrohydrodynamic cone-jet, two immiscible working
fluids are stressed by an electric field with a component perpendicular to
the interface. We will start with the mixing flow problem where the base
state is well defined, and then take on the more difficult case of cone-jet
flow where a clear-cut description of the base state is a challenge in itself.

Because both model problems are open flow systems, it is useful to study
the instability in the spatial frame work in addition to the more conventional
temporal frame work. A system that is unstable in a temporal framework
can be either convectively or absolutely unstable in the spatial framework
(Huerre and Rossi, 1998; Schmid and Henningson, 2001). The onset condi-
tion of convective instability is the same as that of a temporal instability in
which a global disturbance grows in time (Schmid and Henningson, 2001).
Consider a disturbance introduced at a localized point in space: if it grows
only downstream, the system is convectively unstable; if the disturbance
grows both downstream and upstream, the system is absolutely unstable.
Physically, a convectively unstable system is a noise amplifier in which a
disturbance at the origin is amplified downstream, while an absolutely un-
stable system is an intrinsic oscillator in which the downstream propagating
wave oscillates simultaneously with an upstream propagating waves (Huerre
and Rossi, 1998).

3 Electrokinetic Mixing Flow

Micro total analysis systems (μTAS) aim to integrate multiple assaying
functions including sample pretreatment, mixing and separation on a mi-
crofabricated chip (Manz et al., 1990; Stone et al., 2004). Electrokinetics is
often the method of choice for reagent transport and manipulation in μTAS
(Stone et al., 2004; Chang and Yeo, 2010). As devices gain complexity, ro-
bust control of electrokinetic processes with heterogeneous samples becomes
critical. One important regime is on-chip biochemical assays with high con-
ductivity gradients, which might occur intentionally as in sample stacking
processes, or unavoidably as in multi-dimensional assays. Such conductivity
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(a)

(b)

Figure 3. Model problems of electrohydrodynamic stability: (a) Electroki-
netic mixing flow of two miscible streams at a T-junction. The two fluids
have the same properties except for different electrical conductivities. Al-
though the conductivity gradient leads to instability at high electric fields,
the base state is the well-known diffusive solution when the material in-
terface is approximately parallel to the applied electric field. (b) Electro-
hydrodynamic cone-jet with a liquid jet issued from the Taylor cone on an
electrified nozzle. The inner fluid and the surrounding air have dramatically
different electrical properties, with the liquid modeled as a leaky dielectric
while the air as an insulator. The base state is strongly dependent on the
applied electric field which has a significant component perpendicular to
the material interface. A complete mechanistic understanding of the base
state is not yet available. Figure (a) reprinted with permission from Chen
et al. (2005), c© 2005 Cambridge University Press. Figure (b) reprinted
with permission from Hohman et al. (2001a,b), c© 2001 American Institute
of Physics.
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gradients may lead to instabilities under high electric fields (Figure 4), with
anecdotal evidences widespread in the μTAS literature (Chen et al., 2005).
Although instability is undesirable for robust electrokinetic assay, it is use-
ful for rapid mixing at low Reynolds number (Oddy et al., 2001). In either
case, the instability mechanism must be understood before enhancement or
suppression can be engineered.

As shown below, these “electrokinetic instabilities” (Lin et al., 2004;
Chen et al., 2005) are fundamentally electrohydrodynamic, in which elec-
troosmotic flow mainly acts as a convecting medium (Chen et al., 2005). The
instability waves in Figure 4 clearly originate at the liquid interface with
gradients of material properties, not on charged solid walls. We will also
show that electroosmotic bulk flow in electrokinetic systems leads to convec-
tive and absolute instability; see Figure 4a and Figure 4b, respectively. The
absolute instability sets in when the internally generated electroviscous ve-
locity disturbances are high enough to overcome electroosmotic convection.
Both the electroviscous and electroosmotic velocities result from balancing
electric body forces and viscous stresses. However, the electroviscous ve-
locity is due to the accumulated net charge density in the bulk (Melcher,
1981), while the electroosmotic velocity is due to the net charge within the
electric double layer at the boundary (Chang and Yeo, 2010).

According to Eq. 27, electromechanical coupling may arise from a gra-
dient of permittivity and/or conductivity along the electric field (Melcher,
1974). However, permittivity gradient is negligible because a dilute solu-
tion of electrolyte does not significantly alter the permittivity of pure water
(Chen et al., 2005). As shown in a series of papers published by Melcher and
coworkers, a sharp interface separating regions of identical properties except
disparate conductivities is linearly stable (Melcher and Schwartz, 1968);
however, a diffuse interface under the same condition gives rise to unsta-
ble electromechanical coupling (Hoburg and Melcher, 1976). Compared to
the surface-coupled model where the electromechanical coupling is through
interfacial stresses, the bulk-coupled model implies coupling through volu-
metric forces distributed across the diffusive interface. The diffusive inter-
face model is particularly relevant to microsystems with small length scales,
e.g. a diffusion length comparable to the channel width is visible in the un-
perturbed base state (Figure 3a). Consistent with the bulk-coupled model,
the diffusive term should be kept in the conductivity conservation Eq. 29
(Baygents and Baldessari, 1998). Without the diffusive term, the linearized
equations will be unconditionally unstable as in Hoburg and Melcher (1976),
which contradicts with an experimentally measured threshold electric field
below which the flow is stable (Chen et al., 2005).

The following discussions on electrokinetic mixing flow will closely follow
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Figure 4. Instability in electrokinetic mixing flow of two miscible streams
of aqueous electrolytes: (a) convective instability at a nominal external
field of 1.0 kV/cm; and (b) absolute instability at 2.0 kV/cm in (b). The
channel has a width of 155 μm and a depth (into the paper) of 11 μm;
the conductivity ratio is η = 10 with the dyed side having the higher
conductivity of σ = 7.7 × 10−2 S/m; the permittivity of both streams is
ε=6.9× 10−10 C/V·m. Reprinted with permission from Chen et al. (2005),
c© 2005 Cambridge University Press.

Chen et al. (2005). A review of recent development in the area of electroki-
netic instability can be found in Lin (2009).

3.1 Linearized thin-layer equations

The governing equations for the bulk-coupled model (Chen et al., 2005)
are essentially the same as Eqs. 26 and 29. Because of the rapid charge re-
laxation in aqueous electrolytes, the charge conservation equations (Eq. 26c)
is simplified to the continuity of Ohmic current,

∇ · σ∇φ = 0, (34)

where the quasi-electrostatic field is related the potential by E = −∇φ. The
polarization term drops out of Eq. 26e because of negligible permittivity
gradients.

With thin Debye length, the physics of the electric double layer is as-
sumed to influence the instability dynamics only in that the double layer
determines an electroosmotic velocity very close to the microchannel wall

(a) (b)
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(Chen et al., 2005). The boundary conditions at the solid walls are therefore,

n · ∇σ = 0, (35a)

n · ∇φ = 0, (35b)

v = −εζ∇φ/μ, (35c)

where n denotes wall-normal direction, and ζ is the zeta potential of the
electrical double layer. Boundary conditions (35a) and (35b) are conse-
quences of non-penetrating walls. The electroosmotic velocity at the wall is
is given by the Smoluchowski equation (35c) (Chang and Yeo, 2010). Here,
we assume constant zeta potential for simplicity. In reality, zeta potential
is related to ionic concentration and therefore changes with the electrical
conductivity. However, the dependence of zeta potential on local conductiv-
ity has been shown to be not essential to the instability mechanism (Chen
et al., 2005).

The base state is assumed parallel, in particular, the conductivity dis-
tribution assumes a diffusive profile with a constat diffusion length δ (Fig-
ure 3a),

σ0 = σL +
σH − σL

2
erfc
(y
δ

)
, (36)

where σH and σL are respectively the high and low conductivities of the
streams prior to mixing. The base electroosmotic velocity profile is as-
sumed uniform, Ueo = εζrEa/μ, where ζr is the reference zeta potential and
Ea is the applied electric field which is assumed uniform. By the parallel
base state assumption, the linear stability analysis is greatly simplified and
no boundary conditions are needed in the streamwise (x-direction). The
validity of the parallel base state assumption is discussed in details in Chen
et al. (2005).

As mentioned earlier, two velocity scales are necessary to properly scale
the governing equations in electrokinetic mixing flow. The electroosmotic
velocity (Ueo) is the imposed velocity scale due to the net charge in the
electric double layer (close to the wall), and is introduced as part of the
boundary conditions. The electroviscous velocity (Uev) is the internal scale
for velocity disturbances due to net charge accumulation in the diffusive
conductivity interface (in the bulk).

Motivated by the high-aspect ratio experimental system, we shall focus
on the asymptotic thin-layer limit where d/h 
 1, i.e. the channel depth
(2d) is much thinner than the horizontal length scales which are all assumed
to be on the same order of the channel width (2h). In the thin-layer limit,
conductivity (σ) and potential (φ) are both independent of the z, but veloc-
ity (v) has a z-dependence. The difference in z-dependence reflects the fact
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that the walls at z = ±d prohibit mass or electric fluxes, but accommodates
momentum fluxes. Therefore, the velocity profile takes the form of,

v = v0 + ṽH = v0 + v̄ev(x, y, t)g(z) + v̄eo(x, y, t), (37)

where the subscript 0 denotes the base state, the subscript H denotes the
horizontal direction, g(z) is a parabolic function g(z) = 3

2 (1 − z2/d2), v̄ev
and v̄eo are the electroviscous and electroosmotic velocity perturbation with
the over bar denoting a depth-averaged quantity, and the electroosmotic
velocity perturbation is given by

v̄eo = −Ueo
(
∂xφ̄

Ea
ex +

∂yφ̄

Ea
ey

)
. (38)

After depth averaging, the linearized conductivity conservation and momen-
tum equations take the form of

∂σ̄

∂t
+ v0 · ∇H σ̄ + v̄ · ∇Hσ0 = ∇H2σ̄, (39)

ρ
∂v̄

∂t
+ρ(v0 ·∇H)v̄+ρ(v̄·∇H)v0 = −∇H p̄+μ∇H2v̄− 3μ

d2
(v̄−v̄eo)+ρ̄fE0, (40)

where E0 = Eaex. The form of mass continuity and current continuity
equations remains essentially unchanged. See Chen et al. (2005) for an
asymptotic derivation of the thin-layer equations.

Balancing the viscous and electric forces in the linearized momentum
Eq. 40, the electroviscous velocity can be shown to scale as (Chen et al.,
2005),

Uev ∼ ρ̄fEa

μ/d2
∼ (η − 1)2

(η + 1)2
d2

δ

εE2
a

μ
. (41)

Note δ is the diffusion half length across which conductivity varies, and is
therefore the relevant length scale for charge density. However, d is the rel-
evant length scale for wall-bounded viscous transport. The terms involving
η = σH/σL account for the conductivity gradient. This definition of Uev
strives to account for all the relevant physical parameters involved in the
electroviscous balance of the problem. Fundamentally, Eq. 41 is the same as
the simpler version in Hoburg and Melcher (1976) and Melcher (1981), both
containing the electroviscous time scale of μ/εE2

a. Note that Uev scales as
E2

a while Ueo scales as Ea, because the electroviscous velocity results from
induced charge density which itself scales as Ea.

In modeling electrokinetic instabilities, it is important to note that Ueo is
the velocity scale for the base electroosmotic flow, while Uev is the internally
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generated velocity scale to properly scale the perturbation velocity. With
proper nondimensionalization, two governing parameters naturally appears
in the conductivity conservation Eq. 39,

1

Rv

(
∂T Σ̄ + U0∂XΣ̄

)
+ (∂Y Σ0)V̄ =

1

Rae
∇2

HΣ̄, (42)

where capital letters denote nondimensional variables (except E which does
not appear in the nondimensional equations), i.e. a general field variable Λ
is decomposed in nondimensional form as Λ = Λ0 + Λ̄. The electroviscous-
to-electroosmotic velocity ratio Rv is defined as

Rv =
Uev
Ueo

=
(η − 1)2

(η + 1)2
Ead

2

ζrδ
. (43)

The electric Rayleigh number Rae is defined as

Rae =
Uevh

Deff
=

(η − 1)2

(η + 1)2
h

δ

εE2
ad

2

μDeff
, (44)

which measures the relative importance of dynamic (electric body) forces
to dissipative forces by molecular and viscous diffusion.

3.2 Results of linear stability analysis

The instability mechanism is evident from the most unstable eigenmodes
of a representative convective instability shown in Figure 5 (Hoburg and
Melcher, 1976; Chen et al., 2005). Figure 5a: The eigenmode of conduc-
tivity perturbation has a cellular pattern and alternates in sign in the x-
direction. Figure 5b: Such conductivity perturbation will change the elec-
tric potential distribution due to current continuity (see also Figure 5e).
Figure 5c: The perturbed electric field will produce a charge density per-
turbation by Gauss’s Law, and leads to electric body forces. Figure 5d: The
electric body forces produce cellular fluid motion through the Navier-Stokes
equations. This fluid motion further alters the conductivity field through
the convection-diffusion equation of conductivity, and the positive feedback
leads to instability. The similarity of perturbation patterns of the stream
function (Ψ̄) and y-direction gradient of electric potential (Φ̄), shown by
Figure 5d and Figure 5e, confirms a useful relationship in the absence of
electroosmotic flow (Chen et al., 2005),

Ψ̄ ∝ ∂Y Φ̄. (45)

The analytical expression (Eq. 45) directly relates the electric and ve-
locity fields, which enables us to explain the instability mechanism in a
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Figure 5. Electrokinetic instability mechanism shown by the most unsta-
ble eigenmodes. Dark gray is negative and light gray is positive, contour
plots are overlayed: (a) Σ̄, conductivity perturbation; (b) Φ̄, potential per-
turbation; (c) ∇2

HΦ̄, which is proportional to negative charge density; (d)
Ψ̄, streamfunction perturbation; (e) ∂Y Φ̄, electric field perturbation. Con-
ductivity perturbation alternates electric potential distribution and induces
bulk charge accumulation, which in turn results in electric body forces and
promotes cellular fluid motion. The cellular flow further perturbs the con-
ductivity field and this positive feedback leads to instability. Reprinted with
permission from Chen et al. (2005), c© 2005 Cambridge University Press.
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more intuitive way (Figure 6) (Chen et al., 2005). When the initially flat
interface is perturbed, the perturbed conductivity field will alter the elec-
tric field. The local electric field is strengthened where lower conductivity
replaces higher conductivity (region II), and vice versa (region I). The elec-
tric field perturbation is strongest at the conductivity interface (dot-dashed
line) and decays away from it. According to Eq. 45, the velocity perturba-
tion further stretches the interface upward for regions I and downward for
regions II. This tendency for the perturbed interface to be further stretched
is competing with molecular diffusion. When the electroviscous process is
faster than molecular diffusion, i.e.

h

Uev
<

h2

Deff
⇒ Rae > 1, (46)

the perturbation at interface will grow and lead to instability.
In the presence of electroosmotic flow, the unstable perturbations grow

as they are convected downstream, which leads to convective instability if
the disturbance is not too strong. In the regime of convective instability,
growth rate is finite at any downstream location and the regions upstream
of the initial disturbance are largely unaffected. However, when the internal
electroviscous process is faster than the external electroosmotic convection,
i.e.

h

Uev
<

h

Ueo
⇒ Rv > 1, (47)

the flow may become absolutely unstable because the electroosmotic flow
can not carry the disturbances downstream fast enough. Therefore, in the
regime of absolute instability, the disturbance grows in time (t) at the origin
and the upstream flow is perturbed.

The above heuristic arguments are confirmed by the linear stability anal-
ysis (Chen et al., 2005). All seven nondimensional parameters in the prob-
lem are systematically varied, some over three orders of magnitude. The
critical conditions for convective and absolute instabilities are plotted on
a Rae − Rv phase diagram (Figure 7). It is obvious from the figure that
the onset of convective instability collapses around Rae,cr � 10, while the
onset of absolute instability collapses around Rv,cr � 4. When the system
properties are fixed, the electric Rayleigh number and the electroviscous-
to-electroosmotic velocity ratio vary along a fixed curve Rae ∝ R2

v. As
electric field is increased, the system first become convectively unstable
when Rayleigh number exceeds Rae,cr, and then absolutely unstable when
the velocity ratio exceeds Rv,cr.

Despite the linearization with depth averaging and parallel base state,
the above model agrees reasonably well with experiments (Chen et al., 2005).
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Figure 6. Schematic of electrohydrodynamic instability mechanism. When
the conductivity interface is perturbed, the electric field is perturbed due
to alternation of conductivity. The perturbed electric field is strongest at
the conductivity interface (dot-dashed line) and decays away from it, this
gradient in electric field results in vertical velocities which further stretch
the interface. Reprinted with permission from Chen et al. (2005), c© 2005
Cambridge University Press.

The model captures trends of the instability as a function of increasing field
strength, and predicts the observable quantities such as spatial growth rates
within a factor of three. Take the critical electric field for example, the
nominal threshold for onset of (convective) instability was 0.5± 0.1 kV/cm
in experiments, and is 0.14 kV/cm from the linear stability analysis; The
onset of absolute instability was about 1.5 kV/cm in experiments (Figure 4),
and is 0.65 kV/cm from the analysis. With slight modifications, the model
also predicts the onset of convective instability in a different geometry where
three liquid streams mix at a cross-junction (Posner and Santiago, 2006).

The model presented here offers a useful framework to address the sta-
bility issues of electrokinetic mixing flow. We emphasize again that the elec-
trokinetic flow instability resulting from electrical conductivity gradients is
essentially an electrohydrodynamic instability convected by the electroos-
motic flow. To suppress instability in electrokinetic assays, one needs to
minimize Rae, the ratio of dynamic electric body forces to dissipative forces
due to molecular and viscous diffusion, which controls the onset of instabil-
ity. To enhance instability for microfluidic mixing, one needs to maximize
Rv, the ratio of internally generated electroviscous velocity to bulk elec-
troosmotic velocity, which controls the absolute verses convective nature of
instability.
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Figure 7. Phase diagram for convective and absolute instability. The criti-
cal conditions are plotted with circles representing onset of convective insta-
bility and triangles absolute instability. At onset of convective instability,
the critical Rayleigh number collapses around Rae,cr � 10. At onset of
absolute instability, the critical velocity ratio collapses around Rv,cr � 4.
Note that at a given condition, Rae/R

2
v is a constant so Rae and Rv can

not be independently varied. Reprinted with permission from Chen et al.
(2005), c© 2005 Cambridge University Press.

4 Electrohydrodynamic cone-jet

Electrohydrodynamic cone-jet transition is a unique phenomenon that per-
mits the production of a tiny liquid jet from a much larger nozzle (Cloupeau
and Prunet-Foch, 1989; Fernandez de la Mora, 2007). The large drawdown
ratio enables a variety of techniques including electrospraying, electrospin-
ning and electrostatic printing (Figure 8). Electrospraying has a broad
spectrum of applications, most notably crop and paint spraying and electro-
spray ionization (Bailey, 1988; Kebarle and Verkerk, 2009). Electrospinning
is mainly used in producing nanoscale fibers and miniaturized encapsula-
tion (Reneker et al., 2007; Barrero and Loscertales, 2007). Electrostatic
printing is useful for high-resolution production of biomolecular microar-
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rays and electronic circuits (Yogi et al., 2001; Park et al., 2007). The sta-
bility of electrohydrodynamic cone-jet is of paramount importance to its
practical applications. Electrospraying and electrospinning hinges on the
downstream destabilization of a steady cone-jet to generate fine droplets or
thin fibers (Fernandez de la Mora and Loscertales, 1994; Hohman et al.,
2001a), while electroprinting relies on transient cone-jets to deploy drops
on demand (Chen et al., 2006a,b).

(a)

(b)

(c)

Figure 8. Electrohydrodynamic cone-jets in the context of (a) electrospray-
ing, (b) electrospinning, and (c) electrostatic explosion. Unlike the steady
cone-jet in (a) and (b), the cone-jet in (c) is inherently transient, similar to
the transient jetting process in electrostatic printing. Figures (a) and (b)
reprinted with permission from Barrero and Loscertales (2007), c© 2007 An-
nual Reviews. Figure (c) reprinted with permission from Duft et al. (2003),
c© 2003 Nature Publishing Group.

In contrast to its wide-ranging applications, a complete mechanistic un-
derstanding of the cone-jet dynamics remains elusive. In addition to the
mathematical complexities in analyzing multi-physical free surface flow, ex-



200 Chuan-Hua Chen

perimental measurements are also difficult for the flow fields in a free jet,
the diameter of which is often on the verge of optical resolution. For a
summary of the state-of-the-art and a discussion of unresolved issues, see
Fernandez de la Mora (2007); Barrero and Loscertales (2007); Ganan-Calvo
and Montanero (2009). The incomplete understanding of the steady cone-
jet significantly complicates the stability analysis which needs a base state
to start with.

In this section, we will first discuss the operating regime of a steady cone-
jet, and then discuss a few selected papers on the cone-jet stability. The
dynamics of the electrified jet will be compared to its uncharged counterpart
(Eggers and Villermaux, 2008). Because there is a well-defined interfacial
boundary between the liquid jet and its immiscible surrounding fluid (e.g.
air), a surface-coupled model will be adopted as in the study of conventional
uncharged jets.

4.1 Operating diagram of a steady cone-jet

Steady cone-jet is the most useful of the many possible functioning modes
of an electrified meniscus (Cloupeau and Prunet-Foch, 1989; Fernandez de
la Mora, 2007). For a given working fluid, the conditions leading to steady
cone-jet are best summarized by the stability island in the E − Q oper-
ating diagram (Figure 9), which is obtained by independently varying the
externally applied parameters of electric field (E) and flow rate (Q). The
detailed shape of the stability island varies among different working fluids
and different electrode configuration. The stability boundary also exhibits
a fairly pronounced hysteresis (Cloupeau and Prunet-Foch, 1989; Fernan-
dez de la Mora, 2007). Fortunately, the minimum flow rate (Qm) and the
associated electric field (Em) in Figure 9 can be rationalized as follows.

When a liquid meniscus is electrified, the Maxwell stress leads to inter-
facial deformation. At a sufficiently high electric field, the meniscus takes
the shape of a Taylor cone (Taylor, 1964). Balancing the electric stress
and surface tension, the critical electric field scales as (Taylor, 1964; Smith,
1986)

Em ∼
√

γ

ε0a
, (48)

where a is a characteristic length scale such as the radius of the nozzle to
which the meniscus attaches.3 For a perfectly conducting liquid, the cone
surface is equipotential with a theoretical half angle of 49.3◦ (Taylor, 1964).
See Fernandez de la Mora (2007) for a discussion of other possible conical
configurations.

3Some operating diagrams use voltage as the control variable. For the commonly used
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Figure 9. Operating regime of steady cone-jet: At the minimum flow rate
Qm, the applied electric field should be Em to produce a stead cone-jet;
Above Qm, a steady cone-jet can be produced in a limited range of electric
field around Em; Below Qm, a steady cone-jet is not possible but pulsating
cone-jet results around Em.

For a relatively conducting liquid, the minimum flow rate does not de-
pend on viscosity (the jet has an approximately flat velocity profile); On
dimensional ground Qm scales as (Fernandez de la Mora and Loscertales,
1994; Fernandez de la Mora, 1996),

Qm ∼ γε

ρσ
. (49)

This scaling law is empirically known to work in the “high-conductivity”
limit with σ � 10−4 S/m, but a rigorous theoretical justification is still
missing (Fernandez de la Mora, 2007). Higher conductivities usually lead
to finer sprays, but for conductivities higher than 1 S/m, direct ion evap-
oration may be possible (Fernandez de la Mora, 2007). Many electrospray
working fluids (including most aqueous solutions) are within this interme-
diate conductivity regime between 10−4 and 1 S/m.

needle-to-plate configuration, the critical voltage can be approximated as

Φm ≈ Ema

√
cos θ

2
ln

(
4l

a

)
,

where θ is the conical half angle. This expression is valid when the electrode separation

(l) is much larger than the needle radius (a) (Smith, 1986; Kebarle and Verkerk, 2009).
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The dynamics outside of the steady cone-jet regime is very poorly un-
derstood, see for example Cloupeau and Prunet-Foch (1994); Grace and
Marijnissen (1994). With the caveats of being overly simplified and incom-
plete, a sketch of the operating modes in the E − Q diagram is offered as
follows:
• Q < Qm: If the flow rate is smaller than the theoretical minimum, a

stable jet is not possible and a variety of pulsating modes may result.

E � Em: Pulsating cone-jet, which results from the imbalance of sup-
plied and jetted flow rates. Many electrostatic printing and “na-
noelectrospray” (Wilm and Mann, 1994) systems fall in this pul-
sating regime as a result of the increased drag in miniaturized
nozzles. The pulsation mechanism will be discussed below.

• Q � Qm: If the flow rate is intermediate for which a steady cone-jet is
possible, the mode of operation depends strongly on the electric field:

E 
 Em: Dripping, which is analogous to hydrodynamic dripping
(Eggers and Villermaux, 2008).

E � Em: Pulsating cone-jet, which sometimes resembles the afore-
mentioned case when Q � Qm, E � Em. This transition region
is very complex and can be subdivided further into bursting, pul-
sating and astable modes, where the astable mode is not periodic
at all (Marginean et al., 2007).

E � Em: Cone-jet, which is the most useful mode (Fernandez de la
Mora, 2007) and the benchmark that all other operating modes
are compared against. Electrospraying and electrospinning sys-
tems typically employ a stable cone-jet, which eventually desta-
bilizes downstream in the varicose or kink (whipping) mode, re-
spectively. The instability mechanism will be discussed below.

E � Em: Multi-jet, which occurs when the rapidly accumulated sur-
face charges must be redistributed through multiple jets. There
are many other possible modes in addition to the multi-jet one
(Cloupeau and Prunet-Foch, 1994), but these highly unstable
modes are rarely used in practice.

• Q � Qm: If the flow rate is much larger than the theoretical mini-
mum, a hydrodynamic jet results instead of a cone-jet; this hydrody-
namic regime is usually not of practical interest (Grace and Marijnis-
sen, 1994).

4.2 Long-wavelength model

Consistent with the surface-coupled model adopted below, the working
fluid is assumed to be a leaky dielectric such that (i) the liquid is sufficiently
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conducting to carry electric charges only on its surface and any bulk charge
will instantaneously relax to the interface; (ii) the liquid is sufficiently di-
electric to support a tangential electric field (Melcher and Taylor, 1969;
Melcher and Warren, 1971; Ganan-Calvo, 1997a; Hohman et al., 2001a;
Feng, 2002). Note that the assumption of instantaneous charge relaxation
refers to the local relaxation of bulk charge density (Ganan-Calvo, 1997a;
Hohman et al., 2001a). The external fluid (air) is assumed to have no ef-
fect on the jet except to provide a uniform external pressure. As we have
stressed earlier, only a leaky dielectric can support tangential shear stress,
which pulls charge and mass toward the conical tip and is the root cause
for the eventual jet issuance (Hayati et al., 1986); cf. Figure 2c. We shall
restrict our discussions to Newtonian fluids; for non-Newtonian effects, see
for example Reneker et al. (2007); Feng (2002).

In the long-wavelength limit, the electrified jet is asymptotically gov-
erned by a set of one-dimensional equations (Hohman et al., 2001a; Feng,
2002). In the axisymmetric case,

∂t(πh
2) + ∂z(πh

2v) = 0, (50a)

∂t(2πhqs) + ∂z(2πhqsv + πh2σE) = 0, (50b)

ρ(∂tv + v∂zv) = −∂zptot + ρg +
2

h
qsE +

3

h2
μ∂z(h

2∂zv), (50c)

with

ptot = γκ− 1

2
(ε− ε0)E

2 − q2s
2ε0

,

and

E = E∞ + ln ξ

[
1

ε0
∂z(qsh)− ε− ε0

2ε0
∂2
z (Eh2)

]
, (50d)

where h(z) is the jet radius, v and E are the velocity and electric field in
the axial z-direction, E∞ is the external field in the absence of the jet, ξ
is the local aspect ratio assumed to be small; for the linearized system, ξ
is proportional to the wave number (Hohman et al., 2001a). Eq. 50a is the
conservation of mass. Eq. 50b is the conservation of current, where the
jet current consists of both surface convection and bulk conduction. The
momentum Eq. 50c incorporates the same hydrodynamic terms as nonelec-
trical jets (Eggers and Villermaux, 2008) and a few additional electrical
terms: the qsE term is related to the tangential electrical force (cf. Fig-
ure 2c), (ε−ε0)E2/2 is the polarization force under an external field (cf. Fig-
ure 2b), and q2s/2ε0 is the radial repulsion of surface charge (cf. Figure 2a).
Eq. 50d approximates the electrostatic field inducted by the surface charge
by an effective line charge along the axis; for alternative approximations,
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see e.g. Ganan-Calvo (1997a). The key notion is that the self-inducted field
modifies the imposed electric field, which complicates the coupled dynamics
between electric and flow fields. Note that Eq. 50 is asymptotically valid for
a slender jet in the long-wavelength limit with an additional requirement
unique to electrified jet: the tangential electric stress must be much smaller
than the radial viscous stress, qsE 
 μv/h (Hohman et al., 2001a).

The long-wavelength limit represents a major simplification to the gov-
erning equations while keeping the essential physics. The governing equa-
tions suitable for a whipping jet with curved centerline have also been de-
rived in Hohman et al. (2001a). Among other complications, the bending
introduces nonaxisymmetric distortions which necessitates the introduction
of dipole in addition to monopole charge density. In the interest of space, we
will base our discussions on the axisymmetric equations (Eq. 50), which con-
tains the majority of the physics; however, we will cite results from the full
governing equations applicable to both varicose and whipping instabilities.

Before discussing the electrified jet, it is instructive to review the stability
physics of a purely mechanical jet. In a nonelectrical jet, surface tension is
destabilizing and drives the well-known varicose instability first analyzed by
Rayleigh (1879). The instability mechanism is that the perturbed jet gives
rise to a lower overall surface energy when the wavelength is longer than the
perimeter of the jet. All azimuthal modes are stable as surface corrugation
always carries a penalty in surface energy. Both longitudinal stretching and
viscous stresses slow down the instability and increases the most amplified
wavelength. More details on nonelectrical jet can be found in Eggers and
Villermaux (2008).

In an electrified jet, three additional terms are in action at the inter-
face:4 the normal polarization force due to the permittivity gradient at the
liquid/air interface, the normal Coulombic force due to self -repulsion of
the free surface charge, and the tangential electric stress on the free sur-
face charge. Their roles in electrohydrodynamic stability are summarized
as follows:

• The polarization forces is stabilizing in a current-carrying jet. A local
constriction of the jet increases the electric field (by current conser-
vation) which increases the outward polarization force to resist the
constriction (Melcher and Warren, 1971).

• The self repulsion of surface charges stabilizes the nonelectrical vari-
cose mode by reducing the effective surface tension, but at the same
time promotes an electrical whipping mode by Coulombic repulsion

4The Korteweg-Helmholtz force concept is adopted, as usual, which nicely confines the

polarization forces on the interfaces where there is a nonzero ∇ε.
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(Hohman et al., 2001a). Contrary to surface energy, electrostatic en-
ergy shrinks with expanding surface area. Nonaxisymmetric surface
corrugation is therefore energetically favorable as far as electrostatic
energy is concerned.

• The tangential electric stress provides a stabilizing longitudinal stretch-
ing by accelerating the jet. However, the same tangential electric stress
can also destabilize the jet by promoting out-of-phase oscillation be-
tween surface charge rearrangement and the fluid response (Hohman
et al., 2001a); see also discussions of Figure 12 below.

Both tangential shear stress and self repulsion can be important in promot-
ing instability, depending on the relative magnitude of the imposed tangen-
tial electric field and the normal field induced by surface charge (Hohman
et al., 2001a); see also discussions around Eq. 56 below.

The linear stability analysis by Hohman et al. (2001a) showed three
instability modes: the axisymmetric Raleigh mode (the conventional vari-
cose instability modified by the electric field), the axisymmetric conducting
mode (caused by the redistribution of surface charges under an external
field), and the whipping conducting mode (cf. Figure 8b). The latter two
are called “conducting modes” because they only exist with a finite conduc-
tivity. The demarcation between the varicose and kink modes follows the
following scaling,

qs,cr ∼
√

2ε0γ

h
, (51)

where the critical surface charge density (qs,cr) is typically an order of mag-
nitude smaller than the Rayleigh limit for electrostatic explosion (Rayleigh,
1882). The Rayleigh limit (

√
2ε0γ/h for a jet with a radius of h) represents

the competition between electrostatic repulsion and surface tension.
To quantitative compare the simplified 1D model with experimental re-

sults, the axial distribution of the jet diameter and surface charge density
were calculated by fitting the experimentally measured profile of a stable
cone-jet as it thins down from the nozzle (Hohman et al., 2001b); for al-
ternatively approaches, see the discussions in Feng (2002). The operating
diagram of an electrified jet of aqueous polymer is shown in Figure 10. Re-
markably, the experimentally measured operating diagram of steady cone-
jet is qualitatively reproduced by the stability analysis. The lower stability
boundary demarcates the varicose instability and the steady jet, and the up-
per one demarcates the steady jet and the whipping instability. The linear
stability analysis showed that both viscosity and surface charge are impor-
tant to capture the long-wavelength and whipping features of the instability,
respectively (Hohman et al., 2001a). These observations are consistent with
the role of viscosity in mechanical jet instability and the fact that self-
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repulsive surface charge tends to maximize surface area. The model also
captured scaling trends predicted by Eq. 49, with a higher conductivity
leading to lower minimum flow rate (Hohman et al., 2001b). However, it
should be noted that the theoretically predicted minimum flow rate based
on the linear stability analysis seems to be a few orders of magnitude higher
than the experimentally measured one (Figure 10).

Steady cone-jet

Whipping instability

Varicose instability

Q (ml/min)

E 
(k

V/
cm

)

Figure 10. Prediction of varicose and whipping instabilities of an electro-
hydrodynamic jet using the one-dimensional model. Experimental measure-
ments denoted by dots are overlayed on the numerical prediction with the
white region denoting stable jet, light gray varicose instability, and dark gray
whipping instability. The working fluid is aqueous solution of polyethylene
oxide (assumed Newtonian), with σ=1.2×10−2 S/m, ε=3.8×10−10 C/V·m,
μ = 1.7 Pa·s, ρ = 1.2 × 103 kg/m3, and γ = 6.4 × 10−2 N/m. Reprinted
with permission from Hohman et al. (2001b), c© 2001 American Institute
of Physics.
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4.3 Convective and absolute instability

The convective and absolute instability transition in a charge liquid jet
is studied by Lopez-Herrera et al. (2010) using a two-dimensional model
of leaky dielectric jets assuming axisymmetric perturbations and negligible
gravity and tangential electric field.5 The assumption of negligible tangen-
tial electric field is relevant on a developed electrohydrodynamic jet where
the electric current is dominated by surface convection instead of bulk con-
duction, and the tangential field is (typically) much smaller than the radial
one induced by the free surface charge (Ganan-Calvo, 1997a,b). In this
limit, the governing electrical parameters are the relative permittivity β,
the relaxation parameter α, and the charge parameter χ,

β =
ε

ε0
, α =

√
ρh3σ2

γε2
, χ =

hq2s
γε0

, (52)

where α compares the capillary-inertial time with the charge relaxation time
and χ compares the electrostatic pressure to capillary pressure. Close to the
onset conditions for a stable cone-jet, calculations in Lopez-Herrera et al.
(2010) showed that most cone-jet systems are moderately charged with a
charge parameter χ below 1 (χ = 2 at the Rayleigh limit given by Eq. 51).

For cone-jets with moderate charge parameter (χ), the absolute to con-
vective instability (dripping to jetting) transition is found to be insensitive
to electrical parameters; Instead, the transition on moderately charged jets
is mainly governed by the mechanical parameters (Lopez-Herrera et al.,
2010). The Weber number (We) is related to the Reynolds (Re) and Cap-
illary (Ca) numbers by

We =
ρU2h

γ
=

ρUh

μ

μU

γ
= Re · Ca, (53)

The Weber number be viewed as the ratio of the imposed flow velocity (U)
to the intrinsic capillary-inertial velocity (

√
γ/ρh), similar to 1/Rv which

is equal to the imposed electroosmotic flow to the intrinsic electroviscous
velocity. Note that the Reynolds and Capillary numbers are related by the

5Within the limit of negligible tangential electric field, Lopez-Herrera et al. (2005)

compared the more general two-dimensional model against the one-dimensional long-

wavelength description, and showed that the long-wavelength limit breaks down for low-

viscosity, low-conductivity/permittivity liquid. However, the long-wavelength model is

usually valid for aqueous solutions due to their large conductivity and permittivity.

See Lopez-Herrera et al. (2005) for details.
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Ohnesorge number,

Oh =
μ√
ργh

=

√
Ca

Re
, (54)

which is not a function of velocity. Heuristically, with increasing convection
velocity U , the flow transits from absolute to convective instability as the
external convection process outcompetes the intrinsic capillary waves, i.e.

h

U
<

h√
γ/ρh

⇒ We > 1. (55)

The heuristical argument of the critical Weber number is confirmed by
the spatiotemporal analysis in Figure 11, where the theoretical results are
plotted along with experimental values of Reynolds and Capillary numbers
for dozens of stable cone-jet configurations in the context of both electro-
spraying and electrospinning. The experimental conditions for stable cone-
jets more or less follow a line of constant Weber number. Note that this
hydrodynamically dominated criterion of stability transition breaks down in
the limit of low Reynolds number, where the stability behavior is strongly
sensitive to the electrical parameters (Lopez-Herrera et al., 2010).

The assumption of negligible tangential electric field is invalid close to
the “neck” region of the cone-jet, where the dominant charge transport
mechanism transits from bulk conduction to surface convection (Ganan-
Calvo, 1997b; Lopez-Herrera et al., 2010). In the neck region, the tangential
electrical stress is crucial to the dynamics of the cone-jet.

The essential role of tangential electric stress is illustrated by Figure 12
(Melcher and Warren, 1971); see also the film by Melcher (1974). The po-
larity of the free charge on the jet surface is controlled by a stack of wall
electrodes (horizontal lines in the figure). The induced surface charge takes
positive or negative polarity, depending on the relative potential between
the wall electrodes and their corresponding location on the jet. The re-
sulting tangential electric stress is either along (Figure 12a) or opposite
to (12b) the jet flow direction, leading to “supercritical” and “subcritical”
flow, respectively. The 1D model employed by Melcher (1974) is essentially
the same as Eq. 50, with the viscous stresses and surface charge convection
neglected and Eq. 50d replaced by a much simpler induction relationship.
The neglection of viscous stresses reduces the system into a set of first order
wave equations with upstream and downstream wave velocities a− and a+
in the convective frame traveling with the jet. In a supercritical flow rep-
resented by Figure 12a, the jet velocity exceeds the upstream wave velocity
(v > a−) so that downstream disturbances can not propagate upstream;
In a subcritical flow (v < a−) represented by Figure 12b, disturbances can
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ConvectiveAbsolute

Re

Ca

Figure 11. Absolute to convective instability transition for cone-jets. Solid
curves correspond to the theoretical predictions of the critical condition as
a function of the charge parameter χ (Eq. 52), while discrete data points
are the Reynolds and Capillary numbers estimated from cone-jets reported
in both electrospraying and electrospinning literature. Reprinted with per-
mission from Lopez-Herrera et al. (2010), c© 2010 American Institute of
Physics.

propagate in both directions so the flow is dependent on both upstream
and downstream conditions (Melcher and Warren, 1971). In this sense, the
subcritical/supercritical jet flow is analogous to subsonic/supersonic flow of
compressible gas.

The supercritical concept was originally developed to explain the un-
usually stable electrohydrodynamic jets with much longer breakup length
compared to their nonelectrical counterparts (Melcher and Warren, 1971).
Ganan-Calvo (1997a) extended this line of work to include the convection of
surface charge and more importantly, self-induction of electric fields from the
free surface charges (using a approach different from Eq. 50d). In Melcher
(1974), the entire jet is either subcritical or supercritical when the surface
charge is induced by wall electrodes. Ganan-Calvo (1997a) showed that a
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(a) (b)

Figure 12. Reversal of the tangential electric stress on the jet leads to the
transition from (a) supercritical to (b) subcritical flow. Voltage is applied
between a nozzle at the top and a counter electrode at the bottom. Hor-
izontal lines are the wall electrodes with a linear voltage dependence that
is separately conrolled. In (a), dripping glycerin is accelerated into a jet by
the applied electric field; In (b), the polarity of surface charge on the jet
is reversed by changing the wall potentials relative to the potential on the
jet; the reversed tangential electric stress leads to a subcritical flow that
approaches the critical (“sonic”) point at the bottom electrode. Reprinted
with permission from Melcher and Warren (1971), c© 1971 Cambridge Uni-
versity Press.

self-inductive cone-jet transits from the subcritical to supercritical regime
at a critical point along the cone-jet. Downstream of the critical point, the
supercritical jet eventually develops a convective instability. The supercrit-
ical portion of the jet between the critical point and the point of instability
provides a shield to prevent perturbations (e.g. from jet breakup) from
propagating upstream, giving rise to the unusual stability of electrohydro-
dynamic jets. Lopez-Herrera et al. (2010) confirmed that the jet issued from
a Taylor cone is supercritical at the region prior to breakup.

In a global analysis of the cone-jet, the relative importance of the radial
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to tangential electric stress,

ϑ =
T e
rr

T e
rz

∼ q2s/ε0
qsE∞

=
qs/ε0
E∞

, (56)

is a function of location along the developing cone-jet. Close to the cone,
tangential electric field dominates with a small surface charge density (ϑ

1); Along the jet, radial electric field eventually dominates with increasing
surface charge density downstream (ϑ � 1). The surface charge density is
dependent on the detailed cone-jet dynamics. In the form of Eq. 50 with
negligible gravity, qs is governed by the imposed electric field and flow rate
(E∞Em

, Q
Qm

) and the associated geometrical ( za , ξ), mechanical (We, Oh), and

electrical (α, β, χ) parameters. Because of the complex, global nature of the
problem, no controlling parameters (like Rae in Eq. 44) have emerged with
appropriate scaling of the surface charge density in a developing cone-jet.

One possibility to reduce the complexity is to operate exactly at the
minimum flow rate Q = Qm; accordingly, it is necessary for E = Em to
obtain a steady cone-jet. Unfortunately, except for the empirical scaling
Eq. 49, the mechanism determining Qm is still unknown (Fernandez de la
Mora, 2007).

4.4 Pulsating cone-jet

The crucial role of the minimum flow rate (Qm) is apparent on the
operating diagram of steady cone-jets (Figure 9). In the previous section,
we showed that a minimum flow rate (a critical Weber number) is necessary
for the dripping to jetting transition (Eq. 55) if the electrohydrodynamic
jet behaves analogously to its hydrodynamic counterpart. However, when
Q < Qm but E � Em, pulsating cone-jet sets in from a supported meniscus
which does not have a clear hydrodynamic analogue.

Pulsating cone-jets are also observed on charged drops (e.g. Figure 8c);
see Fernandez de la Mora (2007) for a comprehensive review. For an inviscid
charged drop in air, the lowest frequency of free drop oscillation (fd) is given
by Rayleigh (1882)

fd =
4

π

√
γ

ρd3

(
1− q2

q2R

)
∝ fc, (57)

where d is the diameter of the drop, q is the total charge on the surface,
and

qR = π
√
8ε0γd3, (58)

is the Rayleigh limit for the maximum electrostatic charge allowed on a
static drop. Without any surface charge (q = 0), the frequency is simply
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governed by the capillary-inertial process with a characteristic frequency of
fc =

√
γ/ρd3. At the Rayleigh limit, electrostatic repulsion reduces the

effective surface tension to zero, leading to electrostatic fission of the drop.
The electrostatic explosion can proceed through a fine fission mode via a
cone-jet (Figure 8c and Figure 13b), or a rough fission mode into a few
drops of comparable size (Fernandez de la Mora, 2007).

(a) (b)

d
d

d
n

E

L
n

Figure 13. Analogy between pulsating cone-jets from a supported meniscus
and an isolated drop: (a) The cone-jet transition under an external electric
field between a nozzle and a plate; (b) The cone-jet transition when a droplet
experiences electrostatic fission.

Fernandez de la Mora (1996) argued that the cone-jet pulsation on a
supported meniscus is analogous to that on an isolated drop, as both re-
sult from the redistribution of the excessive electrostatic charge to a larger
surface area (Figure 13).6 When the time scale for cone-jet formation is
short compared to the duration of the cone-jet, which is the case for high
conductivity liquid with rapid charge relaxation, the transient cone-jet is
quasi-steady and is assumed to behave similarly to a steady cone-jet on a
supported meniscus (Fernandez de la Mora, 1996). Since pulsation takes
place when the supply rate of liquid to the cone is less than the loss rate
through the jet (Juraschek and Rollgen, 1998), a pulsating cone-jet will

6There are also many differences between steady and transient cone-jets, especially for

liquids with high viscosity and low conductivity; see Fernandez de la Mora (2007) for

details.
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likely observe the minimum flow rate scaling (Fernandez de la Mora, 1996;
Chen et al., 2006b). When the transient jet is on, the flow rate, jet diameter
and electric current scale as (Fernandez de la Mora and Loscertales, 1994;
Fernandez de la Mora, 1996; Barrero and Loscertales, 2007)

Qj ∼ γε

ρσ
, (59a)

dj ∼
(
γε2

ρσ2

)1/3

, (59b)

ij ∼ g(ε)

(
ε0γ

2

ρ

)1/2

, (59c)

where g(ε) accounts for the effects of liquid dielectric constant; For aqueous
solutions, g ≈ 18 (Fernandez de la Mora and Loscertales, 1994). The lifetime
of a transient cone-jet on an exploding drop can be obtained by integrating
dt = −dq/i (Fernandez de la Mora, 1996),

Δtj ∼ Δq

ij
∼ Δq

qR

qR
ij
∼ 2

√
2πΔq

g(ε)qR

√
ρd3

γ
∼
√

ρd3

γ
= τc, (60)

where Δtj is the time scale for a drop with surface charge approaching the
Rayleigh limit (qR) to emit enough charge (Δq) to reach a new electrostatic
equilibrium. It is generally agreed that the mass loss due to electrostatic
fission is negligible (order of 1%), but the charge loss is substantial (order
of 10%); see Fernandez de la Mora (1996). For water, the pre-factor in
the scaling of jet duration is close to 1 (Chen et al., 2006b). Interestingly,
the jetting duration (Eq. 60) reduces to the capillary-inertial time scale
(τc = 1/fc) which also sets the oscillation frequency of an uncharged drop
(Eq. 57). If the pulsating cone-jet on a supported meniscus is analogous to
that on an exploding drop, the above scaling laws apply to both situations
with d taken as either the drop diameter (dd) or the anchoring diameter of
the Taylor cone (e.g. the inner diameter of a non-wetting nozzle, dn).

We are now in a position to reconcile two different models for the pul-
sating cone-jets by Marginean et al. (2006) and Chen et al. (2006b). At the
onset of cone-jet pulsation, Marginean et al. (2006) observed that the pul-
sation frequency on a support meniscus closely follows Eq. 57 with d equal
to the anchoring diameter dn. However, the free oscillation frequency is
independent of the supplied flow rate Q, and this independence contradicts
with the observations in Chen et al. (2006b) as well as empirical evidences
that the emergence of cone-jet pulsation strongly depends on the flow rate
(see Section 4.1).
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Chen et al. (2006b) proposed a different model for the pulsation fre-
quency, motivated by the hypothesis that cone-jet pulsations result when a
transient jet discharges liquid mass at a rate (Qj) higher than the supplied
flow rate (Q). For each pulsation with a duration of Δtj , the volume of
liquid extracted scales as QjΔtj . By simple balance of mass flow supplied
to the cone and emitted by the jet, the pulsation frequency scales as (Chen
et al., 2006b)

fj ∼ Q

QjΔtj
∼ Q

Qm
fc. (61)

In other words, cone-jet pulsations result when the mass flow is limited
(“choked”) by upstream conditions. Note that for high conductivity fluid,
the limiting factor leading to pulsation is the mass flow, not free charge,
because surface charges can be generated at a rate governed the nearly
instantaneous charge relaxation process. The pulsation model Eq. 61 has
been confirmed by Chen et al. (2006a,b) for cone-jet pulsations with a stable
conical base (see insets in Figure 14).

Xu and Chen recently showed that both models are correct within their
applicable regime (Xu, 2010). In Figure 14, both laws have been identified
in the same system using flow rate as the only controlling parameter. As
the flow rate increases, the frequency plateaus at relatively high flow rates.
Microscopic imaging indicated that the oscillation modes at low and high
flow rates are fundamentally different. At low flow rates, the Taylor cone
only deforms at the conical apex (“mass flow choking” regime); at high
flow rates, the entire Taylor cone deforms significantly (“conical oscillation”
regime). The demarcation between the two regimes is related to the mini-
mum flow rate (Xu, 2010); For the conditions in Figure 14, Qm≈50 μL/h
according to Eq. 49.

• Q < Qm: The mass flow is choked upstream, and the pulsation fre-
quency scales as f∼(Q/Qm)fc (Eq. 61). The linear dependence of the
pulsation frequency on the flow rate is confirmed at small flow rates
(Figure 14). The mass flow choking regime is unambiguously shown
by cases with self-induced flow rate (Xu, 2010), which scales inversely
with the length of the slender nozzle (Chen et al., 2006b). The nozzle
length (Ln) is an upstream condition that will not change the conical
oscillation frequency (Eq. 57).

• Q � Qm: The conical base oscillates when ample liquid is supplied,
and the frequency scales as f ∼ fc (Eq. 57). The fc∼ d−

3
2 scaling is

verified by Marginean et al. (2006) and confirmed by Xu (2010). The
diameter should be taken as that anchoring the conical base. For low
viscosity liquid, the anchoring diameter can become ambiguous and a
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non-wettable nozzle (such as teflon) should be used to avoid exciting
the conical oscillation regime even at flow rates below Qm.

Note that the charge relaxation time (τe) is 3 μs in Figure 14, an order
of magnitude smaller than the 30 μs jetting duration (Δtj) predicted by
Eq. (60) and confirmed by experiments. Hence, the quasi-steady assumption
holds for the transient cone-jet discussed here.

Figure 14. Pulsation frequency as a function of the imposed (•) and in-
duced (×) flow rate. The imposed flow rate is controlled by a syringe pump,
while the electric-stress-induced flow rate is varied by the nozzle length.
The glass nozzle has an inner diameter of 100 μm and an outer diameter
of 160 μm; here the outer diameter is the anchoring diameter. Inset shows
one duty cycle of pulsation for the imposed (top) and induced (bottom)
flow rate. The applied voltage of 1.8 kV is slightly lower than the threshold
(� 2.0 kV) for a steady cone-jet. The working fluid is doped ethylene glycol
with σ = 1.0 × 10−3 S/m, ε = 3.3 × 10−10 C/V·m, μ = 1.6 × 10−2 Pa·s,
ρ=1.1× 103 kg/m3, and γ=4.5× 10−2 N/m.

The mechanistic understanding of pulsating cone-jets has practical im-
plications for both electrohydrodynamic printing and miniaturized electro-
spray. In both applications, slender nozzles with a diameter from 100 μm
down to 1 μm are routinely used. The viscous drag on the slender nozzle
limits the flow rate and leads to the regime of mass flow choking (Chen
et al., 2006b). The intrinsic pulsations in the choking regime will influ-
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ence the performance of both electroprinting and nanoelectrospray. For
example, the highest speed of electrohydrodynamic printing is limited by
the intrinsic pulsation frequency (Chen et al., 2006a). The advantage of
nanoelectrospray over conventional electrospray diminishes with increasing
flow rates (Schmidt et al., 2003); the critical flow rate is around the mini-
mum flow rate (Eq. 49), suggesting a possible role of cone-jet pulsations in
nanoelectrospray.

5 Concluding Remarks

In this chapter, electrokinetic mixing flow and electrohydrodynamic cone-
jet are reviewed as two model problems of electrohydrodynamic stability. In
both cases, knowledge of the stability boundary is of practical interest for
either enhancing or suppressing the instability. Both problems are studied
using the Ohmic model for leaky dielectrics with the assumptions of instan-
taneous local charge relaxation and negligible diffusive current, which hold
for relatively conducting working fluids such as aqueous solutions.

The stability of electrokinetic mixing flow is relatively simple, owing in
part to the well-understood base state of a diffusive interface. Using the
bulk-coupled model which accounts for the electric body forces induced by
conductivity gradients, a large set of relevant experimental parameters can
be conveniently reduced to two controlling parameters: the electric Rayleigh
number relating the dynamic to dissipative processes which governs the
onset of instability, and the electroviscous-to-electroosmotic velocity ratio
which governs the onset of absolute instability.

The stability of electrohydrodynamic cone-jet is significantly more dif-
ficult. Much of the difficulty is associated with the lack of a fundamental
understanding of the base state, i.e. the mechanisms leading to the formation
of the Taylor cone-jet. Surface-coupled model is usually employed to relate
the electric and flow fields through the Maxwell stress, which now consists
of contributions from both free and bound charge due to conductivity and
permittivity gradients, respectively. Compared to its nonelectrical counter-
part, the physics of electrohydrodynamic jets is enriched but complicated
by the electric field. The most useful guideline is still the electric field–flow
rate operating diagram. Strategies to rationalize the operating diagram in
the framework of electrohydrodynamic stability have only been partially
successful, e.g. within specific parametrical regimes of pulsating, spraying,
or spinning cone-jets. Further research is required to understand key is-
sues such as the origin of the minimum flow rate and the role of tangential
electric stress before a unified theoretical picture is possible.
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Induced-Charge Electrokinetic Phenomena
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Abstract This chapter provides an introduction to a certain class of
nonlinear electrokinetic phenomena, where the applied electric field
acts on its own induced-charge in an electrolytic solution near a po-
larizable surface. Many applications are discussed, such as colloidal
particle dynamics (induced-charge electrophoresis) and microfluidic
mixing and pumping (induced-charge electro-osmosis), while em-
phasizing the basic physics of each phenomenon. A Standard Model
for these situations is introduced and analyzed in simple cases. Sim-
ilarities and differences are noted with other electrokinetic phenom-
ena, such as classical linear (fixed-charge) electrokinetics in elec-
trolytes and electrohydrodynamics in leaky dielectrics.

1 Introduction

Electrokinetic phenomena (electrically driven fluid flow and particle mo-
tion) in liquid electrolytes have been studied for well over a century in
colloid science (Hunter, 2001; Lyklema, 1995; Anderson, 1989), but much
recent interest in this classical subject has been triggered by the develop-
ment of microfluidics (Stone et al., 2004; Squires and Quake, 2005; Laser
and Santiago, 2004; Squires, 2009; Schoch et al., 2008). In electrolytes,
electrokinetic phenomena are associated with thin electric double layers on
charged surfaces, and as a result they have favorable scaling with miniatur-
ization, with increasing surface to volume ratio. Electrokinetic phenomena
also offer other unique advantages for “lab-on-a-chip” systems, such as low
hydrodynamic dispersion, no moving parts, electrical actuation and sensing,
and easy integration with microelectronics. Beyond microfluidics, it is be-
coming increasingly recognized that electrokinetic phenomena can play an
important role in the dynamics of electrified interfaces in other fields such as
biology (e.g. vesicle motion, membrane fluctuations, electroporation) and
electrochemistry (e.g. porous electrode charging, desalination dynamics,
dendritic growth).



222 Martin Z. Bazant

Until recently, almost all studies of electrokinetic phenomena have as-
sumed linear response in the applied voltage, based on the hypothesis of
fixed surface charge (or fixed “zeta potential” relative to the bulk solution).
This assumption is reasonable for most insulating or dielectric surfaces, but
not for metallic or ion-conducting surfaces. For applications in microflu-
idic systems, linear electrokinetic phenomena have a number of possible
drawbacks: Direct current (DC) must be passed to sustain electric fields;
it is difficult to produce vortices for mixing; and large voltages must be
applied along centimeter or greater distances to achieve the necessary field
strengths, giving little direct control over local fields and flows within mi-
crochannels. Related to these issues, there are also well known drawbacks of
linear electrokinetic phenomena in colloid science, e.g. that electrophoresis
cannot separate particles with fixed, uniform zeta potential by size or shape
in free solution. This is the reason that electrophoretic separation of DNA
or other large molecules is usually done in a gel, rather in free solution,
to take advantage of entropic effects of trapping rather than differences in
electrophoretic mobility.

As shown in Figure 1, much richer dynamics are possible with nonlin-
ear electrokinetic phenomena at polarizable surfaces, which are the focus of
this chapter. For recent reviews, see Bazant et al. (2009b), Squires (2009)
and Bazant and Squires (2010). The development of this subject in mi-
crofluidics began with the discovery by Ramos et al. (1999) of alternating-
current electro-osmotic flow (ACEO) over microelectrodes, which Ajdari
(2000) showed could be exploited for low-voltage microfluidic pumping us-
ing asymmetric arrays of inter-digitated electrodes. These breakthroughs,
supported by the early experiments of Green et al. (2000a); González et al.
(2000); Green et al. (2002); Brown et al. (2000); Studer et al. (2004) and
others, focused attention on nonlinear AC electrokinetics in microfluidics.
This work clearly demonstrated that electrokinetic phenomena can derive
from non-uniform, transient charge on an electrode surface, controlled more
by the applied voltage than by chemical equilibrium.

Bazant and Squires (2004) pointed out that the underlying physical
mechanism of an electric field acting on its own induced charge near a
polarizable surface is more general and coined the term “induced-charge
electro-osmosis” (ICEO) to describe it (Squires and Bazant, 2004). Through
a variety of examples, such as those in Fig. 1, they argued that ICEO flows
can occur around any polarizable (metal or dielectric) surface in the pres-
ence of any (DC or low-frequency AC) electric field – i.e. not exclusively
over electrodes whose voltage is directly forced to oscillate at a certain fre-
quency, as in ACEO. The same fundamental physical process, sketched in
Figure 2, thus unifies ACEO and travelling-wave electro-osmosis (TWEO)
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(a)

(b) (c)

(d) (e)

Figure 1. Experimental photographs of induced-charge electro-osmosis, im-
aged by streaks of tracer particles. (a) Nonlinear flow around a 500 μm
spherical ionite particle driven by a weak 10 V/cm, 80 Hz background AC
electric field, by V. A. Murtsovkin (courtesy of A. S. Dukhin); (b) AC
electro-osmosis at a pair of titanium electrodes applying a 2 V 100 Hz AC
voltage by Green et al. (2002); (c) DC electrokinetic jet at a dielectric mi-
crochannel corner by Thamida and Chang (2002); (d) one roll of quadrupo-
lar ICEO flow around a 100 μm cylindrical gold post in a 100 V/cm 300 Hz
electric field and (e) fixed potential ICEO flow around a gold post connected
to one electrode supplying the background AC field by Levitan (2005). (Re-
produced from Bazant (2008b) c© 2008 Springer.)
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(Cahill et al., 2004; Ramos et al., 2005) over micro-electrode arrays (Fig. 2d),
with other seemingly unrelated phenomena, such as DC electrokinetic jets
at dielectric microchannel corners (Thamida and Chang, 2002) (Fig. 2c),
AC electrohydrodynamic interactions and self-assembly of dielectric col-
loids on electrodes (Trau et al., 1997; Yeh et al., 1997; Nadal et al., 2002;
Ristenpart et al., 2003), and hydrodynamic interactions among polarizable
particles (Gamayunov et al., 1986; Murtsovkin, 1996) (Fig. 2a).

The latter effect was apparently the earliest example of “ICEO” re-
ported in the literature, from the pioneering work of V. Murtsovkin, A. S.
Dukhin and collaborators in the 1980s on polarizable colloids, as reviewed
by Murtsovkin (1996), long before analogous ICEO flows were observed in
a microfluidic device by Levitan et al. (2005). The quadrupolar ICEO flow
around an ideally polarizable sphere in a uniform electric field, and the re-
sulting relative motion of two spheres, were first predicted by Gamayunov
et al. (1986). Murtsovkin and collaborators proceeded to observe these flows
around mercury drops (Murtsovkin and Mantrov, 1991) and metallic par-
ticles (Gamayunov et al., 1992). For larger particles, the flow was in the
opposite direction of the theory, which was conjectured to be due to the
onset of Faradaic reactions at large induced voltages, consistent with recent
experiments on millimeter scale metal objects by Barinova et al. (2008).

The development of microfabrication technology has led to unprece-
dented control over the geometries of particles and channels, so a major
focus of recent research has been on the design of polarizable structures and
particles to control, enhance, optimize induced-charge electrokinetic phe-
nomena. The original ACEO micropumps tested in experiments by Brown
et al. (2000) and Studer et al. (2004) involved 2D planar arrays of inter-
digitated electrodes. Bazant and Ben (2006) predicted that faster flows are
possible with non-planar stepped electrodes, and such “3D ACEO” designs
have since been reduced to practice (Urbanski et al., 2006a,b; Huang et al.,
2010). The concept of ICEO mixing by applying electric fields around fixed
3D metal microstructures (Bazant and Squires, 2004; Levitan et al., 2005)
is now beginning to be reduced to practice as well (Harnett et al., 2008;
Wu and Li, 2008b). ICEO flows around simple 2D metal structures also
offer the chance to precisely test the standard model of electrokinetics, as
recently shown by Pascall and Squires (2010). Asymmetric geometries of
channels and particles also give rise to some surprising phenomena from the
classical colloidal standpoint. Bazant and Squires (2004) predicted that an
anisotropic particle subjected to a DC or AC field (below the frequency of
double-layer charging) will generally translate and/or rotate by “induced-
charge electrophoresis” (ICEP), while a fixed anisotropic object will pump
the fluid by ICEO (Yariv, 2005; Squires and Bazant, 2006). These nonlinear
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Figure 2. Examples of nonlinear electrokinetic phenomena driven by in-
duced charge (+, −)in the diffuse part of the electrochemical double layer
at ideally polarizable, blocking surfaces, subject to an applied electric field
E or voltage V . (a) Induced-charge electro-osmosis (ICEO) around a metal
post (Bazant and Squires, 2004; Squires and Bazant, 2004; Levitan et al.,
2005) or particle (Gamayunov et al., 1986; Murtsovkin, 1996), (b) induced-
charge electrophoresis (ICEP) of a metal/insulator Janus particle (Squires
and Bazant, 2006; Gangwal et al., 2008), (c) a nonlinear electrokinetic jet
of ICEO flow at a sharp corner in a dielectric microchannel (Thamida and
Chang, 2002; Yossifon et al., 2006), and (d) AC electro-osmosis (ACEO)
over a symmetric pair of microelectrodes (Ramos et al., 1999; Ajdari, 2000;
Green et al., 2002). (Reproduced from Bazant et al. (2009b) c© 2009 Else-
vier.)
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phenomena are very different from classical electrophoresis with surfaces of
constant charge and are also beginning to be observed in experiments (Rose
and Santiago, 2006; Gangwal et al., 2008).

In this chapter, we survey recent progress in induced-charge electroki-
netics and teach the basic physical concepts, theoretical models, and ex-
perimental observations. Along the way, we also highlight various open
questions for future research.

2 Background

Before discussing nonlinear induced-charge electrokinetic phenomena in elec-
trolytes, we briefly review linear and nonlinear electrokinetic phenomena in
weakly conducting liquids, as well as linear (“fixed charge”) electrokinetic
phenomena in electrolytes. The latter subject was mainly developed in col-
loid science over the past century, and there are excellent books available,
e.g. by Levich (1962), Dukhin and Derjaguin (1974), Lyklema (1995) and
Hunter (2001). Recent application-specific reviews are also available, such
as Anderson (1989) and Delgado et al. (2007) on electrophoresis of col-
loids and Kirby and Hasselbrink (2004) and Tandon and Kirby (2008) on
electro-osmosis in microfluidic devices.

2.1 Electrohydrodynamics in dielectric liquids

The term “electrokinetic phenomena” refers to electrically driven fluid
flow or particle motion, but it is often used more narrowly, as we do here, to
describe fluid or particle motion in electrolytes, consisting of large numbers
of dissolved ions in a solvent, typically water. In contrast, the term “elec-
trohydrodynamics” is often used more narrowly to refer to electrokinetic
phenomena in low-conductivity dielectric liquids (Melcher and Taylor, 1969;
Saville, 1997). A simple example of the latter is the electrophoretic motion
of a charged particle in a non-conducting dielectric liquid in a uniform, con-
stant, electric field, as shown in Fig. 3(a). The reader may be familiar with
R. Millikan’s famous oil-drop experiment, which first measured the electron
charge e a century ago by showing the quantization of the charge Q = ne
inferred from the velocities of oil drops suspended in air between capacitor
plates, based on the following simple analysis. To calculate the drop veloc-
ity U , the electric force fe = QE is balanced by the viscous drag force,
approximated by Stokes’ formula for a sphere, fd = 6πηRU , where R is the
radius and η the fluid viscosity. This force balance yields the scaling of the
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(a)

E

U

(b)

E

Figure 3. (a) Sketch of the electrophoretic motion of a particle of fixed
charge in a non-conducting liquid in a uniform electric field, which drags
fluid along with it, analogous to sedimentation under gravity; streamlines
are shown in the fixed lab frame of reference. (b) The analogous situation
for a charged solid particle in a (conducting) electrolyte, where a thin double
layer screens the charge; since the net charge on the interface is zero, no
motion results if the fluid velocity is continuous across the interface, as in
the Leaky Dielectric Model for liquid drops (Saville, 1997). Instead, particle
motion does occur, due to electro-osmotic flow in the double layer, which
leads to an effective slip (or velocity discontinuity) over the surface, shown
below in Fig. 4.

drop velocity

U ∝ Q

ηR
E (electrophoresis in a dielectric liquid) (1)

which is proportional to the electric field and the (fixed) charge, and in-
versely proportional to the drop size. This is perhaps the simplest example
of a “linear” electrohydrodynamic phenomenon, where U ∝ E.

There can also be nonlinear electrohydrodynamic phenomena in non-
conducting liquids. The most familiar example is “dielectrophoresis” (DEP)
of polarizable solid particles in non-uniform electric fields (Pohl, 1978; Ramos
et al., 1998). The applied field induces a dipole moment on the particle,
p = α

(
4π
3 R3

)
εE, proportional to its volume and the field, where α is the

Maxwell-Wagner factor which depends on electrical properties and, for an
AC field, also the frequency. The induced dipole is then pulled by the field
gradient toward regions of higher or lower field intensity. The electrostatic
force, fe = p · ∇E, is again balanced by viscous drag fd to yield a steady
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translational velocity which scales as

U ∝ εR2

η
∇E2 (dielectrophoresis) (2)

The velocity varies with the square of the applied field intensity, and thus
survives in an AC field. In uniform DC or AC field, a polarizable particle
can also rotate to align its induced dipole with the field axis, in response to
the electrical torque, p × E, but it cannot translate or rotate continuously.

For weakly conducting liquids, including many oils and non-aqueous so-
lutions, the theory must also account for bulk current and charge accumu-
lation at interfaces. This alters the analysis of electrophoresis and dielec-
trophoresis and also leads to some new electrohydrodynamic phenomena, di-
rectly tied to a non-zero conductivity. Taylor (1966) first described the non-
linear deformation of oil drops in electric fields, using what is now called the
“Leaky Dielectric Model” (Melcher and Taylor, 1969; Saville, 1997). The
applied field drives a small current which induces a charge on the fluid/fluid
interface. Although, by symmetry, the drop cannot move, the interfacial
induced charge is pulled by the electric field to produce counter-rotating
quadrupolar vortices, both inside and outside the drop, while maintaining
a continuous fluid velocity at the interface. The flow scales as

u ∝ εRE2

η
(flow around a leaky dielectric drop) (3)

which generally arises in electrohydrodynamics from the balance of electric
body force ρeE ∝ and the viscous force η∇2u ∝ ηu/R2, using Poisson’s
equation for a linear dielectric response, ρe = ∇ · εE ∝ εE/R. Outside
the deformed drop, the steady flow resembles the quadrupolar ICEO flow
around a solid polarizable particle, in Figs. 1(a) and 2(a). Indeed, below
we will encounter the same scaling (3) for ICEO flow around a polarizable
particle, but this is clearly a different phenomenon. If Taylor’s liquid drop
were replaced by a solid particle, the Leaky Dielectric Model would predict
no fluid motion, because the tangential velocity is assumed to be continuous
across the interface.

2.2 Electrokinetics in electrolytes

The situation is fundamentally different in an electrolytic solution con-
taining large numbers of dissolved ions. Besides the high conductivity of the
bulk electrolyte, ions can easily move to the interface to screen the surface
charge, so that the net interfacial charge (for the surface plus its diffuse ionic
screening cloud) is zero, as sketched in Figure 3(b). The length scale for this
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screening process, where electrostatic attraction is balanced by diffusion, is
the Debye screening length,

λD =

√
εkBT∑
i(zie)2c0

(4)

where ε is the permittivity, kB is Boltzmann’s constant, T is the abso-
lute temperature, zie are the ionic charges, and c0 is the bulk neutral salt
concentration. In aqueous solutions, the double layers have a tiny extent
λD = 0.5 − 100 nm, which is typically much smaller than any geometrical
scale L, such as the particle size or microchannel thickness. Such a “thin
double layer” with λD � L, resembles a capacitor skin on the surface.

In electrolytes with thin double layers, the charge density (per volume) is
zero everywhere, including the interface, so how can there be any electroki-
netic effects? Indeed, the Leaky Dielectric Model would predict no motion,
since there can be no force on an interface of zero net charge. The model also
assumes continuity of the velocity field across the interface, which precludes
relative motion of the two sides. Electrokinetic effects are readily observed
at solid surfaces, however, so clearly an electrolyte is not a standard leaky
dielectric.

The flaw in these arguments is that the interface in an electrolyte is a
double layer, equivalent to a sheet of dipoles, which experiences a nonzero
torque in a tangential electric field. The electrostatic torque accelerates
the fluid on one side relative to the other (fluid or solid) phase, until it is
balanced by an opposing viscous torque. In a quasi-steady Stokes flow, this
process is instantaneous, and the tangential field produces a steady electro-
osmotic slip, or velocity discontinuity between the fluid and the surface.
This is how Helmholtz (1879) resolved the paradox of electrophoresis in
electrolytes with thin double layers, many years after Reuss first observed
the electrophoresis of clay particles in water in 1808.

By modeling the double layer as a thin capacitor with a voltage drop ζ
from the surface to the bulk solution, Helmholtz derived a simple formula
for effective slip across the double layer given by

us = −εζ

η
E‖ (electro-osmotic slip in an electrolyte) (5)

where ε is the permittivity and η the viscosity of the electrolyte, and E‖ is
the tangential electric field, which is continuous across the interface. This
phenomenon of “electro-osmotic flow” forms the basis for electrokinetic phe-
nomena in electrolytes (Hunter, 2001; Lyklema, 1995). In particular, the
electrophoresis of a particle with thin double layers in an infinite fluid can
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Figure 4. (a) A charged solid surface in an electrolyte attracts a “screening
cloud” of excess counter-ions (of the opposite sign) to form a capacitor-like
“double layer”. An applied tangential electric field acts on the screening
charge to drive electro-osmotic flow parallel to the surface, which builds
from no-slip on the walls to an effective nonzero slip velocity outside the
double layer. (b) If a particle with thin double layers is freely suspending
in an electrolyte, the velocity discontinuity from electro-osmotic flow in
an electric field leads to a net swimming motion termed ”electrophoresis”.
(Reproduced from Squires and Bazant (2004) c© 2004 Cambridge University
Press.)

be understood as a phenomenon of “force-free” motion (akin to swimming)
in the direction of the applied field due to electro-osmotic slip. Similar
phoretic motion can also be driven by gradients in temperature and salt
concentration, which also produce tangential gradients in osmotic pressure
within the double layer (Anderson, 1989).

Smoluchowski (1905) extended the theory of electro-osmotic flow for dif-
fuse screening charge in the double layer and showed that Eq. (5) holds more
generally whenever the fluid permittivity and viscosity are constant across
the double layer (using the classical continuum electrokinetic equations).
As shown in Fig. 4(a), the tangential fluid velocity builds up exponentially
across the diffuse part of the double layer from zero on the surface (assuming
no hydrodynamic slip) to us outside the double layer. In Smoluchowski’s
theory, the zeta potential corresponds to the potential difference between
the hypothetical “shear plane” at the inner edge of the diffuse layer and the
neutral bulk solution, just outside the double layer, although this need not
be the case in more general theories (Bazant et al., 2009b). If the zeta po-



Induced-Charge Electrokinetic Phenomena 231

tential is small compared to the thermal voltage, kBT/e (= 26 mV at room
temperature), then the diffuse double layer has a constant capacitance (per
area), CD ∼ ε/λD, as expected for charged parallel plates separated by
the screening length (Bazant et al., 2004). In that case, we can recast the
electro-osmotic slip formula (5) as

us ∼ −λDq

η
E‖, if |eζ| � kBT (6)

since CD = q/ζ.
Smoluchowski also considered the motion of colloidal particles with thin

double layers (λD � R) driven by electro-osmotic flow in applied electric
fields, as shown in Fig. 4(b). He showed that a particle with uniform zeta
potential (or surface charge) in an infinite fluid translates at a velocity,

U =
εζ

η
E∞ (electrophoresis in an electrolyte) (7)

where E∞ is a uniform background electric field, applied “at infinity”. It
can be shown that this result is independent of the shape and size of the
particle, assuming thin double layers and uniform ζ, since in the case, the
fluid velocity is proportional to the electric field everywhere, u ∝ E, as
shown in Fig. 5(a).

For the same reason, a colloid of many such particles will experience zero
hydrodynamic interactions (Morrison and Stukel, 1970; Anderson, 1989), as
shown in Fig. 5(b). In other words, all the particles will move at the same
velocity (7), regardless of the sizes, shapes or concentration. Of course, this
can pose a problem for electrophoretic separations of like-charged particles,
such as DNA molecules, which explains why DNA electrophoresis is done
in a gel in order to exploit entropic (i.e. trapping), rather than purely
electrokinetic, effects.

The inability to separate like-charged particles is related to other surpris-
ing features of linear electrokinetic phenomena involving surfaces of constant
surface charge (or zeta potential) in electrolytes with thin double layers. A
porous medium with the these physical properties exhibits the same lin-
ear relationship (7) between the mean fluid velocity 〈u〉 = −U and the
electric field, regardless of the microstructure. This can be understood as
the same effect, if the porous medium is a packed bed of particles held in
place, driving flow in the opposite direction of electrophoresis.) The cru-
cial microscopic principle behind these results is that electro-osmotic flow
is irrotational, ∇ × u = 0, in the limit of thin double layers and constant
zeta potential, because the fluid velocity is proportional to the electric field,
u ∝ E, everywhere in the bulk electrolyte. This is no longer the case if any
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Figure 5. Electrophoresis of particles with thin double layers and constant,
uniform surface charge (or zeta potential). (a) The fluid flow in the frame
of the moving particle, driven by electro-osmotic slip, is proportional to the
electric field, everywhere. (b) As a result, a colloid consisting of many such
particles will move at the same velocity as a single particle, regardless of
the sizes and shapes of the particles.

of these assumptions break down, and it is generally possible to produce
vortices by electro-osmosis. In particular, we shall now discuss nonlinear
ICEO flows involving polarizable surfaces, whose charge is not fixed.

3 Principles of Induced-Charge Electrokinetics

3.1 Flows around metal surfaces

The simplest example of ICEO involves a metal sphere (Gamayunov
et al., 1986) or cylinder (Bazant and Squires, 2004) in an electrolyte with
thin double layers, suddenly subjected to a uniform electric field, sketched
in Figure 6. As a first approximation, the sphere is “ideally polarizable”,
meaning that its potential is held constant without any Faradaic electron-
transfer reactions occurring. Conceptually, there are two steps in the dy-
namics: (1) electrochemical relaxation of the surface charge in response to
the applied field, and (2) electro-osmotic flow around the particle, driven
the induced charge.

1. Induced surface charge. When the field is turned on, electrons on the
metal surface immediately drift toward one pole to induce a dipole
moment, in order to make the surface equipotential (Figure 6a). In a
non-conducting dielectric liquid this could be the steady state, but this
is an unsteady configuration in an electrolyte. Since the field drives an
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Figure 6. Physical mechanism for induced-charge electro-osmosis around
an ideally polarizable metal cylinder in a suddenly applied electric field. (a)
When the field is turned on, electronic charges relax to make the surface
an equipotential, but the normal current drives double-layer charging. (b)
After charging, the field lines are expelled by a nonuniform distribution of
induced double-layer charge. (c) The tangential field acts on the induced
charge to drive quadrupolar ICEO flow around a neutral cylinder. (d) If
the cylinder has a nonzero total charge, then the dipolar flow of linear elec-
trophoresis is superimposed on the quadrupole. (Reproduced from Bazant
and Squires (2004) c© 2004 American Physical Society).
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ionic current, any normal component transports charge in or out of the
diffuse layer. Neglecting surface conduction through the double layer
(for thin double layers) and Faradaic reactions passing current through
the particle (at low voltage), the normal current locally charges double
layer, like a capacitor. This process continues until all the field lines
are expelled in steady state (Figure 6b). As first noted by Simonov
and Shilov (1977), the basic time scale for this process is the RC time
for the equivalent circuit of the bulk resistance (through the solution
around the equator) coupled to the diffuse-layer capacitances (on the
surface near the poles):

τ0 =
RCD

σ
=

λDR

D
(8)

where σ and D are the bulk conductivity and diffusivity, and R is
the particle radius. In more general situations, R is a length scale
characterizing the distance between oppositely polarized surfaces, such
as an electrode separation (Ramos et al., 1999), as reviewed by Bazant
et al. (2004). In microfluidic devices, the typical double-layer charging
time τ0 (≈ ms) is much larger than the Debye relaxation time ε/σ =
λ2

D/D, for bulk ionic screening (≈ μs) and much smaller than the
diffusion time L2/D for the relaxation of bulk concentration gradients
(≈ s) . For nano-channels or nano-particles, however, all of these time
scales can be comparable (≈ μs).

2. Induced electro-osmotic flow. The tangential field acts on the non-
uniform induced-charge (or ζ) distribution to produce quadrupolar
ICEO flow, sucking fluid at the poles and ejecting it at the equator
(Figure 6c). The scaling of the flow can be easily understood as
follows. Capacitive charging transmits a non-uniform voltage to the
double layer of order ER. If (5) holds, then ICEO flow scales as

u(r) ∝ u0 =
εRE2

η
(ideally polarizable surface) (9)

which is the same, generic electrohydrodynamic scaling arising in Tay-
lor’s flow around a leaky dielectric drop, Eq. (3), as noted above. Un-
like linear electro-osmosis, ICEO flow is rotational and depends on the
geometry via the size R as well as the shape of the particle (see below).
In response to a DC voltage step, the flow approaches the steady state
over the RC time scale τ0. For AC field of frequency ω, the steady
state flow decays above the RC frequency as [1 + (ωτ0)2]−1 (Squires
and Bazant, 2004).
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From these simple physical arguments, we expect similar flows to be
produced around any polarizable object in any electric field, but any broken
symmetry will generally lead to fluid flow past the object, if it is held fixed,
or motion by “induced-charge electrophoresis” (ICEP), if it is freely sus-
pended (Gangwal et al., 2008). If the object has a nonzero total charge Q,
as in the case of a charged metal colloidal particle, then the ICEO flow is su-
perimposed on the familiar streaming flow of linear electrophoresis (Figure
6d). Whenever (5) holds, the two effects are additive, since the total charge
corresponds to a constant ζ offset, relative to the background potential.

In fixed-potential ICEO, the potential of a polarizable object is con-
trolled so as to induce total charge in phase with a (steady or oscillating)
background field (Squires and Bazant, 2004). This effect is essentially an AC
generalization of the “flow field effect transistor” (Schasfoort et al., 1999;
van der Wouden et al., 2005), similar to the work of van der Wouden et al.
(2006). The effective length R above is then set by the distance between
the object and the electrodes supplying the background field. As a result,
fixed-potential ICEO flow can be much faster than locally produced (e.g.
quadrupolar) ICEO flow and has a different frequency response.

Other broken symmetries include irregular shapes (e.g. rods, polyhe-
dra, etc.), non-uniform surface properties (e.g. partial dielectric or metallic
coatings), and non-uniform background electric fields (Squires and Bazant,
2006). In each case, net pumping of the fluid by ICEO results if the object
is held fixed, which requires a certain force and torque. Conversely, if the
object is a colloidal particle, then broken symmetries cause it to translate
and rotate by ICEP, as described below.

3.2 Flows around dielectric surfaces

The canonical example above assumes an ideally polarizable surface,
where the double layer charges capacitively to sustain the entire voltage
applied to the object, but the phenomenon of ICEO is more general and
occurs at any polarizable surface, to varying degrees (Squires and Bazant,
2004). For example, if the metal object described above has a thin dielectric
coating of width hS and permittivity εS , then both the time scale (8) and
the flow scale (9) are multiplied by a factor Λ = (1 + δ)−1, where

δ =
CD

CS
=

ε

εS

hS

λD
(10)

is the ratio of the dielectric-layer capacitance to the diffuse-layer capac-
itance, which are placed in series in an equivalent circuit for the double
layer. This shows that dielectric coatings thicker than the Debye length can
substantially reduce ICEO flows at metal surfaces. In the limit of a purely
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dielectric object of characteristic length scale, R 
 λD , ICEO flow scales
as

u =
εSλDE2

η
(dielectric surface) (11)

which is smaller than for an ideally polarizable object by a factor δ 
 1.
Although often small, ICEO flows at dielectric surfaces need not be

negligible in microfluidic devices, since there can be large local electric fields
at sharp geometrical features. As shown in Figure 1(c), an electric field
passing around a sharp corner in a dielectric microchannel can drive a strong
nonlinear electrokinetic jet of ICEO flow due to the corner field singularity
(Thamida and Chang, 2002; Yossifon et al., 2006). In very simple terms,
illustrated in Fig. 2(c), this phenomenon can be understood as half of the
quadrupolar flow around a polarizable particle, where the jet corresponds
to the outward flow at the equator in Figure 6(c).

As noted above, dielectric objects also experience electrostatic forces,
leading to DEP motion of freely suspended particles. The uniform compo-
nent of a background electric field induces a dipole on the object, which then
feels a torque to align it with the field. A field gradient applies a force to the
induced dipole. Higher-order multipoles in the background field can like-
wise cause forces and torques by acting on higher-order induced multipole
moments on the object. In the case of colloidal dielectric particles, these
forces and torques (balanced by hydrodynamic drag) produce translational
velocity u ∼ εR2∇E2/η and rotational velocity Ω ∼ εE2/η of DEP, respec-
tively. The theory of DEP has mostly been developed for dielectric liquids,
but in electrolytes ICEO flows also occur, with the very same scalings with
field and particle size (Squires and Bazant, 2006). The net electrokinetic
motion of polarizable particles in non-uniform fields results from a compe-
tition between DEP and ICEP, originally termed “dipolophoresis”, which
was first analyzed for colloidal spheres by Shilov and Simonova (1981).

4 Standard Model for thin double layers

The mathematical description of ICEO flows began with the pioneering work
of Murtsovkin (1996) on metallic colloids and Ramos et al. (1999) and Aj-
dari (2000) on AC pumping of liquids by micro-electrode arrays. Bazant and
Squires (2004) unified these theories in a simple “Standard Model”, deriv-
able from the full Poisson-Nernst-Planck (PNP) equations of ion transport
and Navier Stokes equations of viscous fluid flow in the asymptotic limit of
thin double layers (DL), compared to geometrical length scales. The model
is based on the assumption of “linear” or “weakly nonlinear” charging dy-
namics (Bazant et al., 2004), which further requires that the applied volt-
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age is small enough not to significantly perturb the bulk salt concentration,
whether by double-layer salt adsorption or Faradaic charge-transfer reac-
tion currents. By neglecting Faradaic reactions, we focus on “blocking” or
“ideally polarizable” metal surfaces. In the same limit, surface conduction
through the diffuse part of the double layers can also be neglected (Chu and
Bazant, 2007; Khair and Squires, 2008), unless there is a large pre-existing
fixed charge, upon which a small perturbation is induced, as described by
Murtsovkin (1996).

With these assumptions, the problem is greatly simplified, and the elec-
trokinetic problem decouples into one of electrochemical relaxation, similar
to Leaky Dielectric Model (Saville, 1997), and another of viscous flow, driven
by electro-osmotic slip. Although this model can be rigorously justified only
for very small voltages, ΨD � kT/e, in a dilute solution (González et al.,
2000; Squires and Bazant, 2004), it manages to describe many features of
ICEO flows at much larger voltages. Extensions of the model for large volt-
ages are reviewed by Bazant et al. (2009b) and discussed at the end of this
chapter.

4.1 Electrochemical relaxation

The first step in the Standard Model is to solve Laplace’s equation for
the electrostatic potential across the bulk resistance,

∇ · J = ∇ · (σE) = 0 ⇒ ∇2φ = 0 (12)

assuming Ohm’s Law with a constant conductivity σ. For a blocking po-
larizable surface, which cannot pass a normal current, a capacitance-like
boundary condition closes the equivalent RC circuit:

dq

dt
= n̂ · J ⇒ C

dΨ
dt

= σ n̂ · ∇φ, (13)

where −q is the total surface charge (equilibrium + induced), q is the screen-
ing charge, Ψ = φ0−φ is the local double-layer voltage drop from the metal
surface at φ0 to the bulk solution just outside the double layer at φ, and C
is the total differential capacitance of the double layer, also assumed to be
constant. A simple and important special case of (13) is the low-frequency
or DC limit, n̂·∇φ = 0, where the surface behaves like an insulator since the
double layer is fully charged and cannot sustain any normal current (since
we neglect surface conduction and Faradaic reactions).

The potential of the surface φ0 is either controlled externally, in the case
of an electrode, or determined self-consistently by the condition of fixed
total charge Q integrated over the surface, in the case of a freely suspended
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colloidal particle:

Q =
∮

S

dr

∫ Ψ(r)

0

C(ψ)dψ (14)

where we allow for nonlinear response of the double layer, via a voltage-
dependent capacitance, C(Ψ) . Examples of such nonlinear extensions of
the Standard Model are discussed below and reviewed by Bazant et al.
(2009b). In the limit of linear response with a constant capacitance, valid
for small voltages |eΨ| � kBT , the total charge is proportional to the
surface-averaged double-layer voltage

Q ∼ C

∮
S

drΨ(r) (15)

which implies
φ0 ∼ φ̄0 + 〈φ〉 (16)

where φ̄0 = Q/CA is the surface potential assuming a constant capacitance
over the area A =

∮
S

dr and 〈φ〉 =
∮

S
drφ(r)/A is the surface-averaged

potential in the solution, just outside the double layer. In symmetric prob-
lems involving uncharged colloids (Q = 0), it is common to set φ0 = 〈φ〉,
but this is only valid for linear response to a small induced double-layer
voltage. More generally, Equation (14) is a nonlinear integral constraint,
which self-consistently determines the potential of a metal particle, φ0.

4.2 Fluid flow

After solving for the electrostatic potential φ, the second step in the
Standard Model is to solve for the fluid velocity u satisfying the unsteady
Stokes Stokes equations for creeping flow,

ρm
∂u

∂t
= −∇p + η∇2u, ∇ · u = 0, (17)

where ρm is the mass density. The unsteady term is only important to
describe transient flows at high frequencies, where momentum diffusion be-
comes comparable with mass diffusion. For steady AC response or low
frequency transients, this term is generally neglected.

Since it is assumed that the bulk electrolyte remains quasi-neutral with
constant conductivity, there is no body force on the fluid in (17). Instead,
coupling to the electrochemical problem only arises through the Helmholtz-
Smoluchowski boundary condition (5) of effective fluid slip outside the dou-
ble layer,

us = u − U − r × Ω = −εΨD

η
E‖ (18)
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where E‖ is the tangential field and ΨD is the voltage from the “shear plane”
(where the velocity vanishes) to the bulk solution (Lyklema, 1995). The slip
velocity represents a tangential velocity discontinuity between u, the fluid
velocity just outside the double layer, and U +r×Ω, the velocity of the solid
surface, where U and Ω are the local translational and rotational velocities,
which are either prescribed or determined by mechanical constraints, as
described below. The assumption of uniform bulk salt concentration allows
us to neglect tangential osmotic pressure gradients, which modify the slip
formula with a term for diffusio-osmotic flow (Rubinstein and Zaltzman,
2001; Zaltzman and Rubinstein, 2007).

To close the model, following Green et al. (2002), it is common to as-
sume that only a constant fraction Λ ≤ 1 of the double-layer voltage falls
across the diffuse screening cloud: ΨD = ΛΨ. The simplest model of ICEO
flow assumes Λ = 1, i.e. all of the double-layer voltage drop contributes
to the induced zeta potential. In that case, the theory has no adjustable
parameters, but it tends to over-estimate ICEO flows, sometimes by or-
ders of magnitude compared to experimental data. As shown in Fig. 7,
some experimental data can be fitted fairly well by allowing Λ to be an ad-
justable parameter. See Table 1 of Bazant et al. (2009b) for a summary of
Λ values extracted from a wide range of experiments on different induced-
charge electrokinetic phenomena and a discussion of the limitations of this
approach.

The great simplification of the Standard Model is that the full nonlinear
Poisson-Nernst-Planck/Navier-Stokes equations are replaced by two linear
boundary-value problems, which are amenable to analytical solutions in
many cases and more convenient for numerical solutions. First, the potential
φ is obtained by solving the linear problem (12)-(13), and this allows the slip
velocity profile (18) to be calculated. The fluid velocity u and pressure p are
then obtained by solving another linear problem (17)-(18). This procedure
avoids solving a nonlinear problem because the slip boundary condition
(18) is linear in u and only nonlinear in φ, which can be solved separately,
without knowing u in advance.

4.3 Particle motion

The total mechanical force F and torque T acting on any body are
related to the electric field and fluid velocity profiles via integrals over an
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Figure 7. Early tests of the Standard Model for ICEO flows around metal
objects in AC electric fields. (a) ICEO flow around a tin colloidal particle
(photograph above); experimental data by Gamayunov et al. (1992) for the
fluid velocity sampled at different points around the particle (top) versus
the field strength, which demonstrated the quadratic scaling of Eq. (9),
but not any details of the flow profile. (b) The velocity profile around a
100 μm platinum cylinder in a microchannel, simulated by the Standard
Model (above) and compared with measurements by micro-particle-image
velocimetry (below) by Levitan et al. (2005); a horizontal slice of the velocity
profile 5 μm above the wire at different voltages shows good data collapse
with the scaling (9); a reasonable fit is obtained with Λ = 1/(1+1.5) = 2/5
using (26), and a better fit (without accounting for ion adsorption) can be
obtained using a constant-phase-angle impedance model. (Reproduced from
Bazant (2008b) c© 2008 Springer.)
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enclosing surface S,

F =
∫

S

dr n̂ · σ (19)

T =
∫

S

dr r × (n̂ · σ) (20)

of the stress tensor,

σij = −p δij + η

(
∂uj

∂xi
+

∂ui

∂xj

)
+ ε

(
EiEj − 1

2
E2δij

)
(21)

where δij is the unit tensor. The first term in (21) is the isotropic pressure
tensor; the second is the viscous stress tensor for a Newtonian fluid; and the
third is the Maxwell stress tensor for a linear dielectric medium of constant
permittivity. In the case of steady state flow (or time-averaged periodic
flow, described below), the Stokes equation (17) expresses local mechanical
equilibrium, ∇·T = 0, so the bounding surface S can be deformed arbitrarily
to any convenient shape to calculate the force and torque integrals. For
example, for a bounded collection of colloidal particles in an infinite fluid,
it is usually best to deform S to infinity.

For fixed geometries in microfluidic devices, the translational and rota-
tional velocities U and Ω of solid boundaries are set to zero. The integrals
(20) and (20) then give the force F and torque T exerted by the fluid on
the solid, which are equal and opposite to the force and torque needed to
hold the solid in place, respectively.

For a freely suspended colloidal particle, the situation is more subtle.
In a quasi-steady Stokes flow, the translational and rotational velocites, U
and Ω, are determined implicitly by the constraints that there be no net
force, F = 0, and no net torque, T = 0, exerted on the particle by the fluid,
since there is negligible translational and angular acceleration, respectively.
This assumes that viscous dissipation is strong enough to neglect the inertial
term, u·∇u, and fast enough (compared to other relaxation times or the AC
period) to neglect the unsteady term, ∂u/∂t, in the Navier-Stokes equations.

In practice, the translation and rotational dynamics of a particle can be
calculated as follows (Kilic and Bazant, 2011). In the Standard Model, the
linearity of the bulk Stokes flow (outside the double layers) allows us to
express the fluid velocity as a superposition of two flows:

1. the electro-osmotic flow (us, ps) resulting from the slip profile (18)
around a fixed particle with U = Ω = 0, which exerts a force F s and
torque T s on the particle;
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2. the purely viscous flow (uv, pv) with E = 0 resulting from the parti-
cle’s motion U and Ω, which exerts F v and T v on the particle.

These flows are subject to the constraints, F = F s + F v = 0 and T =
T s +T v = 0, which implicitly determine U and Ω. In nontrivial geometries
involving asymmetric particles or nearby channel walls, there is generally a
coupling between translation and rotation due to viscous flow, which can
be expressed as (

F v

T v

)
= M−1

v

(
U
Ω

)
(22)

where F v and T v are the force and torque exerted by the fluid on the parti-
cle, due only to its motion, and Mv is a mobility tensor, taking into account
viscous dissipation in the instantaneous geometry. The inverse tensor M−1

v

is a generalization of the drag coefficient, e.g. 6πηRI for a sphere in an
infinite fluid, and can be calculated by solving Stokes equations with no slip
on a moving and rotating particle and then performing the integrals (20)
and (20) for the force and torque.

Armed with the particle’s mobility tensor, M , the particle motion can
then be determined from(

U
Ω

)
= −Mv

(
F s

T s

)
(23)

where F s and T s are the force and torque on the particle (electrostatic +
viscous) in response to the slip profile around a fixed particle in the same
position. In a numerical simulation, these equations can be iterated to self
consistency in an implicit scheme, or Mv, F s, and T s can be calculated
once using E, U and Ω from the previous time step, or by interpolation to
the new time step, in an explicit scheme.

4.4 Symmetric geometries

For certain symmetric geometries, the reciprocal theorem for Stokes flow
can be used to avoid having to actually solve the Stokes equations, if one
only wants to calculate the motion of the solid body. For a spherical par-
ticle with an arbitrary slip distribution us(r) on its surface, Stone and
Samuel (1996) showed that the translational velocity is equal and opposite
to surface-averaged the slip velocity:

U = −
∮

S
dr us(r)∮

S
dr

(24)
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while the rotational velocity is given by

Ω = −
∮

S
dr r̂ × us(r)
2

∫
V

dr
(25)

where V is the volume of the particle. Squires and Bazant (2006) pointed
out that the same relations also hold for cylindrical geometries, in spite
of various subtleties of two-dimensional Stokes flows. (Note that we have
written (25) in a different form, which clarifies this connection.) These
results make it much easier to solve for the motion of inhomogeneous par-
ticles with symmetric shapes (and variable surface properties), rather than
for homogeneous particles with asymmetric shapes. As in many mathemat-
ical problems, complicated boundary conditions are more tractable than
complicated geometries.

An analogous result to (24) also holds for fluid pumping in a parallel-
plate microchannel with arbitrary slip distributions on both surfaces. The
total flow rate through the channel is the same as that of a linear shear flow
driven by the surface-averaged slip on the two walls, or, equivalently, a plug
flow uplug = −U driven by the overall average slip (over both walls) from
(24). This property was noted by González et al. (2000) in the context of
a Fourier analysis of AC electro-osmotic pumping with periodic slip, but
it holds more generally for any slip profile, as shown by Squires (2008).
Most theoretical studies of slip-driven microfluidic pumping have used this
property to calculate the time-averaged flow rate, without having to solve
for the time-averaged velocity field, but it can only be applied to flat plate
geometries. For three-dimensional electrodes, as discussed below, one must
solve the full Stokes flow to obtain the flow rate.

5 Double-layer models

A microscopic model of the double layer is required to predict how the
capacitance C and voltage ΨD (or Λ) in the Standard Model depend on
experimental conditions, such as the bulk salt concentration and the in-
terfacial chemistry. Most studies of ICEO flow have adopted the classical
two-part model of the double layer (Bockris and Reddy, 1970), which adds a
molecular-scale “compact part” described by boundary conditions between
the surface and the outer “diffuse part” described by continuum equations
for mobile ions. It is typically assumed that the electrokinetic (zeta) poten-
tial ΨD is the same as the diffuse-layer potential drop from the edge of the
compact layer to the bulk solution. This sharp partitioning of the double
layer into two distinct regions is convenient for mathematical modeling, but
not precisely defined. In principle, many features of the molecular compact
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Figure 8. Sketch of the double layer near a blocking electrode at high
voltage. Solvated counterions (green) are crowded in the inner region and
smoothly transition across the outer diffuse region to a dilute solution with
solvated anions (orange). An ion can break free from its solvation shell and
adsorb on the surface (black), thereby moving from the outer Helmholtz
plane (OHP) to the inner Helmholtz plane (IHP). (Reproduced from Bazant
et al. (2009b) c© 2009 Elsevier.)

layer can be reproduced by more realistic continuum models of the diffuse
layer accounting for ion-specific effects, such as steric volume constraints,
dielectric saturation, and the viscoelectric effect Bazant et al. (2009a,b).

The concept of the compact layer was introduced by Stern (1924) to
account for the finite solvated ion size in the simplest possible way, by
positing a distance of closest approach of solvated ions to the surface hS ,
at the “outer Helmholtz plane” (Bockris and Reddy, 1970) shown in Fig. 8.
After separating a layer of thickness hS from the continuum region, it is also
convenient to assign it a reduced permittivity εS < ε to describe dielectric
saturation (aligning of solvent dipoles) in the large normal field in the inner-
most portion of the double layer. Stern’s model effectively adds capacitance
CS = εC/hS in series with the diffuse-layer capacitance CD. The concept
of a “surface capacitance” in series with the bulk solution is quite general
and not limited to a Stern monolayer of algined solvent molecules. It could
also describe a thin dielectric coating on the surface, such as an oxide layer,
contaminant film, self-assembled polymer monolayer, etc.

The resulting simple model,

C

CD
= Λ =

1
1 + δ

(Stern layer or dielectric coating) (26)

has only one fitting parameter δ = CD/CS in (10) to describe the the
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physical properties of double layer (Ajdari, 2000; Green et al., 2002; Bazant
et al., 2004; Levitan et al., 2005; Olesen et al., 2006). Note that the time
scale (8) for double-layer charging is generally reduced by the same factor
as the capacitance, τ/τ0 = C/CD. This model has been widely applied to
ICEO flows, but it is unable to fit detailed experimental measurements in
microfluidic devices without some additional modification of the boundary
conditions, as shown in Fig. 7. It also fails to predict the strong decay
of ICEO flow with increasing concentration and various flow reversals that
can occur at large voltage and/or large frequency (Bazant et al., 2009b).
It is becoming clear that the simplest version of the Standard Model (26)
is incomplete, but simple extensions are being developed that improve the
agreement with experiments, at least in the regime of small diffuse-layer
voltages where the Standard Model has theoretical justification.

Another important role of the compact layer is to mediate the adsorp-
tion/desorption of ions, which react with ionizable sites on the surface and
thus regulate the surface charge. The storage of charge by specific adsorp-
tion of ions introduces an effective “chemical” capacitance of the double
layer in parallel with its “physical” capacitance due to purely electrostatic
effects (van Hal et al., 1996). In the case of deprotonization reactions in
water, the surface effectively buffers the pH of the solution, so this parallel
capacitance is sometimes called the “buffer capacitance” (van der Wouden
et al., 2006). We will more generally refer to it as the “adsorption capaci-
tance” CA.

Pascall and Squires (2010) recently showed that including the adsorption
capacitance is essential to fit experimental data for ICEO flows over metal
electrodes with silica coatings, as shown in Figures 9 and 10. In their
version of the Standard Model, CA is in parallel with CD, and the pair is
in series with CS :

C

CD
=

1 + β/δ

1 + δ + β
, Λ =

1
1 + δ + β

, (ion adsorption on dielectric) (27)

where β = CA/CS is a second dimensionless parameter, taken to be constant
in a given experiment. This model is reasonable for their experiments where
CA represents the deprotonization of silanol groups on the silica coating,
SiOH ↔ SiO− +H+ and CS represents a dielectric layer, much thicker than
the molecular scale, inserted between the surface and the electrolyte.

For bare metal surfaces, however, the situation is different, as sketched in
8. In that case, CA describes desolvated ions adsorbed on the surface at the
“inner Helmholtz plane”, while CS represents the dielectric response of the
Stern solvent monolayer up to the first layer of solvated ions at the “outer
Helmholtz plane” (OHP) (Bockris and Reddy, 1970). In that case, the
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Figure 9. Experimental setup of Pascall and Squires (2010) to measure
ICEO flows at high throughput with different surfaces. A planar gold strip
(50μm) sits perpendicular to a PDMS microchannel (a), along which an
AC field is applied, driving two counter-rotating ICEO rolls in aqueous KCl
solutions, as simulated by the Standard Model (b). Micro-PIV velocity mea-
surements just above the strip (c) recover the predicted ICEO slip velocity
varying linearly with distance from the strip center (d). (Reproduced from
Pascall and Squires (2010) c© 2010 American Physical Society.)
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Figure 10. Experimental validation of the Standard Model of ICEO flow
using the setup of Figure 9. Measurements over gold strips “controllably
contaminated” with SiO2 films for 987 conditions of varying thickness (33-
100 nm) and frequency ω show poor agreement with a theory that ignores
the SiO2 (a), improved agreement when the known surface capacitance of
the film is included via δ = CD/CS (b), and remarkable collapse when
the adsorption capacitance of SiOH deprotonization is included via β =
CA/CS (c). (Reproduced from Pascall and Squires (2010) c© 2010 American
Physical Society.)
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Stern layer does not separate the adsorbed ions from the surface, as shown
in Fig. 8, so it is more reasonable to place the adsorption capacitance CA in
parallel with the total physical capacitance of CD and CS in series, leading
to

C

CD
=

β

δ
+

1
1 + δ

, Λ =
1

1 + δ
(ion adsorption on bare metal) (28)

in place of (27). It appears that this simple model with constant δ and β
has not yet been applied to ICEO flows, but more sophisticated models of
potential-dependent ion adsorption have recently been developed by Suh
and Kang (2008) and successfully fit to the ACEO pumping data of Green
et al. (2002) by Suh and Kang (2009).

It is important to note that the capacitance of the double layer generally
depends on the interfacial voltage, due to the nonlinear electrochemical re-
sponse of ions in the diffuse layer, as well as adsorption and reaction kinetics
in the compact layer. See Bazant et al. (2009b) for a recent review, in the
present context of induced-charge electrokinetics. For example, long ago,
Grahame (1947) showed that the total differential capacitance of mercury
drop electrodes in aqueous solutions can be well described using the Gouy-
Chapman model for the nonlinear differential capacitance of the diffuse layer
in a dilute symmetric binary electrolyte,

CD(ΨD) =
ε

λD
cosh

(
zeΨD

2kBT

)
(29)

placed in series with a (fitted) nonlinear compact-layer capacitance, which
depends only on the state of charge, but not the bulk salt concentra-
tion (Bockris and Reddy, 1970). The Gouy-Chapman-Stern model as-
sumes a constant compact layer capacitance in series with CD(ΨD) from
(29), so that C(Ψ) = (C−1

S + CD(ΨD)−1)−1 in the RC boundary condi-
tion (13). Such nonlinear effects have also been included in some Standard
Model calculations as the first correction to the linear response theory, but
the most common approximation is a constant capacitance C for the dou-
ble layer, although this can only be rigorously justified for small voltages,
|zeΨD| � kBT .

6 AC forcing

6.1 The complex potential

It is common to study ICEO flows under alternating current (AC) con-
ditions at driving frequency ω. In that case, the Standard Model with con-
stant double-layer capacitance can be placed in a simple time-dependent
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form, following González et al. (2000) and Levitan et al. (2005). We neglect
transient vorticity diffusion within each period and focus only on deriving
the time-averaged flow profile 〈u〉 in a periodic steady state, which satisfies
the steady Stokes equations,

∇p = ∇2〈u〉, ∇ · 〈u〉 = 0 (30)

due to the linearity of the unsteady equations.
We begin by switching to dimensionless variables. We scale length to

the geometrical scale R and time to the RC charging time τ = (C/CD)τ0 in
Eq. (8). The dimensionless frequency is ωτ . For an applied field amplitude
E, we scale the potential to ER, and velocity to Λu0 in Eq. (9). These
scalings contain all the information about the chemical and physical prop-
erties of the system using the definitions above, leaving only one parameter
in the equations, the dimensionless frequency, ωτ . In the remainder of this
section, we abuse notation and use the same variables to represent their
dimensionless counterparts, to keep the presentation simple.

For constant double-layer capacitance, the electrochemical relaxation
problem is linear, so the response to any periodic forcing is simply a lin-
ear superposition of the response to individual Fourier modes at frequency
ω. To solve for a particular Fourier mode, we introduce the dimensionless
complex potential amplitude, Φ, defined by

φ(r, t) = Re
{
Φ(r)eiωt

}
(31)

The real part of the complex amplitude, ReΦ, represents the response which
is in phase with the forcing, while the imaginary part, ImΦ is the out-of-
phase response. Both parts are harmonic functions,

∇2Φ = 0 (32)

subject to the boundary conditions n̂ ·∇Φ = 0 on an insulating surface and

iω(Φ − Φ0) = n̂ · ∇Φ (33)

on an ideally polarizable surface at complex potential Φ0.
More generally, we should write

Φ − Φ0 = Z(ω) n̂ · ∇Φ (34)

where Z(ω) is the (dimensionless) impedance of the double layer (Bar-
soukov and Macdonald, 2005). Our simple capacitor model corresponds
to Z = (iω)−1. Green et al. (2002) and Levitan et al. (2005) have also
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considered “constant-phase-angle impedance”, Z = (iω)p, with a fitted ex-
ponent p < 1. This model was found to improve the fit of their experimental
data for bare metal surfaces, as shown in Fig. 7(b) (where p = β), and also
helped to fit independent cell impedance measurements. It is difficult to
interpret the data unambiguously, however, since the microscopic justifica-
tion of constant-phase-angle impedance is controversial, and other effects,
such as ion adsorption (see below), were neglected.

Once the time-independent linear boundary-value problem (32)-(33) is
solved for Φ(r), we can solve the linear Stokes equations (30) for the time-
averaged velocity profile, 〈us〉, subject to no-slip on the insulating surfaces
and a time-averaged ICEO slip boundary condition,

〈us〉 = −1
4
∇‖|Φ − Φ0|2 (35)

on the polarizable surfaces, which is linear in the unknown velocity, but
nonlinear in the known potential. Levitan et al. (2005) derived Eq. (35)
with Φ0 = 0 for a symmetric geometry with a cylindrical metal wire at
potential. For the general case of an electrode or metal structure with
Φ0 �= 0, the (dimensionless) oscillating slip velocity is

us = −ΨDE⊥ = Re
{
(Φ0 − Φ)eiωt

}
Re
{∇⊥Φeiωt

}
(36)

Using Rez = (z + z)/2 and averaging over a time period, we find

〈us〉 =
1
4
[
(Φ0 − Φ)∇⊥Φ + (Φ0 − Φ)∇⊥Φ

]
(37)

The desired result (35) follows for a metal surface whose potential is constant
in space (but not time), so that ∇⊥Φ0 = 0.

6.2 Analytical example: Metal sphere in an AC field

To demonstrate the ease of applying the our general mathematical frame-
work, we derive the formula of Murtsovkin (1996) for the frequency-dependent
flow around an ideally polarizable colloidal sphere in a uniform AC field
(neglecting surface conduction). Many other examples appear in the litera-
ture cited above and in recent reviews (Bazant et al., 2009b; Squires, 2009;
Bazant and Squires, 2010), but this canonical example serves to illustrate
the basic steps in any analysis of ICEO flow with the Standard Model.

We work with dimensionless variables in spherical coordinates (r, θ, ϕ)
with length scaled to the sphere radius R and voltage scaled to E∞/R,
where E∞ is the uniform field strength far from the sphere. By symmetry
the solution depends only on (r, θ), and we can set the sphere potential to
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zero Φ0 = 0 relative to the background applied potential. The solution to
Laplace’s equation (32) satisfying the far field boundary condition,

E = −∇Φ ∼ cos ωt ẑ, r → ∞ (38)

has the form
Φ(r, θ) = −r cos θ

(
1 +

p

r3

)
(39)

where the first term represents the uniform background field and the second
the induced dipole on the particle and its screening cloud. The (dimension-
less) complex induced dipole moment,

p =
1 − iω

2 + iω
, (40)

is obtained by imposing the RC boundary condition (33). Consistent with
the simple physical arguments in Fig. 6, the metal particle behaves like a
bare conductor at high frequency, limω→∞ p = −1, and like an insulator at
low frequency, limω→0 p = 1/2, due to complete screening by the induced
double layer. The former is due to electron charge separation in the particle,
required to make the particle an equipotential surface with a normal electric
field, while the latter is the result of ionic charge relaxation in the double
layers, which fully expels the normal electric field.

The complex dipole moment (40) captures the time-dependent polar-
ization of the particle and its screening cloud in response to the AC forc-
ing (Dukhin and Shilov, 1980). The real part is the in-phase polarization,

Re p =
2 − ω2

4 + ω2
(41)

which transitions from 1/2 at low frequency to −1 at high frequency, and
passes through zero at ωc =

√
2. At this critical frequency, only the uniform

background electric field remains, as if the particle were “invisible” in phase
with the AC forcing. The out-of-phase polarization

Im p = − 3ω

4 + ω2
(42)

is reaches a maximum at ωc, due to capacitive charging of the double layers
on opposite sides of the particle, carried by ionic currents passing through
the bulk electrolyte resistance to complete an equivalent RC circuit (Si-
monov and Shilov, 1977). These time-dependent polarization phenomena
are also seen in more complicated geometries, as illustrated in Fig. 11 below.
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The time-averaged electro-osmotic slip profile on the sphere is easily
calculated from (35) as

〈uθ(1, θ)〉 =
(

9
4

)
sin 2θ

4 + ω2
= Us(ω) sin 2θ (43)

which drives a quadrupolar Stokes flow with angular and radial components

〈uθ(r, θ)〉 =
Us(ω) sin 2θ

r4
(44)

〈ur(r, θ)〉 =
Us(ω)(1 + 3 cos 2θ)

2

(
1
r4

− 1
r2

)
(45)

respectively.
As in Fig. 6, the long-ranged part of the ICEO flow, decaying as r−2, is a

radial flow that sucks fluid in toward the poles of the sphere and ejects fluid
away from the equator. The flow has a longer range than classical electro-
osmotic flow, decaying as r−3, although still a shorter range than forced
electrophoresis (Fig. 3(a)), decaying as r−1. Gamayunov et al. (1986) first
calculated this flow for ω = 0 and noted how the long-range part dominates
the interaction between two polarizable colloidal particles, causing them to
move together (or apart) if aligned parallel (or perpendicular) to the field
axis. The same anisotropic hydrodynamic interactions due to ICEO flow
are also evident in the Brownian-dynamics simulations of Saintillan et al.
(2006a) and the experiments of Rose and Santiago (2006) for rod-like metal
particles in a uniform electric field.

6.3 Numerical example: Metal cylinder in a microchannel

Microfluidic devices involve bounded channel geometries, which make
analytical progress difficult in most cases. (Exceptions include simple ge-
ometries in two dimensions, amenable to conformal mapping analysis fol-
lowing Yossifon et al. (2006).) Nevertheless, the formalism above, based
on the Standard Model with AC forcing, is still useful to reduce the full,
time-dependent, nonlinear equations to a relatively simple time-independent
form, involving only the linear Laplace and Stokes equations. Aside from
dealing with the non-standard boundary conditions, it then becomes straight-
forward to solve the problem using well known algorithms or common soft-
ware packages.

An example of the numerical solution of the model using the Finite
Element Method is shown in Figure 11, using the package, FEMLAB, a
precursor of COMSOL Multiphysics. The simulations describe the ICEO
flow around an ideally polarizable metal cylinder lying on the floor of a flat
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Figure 11. Finite-element numerical solution of the Standard Model for
AC forcing from Section 6.1 for the experimental geometry of Levitan et al.
(2005), consisting of a 100-micron diameter metal cylinder in a straight
microchannel with an longitudinal applied field. Top row: electric field
lines in phase with the AC forcing (gradient of the real part of the complex
potential). Middle row: field lines 90◦ out of phase with the forcing (gradient
of the imaginary part). Bottom row: streamlines of the time-averaged ICEO
flow. Left column: Zero frequency (DC, steady state). Right column: Unit
dimensionless frequency ωτ = 1, where the AC period equals the “RC time”
of the equivalent circuit. A slice of the computed flow profile in this figure
is compared to experimental data in Figure 7(b) above. (Simulations by Y.
Ben from the work of Levitan et al. (2005).)
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microchannel, whose height is twice the cylinder’s diameter. An AC elec-
tric field is applied along the microchannel, perpendicular to the orientation
of the cylinder. This is the geometry of the experiments of Levitan et al.
(2005), which were the first to demonstrate ICEO flow around an electri-
cally floating object (whose voltage is not controlled as an electrode) in a
microfluidic device. This study was also able to make the first quantita-
tive comparison of the theoretical flow profile, computed numerically, with
experimental data, taken by particle-image velocimetry, as shown in Fig. 7.

The simulations in Fig. 11 nicely illustrate the physical principles in
Fig. 6 and show similar frequency-dependent behavior as the analytical
solution of the previous section:

• At low frequency (ωτ � 1), the AC period is long enough to allow
complete charging of the double layer in phase with the forcing. As a
result, the in-phase electric field (Re∇Φ) resembles that of an insulator
in a DC field, going around the cylinder, while the out-of-phase field
(Im∇Φ) is negligible. The time-averaged ICEO flow is directed from
the poles of the cylinder toward the equator, but due to the nearby
no-slip wall, only half of the quadroplar flow for an isolated cylinder
(Fig. 6) is visible. The bounded geometry also causes the flow to
recirculate in two counter-rotating vortices.

• At the transition frequency (ωτ = 1), the AC period is in resonance
with the relaxation of the double layer. As a result, the in-phase elec-
tric field is almost unaffected by the presence of the cylinder, and the
out-of-phase field lines show the induced dipole with two lobes emanat-
ing from the cylinder. The time-averaged flow now shows the appear-
ance of secondary, small vortices completing a quadrupolar structure,
due to incomplete charging of the double layers, which has not had
enough time to proceed between the poles and the wall.

• At high frequency (ωτ 
 1, not shown), there is not enough time for
double-layer charging, and the in-phase field resembles that of a per-
fect conductor in a DC field, where the cylinder remains an equipoten-
tial surface, even outside the double layers. Since there is little charge
relaxation, the out-of-phase field and ICEO flow are negligible.

These three frequency regimes are generally present for all ICEO flows
around a polarizable surface, driven by a weak AC field in the electrolyte.
More complicated microfluidic geometries can lead to a distribution of charg-
ing time scales, and thus additional frequency regimes, where ICEO flows
develop in different locations for different ranges of frequencies.
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Figure 12. Field-depenent electrophoretic velocity U of an ideally polar-
izable, charged sphere of radius R with thin double layers in a background
field E. (a) In small fields, the mobility μep = U/E is a constant, set by the
uniformly distributed double-layer charge. (b) In large fields, E 
 kT/eR,
the dipolar induced charge overwhelms the pre-existing uniform charge and
alters the mobility, μep(E), if cations and anions do not condense at the
same density and must redistribute to conserve total charge. (Reproduced
from Bazant et al. (2009b) c© 2009 Elsevier.)

7 Electrophoresis of ideally polarizable particles

7.1 Field-dependent mobility and aperiodic electrophoresis

A well-known prediction of the classical theory of electrophoresis is that
the mobility (7) only depends on the total charge (or average zeta potential),
in the limits of thin double layers, small charge, and weak fields (Hunter,
2001; Anderson, 1989). This remarkable result holds for any size or shape,
even if the particle is polarizable and acquires a non-uniform charge (or
zeta) profile in response to the applied field. It is not widely appreciated,
however, that this follows from the assumption of linear response of the
double layer with a constant capacitance, which reduces (14) to (16)

In the 1970s, S. S. Dukhin’s group was perhaps the first to recognize that
the electrophoretic mobility of polarizable particles must generally depend
on the electric field (Dukhin and Dukhin, 2005). In a series of Russian
papers, which have yet to gain widespread attention, they predicted pertur-
bations of the electrophoretic mobility as, Δμep ∝ E2, and thus nonlinear
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electrokinetic motion, ΔU ∝ E3, which they have come to call the “Stotz-
Wien effect”.

One general mechanism for nonlinear electrophoresis in steady DC fields,
first predicted by A. S. Dukhin (1993), is a voltage-dependent double-layer
capacitance. In the limit of weak applied electric fields, E � kT/eR, he
showed that an ideally polarizable sphere with equilibrium zeta potential ζ0

and radius R has a field-dependent DC electrophoretic mobility,

μep(E) =
U(E)

E
∼ ε

η

(
ζ0 − 3

8
C ′

D(ζ0)
CD(ζ0)

(ER)2 + . . .

)
(46)

where ζ0 is the surface averaged diffuse layer voltage, 〈ΨD〉. This result
follows directly from the Standard Model formalism developed above, by
applying perturbation methods to Eq. (14). The same equations could be
used to analyze the frequency dependence and shape dependence of this
effect, but apparently this has not yet been done.

Dukhin’s correction (46) has mainly been applied in the context of
the Gouy-Chapman model, Eq. (29), which predicts decreased mobility,
Δμep < 0 since dCD/dψ > 0 for ζ0 > 0. It has also recently been derived
as the small field limit of a general formula for thin double layers with the
Gouy-Chapman model by Yariv (2008). The same formula was also derived
by Bazant et al. (2009b) as the dilute limit of a still more general theory
that also accounted for the significant influence of finite ion sizes at high
voltage (see below). Effects of background concentration gradients during
the passage of direct current, such as asymmetric concentration polarization
and diffusio-osmotic flows which lead to nonlinear “electro-diffusiophoresis,”
were analyzed for dilute solutions with thin double layers by Rica and
Bazant (2010).

The basic physics of this nonlinear effect is illustrated in Fig. 12. If the
double-layer voltage varies enough to cause spatial variations in its differen-
tial capacitance, then counterions aggregate with varying density (per area)
around the surface of the particle upon polarization by the applied field,
and this nonlinearity breaks symmetry in polarity with respect to the mean
voltage. For example, if the positively charged part of the diffuse layer (rel-
ative to the mean charge) is less dense (e.g. due to larger or less charged
cations than anions), it will cover more of the surface than the negatively
charged part; cations are then more likely to dominate in regions of large
tangential field near the equator and thus make an enhanced contribution
to the electrophoretic mobility of the particle, regardless of its true surface
charge.

Dukhin and Dukhin (2005) have proposed a general means to exploit of
field-dependent mobility of colloidal particles for separations by “aperiodic
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(a) (b)

UICEP

Figure 13. (a) Induced-charge electro-osmotic (ICEO) flow around a sym-
metric, uncharged, ideally polarizable particle (from Bazant and Squires
(2004)); (b) An example of ICEO flow and the resulting induced-charge
electrophoretic (ICEP) velocity for an asymmetric shape (from Ref. 4).
Due to broken left-right symmetry, the unbalanced ICEO flows cause the
particle to move perpendicular to the electric field, which would not be
possible due to electrostatic forcing alone. (Reproduced from Squires and
Bazant (2006) c© 2006 Cambridge University Press.)

electrophoresis”. The basic idea is to use an “unbalanced AC field”, whose
time-average is zero, 〈E〉 = 0, but whose higher moments are nonzero.
(The same concept, without reference to a particular mechanism for field-
dependent mobility, apparently first appeared in a 1992 U.S. patent of Chi-
menti, Ser. No. 5,106,468.) If 〈E3〉 �= 0, then Dukhin’s first correction to
the mobility (46) survives time averaging and leads to separation of parti-
cles with different polarizabilities. An example of such an unbalanced field
is

E = E1 sin(ωt) + E2 sin(2ωt + ϕ) (47)

where ϕ is a phase shift, which can be conveniently varied to control the
time-averaged motion of a particle. Analyzing and exploiting this effect in
practical separations would be an interesting direction for research.

7.2 Induced-charge electrophoresis

Mobility perturbations for spherical particles only hint at the rich phe-
nomena that can arise in the electrokinetic motion of polarizable particles.
Murtsovkin (1996) and co-workers were the first (and to date, perhaps the
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Figure 14. (a) Mechanism for ICEP torque on a rod-like, polarizable par-
ticle in a uniform electric field, which enhances dielectrophoretic (DEP)
torque. (b) Possible ICEP velocities for asymmetric shapes, once their long
axes have aligned with the field.

only ones) to experimentally observe the nonlinear electrokinetic motion of
homogeneous particles in a uniform AC field in directions oblique to the
field axis. They studied irregular quartz particles moving in water near the
wall of a cuvette in surprising directions apparently set only by the particle
shape. If a particle rotated enough by Brownian motion when the field was
off, it could be seen to reverse direction when the field was turned back
on. The velocity scaled with the square of the field amplitude and increased
with the particle size. No theory was proposed for this phenomenon, in part
since it was only observed near the wall and not in the bulk solution.

Bazant and Squires (2004) recently predicted that polarizable particles
in the bulk can undergo essentially arbitrary translation and/or rotation
by “induced-charge electrophoresis” (ICEP) in a uniform electric field, as
long as they possess appropriate broken symmetries (Squires and Bazant,
2006), such as non-spherical shapes and/or non-uniform surface properties,
e.g. due to coatings of varying polarizability. The former cases begin to
explain Murtsovkins early observations and beg for new experiments to test
a variety of specific theoretical predictions, discussed below. The latter
cases, first observed by Gangwal et al. (2008), are described in the next
section on heterogeneous particles.

For homogeneous particles, the canonical example is that of an un-
charged, ideally polarizable particle of irregular shape in a weak, uniform
DC field. In that case, the basic velocity scale U0 is given by Eq. (9),
where R is a characteristic radius scale. Using the Standard Model (with
constant double-layer capacitance), Yariv (2005) general expressions for the
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translational and rotational velocities, respectively,

Ei = U0

∑
jk

CijkEiEj (48)

Ωi =
U0

a

∑
jk

DijkEjEk (49)

where C is a dimensionless tensor and D a pseudo-tensor, each expressible as
surface integrals involving the bulk potential, just outside the double layer.
Squires and Bazant (2006) treated a number of specific examples by solving
the Standard Model equations analytically using boundary perturbation
methods for nearly symmetric objects, and they developed simple principles
to predict the motion of a particular shape.

The basic mechanism of ICEP for irregular particles is shown in Fig-
ure 13. As shown in (a) and described above, the ICEO flow around a
symmetric particle is quadrupolar, drawing fluid in along the field axis and
ejecting it radially. If the particle has broken left/right symmetry as shown
in (b), then the radial flow is stronger on one side than the other, leading
to ICEP motion perpendicular to the field. Such unusual motion cannot
result from electrostatics alone, since there is no charge distribution which
can experience an electrostatic force transverse to a uniform electric field.
Similarly, breaking only fore/aft symmetry produces ICEP motion along
the field axis, and combinations of these asymmetries can cause motion in
an arbitrary direction.

ICEP can also contribute to the rotation of polarizable particles with
elongated shapes, as illustrated in Figure 14(a). It is well known that
DEP causes such particles to align with the axis of a uniform field, due to
electrostatic torque on the induced dipole. At low AC frequency (or in the
DC limit), if the field persists in one direction long enough for ICEO flow
to occur, then ICEP causes a rotational velocity with a basic scale U0/R
that is independent of the particle size but sensitive to its shape,

Ω ∝ εE2

η
(50)

This scale happens to be the same as that of the DEP rotational velocity,
so ICEP rotation is easily overlooked and mistakenly interpreted as DEP.
It is possible, however, to clearly distinguish the two effects, as recently
demonstrated by experiments of Rose and Santiago (2006) and simulations
of Saintillan et al. (2006a) involving rod-like, metal particles in uniform AC
fields. See Figure 15(a).
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(c)

Figure 15. Experiments on cylindrical silver particles (.318μm diameter,
6μm length) sedimenting in de-ionized water by gravity alone (a) and in
a 100 Hz, 100 V/cm AC field aligned with gravity (b). (Reproduced from
Rose and Santiago (2006) c© 2007 American Physical Society.) The ex-
perimental distribution of angles in different fields is well described by the
Standard Model, taking into account both ICEP rotation and DEP electro-
static torque. (c) Brownian-dynamics simulations show the suspension of
sedimenting rods can be stabilized by ICEO flows upon increasing the field
strength (H). (Reproduced from Saintillan et al. (2006b) c© 2006 American
Institute of Physics.)

More complicated asymmetric particles can undergo essentially arbitrary
ICEP motion, even in a uniform field. Even in the context of the simple
model above, these effects have not yet been fully analyzed, but some general
principles have been identified by Squires and Bazant (2006). A striking
example is shown in Figure 14(b), which illustrates how arrow-like particles
of slightly different shapes can move in perpendicular directions in a uniform
field, depending on their broken symmetries: On the left, a short, fat arrow
rotates to align its long axis with the field and then moves perpendicular
to the field, toward its pointed end; on the right, a long, thin arrow also
rotates to align its long axis, but then moves parallel to the field, toward
its blunt end. Such predictions are quite recent, however, and remain to be
tested experimentally.

A telltale sign of ICEP is the presence of non-uniform ICEO flow around
the particle, which leads to complex hydrodynamic interactions with other
particles and walls. For example, the basic quadrupolar flow in Figure
13(a) causes two symmetric particles to move toward each other along the
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field axis and then push apart in the normal direction, as first shown by
Gamayunov et al. (1986). A finite cloud of such particles would thus become
squashed into a disk-like spreading pancake perpendicular to the field axis
(Squires and Bazant, 2004). Hydrodynamic interactions between particles
due to ICEO flows are also able to stabilize a suspension of sedimenting
rods, above a critical field strength, as shown in Fig. 15(c) from the work
of Saintillan et al. (2006b).

The basic ICEO flow field can also cause particles to be repelled from
insulating walls (perpendicular to the field), as noted by Zhao and Bau
(2007a), or attracted toward electrodes (normal to the field), but these
are only guiding principles. Broken symmetries in particle shape or wall
geometry, however, can cause different motion due to combined effects of
DEP and ICEP, even opposite to these principles, and the interactions of
multiple particles can also be influenced strongly by walls. Such effects have
not yet been fully explored in experiments or simulations.

7.3 Dipolophoresis

In the 1970s, Shilov and Estrella-Lopis first recognized that electrohydro-
dynamics (what we now call ICEO) can contribute to the motion of particles
in low-frequency, non-uniform electric fields (Simonova et al., 2001), in ad-
dition to the classical effect of DEP, although the effect has not been studied
much in theory or experiment. Shilov and Simonova (1981) analyzed the
problem of an ideally polarizable sphere in a uniform field gradient and
made the remarkable prediction that the particle does not move. Due to
equal and opposite motions by DEP and ICEP, the sphere levitates in the
field while driving a steady ICEO flow, but this is a unique case.

Squires and Bazant (2006) showed that broken symmetries in the field
gradient and/or the particle shape generally cause a particle to move, due
to subtle imbalances between ICEP and DEP. Both effects have the same
basic scaling (2). Moreover, as shown in Figure 16, the DEP force and ICEP
velocity tend to act in opposite directions, at least for the case of an ideally
polarizable particle with thin double layers in a non-uniform electric field
(of arbitrary complexity). Similar to the case of rotational motion discussed
above, ICEP can be easily overlooked and the observed translational motion
attributed solely to DEP, if it is along the field gradient. Experiments clearly
separating ICEP and DEP effects are still lacking, and an opportunity exists
to exploit these combined effects for manipulating polarizable colloids, once
the effects are better understood.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Analytical solutions of the Standard Model for dipolophoresis
in two dimensions. Electric fields (a,c,e) and ICEO flows (b,d,f) are shown
around ideally polarizable cylinders in inhomogeneous elds. Regardless of
the complexity of the multipolar background electric field distribution, the
DEP force and ICEO velocity are always in opposite directions, as indicated.
(Adapted from Squires and Bazant (2006).)
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8 Electrophoresis of heterogeneous particles

In the previous section, we considered homogeneous polarizable particles,
allowing for broken symmetries in the particle shape, which lead to induced-
charge electrophoretic motion. In this section, we also allow for nonuniform
surface properties. In order to appreciate the nonlinear effects of ICEP due
to variable polarizability, we first review the possible types of linear response
of heterogeneous particles with fixed surface charge.

8.1 Linear electrophoresis

The electrokinetic motion of colloidal particles and molecules in solution
in response to applied electric fields can be rather complicated, so many
approximations have been made in theoretical treatments. The classical
theory of electrophoresis, dating back over a century to Smoluchowski, con-
siders homogeneous particles, which are (i) non-polarizable, (ii) spherical,
(iii) uniformly charged, (iv) rigid, (v) much larger than the thickness of the
electrical double layer, (vi) in an unbounded fluid, very far from any walls
or other particles, and subjected to (vii) uniform and (viii) weak fields, ap-
plying not much more than the thermal voltage (kT/e=25mV) across the
particle in (ix) dilute electrolytes. Under these assumptions, the particles
velocity is linear in the applied electric field, U = μepE, where the elec-
trophoretic mobility, μep = εζ/η, as noted above. In Smoluchowski’s theory,
the zeta potential is equal to the voltage across the double layer, which is
proportional to the surface charge at low voltage.

Much less attention has been paid to the electrokinetic motion of het-
erogeneous particles, which have non-spherical shape and/or non-uniform
physical properties. By far the most theoretical work has addressed the case
linear electrophoresis of non-polarizable particles with a fixed, equilibrium
distribution of surface charge (Anderson, 1989). Some examples are shown
in Figures 17 and 18. In that case, relaxing only assumption (ii) leads to
the classical prediction that the mobility of a particle of uniform compo-
sition (uniform zeta) is independent of the shape and size of the particle.
Perhaps it was this insensitivity to geometry that led to the common be-
lief that the electrophoretic mobility measures some kind of average surface
charge, until Anderson (1984) was the first to clearly point out that this is
generally not the case. By carefully relaxing only assumption (iii), he pre-
dicted that a sphere of non-uniform zeta potential can move in a different
direction from the field and that its mobility is not simply related to its
total charge. Generalizing work of Fair and Anderson (1992) on doublet
particles, Long and Ajdari (1998) showed that relaxing both (ii) and (iii)
leads to even more complicated behaviour, including particles that rotate
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(b)
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Figure 17. Linear electrophoretic motion of spherical heterogeneous par-
ticles with non-uniform fixed surface charge and thin double layers. (a)
A dipolar charge distribution will rotate to align its dipole with the field,
driven by both electrostatic torque and electro-osmotic flows (indicated).
(b) A quadrupolar charge distribution can translate either perpendicular or
parallel to the electric field, depending on its orientation.

continuously or translate perpendicular to a uniform DC field. Relaxing
assumption (iv), the electrophoresis of flexible heterogeneous particles has
also been studied, such as DNA molecules connected to beads (Long and
Ajdari, 1996).

It is tempting to think of the electrophoretic mobility of a heteroge-
neous particle as a measure of its average charge, when in fact it has a
nontrivial dependence on the spatial distribution of surface charge. This is
clearly demonstrated by a counter-example of Long and Ajdari (1996), mo-
tivated by chain-like polyelectrolytes, such as DNA molecules. Consider a
dumbbell-shaped particle consisting of two uniformly charged spheres with
electrophoretic mobilities μ1 and μ2 and hydrodynamic drag coefficients ξ1
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(a) (b)

Figure 18. Examples of unusual linear electrophoretic motion of heteroge-
neous particles with asymmetric shapes. (a) A dumbbell consisting of two
oppositely charged spheres of connected by a rigid rod rotates to align as
shown and moves in the direction of the electric field (positive mobility),
even though the total charge is negative, if the positive sphere is smaller.
(b) A particle of zero total charge with four-fold and eight-fold perturba-
tions in shape and surface charge, respectively, moves perpendicular to the
electric field, regardless of its orientation (Adapted from Long and Ajdari
(1998) c© 1998 American Physical Society.)

and ξ2 , held together by an uncharged, rigid rod. As a first approximation,
the rod has negligible drag and is long enough that hydrodynamic and elec-
trostatic interactions between the spheres can be neglected. In a uniform
electric field, the dumbbell rotates to a stable configuration aligned with
the field axis, as shown in Figure 18(a) and moves a velocity, U = μepE,
where μep is the overall mobility. In order for each particle (i = 1, 2) to
move at the same velocity, the rod must exert a force, F i = ξi(U − μiE).
Force balance on the rod, F 1 = −F 2, then yields the mobility

μep =
ξ1μ1 + ξ2μ2

ξ1 + ξ2
∝ Q1

R1
+

Q2

R2
(51)

which is the drag-weighted average of the two mobilities. In the last step, we
have used Stokes formula, ξi = 6πηRi, and assumed that the local mobility
(slip coefficient) is proportional to the surface charge density, μi ∝ Qi/4πR2

i ,
where Qi is the total charge of each sphere. We see that, depending on the
geometry, the mobility can have either sign, regardless of the sign the total
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charge, Q1 + Q2. For example, as shown in Fig. 18(a), a small sphere of
charge Q > 0 connected to a larger sphere of charge −2Q can have a positive
mobility, even though its total charge is negative, as long as R2 > 2R1.

Variations in charge density and shape can lead to even more surpris-
ing transverse electrophoretic motion, which departs from the field axis. In
linear electrophoresis, a spherical particle of non-uniform surface charge (or
zeta potential) can move perpendicular to the field, but only for certain
orientations; it can also rotate, but only transiently to align its dipole with
the field axis. These behaviors are shown in Fig. 17. If both the surface
charge and the shape are perturbed, however, then these restrictions do not
apply, as noted by Long and Ajdari (1998). Figure 18(b) shows a cylindri-
cal particle of zero total charge, which always moves perpendicular to the
electric field, regardless of its orientation. It has four-fold shape perturba-
tion and eight-fold surface charge perturbation, such that each bump on
the surface has positive surface charge to the left and negative to the right.
By constructing appropriate chiral perturbations of the shape and surface
charge, it is also possible to design heterogeneous particles, which rotate
continuously around a particular axis without translating, for a particular
direction of the electric field.

8.2 Induced-charge electrophoresis

The preceding examples involve non-polarizable objects with fixed sur-
face charge distributions, which do not respond to the electric field. The
resulting electrophoretic motion is linear in the field amplitude and vanishes
for AC fields. The electrokinetic motion of polarizable particles, however,
has nonlinear field dependence due to the phenomenon of induced-charge
electro-osmosis (ICEO), where the field acts on induced diffuse charge in the
electrical double layer. At frequencies low enough for capacitive charging
of the double layer (typically < 10 kHz), the time-averaged motion in an
AC field is resembles that in a DC field. In the canonical example of an
uncharged metal sphere in a uniform field, the ICEO flow is quadrupolar,
drawing in fluid along the field axis and expelling it radially, but there is no
net motion.

Motivated by the examples from linear electrophoresis above, Bazant and
Squires (2004) pointed out that broken symmetry in ICEO flow generally
causes particle motion, and coined the term, induced-charge electrophore-
sis (ICEP). Examples of broken symmetries include particles with irregular
shapes and/or non-uniform physical characteristics, as well as non-uniform
applied fields. In the latter case, ICEP occurs at the same time as dielec-
trophoresis (DEP), although the combined effects of ICEP and DEP on



Induced-Charge Electrokinetic Phenomena 267

Figure 19. Induced-charge electrophoresis of Janus particles, illustrated for
the case of metal partially coated with insulating thin films (adapted from
Kilic and Bazant (2011)). (a) Stable orientation in a uniform field, showing
induced charge and slip velocities on the metallic side, resulting in motion
toward the insulating end, perpendicular to the field. (b) Streamlines of
ICEO flow. (c) An ICEP pinwheel, consisting of three Janus particles con-
nected by rigid rods, which tilts to align and then spins continuous around
the field axis.

heterogeneous particles remain to be explored. Besides persisting in AC
fields, ICEP also depends much more sensitively on particle shape and sur-
face properties than does linear DC electrophoresis. Cases of non-spherical
particles with uniform polarizability are discussed above, so we now focus
on ICEP due to heterogenous surface polarizability.

The canonical example of Squires and Bazant (2006) is that of a Janus
particle with one metallic and one insulating hemisphere, using the stan-
dard low-voltage model for electrokinetic motion of polarizable particles.
In response to an applied electric field, the Janus particle rotates to align
the interface between the two hemispheres with the field axis, due to both
ICEP (electrohydrodynamics) and DEP (electrostatics). At the same time,
for any orientation, the particle translates in the direction of its insulating
end, propelled by ICEO flow on the metallic end, with a velocity

U =
9εΛRE2

64η
(52)

In particular, once the particle aligns in the field, it continues to move
perpendicular to the electric field, with an azimuthal angle set by its initial
orientation.

All the generic features of the dynamics still hold if the particles insulat-
ing end is smaller or larger than the metallic end, since it is determined by
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Figure 20. Experimental observation of induced-charge electrophoresis of
metallo-dielectric Janus particles in a uniform 10 kHz AC field. (a) Sequence
of micrographs demonstrating motion transverse to the field in the direction
of the dielectric (light) end propelled by the metallic (dark) end, where the
velocity increases with the particle size as in Eq. (52). (b) Velocity versus
field amplitude squared at different bulk concentrations of NaCl. (Adapted
from Gangwal et al. (2008).)

the broken symmetry. Motion transverse to a uniform AC field cannot have
any contribution from DEP, but it is easily understood by considering the
ICEO flow in Figure 19(a). After alignment in the field, part of the usual
quadrupolar ICEO flow is suppressed on the insulating end. The remain-
ing ICEO flow over the metallic end sucks in fluid along the field axis and
pushes it outward from the metallic pole, as shown in Figure 19(b), which
propels the particle toward the insulating pole.

This example suggests how to design particles that spin continuously
in a uniform field, as noted by Squires and Bazant (2006). Since a Janus
particle always translates towards its less polarizable end, a set of three
Janus particles connected by rigid rods can be set into continuous motion
like a pinwheel, if connected as shown in Figure 19(c). This ICEP pinwheel
responds to any DC or AC electric field (of sufficiently low frequency) by
tilting to align the particle plane perpendicular to the field and then spinning
around the field axis until the field is turned off. Perhaps such particles could
be used to sense electric fields or to apply torques to attached molecules or
cells.

Transverse ICEP motion of metallo-dielectric Janus particles in a uni-
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(c)

Figure 21. Wall interactions in induced-charge electrophoresis. Dominant
hydrodynamic interactions between a homogeneous ideally polarizable par-
ticle and (a) an insulating wall and (b) an unscreened, ideally polarizable
wall in a parallel electric field. (c) Theory by Kilic and Bazant (2011) of the
interaction of a metallo-dielectric Janus particle and a insulating wall, as in
the experiments of Gangwal et al. (2008). The particle rotates to align its
equatorial plane with the field, with an arbitrary azimuthal angle. Asteady
ICEO flow sucks in fluid along the field axis (perpendicular to the page) and
ejects it radially on the metallic side, which causes the particle to rotate to
face the wall, due to a (mostly) hydrodynamic torque T . Near the wall,
electrostatic torque can balance the viscous torque to enable motion par-
allel to the surface without contact, while maintaining a steady tilt angle.
(Adapted from Kilic and Bazant (2011).)
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form AC field has recently been observed by Gangwal et al. (2008). Consis-
tent with theoretical predictions in Figure 19, the particles align and trans-
late perpendicular to the field in the direction of the less polarizable (light)
end, as shown in Figure 20. Larger particles move faster than smaller ones,
as expected from Eq. (52), and the velocity scales like the field squared in
dilute NaCl solutions. The ICEP velocity decays at higher concentrations,
extrapolating to zero around 10 mM. The same concentration dependence is
also observed in AC electro-osmotic flow and other nonlinear electrokinetic
phenomena, which, although poorly understood, further reinforces that the
motion is indeed due to ICEP.

Current research is focusing on how heterogeneous particles undergoing
electrokinetic motion due to ICEP and DEP interact with walls and other
particles. An interesting feature of the experiments in Gangwal et al. (2008)
is that the Janus particles are attracted to nearby glass walls, and the
transverse motion is also observed close to the walls, where the theory of
Squires and Bazant (2006) does not strictly apply. This behavior is perhaps
surprising because, according to the Standard Model, homogeneous particles
should be repelled from insulating walls (and attracted to polarizable walls)
by ICEO flows (Zhao and Bau, 2007a). Kilic and Bazant (2011) show that
this attraction can be understood as a consequence of ICEP torque, which
redirects the Janus particle toward a nearby wall and causes it to tilt while
translating transverse to the field, as shown in Fig. 21

A major motivation to develop this subject is the possibility of new appli-
cations, opened by advances in microfluidics and nanotechnology. In prin-
ciple, heterogenous particles of specific irregular shapes and non-uniform
electrical and/or chemical properties can be designed and fabricated for
specific applications. The complex electrokinetic motion of these particles
could potentially be used for separation or sample concentration in chemical
or biological assays, self-assembly in the fabrication of anisotropic materials,
directional transport of attached cargo, electric-field sensing and applying
forces and torques to molecules or cells.

9 Induced-charge electro-osmotic mixing

Bazant and Squires (2004) proposed the use of ICEO flow around metal-
lic microstructures (posts, surface patterns, etc.) for microfluidic mixing,
switching, and pumping. The potential advantages of such elements in a mi-
crofluidic system include low power, programmability, and local flow control.
As shown in Fig. 22, the basic physics of ICEO flow immediately suggests
a number of designs involving metal posts or surface structures placed in
microchannels with applied electric fields. Theoretical work using the Stan-
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Figure 22. Simple microfluidic devices involving fixed metal posts or sur-
face structures (shaded areas) driven by weak AC or DC fields applied at
nearby microelectrodes (cross-shaded areas). Broken symmetries, such as
triangular shapes, can lead to transverse flows, and sharp corners can en-
hance local ICEO flows in electrokinetic jets. (Reproduced from Bazant and
Squires (2004) c© 2004 Cambridge University Press.)

dard Model has shown that ICEO-based micro-mixing can be enhanced by
broken symmetries (Squires and Bazant, 2006) or by the introduction of
sharp corners in dielectric channel side walls (Yossifon et al., 2006).

In order to achieve rapid, programmable mixing of the fluid and any
suspended particles, temporal modulation of the applied field can be used
to produce chaotic streamlines (Zhao and Bau, 2007b). This concept is il-
lustrated in Fig. 23. The basic idea is to switch between different asymmet-
ric patterns to produce chaotic trajectories. Even if the underlying flows,
u(r, t), satisfy the linear Stokes equations and can be superimposed, the
trajectories of passive tracer particles, ri(t), generally satisfy a nonlinear
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Figure 23. Simulation of an ICEO chaotic mixer with four electrodes on
the side walls of a chamber (not shown) driving time-dependent ICEO flows
around an off-center metal post. Left: by applying the field either north-
south (top) or east-west (bottom), two different flows can be generated.
Right: by alternating between these flows, chaotic advection be achieved, as
evidenced by the stroboscopic plots (Poincaré section) of a particle, showing
the transition from a nearly periodic loop (top) to a chaotic streamline
(bottom) with increasing time. (Adapted from Zhao and Bau (2007a). )
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Figure 24. Experimental observation of induced-charge electro-osmotic
mixing by Harnett et al. (2008), consistent with the theoretical predic-
tions of Bazant and Squires (2004), sketched in Fig. 22c. Two colored fluid
streams of 0.1 mM KCl flowing at 0.1 μl/min from left to right undergo
convective mixing by an array of asymmetric metal posts in a transverse
AC field (6 Vpp, 100 Hz applied by electrodes above and below, separated
by the channel width 200μm). Images from experiments (a,c) and simula-
tions of advection-diffusion in ICEO flow in the same geometry (b,d) show
the distribution of red and green fluorescent beads after loading (a,b) and
during mixing (c,d). (Reproduced from Harnett et al. (2008) c© 2008 Royal
Society of Chemistry.)

ordinary differential equation,

dri

dt
= u(ri(t), t) (53)

which can have chaotic solutions, suitable for mixing. The same principle of
chaotic advection was originally developed for passive microfluidic mixing
by pressure-driven flows in grooved channels (Stone et al., 2004).

The first microfluidic demonstration of ICEO flow around a metal cylin-
der by Levitan et al. (2005) showed steady vortices, but did not study
mixing. In 2008, two groups reported the first experimental demonstra-
tions of microfluidic mixing by ICEO flow around metallic microstructures,
effectively reducing to practice the theoretical predictions of Ref. Bazant
and Squires (2004). (i) Harnett et al. Harnett et al. (2008) integrated
an array of gold-coated posts of triangular cross section in a microchan-
nel with electrodes applying a low-frequency AC field on the side walls,
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as shown in Fig. 24. The post-array mixer was placed at the junction of
two Y-channels, and programmable on/off mixing of two different streams
of dilute electrolytes was demonstrated. Good agreement with theoretical
predictions was noted, albeit with a correction factor of Λ = 0.25. (ii) Wu
and Li (2008b,a) reported simulations and experiments on ICEO mixing
in flow past pointed platinum “hurdles” (floating electrodes) and different
geometrical designs were compared. Further design improvements could
benefit from numerical optimization methods for ICEO flows developed by
Gregersen et al. (2009).

ICEO mixers can be used to enhance the transport of slowly diffusing
molecules to an active surface. In biomedical microfluidics, ICEO flows can
improve the sensitivity biological assays by passing probe molecules, such
as DNA or proteins, rapidly over a detection surface. In electrochemical
systems for water purification and desalination, ICEO mixers can enhance
the transport or salt and impurities to a membrane or porous electrode for
rapid removal, beyond diffusion limitation.

10 AC electro-osmotic pumping

10.1 Slip-driven microfluidic pumps

There are many strategies for microfluidic pumping, as reviewed by Laser
and Santiago (2004), Stone et al. (2004), Squires and Quake (2005). Pumps
based on fluid body forces, due to externally applied pressure gradients,
magnetic fields, electrothermal forces, etc., lose their efficiency with minia-
turization, due the overwhelming viscous drag at no-slip walls. On the
other other hand, the same viscous drag can be put to use in pumps that
generate flow by effective fluid slip on the walls, which only get more effi-
cient with miniaturization. This is the principle behind all electro-osmotic
micropumps, whether linear or nonlinear in the applied voltage.

The basic physics of slip-driven pumping are illustrated in Figure 25.
For any pump operating in the viscous regime of low- Reynolds number,
the flow rate decays linearly with the back pressure P according to

Q

Qmax
= 1 − P

Pmax
(54)

where Qmax is the flow rate at P = 0 and Pmax is the back pressure that
yields Q = 0 and effectively stops the pump. By linearity, whenever the
pump operates against a hydraulic resistance, the slip-driven flow in the for-
ward direction is superimposed with a pressure-driven parabolic Poiseuille
flow profile in the opposite direction. The situation can be modeled by an
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Figure 25. Basic physics of slip-driven micropumps. The pump generates
a flow rate Q in a microchannel driven by fluid slip over a wall. If the
pump encounters a back pressure drop P , driving a back-flow through its
hydraulic resistance R, the net flow is given by the linear relation, Q−PR.
The maximum flow rate (at P = 0) is Qmax = Q, while the maximum
back-pressure which stops the pump (Q = 0) is Pmax = Q/R.

equivalent electrical circuit shown in the Figure 25, where the pump consists
of constant current Qmax in parallel with the back-flow resistance RB .

To estimate these quantities, consider a microchannel of rectangular
cross section with a wide floor of width W producing slip and a much
smaller height H � W , and solve for the resulting Stokes flow. The total
flow rate due to a mean slip velocity U over the bottom surface is

Qmax =
αHWU

2
(55)

where α ∼ 1 − (1/2)(H/W )2 corrects for fringe flows in the limit H � W .
The back pressure required to stop the net forward flow is given by

Pmax = RBQmax =
UL

k
=

6ηαUL

H2

[
1 +
(

H

W

)2
]

(56)
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k is the hydrodynamic Darcy permeability and L is the length of the mi-
crochannel.

10.2 DC versus AC electro-osmotic pumps

This simple calculation shows that the hydraulic resistance to back flow,
and thus Pmax, can be increased by reducing the micro-channel height H.
This strategy has been used to boost the pressure of DC electro-osmotic
pumps by employing linear electro-osmotic flows in porous glass frits with
submicron pores (Yao and Santiago, 2003). Electro-osmotic micropumps
can achieve large head pressures, exceeding 50 atm, without any moving
parts, but they require large DC voltages up to kilo-Volts. Such large volt-
ages cause Faradaic reactions, such as water electrolysis, leading to hydro-
gen and oxygen gas production at the electrodes, which must be managed
carefully.

The large operating voltage and the need to manage reaction products
can hinder the application of DC electro-osmotic pumps in portable or im-
plantable lab-on-a-chip devices. Moreover, it is difficult to locally manipu-
late the fluid within the microchannels by applying an electric field across
the entire device. These drawbacks can be overcome using small AC volt-
ages applied at microelectrodes suitably distributed inside a microfluidic
system. The integration of electrodes in the channel limits the extent to
which the channel height H can be reduced, but useful pressures can still
be generated using small AC applied voltages, around 1 Volt (root mean
square), with greatly reduced Faradaic reactions.

As described above, classical electrokinetic phenomena are linear in the
applied voltage and thus cannot produce any net flow under alternating
current conditions. A variety of nonlinear electrokinetic phenomena, which
persist in AC fields, have been known for decades in colloid science, but the
focus has been on electrophoretic mobility and particle interactions. The
advent of microfluidics has stimulated interest in the use of electric fields to
drive fluid flows, without any moving parts. In this context, nonlinear elec-
trokinetics offers some unique advantages, such as the reduction of unwanted
electrochemical reactions (using AC voltages) and the ability to drive fast,
programmable flows at low voltages (using closely spaced micro-electrodes).

This area of research in nonlinear electrokinetics began with the dis-
covery of Ramos et al. (1999) of steady electro-osmotic flow over a pair of
micro-electrodes applying an AC voltage and dubbed the effect AC electro-
osmosis. Around the same time, Ajdari (2000) predicted ACEO flow over
periodic electrode arrays and showed how the effect could be used for long-
range pumping. As the performance of ACEO pumps has advanced (Huang
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Figure 26. Equivalent RC circuit model for double-layer charging over a
pair of electrodes. The inner edges of the electrodes encounter less bulk
resistance (due to shorter current tubes) and thus charge more quickly than
the outer edges. (Reproduced from Ramos et al. (1999) c© 1999 Elsevier.)

et al., 2010), ACEO has also been exploited, in conjunction with dielec-
trophoresis in different geometries to manipulate particles and cells in mi-
crofluidic devices (Green et al., 2000b; Wong et al., 2004; Wu, 2006).

10.3 Flows over ideally polarizable electrodes

ACEO is a phenomenon of induced-charge electro-osmosis, where flow
is generated by the action of an electric field on its own induced diffuse
charge near a polarizable surface. The main difference with other examples
of ICEO flows discussed above is that ACEO involves electrode surfaces,
which supply both the electric field and the induced screening charge, in
different regions at different times. For this reason, ACEO is inherently
time-dependent (as the name implies) and tied to the dynamics of diffuse
charge, as ions move to screen the electrodes.

Perhaps the easiest way to understand ACEO is to consider a pair of ide-
ally polarizable planar electrodes applying a sudden DC voltage (which is
analogous to ICEO flow around a polarizable particle in an sudden electric
field). As shown in Figure 26, charge relaxation can initially be described
by an equivalent RC circuit, where the diffuse layers act as capacitors, con-
nected to current tube resistors of varying length through the bulk solution.
Since the resistance is smaller (and the field larger) near the gap, the in-
ner portions of double layers on the electrodes charge more quickly than
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Figure 27. The basic physics of AC electro-osmosis. Electrochemical relax-
ation (top) and induced - charge electro-osmotic flow (bottom) in response
to a suddenly applied voltage across an electrode pair. (a) At first the
electric field has no tangential component on the electrodes, since they are
equipotential surfaces, and thus there is no electro-osmotic flow. (b) Ca-
pacitive double-layer charging begins near the gap where the initial normal
current is strongest and causes the unscreened field lines dip down and pro-
vide tangential components over the induced charge; the result is ICEO flow
directed away from the electrode gap. (c) After the charging time passes,
the electrodes are fully screened, leaving no electric field and thus no flow.
An AC voltage can drive a steady time-averaged flow, similar to (b), if
its period is comparable to the charging time. (Reproduced from Bazant
(2008a) c© 2008 Springer.)
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the outer portions. As shown in Figure 27, this causes ICEO flow to oc-
cur, directed outward from the gap, only when the electrodes are partially
screened, as the tangential field from the unscreened outer portions acts on
induced charge on the inner portions. Note that the flow is independent of
the sign of the applied voltage: If the polarity were reversed, then the field
and induced charges would both change sign, resulting in the same ICEO
flow.

Under AC forcing, the flow peaks when the oscillation period is com-
parable to the charging time (Fig. 27b). ACEO flow decays at higher
frequencies, since there is not enough time for charge relaxation (Fig. 27a).
It also decays at lower frequencies, since there is enough time to completely
screen the bulk electric field (Fig. 27c).

The theory of ACEO is mostly based on the Standard Model using the
complex potential for AC forcing, following González et al. (2000) as de-
scribed in Section 6. In this regime, the basic scaling of time-averaged
ACEO flow is

〈u〉 ∼ Λ(ω/ωc)2

[1 + (ω/ωc)2]
2

εV 2

ηL
(57)

where V is the applied voltage amplitude and L is electrode spacing (roughly
from center to center). The basic velocity scale for ACEO is the same
as the electroviscous scale u0 for ICEO flow with the characteristic field,
E ∼ V/L, and induction length R = L. The frequency-dependent prefactor
is a Lorentzian spectrum peaking at the critical frequency,

ωc ∼ D

λDL

CD

C
(58)

which is the inverse of the RC time scale τ defined above.

10.4 Fluid pumping by micro-electrode arrays

Some useful general principles have been developed to guide the design
of ACEO pumps. The flows discovered by Ramos et al. (1999) over small
numbers of electrodes can be used for local fluid mixing or particle trapping
at stagnation points, but the flow decays quickly away from the electrode
surfaces. A symmetric, periodic array of many inter-digitated electrodes (of
alternating polarity at each moment in time) similarly produces an array
of counter-rotating convection rolls, but no net pumping of the fluid in one
direction. Instead, long-range pumping over an electrode array requires
broken symmetry within each spatial period to rectify the AC forcing.

There are several ways to design ACEO pumps by breaking symmetry
in a periodic electrode array. Ajdari (2000) originally suggested modulating
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Figure 28. Sketches of local broken symmetries in a periodic electrode
array which lead to global time-averaged ACEO pumping: (a) non-uniform
surface coatings; (b) non-uniform surface height. (Reproduced from Ajdari
(2000) c© 2000 American Physical Society.)

either the electrode capacitance via a dielectric coating (Figure 28a) or the
surface height (Figure 28b) with half the spatial period of the array, so that
the one side of each electrode drives stronger ACEO flow compared to the
other side and thus wins to produce net pumping over the array. In the first
implementation of an ACEO pump, Brown et al. (2000) opted instead to
break symmetry by using planar electrodes of different widths and gaps, and,
until recently, this design was the only one studied experimentally (Studer
et al., 2004) or theoretically (Olesen et al., 2006). It has been shown to
generate velocities over 100 microns/sec, although it also exhibits poorly
understood flow reversals (see below).

The performance of ACEO pumps can be greatly enhanced by design-
ing appropriate non-planar electrode geometries. As recently predicted by
Bazant and Ben (2006), various 3D ACEO designs exhibit dramatically in-
creased flow rate without flow reversal, due to a special geometry in which
the non-uniform slip profile on the electrodes all contributes to flow in the
same direction. The basic idea is to create a fluid conveyor belt with elec-
trodes each having steps of two different heights, as shown in Figure 30: On
each electrode, the region of desired forward flow is raised up, while the re-
gion of reverse flow is recessed below, so as to recirculate in a vortex aiding
the forward flow (rather than fighting it, as in planar designs). This can be
accomplished with electrodes having electroplated metal steps, as shown in
Figure 29, although other designs are possible, such as flat electrode steps
deposited on a grooved surface (without the vertical metal surfaces). Simu-
lations predict that 3D ACEO pumps are faster than planar pumps by more
than an order of magnitude, at the same voltage and minimum feature size,
and thus can achieve mm/sec velocities with only a few volts. This sug-
gests using 3D ACEO pumps to drive flows in battery-powered, portable or
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Figure 29. Top (a,b): Simulations of ACEO microfluidic pumps, showing
the time-averaged flow over a pair of micro-electrodes (dark regions) in one
spatial period of an interdigitated-electrode array. (a) A nearly optimal
planar design with different electrode sizes and gaps; the smaller electrode
has the largest local slip velocity, but the larger electrode wins in overall
pumping from left to right. (b) A more efficient 3D ACEO design with
stepped electrodes having a symmetric footprint and the same minimum
feature size; the reverse slip now recirculates in a vortex to create a fluid
conveyor belt for the raised pumping flow from left to right. (Reproduced
from Bazant and Ben (2006) c© 2006 Royal Society of Chemistry.). Bottom
(a,b): Scanning electron microscopy images of each design fabricated in gold
on glass with minimum feature size (gap) of 5 microns. (Courtesy of J. P.
Urbanski and J. A. Levitan, using methods of Urbanski et al. (2006b)).
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Figure 30. Artist’s rendering of the flows in two ACEO micropump de-
signs, based on the simulations in Fig. 29 below. Top: the original planar
interdigitated electrode array of Brown et al. (2000). Bottom: the 3D design
of Bazant and Ben (2006), which produces a more efficient “fluid conveyor
belt”, as verified in the experiments of Huang et al. (2010) in Fig. 31 below.
(Reproduced from Choi (2007) c© 2007 George Retseck.)
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implantable microfluidic devices.
Huang et al. (2010) recently reported the state-of-the-art in 3D ACEO

micropumps and demonstrated the first integration of ACEO (or ICEO) flow
control in a portable biomedical lab-on-a-chip device (Fig. 31). Their de-
sign is based on (i) theoretically optimal electrode shapes for ultrafast flows
predicted by Burch and Bazant (2008) and (ii) long, serpentine microchan-
nels to dramatically boost the head pressure, by an order of magnitude over
previous devices. The latter effect takes advantage of the scaling of the head
pressure with length, Pmax ∼ L, in Eq. (56). With 1.06 Volt (rms) applied
at 1-10 kHz, the pump achieved pressures over 1% atm and mean veloci-
ties over 1 mm/sec in water, sufficient to drive flows for an on-chip DNA
micro-array assay. The current (mA) and power consumption (mW) are
easily provided by a small Li-ion battery, so this work opens new possibili-
ties for portable or implantable microfluidic systems. As with other ICEO
phenomena, however, ACEO pumps require dilute electrolytes, which may
be a fundamental limitation (Bazant et al., 2009b).

Simple scaling arguments show how to design serpentine ACEO pumps
with desired characteristics. The flow rate or pressure can be increased
by connecting multiple pumps in parallel or in series, respectively. For
example, since our prototype pump consists of only one thin layer (25 mm
(h) channels), its pressure can be increased by a factor of ten, exceeding
10% atm simply by stacking ten layers (for a total thickness below 1 mm).
Regardless of the channel layout, for a given device volume, there is always
trade-off between maximum flow rate and maximum pressure. We have
already noted that to maximize pressure, the channel height, H, should
be reduced as much as possible, given the electrode sizes and fabrication
methods, so this should be viewed as a constant when designing the channel
layout. To tune the flow rate, we can vary the channel width W .

Material and fabrication constraints limit the total device cross-sectional
area per channel A, which includes the surrounding walls and substrate
thickness, and is thus larger than the internal channel cross-sectional area
HW . The fabrication method thus sets the ratio β = HW/A. For a given
volume Ω, the total length of the channel can be estimated as L = Ω/A,
ignoring any corner effects in regions of the channel without a pumping
surface. Using Eq. (56), we find

PmaxQmax = βγ
U2Ω
H2

(59)

where γ < 1 is a constant, reflecting the hydraulic resistance of corners and
connections, compared to the pumping regions. For fixed velocity, volume,
and channel height, we see that the maximum pressure is inversely propor-
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(a)

(b)

Figure 31. State-of-the-art ACEO micropumps by Huang et al. (2010),
using theoretical predicted optimal electrode shapes to create a “fluid con-
veyor belt” . (a) Fabrication schematic and SEM image of a 3D stepped
electrode array, close to the predicted optimal geometry. (b) Experimental
demonstration of ultra-fast (> 1 mm/sec) mean velocity over the pump for
water in a microfluidic loop with 1.06 Volt rms (3 Vpp), outperforming the
standard planar pump of Brown et al. (2000) shown below in Fig. 34(b).
The head pressure (> 1% atm) is increased by an order of magnitude using
long serpentine channels to hinder reverse pressure-driven flow. (Repro-
duced from Huang et al. (2010) c© 2010 Royal Society of Chemistry.)
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Figure 32. (a) Collection of E. Coli bacteria in tap water along the stag-
nation lines of ACEO flow on Au microelectrodes at low frequency (100 Hz)
and moderate voltage (1 V). (b) Preferential particle trapping by asymmet-
ric polarization ACEO on electrodes with positive DC bias at higher voltage
(> 3 V). (Reproduced from Wu (2006) c© 2006 IEEE.)

tional to the maximum flow rate. This formula also determines the required
volume for the pump, given target specifications of flow rate and pressure
for a given application.

Fluid pumping over electrode arrays can also be achieved by applying
a traveling wave of voltage. At low frequency, a similar induced-charge
electro-osmotic mechanism, which peaks at the RC frequency ωc, is respon-
sible for the flow (Cahill et al., 2004). At high frequency (or with a thick
dielectric coating on the electrodes), the classical Erlich-Melcher effect used
to pump dielectric liquids, which peaks at the Debye frequency, D/λ2

D, can
also be observed (Ramos et al., 2005). Although traveling-wave ACEO
seems to produce slower net flow than standing-wave ACEO with planar
electrodes, the possibility of designing suitable non-planar electrodes has
not yet been considered.

ACEO flows can also be used to manipulate colloidal particles and bio-
logical cells in microfluidic devices (Green et al., 2000b; Wong et al., 2004;
Wu, 2006). The basic strategy is to use ACEO flow to draw particles to
stagnation points on the electrodes, where they are trapped. By increasing
the voltage, the ACEO flow can be reversed, and particles are observed to
move away from the stagnation lines, overcoming any remaining trapping
force. In this way, it is possible to write and erase suspended particles,
bacteria, or micro-algae on microelectrodes, as shown in figure 7(a). This
effect can be enhanced by added a DC bias voltage to the low-frequency AC
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voltage (50-100 Hz) between adjacent electrodes, as proposed by Wu (2006).
Particles are observed to collect only on the positively biased electrode, as
shown in Figure 32(b). It has been suggested that opposing ACEO flows are
produced by the competition between Faradaic charging on one electrode
(positive bias) and capacitive charging on the other (negative bias), but a
quantitative theory of these experiments remains to be developed. Perhaps
the effect is related to bulk electrohydrodynamic flows (Sides, 2001) and re-
lated AC colloidal aggregation phenomena on electrodes, recently reviewed
by Prieve et al. (2010)

11 Beyond the Standard Model

In spite of many successes, the Standard Model has some serious shortcom-
ings, recently reviewed and analyzed by Bazant et al. (2009b). It generally
over-predicts fluid velocities compared to experiments, sometimes by orders
of magnitude. It also fails to capture key experimental trends, such as the
decay of ICEO flow with increasing salt concentration, flow reversals at high
voltage and/or high frequency, and ion-specificities. The reasons for these
discrepancies are not yet fully understood.

Bazant and Squires (2010) have reviewed various recent theoretical ad-
vances, which extend the Standard Model in the following ways: (i) thin-
double-layer approximations for large induced voltages based on the classical
Poisson-Nernst-Planck (PNP) equations of ion transport and Navier-Stokes
(NS) equations of fluid flow, (ii) thick-double-layer approximations for the
PNP/NS equations at low voltages, (iii) modified boundary conditions for
electrochemical processes, and (iv) modified PNP/NS equations for large
voltages and/or concentrated solutions. The reader is referred to the review
articles for details, and here we only mention two interesting new effects
of the latter type, crowding and overscreening, which become important in
highly charged double layers.

As shown in Fig. 33, when the surface potential relative to the bulk solu-
tion greatly exceeds the thermal voltage kBT/e, there is inevitably crowding
of solvated ions in the inner portion of the double layer, and this pushes
apart the diffuse screening cloud away from the surface, thus effectively sep-
arating the two plates of the double layer capacitor. Since capacitance is
inversely proportional to the plate separation, the crowding of ions at high
voltage causes the differential capacitance to decrease at large voltages, as
the square root of the voltage, once a condensed layer of uniform charge
density forms. In contrast, the classical Gouy-Chapman model of dilute-
solution theory predicts the opposite voltage dependence, an exponential
growth of capacitance with voltage, given by Eq. (29), since nothing stops
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Figure 33. Solvated counterions (larger green spheres) and co-ions (smaller
orange spheres) near a polarizable surface. (a) At small induced voltages,
ΨD � Ψc, the neutral bulk is only slightly perturbed with a diffuse-charge
layer of excess counterions at the scale of λD. (b) At moderate voltages,
ΨD ≈ Ψc, the diffuse layer contracts, as described by Poisson-Boltzmann
(PB) theory. (c) At large voltages, ΨD 
 Ψc, the counterions inevitably
become crowded, causing expansion of the diffuse layer compared to the pre-
dictions of the classical Gouy-Chapman-Stern model, sketched in (d), which
is based Poisson-Boltzman theory for point-like ions with a minimum dis-
tance of approach, the “outer Helmholtz plane” (OHP), to model solvation
of the surface. (Reproduced from Bazant et al. (2009b) c© 2009 Elsevier.)
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(a)

(b)

μ

Figure 34. Crowding of finite-sized ions (Fig. 8) and high-frequency flow
reversal of planar ACEO pumps. (a) Experimentally observed velocity
pumping of 0.1mM KCl by the ACEO pump of Brown et al. (2000) around
a microfluidic loop versus AC frequency at different peak-to-peak voltages
(reproduced from Studer et al. (2004) c© 2004 Royal Society of Chemistry).
(b) Simulations of the same flow using a modified electrokinetic equations
with an effective hydrated ion size a = 4.4 nm for a lattice gas in the
mean-field local-density approximation; similar results are obtained using a
solvated ion diameter a ≈ 1 nm for hard spheres with dielectric saturation
in water (reproduced from Storey et al. (2008) c© 2008 American Physical
Society).
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point-like ions from piling up at the surface (or Outer Helmholtz Plane).
Using a simple mean-field theory of excluded volume effects for finite-sized
ions, a more general capacitance formula can be derived (Kilic et al., 2007;
Bazant et al., 2009b)

Cν
D =

ε
λD

sinh( zeΨD

kBT )

[1 + 2ν sinh2
(

zeΨD

2kBT

)
]
√

2
ν [1 + 2ν sinh2

(
zeΨD

2kBT

)
]

(60)

where ν = 2c0/cmax is the bulk volume fraction of ions (in a binary elec-
trolyte). Chapman’s formula (29) is recovered in the dilute solution limit,
ν → 0, or at low voltages. With this convenient analytical expression,
Storey et al. (2008) were able to predict the flow reversal of ACEO pumps
at high frequency and high voltage, in reasonable agreement with the exper-
iments of Studer et al. (2004), as shown in Fig. 34. At high voltage and low
frequency (or in the DC limit), Faradaic charge-transer reactions consume
normal current and can discharge the double layer, like a short circuit. At
high frequency, however, the polarity of the double layer changes too quickly
and solvated ions are squashed near the surface and then quickly removed,
prior to the onset of Faradaic reactions.

Another important effect related to ion crowding is the breakdown of
the mean-field approximation, due to the importance of discrete Coulomb
forces between individual ions (Levin, 2002). It is ubiquitous in electroki-
netics to use the mean, continuum charge density in Poisson’s equation,
ρ = ∇ · ε∇φ, to determine the “mean electric field” −∇φ, which exerts
forces on ions to cause electromigration and electro-osmotic flows, described
by the Nernst-Planck and Navier-Stokes equations, respectively. Although
Poisson’s equation holds instantaneously for the atomic-level charge den-
sity, the statistical averaging leading to the mean-field approximation is not
always justified. For point-like ions, electrostatic correlations become im-
portant at length scales smaller than the Bjerrum length, �b = e2/4πεkBT
(≈ 7Åin water at room temperature), where the Coulomb energy between
a pair of ions exceeds the thermal energy kBT . At this scale, especially
for multivalent ions, Coulomb correlations lead to new phenomena, such
as overscreening of a charged surface. An excess number of counterions is
attacted to the surface, leading to an apparent “charge inversion” that is
corrected by charge-density oscillations in subsequent layers. For a dense
mixtures of finite-size ions (such as ionic liquids, molten salts, or highly con-
centrated or confined electrolytes), the ion size becomes the relevant scale
for electrostatic correlations, and a subtle interplay with steric constraints
leads to a layered structure of alternating charge in the double layer, which
reduces the capacitance at high voltage. The availability of a simple con-
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tinuum theory for these effects from Bazant et al. (2011) may enable their
importance to be assessed in induced-charge electrokinetics in a general
modeling framework for non-equilibrium thermodynamics of concentration
solutions, as suggested by Bazant et al. (2009b).

12 Conclusion

Induced-charge electrokinetic phenomena comprise an active, growing, in-
terdisciplinary field of research, which spans colloid science, microfluidics,
and electrochemical systems. ICEO flows always occur to some degree at
any interface between an electrolyte and a polarizable surface, subject an
applied voltage or electric field. With the advent of microfabrication tech-
niques, ICEO flows can now be probed and exploited with high precision in
microfluidic devices or designer colloidal particles. Beyond these engineering
opportunities, induced-charge electrokinetic phenomena raise profound sci-
entific questions about the structure and dynamics of highly-charged double
layers.

This material is based upon work supported by the U. S. National Science
Foundation under Grant No. 0707641. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the National Science Foundation.
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N. G. Green, A. Ramos, A. González, A. Castellanos, and H. Morgan. Fluid
flow induced by nonuniform ac electric fields in electrolytes on microelec-
trodes. III. observation of streamlines and numerical simulation. Phys.
Rev. E, 66:026305, 2002.

M. M. Gregersen, F. Okkels, M. Z. Bazant, and H. Bruus. Topology and
shape optimization of induced-charge electro-osmotic micropumps. New
Journal of Physics, 11:075016, 2009.

C. K. Harnett, J. Templeton, K. A. Dunphy-Guzman, Y. M. Senousya, and
M. P. Kanouff. Model based design of a microfluidic mixer driven by
induced charge electroosmosis. Lab on a Chip, 8:565–572, 2008.

H. Helmholtz. Studien über electrische grenzschichten. Ann. Phys. Chem.,
7 (ser. 3):337–382, 1879.

C. C. Huang, M. Z. Bazant, and T. Thorsen. Ultrafast high-pressure ac
electro-osmotic pumps for portable biomedical microfluidics. Lab on a
Chip, 10:80–85, 2010.



Induced-Charge Electrokinetic Phenomena 293

R. J. Hunter. Foundations of Colloid Science. Oxford University Press,
Oxford, 2001.

A. S. Khair and T. M. Squires. Fundamental aspects of concentration polar-
ization arising from nonuniform electrokinetic transport. Phys. Fluids,
20:087102, 2008.

M. S. Kilic and M. Z. Bazant. Induced-charge electrophoresis near a wall.
Electrophoresis, in press, 2011. arXiv:0712.0453v1 [cond-mat.mtrl-sci].

M. S. Kilic, M. Z. Bazant, and A. Ajdari. Steric effects in the dynamics
of electrolytes at large applied voltages: I double-layer charging. Phys.
Rev. E, 75:021502, 2007.

B. J. Kirby and Ernest H. Hasselbrink. Zeta potential of microfluidic sub-
strates: 1. theory, experimental techniques, and effects on separations.
Electrophoresis, 25:187–202, 2004.

D. J. Laser and J. G. Santiago. A review of micropumps. J. Micromech
Microeng, 14:R35–64, 2004.

V. G. Levich. Physico-chemical Hydrodynamics. Prentice-Hall, London,
1962.

Y. Levin. Electrostatic correlations: from plasma to biology. Rep. Prog.
Phys., 65:1577–1632, 2002.

J. A. Levitan. Experimental study of induced-charge electro-osmosis. PhD
thesis, MIT, 2005.

J. A. Levitan, S. Devasenathipathy, V. Studer, Y. Ben, T. Thorsen, T. M.
Squires, and M. Z. Bazant. Experimental observation of induced-charge
electro-osmosis around a metal wire in a microchannel. Colloids and
Surfaces A, 267:122–132, 2005.

D. Long and A. Ajdari. Electrophoretic mobility of composite objects in free
solution: Application to dna separation. Electrophoresis, 17:1161–1166,
1996.

D. Long and A. Ajdari. Symmetry properties of the electrophoretic motion
of patterned colloidal particles. Phys. Rev. Lett., 81:1529–1532, 1998.

J. Lyklema. Fundamentals of Interface and Colloid Science. Volume II:
Solid-Liquid Interfaces. Academic Press Limited, San Diego, CA, 1995.

J. R. Melcher and G. I. Taylor. Electrohydrodynamics: a review of the role
of interfacial shear stresses. Annu. Rev. Fluid Mech., 1:11146, 1969.

F. A. Morrison and J. J. Stukel. Electrophoresis of an insulating sphere
normal to a conducting plane. J. Colloid and Interface Science, 33:88,
1970.

V. A. Murtsovkin. Nonlinear flows near polarized disperse particles. Colloid
Journal, 58:341–349, 1996.

V. A. Murtsovkin and G. I. Mantrov. Steady flows in the neighborhood of a
drop of mercury with the application of a variable external electric field.
Colloid J. USSR, 53:240–244, 1991.



294 Martin Z. Bazant

F. Nadal, F. Argoul, P. Hanusse, B. Pouligny, and A. Ajdari. Electrically
induced interactions between colloidal particles in the vicinity of a con-
ducting plane. Phys. Rev. E, 65, 2002.

L. H. Olesen, H. Bruus, and A. Ajdari. AC electrokinetic micropumps: the
effect of geometrical confinement faradaic current injection and nonlin-
ear surface capacitance. Phys. Rev. E, 73:056313, 2006.

A. J. Pascall and T. M. Squires. Induced charge electroosmosis over
controllably-contaminated electrodes. Phys. Rev. Lett, 104:088301, 2010.

H. A. Pohl. Dielectrophoresis: the behaviour of neutral matter in nonuni-
form electric fields. Cambridge University Press, 1978.

D. C. Prieve, P. J. Sides, and C. L. Wirth. 2-d assembly of colloidal particles
on a planar electrode. Current Opinion in Colloid and Interface Science,
15:160–174, 2010.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos. AC electrokinetics:
a review of forces in microelectrode structures. J. Phys. D, 31:2338–2353,
1998.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos. AC electric-field-
induced fluid flow in microelectrodes. J. Colloid Interface Sci., 217:
420–422, 1999.

A. Ramos, H. Morgan, N. G. Green, A. Gonzalez, and A. Castellanos.
Pumping of liquids with traveling-wave electro-osmosis. Journal of Ap-
plied Physics, 97:084906, 2005.

R. Rica and M. Z. Bazant. Electrodiffusiophoresis: Particle motion in elec-
trolytes under direct current. Physics of Fluids, 22:112109, 2010.

W. D. Ristenpart, I. A. Aksay, and D. A. Saville. Electrically guided as-
sembly of planar superlattices in binary colloidal suspensions. Phys. Rev.
Lett., 90:128303, 2003.

K. A. Rose and J. G. Santiago. Rotational electrophoresis of striped metallic
microrods. Physical Review E, 75:197–203, 2006.

I. Rubinstein and B. Zaltzman. Electro-osmotic slip of the second kind and
instability in concentration polarization at electrodialysis membranes.
Math. Mod. Meth. Appl. Sci., 11:263–300, 2001.

D. Saintillan, E. Darve, and E. S. G. Shaqfeh. Hydrodynamic interactions in
the induced-charge electrophoresis of colloidal rod dispersions. Journal
of Fluid Mechanics, 563:223–259, 2006a.

D. Saintillan, E. S. G. Shaqfeh, and E. Darve. Stabilization of a suspension
of sedimenting rods by induced-charge electrophoresis. Physics of Fluids,
18:121701, 2006b.

D. A. Saville. Electrohydrodynamics: The taylor-melcher leaky dielectric
model. Annu. Rev. Fluid Mech., 29:27–64, 1997.



Induced-Charge Electrokinetic Phenomena 295

R. B. M. Schasfoort, S. Schlautmann, J. Hendrikse, and A. van den Berg.
Field-effect flow control for microfabricated fluidic networks. Science,
286:942, 1999.

R. B. Schoch, J. Y. Han, and P. Renaud. Transport phenomena in nanoflu-
idics. Rev. Mod. Phys., 80(3):839–883, 2008.

V. N. Shilov and T. S. Simonova. Polarization of electric double layer of
disperse particles and dipolophoresis in a steady (dc) field. Colloid J.
USSR, 43:90–96, 1981.

P. J. Sides. Electrohydrodynamic particle aggregation on an electrode driven
by an alternating electric field normal to it. Langmuir, 17:5791–5800,
2001.

I. N. Simonov and V. N. Shilov. Theory of low-frequency dielectric-
dispersion of a suspension of ideally polarizable spherical particles. Col-
loid J. USSR, 39:775–780, 1977.

T. A. Simonova, V. N. Shilov, and O. A. Shramko. Low-frequency dielec-
trophoresis and the polarization interaction of uncharged spherical par-
ticles with an induced deby atmosphere of arbitrary thickness. Colloid
J., 63:108–115, 2001.

M Smoluchowski. Zur theorie der elektrischen kataphorese und der ober-
flchenleitung. Phys. Z., 6:529, 1905.

T. M. Squires. Electrokinetics over inhomogeneously slipping surfaces. Phys.
Fluids, 20:092105, 2008.

T. M. Squires. Induced-charge electrokinetics: fundamental challenges and
opportunities. Lab on a Chip, 9:2477, 2009. doi: DOI: 10.1039/b906909g.

T. M. Squires and M. Z. Bazant. Induced-charge electro-osmosis. J. Fluid
Mech., 509:217–252, 2004.

T. M. Squires and M. Z. Bazant. Breaking symmetries in induced-charge
electro-osmosis and electrophoresis. J. Fluid Mech., 560:65–101, 2006.

T. M. Squires and S. R. Quake. Microfluidics: fluid physics on the nanoliter
scale. Rev. Mod. Phys., 77:977–1026, 2005.

O. Stern. Zur theorie der electrolytischen doppelschicht. Z. Elektrochem.,
30:508–516, 1924.

H. A. Stone and A. D. T. Samuel. Propulsion of microorganisms by surface
distortions. Phys. Rev. Lett., 77:41024104, 1996.

H.A. Stone, A.D. Stroock, and A. Ajdari. Engineering flows in small devices:
Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 36:381411,
2004.

B. D. Storey, Lee R. Edwards, M. S. Kilic, and M. Z. Bazant. Steric effects
on ac electro-osmosis in dilute electrolytes. Phys. Rev. E, 77:036317,
2008.



296 Martin Z. Bazant
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