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Preface

The year 2011 marks the 20th anniversary since the discovery of Jak-Stat signal

transduction. During this period we have witnessed the pathway expand from

exclusively interferons to other cytokines and beyond. What was once a specialized

field has rapidly advanced to become general interest and a must-read in every

molecular biology textbook. At the same time a small number of aficionados in a

few labs have grown to become a large scientific community meeting at conference

series focused on their favorite pathway. The idea to assemble the following book

chapters was born at one of these meetings, a FEBS-sponsored event held in

February 2010 at Vienna, Austria. We have successfully solicited manuscripts

from leaders in the Jak-Stat field, many of whom were participants at the Vienna

meeting. We would like to thank them for their work. In addition we gratefully

acknowledge input and encouragement by members of the Viennese Jak-Stat

special research program and the sponsorship of this program by the Austrian

Science Foundation (FWF).

Vienna, January 2012 Thomas Decker

Mathias M€uller
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The Continuing Fascination with Jaks
and Stats: An Introduction

Thomas Decker and Mathias M€uller

The origins of the discovery of Jak-Stat signal transduction date back to the late

1980s when research groups headed by Jim Darnell, Ian Kerr and George Stark

were fascinated by the fact that gene transcription could be induced within minutes

after treating cells with type I interferons (IFN-I). The speed with which a signal

generated by the plasma membrane–associated IFN-I receptor travelled to nuclear

target genes suggested few intermediate steps. The Darnell, Kerr and Stark labs

identified bifunctional signal transducers and activators of transcription (Stats) as

responsible for IFN-induced transcription by using complementary biochemical

and genetic approaches (reviewed in Darnell et al. 1994). Shortly after this seminal

discovery, the labs of Sandra Pellegrini, Jim Ihle and Christine Carter-Su indepen-

dently identified non-receptor protein tyrosine kinases (pTK) in the signaling

pathways stimulated by, respectively, the IFN, erythropoietin and growth hormone

receptors (Argetsinger et al. 1993; Velazquez et al. 1992; Witthuhn et al. 1993). The

same kinases had previously emerged from screens for novel pTKs, conducted in

the labs of John Krolewski and AndrewWilks and named Janus kinases by the latter

(Firmbach-Kraft et al. 1990; Wilks et al. 1991). With recombinant Jaks and Stats at

hand it was possible to reconstitute IFN signaling between receptor and nuclear

targets with just two components: receptor associated Jaks that activate Stats by

tyrosine phosphorylation. Tyrosine phosphorylated Stats localize to the cell nucleus

and bind to promoter DNA of specific target genes (Fig. 1).
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Today Jak-Stat signal transduction is firmly established as the major route from

all class 1 and class 2 cytokine receptors to the cell nucleus. In addition, it

contributes to signaling by receptor tyrosine kinases and G-coupled receptors.

Therefore it is not surprising that Jaks and Stats play important roles in organisms

ranging from slime molds and insects to mammals. Virtually every complex

biological process between embryonic development and aging is influenced by

Jak-Stat signal transduction. Owing to its overwhelming importance this pathway

has rapidly entered text books as a major signaling paradigm. So what is new and

justifies yet another book reviewing Jak-Stat signal transduction?

Basics: Jak-Stat research continues to fill knowledge gaps and to produce

unexpected findings. Starting with Jaks, whose structure is still not completely

solved, the book reviews the state-of-the-art and the intramolecular regulation of

Jak activity. Insect Stats were shown to display ‘noncanonical’ functions indepen-

dently of tyrosine phosphorylation that regulate chromatin function. In mammalian

cells and organisms noncanonical Stat signaling exerts transcriptional control.

Moreover, Stat3 molecules lacking phosphotyrosine enter mitochondria and

impinge on the respiratory activity of these organelles. This provides one of

many links between Stats and cell metabolism that have recently emerged. Mito-

chondrial Stat3 may contribute to the Warburg effect, the predominant role of

glycolysis in the provision of energy to transformed cells.

Fig. 1 The essential

components of Jak-Stat signal

transduction. Cytokine

binding alters the

conformation of the receptor

complex, causing the Jak

kinases to phosphorylate and

activate each other.

Phosphorylation of receptor

tyrosines creates docking

sites for the Stat SH2

domains. Stats are

phosphorylated on a single

tyrosine residue where upon

they form dimers competent

of nuclear translocation and

able to associate with DNA

binding sites. White circles
symbolize phosphorylated

tyrosines

2 Th. Decker and M. M€uller



Early reports addressing mechanistic aspects of Stat activation and dimerization

supported the notion that dimers capable of nuclear translocation formed from Stat

monomers. The book provides a detailed review of the activation mechanism by

dimer reorientation, rather than formation, which accommodates new findings and

crystal structures from phosphorylated and unphosphorylated Stats. In addition this

chapter presents new ideas of how the subcellular localization of Stats is regulated

by postranslational modification.

Basic insight into mechanisms of transcriptional control by Stats has advanced in

part because of the much improved general understanding of the molecular machin-

ery regulating the initiation and elongation steps of transcription. Insight into the

complex scenario established by the molecular machines mediating nucleosome

remodeling, or the activities of histone and RNA polymerase modifying enzymes

allows to investigate and understand how Stats interact with these molecules.

Detailed analyses of promoter chromatin and associated proteins also provide a

better understanding of how different cytokines and signals crosstalk to Stats in the

form of gene co-regulation with other transcription factors. Furthermore, the

opportunities provided by applying massive parallel sequencing in the context of

ChIP-Seq and RNA-Seq technologies open up new prospects of Stat transcription

factors embedded into genome-wide landscapes of histone modifications that define

distinct functional states of chromatin.

Organismic homeostasis: Articles in this book take a close look at the role of

Stats in the generation of hematopoietic cells and, in particular, natural killer (NK)

cells, dendritic cells, T and B lymphocytes as regulators and effectors of immunity

to infection and cancer. The fascination of Stat biology arises from the fact that the

agonistic activity of different family members defines distinct lineages and

subpopulations of both DC and T cells. At the same time their antagonistic activity

may suppress the development of alternative developmental avenues. Among CD4

+ T cells each of the major subsets can be defined by the activity of a different Stat.

NK cells provide a striking example how different Stats regulate differentiation,

and activation in one cell type.

Stats in disease: Many chapters in this book review new findings that link both

physiological Jak-Stat activity to protection from disease and aberrant Jak-Stat

signaling to cancer or infectious disease.

Jak2 and Stat5 stand out as regulators of hematopoiesis. Consistent with this

both proteins are able to promote leukemic cell transformation if not properly

controlled. Several contributions describe molecular mechanisms leading to the

leukemic development and highlight the role of mutant Jak kinases as well as the

prospect of treating such leukemias with recently identified Jak inhibitors.

Jak-Stat activity at the wrong place or time also favors the development of solid

cancers. For example, Jak2, Stat3 and Stat5 promote the establishment or growth of

breast cancers each in their own way. Particularly Stat3 is a driving force behind

many solid cancers but studies reviewed in a contribution on inflammation-

associated colon cancer suggest that cell and organ context determine the net

activity of Stat3 as an oncogene or tumor suppressor as well as its antagonistic

relationship to Stat1.

The Continuing Fascination with Jaks and Stats: An Introduction 3



IFN signal through the prototypic Jak-Stat pathway to induce an antiviral state.

Chapters dealing with the role of Jaks and Stats in infectious disease present the

current understanding of the antiviral state as the combined activity of Stat target

gene products. They also show how Stats are subject to viral evasion strategies.

Since immunological activities of IFN are not limited to the struggle with viral

pathogens, recent examples of their impact on bacterial infection are presented to

show the pleiotropy of IFN action and the unpredictability of their impact on the

course of infection.

This brief description of the book is much less intended to inform comprehen-

sively about its content than it is to convince readers that Jak-Stat research is active,

dynamic and timely and that many of the findings described by experts in their field

could not have been presented in a similar book a few years ago. We thank our

colleagues for their significant time investment in preparing each chapter.
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Regulation of JAKs: Insights Gleaned from
the Functional Protein Domains

Claude Haan, Daniela Ungureanu, Tuija Pekkala, Olli Silvennoinen,
and Serge Haan

Abstract

Since their identification in the early 1990s, many studies have investigated the

function of Janus kinases as well as their regulation. It took about 15 years until a

first crystal structure of a Janus kinase domain was described and by today the

structures of all four kinase domains have been explored. In this chapter we

discuss the effects of the different JAK domains on the activity, trafficking and

localisation of JAKs that were reported in mutagenesis studies in the last 20

years of JAK research. We take into consideration the recently solved crystal

structures of the kinase domains as well as other structural information. In

addition, we reflect on the lessons that the recently identified activating

mutations in patients teach us.

Introduction

The family of Janus kinases (JAK) consists of fourmammalianmembers: JAK1, JAK2,

JAK3 and TYK2. JAK1, JAK2 and TYK2 are ubiquitously expressed, but expression

of JAK3 is confined mainly to cells of the haematopoietic system (Yeh and Pellegrini

1999;Heinrich et al. 2003; Ihle andKerr 1995). JAKkinases are involved in a variety of

biological processes including haematopoiesis and regulation of the immune system.

Cytokine receptors bind different JAKs (Heinrich et al. 2003; O’Sullivan et al. 2007;

Pestka et al. 2004; Kovanen and Leonard 2004; Hintzen et al. 2008) and the specificity
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of various signalling proteins for phosphotyrosine motifs within this receptor

determines the signalling characteristics of the different cytokines.

JAKs are constitutively associated via their FERM domain with the membrane

proximal region of the type I and type II hematopoietic cytokine receptors and

JAKs are absolutely required for downstream signal transduction. Currently there is

no structural information of the cytoplasmic domains of the cytokine receptors and

the exact mechanism of binding and activation of the JAKs in the receptor complex

are largely theoretical. Ligand binding induces conformational changes in the

receptor and allows juxtapositioning and transphosphorylation of the activation

loop tyrosines in JAKs resulting in enhancement of catalytic activity. Subsequently,

tyrosine residues in the receptors become phosphorylated allowing recruitment of

SH2 domain containing signalling proteins such as members of the Signal Trans-

ducer and Activator of Transcription (STAT) family transcription factors.

Phosphorylation plays an important role in regulation of JAK activity. As noted,

activation of JAKs in response to cytokine stimulation depends on phosphorylation

of the activation loop which in all JAKs consists of tandem tyrosine residues.

However, JAKs are phosphorylated at multiple sites. JAK2 has been the subject

to most thorough phosphor amino acid analysis and approximately 20 tyrosine

residues have been identified to be phosphorylated upon cytokine stimulation.

Several of these sites have been functionally characterized and in addition to

activation loop Y1007/1008, phosphorylation of Y637, Y813, Y868, Y966 and

Y972 have been shown to potentiate JAK2 activity, while phosphorylation of Y119,

Y221, Y317, Y570 and Y913 regulate JAK2 activity negatively (Argetsinger et al.

2004; Feener et al. 2004; Robertson et al. 2009). Interestingly, in the absence of

cytokine stimulation, JAK2 is constitutively phosphorylated on a single residue,

S523 which mediates negative regulation of JAK2 activation (Mazurkiewicz-

Munoz et al. 2006; Ishida-Takahashi et al. 2006). The precise mechanisms how

these phosphorylation events regulate JAK activity is known only for a few

residues. Phosphorylation of Y119 in the FERM domain induces dissociation of

JAK2 from the Epo receptor, and Y813 binds regulator protein SH2-B and

increases JAK2 activity (Funakoshi-Tago et al. 2006; Kurzer et al. 2004).

Due to their critical role in central biological processes such as proliferation, the

activity of JAKs needs to be tightly regulated by several mechanisms. Protein tyrosine

phosphatases SHP-1 and CD45 are shown to regulate JAK phosphorylation. The

family of Suppressor of cytokine signaling (SOCS) proteins plays an important role

in negative regulation of JAKs and cytokine signaling. SOCS1-7 and CIS are SH2

domain containing proteins that are transcriptionally induced by cytokine stimulation.

SOCS can regulate and control cytokine signaling by different mechanisms

(Yoshimura et al. 2007). The hallmark of the family is the C-terminal SOCS-box

that possesses Ubiquitin E3 ligase activity, and hyperphosphorylated forms of onco-

genic or normal JAKs have been shown to become ubquitinated by SOCS and directed

for proteasomal degradation (Kamizono et al. 2001; Ungureanu et al. 2002). SOCS1

and SOCS3 contain also a kinase inhibitory region (KIR) that can inhibit JAK function

by serving as a pseudosubstrate (Yasukawa et al. 1999). SOCS proteins can also bind

cytokine receptors and compete for SH2 domain binding sites.

6 C. Haan et al.



Phenotypic analysis of knockout mice of all four JAKs has yielded valuable

information for the understanding of their physiological role. These mice show

phenotypes that are linked to cytokine signalling deficiencies. JAK1 and JAK2 defi-

ciency is not compatible with life. JAK2 knock-out mice die at day 11 of embryogene-

sis because of the lack of erythropoiesis (Parganas et al. 1998; Neubauer et al. 1998).

JAK1 knock-out mice die perinatally due to motoneuronal defects (Rodig et al. 1998).

JAK3 knock-out mice exhibit a SCID (Severe Combined Immuno-Deficiency) pheno-

type (Nosaka et al. 1995; Park et al. 1995; Thomis et al. 1995). Finally TYK2-

deficiency leads to hypersensitivity towards infections due to the absence of pro-

inflammatory immune responses (Karaghiosoff et al. 2000; Shimoda et al. 2000).

JAKs are involved in inflammatory and immune disorders in which cytokines

play crucial roles (Ghoreschi et al. 2009; Pesu et al. 2008) as well as in cytokine-

dependent cancers such as multiple myeloma. JAK3 mutations and deletions lead to

severe combined immunodeficiency (SCID) characterised by the absence of

circulating T- and NK-cells, normal or increased numbers of nonfunctional

B-cells and hypoplasia of lymphoid tissues (Pesu et al. 2008; Macchi et al. 1995).

Activating JAK2 fusion proteins (TEL-JAK2, PCM1-JAK2, ETV6-JAK2 and

SSBP2-JAK2) evoke lymphoid and myeloid leukemia and MPN-U (Peeters et al.

1997; Lacronique et al. 1997; Reiter et al. 2005; Murati et al. 2005; Bousquet et al.

2005; Adelaide et al. 2006; Griesinger et al. 2005; Poitras et al. 2008; Cirmena et al.

2008). Mutations in the Janus kinase 2 gene were found with high incidence in

patients with myeloproliferative neoplasms (MPNs) (JAK2-V617F and a number of

point mutations and deletions in exon 12) (James et al. 2005; Kralovics et al. 2005;

Levine et al. 2005; Baxter et al. 2005; Zhao et al. 2005), in myeloid leukemia

(JAK2-T875N) (Mercher et al. 2006), in acute lymphoblastic leukemia (ALL)

(JAK2-L611S) (Kratz et al. 2006), and in acute megakaryoblastic leukemia

(AMKL) (JAK2-V617F and JAK2-M535I) (Nishii et al. 2007). These constitu-

tively active JAK2 mutants have been described to activate STAT5 and STAT3,

MAP kinases and PI3K/AKT. Activating mutations in JAK1 have also been

reported for ALL (Flex et al. 2008; Jeong et al. 2008) and gain of function

mutations of JAK3 (A572V, A573V) were found in ALL and AMKL patients

(Malinge et al. 2008; Walters et al. 2006). Figure 1 shows a selection of JAK

mutations associated with disease (for a more detailed description of more JAK

mutations see Pesu et al. 2005; Haan et al. 2010). JAK3 mutations in humans SCID

are amino acid changes, a premature stop or frame shift mutations causing altered

protein sequence (see also Fig. 1). A point mutation in the pseudokinase domain of

TYK2 was reported to impair IL-12 and IFN-mediated signalling and was

associated with resistance to collagen-induced arthritis in a murine model (Shaw

et al. 2003). Moreover, it has recently been shown that polymorphisms at the TYK2

locus are associated with Systemic Lupus Erythematosus (Sigurdsson et al. 2005).

Sequence similarities between JAK family members initially led to the descrip-

tion of seven JAK homology (JH) domains (Wilks et al. 1991), which only partially

match the functional domain structure of JAKs. The JH1 and JH2 domains corre-

spond to the kinase and pseudokinase domain. The JH3 to JH7 regions form a

FERM and an SH2 domain (Wilks et al. 1991; Girault et al. 1998).The JAK FERM
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domain is quite divergent from other FERM domains so that structure prediction is

not trivial. The SH2 domain too presents some special features discussed below.

Currently the only structural data available for any of the JAKs are the X-ray

structures of the tyrosine kinase domains. While further structural information will

be required to obtain complete understanding of the regulation of JAK kinases in

physiological and pathogenic signalling, an overall picture of JAK regulation is

emerging from various experimental settings. In this review we present biological,

biochemical and clinical information about the different functional domains that

reveal important information about regulation of JAK kinases.

JAK/Cytokine Receptor Interactions

Crystallographic data on the JAK N-terminal part and of cytokine receptors does

not exist, thus the structure/function-relationship between cytokine receptors and

Janus kinases still remains elusive as does the exact sequence of events involved in

Fig. 1 Domain structure of Janus kinases and of a selection of mutations observed in patients.

Model structures of the JAK1-FERM, -SH2, and pseudokinase domain (Haan et al. 2010), the

solved crystal structure of the JAK2 kinase domain (PDB entry code: 2B7A) as well as the

schematic domain structure for all JAKs are represented. Mutations indicated in black lead to

constitutively active JAK proteins (only mutations with validated functions are shown). Mutations

in grey represent mutations which lead to a loss of function (in JAK1) or are found in severe

combined immunodeficiency (JAK3). Abbreviations used: X ¼ stop codon; fs ¼ frame shift;

D ¼ deletion; e12/14/16 ¼ exon12/14/16; F1-3 ¼ subdomains of the FERM domain
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Janus kinase activation. JAK binding to cytokine receptors is crucial for their

function even in the context of constitutively active mutants. The JAK2-V617F

mutant is rendered inactive if cytokine receptor binding is abrogated, and concomi-

tantly looses its transforming potential (Lu et al. 2008; Wernig et al. 2008).

Activating JAK2 fusion proteins (TEL-JAK2, PCM1-JAK2, ETV6-JAK2 and

SSBP2-JAK2) however are constitutively active without cytokine receptor binding,

and are activated by oligomerisation of the non-JAK part of the fusion protein, but

this is of limited interest for the elucidation of the activation mechanism occurring

in full length JAKs.

The FERM Domain

FERM domains are clover-shaped domains comprising three subdomains. The

N-terminal subdomain F1 has a ubiquitin-like b-grasp fold. Subdomain F2 has an

acyl-CoA-binding-protein-like fold, and subdomain F3 has a PH-domain

(pleckstrin homology) fold (Pearson et al. 2000). Structural models of JAK

FERM domains (based on structural data of a number of solved FERM domains

(Haan et al. 2001, 2008, 2010)) have been used to explore the function of the

postulated JAK FERM domain (Girault et al. 1998; Haan et al. 2001, 2008; Hilkens

et al. 2001) (reviewed in Haan et al. 2006, 2010). The N-terminal FERM domain in

JAKs binds to the membrane-proximal box1/2 region of cytokine receptors (Richter

et al. 1998; Zhao et al. 1995; Chen et al. 1997; Cacalano et al. 1999; Kohlhuber

et al. 1997). The involvement of rather long sequence stretches within the receptor

and JAKs suggests that the interaction is mediated by multiple contacts. A defined

JAK orientation on a cytokine receptor ultimately is critical for activation. The

receptor-JAK interaction probably induces a restructuring of certain receptor

residues into defined interaction interfaces. Such an “induced fit-like” scenario

seems necessary to explain the binding of the largely non-structured (according to

secondary structure predictions) region of cytokine receptors encompassing the

box1 and box2 regions. In receptors such as gp130 or the EpoR this region counts

52 or 61 amino acids and could span a distance of about 19 or 23 nm, respectively.

In contrast, the FERM domain of JAKs would at most measure about 6–7 nm across

(Fig. 2). Alternatively, a non-structured cytoplasmic tail of a cytokine receptor

could adopt a loop structure winding repeatedly through the clefts or along the

surface of the FERM domain. Whichever scenario is correct, the involvement of

several subdomains (FERM subdomains and SH2 domain) of the JAK and long

stretches within the receptor harbours the potential for a very tight and long-lasting

interaction. It seems to be a general phenomenon that the mere proximity of JAKs

in receptor complexes is not sufficient for their activation and that further confor-

mational changes are required (Constantinescu et al. 2001; Greiser et al. 2002;

Watowich et al. 1999; Haan et al. 2002). There is evidence that rigidity of the

a-helical transmembrane regions can extend into the intracellular (Constantinescu

et al. 2001; Greiser et al. 2002; Zhu and Sizeland 1999) as well as to the extracellu-

lar region (Kubatzky et al. 2005). Secondary structure predictions suggest that the
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transmembrane a-helix may extend to the beginning of the box1 region (Fig. 2).

The proline-rich box1 region might adopt other secondary structures (i.e.

polyproline type II helical structure) or the receptor might have a less ordered

conformation from there on. Interestingly, mutations or insertions of residues

within this putative a-helical region of the cytokine receptor gp130, which did

not have an influence on JAK1 binding, were nevertheless crucial for JAK1

phosphorylation and activation (Greiser et al. 2002; Haan et al. 2002). Thus, the

role of the membrane proximal region in cytokine receptor signalling is not

restricted to mere JAK binding. The W652 mutation in gp130 even behaved

dominantly negative, since no signalling occurred when only a single cytoplasmic

chain of a gp130 dimer contained the mutation. The corresponding mutation

(W258) in the erythropoietin receptor (EpoR) also led to impaired JAK activation

and is thought to be part of an a-helically organised region, whose precise orienta-

tion is necessary to promote signalling (Constantinescu et al. 2001). Thus, the

continuation of the transmembrane helix into the cytoplasm seems to be important

for JAK orientation on the cytokine receptor. This of course means that it might be

Fig. 2 Model structure of JAK-FERM domain compared to the non structured box region of a

cytokine receptor. (a) Model structure of the JAK1-FERM domain with indicated dimensions. (b)
Schematic representation of a non-structured box1–box2 region of the cytokine receptor gp130.

The approximate dimensions for a non-structured polypeptide chain are given. (c) Alignment of

the box1–box2 regions of gp130 and the EpoR
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necessary to include receptor sequences into the research effort aiming at structur-

ally solving the JAK N-terminal domains, which again adds a level of complexity to

this unsolved problem. In the same line of evidence, not every peptide mimetic

mediating EpoR dimerization led to signal transduction (Livnah et al. 1999). Also,

signalling through the gp130 homodimer can be elicited using antibodies against

the extracellular part of the cytokine receptor. Interestingly, efficient gp130 activa-

tion could only be achieved by two distinct agonistic monoclonal antibodies

(M€uller-Newen et al. 2000; Autissier et al. 1998) again supporting the notion that

the sterical information is transduced through the transmembrane region into the

cell to ultimately leads to JAK activation (Remy et al. 1999).

ERM proteins (ezrin, radixin, moesin) bind membranes by binding

phospholipids with their FERM domains. Interestingly however, the residues

which mediate phospholipid binding in the FERM domain of radixin (Hamada

et al. 2000) are not conserved in JAKs. Furthermore mutations in Janus kinases

which impair receptor binding lead to a cytoplasmic localisation of JAKs. This

indicates that the JAKs are recruited to membranes solely by interaction with

cytokine receptors.

The SH2 Domain

The FERM domain is followed by a predicted SH2 domain for which secondary

structure prediction analysis of the JAK family members reveals the typical pattern

of SH2 domains. The conservation of structural (conserved in all) and functional

residues (conserved in only some JAKs) within the JAK SH2 domains shows a

discrepancy to all other SH2 domains. The essential functional arginine residue at

position bB5, conserved to 99.8% in SH2 sequences, is only conserved to 80% in all

JAK SH2 sequences. Interestingly no classical SH2 domain function could be

shown to date. Neither the IL6 nor the IFN-g induced signalling capacity of

JAK1 was affected by an SH2 domain inactivating point mutation (Radtke et al.

2005). A similar mutation in human JAK2 also did not interfere with IFN-g
signalling (Kohlhuber et al. 1997). JAK SH2 domain sequences show some addi-

tional unconventional features. The absence of a well conserved tryptophan which

anchors the N-terminal tail at the back of the SH2 domain and directs it away from

the phosphotyrosine recognition site, indicates that the domain preceding the SH2

domain, namely the FERM domain, could be positioned aside and not behind the

SH2 domain. It was postulated that the SH2 domain may act as a spacer and

structurally support and stabilise the FERM domain (Radtke et al. 2005). Recently

a role for the SH2 domain has been proposed in the context of JAK2-V617F mutant

(Gorantla et al. 2010).

Independently of any SH2 specific phosphotyrosine peptide binding function,

truncation mutants and SH2 domain swapping mutants showed that the SH2

domain of JAK1 was structurally important for binding to the OSMR and conse-

quently for efficient OSMR surface expression (Radtke et al. 2005). In contrast, for

gp130, EpoR and the interferon-a receptor 1 (IFNaR1), the SH2 domain of JAK1,
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JAK2 or TYK2, respectively, were not necessary for receptor binding, although the

SH2 domain was required for the upregulation of receptor surface expression of

EpoR and IFNaR1 (Hilkens et al. 2001; Ragimbeau et al. 2003; Huang et al. 2001).

Trafficking and Localisation of JAK/Cytokine Receptor Complexes

As mentioned above, the structural integrity of the FERM domain (and in some

cases the SH2 domain) is crucial for receptor binding and constitutively active

oncogenic JAK mutants require receptor interaction to transform cells. Thus, the

trafficking and localisation of the JAKs is dependent on their structural features and

is intimately linked to the regulation of JAK activity.

The JAK/Receptor Complex Is Comparable to a Receptor
Tyrosine Kinase

The data from JAK/cytokine receptor interaction studies, from trafficking studies

(Ragimbeau et al. 2003; Huang et al. 2001; Radtke et al. 2002, 2006; He et al. 2005;

Royer et al. 2005; ) and localisation studies suggest that JAK1 is recruited to

membranes by tight association with cytokine receptors. The fact that JAK binding

deficient cytokine receptor mutants or JAKmutants impairing receptor binding lead

to a cytoplasmic distribution of JAKs shows that JAKs have no significant intrinsic

membrane binding potential. A membrane-bound protein, like JAK1, without a

transmembrane domain could conceivably also directly bind to the membrane by

lipid modifications (e.g. myristoylation, palmitoylation, farnesylation), by lipid

binding domains (e.g. FERM-, PH-, FYFE-domains), through membrane

penetrating structures, by electrostatic forces, by binding to other membrane-

associated proteins, or by a combination of some of these mechanisms. However,

this does not seem to be the case for JAKs. As already mentioned above the residues

which mediate phospholipid binding in the FERM domain of radixin (Hamada et al.

2000) are not conserved in JAKs. Also, after cytokine stimulation, JAK1 remained

localised at the plasma membrane and did not change its localisation (Behrmann

et al. 2004). Interestingly, the half-lives of cytokine receptors and JAKs e.g. gp130

and JAK1 are also identical (Siewert et al. 1999) and this again argues in favour of a

“common fate” of the two proteins. FRAP experiments showed that the mobilities

for overexpressed gp130-YFP and JAK1-YFP were equal. JAK1-YFP diffuses on

the plasma membrane with the velocity of a transmembrane protein indicating that

there is no rapid exchange of bleached JAKs from a transient cytoplasmic pool. It

was also possible to show that immobilisation of gp130-CFP by a pair of cross-

linking monoclonal antibodies also led to the immobilisation of JAK1-YFP (Giese

et al. 2003). Thus, JAK molecules do not exchange between different receptors at

the plasma membrane and the gp130/JAK1 complex at least can be considered as an

un-dissociable entity resembling a receptor tyrosine kinase.
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The Kinase/Pseudokinase Connection

One surprising finding of the analysis of the kinome consisting of 518 protein

kinases was that appr. 10% of them, namely 48 proteins, contained pseudokinase

domains (Manning and Cantley 2002). A protein is designated as a pseudokinase if

it lacks one or several of the canonical motifs considered to be required for

catalysis. In only five of these proteins a pseudokinase domain and an additional

functional kinase domain are present in the same protein polypeptide. These are the

four Janus kinases and the serine/threonine kinase GCN2. Recent structural data

indicate that pseudokinases with significant sequence degeneration adapt a kinase

fold that resembles that of their nearest functional relative (Scheeff et al. 2009). The

general fold of the pseudokinase domain of JAKs is expected to follow closely a

kinase structure.

The Kinase Domain

The kinase activity is mediated by the C-terminal kinase domain. All protein

kinases possess a catalytic domain that comprises approximately 300 amino

acids. They share the bilobal kinase fold: The N-terminal lobe is composed of

five b-strands and a single a-helix. The C-terminal lobe is predominantly a-helical
and contains the regulatory activation loop (A-loop). The sequential similarity of

the JAK kinase domains is quite high and the solved structures of the JAKs also

show little difference in and around the ATP binding pocket. The published crystal

structures of all the JAK1, JAK2, JAK3 and TYK2 kinase domains have proven the

existence of an additional helix within the C-lobe of the JAK kinase domain which

was termed aH-helix for JAK2 and FG-helix in the case of JAK3 (Lucet et al. 2006;
Boggon et al. 2005; Williams et al. 2009) and that has been shown to be crucial for

kinase activity (Haan et al. 2009). This special feature in JAKs is lining the

substrate binding site of the kinase and lies in close proximity to the catalytic

cleft of the enzyme. One family member, JAK3 has some special features compared

to the other JAKs. It is the only JAK family member in which an alanine residue

directly precedes the DFG-motif (in contrast to a glycine residue in the other JAKs).

This subtle difference could directly affect the conformation of the A-loop in the

way that was already discussed for the inactive insulin receptor (GDFG-motif) and

fibroblast growth factor receptor (ADFG-motif) kinase domains (Hubbard et al.

1998). JAK3 is also the only Janus kinase having a cysteine residue at position

C909 in close proximity to the ATP binding pocket. Thus JAK3 would be a

potential target for ATP-competitive inhibitors with an electrophilic group (so

called irreversible inhibitors) (Haan et al. 2010) which would covalently attach to

the mentioned JAK3 cysteine. The toxic potential is hard to evaluate but the amount

of possible off-kinase-targets potentially reacting with the electrophile is a risk

(Rishton 2003).
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The Pseudokinase Domain

The sequence of the JH2 pseudokinase domain is conserved to the same extent as

the JH1 domain among different JAKs (appr. 30% identity) and during evolution.

However, the genomic organization of JH2 differs from JH1 thus suggesting that

the domains have evolved individually. The structure of the JH2 domain for any of

the JAKs has not yet been published, but the sequence homology to functional

kinases suggests that it follows a similar fold. However, differences in some of the

conserved sequence motifs considered to be required for catalytic activity are

missing or altered in JH2. Specifically, JAKs lack the third Gly in the Glycine-

rich (GxGXXG) ATP binding loop, and in the ATP orienting VAIK motif the

Alanine is changed to Val, Leu or Ile. In the in DFG cation binding motif the

Phenylalanine is changed to Proline. Most dramatic difference, however, is the lack

of the catalytic base Aspartic acid in the subdomain VIb. Collectively these

alterations have led to the conclusion that JH2 is catalytically inactive and been

assigned as pseudokinase domain (Boudeau et al. 2006; Zeqiraj and van Aalten

2010). Recently, however, the pseudokinase status of several proteins, including

CASK, haspin, WNK1, VRK3, HER3/ErbB3, and STRADa, has been changed and
the studies have shown that ATP-binding and/or catalytic activity can be achieved

through non-canonical mechanisms (Mukherjee et al. 2008; Eswaran et al. 2009;

Shi et al. 2010; Zeqiraj et al. 2009; Scheeff et al. 2009). Each of these proteins

utilizes a distinct mechanism for nucleotide binding and/or catalysis. Interestingly,

HER3, which resembles JAKs in lacking the catalytic base aspartate was found to

retain low level kinase activity and be able to phosphorylate its intracellular region

in vitro (Shi et al. 2010). The crystal structure of HER3 showed that it assumes an

atypical conformation for active kinases, particularly in aC helix and activation

segment (Shi et al. 2010; Jura et al. 2009). It will be important to evaluate whether

the JAK JH2 also possess catalytic activity.

Regulation of Kinase Domain by the Pseudokinase Domain

The domain structure of JAK kinases is conserved from Drosophila to mammalians

suggesting that the dual kinase domain structure is functionally important. The first

insight into the functional role of JH2 domain was obtained from SCID patient,

where mutations in JAK3, including those in the JH2 domain, were found to cause

abrogation of JAK3 activation and IL-2 mediated signal transduction (Russell et al.

1995; Candotti et al. 1997). The next piece of information related to the function of

JH2 domain came from the Drosophila system, where a point mutation in the JH2

domain was found to cause hyperactivation of the JAK kinase and hyperproli-

feration of hemolymph (Luo et al. 1997). Analogous mutation in mammalian JAK2

(E665K) also resulted in hyperactivity though the effect was mild (Luo et al. 1997).

Thus, these genetic models provided seemingly controversial conclusion, in JAK3

JH2 domain was required for activity and signalling, while in Drosophila the

domain was mediating a negative regulator function. However, biochemical and

14 C. Haan et al.



functional studies have provided additional information about the role of JH2

domain in regulation of JAKs and cytokine signalling (Chen et al. 2000; Yeh

et al. 2000). The studies on JAK2 demonstrated that deletion of JH2 domain

increased basal activity but abolished the cytokine induced activation of JAK and

downstream signalling (Saharinen et al. 2000). The function of JH2 appears to be

conserved among JAKs, or at least between JAK2 and JAK3, since chimeric

constructs encompassing the JH2 of JAK3 in JAK2 background was able to

reconstitute cytokine induced signalling in JAK2 deficient cell line (Saharinen

and Silvennoinen 2002). Biochemical and kinetic analysis of the JH2 domain in

JAK2 in vitro showed that the JH2 domain did not affect Km but reduced the Vmax

of JAK2 catalytic activity thus suggesting a non-competitive mechanism of inhibi-

tion (Saharinen et al. 2003). This finding, combined with the cellular interaction

between JH1 and JH2 suggested that a physical interaction between JH1 and JH2 is

mediating the inhibitory function (Saharinen and Silvennoinen 2002). Furthermore,

three inhibitory regions have been identified in JH2 of which the first starts at the

loop between b4 and b5 in the N-lobe of JH2. TheDrosophilaHop mutation as well

as the MPN causing V617F mutation reside both in this same region.

The evidence for the requirement of the JH2 domain for JAK activation and

functional cytokine signalling is derived from clinical and artificial mutations as

well as from functional studies. The underlying mechanism is still unknown but the

data from receptor-JAK complex organizations provides insights into this para-

digm. The binding of JAK1 and JAK2 to the juxtamembrane regions in gp130 and

EpoR, respectively, is necessary but not sufficient for the induction of JAK activa-

tion (Constantinescu et al. 2001; Haan et al. 2002). In the case of JAK2 and EpoR,

the induction of catalytic activity was suggested to involve an interaction between

the active conformation of the a-helical juxtamembrane region and the JH1-JH2

domain. Collectively these data can be summed in a model of JAK regulation in

cytokine receptors, where JAKs are maintained inactive through a JH1-JH2 inter-

action in the absence of cytokine stimulation. Ligand binding to the receptor

induces a conformation change in the a-helical hydrophobic juxtamembrane region

which relieves the inhibitory JH1-JH2 interaction and allows transphosphorylation

of the JAKs and their activation and progression of signal transduction (Fig. 3).

The mechanisms by which JH2 mediates the regulatory functions is currently

unknown but a recent study has evaluated the inter-domain interactions in kinase

activity and substrate specificity using recombinant JAK2 kinase domains

(O. Silvennoinen and I. Touw, personal communication). Using a peptide micro-

array platform, the JH2 was found to drastically decrease the activity of the JH1

domain by increasing the Km for ATP. JH2 was also found to modulate the peptide

preference of JAK2. Interestingly, the V617F mutation partially releases this

inhibitory mechanism but did not significantly affect substrate preference or Km

for ATP. These results provide the biochemical basis for the interaction between the

kinase and the pseudokinase domain of JAK2. In addition, molecular modelling has

provided insights into possible mechanism of JH2 function. The model of Lindauer

et al based on the crystal structure of the FGF receptor dimer, suggest two interac-

tion interfaces between JH1 and JH2 (Lindauer et al. 2001). It should be noted, that
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there is currently no firm evidence that this model is relevant for JAKs, but

nonetheless the model has proven to provide good predictions and explanations to

structure/function analysis, particularly related to the V617F mutations. The main

interface between JH1 and JH2 is composed of the N-terminal a-helices in both

domains. The second interaction site is between the activation loop in JH1 and the

loop between b4 and b5 in JH2, starting from V617. This interaction is expected to

stabilize the inactive conformation in the activation loop. Recent molecular dynam-

ics simulations largely agree with the original homology model, but provide

evidence for additional interfaces consisting of hydrophobic interaction between

F595 in JH2 with the activation loop and the interaction between b4 and b5 loop

with a loop in JH1 (E1028-S1032) interacting with the activation loop (Lee et al.

2009). The V617F mutation is predicted to inhibit the inhibitory JH1-JH2 interac-

tion by blocking the interaction of F595 and S591 with the activation loop and

forcing the activation loop to its active fold. Dusa et al have addressed the function

of F595 experimentally and their results also indicate a stacking interaction

between F595 and the V617F mutant as a mechanism to activate the kinase (Dusa

et al. 2010).

Fig. 3 Schematic representation of the normal and pathological activation of the Janus kinases.

(a) In the absence of ligand binding, the kinase activity is prevented via the interaction with the

pseudokinase domain and involving pS523 (red dot) in the JH2 domain. Upon cytokine binding,

receptor dimerization leads to kinase activation via transphosphorylation, by releasing the inhibi-

tory JH1-JH2 interaction. (b) Cytokine-independent activation of Janus kinases mediated by

mutations in the JH2 domain. MPD-causing mutations in the JH2 domain result in displacement

of JH1-JH2 inhibitory interaction and altered pSer523 phosphorylation levels. JAKs can transpho-

sphorylate even in the absence of cytokine binding, leading to cytokine-independent signalling and

a hyperactive JAK2
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Lessons from Patient Mutations

Mutations Within the Pseudokinase Domain

The majority of the pseudokinase domain mutations affect the N-terminal lobe of

the domain and modify residues involved in either the postulated interface with the

kinase domain (Levine et al. 2005) or structurally important residues whose muta-

tion can destabilize the N-lobe and thus also affect a possible interface between the

pseudokinase and kinase domains. Mutations in the C-lobe of the pseudokinase

domain are rare, which could suggest that the structural integrity of this region is

essential for JAK function and/or that its surface does not participate in the kinase

domain activity regulation. In the case of JAK2 the mutations can be attributed to be

part of two structural hotspots (I and II) which are associated with different disease

phenotypes. Mutations in hotspot I are associated with MPN while mutations

located in hotspot II lead to a different clinical phenotype, namely lymphoblastic

leukaemia (discussed in Haan et al. 2010). To date this genotype-phenotype

specificity incorporates all activating exon 12, 14 and 16 mutations (Haan et al.

2010; Bercovich et al. 2008). The mutations in the different structural hotspots I and

II might influence the recruitment to different signalling complexes including

different cytokine receptors and lead to different signalling events. Such geno-

type-phenotype specificity is not yet obvious for the corresponding mutations in

JAK1 and JAK3, where the same structural hotspots are affected by mutations.

A proposed theory, based on a molecular model of the full length JAK2,

concerning the effects of the V617F postulates that the residue V617 is part of

the binding interface by which the pseudokinase domain contacts the kinase domain

and negatively regulates its activity (Levine et al. 2005). Accordingly, mutation of

this residue to a larger hydrophobic residue should prevent optimal contact and

reduce the affinity of the inhibitory interaction. However, it was shown that a

V617Y exchange does not lead to constitutive activity, indicating that the situation

may be more complex (Dusa et al. 2008). Although the hypothesis concerning the

interface between the pseudokinase and kinase domain makes a lot of sense and

explains much of the biological data, it must be noted that the true molecular

mechanism could be different and that only a solved structure encompassing at

least the pseudokinase and the kinase domains would provide reliable evidence for

the mechanism.

Mutations Within the Kinase Domain

Most mutations are confined to a loop-region between the b2 and b3 strands of JAK2
(R867Q, D873N, T875N). Similarly, the other reported mutations (P933R in JAK2

and R879C/H/S in JAK1) affect residues which are exposed on the surface and do not

affect the structure of the domain. Considering the kinase-pseudokinase interaction

model by Lindauer and colleagues (Lindauer et al. 2001), none of the activating

JAK2mutations can be attributed to the proposed interface between the two domains.
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Perspectives

Although there is an overall understanding of the basic functions of the different

JAK subdomains it is yet unclear how these domains interact with each other and

with the cytokine receptor and which structural changes are imposed on JAKs

during activation of the cytokine receptor complex. It still remains mechanistically

unclear how the disease-associated mutations in JAKs translate into a gain-of-

function phenotype and thus the molecular basis of the mutational hotspots

associated with either MPN or leukaemia remains elusive.

Here, we have reviewed data which demonstrate that the FERM domain of JAKs

is crucial for receptor association and the SH2-like domain may also be involved in

this interaction. Nevertheless, the real situation might still be more complex. The

FERM domain has also been described to influence kinase activity. The structural

integrity of the pseudokinase domain of TYK2 is essential for high-affinity-binding

of cytokines to the IFNAR (Yeh et al. 2000; Gauzzi et al. 1997), pointing to an

important role of TYK2 in “organising” the receptor complex. Also, data on JAK3

suggest that the kinase domain may affect receptor binding (Zhou et al. 2001). All

this is indicative of a complex interplay of the different JAK subdomains with the

cytokine receptor, which very likely reflects different activation states. Interestingly

all of these yet unknown intramolecular interactions might be susceptible to

interference with allosteric inhibitors.
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Nuclear Functions of the Janus Kinases

Mark A. Dawson and Andrew J. Bannister

Abstract

The Janus kinases are a family of non-receptor tyrosine kinases which are key

mediators of cellular signalling pathways. These enzymes regulate the growth,

survival, development and differentiation of a number of different tissues

including the endocrine, mammary and haematopoietic system. The constitutive

activation of these kinases are increasingly being recognised as sentinel events in

the initiation and progression of several malignancies. These findings underline

the importance of a thorough understanding of the cellular functions of

this ancient and essential family of enzymes. The role of the canonical JAK-

STAT signalling pathway in conveying extracellular stimuli to the nucleus of

cells to alter gene expression has been extensively characterised. However,

recent evidence in both drosophila and mammalian cells suggest a previously

unrecognised role for the Janus kinases in directly altering gene expression by

changing the structure and function of chromatin. In this chapter we review

nuclear functions of the Janus kinases with an emphasis on the emerging

evidence that these tyrosine kinases have a critical role as chromatin modifying

enzymes.

M.A. Dawson (*)

Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge,

Cambridge CB2 0XY, UK

Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK

Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road,

Cambridge CB2 1QN, UK

e-mail: mafd2@cam.ac.uk

A.J. Bannister

Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road,

Cambridge CB2 1QN, UK

Th. Decker and M. M€uller (eds.), Jak-Stat Signaling: From Basics to Disease,
DOI 10.1007/978-3-7091-0891-8_3, # Springer-Verlag Wien 2012

27

mailto:mafd2@cam.ac.uk


Introduction

In the late eighties, AndrewWilks and colleagues in Melbourne, Australia set out to

clone the receptors for the newly identified haematopoietic colony stimulating

factors (Gough et al. 1984; Nicola and Metcalf 1984). Their first attempt at cloning

a critical haematopoietic regulator was successful, however their initial goal was

not achieved; instead they had serendipitously cloned two related but as yet

unidentified kinases that bore little resemblance to the previously characterised

receptor tyrosine kinases. Their disappointment led them to name these two kinases

‘Just Another Kinase’ one and two respectively (Wilks 1989). Despite their initial

reservations the group continued to work on the newly discovered kinases and soon

their disappointment gave way to elation as other members of the family were

discovered and ascribed important cellular functions including an integral role in

cytokine signalling (Firmbach-Kraft et al. 1990; Velazquez et al. 1992). It soon

became apparent that the structures of these kinases were unique as they contained

two kinase-like domains. It was under this guise that the family adopted their new,

more August name, the Janus kinases; named after the Roman God Janus, a deity

with two faces who presided over gates and doorways, new beginnings and endings

(Wilks et al. 1991).

In mammals the Janus kinase family consists of four members; JAK1, JAK2,

JAK3 and TYK2. Of these, JAK1, JAK2 and TYK2 are ubiquitously expressed

whereas JAK3 expression is confined to the haematopoietic system (Musso et al.

1995). Two decades of research have now firmly established that one of the primary

functions of the Janus kinases is to mediate the intracellular signalling for a

multitude of structurally diverse receptors including cytokine receptors, receptor

tyrosine kinases and G-protein coupled receptors. Whilst a number of cytokines

utilise more than one JAK family member, there are a number of non-reductant

functions ascribed to each mammalian JAK kinase. This has now been studied in

great detail with knock-out mice having been generated for each of the JAK family

members (Karaghiosoff et al. 2000; Neubauer et al. 1998; Nosaka et al. 1995;

Parganas et al. 1998; Park et al. 1995; Rodig et al. 1998; Shimoda et al. 2000;

Thomis et al. 1995).

The main cytoplasmic signalling pathways initiated by activation of the JAK

kinases include the signal transducer and activator of transcription (STAT) family

of transcription factors, the Ras/mitogen activated protein kinase (MAPK) signal-

ling pathway and the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. The

primary focus for understanding the consequences of JAK activation in develop-

ment and disease has centred on the STAT family of transcription factors. The

STAT family of transcription factors were first identified in the early 1990s when

they were demonstrated to play a critical role in mediating transcription after

interferon stimulation (Fu et al. 1992; Schindler et al. 1992). Since then seven

mammalian STATs have been identified STAT1, STAT2, STAT3, STAT4,

STAT5A, STAT5B and STAT6. Moreover, alternative splicing and proteolytic

processing results in several biologically active isoforms of each of these family

members (Lim and Cao 2006).
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Recently, gain of function mutations or translocations involving JAK family

members have been described in a myriad of haematological neoplasms (Baxter

et al. 2005; Bercovich et al. 2008; James et al. 2005; Kralovics et al. 2005;

Lacronique et al. 1997; Levine et al. 2005; Mullighan et al. 2009). The most

prevalent of these is the JAK2V617F mutation, which underpins the molecular

pathogenesis of the myeloproliferative diseases (Campbell and Green 2006; Levine

et al. 2007). Much of the research aimed at understanding the functional outcome of

these gain of function mutations in JAK2 have centred on elucidating the

consequences of constitutive activation of the downstream cytoplasmic signalling

pathways such as STAT, MAPK and PI3K-AKT. However, we have known for

over a decade that the Janus kinases are also present within the nucleus of cells.

Nuclear Localisation of the Janus Kinases

In 1996, Peter Lobie and colleagues provided one of the first descriptions of a

nuclear localisation for the Janus kinases (Lobie et al. 1996). They demonstrated

that JAK1 and JAK2 were present in the nucleus of CHO cells and rat liver

hepatocytes. Nuclear localisation in this report was confirmed with immunocyto-

chemistry, immunogold electron microscopy and western blotting of purified

nuclear extracts. Within a year these observations were confirmed and extended

by Ram and Waxman who demonstrated that nuclear JAK2 in rat liver hepatocytes

associates with activated STAT3 (Ram and Waxman 1997). In 2001, Sandra

Pellegrini’s group demonstrated that a third member of the Janus kinase family,

TYK2, was also present within the nucleus (Ragimbeau et al. 2001). Furthermore,

they mapped a non-classical nuclear localisation sequence (NLS) to the FERM

domain of TYK2. This region of TYK2 is broadly conserved in JAK2 and JAK3,

but not in JAK1. Subsequent to these early reports other investigators also described

a nuclear localisation for the Janus kinases in various tissues including pancreatic

cells (Sorenson and Stout 1995), oocytes (Ito et al. 2004), kidney (Kamakura et al.

2004) and mammary cells (Nilsson et al. 2006). Together, these reports highlight

the presence of the Janus kinases within the nucleus but until recently their function

within this sub-cellular compartment was largely uncharacterised.

Yukiko Gotoh and colleagues provided some early insights into a nuclear

function for JAK2 by demonstrating a direct interaction between nuclear JAK2,

STAT3 and the Hes proteins (Kamakura et al. 2004). These findings uncovered a

previously unrecognised mechanism of cooperation between Notch signalling and

the JAK/STAT pathway and demonstrated a specific function for nuclear JAK2 in

this process. Similarly, work from Marie Kannius-Janson and colleagues has

demonstrated a novel role for nuclear JAK2 in response to prolactin stimulation

in mammary tissues (Nilsson et al. 2006). They demonstrated that prolactin

stimulated JAK2 specifically phosphorylates NF1-C2 within the nucleus of cells

(Nilsson et al. 2006). NF1-C2 is a transcription factor that regulates the expression

of milk genes during pregnancy, and tyrosine phosphorylation by nuclear JAK2

retards its proteosomal degradation (Nilsson et al. 2006). More recently, these
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authors have demonstrated that breast cancer patients whose tissues demonstrate

higher levels of nuclear JAK2 and NF1-C2 have an improved survival (Nilsson

et al. 2010). This is in part due to the fact that tyrosine phosphorylated NF1-C2

suppresses epithelial-to-mesenchymal transition (EMT) in breast tissues (Nilsson

et al. 2010). Other targets for nuclear JAK2 following prolactin stimulation of

breast tissues have started to emerge and include the RUSH transcription factors

(Helmer et al. 2010; Hewetson et al. 2002). Together, these data provide a novel

insight into a unique function for nuclear JAK2 in both normal and malignant breast

tissues. Interestingly, both NF1-C2 and RUSH appear to be STAT independent

targets of nuclear JAK2 highlighting the fact that these two elemental mediators of

cytokine signalling need not always function together.

A JAK Chromatin Link

A pioneering study performed by Willis Li’s laboratory in late 2006 uncovered a

fascinating role for JAK signalling by demonstrating that JAK signalling can

dramatically alter the structure and function of chromatin. The authors of this

study performed a genome wide screen to elucidate moderators of JAK signalling

in D. melanogaster (Shi et al. 2006). The sole Janus kinase in this organism, called

hopscotch, is most closely related to human JAK2 (Arbouzova and Zeidler 2006;

Hombria and Brown 2002). Like its human orthologue naturally occurring single

missense mutations in hopscotch lead to its constitutive activation and culminate in

haematopoietic malignancies (Harrison et al. 1995; Luo et al. 1995, 1997). The

seminal observation from this work was that chromatin associated proteins were

one of the major moderators of JAK signalling and indeed the leukemic phenotype

within transgenic flies expressing a constitutively active JAK protein. In particular,

they noted that JAK signalling disrupted heterochromatic gene silencing by

counteracting the effects of key structural components of heterochromatin includ-

ing the mislocalisation of heterochromatin protein 1 (HP1).

These important findings demonstrated a novel consequence of signalling

through the Janus kinases. However, many questions remained unanswered.

These included (1) do the Janus kinases alter chromatin structure directly or

indirectly via one of its downstream cytoplasmic signalling pathways and (2)

what are the molecular mechanisms by which JAK signalling counteract hetero-

chromatin function?

Nuclear JAK2 in Haematopoietic Cells

The work described above raised the possibility that JAK2, an enzyme frequently

mutated and activated in haematological cancers might mediate some of its onco-

genic potential within the nucleus of haematopoietic cells. We therefore investi-

gated the sub-cellular localization of both wild type JAK2 and JAK2V617F in a

number of different haematopoietic cell lines. Nuclear JAK2 was apparent in all of
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the haematopoietic cell lines tested and moreover we also demonstrated the pres-

ence of JAK2V617F in the nuclei of primary CD34 stem cell antigen positive

(CD34+) cells isolated from a patient with JAK2V617F positive post-polycythaemic

myelofibrosis (Dawson et al. 2009). Whilst we did not observe a clear difference

between the nuclear localisation of wild-type JAK2 and JAK2V617F, subsequent

work by Rinaldi et al. suggested that JAK2V61F may preferentially localise to the

nucleus within haematopoietic cells (Rinaldi et al. 2010). These authors showed that

K562 cells expressing wild type JAK2 contained relatively low levels of nuclear

JAK2 whereas K562 cells expressing JAK2V617F contained comparatively higher

levels of the kinase within the nucleus. Moreover, this study also suggested that

unlike wild-type JAK2, JAK2V617F is more likely to be nuclear in more primitive

haematopoietic cells, whereas both forms of JAK2 are largely cytoplasmic in termi-

nally differentiated myeloid cells. The biological implications for these findings are

currently unknown.

JAK2 Is a Histone Tyrosine Kinase

The identification of a nuclear pool of JAK2 in haematopoietic cells coupled to the

findings in D. melanogaster raised the intriguing possibility that JAK2 may directly

modify a chromatin substrate. Chromatin is a macromolecular complex of DNA

and histone proteins that exists in eukaryotic cells. Generally, two distinct chroma-

tin states have been described; heterochromatin refers to the tightly packaged

genomic regions that are by and large transcriptionally silent, whereas euchromatin

adopts a more ‘open’ conformation that is supportive of transcriptional activity. The

basic functional unit of chromatin is the nucleosome, which consists of a histone

octamer containing two each of histones H2A, H2B, H3 and H4, around which 147

base pairs of DNA is wrapped (Kornberg and Lorch 1999; Luger et al. 1997;

Woodcock 2006). The repeating nucleosome units are further compacted into a

larger 30 nm chromatin fibre, at least in vitro, by incorporating the linker histone

H1. In the cell, supercoiling and twisting generates the compact chromatin that

constitutes the chromosomes. Importantly, folding and unfolding of the chromatin

superstructure is a highly regulated and co-ordinated event that governs key DNA

based processes including transcription, repair and replication (Woodcock 2006).

The structure of the nucleosome has shed further light on the organization of the

histone octamer (Luger et al. 1997). It provided evidence that each histone

possesses a structured globular domain and an unstructured flexible amino-terminus

and in some cases an unstructured carboxy-terminus. These histone tails extend

from their own nucleosome to contact DNA and histones in adjacent nucleosomes.

Efforts to study the coordinated regulation of the nucleosome has demonstrated that

all the components of the nucleosome are subject to covalent modifications, which

fundamentally alter the structure and function of these basic components of chro-

matin (Kouzarides 2007). To date there are at least eight different classes of

modifications and over 60 distinct modification sites described within the major

core histones (Kouzarides 2007). These modifications include lysine acetylation
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(Sterner and Berger 2000), lysine and arginine methylation (Bannister et al. 2002),

serine and threonine phosphorylation (Nowak and Corces 2004), lysine

ubiquitylation (Shilatifard 2006), glutamate poly-ADP ribosylation (Hassa et al.

2006), lysine sumoylation (Nathan et al. 2006), arginine deimination (Cuthbert

et al. 2004; Wang et al. 2004) and proline isomerization (Nelson et al. 2006). Until

recently, tyrosine phosphorylation of the non-variant histones had not been

characterized.

We demonstrated that JAK2 phosphorylates tyrosine 41 in histone H3

(H3Y41ph) both in vitro and in vivo (Dawson et al. 2009). H3Y41 lies at a

structurally important region within the nucleosome. It is positioned at the

N-terminus of the first helix of H3 (aN1-helix), the region of the nucleosome from

which the H3N-terminal tail exits (Luger et al. 1997). At this region the tail of

histone H3makes contact with the nearby DNA. Thus, it seems likely that the region

of H3 surrounding Y41, and hence the phosphorylation of this site, will play an

important role in nucleosome structure/stability and ultimately perhaps higher order

chromatin structure and architecture. Consistent with this suggestion, mutation of

Y41 to alanine widens the DNA entry/exit angle of the nucleosome (Ferreira et al.

2007). Moreover, the absolute importance of Y41 has been demonstrated in yeast

where a conservative mutation (Y > F) is observed to be lethal (Dai et al. 2008;

Nakanishi et al. 2008). Considering these data together it seems likely that phos-

phorylation of H3Y41 by JAK2 may also be linked to alterations in nucleosomal

structure.

In addition to the above structural considerations the region of H3 surrounding

Y41 also forms a dynamic binding platform for one or more chromatin associated

factors. One such example is Heterochromatin Protein 1 alpha (HP1a) that was
recently shown to bind this region of H3 (Dawson et al. 2009; Lavigne et al. 2009).

The HP1 family of proteins are relatively small heterochromatin associated

proteins. In humans there are three highly similar isoforms, HP1a, HP1b and

HP1g (Fanti and Pimpinelli 2008). Each family member consists of two conserved

domains; a chromodomain (CD) and a chromoshadow domain (CSD) separated by

a less conserved flexible hinge region. Generally speaking, the three HP1 isoforms

have overlapping functions and similar, but not identical, chromosomal locations

(Fanti and Pimpinelli 2008; Lomberk et al. 2006). All three isoforms are capable of

directly associating with histone H3 di/tri-methylated at K9 (H3K9me2/3)

(Bannister et al. 2001; Lachner et al. 2001). This association is mediated via the

CD of each protein specifically binding to the methylated lysine 9 within the H3 tail

(Bannister et al. 2001; Lachner et al. 2001). Notably, H3K9me2/3 occurs predomi-

nantly in heterochromatin and this agrees very well with a high degree of enrich-

ment of HP1 in these regions of the genome. However, HP1 proteins are also

present in more euchromatic regions of the genome where they are involved in the

regulation of certain genes. Exactly how HP1 proteins are recruited to and

maintained at these euchromatic sites is still not fully understood but it almost

certainly involves more than just binding to H3K9me2/3. For instance, there is only

a partial overlap between HP1 and H3K9me2/3 in these regions indicating multiple

recruitment mechanisms (Hediger and Gasser 2006; Li et al. 2002).
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As mentioned above, it was recently reported that HP1a directly binds to the

region of H3 surrounding Y41 (Dawson et al. 2009; Lavigne et al. 2009). In fact,

HP1a uses its CSD to directly bind to this region of H3 (Dawson et al. 2009; Lavigne

et al. 2009). Crucially, phosphorylation of H3Y41 by JAK2 disrupts the in vivo

association of HP1awith chromatin in haematopoietic cells (HEL cells) and with H3

peptides in vitro (Dawson et al. 2009). Thus, there exists a dynamic and regulatable

binding of HP1 to chromatin that may be independent of H3K9methylation. HP1a is

known to reduce mitotic recombination (Cummings et al. 2007), repress gene

transcription (Panteleeva et al. 2007) and preserve centromeric architecture leading

to the faithful segregation of sister chromatids (Yamagishi et al. 2008). It is therefore

tempting to speculate that reversal of these functions via phosphorylation of H3Y41

may help explain, at least in part, the phenotypic consequences of constitutive JAK2

activation in haematological malignancies; increased gene expression, mitotic

recombination and genetic instability (Campbell and Green 2006; Levine et al.

2007; Plo et al. 2008) (Fig. 1). In accordance with this suggestion, the phospho-

switch regulation of HP1a binding to H3Y41 was found to occur at the lmo2 gene, an
essential gene for normal haematopoietic development and one that has been

implicated in leukaemogenesis (McCormack and Rabbitts 2004). Specific small

molecule inhibition of endogenous JAK2 resulted in an enrichment of HP1a within

the lmo2 promoter as well as inhibition of transcription. Thus, this represents a clear

example of nuclear JAK2 directly regulating gene transcription (of an important

oncogene) via phosphorylation of H3Y41 at the chromatin interface. These data have
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Fig. 1 Nuclear JAK2 phosphorylates histone H3Y41 and prevents the binding of heterochromatin

protein 1a (HP1a) to a novel binding site on chromatin. The exclusion of HP1a at the promoters of

genes is associated with increased gene expression and may account for other oncogenic

phenomena
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been independently corroborated by Rinaldi et al. who demonstrated that

JAK2V617F increases the expression of lmo2 in both K562 cells and primary

CD34+ haematopoietic stem cells (HSC) (Rinaldi et al. 2010).

The regulation of HP1a binding to the region surrounding H3Y41 by JAK2 may

play an important role in several diverse tissues apart from erythroid-leukaemia cells.

Evidence in support of this was recently provided byGriffiths et al. who demonstrated

that JAK2V617F can completely substitute for leukaemia inhibitory factor (LIF)

and Bone Morphogenetic Protein (BMP) signalling in embryonic stem (ES) cells

(Griffiths et al. 2011). Murine ES cells are derived from the inner cell mass of

the developing mouse blastocyst and they can be maintained in culture indefinitely,

while retaining the ability to differentiate into all somatic cell types. Embryonic stem

cells are commonly isolated andmaintained using a combination of LIF and foetal calf

serum (FCS) (Moreau et al. 1988; Smith et al. 1988;Williams et al. 1988). LIF signals

via JAK kinases and involves activation of STAT3 (Niwa et al. 1998), which

is essential for LIF dependent ES cell self-renewal (Raz et al. 1999). FCS can be

replaced by the addition of Bone Morphogenetic Protein (BMP) thus permitting ES

cell culture in chemically defined conditions (Ying et al. 2003). More recently it

has been demonstrated that two small molecule inhibitors of ERK and GSK3 kinase

pathways, referred to as 2i growth conditions, can replace both LIF and BMP

(Ying et al. 2008). JAK signalling therefore controls the balance between self-renewal

and differentiation of both hematopoietic stem cells (HSC) and ES cells.

Griffiths et al. demonstrated that ES cells expressing the human JAK2V617F

mutant kinase remained pluripotent and could self-renew indefinitely in chemically

defined conditions without cytokines or small molecule inhibitors (Griffiths et al.

2011). Surprisingly, this phenotype was independent of JAK2 activation of STAT3

or PI3K. Gene-expression analysis showed that ES cells expressing JAK2V617F

demonstrated higher levels of the pluripotency regulator nanog when compared to

wild-type ES cells. Nanog was shown to be important for the factor independent

growth of JAK2V617F containing ES cells and significantly alteration of JAK2

activity concomitantly altered the expression of nanog. Finally, these authors

demonstrated that JAK2V617F phosphorylates H3Y41 at nucleosomes surrounding

the nanog promoter and this phosphorylation dynamically regulates the binding of

the HP1a at this site.

Notwithstanding the aforementioned studies, an unresolved question concerning

the interplay of JAK2 and HP1a at the chromatin interface is what role, if any does

H3K9 methylation play? The importance of understanding the molecular

mechanisms governing the binding of HP1 to chromatin was further highlighted

by findings from Louis Staudt’s laboratory (Rui et al. 2010). These investigators

adopted a functional approach to dissecting the molecular pathogenesis of

Hodgkin’s Lymphoma (HL) and Primary Mediastinal B-Cell Lymphoma

(PMBL). Both these diseases frequently demonstrate an amplification of chromo-

some 9p and these investigators demonstrated using a library of shRNAs that three

genes (JAK2, JMJD2C and RANBP6) within this amplicon are primarily responsi-

ble for driving the disease. JMJD2C is a histone lysine demethylase that catalyses

the removal of methyl groups from lysine 9 on histone H3 (H3K9me2/3)
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(Cloos et al. 2006; Loh et al. 2007; Whetstine et al. 2006; Wissmann et al. 2007). As

discussed above, H3K9me2/3 serves as a binding site for HP1. The concurrent

amplification of JAK2 within these tumours further undermines HP1 binding to

chromatin by enhancing H3Y41ph. Indeed, these authors demonstrated that this

dual destabilisation of HP1 binding to chromatin results in the increased expression

of the potent oncogene c-myc, which undoubtedly contributes to malignant trans-

formation in both HL and PMBL (Rui et al. 2010). The results of this study suggest

that perturbations of either binding site for HP1 (H3K9me2/3 or the region

surrounding H3Y41) may have disastrous consequences and result in malignant

transformation. However, what remains unresolved is how HP1 utilises these two

distinct binding platforms.

Since HP1 binds to H3K9me via its CD, and to H3Y41 via its CSD, it is possible

that both binding events may occur at the same genomic location. If so, a single

molecule of HP1 could bind to H3K9 methylation and to H3Y41 on the same H3

tail. On the other hand, one molecule of HP1 could contact two separate H3 tails,

perhaps on the same or adjacent nucleosomes; via CD binding to H3K9me on one

tail and CSD binding to H3Y41 on the other tail. Alternatively, H3K9me and

H3Y41 may be separate binding activities, both in terms of functionality and

localization. Whatever the mechanism, it is clear that HP1 is more than just a

heterochromatic scaffold protein and that it functions with JAK2 in order to

regulate critically important processes such as the transcription of oncogenes and

pluripotency factors (Fig. 1).

The identification of lmo2, c-myc and nanog as JAK2-regulated genes and

JAK2’s link with HP1a provided a significant insight into the mechanism(s) by

which JAK2 may initiate transcriptional programmes. In spite of this, a significant

question remains concerning how JAK2 is selectively recruited to specific genomic

loci. This may occur via a number of potential mechanisms but perhaps the most

likely is via a direct association with a DNA bound transcription factor. In this case,

an interaction between JAK2 and a STAT transcription factor seems an attractive

hypothesis since JAK2 is known to associate with this family of transcription

factors, at least in the cytoplasm. However, both nanog and lmo2 gene do not

appear to be regulated by STAT transcription factors leaving unanswered the

question concerning JAK2 recruitment to these loci.

Recently, great advances have been made in combining chromatin research with

genome wide technologies. It is now possible to couple chromatin immunoprecipi-

tation (the selective immuno-enrichment of specific chromatin fragments via anti-

body recognition) with massively parallel DNA sequencing of the associated DNA.

In this way, one can determine the genomic distribution of any chromatin-

associated factor, or indeed histone modification as long as an appropriate antibody

is available. By employing this approach we determined the genome-wide distribu-

tion of H3Y41ph using chromatin prepared from HEL cells (Dawson et al., unpub-

lished). This analysis generated several interesting and surprising observations. The

results indicate that tyrosine phosphorylation behaves differently to other well-

characterised histone modifications such as lysine acetylation and methylation.

Acetylation and methylation are often associated with active genes, with no
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apparent preference for a specific pathway. In contrast, H3Y41ph marks a specific

set of genes stimulated by a specific signalling pathway. Furthermore, H3Y41ph

blankets a set of key haematopoietic genes, a number of which have been

implicated in neoplastic transformation. This indicates that H3Y41ph represents a

new class of histone modification defining both a signaling pathway and a tissue-

specific gene expression programme. The genome-wide H3Y41ph analysis also

uncovered a previously unrecognized nuclear component of the JAK/STAT signal-

ing pathway and hinted at the possibility that the STAT family of transcription

factors may aid in targeting JAK2 to chromatin.

A key question arising from the aforementioned studies is how is nuclear JAK2

regulated? Certainly, one or more cytokine-dependent pathways are involved since

cytokine activation of cells expressing only wild-type JAK2 leads to a global

increase in H3Y41ph (Dawson et al. 2009) and also an enrichment of H3Y41ph

at the promoters of responsive genes (Dawson et al., unpublished). These data

indicate that cytokines lead to the presence of active nuclear JAK2. This response

could be achieved by at least two, non-mutually exclusive mechanisms. It may be

that cytokine-mediated activation of the JAK/STAT pathway initiates a signal

transduction pathway that extends in to the nucleus where it culminates in the

activation of a nuclear pool of JAK2. Future work will be needed to investigate this

intriguing possibility. Alternatively, activation of cytoplasmic JAK2 via the canon-

ical pathway may in some instances induce its nuclear translocation. Evidence

supporting the latter suggestion comes from work analysing the distribution of

JAK2V617F in the erythroleukaemic K562 cell line. In this cell line JAK2V617F is

predominantly nuclear, but inhibition of the kinase by a small molecule inhibitor

(AG490) induces a cytoplasmic localization (Rinaldi et al. 2010). This indicates

that JAK2 needs to be in an activated form in order to enter the nucleus, which is

indicative of a tightly regulated import mechanism. If so, it is possible that blocking

this import mechanism in patients with mutated JAK2 may provide a new opportu-

nity for therapeutic intervention.

Future Directions

The most surprising but informative finding from the genome-wide analyses is the

fact that JAK2-STAT5 signalling occurs right at the chromatin template (Dawson

et al., unpublished). What remains unclear from the work discussed above is

whether there are two distinct pools of cellular JAK2, one within the cytoplasm

and one within the nucleus, or whether JAK2 is actively shuttled between these

cellular compartments. Furthermore, it is also unclear whether JAK2 differentially

phosphorylates STAT5 within the nucleus and the cytoplasm or whether these

observations are simply an extension of the well described canonical cytoplasmic

pathway. If the latter is proven to be the case, an attractive hypothesis given the

striking correlation between STAT5 binding and H3Y41ph is that STAT5 serves as

the chaperone and targeting module for JAK2’s activity at chromatin. A physical

interaction between JAK2 and STAT5 is well established. Several studies using
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different methodologies such as yeast-two-hybrid screens, co-immunoprecipitation

and in vitro binding assays with the recombinant proteins have clearly

demonstrated that JAK2 and STAT5 physically interact (Barahmand-Pour et al.

1998; Fujitani et al. 1997). This physical interaction was most elegantly defined by

Thomas Decker’s laboratory when they introduced mammalian JAK2 and STAT5

into yeast, which lack orthologues to either of these proteins or indeed any

components of the canonical JAK-STAT pathway (Barahmand-Pour et al. 1998).

Here, they were able to demonstrate that the SH2 domain of STAT5 and the JH1

domain of JAK2 mediate the principal interaction between these proteins. A further

ill-defined association between the proteins that was independent of the SH2 and

JH1 domains was also noted (Barahmand-Pour et al. 1998).

This physical interaction between JAK2 and STAT5 raises the possibility that

STAT5 chaperones JAK2 into the nucleus of cells and targets its kinase activity at

chromatin through its high-affinity interaction with its sequence specific elements

on DNA. Alternatively, STAT5 may bind and target only the nuclear fraction of

JAK2. A third but equally plausible scenario is that JAK2 and STAT5 are indepen-

dently targeted to their locations by a different factor(s). Clearly, delineating the

role of STAT5 in targeting the enzymatic activity of JAK2 at chromatin is an

important area for future work. However, dissecting this problem will be a chal-

lenging process for many reasons. Firstly, there are four JAKs and seven mamma-

lian STAT family members and several of these have already been demonstrated to

have varying degrees of functional redundancy (Benekli et al. 2003; Parganas et al.

1998; Teglund et al. 1998; Yamaoka et al. 2004). Moreover, the subtotal eradication

of STAT5 in assessing its contribution to JAK2 targeting is unlikely to be informa-

tive as evidenced by the original description of the STAT5A/B double knock out

mice. Analysis of these mice surprisingly demonstrated that they possessed a

virtually normal haematopoietic system and a practically normal response to

cytokines that exclusively signal via JAK2 such as erythropoietin (Teglund et al.

1998). These mice have subsequently been shown to still express low amounts of

N-terminally truncated forms of both STAT5A/B (Dolznig et al. 2006; Hoelbl et al.

2006; Moriggl et al. 2005; Yao et al. 2006), which are still capable of activating

several target genes, highlighting the difficulties of dissecting the pathway in cells

that contain even low levels of functional STAT5. True double knock out STAT5A/B

mice have subsequently been generated. However, these mice suffer from severe

anaemia and die perinatally which largely precludes the assessment of STAT5A/B in

normal haematopoiesis in vivo (Cui et al. 2004). The direct assessment of the

function of STAT5A/B in haematopoietic cells will require a clean genetic system

such as the conditional knockout of these transcription factors in specified

haematopoietic lineages using the Cre/Lox system. A system such as this will be

necessary to accurately delineate the role of STAT5, if any, in chaperoning and/or

targeting JAK2 to chromatin. It will also allow the phenotypic assessment of the

consequence of impaired STAT5 function in communicating the intracellular signals

of lineage specific cytokines such as erythropoietin and thrombopoietin that signal

exclusively via JAK2.
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Negative Regulation of JAK2-STAT5 Within the Nucleus

The findings that JAK2 has a critical role as a chromatin modifying enzyme raises

important questions relating to the negative regulation of this essential enzyme

within the nucleus. To date much of what we know about the negative regulation of

the Janus kinases and indeed the JAK/STAT pathway has focused on events within

the cytoplasm of cells. The three main classes of negative regulators of this pathway

include phosphatases such as SHP1/2, the SOCS and PIAS family of proteins, each

which have varied roles in dampening down the JAK-STAT mediated cytokine

response (Wormald and Hilton 2004). Whilst some members of the PIAS family

have been well described to have nuclear functions (Sharrocks 2006), until recently

the SHP phosphatases and SOCS family were largely thought to be limited to the

cytoplasm. However, several recent reports have described an unexpected nuclear

localisation for several of these proteins. Both SHP1 and SHP2 have recently been

described to have a nuclear localisation (Chughtai et al. 2002; Craggs and Kellie

2001). Interestingly, SHP2 was noted to be co-localised with STAT5 within the

nucleus (Chughtai et al. 2002). Similarly, several members of the SOCS family

have also been described to be unexpectedly present within the nucleus of different

tissues (Koelsche et al. 2009; Lee et al. 2008). These findings raise the intriguing

possibility that the negative regulation of the JAK-STAT pathway within the

nucleus may be similar to what has previously been described within the cytoplasm

of cells.

Related to this issue is the role, if any, of HP1a in regulating the expression

of canonical JAK2-STAT5 target genes. It is interesting that recent work by

Willis Li’s laboratory has demonstrated that STAT92E (the sole STAT member

in D. melanogaster) physically interacts with and stabilises the binding of HP1 to

chromatin (Shi et al. 2008; Yan et al. 2010). More specifically, these authors

initially demonstrated that depleting STAT92E unexpectedly induced a marked

de-repression of heterochromatin. Conversely, elevated STAT92E levels lead to a

stabilisation of heterochromatin. Both of these findings were dependent on HP1

expression as concurrently increasing HP1 was able to counteract the effects of

reducing STAT92E. These findings appeared somewhat contradictory to those

initially reported by this group where increased JAK signalling had led to hetero-

chromatic de-repression. These seemingly incongruous findings were explained by

the fact that unphosphorylated STAT92E physically binds to HP1 and that this

binding is abrogated once STAT92E becomes phosphorylated by JAK. The model

postulated by these authors suggests that unphosphorylated STAT binds HP1 at

chromatin to stabilise its association and complement its function. Then, following

phosphorylation by a tyrosine kinase, STAT no longer associates with HP1 and

HP1 binding to chromatin is de-stabilised.

These findings raise the interesting possibility that unphosphorylated STAT5

may similarly associate with HP1 and contribute to its chromatin association

and function in mammalian cells. Aspects of the genome-wide data discussed

above (Dawson et al., unpublished), are complimentary to those reported in

D. melanogaster; our results suggest that if unphosphorylated STAT5 is indeed
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associated with HP1a then phosphorylation of both STAT5 and H3Y41 is required

for the displacement of HP1a from chromatin (Fig. 2). This possibility warrants

further investigation. It would be interesting to know if any or all of the mammalian

STAT family members physically interact with the HP1 family of proteins. In

addition, it will be important to determine if any of the HP1 proteins are present

and regulated at the canonical JAK2-STAT5 genes.

JAK-STAT Signalling at Chromatin in Development
and Oncogenesis

The finding that JAK2 signalling is present at chromatin raises several important

questions for the field relating to the wider applicability of this discovery to both

normal and malignant processes. A key question is whether these results are

peculiar to JAK2 or are they more pervasive. Understanding if all the JAK family

members are capable of entering the nucleus of cells to phosphorylate H3Y41 is an

essential step in further defining the broader application of this research. Similarly,

it is equally important to understand if all the STAT family members communicate

and cooperate with their cognate JAK members within the nucleus and how

H3Y41ph along with the binding sites of the STAT proteins regulate transcription.

As discussed previously, the JAK-STAT pathway is critical for haematopoiesis,

adipogenesis, immune and mammary development (O’Shea et al. 2002). What is

currently unknown however is what role, if any, H3Y41ph plays in controlling the

transcriptional programmes required for the normal development of these tissues.

An attractive system in which to investigate this is the haematopoietic system.

Haematopoietic stem cells (HSC) are the best-characterised tissue-specific stem
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Fig. 2 Hypothetical model of transcriptional regulation at chromatin. Un-phosphorylated STAT

proteins bind HP1a and co-operate in transcriptional repression. Following cytokine stimulation,

activated JAKs phosphorylate STAT proteins increasing their nuclear import and binding to DNA.

Phosphorylated STATs physically associate with activated JAKs and aid in targeting them to

chromatin. At chromatin activated JAKs phosphorylate both STAT proteins and histone H3 at

tyrosine 41 (H3Y41) resulting in the displacement of HP1a and consequently enhancing

transcription
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cells and the developmental hierarchy of haematopoiesis has been extensively

studied. These, therefore, serve as an excellent blueprint for understanding the

molecular mechanisms of self-renewal and differentiation in both a developmental

and malignant context. It would be interesting to identify the genes marked by

H3Y41ph in HSC and temporally follow the distribution of this modification as

these cells subsequently mature to make cell fate choices and differentiate into the

various terminally differentiated cells that constitute the haematopoietic system.

Linking these findings with functional activity of the various JAK family members

and the genomic localisation of the various STAT family members is also of

interest. These findings are likely to be particularly informative when addressing

the issue of constitutive JAK-STAT signalling and the mechanisms by which this

results in oncogenesis. Delineating the key genes marked by both H3Y41ph and

STAT may provide better insight in to the crucial transcription targets for this

pathway in driving tumorigenesis.

It should be noted that the JAK-STAT pathway is not only important in

haematopoietic development and neoplasia. Indeed, recent evidence would suggest

that over-activation of this pathway is prevalent in a wide variety of human cancers,

including breast, prostate, head and neck, and ovarian cancers, among other solid

tumors (Bromberg et al. 1999; Catlett-Falcone et al. 1999; Dhir et al. 2002; Garcia

et al. 2001; Grandis et al. 2000; Yu and Jove 2004). These findings have

underpinned the investigation of specific JAK2 inhibitors as a novel therapeutic

measure to treat these various cancers. Whilst data from human phase 2/3 clinical

trial are pending, a number of these JAK2 inhibitors have demonstrated promising

results in murine models of both haematological and solid malignancies (Dawson

et al. 2010; Geron et al. 2008; Hedvat et al. 2009; Pardanani 2008).
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Self-association of STAT Proteins
from Monomers to Paracrystals

Mathias Droescher and Uwe Vinkemeier

Abstract

STAT transcription factors assemble dimers of variable solubility and complex

conformational dynamics. Unphosphorylated STAT dimers are formed through

reciprocal N domain (ND) and core fragment (CF) interactions between

protomers, resulting in an antiparallel conformation. Phosphorylated STAT

dimers, in contrast, oscillate between this antiparallel and an equally stable

parallel conformation that requires reciprocal SH2:pTyr interactions. Moreover,

the phosphorylated STAT dimers can polymerize, which occurs both on

DNA and off DNA. Polymerization of the parallel phosphodimers is DNA-

dependent, and results in cooperative DNA binding, whereas antiparallel

phosphodimers can polymerize off DNA, resulting in paracrystals that protect

the activated STATs from inactivation. Thus, the central event in cytokine

signaling – STAT tyrosine phosphorylation – does not initiate STAT dimeriza-

tion. Rather, STAT activation regulates the partitioning between different dimer

conformations and triggers polymerization of the activated dimers.

Dimerization of STAT Proteins Before and After Activation

The STAT family comprises seven members in mammals, namely STAT1, STAT2,

STAT3, STAT4, STAT5a, STAT5b, and STAT6. All have the same structural and

functional domain organization. For a detailed discussion of the domain structures

we refer the reader to the cited papers describing the crystal structures of STAT
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proteins. In this article we focus on the association of STAT proteins, namely their

dimerization and polymerization, which appears to involve the spatial rearrange-

ment of structural domains while leaving the actual domain structures largely

unchanged. STAT proteins encompass six well conserved functional domains,

which are assembled into three independently folding structural units (Fig. 1).

The structural units are the aminoterminal N-domain, a large core fragment com-

prising four functional domains including a DNA binding domain as well as a src-

homology 2 (SH2) domain, and a C-terminal transactivation domain (TAD). The

TADs of both STAT1 and STAT2 are intrinsically unstructured and undergo

folding transitions upon binding to transcription co-activators (Wojciak et al.

2009). The TADs are least conserved among the STATs, can be absent due to

alternative splicing, and are probably dispensable for dimerization and polymeriza-

tion for most STATs (Lim and Cao 2006; Wenta et al. 2008). N-domain and TAD

are connected to the core fragment via short flexible linkers, which contain a

conserved tyrosine in position ~700 (residue 701 in STAT1). Phosphorylation of

this residue in response to cytokine treatment of cells is critical for subsequent gene

transcription, and this event hence is referred to as STAT activation (reviewed in

Levy and Darnell 2002).

The two most conserved domains in the STAT family are the SH2 domain and

the N-domain, both of which are protein interaction modules required for dimeriza-

tion and polymerization of STAT proteins. While the SH2 domain is used by many

different proteins to mediate tyrosine-phosphorylation-dependent protein interactions

(reviewed in Pawson 2004), the all-helical N-domain is unique to the STATs

(Vinkemeier et al. 1998). Like the TAD, this domain can interact with multiple

proteins including transcription co-regulators, e.g. p300 (Zhang et al. 1996). How-

ever, for the purpose of this review, mutual N-domain interactions are most relevant.

These interactions are thought to be homotypic in nature. It should be noted, however,

that experimental evidence is presently limited to a yeast two-hybrid interaction

screen (Ota et al. 2004). Importantly, N-domain interactions involve a single

conserved binding interface that appears to participate in all known N-domain-

Fig. 1 The functional and structural organisation of STAT proteins is conserved. The domain

organization of STAT1a is shown as an example. STAT proteins consist of three structural

domains, an aminoterminal N-domain (ND), a core fragment (CF) and a carboxyterminal

transactivation domain (TAD). The core fragment encompasses several functional domains: a

coiled-coil domain (CC), a DNA binding domain (DBD), a linker domain, and a src homology

2 domain (SH2). The position of the invariant phosphotyrosine residue is highlighted
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dependent STAT assemblies, be it unphosphorylated dimers, or polymers of activated

STATs on and off DNA (Chen et al. 2003; Meyer et al. 2004; Ota et al. 2004).

Initially, it was believed that STATs are monomers prior to their activation by

tyrosine phosphorylation. However, accumulating structural and functional evi-

dence indicates that multiple unphosphorylated STATs (U-STATs) are dimers in

living cells. The crystal structure of unphosphorylated STAT1 (amino acids 1–683),

determined in a complex with a phosphopeptide derived from the a chain of

interferon-g (IFNg) receptor, indicated two dimer interfaces, one between the N

domains, and the other between the core fragments, specifically between the

coil–coil and DNA binding domains (Mao et al. 2005). The SH2 domains do not

participate in dimerization and are set apart at both ends of the dimer structure;

STAT dimers that adopt this conformation are called antiparallel dimers. Crystal

structures of U-STAT5a and U-STAT3 core fragments are available, too. The

structure of unphosphorylated STAT5a (amino acids 129–712) is analogous to

STAT1, as it displays antiparallel dimers maintained through reciprocal core

fragment interaction; and an N-domain could be docked onto the core fragment

dimer using molecular modeling (Neculai et al. 2005). Small-angle x-ray scattering

of unphosphorylated STAT5 core fragment identifies the simultaneous presence of

monomers and dimers, and suggests the presence of dimers in the antiparallel

assembly (Bernado et al. 2009). Moreover, fluorescence resonance energy transfer

and optimized firefly luciferase complementation imaging using living cells indi-

cate dimerization prior to activation (Luker et al. 2004; Neculai et al. 2005).

Collectively, these results suggest a similar mode of dimerization for unphos-

phorylated STAT5 and STAT1. Conversely, the crystal structure of truncated

unphosphorylated STAT3 (amino acids 127–688) lacks the core fragment dimer

interfaces and appears to be monomeric, a result confirmed by light scattering

experiments and native PAGE (Ren et al. 2008; Vogt et al. 2011). Thus,

unphosphorylated STAT3, like U-STAT1 (Wenta et al. 2008), is monomeric in

the absence of N-domain interactions. Whether full-length U-STAT3 is dimeric at

physiological concentrations is less clear, however. Analytical ultracentrifugation

and native PAGE using purified proteins suggest that U-STAT1 and U-STAT3 do

not differ in terms of dimerization, but the studies could not fully clarify this

question (Braunstein et al. 2003). Additionally, dimerization of full-length

U-STAT3 in living cells is demonstrated by various analytical techniques

(Lackmann et al. 1998; Kretzschmar et al. 2004; Li and Shaw 2004; Schr€oder
et al. 2004; Vogt et al. 2011). Yet, U-STAT1 and U-STAT3 do differ in certain

aspects regards dimerization. For one, the N-domain interactions of STAT1 and

STAT3 differ by three orders of magnitude (Wenta et al. 2008), and mutations that

destabilize the antiparallel conformation of U-STAT1 appear to have little or no

effect on the dimerization of U-STAT3 (Ren et al. 2008; Vogt et al. 2011), Hence,

whether stable dimerization is common to all STATs, and how this dimerization

occurs, is unclear at present, and additional experimentation is required for an

answer. In addition to U-STAT homodimers discussed in the preceding, co-precip-

itation experiments indicate the existence of poorly characterized STAT1/STAT2

and STAT1/STAT3 heterodimers before the cytokine stimulation of cells (Stancato
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et al. 1996; Haan et al. 2000). Furthermore, using gel filtration chromatography and

live cell imaging, the Sehgal lab demonstrated localization of multiple

unphosphorylated STATs in high molecular mass complexes and vesicles in the

cytoplasm, probably in association with heterologous proteins, but the composition

and structural organization of these assemblies remain incompletely understood

(Ndubuisi et al. 1999; Guo et al. 2002; Shah et al. 2002; Mukhopadhyay et al. 2008;

reviewed in Sehgal 2008).

The dimerization of unphosphorylated STATs was unambiguosly established

rather recently. Contrary, that the activation of STATs is associated with their

dimerization was demonstrated almost a decade earlier, soon after the discovery

of this protein family. Based on sequence comparisons and biochemical experi-

mentation it was possible to deduce early on that dimerization of phosphorylated

STAT1 (P-STAT1) entails mutual SH2:pTyr interactions (Shuai et al. 1994;

reviewed in Darnell et al. 1994). This mode of dimerization has been confirmed

for all STAT proteins (reviewed in Levy and Darnell 2002). The dimer arrange-

ment, which is dependent upon SH2 domain interactions, but where the N-domains

are dispensable, is termed parallel dimer conformation. SH2 domain-mediated

dimerization is both homo- and heterotypic, and accordingly different combinations

of STAT heterodimers can be found in cytokine stimulated cells (reviewed in

Platanias 2005). A distinction of parallel dimers is their ability to bind with high

affinity to nonameric DNA palindromes termed gamma-activated-sites, GAS

(Horvath et al. 1995; Seidel et al. 1995; Ehret et al. 2001; Rivas et al. 2008;

reviewed in Decker et al. 1997). This constitutes the basis of the STATs functioning

as transcription regulators in cytokine signaling. The crystal structures of DNA-

bound truncated activated STAT1 and STAT3 homodimers are essentially identi-

cal, strongly enforcing the idea that activated STATs are highly similar structurally

(Becker et al. 1998; Chen et al. 1998). This notion extends even to the STAT

ortholog of Dictyostelium discoideum, the simplest organism known to employ

STAT signaling (Kawata et al. 1997; reviewed in Darnell 1997). The crystal

structure of tyrosine phosphorylated D. discoideum STATa homodimers in the

DNA-unbound state reveals a domain architecture similar to that of mammalian

STATs, as well as dimerization by SH2 domain:pTyr interactions (Soler-Lopez

et al. 2004). However, contrary to the DNA-bound mammalian STATs, the STATa

dimer adopts a fully extended conformation, implying a significant domain rear-

rangement would be required for DNA binding. Whether this is indeed the case, or

whether mammalian STATs adopt a similarly extended conformation before bind-

ing to DNA is not known. It is interesting to note, however, that molecular

modeling of paracrystal-forming STAT polymers was only successful when the

extended SH2:pTyr arrangement of DNA-unbound STATa was used as a template

(Droescher et al. 2011).
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Transitions Between STAT Dimer Conformers

With the characterization of different dimer conformations the question of confor-

mational dynamics arose, and hence renewed interest in quantifying dimer associa-

tion and dissociation. The initial studies considered dimerization via SH2:pTyr

interactions, but due to the lack of purified activated STATs these experiments were

limited to studying the binding of phosphotyrosine-containing peptide ligands to

U-STATs, e.g. using plasmon surface resonance technology. The dissociation

constants for “activated” STAT1 obtained in this way, 150 nM (Greenlund et al.

1995), turns out to be remarkably similar to results obtained subsequently using

analytical ultracentrifugation and the full length P-STAT1, ~50 nM (Wenta et al.

2008), stressing that the binding energy stabilizing the parallel dimer conformation

is provided almost entirely by the phosphotyrosine and its immediate neighboring

residues. Aside from SH2:pTyr interactions, additional posttranslational modifi-

cations and additional molecular surfaces have been proposed to affect the assem-

bly of activated STAT dimers. It was reported that the acidic tail domain of

STAT3a, which is missing in the splice variant STAT3b, may destabilize the

dimer resulting in lower DNA-binding activity and more rapid dephosphorylation

(Schaefer et al. 1997; Park et al. 2000). A role for the TAD in dimer stability was

suggested also for STAT6 (Patel et al. 1998; Sherman et al. 1999). Furthermore,

acetylation of activated STAT3 at Lys695 was reported to affect its DNA binding

by enhancing dimer formation (Wang et al. 2005; Yuan et al. 2005), an explanation

which has been disputed (O’Shea et al. 2005).

The availability of highly pure Tyr701-phosphorylated STAT1 made analytical

ultracentrifugation experiments feasible to compare dissociation equilibria before

and after activation, which revealed that the thermodynamic stability of U-STAT1

dimers and P-STAT1 dimers are essentially identical (Wenta et al. 2008). These

studies indicated that STAT1 constantly oscillates between different dimer

conformations, whereby the abundance of conformers is determined by tyrosine

phosphorylation. Thus, while U-STAT1 exists almost exclusively in the antiparallel

dimer conformation at physiological concentrations, the parallel and antiparallel

dimers of P-STAT1 are probably equally abundant. Notably, as could be expected

from their crystal structures, the molecular shapes of U-STAT1 and P-STAT1

dimers in solution differ significantly, with the dimers of activated STAT1 adopting

a more globular build (Nardozzi et al. 2010). However, P-STAT1 was detected in a

single shape only, which differed from U-STAT1 (Nardozzi et al. 2010). Thus,

direct experimental proof for the co-existence of P-STAT1 in multiple dimer

conformations is still missing. The failure to detect more than one molecular

shape for P-STAT1 could result from the fact that the parallel dimer conformation

is in fact thermodynamically favored; alternatively, the transition between the two

dimer conformations might be kinetically controlled. Current work in our lab is

trying to resolve this issue, which is of great physiological relevance, as there is

compelling functional and structural evidence that antiparallel dimers of P-STAT1

are indispensable for crucial STAT activities, namely their tyrosine phosphoryla-

tion and dephosphorylation, as well as paracrystal assembly. Work in the Darnell
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lab has convincingly linked the antiparallel dimer conformation to STAT dephos-

phorylation (Zhong et al. 2005; Mertens et al. 2006). This provided a unifying non-

exclusive explanation for earlier reports of experimental N-domain mutants of

STAT1 and STAT5 displaying dephosphorylation defects (Shuai et al. 1996;

Strehlow and Schindler 1998; Haspel and Darnell 1999; Meissner et al. 2004a;

Meyer et al. 2004; Moriggl et al. 2005). Importantly, defective antiparallel dimer-

ization of STAT1 moreover has been identified as the cause of chronic mucocuta-

neous candidiasis in human patients (Liu et al. 2011; van de Veerdonk et al. 2011).

In agreement with its deviating dimerization described above, STAT3 does not

require the N-domain for efficient dephosphorylation (Zhang et al. 2006), which

might be the case for STAT6, too (Patel et al. 1998). Of note, the t1/2 of the STAT1

dephosphorylation reaction in cells (~15 min) is probably shorter than the half-life

of both STAT dimer conformations, which based on kinetic modeling, was

estimated to be 20–40 min (Haspel et al. 1996; Wenta et al. 2008). Moreover,

in vitro dephosphorylation of STAT1 using the phosphatase TC45 is rather ineffi-

cient, although this enzyme very efficiently inactivates STAT1 in living cells (ten

Hoeve et al. 2002; Meyer et al. 2003). The details of the transition between parallel

and antiparallel dimer conformations are under discussion. Based on our results we

favor the idea that the process occurs via dissociation and re-association reactions

(Wenta et al. 2008), whereas data of Mertens et al. (2006) indicate that the core

domains rotate while the N-domains still keep the dimer together. Irrespective of

the molecular details, the current data agree in that the transition between dimer

conformations is a crucial and potentially regulated pacemaker determining the

decay of cytokine signals. In line with this reasoning, nuclear beta-arrestin1 was

proposed as an essential negative regulator of IFN-gamma signaling by acting as a

scaffold to facilitate the dephosphorylation of STAT1 by TC45 (Mo et al. 2008).

However, our experiments demonstrated that the reported enhancing effect of beta-

arrestin1 on STAT1 dephosphorylation is not reproducible (Manuscript under

review). Similarly, acetylation of lysine residues in the DNA binding domain was

proposed to promote recruitment of TC45 and hence STAT1 dephosphorylation,

but these results have been invalidated as well (Antunes et al. 2011). In conclusion,

the dimer conformational dynamics are critical for the inactivation of STATs, but

the molecular mechanisms remain poorly understood.

The activation of STATs at cytokine receptors has been demonstrated to require

antiparallel U-STAT dimers. This was most clearly demonstrated for STAT4 and

STAT2, where point mutations or deletion of the N-domain preclude tyrosine

phosphorylation in response to cytokine treatment of cell (Qureshi et al. 1996;

Murphy et al. 2000; Chang et al. 2003; Ota et al. 2004). The structural requirements

of the other STATs, in contrast, appear to be less stringent regards their activation,

as they tolerate inactivation of their N-domains and remain responsive to cytokine

stimulation, suggesting that they can interact with cytokine receptors as monomers,

too (Mikita et al. 1996; Shuai et al. 1996; Strehlow and Schindler 1998; Haspel and

Darnell 1999; Moriggl et al. 2005; Zhang et al. 2006). However, the steps leading to

STAT activation at the receptors are complex and have not been explored fully
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(reviewed in Haan et al. 2006) urging caution as to the interpretation of these results

regarding STAT conformational dynamics.

It has also been recognized that the mechanisms of nucleocytoplasmic transport

of STAT proteins are determined by their activation state (reviewed in Vinkemeier

2004), but aside from the fact that parallel dimers appear to be required for the

nuclear import of activated STAT1, structural information is scarce (Nardozzi et al.

2010). This topic therefore will not be discussed here in further detail. Figure 2

depicts activities of STAT proteins currently linked to their conformational

dynamics.

Polymerization of Activated STAT Dimers On and Off DNA

It has long been demonstrated that activated STAT dimers can polymerize on DNA,

i.e. form tetramers and higher order polymers. The consequence is strongly reduced

dissociation of the STAT dimers from DNA, and hence cooperative DNA binding.

Fig. 2 STAT protein function and conformational dynamics. Unphosphorylated STATs are

carrier-independent nucleocytoplasmic shuttling proteins. Translocation occurs via interactions

with nuclear pore proteins (Nup); in addition, nuclear export is enhanced by the export factor

CRM1 and metabolic energy (Ran). Phosphorylated STATs can enter the nucleus as parallel

dimers, a process that requires transport factors (importins) and metabolic energy (Ran).

Phosphorylated STATs, in contrast, do not exit the nucleus. STAT activation (+P) can occur

through receptor-associated tyrosine kinases (Jak) at the cell membrane. STAT inactivation (�P)

occurs predominantly in the nucleus after dissociation from DNA. The cartoon is modelled on data

reported for STAT1. Further details are provided in the text
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This activity requires phosphodimers in the parallel conformation, which are

believed to interact solely through their N-domains when bound to DNA

(Vinkemeier et al. 1996; Xu et al. 1996; Li et al. 1998; Vinkemeier et al. 1998;

Meyer et al. 2004; reviewed in Leung et al. 1996). In this manner open-ended

polymers arise (Chen et al. 1998; reviewed in Rhodes and Schwabe 1998). A

number of genes have been identified with multiple STAT binding sites in close

proximity in their promoter regions conducive for STAT cooperative DNA binding,

i.e. with a center-to-center spacing between GAS elements of ~30 base pairs

(Vinkemeier et al. 1996). Examples of genes that require STAT cooperative DNA

binding include a2-macroglobulin (Zhang and Darnell 2001) and perforin

(Yamamoto et al. 2002). The importance of tetramerization for target gene recog-

nition and gene activation has been particularly well documented for STAT5

(Meyer et al. 1997; John et al. 1999; Soldaini et al. 2000; Hou et al. 2003; Moriggl

et al. 2005). Nonetheless, the prevalence of DNA-dependent STAT polymerization

in cytokine-mediated gene induction is currently not clear. This refers both to the

number of genes where polymerization of phosphodimers is required for gene

transcription, as well as to the extent of polymerization at actual gene promoters

or other genomic sites. It is of interest in this regard that in mammalian cells a

considerable fraction of activated STAT1 is bound to MER41 repeats – primate-

specific repetitive gene elements that consist of tandem high-affinity STAT binding

sites with optimal spacing for cooperative DNA binding (Schmid and Bucher

2010). In addition, a patient with recurring mycobacterial infections was recently

described who expresses a STAT1 protein with a single amino acid exchange in its

N-domain (Kristensen et al. 2011), suggesting that DNA-dependent polymerization

of STAT1 may be of more widespread significance for interferon-g signaling.

As detailed in the preceding paragraph, polymerization of STAT phosphodimers

in the parallel conformation for some time has been recognized to be of physio-

logical significance. We have recently uncovered that antiparallel STAT

phosphodimers can polymerize, too, but this process, albeit normally taking place

in the nucleus, occurs entirely independent of DNA (Droescher et al. 2011). In

further contrast to the parallel dimers bound cooperatively to DNA, free dimers are

interlinked via SH2:pTyr interactions, whereas their N-domains participate in

dimerization. These polymers can align laterally, resulting in light-microscopically

visible structures that due to their high internal order and apparent self-organized

assembly are of paracrystalline nature (Fig. 3). At present a single physiological

example of STAT paracrystal formation is known to us, namely the assembly of

STAT3 paracrystals during the hepatic acute phase response to systemic bacterial

infection (Ray et al. 2005; Droescher et al. 2011). However, cell transfection

experiments indicate the disposition of further STATs, i.e. STAT2 and STAT5, to

assemble paracrystals in cytokine stimulated cells (Herrington et al. 1999; Frahm

et al. 2005). Moreover, mouse oocytes and early embryos harbor large assemblies

of activated STAT2, STAT3 and STAT1 (Truchet et al. 2004). Given the highly

conserved STAT structure, these results suggest that paracrystals are integral to

cytokine signaling.
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STAT1 is probably the only STAT family member that does not normally form

paracrystals. However, it is perfectly capable to do so, but in order to enable

paracrystal assembly its SUMO conjugation, which is unique to STAT1 in the

STAT family, needs to be suppressed. Among other experiments, this was

demonstrated by reversing the abilities of STAT1 and STAT3 to be SUMO-

modified. These experiments serendipitously provided a molecular explanation

for earlier experiments performed by Inoue et al. (1997) to determine the domains

in STAT3 that contribute to interleukin 6 (IL6)-specific phosphorylation. Using

domain swap mutants of STAT3 and STAT1, which is rather unresponsive to IL6,

they did not identify the SH2 domains to encode IL6 specificity, contrary to

expectations based on results for STAT1 (Heim et al. 1995). Rather, replacement

of a single residue in position +4 to the STAT3 activating tyrosine705 with the

corresponding residue of STAT1 abolished IL6 activation of STAT3 (Inoue et al.

1997). Unknown to the authors at the time when SUMO had not yet been discov-

ered, the mutation had reconstituted a SUMO target sequence, resulting in the

efficient SUMO conjugation of STAT3 (Droescher et al. 2011). Consequently,

Fig. 3 Activated STATs assemble paracrystalline structures. Overview and close up (boxed area)
transmission electron micrographs of acute phase liver sections (left, STAT3) and IFNg-stimulated

HeLa cells expressing SUMO-free STAT1-E705Q (right, STAT1-DSUMO). Livers where

isolated 2 h after injection of mice with lipopolysaccaride (LPS). Treatment of mice with

Escherichia coli LPS (serotype 0127:B8, Sigma L3880), liver sectioning, HeLa cell transfections,

and electron microscopy were done as described (Droescher et al. 2011). Shown are STAT3 and

STAT1 paracrystals, both of which appear to consist of laterally aligned filaments. Nuclear (N)

and cytoplasmic (C) compartments are indicated
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cytokine-induced-phosphorylation of STAT3 was strongly diminished (Droescher

et al. 2011).

In accordance with these results for STAT3, conjugation of the bulky SUMO

protein (~100 residues, reviewed in Johnson 2004) was unambiguously demonstrated

to preclude the phosphorylation of the proximal tyrosine, which hence constitutes one

of two additive mechanisms by which SUMO diminishes STAT activation (Zimnik

et al. 2009; Droescher et al. 2011). It is also the basis for another, indirect mechanism,

by which SUMO diminishes STAT1 transactivation. Since STAT1 is recruited to the

receptors for activation as dimers, SUMO interference that prevents tyrosine phos-

phorylation increases the abundance of semi-phosphorylated dimers. These, in turn,

act as competitive inhibitors that abort the elongation of STAT1 polymers (Droescher

et al. 2011). Consequently, paracrystal assembly is prevented, causing increased

solubility of the activated STAT1. In this rather indirect way, SUMO becomes a

potent regulator of protein solubility. It is critically important, however, that activated

STAT1 dimers be relatively stable, that is, have low protomer exchange rates.

Otherwise, semi-phosphorylated dimers would readily form regardless of SUMO,

as unphosphorylated STAT1 is present in excess even during cytokine stimulation.

Moreover, to avoid doubly sumoylated dimers, which are altogether refractory to

phosphorylation, the pool of SUMO conjugated molecules ought to be small. Thus,

short-lived SUMO conjugation and a seemingly negligible SUMO-modified STAT1

fraction (~2%) must not be used as an argument against a physiological role for

SUMO in STAT1 signaling. Rather, these characteristics constitute a prerequisite for

the control of STAT1 solubility by SUMO. As many SUMO targets share these

features with STAT1, it is conceivable that other SUMO-regulated protein

interactions too entail similar competition-based mechanisms.

The reduced solubility of activated STAT is apparent in the formation of

paracrystals. Paracrystal formation was identified as a protective mechanism that

preserves the phosphorylation of STAT1 not only on tyrosine701, but also on the

transcription-enhancing serine727 (Begitt et al. 2011). Moreover, paracrystals

buffer the nucleoplasm to a constant level of activated STATs, which profoundly

prolongs STAT activity in the nucleus, resulting in increased gene transcription

(Begitt et al. 2011; Droescher et al. 2011). Therefore, solubility increase is the

second mechanism by which SUMO modification of STAT1 reduces interferon

signaling (Begitt et al. 2011). Importantly, SUMO-free STAT1 can integrate into

paracrystals of STAT3, and wild-type STAT1 accordingly can dissolve STAT3

paracrystals (manuscript in preparation). This, in turn, can provide a structural basis

for the cross-regulation of multiple cytokine signaling pathways by interferon-g
(reviewed in Hu and Ivashkiv 2009).

In the final section of this paper we would like to present experiments that

demonstrate the antagonistic relationship between paracrystal incorporation of

STAT1 and cooperative DNA binding. The experiments shown in Fig. 4 were

performed with autofluorescent SUMO-free STAT1 fused to a canonical nuclear

export signal, NES (L€odige et al. 2005). Importantly, fusion of STAT1 to NES

overcomes the export block that prevents phosphorylated wild type STAT1 from

exiting the nucleus (unpublished observation, reviewed in Vinkemeier 2004).
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Consequently, both the unphosphorylated and the phosphorylated STAT1 accumu-

late in the cytoplasm. Accordingly, stimulation of cells with interferon-g for 60 min

did not appreciably alter the nucleocytoplasmic distribution of STAT1 seen in the

unstimulated cells (Fig. 4a, panels 00 and 600). Nonetheless, the SUMO-free STAT1

variant expectedly assembled paracrystal where P-STAT1 was concentrated,

namely in the cytoplasm. We then added ratjadone, which inactivates NES-

mediated nuclear export (Meissner et al. 2004b), thus effectively reverting to the

STAT1 wild type situation by reinstating the nuclear export block of the

phosphorylated protein. Accordingly, STAT1 displayed its characteristic nuclear

accumulation within 30–60 min of the addition of ratjadone (Fig. 4a, panels 900 and
1200). Concomitantly, paracrystals emerged in the nucleus, while extra-nuclear

paracrystals gradually dissolved (900) and eventually disappeared (1200). Of note,
directed movement of paracrystals towards the nucleus or their transport across the

nuclear envelope was not apparent (unpublished observation). To reveal the oppos-

ing effect of DNA binding on paracrystal assembly, we additionally mutated three

residues in the DNA binding domain to enhance sequence-unspecific DNA binding.

The respective mutant, termed DNAplus, has been described before (Meyer et al.

2003; Meyer and Vinkemeier 2010). As shown in Fig. 4b, enhanced DNA binding

had no effect on the cytoplasmic accumulation of SUMO-free STAT1-NES before

and after the treatment of cells with interferon (Fig. 4b, panels 00 and 600).
The abundant paracrystals moreover demonstrated that the DNA binding domain

mutations had no adverse effect on STAT1 polymerization in the cytoplasm

(Fig. 4b, panel 600). However, while the addition of ratjadone expectedly

Fig. 4 DNA binding opposes STAT paracrystal assembly. Experiments were done using HeLa

cells expressing the indicated STAT1 variants fused C-terminally to green fluorescent protein

(Droescher et al. 2011). Shown are cells before (panels 00) and after stimulation with 20 ng/mL

human interferon-g (panels 600–1200). The NES inhibitor ratjadone (5 ng/mL, Calbiochem) was

added after 60 min IFNg, and was subsequently left on the cells. Panel C depicts the distribution of

wild type STAT1 after 60 min stimulation with IFNg. Enlarged images of the cells labeled 1–4 are

shown on the right. Nuclei are outlined with broken lines; bars, 10 mm
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diminished the STAT1 concentration in the cytoplasm and triggered nuclear accu-

mulation, reassembly of paracrystals did not occur in the nucleus (Fig. 4b, panels

900 and 1200). Interestingly, activated DNAplus mutant did not show the homoge-

neous intranuclear distribution of wild type STAT1 either (see Fig. 4c for a

comparison); probably a reflection of large-scale chromatin alterations due to

excessive STAT1 polymerization on DNA, which warrants further investigation

for clarification.

In conclusion, the increased DNA binding activity of DNAplus mutant was

without consequences for paracrystal assembly in the absence of DNA, i.e. in the

cytoplasm, but precluded these structures in the nucleus. We inferred that DNA

binding and paracrystal incorporation are actually opposing activities, stressing the

notion that DNA-dependent and DNA-independent polymerization of activated

STATs are mechanistically distinct.

Concluding Remarks

Research pursued in many laboratories has provided a wealth of knowledge about

the structure of STAT transcription factors. We have gained a reasonably good

understanding of their organization into functional and structural domains, and we

have information about the three dimensional structures of all functional and

structural units for at least a few STATs, albeit the picture is far from complete.

Despite of this, the structure of a full-length STAT protein is still not available,

leaving open many questions about the actual inter-domain organization particu-

larly after activation. The recent recognition that STAT proteins undergo complex

transitions between different dimer conformations has greatly advanced the under-

standing of seemingly disparate sets of experimental data concerning the STAT

activation/inactivation cycle. Nonetheless, both the molecular details of these

events, as well as their biological consequences remain rather ill-defined. More-

over, we are far from knowing whether all STATs are created equal in this regard,

but it appears that even apparently subtle structural differences, e.g. affecting the

dimer dissociation equilibrium, can have significant functional consequences.

Finally, it has also been revealed that dimers are not the final polymerization

state of STATs. Indeed, the solubility of STATs is markedly reduced after their

tyrosine phosphorylation, which is due to DNA-independent and DNA-dependent

polymerization. The latter, also known as cooperative DNA binding, has been

known for some time to facilitate cytokine-induced gene transcription. In addition,

the discovery of STAT paracrystals and their SUMO-mediated dispersal identifies

increased transcription factor solubility as a negative regulatory mechanism in

extracellular signaling to the nucleus. Thus, ever more so, STATs find that hanging

together can be stimulating.
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How Stats Interact with the Molecular
Machinery of Transcriptional Activation

Amanda M. Jamieson, Matthias Farlik, and Thomas Decker

Abstract

The main purpose of Jak-Stat signal transduction is to adjust the fraction of

genes expressed in a genome to environmental cues. The focus of this review is

to summarize current knowledge and hypotheses concerning the molecular

players and mechanisms that allow Stats to regulate gene expression. We pay

particular attention not only to modifications of the Stats themselves, but also to

interaction partners with relevance to the remodeling or modification of chro-

matin or to the recruitment of proteins required for transcriptional initiation and

elongation.

Introduction

The Jak-Stat paradigm as defined in the 1990s consists of two components only: the

receptor associated Janus kinases (Jak 1-3; Tyk2) and the signal transducers and

activators of transcription (Stat 1-4, Stat5a, Stat5b, Stat6) that reside in the cyto-

plasm. Ligand-bound receptors undergo conformational changes to activate Jaks.

These, in turn, create phosphotyrosine (pY)-containing receptor docking sites for

Stats. In association with the receptor complex Stats are phosphorylated by Jaks on

a single tyrosine residue, whereupon they dissociate from the receptor, dimerize via

reciprocal SH2 domain-pY interactions and translocate to the cell nucleus. Associ-

ation with specific nuclear Stat binding sites stimulates gene transcription (Darnell

et al. 1994). Although refined, complemented and extended in many ways, the

beauty of this simple paradigm has remained unperturbed (Fig. 1a).
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Stats share a common core structure. To this day they are the only transcription

factors using SH2 domains for protein interactions. With exception of Stat2 which

borrows the DNA-binding function from associated proteins, all Stats contain

homologous DNA-binding domains. Similarly, all Stats contain C-terminal

transactivating domains (TAD), but these display no or very little homology to

each other. The question of how Stats translate their association with DNA into a

transcriptional response has therefore always been studied under the assumption

that the answer will not lie in a uniform mechanism.

The basics of Stat activation and their nuclear activity have been addressed in

numerous reviews (Darnell 1997; Levy and Darnell 2002; Schindler et al. 2007;

Stark 2007) and will be dealt with very briefly here. The main aim of this chapter is

to summarize new insight into nuclear responses to Stats and their communication

with DNA-associated proteins involved in transcriptional regulation.
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Fig. 1 Gene expression is regulated by tyrosine-phosphorylated P-Stats and by U-Stats that lack

tyrosine phosphorylation. Left: Signaling through the canonical Jak-Stat pathway produces tyro-

sine-phosphorylated P-Stat dimers that regulate genes including their own. This produces an

increase in U-Stats which increase expression of genes that overlap to various degrees with

those induced also by P-Stats. Right: Effect of Stat posttranslational modification and abundance

on target gene expression. Serine phosphorylation (pS) and O-glycosylation (O-Glycos) increase,

whereas Sumoylation (K-SUMO) and lysine methylation (Kme) decrease activity of P-Stats.

Serine phosphorylation may be required for U-Stat function. P-Stats increases Stat abundance

which initiates U-Stat signaling and provides positive feedback on P-Stat signaling
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Basic Characteristics of Stats and Their Activation

Structural Aspects and DNA Binding Sites

The original concept of latent Stats existing as cytoplasmic monomers prior to

activation was challenged not only by biochemical studies but, most notably, by

determining the crystal structure of unphosphorylated Stat1 and Stat5 (Mao et al.

2005; Neculai et al. 2005). Together these biochemical and structural studies

support the notion that unphosphorylated Stats preexist as dimers. Strikingly,

however, unphosphorylated dimers conform to an antiparallel head-to tail align-

ment whereas the SH2-domain-mediated alignment of tyrosine-phosphorylated

Stats is head-to-head or parallel (Mertens et al. 2006; Zhong et al. 2005). The

activation-inactivation (or phosphorylation-dephosphorylation) cycle of Stats thus

requires the monomers to realign or rotate between parallel and antiparallel

conformations. While evidence in agreement with such a mechanism has been

provided, its details require further scrutiny.

DNA-bound, tyrosine phosphorylated Stats form highly symmetric dimers with

each monomer contacting the SH2 domain on the other (Becker et al. 1998; Chen

et al. 1998). The two DNA binding domains display an immunoglobulin fold

similar to that of NFkB and p53 transcription factors and do not contact each

other. Minor as well as major groove contacts are made on either side of the

helix. One consensus DNA sequence forming Stat binding sites is the gamma

interferon-activated site [GAS; (Decker et al. 1997)], named after the prototype

element in interferon-g (IFN-g)-stimulated genes. It is a small TTCNxGAA palin-

drome. X ¼ 3 sites bind all Stat dimers and x ¼ 4 sites select for Stat6 dimers.

Variant sequences (e.g. TTAN3TAA or TTCN3TAA) are also known to be func-

tional as Stat binding sites. For a significant number of target promoters DNA-

dependent tetramerization through N-terminus-mediated interaction of adjacent

Stat dimers is essential (Moriggl et al. 2005; Vinkemeier et al. 1996; Zhang and

Darnell 2001). In this case at least one of the dimers may associate with a highly

degenerate variant of the GAS consensus. A second Stat response element is the

interferon-stimulated response element [ISRE; (Levy et al. 1988)]. In its consensus

version it consists of direct 50-TTTCNNTTTC-30 repeats, flanked by AG at the

50 end and by pyrimidine bases at the 30 end. Among Stats the ISRE exclusively

associates with the ISGF3 complex which is activated in response to type I and type

III interferons (IFN) (Darnell 1997; Donnelly and Kotenko 2010; Stark et al. 1998).

ISGF3 consists of a Stat1/Stat2 heterodimer in association with IRF9, a member of

the interferon regulatory factor (IRF) family. IRF9 contacts the core repeats of the

ISRE whereas the Stats make additional contacts to the flanking nucleotides. The

employment of IRF9 as the ISGF3 DNA binding subunit reveals a characteristic

feature of the ISRE: its core sequence can serve as a binding site for many IRF

members and mediate the functional interactions between Stats and IRFs in

responses to IFN-g.
Most members of the Stat family are spliced into different isoforms with a

smaller, beta isoform, usually lacking parts of or even the entire TAD. The original

How Stats Interact with the Molecular Machinery of Transcriptional Activation 67



notion these might be transcriptionally inactive and form dominant-negative

regulators of the full length or alpha isoforms has not held when mice were

engineered to reveal the selective effects of Stat isoforms (Maritano et al. 2004;

Mo et al. 2008). For both Stat3 and Stat4 the shorter isoforms cause transcription of

a specific set of isoform-specific genes. Conversely, another subset of genes can be

regulated exclusively by the alpha isoforms. Mice expressing either Stat1a or

Stat1b showed that Stat1b does not form transcriptionally inactive dimers as

originally suggested. Instead, Stat1b dimers display reduced transcriptional activ-

ity, delaying the onset of IFN-g-induced transcription (Strobl B, M€uller M, personal

communication). The ways by which alpha and beta isoforms of Stats address

different sets of target genes are poorly understood. Likewise it is unclear how

the beta isoforms make up for the lack of a bona fide TAD unless the selective

recruitment of a “helper” transcription factor, such as JunB in the case of Stat3 (see

below), represents a general paradigm.

Regulation by Posttranslational Modification

Apart from tyrosine phosphorylation, activation of Stats is regulated by a number of

posttranslational modifications (Fig. 1b). For example, sumoylation of a lysine

residue in vicinity of the critical tyrosine has in some Stats the ability to inhibit

transcriptional activity (Droescher et al. 2011; Ungureanu et al. 2005). Lysine

acetylation was suggested as a regulatory modification controlling Stat tyrosine

dephosphorylation and interaction with other transcription factors (Kramer et al.

2009), but recent findings strongly question the validity of the original report

(Antunes et al. 2011). Likewise, the role of Stat1 arginine methylation as a

mechanism to regulate association with inhibitory protein inhibitors of activated

Stats (PIAS) has been challenged (Meissner et al. 2004; Mowen et al. 2001).

Phosphorylation of a C-terminal serine impinges on the ability of DNA-bound

Stats to contact the transcriptional machinery. Serine727 is located in the TAD of

Stat1 and Stat3 [Stats 4, 5 and 6 also contain serine phosphorylation sites at similar

positions (Decker and Kovarik 2000)]. In the context of cytokine responses phos-

phorylation at this residue requires the association with chromatin and the serine

kinase itself is similarly associated with DNA (Sadzak et al. 2008; Yang et al.

2010). In fact, recent studies in the lab of Pavel Kovarik suggest that chromatin-

associated Stat1 serine kinase activity is provided by CDK8 (personal communica-

tion). This S/T kinase and its regulatory subunit cyclin C are found in association

with mediator, a multi-subunit complex engaged in orchestrating protein interactions

and enzymatic activities in the process of transcriptional initiation (Malik and Roeder

2010). The impact of serine phosphorylation is to enhance cytokine-induced tran-

scription, but this effect varies with different Stat target genes and in different cell

types, suggesting its complexity is not yet fully understood. A regulatory mechanism

proposed more recently by George Stark and colleagues is based on the methylation

of IL-6-activated Stat3 at Lysin 140 by the histone 3K4 methylase Set7/9 (Yang et al.

2010). Methylation of nonhistone proteins is now widely recognized to affect the
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activation and activity of transcription factors. In keeping with other transcriptional

regulators, K140 methylation of Stat3 diminishes its activity through an inhibition of

DNA binding. Histone demethylase LSD1 removes the modification of DNA-

associated Stat3 dimer. Interestingly, phosphorylation at S727 appears necessary

for the methylation of K140 as judged by the lack of methylation of a Stat3S727A

mutant. S727 phosphorylation was further suggested to regulate the aforementioned

SUMOylation of Stat 1 at Lys703, an activity that may involve the PIAS1 SUMO

ligase. Thus, S727 phosphorylation has the potential to enhance transcription through

its effect on coactivator binding (see below), but also to inhibit Stat activation and

activity, which may explain the gene and cell-specific effects of the S727A mutation

of Stats1 and 3 (Shen et al. 2004; Varinou et al. 2003).

A second serine phosphorylation in the carboxy terminus of Stat1 is serine 708,

target of the virus/interferon-regulated S/T kinase IKKe. S708 phosphorylation

changes the DNA binding site specificity of the ISGF3 complex to increase its

target promoter range (Tenoever et al. 2007). The structural basis for this effect is

not understood. Speculatively, S708 phosphorylation may determine an alternative

alignment of Stat1 and Stat2 within the ISGF3 complex. Knockout of IKKe reduces
IFN responsiveness and antiviral immunity of mice and the lack of Stat1 phosphor-

ylation at S708 provides an explanation for this phenotype.

Regulation of Signaling Through Stat Abundance

Apart from regulatory modification the abundance of Stats within a cell determines

their transcriptional potential, hence the sensitivity to cytokines employing Jak-Stat

signaling for nuclear responses. For Stat1 it is well documented that it regulates its

own expression. This autoregulatory loop is established by a tonic signal from type

I IFN receptors in absence of their ligands and determines the cellular amount of

latent Stat1 (Gough et al. 2010). Evidence for this is provided by the fact that

disturbing type I IFN signaling by receptor or Stat2 deficiency causes a strong drop

in Stat1 levels (Gough et al. 2010; Park et al. 2000). During responses to IFN or

IL-6, Stat1 or Stat3 autoregulation increases their amounts. The increase of Stats is

a means by which cytokines alter the hardwiring of their own signals. It is of

particular importance for the U-Stat concept discussed below (Fig. 1a).

Lowering the amount of Stats expressed in a cell can be used as a means to adjust

the sensitivity to a cytokine. For example, activated CD8 T cells escape the effects

of type I IFN produced during a virus infection by lowering amounts of Stat1, thus

escaping the antiproliferative effect of the cytokines (Gil et al. 2006). The relative

expression levels of one Stat versus another become physiologically relevant where

one receptor can employ more than one family member to reprogram gene expres-

sion. Resting NK cells express high amounts of Stat4 and owing to its abundance

the NK cell type I IFN receptor signals through Stat4 to induce IFN-g gene

expression. During a viral infection the relative amount of Stat1 increases, shifting

the type I IFN response from Stat4 to the usual Stat1–Stat2 (ISGF3) activation

(Miyagi et al. 2007). Since the IFN-g gene is not an ISGF3 target, the Stat4-ISGF3
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shift thus serves as a means to control IFN-g production. An inverse situation has

been reported for dendritic cells (DC). Upon maturation of immature conventional

DC the Stat4:Stat1 ratio increases, causing Stat4 to be preferentially activated by

the type I IFN receptor. This leads to a change in gene expression profiles and an

increase of IL-12 production by activated DC (Longman et al. 2007).

While Stats are studied predominantly as transcriptional activators numerous

gene expression profiles from Stat-deficient cells document the ability of Stats to

repress genes they bind to. Prominent examples are the c-myc gene which becomes

IFN-g-inducible in Stat1-deficient cells (Ramana et al. 2001) or the IRF8 gene

which is suppressed by Stat5 in response to GM-CSF treatment of bone marrow-

derived DC progenitor cells to suppress their plasmacytoid development (Esashi

et al. 2008).

Functional and Physical Stat Interactors in the Process
of Transcriptional Activation

Primary, Secondary and Tissue-Specific Responses of Stat
Target Genes

Transcription factors in the strict sense are only one part of the multi-protein

machinery that opens promoter chromatin, forms a transcription initiation complex,

and within that complex renders RNA polymerase II (pol II) competent of initiating

and elongating the primary transcript. Recent years have identified many players in

this process and uncovered their function. Inserting Stats into this complex scenario

is a current challenge in the field. In general terms genes regulated by extracellular

cues including pathogen or cytokine-induced genes have been classified according

to the time flow of their expression as primary if the signals leading to transcrip-

tional induction are hardwired, as secondary if a transcription factor needs to be

synthesized and as tertiary if a tissue-specific transcriptional regulator is addition-

ally required to open promoter chromatin. Landmark studies addressing gene

regulation by bacterial lipopolysacchride (LPS)/toll-like receptor 4 (TLR4)

concluded that a large number of primary response genes contain GC-rich sequences

that direct the formation of a transcription initiation complex including a paused

pol II prior to the TLR4 signal. In this case the pathogen signal regulates elongation

rather than initiation of transcription (Hargreaves et al. 2009; Ramirez-Carrozzi

et al. 2009).

Many Stat target genes are primary and respond immediately to a cytokine

receptor stimulus. However, a significant number are within the second tier of the

transcriptional response to extracellular cues. There is more than one reason for the

secondary character of a Stat target gene’s response. For example, a cytokine may

activate a Stat and at the same time induce the synthesis of a transcription factor

required to cooperate with that Stat for gene induction. Prime examples are IFN-

g-induced secondary response genes depending on promoter binding of a Stat1
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dimer and, additionally, IRF1. The IRF1 gene itself is a primary response gene to

IFN-g and its product needs to be made for the secondary response gene to be

transcribed (Pine et al. 1994). In infected cells Stat target genes belong to the

second tier of the transcriptional response because the activating cytokine, usually a

type I or type III IFN, needs to be synthesized before it can bind its receptor and

cause Stat activation. As an example, signaling by several pattern recognition

receptors stimulates type I IFN synthesis, followed by ISGF3 activation. Hence a

significant number of secondary pathogen-induced genes are ISGF3 targets

(Hertzog et al. 2003). These Stat target genes are secondary according their kinetics

of induction during infection, yet the mechanism of induction is primary, because it

employs hard-wired signals downstream of the IFN receptor. Finally, Stat target

genes can be rendered tissue-specific by cooperation with lineage-restricted tran-

scriptional regulators. In agreement with this induction of numerous Stat1 or ISGF3

target genes by IFN in hematopoietic cells results from the cooperative activity of

the Stat1 dimer or the ISGF3 complex with the Ets family protein Pu.1 with either

IRF8 alone or with either IRF4 and IRF8, two transcription factors with prominent

roles in the maintenance of myeloid and lymphoid cell identity (Kanno et al. 2005).

Cooperativity is thought to result from the direct association of some GAS or ISRE

elements with Pu.1/IRF complexes and the concomitant enhancement or extension

of the IFN response.

Interaction with Non-Stat Transcription Factors

The proteins cooperating in the onset of a transcriptional response can be function-

ally classified as transcription factors, coactivators, chromatin remodelers, histone-

modifying enzymes, variant histones, or as subunits of the mediator or transcription

initiation complexes. One or more members of each category has been linked to the

induction of Stat target genes (Fig. 2, Table 1).

Cooperativity between Stats and other transcription factors is frequent, but

mechanistic insight into the concerted action is relatively scarce. An example of

positive cooperativity at the level of DNA binding is presented at the CIIta gene

encoding the master regulator of MHC II genes. At promoter IV of CIIta the E-box-
binding factor USF-1 facilitates the interaction of Stat1 with a GAS element and

this may be the prelude to the formation of an enhanceosome containing besides

Stat1 and USF1 also IRF1 and c-Myc (Morris et al. 2002; Muhlethaler-Mottet et al.

1998; Ni et al. 2005). A more recent report shows that binding of the nuclear

receptor PPARg to promoter chromatin is facilitated by simultaneous association of

IL-4-activated Stat6 dimers with a composite DNA element (Szanto et al. 2010).

This interaction is in keeping with the common ability of IL-4 and PPARg ligands

to suppress inflammation and to support the anti-inflammatory M2 polarization of

macrophages and DC. The ability of Stat6 dimers to suppress IRF1 transcription in

response to IFN-g through inhibition of Stat1 binding (Ohmori and Hamilton 1997),

or to reduce E-Selectin expression in response to TNF by inhibition of NFkB
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association with a site overlapping that of Stat6 (Bennett et al. 1997) is in further

agreement with IL4/Stat60 role in the suppression of inflammation.

Transactivation functions, i.e. enhanced ability to access the transcriptional

machinery are a further reason for Stats to interact. A well-documented case is

the association of Stat3 with members of the fos/jun transcription factor family. The

regulation of hepatic acute phase genes such as the a2Makroglobulin gene requires

formation of an enhanceosome containing Oct-1, AP1 (a c-Fos/c-Jun heterodimer),

glucocorticoid receptor (GR) and Stat3 (Lerner et al. 2003). Biochemical studies

suggest that within this functional unit the coiled-coil domain of Stat3 physically

associates with c-Jun (Ginsberg et al. 2007; Schaefer et al. 1995). Therefore the

interaction with AP1 provides a platform for enhanced DNA binding of Stat3, but

most likely it also increases its transactivation function because in absence of c-Jun

Stat3 cannot induce expression of a2Macroglobulin reporter genes even though

they contain high affinity Stat3 binding sites (Ginsberg et al. 2007). Similarly,

physical interaction of the Stat5 C-terminus with the GR is essential for the

expression of Stat5 target genes regulating proper function of hepatocytes

(Engblom et al. 2007). This interaction does not require GR to associate with

DNA. Although the above examples provide clear evidence for cooperation at the

level of transactivation the mechanistic implications for promoter activation and the

onset of transcription downstream of their association with target promoters have

not been clarified.

Stats can cooperate with other transcription factors in, respectively, the recruit-

ment and phosphorylation of pol II. This was shown by a recent study from our lab
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addressing the regulation of the Nos2 gene encoding the inducible nitric oxide

synthase in macrophages infected with intracellular bacteria (Farlik et al. 2010). In

this situation type I IFN is produced and ISGF3 is activated to bind at a distal

Table 1 Examples of Stat-interacting transcription factors

Protein interactor Interacting

Stats

Molecular

mechanism

Consequence References

IRF1 Stat1 Binding to

ISRE, Pol II

recruitment

Second tier of

transcriptional

response to IFN-g

Ni et al. (2005),

Ramsauer et al. (2007)

IRF4 Stat3 Increased Stat

binding to low

affinity GAS

Tissue specificity of

Stat response

(lymphoid)

Kwon et al. (2009)

IRF4/IRF8/Pu.1 Stat1,

ISGF3

Binding to

composite GAS

and ISRE sites

Tissue specificity of

IFN response

(myeloid, lymphoid)

Kanno et al. (2005)

IRF7 Stat1 Binding to

ISRE, Pol II

recruitment

Second tier of

transcriptional

response to IFN-g

Farlik et al. (2012)

USF1 Stat1 Enhanced Stat1

binding

Transcriptional

activation of CIIta

gene

Morris et al. (2002),

Muhlethaler-Mottet

et al. (1998), Ni et al.

(2005)

NFkB Stat1 Cooperative

initiation

complex

formation

Increased host

response to pathogens

Farlik et al. (2010)

Stat6 Competitive

binding to

overlapping

sites

Reduced expression of

TNF-induced genes in

presence of Stat6

Bennett et al. (1997)

PPARg Stat6 Binding to

composite

DNA site

Enhanced M2

polarization of

macrophages

Szanto et al. (2010)

c-Jun/JunB Stat3 Enhanceosome

formation,

physical

association

Enhanced target gene

expression (e.g. acute

phase genes)

Ginsberg et al. (2007),

Lerner et al. (2003),

Schaefer et al. (1995)

GR Stat5 Physical
association

(DNA-

independent)

Enhanced expression

of a subset of Stat5

target genes (e.g. in

liver)

Engblom et al. (2007),

Stocklin et al. (1996)

ISGF3 Competition

for GRIP1

coactivator

Glucocorticoid

repression of ISGF3

target genes (cell type-

dependent)

Flammer et al. (2010)

SMAD1/SMAD4 Stat3 Cooperative

CBP

recruitment

Enhanced

transcription of LIF/

BMP2 target genes

Nakashima et al.

(1999)
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promoter site, but this complex alone provides only a relatively small increase in

Nos2 expression. A full-blown transcriptional response requires the cooperation with

NFkB bound to a proximal site. ISGF3 alone can recruit pol II to the Nos2 promoter,

but cannot attract the general transcription factor TFIIH with its associated kinase

CDK7. The kinase function is needed to phosphorylate the carboxyterminal pol II

domain (CTD) and the serine 5 (S5) residue embedded in its hepta-amino acid

repeats. Since S5 phosphorylation is an essential prerequisite for promoter clearance

and also the subsequent steps leading to elongation competence of pol II, neither

ISGF3 nor NFkB activity alone can bring about high levels of Nos2 expression,

whereas both signals together are highly efficient. It remains to be clarified whether

all ISGF3 target genes, i.e. the classical type I IFN-induced genes (ISGs) require

a helper function for TFIIH/CDK7 recruitment, e.g. by a constitutively bound

transcription factor, or whether the promoter chromatin of such genes is somehow

permissive to the recruitment of an elongation-competent pol II by ISGF3 alone.

Excepting the role of IRF9 in the ISGF3 complex (Horvath et al. 1996), interferon

regulatory factors (IRF) are not known to physically interact with activated Stat

dimers, but they contribute to the regulation of their target genes. Together IRF1 and

IRF7 are essential for the expression of genes representing the secondary response to

IFN-g such as those encoding the antimicrobial guanylate-binding proteins (GBP) 1

and 2 or CIITA, the master regulator of MHC II (Harada et al. 1996; Kamijo et al.

1994; Ni et al. 2005; Ramsauer et al. 2007). In this situation the functional coopera-

tion lies in the recruitment of histone-modifying enzymes by the IFN-g-activated
Stat1 dimer and an unclear role of the IRFs in recruiting pol II (Ramsauer et al. 2007).

Interestingly, transcriptional activation of type I IFN-inducible genes by the ISGF3

complex does not require an ancillary function of IRF1 (Matsuyama et al. 1993). This

suggests that in the ISGF3 context the Stat2 TAD exerts a pol II-recruiting activity the

Stat1 TAD cannot perform in the context of the Stat1 dimer. Hence Stat1 dimers

require an IRF to provide this activity. As mentioned above, IRF8 contributes to the

IFN-g inducibility of genes specifically expressed in myeloid cells (Kanno et al.

2005). However, a helper function of IRFs is not restricted to Stat1. The receptor for

IL-21, a cytokine regulating B cell differentiation and T cell homeostasis, signals via

Stat3. Comprehensive analysis of IL-21 target genes in lymphocytes showed that

many of these contain adjacent binding sites for Stat3 and IRF4 (Kwon et al. 2009).

Deletion of the Irf4 gene reduced Stat3 binding to genomic sites and inhibited

transcription of IL-21-induced genes. This result suggests that IRFs not only contrib-

ute to pol II binding to Stat target genes, but that they may serve to facilitate the

association of Stat dimers with target promoter chromatin.

Interaction with General Transcription Factors and Mediator
Proteins

The canonical mode of transcription initiation assumes a stepwise assembly of an

initiation complex. Activators have the ability to exert their influence on gene

transcription by facilitating the binding of one or more components of the initiation
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complex. The first step in assembly is the binding of the general transcription factor

TFIID in close proximity to the transcription start. Most TFIID complexes are

composed of the TATA-binding protein (TBP) and up to 14 TBP-associated factors

(TAFs, Goodrich and Tjian 2010). In the context of the ISGF3 complex the TAF

130 subunit (new designation: TAF4) potentiates the activity of the Stat2 TAD

(Paulson et al. 2002; Fig. 2). In keeping with its function to mount an antiviral

response the Stat2 TAD recruits a TBP-free TFIID complex not subject to the TBP-

degrading activity of some viruses (Paulson et al. 2002).

Mediator is a multi-subunit complex interacting with the carboxyterminal

domain of pol II and contact to a mediator subunit is an additional strategy of

transcription factors to facilitate pol II promoter binding (Kim et al. 1994; Malik

and Roeder 2010). In vitro purified mediator stimulates transcriptional activity of

both Stat1 isoforms (Zakharova et al. 2003), suggesting contact is not via the TAD

which is missing in Stat1b. By contrast, the contact of the ISGF3 complex to

a multi-subunit mediator complex was shown to be provided by a physical associa-

tion between the Stat2 TAD and the mediator subunit DRIP150/MED14 (Lau et al.

2003; Fig. 2). Stat2/mediator interaction may influence the rate at which reinitiation

occurs at IFN-inducible genes.

Interaction with Coactivators and Histone-Modifying Enzymes

Coactivators fall into two general categories, histone modifiers and nonenzymatic

proteins that may serve a bridging or scaffold function for the formation of a

transcription initiation complex and an elongation-competent pol II. Within the

former category the CBP/P300 histone acetyl transferases (HAT) are widely used,

most likely interacting with all Stat TADs (Paulson et al. 1999) and in some

instances shown by ChIP to be recruited to promoter chromatin of Stat target

genes in a cytokine-regulated fashion (Fig. 2). Studies in Stat1-deficient cells

show that both recruitment of CBP and hyperacetylation of histones in response

to IFN-g require Stat1. In vitro, both N- and C terminal portions of Stat1 and Stat3

interact with CBP (Zhang et al. 1996) and the association of CBP with Stat1 does

not show a need for S727 phosphorylation (Wojciak et al. 2009). On chromatin-

directed in vitro templates (Zakharova et al. 2003) or on cellular chromatin

(Ramsauer et al. 2007; Sun et al. 2005; Varinou et al. 2003) association with

CBP requires the Stat1 C-terminus and association is enhanced by phosphorylation

of S727. P300/CBP can be found in larger coactivator complexes and it is

possible that the discrepancy between in vitro and in vivo results is explained by

additional proteins that direct such complexes to the Stat1 TAD. In case of Stat5,

O-glycosylation of T93, a residue found at a homologous position also in Stats 1, 3

and 6, enhances association with CBP in vitro, consistent with the notion that Stats

present more than one critical interface with the coactivator (Gewinner et al. 2004).

This assumption is in further agreement with the older observation that the N-myc

interactor (Nmi) protein binds to the Stat coiled-coil domains (excepting Stat2) and

enhances CBP interaction (Zhu et al. 1999).
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The Stat2 TAD is able to associate with P300/CBP (Paulson et al. 1999), but

chromatin immunoprecipitation experiments point to the histone acetylase GCN5 as

provider of HAT activity and as cellular coactivators for the transcription of type I

interferon-stimulated genes (Paulson et al. 2002) (Fig. 2). Like HAT, histone

deacetylases (HDAC) can be recruited to target promoters by Stats 1, 2 and 5 and

serve as cofactors of transcription (Nusinzon and Horvath 2005; Ramsauer et al.

2007; Rascle et al. 2003). Surprisingly these don’t act as HAT antagonists but rather

as stimulators of Stat-mediated transcription. The targets of these HDAC are most

likely not histones because their recruitment does not cause a concomitant decrease

in promoter acetylation. Whether Stats themselves or whether other proteins

involved in the activation of transcription are the relevant targets of HDAC activity

remains to be clarified. The Zn finger transcription factor PDZF acts as a stimulator of

a subset of type I IFN-inducible genes, hence a positive interactor of the ISGF3

complex (Xu et al. 2009). In other contexts the protein is known to associate with

repressive complexes containing histone deacetylases. Xu and colleagues suggest

that phosphorylation increases association of PDZFwith HDAC1 and this may partly

explain the stimulatory activity on the expression of interferon-stimulated genes.

A nonenzymatic protein family serving as Stat coactivators is the p160 family of

steroid receptor coactivators (York and O’Malley 2010; Fig. 2). Interaction and

functional importance of p160 family members SRC-1 and GRIP1/SRC2 were

reported for Stats 1, 3, 5 and 6 (Flammer et al. 2010; Giraud et al. 2002; Litterst

et al. 2003; Litterst and Pfitzner 2001), although a recent report was not able to

confirm relevance for Stat3 target genes (Cvijic et al. 2009). In case of Stat6 the

structure of the TAD/SRC1 interface was solved showing interaction of a Stat6

LLXXLL motif with the SRC1 PAS domain (Razeto et al. 2004). A further

coactivator without enzymatic activity for both Stat5 and Stat6 is p100, a staphylo-

coccal nuclease-like Tudor domain-containing protein (Paukku et al. 2003; Yang

et al. 2002). P100 also interacts with the general transcription factor TFIIE

(Leverson et al. 1998). Because TFIIE is considered preassociated with pol II,

p100 may serve to bridge the Stat5/6 TADs with the initiation complex. A protein

recently shown to enhance Stat3-mediated transcription and biological activity is

CR6-interacting factor 1 (Crif1; Kwon et al. 2008a). Crif1, previously known as

coactivator for the nuclear orphan receptor Nur77, interacts with the Stat3 coiled-

coil domain via its own coiled-coil domain. Absence of Crif 1 reduces the associa-

tion of Stat3 with DNA, suggesting a mechanism for its function as coactivator.

Two further proteins reportedly enhancing Stat1-mediated transcription are

MCM5 and Brca1 (Ouchi et al. 2000; Zhang et al. 1998). Both bind to the S727-

phosphorylated C-terminus. Their function in the process of transcriptional activa-

tion is unclear. Finally, proteins that bind to Stats and repress their activity have

been identified. One example is the nuclear receptor corepressor SMRT, shown to

interact with the Stat5 coiled-coil domain, thereby repressing its transcriptional

activity (Nakajima et al. 2001). It is unclear whether SMRT activity acts in the

context of HDAC complexes or whether it antagonizes the interaction with CBP.

Different transcriptional coactivators are frequently found within multi-subunit

complexes that interact with several different transcription factor families.
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Assuming such complexes are limiting within the nucleus it is possible that

transcription factors need to compete for their coactivators (Horvai et al. 1997).

Previous reports are consistent with the idea that competition for CBP-containing

activator complexes coordinates Stat1 in inflammatory responses involving NFkB,
AP1 or PPARg activity (Horvai et al. 1997; Kurokawa et al. 1998; Ricote et al.

1998). More recently competition for binding to the steroid receptor coactivator

SRC2/GRIP was found to explain the repression of ISGF3 target genes by

glucocorticoids (Flammer et al. 2010). The study showed SRC2/GRIP1 to interact

with the IRF9 subunit of ISGF3 and to be required for ISGF3-stimulated transcrip-

tion in a gene and cell type-specific manner. Where levels of SRC2/GRIP1 are

limiting, glucocorticoids shift too much of the protein to the glucocorticoid recep-

tor, thus limiting the coactivator for the response to type I IFN.

In addition to competition, Stats and interacting transcription factors can provide

a common platform for coactivators as shown for CBP recruitment by Stat3 and the

SMAD1/SMAD4 complex. This mechanism is thought to explain synergistic gene

induction by LIF and BMP2 (Nakashima et al. 1999).

Interaction with Nucleosome Remodelers

Chromatin remodeling delineates the process of rearranging nucleosomes to alter

the availability of DNA for regulatory input (Clapier and Cairns 2009). Numerous

studies on the subject of Stat target promoter activation emphasize the critical

importance of the mammalian version of the yeast SWI/SNF complex, designated

BAF, with two highly related ATPase subunits, BRG1 and BRM (Fig. 3). A related

complex, PBAF, shares eight subunits with BAF. However, PBAF has a unique

BAF180 subunit whereas BAF250a is exclusively found in BAF (Clapier and

Cairns 2009). Human cells lacking BRG1 are available and these have been

extensively studied next to cells depleted of subunits BAF47, BAF180 or

BAF250a by siRNA-mediated knockdown. The majority of reports addresses the

role of BRG1 for Stat1 dimer recruitment and function in the IFN-g response or for
promoter binding and transcriptional activation by the ISGF3 complex, activated by

type I IFN. These studies are consistent in showing that for both Stat1 dimer and

ISGF3 only a subset of target genes is affected by the lack of BAF function (Huang

et al. 2002; Liu et al. 2002; Ni et al. 2005; Pattenden et al. 2002). BAF subunits can

be isolated from target promoters by chromatin immunoprecipitation prior to IFN

treatment (Liu et al. 2002; Ni et al. 2008) suggesting their binding is mediated by a

constitutive factor. Consistent with this finding, BAF-dependent remodeling is a

prerequisite to the binding of both Stat1 dimers and ISGF3 to nuclear chromatin

(Cui et al. 2004; Ni et al. 2005, 2008). BRG1 association with promoter IV of the

CIIta gene encoding CIITA, the master regulator of MHC II genes, involves several

distal sites and correlates with the increased appearance of active chromatin marks.

Recruitment of BRG1 per se does not cause the formation of additional contacts

between distant promoter regions (promoter DNA loops), but it is necessary for

IFN-g-dependent long range interactions which may link Stat1 and IRF1 complexes
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bound to remote promoter elements and facilitate their interaction with the tran-

scription start site (Ni et al. 2008).

The selectivity of BAF complexes for individual Stat1 dimer or ISGF3 target

genes is puzzling. For example, the primary IFN-g-induced gene Irf1 does not

require BRG1 whereas the secondary response genes Gbp2 and CIIta do. To make

matters more complex, induction of the Irf1 gene by Stat3 in the context of an IL-6
response is BRG1-dependent (Ni and Bremner 2007). Currently there is little

insight into the gene and stimulus-dependent BAF requirement. One study

demonstrates selectivity of BAF and PBAF complexes for the human type I IFN-

induced genes IFIT1 and IFIT3 (Yan et al. 2005), but with both complexes sharing

the BRG1 subunit this finding cannot explain the BRG1 independence of some Stat

target genes. Transcription factor Sp1 was suggested to recruit BAF selectively to a

subset of ISGF3 target genes (Liu et al. 2002), but it is unclear whether BAF

recruitment by SP1 or an analogous constitutively associated transcription factor

generally explains gene selectivity. Conceivably not all Stat target genes require

chromatin remodeling prior to induction by cytokines. Alternatively this function

could be exerted by non-BAF remodeling complexes. In this regard a report

showing involvement of the NURF chromatin remodeling complex in the regula-

tion of a subset of Stat target genes in Drosophila may be of interest (Kwon et al.

2008b). Similar to gene regulation by Stats 1 and 2, a subset of IL-6-induced genes
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Fig. 3 Sequence of chromatin remodeling, Stat binding and chromatin modification as suggested

for interferon-induced genes or for genes specifying helper T cell lineage. For further explanation

see text
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requires BAF activity as a prerequisite for the association of Stat3 with their

promoters (Ni and Bremner 2007).

Stat-mediated chromatin remodeling and modification appears to be of large

importance for the development of functional helper T cell (Th) subpopulations

(O’Shea et al. 2011; Fig. 3). One example is the locus encoding the IL-12 receptor

(IL-12R) b2 chain, which is expressed in the Th1, but not the Th2 lineage.

Signaling by the T cell receptor causes BAF-dependent remodeling of the promoter

and some IL-12 receptor is made. IL-12 signaling then further increases IL-12Rb2
chain expression by providing Stat4 activity (Letimier et al. 2007). In addition to

the regulation of the IL-12Rb2 chain, a Jak3-dependent increase of chromatin

accessibility at the IFN-g promoter is thought to involve the recruitment of histone

acetylases by Stat5 as a prerequisite for the binding of the Th1 differentiation factor

T-bet (Shi et al. 2008a). Permissive chromatin at the T-bet/Tbx21 gene itself

requires Stat4, as judged by the absence of modifications specifying active chroma-

tin in Stat4�/� T cells (Wei et al. 2009).

In analogy to T-bet in Th1 cells, GATA3 is a crucial transcription factor for the

development and maintenance of the Th2 fate. An elegant recent study by

T. Nakayama and colleagues demonstrates that expression of the Gata3 gene in

the course of Th2 differentiation requires displacement of the PcG (polycomb)

complex at the Gata3 promoter by the TrxG (trithorax)/Menin complex (Onodera

et al. 2010; Fig. 3). PcG contains a histone methylase introducing repressive H3K27

marks and maintains a chromatin state that prohibits transcription. By contrast,

TrxG/Menin binding leads to the appearance of the activating H3K4me3 mark and

serves to establish and maintain a permanently open chromatin state that allows

gene expression. Under Th2 conditions, IL-4 activates Stat6 to associate with two

sites downstream of the Gata3 transcription start [binding of Stat6 to the Gata3
locus was also found by Wei and colleagues (Wei et al. 2009)]. Stat6 promoter

binding is necessary for PcG displacement and concomitant binding of TrxG, as

both events were inefficient in Stat6�/� T cells. The reported data are further

consistent with the notion that the recruitment of CBP/P300 HAT by Stat6 induces

H3 hyperacetylation at the relevant promoter region and the subsequent PcG

displacement. TrxG binding to the PcG-free promoter abrogates further Stat6

requirement to maintain the Th2 fate. Whether a similar mechanism is responsible

for the Stat5/T-bet connection in Th1 cells has not been reported so far.

In addition to moving or depleting nucleosomes, incorporation of variant

histones contributes to chromatin remodeling (Clapier and Cairns 2009). Exchange

of H3 with the variant histone H3.3 frequently occurs at transcriptionally active

genes. A recent report shows that induction of type I IFN-inducible genes by ISGF3

is accompanied by H3.3 incorporation at the coding region (Tamura et al. 2009).

Unexpectedly the variant was more prominently found at the distal end of the

coding region whereas no exchange occurred at the transcription start. The variant

histones persisted beyond the transcriptional response of the genes to a type I IFN

stimulus and were replaced by H3 during cell division.
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Gene Regulation by Stats in Absence of Their Tyrosine
Phosphorylation: The U-Stat Concept

The idea that tyrosine phosphorylation-independent noncanonical U-Stat pathways

might be biologically relevant stems from experiments with genetically

reconstituted Stat1-deficient cells. As expected, a Stat1Y701F mutant did not

restore responses to interferons in such cells, but, unexpectedly, it restored the

cells’ ability to express apoptosis-related genes and to respond to an apoptotic

stimulus (Kumar et al. 1997). Restoration of this response required the S727

phosphorylation site in the Stat1 TAD, suggesting that at least some tyrosine

phosphorylation-independent U-Stat signaling requires phosphorylation of S727.

Additional impetus for the U-Stat idea came from findings in Drosophila showing

that unphosphorylated Stat92E (the only Stat homologue in this organism)

interacted with heterochromatin protein 1 (HP1) to maintain transcriptional

silencing of parts of the genome and to avoid position effect variegation (Shi

et al. 2006, 2008b).

In mammals Stat autoregulation plays an important role in U-Stat signaling

(Fig. 1). Both Stat1 and Stat3 dimers when activated by, respectively, interferons

or IL-6 upregulate their own expression (Yang et al. 2005, 2007). Therefore, high

Stat levels are present in the late phase of these cytokine responses and persist

beyond the stage at which Stats are phosphorylated on tyrosine. George Stark and

colleagues demonstrated that high U-Stat amounts correlate with the expression of

late phase interferon or IL-6-induced genes. These genes are only partially redun-

dant with targets of the Stat3 dimer in the IL-6 response, but largely redundant with

IFN-induced genes in case of U-Stat1 (Cheon and Stark 2009; Yang et al. 2005).

Thus U-Stat3 partially alters gene expression in the late phase of the IL-6 response,

but the function of U-Stat1 (also within a U-Stat1/U-Stat2 complex) appears to

maintain expression of a subset of IFN-induced genes beyond the phase of Jak

signaling (Cheon and Stark 2009). The mechanisms by which U-Stats translocate to

the cell nucleus and activate gene expression are only partially understood. U-Stat3

can interact with the NFkB subunit p65 and use this as a vehicle to the cell nucleus.

In fact, many, but not all of the late stage IL-6 targets of U-Stat3 contain NFkB sites

(Yang et al. 2007). Some of these encode oncogenes and are highly upregulated in

phospho-Stat3-positive human tumors (Yang et al. 2005). Reportedly, U-Stat1

interacts with IRF1 and the complex binds to promoters with overlapping binding

sites for Stat1 dimers and IRF1 (Chatterjee-Kishore et al. 2000). However, Stark

and colleagues have not found evidence for such sequences in all U-Stat1-regulated

promoters, leaving the U-Stat1 potential for gene regulation a challenge for future

studies.

A strikingly different mode of employing U-Stats for signaling was reported

for helper T cell precursor cells (Maldonado et al. 2009). When such cells commit

to the Th1 lineage, T cell receptor signaling causes Stat1 to bind first to the

immunological synapse at the cell membrane and, thereafter, translocate to the

nucleus. In this process Stat1 is not phosphorylated on tyrosine, but constitutively
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phosphorylated at S727. Cells deficient for Stat1 or expressing a Stat1S727A

mutant show defects in Th1 differentiation. The data suggest a hitherto undefined

nuclear role of serine-phosphorylated U-Stat1 in the process of Th1

differentiation.

Genome-Wide Analyses of Stat Association with Nuclear
Chromatin

During recent years the field of transcriptional regulation has entered an era during

which the scope of identifying regulatory mechanisms has shifted away from

individual genes to large groups of genes or all genes of a genome. Whole genome

expression profiles obtained from microarrays or, increasingly, from deep

sequencing of total cellular RNA (RNA-Seq; Ozsolak and Milos 2010) are

combined with transcription factor binding profiles. Originally such profiles were

obtained by hybridizing DNA isolated by chromatin immunoprecipitation with

anti-transcription factor antibodies (ChIP) to oligonucleotide tiling arrays spanning

portions of the genome (ChIP-chip). A few years ago this technology was largely

supplanted by ChIP-Seq, i.e. massive parallel sequencing of ChIP-derived genomic

DNA (Macquarrie et al. 2011; Valouev et al. 2008). The strength of this approach

lies in the possibility to combine expression profiles with transcription factor

binding profiles, pol II binding profiles, variant histones and the distribution of

activating or repressive chromatin marks. Both ChIP-chip (Hartman et al. 2005;

Wormald et al. 2006) and ChIP-Seq (Durant et al. 2010; Elo et al. 2010; Kwon et al.

2009; O’Shea et al. 2011; Robertson et al. 2008; Wei et al. 2010) have been applied

to Stats. The biological implications of these studies are reviewed elsewhere, but

some implications for transcriptional regulation are briefly summarized in the

following paragraphs.

All studies analyzing either chromosome- or genome-wide Stat target genes

concur in finding or extrapolating several thousand genomic binding sites for the

Stat under study and, after combining these with expression data, in confirming

previously known target genes as well as in identifying hitherto unrecognized Stat-

regulated genes. The notion from numerous microarrays that a large proportion of

genes are negatively regulated by Stats is supported by ChIP chip and ChIP-Seq

(Elo et al. 2010; Hartman et al. 2005; Wei et al. 2010). Within the resolution of the

technology, most Stat binding appears to involve GAS or ISRE elements, although

these are not always perfect consensus sequences (Elo et al. 2010; Hartman et al.

2005; Kwon et al. 2009; Wormald et al. 2006). As predicted from studies prior to

the -omics era, deviation from the consensus sequence can indicate cooperative

binding with other transcription factors, as convincingly shown for the coregulation

of IL-21-induced genes by Stat3 and IRF4 (Kwon et al. 2009). The majority of

binding was assigned to regulated genes, with some variability both between Stats

and studies of the same Stat e.g. (Hartman et al. 2005; Wormald et al. 2006). There

are no rules about the location of binding sites relative to the transcribed region. In

fact, many sites are within, far upstream or downstream of the transcribed region,
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and a fairly small proportion is proximal to the transcription start (Durant et al.

2010; Elo et al. 2010; Hartman et al. 2005; Kwon et al. 2009; Robertson et al. 2008;

Wei et al. 2010). However, this view was challenged for Stat1 after combining the

data set on Stat1 binding to chromosome 21 (Hartman et al. 2005) with an analysis

of pol II binding (Wormald et al. 2006). The authors concluded that most Stat1

binding after IFN-g treatment occurs in vicinity to a pol II molecule. Depending on

Stat and study a variable proportion of Stat binding occurs in intergenic no man’s

land. Finding the significance of these associations is a future challenge. Likewise

the significant amount of Stat binding in absence of a cytokine stimulus requires

explanation. These could be U-Stats or dimers formed in response to tonic tyrosine

kinase signaling.

Both active (H3Ac, H3K4me3, H3K36me3) or repressive (H3K27me3) chro-

matin modifications at or in the vicinity of target genes can, but must not require

Stat binding (Durant et al. 2010; Wei et al. 2010). Strikingly, Stats can promote

active or repressive marks and, as described above for Stat6, they can help remove

or prevent repressive marks. In this context, Th differentiation is a well studied

arena for the antagonistic activities of Stat4, promoting Th1 development and Stat6,

a Th2 lineage transcriptional activator (O’Shea et al. 2011; Wei et al. 2010). Stat4

promotes active marks on genes required for the Th1 lineage and induces repressive

marks at a subset of Stat6 target genes specifying the Th2 lineage. The exact

opposite is true for Stat6. The molecular basis for the gene-specific antagonistic

effects of Stats as transcriptional activators or repressors is not understood but,

judged by this and other studies, likely to be transported via target gene chromatin.

An analysis of IFN-induced Stat binding to chromosome 22 produced the

expected result that in response to type I IFN most binding of Stat1 occurred

together with Stat2 (i.e. in the ISGF3 context), but some binding was Stat2-

independent, presumably representing binding by the Stat1 dimer which is formed

in response to both type I IFN and IFN-g. Unexpectedly, some of the Stat2-

independent Stat1 binding in IFN-a treated cells occurred at sites not occupied by

a Stat1 dimer after IFN-g treatment (Hartman et al. 2005), suggesting that either a

differential Stat1 modification or differential employment of ancillary activators/

coactivators by type I IFN and IFN-g directs the Stat1 dimer to distinct DNA sites.

In correspondence with numerous reports, the vast majority of IFN-induced genes

are pol II-free in the uninduced state, confirming the notion that IFN-activated Stats

and their partners actively recruit the enzyme to the transcriptional start site

(Wormald et al. 2006).

Concluding Remarks

Twenty years of Stat research have accumulated a wealth of knowledge about Stats,

their structure, modification, target genes and mechanisms of action. At the same

time these 20 years have seen an enormous pace at which new technologies have

become available for studies of transcriptional regulation. At the current stage we

can take genome-wide snapshots of Stats acting at their target promoters and
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overlay these with similar images describing chromatin dynamics. Applying this

technology is likely to help us understand the complexity of biological effects

produced by Stat signaling in different cell types. It has already produced signifi-

cant challenges for future studies including frequent Stat binding to nuclear chro-

matin in unstimulated cells, binding to intergenic regions without an obvious

functional context, or the association of Stat1 with a subset of chromatin barriers

that demarcate the border between active and repressed chromatin (Cuddapah et al.

2009). In addition to this genomic technology-driven advance the findings

summarized in our article demonstrate that new discoveries concerning Stat struc-

ture, modification and regulation are still being made with more conventional

approaches. The excitement of Stat research will continue for years to come.
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Nongenomic Functions of STAT3

Daniel J. Gough, Pravin Sehgal, and David E. Levy

Abstract

STAT3 was discovered as a transcription factor activated during inflammatory

cytokine signaling, largely through the action of cytokines that utilize receptors

that engage the gp130 signal transducer. While the paradigm of receptor-

dependent protein tyrosine phosphorylation of STAT3 has explained many of

the biological activities ascribed to this protein, additional functions have been

discovered in recent years. These functions involve actions of STAT3 outside

the nucleus and do not rely on its ability to interact with chromatin and trigger

gene expression. Nongenomic functions of STAT3 include action in the cell

cytoplasm and in mitochondria, where it impacts metabolic activities involved in

a diverse set of cell functions, including malignant transformation.

Signal Transducer and Activators of Transcription (STAT) proteins were originally

identified as latent cytoplasmic proteins that were acutely activated by tyrosine

phosphorylation following cytokine stimulation. Tyrosine phosphorylation of a

single conserved residue near the carboxyl terminus of a STAT protein (Y705 in

STAT3) was found to be critical for a structural alteration that facilitated the

nuclear translocation of STAT protein dimers (Levy and Darnell 2002). In the

nucleus, these activated transcription factors exhibited sequence-specific DNA

binding, coactivator protein recruitment, and stimulation of gene expression. The

first members of the multiple gene family encoding STAT proteins, which numbers

7 conserved genes in mammals, were STAT1 and STAT2 that mediate responses to

Type I and Type II IFN. The discovery of STAT1 and STAT2 was quickly followed
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by identification of STAT3, activated most prominently by IL6-family cytokines,

and by STATs 4–6, activated by IL12, IL2, prolactin and growth hormone, and IL4.

All of these proteins were found to function through the paradigm described

for IFN-dependent gene activation, involving ctyokine receptor-associated protein

tyrosine kinase-dependent site-specific tyrosine phosphorylation, dimer formation,

nuclear translocation, and transcription machinery assembly on chromatin

(Schindler et al. 2007).

This view of canonical functions for tyrosine-phosphorylated STAT3 can now

be expanded to include STAT3 functions that are independent of tyrosine phos-

phorylation and some that are independent of intrinsic nuclear localization.

Unphosphorylated STAT3 can be chaperoned into the nucleus by NF-kB where it

can alter the transcription of a subset of genes (Yang et al. 2005, 2007). The first

indications that STAT3 may be biologically relevant outside of the nucleus came

from the discovery that STAT3 (as well as other STAT proteins) associate with

a variety of cytoplasmic structures, including focal adhesions, microtubules, and

the mitotic spindle, as well as with membrane elements, such as plasma membrane

rafts and endo-lysosomes in addition to mitochondria (Guo et al. 2002; Sehgal

2008; Shah et al. 2006). Some of the studies of cytoplasmic STAT3 have

documented the presence of phosphotyrosine, and these studies have been interpreted

as representing way stations for activated STAT3 en route to the nucleus or

perhaps serving non-canonical functions in the cytoplasm (Inghirami et al. 2005;

Sehgal 2008).

Early evidence for the association of STAT3 with cytoplasmic structures

documented the protein in sedimentable membrane fractions from cytoplasmic

extracts from both untreated and cytokine-stimulated cells (Guo et al. 2002).

These fractions were also enriched for markers of endosomal, mitochondrial, or

endoplasmic reticulum components. It was estimated that in some cells up to two-

thirds of cytoplasmic STAT3 was associated with an endosomal-like compartment

(Dang 2010). This evidence of STAT3 within cytoplasmic structures prompted a

reexamination of the assumption that STAT3 function exclusively involved phos-

phorylation of freely diffusible cytoplasmic protein and a search for the functional

relevance of membrane associated STAT3. Fundamental findings in this area

reported that STAT3 was functionally associated with mitochondria in mouse

cardiomyocytes, pro-B cells and in Ras oncogene transformed cells (Gough et al.

2009; Wegrzyn et al. 2009). STAT3 was found in the mitochondrial fractions of all

cell types tested and recent evidence suggests that the mitochondrial pool of STAT3

is required for diverse biological systems including cardiac activity and the

response to ischemia/reperfusion, neurological activity, and cellular transformation

by Ras oncogenes.

STAT3 protects cardiac muscle following ischemia/reperfusion (I/R) as a result

of acute myocardial infarction (Haghikia et al. 2011). The mitochondria are central

to I/R induced injury due to the release of reactive oxygen species (ROS) and by

opening of the mitochondrial transition pore (mTP) (Perrelli et al. 2011). Both are

processes that have been found to be influenced by the activity of the mitochondrial

pool of STAT3. Mice lacking STAT3 in cardiomyocytes had reduced activity of
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complex I and II of the electron transport chain (ETC) (Wegrzyn et al. 2009).

Moreover, it was found that regions of STAT3 previously documented as essential

for its transcriptional function, such as the site for tyrosine phosphorylation and

residues implicated in DNA binding or SH2 domain function, were superfluous for

this mitochondrial role; however, phosphorylation on a single carboxyl-terminal

serine residue (S727) was required for the mitochondrial activity of STAT3.

Complex II is a major site of ROS production and it is conceivable that in the

absence of appropriate complex II activity, increased ROS may be produced and/or

released contributing to I/R injury. Indeed, in vivo I/R experiments on a mouse

strain over-expressing mutant STAT3 that was constitutively phosphorylated on

S727 and targeted to mitochondria showed a lack of ROS production when com-

pared to wild type animals (Szczepanek et al. 2011). The mTP is a pore spanning

the mitochondrial inner membrane. Its opening leads to a loss of mitochondrial

membrane potential and if sustained leads to mitochondrial swelling and apoptotic

cell death. I/R induces mTP opening; however, mitochondrial STAT3 delays or

inhibits mTP opening thus protecting cells from apoptosis in response to I/R

(Boengler et al. 2010).

Both STAT3 and the regulation of ROS concentration are also critical for the

appropriate functioning of the nervous system. Nerve growth factor (NGF) induces

neurite outgrowth, ROS production, and phosphorylation of STAT3 on S727.

Interestingly, following NGF stimulation the pool of pS727 STAT3 does not

relocate to the nucleus and was instead observed in mitochondria. Moreover,

mutation of a mitochondrially restricted STAT3 S727 to alanine resulted in a lack

of neurite outgrowth and ROS production in response to NGF (Zhou and Too 2011).

In contrast, STAT3-deficient astrocytes produce more superoxide and other ROS

species concomitant with a decrease in glutathione concentration and mitochondrial

membrane potential (Sarafian et al. 2010), although it has not been determined if

these effects require cytoplasmic or nuclear STAT3. It is important to note that a

nuclear function of STAT3 capable of indirectly altering mitochondrial activity has

been documented by Demaria et al. (2010), an activity that can also contribute to

malignant transformation.

As described above, it is becoming increasingly clear that STAT proteins in

general and STAT3 in particular function in additional pathways beyond the innate

immune cytokine responses in which they were originally discovered. In particular,

there is a growing realization that STAT3 plays a critical role in a number of human

cancers (Bowman et al. 2000). Many of these cancer-related functions rely on the

canonical activity of tyrosine-phosphorylated STAT3 and its ability to be recruited

to chromatin and stimulate transcription of genes critical for the malignant state,

particularly genes important for cell proliferation and cell survival. Some of these

functions depend on cytokine signaling, because some cancer cells secrete a

STAT3-activating cytokine and respond to it in an autocrine or paracrine manner.

Prominent among these autocrine factors is IL6 and its close relatives. However,

STAT3 can also be tyrosine phosphorylated in a cytokine-independent manner,

both by growth factor receptor tyrosine kinases and by protein tyrosine kinase

oncoproteins, for example, Src and ALK (Inghirami et al. 2005; Schlessinger and
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Levy 2005). Both of these patterns of STAT3 activation by cancer cells (cytokine-

dependent and oncoprotein-dependent) produce tumor cell-autonomous and non-

autonomous changes in STAT3-dependent gene expression that promote tumor

formation and maintenance. Typical amongst the STAT3 target genes that contrib-

ute to malignancy are cell-autonomous functions that promote cell proliferation

and survival and cell-non-autonomous functions mediated by tumor infiltrating

leukocytes or surrounding stromal cells that contribute to inflammation and

immune suppression (Yu et al. 2009).

However, another contribution that STAT3 makes toward malignancy is in

support of the altered cell metabolism that is a hallmark of cellular transformation.

It is clear that STAT3 is capable of supporting the altered metabolic requirements in

tumor cells through both canonical nuclear (Demaria et al. 2010) and non-canonical

mitochondrial roles (Gough et al. 2009). The non-genomic role for STAT3

emanating from mitochondria in Ras-transformed cells was found following the

surprising discovery that loss of STAT3 compromised Ras-dependent malignancy.

STAT3-null mouse embryo fibroblasts (MEFs) displayed impaired anchorage-

independent growth following expression of oncogenic Ras, in spite of the absence

of tyrosine phosphorylated STAT3 in wild type cells transformed by H-, N-, or

K-Ras. Indeed, STAT3-null cells reconstituted with mutant STAT3 lacking

tyrosine 705 (Y705) recovered their ability to grow in soft agar or as solid tumors

in nude mice. Similar molecular genetic studies found no requirement for the ability

of STAT3 to interact with phosphotyrosine substrates through its SH2 domain,

accumulate in the nucleus, or bind to DNA in support of Ras-dependent

tumorigenesis (Gough et al. 2009).

Since this Ras-transformation function of STAT3 appeared to emanate from the

cytoplasm rather than the nucleus, we investigated the cell biology of this process.

Cell fractionation studies revealed that STAT3 accumulated in mitochondrial

fractions in Ras-transformed cells, and molecular genetic studies demonstrated

that phosphorylation of S727 but not of Y705 was critical. Moreover, phospho-

S727 but not phospho-Y705 was increased in Ras-transformed cells, and phospho-

S727 was detected in mitochondria. In fact, even following cytokine stimulation of

cells, when phospho-Y705 is abundant in both the cytoplasmic and nuclear

compartments, no phospho-Y705 was detectable in mitochondrial fractions.

With these data in hand, we investigated the requirement for mitochondrial

STAT3 during Ras transformation. Using chimeric STAT3 expression constructs

that accumulate exclusively in mitochondria to reconstitute STAT3 knockout

mouse cells or STAT3 knockdown human cancer cells, we found that mitochon-

drial phopho-S727 STAT3 was sufficient to complement the absence of total

STAT3 for Ras-dependent anchorage-independent cell and tumor growth.

Mitochondrially localized STAT3 was sufficient to sustain the altered glycolytic

and oxidative phosphorylation activities of Ras-transformed cells, including

increased levels of ATP, higher lactate dehydrogenase activity leading to increased

production of lactate, and increased flux through the ETC, particularly with respect

to the enzymatic activities of complexes II and V. All of these STAT3 functions
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depended on phospho-S727, a modification that depended on activated MAP kinase

signaling from the Ras oncogene.

These data document a previously unforeseen role for STAT3 as amitochondrially-

localized protein acting in a non-genomic manner in a function that is critical

for metabolic aspects of Ras-dependent malignancy. It has been long recognized

that many tumors display altered glucose metabolism relative to normal tissue,

manifested as a propensity to avidly consume glucose and ferment it to lactic

acid, even under aerobic conditions. This property of aerobic glycolysis, known

as the Warburg effect (Warburg 1956), provides the mechanism for the clinical

localization of human tumors in vivo by positron emission tomography of

radiolabeled 2-deoxyglucose. However, its biochemical basis and functional

importance, while receiving increasing attention in recent years, have remained

elusive.

A number of aspects of the Warburg effect appear contradictory, but are

reminiscent of the apparent role of mitochondrial STAT3 in transformed cells.

One might think the energy requirements of proliferating tumor cells would be

better served by oxidative phosphorylation (OXPHOS), generating a theoretical

yield of 36 moles of ATP per mole of glucose consumed, as opposed to two by

glycolysis, but bioenergetics don’t appear to drive the Warburg effect. The

Warburg effect is also distinct from the hypoxic response that is another common

property of tumors due to insufficient angiogenesis (Dang 2010; Hsu and Sabatini

2008; Vander Heiden et al. 2009). Enhanced glycolysis is observed in fully

oxygenated tumors, such as blood-borne and lung tumors that are exposed to higher

oxygen tension than normal tissues that efficiently undergo oxidative phosphoryla-

tion. Thus, while tumors deprived of adequate blood supply exhibit enhanced

glycolytic activity due to a hypoxic response, it is incorrect to assume that enhanced

tumor glycolysis characteristic of the Warburg effect is necessarily an adaptation to

hypoxia, and it presumably benefits tumor growth beyond bioenergetics. In fact,

enhanced glycolytic activity of tumors often precedes the increase in size that

outstrips their blood supply. We have observed altered metabolism in tumor cells

dependent on STAT3 under both normoxic and hypoxic conditions.

Understanding the Warburg effect and the role of mitochondrial STAT3 may

require a broader view of tumor metabolism. The mitochondrion is more than an

energy generator, since the TCA cycle and OXPHOS also provide precursors for

anabolic processes required for cell proliferation and increased biomass, such as

amino acids, nucleotides, and lipids. There is also evidence that proliferation of

non-transformed cells is accompanied by a metabolic shift that bears similarity to

tumor cell metabolism, including enhanced glycolysis and increased lactate pro-

duction in the presence of adequate oxygen and continued OXPHOS activity. Thus,

the Warburg effect may be a direct consequence of, and perhaps required for, the

enhanced proliferation of tumor cells. While the basis for the metabolic shift of

proliferating and transformed cells remains ill defined, there are a number of points

where growth factor signaling pathways and the actions of oncoproteins and tumor

suppressors impact on the process. For instance, PI3K/AKT signaling in response to

growth factor stimulation enhances glucose transporter expression and glycolytic
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enzyme activities, while p53 functions to balance glycolysis and respiration and its

loss in tumors may contribute to a glycolytic shift (Levine et al. 2006). Lactate

dehydrogenase (LDH), which catalyzes the reduction of pyruvate to lactate to

regenerate oxidized NAD+ and is therefore essential for ongoing fermentation, is

required for proliferating cells and reduction in its activity impairs tumor cell

growth (Fantin et al. 2006). Another major control point in glycolysis, pyruvate

kinase (PK), which is required for production of pyruvate and ATP, is also

regulated by growth factor signaling and in cancer. The activity of the isoform of

PK that predominates in tumor cells (PKM2) is regulated by tyrosine phosphoryla-

tion (Christofk et al. 2008). Paradoxically, tumor and growth factor stimulated cells

appear to express reduced activity forms of PKM2 rather than enhanced activity

forms, in spite of increased glycolysis and lactate production. This observation

suggests that either impaired PKM2 activity, which should result in reduced

abundance of pyruvate, actually favors lactate fermentation at the expense of

respiration, or that the pyruvate for lactate production is derived from an alternative

source. One such source could be glutamine, which can also be converted to

pyruvate and whose metabolism is often enhanced in cancer cells (Gao et al. 2009).

Considering the Warburg effect in this broader context suggests that it might be

the manifestation of a number of metabolic processes contributing to enhanced

tumor cell proliferation and survival by supporting metabolic output that exceeds

energy needs in order to provide an adequate supply of precursors for anabolic

processes. In this sense, aerobic glycolysis is not a fallback metabolic state due to

impaired respiration or defective mitochondria but is rather an adaptive response to

proliferation. The metabolic shift characteristic of tumors cells is an important

aspect of tumor progression, represents a possible pressure point of vulnerability

that could be exploited therapeutically, and demands a deeper understanding at the

biochemical and mechanistic level. Similarly, the mechanistic basis for the similar-

ity between functions of mitochondrial STAT3 and the Warburg effect represents

an important area for future research.

Concluding Remarks

Many unanswered questions and possible contradictory findings regarding mito-

chondrial STAT3 accumulation and function remain to be answered. Most promi-

nent amongst these is how STAT3 translocates to mitochondria and how it

influences mitochondrial functions, such as activity of ETC complexes I, II and V

and the mTP. It has been found that cells lacking heat shock protein H11 kinase/

Hsp22 (Hsp22), a potential component of organelle import, have a diminished

reservoir of mitochondrial STAT3. However, Hsp22 can be only part of the

STAT3 mitochondrial import process, because Hsp22 is a cytosolic chaperone

and STAT3 appears to accumulate in the mitochondrial matrix or inner mitochon-

drial membrane (Boengler et al. 2010), beyond the reach of Hsp22-mediated import

processes. For STAT3 to reach the matrix or inner membrane it must cross two

membranes, requiring the help of an army of pore proteins and chaperones, none of
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which has been yet identified. While it is clear that STAT3 alters the activity of the

ETC and can impede mTP opening, it probably does not do so by direct binding to

these complexes. Numerically STAT3 may exist in mitochondria of some cell types

at a stoichiometric deficit to the proteins of these complexes (Phillips et al. 2010),

suggesting that it may function catalytically rather than structurally. A possibly

related enigma has been an apparent inability to detect ectopically expressed,

fluorescently-tagged recombinant STAT3 fusion proteins in association with

mitochondria by live cell imaging (Cimica et al. 2011). Another possible explana-

tion for mitochondrial STAT3 function has been suggested, that STAT3 alters the

abundance of mitochondrial proteins by acting as a transcription factor for the

mitochondrial genome. This suggestion is based on evidence that STAT3 can bind

to D-loop structures of mitochondrial DNA in cell free experiments (Vassilev et al.

2002). However, even if mitochondrial STAT3 does bind to mitochondrial DNA, it

does not appear to be required for the transcription of any mitochondrially-encoded

genes or for the maintenance or replication of the mitochondrial genome (Gough

et al. 2009; Wegrzyn et al. 2009) and therefore is unlikely to be functioning in this

organelle as a transcription or replication factor. Thus, while we are beginning to

understand the magnitude of the biological significance of mitochondrial STAT3,

we have a long way to go toward understanding the very fundamental questions of

how STAT3 enters mitochondria and how it orchestrates tumor-promoting effects

on ETC and mTP activities.
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Evolution of Jak and Stat Proteins

Claus Vogl, Priyank Shukla, and Ingo Ebersberger

Abstract

In this article, we examine the evolution of Jak and Stat proteins, and of the Jak-

Stat pathway. We first introduce the protein families involved and the signaling

pathway in general. We then oppose the simply structured pathway in Droso-
phila melanogaster to the more complex situation in mammals. Furthermore, we

compare the Jak-Stat system between mammals and teleost fishes. Finally, we

move to the less well investigated roles of Stats in the worm Caenorhabditis
elegans and the slime mold Dictyostelium discoideum. We also survey the

distribution of Jaks and Stats among metazoans and other eukaryotes. Orthologs

of Stats are widely distributed among metazoans and are also found in choanofla-

gellates and in slime molds. In contrast, Jaks seem to be confined to the

bilaterians and are apparently absent in molluscs, round- and flatworms. This

indicates that the Jak-Stat pathway evolved at the base of the bilaterians, but has

been lost in some invertebrate groups.

Introduction

The general function of the Jak-Stat pathway is the transduction of a signal induced

by the binding of an extracellular ligand at the cell surface to the nucleus, and the

subsequent activation of transcription. In Fig. 1, we outline the canonical Jak-Stat

signaling pathway. Three functional classes of proteins are involved in this
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pathway: (1) a trans-membrane receptor complex, (2) the receptor-associated Janus

kinase (Jak) proteins, and (3) the signal transducer and activator of transcription

(Stat) proteins. While Jak-Stat signal transduction may involve different ligands

and receptors among different organisms or also within an organism, the Jak and

Stat components of the pathway and their interaction are generally conserved in

structure and function. We will, therefore, proceed by explaining the general

structure and function of Jaks and Stats and of a canonical Jak-Stat pathway. We

will comment on the receptors and ligands, when referring to the situation in

specific organisms.

The Structure and Function of Jak

A Jak consists of four domains (Fig. 2a). At the N-terminus, an erythrocyte protein
4.1 ezrin/radixin/moiesin domain (FERM or ERM domain) (Chishti et al. 1998) is

Fig. 1 The canonical model of the Jak-Stat pathway. Binding of an extracellular ligand (dark
grey) to the trans-membrane receptor (light grey) and its associated Jak kinases (light blue)
activates the receptor complex through phosphorylation (P), which in turn leads to the phosphory-

lation of cytoplasmic Stats (dark blue). This causes a change in the configuration of STATS, which
then translocate to the nucleus, and activate transcription by binding to specific transcription factor

binding sites (e.g., the palindromic GAS family transcription factor binding sites)

100 C. Vogl et al.



present. Via this domain the Jak interacts with the membrane bound receptor

chains. The NCBI conserved domain database (CDD; http://www.ncbi.nlm.nih.

gov/cdd) refers to this domain as band 4.1 homolog domain (B41, smart00295).

The FERM domain is followed by the Src homology 2 (SH2) domain (SH2

superfamily: cl00138; smart00252; pfam00017), which binds to phosphorylated

tyrosines. Towards the carboxy-terminus, first a pseudo-kinase domain (cd05037)

and then a kinase domain (pfam07714) are found. In the NCBI CDD, both the

kinase and pseudo-kinase domains are annotated as PKc-like domains (cl09925).

The Structure and Function of Stat

In the NCBI CDD many Stats are annotated to contain four domains. However,

Schindler et al. (2007) annotate it with six domains (Fig. 2b). The Stat protein
interaction domain (Stat-int, pfam02865) is located at the N-terminus and directs

dimerization of Stats that are not tyrosine phosphorylated (cf. Fig. 1). Stat-int is
followed by the Stat-protein all alpha domain (pfam01017), which provides a large

hydrophilic surface and interacts with other proteins. Note that Schindler et al.

(2007) refer to this domain as coiled-coil domain due to its structural properties.

The third domain is the Stat protein DNA-binding domain (pfam02864). Schindler

et al. (2007) differentiated two sub-domains, the N-terminal DNA-binding domain

and a linker domain. The linker domain connects the DNA-binding domain to the

next domain, the SH2 domain (cl00138). As it is the case for the Jaks, the SH2
domain binds to phosphorylated tyrosine residues. A functionally relevant tyrosine

0 400
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JAK

COOHNH2 B41 SH2 Ki Ki 

0 100 200 300 400 500 600 700 800

pY

STAT

NH2 Stat-int Coiled-Coil TAR COOHSH2 LkDBD

Fig. 2 The structure of (a) Jak and (b) Stat proteins. From N-terminus to C-terminus: (a) B41:
erythrocyte protein 4.1 ezrin/radixin/moiesin domain; SH2: Src homology 2 (SH2); CKi: pseudo-
kinase domain; Ki: kinase domain. (b) Stat-int: Stat protein interaction; Coiled-coil: Stat-protein
all alpha domain, also called coiled-coil domain; DBD: Stat protein DNA-binding domain; Lk:

linker domain; (the bracket uniting these two domains indicates that they are united as DNA-
binding domain in the NCBI CDD); SH2: SH2 domain; pY: a tyrosine residue; TAR: transcrip-

tional activation region
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residue is located immediately adjacent to the SH2 domain. Phosphorylation of this

tyrosine marks the Stat’s transition to the active state. The carboxy-terminal region

is quite variable. Schindler et al. (2007) annotate this region as transcriptional

activation “domain”, because it associates with a broad variety of transcriptional

regulators. The function of this domain to activate transcription is evolutionarily

conserved, however neither is its sequence nor its structure. We will, thus, refer to it

as Transcriptional Activation Region (TAR).

The Jak-Stat Pathway

In the inactive form, Stats shuttle into and out of the nucleus, but are found

primarily in the cytosol. Already in the inactive form, Stat dimers are formed

through the N-terminal Stat protein interaction domain (Vinkemeier et al. 1998).

Upon binding of a ligand, the trans-membrane receptor undergoes a conformational

change and associated Jaks come into proximity. The Jak kinases then auto- and

cross-phosporylate each other as well as the receptor chains. Upon recruitment of

cytosolic Stat dimers to the phosphorylated receptor via the Stat SH2 domains,

the Jak kinases activate the Stats via phosphorylation on tyrosine residues.

In the activated conformation, the two Stat monomers make contact through

the phosphorylated tyrosines and the SH2 domains. The activated Stat dimer

dissociates from the Jak-receptor complex and relocates to the nucleus. Here it

binds to a family of palindromic sequence motifs (canonically: TTCNNNGAA), the

so-called GAS family of transcription factor binding sites (TFBS). If GAS family

TFBSs are located next to each other, cooperative binding may be promoted by the

Stat protein interaction domain (Vinkemeier et al. 1998).

The Jak-Stat Pathway in Model Organisms

The Jak-Stat Pathway in Drosophila

The Jak-Stat pathway in Drosophila conforms to the canonical situation described

in the previous paragraphs. It involves a receptor, a Jak, and a Stat, each encoded by

a single gene (Arbouzova and Zeidler 2006). The Jak in Drosophila is named

Hopscotch. Hopscotch is generally abbreviated as Hop, which must not be confused

with the Hsp70/Hsp90 organizing protein. Its SH2 domain is aberrant and not

annotated as such in the NCBI CCD. Still it is recognizable in secondary structure

analysis (Gao et al. 2004). The Drosophila Jak, Hopscotch, is associated with the

trans-membrane receptor Domeless (Dome). Dome has Fibronectin type 3

(cl00065) domains characteristic of cytokine receptors, a transmembrane region,

and a coiled-coil domain (Arbouzova and Zeidler 2006). Three ligands of Dome

have been characterized, all from the Unpaired gene family: Outstretched (Os, also

annotated as Upd1), Unpaired-2 (Upd2), and Unpaired-3 (Upd3). The Drosophila
Stat92e has the canonical domain structure described previously, and activated Stat
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dimers bind to the canonical palindromic GAS family TFBS and initiate

transcription.

In Drosophila, Jak-Stat signaling is involved in a number of elementary cellular

processes, such as immune response, stem cell signaling, and germ cell develop-

ment. Its role has been mainly investigated by mutating individual genes of the

pathway (Arbouzova and Zeidler 2006). Loss-of-function mutations of the genes

encoding the three ligands each have only a modest phenotype. Due to their

similarity, knockouts of either Udp2 or Udp3 can be partially compensated by the

other genes. Only a loss-of-function mutation of Os has a pronounced effect, and

the affected individuals show strong segmentation and posterior spiracle

phenotypes. For the genes downstream to the ligands in the signaling pathway no

redundancy exists. Thus, their mutations result in more severe phenotypes. For

example, gain-of-function mutations of Jak induce over-proliferation and prema-

ture differentiation of larval blood cells leading to formation of melanotic tumors.

Moreover, they cause unspecific lamellocyte differentiation and proliferation, an

effect that is also part of normal immune response to wounding and infection. Loss-

of-function mutations of the Jak lead to small imaginal discs, and thus to small eye

phenotypes. Partial loss-of-function mutations of both Jak and Stat result in a

reduced immune response. In the fly, immune response to septic injury is mediated

by Udp3 expressed in hematocytes circulating at the site of injury. Udp3 activates

Stat in the insect fat body resulting in an expression of anti-microbial peptides. This

response can be blocked by inactivating the receptor Dome.

The Jak-Stat Pathway in Vertebrates

Genomic Arrangement, Structure, and Function of Mammalian
Jaks and Stats
In mammals, both Jak and Stat genes are present in multiple copies (paralogs) that

arose by gene duplications in the vertebrate lineage. Instead of just three ligands

and one receptor, as in the fly, many different cytokines, chemokines and hormones

bind to a diverse set of receptors. The interaction of the different Jaks and Stats with

these receptors leads to a complex system of partially overlapping and partially

antagonistic interactions that lead to the activation of distinct sets of genes. This

signaling pathway is therefore considerably more complex than in Drosophila. We

will follow Schindler et al. (2007) in our brief description of the mammalian Jak

and Stat gene family members.

The Jak gene family of mammals comprises four members, Tyk2, Jak1, Jak2,
and Jak3. Tyk2 and Jak3 are clustered on the same chromosome; the other two are

scattered. The encoded proteins are similar in domain architecture to the Drosoph-
ila Jak (cf. Fig. 2a). The first three genes are ubiquitously expressed; expression of

Jak3 is restricted to leukocytes. Tyk2, Jak1 and Jak2 associate with various cyto-

kine and hormone receptors while Jak3 displays the most discrete function by

binding solely to the common gamma chain (g-c) receptor (Pesu et al. 2008).

Null mutants of Tyk2 and Jak3 are viable but suffer from immunodeficiencies,
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whereas Jak1 knockout mice die perinatally due to neuronal defects and Jak2

deficiency is lethal at an embryonic stage due to lack of definitive erythropoiesis.

The mammalian Stat gene family comprises seven members, Stat1, Stat2, Stat3,
Stat4, Stat5a, Stat5b, and Stat6, which are clustered into three groups in the

genome. The encoded proteins are in general similar in domain architecture to

the Drosophila Stat (cf. Fig. 2b). Only the carboxy-terminus harboring the tran-

scriptional activation region differs; a number of additional domains have been

described for the mammalian Stats. Stat1 has a Stat1 TAZ2 binding domain

(pfam12162; Woijziak 2009). This domain binds to the TAZ2 domain of the

CREB-binding protein CRB. In this context it becomes a transcriptional activator.

Stat2 has a Stat2C terminal domain (pfam12188; Banninger and Reich 2004),

which aids nuclear export. The mouse Stat2 contains additionally a POU domain,
class 2, associating factor 1 domain (pfam09310; Chasman et al. 1999) at the C

terminus. This domain is involved in activation of transcription and associates with

either OCT1 or OCT2. Furthermore, the Stat6 of the mouse has a topoisomerase II-
associated protein PAT1 domain (pfam09770) (Wang et al. 1996). In the NCBI

CDD, this domain is annotated as necessary for accurate chromosome transmission

during cell division, but no such function has been described for murine Stat6. Thus

the role of this domain in the function of Stat6 of mice remains unclear.

Stat1 and Stat4 genes are found immediately adjacent to each other on the same

chromosome. The Stat1 protein is observed in two isoforms: the longer Stat1a, and
the shorter Stat1b lacking the carboxy-terminus of Stat1a. Stat1 forms heterodimers

with Stat2. Upon stimulation through type I interferon, Stat1, Stat2, and interferon

regulatory factor (Irf) 9 form the ISGF3 (interferon stimulated gene factor 3)

trimer (Schindler et al. 1992). ISGF3 then binds to a non-palindromic TFBS called

ISRE (interferon stimulated response element) through Irf9 (canonically:

AGTTTNNNTTTCC). Stat1 also forms homodimers after IFN-g stimulation,

which bind to the canonical GAS family TFBS (Shuai et al. 1992). Activation of

downstream target genes of Stat1 generally promotes inflammation and antagonizes

proliferation. Mutations in this gene therefore generally lead to increased suscepti-

bility to viral and bacterial infections. Stat4, the genomic neighbor of Stat1, also has

a full-length and a shorter isoform. It homodimerises and is important in the

response to IL-12 in innate and adaptive immunity (Kisseleva et al. 2002).

The next cluster of Stat genes is that of Stat3, Stat5a, and Stat5b (Miyoshi et al.

2001). Stat3 transduces signals from the entire IL-6 and IL-10 families, as well as

from granulocyte(G)-CSF, leptin, IL-21, IL-22, IL23, and IL-27 (Kisseleva et al.

2002; Levy and Darnell 2002). Like Stat1 and Stat4, Stat3 exists in two isoforms

that differ in their length. It is important during development, as Stat3-/- mouse

embryos die around embryonic day 7 (Kisseleva et al. 2002; Levy and Darnell

2002). Tissue-specific knockouts suggest an important anti-inflammatory role of

Stat3. Furthermore, Stat3 promotes cell proliferation, tumorigenesis, and cancers

(Kisseleva et al. 2002; Levy and Darnell 2002). The anti-inflammatory and

proliferative action of Stat3 counteracts the effects of Stat1, which also gets

activated by IL-6. Stat5a and Stat5b associate with cytokine and single chain

receptors, including erythropoietin, growth hormone and prolactin. Stat5 null
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mice are lethal mainly through the lack of the single chain receptor responses.

Stat5a and Stat5b genes have been duplicated relatively recently (see below). Their
corresponding proteins regulate hematopoiseis, metabolism and growth in partially

overlapping fashion (Yao et al. 2006).

Stat2 and Stat6 genes make up the third group of Stats. They are located on the

same chromosome separated by only few genes. Stat2 does not bind to DNA by

itself, but only with Stat1 and Irf9 as part of the ISGF3 complex (Decker et al.

2005). Stat6 transduces signals of the g-c for both IL-4 and IL-13, whose respective
receptors share common chains. The Stat6 homodimer seems to bind to a slightly

different palindromic GAS family TFBS with an additional central nucleotide

(Kisseleva et al. 2002; Levy and Darnell 2002; O’Shea et al. 2002).

Genomic Arrangement of Jak and Stat Genes in Teleosts
Orthologs to six of the seven mammalian Stats and to all four Jaks are present in

teleost fishes. This indicates that all but one gene duplication giving rise to the

seven Stats and four Jaks in mammals occurred before the split of the teleost lineage

about 450 Mio years ago. Only the duplications of Stat5 giving rise to Stat5a and

Stat5b giving mammals, and to Stat5.1 and Stat5.2 in teleosts, occurred twice

independently (Gorissen et al. 2011). Note that the pufferfish Takifugu rubripes
apparently has lost one of the two copies of Stat5 (Jaillon et al. 2004). In the

zebrafish genome five Jaks are found: all four Jaks also present in mammals plus an

additional copy of Jak2.
While the seven mammalian Stats are arranged in three clusters and Tyk2 and

Jak3 are also clustered, no such clustering is seen for the teleosts (Gorissen et al.

2011). This is most likely due to the whole genome duplication that occurred in the

common ancestor of the teleosts (Meyer A 2005; Wittbrodt and Schartl 1998),

which was followed by a reciprocal loss of Stat paralogs in the duplicated gene

clusters. This scenario is exemplified by the genomic localizations of the Stat1 and

Stat4 genes. In humans and mice the two genes are located immediately adjacent on

the same chromosome. Likewise, only a single Stat1 gene and a single Stat4 gene is
present in zebrafish, despite the whole genome duplication that occurred on the

teleost lineage. However, the two genes are now located on different chromosomes

(chr 9 and 22, respectively). Notably, in both locations, the paralogs of the genes

that originally flanked the Stat1-Stat4 gene cluster are preserved in the original

order, i.e., in shared synteny. Thus a copy of Stat1 must have been lost from the

region on zebrafish chromosome 22 and a copy of Stat4 from zebrafish chromo-

some 9 (Gorissen et al. 2011).

Evolutionary Rates of Jak and Stat Paralogs in Vertebrates
Among vertebrate Stat genes, Stat1, Stat2, Stat4, and Stat6 display an elevated rate

of evolution compared to Stat3, Stat5a, and Stat5b; among vertebrate Jak genes,

Tyk2 and Jak3 evolve faster than Jak1 and Jak2 (Gorissen et al. 2011). Genes

involved in immunity are often the target of pathogens. If a pathogen incapacitates

Stat1, and thus avoids host immunity, functional Stat1 mutants that escape this

inactivation and restore immune response may be positively selected. This in turn
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induces a positive selection of mutants on the pathogen side that can cope with

the modified Stat1. The circle starts then over again. The resulting host-parasite

arms race (Van Valen 1973) serves as explanation for the frequently observed

accelerated rate of evolution of genes involved in immunity (Sackton et al. 2007).

Jaks and Stats in Tunicates

The tunicate Ciona intestinalis, a close relation to the vertebrates, has one Jak and
two functional Stats (Hino et al. 2003). This suggests that the gene family encoding

the Jaks in vertebrates has expanded after the tunicate-vertebrate split. This would

be in line with similar gene duplication events at the base of the vertebrates (Hughes

and Friedman 2003; Hughes and Friedman 2004; Meyer A. 2005; Sharman and

Holland 1996; Sidow 1996). Sequence similarities indicate that the Stat gene family

also has diversified after the vertebrate-tunicate split (Hino et al. 2003).

Stats in the Worm Caenorhabditis elegans

The lineages of vertebrates and flies split early in bilaterian evolution. This suggests

that Jak-Stat mediated signal transduction was originally present in most or all

bilaterian lineages (see section “The Phylogenetic Profile of Jaks and Stats” below).

In particular, this holds for the worm Caenorhabditis elegans, which has been

recently placed together with the fly into the monophyletic clade of molting animals

(Ecdysozoa; e.g. (Dunn et al. 2008)). However, in the genome of C. elegans no Jaks
are found, while two Stats have been reported: Sta-1 and Sta-2 (also known as:

F58E6.1). Sta-1 is quite diverged from both the insect and vertebrate forms. It lacks

the N-terminal Stat protein interaction domain. Therefore, it is presumably not able

to form dimers in its unphosphorylated, i.e., inactive state. All other domains and

functional regions are conserved. This includes a short carboxy-terminal region that

seems to act in transcriptional activation, as it could drive expression of a luciferase

reporter gene (Wang and Levy 2006). Expression of Sta-1 is non-uniform and

especially high in head and pharynx, and it shows patterns of nuclear exclusion

or nuclear accumulation in subsets of neurons (Wang and Levy 2006). As with Stats

in organisms with a functional Jak-Stat signaling pathway, unphosphorylated Sta-1

is found primarily in the cytoplasm and relocates to the nucleus upon phosphoryla-

tion (Wang and Levy 2006). DNA binding does not seem necessary for the reloca-

tion, as mutants without a functional DNA binding domain are also found in the

nucleus upon activation (Wang and Levy 2006). Using EMSA assays, it was found

that tyrosine-phosphorylated Sta-1 binds to a GAS family TFBS (Wang and Levy

2006). Since GAS family TFBSs are palindromic, we presume that Sta-1 forms

homodimers. In summary, it is to date unclear how activation of Sta-1 is accom-

plished without a Jak, and what the exact function of Sta-1 is. In this context it is

interesting to note that Sta-1 knockouts are viable. While Sta-1 is only lacking the

N-terminal Stat protein interaction domain, Sta-2 is also lacking a Stat-protein all
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alpha domain. In the Interpro database (http://www.ebi.ac.uk/interpro/), it is

annotated as containing an EF-hand-like domain, which is in turn annotated as

part of the STAT transcription factor, DNA-binding domain. Sta-2 was recently

shown to be activated by the p38 MAPK pathway and to be involved in innate

immunity (Dierking et al. 2011).

Stats in the Slime Mold Dictyostelium

The slime mold Dictyostelium discoideum alternates between a unicellular and a

multicellular mode of life. Three proteins are annotated as Stats: dstA, dstB, and

dstC. In contrast to nearly all analyzed metazoan Stats, none of the three proteins

contains a transcriptional activation region. Rather, they all act as repressors of

transcription. dstA functions in signaling during multicellular stages of the life

cycle in response to cyclic AMP signaling (Kawata et al. 1997). Activation of dstA

is dependent on a serpentine (or G protein-coupled) receptor, yet is unaffected by

knocking out the single known gene encoding a heterotrimeric G protein b subunit

(Araki et al. 1998). As with metazoan Stats, activation through phosphorylation

leads to a relocation into the nucleus facilitating DNA binding. Activated dstA

binds to the activator and the repressor domain in the promoter of ecmA, which

contains direct and inverted repeats of TTGA. Surprisingly to us, it also binds to the

ISRE TFBS, apparently without an Irf-like protein (Araki et al. 1998). Via this

binding dstA suppresses any further transcription of ecmA (Kawata et al. 1997).

The dstB has an aberrant SH2 domain, yet seems to be able to form dimers and

accumulates in the nucleus upon activation. Notably, both functions are unaffected

when the predicted site of tyrosine phosphorylation is substituted by phenylalanine

(Zhukovskaya et al. 2004). Thus, its mode of activation seems different from that of

other Stats. dstC is a key regulator of the transcriptional response to hyperosmotic

shock (Na et al. 2007). The phosphatase ptpC interacts directly with dstC and

negatively regulates activation. This stands in contrast to the situation in metazoa,

where kinases (Jaks) activate Stats. - In summary, Stats in Dictyostelium are similar

enough to metazoan Stats to infer their common evolutionary origin. However they

are quite deviant in a number of functionally relevant key properties. They lack a

transcriptional activating region, they have different DNA-binding properties, and

they suppress rather than activate gene expression. Essentially, they differ in the

regulation of their effector genes from their metazoan homologs.

The Phylogenetic Profile of Jaks and Stats

The Jak-Stat pathway is a key player in metazoan signal transduction and has been

thoroughly studied in a number of model organisms such as Drosophila and mouse.

Still we know surprisingly little about its evolution. This is mainly due to two

reasons: First, the few studied organisms already show a remarkable variation in the

complexity of this signaling cascade raising the question what the proto-Jak-Stat
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pathway may have looked like. Second, the number of species, which underwent an

in-depth analysis of the Jak-Stat pathway, is low and the chosen organisms repre-

sent only a small part of the eukaryotic tree of life. This leaves open when during

evolution the Jak-Stat pathway emerged, and to what extent this signaling cascade

varies across species groups. The problem is best exemplified by the nematode

Caenorhabditis elegans. If a Jak-Stat pathway is present at all, it is highly reduced

in this worm (see above). In fact so far no Jak could be identified in its genome.

According to recent evidence C. elegans shares a common ancestry with Droso-
phila forming the monophyletic group of molting animals (Ecdysozoa) to the

exclusion of the deuterostomes (e.g. humans). Jaks are present both in humans

and in Drosophila. Hence this protein is older than the split of Ecdysozoa and

deuterostomes and must have been lost within the Ecdysozoa on the lineage leading

to C. elegans. However, when exactly this loss has occurred remains unclear.

Therefore we have little idea whether the reduced or absent Jak-Stat pathway is

specific to the genus Caenorhabditis, or whether it is a feature that is shared by all

nematodes or even by a larger systematic group.

To shed light on the evolutionary history of the Jak-Stat pathway we determined

the phylogenetic profile of its two key players, Jak and Stat. In brief, we used

HaMSTR (Ebersberger et al. 2009) to search for orthologs to the Drosophila Jak

and Drosophila Stat in protein coding data from 1,476 eukaryotic species

distributed over the entire eukaryotic tree (Database: dbDMP at http://www.deep-

phylogeny.org). The resulting presence-absence patterns generate a good impres-

sion about the evolutionary history of both proteins, and thus of the Jak-Stat

pathway. In the following, we will briefly discuss our findings. We will follow

Dunn et al. (2008) in the systematic classification of species groups and their

evolutionary relationships.

The Evolutionary History of Jak

The phylogenetic profile of Jak reveals this protein as a metazoan invention. No

Jak could be identified in a species outside the metazoa (Fig. 3). This agrees

with previous findings that e.g. fungi do not have proteins with an SH2 domain

(Hunter and Plowman 1997). Within the animals, Jak appears confined to the

Bilateria. Neither corals or their cnidarian allies, nor sponges or comb jellies

(Ctenophora) – all of which split prior to the diversification of the Bilateria – show

signs of a Jak. Among the Bilateria, Jaks are present in both the deuterostomes

(vertebrates, uro- and hemi-chordates, echinoderms) and the protostomes (Ecdysozoa

and Lophotrochozoa). Consequently, we can date the latest possible emergence of

Jak during metazoan evolution back to the last common ancestor of the Bilateria.

However, while Jaks are prevalent within the deuterostomes, their presence in the

protostomes appears limited to the ecdysozoa and here specifically to the

arthropods (Crustacea and Hexapoda). We found Jaks in the data from many

insects and also in the crustacean Daphnia pulex. However, we could find Jaks

neither in nematodes or flat worms (Plathyhelminthes), which jointly represent the
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ecdysozoan sister taxon of the arthropods, nor in our representatives of the

Lophotrochozoa (annelids and mollusks). Therefore we conclude that Jaks must

have been lost at least twice independently during invertebrate evolution (Fig. 3).

One loss must have occurred on the lophotrochozoan lineage after its split from

the last common ancestor shared with the Ecdysozoa. A second loss must then

have occurred within the Ecdysozoa on the lineage leading to the nematodes and

Plathyhelminthes. Thus, the missing Jak in C. elegans seems to reflect a situation

that most likely attributes to all Ecdysozoa except the arthropods.
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Fig. 3 The phylogenetic profile of Jak. The phylogenetic profile of Jak was established by

searching for orthologs to the Drosophila Jak in 260 completely sequenced eukaryotic species

and additionally in EST data from further 1,216 eukaryotes. Systematic groups where a Jak

ortholog could be identified are colored in light blue
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The Evolutionary History of Stat

The phylogenetic profile of the Stat stands in strong contrast to that of its counter-

part, Jak. Stat is found throughout the metazoan tree and it is also present in

the earliest branching animals (Fig. 4). Apparently, loss of this protein is, in the long

run, incompatible with the metazoan lifestyle. To assess the evolutionary age

of Stat we followed the eukaryotic tree further back in time and determined for

each split whether or not a Stat was likely to be present in the corresponding

ancestral species. We detected Stats in two close relatives to the animals, the
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Fig. 4 The phylogenetic profile of Stat. The phylogenetic profile of Stat was established by

searching for orthologs to the Drosophila Stat in 260 completely sequenced eukaryotic species,

and additionally in EST data from further 1,216 eukaryotes. Systematic groups where a Jak

ortholog could be identified are colored in dark blue
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choanoflagellate Monosiga brevicollis and Capsaspora owczarzaki. This indicates
that its evolutionary age predates the emergence of animals. Interestingly, no Stat

could be detected in the fungi. Our data includes more than 90 fungal species from

different parts of the fungal phylogeny for which a completely sequenced genome is

available. Thus it can be safely considered as representative for the fungi in general.

We therefore conclude that Stat is missing in the entire fungal kingdom. It follows

that Stat was either invented after the split of the fungi or it was lost in the common

ancestor of the contemporary fungi. The data from two slime molds, Dictyostelium
discoideum and Dictyostelium purpureum, and from an amoeba Acanthamoeba
castellanii unequivocally argue for the loss hypothesis. These three species

are grouped in the Amoebozoa, the earliest branching lineage within the unikonts

(a systematic group unifying the Metazoa, Fungi and Amoebozoa) and all three

species contain a Stat. Thus, Stat has already existed in the primordial founder

species of the unikonts. With the method at hand we could find no Stat ortholog

in a species outside the unikonts. Thus, any further trace of Stat evolution remains

in the dark.

The Evolutionary History of the Jak-Stat Signaling Cascade

Jak and Stat differ substantially in their phylogenetic distribution. Stat is an

evolutionarily old protein that is present in all unikonts except the fungi. Jak on

the other hand appears as a more recent invention. Its confinement to the

deuterostomes and the arthropods suggests that the Jak-Stat signaling cascade is

not substantially older than the Bilateria. However, not all Bilateria apparently

make use of the standard Jak-Stat signaling. Within the protostomes, most groups

have lost their Jaks in the course of evolution. The retention of a classical Jak-Stat

signaling in the arthropods seems, therefore, rather an exception than a rule. In

contrast, the function of Stat in C. elegans (see above) may be more representative

for the protostomes than hitherto anticipated.

This raises the question about the functional role of Stats in the time prior to the

diversification of the Bilateria. This protein has been present throughout

opisthokont evolution and has only been lost in the fungi. However, functional

studies of this protein are confined to the few species listed above. In particular

studies on non-bilaterian animals, e.g. cnidarians, that could help to infer the likely

function of Stat in the metazoan ancestor are lacking. The only non-bilaterian

species in which Stat has been functionally studied belongs to the genus

Dictyostelium. As we have noted above, however, Dictyostelium Stats are quite

different from metazoan Stats. Based on their analysis, it is hard to make any

predictions to the situation at the base of the metazoans. In particular, regulation

of phosphorylation and de-phosphorylation of the Stat protein is unknown. One

aspect however stands out: multicellularity and Stat signaling need not be

associated, as the unicellular choanoflagellates also possess a Stat.

Evolution of Jak and Stat Proteins 111



Concluding Remarks

Stat is an evolutionarily ancient protein that is present in all opisthokonts except the

fungi. Jak, in contrast. seems confined to the deuterostomes and the arthropods. In

both taxonomic groups, a canonical Jak-Stat signaling cascade has been described.

This dates the emergence of this signal transduction pathway at least back to the

base of the bilateria. Within the protostomes, most groups have lost their Jak.

Nevertheless, whether a Jak is present or not, Stats mainly act as transcriptional

activators and are often involved in immunity in all bilateria. Early during verte-

brate evolution both Jaks and Stats diverged into families of paralogous genes.

These form a network of partly overlapping partly antagonistic functions in Jak-Stat

signaling cascades that not only are involved in immunity but also in the sensing of

hormones.
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JAK/STAT and Chromatin Regulation
in Drosophila

Kriti Gaur and Willis X. Li

Abstract

The formation of distinct chromatin domains, such as euchromatin and hetero-

chromatin, in eukaryotic cells is a critical mechanism by which proper gene

expression and development are controlled. Covalent DNA and histone

modifications that establish stable heterochromatin states, such as cytosine

methylation, histone hypoacetylation and histone H3-Lys9 methylation are

among the best understood. The specific pattern of these modifications provides

a mechanism for the spread and maintenance of heterochromatin in conjunction

with the recruitment of additional factors, a key step in epigenetic gene silenc-

ing. In this review, we will summarize the current understanding of the modula-

tion of chromatin structure dynamics, its implications for disease and

development, especially recent work highlighting the contribution of the JAK/

STAT signaling pathway in controlling heterochromatin stability.

Introduction

The DNA inside a eukaryotic nucleus is packaged with proteins to form chromatin.

By weight, chromatin structure is roughly comprised of one-third DNA, one third-

histones, and one-third nonhistone chromosomal proteins, along with a little RNA.

The nucleosome core is the basic repeating unit of chromatin, composed of 147 bp
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of DNA wrapped 1.65 turns around the histone octamer, forming a 10 nm

nucleosomal fiber (Luger et al. 1997). This nucleosomal fiber is folded helically

into a 30 nm fiber and further into a 60–130 nm chromonema fiber to allow for

maximum DNA compaction (Luger et al. 1997). Although the precise geometry of

higher-order chromatin folding has not been resolved beyond this point, one level

of organization evident by cytological studies of interphase nuclei, is the separation

of chromatin into euchromatin and heterochromatin (Sadoni et al. 1999). While

euchromatin decondenses during interphase, heterochromatin remains relatively

more condensed, showing intense staining. Although largely an oversimplification,

chromatin folding has been assumed to act as a barrier, limiting access of regulatory

factors to condensed chromatin domains (Dillon and Festenstein 2002) (Fig. 1).

The partitioning of chromatin into heterochromatin and euchromatin states and

their respective characteristics initially revealed the connection between gene

activity and chromatin structure, as active genes are often found in largely

decondensed euchromatin and silenced genes in condensed heterochromatin

(Li et al. 2007). Heterochromatic regions, on the other hand, have relatively

fewer genes, albeit not devoid of genes. For instance, in Drosophila melanogaster,

Fig. 1 Chromatin domains. A schematic showing of the euchromatin and heterochromatin

domains and their simplified organization. A cell consists of cytoplasmic (C) and nuclear (n)

regions. Within the nucleus, chromatin is organized as electron-dense (dark gray) and – light

(white) regions, surrounding the nucleolus (filled circle). Lower panels represent amplified

euchromatin and heterochromatin regions. DNA wraps around core histone molecules creating a

“beads-on-a-string” arrangement. In euchromatin and transcribed genes, in which the chromo-

somal DNA assumes an “open” structure, histone H3 is usually methylated at lys4 (K4). In

heterochromatin, histone H3 is methylated on lys9 (K9), which recruits HP1 and other non-histone

proteins (not shown), resulting in compaction of the chromosome (Alberts 2002)
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the entire Y chromosome, most of the fourth chromosome, the proximal 40% of the

X chromosome and the pericentric 20% of the major autosomes are heterochro-

matic; these heterochromatin regions, nonetheless, contain approximately 40–50%

of genes in the fly genome (Weiler and Wakimoto 1995). Additional heterochro-

matic traits include methylated DNA, highly repetitive sequences, low rate of

meiotic recombination and a tendency to replicate throughout S phase. Conversely,

euchromatic DNA has a high proportion of genes and unique sequences and tends to

replicate throughout S phase (Weiler and Wakimoto 1995).

Euchromatin and heterochromatin appear to differ functionally as well. In a

phenomenon termed position effect varigeation (PEV) genes normally active in a

euchromatic domain will typically be silenced, often showing a variegating pheno-

type when placed adjacent to or within a heterchromatic domain, by transposition or

chromosomal rearrangement (Grewal and Elgin 2002). The variegated pattern or

mottled appearance results when these genes are appropriately expressed (time and

place) in some cells but not in others. For example, in the Drosophila chromosomal

inversion In(1)wm�4h, the white gene fails to express in some eye cells, leading to

white patches in the eye (Festenstein et al. 1999). Such loss of normal expression,

apparently the consequence of heterochromatic packaging, is described as

silencing.

Extensive research efforts focused on understanding the regulation of chromatin

structure in the past decade have underscored the significant impact of chromatin

organization on virtually all DNA-related metabolic processes including transcrip-

tion, recombination, DNA repair, replication, kinetochore and centromere forma-

tion, to name a few (Li et al. 2007). Given that epigenetic mechanisms are essential

in establishing and maintaining chromatin states, thus controlling development by

defining complex gene expression patterns, and that this epigenetic information

contained in chromatin can be inherited, chromatin research has therefore become

central to modern epigenetics.

Epigenetic modulation of the genome occurs through histone modifications,

chromatin remodeling and DNA methylation. All three processes use different

machineries to regulate chromatin structure, and cross talk to ensure proper gene

expression (Richards and Elgin 2002). In this chapter, we will summarize the

prevailing view of how chromatin structure is regulated in Drosophila, the

emerging function of JAK/STAT signaling in chromatin regulation, and then

discuss how modulation of chromatin can exert effects on disease states like cancer

and aging.

Histone Modifications

The nucleosome’s properties are dynamically regulated by a panoply of posttrans-

lational modifications to the histone tails and globular domains (Liu et al. 2005).

These include methylation of arginine (R) residues and methylation, acetylation,

ubiquitination, ADP-ribosylation, and sumolation of lysines (K); and phosphoryla-

tion of serines and threonines on histones H3 and H4 (Methylation of R residues,

JAK/STAT and Chromatin Regulation in Drosophila 117



ubiquitination, ADP-ribosylation, and phosphorylation have not been detected in

the fly genome) (Richards and Elgin 2002).

Among these epigenetic marks, acetylation or deactylation and methylation or

demethylation of lysine residues in the conserved amino termini of histone 3 and

histone 4 (H3 and H4) are prominently associated with changes in gene expression

and chromosome structure (Giordano and Avantaggiati 1999) (Fig. 1). Acetylation

of H3 and H4 is associated with transcriptional activation or euchromatin, whereas

decreased acteylation is correlated with transcriptional repression or heterochroma-

tin. The degree of histone acetylation is modulated by the activities of histone

acetyltransferases (HATs) and histone deactylases (HDACs)(Giordano and

Avantaggiati 1999).

In addition to histone hypoacetylation, di or tri-methylation (me) of H3 on lysine

4 (H3 K4me) functions as a euchromatic mark whereas, H3 K9me, H3 K27me and

H4 K20me is associated with heterochromatin assembly (Shaffer et al. 2006)

(Fig. 1). InDrosophila,methylation of H3K9 is carried out by a family of conserved

histone methyltransferase (HMTase) named Su(var)3–9, which directly associates

with another conserved non-chromosomal protein called Heterochromatin Protein 1

(HP1, sometimes referred to as HP1a), encoded by the gene Su(var)2–5 (Shaffer

et al. 2006).

Role of H3 K9me/HP1 System in Chromatin Regulation

HP1

HP1 is 23 kDa in size, and has an amino-terminus chromodomain (CD) and a

carboxy-terminal chromoshadow (CSD) domain, separated by a flexible hinge

(Dialynas et al. 2008). The two domains enable dimer formation with other HP1

molecules and modification proteins including Su(var)3–9. Heterochromatin for-

mation and spreading occurs when H3K9me binds HP1 through either the N- or

C-terminal domains, which then recruits Su(var)3–9 and orthologues that go on to

specifically methylate the newly arrived histone, further perpetuating heterochro-

matin assembly (Dialynas et al. 2008). The H3 K9me/HP1 system is crucial for

maintaining the silenced epigenetic state in pericentric heterochromatin, but of less

importance at the telomeres where other mechanisms maybe involved (Shaffer

et al. 2006).

In Drosophila the HP1 family of proteins includes HP1a–e, and while each

individual isoform possesses the characteristic domain organization, they display

varying functional, expression and/or chromosomal domain localization profiles

(Dialynas et al. 2008). In the mouse genome three HP1 family members, HP1alpha,

M31 (HP1beta) and M32 (HP1gamma) exhibit functional similarity to Drosophila
HP1 (Wasenius et al. 2003). Similarly, the human genome encodes three HP1-like

proteins, HP1Hsa, HP1Hsb and HP1Hsg, whose chromosomal localization and

functions parallel that of flies to some degree (Pomeroy et al. 2002). Conservation

of HP1 function across species was demonstrated when human HP1Hsa was
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reported to rescue lethality associated with mutations of the Drosophila gene

encoding HP1, Su(var)2–5 (Pomeroy et al. 2002).

Null alleles of Su(var)2–5, while homozygous lethal, dominantly suppress

position effect variegation (PEV) in heterozygous flies, and mutations that increase

the levels of HP1 promote gene silencing and thus enhance variegation (Eissenberg

et al. 1990). Likewise, by increasing the dosage of mouse HP1 in murine T cells,

silencing of a variegating reporter gene inserted near centric heterochromatin was

achieved (Festenstein et al. 2003). These reports implicate HP1 as a key factor in

the creation of a stable and inaccessible heterochromatin state, with increases in

HP1 levels enhancing heterochromatin and vice versa, thus allowing HP1 to behave

as a negative regulator of gene expression. In accordance with these data, targeting

HP1 to upstream regions of reporter genes integrated at euchromatic sites within the

Drosophila genome caused heterochromatization thereby silencing reporter genes

(Danzer and Wallrath 2004). Targeting HP1 proteins upstream of reporter genes on

transiently transfected plasmids in mammalian cell culture also repressed gene

expression (Lehming et al. 1998; van der Vlag et al. 2000). Armed with the ability

to nucleate heterochromatin, HP1 proteins can thus silence genes at both centric

regions and ectopic sites within euchromatin.

In contrast to a negative role in gene expression, there are several instances

where HP1 plays a positive role in transcription. First, Drosophila HP1 is essential

for proper expression of genes that reside within heterochromatin (Yasuhara and

Wakimoto 2006). Second, HP1 is required in the expression of some euchromatic

genes that bind to HP1 and possess H3K9me (Cryderman et al. 2005). Surprisingly,

these genes exhibit decreased expression in a Su(var)2–5 mutant background,

supporting a positive role for HP1 in expression. Finally, the role of HP1 as a

positive transcriptional enforcer derives from studies of activated genes in Dro-
sophila (Piacentini et al. 2003). HP1 localizes to heat shock and developmental

“puffs” in polytene chromosomes that are centers of intense gene activity. In the

absence of HP1, these genes are no longer induced (Piacentini et al. 2003).

Collectively these reports point to the versatility of HP1 function in transcription,

including both repression and activation, thus demonstrating that the presence of

H3K9 methylation along with HP1 association does not solely work as marker of

gene repression.

HP1 and Cancer

Since cancer progression involves perturbation of gene expression on a global scale

and given that defects in a chromatin packaging protein or an enzyme that modifies

histones can alter the chromatin status of multiple genomic regions, simultaneously

affecting the expression of hundreds of genes, it comes as no surprise that HP1 with

its role in transcription in conjunction with its distribution throughout the genome

has been implicated in cancer formation. Although currently no human diseases are

associated with mutations in the genes encoding HP1Hsa, HP1Hsb or HP1Hsg,

changes in the expression levels of these genes, however, have been reported for
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several cancers, including breast, colon and ovarian cancers (Dialynas et al. 2008).

Gene expression profiling studies showed that HP1Hsa mRNA levels are lower in

papillary thyroid carcinomas compared to normal thyroid tissue, while increased

levels of HP1Hsa correlate with limited metastasis in colon cancer (Wasenius et al.

2003). Similarly, decreased amounts of HP1Hsa mRNA were observed in patients

with embryonal brain tumors with a poor prognosis, compared to those with more

positive outcomes (Pomeroy et al. 2002). In fact, reduction in HP1HsamRNA levels

was successfully used as a predictor of treatment failure for individuals battling

embryonal brain cancer (Pomeroy et al. 2002).

Although numerous studies have pointed to a link between alterations in HP1

protein levels and cancer progression, studies in breast cancer have surpassed mere

correlation and provided a causal role for HP1Hsa in determining breast cancer cell

invasiveness. Downregulation of HP1Hsa was seen in invasive/metastatic cells

relative to poorly invasive/non-metastatic cells (Kirschmann et al. 2000). Consis-

tent with these results, HP1Hsa levels in metastatic tissues from breast cancer

patients were lower by about 95%, compared to levels present in primary breast

cancer tumors (Kirschmann et al. 2000). Knocking-down HP1Hsa in poorly inva-

sive/metastatic cells enhanced in vitro invasion by 50% relative to controls (without

altering cellular growth rates), illustrating a causal role for HP1Hsa in metastasis.

Similarly, induction of exogenous HP1Hsa in highly invasive/metastatic cells also

inhibited invasiveness by 30% relative to controls, with no effect on growth

(Norwood et al. 2006). Thus, HP1 proteins appear to play a role in inhibiting cancer

cell invasiveness. It was in Drosophila that the role of the JAK/STAT pathway in

regulating HP1 localization and maintaining heterochromatic gene silencing were

demonstrated (Shi et al. 2006, 2008).

The JAK/STAT Signaling Pathway

Basic Elements of the JAK/STAT Pathway in Drosophila

The Janus Kinase (JAK) and Signal transducer and activator of transcription

(STAT) pathway is a signaling module first identified in vertebrates as mediating

the response to some cytokines (Shuai et al. 1993) and was subsequently found to be

conserved in invertebrates (Aaronson and Horvath 2002; Hou et al. 1996; Yan et al.

1996). In the canonical pathway, the final effector of this pathway is the transcrip-

tion factor STAT that localizes to the cytoplasm in its inactive state. STAT

translocates to the nucleus upon ligand induced activation of the receptor, followed

by binding to target gene promoters and activating gene expression. The JAK/

STAT machinery consists of transmembrane receptors that upon recognition of

extracellular signals (cytokines, growth factors and some peptides) recruit tyrosine

kinases of the JAK family to their intracellular domains. The receptor-associated

JAKs then phosphorylate the receptor as well as themselves creating STAT docking

sites, that is also phosphorylated by JAK, enabling it to dimerize and transpose to
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the nucleus and activate transcription (Fig. 2) (Aaronson and Horvath 2002; Levy

and Darnell 2002).

Unlike vertebrates where there are several ligands, receptors, JAK kinases and

STAT proteins, the Drosophila JAK/STAT pathway is less redundant and well

characterized comprised of a receptor, Domeless (Dome); a JAK kinase, Hopscotch

(Hop); a transcription factor STAT92E; and a ligand, Unpaired (Upd) (Binari and

Perrimon 1994; Brown et al. 2001; Harrison et al. 1998; Hou et al. 1996; Yan et al.

1996). Regulators of the JAK/STAT pathway include Su(var)2–10, (dPIAS), SOCS
and STAM (Hombria and Brown 2002).

Functions of the JAK/STAT Signaling Pathway and Modulation
of Disease States

The JAK/STAT pathway has a multitude of roles in the regulation of animal

development, growth control and homeostasis. In Drosophila the pathway is

required for cell growth, eye development, segmentation, tracheal development,

spermatogenesis and hematopoiesis (Hombria and Brown 2002; Tulina and

Matunis 2001).

There are four JAK kinases and seven STAT isoforms in mammals and their

diversity in their distribution and amino acid sequences provide an ability to

respond to a variety of extracellular signals (Li 2008). Defects in JAK/STAT

signaling are associated with severe developmental problems. In mammals, Jak1

Fig. 2 Canonical JAK/STAT signaling in Drosophila. A schematic representation of JAK/

STAT signaling in Drosophila, including confirmed elements of the cascade. The ligand

(Unpaired) binding to the receptor (Domeless) activates Hopscotch bound to the intracellular

domain, which in turn phosphorylates itself, the receptor and inactive STAT92E.

Unphosphorylated STAT92E normally resides in the cytoplasm and upon phosphorylation by

Hopscotch, STAT92E dimerizes and translocates to the nucleus and activates transcription.

Adapted from Li (2008)
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deficient animals die prenatally, due to the failure of cytokine signaling during

neurogenesis. Jak2 deficiency causes embryonic lethality due to failure of erythro-

poiesis. Mice lacking Jak3 develop SCID (Severe Combined Immunodeficiency)

and defects in Tyk2, the fourth mammalian JAK, leads to an impaired immune

response. Consistent with these findings, mice with null STAT mutations manifest

various kinds of impairment in growth control and host defense (Bromberg 2001;

Levy and Darnell 2002; Ward et al. 2000).

Dysregulation of the JAK/STAT pathway has also been implicated in a variety

of cancers (Ward et al. 2000; Yu and Jove 2004). The most direct evidence for this

comes from JAK2 fusion proteins found in lymphoid and myeloid leukemia cells.

In both cases, fusion of the oligomerization domain of proteins such as Tel and

BCR to the catalytic domain of JAK2 was responsible for the constitutive associa-

tion and activation of JAK and activation of STAT (Ward et al. 2000). In fact, two

constitutively activated mutants of theDrosophila JAK have been found to induce a

leukemia-like defect. Tumorous lethal (Tum-L or hopTum�L) is a Drosophila JAK

(hopscotch or hop) mutant with a glycine to glutamic acid substitution at position

341 (Binari and Perrimon 1994; Hanratty and Dearolf 1993; Harrison et al. 1995;

Luo et al. 1995; Ward et al. 2000). In this mutant, hemocyte over-proliferation of

particular blood-cell types (plasmatocytes and lamellocytes) and abnormal differ-

entiation of prohemocytes results in the formation of melanotic tumors in the larval

and adult body cavity, and is lethal at higher temperatures (Fig. 3a, b) (Li 2008).

The other mutation (hopT42), a lysine substitution for glutamic acid 695 has an even

more severe phenotype (Hanratty and Dearolf 1993; Luo et al. 1995).

Although the constitutive activation of STATs has been detected in many types

of cancers, the role of STATs in oncogenesis is not well understood. Constitutive

activation of STAT3 has been reported in ovarian carcinomas and constitutive

activation of STAT5 led to the development of mammary tumors in transgenic

mice versus ones expressing wild-type and truncated forms. However, activated

STAT1 was shown to inhibit angiogenesis, tumorigenicity and metastasis when

tumor cells derived from a fibrosarcoma of a Stat1 knockout mice were

reconstituted with a Stat1 expression vector (Yu and Jove 2004). Given that both

signal transduction and epigenetic regulation are implicated in tumor progression

and that the JAK/STAT pathway plays important roles in both leukemogenesis and

lymphomagenesis, it was not long before researchers began examining JAK/STAT

mediated effects on epigenome and their synergism in tumor formation.

JAK/STAT Signaling and Chromatin Regulation

JAK Mediates Global Heterochromatic Gene Silencing

Shi et al. (2006) utilized a genetic screen to find loci important for the Tum-L
phenotype, induced by the overactivation of the JAK/STAT pathway resulting in

hematopoietic tumors (Shi et al. 2006) (Fig. 3c). The authors chose to focus on

genes that altered chromatin structure and had widespread effects on transcription.
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Of the several HopTuml modifiers that were uncovered, HP1 and the histone H3

methyltransferase Su(var)3–9 were of particular interest as they were essential

heterochromatin components and were required for heterochromatin mediated

gene silencing (Grewal and Elgin 2002).

As mentioned previously, heterochromatic gene silencing causes the phenome-

non of position effect variegation (PEV), and mutations of HP1 and Su(var)3–9

Fig. 3 Drosophila JAK in hematopoiesis and blood-tumor formation, and the genetic screen.

(a) Progenitor cells give rise to three distinct blood cell-types in the larval hemolymph (blood) –

the small crystal cells, the large intermediate plasmatocytes that perform phagocytosis and the

terminally differentiated lamellocytes that are also phagocytic. (b) The hyperactive JAK kinase

allele hopTum�l causes overproliferation of plasmatocytes and lamellocytes, that manifest as

melanotic tumors. (c) Schematic representation of a genetic screen for genes that modify the

blood tumor phenotype associated with hopTum�l. Examples of blood cell tumors in the body

cavity (arrows), visible without staining, in heterozygous hopTum�l adult flies. The frequency and

size these tumors in the F1 generation were compared to parents to identify new modifier

mutations (a and b were adapted from Li 2008)
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dominantly suppress PEV (Grewal and Elgin 2002). Shi et al. employed several

transgenic fly lines with easily observable reporter genes inserted in chromosomal

sections to detect changes in chromatin condensation, as these correlated with

reporter gene activity. They demonstrated that the Tum-l mutation decreases

PEV, whereas hop loss-of-function mutants increase PEV. The authors inferred

that changes in chromatin structure likely leads to global regulation of genes, most

(or many) of which may not be downstream of targets of the STAT92E transcription

factor. To further demonstrate that JAK/STAT signaling functions to counteract

heterochromatic gene silencing, Shi et al. investigated changes in heterochromatin

markers HP1 and H3mK9. Results from immunostaining and western blot analysis

convincingly showed that levels of heterochromatin increased in loss-of-function

and reduced in gain-of-function hop mutants. In fact, a moderate increase in HP1

levels was sufficient in completely suppressing Hoptuml induced hematopoietic

tumors. Additionally, the authors reported a functional interaction between the

JAK/STAT pathway ligand Unpaired (Upd) and HP1, as reducing or increasing

HP1 levels enhanced or suppressed the characteristic large eye phenotype of Upd
flies, while modifying HP1 levels did not have any effect on eye development in a

wild-type genetic background. Taken together, the findings of Shi et al., established

that the collaboration between effectors of heterochromatin formation and hop, is
critical in epigenetically mediating gene silencing, which is an important tumor

suppressive mechanism.

STAT-Chromatin Connection

An obvious and important issue raised by Shi et al. (2006) concerned the role of

Drosophila STAT in heterochromatin formation. While phosphorylation of

STAT92E by the JAK Kinase Hop led to disruption of heterochromatin and caused

changes in gene expression (Shi et al. 2006) and a STAT92E hypomorphic allele

partially suppressed the Tuml tumor phenotype (Yan et al. 1996), however, a direct

role for STAT in controlling heterochromatin formation remained unclear.

Using the same approach as their previous study (Shi et al. 2006), Shi et al.

(2008) found that reducing Stat92E+ dosage decreased PEV and thus heterochro-

matin formation, an effect similar to that of Hop over-activation (Shi et al. 2008).

This came as a surprise since in the canonical model of JAK/STAT signaling Hop
activates STAT92E, that functions as a positive effector of JAK signaling. There-

fore, reducing STAT92E levels was expected to increase heterochromatin, just as

lowering Hop levels did. The authors argued that loss of STAT92E having the same

effect as Hop over-activation on PEV suggested that the effects of JAK-STAT

signaling on heterochromatin could not be mediated via the canonical JAK-STAT

pathway. Furthermore, they used immunostaining to show that overexpression of

Stat92E+ resulted in higher levels of heterochromatin, and that in Stat92E–/– cells,

heterochromatin formation was markedly reduced. To further confirm that

STAT92E was required for HP1 localization on heterochromatin, the authors

conducted chromatin immunoprecipitation (ChIP) analysis using cells expressing
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STAT92E RNAi and reported reduced association of HP1 with heterochromatin

sequences following STAT92E RNAi knockdown. These results indicated that

STAT92E was an essential component for the association of HP1 with

heterochromatin.

To explain their paradoxical observation that modifying levels of STAT92E had

the opposite effects to hop gain- or loss-of-function on heterochromatin formation,

particularly in light of the canonical mode of JAK-STAT signaling, the authors

proposed the existence of a non-canonical model of JAK-STAT signaling as

evidenced by the following results. First, using immunostaining Shi et al. (2008)

reported the co-localization of STAT92E with HP1 in the nucleus in unstimulated

Drosophila cells, against the conventional view of latent STAT proteins residing

primarily in the cytoplasm. Interestingly unphosphorylated mammalian STAT3 and

STAT5 have been demonstrated previously (Liu et al. 2005) to predominantly

localize in the nucleus as well (Harrison et al. 1995; Iyer and Reich 2008; Liu

et al. 2005). Additionally, STAT92E co-localization with HP1 in heterochro-

matinized sections was also evident in S2 cells using a STAT92E-Green fluorescent

protein (GFP) transgene and by ChIP, showing that STAT92E is indeed present on

heterochromatin. Moreover, STAT92E and HP1 co-localized in multiple regions of

heterochromatin, including the chromocenter and telomeres, as seen in stained

polytene chromosome squash prepared from wild-type salivary glands. Unlike the

distribution of total STAT92E, a proportion of which localizes in the nucleus on

heterochromatin and the rest in the cytoplasm, the distribution of phosphorylated

STAT92E was uniform in the nucleus and did not co-localize with HP1 or hetero-

chromatin. These findings indicated that while some of the latent/unphosphorylated

portion of STAT92E resides in the nucleus on heterochromatin, active/

phosphorylated STAT92E is excluded from heterochromatic regions.

Second, consistent with the results of the co-localization studies, STAT92E and

HP1 were found to physically interact. Shi et al. (2008), also delineated the

importance of two HP1 binding sites contained in STAT92E – the conserved

sequence Pro-X-Val-X-Leu (X denotes any amino acid). Mutating both sites

effectively abolished the HP1-STAT92E interaction. Modifying the phosphoryla-

tion state of STAT92E also influenced the binding between STAT92E and HP1.

This was observed when co-immunoprecipitation of STAT92E and HP1 was

reduced upon an increase of STAT92E phosphorylation in hoptum�l/+ embryos or

when Hop was overexpressed.

Third, the authors employed a time course microscopic analysis, before and after

stimulation of STAT92E phosphorylation to investigate how STAT92E localiza-

tion changes and destabilizes heterochromatin. In ex vivo cultured salivary glands,

Shi et al. (2008) reported the association of unphosphorylated STAT92E with

heterochromatin before stimulation. Stimulation and phosphorylation of

STAT92E caused phospho-STAT92E dispersal and movement to euchromatic

segments (where it likely bound to cognate promoters) along with diffusion of

HP1 from heterochromatin (Fig. 4). These findings indicated that STAT92E trans-

location after phosphorylation precedes and is required for removal of HP1 from

heterochromatin.
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Finally, Shi et al. (2008) demonstrated that STAT92E activation does not

destabilize heterochromatin indirectly by inducing transcription of other genes. In

salivary glands treated with protein synthesis inhibitor cyclohexamide (CHX) prior

to activation, phosphorylated STAT92E-induced dispersal of HP1 was unaffected.

These results suggested that since STAT-activation mediated heterochromatin

destabilization does not need new protein synthesis therefore it cannot be caused

by induction of transcriptional targets of STAT92E. Collectively, these findings

suggest that unphosphorylated STAT92E normally functions to stabilize HP1

localization at heterochromatin, while its activation by phosphorylation results in

STAT92E diffusing away from heterochromatin, thereby causing HP1 displace-

ment and heterochromatin destabilization, independent of transcription.

Fig. 4 Non-canonical JAK/STAT signaling in Drosophila. Drosophila larval salivary glands

expressing UAS-STAT92E-GFP were cultured ex vivo and treated with pervanadate to activate

STAT. Distribution of HP1 (red) and STAT92E-GFP (green) was examined before (top row),
20 min (middle row), or 1 h after treatment. Note that following pervanadate stimulation,

STAT92E-GFP moves away from heterochromatin (HP1 foci) (20 min) and then binds to

chromosomes as distinct bands (60 min). Right panels are schematic showing of the non-canonical

mode of JAK/STAT signaling: a portion of unphosphorylated STAT resides in the nucleus on

heterochromatin in association with HP1. Increased phosphorylation of STAT by JAK or other

tyrosine kinases, lowers the amount of STAT localized on heterochromatin. Thus causes dissocia-

tion of HP1 from heterochromatin resulting in heterochromatin disruption. Dispersed phospho-

STAT binds to cognate sequences in euchromatin and activates transcription of target genes.

Genes normally located within heterchromatin thus become accessible to STAT and other

transcription factors (Images are from Shi et al. 2008. With permission)
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Non-canonical JAK-STAT Signaling

The conventional model of JAK/STAT signaling posits that inactive STAT resides

in the cytoplasm, however, in the non-canonical model proposed by Shi et al.

(2008), a portion of the unphosphorylated-STAT protein pool was found to localize

in the nucleus on heterochromatin and associate with HP1 (Fig. 4b) (Shi et al.

2008). This heterochromatin bound inactive-STAT is critical for maintaining HP1

localization and heterochromatin stability. Upon activation, STAT is phosphorylated,

causing it to disperse from heterochromatin, thereby promoting diffusion of HP1 and

destruction of heterochromatin. This mechanism functions independently of STAT

transcriptional induction of target genes (Shi et al. 2008).

It is not clear whether JAK enters the nucleus to phosphorylate STAT, or

whether the translocation of unphosphorylated nuclear STAT occurs in response

to the altered equilibrium between nuclear and cytoplasmic or phosphorylated and

unphosphorylated pools of STAT, induced upon JAK activation. In fact, JAK

translocation to the nucleus has previously been shown for mammalian JAK2,

which was enriched in nuclear liver extracts and liver cells (Ram and Waxman

1997). Recently, it has also been reported that in human hematopoietic cells, JAK2

directly phosphorylates Tyr41 on histone H3 in the nucleus, thereby disrupting HP1

binding and destabilizing heterochromatin (Dawson et al. 2009). These studies

highlight the similarities and differences between mammals and Drosophila in

the involvement of JAK/STAT signaling in heterochromatin regulation.

Heterochromatin and Tumor Suppression

Heterochromatin consists of highly condensed chromosomal DNA, which is gener-

ally believed to be inaccessible to transcription factors and is “transcriptionally

silent”. While constitutive heterochromatin remains condensed throughout the cell

cycle and is regularly found at pericentric and telomere regions, heterochroma-

tization of euchromatic regions results in facultative heterochromatin (Grewal and

Elgin 2002; Grewal and Jia 2007). Heterochromatin, especially facultative hetero-

chromatin was thought to be inert until recently, when the fast exchange rate of

heterochromatin stability factor HP1 indicated that constitutive heterochromatin

possesses dynamic properties and should be readily accessible by regulatory factors

for remodeling (Cheutin et al. 2003; Festenstein et al. 2003).

Heterochromatin has implications for disease states such as cancer. For instance,

SUV39H1 catalyzes methylation of H3K9 and H4K20, and is important for hetero-

chromatin establishment and gene silencing (Rea et al. 2000). Deletion of Suv39h1

renders hematopoietic cells susceptible to Ras-induced lymphomas, by circumventing

cellular senescence (Braig et al. 2005). SUV39H1 also binds to the tumor suppressor

Rb (Retinoblastoma protein), which in turn, recruits HP1 to promote heterochromatin

formation and thus mediate silencing of cyclin E and cyclin A2, and suppress

tumor formation (Nielsen et al. 2001). Another chromatin modifier, the histone

methyltransferase, Mll1 (Myeloid/Lymphoid Leukemia 1), when activated, interacts
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with the SWI/SNF chromatin remodeling complex and methylates H3K4 to activate

gene expression (Rozenblatt-Rosen et al. 1998). In fact MLL1 mutations induced by

chromosomal translocation or duplication cause acute lymphoblastic leukemia

(Rozenblatt-Rosen et al. 1998). In contrast, oncogenic c-Myc, inhibits heterochromatin

formation by maintaining active chromatin regions in the genome (Fernandez et al.

2003; Frank et al. 2003; Oster et al. 2002). Increased heterochromatin formation also

serves as an indicator of cellular senescence, which in turn regulates cell proliferation

and provides protection from oncogene-induced tumor formation in mammals

(Braig et al. 2005; Mathon and Lloyd 2001). Consistent with these findings, in

Drosophila, heterochromatin formation prevents JAK-STAT activation-induced

tumorigensis and heterochromatin destruction enhances tumorigenesis (Shi et al.

2006). These results were also corroborated in mammalians models, where impaired

heterochromatin formation through loss of the key heterochromatin interacting factors

such as HP1 or the Suv39h1 methyltransferase, or through amplification of JAK2 and

the JMJD2C H3 demethylase, has been shown to contribute to cancer formation and/or

progression (Braig et al. 2005; Cloos et al. 2006; Harrison et al. 1995; Norwood et al.

2006; Rui et al. 2010).

Concluding Remarks

It is increasingly clear that cancer development involves both genetic mutations and

epigenetic dysregulation. While genetic mutations such as gain-of-function

mutations in oncogenes and loss-of-function mutations in tumor suppressors have

been extensively studied, the mechanisms by which epigenetic dysregulation arises

and leads to cancers remain obscure. Recent studies have indicated that, in addition

to controlling expression of STAT target genes, the JAK/STAT signaling pathway

regulates heterochromatin stability, which represents a novel molecular mechanism

by which signaling pathways can influence cellular epigenetic status and lead

to tumorigenesis. Future research should focus on unraveling the molecular

mechanisms by which the canonical and noncanonical mode of JAK/STAT signal-

ing cooperate especially in the context of cancer development.
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JAK/STAT Signaling and Invertebrate
Immune Responses

Feng Zhou and Hervé Agaisse

Abstract

This review focuses on JAK/STAT signaling and its role in response to infection

in invertebrates. Most of our knowledge comes from studies conducted in the

model organismDrosophila melanogaster. However, we tentatively cover avail-
able information on JAK/STAT signaling in other invertebrates, including

mosquitoes. Covered topics include the components of JAK/STAT signaling

and their role in humoral, cellular and mucosal immunity. Finally, we summa-

rize recent developments on the role of JAK/STAT signaling in the maintenance

of homeostasis in response to intestinal challenge.

Components and Regulations of the JAK/STAT Signaling
Pathway

Core Components of JAK/STAT Signaling in Drosophila

The Drosophila JAK/STAT pathway was discovered for its role in embryonic

development (Binari and Perrimon 1994; Perrimon and Mahowald 1986). Genetic

and biochemical studies have established that the core components of the pathway

consist of the three known cytokine-like molecules of the Unpaired family (Upd1,

Upd2 and Upd3), the GP130 receptor family member Domeless (Dome), the JAK

kinase Hopscotch (Hop), and the transcriptional regulator Stat92E (Fig. 1).

F. Zhou • H. Agaisse (*)

Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School

of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA

e-mail: herve.agaisse@yale.edu

Th. Decker and M. M€uller (eds.), Jak-Stat Signaling: From Basics to Disease,
DOI 10.1007/978-3-7091-0891-8_9, # Springer-Verlag Wien 2012

133

mailto:herve.agaisse@yale.edu


The Cytokine-Like Molecules
The Drosophila genome encodes three cytokine-like molecules of the Unpaired

family, Upd1, Upd2, and Upd3, that are known activators of JAK/STAT signaling

in flies (Agaisse et al. 2003; Gilbert et al. 2005; Harrison et al. 1998; Hombria et al.

2005). The founder of the upd family, upd, was discovered for its role in segmenta-

tion pattern formation during embryogenesis (Harrison et al. 1998). It codes for a

secreted N-linked glycoprotein that interacts with the extracellular matrix (Harrison

et al. 1998; Zeidler et al. 1999). In vitro experiment showed that recombinant Upd

induces phosphorylation and activation of Hop (Harrison et al. 1998). A upd2
mutant was generated and found to be viable and fertile, unlike the upd mutant

(Gilbert et al. 2005; Hombria et al. 2005). Cell culture assay indicated that Upd2 is

secreted as a diffusible ligand and activates JAK/STAT signaling in vitro and

in vivo (Hombria et al. 2005). Similar to upd2, upd3 expression is apparently

dispensable for embryogenesis as determined by RNAi-mediated knock-down

experiments (Hombria et al. 2005). However, no upd3 mutant has been reported

so far. To date, no function has been assigned to upd and upd2 in response to

infection. However, potential functions have been reported for upd3 in lymph

glands, where it is regulated in response to parasite infection (Jung et al. 2005);

Fig. 1 Components and regulation of the Drosophila JAK/STAT pathway. The core components

of the Drosophila JAK/STAT pathway consist of the Upd family of signaling cytokines (ligands),

Dome (receptor), Hop (JAK kinase), and Stat92E (STAT). The pathway activity can be modulated

at multiple points. Latran is a dominant-negative receptor that antagonizes Dome function.

Socs36E inhibits Hop kinase activity. PTP61 probably dephosphorylates Stat92E. PIAS binds to

and inhibits Stat92E activity. KEN competes with Stat92E at the promoters of a subset of JAK/

STAT target genes and represses them via NURF recruitment. NURF and PcG regulate the

transcriptions of the JAK/STAT components epigenetically
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in the adult circulating hemocytes, where it is expressed in response to septic injury

(Agaisse et al. 2003); and in the adult intestine, where it is expressed in response to

enteric infections (Buchon et al. 2009a, b; Jiang et al. 2009). These observations

indicate that Upd and Upd3 are devoted to embryogenesis and immune/stress

response, respectively, suggesting functional specialization among Drosophila
cytokines involved in JAK/STAT signaling.

Computer-assisted analyses of current DNA sequence databases revealed that

upd-like genes are present in the genome of several Drosophila spp., but appear to
be absent from other insects, including mosquitoes. The identity of the putative

ligands involved in the activation of JAK/STAT signaling in mosquitoes is thus

unknown. It is also unclear whether additional ligands may activate JAK/STAT

signaling in Drosophila spp.

The Domeless Receptor (aka Mom)
Mutations in domeless are embryonic lethal and lead to patterning defects identical

to the defects observed with mutations in the other core components of the

JAK/STAT pathway. domeless encodes a protein of 1,282 a/a that displays limited

homology to the mammalian GP130 family members (Brown et al. 2001; Chen

et al. 2002). The protein contains the conserved cytokine receptor family domains

that include four fibronectin type III (FN3) repeats and a STAT-binding YXXQ

consensus. In vitro experiments demonstrated the physical interaction between

Dome and Upd, Hop and Stat92E, as well as its ability to activate Hop (Chen

et al. 2002).

The JAK Kinase (Hop)
hop encodes a protein of 1,177 a/a most similar to the mammalian JAK2 with 27%

homology (Binari and Perrimon 1994). It contains seven JAK homology (JH1-JH7)

domains, in which the tyrosine kinase catalytic domain (JH1) is located at the C

terminus. The function of the JH2, kinase-like domain, is not well known. JH3-JH7

domains contain a FERM (four-point-one, ezrin, radixin, moesin) domain that

mediates association with receptors (Girault et al. 1999). Two gain-of-function

mutations in Hop lead to the formation of melanotic tumors. The Tumorous-lethal

(hopTumL) mutant contains an a/a substitution at residue 341 (from G to E) in the

JH4 region (Harrison et al. 1995; Luo et al. 1995). The hopT42 mutant contains an E

to K substitution at position 695, a residue which is conserved in all known JAK

kinases (Luo et al. 1997).

The Transcriptional Regulator Stat92E
Stat92E encodes a protein of 761 a/a with a molecular weight of 83 kDa. It is most

similar to the mammalian STAT5 with 37% identity (Hou et al. 1996; Yan et al.

1996). It contains two domains that are conserved in other STAT proteins: a src

homology 2 (SH2) domain, and a DNA-binding domain. The DNA-binding domain

includes a highly conserved C-terminal tyrosine residue at position 704, which is

phosphorylated by Hop (Yan et al. 1996). The consensus DNA recognition

sequence by Stat92E is TTCN3GAA, which resembles that of the mammalian
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STATs (Hou et al. 1996; Yan et al. 1996). Although the DNA-binding domain is

also the domain responsible for the transcriptional activity of Stat92E, a mutational

study revealed that these two activities can be functionally uncoupled (Karsten et al.

2006).

JAK/STAT Components in Other Invertebrates
Genes coding for STAT-like proteins have been identified in the genome of a

number of invertebrates, including the slime mould Dictyostelium (Araki et al.

1998), C. elegans (Dierking et al. 2011; Wang and Levy 2006), the tobacco horn-

worm moth Manduca sexta (Elliott and Zeidler 2008), the beetle Tribolium
(Baumer et al. 2011), the human malaria vector Anopheles gambiae (Barillas-

Mury et al. 1999; Christophides et al. 2002), and the brine shrimp Artemia
franciscana (Cheng et al. 2010). However, not all of these organisms display the

components of the canonical JAK/STAT pathway, as defined in Drosophila.
Orthologues of dome and hop have been identified in Anopheles gambiae and

Aedes aegypti (Waterhouse et al. 2007). The Dictyostelium STAT is activated by

extracellular cAMP signaling and can function as either a repressor or activator in

the absence of a JAK kinase (Araki et al. 1998; Fukuzawa and Williams 2000). The

C. elegans genome encodes two STAT-like genes, STA-1 and STA-2, but does not
encode any JAKs (Dierking et al. 2011; Wang and Levy 2006). STA-2 was recently

shown to be activated by the p38 MAPK pathway (Dierking et al. 2011).

Regulation of JAK/STAT Signaling in Drosophila

SOCS (Suppressors of Cytokine Signaling)
Mammalian SOCS down-regulate JAK/STAT signaling by inhibiting the kinase

activity of JAKs. There are three SOCS-like genes in Drosophila, Socs36E,
Socs44A and Socs16D (Callus and Mathey-Prevot 2002; Karsten et al. 2002).

Only Socs36E has been shown to be a functional repressor of JAK/STAT signaling

(Fig. 1). Socs36E is transcriptionally activated by Stat92E (Baeg et al. 2005; Callus

and Mathey-Prevot 2002; Karsten et al. 2002; Rawlings et al. 2004) and the 10X-
STAT-GFP reporter displaying the STAT binding sites of Socs36E regulatory

regions is used as a standard for analyzing the activation of JAK/STAT signaling

in Drosophila (Bach et al. 2007). In agreement with its role as a negative regulator

of the pathway, ectopic expression of Socs36E suppresses JAK/STAT signaling in

the wing imaginal disc, mimics the outstretched wing phenotype displayed by upd
hypormorphic alleles and the venation defects observed in animals displaying the

Stat92EHJ mutation (Baeg et al. 2005; Callus and Mathey-Prevot 2002; Rawlings

et al. 2004).

PIAS (Protein Inhibitors of Activated STAT)
A single PIAS-like protein, ZIMP, is encoded in the Drosophila genome. ZIMP

binds to Stat92E and suppresses the melanotic tumor phenotype of flies displaying

the hopTumL mutation (Betz et al. 2001).
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PTP61F
PTP61F is a phosphatase identified in two independent RNAi screens (Baeg et al.

2005; Muller et al. 2005). It is homologous to human PTPB1 (phosphor-Tyr

phosphatase B1). ptp61f is transcriptionally activated by Stat92E. Knock-down of

ptp61 expression in vitro increases the levels of pTyr-Hop and pTyr-Stat92E (Baeg

et al. 2005), and increases JAK/STAT activation. Epistasis analysis places ptp61f
downstream of hop (Muller et al. 2005), suggesting it acts on Stat92E.

Ken and Barbie/BCL6
Ken and Barbie (KEN) is a homologue of the human BCL6 (B-cell lymphoma) and

is a BTB/POZ domain-containing transcription repressor (Arbouzova et al. 2006).

The KEN binding site partially overlaps with that of Stat92E, but is present only in

the promoters of a subset of Stat92E target genes.

Latran
Latran (Lat) is related to the Dome receptor, but lacks the intracellular domain

required for signal transduction. It acts by antagonizing the function of Dome in a

dose-dependent manner (Kallio et al. 2010; Makki et al. 2010). A detailed descrip-

tion of the function of Latran in the context of wasp parasitization is presented in the

hematopoiesis section of this review.

Epigenetic Regulation of JAK/STAT Signaling
Several recent studies revealed that JAK/STAT signaling is regulated by epigenetic

modifications leading to repression or activation of the pathway. upd gene

transcription is epigenetically repressed by the Polycomb Group (PcG) of epige-

netic silencer proteins in the eye imaginal disc (Classen et al. 2009; Gonzalez et al.

2009). Mutations in any core PcG repressive complex 1 (PRC1) components result

in the de-repression of upd gene expression, triggering the activation of JAK/STAT
signaling, which leads to hyper-proliferation of the imaginal disc tissue. In Dro-
sophila testis, the nucleosome-remodeling factor (NURF) positively regulates JAK/

STAT signal to maintain the germline and somatic stem cells and prevent prema-

ture differentiation (Cherry and Matunis 2010). It is yet unknown which core

components of the JAK/STAT pathway are epigenetically enhanced by the

NURF, although the observation that the Stat92E protein level decreases in

nurf301-null germline stem cell clones indicates that the Stat92E locus could be a

NURF target. Interestingly, in hemocytes, NURF has been shown to repress JAK/

STAT signaling, as nurf301 mutation phenocopies hopTumL mutation (Kwon et al.

2008), and can further increase melanotic tumor incidence in the hopTumL back-

ground (Badenhorst et al. 2002). Genetic and biochemical evidence suggests

the repressive activity of NURF is mediated by KEN-dependent recruitment

of NURF to the promoters of a subset of JAK/STAT target genes (Kwon et al.

2008). The contrasting effects of NURF on JAK/STAT activity suggest that the

epigenetic modification machinery can elicit different regulatory outcomes in

different tissues.
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JAK/STAT Signaling and Hematopoiesis

Blood Cell Types in Drosophila

There are three major types of hemocytes present in the Drosophila hemolymph:

plasmatocytes, crystal cells and lamellocytes (Rizki 1978). Plasmatocytes make up

90–95% of the total blood cell population. They function primarily as professional

phagocytes to engulf and degrade dead cells and bacteria (Franc et al. 1996; Rizki

1978; Tepass et al. 1994). In addition, they produce antimicrobial peptides (Imler

and Bulet 2005), survey and respond to damaged tissues and tumor mass (Babcock

et al. 2008; Pastor-Pareja et al. 2008), undergo autophagy to limit the growth of

intracellular bacteria (Goto et al. 2010; Yano and Kurata 2008), and activate

humoral immunity (Agaisse et al. 2003). Crystal cells represent the majority of

the remaining population in embryo and larva, but are no longer present after

metamorphosis (Rizki and Rizki 1980). They are slightly larger than plasmatocytes

and contain the precursors to the prophenoloxidase cascade (Cerenius et al. 2008)

involved in melanization, which is activated during wound healing and immune

response (Tang 2009). Lamellocytes are the largest type of hemocytes and function

primarily in the encapsulation of dead tissues during metamorphosis, and of foreign

objects too large to be phagocytosed by plasmatocytes. They are found only in larva

and are present in very low number under normal condition, but can be massively

produced by rapid differentiation in response to parasitization by Hymenopteran

wasp Leptopilina boulardi (Lanot et al. 2001; Markus et al. 2009; Nappi 1975;

Rizki and Rizki 1992).

The Two Phases of Drosophila Hematopoiesis

Hematopoiesis in the fly is a biphasic developmental process that produces

hemocytes in the embryo, larva, pupa and adult. The first phase of hematopoiesis

occurs during embryogenesis, while the second phase takes place during larval

stages. To date, there is no hematopoietic organ identified in adult. Therefore,

hemocytes in adult are currently thought to be a mixture of embryonic and larval

hemocytes. Embryonic hematopoiesis takes place from embryonic stage 5 to stage

12. An invariant number of hemocytes (around 700 for plasmatocytes and 30 for

crystal cells) is derived from a population of prohemocytes (hemocyte precursors)

at the head (procephalic) mesoderm and disperses throughout the embryo (Beer

et al. 1987; Klapper et al. 1998; Tepass et al. 1994). There is no known role for

JAK/STAT signaling during this phase. Larval hematopoiesis is described in detail

in the next section.

138 F. Zhou and H. Agaisse



Larval Hematopoiesis in the Lymph Gland

Larval hematopoiesis occurs in the lymph gland, a tissue derived from the lateral

thoracic mesoderm and formed during embryogenesis (el Shatoury 1955;

Rugendorff et al. 1994; Stark andMarshall 1930). The lymph gland persists through

the onset of metamorphosis, when it ruptures to release the hemocytes to populate

the pupa and the future adult (Holz et al. 2003; Robertson 1936). Prohemocytes in

the lymph gland proliferate rapidly during the first half of larval development,

enlarging the developing lymph gland to consist of, by the third in-star larva (L3),

three to six mirrored paired lobes (one pair of primary lobes and usually two pairs of

secondary lobes) separated by the dorsal vessel, the fly’s rudimentary heart (Jung

et al. 2005; el Shatoury 1955; Stark and Marshall 1930). Hemocyte differentiation

occurs mainly in the primary lobes (Jung et al. 2005), which consist of three zones

at L3. The posterior signaling center (PSC), recently emerged as the “niche” for the

prohemocytes, maintains a pool of signaling prohemocytes (Krzemien et al. 2007;

Mandal et al. 2007) that are distinguished by the markers Serrate (a Notch ligand)

and Collier (a member of the family of COE transcription factors) (Crozatier et al.

1996; Lebestky et al. 2003). Adjacent to the PSC is the medullary zone, which

contains densely packed prohemocytes (Jung et al. 2005; Krzemien et al. 2007).

The cortical zone, located on the periphery of the medullary zone and derived

from the medullary zone, contains less densely packed, proliferating and

differentiating hemocytes and crystal cells (Jung et al. 2005). The JAK/STAT

pathway components dome and upd3 are expressed in the medullary zone (Jung

et al. 2005; Krzemien et al. 2007). upd3 is also expressed in the PSC (Jung et al.

2005). JAK/STAT signaling is required to maintain the undifferentiated state of

prohemocytes in the medullary zone, probably through paracrine Upd3 signaling

(Jung et al. 2005; Krzemien et al. 2007), or paracrine Hh signaling (Mandal et al.

2007), or a combination of both. Loss of JAK/STAT signaling in the medullary

zone by removal of Stat92E expression results in the premature differentiation of

prohemocytes and eventual disappearance of the medullary zone (Fig. 2).

JAK/STAT Signaling and Response to Wasp Parasitization

A hallmark of the response to wasp parasitization in Drosophila is the massive

differentiation of hemocytes into lamellocytes in the lymph gland (Sorrentino et al.

2002). Aggregated lamellocytes encapsulate and eventually destroy wasp eggs by

secreting cytotoxic substances such as quinoid intermediates and free radicals

(Nappi and Ottaviani 2000; Russo et al. 1996). The potential role of JAK/STAT

signaling activation in response to wasp infection was first inferred from the unique

phenotype observed in gain-of-function mutations in the JAK/STAT pathway. At

the restrictive temperature, gain-of-function hopTumL and hopT42 mutations lead to a

striking increase in lamellocyte numbers, a phenotype reminiscent of the response

to wasp parasitization (Harrison et al. 1995; Luo et al. 1995). Lamellocytes can

often take up more than half of the total circulating blood cells, leading to melanotic
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masses in the mutant larvae. Reduction in Stat92E activity suppresses the mutant

phenotype, indicating that JAK/STAT regulates lamellocyte production through

Stat92E (Hou et al. 1996). In agreement with the notion that activation of JAK/

STAT signaling is required for the differentiation of lamellocytes observed in

response to wasp parasitization, loss-of-function mutations in hop lead to a signifi-

cant reduction in the number of differentiated lamellocytes and encapsulation

capacity (Sorrentino et al. 2004). However, recent development revealed that the

requirement of the JAK/STAT pathway in cellular immune response after wasp

parasitization is more complex than previously thought. It was demonstrated that

the massive differentiation of lamellocytes in the lymph gland following wasp

parasitization requires an acute down-regulation of the JAK/STAT pathway in

the medullary zone (Makki et al. 2010) (Fig. 2). Upd3, the only upd gene expressed
in the lymph gland, and required for maintaining JAK/STAT signaling, is down-

regulated after wasp infection, resulting in a decreased level of Dome, which is

transcriptionally controlled by JAK/STAT. The level of Lat, the short receptor

related to Dome and antagonizes Dome, does not change. The resulting increase in

the Lat/Dome ratio extinguishes the remaining JAK/STAT activity and facilitates

lamellocyte differentiation. In agreement with this model, lat mutants fail to mount

a cellular immune response after wasp parasitization. Thus, an apparent paradox

emerges: the JAK/STAT pathway is required for lamellocyte differentiation fol-

lowing wasp parasitization (as demonstrated by the lack of cellular response in the

Fig. 2 JAK/STAT signaling in Drosophila hematopoiesis. The larval lymph gland consists of a

pair of primary lobes and usually two pairs of secondary lobes. Three functional zones, the

posterior signaling center (PSC), the medullary zone, and the cortical zone, delineate the primary

lobe. JAK/STAT signaling is active in the medullary zone, probably via paracrine Hh or Upd3

signaling. It is required for prohemocyte maintenance (1). Upon wasp parasitization, rapid

differentiation of lamellocytes requires a temporary shut-down of JAK/STAT signaling in the

medullary zone (2)
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hopmutant), but at the same time JAK/STAT signaling needs to be down-regulated

to stimulate lamellocyte differentiation. As previously mentioned in the section on

Larval hematopoiesis in the lymph gland, the JAK/STAT pathway is required to

maintain prohemocytes and prevent them from premature differentiation in the

medullary zone. Thus, the simplest explanation to reconcile these observations is

that the loss of the cellular response in the hop mutant observed after wasp

parasitization is most likely a secondary effect as a result of the premature loss of

hemocyte progenitors. The mechanism leading to the down-regulation of upd3
expression in lymph glands in response to wasp infection is unknown.

JAK/STAT Signaling and Humoral Immunity

A hallmark of the Drosophila response to systemic infection is the production of a

collection of antimicrobial peptides (AMPs) by the fat body, a major immune-

responsive tissue. There are seven known classes of AMPs, including attacin,

cecropin, defensin, diptericin, drosocin, drosomycin, and metchnikowin (Imler

and Bulet 2005). Collectively, AMPs confer a broad range of activities against

bacteria and fungi. Two NF-kB/Rel-like transcription factors, DIF and Relish,

regulate the expression of AMPs in response to infections by bacteria or fungi

(Hedengren et al. 1999; Meng et al. 1999; Rutschmann et al. 2000). In addition to

AMPs, several humoral factors, such as the complement-like protein Tep1, are

produced in the fat body in response to infection (Lagueux et al. 2000).

The first evidence for the involvement of JAK/STAT in insect immune

responses came from studies in the mosquito Anopheles gambiae (Barillas-Mury

et al. 1999). Upon bacterial challenge, substantial clearance of cytoplasmic Anoph-
eles STAT and a concurrent accumulation in the nucleus of fat body cells was

observed, indicating the activation of the JAK/STAT pathway. Similar observations

were made in Drosophila, where Stat92E translocates to the nucleus of fat body

cells in response to immune challenge in a JAK-dependent manner (Agaisse et al.

2003). Gene expression profile experiments led to the identification of a subset of

immune-responsive JAK/STAT-dependent humoral effectors, including Tep1 and

the Turandot family member TotA (Agaisse et al. 2003; Boutros et al. 2002;

Lagueux et al. 2000) (see below).

Tep1 belongs to a four-member family of thioester-containing proteins

(TEP) with significant similarities to members of the complement C3/alpha2-mac-

roglobulin super-family. Tep1 is strongly activated in the fat body upon immune

challenge (Lagueux et al. 2000). Although the function of Tep1 inDrosophila is still
unclear, studies conducted in Anopheles gambiae hemocytes revealed a role for

aTEP1 in phagocytosis of Gram-positive and Gram-negative bacteria (Levashina

et al. 2001). Similar to human complement factors, aTEP1 binds to bacterial

surface and promotes their uptake by hemocytes. aTEP1 was also the first

molecular determinant found to control the number of Plasmodium parasites in

Anopheles gambiae by binding to the surface of ookinetes and mediating parasite

killing via hitherto unknown mechanisms (Blandin et al. 2004). In mosquitoes,
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aTEP1 is constitutively secreted by hemocytes (Levashina et al. 2001) and its

transcription does not rely on JAK/STAT signaling, but rather on NF-kB signaling

(Frolet et al. 2006). Upon Plasmodium infection, however, inducible regulation of

aTEP1 appears to require JAK/STAT signaling (Gupta et al. 2009).

TotA was originally identified as a polypeptide secreted by the larval fat body in

response to various stress conditions such as immune challenge and heat (Agaisse

et al. 2003; Ekengren and Hultmark 2001; Ekengren et al. 2001). Gene expression

profile studies revealed that totA is regulated by the JAK/STAT pathway in an

immune inducible manner (Boutros et al. 2002). Studies revealed a signaling role of

hemocytes in the activation of totA: in response to septic injury, hemocytes release

Upd3, which in turn binds to Dome in the fat body cells and induces totA expression

(Agaisse et al. 2003). To date, the exact function of TotA remains unknown.

In addition to activating a specific subset of humoral effectors, JAK/STAT

signaling has also been shown to down-regulate humoral effectors activated by

Relish (Kim et al. 2007). Using SL2 cells, it was shown that a Stat92E binding site

present in the attacin A promoter, an AMP activated by Relish, recruits Stat92E, the

JNK pathway target dAP-1, and the Drosophila HMG protein Dsp1 to form a

repressosome. In vitro, the repressosome displaces Relish from the promoter and

recruits histone deacetylase, thereby dampening the Relish-dependent output.

Although the concept that excessive NF-kB signaling can be prevented by another

immune signaling pathway could provide insight into how the host optimizes an

immune reaction by integrating different signals, the in vivo relevance of these

findings remains to be tested.

JAK/STAT Signaling and Mucosal Immunity

Local AMP Production

The Drosophila epithelial linings, such as the digestive and respiratory tracts,

display the ability to produce AMPs that are potentially important to prevent

local infection (Tzou et al. 2000). There are two modes of local AMP production.

The first mode is constitutive AMP production that provides a battery of antimicro-

bial molecules in tissues including the salivary glands, the digestive tract (cardia

and midgut) and the reproductive tract (the female spermatheca, oviduct and calyx;

and the male ejaculatory duct) (Ferrandon et al. 1998; Tzou et al. 2000). This mode

does not rely on NF-kB transcription factors, but requires tissue-specific transcrip-

tion factors such as Homeobox gene caudal (Ryu et al. 2004). The second mode is

inducible AMP production as evidenced in response to intestinal infection by

Erwinia carotovora carotovora (Ecc) (Basset et al. 2000) or Pseudomonas
entomophila (Pe) (Vodovar et al. 2005). Both Ecc and Pe infections in the digestive
tract induce diptericin (dipt) expression (Buchon et al. 2009b; Liehl et al. 2006),

while Ecc infection in the trachea (the respiratory tract) induces a strong expression
of drosomycin (drs) (Tzou et al. 2000). The inducible expressions of dipt, and of

drs in the trachea, depend on Relish (Buchon et al. 2009b; Liehl et al. 2006;

142 F. Zhou and H. Agaisse



Onfelt Tingvall et al. 2001; Tzou et al. 2000). Global gene expression analysis

revealed a set of immune genes specifically activated in the intestine in response to

Ecc infection (Buchon et al. 2009b). The activation of the vast majority of the

immune genes identified relied on the activity of Relish. However, a subset of

genes, including drosomycin 3 (dro3), was found to rely on JAK/STAT signaling.

On the basis of the presence of putative STAT-binding sites in the vicinity of its

regulatory regions, the authors hypothesized that dro3 may be a direct target of

Stat92E. However, this hypothesis has not yet been supported by direct experimen-

tal evidence. Nonetheless, these observations constitute the first evidence of a role

for JAK/STAT signaling in Drosophila mucosal immunity.

Reactive Free Radical Production in the Drosophila and Anopheles
Gut Epithelia

In addition to AMP production, a potent local ROS response has been observed in

the Drosophila intestine in response to bacterial infection, and is responsible for the
elimination of a majority of the ROS-sensitive microbes (Ryu et al. 2006). Two

central players have been characterized that mediate this effective and potentially

destructive oxidative stress response: the membrane-bound Drosophila dual oxi-

dase (dDuox) protein that synthesizes ROS (Ha et al. 2005a), and the extracellular

immune-responsive catalase (IRC), which removes oxygen radicals (Ha et al.

2005b). The ROS response is not mediated by the JAK/STAT pathway.

On the other hand, the production of nitric oxide (NO) in the midgut of

Anopheles gambiae relies on JAK/STAT signaling (Gupta et al. 2009). Plasmo-
dium, the causative agent for malaria, undergoes a series of developmental stages in

the midgut of the mosquito vector Anopheles gambiae (Baton and Ranford-

Cartwright 2005). Gametocytes are rapidly activated to produce gametes upon

entering the mosquito midgut. Fertilization generates zygotes that develop to motile

ookinetes 16–30 h after infection. Ookinetes cross the midgut epithelium and form

protected capsules called oocysts on the basal side of the gut epithelium, where they

multiply to give rise to a large number of sporozoites that are eventually released

into the mosquito hemolymph upon rupture of the oocysts, thereby completing their

life cycle in the mosquito. Recently, JAK/STAT signaling has been shown to

mediate mosquito mucosal immunity against Plasmodium by regulating the expres-

sion of the nitric oxide synthase gene (NOS) (Gupta et al. 2009). Two STAT genes

that arose from duplication reside in the genome of Anopheles gambiae, the intron-
less AgSTAT-B, and AgSTAT-A, which is the predominant form expressed in adult

(Barillas-Mury et al. 1999; Christophides et al. 2002; Gupta et al. 2009). AgSTAT-

B mediates the basal level of AgSTAT-A, and this STAT pathway (hereafter

referred to as AgSTAT-A) was shown to control NOS expression in vivo (Gupta

et al. 2009): AgSTAT-A silencing in female mosquitoes reduces the basal pre-

invasion transcript level of NOS; Plasmodium infection induces the expression of

NOS by fivefold, and this induction is completely abolished when AgSTAT-A is

silenced. AgSTAT-A activation is important to limit Plasmodium infection, as
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AgSTAT-A silencing increases the median number of Plasmodium oocysts by more

than fourfold one week post-infection, while knock-down of SOCS, a suppressor of
AgSTAT-A signaling, reduces the median number of oocysts by sevenfold. The

effect of the AgSTAT-A pathway in Plasmodium infection is mediated by the NOS

protein and NO production in the cytoplasm of midgut epithelial cells, as knock-

down of both SOCS and NOS completely reverts the decrease in infection observed

in the SOCS-silenced mosquito. Finally, it was demonstrated that NOS limits

Plasmodium infection by decreasing parasite survival at the oocyst stage. Thus,

the JAK/STAT pathway plays a crucial role in mosquito mucosal response to

parasitization.

JAK/STAT Signaling and Anti-Viral Immunity

Although RNAi is the main immune mechanism to combat viral infection in

Drosophila (Galiana-Arnoux et al. 2006; van Rij et al. 2006; Wang et al. 2006;

Zambon et al. 2006), the JAK/STAT pathway has also been shown to contribute to

anti-viral immunity. Infection by Drosophila C virus stimulates the DNA binding

activity of Stat92E (Dostert et al. 2005). hop is involved in the control of virus

replication and is required but not sufficient for the induction of some virus-

regulated genes. Another recent study provided evidence that JAK/STAT affects

the replication of Sindbis virus: flies heterozygous for a Stat92E mutation display

increased viral load (Avadhanula et al. 2009).

In Aedes aegypti, the major vector for dengue virus, the JAK/STAT pathway is

required to control virus infection (Souza-Neto et al. 2009). Susceptibility to the virus

increases when either dome or hop expression was silenced in vitro. Microarray

experiments identified five JAK/STAT-regulated and infection-responsive dengue

virus restriction factors, including DVRF1 (dengue virus restriction factor 1) and

DVRF2. The function of these two factors is unresolved. Thus, the involvement of

JAK/STAT signaling in controlling viral replications in both Drosophila and

mosquitoes suggests an evolutionarily conserved function of the pathway in anti-

viral immunity.

JAK/STAT Signaling and the Maintenance of Homeostasis
in Response to Intestinal Challenge

The Drosophila alimentary canal consists of the foregut (oesophagus and crop), the

midgut and the hindgut (pylorus, ileum and rectum). The midgut, functionally

equivalent to the mammalian small intestine, performs the function of digestion

and nutrient absorption. It is a single-cell epithelium consisting chiefly of large,

cuboidal, polyploid enterocytes (ECs; 90% of the total cell population). The other

terminally differentiated cell type, much fewer in number, is the secretive entero-

endocrine cells (EEs; 10% of the total cell population). In 2006, using genetic

mosaic analysis and lineage labeling, it was shown that multipotent Drosophila
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intestinal stem cells (ISCs) are present in the adult midgut (Micchelli and Perrimon

2006; Ohlstein and Spradling 2006). They are located at a basal position relative to

EC and EE, are smaller than EC in size, and display a wedge-like morphology (Lee

et al. 2009; Ohlstein and Spradling 2006, 2007). Under normal physiological

conditions, an ISC is often located adjacent to a quiescent enteroblast (EB), the

daughter cell from ISC division. Upon stimulation by unknown molecular cues,

quiescent EBs differentiate into ECs or EEs. The four aforementioned resident cell

types, EC, EE, ISC and EB, all situate atop of a meshwork of extra-cellular matrix

that is basally bordered by visceral muscles (VM) (Lee et al. 2009; Ohlstein and

Spradling 2006).

Recent studies on the stress- and enteric infection-induced regeneration of the

midgut epithelium have provided a useful model to study ISC dynamics under

conditions of high regenerative pressure and revealed the requirement of the

JAK/STAT pathway in this process (Fig. 3). A number of studies showed that

ISCs undergo rapid, compensatory proliferation following a variety of chemical and

enteric challenges, including dextran sulfate sodium, reactive oxygen radicals, and

bacterial infections (Amcheslavsky et al. 2009; Buchon et al. 2009a, b; Cronin et al.

2009; Jiang et al. 2009). In the current model, the damage to the epithelial lining up-

regulates a variety of stress-response mechanisms, including apoptosis and the JNK

pathway, which lead to the induction of the Upd family of cytokines, notably the

Upd3 cytokine, in the stressed epithelium (Buchon et al. 2009a; Jiang et al. 2009).

Paracrine Upd3 signaling in turn activates the JAK/STAT pathway in three cell

types. First, it enhances JAK/STAT activity in ISCs and EBs, mediating

Fig. 3 JAK/STAT signaling in the homeostasis of the Drosophila midgut epithelium in response

to intestinal challenge. Upon enteric infection, JAK/STAT activity is enhanced in intestinal stem

cells (ISC) and enteroblasts (EB) via paracrine Upd3 signaling, mediating ISC proliferation and

EB differentiation. JAK/STAT is also activated in visceral muscles (VM). This up-regulates Vein

production, which enhances ISC proliferation
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compensatory proliferation of ISCs and differentiation of EBs. In addition, JAK/

STAT signaling is activated in VM, which partially contributes to the production of

the EGF ligand, Vein (Buchon et al. 2010; Jiang et al. 2011). Vein in turn activates

the mitogenic EGFR pathway in ISCs, further enhancing their proliferation.

Concluding Remarks

Since its discovery in Drosophila for its role in embryonic development, the JAK/

STAT signaling pathway has been implicated in various biological processes.

Although major progress has been made on the characterization of JAK/STAT

signaling in the context of response to stress and infections, important questions

remain unresolved. The same intracellular core components appear to be used in

various biological contexts, but the functional specificity seems to be achieved

through the regulation of cytokine expression in producing cells. For instance, the

Upd1 cytokine appears to be devoted to embryonic development, whereas the Upd3

cytokine is specifically produced in response to stress and infections. An important

objective in the future is therefore to uncover the mechanisms supporting the

regulation of cytokine production in response to challenges. These studies should

be conducted in cytokine producing cells as diverse as blood and intestinal cells and

may bring different answers depending on the nature of the challenges considered.

The discovery of the role of JAK/STAT signaling in mucosal immunity and tissue

regeneration in response to intestinal infection in Drosophila has been a major

development in the past few years. Similarly, future studies on the various roles of

JAK/STAT signaling in the mosquito intestine should reveal important aspects of

vector biology, thereby offering novel strategies to control malaria.
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Stat5 as a Hematopoietic Master Regulator
for Differentiation and Neoplasia
Development

Harini Nivarthi, Katrin Friedbichler, and Richard Moriggl

Abstract

Stat5 transcription factors have a crucial role in hematopoiesis from hematopoietic

stem cells to fully differentiated cells. The individual contributions of Stat5a and

Stat5b genes to the generation of hematopoietic cells and to their malignant

transformation are subject of the following review. Absence of Stat5 proteins

causes lymphopenia and Stat5 was recognized to be indispensable for the

development of B-, T- and NK-cells. The few peripheral T-cells that develop in

Stat5-deficient mice have an activated phenotype and these T-cells contribute to

the development of autoimmunity. Moreover, deletion of Stat5 in myeloid cells

causes myelodysplasia (red cell anemia and thrombocytopenia). In addition,

generation and function of mast cells and eosinophils depends on Stat5.

Impoartantly, Stat5 was found to be highly expressed and constitutively activated

in many human hematopoietic neoplasms, where it regulates expression of genes

controlling cell survival and cell cycle progression. Expression of Stat5 in

hematopoietic neoplasms was both found to be elevated at the mRNA and protein

level. Interestingly, higher Stat5 levels were linked with tyrosine kinase inhibitor

drug resistance.

Introduction

The Signal Transducer and Activator of Transcription 5 (Stat5) plays a crucial role

in hematopoiesis (Bunting 2007). The Stat5 gene encodes two isoforms, Stat5a and

Stat5b, which have certain overlapping and distinct functions (Ferbeyre and

Moriggl 2011).
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Stat5 Functions in Hematopoietic Stem Cells (HSCs)

The first Stat5 knockout mice generated lacked the N-termini of both Stat5 proteins

(Teglund et al. 1998) and are now recognized as Stat5DN mice expressing

hypomorphic alleles. The N-terminus of Stat5 is the docking platform for the

glucocorticoid receptor and it provides the oligomerization domain for Stat dimer

interaction on chromatin (Ferbeyre and Moriggl 2011). Stat5DN mice have normal

numbers of HSCs and the cells are capable of engrafting into lethally irradiated

hosts (Bunting et al. 2002). However, their reconstitution ability is highly reduced

in competitive transplantation experiments, suggesting a defect in the ability of the

HSCs to ‘self-renew’ (Bradley et al. 2002). Once Stat5-deficient mice (Cui et al.

2004) (Stat5null) were available, competitive reconstitution experiments with fetal

liver cells showed a very drastic defect in the repopulation capacity in the absence

of Stat5 (Li et al. 2007; Yao et al. 2006). The number of progenitor cells is also

reduced in Stat5DN mice, as assayed by the number and size of colony forming units

(Bunting et al. 2002). The N-terminus of Stat5 is essential for the induction of bcl-

2 and bcl-xL and the suppression of the microRNAs miR15/16 (negative regulators

of bcl-2 and bcl-xL) required for survival of HSCs (Li et al. 2007) (Fig. 1). The

above data clearly indicate a crucial role for Stat5 in the maintenance and renewal

of HSCs. A role for activated Stat5 (pYStat5) is now emerging in hematopoietic

cancer stem cells. Down regulation of Stat5 expression by RNA interference or

deletion of Stat5 impairs the long-term expansion of leukemic stem/progenitor cells

in primary acute myeloid leukemia (AML) or chronic myeloid leukemia (CML)

(Schepers et al. 2007; Scherr et al. 2006). Stat5b activity has been shown to be

linked to leukemia initiating cells in MN1 and HOXA9 expressing AML cell lines

(Heuser et al. 2009). In AML patients, Stat5 activation by the mutant receptor

tyrosine kinase, FMS-like tyrosine kinase-3 with internal tandem duplications

(FLT3ITD), leads to high expression of the pro-survival gene Mcl-1 which

promotes the survival of leukemic stem cells (LSCs) (Yoshimoto et al. 2009).

Stat5 activation in the HSCs of patients with truncated granulocyte colony

stimulating factor (G-CSF) receptor provides them with a clonal advantage that

can lead to AML or myelodysplastic syndrome. These patients suffer from severe

congenital neutropenia and are treated with exogenous G-CSF to boost neutrophil

numbers (Liu et al. 2008). Interestingly, the activation of Stat5 by cytokines in the

stem cells of AML patients shows a high degree of heterogeneity and does not

correlate with the surface expression of the cytokine receptors (Han et al. 2009).

Further studies are required to understand the differential activation of Stat5 by

cytokines in LSCs compared to normal HSCs.

Stat5 as a Key Regulator for Myelo- and Erythropoiesis

Stat5 is the key signaling molecule downstream of a variety of myeloid cytokines

and growth factors including interleukin (IL)-3, IL-5, thrombopoietin (TPO),

erythropoietin (EPO), stem cell factor (SCF), fms-like tyrosine kinase-3 ligand
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(Flt3L), G-CSF and granulocyte macrophage colony stimulating factor (GM-CSF).

Stat5DN embryos display anemia, that can be rescued by ectopic expression of the

survival genes bcl-2 or bcl-XL (Dolznig et al. 2006). However, most of the Stat5null

embryos die during definitive erythropoiesis on pure C57Bl/6 or Balb/c

backgrounds (Cui et al. 2004). Interestingly, in a mixed background, Stat3 activity

can compensate for the function of Stat5 in erythropoiesis and a few mice survive.

However, these mice are severely sick and display dwarfism, autoimmune disorders

and neutrophil infiltration in organs. The defect in erythropoiesis in Stat5null

erythroid progenitors is due to their inability to absorb iron efficiently; as they

have reduced expression of the transferrin receptor (CD71) and iron regulatory

protein-2, which are direct targets of Stat5 (Kerenyi et al. 2008). The key role of

Stat5 in erythropoiesis is highlighted by the fact that the expression of constitutively

activated Stat5 (cS5) in Jak2�/� and EpoR�/� fetal liver cells leads to the

Fig. 1 Oncogenic activity of Stat5: Stat5 can be activated by many different mechanisms. It is

phosphorylated by Jak kinases associated with the cytokine and growth factor receptors, at the

membrane. In the cytoplasm, it can be activated by oncogenic fusion tyrosine kinases such as

BCR-ABL. Other oncogenic receptor tyrosine kinases such as FLT3-ITD phosphorylate Stat5 at

the endoplasmic reticulum (ER) – Golgi body. Stat5 targets include anti-apoptotic genes, such as

bcl-2, bcl-XL, mcl-1 and survivin. Stat5 maintains the levels of bcl-2 by suppressing the expression

of the microRNAs miR15/16, which negatively regulate the levels of bcl-2. It induces expression

of D type cyclins, c-myc and pim kinases, genes that promote cell cycle progression. In the

cytoplasm, activated Stat5 can interact with Gab2 which leads to the activation of the PI3K/Akt

pathway, via generation of phosphatidyl inositol trisphosphate (PIP3). This pathway is negatively

regulated by the tumor suppressor Pten phosphatase. The Akt pathway also results in the

transcription of survival and proliferation genes, which further augments the transforming

potential of Stat5
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development of functional erythroblasts in transplantation and colony forming

assays (Grebien et al. 2008).
The progenitors derived from the bone marrow of Stat5DN mice are deficient in

the ability to give rise to myeloid colonies (Bunting 2007; Teglund et al. 1998). The

mast cells in these mice are not only drastically reduced (Shelburne et al. 2003), but

they also show functional defects in degranulation upon IgE binding (Barnstein

et al. 2006). This phenotype is aggravated in Stat5null mice, and re-expression of

Stat5a in fetal liver cells restores their capability to differentiate into functional

mast cells in vitro (Li et al. 2007). The Stat5DN mice also suffer from thrombocyto-

penia, due to defects in TPO signaling (Bradley et al. 2002; Bunting et al. 2002).

Stat5 is also essential for the differentiation of eosinophils upon IL-5 treatment, in

mice and in humans (Buitenhuis et al. 2003; Zhu et al. 2004). Stat5 plays an

interesting ambivalent role in granulopoiesis. While Stat5 is required cell intrinsi-

cally for the survival of granulocytes it represses G-CSF production in liver

endothelial cells (LECs). During inflammation, Stat5 is rapidly degraded in the

LECs to induce G-CSF production (Fievez et al. 2007). Mice lacking Stat5 in

hematopoietic cells have reduced numbers of neutrophils. Especially under

myelosuppressive conditions, these mice are unable to produce higher numbers of

neutrophils and to respond to GM-CSF (Kimura et al. 2009).

Stat5 Signaling in Lymphocytes

Stat5 is crucial for signaling by major lymphoid cytokines like IL-2, IL-4, IL-7,

IL-9, IL-15 and IL-21 (Giliani et al. 2005). It is also activated by the cytokine

thymic stromal lymphopoietin (TSLP) which plays a role in B-cell development

and T-helper 2 cell (Th2) polarization (Kang and Der 2004). Stat5null mice exhibit a

severe combined immunodeficiency phenotype reminiscent of gc, Jak3 and IL-7Ra
deficient mice (Yao et al. 2006).

Stat5-Regulated B-cell Development

B-cell development is dependent on IL-7 signaling, as indicated by the complete

lack of mature B-cells in IL-7�/� and IL-7Ra�/� mice (Malin et al. 2010a).

Expression of constitutively active Stat5b (Stat5b-CA) in the lymphoid cells can

rescue B-cell development in IL-7Ra�/� mice. The expansion of the pro-B-cells is

associated with the expression of the Stat5 target genes cyclin D2, pim-1 and bcl-xL,
suggesting a role for Stat5 in the survival and proliferation of pro-B-cells (Fig. 2)

(Goetz et al. 2004). B-cell development in Stat5abDN mice is only mildly affected

(Sexl et al. 2000), but Stat5null mice show a drastic reduction in mature B-cell

numbers due to a developmental block at the pre-pro-B-cell stage (Dai et al. 2007;

Hoelbl et al. 2006; Yao et al. 2006). Earlier studies suggested a direct transcrip-

tional regulation of Pax5 and Ebf1 by Stat5 (Dai et al. 2007; Hirokawa et al. 2003).
However, this observation has been contradicted by later publications. In fact, the
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levels of Pax5 and Ebf1 were found to be quite normal in Bcl-2 rescued Stat5

deficient pro-B-cells, suggesting a more permissive role of Stat5 in B-cell develop-

ment. Indeed, the apoptosis of Stat5 deficient pro-B-cells is due to aberrant

Fig. 2 Stat5 functions in lymphopoiesis: Stat5 plays an indispensable role at various stages of

lymphoid differentiation (marked in red arrows). Stat5 is essential for the self-renewal of

hematopoietic stem cells (HSCs). The HSCs give rise to common lymphoid progenitor (CLP)

which is the precursor for the cells of the lymphoid lineage. In the bone marrow, the CLPs give rise

to pre-pro-B-cells which differentiate into pre-B-cells; both of these cell types require Stat5 for

their survival and proliferation. The pro-B-cells give rise to pre-B-cells which differentiate into

immature B-cells. These cells migrate to the periphery, where they become activated upon seeing

the antigen. The CLP can also give rise to natural killer cell progenitors (NKp). These cells require

Stat5 to differentiate into inactive NK cells (iNK), which can be activated in the periphery to

perform their cytolytic functions. The CLP is also the precursor of the early thymic progenitor

(ETP) in the thymus. It differentiates into CD4� CD8� double negative (DN) cells, which then

express CD4 and CD8 to become double positive (DP) cells. Stat5 signaling, induced by IL-7 or

thymic stromal lymphopoietin (TSLP) is essential for the survival of DN and DP cells. The DP

cells lose one of the markers to become either CD4+ or CD8+ single positive cells. Stat5, activated

by IL-7, is essential for the differentiation of CD8+ cells. IL-2 mediated activation of Stat5 is

indispensable for the activation and proliferation of CD8+ cells in the periphery. The CD4+ cells

also require Stat5 signaling for proliferation and expansion. They can differentiate into four

different lineages. The Th1 cells require Stat5 signaling by IL-2 for proliferation. The concerted

action of Stat5 and Gata-3 is essential for the differentiation of the Th2 subset. Stat5 regulates

FoxP3 transcription which is the driver of regulatory T-cell (Tregs) differentiation. In contrast,

Stat5 inhibits the differentiation of Th17 cells
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expression of the Igk light chain, as Stat5 represses the recombination of the Igk
locus (Malin et al. 2010b).

TSLP induces pYStat5 and promotes the differentiation of fetal liver cells to

immature B-cells. The TSLP receptor complex includes the IL-7Ra and early

studies implied that Stat5 activation by TSLP in a pre-B-cell line is independent

of the Jak kinases (Levin et al. 1999). However, recent publications have shown that

activation of Stat5 by TSLP in CD4+ T-cells and mouse embryonic fibroblasts

requires the activation of Jak1 and Jak2 (Wohlmann et al. 2010).

Stat5 was reported to play an important role in the generation of human memory

B-cells. The memory B-cells in the germinal centers of patient tonsils were shown

to express pYStat5. Knockdown of Stat5 by shRNA decreased proliferation of a

human Burkitt lymphoma cell line. Moreover, overexpression of constitutively

active Stat5b in primary human B-cells dramatically increased their survival and

expansion in culture (Scheeren et al. 2005). However, Stat5 was shown to be

dispensable for activation of murine B-cells as mice with deletion of Stat5 in

mature B-cells display normal numbers of follicular and marginal zone B-cells.

The B-cells lacking Stat5 are also able to differentiate into plasma cells and give

rise to functional memory B-cells (Malin et al. 2010b). Further work is needed to

clarify these differences seen in the role of Stat5 in human and murine memory

B-cells.

Stat5-Regulated T-cell Development

Stat5 plays an important role in the differentiation and function of T-cell subsets

(Fig. 2). While the Th1 subset is essential for cell mediated immunity accomplished

by the cytolytic activity of CD8+ T-cells; the Th2 subset is crucial for mounting a

humoral response against extracellular pathogens. The Stat5DN mice show a mild

reduction in the number of CD8+ T-cells in the periphery, but normal thymocyte

and gd T-cell numbers (Moriggl et al. 1999). However, the analysis of Stat5null mice

showed a massive reduction of thymocyte numbers, which results in a severe

reduction in CD8+ T-cells and a complete absence of gd T-cells (Hoelbl et al.

2006; Yao et al. 2006). Deletion of Stat5 in CD4+CD8+ double positive thymocytes

also leads to a severe reduction of CD8+ T-cells (Hoelbl et al. 2006). Interestingly,

Stat5 regulates differentiation of CD8+ T-cells in a dose dependent manner

(Ermakova et al. 2011). Indeed, the IL-7/Stat5 mediated signaling pathway,

which leads to the induction of the transcription factor Runx3 and survival signals

by bcl-2, can even circumvent the requirement for the T-cell receptor (TCR) for

differentiation of CD8+ T-cells (Park et al. 2010). Transgenic mice with ectopic

expression of wild type Stat5b in lymphoid cells show an expansion of CD8+

T-cells (Kelly et al. 2003), while those that express Stat5b-CA show an increase

in the number of CD8+ and gd T-cells (Burchill et al. 2003). It has been shown that

peripheral T-cells of Stat5DN mice are highly deficient in proliferation upon stimu-

lation with IL-2 or IL-4 despite normal TCR activation (Moriggl et al. 1999).

Moreover, CD8+ T-cells from untreated HIV+ patients show decreased expression
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of Stat5 mRNA and protein and are also deficient in their ability to activate Stat5

upon IL-7 stimulation (Vranjkovic et al. 2010).

Naive CD4+ T-cells can undergo at least four distinct cellular fates: Th1, Th2,

Tregs (regulatory T-cells) and Th17 (Zhu and Paul 2008). Th2 differentiation is

dependent on TCR stimulation, IL-4 and IL-2 signaling. IL-4 leads to the activation

of the transcription factors Gata3, Stat6 and Stat5, while IL-2 signaling predomi-

nantly activates Stat5. These transcription factors interact in a complex manner to

determine cell fate decisions of Th subsets (Zhu 2010). Early studies showed that

IL-2 can induce the expression of the high affinity IL-2Ra chain, also known as

CD25. This phenomenon is mediated by Stat5, along with a GATA family protein

(John et al. 1996). Moreover, IL-2 signaling ‘primes’ T-cells to Th2 differentiation

by inducing and maintaining the expression of the IL-4Ra chain via Stat5 (Liao

et al. 2008). Profound Th2 defects were identified in Stat5anull mice (Kagami et al.

2001). Stat5a and Gata3 directly bind the promoter regions of Il1rl1 (Guo et al.
2009) which encodes the receptor IL-33Ra. Upon binding its ligand, IL-33Ra leads

to the production of IL-13, which further amplifies the Th2 responses (Oboki et al.
2010). Interestingly, Gata3 can up-regulate CD25 expression via c-maf (Hwang

et al. 2002) and Stat5 maintains Gata3 expression in Th2 cells (Guo et al. 2009).
Stat5 is also activated in naive CD4+ T-cells upon TSLP treatment, and promotes

their survival and proliferation (Rochman et al. 2010). Stat5 also assists Th2

differentiation by epigenetic modification of the Il4/Il13 gene locus and is required

for IL-4-induced Th2 priming (Zhu 2010).

Stat5 deficient mice lack CD4+CD25+ regulatory T-cells (Tregs). Stat5 is a direct

transcriptional regulator of Foxp3 and CD25, the key molecules required for Tregs

differentiation (Yao et al. 2007). A new subset of T-cells, Th17, has been recently

discovered, which have been associated with various autoimmune disorders (Korn

et al. 2009). Addition of IL-2 to in vitro differentiation culture systems, leads to

inhibition of Th17 differentiation. IL-2 deficient mice also have higher number of

Th17 cells. Moreover, mice lacking Stat5 in T-cells (Stat5fl/fl CD4-Cre) develop

more Th17 cells, implying that IL-2 inhibits Th17 differentiation in a Stat5 depen-

dent manner (Laurence et al. 2007). In fact, Stat5 displaces Stat3 from the promoter

region of Il17 and directly suppresses the transcription. The balance between the

amount of Stat5 and Stat3 determines the differentiation of a cell to the Th17

lineage (Yang et al. 2011). Considering the opposing roles of Stat5 in the develop-

ment of Tregs and Th17 cells, it has been suggested that the auto-immune phenotype

seen in Stat5-deficient mice could be due to a skewed ratio of Tregs to Th17 cells

(Yao et al. 2007).

The generation of memory T-cells has not been defined very well. However, it

has been shown that both IL-7 and IL-15 are essential for the survival and

maintenance of CD8+ memory T-cells (Osborne and Abraham 2010). Recent

experiments have shown that CD8+ T-cells transduced with retroviruses expressing

cS5 are able to expand dramatically more than the control cells in a LCMV

infection model (Hand et al. 2010).
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Stat5-Regulated NK Cell Development

The development of NK cells is regulated primarily by the cytokines IL-2, IL-15

and IL-21. IL-15�/� and IL-15Ra�/� mice show a drastic reduction in the number

of peripheral NK cells (Zwirner and Domaica 2010). Stat5DN mice display a

massive decrease in the number of NK cells (Moriggl et al. 1999). Stat5bnull mice

show reduced NK cell numbers and impaired cytolytic activity of whole splenocyte

cultures (Imada et al. 1998). Moreover, conditional deletion of Stat5 in NK cell

progenitors (using a novel Ncr1-cre mouse) abrogates their ability to differentiate

into immature NK cells (Eckelhart et al. 2011). A Stat5 binding site has been

identified in the promoter of the human perforin gene suggesting a role for Stat5

in regulating NK cell functions (Yu et al. 1999). Recently, a case study of two male

siblings has been reported who have a four nucleotide deletion (CTCC, position

424–427) in the Stat5b mRNA. These patients suffer from growth hormone insen-

sitivity, as Stat5b is indispensable for growth hormone signaling in the liver.

Notably, the patients also suffer from lymphopenia and particularly from reduced

number of NK cells (Pugliese-Pires et al. 2010).

Role of Stat5 for Hematopoietic Cancer Development
and Progression

Stat5 has been shown to play a crucial role in the generation of a variety of

hematopoietic neoplasms (Table 1). Aberrant activation of Stat5 can render the

proliferation of many hematopoietic cells factor independent (Grebien et al. 2008;

Moriggl et al. 2005), which is a hallmark of oncogenic transformation. Moreover,

a persistently activated mutated Stat5a has been used to show its role in the

generation of hematopoietic malignancies in mouse bone marrow transplant

models (Li et al. 2010; Moriggl et al. 2005). Interestingly, the leukemogenic

potential of oncogenic Stat5a is critically dependent on the phosphorylation of

two serine residues in the C-terminus (Friedbichler et al. 2010). Intriguingly, most

of the activating mutations in patients have been found in upstream kinases and

receptors, but not in Stat5 itself. The best studied of these mutations is the BCR-

ABL translocation product that leads to a persistent activation of Stat5. It has been

shown that Stat5 is not only required for initiation of the leukemia but it is

indispensable for leukemia maintenance, thereby identifying Stat5 as a target

for leukemia therapy (Hoelbl et al. 2006; Warsch et al. 2011). Stat5 has been

implicated in leukemia/lymphomas induced by a variety of fusion tyrosine

kinases, such as TEL-JAK2, NPM-ALK, TEL-ABL and TEL-PDGFRb (Table 1).

A comprehensive study with these fusion tyrosine kinases showed that Stat5

mediated over-expression of Rad51 (involved in dsDNA break repair by homolo-

gous recombination repair mechanism) is one of the important contributors for the

resistance of the malignant cells against DNA damage inducing drugs (Slupianek

et al. 2002).
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Table 1 Stat5 activation in hematopoietic malignancies

Disease Cell type Kinase References

Leukemia

Chronic myelocytic leukemia

(CML)

Granulocytes BCR-ABL Lane et al. (2008),

Slupianek et al. (2002)BCR-JAK2

Acute lymphocytic leukemia

(ALL)

B- or T-

lymphocytes

BCR-ABL De Keersmaecker et al.

(2005), Slupianek et al.

(2002)
TEL-JAK2

TEL-ABL

EML1-ABL

Acute myelocytic leukemia

(AML)

Myeloid cells KITD816V Birkenkamp et al.

(2001), Walters et al.

(2006a)
FLT3ITD

BCR-ABL

JAK3A572V

Megakaryocytic leukemia Megakaryocytes JAK3A572V Scott et al. (2007),

Walters et al. (2006b)JAK2T875N

Myeloproliferative disorders

(EMS)/Stem cell leukemia

lymphoma syndrome

Myeloid

progenitor cells

ZNF198-FGFR1 Heath and Cross (2004)

Polycythemia vera Erythrocytes JAK2V716F Scott et al. (2007),

Shide et al. (2008)JAK2 Exon 12

Essential thrombocythemia Megakaryocytes JAK2V716F Shide et al. (2008)

Idiopathic myelofibrosis Megakaryocytes JAK2V716F Scott et al. (2007),

Shide et al. (2008)JAK2 Exon 12

Severe congenital neutropenia Promyelocyte/

myelocyte

Truncated Liu et al. (2008)

G-CSFR

Chronic myelo-monocytic

leukemia (CMML)

Monocytes TEL-PDGFRb Tomasson et al. (2000)

Mastocytosis Mast cells KITD816V Valent et al. (2003)

BCR-ABL

FLP1L1-

PDGFRa
Lymphoma

Cutaneous T-cell lymphoma T-cells IL-2R Vermeer et al. (2008),

Zhang et al. (1996)

Anaplastic large cell

lymphoma

T-cells TEL-JAK2 Zhang et al. (1996),

Zhang et al. (2007)TEL-ABL

NPM1-ALK

B-cell lymphoma B-cells BCR-ABL Kearney et al. (2009),

Malin et al. (2010a),

Mullighan et al. (2009)
V-ABL

JAK1S646F

JAK1V658F

JAK2R683S/G

HTLV-I-dependent T-cell

neoplasia

T-cells HTLV infection Nicot et al. (2001)
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Mutations in Jak kinases were identified in multiple hematopoietic neoplasms

(Table 1). However, the activation of Stat5 is not limited to JAK kinases localized

at the cell membrane, but certain mutated growth factor receptors such as

KITD816V and FLT3ITD can activate Stat5 at the endoplasmic reticulum (ER)-

Golgi membrane network (Fig. 2) (Choudhary et al. 2009). In a similar manner, the

Stat5 pathway has also been successfully hijacked by the human T-cell leukemia

virus (HTLV) to induce adult T-cell leukemia/lymphoma (ATL) (Nicot et al. 2001).
Stat5 activation was identified in cutaneous T-cell lymphoma and Sézary syn-

drome. IL-2 signaling pathway components are amplified in the genome of the

malignant cells from these patients (Vermeer et al. 2008). Recently, Stat5 has been

reported to be present in the mitochondria of murine lymphoma cell line (LSTRA)

and a murine pro-B-cell line (Ba/F3), where it binds the D-loop regulatory region of

mitochondrial DNA. The authors hypothesize that this might be the mechanism for

a shift in metabolism of these cancer cells, known as Warburg effect (Chueh et al.

2010); but further proof from other types of cancer is needed to draw the conclusion

that Stat5 contributes to energy supply of cancer cells. Stat5 can transcribe genes

implicated in mitochondrial function, such as c-myc, AKT1, GLUT1, Bcl-2 and

Bcl-XL, which indicates that Stat5 might also regulate the metabolism of cancer

cells (Ferbeyre and Moriggl 2011).

Concluding Remarks

Stat5 is an important transcription factor for proper development of a functional

hematopoietic system including proper differentiation of hematopoietic lineages.

However, the mechanism of the shift from differentiation to increased self renewal

of hematopoietic progenitors in context of pYStat5 remains enigmatic. Surpris-

ingly, in leukemic cells pYStat5 is often localized in the cytoplasm, where it

enhances the PI3K-AKT signaling. Intriguingly, the expression of Stat5 mRNA

and protein differs in the transformation stages of diseased myeloid cells in CML

patients; and higher Stat5 levels contribute to resistance to tyrosine kinase

inhibitors (Warsch et al. 2011). Today, pYStat5 is used as a biomarker in clinics

for hematopoietic neoplasms and is associated with bad prognosis. However, Stat5

is a rather weak oncogene, and transformation of cells usually requires the activa-

tion of other core cancer pathways. Indeed, many of these pathways (such as PI3K-

AKT, G1-S cell cycle progression, DNA repair processes and survival pathways)

interact with Stat5 signaling (Fig. 2) (Ferbeyre and Moriggl 2011). One of the

challenges in this area is the identification of these pathways, within the context of

specific disorders. Sequencing of the human cancer genome has shown that about

90% of the mutations occur in tumor suppressor gene pathways. However, the

specific tumor suppressor genes that contribute to pYStat5 induced leukemogenesis

are unknown and will continue to provide interesting avenues for research.
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Regulation of Dendritic Cell Development
by STATs

Haiyan S. Li and Stephanie S. Watowich

Abstract

Dendritic cells (DCs) serve as a critical link between the innate and adaptive

immune responses due to their ability to sense pathogens and respond by

activating adaptive immune cell types. Delineating the molecular control of

DC development will provide important information about the generation of

natural immunity as well as approaches to regulate DCs in clinical settings. DCs

are generated from hematopoietic stem cells through specialized progenitor

subsets in response to cytokine and transcriptional cues, with FMS-like tyrosine

kinase 3 ligand (Flt3L) and Flt3L receptor (Flt3) signaling providing a major

pathway supporting homeostatic DC generation. Recent work has indicated that

granulocyte-macrophage colony-stimulating factor (GM-CSF) and type I

interferons (IFNs) also play important roles in regulating DC subset production.

Here we review new insight into the mechanisms by which cytokine-activated

STAT proteins control the DC developmental process.

Introduction

Dendritic cells (DCs) are known as ‘professional’ antigen-presenting cells, unique

in their capacity to maintain self-tolerance and initiate primary T- and B-cell

responses. Diverse DC subsets have been reported based on phenotypic markers,
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anatomical location and functionality, with resident, migratory and plasmacytoid

DCs (pDC) as the major categories (reviewed in Watowich and Liu 2010; Merad

and Manz 2009). Resident and migratory DCs can be further divided into distinct

classes; for example, in mouse spleen resident CD11cþ CD11bþ CD4þ CD8a� and

CD11cþ CD11b� CD4� CD8aþDC subsets exist, generally referred as CD8a� and

CD8aþ DCs, respectively. Resident DCs are located primarily in lymphoid tissue

and have also been termed conventional DCs (cDCs) while migratory subsets,

which travel to lymphoid organs from peripheral sites upon activation, are addi-

tionally referred to as tissue DCs. By contrast, pDCs are found mainly in bone

marrow, blood, spleen and lymph node, are defined as CD11clo CD11b� B220þ

PDCA-1þ SiglecHþ plasma cell-like DCs, and are distinguished by their ability to

produce abundant quantities of type I interferons (IFNs) upon viral or Toll-like

receptor stimulation. In this chapter, we use the term “DC” to refer to the collective

group of resident and migratory DCs, while excluding the pDC lineage, which we

classify separately. Moreover, in cases where clear indications exist in the litera-

ture, we describe specific DC subsets by category such as cDC (referring to resident

DCs) or tissue DC (referring to migratory DCs). It should be noted that delineation

of DC subsets and molecular cues regulating their development is an intense area of

investigation with continuous information emerging.

The origin of cDCs and pDCs is restricted to the lineage-negative (lin�), Flt3þ

compartment in bone marrow (D’Amico and Wu 2003), whereas migratory DCs

appear to descend from hematopoietic progenitors or monocytes (reviewed in

Merad and Manz 2009). Within the lin� Flt3þ progenitor subset are found macro-

phage-DC precursors (MDPs, lin� c-kithi CD115þ CX3CR1
þ Flt3þ), which give

rise to cDCs, pDCs, monocytes and macrophages upon adoptive transfer (Fogg

et al. 2006; Liu et al. 2009), and a more developmentally confined progenitor, the

common DC progenitor (CDP, lin� c-kitlo CD115þ Flt3þ), which is able to

generate cDCs and pDCs nearly exclusively (Naik et al. 2007; Onai et al. 2007;

Liu et al. 2009). Unlike pDCs that are fully developed in the bone marrow, cDC

precursors (pre-cDCs, lin� CD11cþ MHC class II� SIRP-aint Flt3þ) are believed to
exit bone marrow and migrate to lymphoid tissues for subsequent division and

terminal differentiation (Liu et al. 2009).

As with other hematopoietic lineages, the molecular regulation of DC subset

specification and differentiation from hematopoietic stem cells (HSCs) is compli-

cated and involves cellular events driven by cytokines and lineage-restricted tran-

scription factors. Herein we focus on factors regulating cDC and pDC development,

as these subsets appear to share a common progenitor and in some cases similar

developmental mechanisms (Naik et al. 2007; Onai et al. 2007; Liu et al. 2009)

(reviewed in Watowich and Liu 2010; Merad and Manz 2009). For instance,

engagement of Flt3 with its ligand Flt3L activates the most critical signaling

cascade for pDC and cDC generation in vivo, as implicated by the phenotypes of

Flt3 and Flt3L gene knockout and transgenic animals (McKenna et al. 2000;

Manfra et al. 2003; Waskow et al. 2008; Kingston et al. 2009). The importance of

Flt3L in DC development is further demonstrated by expansion of pDC and DC

populations following its administration in vivo and by its ability to induce pDC
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and DC production ex vivo (Maraskovsky et al. 1996; Daro et al. 2000; O’Keeffe

et al. 2002; Gilliet et al. 2002). By contrast, granulocyte/macrophage colony

stimulating factor (GM-CSF) is commonly used in cell culture to generate DCs

from bone marrow precursors and blood monocytes (Inaba et al. 1992), but its role

in homeostatic cDC production in vivo appears to be largely dispensable or

redundant with other factors, as genetic deficiency of GM-CSF or its receptor

leads to only minimal reduction of cDCs (Vremec et al. 1997; Kingston et al.

2009). Moreover, GM-CSF favors DC generation yet inhibits the development of

pDCs (Gilliet et al. 2002; Esashi et al. 2008). Interferon-a, a type I IFN secreted by

pDCs and other blood cells upon viral infection, promotes the production of CDPs

and pDCs in vivo while abrogating cDC generation (Li et al. 2011), similar to the

inhibitory action of IFN-b upon cDCs (Hahm et al. 2005). Thus, Flt3L, GM-CSF

and IFN-a/b have emerged as important DC regulators, albeit with distinct

activities. These cytokines activate multiple signal transduction cascades, most

prominently the STAT pathways. In this chapter, we focus on the mechanisms of

DC development by STAT proteins.

Flt3L-STAT3

Flt3L promotes the proliferation, differentiation and survival of many

hematopoietic lineages, in addition to serving as the most critical growth factor

for pDCs and cDCs in vivo and in vitro (Stirewalt and Radich 2003; Watowich and

Liu 2010). Flt3L is produced by several tissues, including lymphoid organs (bone

marrow, thymus and spleen), prostate, kidney, small intestine and placenta

(Stirewalt and Radich 2003). The most abundant isoform of Flt3L in humans is

the full-length transmembrane protein, which can be cleaved to generate a soluble

isoform containing only the extracellular domain (Hannum et al. 1994; Lyman et al.

1994). Structural analysis of soluble human Flt3L revealed that it forms a

noncovalently-linked homodimer with each monomer demonstrating an a-helical
bundle configuration (Savvides et al. 2000). In mouse, Flt3L is present mainly as a

220 a.a. membrane-bound isoform (Lyman et al. 1995a). A soluble variant of Flt3L

is also produced in humans and mice by virtue of a stop codon introduced near the

end of exon 6 (Lyman and Jacobsen 1998). It is unclear whether the multiple Flt3L

isoforms are functionally distinct, however all are biologically active and show no

restriction in species specificity.

Flt3L signals through its receptor Flt3, also known as fetal liver kinase-2 (flk-2),

stem cell kinase 1 (STK-1), or CD135. Flt3 belongs to the type III tyrosine kinase

receptor family, presenting as a monomeric, membrane-bound receptor with two

intracellular kinase moieties linked by a kinase-insert region (Stirewalt and Radich

2003) (Fig. 1). Flt3 is expressed primarily on early hematopoietic progenitor cells

with myeloid or lymphoid potential (reviewed in Lyman and Jacobsen 1998);

certain non-hematopoietic organs including placenta, gonads and brain have also

been reported to express Flt3 mRNA (Stirewalt and Radich 2003). The relatively

restricted expression pattern of Flt3 within the hematopoietic system confines the
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action of Flt3L, which is essential for normal hematopoiesis and immune system

function. Low amounts of circulating Flt3L (Lyman et al. 1995b) and the proximity

of Flt3L-producing cells suggest that paracrine stimulation of Flt3þ hematopoietic

progenitors may occur in the bone marrow microenvironment; autocrine

mechanisms have also been proposed, however this remains to be established

(Stirewalt and Radich 2003).

Flt3L-STAT3 Signaling
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Fig. 1 Model for cytokine-STAT signaling cascades regulating DC development. Cytokine-

activated STATs have been found to regulate genes encoding critical pDC/DC-related transcrip-

tion factors, signaling pathways that may influence pDC and DC development. A model of

proposed signaling mechanisms is shown. STATs may also control the expression of genes

controlling pDC/DC progenitor proliferation and survival as well as mature pDC and DC functions

(not shown). (a) Flt3-STAT3. Upon Flt3L binding, Flt3 dimerizes and undergoes

autophosphorylation, subsequently activating effector molecules including SHC, GAB2, GRB2

and RAS/MEK, which lead to STAT3 tyrosine phosphorylation directly or indirectly. Activated

STAT3 dimerizes and translocates to the nucleus, inducing signals that mediate pDC and DC

generation, potentially including direct induction of Sfpi1 expression. Flt3 comprises five extra-

cellular immunoglobulin-like domains (E), a transmembrane domain (TM), a juxtamembrane

domain (JM) and two tyrosine-kinase domains (K) linked via a kinase insert region (KI). (b)
GM-CSF-STAT5. GM-CSF stimulates the formation of hexameric (2GMRa:2bc:2GM-CSF) or

dodecameric (2x hexameric) ligand:receptor complexes, which activate JAK2 and, subsequently,

STAT5. STAT5 dimers translocate to the nucleus where they suppress Irf8 gene expression,

inhibiting pDC development. GMRa contains a CRM domain, a TM domain and a cytoplasmic

domain while bc consists of two CRMs, a TM domain and a cytoplasmic domain that associates

with Jak2. (c) Type I IFN-STAT1/2. Type I IFN stimulation activates Tyk2 and Jak1, which are

associated with IFNAR1 and IFNAR2, respectively. Jak activation leads to phosphorylation of

STAT2 and STAT1, which may induce STAT1 homodimerization as well as STAT2 and STAT1

interaction with IRF9 to form STAT1:STAT2:IRF9 complexes (known as ISGF3). ISGF3 and/or

STAT1 homodimers (not shown) accumulate in the nucleus and induce Irf8 expression, potentially
enhancing pathways that stimulate/support pDC differentiation. The signaling network involved in

type I IFN-mediated DC repression is unclear

172 H.S. Li and S.S. Watowich



Flt3L binding leads to dimerization of Flt3 and concomitant juxtaposition of the

cytoplasmic tyrosine kinase domains, inducing rapid autophosphorylation (within

minutes) of the receptor (Turner et al. 1996). The activated Flt3L-Flt3 complex,

which is rapidly internalized (Turner et al. 1996), stimulates multiple signaling

cascades that seem to be tissue and cell type-specific (Dosil et al. 1993; Zhang et al.

1999). In the Flt3þ Ba/F3 cell line, activated Flt3 stimulates tyrosine phosphoryla-

tion of SH2-containing sequence protein (SHC), the inositol phosphatase SHIP, the

protein phosphatase SHP2 and GRB2-binding protein (GAB2), which subsequently

initiates multiple signal transduction cascades including the phosphatidylinositol

3-kinase (PI3K)/Akt and RAS/mitogen-activated protein kinase (MAPK) pathways

(Marchetto et al. 1999; Zhang and Broxmeyer 2000). STATs are thought to be

downstream intermediates following activation of RAS, RAF or MAPK/ERK

kinases (MEK), without involvement of JAK activity (Zhang et al. 2000) (Fig. 1).

By contrast, in circumstances in which Flt3 is overexpressed or constitutively

activated, STAT5 is stimulated through interaction with phosphorylated tyrosines

589 and 591 within the Flt3 juxtamembrane region (Spiekermann et al. 2003;

Rocnik et al. 2006). Phosphorylation of these tyrosine residues, however, does

not occur upon physiological Flt3L stimulation (Rocnik et al. 2006), and STATs

may be activated directly via recruitment to the receptor or indirectly through Src

kinases (Heiss et al. 2006). In lin� Flt3þ pDC/DC progenitors, STAT3 is the major

STAT activated, becoming tyrosine phosphorylated within minutes of Flt3L addi-

tion (Esashi et al. 2008), suggesting direct stimulation via Flt3 (Fig. 1).

Flt3L was first described as an effective DC growth factor in mice receiving

daily injection of the recombinant protein, a regimen that stimulates a significant

increase in pDCs and DC subsets in bone marrow, blood, lymphoid organs and

other tissues (e.g. thymus, spleen, gastro-intestinal lymphoid tissue and liver)

(Maraskovsky et al. 1996). Subsequently, Flt3L was found to significantly boost

DC generation from human blood ex vivo in the presence of GM-CSF and IL-4

(Hubert et al. 1998), or to promote pDC and DC production in human and mouse

bone marrow cultures (Blom et al. 2000; Gilliet et al. 2002). Inducible expression of

Flt3L in vivo also results in massive expansion of pDCs and DCs in multiple organs

(Manfra et al. 2003). DCs that develop in response to Flt3L in vivo and ex vivo appear

to correspond to pDC andDCpopulations that are generated in homeostatic conditions

in vivo (Naik 2008). Importantly, Flt3L treatment also stimulates the development

and/or accumulation of MDPs and CDPs from HSCs (Waskow et al. 2008) (Li and

Watowich, unpublished data), highlighting its critical function throughout the DC

developmental process. Correspondingly, ablation of Flt3L-Flt3 signaling by genetic

disruption (McKenna et al. 2000; Waskow et al. 2008; Kingston et al. 2009) or

treatment with Flt3 inhibitors (Tussiwand et al. 2005) leads to severe reduction

(>90%) in pDC and DC amounts, and a mild decrease (30–40%) of bone marrow

MDPs (Kingston et al. 2009). By contrast, enforced expression of Flt3 in Flt3�

hematopoietic progenitors, which normally lack DC potential, enables their develop-

ment into pDCs and DCs (Onai et al. 2006), suggesting Flt3 signaling may have

instructive function in DC lineage development.
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In a first attempt to explore the molecular mechanisms involved in Flt3L-

induced DC development, Laouar et al. reported that conditional deletion of

STAT3 in the bone marrow caused a profound loss of splenic CD11cþ cells in

C57BL/6 mice and impaired the generation of both pDC and DC subsets from

Flt3L-supplemented bone marrow cultures ex vivo (Laouar et al. 2003). In addition,

hematopoietic STAT3 deficiency abrogated Flt3L-stimulated induction of CD11cþ

DCs as well as common lymphoid progenitors (CLPs), which can serve as DC

precursors, yet had no effect on HSCs or common myeloid progenitors (CMPs)

(Laouar et al. 2003). These data suggested a role for STAT3 in homeostatic

maintenance/development of DCs as well as Flt3L-driven generation of DCs,

pDCs and their progenitors. Subsequently, our laboratory demonstrated that

STAT3 is essential for the proliferation of lin� Flt3þ bone marrow progenitors in

response to Flt3L (Esashi et al. 2008), consistent with its critical role in Flt3L-

dependent generation of pDCs and DCs in vitro (Laouar et al. 2003; Esashi et al.

2008). Moreover, we found that STAT3-deficient pDCs retain their ability to

produce type I IFNs upon TLR9 stimulation (Esashi et al. 2008). Collectively,

these results suggest that STAT3 mediates growth-promoting signals in pDC/DC

progenitors elicited by Flt3L stimulation, yet is dispensable for terminal pDC

differentiation. Under steady state conditions, however, pDC/DC progenitors are

found at similar amounts in hematopoietic STAT3-deficient mice relative to litter-

mate controls (Li et al. 2011), indicating STAT3 is not required for homeostatic

maintenance of the progenitor compartment. Furthermore, recent data indicates that

STAT3 deletion in the hematopoietic system (Li et al. 2011) or in CD11cþ cells

(Melillo et al. 2010) leads to a significant reduction in pDCs in bone marrow and

spleen while CD11cþ CD11bþ cDCs are present at near normal numbers and

proportions; these results agree with the concept that STAT3 is necessary for

proliferation of pDC progenitors (Esashi et al. 2008) yet indicate that cDCs or

their precursors may be regulated by STAT3-independent mechanisms under

homeostatic conditions in vivo. Flt3 controls cDC proliferation/survival in spleen

in steady state (Waskow et al. 2008), thus the fact that CD11cþ CD11bþ cDCs

remain at normal amounts in STAT3-deficient mice suggests that Flt3-driven cDC

proliferation in the periphery employs signal cascades independent of STAT3. The

reason for the discrepancy in the role for STAT3 in DC development between

different reports (Laouar et al. 2003; Melillo et al. 2010) remains unclear, however

the recent work underscores the critical role for STAT3 in pDC homeostasis in vivo

(Melillo et al. 2010) (Li et al. 2011). Significantly, ectopic expression of STAT3 in

Flt3� progenitors not only initiates pDC development from this subset, which is

normally unable to generate pDCs, but also upregulates Flt3 expression (Onai et al.

2006). These results suggest that STAT3 may mediate instructive signals for pDC

lineage development and potentially reinforce this signaling network via Flt3

induction.

Flt3L stimulates the expression of several DC-related transcription factors,

including Sfpi1 (encoding PU.1), Ifr8 and Spib (Esashi et al. 2008). An important

question centers on whether STATs serve a role in activating and/or maintaining the

DC lineage-specific transcriptional network. STAT3 has been shown to regulate
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Sfpi1 expression by binding the distal promoter region in primary erythroid

progenitors or myeloid tissue culture cells (Hegde et al. 2009; Yoon and Watowich,

unpublished data). These results, together with the observation that Sfpi1 mRNA is

induced by STAT3 overexpression in Flt3� bone marrow progenitors (Onai et al.

2006), suggest that Sfpi1 may be a direct target of the Flt3-STAT3 signaling

cascade in pDC/DC progenitors/precursors (Fig. 1). Recently, PU.1 was shown to

induce Flt3 expression in pDC/DC progenitors in a dose-dependent manner

(Carotta et al. 2010), suggesting the presence of a self-regulatory loop of Flt3

transcription mediated by STAT3 and PU.1 following Flt3 signaling.

GM-CSF-STAT5

GM-CSF is the most commonly used growth factor in the laboratory and clinic to

generate DCs from peripheral blood and/or bone marrow. GM-CSF is normally

undetectable in circulation, but is readily induced in many cell types in response to

multiple stimuli or disease conditions (Hamilton and Anderson 2004). As revealed

by X-ray crystallography, human GM-CSF is characterized by a highly compact

four a-helix bundle structure containing a hydrophobic core (Rozwarski et al.

1996). Human and mouse GM-CSF display a high degree of homology in sequence

and predicted structure, yet there is little species cross-reactivity due to the fact that

distinct residues are required for receptor binding (Shanafelt et al. 1991).

GM-CSF receptor (GMR) is widely expressed on hematopoietic cells at low

density (100–1,000 receptors/cell) (Guthridge et al. 1998). The heteromeric recep-

tor is composed of a cytokine-specific a chain (GMRa) and a common b (bc) chain
that is shared with receptors for IL-3 and IL-5 (Gearing et al. 1989; Hayashida et al.

1990; Kitamura et al. 1991). Both GMRa and bc chains belong to the class I cytokine
receptor superfamily, and are characterized by the presence of the cytokine-receptor

homology module (CRM) in the extracellular domain, which contains four conserved

cysteine residues, a Trp-Ser-X-Trp-Ser motif (WSXWS motif) and tandem fibronec-

tin type III domains (Bazan 1990). An “elbow” region formed by a fold between the

fibronectin type III domains in GMRa serves as the critical ligand binding interface

(Hansen et al. 2008), similar to growth hormone binding to the growth hormone

receptor extracellular region (de Vos et al. 1992). The GMRa consists of one CRM

and binds to GM-CSF at low affinity (Gearing et al. 1989). By contrast, the bc chain
contains 2 CRMs and was reported to present as a membrane-bound homodimer in

the absence of ligand stimulation (Fig. 1) (Hayashida et al. 1990; Murphy and Young

2006). While bc is the principal signaling component in cells expressing GM-CSF,

IL-3 or IL-5 receptors, and is required for high affinity ligand binding, it is clear that

different a subunits are required for cytokine-specific signal transduction (Hayashida

et al. 1990; Kitamura et al. 1991; Tavernier et al. 1991; Geijsen et al. 2001). Recently,

a hexameric complex consisting of 2 bc: 2 GMRa: 2 GM-CSF was identified by

crystal structure analysis; this structure may further assemble into a higher order

dodecamer (12-mer) (Hansen et al. 2008). The dodecameric ligand-receptor complex

provides a structural basis for clustering the signaling bc subunits, and enables
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association of GMRa cytoplasmic domains, which may also participate in signal

transduction (Lia et al. 1996).

The bc chain constitutively associates with the tyrosine kinase Jak2, which is

critical for GMR signal transduction (Parganas et al. 1998), via a conserved Box 1

motif in the membrane-proximal region of the cytoplasmic domain (Quelle et al.

1994). Jak2 clustering upon ligand binding activates the kinase by a trans-phosphory-

lationmechanism; activated Jak2 subsequently phosphorylates tyrosine residues in the

intracellular region of the GMR. Early studies with Ba/F3 cells expressing a dominant

negative Jak2 isoform demonstrated that mutant Jak2 suppressed phosphorylation of

bc and inhibited GM-CSF-induced activation of immediate response genes

(Watanabe et al. 1996), indicating the importance of Jak2 for GM-CSF signaling.

This was confirmed by studies with fetal liver progenitors from Jak2�/� mice, which

failed to respond to GM-CSF and IL-3 (Parganas et al. 1998), demonstrating a

nonredundant role for Jak2 in response to cytokine signals employing bc. Activated
Jak2 and bc recruit SH2 and PTB domain-containing proteins to the GMR complex

and initiate multiple signaling cascades, including STAT, Ras/MAPK and PI3K/Atk

pathways (Hercus et al. 2009). STAT5A and STAT5B are the predominant STATs

activated by GM-CSF. Sakurai et al. have indicated that each of the eight

phosphorylated tyrosine residues in bc can serve as a docking site for STAT5 in a

GM-CSF-dependent in vitro system (Sakurai et al. 2000), although it is unclear

whether all bc tyrosines are functionally similar in vivo. Studies in Ba/F3 cells show

that Y577 in bc mediates GM-CSF-dependent phosphorylation of SHC, while Y577,

Y612, or Y695 appear to be similar in their ability to induce phosphorylation of

SHP2 (Okuda et al. 1997). bc also associates with other tyrosine kinases, such as Lyn,
Btk and Fyn, although the function of these interactions remain largely unknown

(Geijsen et al. 2001).

GM-CSF is a potent growth factor for DCs, however it has a striking suppressive

activity on pDC generation in cultures with total bone marrow or purified progeni-

tor cells, indicating its potential to block pDCs at an early developmental stage

(Gilliet et al. 2002; Esashi et al. 2008). Elevated circulating amounts of GM-CSF in

mice carrying a GM-CSF-encoding transgene (Vremec et al. 1997) or in animals

treated with recombinant GM-CSF (Daro et al. 2000; O’Keeffe et al. 2002) leads to

increases in both CD8aþ and CD8a� cDC numbers in lymphoid organs,

demonstrating that GM-CSF can drive cDC generation in vivo. By contrast, mice

carrying targeted null mutations of the GM-CSF or bc genes show marginal

reduction in cDC populations in thymus, spleen and lymph node (Vremec et al.

1997; Kingston et al. 2009). bc�/� mice lack responsiveness to GM-CSF and IL-5

yet retain the ability to respond to IL-3, due to the presence of an alternative murine

IL-3 receptor (Hara and Miyajima 1992; Nicola et al. 1996). Taken together, these

results indicate that GM-CSF has a limited role in cDC homeostasis, and this may

be due to the presence of compensatory cytokine signals including IL-3 and Flt3L.

However, during conditions in which GM-CSF is expressed at elevated amounts,

such as inflammation or infection, GM-CSF may boost the production of DCs from

pDC/DC progenitors and/or monocytes. The DCs that arise in these conditions do

not appear to correspond to DCs present in steady state in mouse and are considered
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to be a distinct “inflammatory” population (reviewed in Naik 2008). In fact,

evidence for a monocyte to DC transition in vivo during inflammatory conditions

has been reported. For example, CD11cþ DCs differentiated from adoptively-

transferred monocytes can be recovered from the spleens of recipient mice with

systemic inflammation (Naik et al. 2006) or from inflamed peritoneum induced by

thioglycollate treatment (Geissmann et al. 2003). Moreover, a novel inflammatory

DC population secreting high levels of TNF-a and iNOS (Tip DCs) was reported

during L. moncytogenes infection (Serbina et al. 2003), which is accompanied by

elevated cytokine production. Hence, a principal role for GM-CSF may be to

enhance the amount of antigen-presenting cells during inflammation or infection

by stimulating production of inflammatory DCs.

The numerous signaling pathways elicited by GM-CSF posed challenges for

specifying the roles of individual factors. As STAT5 is strongly activated in pDC/

DC progenitors stimulated with GM-CSF, our group determined whether STAT5 is

involved in regulating DC development. We found that STAT5 is essential for the

suppressive activity of GM-CSF on pDC generation in vitro (Esashi et al. 2008).

Moreover, bone marrow chimeric Stat5a�/� Stat5b�/� mice (termed here Stat5�/�)
demonstrate increased pDC proportions and decreased cDC frequencies in bone

marrow and spleen compared to Stat5+/+ chimeras, suggesting that STAT5 inhibits

homeostatic pDC development in vivo (Esashi et al. 2008). Further analysis within

the CD11cþ splenic population showed an increase in the CD11b� CD8aþ subset

proportion and a reduction in the CD11bþ CD4þ frequency, suggesting STAT5

signaling may also influence cDC differentiation in the spleen. By contrast, STAT5

is not required for Flt3L-driven pDC or DC development from lin� Flt3þ bone

marrow progenitors (Esashi et al. 2008). GM-CSF is believed to exert its suppres-

sive function on pDC development at a pDC/DC progenitor stage since it blocks

pDC generation from the lin� Flt3þ subset, while terminally differentiated pDCs do

not convert or develop into DCs in response to GM-CSF. In addition, GM-CSF

alone is able to stimulate pDC production from Stat5�/� lin� Flt3þ progenitors

suggesting that GM-CSF can induce pDC development in the absence of STAT5

(Esashi et al. 2008). Consistent with our ex vivo results, GM-CSF delivery by

hydrodynamic gene transfer markedly inhibits pDC generation in vivo, and this

inhibition is partially abrogated in hematopoietic STAT5-deficient mice [i.e. Tg
(Tek-cre)12Flv, Stat5f/f] (Li et al. 2011) (Li and Watowich, unpublished data).

Taken together, these results suggest that STAT5 functions as a negative signal

for pDC development in steady state conditions as well as “emergency” situations

with high circulating amounts of GM-CSF.

To explore how GM-CSF employs STAT5 to exert its suppressive activity on

pDCs, the expression of DC-related transcription factors was compared in Stat5�/�

and Stat5+/+ lin� Flt3þ progenitors stimulated with Flt3L or Flt3L+GM-CSF. As

reported (Esashi et al. 2008), GM-CSF inhibited the expression of Irf7, Irf8 and

Spib induced by Flt3L, but promoted Irf4 expression, in accordance with the

function of these transcription factors in pDC versus cDC production (i.e. IRF7,

IRF8 and SpiB are important for pDC development while IFR4 is required for

CD11cþ CD8a� cDCs). Inspection of proximal promoter regions revealed
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consensus STAT sites in the Irf4 and Irf8 genes, and further analysis indicated that

Irf8 transcription is directly inhibited by STAT5 upon GM-CSF stimulation (Esashi

et al. 2008). IRF8 is essential for pDC development and maturation, and deletion of

Irf8 leads to a profound loss of pDCs and CD8aþ cDCs (Schiavoni et al. 2002).

Hence, the significant suppression of Irf8 expression by GM-CSF-STAT5 signaling

is likely to contribute to GM-CSF-mediated inhibition of pDC development (Esashi

et al. 2008) (Fig. 1).

Type I IFN-STAT1/STAT2

Type I IFNs comprise a large family consisting of multiple IFN-a subtypes, a single

IFN-b and other members such as IFN-k, IFN-e and IFN-o. The IFNs exhibit a

wide spectrum of activities in the immune system, including anti-viral effects, pro-

apoptotic activity and APC-stimulating capability (Stark et al. 1998; Pestka 2000;

Biron 2001; Theofilopoulos et al. 2005; Trinchieri 2010). While pDCs are consid-

ered to be a primary source of type I IFN secretion upon viral infection (Siegal et al.

1999), many other cells types, including leukocytes, T cells and NK cells, produce

type I IFN upon activation. All type I IFNs bind and signal through a single receptor

composed of two subunits, IFNAR1 and IFNAR2, which is expressed by many cell

types (reviewed in Stark et al. 1998; Theofilopoulos et al. 2005). IFNAR1 exists

primarily as a single isoform, but alternative processing of IFNAR2 transcripts

produces multiple isoforms that possess identical IFN-binding sequences in the

extracellular domain (Domanski et al. 1995; Lutfalla et al. 1995). Moreover, the

two subunits have distinct three-dimensional structures as the extracellular domain

of IFNAR1 contains two putative cytokine binding sites formed by four fibronectin

type III repeats, while IFNAR2 contains a single putative cytokine binding site

(Fig. 1) (Uze et al. 1995). Interaction of type I IFNs is proposed to involve two-step

process whereby ligand engages IFNAR2 initially and subsequently IFNAR1 is

recruited to the complex (reviewed in Stark et al. 1998; Theofilopoulos et al. 2005).

Full-length IFNAR2 is required for activation of JAK-STAT signal transduction

(Lutfalla et al. 1995).

Like other cytokine receptors, IFNAR1 and IFNAR2 lack intrinsic enzymatic

activity, however their cytoplasmic domains noncovalently associate with the JAK

kinases Tyk2 and Jak1, respectively (Colamonici et al. 1994a, b; Gauzzi et al.

1996). In vitro binding assays revealed a minimum sequence in IFNAR1, compris-

ing residues 479–511, as the Tyk2 interaction site; this region is proximal to the

inducible STAT2 docking site at Y466. By contrast, the Jak1 binding region in

IFNAR2 was localized to residues 300–346, which are nearby the constitutive

STAT2-docking region at residues 404–462 (Mogensen et al. 1999). In addition,

IFNAR2 also binds constitutively to STAT1 in the presence of STAT2 (Li et al.

1997). Engagement of IFNAR by ligand results in phosphorylation of Jak1, Tyk2

and both receptor subunits. Subsequently, STAT2 interacts with phosphorylated

Y466 in IFNAR1 via its SH2 domain. This is thought to position STAT2 and

STAT1 in the correct configuration to become tyrosine phosphorylated, leading to
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their heterodimerization and dissociation from the receptor complex (reviewed in

Stark et al. 1998). STAT1:STAT2 heterodimers bind to p48/IRF9 to form the

multimeric protein complex ISGF3, which stimulates transcription of type I IFN

genes (Stark et al. 1998; Platanias 2005). STAT1 homodimers may also form in

response to IFNAR activation (Platanias 2005). Of note, IFNAR1 was reported to

bind to STAT3 at residues 525–544 (Yang et al. 1996), however the involvement of

STAT3 in the type I IFN signaling pathway is unclear. In addition to the JAK-STAT

pathway, type I IFNs can activate other signaling cascades including the MAPK

cascade and PI3K (Platanias 2005).

Many investigators have reported that type I IFNs promote terminal differentia-

tion and maturation of DCs by stimulating expression of MHC and costimulatory

molecules (Trinchieri 2010). More recently, it was shown that IFN-a stimulates

HSCs to exit quiescence and to enter the cell cycle via a STAT1-dependent

mechanism (Essers et al. 2009); these results highlight the potential for IFN-a to

induce the development of hematopoietic lineages. Consistent with this, we found

that IFN-a hydrodynamic gene transfer (IFN-a HGT), which elicits elevated IFN-a
amounts in the blood similar to viral infection (e.g. 2–3 ng/mL), induced an

approximate twofold increase in bone marrow pDC/DC progenitor numbers (i.e.

lin� Flt3þ cells) after 4 days of treatment (Li et al. 2011). In addition, IFN-a
stimulated pDC production from pDC/DC progenitors in vitro in the presence of

a primary DC growth factor, such as Flt3L or GM-CSF. Thus, the enhanced

production of pDCs in bone marrow and spleen of mice that received IFN-a HGT

suggests two developmental processes: the generation of pDC/DC progenitors from

HSC and the differentiation of pDCs from pDC/DC progenitors. On the other hand,

high dose IFN-b treatment was shown to suppress development of MHC class IIþ

CD11cþ DCs in vivo and in vitro (Hahm et al. 2005). The suppression of DCs was

also observed during infection with measles virus and LCMV (Hahm et al. 2005),

while enhanced pDC production was found following vesicular stomatitis virus

infection (Li and Watowich, unpublished data). Zuniga reported that LCMV infec-

tion drives differentiation of bone marrow pDCs to DCs in the presence of Flt3L by

upregulating CD11b and suppressing B220 expression via IFNAR-dependent

mechanisms (Zuniga et al. 2004), however IFN-a signaling does not appear to

stimulate conversion between pDCs and DCs or vice versa (Li et al. 2011). Thus,

type I IFNs exert multiple effects on the DC developmental pathway and may

distinctly regulate pDC generation and DC suppression.

We found that pDCs that were generated in the presence of IFN-a (IFN-a-
conditioned pDCs) share many features with pDCs that develop in response to

Flt3L, however the IFN-a-conditioned pDCs fail to secrete type I IFN upon TLR7

and TLR9 stimulation, but produce enhanced amounts of the proinflammatory

cytokines IL-6, IL-23 and TNFa. Furthermore, IFN-a-conditioned pDCs preferen-

tially facilitate the differentiation of Th17 cells compared to pDCs that develop in

steady state or in response to Flt3L (Li et al. 2011). Genetic deletion of STAT1

abrogates the development of pDCs elicited by IFN-a in vitro or IFN-a HGT

in vivo, indicating an indispensable role for STAT1 in their production (Li et al.

2011). Stat1�/� mice display normal amounts of pDCs and DCs in bone marrow
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and spleen (Li et al. 2011), indicating STAT1 is not necessary for DC homeostasis

in these organs. Strikingly, however, Stat1�/� mice are deficient in Peyer’s patch

pDCs, a DC population that closely resembles IFN-a-conditioned pDCs in terms of

phenotypic markers, transcription factor expression profiles and functional features

(i.e. lack of IFN secretion) (Contractor et al. 2007; Li et al. 2011). This finding

suggests that IFN-STAT1 signals may play important roles in pDC development in

the gut and under inflammatory conditions where type I IFNs are produced. By

contrast, DC suppression induced by viruses or IFN-b was dependent on STAT2,

but independent of STAT1 (Hahm et al. 2005). Given the fact that IFNAR2

associates with STAT1 in a STAT2-dependent manner (Li et al. 1997) and IFN-b
binding to IFNAR2 alone can stimulate early transcription of IFN-responsive genes

(Lewerenz et al. 1998), it is possible that STAT2-mediated initial transcripts are

sufficient to block DC development in response to IFN-b. No alteration in DC

subsets has been reported in Stat2�/� animals (Hahm et al. 2005), suggesting

STAT2 is not essential for DC homeostasis.

Analysis of the expression of DC-specific transcription factors in response to

IFN-a suggested that IFN-a induced Irf8 transcription in pDC/DC progenitors by a

mechanism involving direct interaction of IFN-a-activated STAT1 with the Irf8
promoter (Li et al. 2011). Since IRF8 is important for pDC development, this

signaling cascade may account, at least in part, for increased pDC production in

response to IFN-a (Fig. 1) (Li et al. 2011). IFN-awas also reported to enhance IRF8
expression in human NK and T cell cultures (Lehtonen et al. 2003), as well as in

patients with chronic myelogenous leukemia (Schmidt et al. 1998), but the underly-

ing mechanisms have remained unresolved until recently. In terms of DC develop-

ment, virus-induced type I IFNs do not seem to enhance DC apoptosis, but rather

inhibit cell proliferation to limit DC expansion (Hahm et al. 2005). This is consistent

with the anti-proliferative role for IFN-a and IFN-b (reviewed in Stark et al. 1998).

Detailed analysis of how type I IFN-responsive STAT1 and/or STAT2 regulate the

cell cycle machinery in DCs will extend our understanding of type I IFN-mediated

DC suppression. In addition, IFN-awas suggested to inhibit IL-2-stimulated STAT5

DNA binding in T cells (Erickson et al. 2002); GM-CSF, on the other hand, blocks

IFN-a-induced STAT1 activation (Kasper et al. 2007). This cross-inhibition by

STAT1 and STAT5 signals are in accordance with their unique roles in pDC versus

DC development, and may factor into their disparate activities in these lineages.

Concluding Remarks and Future Perspectives

Flt3L, GM-CSF and type I IFNs are three well-studied cytokines that signal through

their cognate receptors to regulate pDC and DC lineage commitment and differen-

tiation. In each system, STATs are activated and interact with the proximal pro-

moter regions of certain pDC- and DC-specific transcription factor genes (Fig. 1).

These signals may instruct and/or reinforce the developmental decision of pDC/DC

progenitors. A major focus for the future is uncovering genome-wide STAT targets

in pDCs, DCs and their progenitors, and determining how STAT-regulated genes
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participate in pDC/DC lineage development. In addition, other cytokines, such as

thrombopoietin, M-CSF and IL-3, can independently regulate DC generation, or

cooperate with other DC growth factors to influence DC development, yet the

intracellular signaling pathways they employ remain unknown. The interplay and

cross-regulation among multiple signaling pathways and numerous transcription

factors are complex, and mechanisms by which these events regulate DCs remain as

a challenging question. Compared to pDCs, less is known about the signaling

networks involved in cDC subset (e.g. CD8aþ vs. CD8a� cDC) diversification,

an area that should be explored in future studies. Unraveling these mechanisms is

important for learning how to manipulate pDC and cDC amounts, as well as their

effects on innate and adaptive immune functions, and may aid in our ability to target

pDC and DC lineages in clinical therapies for cancer or immune disease.
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STAT Transcription Factors: Controlling
All Aspects of NK Cell Biology

Eva Maria Putz, Eva Zebedin, and Veronika Sexl

Abstract

Besides B and T cells, Natural Killer (NK) cells constitute the third lymphocytic

population with a broad spectrum of skills and functions. For several decades

NK cells have been portrayed as first line defense against virally infected and

malignant cells. But recent reports unraveled far more diverse properties of NK

cells, e.g. their involvement in reproductive immunology and in mucosal defense

of pathogens in the gut, and especially their ability to retain memory over several

months. This chapter combines well established paradigms of NK cell biology

with recent findings and special emphasis on the JAK/STAT signaling pathway.

NK cell development, activation and cytotoxic function are tightly regulated

by a plethora of cytokines – prominent inducers of the JAK/STAT signaling

cascade. The availability and detailed analysis of gene-targeted mice

underscores the importance of STATs controlling all aspects of NK cell biology.

Being part of the innate immune system NK cells kill rapidly and without great

selectivity. Once stimulated, NK cells produce large amounts of cytokines and

chemokines such as interferon-g (IFN-g), tumor necrosis factor-a (TNF-a), granulo-
cyte-macrophage colony-stimulating factor (GM-CSF) as well as macrophage inflam-

matory proteins (MIP-1a and MIP-1b). Thereby NK cells interfere with and regulate

other cellular components of the innate and adaptive immune system. It was Eva Klein

in the year 1975who coined the phrase of “Natural Killers”when she andRolfKiessling

first discovered a novel lymphocyte population with the ability to kill leukemic tumor

cells without prior sensitization (Kiessling et al. 1975). Since their discovery extensive

research has been focused on these killers and it became evident that NK cells – always
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regarded as simple and innate – have been underestimated for a long time. Changes of

old paradigms are on the way. Recent provocative findings assigned an adaptive-like

feature to NK cells namely the ability to retain a memory over a certain period of time.

The capability to memorize was shown in two different murine models, in cytomegalo-

virus (CMV) infection (Sun et al. 2009) and in hapten-induced contact hypersensitivity

response (O’Leary et al. 2006). A recent report extended these findings to human NK

cells: in accordance with the murine models also humans infected with hantavirus show

a rapid expansion and long-term persistence of “memory NK cells” far beyond what is

considered “normal” for a classical innate immune response (Bjorkstrom et al. 2010).

Thus, NK cells are now discussed as an “evolutionary bridge between innate and

adaptive immunity” (Sun and Lanier 2009).

Moreover, functional aspects of NK cells have been linked to distinct NK cell

subsets. Different murine and human NK cell subsets were defined, such as “gut

NK” cells (Leon et al. 2003; Tagliabue et al. 1982), which recently were re-named

as NK-22 cells according to their potential to produce IL-22 (Satoh-Takayama et al.

2008). NK-22 cells have attracted considerable interest because of strong evidence

for a protective role in mucosal defense against pathogens (Di Santo et al. 2010).

Further, a unique subset of non-destructive NK cells was discovered in the uterus

prior to and during pregnancy, which seems to have a major impact in tissue-

remodeling during the menstrual cycle and mainly in the first trimester of preg-

nancy (Manaster and Mandelboim 2010).

Thus, Natural Killer cells exhibit a stunningly broad spectrum of skills and

functions. They may be on the one hand considered as very powerful weapons

against infections and tumors. One the other hand they represent a peaceful cellular

compartment involved in reproductive immunology.

The Transcription Factor Network Regulating NK Cell
Development: STAT5 in the Center of Attention

The development of conventional NK cells mainly takes place in the bone marrow

(BM). However, their maturation and education can proceed in any kind of second-

ary lymphoid organs, as for example in lymph nodes, liver and spleen (Huntington

et al. 2007). It all starts from hematopoietic stem cells (HSCs) in the BM, which

give rise to lineage negative (Lin-) NK cell precursors (NKPs) that are

characterized by the expression of the IL-2 and IL-15 receptor common ß subunit

(also known as CD122) and the complete lack of NK lineage markers such

as NK1.1, integrin a2 (DX5) and Ly49 receptors (Rosmaraki et al. 2001). In

the presence of IL-2 and/or IL-15 NKPs can differentiate at first into immature

NK cells (iNKs, defined as Lin-CD122þNK1.1þDX5�), which sequentially

acquire the NK cells’ characteristic receptor repertoire (Kim et al. 2002;

Roth et al. 2000) and finally reach the fully mature NK cell state (mNKs), as

defined by NK1.1þDX5þNKp46þCD3� expression. Even though IL-2 is an

important cytokine for NK cell survival, proliferation and cytolytic activity

in vitro, Il2-deficient mice harbor normal NK cell numbers (Vosshenrich et al.

2005). In contrast, Il15-deficient mice are completely devoid of peripheral NK cells
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supporting the central role of IL-15 for NK cell development (Kennedy et al. 2000).

Interestingly, IL-2 and IL-15 induce largely overlapping signaling pathways.

Signaling of IL-2/IL-15 via the IL-2/IL-15 receptor bg complex results in tyrosine

phosphorylation and activation of STAT3 andSTAT5 by JAK1 and JAK3, respectively

(Miyazaki et al. 1994). Phosphorylated STAT3 and STAT5 then homo-dimerize and

translocate to the nucleus, where they act as transcription factors. Consistent

with the critical role of STAT5 in IL-2/IL-15 signal transduction, Jak3 knockout

(Nosaka et al. 1995), Stat5aDN, Stat5bDN (Imada et al. 1998) and Stat5a/bDN double

knockout mice (Moriggl et al. 1999) display NK cell defects. Mice that lack Stat5
exclusively in theNK cell compartment are arrested inNK cell development at an early

stage (Eckelhart et al. 2011), determining an intrinsic key role for STAT5 in NK cell

development. Additional transcription factors, which have been shown to be

indispensable for NK cell development, are Ikaros (Boggs et al. 1998), PU.1 (Colucci

et al. 2001) and ID2 (Ikawa et al. 2001). Recently, the transcription factor E4BP4 was

implicated in the development of NK cells and is now discussed as critical factor

determining NK lineage fate decision (Gascoyne et al. 2009; Kamizono et al. 2009). It

is attractive to speculate that STAT5 is the “missing” link that closes the circle from IL-

15 to E4BP4 thus driving NK cell development (Fig. 1). This hypothesis relies on the

documentation of a developmental block occurring in Stat5-deficient NK cells, which

is superimposable to the phenotype observed in E4bp4- and Il15r-deficient mice.

Further studies are required to finally delineate the transcriptional network around

STAT5 allowing NK cell development.

In addition, the T-box transcription factor and STAT downstream target T-bet is

required for the final (homeostatic) maturation and function of NK cells (Townsend

et al. 2004). During NK cell differentiation T-bet expression is induced by IL-12

and IL-15, cytokines known to control NK development and NK effector functions

via STAT4 (Bacon et al. 1995) and STAT5 (Miyazaki et al. 1994). T-bet interacts

with various other transcription factors, such as Blimp-1, which is also induced by

IL-15 early in NK cell development and together with T-bet mediates NK cell

maturation and homeostasis (Kallies et al. 2011). A different, but highly homolo-

gous T-box transcription factor is Eomesodermin (Eomes), which shows a

selective expression pattern for NK cells and cytotoxic T cells (Pearce et al.

2003). T-bet and Eomes are both required for the expression of the IL-2/IL-15

receptor common ß subunit – thus closing the circle. T-bet and Eomes have

largely redundant functions, only the monoallelic loss of Eomes and the complete

deletion of T-bet in combination (Eomesþ/�Tbx21�/�) results in the loss of IL-

15-dependent lineages (Intlekofer et al. 2005) and phenocopies Il15-deficient
mice (Kennedy et al. 2000).

How to Educate an NK Cell: STAT1 as Determinator

NK cell development includes a process called “education” which finally allows the

establishment of fully mature and functional NK cells. “Education” represents an

important step to prevent autoreactivity and is dominated by the MHC class I
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repertoire of the individual (Orr and Lanier 2010). NK cell-mediated autoreactivity

is of patho-physiological relevance and bears consequences for diseases such as

type 1 diabetes (Gur et al. 2010), psoriasis (Martin et al. 2002) and rheumatoid

arthritis (Yen et al. 2001). Despite its importance the molecular mechanism of NK

cell education is not yet fully understood. Several models such as the “licensing”,

“arming”, “disarming” and “tuning” models have been proposed, nevertheless the

details of NK cell education remain enigmatic (Brodin and Hoglund 2008). The

common denominator of all models is the involvement and engagement of the self-

major histocompatibility complex (MHC) class I. Only if NK cells express specific

Fig. 1 JAK/STAT signaling network in NK cells
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inhibitory receptors for MHC I molecules characteristic for the particular individ-

ual, full NK cell maturation and competence will be achieved by initiating a yet

undefined process (Anfossi et al. 2006; Joncker and Raulet 2008; Raulet and Vance

2006; Yokoyama and Kim 2006). Interestingly, neither the exposure to MHC class I

ligands during NK cell development in the BM nor endogenous MHC class I

expression by NK cells themselves seem to be absolutely required for this educa-

tional process (Elliott et al. 2010). Thus, it remains a challenging open question,

how, when and where NK cells are “educated” in terms of generating “better” or

“worse” killers. Understanding the molecular details of NK cell education may

have important consequences. Once we do understand the process, we may interfere

and either enhance the clearance of undesired target cells or block NK cells that are

causing autoimmunity. STAT1 is a key player in this regard: Stat1-deficient mice

show a severe reduction in MHC class I levels (Marques et al. 2004; Meraz et al.

1996). Not unexpectedly, Stat1-deficient NK cells show a highly impaired cytolytic

capacity (Kovacic et al. 2006; Lee et al. 2000). Thus one may speculate, that Stat1-
deficient NK cells are not “well-educated” and display an immature phenotype.

This may explain the reduced cytolytic ability and the reduced levels of self-MHC

class I-recognizing receptors on Stat1-deficient NK cells (Robbins et al. 2005).

STATs United: Natural Killer Cells Live Up to their Name

Once fully mature, NK cells kill their targets rapidly and without prior sensitization.

This ability demands that killing is under tight control to avoid self-destruction and

autoimmunity. A complex integration of signals provided by a plethora of

activating and inhibitory NK cell surface receptors acquired during education

serves this purpose (Lanier 2008; Long 2008; Zompi and Colucci 2005). NK cells

can kill their targets either by direct cell-mediated cytotoxicity or by secretion of

soluble factors like IFN-g and TNF-a (Smyth et al. 2002). The most prominent

mechanism is the release of cytoplasmic granules filled with toxic enzymes like

perforin, which accounts for the formation of pores in target cell membranes, and

granzymes, lytic enzymes that induce apoptosis (Froelich et al. 2009; Trambas and

Griffiths 2003). The family of human granzymes consists of five members, of which

granzyme A and B have been studied most extensively. Interestingly, mice express

twice as many granzymes compared to humans (Bovenschen and Kummer 2010).

Since NK cells have to be ready to kill instantaneously and at any time, they are

equipped with basal levels of perforin and granzymes that are further increased

upon stimulation.

Several cytokines induce perforin expression in NK cells via the JAK/STAT

signaling cascade, including IL-2 via STAT5 (Salcedo et al. 1993), IL-6 and IFN-a
via STAT1 (Liang et al. 2003; Yu et al. 1999) and IL-12 via STAT4 (Yamamoto

et al. 2002) (Fig. 1). In addition, also granzyme B expression underlies the control

of the latter cytokines (DeBlaker-Hohe et al. 1995). However, to date not much is

known about the involvement of STAT proteins in the regulation of granzyme B. In

murine NK cells Kallies et al. (2011) demonstrated the importance of T-bet and
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Blimp-1 in IL-12-mediated granzyme B expression – suggesting that granzyme B

up-regulation is mediated by STAT4. Apart from that, no published data link

granzyme expression and STAT signaling in NK cells conclusively.

Besides the granule-exocytosis pathway, NK cells kill target cells by the induc-

tion of apoptosis using TNF superfamily members, also known as death ligands and

receptors. Ligation of Fas or TNF-related apoptosis-inducing ligand (TRAIL)-

receptor on the target cell surface to NK cells’ Fas ligand (FasL) and TRAIL

induces a machinery of death-bringing signals resulting in target cell lysis (Arase

et al. 1995; Zamai et al. 1998). Several crossroads with JAK/STAT signaling exist:

TRAIL expression is markedly induced by IFN-a/b via TYK2 (Rani et al. 2007).

Moreover, interleukins like IL-2 and IL-12 inducing STAT1, STAT4 and STAT5

signaling are potent inducers of Fas and FasL (Medvedev et al. 1997; Trinchieri

et al. 1984). Similarly, IFN-g fulfils its duties as major NK cell product and death-

bringing protein by inducing Fas and FasL expression via STAT1 in tumor and

immune cells, respectively, thereby triggering apoptosis (Xu et al. 1998).

Being a dangerous and effective weapon, IFN-g expression itself is controlled

and induced in a cytokine-dependent manner. IL-2 (Wang et al. 1999), IL-12

(Szabo et al. 2002; Uemura et al. 2010) and IL-18 (Lauwerys et al. 1999) are potent

inducers of IFN-g via STAT4 and T-bet. Additionally, IL-21 and IL-4 are able to

induce IFN-g gene transcription in a strictly STAT3- or STAT6-dependent manner,

respectively (Morris et al. 2006; Strengell et al. 2003). In contrast, type I IFNs not

only fail to trigger, but even block IFN-g production via STAT1 (Nguyen et al.

2000). Thereby, STAT1 is an important break for IFN-g production and seems to

represent a key node in the signaling network that balances IFN-g production. The

central inhibitory role of STAT1 for IFN-g production is underscored by

observations in Stat1-deficient NK cells. In these cells IFN-a/b induce IFN-g
expression (Nguyen et al. 2000), whereas the IL-12-induced IFN-g production is

impaired (Lee et al. 2000).

For the control of viral infections NK cells and interferons play a central role.

Viral infections such as cytomegalovirus (CMV) or lymphocytic choriomeningitis

virus (LCMV) infections are paralleled by a rapid increase in IFN-g expression,

which accompanies the proliferation, accumulation and cytotoxic response of NK

cells (Biron et al. 1996). Several studies defined IFN-a/b and IL-12 as the major

immunoregulatory cytokines during CMV infections (Orange and Biron 1996a, b).

IFN-a/b strongly induce the activation of NK cells (Biron 1998; Gidlund et al.

1978; Liang et al. 2003) leading to NK cell proliferation and accumulation at the

site of infection. Nevertheless, it is highly unlikely that IFN-a/b stimulates NK

cell proliferation directly, as IFN-a/b fail to elicit NK cell proliferation in vitro and

even exert anti-proliferative effects at high concentrations (Loza and Perussia

2004). In spite of this, type I IFNs induce STAT1-mediated upregulation of IL-

15, which is genuinely responsible for the observed NK cell expansion during viral

infection (Nguyen et al. 2002). In addition to STAT1 and STAT2, type I IFNs have

been reported to conditionally activate all of the STATs, including STAT4

(Matikainen et al. 2001). NK cells harbor high basal levels of STAT4, which is

bound to the type I IFN receptor (IFNAR). One key characteristic of viral infections
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is the rapid and potent induction of STAT1, which instantaneously displaces

STAT4 from the IFN receptor (Miyagi et al. 2007).

Summing up, natural killer cells live up to their name by triggering apoptosis in

target cells by different mechanisms, many of which are induced by interleukins

and interferons that thereby involve all members of the JAK/STAT signaling

cascade. It is not surprising that these complex biological responses are orchestrated

by a multitude of different signaling molecules. We are just at the very beginning to

shed light on their challenging interplay.

NK Cells Versus Tumor Growth: STATs Battle on Both Sides

At the beginning of the last century Paul Ehrlich proposed the idea that nascent

transformed cells arise continuously in our bodies and that an intact immune system

scans for and clears them from the system (Ehrlich 1908). Thus, whether or not a

tumor develops critically depends on the competence of the immune system. In the

interaction of host and tumor cells, “three E’s” have been defined as key steps of

tumor surveillance: “elimination”, “equilibrium” and “escape” (Dunn et al. 2002).

The immune system is eager to eliminate transformed cells. In some situations

elimination may not be complete, but the immune system still controls expansion of

the transformed cells. This situation is referred to as “equilibrium”. However, this

state of equilibrium exerts selective pressure on the tumor cells, which try to evade

immune recognition and to decrease immunogenicity. This is frequently achieved

by down-regulating MHC class I in order to “escape” T cell-mediated tumor

surveillance. A decrease in MHC class I surface expression on the other hand

renders tumor cells highly susceptible to NK cell-mediated eradication. More

than 25 years ago, Klas K€arre suggested that NK cells are able to recognize aberrant

cells not only by their expression of “stress” or “danger” signals, but rather by the

“absence of the expected” (MHC class I). He formulated the hypothesis of “recogni-

tion of missing self” (Karre 2008; Karre et al. 1986), a concept that was supported by

multiple subsequent studies (Hoglund et al. 1991; Liao et al. 1991; Pende et al. 1998).

Several components of the major histocompatibility complex are upregulated by IFNs

and direct transcriptional targets of STAT1 (as e.g.MHC class I heavy and light chain,

and the accessory molecules TAP1, LMP2, LMP7) (Lee et al. 1999). Thus, it is not

surprising that Stat1-deficiency severely impairs MHC class I expression (Kamiya

et al. 2004; Lee et al. 1999; Meraz et al. 1996). Accordingly, tumor cells devoid

of Stat1 and thus low in MHC class I expression are highly susceptible to NK

cell-mediated lysis (Kovacic et al. 2006). At the flip side of the coin, Stat1-deficiency
impairs NK cell maturation and leads to a severe reduction in NK cell cytotoxicity

(Lee et al. 2000; Robbins et al. 2005). As a consequence tumor surveillance

by Stat1-deficient NK cells is highly impaired (Lee et al. 2000). It is currently

unclear whether this is the consequence of cell intrinsic effects within the NK cell

compartment or if STAT1 is required for NK cell education, which cannot take

place efficiently in Stat1-deficient animals due to reduced MHC class I levels.

The generation of mice lacking Stat1 in NK cells only will help to clarify this issue
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and to shed light on the topic of NK cell maturation. Interestingly, in syngenic

Stat1-deficient leukemia models, the combination of impaired NK cell cytotoxicity

and reduced MHC class I expression on leukemic cells resulted in increased

disease latency of Stat1-deficient mice (Kovacic et al. 2006). Thus, the loss of MHC

class I on the leukemic cells dominated tumor surveillance and led to an increased

clearance of the leukemic cells despite the reduced cytotoxic ability of Stat1-deficient
NK cells.

Similarly and as expected, genetically modified mice targeting the prominent

NK cell effector molecules perforin (van den Broek et al. 1996) and IFN-g (Street

et al. 2001; Wendel et al. 2008) or the NK cell activating receptor NKG2D (Guerra

et al. 2008) show a severe reduction in NK cell-mediated tumor surveillance of

metastasizing prostate and mammary carcinomas and methylcholanthrene-induced

sarcomas. Furthermore, it is plausible that mouse strains harboring reduced NK cell

numbers fail to induce proper NK cell-mediated tumor clearance, as it was shown

for Irf1- (Duncan et al. 1996) and Irf2-deficient mice (Lohoff et al. 2000) (Table 1).

According to their important roles in regulating cytokine-dependent immunity,

the components of the JAK/STAT pathway play distinct roles in the fate of immune

responses in the tumor microenvironment, either promoting or inhibiting cancer

(Yu et al. 2009). STAT3 has recently been assigned a key role in this process with

rather unexpected outcomes. Since STAT3 mediates the expression of cytokines,

growth factors and angiogenic factors, and the corresponding receptors in turn

activate STAT3, it is one of the central transcriptional regulators that mediate the

crosstalk between tumor and immune cells (Wang et al. 2004). Tumor-infiltrating

NK cells show constitutively activated STAT3, which is thought to be triggered by

interferons and IL-21 and in turn leads to enhanced NK cell cytotoxicity in vivo

(Eriksen et al. 2009). Inhibitor studies and mouse models targeting STAT3 have

given controversial results in respect of the role of STAT3 signaling on immune

surveillance of tumors. To bypass the requirement of STAT3 during embryogenesis

(Takeda et al. 1997), experiments by Kortylewski et al. (2005) were conducted in

conditional knockout mice using the Mx1-Cre-loxP system. Intriguingly, the cyto-

toxic activity of NK cells per se is not affected by deletion of Stat3, but Stat3-
deficient NK cells show enhanced cytotoxicity after in vivo challenge with B16F10

tumor cells. This indicates the complexity of intercellular communication between

immune and tumor cells.

Presumably the most potent inducer of NK cell activity is IL-12, which mainly

signals via TYK2/JAK2, STAT4 and T-bet and results in robust IFN-g production

(Shimoda et al. 2002; Thierfelder et al. 1996). Therefore one would expect that

upon deletion of one of these signaling components NK cell-mediated tumor

surveillance is diminished. Indeed, mice deficient in Tyk2 developed NK

cell-surveilled leukemia with a higher incidence and shortened latency compared

with wild type controls (Stoiber et al. 2004). Tbx21-deficient NK cells show

reduced in vivo survival, inefficient tumor cell killing and poor IFN-g production,

rendering them highly inefficient in establishing a proper anti-tumor activity against

B16F10 melanoma cells (Werneck et al. 2008).
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Table 1 Lessons from knockout mice

Gene Gene targeted

mouse

phenotype

General observations Gene targeted NK cell phenotype

Jak1 Die perinatally

(Rodig et al.

1998)

Neurological and lymphoid

deficits, signaling failure

(Rodig et al. 1998)

n.d.

Jak2 Embryonically

lethal

(Neubauer

et al. 1998)

Anemic, lack erythrocytes

(Neubauer et al. 1998)

n.d.

Jak3 Viable (Park

et al. 1995)

Severe defects in lymphoid cells,

lack of lymph nodes (Park et al.

1995)

Absent (Park et al. 1995)

Tyk2 Viable

(Karaghiosoff

et al. 2000)

Impaired cytokine signaling to

IFNs and IL-12 (Karaghiosoff

et al. 2000)

Impaired IL-12/IL-18 signaling

and STAT4 activation (Shimoda

et al. 2002); reduced cytotoxicity

and Leishmania clearance

(Schleicher et al. 2004);

impaired tumor surveillance

(Stoiber et al. 2004)

Stat1 Viable (Durbin

et al. 1996;

Meraz et al.

1996)

Highly sensitive to infections,

cells are unresponsive to IFNs,

reduced MHC class I (Kennedy

et al. 2000)

Impaired cytotoxicity, reduced

IFN-g production, defect in tumor

surveillance (Lee et al. 2000);

maturation deficiency (Robbins

et al. 2005)

Stat2 Viable (Park

et al. 2000)

Sensitive to viral infections

(Park et al. 2000)

n.d.

Stat3 Embryonically

lethal (Takeda

et al. 1997)

Increased cytotoxicity (YAC-1)

(Kortylewski et al. 2005);

co-stimulation of IL-21/INF-a
activates STAT3 and cytotoxicity

(Eriksen et al. 2009)

Stat4 Viable (Kaplan

et al. 1996)

Failure to enhance NK

cytotoxicity in response to IL-12

(Kaplan et al. 1996)

Stat5 Embryonically

lethal (Cui

et al. 2004)

Developmental block, reduced

number of NK cells (Eckelhart

et al. 2011)

Stat6 Viable (Wang

et al. 2004)

Impaired IL-4 signaling, defect

in Th2 cell differentiation

(Wang et al. 2004)

n.d.

Irf1 Viable

(Matsuyama

et al. 1993)

BM deficient to produce IL-15

(Ogasawara et al. 1998)

Reduced NK cell numbers, no

killing capacity, no IFN-g
production, defective tumor

surveillance (RMA-S)

(Duncan et al. 1996)

Irf2 Viable

(Matsuyama

et al. 1993)

Reduced NK cell numbers,

defective development and RMA-S

tumor rejection (Lohoff et al.

2000); selective loss of mature

NK cells due to premature death

(Taki et al. 2005)

(continued)
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A consolidated view of all this data reveals the central role of JAKs and STATs

in NK cell-mediated tumor surveillance. Both, NK and cytotoxic T cells are

ultimately responsible for the defense against malignant cells. Regrettably, the

knowledge about distinct functions of signaling molecules within NK cells is

limited, owing to the lack of tools for NK cell specific gene deletion. Recently

Eckelhart et al. reported on a Ncr1-iCreTg mouse, which for the first time allows the

conditional mutagenesis specifically in NK cells (Eckelhart et al. 2011). Addition-

ally, they showed that by crossing the Ncr1-iCreTg to Stat5fl/flmice, NK cells were

almost completely absent causing the virtual abrogation of NK cell-mediated tumor

surveillance without affecting T cell-controlled immunity. This mouse model will

be very helpful in the future to determine the impact of NK cells in the surveillance

of different tumor types. Moreover, it represents a powerful tool to assess the

function of individual members of the JAK/STAT signaling pathway in the process

of NK cell-mediated tumor surveillance.

STATs as Therapeutic Targets: The Good and the Evil

In contrast to traditional anticancer therapy, which targets all rapidly dividing cells,

novel drugs are designed to intervene in signal transduction pathways. Those

signaling interceptors aim to ensure specificity and to reduce side effects associated

with classical anticancer therapy. As cytotoxic drugs may compromise the immune

response, special attention should be paid to the interference of newly developed

drugs with the immune system. An example in this regard was published by

Zebedin et al. (2008) and deals with the adverse side effects coming along with

the inhibition of PI3Kd. The lesson we learned from this study was that inhibiting

PI3Kd in mice suffering from leukemia has no beneficial effects in vivo. Drugs
interfering with this kinase may act as a double-edged sword by inhibiting both,

leukemic cells as well as the NK cell compartment.

Table 1 (continued)

Gene Gene targeted

mouse

phenotype

General observations Gene targeted NK cell phenotype

Tbx21 (T-bet) Viable (Szabo

et al. 2002)

Defective differentiation and

IFN-g production of CD4+ T

cells, but not CD8+ T cells (Szabo

et al. 2002)

Reduced IFN-g production,

impaired cytotoxicity (Szabo

et al. 2002)

Eomes Embryonically

lethal (Russ

et al. 2000)

Severe reduction of peripheral

NK cells, fail to mature

terminally, intrinsic increased

proliferation and apoptosis, lack

granzyme B and perforin

(Townsend et al. 2004); reduced

tumor surveillance (B16F10)

(Werneck et al. 2008)

n.d. not determined
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The involvement of JAK/STAT signaling in the pathophysiology of various

diseases opens a window of opportunity for therapeutic intervention. Particularly in

cancer therapy, STAT3 and STAT5 are obvious targets for novel therapeutic

strategies (Hoelbl et al. 2006, 2010; Turkson and Jove 2000; Yue and Turkson

2009) and the pharmaceutical industry is trying to develop specific drugs interfering

with this pathway. Considering recent publications, drugs targeting STAT5 would

not only affect the viability of the leukemic cells (Hoelbl et al. 2010) but they also

would profoundly impair the NK cell compartment (Eckelhart et al. 2011). This

certainly represents a significant disadvantage for leukemia treatment and is of

particular importance when treating patients with minimal residual disease where

NK cells are considered important players in the clearance of remaining tumor

cells. In this regard it is interesting to note that signal interceptors used to treat

patients with BCR/ABL-induced leukemia such as imatinib or dasatinib may also

enhance or stimulate immune control (Borg et al. 2004; Kreutzman et al. 2010;

Rohon et al. 2010). The underlying mechanisms are currently unclear. On the other

hand, NK cell activity may also represent the prime target of desire and JAK/STAT

signaling could be blocked on purpose to inhibit over-boarding and self-destructive

effects of the NK compartment. JAK2, JAK3 and TYK2 inhibitors are available and

are currently intensively studied as treatment options for diseases such as rheuma-

toid arthritis (Riese et al. 2010) and psoriasis (Strange et al. 2010).

Concluding Remarks

We are only beginning to understand the many ways how NK cells shape and

contribute to immune responses and pathophysiological processes. Understanding

the contribution of JAKs and STATs will be an important aspect of further insight

into the role, regulation and function of NK cells.
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Function of JAKs and STATs
in Lymphocytes: Bench to Bedside
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Abstract

There are four members of Janus Kinase family (JAK-1, -2, -3 and TYK2) and

seven members of STAT family (STAT-1, -2, -3, -4, -5a, -5b and -6) in the

mammalian genome, each with unique functions in immune cells. Consistent

with studies in mice, genetic evidence in humans has strongly linked the JAK/

STAT pathway to primary immunodeficiencies, infection, autoimmunity and

cancers. The following chapter will discuss the key role played by JAKs and

STATs in the lymphocytes, with special emphasis on helper T cells, which are

not only critical mediators of pathogenic inflammation, but also an outstanding

model system for investigating JAK/STAT biology. Recent conceptual and

technological advances will be highlighted, particularly those relating to

human disease and the generation of JAK/STAT based therapeutics.

Role of JAK Kinases in Immune Cell Development
and Differentiation

From their discovery in the early 1990s, JAKs and STATs have been indelibly

linked to immune cells. The following chapter will summarize key immune-related

functions of individual JAK/STAT family members while providing a genome-

wide perspective of their mechanisms (i.e. how they influence target gene expres-

sion). Special emphasis will be placed on recent work implicating JAK/STAT

signaling in human disease and on translational studies aimed at developing JAK/

STAT based therapeutics.

A. Villarino (*) • X.-P. Yang* (*) • K. Hirahara • Y. Kanno • J.J. O’ Shea • A. Laurence

Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal

and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA

e-mail: villarinoav@mail.nih.gov; yangx2@mail.nih.gov

*These authors contributed equally.

Th. Decker and M. M€uller (eds.), Jak-Stat Signaling: From Basics to Disease,
DOI 10.1007/978-3-7091-0891-8_13, # Springer-Verlag Wien 2012

205

mailto:villarinoav@mail.nih.gov
mailto:yangx2@mail.nih.gov


The JAKs, which include TYK2, JAK1, JAK2, and JAK3, were initially identified

using PCR-based strategies and low-stringency hybridization (Firmbach-Kraft et al.

1990; Riedy et al. 1996). Despite the roughly 60 type I/II cytokines discovered, there

are only four members in the JAK kinase family. Since the sequencing of other

vertebrate genomes has been completed, we also know now that there are indeed

only four JAKs in mammals, birds and fish. InD. melanogaster there is only one JAK
kinase (hopscotch).

JAKs contain seven distinct JAK homologous regions (JH1-7). The kinase

domain with enzymatic activity is located at the C-terminal JH1 region. It is

preceded by a kinase-like domain (JH2) that lacks conserved sequence necessary

for enzymatic activity. The N-terminus of JAKs including JH3-7 regions is

involved in receptor association. Upon ligand binding, the receptors oligomerize

and change the conformations which brings the JAKs into close proximity and leads

to the activation of the JAKs via auto- and trans-phosphorylation of the tyrosine

motif within the kinase domain. Subsequently, activated JAKs phosphorylate the

receptors and create the docking sites for STATs. STATs are phosphorylated by

JAKs and then form homodimer or heterodimer through the interaction between

SH2 domain and phospho-tyrosine motif. These dimerized STATs translocate into

the nucleus to regulate target gene expression.

Immunological Functions of Tyk2

Although TYK2 (Tyrosine Kinase 2) was discovered shortly after JAK1 and JAK2,

it was the advent of Tyk2 mutant cells which provided the first direct link between

JAK Kinases and cytokine signaling (Firmbach-Kraft et al. 1990; Velazquez et al.

1992). Tyk2 is closely associated with interferons and, consistent with work in

mutant cell lines, Tyk2-deficient mice exhibit reduced type I and type II interferon

responses in vivo, leading to increased susceptibility to viral and bacterial

infections (Karaghiosoff et al. 2000). A similar phenotype has been observed in

humans, where a single nucleotide polymorphism has been shown to cause TYK2-
deficiency, and in B10.Q/J mice, which express low levels of Tyk2 due to an

analogous missense mutation (Minegishi et al. 2006; Shaw et al. 2003). In both

cases, the loss of functional Tyk2 leads to diminished interferon responses and

increased susceptibility to intracellular pathogens. Tyk2-deficient mice also exhibit

increased Th2-type inflammation (i.e. eosinophilia and IgE production) in models

of allergic lung disease, which highlights the more regulatory, anti-Th2 properties

of Tyk2-activating cytokines (Seto et al. 2003).

Aside from interferons, Tyk2 can be activated by a variety of cytokines, includ-

ing members of the IL-6 and IL-10 families. Consequently, cells from Tyk2-

deficient humans and mice show impaired signaling by IL-6, IL-10, IL-12, IL-22,

IL-23 and IL-27, among others. In particular, the ability of IL-12 to induce IFN-g-
producing T helper 1 (Th1) cells, which are critical for resistance to intracellular

pathogens, is severely compromised in the absence of Tyk2 (Karaghiosoff et al. 2000).
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The ability of IL-6 and IL-23 to induce Th17 responses, which are critical for

resistance to extracellular and fungal pathogens, is also diminished (Ishizaki et al.

2011; Oyamada et al. 2009) and, in humans, genetic susceptibility to inflammatory

bowel disease and Behcet’s disease has been linked to polymorphisms in both the

TYK2 and IL-23 receptor (IL23R) loci (Lees et al. 2011; Remmers et al. 2010). Thus,

acting downstream of multiple cytokines, Tyk2 is a key mediator of cytokine

responses in settings of infection and inflammatory disease.

JAK3 in Lymphoid Cell Development and Function

JAK3 was the last JAK Kinase to be identified and is unique in that it is only known

to associate with a single cytokine receptor chain, IL-2Rg, also known as the

common gamma chain (gc). By pairing with ligand-specific subunits, the gc
functions downstream of multiple cytokines, including IL-2, IL-4, IL-7, IL-9, IL-

15 and IL-21, collectively termed the gc family (Rochman et al. 2009). In both

humans and mice, deletion or mutation of JAK3 or gc results in severe combined

immunodeficiency (SCID), which is characterized by profound loss of T cells and B

cells, in large part, due to a lack of IL-7 receptor signaling (Buckley 2004; Russell

et al. 1995). Consistent with this latter point, mice lacking IL-7R or STAT5, which

is the principal signaling moiety employed by IL-7R, also exhibit severe defects in

T and B cell development (Yao et al. 2006). Beyond IL-7, it is also known that other

members of the gc family play important roles in shaping the lymphoid repertoire,

such as IL-15, which is critical for NK and NKT cell development, and IL-2, which

is critical for T regulatory cell (Treg) development and survival (discussed below).

In addition, there is a growing list of innate immune cells, including lymphoid

tissue inducer cells (LTi), IL-22-producing NKp46þ cells, and IL-17-producing

CD4�CD117� NKp46� cells (Spits and Di Santo 2011), which are known to

express IL-7R and gc (and presumably JAK3), but their developmental

requirements, whether cytokine- and JAK3-dependent, have yet to be determined.

Hematopoietic stem cell transplant is currently the treatment of choice for

JAK3–SCID and other SCIDs. However, though bone marrow transplantation

from human leukocyte antigen (HLA)-matched siblings tends to have dramatic

results, mismatched donors are less predictable; sometimes they are beneficial but,

more often, they exhibit graft versus-host disease and have reduced life expectancy.

Consequently, there has been great interest in developing alternative treatments for

JAK-SCID and X-SCID and among these, gene therapy emerged as one of the most

promising (Hacein-Bey-Abina et al. 2002). The goal of this technique is to correct

the genetic lesions underlying the lymphopenic phenotype, in this case JAK3 or gc
mutations, by introducing synthetic DNA, typically using retroviral vectors, into the

genome of affected individuals. On one hand, the approach has been successful,

with some patients experiencing complete recovery of T and B cell numbers, but

there are also severe side effects, with an alarming number developing leukemia

(Hacein-Bey-Abina et al. 2003). Many of these patients exhibited aberrant LMO2
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gene expression, which is known to be oncogenic, and in some cases there was

evidence of retroviral IL2RG gene insertion in proximity to the LMO2 gene

(Hacein-Bey-Abina et al. 2003). However, JAK3 activation can influence the

LMO2 locus in other ways, such as by histone phosphorylation (Dawson et al.

2009), so it remains unclear whether the leukemias were due to aberrant insertion of

the IL2RG gene or whether IL2RG gene itself is leukemogenic (Woods et al. 2006).

‘Next generation’ retroviral vectors have now been developed in order to minimize

the risk of leukemia in SCID patients, for example lacking enhancer elements or

using weak cellular promoters, but whether they are safe and efficacious remains to

be determined (Almarza et al. 2011).

In contrast to those lacking IL-7/IL-7R, JAK3 or gc, IL-2 and IL-2-receptor

deficient mice are not lymphopenic and develop a multi-organ autoimmune disease

characterized by uncontrolled expansion of effector T cells. This phenotype is

largely due to the loss of CD4þ Treg cells, which specialize in dampening inflam-

mation, particularly when directed at the body’s own tissues (i.e. self-antigens).

Consistent with this latter point, mice lacking STAT5, the principal signal down-

stream of IL-2R, also lack Tregs and develop autoimmune disease with slightly

accelerated kinetics, likely due to the fact that other STAT5-activating, gc family

cytokines, like IL-7, IL-9, IL-15 and IL-21, can also impact Treg cells. Thus, while

IL-2 is not necessary for T cell development, it is crucial for immune tolerance due

to its unique role in Treg homeostasis. Consequently, it can be surmised that JAK3

or gc-deficient individuals do not develop autoimmunity because of their profound

lymphopenia and that, since STAT5-deficiency closely mirrors IL-2-deficiency in

term of gross phenotype, STAT5-independent signals must be responsible for some

the developmental/survival cues delivered by gc cytokines.
Aside from their obligatory role in development and survival, JAK3-activating,

gc family cytokines are also critical for immune cell effector functions. IL-21,

which primarily signals through STAT3 instead of STAT5, is one pertinent exam-

ple. It is not required for T cell development but does promote the generation of IL-

4-producing Th2 cells, IL-17-producing Th17 cells and T follicular helper cells

(Tfh), which are essential for T cell-dependent antibody responses (Spolski and

Leonard 2010). Due to this latter finding, and the fact that IL-21 is known to have

direct effects on B cells, it has been proposed that alterations of this cytokine or its

receptor may underlie antibody-mediated pathologies, such as systemic lupus

erythromatosis, and that it may contribute to B cell abnormalities in SCID patients.

IL-4 is also critical for differentiation of Th2 and Tfh effector cells and for

providing T cell help for B cell antibody responses but, unlike IL-21, it inhibits

Th17-type inflammation (Harrington et al. 2005; Park et al. 2005; Zaretsky et al.

2009). Likewise, IL-2 promotes differentiation of Th1- and Th2-type effector

T cells but limits that of Th17 and Tfh cells (Malek 2008). IL-9 and TSLP, a

related cytokine that does not use the gc but does activate STAT5, both promote

Th2 development, particularly in settings of allergy and asthma, but their effects on

other T cell subsets remain uncertain (Ziegler and Artis 2010).
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Broad Functions of JAK1 and JAK2

In contrast with JAK3, studies in humans and mice have shown that JAK1/JAK2 are

broadly expressed, found in both immune and non-immune cells, and that they are

promiscuous, activated by most of the>40 known type II cytokine receptors. Consis-

tent with this latter point, Jak1-deficient mice die soon after birth and, due to the

essential role of IL-6 family cytokines in embryogenesis, exhibit severe developmental

and immunological abnormalities (Rodig et al. 1998; Witthuhn et al. 1993). In

particular, they exhibit a SCID phenotype that is grossly similar to that of Jak3-
deficient mice, which suggests that JAK1 participates in gc signaling and STAT5

activation. In fact, some have proposed JAK1 is as important as JAK3 in this capacity,

though further studies are needed to substantiate this claim (Haan et al. 2011).

The principal function of JAK2 is the mediation of signaling downstream of the

Erythropoetin receptor, andmice that lack JAK2die in utero of anaemia. Its importance

is further highlighted in myeloproliferative diseases (MPD) characterized by erythroid

over activity, including primary polycythaemia (PV), primary thrombocythemia (ET)

andmyelofibrosis (MF). Depending on the subtype, patients with these diseases have a

50% (MF, ET) – 90% (PV) incidence of an acquired mutation in the JAK2 gene, most

commonly V617F (Baxter et al. 2005; James et al. 2005; Kralovics et al. 2005; Levine

et al. 2005). Consequently a number of pharmaceutical companies are attempting to

produce small molecule inhibitors of JAK2 as a treatment for myeloproliferative

disease.

Nuclear Functions of JAK Kinases

Traditionally, JAK kinases are thought to act in the cytoplasm, where they phosphor-

ylate cytokine receptor-associated molecules (i.e. STATs). However, recent work has

shown that JAK2 can also be found in the nucleus, where it can phosphorylate Histone

3 at position tyrosine 41, thereby influencing the epigenetic accessibility and transcrip-

tion of multiple target loci including several known oncogenes (i.e. Myc and lmo2)
(Dawson et al. 2009). Consistent with the latter point, elevated JAK2 activity is

associated with a genome-wide decrease in the repressive epigenetic mark

H3K9me3 in patients with Hodgkin’s lymphoma (Rui et al. 2010). Thus, while it is

unquestionable that JAK kinases have critical cytoplasmic functions, it is now appar-

ent that they also have important nuclear effects, though further work is needed to fully

understand the mechanisms underlying this phenomenon.

Development of JAK Inhibitors as Therapeutics for Autoimmunity
and Malignancy

Constitutive activation of JAKs and STATs has long been associated with cancers

in humans, mice and lower model organism such as Drosophila (Luo et al. 1995;

Migone et al. 1995). One landmark discovery in this field was the recognition that
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gain-of-function mutations in the pseudokinase domain of JAK2 underlie polycy-

themia vera and a spectrum of myeloproliferative disorders (Levine et al. 2007;

Vainchenker et al. 2008). In addition, a number of fusion proteins involving JAK2

have been linked to hematological malignancies (Lacronique et al. 1997; Peeters

et al. 1997; Tirado et al. 2010). JAK3 mutations are also strongly linked to Acute

Myeloid Leukemia (AML), Acute Lymphocyte Leukemia (ALL) and lymphomas

(Dien Bard et al. 2009; Malamut et al. 2010; Malinge et al. 2008; Mullighan et al.

2009; Tyner et al. 2008; Walters et al. 2006). JAK1 has also been linked with acute

leukemias, though this subject remains controversial (Flex et al. 2008; Mullighan

et al. 2009).

Genetic and biochemical evidence linking JAKs to autoimmunity and blood

malignancies has served as the impetus for a new class of immunosuppressive drugs

aimed at limiting JAK kinase activity (Ghoreschi et al. 2009; Leonard and O’Shea

1998). Due to the pleiotropic nature of JAK signaling, and the lethal or SCID

phenotype of JAK-deficient mice, there was initial concern about the potential side

effects of such compounds. However, though clinical trials have uncovered some

adverse effects, including infections, anemia and neutropenia, these small molecule

JAK inhibitors have proven to be remarkably well tolerated and, more importantly,

appear to be highly efficacious for the treatment of immune- and cancer-related

pathologies (Ghoreschi et al. 2009). Consequently, there are now several JAK

inhibitors currently under development, many of which have advanced beyond

stage I clinical trials (Table 1). Among these, Tofacitinib and Ruxolitinib are two

of the most promising and best understood.

Tofacitinib is the first clinically useful oral JAK inhibitor. It blocks JAK3 and

JAK1 with nanomolar potency and JAK2 to a lesser extent, but has little effect on

other unrelated kinases (Ghoreschi et al. 2011). Consistent with known JAK

functions, Tofacitinib affects the downstream signaling of multiple cytokines,

including members of the gc family (i.e. IL-2, IL-4 and IL-7), IFN-g and IL-12,

making it a powerful inhibitor of both Th1- and Th2-type inflammation. It also

blocks IL-6 and IL-23 signaling, thereby limiting the development/survival of

pathogenic Th17 cells (Ghoreschi et al. 2010, 2011; McGeachy et al. 2009), and

has effects on innate immune cell activation (Ghoreschi et al. 2011; Jiang et al.

2008). The clinical efficacy of Tofacitinib was first investigated in models of

transplantation and autoimmunity, where it showed remarkable ability to limit

pathogenic inflammation when delivered either during onset or peak of disease

(Borie et al. 2005; Changelian et al. 2003; Conklyn et al. 2004; Kudlacz et al. 2004,

2008; Milici et al. 2008; Paniagua et al. 2005). It is now undergoing human clinical

trials for rheumatoid arthritis, psoriasis and Sicca syndrome, as well as for renal

transplant. Preliminary data from these trials have been promising; a phase II study

for rheumatoid arthritis reported that 70–81% of patients experienced positive

results compared to 29% in the placebo group and, of note, many of these had

previously received no benefit from conventional therapies like methotrexate or

tumor necrosis factor antagonists (Coombs et al. 2010; Kremer et al. 2009). It has

also been shown to have significant, dose-dependent effects in patients with psoria-

sis, where it can reduce both inflammation and scaling (Boy et al. 2009), and in the
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setting of kidney transplantation, where it can help to prevent graft rejection. At

present, there are more than a dozen trials for Tofacitinib, most of which involve

inflammatory or auto-immune diseases. It has also emerged as a candidate for

treating adult T-cell leukemia (ATL) and for neurological disorders like HTLV-I-

associated myelopathy/tropical spastic paraparesis (HAM/TSP) (Ju et al. 2011). In

addition, despite being a relatively weak inhibitor of JAK2, Tofacitinib has been

shown to preferentially suppress oncogenic JAK2 mutants, which suggest that it

may be useful for JAK2-dependendent myeloproliferative disorders (MPD)

Table 1 Selected JAK inhibitors in clinical development

Kinase inhibited Compound Comments (updated on August 2011)

Janus kinase (JAK) 3 Tofacitinib Efficacy shown in animal models of solid organ

transplantation and chronic graft versus host disease

In phase II trials for IBD, Crohn’s, UC and transplant

rejection; phase III trials underway in the treatment of

rheumatoid arthritis (RA) and psoriasis

VX-509 Phase II trials underway for RA

R-348 In phase I trials for RA and psoriasis; in the preclinical

phase for Sjogren’s syndrome

PS-608504 In preclinical stage as treatment for RA and psoriasis

R-333 In preclinical stage as treatment for cutaneous lupus

erythematosus

JAK 1 and JAK 2 Ruxolitinib Has been submitted for FDA-approval for idiopathic

myelofibrosis; phase II and III trials for cancer and

myeloproliferative disorders, respectively; no longer being

studied for RA

INCB-

28050

In phase II trials for RA

CYT-387 In phase II trials for myelofibrosis; in preclinical trials for

pulmonary hypertension and polycythemia vera

GLPG-

0634

Shown to reduce joint-destroying enzymes in mouse RA

model

Phase I trial complete; phase II proof-of-concept trial results

for RA expected in Dec 2011

JAK 2 LY-

2784544

In phase II clinical trials for myeloproliferative disorders

AC-430 In phase I clinical trials for RA and lymphoma

CDK, Flt3, JAK2 SB-1317 In phase I clinical trials for acute lymphoblastic leukemia

(ALL), acute myeloid leukemia (AML), chronic myeloid

leukemia (CML) and myelodysplastic syndrome

JAK2, Flt3, Ret SAR-

302503

In phase II clinical trials for polycythemia vera, idiopathic

myelofibrosis, thrombocytopenia

JAK1, JAK3, and

aurora A/B kinase

AT-9283 In phase II trials for ALL, AML, CML and myelodysplastic

syndrome

FLT3, TrkA, and

JAK2

Lestaurtinib In phase III clinical trials for treatment of acute myeloid

leukemia patients who have an FLT3-activating mutation at

first relapse from standard induction chemotherapy. In

phase II trials for psoriasis and pancreatic cancer
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(Manshouri et al. 2008). A number of other JAK3 inhibitors, all of which are less

‘JAK-specific’ than Tofacitinib, are also under development and will likely be

applied to a similar panel of diseases (Geron et al. 2008; Hedvat et al. 2009;

Ioannidis et al. 2011; Wernig et al. 2008).

Until the discovery that activating mutations underlie myeloproliferative

disorders (MPD) (James et al. 2005), it was generally believed that manipulating

JAK2 would have limited therapeutic value, particularly in light of its pleiotropic

nature and the embryonic lethal phenotype of JAK2-deficient mice (Leonard and

O’Shea 1998; Neubauer et al. 1998; Parganas et al. 1998). However, the link

between JAK2 and MPD has since provided a logical rationale for targeting this

kinase and data from clinical trials has shown that Ruxolitinib, which blocks JAK1

and JAK2 (Quintas-Cardama et al. 2010), may be a viable treatment option for both

hematological and solid organ malignancies. Phase 1 and 2 trials have shown this

compound to have remarkable efficacy for MPD, regardless of whether patients

carried activating JAK2 mutations or not, which suggests that some of its effects

are, in fact, JAK2-independent (Verstovsek et al. 2010). Consistent with this latter

point, CEP-701, a more selective oral JAK2 inhibitor, has displayed only modest

effects in MPD (Santos et al. 2010). Based on these observations, Ruxolitinib is

now being tested for several malignancies that are not associated with aberrant JAK

kinase activity, such as prostate cancer, multiple myeloma, AML, and CML, and

for autoimmune disorders like rheumatoid arthritis (Mesa 2010; Quintas-Cardama

et al. 2010; Verstovsek et al. 2010). In addition, a compound related to Ruxolitinib,

INCB028050, is also being pursued as a potential therapeutic for rheumatoid

arthritis (Fridman et al. 2010).

The identification of patients with either inherited or acquired mutations in JAK

family members has done much to identify the importance of these kinases in a

range of immune and neoplastic diseases. This has in turn led to the development of

a number of small molecule inhibitors of JAK kinases and their investigation as

therapeutic agents. The wide spread use of clinical inhibitors may shed more light

on the role of JAK’s in cytokine biology over the next decade.

A Genome-Wide Perspective of STAT Function

As with JAK kinases, much of the pioneering work on STATs was done in cell

lines. Primary lymphocytes, like T cells, macrophages and dendritic cells, have

since become preferred model systems, largely because recent developments in

cell biology and genetics, including flow cytometry and transgenic mice, have

allowed for loss- and gain-of function studies to be performed both in vitro and

in vivo. Advances in molecular biology, like the advent of genome-wide techno-

logies (i.e. microarrays and next generation sequencing), have also been a major

driving force in the study of STAT signaling. Thus while initial research tended to

focus on a select few target genes (Darnell et al. 1994), it is now possible to get a
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panoramic, ‘bird’s eye view’, thereby ushering what can be viewed as a new golden

age of STAT research.

Technological Advances in STAT Biology

The canonical JAK/STAT pathway is initiated by extracellular association of

cytokines (or growth factors) with their corresponding transmembrane receptors.

That interaction results in the apposition of receptor-associated JAKs which, in turn,

phosphorylate each other and the intracellular tail of the receptors, creating requisite

docking sites for latent, cytoplasmic STAT monomers. JAK-mediated phosphory-

lation of STAT tyrosine residues then proceeds as the major activating event, though

other JAK-independent modifications, like serine phosphorylation, acetylation and

sumoylation, are also known to play a role (Begitt et al. 2011; Decker and Kovarik

2000; Yuan et al. 2005). Measurement of STAT tyrosine phosphorylation has

become the standard method for assessing STAT activation. Initially, this was

done by western blot using whole cell lysates and phospho-STAT antibodies,

which has the advantage of sensitivity but the disadvantage of being a bulk assay

that does not distinguish between different sub-populations of cells (Gronowski and

Rotwein 1994). In contrast, recently developed flow cytometry-based techniques

allow for detection of tyrosine phosphorylation at the single cell level, thus permit-

ting STAT activity to be measured in small samples and to be directly linked to

immune cell function (i.e. cytokine production) (Krutzik et al. 2008).

Upon phosphorylation, receptor-associated STATs form homo- and heterodi-

mers (or tetramers) which then migrate to the nucleus and bind to consensus DNA

elements, thereby regulating gene transcription. Traditionally, downstream targets

of activated STATs were identified using a hypothesis-driven approach, meaning

that one had to predict which genes might be affected prior to experimentation.

Once candidates were selected, a number of methodologies could be used to

determine whether they are influenced by STAT-mediated signals. The most

common was to treat cells with STAT-activating cytokines and then measure

putative targets using standard cellular and molecular assays, such as western

blot, ELISA, flow cytometry or PCR. Given that all cytokines activate multiple

signaling pathways and, in fact, most activate multiple STAT family members, the

use of STAT-deficient cells (derived from STAT ‘knock-out’ mice) has become a

vital component in this pipeline, making it possible to distinguish between STAT-

dependent and -independent events. More recently, DNA microarrays have taken

much of the guess work out of the process because they allow one to measure

expression of thousands of genes at once and, thus, do not require presumptive

knowledge. By combining genetic and microarray technologies, thousands of

candidate targets have now been identified for each STAT (Alvarez and Frank

2004), though it also bears noting that this approach does not discriminate between

cis effects (i.e. direct STAT binding to target genes) and trans effects (i.e. STATs
influencing secondary targets, like transcription factors, which then regulate expres-

sion of a putative target gene).
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There are several ways to identify primary targets of STAT signaling. One long

established practice is to generate plasmid ‘reporters’ where candidate gene

promoters are cloned upstream of a fluorescent marker, typically luciferase or

GFP. These constructs are transfected or retrovirally transduced into cells that are

exposed to cytokines or other STAT-activating agents, then fluorescence is

measured as a function of STAT activity (Giguere 1991). Another approach, called

electrophoretic mobility shift assay (EMSA), also involves the generation of syn-

thetic DNA fragments containing putative STAT-binding sites. These are incubated

together with purified STAT proteins (or whole cell lysates) and STAT-specific

antibodies, then loaded onto a polyacrylamide or agarose gel. The binding of

STAT/antibody complexes to the DNA results in a large multi-molecular complex

which runs slowly in the gel and, thus, can easily be distinguished from unbound

fragments (Fried and Crothers 1981). Each of these techniques has the advantage of

flexibility – DNA constructs can be easily modified – but also several caveats

relating to the synthetic nature of the constructs, which tend to be relatively short

and, thus, lack distal regulatory elements (i.e. enhancers), and which ignore the role

of epigenetics and DNA structure on gene expression. Moreover, they are predic-

tive in nature; one must first know the putative binding sites in order to generate the

corresponding DNA constructs.

Chromatin immuno-precipitation (ChIP) circumvents many of the issues

associated with reporter constructs and EMSA because it allows for the measurement

of STAT binding to genomic DNA in its native conformation and without extensive

manipulation of cells (i.e. transfection/transduction) (Orlando 2000). Here, STATs

are chemically fixed to DNA within cytokine treated (or untreated) cells. These cells

are then lysed, the DNA sheared and anti-STAT antibodies used to precipitate DNA/

protein complexes. PCR is then used to determine if a given DNA sequence falls

within the STAT-bound fraction, thereby indicating whether or not there is a direct

interaction (Fig. 1). ChIP is now the gold standard for measuring STAT binding to

genomic DNA but, as with previous approaches, it is limited in scope, focusing only

on pre-determined regions that are either based on rigid parameters, such as proximity

to coding exons (i.e. promoters), or computational predictions of STAT binding sites,

which are notorious for high false positive rates. This caveat can now be overcome by

performing anti-STAT immuno-precipitation followed either by microarray detection

(ChIP-on-Chip), which allows for thousands of genomic regions to be probed, or by

high-throughput sequencing (ChIP-seq), which provides a comprehensive, genome-

wide view of STAT binding. Both allow for STAT/DNA interactions to be probed on

a vast scale but ChIP-seq has several advantages, including higher resolution, greater

dynamic range, and fewer artifacts. Most importantly, it provides complete and

unbiased coverage, which allows for STAT binding to be measured in parts of the

genome that are typically ignored by array-based technologies, such as ‘gene deserts’,

which are distal to protein coding genes but often rich in non-coding transcripts, like

microRNAs and long non-coding RNAs, that could be subject to STAT-dependent

regulation. Genome-wide binding of all STATs (save STAT2) has now been assayed

by ChIP-seq and these data sets, which are publicly available through the Gene
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Fig. 1 Schematic method

of chromatin

immunoprecipitation

followed by massive parallel

sequencing (CHIP-seq)
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Expression Omnibus (GEO) repository (O’Shea et al. 2011), have become an invalu-

able resource for the cytokine research community.

STATs and Helper T Cell Differentiation

Upon encountering cognate antigen, naiveCD4þ T cells differentiate from a quiescent

state into multiple effector subsets, each defined by the transcription factors they

employ, the cytokines they secrete and, ultimately, the functions they execute. Such

specification was first recognized within the Th1 and Th2 subsets, the former

characterized by the transcription factor T-bet, production of IFN-g, and the ability

to combat intracellular pathogens; the latter by GATA-3, production of IL-4, and their

role in resistance to helminth infection (Murphy et al. 2000; Zhu et al. 2010). Building

on that original Th1/Th2 paradigm, a number of additional subsets have since been

described including: (1) Th17 cells, which are characterized by the transcription factor

retinoic acid orphan receptor gamma (RORg), production of IL-17, and their ability to
protect from fungal and mucosal pathogens, (2) T follicular helper cells (Tfh), which

are characterized by the transcription factor Bcl6, production of IL-21, and their ability

to provide ‘help’ for B cell antibody responses, and (3) T regulatory cells (Tregs),

which are characterized by the transcription factor FoxP3, production of anti-inflam-

matory cytokines and their ability to suppress T cell responses (Crotty 2011;Korn et al.

2009; Sakaguchi et al. 2008). Other putative helper T cell subsets have also emerged,

including IL-9-, and IL-22-producing T cells, but their differentiation requirements

and effector functions are not yet fully understood,making it difficult to assess whether

they represent bona fide subsets ormore transient differentiation ‘states’ (Eyerich et al.

2009; Veldhoen et al. 2008b). What is clear is that functional specification of helper T

cells is essential because it allows immune responses to be tailored for a given

stimulus, be it microbial or environmental. However, though all T cell responses are

intended for vital homeostatic processes, ranging from control of infection to wound

repair and cancer surveillance, they can also promote host tissue damage when

misdirected or overactive, leading to the idea that ‘helper’ T cells are key mediators

of both protective and pathogenic adaptive immune responses (Jager and Kuchroo

2010).

Aside from being the end product, cytokines are key fate determinants during

helper T cell differentiation. Not surprisingly, as mediators of cytokine signaling,

JAKs and STATs are critical in this process, with particular JAK/STAT moieties

known to promote particular T cell subsets. However, though it is true that each STAT

can be associated with at least one lineage, there is significant overlap, meaning that

multiple STATs can influence one subset and, conversely, that one STAT can influ-

ence multiple subsets. For instance, STAT4 is considered the prototypical Th1-type

transcription factor but it is also recognized that STAT1 and STAT5 are important for

driving Th1 commitment (Gollob et al. 1998). Likewise, thought STAT6 is the

signature Th2-type transcription factor, it is known that other STATs, namely

STAT3 and STAT5, contribute to Th2 commitment (Stritesky et al. 2011; Zhu et al.

2003). The pleiotropic nature of STAT signaling is also well illustrated by STAT3,
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which is required for differentiation of the Th2, Th17 and Tfh subsets (Nurieva et al.

2008; Stritesky et al. 2011; Yang et al. 2007), and by STAT5, which is required for

differentiation of the Th1, Th2 and Treg subsets (Gollob et al. 1998; Yao et al. 2007;

Zhu et al. 2003). Thus, while some STATs are strongly linked to a particular T cell

subset, as is the case for STAT4 and STAT6, it is now appreciated that helper T cell

differentiation results from the integration of multiple STAT signals, some of which

are not subset-specific.

STATs and Epigenetics

STATs influence transcription by directly binding to consensus DNA elements

(originated named as IFN-g-activated site, GAS motifs) found proximal to target

genes. However, at any given time, these binding sites may be inaccessible due to

the dense three-dimensional structure of DNA, which is packaged together with

histone proteins into (in ascending order) nucleosomes, chromatin and chromo-

somes. Accordingly, STAT function is heavily influenced by epigenetics, which are

heritable (but often reversible) changes in gene activity imposed by conformational

changes in chromatin structure. Within target genes, favorable, or ‘open’, epige-

netic states are thought to promote STAT binding while unfavorable, or ‘closed’,

epigenetic states are thought to preclude STAT binding. In addition, epigenetic

modifications can be the downstream effect of STAT binding, meaning that STATs

are sometimes required for epigenetic changes to occur at target loci, presumably

because they can guide the epigenetic machinery towards a particular section of the

genome (Robertson et al. 2008; Wei et al. 2010).

Epigenetic modifications come in two basic forms: permissive marks, which are

associated with active gene transcription and include histone acetylation and tri-

methylation of histone H3 at lysine 4 (H3K4), lysine 36 (H3K36) or lysine 79

(H3K79), and repressive marks, which are associated with transcriptional silencing

and include DNA methylation and bi- or tri-methylation of histone H3 at lysine 9

(H3K9) or lysine 27 (H3K27) (Kouzarides 2007). These can be added or removed

quickly in response to external cues (i.e. cytokines), thereby creating a dynamic

epigenetic landscape based on the developmental/differentiation status of a cell. Not

surprisingly, epigenetic regulation is critical for helper T cell differentiation, essential

for both the induction and suppression of lineage-restricted gene products. In general,

cytokine loci are ‘closed’ in naive T cells due to an abundance of repressive marks,

particularly H3K27 methylation, and a relative lack of permissive marks like H3K4

and H3K36 methylation. However, when exposed to polarizing stimuli, there is a

radical shift in this epigenetic profile such that, in effector T cells, repressivemarks are

removed and permissive marks added to some cytokine genes while further deposition

of repressivemarks leads to heritable silencing of others. For example, in Th1 cells, the

Ifng locus has an ‘open’ conformation (high H3K4 and low H3K27) which allows for

production of this Th1-defining cytokine, while the Il-4 locus has a ‘closed’ conforma-

tion (lowH3K4methylation and highH3K27methylation) which prevents elaboration

of this Th2-type cytokine under Th1 conditions. The converse is true for Th2 cells – the
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Ifng locus is closed and the Il-4 locus is open, again matching the restricted cytokine

pattern of this subset (Wei et al. 2009). On the other hand, the loci of ‘master regulator’

transcription factors like Tbx21, Gata-3, Rorc and FoxP3 (among others), which

cooperate with STATs to drive lineage specification, exhibit both permissive and

repressive marks (termed ‘bivalent’ marks) in Th1, Th2, Th17, and Treg cells,

suggesting that they can be expressed within multiple subsets and providing a molec-

ular explanation for effector T cell plasticity (Lee et al. 2009;Wei et al. 2009). There is

also strong evidence that ‘master regulators’ can influence the epigenetic status of

cytokine genes, though it remains unclear how much this function contributes to their

overall lineage-specifying capacity (Miller et al. 2008).

Function and Targets of Individual STATs in Helper T Cells

The importance of CD4þ helper T cells is clearly illustrated by the opportunistic

infections seen in humans lacking T cells, like those suffering from primary or

secondary immunodeficiencies (i.e. X-SCID and AIDS, respectively), and by the

causal relationship between self-reactive CD4þ T cells and auto-immune diseases

like lupus, diabetes and multiple sclerosis, among others (Leonard and O’Shea

1998) (Jager and Kuchroo 2010). Because they posses few direct effector

mechanisms (i.e. target cell killing, phagocytosis), helper T cells are thought to

control inflammatory responses by instructing the behavior of other immune cells,

thereby acting as nodes for inter-cellular communication. This is achieved, in large

part, by their ability to sense and produce cytokines, most of which operate through

JAK/STAT signaling pathways. The following section will detail the key role

played by each STAT in the differentiation and effector function of helper T

cells, with special emphasis on recent conceptual and technological advances in

the field.

STAT1
Initial work with mutagenized cell lines demonstrated that STAT1 is critical for

mediating signaling transduction by Type I and II IFNs (Bromberg et al. 1996).

Targeted disruption of Stat1 gene in mice confirmed the importance of STAT1 in

IFN-a/b and IFN-g signaling: Stat1-deficient mice are highly susceptible to micro-

bial and viral infection and tumor formation due to severely impaired IFN responses

in innate immune cells (Durbin et al. 1996; Meraz et al. 1996). In T cells, IFN-γ is

not only the signature cytokine of Th1 cells; it also induces STAT1-dependent

expression T-bet and IL-12Rβ2, thereby mediating a positive feedback loop which

amplifies Th1 differentiation. As a result, STAT1-deficient mice fail to generate

robust Th1 responses when challenged with intracellular pathogens (i.e. Toxo-

plasma gondii), leading to reduced induction of host-protectve and anti-microbial

proteins, including MHC-I, MHC-II, inducible nitric oxide synthase, and inducible

GTPases, all of which are required to control parasite replication (Gavrilescu et al.

2004; Lieberman et al. 2004). Another STAT1-activating cytokine, IL-27 can also

induce expression of T-bet and IL-12Rb2 to potentiate the IL-12-induced Th1
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differentiation, but is only required for the generation of IFN-γ-producing Th1 cells
under select circumstances (Takeda et al. 2003).

In addition to its role in promoting Th1 differentiation, STAT1 is a negative

regulator of Th17 differentiation. Accordingly, IFN-γ and IL-27 can both suppress

Th17 responses via STAT1-dependent mechanisms (Harrington et al. 2005; Park

et al. 2005; Stumhofer et al. 2006). In fact, recent work has shown that both of these

cytokines can suppress expression of multiple Th17-associated genes, including IL-

17A, IL-17F, IL-21, IL-23R and RORγ, and that they do this through both T-bet-

dependent and -independent means, which indicates that STAT1 influences Th17

responses through both direct and indirect mechanisms (Villarino et al. 2010).

STAT1 has also been shown to be a negative regulator of Treg cells. For instance,

in an allogenic transplantation model, Stat1-deficient donor spleen cells have

less potential to induce GVHD this correlates with a greater expansion of

CD4þCD25þFoxP3þ Treg cells (Ma et al. 2011).

Genome-wide STAT1 binding and its relationship to H3K4m3 have been

investigated in Hela S3 cells (Robertson et al. 2008). There are ~20,600 and

~70,300 STAT1 binding sites in unstimuated and IFN-g-stimulated cells respec-

tively. STAT1 binding sites correspond to 25% of all H3K4 regions in the IFN-g-
stimulated Hela cells, suggesting that STAT1 may interact with an unexpected

large fraction of regulatory elements genome-wide. Surprisingly, for the majority of

the binding sites of STAT1 after IFN-g stimulation, the histone active mark

H3K4m1 and H3K4m3 are present even in the unstimulated cells, suggesting

STAT1-independent histone modifications are common.

STAT3
TH17 cells are defined by production of the cytokine IL-17, expression of ROR

family transcription factors and by their pro-inflammatory functions, which protect

again extracellular bacteria and fungi, but also contribute to pathology in numerous

autoimmune diseases. STAT3-activating cytokines, including IL-6, IL-21 and

IL-23, are critical for the Th17 differentiation program and, accordingly, T cell-

specific deletion of STAT3 results in a profound Th17 defect (Mathur et al. 2007;

Yang et al. 2007), thereby increasing susceptibility to certain pathogens and

decreasing susceptibility to Th17-mediated autoimmunity (Durant et al. 2010;

Harris et al. 2007). The converse is also true – mice lacking SOCS3, a potent

inhibitor of STAT3 activity, exhibit an accumulation of TH17 cells (Chen et al.

2006).

Thousands of direct STAT3 target genes have been identified by combining

ChIP-seq and microarray technologies. Not surprisingly, many of these are

involved in Th17 differentiation, including the cytokine receptors IL23R and

IL6Ra, the cytokines IL-17A, IL-17F, IL-21 and IL-22, and the transcription factors

RORgt, RORa, Ahr (aryl hydrocarbon receptor), Batf, IRF4 (interferon regulatory

factor 4) and Maf (Bauquet et al. 2009; Ivanov et al. 2006; Schraml et al. 2009;

Veldhoen et al. 2008a; Yang et al. 2008). It is also notable that STAT3 was shown

to occupy multiple sites within the adjacent Il17a and Il17f loci (Yang et al. 2011),

the most prominent of which are within the intergenic regions that coincides with
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conserved non-coding sequences (CNS) and histone acetyltransferase p300 binding

sites (Akimzhanov et al. 2007). In addition, STAT3 was shown to bind genes

associated with cellular proliferation and survival, including the anti-apoptotic

proteins Bcl2 and Ier3 (immediate early response 3), and the proto-oncogenes

Fos, Jun and Fosl2, which suggests a broad role in T cell fitness. Supporting this

latter point, Stat3�/� T cells exhibit poor clonal expansion in mouse models of

colitis and multiple sclerosis (Durant et al. 2010; Harris et al. 2007).

Beyond Th17 cells, STAT3-activating cytokines are also known to influence

other effector subsets. For instance, IL-6 and IL-21 can each drive Tfh differentia-

tion and genome-wide analysis of STAT3 binding downstream of these cytokines

has revealed that Tfh-promoting genes, like Bcl6 and Il-21 itself, are direct STAT3
targets. The importance of those events is well illustrated by conditional STAT3-

deficient mice, which have severe defects in Tfh development and T cell-dependent

antibody responses (Nurieva et al. 2008). STAT3 has also been implicated in Th2

differentiation. Recent studies have shown that STAT3-deficient T cells produce

less Th2-type cytokines (i.e. IL-4, IL5, IL-13) and Th2-type transcription factors

(i.e. Gata3, Batf, and Maf) than WT controls (Stritesky et al. 2011). They also

demonstrate that STAT3 binds directly to many of these loci and that, in the

absence of STAT3, the ability of STAT6 to bind Th2-type genes is greatly reduced,

which suggest that STAT3 may be required for STAT6 to gain access and/or induce

transcription.

The role of STAT3 in the regulation of epigenetic modifications has been

investigated under Th17 condition (Durant et al. 2010). In the absence of STAT3,

permissive histone active marks (i.e. H3K4m3) are either absent or reduced at the

gene loci of Il17a, Il17f, Il21 and Il6ra, suggesting that STAT3 regulates the

chromatin accessibility of these genes during the Th17 differentiation process.

STAT3 is also required for the acquisition of permissive histone active marks at

the gene loci of Rorc, Rora, and Batf, which encode key transcriptional factors for

Th17 linage specification. However, although IRF4, Ahr and Maf have also been

shown to play important roles in Th17 differentiation, the presence or absence of

STAT3 did not change permissive marks at those genes.

STAT4
Activated downstream of IL-12, IL-23 and type I IFNs, STAT4 is a major driving

force for IFN-g production in innate and adaptive immune cells, making it an

essential component of the inflammatory response against intracellular pathogens

like Mycobacteria, Lysteria, Toxoplasma and Leishmania species (among many

others). Prior to the advent of genome-wide assays, only a few direct STAT4 target

genes were known, including Ifng, Il18r1 (IL-18 receptor 1), Hlx (H2.0-like

homeobox), Map3k8 (mitogen-activated protein kinase kinase kinase 8) and

Furin (Pesu et al. 2006; Thieu et al. 2008; Yu et al. 2007). ChIP-on-chip studies

expanded this list to contain hundred genes, many of which are not closely

associated with IFN-g production or Th1 differentiation, such as Gadd45g (growth

arrest and DNA-damage-inducible 45g) and Lcp2 (lymphocyte cytosolic protein 2)

(Good et al. 2009). They also show that STAT4 binding does not always correlate to
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changes in gene expression, suggesting that its binding profile is broader than

previously appreciated, and that binding alone may not be sufficient to drive

transcription, which is consistent with other genome-wide surveys of transcription

factor binding. Those findings have now been confirmed and expanded by ChIP-seq

analysis of in vitro generated Th1 cells. These studies have uncovered at least

10,000 STAT4 binding sites throughout the genome, with about 40% localized to

the promoters or gene bodies of approximately 4,000 annotated genes. The

remaining 60% are located within intergenic regions, encompassing potential distal

regulatory elements (i.e. enhancers) or non-coding loci (i.e. microRNAs or long

non-coding RNAs) (Wei et al. 2010).

Aside from validating its role in Th1 differentiation, genome-wide profiling of

STAT4 binding has revealed that it can also regulate other target genes, particularly

cytokines, which are not traditionally associated with the Th1 program. For

instance, though IL-10 has long been considered a Th2-type cytokine, and is a

known target of STAT6 in Th2 cells, it is now understood that STAT4 can associate

with the Il-10 locus and that Th1 cells can produce IL-10 (Saraiva and O’Garra

2010). Another pertinent example is IL-21, a known target of STAT3 typically

associated with the Th17 and Tfh subsets. STAT4 was found to bind upstream of

the Il-21 locus under Th1 conditions, which is consistent with recent work showing
that IL-12 can induce IL-21 production in helper T cells, and with the emerging idea

that IL-21 production is not restricted to STAT3-dependent lineages. For both IL-

10 and IL-21, STAT4 binding was associated with positive regulation (i.e. STAT4-

dependent induction), but for several other ‘non-Th1’ genes, it was associated with

negative regulation (i.e. STAT4-dependent inhibition). Given that many of these

are closely linked to other T cell subsets, including IL-4 (Th2) and IL-17 (Th17),

these data argue that, beyond its role as a transcriptional activator, STAT4 also

promotes Th1 responses by limiting the differentiation of alternative T cell fates.

Previous work has suggested that the deposition of histone modifications

precedes STAT1 binding, which suggests that STAT1 has limited influence on

the epigenetic landscape (Robertson et al. 2008). In contrast, comparative analysis

of histone methylation in wild type and STAT4-deficient Th1 cells has revealed that

>1,000 of the genes bound by STAT4 also have STAT4-dependent epigenetic

modifications (Wei et al. 2010). About 200 of these were found to have STAT4-

dependent, activating marks (i.e. H3K4me3) and to be positivity regulated by

STAT4, therefore, representing a core signature of STAT4 targets which include

not only signature Th1 cell genes, such as Ifng and Tbx21, but also many that are not

considered to be subset specific, including Il18rap (IL-18 receptor accessory

protein), Icos (inducible T cell co-stimulator), Lilrb4 (leukocyte immunoglobulin-

like receptor B4) and Nkg7 (NK group 7). Another group of genes, including

several hallmark Th2-type genes (i.e. IL-4, GATA-3), was found to contain

STAT4-dependent, repressive marks (i.e. H3K27me3), which is consistent with a

role for STAT4 as a transcriptional inhibitor, and with the idea that each STAT can

influence multiple T cell subsets.
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STAT5
The mammalian genome contains four copies of STAT5 encoded by two highly

homologous genes, STAT5a and STAT5b, derived from a primordial duplication

event and located adjacently on the same chromosome (11 in mouse and 17 in

humans). These paralogs share multiple functions, many relating to fundamental

cellular processes like proliferation and survival. Consequently, germline deletion

of both results in perinatal lethality due to combined defects in hormone and

cytokine receptor signaling. However, mice lacking either Stat5a or Stat5b are

viable, which suggests a level of redundancy, but have distinct phenotypes, which

suggests that, despite >96% sequence homology, each also has unique functions

(Hennighausen and Robinson 2008). This latter point is supported by recent

genome-wide studies showing that STAT5a and STAT5b can have distinct binding

profiles in helper T cells, though it must also be noted that there was significant

overlap between the two and that, in general, the differences were rather subtle,

often spaced by a few hundred nucleotides and rarely demonstrating an absolute,

locus-specific preference for one or the other (Liao et al. 2011).

Cell type-specific ablation of STAT5a and STAT5b has revealed a number of

key immune functions, including an obligatory role in lymphoid lineage develop-

ment and in the differentiation of effector T cell subsets. ChIP-seq analysis of

STAT5 binding has confirmed and provided key mechanistic insights about these

findings. For instance, though it has long been known that IL-2 (and other STAT5-

activating cytokines) can promote Th1-type responses, a direct interaction between

STAT5 and hallmark Th1 loci, including Ifng, Tbx21 and Il-12rb2, has only

recently been established (Liao et al. 2011). Likewise, though gc cytokines have

traditionally been associated with Th2-type responses, STAT5 has only recently

been shown to act directly on Th2 loci, specifically Il-4ra, a key mediator of IL-4/

STAT6 signaling (Liao et al. 2011). STAT5 binding to Th17 loci, including Il-17a
and Il-17f, has also been shown to underlie the well known ability of IL-2 and gc
cytokines to suppress Th17-type responses (Yang et al. 2011). Based on extensive

overlap between STAT3 and STAT5 binding sites in Th17 cells, these latter studies

propose a competitive model where STAT5 prevents inductive signals (i.e. STAT3)

from accessing or activating regulatory elements in the Il-17a/f locus (Yang et al.

2011). Thus, in helper T cells, STAT5 binding appears to be pervasive, affecting a

multitude of targets throughout the genome, and determinative, capable of exerting

both positive and negative control over key subset-defining genes.

Mice lacking STAT5 in T cells are initially lymphopenic, which is consistent

with the known role of JAK3 and gc cytokines in lymphocyte development, but as

they age, these animals develop a lethal, T cell-dependent inflammatory disease

characterized by massive outgrowth of Th1- and Th17-type effector T cells.

Because this phenotype closely resembles that of IL-2 deficient mice, it is widely

believed that the autoimmunity in STAT5-deficient mice is due to a lack of IL-2

receptor signaling, specifically, in IL-2-dependent Treg cells. Although ChIP-seq

analysis of STAT5 binding in Treg cells has yet to be reported, conventional ChIP

studies have shown that STAT5 does bind the promoter and first intron of Foxp3, a
transcription factor that is both necessary and sufficient for specifying the Treg fate
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(Burchill et al. 2007; Yao et al. 2007; Zorn et al. 2006). STAT5 has also been shown

to bind directly to other Treg-associated genes, including the IL-2Ra (CD25) and

the anti-apoptotic protein BCL2, making it a central node in the network of signals

required for development and/or maintenance of this subset. Thus, despite

exhibiting several important pro-inflammatory features, it has become apparent

that the major, non-redundant function of STAT5 in T cells has to do with immune

tolerance and, specifically, with its ability to suppress of Th17 differentiation while,

at the same time, promoting that of Treg cells.

STAT6
Traditionally, Th2 differentiation is thought to be driven by IL-4 and its ability to

activate STAT6, a potent inducer of hallmark Th2-type genes like Il-4, Il-13, c-Maf
and Gata-3, though recent evidence suggests that other signals, including STAT3

and STAT5, can also participate (Kaplan et al. 1996; Shimoda et al. 1996; Takeda

et al. 1996; Zhu et al. 2001). ChIP-seq analysis of STAT6 binding has confirmed the

central importance of this pathway for Th2 differentiation, with many of its targets

representing known Th2-type factors, and has demonstrated its dynamic effects on

gene expression, with some genes exhibiting sustained binding and others a more

transient or biphasic pattern. These studies also revealed substantial overlap with

the binding profile of STAT5, which suggests a degree of cooperation, and with that

of STAT4, which speaks towards antagonisms between these two transcription

factors. Thus, STAT6 appears to promote Th2-type responses not only through

direct, positive effects, but also by limiting alternative subsets (i.e. Th1 and Th17)

via direct, inhibitory effects.

Similar to STAT4 in Th1 cells, STAT6 is a major influence on the epigenetic

landscape of Th2 cells. Although it has long been known that STAT6 bindings are

associated with activating histone marks at certain genes, particularly those most

closely associated with the Th2 phenotype like Il-4 and Gata-3, genome-wide

analysis of histone methylation in WT and Stat6-deficient T cells has revealed

that this may not be its principal function. Instead, STAT6 seems to inhibit the

deposition of repressive histone marks, thereby preventing the ‘closing’ of target

genes (Wei et al. 2010). Thus, STAT6 appears to be fundamentally different from

STAT4 in its mechanism of action though, overall, the goal of each appears to be

similar: to induce and or maintain an ‘open’ chromatin state at lineage-restricted

genes. It is also notable that a subset of genes bound by STAT6 in Th2 cells are also

bound by STAT4 in Th1 cells and that, in these cases, the two transcription factors

seem to oppose one another, which is not surprising given the well known antago-

nism between the Th1 and Th2 subsets and, more specifically, the ability of IL-12/

STAT4 and IL-4/STAT6 to oppose one another.

Counter-Regulation of STAT Family Members

Although STATs generally act as transcriptional activators, they can also limit gene

expression. That dichotomy is clearly evident during helper T cell differentiation,
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where STATs are known to both promote and suppress lineage-restricted products

(i.e. cytokines, transcription factors). Each STAT is known to inhibit at least

one subset so that, when a particular STAT is deleted, there is a reduction of the

subset(s) it is meant to promote and a concurrent expansion of the subset(s) it is

meant to suppress. For instance, STAT1-deficient T cells exhibit reduced Th1-type

responses due to the loss of STAT1-driven lineage induction and exaggerated Th2-

and Th17-type responses due to the loss of STAT1-driven lineage repression. A

similar pattern is observed for other STATs: STAT3-deficient T cells have reduced

Th2-, Th17- and Tfh-type responses and enhanced Th1- and Treg-type responses;

STAT4-deficient T cells have reduced Th1- and Tfh-type responses and enhanced

Th2- and Th17-type responses; STAT5-deficient T cells have reduced Th1-,

Th2- and Treg-type responses and enhanced Th17- and Tfh-type responses;

STAT6-deficient T cells have reduced Th2-type responses and enhanced Th1-

and Th17-type responses (Adamson et al. 2009). Thus, by exerting both positive

and negative influences on lineage-restricted genes, a given STAT promotes

the outgrowth of some subsets at the expense of others, eventually leading to

the polarization of effector T cells from a heterogeneous mix at the onset of an

immune response to a more homogeneous population during the peak and resolu-

tion phases.

It has long been known that all STATs (save STAT6) can bind to the same

consensus DNA sequence, known as the GAS element (Ehret et al. 2001; Seidel

et al. 1995). Given the prevalence of GAS elements throughout the genome, and the

high degree of overlap between the binding profiles of different STATs (Ehret et al.

2001; Jothi et al. 2008), it has become apparent that STATs binding is more

widespread than previously appreciated and that, in many instances, multiple

STATs can bind to the same sites. This promiscuity may explain why different

STATs can have similar effects, as is the case for induction of IL-10, which occurs

via STAT3, STAT4 or STAT6, for suppression of IL-2, which occurs via STAT3,

STAT4, STAT5 or STAT6, and for induction of CD25, which occurs via STAT3,

STAT4 or STAT5 (Akaishi et al. 1998; Kim et al. 2001, 2006; O’Sullivan et al.

2004; Saraiva and O’Garra 2010; Villarino et al. 2006, 2007). It has also led to the

idea that STATs may antagonize one another by competing for access to the same

GAS elements. One example of such competition involves the role of STAT3 and

STAT5 in Th17 differentiation. Studies have shown that STAT3, acting down-

stream of IL-6, IL-21 or IL-23, can promote IL-17 production and that STAT5,

acting downstream of IL-2, can suppress it (Laurence et al. 2007). Recent work has

provided a mechanism for this antagonism, demonstrating that STAT3 and STAT5

have remarkably similar binding profiles in Th17 cells and that, in fact, they

compete for binding to the same GAS elements within the Il17 locus, resulting in

either repressive (STAT5) or activating (STAT3) epigenetic modifications (Yang

et al. 2011). It remains unclear why one STAT acts as a positive regulator and the

other as a negative regulator but these data are the first to link opposing cellular

functions to a shared affinity for DNA binding. Future work should address the

prevalence of this effect, whether STAT3 and STAT5 compete at multiple loci, and
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whether or not it applies to other ‘antagonistic’ STATs, such as STAT4/STAT6 or

STAT1/STAT3.

As with IL-17 and Th17 cells, STAT3 and STAT5 are know to have opposite

effects on FoxP3 and Treg cells. In this case, the genetic evidence is strong –

FoxP3þ Tregs cells are expanded in the absence of STAT3 and diminished in the

absence of STAT5. However, though it is known that STAT3 and STAT5 can each

interact with the FoxP3 locus, it remains unknown whether there is direct competi-

tion between the two (Bettelli et al. 2006; Xu et al. 2010; Yao et al. 2007). Likewise,

though STAT1, STAT4 and STAT6 have been shown to limit Treg differentiation,

and STAT6 is able to bind the FoxP3 locus (Ma et al. 2011; O’Malley et al. 2009;

Takaki et al. 2008), competition with STAT5 has not been addressed. In addition,

studies have shown that, when STAT3 is deleted specifically in FoxP3þ cells, their

regulatory capacity becomes impaired which, paradoxically, suggests that STAT3

is required for Treg function (Chaudhry et al. 2009). These latter findings suggest

that the role of STAT3 in Treg biology is complex, though it also remains possible,

and perhaps even likely, that there is some form of competition between STAT3

and STAT5 at FoxP3 loci and other key Treg-associated loci.

Clinical Manifestation of STAT Mutants

Traditionally, gene-deficient or transgenic mice have been used to investigate STAT

function in vivo. However, recent advances in DNA sequencing technologies have

made it possible for genome-wide association studies (GWAS) to be performed in

humans with high speed and at relatively low cost, thereby prompting the discovery of

several single-nucleotide polymorphisms (SNPs) that affect STATs and manifest in

clinical disease (Table 2). These human studies have confirmed many of the findings

in mice, particularly in terms of disease etiology, and have provided valuable insights

about mechanism, with several of the mutations found to influence STAT activity

rather than expression levels.

The pioneering work of Dupuis et al. identified loss-of-function STAT1 mutations

in patients with heritable viral and mycobacterial susceptibility and demonstrate that

this genetic lesion results in defective in interferon signaling, thus, mirroring studies in

Stat1-deficient mice (Dupuis et al. 2001, 2003; Durbin et al. 1996; Meraz et al. 1996).

Not surprisingly, patients with germline mutations in type I and type II interferon

receptors exhibit a similar phenotype (Allende et al. 2001; Jouanguy et al. 1997),

again, illustrating the critical role of the interferon/STAT1 pathway in resistance to

infection. More recently, gain-of-function STAT1mutations have also been described.

These are associated with increased susceptibility to Candida and fungal infections,

not due to defects in interferon signaling but, rather, due to enhanced STAT1-mediated

suppression of Th17-type responses (Liu et al. 2011; van de Veerdonk et al. 2011),

thus, highlighting the antagonistic nature of the Th1 and Th17 subsets, as well as the

broad functions of STAT1 in host defense against multiple classes of pathogens.

As in mice, genetic evidence in humans points towards STAT3 as a critical

factor in resistance to fungi and extracellular bacteria. This effect is well illustrated
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in patients with hyper-IgE syndrome (also known as Job’s syndrome), a classic

primary immunodeficiency that has recently been linked to dominant-negative

mutations of STAT3. Affected individuals exhibit severe signaling defects down-

stream of multiple STAT3-activating cytokines, including IL-6, IL-10, IL-21, and

IL-23, leading to defects in the generation Th17-type inflammation and, conse-

quently, increased susceptibility to Candida and Staphylococcus infections

(Heimall et al. 2009; Ma et al. 2008; Milner et al. 2008; Minegishi et al. 2006).

Given that germline deletion of STAT3 is embryonic lethal (Takeda et al. 1997), it

is clear that individuals with hyper-IgE syndrome retain some STAT3 activity,

though obviously not enough to protect from Th17-type pathogens.

It is also noteworthy that, in contrast tomice lacking Stat3 in Treg cells (Chaudhry
et al. 2009), these patients do not have serious autoimmune complications, likely due

to residual STAT3 activity in this lineage and or inability to generate pathogenic

Th17 cells. Consistent with this latter point, and echoing studies in mice, a number of

genome-wide association studies have linked STAT3 (and its upstream activators)

to human autoimmune disease. For example, polymorphisms in IL-23R, JAK2 and

STAT3 have been associated with, among others, Crohn’s disease, asthma, psoriasis

and ankylosing spondylitis, which strongly suggests a role for STAT3 in the

pathogenesis of all these disorders (O’Shea et al. 2011).

Similarly, a variant STAT4 allele has been found in rheumatoid arthritis, Crohn’s

disease and Sjogren’s syndrome (Glas et al. 2010; Korman et al. 2008; Remmers

et al. 2007). Surprisingly, the same variant allele is associated with systemic lupus

Table 2 Human diseases associated with mutations of the JAK/STAT pathway

JAKs/STATs Immunological diseases References

JAK2 Polycythemia vera (PV) James et al. (2005)

Essential thrombocytosis (ET) Kralovics et al. (2005)

Primary myelofibrosis (PMF) Baxter et al. (2005)

Levine et al. (2005)

JAK3 Severe combined immunodeficiency (SCID) Russell et al. (1995)

Macchi (1995)

TYK2 Primary immunodeficiency syndrome Minegishi et al. (2006)

Multiple sclerosis (MS) Bahlo (2009)

Inflammatory bowl disease (IBD) Franke (2010)

STAT1 Atypical mycobacteria (M. avium etc.) infection Liu et al. (2011)

Chronic mucocutaneous candidiasis (CMC) van de Veerdonk et al. (2011)

STAT3 Hyper IgE syndrome (HIES; Job’s syndrome) Minegishi (2007)

Multiple sclerosis (MS) Holland (2007)

Inflammatory bowl disease (IBD) Jakkula (2010)

Franke (2008)

Spondyloarthritis Danoy (2010)

STAT4 Rheumatoid arthritis (RA) Kobayashi (2008)

Systemic lupus erythematosus (SLE)

STAT5b Dwarfism Kofoed et al. (2003)

Recurrent Herpes virus infection Bernasconi (2006)
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erythematosus (SLE) disease, which is not a prototypical Th1 cell-mediated disease

(Han et al. 2009; Namjou et al. 2009). However, one should keep in mind that SLE

patients have an interferon-related pathology and STAT4 is activated by type I IFNs

as well (Cho et al. 1996). Polymorphisms of the STAT4 gene are not located within

the coding region and presumably influence the level of gene expression. Consistent

with the role of STAT4 in SLE, polymorphisms in TYK2 (tyrosine kinase 2) and

IRF5, which are both involved in signaling cascade of type I interferons, involved

have also been associated with SLE (Hellquist et al. 2009).

Homozygous missense mutations of STAT5b are linked to growth hormone

insensitivity phenotype (Kofoed et al. 2003). As expected, given the key role of

STAT5 in regulating Treg cell development, patients with STAT5b mutations have

autoimmunity and impaired TReg cell function (Cohen et al. 2006).

Conclusions

Due to technological advances in molecular biology, and particularly the advent

‘next generation’ DNA sequencing, our understanding of Jak/STAT signaling

has improved exponentially over the past decade. It is now clear that Jaks and

STATs are critical for the pathogenesis of many human diseases, which has

made targeting this pathway, such as JAK kinase inhibitors, an increasingly

attractive therapeutic avenue. However, though genome-wide studies have

taught us much about the mechanisms of JAK/STAT signaling, revealing

thousands of direct binding sites, and establishing that STATs can have broad

influence on epigenetics, there is still much to be learned, specifically about the

functional consequences of JAKs and STATs in human health and disease.

Looking forward, there are multiple ongoing clinical trials for Jak/STAT-related

compounds, which should foster great interest for basic research into this

pathway and, perhaps, herald a notable translation from bench to clinic.
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The Role of Janus Kinases in Hematopoietic
Malignancies

Damla Olcaydu and Robert Kralovics

Abstract

The Janus family tyrosine kinases are indispensible for cytokine signaling and

play a crucial role in blood cell production. However, their excessive activity

causes various hematological phenotypes associated with overproduction of

terminally differentiated cells and/or blastic transformation. Here we review

the somatic mutations in the Janus family kinases and the associated hematolog-

ical phenotypes.

Introduction

The production of blood cells is orchestrated by growth factors and cytokines that

tightly regulate survival, proliferation and differentiation of hematopoietic stem

cells. Binding of these factors to their cognate receptors on the surface of blood

cells activates intracellular signaling cascades that modulate gene expression and

regulate cell fate. As many cytokine receptors lack intrinsic catalytic activity, the

transduction of growth signals requires molecules that associate with receptors on

the cell surface and, upon ligand binding, activate downstream effector proteins in

the cytosol and nucleus. Proper interaction and coordination of these signaling

pathways is the basis for efficient production of various blood cell types. Alterations

of cytokine signaling pathways and impairment of their regulation have been

implicated in various disorders of the hematopoietic system. The Janus kinase

(JAK) family of non-receptor protein tyrosine kinases, with its four members

JAK1, JAK2, JAK3 and TYK2, plays a key role in hematopoiesis by mediating
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the transduction of growth signals from cytokine receptors to their effectors. In

consequence, genetic aberrations that impair the function of JAK kinases have been

implicated in various malignancies of the hematopoietic system, most prominently

in the pathogenesis of leukemic disorders and the myeloproliferative neoplasms.

Tumors of the Hematopoietic Tissue

In first line, neoplasms of the hematopoietic tissue are classified according to the

lineage of the malignant cell being either of myeloid, lymphoid, histiocytic/den-

dritic or of ambiguous lineage. Further categorization is based on the differentiation

stage of the neoplastic cell clone. For example, precursor cell neoplasms (e.g. acute

myeloid leukemia, lymphoblastic leukemia, blastic plasmacytoid dendritic cell

neoplasm) comprise of undifferentiated cells that do not express lineage-specific

cell surface markers, or cells that have a mixed lineage phenotype (expressing more

than one lineage marker). On the counterpart, hematopoietic neoplasms that com-

prise of more mature and differentiated cells include myeloproliferative neoplasms,

myelodysplastic syndromes, mature B-cell or T/NK-cell lymphomas, and histio-

cytic/dendritic cell neoplasms. Further classification is applied to mature lymphoid

neoplasms according to the stage of differentiation of the malignant cell (e.g.

mantle cell lymphoma), based on morphology (e.g. diffuse large B cell lymphoma),

clinical features (e.g. diffuse large B cell lymphoma associated with chronic

inflammation) or several different parameters including immunophenotypic and

genotypic features that, in combination, serve the definition of specific disease

entities. In case of the myeloid neoplasms, sub-classification is mainly based on

the maturation stage. Whereas no or minimal maturation of blasts is present in acute

myeloid leukemia, effective (e.g. myeloproliferative neoplasms) or ineffective

myeloid cell maturation (e.g. myelodysplastic syndromes), or both in combination

(e.g. myelodysplastic/myeloproliferative neoplasms) are observed in other myeloid

malignancies. In the last years, a significant number of genetic aberrations were

discovered in hematopoietic neoplasms, some of which associate with subgroups or

specific disease entities. Thus, cytogenetic and mutational analysis has been

incorporated into the classification scheme and diagnostic criteria of various hema-

tological malignancies (Vardiman 2010).

Janus Kinases in Hematopoiesis

The growth factors and cytokines of the hematopoietic system include interleukins

(IL), interferons (IFN), colony-stimulating factors (CSF), erythropoietin (EPO) and

thrombopoietin (TPO). Most of these molecules bind to type I cytokine receptors, a

group of homologous transmembrane receptors that share the characteristic signa-

ture sequence of four conserved cysteine residues in the extracellular domain (the

WSXWS motif, with X representing a non-conserved amino acid residue). Type I

cytokine receptors either comprise single chains [e.g. granulocyte CSF receptor

240 D. Olcaydu and R. Kralovics



(G-CSFR), EPO receptor (EPOR) and TPO receptor (TPOR)] or heterodimers with

a unique ligand-binding chain and a common signaling subunit such as a b-chain
(receptors of granulocyte-macrophage CSF [GM-CSFR], IL-3 and IL-5), a g-chain
(the IL-2 receptor family) or a gp130 subunit (the IL-6 receptor family). In contrast

to the type I family, type II cytokine receptors (IFN receptors and IL-10 receptor

family) lack the specific WSXWS motif, but share conserved regions of the

membrane proximal intracytoplasmic domain.

The most prominent common feature of type I and type II cytokine receptors is

that they are devoid of intrinsic enzymatic activity. Thus, activation of downstream

signaling pathways is mediated by tyrosine kinases of the JAK family. The JAK

kinases are constitutively associated to the cytokine receptors via interaction

of their FERM domain with the Box1 membrane proximal intracytoplasmic

region of the receptor. Subsequent binding of a corresponding ligand induces

homodimerization (e.g. G-CSFR) or heterodimerization (e.g. GM-CSFR) of cyto-

kine receptor subunits; or causes a conformational change in receptor dimers that

are preformed at the cell surface (e.g. EPOR). Activation upon ligand-binding

locates receptor-associated JAKs into close proximity and results in transpho-

sphorylation and/or crossphosphorylation of tyrosine residues promoting increased

JAK kinase activity. Activated JAKs, in turn, phorphorylate tyrosine sites of the

cytoplasmic cytokine receptor domain, thereby generating docking sites for SH2-

domain containing signaling molecules such as the signal transducers and activators

of transcription (STAT). After recruitment to the cytokine receptor-JAK complex,

STATs are tyrosine phosphorylated by the JAKs and form homo- or heterodimers

via interactions of their SH2 domains. The phosphorylated STAT dimers are

actively translocated to the nucleus, where they bind to specific DNA target

sequences and drive gene expression in cooperation with other transcription factors

and coactivators.

The target genes that are regulated by STATs largely depend on the cell type, the

activating cytokine and the specific STAT protein. Amongst many others, the

STATs regulate expression of genes that play a role in cell cycle progression,

proliferation, survival and angiogenesis (e.g. cyclin-dependent kinase inhibitors,

genes of the Bcl-2 family, cyclins D and E, caspases, VEGF and MMP-2). Negative

regulation of the JAK-STAT signaling pathway is tightly controlled at several

levels. Constitutive pathways of regulation include protein tyrosine phosphatases

such as SHP1, SHP2, CD45 and PTP1B that inactivate JAKs and STATs in the

cytoplasm, whereas STAT activity in the nucleus is controlled by protein inhibitor

of activated STAT (PIAS) proteins, which interfere with the DNA binding activity

of the STATs. The major inducible pathway that regulates JAK-STAT signaling

consists of the suppressor of cytokine signaling (SOCS) protein family, which acts

as a classical negative feedback loop. Inhibition of JAK-STAT signaling by SOCS

proteins is achieved through several ways, namely (1) via competition for the

binding sites of JAKs and STATs at the cytokine receptor, (2) by direct binding

and inhibition of JAK activity, and (3) by promoting ubiquitination and degradation

of the JAKs.
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JAK Fusion Proteins

Somatically acquired chromosomal aberrations have been frequently detected in

patients with hematologic malignancies. Amongst other defects, translocations of

chromosomal material have been identified as major pathogenetic factors in a

number of hematopoietic neoplasms. The most studied example is the reciprocal

translocation between chromosomes 9 and 22 that encodes the constitutively active

BCR-ABL1 fusion protein and has been shown to play a causative role in chronic

myeloid leukemia (CML). Similarly, chromosomal translocations that fuse JAK

genes to other genes encoding e.g. transcription factors promote the production of

chimeric fusion proteins that are constitutively active and alter hematopoietic cell

function. The first report of a fusion protein involving a JAK kinase identified the

TEL-JAK2 fusion protein that results from a chromosomal translocation between the

short arms of chromosomes 9 and 12, denoted as t(9;12)(p24;p13) (Fig. 1)

(Lacronique et al. 1997). The TEL-JAK2 fusion was detected in a patient with

T-cell childhood acute lymphoblastic leukemia (ALL). Determination of the

breakpoints revealed that the translocation caused a fusion between the 30 part of
the JAK2 gene and the 50 region of the Translocation Ets Leukemia (TEL) gene.
Noteworthy, TEL encodes a member of the Ets family of transcription factors that at

the time was already known to be involved in other leukemic translocations. Expres-

sion of TEL-JAK2 in themurine hematopoietic cell line Ba/F3 was shown to result in

cytokine-independent growth and indicated a pathogenetic effect of the fusion

product on cytokine signaling and hematopoietic cell proliferation (Lacronique

et al. 1997). Further investigations revealed that the translocation fuses the kinase

domain (JH1) of JAK2 to the oligomerization domain of the TEL transcription factor

(Fig. 1) and gives rise to an oncogenic protein with constitutive activity of the JAK2

tyrosine kinase and its downstream signaling effectors (Ho et al. 1999).

The TEL-JAK2 fusion is not exclusive to T-cell leukemia, but has also been

detected in a child with early B-precursor ALL as well as in an adult with atypical

CML in transformation. The occurrence of the same chromosomal translocation

and its aberrant fusion product in myeloid and lymphoid neoplasms suggests

pathogenetic relevance of this aberrant kinase in both, lympho- and myeloprolifer-

ative diseases (Peeters et al. 1997). Accordingly, bone marrow transplantation

experiments in mice have shown that retrovirally transduced TEL-JAK2 establishes

a fatal disease phenotype with mixed myeloproliferation and T-cell lymphoproli-

feration (Schwaller et al. 1998). In addition to constitutive activation of the

JAK-STAT pathway, the TEL-JAK2 fusion protein further activates the phosphoti-

dylinositol 30-kinase (PI3K), Ras/ERK, p38 and NF-kB signaling pathways (Santos

et al. 2001; Nguyen et al. 2001; Malinge et al. 2006).

Schwaller et al. addressed whether STAT5 activation is necessary for the

development of TEL-JAK2 positive myelo- and lymphoproliferative disease.

Mice transplanted with retrovirally transduced bone marrow cells expressing

TEL-JAK2 rapidly developed a fatal myelo- and lymphoproliferative syndrome,

whereas mice that were reconstituted with Stat5a/b-deficient bone marrow cells

expressing TEL-JAK2 did not show a pathologic phenotype. These results imply
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that the disease phenotype in TEL-JAK2 positive leukemias depends on constitu-

tive STAT5 activation and underline the essential role of STAT5 in TEL-JAK2

induced myelo- and lymphoproliferation (Schwaller et al. 2000). Interestingly,

STAT5 has been recently reported as indispensable for the maintenance of the

leukemic phenotype in other leukemic disorders such as BCR-ABL positive

leukemias (Hoelbl et al. 2010).

Fig. 1 Domain structures of JAK2, JAK2 fusion proteins and recurrent JAK2 mutations. (a) The
protein structure of JAK2 comprises seven Janus homology (JH) domains including a tyrosine

kinase (JH1) and a pseudokinase (JH2) domain. (b) JAK2 fusion proteins. All reported fusion

proteins contain the entire JH1 kinase domain of JAK2. Various inclusion of the JH2 pseudokinase

domain has been observed for TEL-JAK2 fusion proteins (Lacronique et al. 1997; Peeters et al.

1997), whereas all detected PCM1-JAK2 fusion products involve the entire pseudokinase domain

of JAK2 (Reiter et al. 2005; Bousquet et al. 2005; Murati et al. 2005; Dargent et al. 2011). All

BCR-JAK2 cases reported so far showed a fusion of the JAK2 kinase domain to the coiled-coil

domain of BCR (Griesinger et al. 2005; Cirmena et al. 2008; Lane et al. 2008). (c) Recurrent JAK2
mutations. The V617F mutation in the pseudokinase domain of JAK2 represents the most frequent

genetic alteration of JAK2 (Campbell and Green 2006). Other recurrent genetic lesions include

mutations of JAK2 exon 12 that locate to the region between the pseudokinase and the JH3 domain

(Pardanani et al. 2008; Scott et al. 2007) and mutations of arginine residue 683 (R683) that occur
frequently in children with Down syndrome and acute lymphoblastic leukemia (Bercovich et al.

2008; Gaikwad et al. 2009; Kearney et al. 2009)
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In a different mouse model, transgenic mice with the TEL-JAK2 complementary

DNA under the control of a lymphoid cell-specific promotor developed a fatal

T-cell leukemia at 4–22 weeks of age (Carron et al. 2000). However the correlation

between STAT5 activation and leukemic phenotype was not addressed in this

study, leukemic cells of TEL-JAK2 transgenic mice showed increased activation

of STAT5 and STAT1. In order to investigate the oncogenic activity of TEL-JAK2

in the B-cell lineage, dos Santos et al. generated transgenic TEL-JAK2 mice that

were deficient for CD3e, an essential component of the T-cell receptor. These mice

showed impaired T-cell development and acquired either T- or B-cell lineage

malignancies. Notably, T-cell disorders manifested around 23 weeks of age,

whereas B-cell lymphomas developed after a longer time period (50 weeks) (dos

Santos and Ghysdael 2006). Further investigations of the TEL-JAK2 transgenic

mouse model demonstrated that the differentiation of CD8þ T-cells was altered by

the presence of the fusion protein (dos Santos et al. 2007). On the contrary,

transplantation of human cord blood cells transduced with a vector encoding

TEL-JAK2 into immunodeficient mice induced pathophysiological features of

myeloproliferative disorders including myelofibrosis, but no lymphoproliferation

(Kennedy et al. 2006).

Since the identification of the t(9;22)(p34;q11.2) translocation that results in a

fusion of the abelson murine leukemia viral oncogene homolog 1 (ABL1) gene on
chromosome 9p34 to the breakpoint cluster region (BCR) on chromosome 22,

chronic myeloid leukemia (CML) is typically characterized by the presence of

the BCR-ABL1 fusion protein. Notably, cases with chromosomal rearrangements

involving a region on chromosome 9 that is telomeric to ABL1 can yield a fusion

between the BCR region on chromosome 22 and the JAK2 gene. The first case of

BCR-JAK2 was identified in a patient with apparently clinically typical chronic

myeloid leukemia, who did not respond to imatinib therapy (Griesinger et al. 2005).

The BCR-JAK2 fusion protein was shown to contain the coiled-coil dimerization

domain of BCR and the tyrosine kinase domain of JAK2, suggesting that it

establishes constitutive activation of the JAK2 kinase and its downstream signaling

targets as previously described for TEL-JAK2. Although further cases of BCR-

JAK2 were reported in acute myeloid leukemia and leukemia cutis in a patient with

atypical CML, t(9;22) translocations with BCR-JAK2 fusion products seem to be

overall rare events among the myeloid neoplasms (Fig. 1) (Cirmena et al. 2008;

Lane et al. 2008).

More frequent than the t(9;22)(p34;q11.2) translocation are rearrangements that

involve chromosomes 8 and 9. In contrast to TEL-JAK2 and BCR-JAK2, the t(8;9)

(p22;p24) translocation was detected in various hematologic malignancies such as

atypical CML, secondary acute myeloid leukemia, chronic eosinophilic leukemia,

myelodysplastic/myeloproliferative disorders, pre-B-cell acute lymphoblastic leu-

kemia and T-cell lymphoma (Reiter et al. 2005; Bousquet et al. 2005; Murati et al.

2005; Adelaide et al. 2006; Dargent et al. 2011). Although varying breakpoints of

the t(8;9) translocation were detected, it was shown to consistently fuse the entire

kinase domain of JAK2 to several coiled-coil domains of the human autoantigen

pericentriolar material (PCM1) gene on chromosome 8p22 (Fig. 1). Presumably,
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the coiled-coil motifs of PCM1 serve for dimerization of the fusion protein and

induce constitutive activation of the JAK2 kinase domain in a similar way as it was

described for TEL-JAK2. PCM1-JAK2 does not target myeloid or lymphoid cells

exclusively, but seems to play a significant role in neoplastic disorders of both

hematopoietic lineages. In addition, some investigators have observed that the

incidence of acquired JAK2 rearrangements is significantly higher in male patients

compared to female subjects (Bacher et al. 2006; Tirado et al. 2010). However,

further investigations are needed to confirm a possible gender-specificity of these

chromosomal defects.

Other reported rearrangements involving the JAK2 gene include JAK2-NFE2

and JAK2-AML1, both identified in patients with myelodysplastic syndrome

(MDS) (Najfeld et al. 2007). High expression levels of the transcription factor

NF-E2 have previously been reported in myeloid progenitor cells of polycythemia

vera (PV) patients and the AML1 gene (also known as RUNX1) has been described

as a translocation partner in various hematologic malignancies (Goerttler et al.

2005; De Braekeleer et al. 2009). Moreover, recent data indicate that NFE2 is a

target gene of the transcription factor AML1 and that aberrant expression of AML1

mediates increased NFE2 expression, as observed in patients with myeloprolifera-

tive neoplasms (MPN) (Wang et al. 2010). Taken together, these findings suggest a

role for NFE2 and AML1 as well as their fusion products with JAK2 in MPN and

MDS disease pathogenesis. Furthermore, unique cases of JAK2 rearrangements

with the ribophorin 1 gene (RPN1-JAK2), the single-stranded DNA binding protein

2 gene (SSBP2-JAK2), the transcription factor PAX5 (PAX5-JAK2) and, most

recently, the SEC13A gene (SEC13A-JAK2) have been detected in different

hematopoietic neoplasms (Mark et al. 2006; Poitras et al. 2008; Nebral et al.

2009; Van Roosbroeck et al. 2011).

So far, only chromosomal translocations and fusion products involving the JAK2
gene, but not the other Janus kinase family members have been identified in patients

with hematopoietic neoplasms. In order to investigate potential functional

differences between the catalytic domains of the JAK kinase family members,

Lacronique et al. generated chimeric proteins in which the JH1 domains of JAK1,

JAK3 and TYK2 were fused to the oligomerization domain of TEL (Lacronique

et al. 2000). When expressed in the hematopoietic cell line Ba/F3, all TEL-JAK

chimeras exhibited constitutive tyrosine kinase activity, induced IL3-independent

cell growth and promoted constitutive activation of STATs and their downstream

targets. Although cell line experiments demonstrated their transforming potential,

none of these TEL-JAK fusion proteins (other than TEL-JAK2) have been detected

in patients to the present. Furthermore, these results indicate that constitutive

tyrosine kinase activity of JAK2 fusion proteins requires oligomerization, which

is mediated by the respective domains of TEL, BCR and PCM1.

While all of the identified oncogenic fusion products contain the entire JH1

kinase domain of JAK2, some of them also comprise varying parts of the JAK2

pseudokinase (JH2) domain. Interestingly, JAK2 fusion proteins including the JH2

domain have mostly been found in patients with chronic hematopoietic

malignancies such as MPN, CML and T-cell lymphoma, whereas fusion proteins
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that contain only the kinase domain but not or only parts of the pseudokinase

domain were identified in more severe and acute disorders such as ALL. Hence,

it has been postulated that various inclusion of the pseudokinase domain in onco-

genic JAK2 fusion proteins might influence the disease phenotype in hematopoietic

neoplasms with JAK2 rearrangements (Murati et al. 2005). However, further

investigations are necessary in order to elucidate the functional impact of the JH2

domain on the activity of JAK2 fusion proteins.

Activating JAK Mutations

The finding that the JAK2 gene was rearranged in a number of myelo- and

lymphoproliferative disorders drew attention to the JAK family of tyrosine kinases

and suggested that genetic alterations of these genes might in general contribute to

tumorigenesis of the hematopoietic system. Among other approaches, this hypoth-

esis paved the way for the identification of the JAK2-V617F mutation that was

shown to be a major pathogenetic factor in the disease evolution of the myelopro-

liferative neoplasms. Following the detection of the JAK2-V617F mutation, further

efford was taken in order to reveal the frequency and relevance of other mutations

of the JAK kinases in hematopoietic malignancies.

DNA sequencing studies in patients with acute leukemia revealed recurrent

somatic mutations of the JAK1 gene (Flex et al. 2008; Jeong et al. 2008; Xiang

et al. 2008; Mullighan et al. 2009). However, the exact frequency of JAK1
mutations in hematopoietic malignancies remains unclear, as recent studies served

conflicting results on their incidence (Asnafi et al. 2010). Another unexpected

finding was that certain identified mutations of JAK1 were demonstrated as devoid

of transforming activity, although some induced a slight increase in cytokine

hypersensitivity (Flex et al. 2008; Xiang et al. 2008). Thus, the exact pathogenetic

function of JAK1 mutations in leukemic disorders remains unknown. The observa-

tion that patients with mutations of the JAK1 gene have a poor prognostic outcome

suggests that JAK1 alterations are unfavorable genetic defects and associated with

disease progression (Flex et al. 2008; Mullighan et al. 2009). With the aim of

gaining further insights into the functional characteristics of JAK1 mutations, a

screening of randomly mutated JAK1 cDNAs and an analysis of their transforming

abilities was performed recently (Gordon et al. 2010). The results of this study

indicated that transforming mutations of the JAK1 gene primary localize to the

kinase domain, that distinct JAK1 mutations activate different downstream signal-

ing pathways, that – unlike mutations of the JAK2 gene – not all JAK1 mutations

require an intact FERM domain in order to induce transformation, and that JAK1
mutations result in increased STAT1 phosphorylation. Nevertheless, further studies

are needed in order to define the exact frequency and role of JAK1 mutations in the

disease evolution of the hematopoietic neoplasms.

In contrast to JAK1 and JAK2, early studies of JAK3 already suggested that this

kinase was involved in cancer pathogenesis. First results of gene expression

analysis revealed that JAK3 was predominantly expressed in B-cell malignancies
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and cell lines, raising the hypothesis that JAK3 contributed to leukemic transfor-

mation in hematopoietic cells (Tortolani et al. 1995). Furthermore, splice variants

of JAK3 were identified in cancer cells of hematopoietic and epithelial origin and

signaling through JAK3 was implicated in the activation of proto-oncogenes such

as c-fos and c-myc (Kawahara et al. 1995; Lai et al. 1995). Peripheral blood T-cells

transformed with the human T-cell lymphotropic virus type 1 (HTLV-1), already

known to be a major cause of adult T-cell leukemia, were reported to exhibit

constitutive phosphorylation of JAK3 and IL-2-independent cell growth (Migone

et al. 1995; Xu et al. 1995). One more line of evidence for a role of JAK3 in cancer

pathogenesis was served by the finding that a TEL-JAK3 fusion protein containing

the oligomerization domain of TEL and the kinase domain of JAK3 – although not

found in patients so far – constitutively activated JAK3 and induced factor-inde-

pendent growth of Ba/F3 cells (Carron et al. 2000). Furthermore, deletions of the

JH2 domain of JAK3 have been shown to result in constitutive activation of the JH1

domain, thus suggesting an autoinhibitory function of the pseudokinase domain on

the catalytic kinase activity of JAK3, similarly to what has been suggested for JAK2

(Saharinen and Silvennoinen 2002). Residues V617 to E621 of JAK2 have been

predicted to serve autoinhibition of the kinase domain and V617 is conserved

among JAK1, JAK2, and TYK2, but interestingly not in JAK3 (Lindauer et al.

2001). Moreover, the substitution of the M592 residue of JAK3, that is homologous

to V617 of JAK2, does not result in constitutive kinase activity (James et al. 2005).

Thus, it seems unlikely that mutations of this region could establish an aberrant

phenotype in hematopoietic cells.

The TYK2 tyrosine kinase is predominantly associated to cytokine receptors that

share the gp130 subunit (e.g. IL-6 receptor) or type II cytokine receptors such as the

interferon or the IL-10 receptor family. TYK2 has been shown to play a role in

immune cell signaling and rare alterations of TYK2 have been implicated in primary

immunodeficiencies (Minegishi et al. 2006; Ghoreschi et al. 2009). In contrast to

activating gain-of-function mutations in other members of the Janus kinase family,

the TYK2 mutations identified so far were loss-of-function mutations. JAK3

represents the only exception to this observation, as both, gain and loss-of-function

mutations have been reported for JAK3. However, JAK3 deficiency does not result

in malignant disorders of the hematopoietic system but manifests in human severe

combined immunodeficiencies (Ghoreschi et al. 2009).

The following paragraphs are aimed to serve a detailed description of activating

mutations of the JAK kinases that were identified in patients with hematopoietic

neoplasms to the present.

Activating JAK Mutations in Acute Leukemia

Somatically acquired mutations in the JAK1 gene have been most prominently

implicated in the pathogenesis of acute lymphoblastic leukemia. A recent study

showed that various JAK1 mutations account for more than 18% of adult T-cell

precursor ALL (T-ALL) cases, whereas only 3% of B-cell precursor ALL (B-ALL)
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were affected (Flex et al. 2008). Moreover, patients with JAK1 mutations had

higher age at diagnosis, poor response to therapy as well as poor overall prognosis

compared to ALL patients without alterations of JAK1. In contrast to pathogenetic

JAK2 mutations, which exclusively alter the pseudokinase domain, the somatic

JAK1 mutations identified in this study were spread among all domains of the JAK1

kinase. Furthermore, a screening of JAK1 alterations in pediatric ALL cases

revealed no mutations in 85 patients with B-ALL and only 1 pediatric case of 49

with T-ALL (JAK1-L653F) (Flex et al. 2008). In a larger screening approach

including 187 BCR-ABL1 negative high-risk pediatric ALL cases, several

mutations in JAK1 (n ¼ 3) and JAK3 (n ¼ 1), but most prominently in JAK2

(n ¼ 16) were identified. Thus, mutations of the JAK kinases are present in all

together 20% of high-risk pediatric ALL patients and are associated with a poor

outcome compared to cases without JAK mutations (Mullighan et al. 2009).

Investigations in patients with acute myeloid leukemia (AML) revealed the

presence of JAK1 mutations in about 2% of cases. The identified somatic

mutations, JAK1-T478S and JAK1-V623A, involved highly conserved residues

of the JAK1 gene (Xiang et al. 2008). Experiments in cell lines and primary murine

hematopoietic progenitor cells failed to demonstrate a difference in proliferative

advantage or transformation to leukemia between JAK1 wild-type and the two

mutant forms. However, cells expressing JAK1-T478S or JAK1-V623A showed

increased phosphorylation of STAT1 and its downstream effectors after interferon

stimulation. Taken together, these data suggest that mutant forms of the JAK1

kinase do not directly induce leukemic transformation but alter downstream signal-

ing pathways in response to other growth signals. In a screening study for mutations

of the JAK1, JAK3 and TYK2 genes in 494 samples from various human cancers,

several mutations of JAK1 and JAK3, but none in TYK2 were identified (Jeong

et al. 2008). Three identical JAK1-V658F mutations were detected in two patients

with T-ALL and one AML case with a t(15;17)(q22;q12) rearrangement. Interest-

ingly, the V658F mutation of JAK1 represents the homologous mutation to

the V617F mutation of the JAK2 kinase. A third case with T-ALL harbored a

JAK1-L783F mutation, whereas two patients with solid tumors, being lung adeno-

carcinoma and invasive ductal breast carcinoma, carried a JAK1-T782M and a

JAK1-K647Y mutation, respectively. Mutations of the JAK3 gene were also

identified in this study, however only in 2% of cases with breast or gastric

carcinomas. Previous investigations also report low frequencies of JAK1 and

JAK3 mutations in solid tumors (less than 5%) and non-recurrence of the identified

mutant forms (Bardelli et al. 2003; Greenman et al. 2007). Furthermore, mutations

of JAK1 and JAK3 have not been found in adult T-cell leukemia/lymphoma

(Kameda et al. 2010). These data indicate that mutations in JAK kinases might

represent rare passenger mutations in solid tumors and might be rather specific to

rare hematologic malignancies such as the JAK2-V617F mutation in polycythemia

vera and JAK1 mutations in T-ALL.

Recently, a mutation of the JAK2 gene was detected in a patient with childhood

acute megakaryoblastic leukemia (AMKL) (Malinge et al. 2008). In contrast to

known JAK2 mutations such as the V617F mutation, JAK2-M535I was shown
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neither to induce cytokine-independent growth in a transduced cell line nor to affect

downstream signaling effectors. Thus, it is unlikely that this mutation plays a

pathogenetic role in childhood AMKL. In a recent study, molecular analysis of

the JAK2 gene was performed in 286 children with ALL. Although no V617F

mutations of the JAK2 gene were identified, a c.1832T>C transition resulting in a

leucine to serine substitution in the JH2 domain of JAK2 was detected in a 3-year

old girl with precursor-B-ALL (Kratz et al. 2006). As the mutations was present at

the time of diagnosis, but was absent in a subsequent bone marrow sample at

remission, the authors concluded that the JAK2-L611S mutation was carried by the

pathogenetic clone that was eliminated during therapy. Similarly, in a different

screening study including 558 samples from common human cancers such as

colon, breast, lung and acute adulthood leukemias, three mutations in the JAK2

gene were identified. Of the 113 cases of acute myelogenous leukemia included

into the study, two patients carried JAK2-V617F and one had a newly identified

K607N mutation in the pseudokinase domain of JAK2 (Lee et al. 2006). Interest-

ingly, no mutations of JAK2 were found in other cancer types, indicating that the

pathogenetic impact of mutations in the JAK2 kinase is restricted to the

hematopoietic tissues.

Children with Down syndrome (DS) have a 10–20-fold increased risk of devel-

oping either acute lymphoblastic or myeloid leukemia (Hasle et al. 2000).

Mutations in the JAK2 gene occur frequently in DS-ALL. Recent investigations

show that up to 28% of DS-ALL patients carry a mutation in the JAK2 gene,

mostly point mutations occurring at arginine residue on position 683 (R683)

(Fig. 1) (Bercovich et al. 2008; Gaikwad et al. 2009; Kearney et al. 2009).

Most of these mutations cause a replacement of the highly basic amino acid

arginine by a neutral amino acid, suggesting that this amino acid change alters

protein binding and that a selective pressure for mutations at this position

exists. Furthermore, an acquired 5-amino acid deletion within the pseudokinase

domain of JAK2 (JAK2DeltaIREED) was identified in a patient with DS-ALL

and shown to induce growth factor-independent proliferation in a transduced

hematopoietic cell line. Interestingly, the mutation was homozygous due to a

loss of heterozygosity at the respective region on the short arm of chromosome 9

(Malinge et al. 2007).

Several mutations of JAK3 have been identified in children with Down syn-

drome and leukemia. Whereas the JAK3-A572V mutation was only found in the

megakaryoblastic cell line CMK, the JAK3-V722I and P132T mutations have been

reported in patients with acute megakaryoblastic leukemia (AMKL). However, all

three variants transform Ba/F3 cells to cytokine-independent growth. Moreover, the

JAK3-A572V mutation establishes several pathogenetic features of AMKL as well

as a T-cell lymphoproliferative disorder in a murine bone marrow transplant model

(Walters 2006). However, as full leukemic transformation is not achieved by sole

expression of JAK3-A572V in a mouse model and DS-AMKL patients with JAK3

mutations also harbor GATA-1 mutations and trisomy 21, these genetic defects

might need to cooperate in order to induce leukemogenesis in AMKL.

The Role of Janus Kinases in Hematopoietic Malignancies 249



JAK2 Mutations in Myeloproliferative Neoplasms

First results indicating that alterations in the JH2 pseudokinase domain of JAK2

were involved in the pathogenesis of leukemic disorders were obtained from

investigations in Drosophila melanogaster. A point mutation in a conserved region

of the pseudokinase domain of hopscotch (hop), the homologue of mammalian

Janus kinase genes in Drosophila, was identified to cause a glutamic acid to lysine

substitution at amino acid residue 695 (E695K) (Luo et al. 1997). Overexpression

of this mutant induced hyperphosphorylation and hyperactivation of D-Stat, the

Drosophila STAT protein. Furthermore, expression of the mutant Jak2(E665K),

which corresponds to the Drosophila E695K mutation, in a murine cell line was

shown to cause hyperactivation of murine Stat5. Subsequent investigations showed

that mutations in the hopscotch locus such as E695K induce hematopoietic

neoplasias resembling human leukemia (Luo et al. 1997; Harrison et al. 1995).

In 2005, an acquired mutation in the Janus kinase 2 (JAK2) gene was described
in patients with myeloproliferative neoplasms (MPN) (Fig. 1) (James et al. 2005;

Kralovics et al. 2005; Baxter et al. 2005; Levine et al. 2005). The transversion of a

guanine to a thymidine in exon 14 of the JAK2 gene was identified to result in a

valine for phenylalanine substitution at codon 617 (JAK2-V617F) in the catalyti-

cally inactive pseudokinase domain (JH2) of JAK2. As the JH2 domain is believed

to serve autoinhibitory function, the V617F substitution, accordingly, induces

constitutive activation of the JAK2 tyrosine kinase, which results in enhanced

activation of multiple downstream signaling pathways such as the STATs, the

mitogen activated protein kinase (MAPK) and the phosphoinositol 3-kinase

(PI3K)-Akt pathway. These signaling tracks, in turn, modulate the expression of

genes that regulate cell proliferation and survival, resulting in a growth and

selective advantage of the cell that acquired the JAK2-V617F mutation.

The reported frequencies of JAK2-V617F in MPN are up to 98% in patients with

polycythemia vera and about 50% in essential thrombocythemia and primary

myelofibrosis, respectively (Campbell and Green 2006). However, the JAK2-

V617F mutation does not exclusively occur in MPN, but has also been detected

in patients with chronic myelomonocytic leukemia, myelodypslastic syndrome or

acute myeloid leukemia (Jelinek et al. 2005; Levine et al. 2006; Steensma et al.

2005; Scott et al. 2005). In fact, activation of the JAK-STAT signaling pathway is

common to a variety of human neoplasms (Verma et al. 2003). Conversely, the

JAK2-V617F mutation itself seems to be restricted to myeloid malignancies, as it

has never been detected in neoplasms of the lymphoid lineage or in solid tumors.

Initial studies using in-vitro cultures of hematopoietic progenitor cells showed that

progenitors from MPN patients exhibit hypersensitivity to cytokines and growth

factors such as EPO, IGF-1, IL-3 and GM-CSF (Dai et al. 1991, 1992; Correa et al.

1994). Furthermore, spontaneous growth of megakaryocytic and erythroid progen-

itor cells in complete absence of cytokines were observed, a phenomenon that was

restricted to patients with primary forms of polycythemia (Prchal and Axelrad

1974). With the identification and functional characterization of the JAK2-V617F

mutation, it became clear that JAK2-V617F underlies these MPN-specific features
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as it induces cytokine-independent growth of hematopoietic cells (James et al.

2005; Kralovics et al. 2005; Baxter et al. 2005; Levine et al. 2005).

Murine bone marrow transplant models served further data on the pathogenetic

effect of the JAK2-V617F mutation. First in-vivo evidences that JAK2-V617F

influences the peripheral blood count were provided by results showing that mice

transplanted with JAK2-V617F transduced bone marrow cells developed severe

erythrocytosis (James et al. 2005). In a different experimental setting, the trans-

plantation of murine primary bone marrow cells expressing either wild-type JAK2

or JAK2-V617F induced phenotypical features in recipient mice that were similar

to those in human PV and myelofibrosis (Wernig et al. 2006). The JAK2-V617F

transduced animals showed marked elevation of hematocrit as well as leukocytosis,

megakaryocyte hyperplasia, reticulin fibrosis of the bone marrow, splenomegaly

and extramedullary hematopoiesis. Additional studies served further evidences that

the JAK2-V617F mutation was sufficient to induce a PV phenotype and to promote

progression to myelofibrosis (Lacout et al. 2006). Nevertheless, the JAK2-V617F

mutation is a comparably weak gain-of-function mutation, as expression of wild-

type JAK2 negatively influences constitutive activation of STAT5 by JAK2-V617F

(James et al. 2005). Furthermore, the high incidence of acquired uniparental disomy

on chromosome 9p that causes homozygosity for the V617F mutation indicates that

the loss of the wild-type JAK2 allele confers a stronger proliferative advantage to

the aberrant cell. Furthermore, investigations have shown that the FERM domain of

JAK2 is crucial for binding to cytokine receptors and constitutive signaling induced

by JAK2-V617F. Mutations in the FERM domain disrupt the binding of the mutant

JAK2 kinase to cytokine receptors and abolish its constitutive activity (Royer et al.

2005; Wernig et al. 2008).

Several reports suggest that the JAK2-V617F mutation occurs in a multipotent

lympho-myeloid progenitor cell (Jamieson et al. 2006; Delhommeau et al. 2007; Li

et al. 2007). JAK2-V617F was detected in hematopoietic stem cells (defined as

CD34+, CD38�, CD90+ and lineage negative) and their progeny and shown to

direct hematopoiesis towards increased erythroid differentiation (Jamieson et al.

2006). Subsequent studies demonstrated that the JAK2-V617F mutation was pres-

ent in B cells and natural killer cells in some patients with PV and about half of

cases with primary myelofibrosis (PMF), being even present in T cells in a small

proportion of patients (Delhommeau et al. 2007). Experiments in mouse models

have shown that CD34+ cells from JAK2-V617F positive PV and PMF patients

were capable of repopulating immunodeficient mice. Interestingly, the V617F

mutant allele burden was lower after engraftment than in the initial CD34þ graft

sample from the patients, indicating that JAK2-V617F negative stem cells persisted

and contributed to bone marrow repopulation (Li et al. 2007). Recent investigations

provided data on the involvement of endothelial cells in the disease clone of MPN,

suggesting that the JAK2-V617F mutation might be acquired in a common

hematopoietic-endothelial progenitor cell (Sozer et al. 2009; Teofili et al. 2011).

Although many insights have been gained into MPN pathogenesis since the

identification and characterization of the JAK2-V617F mutation, it still remains

unclear of how a single mutation can promote several distinct disease phenotypes.
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Several lines of evidence suggested that the MPN phenotype might depend on the

JAK2-V617F allele burden. Firstly, homozygosity for JAK2-V617F with high

mutant allele burden as a result of mitotic recombination is mostly associated

with a PV phenotype, whereas ET patients usually carry monoallelic mutations of

JAK2 and have a lower JAK2-V617F allele burden. Furthermore, results of a

JAK2-V617F transgenic mouse model indicated that the ratio of expression

between mutant and wild-type JAK2 determine the effective phenotype (Tiedt

et al. 2008). On the other hand, bone marrow transplantations of primary cells

transduced with Jak2-V617F into lethally irradiated mice were shown to induce a

PV-like disease with strain-specific differences in the phenotype (Wernig et al.

2006). This observation suggested that the genetic background might influence the

manifest phenotype that is induced by JAK2-V617F. Further data supporting this

hypothesis were provided by a subsequent genotype-phenotype association study in

MPN patients. In search for host genetic factors that influence the disease pheno-

type in MPN, the investigators screened for variants of single nucleotide

polymorphisms (SNPs) that associate with a certain entity of the MPN. Indeed,

certain SNP variants inside the JAK2 gene locus were revealed to significantly

correlate with PV, but not with PMF or essential thrombocythemia (ET) (Pardanani

et al. 2008). In 2009, three independent groups reported the presence of a distinct

haplotype that contains the JAK2 gene and predisposes to the acquisition of the

JAK2-V617F mutation (Olcaydu et al. 2009a; Jones et al. 2009; Kilpivaara et al.

2009). These findings made evident that inherited genetic factors influence somatic

mutability and modify the disease course and phenotype in MPN. The mechanism

of how certain genetic variation might predispose to somatic mutagenesis remains

to be elucidated.

Although JAK2-V617F represents the most frequent oncogenic mutation in

MPN, further sequencing efforts resulted in the detection of other mutations in

the JAK2 gene. Most importantly, mutations in exon 12 of JAK2 were identified

in about 20% of JAK2-V617F negative PV patients (Fig. 1) (Pardanani et al. 2008;

Scott et al. 2007). MPN patients with JAK2 exon 12 mutations exhibit a different

disease phenotype than patients with JAK2-V617F, as they mostly present with

isolated erythrocytosis without leukocytosis or thrombocytosis. Thus, it is believed

that exon 12 mutations introduce a different alteration of kinase function than the

V617F mutation. This might also explain why JAK2 exon 12 mutations exclusively

occur in PV patients and have not been observed in cases with PMF or ET.

Furthermore, a recent study showed that the JAK2 haplotype that predisposes to

the acquisition of JAK2-V617F also preferentially acquires exon 12 mutations of

JAK2 (Olcaydu et al. 2009b). Other reported rare mutations of the JAK2

pseudokinase domain in hematopoietic neoplasms include isolated D620E and

E627E mutations or double mutants such as JAK2-V617FD620E, JAK2-

V617FC616Y and JAK2-V617FC618R (Bacher et al. 2006; Grunebach et al.

2006; Zhang et al. 2007; Karow et al. 2008). Furthermore, amplifications of the

JAK2 gene of up to 20 copies have been detected in patients with PV, non-Hodgkin
lymphoma, multiple myeloma and MDS (Najfeld et al. 2007). A study of approxi-

mately 20,000 DNA samples of patients with apparent MPN revealed various rare
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JAK2 mutations in exons 12–15 that were mostly located in the JH2 domain (Ma

et al. 2009). Preforming reverse transcription PCR with direct sequencing of JAK2,
a recent study could demonstrate that about one third of patients with confirmed or

suspected MPN carry a deletion of JAK2 exon 14 (JAK2 Deltaexon 14), which was
shown to result in expression of a truncated JAK2 protein (Ma et al. 2010). Further

investigations are needed in order to determine the relevance of these JAK2

alterations in MPN disease pathogenesis.

After its identification, the JAK2-V617F mutation was soon approved as a

diagnostically relevant molecular marker in MPN and was implicated in the revised

classification and diagnostic criteria of the myeloid neoplasms (Tefferi and

Vardiman 2007). Being present in the majority of patients with MPN, the JAK2-

V617F mutation serves as an important diagnostic marker and especially aids the

differentiation between secondary forms of cytosis and primary MPN. Apart from

its significance in diagnostic approaches, the JAK2 mutation might also represent a

potential therapeutic target. The same is true for other genetic defects that induce

constitutive JAK-STAT signaling such as JAK2 exon 12 mutations or JAK2 fusion

proteins. Several trials of selective and non-selective JAK2 inhibitors have been

launched during the last years. First results indicate that JAK2 inhibitors are

beneficial for patients in alleviating disease-related and overall constitutional

symptoms, especially in MPN patients with splenomegaly. However, a complete

molecular remission and eradication of the JAK2-V617F positive clone is not

achieved with the compounds studied so far (Chen and Prchal 2010).

Although early observations indicated a role for alterations of the JAKs in

human neoplasias, it was the identification of the JAK2-V617F mutation that

moved this family of protein tyrosine kinases into the center of attention. A great

number of succeeding studies revealed the importance of functional JAK-STAT

signaling in normal hematopoiesis and uncovered various alterations of this path-

way that play a causative role in hematologic malignancies. Accordingly, currently

ongoing trials with compounds that are targeting aberrant tyrosine kinases such as

the JAK2 inhibitors are expected to serve novel therapeutic options in the treatment

of patients with aberrations of the Janus kinases. Still, many questions regarding

genetic and functional aspects of the JAKs remain to be resolved. Further studies

utilizing novel technologies will aid the detailed characterization of genetic

aberrations of the JAK-STAT pathway and decipher their pathogenetic impact on

disease evolution in hematopoietic neoplasms.

Concluding Remarks

A surprisingly large number of acquired myeloid malignancies are caused by JAK2

kinase mutations. These gain-of-function JAK2 mutants or fusion genes exhibit

variable levels of kinase activity that either cause a relatively benign chronic

disease or, in some cases, a severe malignant disease. Detection of these JAK2

oncogenes has diagnostic value and allows genetic stratification of patients that

may influence the choice of therapeutic intervention. As the hyperactivation of the
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JAK-STAT signaling pathway by various oncogenic mutations proved to be driving

a number of chronic and acute hematological phenotypes, small molecule inhibitors

targeting the JAK family kinases may offer cure for a number of disease entities in

the near future.
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Activation of Janus Kinases During
Tumorigenesis

Jeffrey W. Schmidt and Kay-Uwe Wagner

Abstract

Janus tyrosine kinases (JAKs) are important for the growth and homeostasis of a

variety of normal tissues. Specifically, JAK1 and JAK2 are essential for mam-

malian development, and conventional knockout models in mice show that the

absence of just one of these two kinases causes prenatal and postnatal lethality.

Recent studies using JAK2 conditional knockout mice show that this tyrosine

kinase plays key roles in mammary gland development, fertility, pancreatic b
cell homeostasis, and the suppression of fatty liver disease in adult animals.

Somatically acquired point mutations or structural abnormalities in the JAK2
gene contribute to various hematopoietic malignancies. In contrast, a sustained

activation of JAK1 and JAK2 in solid human cancers, such as those of the breast,

prostate, lung, head and neck, skin, and gastrointestinal tract, is caused mainly

by alternative mechanisms. These include the epigenetic silencing of negative

regulators of JAKs as well as an aberrant autocrine stimulation of growth factors

such as PRL, EPO, and IL-6. In addition to the canonical pathway through Signal

Transducers and Activators of Transcription (STATs), JAKs are an integral part

of a crosstalk with receptor tyrosine kinases and their substrates that promote the

progression of solid cancers. The biological significance of JAKs within wider

signaling networks, however, depends on the cell type and the stage of neoplastic
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progression. For example, recent studies in breast cancer models that are condi-

tionally deficient in JAK2 show that the importance of this kinase changes

during disease initiation and progression, which may have significant

implications for targeting this Janus kinase in a chemopreventive or therapeutic

setting.

Preface

The four members of the Janus kinase family (JAK1, JAK2, TYK2, and JAK3)

meditate signaling from multiple hormone and cytokine receptors that are crucial

for normal development as well as the initiation and progression of hematopoietic

malignancies and solid cancers. This chapter briefly summarizes the main biologi-

cally relevant functions of JAKs in normal tissue homeostasis and the mechanisms

that mediate an aberrant activation of Janus kinases in human cancers. Also

highlighted in this chapter will be the importance of JAKs as components of

broader signaling networks, in particular their association to receptor tyrosine

kinases and downstream effectors that are known to have pivotal roles in the

genesis of solid cancers. In the main section of this chapter, there will be an

overview about changes in the activation of Janus kinases in specific solid (i.e.

non-hematopoietic) human cancers and their suggested effects on the proliferation,

survival and invasive properties of cancer cells. Finally, there will be a discussion

of important issues related to the targeted inhibition of JAKs for the prevention and

treatment of human cancers. This book chapter will not review the protein structure

of JAKs and the significance of specific posttranslational protein modifications that

regulate the functionality of JAKs. The reader should refer to recent reviews to gain

further insight into these specific molecular events (Ghoreschi et al. 2009; Schindler

et al. 2007; Schindler and Plumlee 2008).

Janus Kinases and Normal Tissue Homeostasis

Janus tyrosine kinases (JAKs) are expressed in most tissues and mediate the

downstream signaling of more than 50 cytokines and peptide hormones. Upon

ligand binding to their corresponding receptors, the receptor-associated Janus

kinases autophosphorylate themselves and become activated. Active JAKs phos-

phorylate specific tyrosine residues on the receptors thereby creating docking sites

for signal transducers and activators of transcription (STATs). Following their

recruitment to the receptors, STATs are subsequently activated by the JAKs

through phosphorylation of critical tyrosine residues that serve as binding sites

for the SH2 domains of other STAT proteins, mediating their homo- or heterodi-

merization. Active STATs undergo nuclear translocation and function as

latent transcription factors by binding to consensus recognition sites. In mammals,

the JAK family is composed of four members, JAK1, JAK2, JAK3, and TYK2,
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each capable of activating its own set of STATs. [For references regarding

the coupling of specific JAKs to STATs and the ligands that activate them, see

reviews by Schindler and Strehlow (2000), Kisseleva et al. (2002), and Rane and

Reddy (2000).]

Since each Janus kinase transduces signals from multiple cytokines and

receptors, gene knockout models have been generated in an attempt to better

understand physiological functions of individual JAKs in vivo (Table 1). JAK1

knockout mice die perinatally due to neurological defects and also show insensitiv-

ity to cytokine signaling such as IL-2, IL-6, IFN and IL-10 (Rodig et al. 1998).

JAK2 knockout mice are embryonic lethal and die at gestation day 12.5 due to

defective erythropoiesis (Neubauer et al. 1998; Parganas et al. 1998; Krempler et al.

2004). The expression of JAK3 is largely limited to lymphoid tissues. Conse-

quently, the knockout phenotype for the gene encoding this kinase is less severe

than that of JAK1 or JAK2, and JAK3 deficient mice are both viable and fertile;

however, they exhibit a severe combined immunodeficiency-like phenotype with

defects in lymphoid development (Nosaka et al. 1995; Park et al. 1995; Thomis

et al. 1995). The fourth member of the JAK family, the Tyrosine kinase 2 (TYK2),

has been implicated in IFN-a, IL-6, IL-10 and IL-12 signaling. TYK2 knockout

mice have an impaired response to LPS and IL-12 signaling (Karaghiosoff et al.

2000; Shimoda et al. 2000) and are unable to integrate signaling from multiple

cytokine receptors (Karaghiosoff et al. 2003).

Table 1 Phenotypes of Janus kinase knockouts

Gene Knockout method Phenotype Reference(s)

Jak1 Conventional Early postnatal lethality;

neurological defects, SCID;

cytokine insensitivity

Rodig et al. (1998)

Jak2 Conventional Embryonic lethality;

defective erythropoiesis

Krempler et al. (2004), Neubauer

et al. (1998), Parganas et al. (1998)

Conditional

(mammary)

Impaired alveolar

development and

maintenance

Wagner et al. (2004)

Conditional

(neuroendocrine)

Impaired fertility and

reproductive development

Wu et al. (2011)

Conditional

(pancreatic b-cells)
Impaired b cell homeostasis Choi et al. (2011)

Conditional

(hepatocyte)

Fatty liver phenotype Sos et al. (2011)

Jak3 Conventional Viable and fertile; SCID;

defective lymphoid

development

Nosaka et al. (1995), Park et al.

(1995), Thomis et al. (1995)

Tyk2 Conventional Viable and fertile; impaired

response to LPS and IL-12

signaling; defective

cytokine signaling

Karaghiosoff et al. (2000, 2003),

Shimoda et al. (2000)

SCID severe combined immunodeficiency, IL interleukin, LPS lipopolysaccharide
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Since JAK2 deficiency results in early embryonic lethality, the role of this kinase

in tissue homeostasis of postnatal animals is difficult to examine. The approach of

transplanting cells and tissue fragments from JAK2 knockout embryos into adult

mice was used by Shillingford and colleagues (2002) to study essential functions of

JAK2 during mammary gland development. This study showed that JAK2 is

required for epithelial cell proliferation, and the ablation of this kinase results in

impaired formation of secretory alveoli. In order to better study the role of JAK2 in

differentiated tissues of adult mice, Krempler et al. (2004) generated JAK2 condi-

tional knockout mice by placing loxP sites around the first coding exon of the Jak2
locus. In general, a Cre-mediated deletion of a gene such as Jak2 provides a unique
opportunity to assess important biological functions of a gene of interest beyond the

initial block in development that often results from a conventional knockout. The

final section of this chapter will describe how such a model can also be applied to

investigate the role of Janus kinases in tumor initiation versus progression. To

selectively ablate JAK2 in mammary epithelial cells in a spatially and temporally

controlled manner at particular stages of mammary gland development, transgenic

mice were used that express Cre recombinase in different epithelial subtypes in

virgin, pregnant, and lactating females (Wagner et al. 1997, 2001). Specifically, the

mouse mammary tumor virus (MMTV)-Cre-mediated deletion of Jak2 from ductal

progenitors led to a loss of activation of STAT5 in response to prolactin signaling,

but deficiency in JAK2 had no effect on ductal elongation and branching morpho-

genesis (Wagner et al. 2004). Essential functions of JAK2 during postnatal mam-

mary gland development in this model were restricted to alveolar cells in virgin

females. In order to ablate JAK2 from differentiating alveolar cells, a whey acidic

protein (WAP)-Cre-based JAK2 conditional knockout model was generated that

exhibited a strong negative selection of JAK2-deficient secretory alveolar cells

during late pregnancy and lactation. Collectively, both conditional knockout

models demonstrated that JAK2 is required for the proliferation of alveolar

progenitors and the maintenance of functionally differentiated alveolar cells during

pregnancy and lactation. On a mechanistic level, these models provided clear

evidence that JAK2 is an essential link between prolactin signaling and STAT5

activation in the normal mammary gland, which, as will be discussed later in this

chapter, has important implications for the prevention of mammary cancer.

In addition to studying the role of JAK2 in mammary gland development,

conditional knockout mice have been pivotal for the assessment of essential

functions of this kinase in neuroendocrine cells, pancreatic b cells, and hepatocytes.

The gonadotropin releasing hormone (GnRH) is a major regulator of the reproduc-

tive and sexual behavior of mammals. Loss of JAK2 in GnRH-producing neurons

causes a number of abnormalities implicating this kinase to normal reproductive

development and fertility in female mice (Wu et al. 2011). These conditional

knockout mice exhibit a reduction in GnRH and luteinizing hormones, which

causes a significant delay in puberty, first estrus, and irregular estrous cyclicity.

Female mice showed impaired fertility as characterized by the prolonged time to

produce their first litter, fewer pregnancies, and significantly smaller litter sizes.

Another very recent study by Choi and colleagues (2011) using the JAK2
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conditional knockout showed that erythropoietin (EPO) signaling through this

particular kinase protects against the development of type 1 and type 2 diabetes.

This study uncovered a key signaling pathway important for b-cell homeostasis

with relevance for the treatment and prevention of diabetes. Finally, work by Sos

and colleagues (2011) demonstrated that the Alb-Cre-mediated deletion of Jak2 in
hepatocytes results in a profound fatty liver phenotype. This appears to be the result

of a complex mechanism that starts with a reduction in serum insulin-like growth

factor-1 (IGF-1), which, in turn, leads to an increase in serum growth hormone

(GH) secretion due to a lack of feedback inhibition in the hypothalamus. While the

liver-specific loss of JAK2 impairs hepatocellular GH signaling, this pathway is

retained in adipocytes, and the increased level of serum GH causes enhanced

lipolysis thereby releasing excess free fatty acids. These free fatty acids are then

taken up by the GH-resistant hepatocytes at an enhanced rate due to increased

expression of the free fatty acid transporter CD36. In support of this proposed

mechanism, the fatty liver syndrome caused by the hepatocyte-specific deletion of

Jak2 could be completely reversed through abrogation of GH secretion.

Collectively, conventional and conditional knockout models for Janus kinases

have been important to evaluate biologically relevant functions in signal transduction

and tissue homeostasis. However there continues to be a need for these and similar

kind of models to study cytokine and hormone signaling in normal versus neoplastic

cell types.While JAK3 andTYK2 conventional nullmutants are probably sufficient to

examine the role of these kinases in hematopoietic cells, where these kinases are

predominantly expressed, the availability of JAK2 conditional knockout mice now

provides unique opportunities to study the role of this tyrosine kinase in a wide variety

of tissues and in the context of neoplastic transformation. Similar to JAK2, JAK1 is

activated inmany normal tissues of adult mice, and, as discussed later, this kinasemay

be aberrantly activated by peptide hormones in cancer cells as part of a shift in

signaling networks due to abnormal expression and activation of cytokine receptors

and receptor tyrosine kinases. The necessity to genetically decipher these biological

phenomena on a molecular level clearly underlines the need for the long overdue

generation of a JAK1 conditional knockout mouse.

Mechanisms that Mediate an Aberrant Activation of JAKs
in Cancer

Transgenic models expressing hyperactive JAK2 and STAT5 provide direct exper-

imental evidence that Janus kinases can play a role as proto-oncogenes in the

genesis of solid tumors. Particularly, a mammary-specific expression of the kinase

domain of JAK2 linked to STAT5A and the transactivation domain of STAT6

prolongs cell survival and suppresses apoptosis that, in turn, induces the formation

of sporadic adenocarcinomas (Iavnilovitch et al. 2002). The ability of hyperactive

JAK2 to cause neoplastic transformation within the mammary epithelium depends

largely on the activation of STAT5 as the main downstream effector of this Janus

kinase. This notion is supported by the fact that mice overexpressing wildtype or a
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hyperactive mutant of STAT5 develop mammary cancer following a similar latency

period (Iavnilovitch et al. 2002; Vafaizadeh et al. 2010). Although these models are

able to assess the mechanisms by which JAK2 and STAT5 contribute to the

initiation of solid tumors, the precise genetic and epigenetic alterations that lead

to the activation of these signaling mediators in cancer cells are not accurately

recapitulated. In humans, missense mutations within Janus kinases and JAK fusion

gene products are linked to the initiation and progression of myeloproliferative

disorders and hematopoietic malignancies (Brisken et al. 2002; Brockman and

Schuler 2005; Ruchatz et al. 2003; Slupianek et al. 2002). Although TEL-JAK2,

BCR-JAK2, and PCM1-JAK2 fusion proteins are observed in various leukemia

subtypes [for references see reviews by Valentino and Pierre (2006) and Ghoreschi

et al. (2009)], chromosomal translocations that lead to the formation of hyper-

activated Jak2 are not frequently detected in solid human tumors, and these cancers

acquire active JAKs through alternative mechanisms.

Missense Mutations Within JAKs

Following the discovery and characterization of constitutively activating mutations

of JAK2 (e.g. JAK2V617F) in myeloproliferative disorders (Baxter et al. 2005; James

et al. 2005; Kralovics et al. 2005; Levine et al. 2005; Vainchenker and

Constantinescu 2005), considerable effort has been placed in determining whether

hyperactive JAK/STAT signaling observed in several human cancers is due, at least

in part, to activating mutations in Janus kinases. Several recent studies, however,

suggest that the occurrence of the JAK2V617F aberration and of homologous

mutations in other JAKs remain a rare event in solid cancers. Thus far, these

sequencing efforts identified mostly silent mutations and polymorphisms (Lee

et al. 2006a; Motte et al. 2007). In prostate cancer, activation of STAT5 is

associated with cancer cell survival and a high histological grade of primary

tumors. Nonetheless, as a recent report by Gu and colleagues (2010c) showed a

gain-of-function of JAK2 through the prominent V617F mutation is not the under-

lying cause for the increase in STAT5 phosphorylation in this type of cancer.

Similarly, this mutation does not contribute to the activation of STAT3 in pancre-

atic cancers (Kocher et al. 2007). Sequencing efforts to identify mutations in JAK1,
JAK3, and TYK2 revealed a rare presence of somatic JAK1 and JAK3 missense

mutations in breast, lung, and hepatocellular carcinomas (Table 2) (Jeong et al.

2008; Xie et al. 2009). The biological importance and functionality of these JAK

mutations in carcinogenesis, however, remain unknown.

Epigenetic Silencing of Suppressors of JAK/STAT Signaling

A disruption of negative feedback loops occurs very frequently in human cancer,

which is exemplified by the common loss of tumor suppressors that are antagonistic

to proto-oncogenic pathways. Negative regulators of the JAK/STAT pathway
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include the protein tyrosine phosphatases (PTPs), suppressors of cytokine signaling

(SOCS), and protein inhibitors of activated STATs (PIAS) (Greenhalgh and Hilton

2001). JAK phosphorylation is a reversible process, and PTPs are a major regulator

of JAK inactivation through catalyzing its dephosphorylation. SOCS proteins, on

the other hand, suppress cytokine signaling through at least three distinct

mechanisms. These include direct interaction with activated JAKs (i.e. SOCS1),

association with phosphorylated residues on the receptor to block the binding of

SH2 and PTB-domain containing proteins such as STATs (i.e. CIS), a combination

of the two (i.e. SOCS3), or enhancing the proteosome-dependent degradation of

Janus kinases (Greenhalgh and Hilton 2001; Kamizono et al. 2001; Ram and

Waxman 1999). Unlike SOCS proteins that are upregulated in response to cytokine

stimulation to silence the activation of JAKs, the PIAS family of proteins is ubiqui-

tously expressed. They function by binding STATs directly and alter their localization,

DNA binding, transcriptional activation, and additional STAT activities (O’Shea and

Watford 2004). Among the three families of negative regulators of JAK/STAT

signaling, PTPs and SOCS are epigenetically silenced through DNA methylation in

a variety of human cancers. For example, the SOCS1 gene is found to be aberrantly

methylated in 60%–65% of hepatocellular carcinomas (Okochi et al. 2003;

Yoshikawa et al. 2001), 50% of pancreatic tumors (Komazaki et al. 2004), and in a

subset of colorectal cancers (Fujitake et al. 2004; Xu et al. 2009). Additional JAK/

STAT inhibitors that are silenced through promoter methylation in hepatocellular

carcinoma and colon cancer include the cytokine-inducible SH2-containing proteins

(CIS), SOCS2, SOCS3, and SHP-1 (Calvisi et al. 2006; Xu et al. 2009). Other reports
have shown that SOCS1 and SOCS2 are hypermethylated in 14–24% of primary

ovarian cancers, and silencing of the SOCS1 gene also occurs in 9% of primary breast

cancer cases (Sutherland et al. 2004). Recently, Sasi and colleagues (2010) examined

the expression levels of SOCS1–7 during breast cancer progression. This study

showed that a higher expression of SOCS genes was correlated with factors such as

earlier tumor stage, disease-free survival, lack of disease recurrence, and an overall

better clinical outcome. In light of these observations, the authors suggested that

utilizing DNA methyltransferase inhibitors might provide an additive effect in a

Table 2 Somatic JAK missense mutations observed in solid cancers

Gene Solid cancer Cancer subtype Predicted amino

acid change

Domain

effected

References

JAK1 Lung Non-small cell lung

cancer

T782M JH2 Jeong et al. (2008)

JAK1 Breast Invasive ductal

carcinoma

H647Y JH2 Jeong et al. (2008)

JAK1 Liver Hepatocellular

carcinoma

Q646H JH2 Xie et al. (2009)

JAK1 Liver Hepatocellular

carcinoma

H647F JH2 Xie et al. (2009)

JAK3 Breast Invasive ductal

carcinoma

V715I JH2 Jeong et al. (2008)

JH2 Janus kinase homology 2 (pseudokinase) domain
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targeted therapy against hyperactivated JAKs and STATs. Finally, the SOCS-related

protein, caveolin-1, which is a potent suppressor of JAK2/STAT5 signaling, has been

demonstrated to be epigenetically silenced through promoter methylation in a variety

of human cancers (Chen et al. 2004; Cui et al. 2001; Park et al. 2002; Wiechen et al.

2001). Similar to transgenic models with a gain-of-function of JAK2 and STAT5, a

knockout of caveolin-1 in mice accelerates the formation of multi-focal dysplastic

lesions and mammary tumors (Park et al. 2002; Williams et al. 2003). The develop-

ment of mammary neoplasms in this breast cancer model is closely associated with an

increase in the activation of JAK2 and STAT5, which promotes mammary epithelial

proliferation and premature differentiation in response to prolactin and other lacto-

genic hormones during pregnancy.

Autocrine Signaling

The hyper-activation of autocrine signaling networks is common in many human

cancers. Rather than relying upon a constant supply of hormones and locally

produced growth factors, cancer cells initiate the production of cytokines that

bind to their corresponding receptors, which, in turn, activate growth and survival

pathways. For example, autocrine signaling mediated by IL-6 is implicated in lung,

colon, prostate and breast tumorigenesis (Giri et al. 2001; Grivennikov and Karin

2008; Sansone et al. 2007; Shirota et al. 1990). Similarly, the peptide hormone

prolactin (PRL), which signals through JAK2 and STAT5, plays an important role

in the etiology of breast cancer. High circulating levels of PRL are associated with

an increased risk of developing breast cancer in humans (Tworoger and Hankinson

2006), and a sustained elevation of PRL has been shown to cause mammary cancers

in transgenic mice (Tornell et al. 1991; Wennbo et al. 1997). In addition to the PRL

that is released from the pituitary gland, breast cancer cells gain the ability to

locally synthesize this hormone and enhance the expression of the PRL receptor

(Clevenger et al. 1995; Ginsburg and Vonderhaar 1995). The importance of a PRL

autocrine loop in the initiation of neoplastic transformation was further verified in a

transgenic model (NRL-PRL) that expresses this hormone specifically in the mam-

mary epithelium, and these transgenic mice develop both estrogen-receptor positive

and negative lesions (Rose-Hellekant et al. 2003). Using JAK2 conditional knock-

out mice, its has been recently demonstrated that the mammary-specific ablation of

this kinase completely prevented the onset of PRL-induced mammary tumors

(Sakamoto et al. 2010). Therefore, the initiation of mammary tumors in the PRL

overexpression model requires the activation of JAK2 and STAT5.

Collectively, the various studies that have assessed mutations within the coding

regions of JAKs and STATs as well as the expression and activation of this pathway

suggest that, unlike in hematopoietic malignancies, genomic alterations in these

signal transducers are rare events in solid cancers. The activation of JAKs and their

downstream mediators appears to be primarily regulated by alternative mechanisms

that include the epigenetic silencing of negative regulators of JAK/STAT signaling

in addition to an enhanced activation of Janus kinases through elevated autocrine
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stimulation of growth factor receptors. Unfortunately, there are only a limited

number of genetically engineered in vivo model systems available today that can

be employed to systematically address the importance of negative regulators of

JAK/STAT signaling in disease initiation and progression.

JAKs as Components of Broader Signaling Networks in Cancer

Within specific cell types, individual JAKs and STATs are in the lines of fire of

diverse cytokine and hormone receptors such as receptor tyrosine kinases (RTKs) and

their downstream mediators that are part of broader signaling networks. JAKs and

STATs are an integral component of receptor crosstalk in normal cells, and it is known

that their biological significance can change within signaling networks following

malignant transformation. Therefore, the extent and type of receptor crosstalk that

utilize JAKs and STATs not only depends on the cell type but also the stage of

neoplastic progression. Examples for an extensive association of JAK/STAT signaling

with RTKs and their downstream effectors that play pivotal roles in the genesis of

solid cancers are members of the ERBB family and the PI3K/AKT pathway.

ERBB Family

Signaling through the ERBB family of receptor tyrosine kinases (EGFR; ERBB2-4)

is frequently altered in human cancers through activating mutations, gene

amplifications, or overexpression of individual receptors. Mutations within the

human epidermal growth factor receptor (EGFR) are a common feature in

adenocarcinomas of the lung. Previous studies have identified a close relationship

between the extent of EGFR expression and a phosphorylation of JAK2 and STAT3

as well as a selective activation of JAK/STAT signaling by mutant EGFR in lung

cancer cells (Lo et al. 2008; Sordella et al. 2004). Interestingly, the combined

inhibition of the JAK/STAT pathway and the EGFR have been shown to inhibit

tumor growth and cell survival more effectively than either agent alone (Dowlati

et al. 2004; Lo et al. 2008). This suggests that inhibiting JAK/STAT signaling could

serve as a synergistic approach to a targeted therapy against the EGFR. Such a

therapeutic strategy would also affect the ability of the mutant EGFR to induce a

JAK-dependent activation of STAT3 via upregulation of IL-6 production as

recently suggested by Gao and coworkers (2007).

ERBB2 (HER2, neu) is amplified in a significant subset of breast cancer cases,

and overexpression of this receptor tyrosine kinase is also frequently observed in

lung cancer, ovarian cancer, and, at a lesser frequency, in colon cancer (Arteaga

2003; Brabender et al. 2001; Hellstrom et al. 2001; Hirsch and Langer 2004; Ochs

et al. 2004). Following the binding of prolactin (PRL) or growth hormone (GH) to

their corresponding receptors, JAK2 becomes activated and phosphorylates the

cytoplasmic domains of the EGFR and ERBB2 (Yamauchi et al. 1997, 2000).

The downstream activation of MAP kinases by GH and PRL has been shown to
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depend on the phosphorylation of these two receptors. Both hormones, GH and

PRL, also activate the cytoplasmic tyrosine kinase SRC, which phosphorylates

various residues on the EGFR that leads to increased receptor signaling (Biscardi

et al. 1999). On the other hand, the SRC family of tyrosine kinases is suggested to

possess non-catalytic functions, and it was reported recently that SRC serves as a

scaffold for the PRL-induced activation of JAK2 (Garcia-Martinez et al. 2010).

JAK2 and STAT5 are important for the proliferation of epithelial subtypes in the

mammary gland that are highly susceptible to ERBB2-induced neoplastic transfor-

mation (Henry et al. 2004). It has been demonstrated recently that the conditional

deletion of the Jak2 gene in these epithelial subtypes completely prevents the

formation of mammary tumors in response to increased ERBB2 expression

(Sakamoto et al. 2009). This study provides experimental evidence for the impor-

tance of receptor crosstalk between JAK/STAT signaling and RTK activation

during the process of neoplastic transformation.

In adenocarcinomas of the breast and other organs, the ERBB2 receptor forms

stable heterodimers with ERBB3, and both are suggested to function as an onco-

genic unit (Holbro et al. 2003; Kim et al. 2005). Signaling through ERBB2/ERBB3

receptor complexes has also been shown to rapidly activate TYK2 and JAK3 and

subsequently STAT3 and STAT5 in the lung epithelium (Liu and Kern 2002).

Another example for important receptor crosstalk between ERBBs and JAK/STAT

signaling is the proposed function of ERBB4 as a nuclear chaperone of active

STAT5A in the mammary gland (Long et al. 2003; Williams et al. 2004). Clark and

colleagues (2005) also demonstrated that ERBB4 modulates the activity of STAT5

by regulating the phosphorylation of additional serine residues besides the known

JAK2-mediated tyrosine phosphorylation of this signal transducer. Collectively,

these studies show that, in addition to their classical role as RTKs, ERBBs also

possess important scaffold functions that can significantly modulate the activity of

JAKs and STATs in normal and neoplastic cell types.

PI3K/AKT

The functional interactions between JAKs and ERBBs are prime examples for the

engagement of different types of receptor tyrosine kinases involved in receptor

crosstalk, but there are other RTKs such as the insulin receptor and the insulin-like

growth factor-1(IGF-1) receptor that specifically interact with JAK1 and JAK2 and

that play a role in a variety of solid cancers (Gual et al. 1998; Himpe and Kooijman

2009). In fact, many of these RTKs have overlapping biological activities in cancer

cells. For example, ERBB2-overxpressing breast cancer cells are able to evade the

antiproliferative action of a targeted therapy with trastuzumab through up-regulation

of IGF-1 receptor expression or loss of PTEN function (Hynes and Lane 2005). These

shifts in the signaling network are facilitated by downstream mediators such as

phosphoinositide-3 kinase (PI3K) and AKT/PKB that are synchronously activated

by various RTKs. The importance of PI3K signaling in cancer is highlighted by the

fact that this is one of the most frequently deregulated pathways in human cancers
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(Yuan and Cantley 2008). JAK/STAT signaling and the PI3K/AKT cascade share a

number of similarities. Both promote survival, proliferation, and metabolism in a

variety of cell types, and it is therefore reasonable to propose that these pathways

converge within a signaling network. For example, it has been shown that active

STAT3 and STAT5 can associate directly with the p85 regulatory subunit of the PI3

kinase in hematopoietic cells to initiate an activation of the PI3K/AKT pathway

(Pfeffer et al. 1997; Santos et al. 2001). The functional association of p85 and

STAT5 is suggested to play a role in myeloid leukemia (Harir et al. 2007; Nyga

et al. 2005; Rosa Santos et al. 2000; Santos et al. 2001), but this interaction is not

restricted to normal or neoplastic hematopoietic cells. Phosphorylated STAT5 was

also shown to bind to p85 in mammary epithelial cells in vitro and in vivo following

stimulation with PRL (Sakamoto et al. 2007). Prolactin signaling and activated JAK2

have previously been shown to promote PI3K activity (Tessier et al. 2001; Yamauchi

et al. 1998), and it was proposed that active STAT5may directly stimulate the activity

of the PI3 kinase in the mammary epithelium. This notion is supported by the

observation that the conditional deletion of the Jak2 gene, which causes lack of

STAT5 activation, leads to a synchronous reduction in the expression and activation

ofAKT1 (Sakamoto et al. 2007). Thiswas not a consequence of a functional inhibition

of SRC or MAP kinases since these signal transducers were still activated by PRL in

the absence of JAK2. Deficiency in JAK2 leads to a dramatic reduction in the total

levels of AKT1, and it was recently demonstrated that STAT5 controls the transcrip-

tional expression of the Akt1 gene in mammary epithelial cells. Nuclear STAT5 binds

directly to consensus sites within the Akt1 locus in a growth factor dependant manner

and initiates transcription from a novel, mammary-specific promoter (Creamer et al.

2010). This proposed mechanism of a direct modulation of AKT1 expression

and activation through STAT5 was verified in transgenic mice that overexpress

a hyperactive mutant of this transcription factor in the mammary epithelium. The

gain-of-function of STAT5 in vivo caused a sustained transcriptional upregulation of

Akt1. The phenotypic consequence of this molecular association was a prolonged

survival of functionally differentiated mammary epithelial cells despite activation of

pro-apoptotic signaling pathways (Creamer et al. 2010). This phenotype is virtually

identical to transgenic mice that overexpress wildtype or hyperactive AKT1 under

the regulation of the MMTV LTR (Ackler et al. 2002; Hutchinson et al. 2001;

Schwertfeger et al. 2001). Collectively, the results of these studies clearly show that

JAK2/STAT5 signaling and the PI3K/AKT pathway can converge at various levels in

particular cell types to execute similar biological functions.

Activation of JAKs in Specific Human Cancer Types

Breast Cancer

Elevated levels of prolactin (PRL) have been implicated in the occurrence of human

breast cancer (Hankinson et al. 1999; Tworoger and Hankinson 2006), and this

peptide hormone is suggested to play an important role in the establishment of an
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aberrant autocrine loop that fuels the multiplication of breast cancer cells

(Clevenger et al. 1995; Ginsburg and Vonderhaar 1995). Since PRL signals mainly

through its receptor and the JAK2/STAT5 pathway in luminal breast epithelial

cells, it is evident that these signal transducers are key for the genesis of human

breast cancer subtypes that originate from this epithelial compartment (Wagner and

Rui 2008). Unlike in normal mammary epithelial cells, PRL is also capable of

activating STAT3 in human breast cancer cell lines (Cataldo et al. 2000),

suggesting that signaling networks undergo a substantial rewiring process during

neoplastic progression. Nelson and coworkers (2007) have recently shown that PRL

activates JAK1 in a JAK2-dependent manner, and this may provide an underlying

mechanism by which this hormone activates STAT3 and MAP kinases that play a

pivotal role in breast cancer progression. The activation of JAK1 may correlate with

particular breast cancer subtypes that result in a poor prognosis, and it has been

reported that the inhibition of estrogen receptor expression in MCF-7 cells leads to

an increase in the activation of JAK1 (Yeh et al. 2007).

Although PRL is a major growth factor for the multiplication of normal and

neoplastic mammary epithelial cells, the activation of JAK/STAT signaling

cascades in breast cancer is not restricted to this peptide hormone. Another growth

factor that activates JAK2 and is known to play a significant role in human breast

cancer is erythropoietin (EPO). It was reported recently that the receptor for

erythropoietin (EpoR) is expressed in a significant subset of human breast tumor

specimens and breast cancer cell lines (Larsson et al. 2009; Liang et al. 2010).

Major side effects in patients treated with erythropoiesis-stimulating agents

prompted the US Food and Drug Administration to issue a black-box warning for

both epoetin alfa and darbepoetin alfa in 2008. It had been found that when these

agents were given to patients with advanced breast cancer to achieve a target

hemoglobin concentration, it shortened their overall survival and increased

disease progression (Crouch and DeSantis 2009). Recently it has been shown

that recombinant human EPO is also capable of counteracting the treatment

of ERBB2-positive breast cancer cells with trastuzumab (Liang et al. 2010).

The EPO-mediated activation of JAK2 and SRC as well as the inactivation of

PTEN were identified as underlying mechanisms for this biological phenomenon.

In addition to PRL and EPO, interleukin-6 (IL-6) is upregulated in primary human

breast cancer specimens, and elevated expression of this cytokine is a poor prog-

nostic indicator for breast cancer patients (Berishaj et al. 2007; Knupfer and Preiss

2007). IL-6 plays a key role in the activation of glycoprotein 130 (GP130) receptor-

associated JAKs that are known mediators of STAT3 phosphorylation. Treatment

of breast cancer cells with a pan-Jak inhibitor, blockade of the GP130 receptor, or

sequestration of the IL-6 ligand each led to a decrease of active STAT3 in breast

cancer cells (Berishaj et al. 2007). This may suggest that an inhibition of the IL-6/

GP130-induced activation of JAK1 and JAK2 might be an effective strategy to

target STAT3 in breast cancer. Besides the cytokines and their receptors that are

known to directly activate JAK/STAT signaling such as PRL, EPO and IL-6,

a recent report highlighted the role of a chemokine-like extracellular matrix

protein, osteopontin (OPN), for the activation of STAT3 in a JAK2-dependent
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manner (Behera et al. 2010). The study suggests that OPN promotes enhanced

tumor growth and that increased expression of OPN and pSTAT3 correlates with

breast cancer progression in clinical specimens.

It is evident that JAK1 and JAK2 are critical for the activation of STATs in breast

cancer cells. Most clinical studies, however, focus solely on the examination of

phosphorylated STATs (in particular STAT1, STAT3, and STAT5A/B) as biological

readouts for the activation of JAK/STAT signaling cascades. The initial examination

of the expression and activation of STAT5A in breast cancer showed that this signal

transducer is nuclear localized and tyrosine phosphorylated in approximately 76% of

human breast tumors, and its activation was positively correlated with tumor differen-

tiation (Cotarla et al. 2004). Results from a larger study where more than 1,100 breast

cancer specimens were analyzed revealed that active STAT5 is consistently present in

healthy breast tissue. Its activity, however, is gradually lost during malignant progres-

sion, and less than 20% of metastases expressed active STAT5 (Nevalainen et al.

2004). Collectively, this study showed that STAT5 is as an independent prognostic

factor for overall patient survival, but the molecular mechanism responsible for this

phenomenon remained unknown. Recently, Johnson and colleagues (2010) provided

evidence that an upregulation of the protein tyrosine phosphatase 1B (PTP1B) may

account for the reduction in activate STAT5 in metastatic breast cancer cells. PTP1B

functions as an inhibitor for active JAK2 by catalyzing the dephosphorylation of the

Janus kinase, which consequently suppresses the activation of STAT5. The suggested

biological role of active STAT5 as a proposed suppressor ofmetastasis is supported by

the observation that STAT5 promotes differentiation as observed by the homotypic

clustering of breast cancer cells, a reduction in invasive characteristics, and an increase

in the cell surface levels of the adhesion molecule E-cadherin (Sultan et al. 2005). As

the expression and activation of STAT5 declines, the level of phosphorylated STAT3

increases significantly during malignant progression. In fact, approximately 50–60%

of primary breast cancers exhibit a constitutive activation of STAT3, and it has been

shown in various independent studies that thismember of the STAT family plays a key

role in breast cancer cell growth, survival, and metastatic progression (Barbieri et al.

2010; Berishaj et al. 2007; Burke et al. 2001; Kunigal et al. 2009; Proietti et al. 2009;

Ranger et al. 2009). As discussed earlier, STAT3 is synchronously phosphorylated in

breast cancer cells by JAK1 and JAK2 in response to the aberrant activation of the

receptors for PRL, EPO, and IL-6 as well as the crosstalk with cytoplasmic and

receptor tyrosine kinases. It can therefore be expected that the targeted inhibition of

STAT3, either directly or indirectly through inhibition of JAKs, will be of therapeutic

value to treat advanced breast cancers.

Prostate Cancer

Recent evidence suggests a significant association between JAK/STAT activity and the

development of androgen-refractory prostate cancer. Specifically, an increased expres-

sion of the IL-6 receptor and active cytoplasmic STAT3 have been linked to early

relapse and reduced patient survival (Tam et al. 2007). This is in agreement with
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previous work by Drachenberg and colleagues (1999) who observed a correlative

increase in serum IL-6 in patients with hormone-refractory prostate cancer. In addition,

cell culture studies have demonstrated that treatment with IL-6 or expression of

constitutively active STAT3 are sufficient to promote androgen-independent growth

(Lee et al. 2004). In support of this notion, the inhibition of STAT3 was reported to

induce apoptosis in IL-6-dependent prostate cancer cells (Barton et al. 2004). In contrast

to breast cancer, where an inverse relationship between STAT3 and STAT5 has been

observed, both STATs are active in advanced prostate cancers where they promote

disease progression. While STAT5 is required for cell viability and growth of the

primary tumor, STAT3 is suggested to be an important driver for metastasis (Gu et al.

2010a, b). In contrast to STAT3, which can be activated by a variety of tyrosine kinases

(e.g. JAK1, JAK2, JAK3, EGFR/HER family), the activation of STAT5 in the prostate

epithelium is largely mediated by JAK2 in response to systemic and autocrine PRL

signaling (Dagvadorj et al. 2007; Li et al. 2004;Nevalainen et al. 1997). The PRL/JAK2/

STAT5 cascade has been implicated as a critical pathway for the growth, survival, and

malignant progression of prostate cancer, and it is therefore a valid target for clinical

therapy (Liao et al. 2010). This is supported by a number of studies demonstrating the

efficacy of antagonizing PRL, JAK2, or STAT5 for the treatment and/or sensitization of

prostate cancer cells by inhibiting their growth and viability (Dagvadorj et al. 2007,

2008; Li et al. 2004; Wu et al. 2007). STAT5, which is found to be active in 95% of

clinical hormone-refractory prostate cancers, interacts with the ligand-bound androgen-

receptor (AR) to synergistically promote the transcriptional activation of both AR and

STAT5 (Tan et al. 2008). Since it has been shown that active STAT5 is necessary for the

survival of androgen-sensitive as well as androgen-independent human prostate cancer

cells, the therapeutic value for targeting JAK2 or STAT5 in hormone-refractory prostate

cancer is of high clinical importance (Ahonen et al. 2003).

Lung Cancer

Atypical growth factor signaling is especially common in human lung cancers and

frequently occurs through mutations in the epidermal growth factor receptor

(EGFR). These mutant receptors transduce anti-apoptotic signaling selectively

through the Phosphatidylinositol-3-Kinase (PI3K)/AKT and STAT signaling

pathways. Similar to blocking EGFR signaling with gefinitinib, inhibiting the

PI3K or JAKs was reported to cause extensive apoptosis in non-small-cell lung

cancers (NSCLC) that are resistant to conventional chemotherapy (Sordella et al.

2004). The matrix metalloproteinase-10 (MMP-10) is a major contributor of lung

tumor development and expansion through degradation of the extracellular matrix.

Interestingly, protein levels of MMP-10 are significantly elevated in NSCLC

compared to normal lung tissue, and this increase was reported to be JAK2-

dependent through activation of the IL-6/JAK2/STAT3 signaling cascade (Zhang

et al. 2009). Despite a clear relationship between JAKs and advanced lung cancer,

additional studies are needed to better decipher their role in disease initiation and

their potential for preventative and/or therapeutic intervention.
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Head and Neck Cancer

STAT5 and STAT3 are found to be highly expressed and activated in a number of

squamous cell carcinomas of the head and neck (SCCHN), where these signal

transducers contribute to cancer cell survival and proliferation (Lai and Johnson

2010). The constitutive activation of STAT3 is frequently observed in SCCHN and

is suggested to be an early event in carcinogenesis (Grandis et al. 2000; Nagpal

et al. 2002). STAT5, on the other hand, is thought to be activated during disease

progression in response to EPO signaling. The abundance of EPO and its

receptor in tumor biopsies correlates significantly with disease progression, and

their highest expression is observed in the most malignant and invasive

specimens. In support of these observations, Mohyeldin and coworkers (2005)

showed that inhibition of JAK2 was sufficient to reduce both basal and EPO-

induced invasiveness. In a study by Xi et al. (2003), active STAT5 was consis-

tently elevated in head and neck tumors compared to normal epithelium, and

there was a close correlation between phosphorylation of STAT5 and malignant

progression. Particularly, the targeted inhibition of STAT5B resulted in a

reduced proliferation of SCCHN cancer cells in vitro and tumor growth in vivo

(Leong et al. 2002). Collectively, both studies suggest that targeting JAK2 and

STAT5B could be clinically relevant for the treatment of advanced head and

neck cancer.

Melanoma

As with cancers of the prostate and head and neck, STAT3 and STAT5 display

significant levels of activity in melanocytes as they progress from a normal into a

malignant stage, and both STATs have been shown to be needed for the survival

and growth of melanoma cells (Hassel et al. 2008; Kortylewski et al. 2005;

Mirmohammadsadegh et al. 2006; Niu et al. 2002). A previous study by Niu

et al. (2002) suggested that STAT3 and STAT5 are predominantly activated by

the SRC kinase, but a new report by Huang et al. (2008) showed that the increase

in STAT3 activation was accompanied by an upregulation of JAK2 and a

decrease in SOCS-1. The utilization of interferons (i.e. IFN-a) in the treatment

of melanoma to provoke an anti-tumor response requires JAK/STAT signaling.

Specifically, STAT1, which is activated by JAK1 and TYK2, is critical for the

anti-proliferative effect of IFN-a and INF-g (Kortylewski et al. 2004; Tassiulas

et al. 2004). Samples from melanoma patients clinically resistant to IFN-a
therapy frequently exhibited dysfunctional JAK/STAT signaling, including a

reduction in STAT1 activity (Pansky et al. 2000). In addition to inducing an

anti-tumor response via STAT1, it was also found that IFN-a causes phosphory-

lation of STAT5, which leads to resistance to cytokine-mediated antiproliferative

therapy (Wellbrock et al. 2005). Therefore, overcoming interferon resistance in

melanoma may lie in the ability to discriminate between the activation of

particular STAT family members.
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Gastrointestinal Cancers

The IL-6 and GH-mediated activation of STAT3 and STAT5 via JAK1 and JAK2

plays a key role in hepatocellular carcinoma (HCC) (Chow et al. 1996; Fuke et al.

2007; Lee et al. 2006b; Tan et al. 2010). In particular, expression and activation of

STAT5B, which is the main target of JAK2 in response to GH signaling, is associated

with a young age at tumor onset, metastatic progression, and overall poor patient

survival (Fuke et al. 2007). Paradoxically, the loss of STAT5A/B in hepatocytes

results in liver fibrosis and enhances chemically-induced tumor formation, presum-

ably through increased activation of TGF-b and STAT3 (Hosui et al. 2009). Active

STAT3 is found in approximately 50% of HCC specimens and 75% of metastatic

lesions, whereas little or no activity of this signal transducer is observed in adjacent

normal tissue. Inhibition of Janus kinases with AG490 has been shown to lower the

activation of STAT3, which results in reduced cell proliferation and viability and

enhances TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis (Fuke

et al. 2007). This suggests that inhibition of Janus kinases might be a suitable strategy

for sensitizing HCC cells for TRAIL agonists currently under development.

The importance of JAK/STAT signaling in pancreatic cancer was recently

highlighted in a study by Thoennissen and colleagues (2009) who tested the efficacy

of the experimental anti-cancer drugCucurbitacin B. This agent causes significant cell

cycle arrest and apoptosis of pancreatic cancer cells associated with inhibition of

JAK2, STAT3, and STAT5. Another study by Lee et al. (2007) suggested that

enhanced JAK2 activity, which is observed in pancreatic cancers, might be a result

of elevated levels of reactive oxygen species (ROS). According to this report, growth

factor signaling promotes the formation of ROS, which, in turn, prolongs JAK2

phosphorylation and cell survival by inhibiting the low molecular weight-protein

tyrosine phosphatase (LMW-PTP) responsible for JAK2 inactivation.

Sustained activation of Janus kinases 1 and 2 is commonly observed in human colon

cancers, and the JAK1/2-mediated activation of STAT3 is suggested to control key

events during early colonic tumorigenesis and its progression into malignant adenocar-

cinoma. According to a study by Xiong et al. (2008), the expression of active STAT3

increased from 26.7% in the normal epithelium to virtually 100% in adenocarcinomas

as determined by immunostaining. This was accompanied by an increase in pJAK2

staining from 46.7% to 81.6%, respectively. The authors further demonstrated that

JAK1, JAK2, and STAT3 are involved in controlling the growth, survival, and

metastatic capabilities of colorectal cancer cells. Beside these changes, a functional

loss of p53 is observed in the majority of colon cancers and has been shown to confer

resistance to irinotecan, a topoisomerase 1 inhibitor. On the other hand, irinotecan is

able to enhance TRAIL-induced apoptosis in a p53-independent manner, and this

cellular phenomenon is reported to be a consequence of an inhibition of JAK2/

STAT3/5 signaling which leads to reduced colon cancer metastases (Ravi et al.

2004). Finally, JAK2 is also implicated in mediating the growth-promoting anti-

apoptotic effects of the potent growth factor glycine-extended gastrin (G-Gly).

Overexpression of G-Gly in transgenic mice promotes colonic proliferation, and

colon cancers are known to upregulate G-Gly as part of an autocrine signaling
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mechanism (Koh et al. 1999; Stepan et al. 1999; Watson et al. 1999). According to a

study by Beales and Ogunwobi (2006), JAK2 is activated in response to G-Gly and

promotes the subsequent activation of AKT and STAT3. The authors suggested that

targeting G-Gly directly or through key signaling nodes (i.e. JAKs) might be a useful

approach for sensitizing colon cancers to chemotherapeutic agents. In a follow-up

study, Ogunwobi and Beales (2007) also found that JAK2, in conjunction with AKT

and STAT3, is required for the anti-apoptotic effects of leptin in colon cancers.

Collectively, signaling through JAK1 and JAK2 and possibly even JAK3 (Lin et al.

2005; Mori et al. 2005) regulates important biological events during colon cancer

initiation and progression, but it needs to be experimentally verified that JAKs are

genuine targets for colon cancer prevention and therapy.

Additional Human Cancer Types

There is emerging evidence from a number of recent reports that JAK/STAT signaling

plays a key role in the genesis of an even wider variety of malignant tumor subtypes

including cancers of the brain, cervix and ovary. For example, JAK2 and STAT5were

suggested to be constitutively active in most brain tumors compared to normal brain

tissue, which has a significantly lower activity of JAK2 and STAT5. This abnormal

stimulation of JAK2 and STAT5 was reported to be a consequence of both ligand-

dependent and ligand-independent mechanisms (Kondyli et al. 2010). Similar to

breast cancer, enhanced signaling through the EPO and IL-6 receptors play a key

role in cervical and ovarian cancers. Specifically, the EPO ligand and receptor are

expressed in 88% and 92% of cervical tumor samples, respectively (Leo et al. 2006).

In a new study, Sobti and colleagues (2010) observed a significant increase in

STAT5B expression in cervical tumors compared to nearly undetectable levels of

this signal transducer in normal tissues. The authors also reported that the expression

of STAT5B was associated with the severity of the disease. Finally, a recent study by

Colomiere et al. (2009) shows that ovarian cancers exhibit a significant increase in the

activity of JAK2 and STAT3 compared to normal tissues,whichwas reported to be the

consequence of receptor crosstalk between the EGFR and the IL6-R signaling through

JAK2 and STAT3 during the process of epithelial to mesenchymal transition

(Colomiere et al. 2009). Collectively, all these studies suggest that aberrant activation

of JAK/STAT signaling cascades seem to play important roles during particular stages

of disease initiation and malignant progression.

V. Targeting JAKs for the Prevention and Treatment of Cancers

The development of small molecular inhibitors against JAKs, in particular JAK2, to

treat myeloproliferative disorders (MPDs) and hematopoietic cancers invigorates

the concept to utilize these new agents for a pharmacological inhibition of Janus kinases

in solid cancers. There is also sufficient experimental evidence to suggest that some of

the newly developed drugs might be successful in future clinical settings. For example,
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JANEX-1, a small molecule inhibitor of JAK3, is reported to be effective in preventing

intestinal tumor development in the APCmin model for spontaneous intestinal adenoma

formation (Uckun andDibirdik 2010). This finding is encouraging since JAK3 has been

recognized as a poor prognostic indicator in colon cancer (Lin et al. 2005; Mori et al.

2005). However, this finding brings along with it a note of caution as systematic

inhibition of JAK3 can lead to severe combined immunodeficiency. Whether this or

similar compounds will be useful as a chemopreventive drugs remains to be seen as

these types of agents would have to be administered over long periods of time.

Currently, there are more than a dozen investigational studies underway to test putative

JAK2 inhibitors to treat MPDs (Geron et al. 2008; Pardanani 2008; Pardanani et al.

2010; Wernig et al. 2008). Among these agents, INCB018424 from Incyte might be of

interest for the treatment of solid cancer since this drug was reported to inhibit both

JAK1 and JAK2 that are often simultaneously hyperactive in solid cancers (Verstovsek

et al. 2010). Despite these advances, it still remains to be determined whether all these

new agents are genuine inhibitors that specifically target their corresponding Janus

kinase(s). Also, unlike MPDs and other hematopoietic malignancies that originate

through point mutations or structural abnormalities in the JAK2 gene, the vast majority

of solid cancers exhibit a constitutive activation of wildtype JAKs and STATs through

alternative mechanisms. Therefore, it might be unreasonable to expect that drugs

specifically designed to target the mutant JAK2 will have the same efficacy in the

treatment of solid cancers that exhibit an upregulation of active, wildtype Janus kinases.

Much of the work demonstrating the importance of JAK/STAT signaling in human

cancers has been performed using cancer cell lines by knocking down JAKs, STAT3,

and STAT5 or by utilizing various JAK inhibitors, which have been shown to alter

tumorigenic properties such as growth, survival, and invasion. While these studies

provide detailed insights into particular pathways that promotemalignant properties of

cancer cells, they do so under non-physiological conditions in primary or metastatic

cells. Specifically, the activation of Janus kinases in established cancers requires a

ligand-inducible stimulation of the JAK-associated hormone and cytokine receptors,

but there are known inter-species-related incompatibilities between growth factors

that can significantly alter the outcome of a preclinical study (Wagner et al. 2004). For

example, the hormone PRL is suggested to fuel the proliferation of breast cancer cells.

While some breast cancer cell lines might synthesize PRL as part of an autocrine loop,

the systemic hormone produced in the mouse failed to induce biologic responses

mediated by the human PRL receptor such as cell clustering, proliferation, and signal

transduction through STAT5, STAT3, ERK1/2, and AKT (Utama et al. 2006). Hence,

in order to adequately reflect the endocrine environment in breast cancer patients, it

would be necessary to “humanize” the recipient animal model through expression of

hormones and cytokines that activate their receptors and downstream JAKs and

STATs in a physiological manner.

Although the efficacy and specificity of putative JAK inhibitors remain to be more

thoroughly assessed in patients and animal models that permit an activation of JAKs

and STATs at physiologically relevant levels, there are appropriate genetic tools

available to date to examine whether particular JAKs and STATs are required for

disease initiation and progression. Specifically, conditional knockout mice for JAK2,
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STAT5, STAT3, and STAT1 are available (Krempler et al. 2004; Cui et al. 2004;

Takeda et al. 1998; Klover et al. 2010) that can be used to delete these signal

transducers in a temporally controlledmanner specificallywithin primary ormetastatic

cancer cells (i.e. following neoplastic transformation). In addition, transgenicmice that

express wildtype or hyperactive STAT5 under regulation of the tetracycline-controlled

transactivator have been generated (Creamer et al. 2010; Yamaji et al. 2009), and those

can now be used to downregulate exogenous STAT5 in solid tumors or hematopoietic

malignancies. Such an experimental design would address whether STATs that con-

tribute to neoplastic transformation are equally required for the maintenance of a

neoplasm. Based on these experimental concepts, Sakamoto and colleagues recently

discriminated the importance of JAK2 in mammary tumor initiation versus progres-

sion in two established breast cancer models (Sakamoto et al. 2009, 2010). Collec-

tively, the results of these two studies clearly show that the deletion of the Jak2 gene

from the mammary epithelium prior to tumor onset completely protected female mice

fromdevelopingmammary tumors in response to an overexpression of ERBB2 aswell

as PRL. This suggests that signaling through JAK2 in the cancer-initiating epithelial

subtype is required for neoplastic transformation, and therefore targeting JAK2 might

be a suitable strategy for cancer prevention. In principle, this experimental design is

similar to previous animalmodel studies on the basis of conventional knockoutmice to

assess the appearance of neoplasms in the absence of a gene-of-interest, for example

Stat5a or Cyclin D1 (Humphreys and Hennighausen 1999; Yu et al. 2001), and this

also includes models that co-express Cre recombinase and an oncogene such as

ERBB2 from a bicistronic construct in a conditional knockout background (Klover

et al. 2010; Ursini-Siegel et al. 2008). The lack of tumorigenesis in particular knockout

models, for example Cyclin D1 null mice (Yu et al. 2001), prompted the authors to

suggest that targeting these genes is therapeutically relevant to treat established

cancers. These conclusions are premature since these mice neither developed cancer

nor expressed the “therapeutic target” a single day in their lives (Matulka andWagner

2005). The use of the conditional JAK2 knockout mice has demonstrated that the

timing of the functional ablation of a gene is critical for its impact on tumorigenesis.

While the deletion of Jak2 prior to tumor initiation was protective against mammary

cancer, the ablation of this Janus kinase from fully neoplastic cells had no impact on

tumor cell survival and proliferation in vitro or in vivo (Sakamoto et al. 2009, 2010).

Collectively, both studies show that JAK2 is a moving target during neoplastic

progression, and the gain-of-function of other tyrosine kinases, in particular RTKs,

might substitute for the loss of JAK2 in particular tumor types. The role of JAK1 alone

or in combination with JAK2 in tumorigenesis still needs to be determined once a

conditional knockout mouse for JAK1 becomes available.

Concluding Remarks

Janus kinases have important functions in normal tissue homeostasis, and their

constitutive activation can promote neoplastic transformation and cancer progression.

Specifically, a sustained activation of Janus kinases 1 and 2 is commonly observed in a
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variety of solid human cancers. However, unlike hematopoietic malignancies that

originate through point mutations or structural abnormalities in the JAK2 gene, solid

cancers almost exclusively exhibit a hyper-activation of wildtype JAKs and STATs

through alternative mechanisms. These include the epigenetic silencing of negative

regulators of JAK/STAT signaling as well as an enhanced activation of Janus kinases

through aberrant autocrine stimulation of growth factors such as PRL, EPO, and IL-6.

Janus kinases and their associated STATs are an integral component of receptor

crosstalk in normal cells, and recent studies in genetically engineered models show

that their biological significance can change within signaling networks following

malignant transformation. The extent and type of receptor crosstalk that utilize

JAKs and STATs therefore not only depends on the cell type but also the stage of

neoplastic progression. This is one reason why JAKs can become moving targets for

chemoprevention and therapy. Due to the heterogeneity of solid cancers, the outcome

for a successful treatment of primary and metastatic tumors with JAK inhibitors

requires a stratification of cancer subtypes according to their molecular characteristics

that should not be restricted to gene expression profiles but rather include the activa-

tion of particular JAK/STAT pathways. First reports on the successful development of

JAK1/2 inhibitors and their use in the clinic to treat MPDs and other hematopoietic

malignancies are encouraging. The efficacy and specificity of these agents remain to

be thoroughly evaluated in patients with solid tumors or preclinical animal models for

human cancers. In addition, genetically engineered mice in which individual JAKs

and STATs can be deleted from normal and neoplastic cell types can be utilized to

address whether they are required for disease initiation and progression. They may

also determine whether targeting individual JAK/STAT signaling pathways are rele-

vant for the prevention and/or treatment of specific cancer subtypes.
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STAT1 and STAT3 Transcription Factors
in Inflammation-associated Colon Cancer

Paulina Rampetsreiter and Robert Eferl

Abstract

Inflammation is a strong promoter of colorectal cancer formation. Colorectal

tumor cells establish heterotypic interactions with inflammatory cells in the

stroma that are important for tumor angiogenesis and invasiveness. Recent

studies in genetically modified mice have identified transcription factors and

signaling networks that are implicated in these heterotypic tumor-stroma

interactions and modulate preconditions of tumor formation such as chronic

inflammation. Here, tumor-promoting and tumor-adverse effects of cytokine-

activated transcription factors STAT1 and STAT3 in inflammatory cells and

colorectal cancer cells are discussed.

Introduction

Colorectal Cancer (CRC) in Humans

Colorectal cancer (CRC) originates from the epithelial cells lining the colon or rectum

of the gastrointestinal tract and represents the third most common form of cancer

worldwide. The histopathological sequence of tumor progression has been well

defined which was mainly due to the easy accessibility and the frequent appearance
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of this tumor type. The most commonly used staging system is represented by the

TNMclassification defined by the American Joint Committee on Cancer (AJCC). The

criteria used by that classification comprise local invasiveness, presence of lymph

node metastases and far distant metastasis. Cancers that invade only the colonic

submucosa (TNM stage I) or the muscularis propria (TNM stage II) can be cured

with surgery. Prognosis is worse when these cancers spread to regional lymph nodes

(TNM stage III) but still >70% are curable by surgery and chemotherapy. However,

when cancers form far distant metastases (TNMstage IV), they are usually not curable

and chemotherapy can only extend survival (Markowitz and Bertagnolli 2009).

Genetic and Epigenetic Changes in CRC

The easy accessibility of CRC biopsy samples that represent different stages of tumor

development has greatly facilitated the identification of cell-autonomous tumor-induc-

ing genetic and epigenetic events. At early stages,mutations in adenomatous polyposis

coli (Apc) have been identified in ~90% of cases indicating that this gene encodes a

tumor suppressor whose deletion is an almost essential event for CRC formation. Apc

is also mutated in the germline of patients suffering from the inherited disease FAP

(familal adenomatous polyposis coli) that leads to development of thousands of

adenomatous polyps in the colon thereby increasing the risk for development of

CRC substantially (de Lau et al. 2007). Apc encodes a protein that is present in a

complex consisting of Axin, Glycogen synthetase kinase 3ß (GSK3ß) and ß-Catenin

and integrates Wnt signals from the cell surface. Loss of Apc results in ß-Catenin

stabilization and its constitutive presence in the nucleus where it associates and

activates transcription factors of the Lef/Tcf family (Korinek et al. 1997; Morin

et al. 1997). Wnt/ß-Catenin signaling is required for maintenance of mucosal integrity

and proper cell turnover in the intestine. Paneth cells at the bottom of the intestinal

crypts secreteWnts and other factors that are essential for Lgr5-positive intestinal stem

cells and activate ß-Catenin signaling (Sato et al. 2011). When the stem cell progeny

moves upwards the crypts, ß-Catenin activity decreases and cells differentiate into

intestinal cell lineages. Therefore, loss of Apc and constitutive presence of ß-Catenin

in the nucleus keeps intestinal epithelial cells in a proliferating undifferentiated state

(Sansom et al. 2004). In 10% of colon tumors, mutations in Apc can be replaced by

mutations in GSK3ß or activating mutations in ß-Catenin (de Lau et al. 2007;

Markowitz and Bertagnolli 2009). Additional mutations in these undifferentiated

cells promote further tumor progression. Most important are activating mutations in

K-ras that occur relatively early during tumor progression in ~50% of CRCs. Alterna-

tive mutations in B-raf have also been observed that are mutually exclusive with K-ras

mutations. During adenoma to carcinoma progression, upregulation of the cyclooxy-

genase 2 (COX2) gene is frequently observed. This gene encodes an enzyme that is

implicated in prostaglandin E biosynthesis, a known promoter of CRC formation. At a

later stage of CRC progression, loss of a chromosomal region on chromosome 18q that

harbours the gene for the TGFß signaling component Smad4 have been identified. The

importance of downregulation of TGFß signaling is further supported by alternative
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mutations in the genes for activin receptors or the TGFß receptor II. 50–70% of CRCs

harbour p53 mutations that occur at late stages of tumor development. It is likely that

these mutations prevent p53-induced apoptosis that is triggered by deregulated Wnt-

signaling. In some cases p53 is not mutated but the p53-targed geneBAX is, indicating

that BAX executes the p53-mediated apoptotic program in CRC cells (Markowitz and

Bertagnolli 2009). Moreover, p53 mutations might promote genomic instability in

CRC. Similarly, defects in the apparatus for DNA mismatch repair (MMR) are the

cause for CRC development in patients with the inherited disease HNPCC (hereditary

non-polyposis colon cancer). However, only about 20%ofCRCs are inheritedwhereas

the majority of cases develop without a familial basis (Rustgi 2007).

Relevance of Inflammation in CRC

Several risk factors for development of CRC have been identified. They include age,

presence of adenomatous polyps, presence of other cancers (ovary, uterus or breast in

women), heredity, smoking, diet, concentration of lithocholic acid (bile acid) in the

colon, presence of sclerosing cholangitis in the liver, low levels of selenium, estrogen

levels and most importantly presence of inflammatory bowel disease (IBD). Approxi-

mately 20% of human cancers are estimated to develop in close association with

chronic inflammation. Similarly, CRC can develop without overt inflammation or is

associated with inflammatory bowel disease (IBD). The latter subtype of CRC is

called colitis-associated cancer (CAC) and develops at high frequency in IBD patients

(Terzic et al. 2010). The pathological appearance and stages of tumor progression are

comparable between non-inflammatory CRC and CAC and they share similar tumor

cell-autonomous genetic changes. However, it has to be considered that CRCs that

developed in an environment without prominent inflammation display robust inflam-

matory infiltration of the tumor tissue and expression of pro-inflammatory cytokines.

Among innate immune cells present in CRCs are neutrophils, T-cells, dendritic cells

(DCs), natural killer cells (NKs), tumor-associatedmacrophages (TAMs) andmyeloid

derived suppressor cells (MDSCs). The latter represent a population of CD11b+ GR1+

cells that suppress immunologic anti-tumor responses. Cells of the adaptive immune

system such as B- and T-cells are also present (Terzic et al. 2010). Inflammation

promotes tumorigenesis but inflammatory infiltrates can also contain cells that execute

a profound anti-tumorigenic activity such as cytotoxic T-cells. Inflammation can

promote CRC formation in various ways. Inflammatory cells produce reactive oxygen

species (ROS) and cytokines that promote ROS production in tumor cells. ROS can

directly damage DNA leading to additional mutations (Terzic et al. 2010) or can

modify DNA mismatch repair enzymes at the protein level thereby increasing geno-

mic instability (Colotta et al. 2009). Moreover, cytokines and chemokines produced

by inflammatory cells can promote tumor cell proliferation, survival, tumor angiogen-

esis and suppress immunologic anti-tumor responses (Terzic et al. 2010). Most of

these cytokines are regulated by the transcription factors NFkB and STAT3 and

interfering with these factors in inflammatory cells might interfere with CAC forma-

tion which has been demonstrated for NFkB (Greten et al. 2004).
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Mouse Models for Intestinal Cancer

Genetic Models
Several genetic and chemical models have been employed to study intestinal cancer.

The most commonly used genetic models exploit the strong tumor-inducing potential

of Apc mutations upon loss of heterozygosity (Uronis and Threadgill 2009). The

ApcMin mutant allele was originally identified in a mouse mutagenesis screen. Since

then, many investigators have used ApcMin mice as an intestinal tumor model.

Unfortunately, this mouse model does not recapitulate the tumor location of humans

with non-hereditary CRCs and hereditary FAP where tumors develop predominantly

in the colon. Recently, the Pirc (polyposis in rat colon) rat CRCmodel was established

that is also based on a mutation in Apc (Amos-Landgraf et al. 2007). In Pirc rats,

tumors develop frequently in the colon thereby mimicking human CRC. In addition,

ApcMin mice die quite early due to intestinal blockage. Pirc rats live longer because

their intestinal diameter is larger than that of mice which extents the time frame for

investigation of tumor progression. Apart from the ApcMin mutation, other mutations

have been introduced into the Apc gene by homologous recombination. Mice

harbouring either the ApcD716 or Apc1638N mutant alleles also develop intestinal

tumors albeit at different frequency than ApcMin mice (Uronis and Threadgill 2009).

Apart from Apc mutants, mice deficient for mismatch repair (MMR) genes

Mhl1, Msh2 and Msh6 that represent a model for HNPCC develop intestinal cancer

(Uronis and Threadgill 2009). However, these mice develop also tumors in other

organs and have not been frequently used as intestinal tumor models. Similarly,

mice with genetic modifications that affect TGFß signaling develop intestinal

tumors but have also not been widely used as cancer models. Mice lacking

TGFß1 die postnatally because of severe inflammation but can be rescued in a

Rag2-deficient background where T- and B-cell functions are ablated. Combined

TGFß1�/� Rag2�/� mice develop tumors in the colonic and rectal regions. Mice

deficient in the TGFß signaling component SMAD3 develop also CRC that is even

metastatic. However, mutations in SMAD3 have not been reported in human CRCs

(where rather SMAD2 and SMAD4 are mutated). Moreover, the TGFß-induced

intestinal tumor models lack constitutive activation of the Wnt-signaling pathway

that is commonly observed in human CRC (Uronis and Threadgill 2009).

Chemical Models
Chemical CRC models have been developed that closely mimic location and

pathologic appearance of human CRC. A plethora of different carcinogens have

been employed for CRC induction (Rosenberg et al. 2009). Most frequently,

repetitive injections of Dimethylhydrazine (DMH) or its metabolite Azoxymethane

(AOM) are used. Importantly, these carcinogens lead to stabilizing mutations in the

gene for ß-Catenin thereby constitutively activating Wnt-signaling. The AOM/DSS

protocol is an extension of the AOM protocol and induces CAC. The protocol is

based on a single injection of AOM followed by repeated treatment of mice

with Dextransulfate (DSS) in the drinking water. DSS of the right molecular

weight induces a pronounced inflammation in the colon thereby promoting CAC
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formation. The AOM/DSS protocol has been employed in knock-out or conditional

knock-out mice to unravel important functions of transcription factors NFkB and

STAT3 in colorectal cancer (Bollrath et al. 2009; Greten et al. 2004).

Signaling by the Janus Kinase/Signal Transducer and Activator
of Transcription (JAK/STAT) System

STATs are cytoplasmic transcription factors that mediate signal transduction from

various growth factors and cytokines to the nucleus (Murray 2007). The sevenmembers

of the STAT family (STAT1–4, STAT5a, STAT5b and STAT6) share several struc-

tural domains (Fig. 1). Cytokine binding to corresponding cytokine receptors activates

associated JAKs (JAK1, JAK2, JAK3 or TYK2) that mediate receptor phosphorylation

thereby creating docking sites for the SH2 domains of STATs.Recruitment of STATs is

followed by STAT tyrosine and (in some cases) serine phosphorylation predominantly

by JAKs but also other closely associated kinases. After phosphorylation, STATs form
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Fig. 1 Domain structure of JAKs and STATs. (a) JAK proteins (JAK1, JAK2, JAK3, TYK2)

consist of 1,130–1,142 amino acid residues and contain seven JAK homology (JH1–7) regions that
are similar in sequence. The JH1 region corresponds to the kinase domain and contains a

regulatory tyrosine residue (Y). Moreover, a Pseudo-kinase domain (JH2), a SH2 domain

(JH3–4) and an N-terminal FERM domain are present in a typical JAK. The FERM domain acts

as a common membrane binding module that directly interacts with cytoplasmic domains of

cytokine receptors. (b) The seven STAT proteins (STAT1–4, STAT5a, STAT5b, STAT6) consist

of 748–851 amino acid residues and contain a coiled-coil domain for STAT dimerization, a DNA-

binding domain, a SH2 domain for interaction with tyrosine-phosphorylated proteins and a

transactivation domain. The latter contains regulatory tyrosine (Y) and serine (S) residues that

can be phosphorylated by JAKs. In the case of STAT1 and STAT3, alternative splicing generates

two isoforms (STAT1a/b, STAT3 a/b) that differ in the C-terminal transactivation domain
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homo- or heterodimers and migrate to the nucleus where they bind to promotors of

target genes. In addition to JAK/STAT activation, cytokine receptors can also activate

the MAP kinase cascade (Murray 2007).

Specific Cytokines Activate STAT1 and STAT3

STAT1 is predominantly activated by type I (a,b) and type II (g) interferons (IFN) via
JAK1, JAK2 or TYK2 and induces a cohort of genes that are often termed as “IFN

signature”. These STAT1 target genes are either regulated by the ISGF3 transcription

factor complex that contains STAT1, STAT2 and IRF9 or by STAT1 homodimers.

STAT1:STAT3 heterodimers have also been described but their physiological func-

tion remains unknown (Murray 2007). STAT3 is predominantly activated by

cytokines that bind a common gp130 receptor subunit that is associated with a specific

subunit. For example, IL-6-mediated STAT3 activation is mediated through IL-6R/

gp130 receptors that activate JAK1 or JAK2. Other STAT3 activating cytokines are

IL-10, IL-11, IL-22, Oncostatin M, LIF or CNTF. Moreover, STAT3 is activated by

receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) and non-

receptor tyrosine kinases such as Src (Murray 2007). The activity of STATs is

regulated by phosphorylation, methylation, acetylation, ubiquitinylation and

sumoylation. Tyrosine phosphorylation is the best understood modification which

mediates dimerization and localization to the nucleus. Crucial tyrosine residues for

STAT1 and STAT3 activation are located at positions 701 and 705, respectively, but

additional serine residues are also phosphorylated (Regis et al. 2008). However, non-

canonical functions of STAT1 and STAT3 have been described that do not depend on

tyrosine phosphorylation (Cheon et al. 2011). Negative regulation of STAT activity is

accomplished by various inhibitory factors and mechanisms. Most important are

proteins of the suppressor of cytokine signalling (SOCS) family that consists of

eight members (CIS and SOCS1–7). SOCS proteins are induced by cytokines thereby

establishing a negative feedback loop that keeps STAT activity under control. SOCS

members inhibit STAT activity by various molecular mechanisms and ensure that

cytokine signalling remains transient (Murray 2007).

STAT1 and STAT3 in Tumorigenesis

Expression and activity of STAT1 and STAT3 is perturbed in a wide range of

malignancies (O’Sullivan et al. 2007). Both transcription factors fulfil cell-autono-

mous functions in tumor cells and non-cell-autonomous functions in inflammatory

cells of the tumor stroma. Concerning tumorigenesis, cell proliferation and cell

survival, STAT1 and STAT3 are supposed to play opposing roles (Regis et al.

2008). Although STAT1 can support development of leukemia (Kovacic et al.

2006), it is generally considered to be a tumor suppressor since cancer incidence is

increased in STAT1-deficient mice upon loss of p53 or challenge with the carcinogen

Methylcholanthrene (MCA) (Shankaran et al. 2001). In contrast, STAT3 signaling is
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considered to promote tumorigenesis. It has been demonstrated that constitutive active

STAT3 can transform 3T3 fibroblasts and interference with STAT3 activity in

transplanted tumors reduced tumor load (Bromberg et al. 1999). STAT3 is a promoter

of tumor cell proliferation and survival which is reflected by the spectrum of target

genes that are either activated or repressed by STAT3. Consistent with their tumor-

suppressive and tumor-promoting functions, STAT1 is frequently downregulated

whereas STAT3 is often constitutively activated in many tumors (Yu et al. 2007).

The dual function of STAT1 and STAT3 in tumor cells and inflammatory

stromal cells is linked by paracrine tumor-stroma interactions. For example,

many cytokines, chemokines and growth factors such as IL-6 or IL-1b are produced

by tumor cells in a STAT3-dependent manner (Yu et al. 2009). These factors in turn

activate STAT3 in stromal cells that also start to produce STAT3-activating

cytokines thereby establishing a positive feedback loop between tumor cells and

cells in the tumor microenvironment (Yu et al. 2007).

STAT1 and STAT3 in Intestinal Cancer

STAT1 in Intestinal Cancer

STAT1 is considered to be a tumor suppressor that could interferewith CRC formation

by at least two distinctmechanisms: (1) STAT1 promotes anti-tumorigenic activities of

inflammatory stromal cells. (2) STAT1 integrates anti-proliferative and pro-apoptotic

IFN signals in a cell-autonomous manner in tumor cells (Fig. 2). The function of

STAT1 in immunological tumor defence could already counteract early stages of

colorectal tumors in IBD patients. IBD is characterised by the increased expression

of pro-inflammatory cytokines that include TNF-a, IL-6 and IFN-g, a potent inducer of
STAT1 phosphorylation. Consistently, STAT1 was found upregulated in mucosal

samples of patients with ulcerative colitis and Crohn’s disease and IHC analysis

demonstrated that pY-STAT1 (STAT1 phosphorylated at tyrosine 701) was present

predominantly in monocytic and neutrophilic cells of the inflamed mucosa (Schreiber

et al. 2002). However, upregulation of STAT1 activity in inflammatory cells does not

only promote immune-mediated anti-tumorigenic effects but also aggravates the

severity of inflammation. The latter is due to the pro-apoptotic activity of STAT1

that leads to tissue damage and by regulating genes that are important for immune cell

recruitment and activation such as ICAM1andCXCL10 (Regis et al. 2008). Thismight

suggest that STAT1 is not exclusively tumor-suppressive but could also promote

formation of CRCs by its pro-inflammatory activity. Similarly, STAT1 can regulate

gene expression in immune cells that support tumor formation by paracrine

mechanisms. For example, TAMs produce IL-1ß in a STAT1-dependent manner that

acts on colon cancer cells and promotes nuclear localization of ß-Catenin (Kaler et al.

2009). The pro-inflammatory role of STAT1 is supported by the observation that DSS-

induced colitis is reduced in STAT1�/�mice (Bandyopadhyay et al. 2008). Moreover,

reduction of the gene dosage of SOCS1, a potent inhibitor of STAT1 activity, in

SOCS1+/� mice resulted in more severe DSS-induced colitis than in SOCS1+/+ mice
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(Horino et al. 2008). Conditional inactivation of SOCS1 in T-cells phenocopied this

effect indicating that STAT1 might promote the severity of DSS-induced colitis via

T-cell activation. Consistently, STAT1 is required for development and function of

Th1 lymphocytes (Agnello et al. 2003) suggesting that this transcription factor is a

central mediator of inflammatory responses. Recent evidence has suggested an alter-

native non-canonical signalingmechanism for STAT1 that does not depend on STAT1

tyrosine phosphorylation (unphosphorylated STAT1 or U-STAT1) (Cheon et al.

2011). It remains to be determined which immune-regulatory functions depend on

canonical or non-canonical STAT1 signaling. STAT1 can also induce tumor cell

autonomous defence mechanisms. Tumors that are insensitive to IFN-g can more

potently evade defence mechanisms than IFN-g-sensitive tumors (Klampfer 2008).

Activation of STAT1 by IFN induces expression ofMHC class I and class II molecules

thereby promoting recognition of tumor cells by the immune system (Regis et al.

2008). Consistently, a correlation between nuclear localization of STAT1,MHCclass I

expression and T-cell infiltration was established in human colorectal tumors that can

be used as a biomarker for prognosis of patient survival (Simpson et al. 2010).

The anti-proliferative and pro-apoptotic activities of IFNs in tumor cells are

integrated by activated STAT1. Among STAT1 target genes that mediate these effects

are cyclins, p21, p27, c-myc, IRF-1, caspases, Fas, FasL, TRAIL, KILLER/DR5,

mdm2, iNos, bcl-xL and bcl-2 (Klampfer 2008; Regis et al. 2008). These genes are
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Fig. 2 Functions of STAT1 and STAT3 during colorecal tumor progression. A normal colonic

crypt, a colonic crypt with inflammation and an altered cellular focus (ACF), an adenoma and a

carcinoma is shown. Up- or down regulation of STAT1 and STAT3 in the colonic mucosa,

microenvironment and tumor cells are indicated. Cytokines that activate STAT1 and STAT3 are

produced during inflammatory conditions. However, tumor cells employ different mechanisms to

shut down IFN/STAT1 signals. Important STAT target genes or protein-protein interactions and

their effects on colorectal tumor formation are indicated in the tables above
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either activated or repressed by STAT1. Two important STAT1 target genes that

repress or promote tumor cell proliferation are p21 and c-myc, respectively. The p21

gene harbours multiple STAT1 binding sites in its promoter. Consistently, ablation of

STAT1 impedes p21 induction in response to various agents that inhibit cell cycle

progression. The importance of p21 for intestinal tumorigenesis has been

demonstrated in the Apc1638N and AOM/DSS-induced mouse models for intestinal

cancer (Poole et al. 2004; Yang et al. 2001) which displayed enhanced tumor

formation in a p21-negative genetic background. In contrast to p21, c-myc expression

is negatively regulated by STAT1. Interestingly, IFN-g signalling inhibits c-myc

expression in the presence of STAT1 but activates c-myc and promotes cell prolifera-

tion in the absence of STAT1 (Klampfer 2008). This indicates that STAT1 represents

a molecular switch that modulates the outcome of IFN signals on c-myc expression.

In addition to its anti-proliferative effect, STAT1 is a mediator of IFN-induced

apoptosis. Similar to the molecular switch function during regulation of c-myc

expression, the outcome of IFN-g-induced apoptosis depends on the presence or

absence of STAT1. Colon cancer cells with intact STAT1 respond to IFN-g with

apoptosis whereas the same signal promotes proliferation in the absence of STAT1

(Klampfer 2008). Activation of caspase and TRAIL expression as well as repression

of bcl-xL and bcl-2 expression may at least in part underlie the pro-apoptotic activity

of STAT1. Moreover, STAT1 can regulate apoptosis by non-transcriptional

mechanisms via protein-protein interactions with TNFR1 and TRADD or interaction

with p53 thereby modulating DNA damage-induced apoptosis (Regis et al. 2008).

However, under certain circumstances STAT1 can also protect from apoptosis which

results in higher resistance of tumor cells towards chemotherapy. A protective func-

tion of STAT1 has been described in radiation-induced cell death, cisplatin-induced

DNA damage and cell death induced by HDAC inhibitors (Klampfer 2008).

Consistent with the anti-proliferative and pro-apoptic activities of IFN/STAT1

signals, tumor cells try to escape this pathway and acquire resistance by different

means. Some tumor cells downregulate IFN-g receptors whereas others have deleted

the genomic IFN-g locus. Alternatively, STAT1 activity or the activity of other factors
implicated in IFN signalling can be downregulated by DNA methylation in tumors

making them refractory to IFN signals (Klampfer 2008). Sometimes, IFN/STAT1

target genes are silenced bymethylation. For example, IRF8 expression is silenced by

DNA methylation in human colon carcinoma cells (McGough et al. 2008). Impor-

tantly, downregulation of IRF8 correlated with the metastatic phenotype of human

CRCs. The expression of IRF8 is induced by IFN-g and STAT1. However, binding of
STAT1 to the IRF8 promoter is not prevented by methylation. Instead, the PIAS1

protein is recruited to the methylated IRF8 promoter which is a potent inhibitor of pY-

STAT1 (McGough et al. 2008). Methylation as a mechanism to downregulate STAT1

expression has also been demonstrated inHT29 colon carcinoma cells. Reactivation of

STAT1 expression by the demethylating agent 5-Aza-2-deoxycytidine restored sensi-

tivity of HT29 cells to IFN-a (Klampfer 2008). Recently, mir-145 microRNA-

mediated downregulation of STAT1 expression has been reported in colon cancer

suggesting alternative mechanisms to DNAmethylation-induced silencing of STAT1

(Gregersen et al. 2010). Interestingly, another mechanism that interferes with STAT1
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activity has been linked to oncogenic K-ras. In colon cancer cell lines that harbour

mutantK-ras, expression of STAT1 and corresponding target geneswas reducedwhen

compared to colon cancer cell lines without K-ras mutations. This was due to K-ras-

mediated interference with STAT1 transcription. Consistently, colon cancer cell lines

harbouring oncogenic K-ras mutants are less sensitive to IFN-g than cell lines without
K-ras mutations. Among the various downstream effector pathways that are activated

by oncogenic K-ras, the PI3K andMAPK pathways have been shown to interfere with

JAK/STAT signalling and are therefore possible candidates for K-ras-mediated

downregulation of STAT1 (Klampfer 2008).

Despite the predicted function of STAT1 as a tumor suppressor in CRC,

experiments in genetically modified mouse models have given contradictory

results. Tumor formation was not altered in STAT1-deficient ApcMin mice when

compared to STAT1-proficient ApcMin controls (Liddle and Frank 2008). More-

over, spontaneous formation of CRC has been observed in SOCS1�/� mice that

were rescued from perinatal lethality by transgenic reconstitution of SOCS1 expres-

sion in T- and B-cells (SOCS1-deficient mice die at birth because of hyperactive

lymphocytes). Genetic experiments demonstrated that tumor formation was IFN-g-
dependent and coincided with strong activation of STAT1 in the colonic epithelium

(Hanada et al. 2006). Therefore, additional studies in mice with conditional deletion

of STAT1 in the intestinal epithelium and individual inflammatory cell types of the

tumor stroma are required to define its function in intestinal tumorigenesis.

STAT3 in Intestinal Cancer

STAT3 is strongly activated in the inflamed mucosa and inflammatory cells of

human IBD patients and DSS-treated mice (Klampfer 2008). However, activation

of STAT3 does not necessarily support inflammation but might represent a negative

feedback mechanism that limits inflammation (Fig. 2). This has been demonstrated

by several experiments in genetically-modified mice. Conditional ablation of

STAT3 in macrophages or the whole hematopoietic system using LysMCre or

MxCre mice, respectively, led to severe immune-mediated colitis (Alonzi et al.

2004; Takeda et al. 1999). STAT3 is a downstream component of anti-inflamma-

tory IL-10 signaling in myeloid cells thereby limiting inflammation. Moreover,

activation of IL-10/STAT3 can directly inhibit IFN-induced gene expression

through downregulation of STAT1 activity which represents an antagonistic link

between STAT3 and STAT1 in inflammation (Regis et al. 2008).

Similar to inflammation, STAT3 and STAT1 might have opposite activities in

tumor defence. Cancer cells exploit the ability of STAT3 to induce expression of

several anti-inflammatory cytokines including VEGF and IL-10 that interfere with

the functional maturation of dendritic cells. In addition, STAT3 represses the

expression of pro-inflammatory cytokines and chemokines such as IFN-g, TNF-a,
IL-6 and IP-10 in tumor cells that can activate the innate immune system and

tumor-specific T-cell responses (Klampfer 2008; Regis et al. 2008). Moreover,

tumor transplantation experiments have demonstrated that ablation of STAT3 in

298 P. Rampetsreiter and R. Eferl



the hematopoietic compartment triggers an intrinsic immune defence system that

inhibits tumor growth and metastasis. Tumor-bearing mice with STAT3-deficient

hematopoietic cells displayed enhanced anti-tumorigenic functions of DCs, T-cells,

NKs and neutrophils. Blocking STAT3 with a small-molecule inhibitor induced

T-cell- and NK-dependent growth inhibition of established tumors that were

otherwise resistant to direct killing by the drug (Kortylewski et al. 2005). These

data indicate that STAT3 interferes with immunological tumor defence by tumor

cell-autonomous and non-cell-autonomous mechanisms.

In contrast to STAT1, STAT3 is considered to act as an oncogene in intestinal

tumor cells. This has been demonstrated in colon cancer cell lines such as SW480

and HT29 that underwent apoptosis and cell cycle arrest upon inhibition of STAT3

which was associated with downregulation of Bcl-2 family members and

upregulation of p21. Similarly, colon cancer xenografts displayed reduced prolifer-

ation and tumor growth upon inhibition of STAT3. In primary human CRCs,

STAT3 has been shown to be activated at the protein level by tyrosine phosphory-

lation or at the DNA level by increased gene transcription (Klampfer 2008). Further

analyses are needed to investigate if STAT3 can promote CRC formation by non-

canonical mechanisms that depend on unphosphorylated rather than tyrosine

phosphorylated STAT3 (U-STAT3) or on STAT3 that is located in the

mitochondria (Gough et al. 2009; Yang et al. 2007).

Direct evidence for the requirement of IL-6 and STAT3 in colon cancer came

from tumor studies in IL-6�/�mice and mice with conditional deletion of STAT3 in

the intestinal epithelium (STAT3DIEC). Both types of mice displayed reduced

tumorigenicity in response to AOM/DSS when compared to corresponding

controls. These studies have also demonstrated that STAT3 activity is implicated

in tumor initiation of colitis-associated cancer since it promotes mucosal healing

after inflammatory tissue damage (Bollrath et al. 2009; Grivennikov et al. 2009).

Cells in the tumor microenvironment such as myeloid cells or T-cells are a major

source for the potent STAT3 activator IL-6. T-cells seem to produce IL-6 in a

TGFß-dependent manner (TGFß being a negative regulator of IL-6 production)

thereby increasing the levels of pY-STAT3 in tumor cells and promoting

tumorigenesis by a paracrine mechanism (Becker et al. 2004). Similarly, condi-

tional inactivation of SOCS3, a potent negative regulator of STAT3 activity, in the

intestinal epithelium promoted AOM/DSS-induced colon cancer formation that

was associated with increased STAT3 activity (Rigby et al. 2007).

The oncogenic potential of STAT3 in colon cancer can be explained by regulation of

target genes that modulate intestinal tumor formation but also by post-transcriptional

mechanisms. Inhibition of STAT3activity has been shown to induce export of ß-Catenin

from the nucleus to the cytoplasm by an unknown mechanism thereby interfering with

Lef/Tcf-regulated gene expression (Kawada et al. 2006). However, a more recent report

has shown that ApcMin-induced intestinal tumors lacking STAT3 displayed a more

pronounced nuclear localization of ß-Catenin than STAT3-proficient tumors that was

associated with downregulation of the cell adhesion molecule CEACAM1 (Musteanu

et al. 2010). These data indicate that STAT3 can positively or negatively modulate

nuclear localization of ß-Catenin by signals that have not yet been identified.
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Besides these post-transcriptional mechanisms, STAT3 can directly regulate

many genes implicated in cell survival and cell proliferation. Constitutive STAT3

activity leads to upregulation of Bcl-xL, survivin, Mcl1, c-myc or D-type cyclins,

thereby inhibiting apoptosis and promoting cell proliferation. STAT3 can also

modulate p53 signals. STAT3 can directly bind to the p53 promoter, thereby

repressing p53 expression and keeping the pro-apoptotic activity of p53 under

control. Moreover, IL-22-induced induction of iNOS expression depends on

STAT3 suggesting that STAT3 regulates NO production in CRCs (Klampfer

2008; Regis et al. 2008).

Immunohistochemistry identified activated pY-STAT3 (STAT3 phosphorylated

at tyrosine 705) in 12.5% of human colonic adenomas and 72.7% of carcinomas

suggesting that STAT3 is not only implicated in growth but also in progression of

colorectal tumors. Moreover, the intensity of pY-STAT3 signals correlated posi-

tively with tumor invasiveness. pY-STAT3 was not only found in colonic tumor

cells but also in infiltrating lymphocytes present in the tumor stroma (Huang 2007;

Klampfer 2008). The stromal compartment of intestinal tumors might be the source

of cytokines that activate STAT3 in tumor cells. This is suggested by the observa-

tion that isolated colonic cancer cells cultured in vitro without tumor stroma

frequently lost persistent STAT3 activity (Corvinus et al. 2005). Several molecular

mechanisms have been described that might contribute to STAT3-mediated pro-

gression of colorectal tumors. STAT3 regulates expression of matrix metallopro-

teinases MMP-1, MMP-3 and MMP-9 thereby increasing the invasive potential of

colon cancer cells (Tsareva et al. 2007). Moreover, STAT3 is a downstream

signaling component of VEGF and regulates expression of trefoil factor 3 (TFF3)

which is involved in proliferation, survival and invasiveness of colon cancer cells

(Rivat et al. 2005). However, the positive implication of STAT3 in colorectal

cancer progression and invasiveness is not unambiguous. A recent report has

described a significantly improved survival of CRC patients with strong pY-

STAT3 levels in tumors (Monnien et al. 2010). Moreover, deletion of STAT3 in

the intestinal epithelium of ApcMin mice resulted in a higher percentage of

carcinomas that displayed a more aggressive invasive behaviour when compared

to STAT3-proficient control mice. Strikingly, the few carcinomas that developed in

STAT3-proficient controls showed downregulation of pY-STAT3 at the invasive

front into the muscularis mucosa indicating that STAT3 is a negative regulator of

intestinal tumor invasion (Musteanu et al. 2010). Therefore, additional studies are

needed to better define oncogenic and anti-oncogenic activities of STAT3 in CRC.

STAT1/STAT3 Functional Interaction and Interference

The antagonistic activities of STAT1 and STAT3 in inflammation, tumor defence,

apoptosis and proliferation are not considered as independent entities but rather as

mutually interfering interactions. This is not only due to the possible formation of

STAT1:STAT3 heterodimers but also due to shared signaling pathways for STAT

activation. The latter are of particular importance when STAT1 or STAT3 activities
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are selectively ablated. For example, deletion of STAT1can switch the pro-apoptotic and

anti-proliferative activities of IFNs to survival and proliferation signals in various cell

types such as mouse embryonic fibroblasts (MEFs), bone marrow-derived macrophages

or T-cells. This functional switch is at least in part due to aberrant activation of STAT3

by IFN signals that only occurs in the absence of STAT1. In contrast, STAT1 can be

activated by gp130-inducing signals when STAT3 is ablated. For example, STAT3-

deficient fibroblasts respond to IL-6 with substantial STAT1 activation that results in

unusual IL-6-mediated activation of IFN responsive genes. This mutual interplay

explains the differential response of cells with selective ablation of STAT1 or STAT3

to corresponding activating signals. Therefore it is not surprising that several pathologi-

cal conditions are associated with unbalanced expression or activation of STAT1 and

STAT3 (Regis et al. 2008). The molecular mechanisms that underlie the reciprocal

influence of STAT1 and STAT3 activation is still a matter of debate but competition for

common cytokine receptors, the implication of SOCS proteins and the mutual inactiva-

tion of STATs by sequestering in STAT1:STAT3 heterodimer complexes have been

suggested (Murray 2007). Therefore, it has to be considered that application of a drug

specific for STAT1 might have a profound effect on STAT3 activity and vice versa.

Concluding Remarks

Inflammatory conditions and ensuing accumulation of gp130 cytokines and

interferons activate STAT transcription factors in colorectal cancer cells and stromal

cells. Some of these events promote CRC formation, others (e.g. STAT1 activation in

tumor cells)might interferewith tumor growth.However, the overall beneficial effects

of inflammation and STAT activation encourages cancer cells to arrange with and to

counterselect against adverse effects by various genetic and epigenetic mechanisms.

Moreover, tumor-promoting and tumor-adverse functions of STATs might change

with the progression stage of colorectal cancers. The dual activity of STATs in stromal

and tumor cells, potential adaptive mechanisms against adverse STAT effects and

progression-specific requirements for STATs should be taken into account before

therapeutic application of JAK/STAT inhibitors.
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Universal and Specific Functions of STAT3
in Solid Tumours

Lidia Avalle*, Gabriella Regis*, and Valeria Poli

Abstract

STAT3 is constitutively activated in a high percentage of tumours and tumour-

derived cells of both liquid and solid origin, often correlating with aggressive

disease and bad prognosis. Persistent STAT3 activity, to which tumours often

become addicted, is mostly due to the aberrant activation of pro-oncogenic/pro-

inflammatory signals that can trigger its phosphorylation, such as oncogenes,

growth factor receptors and cytokines. Among STAT3-mediated functions are

increased survival and proliferation, enhanced angiogenesis, motility and inva-

sion, and down-modulation of anti-tumour immune responses. Moreover,

STAT3 was recently shown to play unexpected roles in regulating cell metabo-

lism and mitochondrial activity via both transcriptional and non-transcriptional

mechanisms. Here, we review the main knowledge about the role of STAT3 in

solid tumours, with a particular focus on breast cancer and our recent work with

mouse models.

Introduction

Signal Transducers and Activators of Transcription (STAT) factors mediate the

signalling downstream of cytokine and growth factor receptors, and often their

activity is deregulated in cancer (Turkson and Jove 2000; Siddiquee et al. 2007).

Once activated by tyrosine-phosphorylation via receptor-associated JAK kinases,
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STATs form parallel dimers that concentrate into the nucleus regulating the

expression of target genes (Schindler et al. 2007). The family member STAT3

can be activated by a wide variety of cytokines and growth factors (e.g. IL-6

family, leptin, IL-12, IL-17, IL-10, Interferons, G-CSF, EGF, PDGF) and by a

number of oncogenes such as Src, Abl, Sis, Fps, Ros, Met and ErbB2 (Turkson

and Jove 2000). Accordingly, STAT3 is found to be constitutively tyrosine-

phosphorylated in a high percentage of tumours and tumour-derived cell lines

of both liquid and solid origin, which often become addicted to its activity for

continuous survival and growth (Yu et al. 1995; Turkson and Jove 2000;

Kortylewski et al. 2005; Siddiquee et al. 2007), and is considered a good target

for anti-cancer therapy. Indeed, STAT3 tyrosine phosphorylation and consequent

transcriptional activation was shown to be required for cell transformation

downstream of several oncogenes, the prototype being v-Src (Yu et al. 1995;

Bromberg et al. 1998; Silva 2004). Although a unique core activity determining

addiction to STAT3 by a wide spectrum of biologically distinct tumors has still

not been identified, STAT3-mediated gene expression signature is mostly con-

sistent with tumour cell survival and proliferation (Pensa 2008; Yu et al. 2009).

In addition, STAT3 constitutive activity in tumour cells can down-modulate anti-

tumour immune responses (Yu et al. 2009) as well as promote tumour angiogen-

esis (Niu et al. 2002a). STAT3 can also regulate cell movement, contributing to

cytoskeleton reorganization and controlling cell adhesion properties, and is

thought to play a role in tumour invasion and metastasis by inducing the

expression of matrix metalloproteinases (MMP) and promoting the epithelial to

mesenchymal transition (EMT) (Pensa 2008; Yu et al. 2009). Finally, recent

work has shown that STAT3 acts as an important regulator of cell metabolism,

promoting aerobic glycolysis and downregulating mitochondrial activity via its

canonical, nuclear functions (Demaria et al. 2010) while preserving mitochon-

drial respiratory activity via mitochondrial localization of its serine-

phosphorylated form (Gough et al. 2009; Wegrzyn et al. 2009). Both activities

contribute to tumor transformation downstream of distinct signals, which pro-

mote STAT3 phosphorylation on either tyrosine or serine. The pro-oncogenic

role of STAT3 was first directly demonstrated in vitro by the finding that

overexpression of the constitutively active mutant form STAT3C can transform

fibroblasts and epithelial cells (Bromberg et al. 1999; Dechow et al. 2004)

followed by in vivo experiments in transgenic or knock-in mice demonstrating

oncogenic potential in the lung, skin and breast (Li et al. 2007; Chan et al. 2008;

Barbieri et al. 2010a).

Many aspects of STAT3 biology in tumours have been extensively reviewed.

Here, we chose to summarize the main knowledge about the role of STAT3 in solid

tumours, with a particular focus on breast cancer and our recent work with mouse

models (Barbieri et al. 2010a, b; Demaria et al. 2010).

The solid tumours where STAT3 has been found to be constitutively active,

as well as its main functions and target genes are sketched in Table 1 and

detailed below.
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Epidermal Non-Melanoma Tumours

STAT3 constitutive activation was observed in several types of human epidermal

non melanoma cutaneous tumours, correlating with poor differentiation, tumour

invasion and metastasis in clinical samples of cutaneous squamous cell carcinoma

(SCC) (Suiqing et al. 2005). STAT3 involvement with metastatic potential was also

confirmed in xenograft experiments of basal cell carcinoma cells (BCC) over-

expressing IL-6, where IL-6-mediated angiogenesis supported tumour development

in part via STAT3 activation (Jee et al. 2004).

The two-stage chemical carcinogenesis model is considered a good model of

epithelial carcinogenesis, recapitulating the different phases from tumor initiation to

progression (Chan et al. 2004a). The first experimental evidence that STAT3 activa-

tion is required for epithelial tumorigenesis in vivo was obtained using this model,

where STAT3 ablation in keratinocytes completely abrogated skin tumour develop-

ment (Chan et al. 2004b). STAT3-deficient keratinocytes were more sensitive to

DMBA-induced apoptosis and STAT3 inhibition with an oligonucleotide decoy

injected into primary skin papillomas led to significant reduction of tumour volume.

STAT3was also implicated in ultraviolet B (UVB)-induced skin carcinogenesis by the

observation that UVB irradiation promoted proliferation and survival of keratinocytes

via STAT3 activation (Sano et al. 2005). Conversely, transgenic mice overexpressing

the constitutively active form STAT3C in keratinocytes developed skin tumours with

a shorter latency and in greater number compared to non-transgenic mice (Kim et al.

2007; Chan et al. 2008). STAT3C acted in both tumour initiation and promotion by

upregulating genes involved in survival, proliferation, angiogenesis and metastasis.

One key step in STAT3-mediated epithelial tumorigenesis may be the induction of

Bcl-xL, which plays a fundamental role in early skin carcinogenesis by enhancing

survival of keratinocyte stemcells in the bulge region of the hair follicle,wheremutations

are believed to arise during the initiation stage andwhose clonal expansion occurs during

tumour promotion, as shown by studies in Bcl-xL deficient mice (Kim et al. 2009).

Melanoma

STAT3 is constitutively active in the vast majority of melanoma tumours and cell

lines (Niu et al. 2002a), most often downstream of activated c-Src (Kortylewski

et al. 2005), where it favours proliferation, escape from apoptosis and angiogenesis

via induction of Bcl-xL, Mcl1 and VEGF (Niu et al. 2002a; Xie et al. 2006). STAT3

activation is apparently crucial to promote the metastatic process in melanoma,

through direct upregulation of MMP2, VEGF and bFGF expression (Xie et al. 2004,

2006). STAT3 activation was shown to promote an immunosuppressive environ-

ment leading to impaired dendritic cell (DC) maturation and tumour-specific T cell

response in melanoma B16 cells (Wang et al. 2004). Accordingly WP1066, a

STAT3 inhibitor that blocks melanoma cells growth, was found to interfere with

melanoma brain metastasis by inhibiting the production of immunosuppressive

cytokines such as TGF-b, MCP1, RANTES and VEGF by tumour cells, thus

310 L. Avalle et al.



enhancing cytotoxic T lymphocyte responses and inhibiting T regulatory (Treg)

cells differentiation (Kong et al. 2008).

Head and Neck Cancer

STAT3 constitutive activation has been observed in 40–80% of human head and

neck squamous cell cancer (HNSCC), correlating with poor prognosis and with

proliferation and apoptosis resistance via induction of cyclin D1, Bcl2 and Bcl-xL

expression (Masuda et al. 2002b; Nagpal et al. 2002). Apoptosis could be reinstated

and tumour growth blocked by inhibiting STAT3 activity (Leong et al. 2003; Jing

et al. 2006). Therapeutic blockade of STAT3 activity also resulted in impaired

angiogenesis due to direct STAT3-mediated regulation of VEGF expression

(Masuda et al. 2007). STAT3 activation occurring upon EBV infection or

deregulated EGFR signalling in nasopharingeal cancer promotes anchorage-inde-

pendent growth and invasion (Lui et al. 2009; Wheeler et al. 2010). High STAT3

phosphorylation levels in cells from HNSCC patients are associated with the

expression of CD44 and aldehyde dehydrogenase 1 (ALDH1) stem cell markers

and with typical features of Cancer Stem Cells (CSCs) such as high tumorigenicity,

radioresistance, expression of the stemness markers Bmi, Oct4 and Nanog and of

the EMT genes Snail and Twist (Chen et al. 2008b). STAT3 inhibition in these cells

reinstated responsiveness to chemotherapy, favoured differentiation and impaired

tumorigenesis and metastasis formation (Chen et al. 2008b). Moreover, anti-tumour

immune responses were affected, with enhanced production of proinflammatory

cytokines and chemokines which, in turn, triggered DC activation and lymphocytes

migration and prompted anti-tumour immune response (Albesiano et al. 2010).

Colorectal Carcinoma

STAT3 constitutive activity was observed in colorectal carcinoma cells in about 50%

of clinical samples (Kusaba et al. 2005, 2006), correlating with proliferation and

tumour growth rate (Becker et al. 2005; Corvinus et al. 2005), and with tumour

invasion, lymph node metastasis and poor prognosis (Kusaba et al. 2005, 2006).

STAT3-related enhanced invasiveness correlates with strong expression of the

MMP1, -3, -7, and -9. MMP1 and MMP3 are direct STAT3 targets, and activated

STAT3 colocalizes with MMP1 in tumour specimens (Tsareva et al. 2007). Impor-

tantly, both NF-kB and STAT3 activation have been shown to be crucial for inflam-

mation-driven colon carcinogenesis (Greten et al. 2004; Bollrath et al. 2009;

Grivennikov et al. 2009). NF-kB activation in myeloid cells drives IL-6 expression,

whose levels are indeed increased in patients serum, and in turn IL-6 is responsible for

STAT3 constitutive activation in colon tumour cells, a paradigm that is thought to hold

true for several other inflammation-related tumours (Grivennikov and Karin 2010).

Mice lacking STAT3 in intestinal epithelial cells (IECs) showed an almost com-

plete protection from the development of the AOM/DSS model of colitis-associated
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cancer (CAC), correlating with decreased epithelial proliferation and enhanced sensi-

tivity to treatment-induced apoptosis (Bollrath et al. 2009; Grivennikov et al. 2009).

However, the role of STAT3 in colon tumorigenesis appears to be context-dependent,

as we have recently shown in ApcMin mice that this factor promotes early

tumorigenesis steps but impairs tumour progression at later stages, via regulation of

the adhesion molecule CEACAM1 (Musteanu et al. 2010).

STAT3-mediated immune suppression was shown to play an important role in

colon cancer cells (Nefedova et al. 2004; Wang et al. 2004), where tumour-derived

factors, inducing STAT3 activation in infiltrating immature myeloid cells,

prevented their differentiation into mature dendritic cells (Nefedova et al. 2004).

Other Tumours of the Gastrointestinal Tract

STAT3 constitutive activation plays a role in several other tumours that develop in

the gastrointestinal tract. In hepatocellular carcinoma (HCC) its activity is often

induced by HCV infection or IL-6 and other inflammatory cytokines and drives

tumorigenesis by promoting proliferation, survival (via Bcl-xL and cyclin D1

induction) and anchorage-independent growth (Yoshida et al. 2002; He et al.

2010). STAT3 inhibition in HCC cells impaired growth, angiogenesis and metasta-

sis while enhancing apoptosis and sensitivity to chemotherapy (Li et al. 2006;

Choudhari et al. 2007; Sun et al. 2008).

Constitutively activated STAT3 is widely observed also in pancreatic cancer,

often downstream of IL-6 or G-CSF, promoting tumour cell growth, metastasis and

angiogenesis (Wei et al. 2003) and impairing dendritic cells differentiation and

activation (Bharadwaj et al. 2007).

STAT3 phosphorylation is relatively infrequent in gastric carcinoma, but when

present it correlates with tumour cell proliferation, survival and angiogenesis via

induction of Bcl2, VEGF and survivin expression (Kanda et al. 2004; Choi et al.

2006). The analysis of human gastric cancer specimens identified correlations

between STAT3 activation and lymph node metastasis (Deng et al. 2010). More-

over, STAT3 uncontrolled activity can lead to gastric cancer, as shown by the

spontaneous development of gastric carcinomas following disruption of the integ-

rity of mucosal epithelium in gp130 knock-in mutant mice (gp130757F) that are

unable to respond to SOCS3-mediated negative feedback (Tebbutt et al. 2002).

Ovarian Cancer

Constitutive activation of STAT3 was detected in a high percentage of ovarian

cancer cell lines and human tumour specimens (94%) with respect to normal ovary

epithelium, correlating with aggressive clinical behavior and tumour progression,

and it was shown to enhance proliferation and inhibition of apoptosis through

induction of cyclin D1 and Bcl-xL expression, respectively (Huang et al. 2000;

Rosen et al. 2006). Moreover, studies in cell lines have shown that enhanced
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STAT3 activity and expression contribute to resistance to apoptosis in response to

chemotherapeutic drugs (Burke et al. 2001; Duan et al. 2006). STAT3 inhibition

leads to decreased Bcl-xL expression, sensitizing tumour cells to chemotherapy-

induced apoptosis (Burke et al. 2001). One of the main signals responsible for

STAT3 constitutive activation in ovarian cancer is its canonical activator IL-6,

which promotes angiogenesis, leading to tumour proliferation and dissemination of

malignant cells (Nilsson et al. 2005).

Prostate Cancer

Phosphorylated STAT3 was detected in the majority of human prostate cancers,

correlating with the degree of malignancy (Mora et al. 2002) and with JAK2/IL-6

signalling, which enhances proliferation and survival (Lou et al. 2000; Flowers

et al. 2005). STAT3 inhibition lead to apoptosis of tumour cell lines, both in vitro

and in vivo, through downregulation of Bcl2, cyclin D1, c-Myc, Bcl-xL and Mcl1

expression (Lou et al. 2000; Jing et al. 2004; Turkson et al. 2004; Gao et al. 2005;

Hellsten et al. 2008), and inhibited angiogenesis and tumour growth via

downregulation of both HIF1a and VEGF expression (Xu et al. 2005). The expres-

sion of the constitutively active form STAT3C in immortalized prostate epithelial

cells caused tumour transformation and enhanced cell motility by decreasing

E-cadherin level and increasing the number of lamellipodia and stress fibers

(Azare et al. 2007), suggesting a role in EMT and metastasis that was subsequently

confirmed by the observation of constitutive STAT3 activation in clinical samples

of prostate cancer metastasis, where it promoted cell motility by reorganizing the

actin and microtubule network (Abdulghani et al. 2008). IL-6 dependent STAT3

activation was shown to contribute to resistance of human prostate cancer cells to

chemotherapy (Pu et al. 2004). There appear to be correlations between STAT3

activation, tumour invasion and CSCs. In particular, invasive prostate cancer cells

were shown to display promoter methylation patterns reminiscent of those observed

in CSCs, with many differentially methylated genes belonging to the IL-6/STAT3

pathway (Mathews et al. 2010). Additionally, STAT3 was shown to interact with

the CSC marker SOX1, whose silencing decreased STAT3 activation and in vitro

invasiveness (Mathews et al. 2010). Accordingly, IL-6 was recently shown to

induce the conversion of prostate non stem cancer cells (NSCCs) into sphere-

forming CSCs, similar to what observed in breast cancer cells (Iliopoulos et al.

2011a).

Lung Carcinoma

About 50–70% of human non-small cell lung carcinomas (NSCLC) and cell lines

were shown to display constitutive STAT3 activation, correlating with enhanced

proliferation and survival (Song et al. 2003; Haura et al. 2005; van Cruijsen et al.

2009). STAT3 inhibition in these cells lead to decreased expression of a number of

Universal and Specific Functions of STAT3 in Solid Tumours 313



known STAT3 targets (e.g. Bcl2, Bcl-xL, Mcl1, survivin, VEGF, cyclin D1 and

c-Myc), thereby promoting apoptosis, impairing proliferation and reducing angio-

genesis (Weerasinghe et al. 2007). Interestingly, mutant EGFR forms in primary

human lung adenocarcinomas lead to STAT3 activation via IL-6 upregulation (Gao

et al. 2007). In contrast with these data, Pfeiffer and colleagues demonstrated that

STAT3 constitutive activation is characteristic of primary tumour samples from

patients with small cell lung cancer (SCLC) but not from NSCLC, and that blocking

STAT3 activation impaired anchorage-independent tumour cell growth, suggesting

the implication of STAT3 in the rapid metastasizing phenotype of SCLC (Pfeiffer

et al. 2009).

The lung was the first tissue where over-expressed constitutively active STAT3

was shown to play an autonomous pro-oncogenic role, since transgenic expression

of the STAT3C mutant form in alveolar type II epithelial cells induced lung

bronchoalveolar adenocarcinomas preceded by remarkable infiltration of inflam-

matory cells (Li et al. 2007). Tumour development correlated with enhanced

secretion of pro-inflammatory molecules and with reactivation of genes critical

for epithelial cell growth during embryonic lung development, similar to what

observed in human bronchoalveolar adenocarcinomas (Li et al. 2007). Accordingly,

STAT3 downstream genes were proposed to serve as biomarkers in human lung

adenocarcinoma and chronic obstructive pulmonary disease, which are both

induced by chronic inflammation of the lung (Qu et al. 2009).

Glioblastoma

High levels of STAT3 activation are also detected in about 95% of glioblastoma

cell lines and tumour samples, inducing proliferation and apoptosis resistance

through upregulation of Bcl-xL, Mcl1 and Bcl2 expression (Rahaman et al.

2002), and promoting angiogenesis, invasion and metastasis via upregulation of

VEGF and MMP9 expression (Loeffler et al. 2005; Liu et al. 2010). Hypoxia

resistance is a common feature of both stem cells and CSCs, which are thought to

act as tumour initiating cells (TICs) in different types of tumours, including

glioblastoma (Hemmati et al. 2003; Zhou and Zhang 2008). Resistance of these

cells to chemotherapy is often responsible for relapses and/or metastasis (Villalva

et al. 2010). The highly hypoxic glioblastoma microenvironment triggers STAT3-

mediated induction of VEGF, HIF1, MMP2 and Twist1, which in turn promote

angiogenesis and tumour invasion (Kang et al. 2010). Interestingly, STAT3 activa-

tion was shown to be essential for glioblastoma stem cells proliferation and ability

to form neurospheres, and inhibition of its activity triggered the downregulation of

genes associated with the stem cell phenotype (Sherry et al. 2009) and sensitization

to chemotherapeutic treatment, suggesting that combined chemotherapy and

STAT3 inhibition may allow more efficient killing of CSCs. STAT3 activation in

glioblastoma is often supported by the constitutive expression of IL-6 in tumour

cells, and indeed IL6�/� mice were protected from glioblastoma development

(Brantley and Benveniste 2008). Abnormal activation of the FGFR and EGFR
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pathways also correlated with STAT3 phosphorylation (Brantley and Benveniste

2008). Interestingly, however, while STAT3 could cooperate with the oncogenic

mutant form EGFRvIII to mediate cell transformation, it accelerated disease pro-

gression in glioblastomas induced by PTEN-loss. Thus, depending on the genetic

background, STAT3 activity in glioblastoma can be either tumour-suppressive or

tumour-promoting (de la Iglesia et al. 2008).

Other Solid Tumours

A low percentage of rhabdomyosarcomas showed STAT3 activation that is linked

to enhanced proliferation and resistance to apoptosis (Chen et al. 2007b) and

correlating with the overexpression of the stem cell marker Piwil2, recently found

associated to different tumours. Piwil2 can activate STAT3, which in turn enhances

tumour cell survival through Bcl-xL induction (Lee et al. 2006). Moreover, STAT3

can interact with PAX3-FKHR, an oncogenic fusion protein specifically associated

with an aggressive rhabdomyosarcoma metastatic subtype. This association leads to

a reduction in tumour MHC expression and to an altered cytokine microenviron-

ment that inhibits inflammatory cells action and hampers immune detection of

tumour (Nabarro et al. 2005).

STAT3 activation was observed in 100% of renal carcinomas, correlating with

poor prognosis and metastatic disease and promoting proliferation and survival

(Horiguchi et al. 2002a, b). Pharmacological inhibition of STAT3 not only favoured

the apoptotic action of chemotherapeutic agents on tumour cells, but also

downmodulated their angiogenic and metastatic potential while improving

antitumour immune response by reducing myeloid suppressor and Tregs cells

(Xin et al. 2009).

About 60% of cervical cancers display STAT3 phosphorylation, correlating with

poor prognosis (Takemoto et al. 2009) and linked to increased proliferation and

apoptosis resistance via induced expression of Bcl2, survivin, Mcl1 (Chen et al.

2007a) and enhanced angiogenesis mediated by VEGF (Wei et al. 2003).

Finally STAT3 activation in bladder cancer cells, although limited, was

implicated in tumour cells proliferation and invasion (Itoh et al. 2006; Chen et al.

2008a).

Breast Cancer

Persistently phosphorylated STAT3 is detected in 30–60% of primary breast

carcinomas (Garcia et al. 2001) correlating with poor response to therapy (Diaz

et al. 2006) and with regional lymph node metastasis (Hsieh et al. 2005), although a

correlation with a good prognosis of node-negative cancers was suggested (Dolled-

Filhart et al. 2003). High STAT3 phosphorylation levels are detected in several

human breast cancer cell lines, where its inactivation leads to growth arrest and cell

death (Garcia et al. 1997, 2001). Similar to most other solid tumours, STAT3
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activity in breast cancer has been linked to enhanced proliferation and survival, to

resistance to apoptosis and to cell movement, invasion and metastasis.

Pathways Leading to Persistent STAT3 Activation in Breast
Cancer

Despite the wide range of tumours where STAT3 is constitutively active, so far no

activating genetic mutations have been described, suggesting that abnormal STAT3

activity in neoplastic cells must be triggered by deregulated upstream signalling. In

breast cancer, STAT3 activation shows positive correlation with EGF and ErbB2

receptors overexpression and with Src activation (Berclaz et al. 2001; Diaz et al.

2006; Leslie et al. 2006), all of which have been shown to lead to STAT3

phosphorylation, albeit not directly (Berishaj et al. 2007). V-Src was the first

oncogene whose transforming activities were shown to require STAT3 (Bromberg

et al. 1998). Additionally, STAT3 was reported to be a substrate of the breast

tumour kinase (Brk), distantly related to the Src family (Liu et al. 2006).

An impressive body of data points towards IL-6 as the main trigger for STAT3

aberrant activation in solid tumours, which at hindsight is perhaps not surprising

since IL-6 and its family of related cytokines are among the most prominent

inducers of STAT3 activity. In breast cancer patients, serum IL-6 levels are

elevated (Jiang et al. 2000; Kozłowski et al. 2003), and correlate with advanced

tumour stage (Kozłowski et al. 2003), increased number of metastatic sites

(Salgado et al. 2003) and overall poor prognosis (Zhang and Adachi 1999)

(Bachelot et al. 2003; Salgado et al. 2003). High local IL-6 production is also

detected, correlating with tumour grade (Chavey et al. 2007). Indeed, inflammation-

induced IL-6 produced either systemically or locally by tumour infiltrating inflam-

matory cells is believed to start a positive loop by activating STAT3 in cancer cells

(Grivennikov and Karin 2010). This in turn induces the secretion of soluble factors

promoting STAT3 activation and anergy in the antigen presenting cells, finally

leading to enhanced tumour cell survival and growth both via cell autonomous and

immune-mediated mechanisms (Yu et al. 2009). An oncogene-driven inflammatory

loop was also implicated in the initial stages of tumour transformation. Indeed,

transient Src activation generates an inflammatory signal which triggers an epige-

netic switch to cancer cells via a positive feedback loop involving NF-kB, Lin28,

let-7 and IL-6 (Iliopoulos et al. 2009). IL-6-activated STAT3 is essential for this

switch via direct induction of miR-21 and miR-181b-1, which target the PTEN and

CYLD tumour suppressor genes, respectively. Their downregulation in turn leads to

NF-kB activation, required to maintain the transformed state (Iliopoulos et al.

2010). The importance of this circuit was first demonstrated in transformation of

mammary epithelial cells and subsequently confirmed in prostate, colon, lung and

hepatocellular carcinoma cells.

IL-6-induced STAT3 activation is normally transient, due to tight negative

feedback control such as that mediated by SOCS3 (Yoshimura 2005). What are

the mechanisms helping to maintain persistent STAT3 phosphorylation in tumours?
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Loss of negative feedback via silencing of SOCS factors has been shown to occur in

several systems (Baltayiannis et al. 2008). Recently, it was shown that the low but

constitutive activation of STAT3 in different tumours, including the breast, is at

least partly mediated by the elevated expression of S1PR1, the receptor for the

lysophospholipid sphingosine-1-phospate. S1PR1 is a STAT3 transcriptional target

which in turn upregulates IL-6 expression and enhances STAT3 activation,

establishing a positive feedback loop resulting in STAT3 persistent activation in

both the tumour cells and the tumour microenvironment, accelerated tumour

growth and malignant progression (Lee et al. 2010).

Other cytokines belonging to the IL-6 family, such as LIF (Quaglino et al. 2007)

and leptin (Park et al. 2010), are also elevated in breast tumours, driving STAT3

activation. In particular, adipocyte-derived leptin is present at high concentrations

within the mammary gland of obese individuals, is considered as a risk factor in

several types of cancers and is proposed to correlate with breast cancer progression

(Garofalo et al. 2004). Estrogen receptor alpha was shown to enhance leptin-

mediated STAT3 activation (Binai et al. 2010), and inactivation of the peripheral

leptin receptor attenuates tumour progression and metastasis in an MMTV-PyMT

model of breast cancer, via inactivation of the ERK1/2 and Jak2/STAT3 pathways

(Park et al. 2010).

STAT3-Mediated Features: Proliferation and Survival

Most cell lines displaying persistent STAT3 phosphorylation are addicted to its

activity for proliferation and survival, both in vitro and in vivo (Garcia et al. 2001;

Hsieh et al. 2005; Diaz et al. 2006), at least partly correlating with the induction of

the anti-apoptotic genes survivin/BIRC5 and Bcl-xL and of cyclin D1 (Siddiquee

et al. 2007). Indeed, high levels of activated STAT3 correlate positively with

elevated cyclin D1 mRNA and protein expression in breast tumours and cell lines

(Leslie et al. 2006) and STAT3 can directly bind to the promoter of the human

cyclin D1 gene (Leslie et al. 2006; Saxena et al. 2007). Moreover, cyclin D1

appears to be required for mouse fibroblasts anchorage-independent growth down-

stream of constitutively active STAT3C or v-Src (Leslie et al. 2006). Interestingly,

the progesteron receptor was shown to act as STAT3 coactivator by inducing ErbB2

nuclear translocation and the assembly of a transcriptional complex on the cyclin

D1 promoter (Béguelin et al. 2010).

Immunohistochemical analyses of invasive breast carcinomas also showed a

positive correlation between activated Src, phosphorylated STAT3 and the expres-

sion of survivin, a member of the inhibitor of apoptosis protein family (Diaz et al.

2006). Like cyclin D1, also survivin is a direct STAT3 transcriptional target, and

STAT3 silencing leads to survivin downregulation and apoptotic death in a human

breast cancer cell line (Gritsko et al. 2006). In addition to downregulating survivin

and Bcl-xL expression, STAT3 silencing in human breast cancer cells was recently

shown to lead to Fas-mediated intrinsic apoptotic pathway via the activation of

caspases-8, -9, -3 and PARP1 cleavage (Kunigal et al. 2009).
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The pro-survival role of STAT3 might be exploited for therapeutic purposes in

combined treatments. For example, the inhibition of STAT3 in metastatic breast

cancer cells enhanced the proapoptotic effects of doxorubicin, at least in part

interfering with survivin and Bcl-xL expression (Gariboldi et al. 2007). Recently,

ErbB2-activated STAT3 was shown to directly upregulate the p21(Cip1) gene in

breast cancer cells, resulting in increased Taxol resistance and suggesting that Src

and STAT3 inhibitors may be used in Taxol sensitization of ErbB2-overexpressing

breast cancers (Hawthorne et al. 2009).

STAT3-Mediated Features: Migration, Invasion and Metastasis

Activated STAT3 levels have been reported to correlate with invasiveness and

metastasis in breast cancer (Hsieh et al. 2005), and indeed a leading role for STAT3

in driving migration, invasion and metastatic disease of breast cancer cells has

emerged in the past years, and thoroughly explored in mouse models of ErbB2-

driven tumorigenesis genetically modified for STAT3 (see next section). Both

transcriptional and non-transcriptional mechanisms have been proposed to drive

STAT3-induced migration.

Intriguingly, activated STAT3 was shown for the first time in ovarian cancer

cells to localize not only to the nucleus but also to the focal adhesions, interacting

with activated paxillin and focal adhesion kinase, implying local regulation of focal

adhesions and integrin-mediated cell movement (Silver et al. 2004). We also have

observed STAT3 localization to focal adhesions in mouse breast cancer cell lines

derived from MMTV-Her2 transgenic tumours, which was enhanced in cells

derived from mice expressing constitutively active STAT3C and displaying more

aggressive and invasive tumour phenotype (Barbieri et al. 2010a). Cytoplasmic,

non-phosphorylated STAT3 was reported to induce cell migration by interacting

with, and inhibiting, the microtubules destabilizer stathmin, thus enhancing

microtubules polymerization in murine embryonic fibroblasts (Ng et al. 2006).

Conversely, several microtubule-based drugs were shown to modulate STAT3

activity by reducing its phosphorylation in breast tumour cell lines, possibly

explaining part of their therapeutic mechanism (Walker et al. 2010).

STAT3-mediated invasion has been linked to the ability to directly upregulate

the transcription of MMP9, whose expression levels correlated with those of

phosphorylated STAT3 in primary breast cancers. MMP9 was required for mam-

mary epithelial cells transformation mediated by constitutively active STAT3

(Dechow et al. 2004), and its downregulation by the trimeric resveratrol derivative

LYR71 correlates with suppression of STAT3 activation, tumour migration and

invasion in mouse breast cancer cells (Kim et al. 2008). Additionally, upregulation

of the Fra-1 oncogene in response to tumour associated macrophages lead to a

malignant switch in breast tumour cells, via activation of the IL-6/JAK/STAT3 loop

and increased release of MMP9, VEGF and TGF-b (Luo et al. 2010). Interestingly,

STAT3 apparently regulates different subsets of MMPs in different kinds of cancer
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including MMP2 in melanoma (Xie et al. 2004), MMP1 in the bladder (Itoh et al.

2006) and MMP1, -3, -7, and -9 in the colon (Tsareva et al. 2007).

STAT3-driven metastasis formation was also linked to its ability to induce

anchorage-independent growth, EMT and angiogenesis. Impaired in vivo metasta-

sis due to reduced angiogenesis was reported to occur as a consequence of

inhibiting STAT3 activation by expressing a dominant negative form of gp130 in

a human breast cancer cell line (Selander et al. 2004), correlating with increased

expression of the tissue inhibitor of metallo-proteinase 3 (TIMP-3). On the other

hand, VEGF is a direct STAT3 transcriptional target, and its upregulated produc-

tion by STAT3 is believed to induce angiogenesis in different cancer types includ-

ing the breast (Niu et al. 2002b).

Metastatic breast cancer cells display increased expression of the EMT tran-

scription factor Twist1, which is required for EMT and breast cancer metastasis. A

strong positive correlation between active STAT3 and Twist1 levels was detected

in late stage breast cancer tissues and in subpopulations of human breast cancer cell

lines displaying enhanced invasiveness (Lo et al. 2007; Cheng et al. 2008c). In these

cells, STAT3 inhibition lead to Twist1 downregulation correlating with impaired

migration, invasion and colony formation, all of which could be rescued by Twist1

re-expression. Interestingly, it was recently shown that IL-6, the canonical STAT3

activator, induces EMT in the ERa-positive human breast cancer cell line MCF-7,

including impaired E-cadherin expression and induction of vimentin, N-cadherin,

Snail and Twist1. Conversely, constitutive expression of Twist1 triggered aberrant

IL-6 production and STAT3 activation, suggesting a positive loop promoting

autocrine IL-6 production (Sullivan et al. 2009). Finally, STAT3 was required for

EGF-induced Twist1 upregulation in human breast carcinoma cells by directly

binding to its promoter (Lo et al. 2007). Correlations between STAT3 and Twist1

were observed also in mouse cells. The silencing of STAT3 in the metastatic mouse

breast cancer 4T1 cell line is sufficient to impair tumour formation in vivo and

invasion ability in vitro, correlating with reduction of c-Myc, activated Src and

Twist1 (Ling and Arlinghaus 2005). However, no putative STAT3 binding site was

detected in the murine Twist1 promoter, suggesting different modes of STAT3-

dependent activation in the human and the mouse (Lo et al. 2007).

Finally, IL-6 paracrine/autocrine production and STAT3 activation were

recently shown to take part in the cross-talk between cancer cells and tumour

microenvironment to regulate motility, aggressiveness, angiogenesis and metasta-

sis. Mesenchymal stem cells (MSCs), which reside in the bone marrow, are likely to

come in contact with extravasated, metastasis-initiating breast cancer cells. These

cells were shown to enhance tumour aggressivity and growth rates in ER-alpha-

negative breast cancer cell lines via IL-6 secretion and STAT3 activation (Sasser

et al. 2007). MSCs have also been shown to selectively migrate to hypoxic breast

tumours, where they are thought to play a tumour-promoting role. Tumour-pro-

duced IL-6 acts as an attractant for MSCs, leading to their cytoskeletal reorganiza-

tion via STAT3 activation (Rattigan et al. 2010). Once within strict contact, a

positive loop is likely to get started, whereby infiltrating MSCs in turn produce IL-6

and enhance STAT3 activation in the cancer cells. Due to their specific ability to
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migrate to and engraft into primary breast tumours, genetically modified

MSCs over-expressing Interferon-b (IFN-b) have been explored as potential thera-

peutic means. IFN-b producing MSCs suppressed breast cancer cells growth

and pulmonary and hepatic metastases mainly via inhibition of STAT3 signalling

(Ling et al. 2010).

Growth and spread of cancer is thought to be mainly driven by a small subpopu-

lation of CSCs, the only cells capable of long-term self renewal and of generating

phenotypically diverse tumour cell populations. These slowly-replicating, self-

maintaining cells are resistant to most chemotherapeutics, thus driving relapse.

STAT3 is prominently involved in maintaining the undifferentiated status of mouse

embryonic stem cells (Burdon et al. 2002), and was shown to be critical for the

viability and maintenance of the stem-like side population in the MCF-7 breast

cancer cell line (Zhou et al. 2007). Additionally, experimental evidence implied

IL-6 signalling in driving formation and malignancy of breast cancer stem cells.

Sansone and co-authors reported that mammospheres from node invasive basal-like

breast carcinoma tissues, an aggressive breast carcinoma variant showing stem

cell features, produce high levels of IL-6, and that autocrine IL-6 signalling

sustain the aggressive features of hypoxia-selected MCF-7 cells (Sansone et al.

2007). Recently, IL-6 was shown to drive the conversion of nonstem cancer cells

in CSCs in human breast tumours and cell lines (Iliopoulos et al. 2011a). The

intimate relationship of STAT3 with the IL-6 pathway leads to postulate its

involvement in these systems, even though its activation was not specifically

explored.

Role of STAT3 in ErbB2-Driven Mammary Tumorigenesis: Lessons
from Mouse Models

Overexpression of the rat oncogenic form of the human EGF receptor ErbB2 (Neu)

in the mammary gland under the MMTV promoter triggers the onset of invasive

multifocal breast carcinomas at high multiplicity and is widely used as a model for

human breast cancer (Guy et al. 1996). The role of STAT3 in Neu-mediated

tumorigenesis has been studied by several groups including ours, suggesting a

pivotal role of STAT3 in driving tumour progression and metastasis that is in

agreement with the clinical and experimental observations reported above. All

studies suggest that, although not required for Neu-driven breast tumours onset

and growth, STAT3 is heavily implicated in the formation of lung metastasis by a

variety of mechanisms. Analyzing the role of b4 integrin in ErbB2 signalling by

deleting the b4 signalling domain in the context of MMTV-Neu transgenic mice,

Guo and colleagues have shown that b4 integrin forms a complex with ErbB2,

enhancing the activation of the transcription factors STAT3 and c-Jun. While

c-Jun is required for hyperproliferation, STAT3 contributes to disruption of

epithelial adhesion and polarity, and is required for cell invasion and experimen-

tal metastasis (Guo et al. 2006). In agreement with this finding, Cre-mediated

STAT3 loss of function in MMTV-Neu transgenic mice has shown that STAT3 is
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not required for the onset and growth of breast tumours, but its deletion results in

a dramatic reduction of lung metastasis by both primary and xenografted tumours

(Ranger et al. 2009; Barbieri et al. 2010b). The reduced malignancy of STAT3-

deficient tumours was partly due to an inhibition of both inflammatory and

angiogenic responses, normally activated in a STAT3-dependent transcriptional

cascade involving C/EBPd (Ranger et al. 2009). Additionally, STAT3 is required

in a cell autonomous fashion to warrant anchorage-independent growth and the

ability to produce lung metastasis in immuno-depressed mice (Barbieri et al.

2010b).

In an effort to reproduce the relatively low but persistent activation of STAT3

observed in most tumours, we have generated knock-in mice expressing at physio-

logical levels the constitutively active mutant form STAT3C. In agreement with the

results obtained with the loss of function mutants, MMTV-Neu transgenic mice

carrying the STAT3C allele developed earlier onset, more aggressive tumours with

lower levels of spontaneous apoptosis but similar proliferation rates (Barbieri

et al. 2010a). Tumour-derived STAT3C/Neu cell lines displayed enhanced

migration and invasion in vitro and increased tumorigenic and metastatic poten-

tial in vivo, correlating with a profoundly modified organization of cell-cell

contacts showing altered, irregular distribution of both adherent and tight

junctions components such as E-cadherin, b-catenin and Zo-1. Cytoskeletal

organization was also perturbed, with actin redistributing from a cortical locali-

zation typical of well differentiated epithelial cells to form abundant actin stress

fibres, typical of highly migratory cells (Pellegrin and Mellor 2007). Several

genes consistently expressed at higher levels in all three STAT3C/Neu cell lines

are known players in regulating cell migration and/or tumour metastasis, includ-

ing the STAT3 transcriptional target Twist1, involved in tumour invasiveness and

EMT (Lo et al. 2007; Cheng et al. 2008c).

In addition, we identified the atypical tensin family member Cten as a novel

STAT3 target. Cten was recently shown to mediate EGF-induced migration (Katz

et al. 2007), to promote colon cancer tumorigenicity and cell motility (Albasri et al.

2009; Liao et al. 2009), and to correlate positively with tumour stage in thymomas,

lung tumours and gastric tumours (Sasaki et al. 2003a, b; Sakashita et al. 2008), all

displaying constitutive STAT3 activity. It is the most consistently upregulated gene

in both STAT3C-expressing cell lines and tumours, and is involved in both their

increased migration and disruption of cell junctions organization (Fig. 1, adapted

from Barbieri et al. [2010a]). Moreover, we could show that Cten is induced by IL-6

in MCF10 mammary epithelial cells. IL-6-mediated induction is STAT3-depen-

dent, suggesting that indeed Cten may represent an important functional mediator

in the inflammation-STAT3-migration-metastasis loop. Indeed, CTEN expression

is particularly elevated in the extremely aggressive and invasive inflammatory

breast cancers, correlating with high EGFR and HER2 levels, loss of oestrogen

receptor, high tumour grade and node metastasis (Katz et al. 2007). Thus, CTEN

may represent an important point of functional convergence between inflammation-

driven STAT3 activity, altered EGFR/ErbB2-mediated signalling and invasion of

the surrounding tissues.
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Concluding Remarks

STAT3 has come a long way since its discovery in the 90s as STAT1’s little

brother. Initially thought to be almost an IL-6-family-dedicated factor, it has soon

emerged as one of the most pleiotropic STATs from many points of view, all

contributing to its widespread role in tumours. First, its ever-growing number of

upstream activating pathways including many that are aberrantly active in tumours,

as initially hinted by the lethal phenotype of STAT3 null embryos. Second, the

tissue-dependent variety of target genes, reflected in its variegated functions. Third,

its novel non-canonical roles, which apparently do not involve its transcriptional

activities. Importantly, its improperly prolonged activity is pro-oncogenic both in

Fig. 1 Both Stat3 inhibition and Cten silencing partially revert the aggressive phenotype of Stat3C

expressing cells. Adapted fromREF. STAT3C/Neu cells were either treated with the S3I inhibitor for

the indicated lengths of time (a, b) or transfected with an siRNA against Cten (c–e). S3I treatment

downregulates STAT3 phosphorylation (p-Stat3) and Cten expression, as shown byWestern blot (a).
Both treatments significantly impaired FCS-stimulated Transwell migration (b, d). Values are shown
as mean numbers � SEM of migrated cells per microscopic field (20�) of triplicates in one

representative experiment out of two independently performed (p < 0.05). (e) phase contrast and

immunofluorescence images of Cten-silenced cells. Arrows indicate evident discontinuous (si-ctrl)
versus tight (si-Cten) cell-cell contacts. Blue, nuclei; green, b-catenin; red, Zo-1. The insects (4�
magnification) correspond to the areas indicated by an asterisk. Scale bar, 20 mm
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tumour and stromal cells, and indeed STAT3 is emerging as a key factor in

mediating the cross talk between microenvironment and tumour cells and a main

player in inflammation-driven tumorigenesis. Despite the intense research for

STAT3 inhibitors, transcription factors are certainly not easily druggable targets.

The understanding of STAT3 biology therefore, including which upstream events

drive its activation and which are its main effectors in specific tumours, is still

highly relevant on the agenda.
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Impact of STAT5 on Normal Tissue
Development and Cancer

Maria M. Caffarel and Christine J. Watson

Abstract

STAT5A and STAT5B are two closely related transcription factors that trans-

duce signals from cytokines and growth factors. Two tissues that rely upon

STAT5 for lineage commitment and differentiation are the mammary gland

and the haematopoietic system. During pregnancy, mammary epithelial cells

undergo extensive proliferation and differentiation to generate milk-producing

alveolar structures. Alveologenesis is abrogated in the absence of both STAT5A

and B and fat pad transplantation experiments demonstrated that while the

ability of stem cells to generate ductal outgrowths was not affected by loss of

STAT5A/B, the alveolar compartment failed to develop in pregnant mice. In

contrast, in the haematopoietic system, STAT5A and B control both stem and

progenitor cell fate and are essential for the development of immune cells of the

T, B and NK lineages. Aberrant STAT5 activity has major consequences and can

induce tumours of both the blood and breast, in addition to other tissues. The

mechanisms of constitutive STAT5 activity are manifold and include mutation

of the upstream kinase JAK2.

Introduction

STAT5 was first described in the lactating mammary glands of sheep and rats where

it was called milk protein binding factor (MPBF) (Watson et al. 1991) or mammary

gland factor (MGF) (Wakao et al. 1992) respectively and when the gene encoding

STAT5was subsequently cloned, it became apparent that it was the fifth member of the

newly described family of STAT proteins (Schindler et al. 1992; Wakao et al. 1992).
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STAT5 is widely expressed and is encoded by two genes, STAT5A and STAT5B

that probably arose by a gene duplication event and the respective proteins are 96%

identical at the amino acid level, differing primarily in their carboxy termini

(Liu et al. 1995). STAT5A and STAT5B transduce different signals and can be

activated downstream of a variety of cytokines including the IL-3 family (IL-3,

IL-5, and GM-CSF), the single chain family (GH, PRL, Tpo, and Epo), and the gC
family (IL-2, IL-7, IL-9, IL-15, and IL-21). Interestingly, STAT5A preferentially

forms tetramers when binding to DNA while STAT5B favours dimers (Verdier

et al. 1998). STAT5A and B are not functionally redundant, although each can

substitute for the other in many circumstances. In this review we will focus on the

essential functions of STAT5 in the haematopoietic system and in the adult

mammary gland during a reproductive cycle and discus the consequences of

aberrant STAT5 activity for tumourigenesis.

STAT5 in Physiological Conditions: Adult Mammary Gland

Following the description of STAT5 in lactating mammary gland, its functional role

as a regulator of milk protein gene expression was demonstrated in vivo. The

promoter of the b-lactoglobulin (BLG) protein, a component of milk in ruminants

and marsupials, was shown to have three STAT5 binding sites in the proximal 406

bp region (Burdon et al. 1994a) and mutation of pairs of these motifs abrogated

expression of BLG. This was the first demonstration of a role for STAT5 as a

transcriptional regulator in vivo (Burdon et al. 1994b) and was followed by studies

showing that STAT5 regulates also the expression of other milk proteins such as

whey acidic protein (WAP) in mammary gland (Li and Rosen 1995) and b-casein in
HC11 mammary epithelial cells (Happ and Groner 1993). Thus, STAT5 is an

important regulator of milk protein gene expression and its expression profile,

being induced during pregnancy and peaking at lactation, suggested that it could

have a role in the development of the milk-producing alveolar cells that arise during

pregnancy.

Initial genetic studies focussed on deleting Stat5a and Stat5b individually.

Disruption of Stat5a resulted in reduced lobuloalveolar development during preg-

nancy and failed lactation (Liu et al. 1997) while in contrast, Stat5b deficient mice

had no mammary gland abnormalities but exhibited growth defects (Udy et al.

1997). However, STAT5B can partially rescue the failed lactation in Stat5a knock-
out mice in subsequent pregnancies demonstrating some functional redundancy.

Combined deletion of both genes demonstrated that they mediate virtually all

growth hormone (STAT5B) and prolactin (STAT5A) functions, although infertility

precluded investigation of lobuloalveolar development (Teglund et al. 1998).

Subsequently, conditional gene targeting revealed that STAT5 is required for

lobuloalveolar development during pregnancy and that deletion of STAT5 from

differentiated alveolar cells results in their rapid cell death (Cui et al. 2004),

suggesting roles as a differentiation and survival factor (Fig. 1a).
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Deletion of the upstream regulators of STAT5A, prolactin receptor (PRLR) and

the receptor-associated kinase JAK2, essentially recapitulated the phenotype of

STAT5A deficient mice (Ormandy et al. 1997; Wagner et al. 2004). Thus,

STAT5 can be considered the nexus of signalling that controls lobuloalveolar

development in mammary gland.

Since alveologenesis is abrogated in the absence of both STAT5A and B, it

seems likely that these transcription factors could be important for specifying the

alveolar lineage. In order to investigate this, mammary stem and progenitor cells

were investigated by FACS analysis and fat pad transplantation using conditional

deletion of Stat5a/b in all mammary epithelial lineages with the MMTV-Cre

transgene (Yamaji et al. 2009). While loss of STAT5A and B did not affect the

ability of stem cells to generate ductal outgrowths, it did affect the ability of Stat5a/
5bfl/fl; Cre stem cells to generate the alveolar compartment in pregnant mice.

Expression of transgenic STAT5A rescued alveologenesis thus demonstrating a
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Fig. 1 Schematic representation of the role of STAT5 in lineage commitment and maintenance in

normal mammary gland development (a) and in tumourigenesis in the breast (b)
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requirement for STAT5A in the commitment of progenitors to the alveolar lineage

(Fig. 1a).

Since ductal morphogenesis is unaffected in the absence of STAT5A and B, this

distinguishes STAT5 from GATA-3, which is required in both ductal and alveolar

lineages. Notably, whereas GATA-3 expression is unperturbed in Stat5a/b null

cells, the expression of Elf5 is severely diminished (Yamaji et al. 2009). These data

suggest that there are at least two alveolar lineages: a Prl-Stat5/Elf5 controlled

lineage and a Stat6-GATA-3/oestrogen receptor (ERa) lineage that are dependent

upon each other since ablation of either STAT5 or GATA-3 results in the death of

differentiated epithelial cells suggesting an interaction between these lineages.

Much remains to be understood in terms of specificity of signalling and selection

of downstream target genes. The simple signalling paradigm for the Jak/STAT

pathway is clearly only part of the story. Interaction with a number of other

pathways has been noted in addition to co-repressors and co-activators. Signalling

through the ERBB4 receptor in mammary gland can induce STAT5 phosphoryla-

tion and notably, deletion of ERBB4 in differentiated mammary epithelial cells

resulted in inhibition of cell proliferation and functional differentiation (Long et al.

2003). ERBB4 can also induce phosphorylation of serine residues in STAT5A and

Sch€utz and colleagues (Engblom et al. 2007) demonstrated that the physical

interaction of STAT5 with the glucocorticoid receptor (GR) is required for many

of the functions exerted by either of these factors although deletion of GR in

mammary epithelium did not affect lactation (Wintermantel et al. 2005), suggesting

that this physical interaction is not essential in lactating mammary gland although it

does appear to be important in hepatocytes (Engblom et al. 2007).

STAT5 in Physiological Conditions: The Haematopoietic System

STAT5A and STAT5B control stem and progenitor cell fate in the haematopoietic

system (Wang et al. 2009) and are essential for the development of immune cells,

playing redundant and non-redundant roles. In the absence of both STAT5A and B,

mice have severely reduced development of B cells and ab T cells, and an absence

of gd T-lymphocytes. Natural killer (NK) cells also fail to develop (Yao et al.

2006). In STAT5-/- mice, B cells do not progress beyond the uncommitted pre-pro-B

cell stage in the bone marrow and these mice have severe combined immunodefi-

ciency. This essentially recapitulates the phenotype of IL-7R, gammac, and Jak3

deficient mice. Binding of STAT5 to GAS sites in the promoter of the Foxp3 gene

(Yao et al. 2007) demonstrates that STAT5 directly regulates the transcription of

the transcription factor FOXP3, a master regulator of Regulatory T (Treg) cells.

Tregs suppress T-cell proliferation and function and in this way restrict immune

responses against self- and nonself-antigens. Deletion of Stat5 specifically at the

onset of lymphopoiesis using conditional mutagenesis in adult mice demonstrated

that the most important role of Stat5 during pro-B cell development is to maintain

cell survival by activating Mcl1, a member of the Bcl2 family of anti-apoptosis
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regulators and to prevent premature Igk gene rearrangements by binding to an

intronic enhancer of iEk.

STAT5 in Pathological Situations: Cancer

Role of STAT5 in Cancers of the Blood

STAT5 has been implicated in the pathogenesis of different haematopoietic

malignancies and various epithelial cancers (Ferbeyre and Moriggl 2011). The

involvement of STAT5 in tumourigenesis of blood cells was demonstrated soon

after its discovery in 1994. STAT5 was shown to be persistently activated in various

haematopoietic malignancies: acute myelogenous leukemia (AML) and chronic

myelogenous leukemia (CML), HTLV-1 and TEL-JAK2 dependent leukaemias

(Migone et al. 1995; Schwaller et al. 2000) and myeloproliferative diseases like

polycythemia vera, thrombocytopenia and mastocytosis (Ferbeyre and Moriggl

2011). Most frequently, STAT5 activation is induced by hyperactive tyrosine

kinases such as JAK2. In fact, the JAK2 V617F mutation in the pseudokinase

domain, which induces the constitutive activation of JAK2 and its downstream

target STAT5, was found to be the cause of some of these myeloproliferative

disorders (Baxter et al. 2005; Levine et al. 2005). In CML, it was demonstrated

that the oncogenic BCR-ABL kinase is responsible for the persistent activation of

STAT5 in the malignant cells (Huang et al. 2002) while in AML, constitutive

activation is driven by the FLT3-receptor tyrosine kinase (Levis et al. 2002). In

addition, naturally truncated forms of STAT5 have been implicated in blood-cell

cancer, and they seem to play a role in the relapse of the disease (Xia et al. 2001).

Recently, it was shown that phosphorylation of STAT5 on serines 725 and 779 is a

prerequisite for haematopoietic transformation (Friedbichler et al. 2010) and for-

mation of STAT5 tetramers in preference to dimers is associated with leukemogen-

esis (Moriggl et al. 2005).

Some of the STAT5 downstream targets that play a role in tumourigenesis were

identified first in these haematopoietic malignancies. STAT5 can prevent apoptosis

in cancer cells by increasing the expression of the anti-apoptotic proteins Bcl-xL
(Gesbert and Griffin 2000; Horita et al. 2000) and Mcl1 (Huang et al. 2002).

Additionally, c-Myc is a well known regulator of apoptosis and cell proliferation

(Dang 1999) and STAT5 has been shown to regulate its expression (Huang et al.

2002). Furthermore, many growth-factor signalling pathways are known to regulate

cell proliferation by enhancing the levels of cyclins, which activate cyclin-depen-

dent kinases. STAT5 activity can promote the expression of cyclin D1 and D2

(Martino et al. 2001; Hennighausen and Robinson 2005). Other genes that have

been involved in the pro-survival and anti-apoptotic role of STAT5 are Bcl-2,

Pim-1, A1, serine protease inhibitors Spi2.1 and Spi2.2 and Mcl-1 (Ferbeyre and

Moriggl 2011). Interestingly, the pro-apoptotic micro RNAs, miR15/16, which

inactivate Bcl-2 and Bcl- xL can be suppressed by STAT5 (Li et al. 2010).
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Another aspect of tumourigenesis that warrants consideration is the role of

STAT proteins in the regulation on the immune system, particularly with regard

to anti-tumour immune responses. STAT3 is well established as a modulator

of the tumour microenvironment (Pensa et al. 2009). STAT5 also promotes

tumourigenesis indirectly through a role in the expansion of T regulatory cells,

which promote tumour progression by inhibiting anti-tumour immune responses

(Yu et al. 2009).

Role of STAT5 in Breast Cancer

As described in the previous sections, STAT5 plays a key role in mouse mammary

gland development and has been shown be active in lactating human breast (Watson

and Miller 1995). It is critically important for the specification and proliferation of

the alveolar progenitors and for the survival of terminally differentiated secretory

epithelial cells. These cells are located at the ends of the ductal tree, a region known

as terminal duct lobular units (TDLU) in humans. It is generally thought that the

TDLUs are the site in the human breast where neoplastic lesions arise, as they

contain hormone-responsive epithelial cells that are highly susceptible to transfor-

mation (Wellings et al. 1975). There is increasing evidence that STAT5 deregula-

tion plays a role in breast tumourigenesis. However, data obtained in human breast

cancer samples suggests that STAT5 activation can be a good prognostic factor and

that STAT5 expression is lost during breast cancer progression (Wagner and Rui

2008). In the following sections, we will summarise the apparently conflicting data

about the role of STAT5 in breast tumourigenesis using different animal models of

mammary cancer, breast cancer cell lines and human breast cancer samples.

STAT5 in Breast Cancer Cell Lines and in vivo Models
Several studies have demonstrated that STAT5 promotes tumourigenesis of rodent

mammary gland (Tan and Nevalainen 2008). Mouse mammary gland tumour

models have been widely used, but there is also some evidence that STAT5 is

important in rat mammary gland tumourigenesis (Shan et al. 2004). Using a

chemical carcinogen induced rat mammary gland tumour model, this study showed

nuclear immunostaining of STAT5A in 65% of carcinomas, while STAT5A was

cytosolic in control mammary gland tissue. They also demonstrated that STAT5A

nuclear localization was associated with high-grade carcinomas and correlated with

the degree of proliferation in the tumours, determined by PCNA nuclear staining

(Shan et al. 2004).

The role of STAT5A in mouse mammary cancer models has been studied in

more depth. The deletion of STAT5A delayed mammary tumour development in a

WAP driven transforming growth factor-a-induced cancer model (Humphreys and

Hennighausen 1999). In another study, hemizygous loss of the STAT5A allele was

sufficient to delay tumour formation and to reduce the number and the size of the

tumours in a WAP induced SV40T antigen mammary tumour model (Ren et al.

2002). In addition, the over-expression of wild-type (wt) or constitutively active
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STAT5A promoted the occurrence of sporadic and well differentiated mammary

tumours after latency periods of 8–12 months (Iavnilovitch et al. 2004). The fact

that only a small proportion of these mice developed tumours after a long latency

period suggests that STAT5A cannot be considered to be a potent oncogene for the

transformation of mammary cells in vivo. Interestingly, in the same study the over-

expression of a carboxyl-terminally truncated dominant negative STAT5 induced

also the transformation of mammary epithelial cells. In contrast to the tumours

generated by over-expression of STAT5 wt, these tumours were poorly

differentiated (Iavnilovitch et al. 2004). It is possible that this different phenotype

is due to the inhibition of the endogenous wt STAT5. It is also reasonable to think

that STAT5 lacking the C-terminal transactivation domain maintains some

biological functions necessary for neoplastic transformation. In a later study by

the same group, it was shown that the tumours originated by over-expression of wt

STAT5A are highly dependent on parity and that they only occur in aged and

postestropausal females (Eilon et al. 2007). It is possible that deregulation of

STAT5A during the reproductive cycle, probably during the highly proliferative

stage of pregnancy, initiates a sequence of events leading later to tumourigenesis

(Barash 2006). Non-differentiated mammary epithelial cells that do not undergo

cell death during involution could retain this deregulated STAT5 which could

cooperate later with other oncogenic events thereby inducing mammary tumours

(Wagner et al. 2002). Using lentiviral infection to introduce a constitutively active

STAT5 (cS5-F), Vafaizadeh and colleagues showed that expression of this variant

of STAT5 caused epithelial hyperproliferation, thickening of the ducts and preco-

cious formation of alveoli in non-pregnant mice (Vafaizadeh et al. 2010). Interest-

ingly, cS5-F expression resulted in the formation of ER+PR+ adenocarcinomas.

STAT5 has also a pro-survival role in human breast cancer cells. It has been

described that STAT5B is constitutively active in human breast cancer cell lines

and that over-expression of a dominant negative variant of STAT5 suppresses ERa
transcriptional activity and induces apoptosis in luminal human breast cancer cells

(Yamashita et al. 2003).

Different molecular targets of STAT5 could be involved in its pro-survival role

in breast cancer cells. STAT5 deregulation may modulate cell cycle progression by

enhancing Cyclin D1 transcription through its binding site in the cyclin D1 pro-

moter (Matsumura et al. 1999; Brockman et al. 2002). Over-expression of cyclin D1

in transgenic mouse models leads to hyperproliferation of mammary cells and to

mammary carcinomas (Wang et al. 1994). Akt1 could also be a target of STAT5 in

its pro-survival role since it has been described that STAT5 can promote survival of

mammary epithelial cells through transcriptional activation of a mammary gland

specific promoter of Akt1 (Creamer et al. 2010). In addition, it could inhibit

apoptosis through activation of the NF-kB pathway via RANK ligand, which is

another STAT5 target (Hennighausen and Robinson 2005). STAT5 has been shown

to interact with different proteins that have a role in breast cancer such as BRCA-1

and -2, ERK, ErbB2 and ERa (Olayioye et al. 1999; Barash 2006), and this could

also explain its role in initiating mammary tumourigenesis.
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The idea that over-activation of STAT5 plays a role in mammary transformation

is supported by studies in caveolin-1 (Cav-1) knockout (ko) mice (Williams et al.

2003; Sotgia et al. 2006). Cav-1 has been shown to repress JAK2/STAT5 signalling

in mammary epithelial cells (Park et al. 2002) and to inhibit breast cancer growth

and metastasis (Sloan et al. 2004). The mammary glands of Cav-1 ko mice harbour

a hyperactive JAK2/STAT5 pathway and developed hyperplastic and well

differentiated mammary tumours (Sotgia et al. 2006). This hyper-activation has

been associated with ERa and cyclin D1 expression (Li et al. 2006; Williams et al.

2006). Recent work from our laboratory has shown that expression of the constitu-

tively active JAK2 mutant, V617F, in MCF-7 breast cancer cells promotes a more

invasive phenotype in xenografts (Caffarel et al. 2012). The classical mechanism of

STAT5 activation in mammary epithelial cells is through prolactin (PRL) receptor-

JAK2 signalling. The role of PRL and PRL receptor in breast cancer has been

extensively investigated. Over-expression of PRL in the mammary gland induced

proliferation of mammary epithelial cells and ERa positive and negative mammary

tumours (Rose-Hellekant et al. 2003). Likewise, loss of PRL receptor delayed

mammary tumour formation and reduced mammary cancer cell proliferation in a

model where transplants of mouse mammary epithelium expressing the SV40

Tantigen oncogene were implanted in wt or PRL receptor ko recipients (Oakes

et al. 2007). It has yet to be determined whether this effect is due to inhibition of

JAK2/STAT5 signalling or the result of the modulation of other PRL receptor

targets as Src, Akt or Erk. Moreover, a variant of the PRL receptor exhibiting

constitutive activity has been recently identified in breast cancer patients

(Fernandez et al. 2010), supporting a role for the PRL signalling pathway in breast

tumourigenesis.

Although there is sufficient evidence to support the notion that STAT5 signalling

can induce tumourigenesis and promote cancer cell proliferation in in vivo mouse

models of breast cancer and in some breast cancer cell lines, it appears that STAT5

has a tumour suppressive role in later stages of tumour development and metastasis.

STAT5 activation by PRL has an invasion-suppressive role in human luminal breast

cancer cell lines, as determined by an increase in the surface levels of E-cadherin

and an inhibition of metalloproteinase activity, invasiveness and migration of these

cells (Sultan et al. 2005). Inhibition of PRL-induced AP-1 signalling and Bcl6

expression by STAT5 in breast cancer cell lines could explain, at least in part, this

invasion-suppressive role (Gutzman et al. 2007; Tran et al. 2010). AP-1 proteins are

critical transcriptional regulators of the invasive phenotype of cancer cells (Ozanne

et al. 2007). Reduction of STAT5 in breast cancer cells increased PRL-induced AP-

1 signalling, leading to increased MMP-2 expression and associated invasive

behaviour (Gutzman et al. 2007). On the other hand, Bcl6 expression has been

correlated with high-grade and metastatic breast cancer and STAT5A has been

shown to suppress Bcl6 expression in a wide array of breast cancer cell lines (Tran

et al. 2010).
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STAT5 in Human Tumour Samples
Although genomic alterations (i.e. gene amplifications or activating mutations) in

STAT5 or JAK2 have not been reported in breast tumours, STAT5 seems to be

active in a subset of these. The first evidence of STAT activation in human breast

cancer was reported more than 15 years ago in a small samples of breast biopsies

where it was shown that carcinoma samples had significantly higher STAT3 binding

activity than benign lesions and normal breast tissues (Watson and Miller 1995).

Although the activation of STAT5 was not detected in this study, it was shown later

by immunohistochemical techniques in several studies and STAT5 activation has

been shown to positively correlate with the differentiation status of the tumour

(Cotarla et al. 2004; Nevalainen et al. 2004; Yamashita et al. 2006). In a series of

83 primary breast adenocarcinomas, STAT5A was activated in 76% of the samples

and its activationwas positively associatedwith the degree of differentiation of these

tumours. No correlation was found with other markers of prognosis such as tumour

size or lymph nodemestastases (Cotarla et al. 2004). In a larger study, the analysis of

more than 1,000 primary breast cancer specimens and 19 samples of healthy breast

tissue confirmed a correlation between STAT5 activation and the differentiation

status of the tumours (Nevalainen et al. 2004). Expression of phosphorylated STAT5

in the nucleus was associated with favourable prognosis and was gradually lost

during breast cancer progression: STAT5 activation was shown in all the non

transformed tissues and in less than 20% of node-positive breast cancers and

mestastases (Nevalainen et al. 2004). Other studies confirmed the inverse correlation

between STAT5 activation and the histological grade of the tumours and the positive

correlation between STAT5 and good prognosis (Yamashita et al. 2006). In addition,

they showed for the first time that STAT5 activation predicted a better response to

endocrine therapy (Yamashita et al. 2006). Interestingly, it has been described that

STAT5A activation is particularly increased in secretory carcinomas compared to

the more common in situ or invasive ductal carcinomas (Strauss et al. 2006).

Moreover, other specialised histological types of breast cancer such as apocrine

metaplasia or mucinous carcinoma did not exhibit STAT5 activity (Strauss et al.

2006). This may reflect the cell of origin of breast cancer.

Further studies need to be carried out to determine whether STAT5 inactivation

in the later stages of breast tumourigenesis and mestastasis is causally involved in

the promotion of mestastasis, or whether it is just a correlative marker of epithelial-

mesenchymal transition, being lost as cells lose their epithelial phenotype. The

molecular mechanism underlying STAT5 inactivation in breast cancer progression

is unknown. Possible mechanisms could be genetic or epigenetic changes that

diminish STAT5 expression or modulate the regulators of STAT5. Supporting the

latter idea, it has been described that the levels of SHP-1, a phosphatase that can

inactivate STATs by de-phosphorylation (Shuai and Liu 2003), are increased in

breast cancers compared to normal breast epithelial cells (Yip et al. 2000). The

tyrosine phosphatase PTPB1 was able to suppress PRL mediated activation of

STAT5 in breast cancer cell lines and a negative correlation between levels of

active STAT5 and PTPB1 expression has been demonstrated (Johnson et al. 2010).

In addition, the levels of suppressors of cytokine signalling (SOCS), well known
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negative regulators of STATs (Croker et al. 2008), seem to be altered in breast

cancer. High levels of SOCS-1 and 3 were found in breast carcinomas and breast

cancer cell lines compared to non-transformed breast tissue and cell lines (Raccurt

et al. 2003). Conversely, SOCS-2 expression has been inversely correlated with the

histological grade of breast cancer and correlated with higher survival rates

(Haffner et al. 2007). SOCS-2 is primarily a negative regulator of STAT5 while

SOCS1 and SOCS3 can also regulated STATs 1 and 3.

Clearly, STAT5 has a complex role in breast cancer (Fig. 1b). While it

promotes tumourigenesis in mouse models, it is a marker of good prognosis in

human breast tumours and inhibits the metastatic behaviour of human breast

cancer cell lines. It seems, therefore, that STAT5 has a dual role in this particular

type of cancer. STAT5 may promote the earlier steps of tumour progression, but

maintain the differentiation status of established breast cancers, inhibiting their

ability to metastasise. Another possible explanation is that the roles of STAT5A/

B may be different in human and mouse mammary tumourigenesis. Further

studies that address these questions need to be undertaken, as well as others

that clarify the possibly different roles of STAT5A and B. In breast cancer cell

lines, we know so far that constitutively active STAT5A seems to be more potent

than constitutively active STAT5B in inducing survival and anchorage-indepen-

dent growth and in inhibiting cell migration (Tang et al. 2010). Moreover,

STAT5A and B seem to regulate differentially ERa and ERb transcription

(Frasor et al. 2001).

In addition, new mouse genetic models need to be found to study the role of

STAT5 in breast tumourigenesis. The conventional models used so far: knock-out

or over-expressing models (e.g. STAT5A or PRL receptor deficient mice) in

combination with oncogene-expressing transgenes, are useful but have their

limitations. New models where STAT5 could be deleted or over-expressed in the

tumour cells once the tumours are formed would be more therapeutically relevant

and would allow us to study the role of STAT5 in later stages of mammary

tumourigenesis. The current models only give clues about the role of STAT5 in

tumour initiation and, therefore, are useful only as models for cancer prevention

(Wagner and Rui 2008). Furthermore, it is not clear to what extent the cell of origin

or the initiating oncogene can dictate the type of tumour that arises. It seems likely,

from the breast cancer studies discussed above, that STAT5 will be important in a

subset of breast cell types.

Role of STAT5 in Other Solid Tumours

STAT5 is expressed and activated in other solid tumours such as prostate cancer

(Liao et al. 2010), head and neck squamous cell carcinoma (HNSCC) (Lai and

Johnson 2010) and melanoma (Mirmohammadsadegh et al. 2006), where it

contributes to cell survival and proliferation. In addition, it has been found in

non-small cell lung cancer tumours (Sanchez-Ceja et al. 2006) and in nasopharyn-

geal carcinomas (Hsiao et al. 2003). In these two types of cancer, STAT5 activation
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did not correlate with the progression of the disease. Conversely, in nasopharyngeal

carcinomas it was associated with good prognosis (Hsiao et al. 2003). The role of

STAT5 in liver cancer is controversial. STAT5B activation was correlated with

tumour progression in hepatocellular carcinoma (HCC) samples and it enhanced

HCC cells aggressiveness through induction of epithelial-mesenchymal transition

(Lee et al. 2006). On the other hand, STAT5 deletion in transgenic mice led to liver

fibrosis and cancer development through TGF-b and STAT3 activation (Hosui et al.

2009). In agreement with this tumour suppressor role of STAT5 in liver cancer,

it has been published recently that STAT5 deletion in liver tissue led to enhanced

cell cycle progression through the inactivation of the CDK inhibitors p15 and p21

(Yu et al. 2010).

Prostate Cancer
STAT5 is a critical survival factor for the growth of prostate cancer cells in vitro

and in vivo. This has been demonstrated with experiments in prostate cancer cell

lines and in the TRAMP (transgenic adenocarcinoma of mouse prostate) mouse

prostate cancer model (Tan and Nevalainen 2008). Inhibition of STAT5A/B in

STAT5-positive prostate cancer cells induces apoptosis and reduces their growth as

xenografts in nude mice (Ahonen et al. 2003; Dagvadorj et al. 2008). Cyclin D1 and

BCL-XL were identified as important targets of STAT5 in prostate cancer cells

(Dagvadorj et al. 2008). It has also been described that the inhibition of STAT5, by

expression of a truncated STAT5B mutant, decreased the growth of mouse prostate

tumour cells derived from TRAMP mice in soft agar and reduced tumour formation

by these cells in nude mice (Kazansky et al. 2003). STAT5 can also promote

metastatic behaviour of prostate cancer cells (Gu et al. 2010).

Studies in human prostate tumour samples have shown that STAT5 is constitu-

tively activated in prostate tumours but not in the epithelium of adjacent normal

prostate tissue (Ahonen et al. 2003). Moreover, its activation correlates with the

histological grade of the tumours and is a prognostic marker of early disease

recurrence (Li et al. 2004, 2005). STAT5 seems to be particularly important in

hormone-refractory prostate cancer, where androgen receptor (AR) signalling

remains active despite low levels of circulatory androgens (Isaacs and Isaacs

2004). It has been described that STAT5 is activated in 95% of these tumours

and that it transcriptionally enhances AR expression (Tan and Nevalainen 2008).

On the other hand, ligand-bound AR increases the transcriptional activity of STAT5

and it has been demonstrated that AR and STAT5 physically interact (Tan and

Nevalainen 2008). The molecular mechanisms underlying constitutive activation of

STAT5 in primary and hormone-refractory prostate tumours need to be elucidated.

It has been proposed that they may involve autocrine PRL signalling in prostate

cancer cells, as PRL and PRL receptor expression are associated with high histo-

logical grades of human prostate cancer (Li et al. 2004). Another possible mecha-

nism is the amplification of STAT5A/B genes, as these genes are located in

chromosome 17 (Clark et al. 2003) which is frequently altered in both incidental

and hereditary prostate cancer (Gillanders et al. 2004) however further studies

are required.
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Head and Neck Squamous Cell Carcinoma (HNSCC)
STAT5 and STAT3 play a role in HNSCC disease progression. STAT5 activation

correlated with progression to a malignant phenotype in HNSCC samples (Xi et al.

2003). Moreover, constitutive activation of STAT5 in HNSCC cells led to increased

cell growth, migration, invasion, anchorage-independent growth and tumour

volumes in xenografts in addition to epithelial-mesenchymal transition and resis-

tance to cisplatin and erlotinib (an epidermal growth factor receptor tyrosine kinase

inhibitor) (Koppikar et al. 2008). Interestingly, STAT5B has a more important role

than STAT5A in HNSCC cell growth (Leong et al. 2002). In a xenograft model,

blocking of STAT5B, but not STAT5A, resulted in tumour growth inhibition and

abrogation of STAT5 targets (Xi et al. 2003). STAT5A could have a dominant role

in regulating cell invasion. It has been shown that erythropoietin activates the

JAK2-STAT5 pathway, resulting in HNSCC invasion, mainly through the

STAT5A isoform (Lai et al. 2005).

Concluding Remarks

STAT5 has a clear cut and essential role in normal development of the mammary

gland and is essential for controlling cell fate in the haematopoietic system.

STAT5A is the more important isoform in mammary gland where it is the mediator

of PRL signalling via JAK2 while in haematopoietic cells, both STAT5A and

STAT5B are required although they have both redundant and non-redundant

functions. Constitutive activation of STAT5 results in mammary cancers and

other solid tumours and in leukemias and myeloproliferative disorders. An interest-

ing question for future research is whether the role of STAT5 in establishing and

maintaining particular lineages is reflected in the types of tumours that arise and the

cell of origin of the cancer.
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Crosstalk with the Jak-STAT Pathway
in Inflammation

Lionel B. Ivashkiv

Abstract

The Jak-STAT signaling pathway is activated by multiple immune cytokines and

plays a key role in mediating inflammatory responses. The functional outcomes

of Jak-STAT signaling are modulated by signaling crosstalk with heterologous

signaling pathways. Conversely, Jak-STAT signaling regulates cell responses to

multiple cytokines and inflammatory factors. Emerging evidence suggests that

on balance Jak-STAT signaling is pathogenic in chronic inflammatory disorders,

as Jak inhibitors have demonstrated efficacy in preclinical disease models and

early clinical trials in rheumatoid arthritis (RA). This review describes Jak-STAT

signaling crosstalk with pathways activated by inflammatory cytokines such as

TNF-a, pattern recognition receptors such as Toll-like receptors, and ITAM-

associated receptors, including crosstalk at the level of chromatin modification

and gene expression. The Jak-STAT pathway is placed within the context of a

signaling network that determines functional responses and outcomes during

inflammation and in chronic inflammatory diseases such as RA.

Overview

The discovery and initial characterization of the Jak-STAT pathway suggested

a linear signal transduction pathway that could specifically activate gene expres-

sion (Darnell et al. 1994). The key event in STAT activation is Jak-mediated
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phosphorylation of a conserved tyrosine residue that allows dimerization and

nuclear translocation of STATs, with subsequent gene activation events determined

by specific interactions of STAT DNA binding domains with cognate DNA

sequences present in the regulatory regions of STAT target genes. It rapidly became

apparent that STAT transcriptional activity was upregulated by phosphorylation of

conserved carboxy-terminal serine residues that can be phosphorylated by various

kinases, including MAPKs and PKC. This dual activation by distinct JAK tyrosine

kinases and serine kinases mediated positive crosstalk between cytokine receptors

that induce tyrosine phosphorylation and various receptors that induce STAT serine

phosphorylation, including antigen receptors in lymphocytes, inflammatory

cytokines such as TNF-a and IL-1, and sensors of microbial products, such as

Toll-like receptors (TLRs) (Varinou et al. 2003; Wen et al. 1995). Subsequently it

has become clear that Jak-STAT signaling is modulated in both positive and

negative directions by crosstalk with multiple heterologous signaling pathways.

Jak-STAT signaling, in turn, modulates signaling by various receptor systems

important for immune and inflammatory responses, including pattern recognition

receptors (PRRs) that sense microbial products, inflammatory cytokines such as

TNF-a and IL-1, and ITAM-associated receptors that signal via immune tyrosine-

based activation motifs (ITAMs). Indeed, the Jak-STAT pathway is enmeshed in a

complex signaling network, with bidirectional regulation of signaling that

determines functional outcomes. It is also becoming clear that Jak-STAT signaling

crosstalk occurs at the level of chromatin modification and epigenetic regulation. In

this review, we will focus on more recent developments in Jak-STAT signaling

crosstalk, with an emphasis on the regulation of innate immunity and inflammation.

In addition, we will discuss how dysregulation of signaling crosstalk can contribute

to the pathogenesis of autoimmune and inflammatory diseases, such as rheumatoid

arthritis (RA) and systemic lupus erythematosus (SLE).

Crosstalk That Enhances Jak-STAT Signaling

One of the first examples of enhanced Jak-STAT signaling was the finding that

pretreatment of cells with low concentrations of type I or type II IFNs (IFNa/b and

IFN-g, respectively) results in increased Jak-STAT signaling on subsequent chal-

lenge with cytokines, including IFNs themselves and IL-6 (Taniguchi and Takaoka

2001). This phenomenon, termed priming, can be effectively achieved by low

concentrations of IFNs that do not actually activate cells. The function of priming

is to enhance rapid and effective host defense by inducing a state of ‘readiness’ in

the innate immune system, and by allowing low concentrations of cytokines to

induce effective signaling responses. Priming also appears to occur during the

course of autoimmune and inflammatory diseases (Hu et al. 2002; Ivashkiv 2003;

Kono et al. 2003; Taniguchi and Takaoka 2001; van der Pouw Kraan et al. 2003), in

which case enhanced inflammatory responses to cytokines and other activating

factors could contribute to pathogenesis.
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Enhancement of IFN-g Jak-STAT Signaling

One example of priming involves ‘self-priming’ whereby low concentrations of

IFN-g sensitize macrophages for a robust STAT1-mediated response to a

subsequent challenge with IFN-g. During macrophage priming by low doses of

IFN-g, IFN-g signaling is sensitized by a mechanism that involves increased STAT1

expression (Hu et al. 2002). Low priming concentrations of IFN-g do not actually

activate macrophages, but instead transiently induce expression of a small subset of

IFN-g-inducible genes, including STAT1. STAT1 protein accumulates in primed

cells because of ongoing gene expression and the stability of STAT1 protein, which

exhibits a half life of greater than 24 h. Primed macrophages, then, appear to be

quiescent, but strongly activate STAT1 upon rechallenge with even very small

amounts of IFN-g, with concomitant activation of downstream STAT1-dependent

genes and inflammatory functions. IFN-g is a major activator of macrophages, and

sensitization of IFN-g signaling may be particularly important to achieve full

macrophage activation early in immune responses when IFN-g levels are low.

Several lines of evidence support a role for increased STAT1 expression in

sensitization of IFN-g signaling. First, sensitization is not accompanied by any

changes in expression of IFN-g receptors, or in the level of activation of Jak1, Jak2,
or STAT3 by IFN-g. These results indicate that IFN-g delivers a comparable

proximal signal to both non-primed and primed macrophages. Second, the rate of

de-activation of STAT1 is comparable in non-primed and primed cells, indicating

that priming does not inactivate a STAT1 phosphatase or suppress degradation by

proteasomes. Third, sensitization of signaling is specific for STAT1 relative to

STAT3 when either IFN-g or IFN-a are used to stimulate primed cells, consistent

with the relative expression levels of these STATs, and increased STAT1 activation

is recapitulated by forced expression of STAT1. These data argue for a model

where an increased intracellular STAT1 concentration leads to more efficient

docking onto the activated IFN-g receptor complex.

An important component of this model is that low priming doses of IFN-g capable
of activating sustained STAT1 protein expression only transiently andweakly activate

expression of feedback inhibitory molecules such as SOCS1. Thus, STAT1 activation

proceeds in primed macrophages unopposed by feedback mechanisms that restrain

Jak-STAT signaling. In contrast, high activating doses of IFN-g induce sustained

expression of SOCS1, and thus engage feedback inhibition that counterbalances

STAT1 activation. Thus, the amplitude of signaling is regulated by relative strength

of induction of activating signals versus feedback inhibitory mechanisms.

STAT1 expression is dynamically regulated during the course of immune and

inflammatory responses, and STAT1 expression levels thus can regulate the pattern

of STAT activation by a cytokine over time. For example, elevation of STAT1

expression during the course of a viral infection results in increased STAT1

activation, and diminished STAT4 activation, in response to type I IFNs (Nguyen

et al. 2002). Interestingly, elevated STAT1 mRNA and/or protein levels have been

detected in several autoimmune/inflammatory conditions, including systemic

lupus erythematosus, RA, and hepatitis (Baechler et al. 2003; Bennett et al. 2003;
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Ehrt et al. 2001; Hong et al. 2002; Hu et al. 2002; Kuroiwa et al. 2003). Thus,

increased STAT1 expression in these conditions will alter cellular responses

to cytokines such as IFN-g. The role for IFN-g in RA has been controversial, and

IFN-g protein has been difficult to detect in RA joints (Firestein and Zvaifler 2002;

Ivashkiv 1996). Recent work demonstrating that RA synovial cells express high

levels of STAT1 and also express IFN-g-inducible genes (Antoniv and Ivashkiv

2006; Hu et al. 2002; Ivashkiv and Hu 2003; van der Pouw Kraan et al. 2003)

supports the notion that low levels of IFN-g may activate gene expression through

the above described autosensitization mechanism in RA synovium.

Inflammatory Shift in Type I IFN Signaling

Type I IFNs are pleiotropic cytokines that can either activate or suppress immune

responses. Type I IFNs signal via the IFNAR receptor comprised of IFNAR1 and

IFNAR2 subunits to activate various STATs, including STAT1:STAT2

heterodimers (which associate with IRF9 to form the ISGF3 complex that activates

antiviral genes) and STAT1:STAT1 homodimers that activate inflammatory genes,

similar to IFN-g. Priming of macrophages with low concentrations of IFN-g that

induce high STAT1 levels shifts the balance of IFN-a-induced STAT activation

towards STAT1:STAT1 homodimers, with increased expression of inflammatory

STAT1 target genes such as CXCL9 and CXCL10 (Tassiulas et al. 2004). Preferen-

tial activation of STAT1 and subsequent stronger pro-inflammatory macrophage

responses to IFN-a might have a role in the pathogenesis of IFN-mediated diseases

such as SLE (Wang et al. 2008).

Preferential and increased IFN-a-induced activation of STAT1 in IFN-g-primed

macrophages requires not only increased STAT1 expression, but also an additional

signaling input from ITAM-coupled receptors (Tassiulas et al. 2004). Indeed, low

level basal signaling by the ITAM-containing adaptors DAP12 and FcRg via the

Syk protein tyrosine kinase enhances IFN-a-induced activation of Jaks and STAT1
even in unprimed cells (Wang et al. 2008). Basal (also termed tonic) ITAM

signaling is induced by ongoing ligation of ITAM-associated receptors by as yet

unknown ligands that are proposed to be constitutively expressed on myeloid cells.

Calcium-dependent signaling pathways link ITAM-coupled adaptors and IFN

receptors by a pathway consisting of DAP12/FcRg-Syk-calcium-CaMK-Pyk2;

Pyk2 interacts with Jaks and can amplify their activity (Wang et al. 2008). In

tightly adherent murine macrophages, integrins, recently identified to be coupled

to DAP12, are major contributors to tonic ITAM signaling, indicating a role for

macrophage-ECM interactions in regulation of IFN responses. The calcium-depen-

dent Pyk2 tyrosine kinase associates with Syk and with Jaks and can relay signals

between these two different receptor systems. Syk can also phosphorylate STAT1

directly and thus contributes to preferential activation of STAT1 in primed

macrophages that express high STAT1 concentrations (Tassiulas et al. 2004).

Preferential activation of STAT1 results in stronger pro-inflammatory macrophage

responses to IFN-a, and ITAM-enhanced IFN signaling may play a role in the
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pathogenesis of IFN-mediated diseases such as SLE. IFN-g priming can increase

the positive effects of ITAMs on IFN-a signaling by increasing STAT1 expression

and modulating the expression of multiple ITAM-associated receptors. Thus, com-

munication between ITAM-coupled receptors and IFNs is bidirectional and allows

coupling and fine-tuning of responses to both sets of receptors.

TNF-a and Jak-STAT Signaling

Receptors for inflammatory cytokines in the TNF and IL-1 families do not associate

with Jaks and thus do not directly activate Jak-STAT signaling. Recently we found

that TNF-a activates IRF1 to induce production of very low levels (typically<20 pg/

mL) of IFNb (Yarilina et al. 2008). Production of IFNb was sustained for up to 24 h

and was sufficient to weakly activate Jak-STAT signaling via IFNAR, as detected by

low levels of STAT1 and STAT2 tyrosine phosphorylation. However, the combined

action of canonical and direct TNF-a signaling via MAPKs and NF-kB and low level

Jak-STAT signaling was sufficient to strongly induce expression of genes, such as

CXCL9, CXCL10 and CCL5 that encode inflammatory chemokines and are syner-

gistically activated by both pathways. This combination of direct and autocrine

TNF-a signaling strongly induced STAT1 expression and accumulation of STAT1

protein, and subsequent emergence of a classic IFN response characterized by

expression of IRF7 and antiviral genes such as Mx1 (Yarilina et al. 2008). This

delayed IFN response is likely mediated by the priming mechanisms discussed

above and by high STAT1 expression. Thus, TNF-a induces a delayed IFN response

mediated by Jak-STAT signaling. Interestingly, Jak inhibitors have emerged as

potentially effective therapies for rheumatoid arthritis (Garber 2011), in which

TNF-a is a key pathogenic factor. The target of Jak inhibitors that results in efficacy

in RA therapy in not known, but is widely assumed to be a cytokine(s) that directly

activates Jak-STAT signaling, such as IL-6. The results showing indirect activation

of Jak-STAT signaling by TNF-a suggest that Jak inhibitors maywork at least in part

by targeting autocrine signaling by TNF-a, an established pathogenic cytokine in

RA.

Crosstalk That Suppresses Jak-STAT Signaling

Cytokine-induced Jak-STAT signaling is quantitatively modulated and fine-tuned

by a variety of inhibitory mechanisms (reviewed in Shuai and Liu 2003). Of these

mechanisms, we will focus on inducible mechanisms that mediate cross-inhibition

of Jak-STAT signaling by heterologous receptors.

Induction of Inhibitors/SOCS

The best known inhibitors of Jak-STAT signaling are the suppressors of cytokine

signaling (SOCS). SOCS inhibit Jak-STAT signaling by several mechanisms,
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including competition with STATs for receptor docking sites and inhibition of the

catalytic activity of receptor-associated Jaks. SOCS proteins are typically expressed

at undetectable or low levels and are induced by a variety of stimuli. Initial reports

showed that SOCS are induced by Jak-STAT signaling and therefore much atten-

tion has focused on these molecules as feedback inhibitors (Shuai and Liu 2003).

However, as SOCS1 and SOCS3 can interact with and inhibit several receptors, it

has become clear that these proteins also mediate cross-inhibition by heterologous

receptors. In addition to Jak-STAT signaling, SOCS are also induced by inflamma-

tory factors such as TLRs and TNF and can mediate communication between these

receptors and type I and type II cytokines that directly activate Jak-STAT signaling.

SOCS3 expression is induced by multiple factors including TLR ligands and TNF-a
and preferentially inhibits signaling by the gp130 subunit of IL-6-related receptors.

Thus, SOCS3 mediates fine tuning of IL-6 signaling by multiple inflammatory

stimuli. As SOCS proteins are not expressed at baseline and their expression

needs to be induced, there is typically a delay of several hours between stimulation

and the emergence of SOCS-mediated inhibition.

Direct and Rapid Inhibitory Pathways

Our laboratory and others have described rapidly acting, direct, SOCS-independent

pathways by which TLRs, IL-1, TNF-a and ITAM-coupled receptors inhibit Jak-

STAT signaling (Ivashkiv and Hu 2004). In one example, inhibition occurs by a

p38-dependent mechanism that leads to increased SHP-2 association with gp130

(Bode et al. 2003); p38 signals can also induce phosphorylation and internalization

of receptors, likely mediated by MK2 (Radtke et al. 2010). We have recently shown

that a similar p38-mediated inhibitory mechanism also blocks signaling by IL-27 in

human monocytes (Kalliolias and Ivashkiv 2008). TLRs, IL-1 and TNF inhibit

gp130 signaling via p38 but do not substantially inhibit signaling by IFN-a and

IL-10, which requires additional calcium signaling and activation of PKCs (Ji et al.

2003; Wang et al. 2010). Thus, IL-10 and IFN signaling is more effectively

inhibited by ITAM-associated receptors that activate these calcium signaling

pathways. One mechanism of inhibition of IFNAR signaling involves phosphory-

lation of intracellular receptor sequences that target the IFNAR for internalization

and destruction, and this mechanism likely mediates inhibition of IFNAR signaling

by many kinases, including p38 (Bhattacharya et al. 2011).

In contrast to low level tonic ITAM signaling that enhances IFNAR signaling, as

described above, high intensity activation of ITAM-associated receptors can inhibit

cytokine Jak-STAT signaling. TCR crosslinking inhibits signaling by IL-2, IL-4,

IL-6 and IFN-a in T cells by a mechanism dependent on PKC and downstream ERK

activation, and also requires calcium signaling for full inhibition to occur (Lee et al.

1999; Zhu et al. 2000). Similarly, high avidity ligation of FcgRs or Dectin-1 inhibits
IL-10 signaling in macrophages by a PKCb/d-dependent mechanism that induces

internalization of the IL-10 receptor (Ji et al. 2003). FcgR signaling inhibits IFN-a
signaling by a PKCb- (and to a lesser extent PKCd-) dependent mechanism that
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induces recruitment of SHP-2 to the IFN-a receptor and increased SHP-2 catalytic

activity (Du et al. 2005). These inhibitory mechanisms do not require new protein

synthesis, are independent of SOCS, and are operative rapidly (within 15 min) of

ligation of the inhibitory receptor.

Glucocorticoids

Glucocortocoids are potent anti-inflammatory factors that work by activating the

glucocorticoid receptor (GCR) that is a member of the nuclear receptor family.

Although GCRs can interact with STATs in other systems to potentiate STAT

function, in the immune system direct modulation and inhibition of STATs by

GCRs has not been described. Instead, GCs suppress inflammation and inflamma-

tory gene expression by a well established ‘tethering’ mechanism whereby GCRs

interact with DNA-bound NF-kB and AP-1 proteins to inhibit expression of NF-kB
and AP-1 target genes (Rogatsky and Ivashkiv 2006). Although GC-mediated

inhibition of Jak-STAT signaling has been described (Bianchi et al. 2000; Flammer

et al. 2010), in most cases inhibition is indirect, whereby GCs inhibit NF-kB-
mediated expression of Jak-associating receptors, with secondary decreases in

Jak-STAT responses. One exception is direct inhibition of IFN-a responses by

GCs (Flammer et al. 2010). Consistent with a lack of a direct effect on Jak-STAT

signaling, GCs do not suppress IFN-a-induced tyrosine phosphorylation of STATs

or subsequent translocation into the nucleus. Instead, GCs directly suppress type I

IFN responses by inhibiting IFN-a-induced gene transcription. The mechanism is

GC-mediated suppression of stable assembly and transcriptional function of the

STAT1-STAT2-IRF9 (ISGF3) complex on target gene promoters, with consequent

downregulation of target gene expression (Flammer et al. 2010). Interestingly,

ISGF3 uses the GCR cofactor GRIP1 as a coactivator, and the mechanism of

GC-mediated inhibition appears to be competition for GRIP1 and diminished

occupancy of GRIP1 at certain ISGF3-driven promoters. Thus, suppression of

the nuclear function of ISGF3 contributes to the anti-inflammatory properties

of GCs.

Enhancement of Inflammatory Responses by Jak-STAT Signaling

Synergy with NF-kB

Concurrent signaling via NF-kB and STAT1 synergistically activates expression of

many inflammatory genes, and strong expression of some of these genes, such as

Nos2 (encoding iNOS) or Il12b (encoding the p40 cytokine subunit shared by IL-12
and IL-23) is dependent on both stimuli. Understanding of the mechanisms of

STAT1-NF-kB synergy is still limited. One explanation is that simultaneous occu-

pancy of gene regulatory regions by STAT1 and NF-kB increases recruitment

of RNA polymerase II, possibly because of enhanced recruitment of transcriptional
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co-activators, such as the histone acetyl transferases (HATs) CBP/p300. In addition,

increased inflammatory gene expression in IFN-g primed cells is mediated, at least

in part, by extended activation of NF-kB. Recently a newmechanism by which IFN-

activated STATs and NF-kB synergize after infection with the intracellular bacterial

pathogen Listeria monocytogenes to induce Nos2 expression has been described

(Farlik et al. 2010). NF-kB primed Nos2 for induction by recruiting a complex

containing basal transcription factor TFIIH and the CDK7 kinase that is required for

activation of RNA polymerase II (pol II) by phosphorylation on residue serine 5.

However, NF-kB did not recruit pol II to the Nos2 promoter. This task, instead, was

accomplished by ISGF3, whereupon the recruited pol II could be efficiently

phosphorylated and activated by the NF-kB-recruited CDK7. Thus, for Nos2 induc-
tion, NF-kB and STATs cooperate by controlling distinct steps in transcription

initiation complex assembly. It is likely that similar mechanisms are utilized for

synergistic activation of other genes by NF-kB and STATs.

Inhibition of TLR-Induced Feedback Mechanisms

Excessive activation of inflammatory receptors such as TLRs can lead to toxicity

and even lethality. Thus, TLR signaling is subject to negative regulation and

feedback inhibition at multiple levels (Liew et al. 2005). Indeed, TLR-induced

feedback inhibition is required for the appropriate regulation of the extent of

inflammation, and likely plays a role in the subsequent transition to resolution of

inflammation and tissue homeostasis. Mechanisms of negative regulation of TLR

responses can be categorized into at least three types based on their mode of action:

(1) Soluble anti-inflammatory factors. (2) Intracellular inhibitors of signal trans-

duction. (3) Transcriptional repressors and chromatin-modifying enzymes that can

inhibit TLR responses in a gene-specific manner.

IL-10 is a potent TLR-induced cytokine that mediates a feedback inhibitory loop

that limits inflammatory cytokine production. IL-10 potently deactivates dendritic

cells and macrophages by suppressing production of inflammatory cytokines such

as TNF and IL-1 (Moore et al. 2001). The suppressive effects of IL-10 on myeloid

cells are dependent upon STAT3 (Takeda et al. 1999), which appears to suppress

anti-inflammatory gene expression indirectly via induction of transcriptional

repressors (Murray 2007). TLR induction of IL-10 is in part mediated by MAPKs

and downstream transcriptional factors such as AP1 and CREB, and negatively

regulated by glycogen synthase kinase 3 (GSK3) (Hu et al. 2006; Martin et al.

2005). There are a large number of inducible negative regulators of TLR signaling

that mediate feedback inhibition, including single immunoglobulin IL-1R-related

molecule (SIGIRR), A20, MAP kinase phosphatase 1 (MKP1), IRF4, and SOCS1

(Li and Qin 2005). Signaling inhibitors often act on proximal components of TLR

signaling pathways and inhibit expression of multiple downstream genes. In addi-

tion, TLRs induce expression of transcription repressors, such as ATF3, that feed

back and suppress expression of specific subsets of TLR-inducible genes (Gilchrist

et al. 2006).
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One mechanism by which IFN-g-STAT1 signaling potentiates TLR responses is

by ablating the afore-described feedback inhibition loops. Strikingly, IFN-g
suppresses TLR-mediated induction of IL-10 protein and mRNA expression,

downstream STAT3 activation, and induction of STAT3-dependent genes includ-

ing SOCS3 and ABIN-3 (Hu et al. 2006; Wang et al. 2010). By inhibiting the IL-

10-STAT3 axis, IFN-g interrupts a TLR-induced feedback inhibition loop and

results in increased production of the inflammatory cytokines TNF and IL-6. The

mechanism of inhibition involves attenuation of proximal TLR-induced signaling

by IFN-g, which includes attenuation of TLR-induced activation of the PI3K-Akt

pathway that had been previously shown to have a rapidly-induced feedback

inhibitory function (Fukao and Koyasu 2003; Fukao et al. 2002). The PI3K-Akt

pathway is linked to IL-10 production via GSK3 that regulates the function of

transcription factors of the AP-1/CREB families that, in turn, regulate IL-10

production. Thus, GSK3 emerges as a potential therapeutic target for anti-inflam-

matory therapy. IL-27 can also strongly suppress TLR-induced IL-10 expression

and prime for enhanced production of proinflammatory cytokine in human

macrophages in a STAT1-dependent manner (Kalliolias and Ivashkiv 2008). Both

IFN-g and IL-27 appear to prime macrophages via STAT1, suggesting a central role

for STAT in augmenting macrophage activation.

Another feedback mechanism induced by TLRs is activation of canonical Notch

target genes, including the transcriptional repressors Hes1 and Hey1 (Hu et al.

2008). Hes1 and Hey1 feed back to attenuate TLR-mediated induction of IL-6 and

IL-12 production. Interestingly, IFN-g disrupts this feedback loop by interrupting

proximal Notch signaling to abolish induction of Hes1 and Hey1 (Fig. 1). Release

from these repressors can contribute to enhanced expression of inflammatory

cytokines such as IL-6 and IL-12. Future work may reveal additional aspects of

the feedback inhibition program that are inhibited by Jak-STAT signaling.

Reversal of Endotoxin Tolerance

Some of the most potent homeostatic mechanisms function in “endotoxin toler-

ance”, where pre-exposure of cells to TLR ligands abrogates induction of inflam-

matory genes on subsequent rechallenge with TLR ligands. Mechanisms of

endotoxin tolerance include alterations of TLR signaling and TLR-induced inhibi-

tion of inflammatory gene expression that appears to occur via epigenetic regulation

of inflammatory gene loci by modification of histones and chromatin that can

silence gene expression (Foster et al. 2007; Ramirez-Carrozzi et al. 2006; Saccani

et al. 2002). Silencing by such epigenetic modifications during endotoxin tolerance,

which is likely mediated by transcriptional repressors (Foster et al. 2007), plays a

key role in specifically restraining potentially toxic inflammatory cytokine expres-

sion, while allowing beneficial expression of host defense genes. Jak-STAT signal-

ing by IFN-g-STAT1 reverses endotoxin tolerance. IFN-g treatment does not affect

the decrease in TLR signaling that occurs in tolerized macrophages. Instead, IFN-g
reverses the epigenetic closing of chromatin at inflammatory gene loci, thereby
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allowing expression of inflammatory genes even in response to attenuated signals in

tolerized cells (Chen and Ivashkiv 2010) (Fig. 2).

Suppression of Inflammatory Responses by Jak-STAT Signaling

IL-10-STAT3 signaling strongly suppresses inflammatory responses, establishing

STAT3 as a potent anti-inflammatory STAT. The anti-inflammatory roles and

mechanisms of STAT3 have been extensively reviewed (Murray 2007) and are

not further considered here.

IFNs and IL-27

Cytokines that activate STAT1, such as IFNa/b, IFN-g and IL-27 can also play a

suppressive role in inflammation, including attenuation of associated tissue destruc-

tion. Both IFN-g and IL-27 suppress signaling by IL-1 by mechanisms that involve

STAT1-dependent downregulation of IL-1 type I receptor (IL-1RI) expression (Hu

et al. 2005; Kalliolias et al. 2010). IFN-g is protective in animal models of autoim-

mune arthritis (Guedez et al. 2001; Manoury-Schwartz et al. 1997; Vermeire et al.

1997) and multiple sclerosis (Krakowski and Owens 1996; Vermeire et al. 1997;

Hes1, Hey1

IKKs, M
APKs

IL-6,IL-12

Notch TLR

RBP-J

NICD

IFN-g

RBP-J

E boxE box

p3
8,

 IK
Kb

Fig. 1 IFN-g suppresses Notch-RBP-J-mediated feedback inhibition of TLR-induced inflamma-

tory cytokine production. In macrophages TLRs cooperate with the Notch pathway to activate

transcription factor RBP-J that induces expression of canonical Notch target genes including the

transcriptional repressors Hes1 and Hey1. Hes1 and Hey1 feed back to restrain inflammatory

cytokine expression, in part mediated by interactions with their target E box sequences in the IL-6

and possibly IL-12 promoters. IFN-g interrupts this feedback loop by suppressing proximal Notch

signaling, thereby releasing inflammatory cytokine genes from repression by Hes1 and Hey1

362 L.B. Ivashkiv



Willenborg et al. 1996). Inhibition of IL-1 responses likely contributes to the

suppressive effects of IFN-g and STAT1 on IL-1-dependent diseases, such as

arthritis and inflammatory bone resorption (de Hooge et al. 2004; Guedez et al.

2001; Kim et al. 2003; Manoury-Schwartz et al. 1997; Takayanagi et al. 2000,

2002; Vermeire et al. 1997).

Jak-STAT Signaling Crosstalk in Inflammatory Diseases

Cytokines play a key pathogenic role in many inflammatory and autoimmune

disorders, including RA and SLE. For example, the resounding success of TNF-a
blockade therapy has established a key role for TNF-a in the pathogenesis of RA and

other inflammatory conditions such as inflammatory bowel disease, psoriasis, and

ankylosing spondylitis (Feldmann et al. 1996; Feldmann and Maini 2001). There is

increasing interest in the pathogenic roles of cytokines that activate the Jak-STAT

pathway in inflammatory disease pathogenesis, particularly IL-6 and type I IFNs

(Ivashkiv 2003; Riese et al. 2010). IL-6 blockade is already an established effective

therapy for RA, and Jak inhibitors have shown efficacy in preclinical models

(Ghoreschi et al. 2010) and clinical trials (Garber 2011). A potential pathogenic

role for type I IFNs in SLE has been proposed (Crow 2003a, b). Mechanisms

by which type I IFNs contribute to SLE pathogenesis include promoting DC

maturation, up-regulating innate immune, Th1, and antibody responses, suppressing
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?
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?

Fig. 2 IFN-g reverses the block in inflammatory cytokine gene expression that is established

during endotoxin tolerance. In naı̈ve macrophages TLR stimulation leads to Brg1-mediated

remodeling of chromatin at secondary response inflammatory genes such as IL6 that results in

the ‘opening’ of chromatin to make it permissive for transcription. This TLR-induced remodeling

of chromatin does not occur in macrophages that have been tolerized by previous exposure to a

TLR ligand. IFN-g reverses this block in chromatin remodeling, possibly by modifying

components of the Brg1-containing remodeling complex, or by inducing expression of proteins

that bind to cytokine gene loci to facilitate chromatin remodeling
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apoptosis, and inducing the expression of other cytokines and chemokines (Ivashkiv

2003). Interestingly, elevated type I IFN expression and function have been

observed in RA blood cells and arthritic synovial tissue (Thurlings et al. 2011 and

refs. therein), and future work will clarify the pathogenic versus protective role of

type I IFNs in this disease.

We have proposed that priming of myeloid cells (DCs and macrophages) and

high STAT1 expression may contribute to inflammatory disease pathogenesis (Hu

et al. 2002; Ivashkiv 2003; Kono et al. 2003; Taniguchi and Takaoka 2001; van der

Pouw Kraan et al. 2003). IFNs are expressed during inflammation at levels that, in

addition to direct effects on target cells, modulate immune cell responses by the

mechanisms described above. For example low level IFN action could enhance the

inflammatory responses to TNF, IL-6, and endogenous activators of TLRs. In fact,

many animal models of autoimmune/inflammatory diseases suggest that priming

does contribute to disease pathogenesis and progression (Ivashkiv 2003; Klinman

2003; Kono et al. 2003; Santiago-Raber et al. 2003; Taniguchi and Takaoka 2001;

Theofilopoulos et al. 2001). In SLE, systemic IFN levels have been shown to

enhance antigen presenting cell (APC) function of monocytes, similar to partially

activated DCs (Bengtsson et al. 2000; Blanco et al. 2001). Furthermore, leukocytes

isolated from SLE patients have been found to express increased levels of STAT1, a

key marker in IFN priming (Baechler et al. 2004; Bennett et al. 2003; Ivashkiv 2003;

Kuroiwa et al. 2003). Elevated STAT1 expression, measured both at the mRNA and

protein levels, and implying priming in vivo, has been observed in other inflamma-

tory processes, such as T-cell mediated hepatitis, RA, and dermatomyositis (Hong

et al. 2002; Hu et al. 2002; Kuroiwa et al. 2003; van der Pouw Kraan et al. 2003). In

SLE patients who have not undergone treatment, isolated monocytes display an

enhanced response to TLR activators, such as LPS and IL-1b (Scuderi et al. 2003;

Yuan et al. 2011) and it is thought that such a hyper-responsiveness of TLRs in vivo

can be secondary to the effects of IFN priming (Doughty et al. 2001; Durbin et al.

2003; Krutzik et al. 2003; Mohty et al. 2003; Nansen and Randrup Thomsen 2001;

Paterson et al. 2003). Moreover, as a consequence of this hyper-responsiveness,

patients with rheumatic diseases have been observed to mount exaggerated immune

responses to infections (Klinman 2003). Lastly, despite low levels of IFN-g expres-
sion in the synovium of RA patients, RA synovial cells nevertheless strongly

express many IFN-g-inducible genes (van der Pouw Kraan et al. 2003), which can

potentially be explained by the priming of synovial cells, increased expression of

STAT1, and their hyper-responsiveness to cytokines that activate STAT1. Thus, a

substantial body of data supports the notion that priming of immune cells for

enhanced Jak-STAT signaling occurs in inflammatory diseases and contributes to

disease pathogenesis, and emerging data suggest that Jak inhibitors represent a

promising new therapeutic approach to inflammatory diseases.

The rate of progression of inflammatory disease, and its eventual severity and

morbidity, is determined by the balance between pro- and anti-inflammatory

cytokines that influence whether the inflammatory response progresses or resolves.

Immunosuppressive cytokines, such as IL-10, have the potential to suppress inflam-

mation in RA and SLE. However, the anti-inflammatory functions of IL-10 are
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compromised in RA and SLE (Bussolati et al. 2000; Gergely et al. 2002; Hart et al.

1995; Ji et al. 2003; Mongan et al. 1997). IL-10 signaling and downstream gene

expression are suppressed in synovial macrophages isolated from patients with RA,

and IL-10 responses are diminished in monocytes derived from SLE patients (Hart

et al. 1995; Ji et al. 2003; Mongan et al. 1997; Yuan et al. 2011). Inhibition of IL-10

signaling is most effective in cells exposed to IFNs and correlates with diminished

STAT3 activation and function, suggesting the potential involvement of some of

the mechanisms that modulate Jak-STAT signaling discussed above. In the context

of autoimmune/inflammatory disorders, a loss in IL-10 activity may have adverse

consequences for the patient, as this would imply an inability to control and reduce

the inflammatory response. Decreased IL-10 activity would lead to increased

expression of pro-inflammatory cytokines, such as TNF-a, IL-1 and IL-6, thereby

allowing the inflammatory response to proceed unabated.

Concluding Remarks

Jak-STAT signaling by many cytokines plays a key role in the regulation of

inflammatory responses and the pathogenesis of inflammatory diseases. The func-

tional outcomes of Jak-STAT signaling in complex inflammatory settings are

determined by bidirectional crosstalk with other signaling pathways. Such crosstalk

will determine the severity and time course of inflammatory responses, and also

contributes to the pathogenesis of inflammatory diseases. Therapeutic targeting of

the Jak-STAT pathway holds promise for treating various inflammatory conditions,

but development of such therapies needs to take into account the activating versus

homeostatic roles of Jak-STAT signaling, and the effects on crosstalk with heterol-

ogous signaling pathways.
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Activation and Inhibition of JAK-STAT
Signal Transduction by RNA Viruses

Curt M. Horvath

Abstract

The investigation of interferon (IFN)-stimulated signal transduction leading to

antiviral gene expression revealed the first members of the JAK and STAT

protein families. The importance of IFN signaling in the innate cellular response

to virus infection is highlighted by the evolution of numerous virus-encoded IFN

evasion strategies that can prevent IFN production or antagonize downstream

responses. Some RNA viruses in the family Paramyxoviridae have evolved the

ability to target STAT proteins directly to eliminate antiviral signaling,

preventing IFN-stimulated gene expression and innate antiviral responses. The

virus-encoded STAT inhibitors are highly homologous to each other, and target

STATs through protein interactions. However, in-depth investigations of the

biochemical and cellular mechanisms have revealed that individual paramyxo-

virus genera have evolved distinct mechanisms to mediate STAT destruction.

Interferon Signal Transduction and Antiviral Innate Immune
Responses

Immune responses to virus infections are initiated by the recognition of specific

pathogen associated molecular patterns (PAMPs), such as viral nucleic acids, by

cellular pathogen recognition receptor (PRR) proteins (Akira et al. 2006). For many

virus infections, activation of PRR signaling leads to expression of type I interferon

(IFN), in humans a single IFNb and multiple IFNa genes, which in turn engages the

IFN receptor-JAK-STAT pathway to induce an IFN-stimulated gene expression

program leading to a broadly effective cellular antiviral state.
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Accumulation of PAMPs during RNA virus infections is a well characterized

inducer of the IFN-mediated antiviral response. For RNA viruses that deliver their

nucleocapsid to the cytoplasm of host cells, double-stranded and single stranded

replication intermediates or defective genomes can potently induce the IFN

response by binding to the proteins encoded by the retinoic acid-inducible gene

I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) (Takeuchi and

Akira 2008). These proteins, collectively referred to as RIG-I like receptors (RLRs)

are characterized by the presence of tandem caspase activation and recruitment

domain (CARD) motifs at their N-termini (Hiscott et al. 2006) coupled to a DECH-

box RNA helicase domain and a C-terminal regulatory domain (RD) (Kang et al.

2002; Yoneyama et al. 2004, 2005). A third related protein, LGP2, has significant

sequence similarity with RIG-I and MDA5 in the helicase region but lacks the

N-terminal CARD domains (Fig. 1). The RLRs recognize non-self RNAs, such as

double-stranded RNA (dsRNA), 50-triphosphorylated RNA, or structured RNAs

and transmit a signal through the mitochondria-associated adaptor called IFNb
promoter stimulator protein 1 (IPS-1)/mitochondrial antiviral signaling protein

(MAVS)/virus-induced signaling adaptor (VISA)/CARD adaptor inducing IFNb
(Cardif), independently identified by several groups (Kawai et al. 2005; Meylan

et al. 2005; Seth et al. 2005; Xu et al. 2005), reviewed by Hiscott et al. (2006),

Fig. 1 Activation of the IFN signaling cascade in response to paramyxovirus infection. (Left)
Viral envelope fusion with the host plasma membrane delivers the viral nucleocapsid to the

cytoplasm. RLR proteins RIG-I, MDA5, and LGP2 interact with the foreign RNA via their

helicase domain and regulatory domain (RD). RIG-I and MDA5 associate with the mitochondria

resident IPS-1 via their caspase activation and recruitment domain (CARD), inducing activation of

serine kinases in the Inhibitor of NFkB (IkB) kinase family, TBK1, IKKe, IKKa, and IKKb. These
kinases activate transcription factors IRF3 and NFkB to assemble at the IFNb enhanceosome,

resulting in transcriptional activation. The IFNb mRNA is translated and secreted from the cell

where it can bind to its receptor. (Right) When type 1 IFNs bind their receptor, JAK protein

tyrosine kinases Tyk2 and JAK1 are activated to produce docking sites for the latent STAT1 and

STAT2, which then are phosphorylated on their activating tyrosine residues to induce dimerization

and assembly with IFN regulatory factor IRF9 to produce the IFN stimulated gene (ISG) tran-

scription factor 3 (ISGF3). ISGF3 translocates to the nucleus where it binds to the promoter of

ISGs, inducing their transcription. The combined effects of the ISG products is production of the

an antiviral state and resistance to virus infection
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Johnson and Gale (2006). IPS-1 acts as a scaffold that facilitates a serine kinase

based signaling cascade leading to the activation of immediate responding tran-

scription factors including NF-kB and IFN regulatory factor-3 (IRF3). These

factors translocate to the nucleus and contribute to transcriptional activation of

the IFNb gene (Au et al. 1995; Fitzgerald et al. 2003; Sato et al. 1998; Servant et al.

2001, 2002; Weaver et al. 1998).

The newly synthesized and secreted type I IFNs can bind to the IFN-a/b receptor

on the same cell (autocrine signaling) as well as adjacent cells (paracrine signaling).

IFN receptor engagement results in activation of STAT1 and STAT2 by tyrosine

phosphorylation, which in combination with a DNA binding subunit, IRF9, form

the heterotrimeric complex known as the interferon stimulated gene factor 3

(ISGF3) (Fu et al. 1990; Kessler et al. 1990). ISGF3 translocates to the nucleus

and binds to the conserved IFN stimulated response element (ISRE) sequences on

IFNa/b stimulated gene (ISG) promoters inducing their transcription (Levy et al.

1988; Reich et al. 1987). The accumulated effects of the induced interferon

stimulated gene products generate an antiviral state in the IFN-stimulated cell

that provides a broadly effective barrier protecting the cell against virus infections.

Virus Evasion of Interferon Mediated Antiviral Responses

The importance of the STAT-mediated IFN signaling systems in mediating

antiviral defense is highlighted by the fact that many viruses have evolved

mechanisms to evade activation of this innate immune response (Gale and Sen

2009; Goodbourn et al. 2000; Grandvaux et al. 2002; Horvath 2004a, b; Katze et al.

2002; Levy and Garcia-Sastre 2001; Taylor et al. 1999). Each step of the interferon

response, from the first recognition of a virus in the primary infected cell to the

ability to mount an effective adaptive immune response, is known to be targeted by

viral immune suppression. For many viruses, the initial steps of virus detection and

IFN induction are targeted by inhibitory mechanisms including dsRNA sequestra-

tion or signaling interference to antagonize IRF3 and NF-kB pathways. In addition,

virus-encoded IFN receptors or receptor antagonists can block cytokine signaling.

Individual viruses can also block specific antiviral effectors or ISG products to

preserve key cellular machinery needed for their replication. Viral disruption of

IFN production and action is tightly linked with virulence. Understanding the

molecular mechanisms by which viruses trigger and evade IFN actions are there-

fore of paramount importance for defining strategies aimed at controlling virus

infection. For RNA viruses in the paramyxovirus family, evasion of IFN signaling

by direct interference with the IFN-inducible STAT proteins has been characterized

in detail (Gotoh et al. 2002; Horvath 2004a, b). The molecular mechanisms of

STAT antagonism and IFN signaling evasion are known to be very diverse among

individual viruses in this family (Table 1), and the key features as well as new

insights of paramyxovirus STAT targeting are described in this chapter.
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Paramyxoviruses-STAT Destroyers

The non-segmented negative strand RNA virus family, Paramyxoviridae, is divided
into two subfamilies, Paramyxovirinae and Pneumovirinae. Differences in the

nucleocapsid and genomic organization as well as virus life cycles distinguish

paramyxoviruses from pneumoviruses (Lamb and Parks 2007). The Paramyxovirinae
are further divided into five genera based on nucleotide sequence similarity, antigenic

cross reactivity, and neuraminidase activity of the attachment proteins (Lamb and

Parks 2007). The Respirovirus genus includes Sendai virus, human parainfluenza

virus type I (HPIV1), and human parainfluenza virus type 3 (HPIV3). The Avulavirus
genus includes bird paramyxoviruses like Newcastle disease virus (NDV). Mumps

virus, parainfluenza virus 5 (PIV5, formerly know as Simian virus 5 (SV5)), and

human parainfluenza virus type 2 (HPIV2) are all members of the Rubulavirus genus.
The Morbillivirus genus includes measles virus and canine distemper virus (CDV).

The Henipavirus genus is comprised of Hendra virus and Nipah virus, two

paramyxoviruses that elicited an outbreak of fatal encephalitis spread between farm

animals and humans in Australia and Malaysia and continue to emerge in southeast

Asia (Chua et al. 2000; Selvey et al. 1995). All of these viruses share common

structural, biochemical, and genetic elements including a single-stranded antisense,

RNA genome that encodes a small number of mRNAs encoding proteins including

surface glycoproteins involved in attachment and fusion, subunits of an RNA-depen-

dent RNA polymerase, and host modifying factors (Lamb and Parks 2006). One

interesting feature of the Paramyxovirinae is the ability of the gene that encodes the

phosphoprotein, P, to code for more than one protein (Thomas et al. 1988). An

extreme example is Sendai virus, which directs the expression of at least seven

Table 1 STAT targeting by paramyxovirus V proteins

Genus Virus P gene STAT Notes

Product Target

Rubulavirus PIV5 V STAT1 VDC ubiquitin ligase requires STAT2

to target STAT1

HPIV2 V STAT2 VDC ubiquitin ligase requires STAT1

to target STAT2; can also target STAT1

Mumps V STAT1 VDCSTAT1 ubiquitin ligase requires

STAT2 to target STAT1

VDCSTAT3 ubiquitin ligase does not

require STAT2

Morbillivirus Measles V STAT2>>STAT1 CTD sufficient for binding STAT2;

Y110 required to bind STAT1

Henipavirus Nipah P, V, W STAT1>>STAT2 N-terminal STAT binding sites are

identical in all proteins

STAT2 association greatly enhanced by

STAT1 binding

Hendra P, V, W STAT1>>STAT2 N-terminal STAT binding sites are

identical in all proteins
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proteins from this locus, including P, V, W, C’, C, Y1 and Y2. Other

paramyxoviruses express fewer, but more than one, proteins from their P/V/C gene,

by accessing overlapping open reading frames through alternate translation initiation

site selection on a single mRNA, or by generating alternate mRNAs by co-transcrip-

tional insertion of non-templated nucleotides at a precise site that allows access to

alternate reading frames (Lamb and Parks 2006; Thomas et al. 1988). This mRNA

generating phenomenon produces proteins that share a common amino terminus but

differ in their carboxyl terminus downstream of the “editing site”. Most commonly,

this process produces two proteins called P and V, but in some viruses the third

reading frame can produce a protein often referred to as W (Harcourt et al. 2000).

The V protein C-terminal domain (CTD) is highly conserved among the

paramyxoviruses. The CTD of the V protein is cysteine rich and binds two zinc (Zn)

molecules per V protein (Liston and Briedis 1994; Paterson et al. 1995). A diverse

range of host evasion activities, including IFN signaling inhibition (Didcock et al.

1999), prevention of apoptosis (He et al. 2002; Wansley and Parks 2002), cell cycle

alterations (Lin and Lamb 2000), inhibition of double-stranded RNA signaling (He

et al. 2002; Poole et al. 2002), and prevention of IFN biosynthesis (He et al. 2002;

Poole et al. 2002; Wansley and Parks 2002) have been specifically ascribed to the

paramyxovirus V proteins. The other proteins derived from this locus, including C and

Whave also been implicated in evading IFN responses and antiviral signaling. Inmost

cases, a fundamental activity associated with the host evasion proteins is direct

interference with STAT protein function by mechanisms that rely on protein

interactions, but it is recognized that individual genera within the family exhibit

remarkably distinct mechanisms of STAT inhibition.

Rubulaviruses

The Rubulavirus genus includes parainfluenza virus 5 (PIV5, formerly known as

SV5), mumps virus, and the type 2 human parainfluenza virus (HPIV2). The PIV5

V protein was the first to be recognized as an IFN signaling inhibitor, and sole

expression of this protein in human cells results in rapid and specific loss of STAT1

by a proteasome mediated degradation (Didcock et al. 1999). In fact, all of the

Rubulavirus V proteins have been shown to efficiently target STAT proteins for

proteasome mediated destruction with remarkable targeting specificity. The PIV5 V

protein targets STAT1, the HPIV2 V protein targets STAT2 (although in some

cases can also target STAT1), and the mumps virus V protein targets both STAT1

and STAT3 (Didcock et al. 1999; Kubota et al. 2001; Parisien et al. 2001, 2002a, b;

Ulane et al. 2003; Yokosawa et al. 2002; Young et al. 2000). Intact cellular IFN

signal transduction is not required for STAT targeting, somatic cell genetic analysis

has demonstrated that both PIV5 and mumps virus V proteins require the cellular

expression of STAT2 in order to target STAT1, while HPIV2 requires STAT1 to

target STAT2. This requirement restricts the host range of PIV5, as the divergent

murine STAT2 cannot support targeting of STAT1 (Parisien et al. 2002a).

The requirement for human STAT2 in STAT1 destruction provided the first
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example of a STAT protein that can function as a host range determinant for any

virus. This observation was further validated by the creation of a human STAT2

transgenic mouse model system in which human STAT2 was ubiquitously

expressed in an immune-competent intact mouse. Expression of human STAT2

enabled targeting of the murine STAT1 protein interference with IFN signaling

responses in infected cells, increased virus replication, and enhanced cytokine and

ISG induction profiles in the infected animals (Kraus et al. 2008). It has recently

been demonstrated that differences in mouse STAT2 are also important for IFN

signaling antagonism by the Dengue virus. Reminiscent of PIV5, the Dengue virus

protein NS5 is able to bind and degrade human STAT2, but not mouse STAT2.

Although mechanistically distinct, it seems likely that this difference can be

exploited to create an animal model for the study of this deadly pathogen (Ashour

et al. 2009, 2010).

Biochemical studies of Rubulavirus V proteins indicate that they achieve STAT

degradation by coordinating the assembly of a multi-component E3 ubiquitin ligase

complex that includes a number of cellular proteins including DDB1, the cullin

family member Cul 4A, and both STAT1 and STAT2 (Andrejeva et al. 2002; Lin

et al. 1998; Ulane and Horvath 2002). This V-mediated targeting complex is

referred to as VDC, an acronym for V-dependent degradation complex, which

fortuitously also denotes its central components, V, DDB1, and Cul4A. (Precious

et al. 2005; Ulane et al. 2005). Structural studies strongly support the molecular and

biochemical conclusions regarding the Ub ligase complex assembled by Rubulavirus

V proteins. Crystallographic visualization of PIV5 V protein in complex with DDB1

revealedmolecular details about the V protein and its association with DDB1 (Li et al.

2006) (Fig. 2). Together, the data indicate that V proteins form separate interactions

with their STAT substrates and the cellular ubiquitin ligase components. Furthermore,

it has been observed that the V proteins can form macromolecular spherical particles

visible in the electron microscope suggesting that the V protein particle acts as an

enzymatic scaffold for combining the hijacked E3 ubiquitin ligase activities with the

V-associated STAT substrate, resulting in highly efficient targeting (Ulane et al.

2005). The obligatory role of STAT2 is to act as a substrate adaptor, bridging

STAT1 and the DDB1 complex (Precious et al. 2005; Ulane et al. 2005). Irrespective

of the structural considerations, the RubulavirusV protein acts as an efficient catalyst

for the degradation of STAT1 to prevent the establishment of the IFN induced antiviral

state in the cells (Carlos et al. 2005; Precious et al. 2007).

This PIV5 V protein structure revealed that a unique zinc finger is formed that

involves the first histidine of the V CTD, and seven invariant cysteine residues. The

structure also verified the importance of both the N and C termini in the interaction

with DDB1, consistent the observation that STAT1 can be degraded by only the full

length PIV5 V protein and that the P protein has no ability to induce degradation of

STAT1 (Didcock et al. 1999). The data are also consistent with the findings that the

C-terminal cysteine cluster is important for DDB1 binding (Andrejeva et al. 2002;

Lin et al. 1998), though additional contacts are also essential for full VDC activity.

Another well-studied Rubulavirus V protein is from mumps virus. The mumps

virus V protein has a unique ability to target both STAT1 and STAT3 for proteasomal
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destruction (Ulane et al. 2003). This results in amore dramatic suppression of cytokine

signaling due to loss of STAT3 in the infected cells (Ulane et al. 2003).Mumps virus is

capable of forming separate VDC complexes for targeting STAT1 or STAT3. Like

PIV5, mumps V protein is incapable of targeting STAT1 in cells deficient in STAT2,

but retains the ability to mediate STAT3 destruction, indicating that STAT2 is not a

co-factor for STAT3 degradation. Furthermore, STAT immunoprecipitation of affin-

ity purified mumps virus VDC complexes demonstrated co-fractionation of STAT1

and STAT2, but not STAT3, strongly indicating the assembly of independent mumps

VDC complexes capable of targeting STAT1 (in a STAT2-dependent reaction) or

STAT3 (in a STAT2-independent reaction).

Although STAT1 targeting and IFN evasion is widely observed among diverse

viruses, the ability to degrade STAT3 is rarely observed, and among

Paramyxoviruses is unique to the mumps virus. STAT1 and STAT2 are well

established antiviral mediators, and are frequently found to be the targets of viral

host evasion strategies. In contrast, a role for STAT3 as a mediator of antiviral

immune responses is not fully appreciated. It has been observed that STAT3 can be

activated in response to IFNa/b stimulation (Caldenhoven et al. 1999; Velichko

et al. 2002) and STAT3 has been identified as a target not only for mumps virus but

also for measles virus V proteins (Palosaari et al. 2003; Ulane et al. 2003). Like

STAT1, activation of STAT3 leads to dimerization and the activated STAT3 dimer

binds to a GAS-like response element, but the specific target genes and phenotypic

outcomes are distinct from those of IFNg-activated STAT1. STAT3 has also been

identified as a target for virus host evasion, a strong implication as being important

in cellular antiviral responses (Palosaari, 2003; Ulane et al. 2003).

Based on the structural and genetic features of the Rubulaviruses, a new para-

myxovirus, mapuera virus, has been recently isolated from bats. But unlike the

Fig. 2 The PIV5 V protein assembles a STAT-targeting ubiquitin ligase. (a) Scale diagram of the

PIV5 V protein, illustrating position 100, implicated in STAT2 association, and the conserved

zinc-binding CTD (hatched). (b) Structural representation of the core VDC components, DDB1

(green), CUL4A (pink), and ROC1 (yellow) in association with PIV5 V protein (red). Zinc atoms

are represented as red spheres
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Rubulaviruses, this virus evades the IFN response by sequestering STAT proteins

and preventing their nuclear translocation rather than degrading STATs (Hagmaier

et al. 2007). Another Rubulavirus, HPIV4, has been shown to be completely unable

to evade the IFN response (Nishio et al. 2005). Sequence comparison reveals

different amino acid composition in the N and C terminus of the virus V protein.

However, as cell type and species specific factors are already known to strongly

influence the outcome of V-mediated STAT destruction; further work is needed to

better understand the nature of these viruses, and their abilities to interface with the

host IFN response and STAT proteins.

Henipaviruses

Hendra virus and Nipah virus are the two prototype species in the emerging

Henipavirus genus that was recently identified and causes lethal diseases in

humans. In the Henipaviruses, the P protein is derived from the co-linear transcript,

and addition of one or two non-templated guanine nucleotides produces mRNAs

encoding two additional proteins, V and W with different carboxyl termini

(Harcourt et al. 2000). In addition, the C protein is produced from an alternate

translational site within the P gene. Immunofluorescence analysis of Nipah virus

infected cells with specific antiserum has demonstrated that the P protein localizes

throughout the cell, the C protein accumulates in the cytoplasm in a punctate

pattern, and that the V protein accumulates exclusively in cytoplasm while the W

protein is predominantly in the nucleus. This steady state picture of protein accu-

mulation does not reveal the dynamics of nucleocytoplasmic movement, as it is

established that the Henipavirus V protein shuttle between nucleus and cytoplasm

with net nuclear export due to the presence of a potent export signal (Lo et al. 2009;

Rodriguez et al. 2004; Rodriguez and Horvath 2004).

Henipavirus P, V and W proteins have all been implicated in blocking the host

IFN response by targeting STAT proteins. Nipah virus P, V and W proteins all form

high affinity interactions with STAT1 through their common N terminal domain

(Rodriguez et al. 2004; Shaw et al. 2004), and this activity maps to residues

100–160, which is also present and functional in Hendra virus (Fig. 3). Additional

residues, as well as the presence of STAT1 are required for these V proteins to

associate with STAT2 (Rodriguez et al. 2004). The Henipavirus V proteins inhibit

IFN responses by sequestering STAT1 and STAT2 in high molecular weight

cytoplasmic complexes, thereby preventing their IFN-mediated tyrosine phosphor-

ylation (Rodriguez et al. 2002, 2003). The short CTD of the Nipah virus W protein

possesses a functional nuclear localization signal (NLS) that interacts with host

karyopherin alpha 3 and 4 (Shaw et al. 2005), giving rise to nuclear accumulation. It

has also been shown that W protein but not V protein can inhibit TLR3 mediated

signaling due to loss of activated IRF3, but the mechanism of TLR3 signaling

inhibition by W protein remains uncharacterized (Shaw et al. 2005). Another

cellular protein, Polo-like kinase 1 (PLK1), has been identified as a binding partner

for Henipavirus P, V and W proteins. The PLK1 binding site overlaps with the
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STAT1 binding site between residues 100–160 (Ludlow et al. 2008; Parisien et al.

2002b). The interaction of PLK1 with V and W are independent of the STAT

interactions, suggesting V:STAT and V:PLK exist as separate complexes. The

study of PLK1 association further refined the known STAT1 binding site specificity

to included Serine 130 and Serine 131 which are both essential for binding to

STAT1 (and therefore STAT2) and normal IFN signaling interference (Ludlow

et al. 2008). A therapeutically relevant outcome of this study was the demonstration

that Nipah virus P proteins that no longer interact with STATs or PLK1 retain the

ability to function in genome replication assays (Ludlow et al. 2008). While the

precise biological significance of PLK1 association with Henipavirus V proteins

remains to be determined, this kinase was recently demonstrated to be important for

regulation of cell death and cytokine expression during PIV5 infection (Sun et al.

2009), suggesting a general role in virus replication. As defective STAT1 interfer-

ence is an obvious strategy for attenuation of Henipaviruses this result suggests that
reverse genetics approaches will be successful in creation of vaccine strains.

Indeed, it was earlier found that a Nipah virus V protein with a single amino acid

substitution fails to engage STAT1 (Hagmaier et al. 2007), and recombinant viruses

harboring this mutation are attenuated in replication (Ciancanelli et al. 2009).

Morbilliviruses

Measles virus is the prototype of the Morbillivirus genus. The P/V/C locus of

measles virus, like that of other paramyxoviruses is associated with host immune

evasion, and can disengage IFN-JAK-STAT signaling. The evasion activities are

ascribed to the V protein, but specific cases of P and C protein-mediated host

evasion have also been revealed (Devaux et al. 2007; Fontana et al. 2008).

The mechanism of measles V protein mediated inhibition of IFN signaling is

distinct from other paramyxoviruses. The measles virus V protein does not degrade

STATs, but effectively prevents IFN-induced STAT1 and STAT2 nuclear import

(Palosaari et al. 2003) by an unknown mechanism. Measles virus V protein can

efficiently antagonize IFNa/b signaling but the IFNg signaling inhibition has not

always been confirmed (Caignard et al. 2007; Devaux et al. 2007; Fontana et al.

2008; Palosaari et al. 2003; Takeuchi et al. 2003). Recently, distinct means for

disengaging the IFNg and IFNa/b signal transduction machinery through separate

associationswith STAT1 and STAT2 have been revealed (Fig. 4). Results indicate that

Fig. 3 The Nipah virus V protein binds and inhibits STAT1 and STAT2. Scale diagram of the

Nipah virus V protein, illustrating the STAT1 binding region between residues 100 and 160, the

residues implicated in STAT2 association between 230 and 237, and the conserved zinc-binding

CTD (hatched). STAT-binding sequences are identical in V, W, and P proteins

Activation and Inhibition of JAK-STAT Signal Transduction by RNA Viruses 379



STAT2 is the primary target for measles V protein-mediated IFNa/b signaling eva-

sion. Measles virus V protein engages STAT2 in the absence of STAT1 and in the

absence of the V protein’s STAT1 binding site (Ramachandran et al. 2008). Unlike

other paramyxovirus V proteins, measles V binds STAT2 specifically through the

highly conserved CTD, and this domain is both necessary and sufficient for interaction

with STAT2 and IFNa/b signaling evasion. Results demonstrate that both the zinc

finger structure and specific amino acids present on the fingers are required for

mediating interactions with STAT2, and specific measles virus amino acids in the

CTD were implicated in STAT2 association (Ramachandran et al. 2008). Similar

findings verify the importance of the CTD for STAT2 interaction, and also implicating

conserved tryptophan residues W240 and W250 as important for mediating STAT2

interactions (Caignard et al. 2009). The direct and fundamental association with

STAT2 clearly represents a target for design of a small molecule that could disengage

the measles virus IFN signaling evasion.

A distinct region of themeasles virusVprotein associateswith STAT1.The STAT1

binding site on measles V has been mapped to residues 110–130 in the region shared

between P and V proteins (Caignard et al. 2009; Ramachandran et al. 2008). This

region is noted for high sequence conservation amongstMorbilliviruses (Devaux et al.
2007). This region originates with tyrosine 110 that has been shown to be important in

the P proteinmediated block of STAT1 tyrosine phosphorylation and inmediating IFN

evasion (Devaux et al. 2007; Caignard et al. 2007; Combredet et al. 2003; Fontana et al.

2008; Ohno et al. 2004; Patterson et al. 2000; Ramachandran et al. 2008).

Though it can interact with STAT1, it has been observed that measles virus V

protein more effectively achieves IFNa/b signal interference than IFNg interfer-

ence (Ramachandran et al. 2008; Takeuchi et al. 2003). Both P and V have the

intrinsic capacity to engage STAT1 via residues 110–130, consistent with the

finding that measles virus lacking V protein expression retains the ability to

Fig. 4 The Measles virus V protein contacts STAT1 and STAT2 through distinct regions. (a)
Scale diagram of the measles virus V protein, illustrating residues 110–130, implicated in STAT1

association. These residues are identical and functional in the measles P protein. The V protein

zinc-binding CTD (hatched) is sufficient for STAT2 interaction and IFN signaling interference.

(b) Structural model of the measles virus CTD, illustrating the positions of residues implicated in

STAT2 associations, defining a contact surface
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antagonize STAT1 signaling via the P protein in a Y110-dependent reaction

(Devaux et al. 2007). It is likely that the differential effects of measles virus on

IFNg signaling may become more apparent during its normal life cycle in whole

animals, and may play a role in the immune response to natural measles virus

infections.

Concluding Remarks

The investigation of paramyxovirus STAT evasion strategies demonstrates the

ability of viruses to exploit cellular processes and protein interactions to create

virtual STAT deficient hosts that are more susceptible to virus replication and

hidden from the immune system. The growing catalog of paramyxovirus V pro-

tein-mediated STAT inhibition strategies provides numerous insights into the

vulnerabilities of STAT proteins that can be used to inform the design of therapeu-

tic strategies for virus infections and beyond. Disruption of the interactions between

V proteins and STATs by chemical compounds will lead to the creation of virus-

specific antiviral drugs, and mutagenesis of the STAT interaction sites in recombi-

nant viruses will produce attenuated strains for use in vaccination. Further, the

insights gained through the study of virus-mediated STAT targeting identifies

vulnerabilities of STAT proteins could be transferred to other cytokine systems to

create new means to disrupt the action of hyper-activated STAT signaling pathways

that are causes or contributors to human diseases including cancer and

inflammation.
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Multifaceted Antiviral Actions
of Interferon-stimulated Gene Products

Birgit Strobl, Nicole R. Leitner, and Mathias M€uller

Abstract

Interferons (IFNs) are extremely powerful cytokines for the host defence against

viral infections. Binding of IFNs to their receptors activates the JAK/STAT

signalling pathway with the Janus kinases JAK1, 2 and TYK2 and the signal

transducer and activators of transcription (STAT) 1 and STAT2. Depending on

the cellular setting, additional STATs (STAT3-6) and additional signalling

pathways are activated. The actions of IFNs on infected cells and the

surrounding tissue are mediated by the induction of several hundred IFN-

stimulated genes (ISGs). Since the cloning of the first ISGs, considerable

progress has been made in describing antiviral effector proteins and their

many modes of action. Effector proteins individually target distinct steps in

the viral life cycle, including blocking virus entry, inhibition of viral transcrip-

tion and translation, modification of viral nucleic acids and proteins and, inter-

ference with virus assembly and budding. Novel pathways of viral inhibition are

constantly being elucidated and, additionally, unanticipated functions of known

antiviral effector proteins are discovered. Herein, we outline IFN-induced

antiviral pathways and review recent developments in this fascinating area of

research.
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Abbreviations1

ADAR Adenosine deaminase acting on RNA

APOBEC Apolipoprotein B mRNA-editing catalytic polypeptide

BST-2 Bone marrow stromal antigen 2

ds Double-stranded

eIF Eukaryotic translation initiation factor

ER Endoplasmatic reticulum

GAS IFNg activated sequence

GBP Guanylate binding protein

IFN Interferon

IFNAR IFNa/b receptor

IL Interleukin

ISG IFN-stimulated gene

IFIT IFN-induced protein with tetratricopeptide repeats

IFITM IFN-induced transmembrane protein

ISGF3 IFN-stimulated gene factor 3

IRF IFN regulatory factor

ISRE IFN-stimulated response element

JAK Janus kinase

PML Promyelocytic leukaemia

2-5An 20-50 oligoadenylate
OAS 2-5An synthetase

MDA5 Melanoma differentiation-associated protein 5

PAMP Pathogen-associated molecular pattern

PKR dsRNA-dependent protein kinase

PRR Pattern-recognition receptor

RIG-I Retinoic acid-inducible protein I

RNase L Latent ribonuclease

ss Single-stranded

STAT Signal transducer and activator of transcription

TRIM Tripartite motif

TYK2 Tyrosine kinase 2

Introduction

Antiviral activity defines the bioactivity of interferons (IFNs). IFNs induce hundreds

of IFN-stimulated genes (ISGs), whereby many are regulated by all IFNs, and others

are induced more selectively (de Veer et al. 2001; Der et al. 1998). Even for several

1 Viruses mentioned in this article, see Table 2
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long-known ISG-encoded proteins with direct or indirect antiviral activity, the

mechanisms of action are often still poorly understood. Studies on antiviral activities

of specific proteins became more complicated than anticipated, largely because of

their high virus-specificity and their involvement in multiple pathways, including

normal cellular physiology. Moreover, viral counteracting mechanisms can be very

efficient and mechanistic discoveries often depended on mutant viruses. As another

level of complexity, some of the antiviral effector proteins also have proviral effects.

Recognition of virus infection is a central requirement for the initiation of an

efficient host defence. Molecules and signalling cascades involved have been

mainly characterized during the last decade and new players are still being

identified. A number of germline-encoded pattern-recognition receptors (PRRs)

sense the presence of so-called pathogen-associated molecular patterns (PAMPs).

PRRs involved in host defence against viruses are localized in several cellular

compartments and recognize distinct molecular structures, most prominently viral

nucleic acids. Activation of distinct PAMP-induced signalling cascades converge in

most cases at the induction of pro-inflammatory cytokines and type I IFNs (Kawai

and Akira 2009; McCartney and Colonna 2009).

IFNs are grouped into three classes, called type I, type II and the more recently

identified type III IFNs. Type I IFNs are the key cytokines for innate antiviral

immunity, as they are rapidly induced upon virus recognition and act on presumably

all cell types. Type I IFNs have been discovered more than 50 years ago and

comprise a large group of cytokines. Among these, several distinct IFNa subtypes

(13 in humans) and IFNb are induced directly in response to viral infections. Type II

IFN consists of only one member, IFNg, that is mainly produced by activated T cells

and natural killer (NK) cells (Pestka et al. 2004). Type III IFNs are structurally more

related to the interleukin- (IL-) 10 cytokine family, but have been classified as IFNs

based on their similar biological activity as IFNa/b. In humans, this family has three

members, IFNl1–IFNl3, originally designated as interleukin IL-29, IL-28A and

IL-28B, respectively. IFNls are also directly induced by viral infections by similar,

but probably not identical, mechanisms. In contrast to IFNa/b, IFNls act only on

specific cell types due to cell type-restricted expression of their specific receptor

chain. The latter appears to be mainly expressed on epithelial cells and thus IFNls
have a more restricted/specific role in the antiviral defence (Commins et al. 2008).

Signalling of type I IFNs is initiated by ligand binding to a common heterodimeric

receptor complex consisting of the IFNAR1 and IFNAR2 chains. Ligand binding results

in the activation of signal transducers and activators of transcription (STATs) by the

receptor-associated Janus kinases (JAKs) TYK2 and JAK1. Mainly STAT1–STAT2

heterodimers, and to a lesser extent STAT1 homodimers, are activated in response to

IFNa/b. Dependent on the cell type, other STAT family members can be activated, but

their impact on cellular responses is often unclear. STAT1–STAT2 heterodimers, in

association with IFN regulatory factor (IRF) 9, form the IFN-stimulated gene factor 3

(ISGF3) and induce transcription of genes containing IFN-stimulated response

elements (ISREs) in their regulatory regions. Type III IFNs utilize the IL-10R2 and

the IFNlR1 (IL-28Ra) receptor chains and activate TYK2, JAK1 and mainly ISGF3.

Accordingly, responses appear very similar to those induced by type I IFNs, although
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some differences have been reported. IFNg binds to IFNGR1and IFNGR2 and activates
JAK1, JAK2 and mainly STAT1 homodimers. STAT1 homodimers bind to IFNg
activated sequences (GAS) in promoter regions of responsive genes. IFNg can also

activate other STAT complexes but again, the contribution of these complexes to the

overall response requires further characterization. In general, IFNa/b is mainly

associated with antiviral and IFNg with antibacterial activity, but IFNg certainly also

exhibits potent antiviral activity and IFNa/b impacts on the antimicrobial defence. It is

important to note that in addition to the induction of an antiviral state in responsive cells,

IFNs also exert important immunomodulatory activities, mainly by shaping adaptive

immune responses (Borden et al. 2007; Schindler et al. 2007).

Several specific antiviral pathways have been reviewed recently (see below), so the

emphasis herein will be on providing an overview about well-known IFN-induced

antiviral pathwayswith a strong focus on recent developments.We present the specific

antiviral effector proteins ordered according to their main effects on virus replication

(Fig. 1). It has to bementioned, however, that there are often multiple modes of action

Fig. 1 Schematic overview over antiviral effector mechanisms of IFN-stimulated gene products.

Viruses use substantially different replication strategies and we therefore use the life cycle of an

enveloped (�)ssRNA virus as an example (depicted in blue letters). The virus binds to its cellular
receptor at the plasma membrane, enters the cell via pH-dependent endocytosis and fusion,

subsequently uncoated viral nucleoproteins are transported to the nucleus, where virus replication

and transcription occurs. Viral proteins are translated by the cellular machinery, core proteins

assemble with the viral genome, envelope proteins are transported via the ER/Golgi apparatus to

the plasma membrane where virus assembly and budding occurs. ISG-encoded proteins targeting

different steps during viral replication are depicted in pink letters. ISG products can either inhibit

certain steps (⊥), modify/degrade viral products (#), or act via unknown/putative mechanisms (?).

Only the major or best characterized pathways are shown, see text for details and additional

functions of IFN-induced proteins and pathways
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which are discussed in the respective subsections. Besides, other IFN-induced proteins

not mentioned in this article might well have important functions in the cellular

resistance against virus infections.

Inhibition of Virus Entry or Uncoating

Interferon-Induced Transmembrane (IFITM) Proteins

The IFITM proteins are relatively small (14–17 kDa) transmembrane proteins with

cell type- and tissue-dependent subcellular localization. IFITM proteins have been

found in proximity to the endoplasmatic reticulum (ER), the Golgi apparatus, small

vesicles, exosomes, or associated with the plasma membrane (Siegrist et al. 2011).

They have been originally identified based on their IFN inducibility, although they

are also expressed at low levels in untreated cells (Friedman et al. 1984). The

antiviral potency of human IFITM1 (9–27, Ifi17, fragilis protein 2) has been first

demonstrated by overexpression of IFITM1, which led to a marked decrease of

vesicular stomatitis virus (VSV) but not influenza A virus (FLUAV) replication

(Alber and Staeheli 1996). First mechanistic insights came from a quite recent study

(Brass et al. 2009). Using viral pseudoparticles containing the murine leukaemia

virus (MLV) genome and unique envelope proteins from different viruses, IFITM

actions could be linked to viral surface proteins and to early steps in viral replica-

tion. Envelope proteins from several FLUAV strains, three different flaviviruses

(i.e. West Nile virus (WNV), yellow fever virus (YFV), Omsk hemorrhagic fever

virus (OMSK)), and VSV could confer IFITM1-, IFITM2- and IFITM3-sensitivity

to pseudovirus particles, whereas no effect was observed with envelope proteins

from three different arenaviruses (i.e. Machupo virus (MACV), Lassa virus

(LASV), lymphocytic choriomeningitis virus (LCMV)), or MLV. Consistent with

the pseudovirus particles, overexpression of IFITM1, IFITM2 (fragilis protein 3,

1-8D) or IFITM3 (1-8U, Ifi15, fragilis protein) in human cell lines results in

strongly reduced replication of FLUAV. Moreover, siRNA-mediated knockdown

of IFITM3 enhances FLUAV replication and decreases IFNa or IFNg-mediated

anti-FLUAV activity. The effect of IFITM3 on WNV and Dengue virus (DV)

replication was confirmed with overexpression and siRNA-mediated knockdown

experiments. No effect was observed on hepatitis C virus (HCV) replication,

supporting the notion that IFITM actions are virus-specific (Brass et al. 2009).

Further evidence for the inhibition of flavivirus and of rhabdovirus entry and/or

uncoating by IFITM1-3 has been provided using stably transfected human cell lines

(Jiang et al. 2010; Weidner et al. 2010). Very recently, the IFITM-mediated

inhibition via viral entry proteins was extended to filoviruses (i.e. Marburg virus

(MARV) and Ebola virus (EBOV)), severe acute respiratory syndrome coronavirus

(SARS-CoV) (Huang et al. 2011), and human immunodeficiency virus (HIV)-1 (Lu

et al. 2011). Consistent with studies in human cells, increased FLUAV replication

was observed in embryonic fibroblasts derived from mice lacking the entire Ifitm
locus (Table 1) (Brass et al. 2009).
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Table 2 Viruses mentioned in this article: virus abbreviations, virus, virus family and genome

organization

Abbreviation Virus Virus family Genome organizationa

ASFV African swine fever virus Asfarviridae dsDNA

ASLV Avian sarcoma leukosis virus Retroviridae ssRNA-RT

BRV Bovine rotavirus Reoviridae dsRNA

BVDV Bovine virus-diarrhoe virus Flaviviridae (þ)ssRNA

CDV Canine distemper virus Paramyxoviridae (�)ssRNA

CV Coxsackie virus Picornaviridae (þ)ssRNA

DV Dengue virus Flaviviridae (þ)ssRNA

EBOV Ebola virus Filoviridae (�)ssRNA

EBV Epstein-Barr virus Herpesviridae dsDNA

EMCV Encephalomyocarditis virus Picornaviridae (þ)ssRNA

FLUAV Influenza A virus Orthomyxoviridae (�)ssRNA

FLUBV Influenza B virus Orthomyxoviridae (�)ssRNA

FMLV Friend-murine leukaemia virus Retroviridae ssRNA-RT

g MHV68 Murine g-herpesvirus 68 Herpesviridae dsDNA

HAV Hepatitis A virus Picornaviridae (þ)ssRNA

HBV Hepatitis B virus Hepadnaviridae dsDNA-RT

HCV Hepatitis C virus Flaviviridae (þ)ssRNA

HCMV Human cytomegalovirus Herpesviridae dsDNA

HDV Hepatitis delta virus Unassigned (�)ssRNA

HFV Human foamy virus Retroviridae ssRNA-RT

HIV Human immunodeficiency

virus

Retroviridae ssRNA-RT

HSV Herpes simplex virus Herpesviridae dsDNA

KSHV, HHV8 Karposi’s sarcoma-associated

herpesvirus/human

herpesvirus 8

Herpesviridae dsDNA

LACV La Crosse virus Bunyaviridae (�)ssRNA

LASV Lassa virus Arenaviridae (�)ssRNA

LCMV Lymphocytic

choriomeningitis virus

Arenaviridae (�)ssRNA

MACV Machupo virus Arenaviridae (�)ssRNA

MARV Marburg virus Filoviridae (�)ssRNA

MCMV Murine cytomegalovirus Herpesviridae dsDNA

MeV Measles virus Paramyxoviridae (�)ssRNA

MHV Mouse hepatitis virus Coronaviridae (þ)ssRNA

MLV Murine leukaemia virus Retroviridae ssRNA-RT

MMTV Mouse mammary tumor virus Retroviridae ssRNA-RT

M-MuLV Moloney murine leukemia

virus

Retroviridae ssRNA-RT

MPV Mouse polyoma virus Polyomaviridae dsDNA

NDV Newcastle disease virus Paramyxoviridae (�)ssRNA

OMSK Omsk hemorrhagic fever virus Flaviviridae (þ)ssRNA

PV Poliovirus Picornaviridae (þ)ssRNA

(continued)
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The precise mechanism of IFITM1-, 2- and 3-mediated antiviral activity is still

unclear, but IFITM proteins might block virus-receptor interactions, prevent endo-

cytosis or acidification, block fusion or induce signalling to other effector

molecules. Recent evidence suggests that the inhibition occurs at late stages of

the endocytic pathway. IFITM proteins do not decrease the primary attachment

moieties for FLUAV (Brass et al. 2009) and do not affect SARS-CoV receptor

expression (Huang et al. 2011). FLUAV still localizes to lysosomal compartments

upon ectopic expression of IFITM1, 2 or 3. Moreover, the inhibitory effect of

IFITMs on SARS-CoV could be circumvented by addition of trypsin, which

promotes fusion at or near the plasma membrane (Huang et al. 2011). There is

also evidence for different specificities of IFITM family members. Among the

murine IFITMs, IFITM3 inhibits FLUAV entry more efficiently than SARS-CoV,

MARV, or EBOV, whereas IFITM5 and IFITM6 are more efficient in inhibiting

filoviruses (Huang et al. 2011). Interestingly, IFITM3 is posttranslationally

modified by S-palmitoylation. Mutation of the palmitoylation site does not alter

protein stability or trafficking, but prevents membrane clustering and abrogates its

antiviral effect on FLUAV replication (Yount et al. 2010). Although there is

accumulating in vitro evidence for an important role of IFITM proteins in the

early antiviral defence against a broad range of enveloped viruses, the contribution

of IFITM proteins to the antiviral defence in vivo remains to be determined.

Table 2 (continued)

Abbreviation Virus Virus family Genome organizationa

RSV Respiratory syncytial virus Paramyxoviridae (�)ssRNA

RV Rabies virus Rhabdoviridae (�)ssRNA

RVFV Rift valley fever virus Bunyaviridae (�)ssRNA

SARS-CoV Severe acute respiratory

syndrome coronavirus

Coronaviridae (þ)ssRNA

SFV Semliki Forest virus Togaviridae (þ)ssRNA

SeV Sendai virus Paramyxoviridae (�)ssRNA

SINV Sindbis virus Togaviridae (þ)ssRNA

TMEV Theiler’s murine

encephalomyelitis virus

Picornaviridae (þ)ssRNA

THOV Thogoto virus Orthomyxoviridae (�)ssRNA

VSV Vesicular stomatitis virus Rhabdoviridae (�)ssRNA

VACV Vaccinia virus Poxviridae dsDNA

WNV West Nile virus Flaviviridae (þ)ssRNA

YFV Yellow fever virus Flaviviridae (þ)ssRNA

assRNA single-stranded RNA, dsDNA double-stranded DNA, (þ) positive-stranded, (�) negative-

stranded, ssRNA-RT includes a reverse-transcription step in the life cycle

396 B. Strobl et al.



Block of Viral Trafficking

Interferon-Inducible GTPases

IFNs induce the expression of the p47, p65, and Mx family of GTPases, and the

very large GTPases (VLIG). They all share intrinsic GTPase activity and the

capacity for self-assembly. Among these four families, only the Mx proteins have

well-described antiviral activities (MacMicking 2004).

The Mx proteins are among the most potent antiviral effector proteins. The Mx

family comprises Mx1 and Mx2 in mice, and MxA and MxB in humans. Mx

proteins are 70–80 kDa in size, belong to the dynamin protein family and differ

from the other IFN-inducible GTPases by their stronger induction by type I and type

III IFNs as compared to IFNg. Mx1 localizes to the nucleus, whereas MxA andMx2

are located near the smooth ER. MxB is found in the intranuclear and/or cytoplas-

mic face of nuclear pores and has no detectable antiviral activity. Mx1 was

identified as an important IFN-induced antiviral factor in early studies with mice

exhibiting a genetically determined resistance against FLUAV infection (Haller

and Kochs 2011; Haller et al. 2007). Importantly, many laboratory inbred mouse

strains, including C57BL/6J, BALB/cJ and 129/J, carry non-functional Mx1 alleles

due to large deletions or nonsense mutations (Staeheli et al. 1988). Studies

employing Mx1- and MxA-transgenic mice confirmed the importance of Mx

proteins for the antiviral defence in vivo. For example, constitutive expression of

MxA in Ifnar1�/� mice confers full resistance to Thogoto virus (THOV), La Crosse

virus (LACV) and Semliki Forest virus (SFV) (Hefti et al. 1999). Mx proteins

inhibit replication of a broad range of RNA viruses and some DNA viruses. The

mechanism of Mx action has been extensively studied, but is still not entirely clear.

Dependent on their localization Mx proteins can recognize and trap essential viral

structures, the main targets appear to be viral nucleocapsids. Cytoplasmic MxA

blocks the movement of FLUAV and THOV nucleocapsids into the nucleus, while

nuclear Mx1 inhibits FLUAV replication prior to the onset of transcription. Mx1

and MxA associate with the viral nucleocapsids and block viral transcription. MxA-

mediated changes in trafficking of viral components have also been shown for

LACV and African swine fever virus (ASFV). Trapping of viral structures enables

Mx proteins to inhibit viral replication already at early steps of infection and

provides a very efficient antiviral strategy. It is unclear how exactly Mx proteins

interact with viral constituents, but recent structural insights into the basis of Mx

oligomerization might help to delineate the mechanism and molecular

requirements. Besides, FLUAV strains appear to differ in their sensitivity to MxA

actions and this appears to depend on their nucleoproteins (Haller and Kochs 2011;

Haller et al. 2007). With respect to human populations, genetic polymorphisms in

theMxA gene correlate with increased sensitivity to HCV, Hepatitis B virus (HBV)

and measles virus (MeV) (Cao et al. 2009; Hijikata et al. 2000; Suzuki et al. 2004;

Torisu et al. 2004).

The p65 GTPase family, also known as GBP family, consists of 11 members in

mice (GBP1-11) and 7 in humans (GBP1-7). All murine GBPs and at least human
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GBP1-5 are induced by IFNg and to a lesser extent, by IFNa/b (MacMicking 2004;

Vestal and Jeyaratnam 2011). Note that similar numbered GBPs are not necessarily

the most related ones. Many inbred mouse strains have a dysfunctional allele for

Gbp1 that cannot be induced by either type I or type II IFN (Staeheli et al. 1984).

The antiviral functions of GBPs are still undefined, but human GBP1 can form

oligomers like Mx proteins. Overexpression of human GBP1 and its putative

murine homolog Gbp2 inhibits VSV and encephalomyocarditis virus (EMCV)

replication. Intriguingly, murine GBP2 GTP-binding activity is thereby essential

for the inhibition of EMCV but not VSV. Furthermore, overexpression of human

GBP1 can inhibit replication of an HCV replicon (Vestal and Jeyaratnam 2011).

The p47 GTPase (IRG) family emerged as a crucial pathogen resistance system in

mice that is absent in humans (Bekpen et al. 2005). Most characterized members are

strongly induced by IFNg, localize along the phagocytic and secretory pathways and
are crucially involved in the control of bacterial and protozoan infections. Antiviral

activity has so far only been suggested by in vitro overexpression studies for Tgtp
(Irgb6) and Igtp (Irgm3) against VSV andCoxsackie virus (CV), respectively (Bekpen

et al. 2005; Howard 2008). So far, only normal resistance against murine cytomegalo-

virus (MCMV) has been reported for Igtp�/� mice (Taylor et al. 2000) (Table 1).

The VLIG family members are around 280 kDa in size and are the largest

GTPases described so far (MacMicking 2004). They are the last IFN-induced

GTPases identified and appear to have emerged solely in vertebrates (Li et al.

2009a). To date their functional significance in IFN responses is unclear.

Editing of Viral Nucleic Acids

Adenosine Deaminases Acting on RNA (ADARs)

ADARs catalyze the deamination of adenosin (A) to produce inosine (I) in RNAs

with double-stranded (ds) character. A-to-I editing leads to an A- to guanosine (G)

nucleotide exchange, since I is decoded as G during translation and RNA-dependent

RNA replication. Among the three mammalian ADARs (ADAR1-3) described to

date, only ADAR1 is IFN-inducible through an ISRE element in one of the alternative

ADAR1 gene promoters. In mice and humans, alternative splicing leads to the expres-

sion of the constitutively expressed p110 and the IFN-inducible p150 isoforms.

ADAR1 p150 shuttles between the nucleus and the cytoplasm, ADAR1 p110 is

predominantly and ADAR2 and ADAR3 are exclusively found in the nucleus.

ADAR3 lacks catalytic activity, shows tissue-restricted expression and has been

implicated in negative regulation of ADAR1 and ADAR2. RNA editing by ADAR1

can occur atmultiple positions or at highly specific sites.MultipleA-to-G substitutions

attributable to ADAR activity have been first described for MeV, followed by a large

number of other viruses that mostly contain a negative-stranded RNA or an ambisense

genome organization. More site-selective A-to-G exchanges have been reported for

example for hepatitis delta virus (HDV), human herpesvirus 8 (HHV8) and Epstein-

Barr (EBV) virus (Samuel 2011).
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ADARs exert antiviral effects against viruses belonging to several families and

using completely different replication strategies. A-to-I editing of viral RNAs can

affect virus-host interactions atmultiple levels and, importantly, can also have proviral

effects. Nucleotide exchanges can lead to amino acid exchanges and altered protein

products with different biological activities. This has for example been described for

MeV, where extensive hypermutation of the matrix protein is associated with persis-

tent infection of the central nervous system. A-to-I editing can also lead to frame-shift

mutations or premature stop-codons and, consequently, to aberrant or reduced viral

protein expression, as described for MeV, respiratory syncytial virus (RSV) and

LCMV (Samuel 2011). A-to-I conversion can also induce structural changes in

RNAs, as RNA duplex structures are less stable when A:uridine (U) base pairs are

exchanged by I:U base pairs (Bass 2002; Serra et al. 2004). Reduced duplex-stability

likely results in altered dsRNA-mediated activities. In support of this notion,

shRNA-mediated downregulation of ADAR1 leads to enhanced activation of

dsRNA-dependent protein kinase (PKR) and IRF3 (Toth et al. 2009). Consistently,

synthetic I:U-containingRNAs suppress dsRNA-mediated activation of IRF3 and ISG

expression in HeLa cells (Vitali and Scadden 2010). A-to-I substitutions can also alter

microRNA processing or silencing capacity, or target RNAs for degradation. These

effects have been shown for cellular RNAs and are yet to be demonstrated for viral

RNAs. It is also likely that RNA editing can lead to viral genome mutations in the

case of single-stranded (ss) RNA viruses that use RNA-dependent RNA replication.

Furthermore, RNA editing might also indirectly influence virus replication as it could

affect cellular transcripts of proteins involved in the antiviral defence (Samuel 2011).

Adar1(p150 or p110/p150)�/� and Adar2�/� mice show severe phenotypes

(Table 1). Adar1-deficiency leads to embryonic lethality (Hartner et al. 2004, 2009;

Wang et al. 2004; Ward et al. 2011; XuFeng et al. 2009), whereas Adar2�/� mice are

prone to seizures and die young (Higuchi et al. 2000). Thus, ADAR1 and ADAR2 are

also crucially involved in cellular processes unrelated to host defence mechanisms.

Nevertheless, studies with embryonic fibroblasts derived from these mice clearly

established the selective functions of ADAR1 and ADAR2 in editing viral RNAs

and in antiviral pathways. Adar1(p150)�/� cells ectopically expressing the receptor

for MeV show dramatically increased MeV-induced cytopathic effects and markedly

increased virus replication (Ward et al. 2011). This is consistent with the reported

increased MeV-induced cytotoxicity in HeLa cells after shRNA-mediated ADAR1
knockdown (Toth et al. 2009). Similarly, other members of the Paramyxoviridae (i.e.
Newcastle disease virus (NDV), Sendai virus (SeV), canine distemper virus (CDV))

and FLUAV induce less pronounced cytopathic effects in Adar1(p150)�/� fibroblasts

than in the respective wildtype cells. No effect of Adar1(p150) deficiency was found
for LCMV and VSV replication (Ward et al. 2011).

Proviral effects of ADAR1 have been shown for VSV, HDV, HIV-1, Karposis’s

sarcoma-associated herpesvirus (KSHV) and mouse polyoma virus (MPV), although

the mechanisms seem to differ (Samuel 2011). For VSV this has been attributed to the

interaction of ADAR1 with PKR, inhibition of PKR activity and consequent

impairment of eukaryotic translation initiation factor 2a (eIF2a) phosphorylation
(Nie et al. 2007). The proviral effect of ADAR1 for HDV is well established. HDV
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requires site-specific A-to-I editing to switch from the short delta antigen protein,

which is essential during early steps of replication, to the longer form, which is crucial

for packaging of the viral genome and HDV particle formation (Samuel 2011).

Inhibition of HDV occurs upon increased HDV RNA editing conditions, such as

overexpression of ADAR1(p110) or ADAR2, or by IFN-mediated increased ADAR1
(p150) expression (Hartwig et al. 2004; Jayan and Casey 2002). Proviral mechanisms

in the case of HIV-1, KSHV and MPV are less well characterized, but they might

involve site-specific editing of viral mRNA and the switch from early to late

transcripts, respectively, for the latter two viruses (Samuel 2011).

Apolipoprotein B mRNA-Editing Catalytic Polypeptide (APOBEC)
Family

The APOBEC proteins are tissue-specific cytidine (C) deaminases that exhibit RNA

editing and/or DNA mutator activity. In humans, the APOBEC family comprises 11

members that have cellular functions and inhibit the mobility of endogenous

retroelements. Apart from that, the APOBEC3 subfamily exerts broad-spectrum

anti-retroviral activity. However, retroviruses have evolved very efficient

countermeasures and are therefore often insensitive to endogenousAPOBEC3 actions

unless they lack the respective antagonist (Goila-Gaur and Strebel 2008).

Most human APOBEC3 family members are expressed constitutively and expres-

sion is further enhanced by IFNa/b and IFNg (Goila-Gaur and Strebel 2008; Koning

et al. 2009; Refsland et al. 2010; Stenglein et al. 2010; Trapp et al. 2009; Wang et al.

2009). APOBEC3 proteins are packaged into retroviral particles and cause extensive

C-to-U mutations in the minus-strand of the viral DNA during reverse transcription.

C-to-U editing can lead to mutations in viral structural and non-structural proteins

causing replication defects at multiple levels. Degradation of uracilated viral cDNAs

by cellular DNA glycosylases is believed to contribute to the APOBEC3-mediated

antiviral activity (Goila-Gaur and Strebel 2008). Intriguingly, a very recent report

implicates APOBEC3A catalytic activity and the cellular uracil DNA glycosylase

UNG2 in the clearance of transfected plasmidDNAs, suggesting thatAPOBEC3smay

act as a restriction factor for a broader range of foreign DNAs (Stenglein et al. 2010).

In addition, APOBEC3s exert deaminase-independent antiviral functions and these

include interference with tRNA-primed initiation of reverse transcription and reverse

transcriptase-mediatedDNA elongation (Goila-Gaur and Strebel 2008; Narvaiza et al.

2009).Apart from retroviruses,APOBEC3s can also interferewith theHBV life cycle,

however, APOBEC3B, APOBEC3F and APOBEC3G are not required for the anti-

HBV actions of IFNg in human cell lines (Goila-Gaur and Strebel 2008; Proto et al.

2008). In contrast, several reports suggest a contribution ofAPOBEC3s to the IFNa/b-
induced antiviral activity against HIV-1 (Cheney and McKnight 2010; Goila-Gaur

and Strebel 2008; Trapp et al. 2009).

Unlike humans, who have seven APOBEC3 genes, mice only have one (Apobec3)
and this is induced by type I and type II IFN (Okeoma et al. 2009a; Turelli et al. 2008).

Murine APOBEC3 also induces hypermutations in retroviral cDNAs, but restriction

400 B. Strobl et al.



of its activity to specific viruses appears different from the human APOBEC3G

(Browne and Littman 2008; Rulli et al. 2008). Murine Apobec3 has been implicated

in the in vivo control of Friend-murine leukaemia virus (FMLV) (Santiago et al. 2011;

Takeda et al. 2008) and Apobec3�/� mice show increased sensitivity to mouse

mammary tumour virus (MMTV) (Okeoma et al. 2007, 2009b). Apobec3�/� mice

infected with Moloney murine leukaemia virus (M-MuLV) show higher virus titers

and develop earlier leukaemia in comparison to control animals (Low et al. 2009).
Importantly, pre-treatment of murine cells with IFNa results in enhanced Apobec3
expression and resistance against MMTV. No effect of IFNa on MMTV replication

was observed in Apobec3�/� cells, demonstrating that Apobec3 crucially contributes
to the anti-MMTV action of IFNs (Okeoma et al. 2009b). Consistent with data from

the human system, dsRNA pretreatment inhibits HBV DNA production in HBV-

transgenic and Apobec3-deficient mice to similar levels as in the control HBV-

transgenic mice (Turelli et al. 2008) (Table 1).

Viral RNA Degradation and Translational Inhibition

20-50 Oligoadenylate Synthetases (OAS) and Latent Ribonuclease
(RNase L)

The OAS/RNase L pathway belongs to the best characterized antiviral pathways to

date. It results in the degradation of viral and cellular RNAs and blocks replication of a

number of RNA and DNA viruses (Chakrabarti et al. 2011; Kristiansen et al. 2011).

In humans the OAS family consists of four genes (OAS1, 2, 3 and L). As a result
of gene duplication, mice have eight different Oas1 (Oas1a-h), one Oas2, one
Oas3, and two OasL (OasL1 and OasL2) genes. OAS genes are expressed at low

levels in resident cells and are induced by type I IFN and upon virus infections.

OAS1 proteins contain one unit of the OAS domain, OAS2 and OAS3 contain two

and three copies of the catalytic units, respectively. Among the murine OAS1

proteins, only OAS1a and OAS1g are catalytically active. OASL proteins contain

one OAS unit which is, with the exception of murine OASL2, without catalytic
activity (Kristiansen et al. 2011). Mice and humans harbour one RNase L gene,

which is widely expressed in most, if not all mammalian tissues and further

upregulated by type I IFN exposure in murine cells, but only barely in human

cells. RNase L is a latent endoribonuclease that consists of a regulatory ankyrin

repeat domain (ARD), a protein kinase (PK)-like domain and the RNase domain

(Chakrabarti et al. 2011).

Activation of OAS family members occurs through recognition and binding of

viral dsRNA followed by a conformational change. Therefore, OASs are not only

antiviral proteins but also considered as PRRs. Activated OAS polymerizes ATP into

20-50 oligoadenylates (2-5An). Binding of these oligomers to the ankyrin domain of

monomeric RNase L leads to dimerization and activation of RNase L. Subsequently,

the endoribonuclease degrades viral and cellular RNAs with ssRNA loops and thus

prevents viral protein synthesis (Fig. 2). Each of the active human OAS family

Multifaceted Antiviral Actions of Interferon-stimulated Gene Products 401



members appears to have some unique biological features. For example, catalytically

active OAS1 is a monomer or tetramer, OAS2 a dimer and OAS3 functions as a

monomer. OAS3 synthesizes dimeric 2-5An, whereas OAS1 and OAS2 synthesize

trimeric and tetrameric oligomers. As dimeric 2-5An do not efficiently activate RNaseL,

OAS3 might have different functions. Several overexpression studies demonstrated

antiviral capacity for human OAS family members. OAS1 and OAS2 inhibit repli-

cation of EMCV, but not VSV, OAS3 is effective against alphaviruses, i.e. SFV

and Sinbis virus (SINV) (Chakrabarti et al. 2011; Kristiansen et al. 2011; Sadler and

Williams 2008). Little is known about the characteristics of dsRNA recognition and

activation of OAS family members. Human OAS1 appears to also bind ssRNA, but

activation only occurs upon dsRNA binding, with a preference for longer dsRNAs

(Kristiansen et al. 2011). There also might be differential specificities in dsRNA

recognition among OAS family members, as recently suggested for murine OAS1a

and OAS1b (Elbahesh et al. 2011).

RNase L, once activated, can degrade viral and cellular (including ribosomal)

RNAs. RNase L cleavage products are small, mostly structured ssRNAs with

50-hydroxyl and 30-monophosphate at their termini. Interestingly, these cleavage

products can act as PAMPs and induce IFNb production via recognition by retinoic

acid-inducible protein I (RIG-I) and/or melanoma differentiation-associated protein 5

(MDA5). The 30-phosphate of RNase L cleavage products appears to be required at

Fig. 2 The OAS1/RNase L pathway. Latent OAS1 is activated by viral dsRNA and, subsequently,

oligomerizes ATP into 20-50 oligoadenylates (2-5An). Binding of 2-5An to the ankyrin repeat

domain of RNase L leads to activation and dimerization of RNase L through their kinase-like

domains. Activated RNase L dimers in turn cleave cellular and/or viral RNAs
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least for the activation of RIG-I (Luthra et al. 2011; Malathi et al. 2007, 2010).

Knockout mice for RNase L are susceptible to EMCV, CV-B4, herpes simplex virus

(HSV)-1 and WNV (Table 1), although the RNase L-specific effects seem to be

strongly dependent on the cell type and the virus strain. Several reports showed that

RNase L can also negatively influence host survival upon virus infection and promote

viral replication as shown for HSV-2, SINV, SFV and some reovirus strains

(Silverman 2007). On the other hand, RNase L appears to be protective against

virus-induced demyelination. Infection of RNase L�/� mice with the neurotropic

mouse hepatitis virus (MHV)-JHM strain results in higher susceptibility, but does

neither affect virus control in the CNS nor IFNa/b expression (Ireland et al. 2009).

Several studies suggest RNase L-independent antiviral activities of OAS family

members. The enzymatically inactive human OAS1L and murine OAS1b can

inhibit EMCV and WNV replication, respectively, when expressed in cell culture.

Furthermore, OAS1b is required for resistance of mice against flavivirus infection.

Dependent on the mouse strain, the OAS1b protein exists in two forms, a full-length

OAS1b and a truncated form as a result of a point mutation in the OAS1b gene

generating a premature stop codon. Only the full-length protein leads to resistance

against WNV infection. Notably, most laboratory inbred mouse strains express the

truncated version of OAS1b (Kristiansen et al. 2011). Recently, lack of enzymatic

activity of OAS1b was confirmed and, additionally, full-length OAS1b was shown

to inhibit synthetic dsRNA-induced 2-5An production both in vivo and in vitro

(Elbahesh et al. 2011).

Of potential clinical relevance, exogenously applied OAS1 can induce an

antiviral state. Exogenous recombinant porcine OAS1 protects HepG2 cells from

the cytopathic effects of EMCV and VSV in a dose-dependent manner and inhibits

virus replication in Vero cells. These effects are again independent of both,

enzymatic activity of OAS1 and the presence of RNase L. Moreover, injection of

OAS1 into mice results in tenfold reduced viral titers in organs upon subsequent

EMCV infections (Kristiansen et al. 2010). It will be of interest to determine if and

to what extend assumable autocrine/paracrine actions of OAS1 contribute to the

in vivo antiviral defence.

Double Stranded RNA-Dependent Protein Kinase (PKR)

Similar to Mx and OAS/RNase L, the antiviral activities of PKR are long-known

and have been extensively characterized. PKR is encoded by the Eif2ak2 gene and

is one out of four members of a serine-threonine kinase family that regulates protein

synthesis upon diverse stress signals mainly through phosphorylation of eIF2a.
PKR consists of two N-terminal RNA binding motifs (RBMs) and a C-terminal

catalytic kinase domain (KD). PKR is constitutively expressed in all differentiated

cells at low levels and is upregulated upon type I and III IFN through activation of

an ISRE binding site in the promoter. In uninfected cells, PKR exists as an inactive

monomer by autoinhibition of the kinase domain. DsRNA and other ligands like

heparin, ceramide and the PKR-associated factor PACT induce the release of the
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inactive molecule and lead to autophosphorylation and dimerization of PKR.

Activation of PKR can also occur through binding of ssRNA containing duplex

regions and a 50-triphosphate. Interestingly, endogenous transcripts also efficiently

activate PKR, as known for the IFNg mRNA. Once PKR is activated, it

phosphorylates the serine residue 51 of eIF2a leading to inhibition of the guanine

nucleotide exchange factor eIF2b. This prevents exchange of GDP to GTP, thus

blocking translation initiation (Fig. 3). Intriguingly, PKR regulates its own activity

through inhibition of its mRNA translation initiation in the presence of high PKR

protein levels (Pindel and Sadler 2011; Sadler 2010).

Two independent knockout mouse models and a transgenic mouse expressing a

dominant-negative, kinase-defective PKR gave further insight into PKR functions

in antiviral responses (Barry et al. 2009; Nakayama et al. 2010; Sadler andWilliams

2008). PKR-deficient mice are susceptible to VSV, FLUAmutant virus, and LCMV

(Table 1). Protection against several viruses like HCV, EMCV, WNV, HIV-1,

HDV, SINV and HSV-1 have been shown to be dependent on PKR in several

in vitro systems (Nakayama et al. 2010; Sadler and Williams 2008).

Although phosphorylation of eIF2a and consequent translational regulation was

considered as the major function of PKR, several reports have suggested involve-

ment of PKR in different signalling networks. For example, PKR has been shown to

regulate the transcription factors IRF1, STAT1, STAT3, nuclear factor NFkB,
c-Jun, cyclic AMP-dependent transcription factor (ATF) 3 and ATF4 (Pindel and

Sadler 2011). Two recent reports suggest that PKR is an important regulator of

IFNa/b synthesis/secretion. This has been shown in response to infection with a

subset of RNA viruses, like EMCV, SFV and Theiler’s murine encephalomyelitis

virus (TMEV). Mechanistically, absence of PKR results in strongly reduced levels

of polyadenylated IFNb mRNAs. Thus, PKR maintains the integrity of IFNb

Fig. 3 Scheme of PKR

activation and action. In

resident cells PKR exists as

inactive monomer through

intramolecular autoinhibition.

Sensing of viral RNA activates

PKR by autophosphorylation.

Dimerized PKR molecules

phosphorylate eIF2a on serine

51, which inhibits the

nucleotide exchange factor

eIF2b. This disables the
exchange of inactive eIF2a-
GDP with eIF2a-GTP and

leads to a block of translation

initiation
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mRNA thereby promoting its translation. PKR action in this case seems to be

independent of eIF2a phosphorylation. Consistently, serum levels of IFNb are

reduced in EMCV infected Pkr�/� mice (Schulz et al. 2010). These data were

supported by a later study with in vitro bovine rotavirus (BRV) infections. Virus

infection leads to a strong RIG-I-, MDA5- and IRF3-dependent IFNb mRNA

induction. IFNb mRNA levels are normal in fibroblasts derived from Pkr�/�

mice, but IFNb protein secretion is dramatically reduced (Sen et al. 2011). It is

unclear, how PKR prevents mRNA de-adenylation and whether other mRNAs are

similarly regulated by PKR-dependent stabilizing mechanism.

Interferon-Stimulated Gene Product of 20 kDa (ISG20)

ISG20 (HEM45) was identified independently based on its induction by type I and

type II IFNs and by estrogen (Gongora et al. 1997; Mattei et al. 1997; Pentecost

1998). ISG20 is a nuclear 30-50 exoribonuclease associated with nuclear bodies that
acts on ssRNA and, to a lesser extent, on ssDNA (Degols et al. 2007).

Several overexpression studies of ISG20 in human cell lines demonstrated inhibi-

tion of RNA virus replication. Antiviral activity appears virus-specific and ectopic

expression of ISG20 inhibits VSV, EMCV, FLUAV, DV-2, DV- and WNV-like

particles, HCV, Bovine virus-diarrhoea virus (BVDV), hepatitis A virus (HAV) and

YFV, but not SARS-CoV replication. ForHCV,DV- andWNV-like particles antiviral

activity of ISG20 is dependent on its enzymatic activity and catalytically inactive

ISG20 reduces IFN-mediated antiviral activity against VSV, but surprisingly not

against EMCV or FLUAV. In murine embryonic fibroblast cell lines, overexpression

of Isg20 inhibits SINV replication and siRNA-mediated knockdown of Isg20 results in
enhanced virus replication. Increased survival rates are found in neonatal mice after

subcutaneous inoculation with SINVRNA encoding Isg20 as compared to the respec-

tive controls (Zhou et al. 2011). Besides, an HIV-1-derived virus expressing ISG20
shows strongly delayed replication in a human T-lymphoblastoid cell line and periph-

eral blood mononuclear cells (Espert et al. 2005).

With respect to DNA viruses, inhibitory effects of ISG20 on HBV protein

synthesis have been suggested in transfected HepG2 cells (Hao and Yang 2008),

whereas ISG20 overexpression in HeLa cells was reported to not affect adenovirus

replication (Espert et al. 2003).

It is still unclear how exactly ISG20 inhibits virus replication. The studies

outlined above show a requirement for its exoribonuclease activity, thus it seems

likely that ISG20 directly degrades viral RNA and/or DNA, however, evidence

remains to be provided. ISG20 does not degrade transfected replication-incompetent

HCV RNA, suggesting that either viral RNA associated with replication

complexes or replication intermediates are targets for ISG20-mediated

degradation. It is notable in that context, that ISG20 specifically degrades

ssRNA but not RNA containing stem-loop structures at the 30-end (Nguyen et al.

2001). Alternatively, ISG20 might act indirectly by e.g. targeting other (cellular)

factors that are required for viral replication. The contribution of endogenous
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ISG20 to IFN-induced antiviral activity and its role in the in vivo defence against

specific viruses needs further delineation.

Interferon-Induced Proteins with Tetratricopeptide Repeats (IFITs)

Members of the IFIT gene family were among the first IFN-inducible genes cloned

(Chebath et al. 1983; Levy et al. 1986; Wathelet et al. 1986). Four members have

been described in humans and three in mice. All IFIT proteins contain multiple

tetratricopeptide repeats known to mediate protein-protein interactions. IFIT1

(ISG56) and IFIT2 (ISG54) have well established inhibitory effects on protein

synthesis by targeting the translation initiation complex. Although this globally

affects protein synthesis, IFIT1 might more specifically block translation of viral

RNAs. For example, HCV IRES-driven reporter expression shows increased sensi-

tivity to IFIT1-mediated translational inhibition in comparison to 50-cap-driven
reporter expression in human cell lines (Fensterl and Sen 2011).

A few reports suggested inhibitory functions of IFITs on SeV, WNV, LCMV,

VSV, EMCV and HCV (Schmeisser et al. 2010; Wacher et al. 2007; Wang et al.

2003; Zhang et al. 2007), although these were not further characterized. Only very

recently, extensive analyses including gene-targeted mice and mutant viruses

established that the antiviral functions of IFITs depend on the 50-structures of

viral RNAs (Daffis et al. 2010; Pichlmair et al. 2011). In higher eukaryotes, 20-O-
methylation of cellular mRNA 50-caps occurs, in addition to the well-known

essential methylation at the N-7 position of the cap guanosine residue, at the

ribose-20-O-position of one or two adjoining nucleotides (Langberg and Moss

1981). Several RNA and DNA viruses also have 20-O-methylated 50-capped
mRNAs (Fechter and Brownlee 2005; Wei and Moss 1975) and mutant WNV,

MHV and vaccinia (VACV) viruses lacking their respective 20-O-methyltransferase

activity are sensitive to IFIT1 and/or IFIT2 actions (Table 1) (Daffis et al. 2010;

Zust et al. 2011). A mechanistic explanation for the 50-nucleic acid structure-

specific IFIT functions came from the finding that IFITs can form multi-protein

complexes that bind to “non-self” 50-triphosphorylated RNA (PPP-RNA) in human

cell lines (Pichlmair et al. 2011). IFIT1 and IFIT5 (ISG58), the latter existing in

humans but not in mice, directly bind to PPP-RNA, whereas IFIT2 and IFIT3

(ISG60) can associate with PPP-RNA through interaction with IFIT1. Consistently,

siRNA mediated downregulation of IFIT1 inhibits replication of VSV and Rift

Valley fever virus (RVFV), both viruses known to generate PPP-mRNAs, and

Ifit1�/� mice and fibroblasts show increased sensitivity to VSV infection (Table 1).

Proofing the specificity of IFIT1 action, absence of IFIT1 does not affect replication

of EMCV, a virus that does not generate PPP-mRNA. Interestingly, sequestration of

viral mRNA rather than direct inhibition of translational initiation appeared as the

main antiviral effector function in this study, although the fate of the bound viral

RNA remained undefined (Pichlmair et al. 2011).

Apart from translational inhibition and viral RNA sequestration, two further and

unrelated antiviral effector functions have been ascribed to human IFIT1. Firstly,
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IFIT1 can directly inhibit human papillomavirus (HPV) DNA replication by bind-

ing to and blocking HPV E1 protein helicase activity (Saikia et al. 2010; Terenzi

et al. 2008) and, secondly, IFIT1 reportedly inhibits SeV-induced IFNb production

through interaction with stimulator of IFN genes (STING) (Li et al. 2009b).

However, virus-induced IFNb production was similar in cells derived from Ifit1�/�

and wildtype mice (Pichlmair et al. 2011).

In summary, IFIT proteins emerged as both virus-sensing and antiviral effector

proteins. Their function within “versatile” multi-protein complexes (Pichlmair et al.

2011) might explain some of the inconsistencies in antiviral activities observed

between overexpression and siRNA-mediated or genetic knockdown of specific

IFIT family members. Stoichiometry of IFITs, association with other RNA-binding

or accessory proteins and viral countermeasures likely determine their mode of

action and virus specificity. Several IFIT-like genes have been found both in mice

and humans (Fensterl and Sen 2011) and their putative protein products might add

to the complexity. Future work will be required in order to define the function of the

distinct IFIT family members/complexes, the exact nature and fate of their target

RNAs and, potential species specifities.

Posttranslational Modification of Viral and Cellular Proteins

Interferon-Stimulated Gene Product of 15 kDa (ISG15)

ISG15 is among the most prominently induced genes during virus infection and in

response to type I IFNs. ISG15 is an ubiquitin-like protein that is conjugated to

target proteins. The so-called ISGylation of proteins has many common features

with protein-ubiquitination. Both involve a series of stepwise enzymatic reactions

that result in covalent protein modifications (Fig. 4). ISG15 is synthesised as a

precursor protein that is processed to expose a C-terminal LRLRGG motif. The GG

motif is adenylated in the presence of ATP and then conjugated sequentially to

cystein residues of three enzymes (E1–E3) and, finally, ISG15 is transferred to

lysine residues within its target substrates. The E1 enzyme (ISG15-activating

enzyme, UBE1L) is specific for the ISGylation pathway, whereas there is an

overlap with enzymes involved in ubiquitination for the E2 (ISG15/ubiquitin-

conjugating enzyme) and E3 (ISG15/ubiquitin ligase) enzymes. Both ubiquitination

and ISGylation are reversible processes and several de-ubiquitinating and de-

ISGylating enzymes can cleave off the respective protein modification. Similar to

ISG15, many enzymes involved in the ISGylation pathway are induced by IFNs,

e.g. the E1 enzyme UBE1L, the E2 enzyme UBCH8, the E3 enzymes HERC5 and

tripartite motif protein 25 (TRIM25), and the de-ISGylating enzyme UBP43

(USP18) (Harty et al. 2009; Zhang and Zhang 2011).

Unlike ubiquitination, ISGylation does not target proteins for degradation but

rather resemblesmono-ubiqitination andmainly affects protein function. ISGylation

can also increase protein stability by protecting proteins from degradation.

ISGylation has a very broad specificity and over 150 putative cellular ISG15 target

Multifaceted Antiviral Actions of Interferon-stimulated Gene Products 407



proteins have been identified so far. ISG15 has a broad antiviral activity against both

DNA and RNA viruses. Isg15�/� mice are highly susceptible to FLUAV and

influenza B virus (FLUBV), SINV, HSV, and murine g-herpesvirus 68 (gMHV68)

infections (Harty et al. 2009). Consistent with the involvement of ISGylation,

Ube1l�/� mice show increased susceptibility to FLUBV and SINV infection. In

contrast, ISG15 and UBE1L are redundant for the in vivo defence against LCMV

(see also Table 1). Very recently, the FLUAVNS1A protein was identified as ISG15

target protein in two independent studies (Tang et al. 2010; Zhao et al. 2010).

FLUAV NS1A protein was shown to directly interact with the major human E3

ISG15 ligase HERC5. Overexpression of HERC5 in human cell lines enhances the

anti-FLUAV activity of IFNb and, consistently, downregulation of ISG15, UBE1L,
UBCH8 or HERC5 by siRNA increases viral protein synthesis and replication

(Hsiang et al. 2009; Tang et al. 2010; Zhao et al. 2010). Multiple lysine (K) residues

within the NS1A can be modified by ISGylation (Tang et al. 2010; Zhao et al. 2010).

In vitro ISGylated NS1A is unable to bind to PKR and to dsRNA and fails to

dimerize via its RNA-binding domains (Zhao et al. 2010). ISGylated truncated

NS1A protein, lacking its second C-terminal nuclear-localization signal, shows

impaired interaction with importin-a (Tang et al. 2010). Although the major

ISGylated lysine residues identified within the NS1A protein differ among the two

studies, FLUAV expressing NS1A mutant for specific lysine residue are more
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Fig. 4 Schematic diagram of the protein ISGylation system. ISG15 is proteolytically processed by

an ISG15-specific protease to expose a C-terminal LRLRGGmotif. In the presence of ATP, UBE1L

catalyzes adenylation and forms a thioester bond with the C-terminal end of ISG15. ISG15 is then

transferred to UBCH8, which is also covalently linked via a thioester bond. Catalyzed by HERC5 or

other E3 enzymes, the C-terminus of ISG15 is then linked via an isopeptide bond to a lysine residue
within the target protein. The de-ISGylation enzyme UBP43 can remove the ISG from the substrate.

E1, ISG15-activating enzyme; E2, ISG15-conjugating enzyme; E3, ISG15 ligase
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virulent in vivo (Tang et al. 2010) or show enhanced replication in IFNb treated cell

lines, respectively (Zhao et al. 2010).

ISG15 can also inhibit budding of retroviruses, EBOV and VSV. The

mechanisms are unclear, but inhibition of ubiquitination might at least be partially

involved. ISG15 blocks ubiquitination of HIV-1 Gag protein and the EBOV VP40

matrix protein, both of which have been linked to budding ability (Harty et al.

2009). Besides, ISG15 was reported to inhibit the association of the HIV-1 and the

avian sarcoma leukosis virus (ASLV) budding complex with cellular proteins

involved in endosome sorting (Pincetic et al. 2010).

Proviral effects of ISG15 have been described for HCV. Several studies using

overexpression and/or siRNA-mediated downregulation of ISG15 or UEB1L
revealed a positive effect of the ISG15 system for HCV RNA production in HCV

replicon cell lines (Broering et al. 2010; Chen et al. 2010b; Chua et al. 2009). In line

with this, high ISG15 levels correlate with high HCV load and low responsiveness

of patients to IFNa therapy (Broering et al. 2010; Chen et al. 2010a). However,

negative effects of ISGylation on HCV replication have also been reported and

were attributed to ISGylation of the HCV NS5A protein and decreased NS5A

protein stability (Kim and Yoo 2010).

Among the cellular ISG15 target proteins identified to date are many proteins

involved in IFN signal transduction (e.g. JAK1, STAT1), virus recognition and

downstream signalling (e.g. RIG-I, MDA5, and IRF3), and in the antiviral effector

pathways (e.g. Mx, PKR and RNase L) (Malakhov et al. 2003; Zhao et al. 2005).

ISGylation of these target proteins can have diverse effects, whereby it generally

results in increased antiviral activity. For example, ISGylation has been reported to

prevent NDV-induced degradation of IRF3 resulting in enhanced IFNb production

in human fibrosarcoma cells (Lu et al. 2006). This notion was confirmed by a later

study showing direct interaction of IRF3 with HERC5 in HEK293 cells (Shi et al.

2010). Ectopic expression of HERC5 potentiates IRF3 transcriptional activity and

siRNA-mediated downregulation of HERC5 or ISG15 reduces the expression of

IRF3-responsive genes upon SeV infection. Notably, a HERC5 mutant protein that

lacks its ligase activity does not affect IRF3 target gene-activation. Downregulation

of HERC5 by siRNA results in increased replication of SeV, VSV and NDV. SeV-

induced IRF3 poly-ubiquitination and proteasomal degradation is reduced upon

ectopic expression of the ISGylation system. IRF3 was shown to be ISGylated

predominantly at three lysine residues and, as expected, the triple lysine mutant

does not show a change in ubiquitination upon HERC5 downregulation and SeV

infection. Furthermore, the triple lysine IRF3 mutant cannot fully rescue IFNb
reporter gene activation in response to SeV infection in Irf3�/� mouse embryo

fibroblasts and displays accelerated degradation in comparison to wildtype IRF3

(Shi et al. 2010).

ISGylation of protein phosphatase 1B (PPM1, PP2Cb) reduces its activity and

results in enhanced IkBa degradation and increased NFkB signalling (Takeuchi

et al. 2006). ISGylated eIF4E family member 2 (eIF4E2, 4EHP) has increased

affinity to 50-capped RNAs compared to the non-ISGylated form (Okumura et al.

2007). ISGylation of cellular proteins has been recently also shown to be
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responsible for the inhibition of early steps of the FLUAV replication cycle (Hsiang

et al. 2009), although proteins involved remained undefined. Negative regulation by

ISGylation has been shown for RIG-I. ISGylation of RIG-I leads to reduced basal

and virus-induced IFN production and cells derived from Ube1l-deficient mice

show significantly lower levels of RIG-I mRNA and protein. Thus, a negative

feedback mechanism acting on RIG-I was postulated which might be required to

balance cellular innate immune responses (Kim et al. 2008b).

Ubiquitin Carboxyl-terminal Hydrolase 43 (UBP43, USP18)

As mentioned above, UBP43 is an IFN-induced de-ISGylating enzyme. Ubp43�/�

mice show increased resistance against LCMV and VSV and display strongly

increased clearance of injected replication competent HBV DNA (Table 1). How-

ever, Ubp43�/� mice develop brain injury, accompanied by hydrocephalus and

early death and thus in vivo virus challenges have their limitations (Knobeloch et al.

2005; Ritchie et al. 2002, 2004). Fibroblasts derived from Ubp43�/� mice exhibit

enhanced type I IFN-mediated protection from cytopathic effects caused by VSV

and SINV infection (Ritchie et al. 2004). Ubp43�/� cells show dramatically

increased levels of ISGylated proteins after IFN treatment which is also associated

with increased JAK/STAT signalling and hyper-responsiveness to type I IFN

(Malakhova et al. 2003). Curiously, the phenotype of Ubp43�/� cells is not rescued

in fibroblasts derived from Ubp43�/�/Isg15�/� or Ubp43�/�/Ube1l�/� double

knockout mice (Kim et al. 2006; Knobeloch et al. 2005), suggesting that the IFN

hyper-responsiveness and the virus-resistant phenotype of Ubp43�/� cells is not

associated with de-ISGylating activity. A possible explanation is provided by

studies demonstrating that UBP43 also negatively regulates type I IFN signalling

(Malakhova et al. 2003, 2006). UBP43 was shown to directly interact with IFNAR2

and, consequently, inhibit JAK/STAT signalling. This effect is independent of

UBP43 isopeptidase activity as complementation of Ubp43�/� cells with an enzy-

matically inactive mutant UBP43 inhibits IFN-induced STAT1 phosphorylation to

similar levels as observed in wildtype cells (Malakhova et al. 2006). In line with

this, STAT1 phosphorylation is barely affected despite the downregulation of total

ISGylation levels in fibroblasts derived from Ube1l�/� mice (Kim et al. 2006).

Inhibition of Virus Assembly, Budding and Release

Viperin (RSDA2, CIG5)

Viperin was cloned as human cytomegalovirus (HCMV)-induced gene in human

fibroblasts (Zhu et al. 1997) and as IFNg-activated gene in human macrophages

(Chin and Cresswell 2001). The former study defined viperin as an ER-associated

protein with anti-HCMV activity in human fibroblasts. Antiviral activity of

viperin was subsequently shown for HCV (Helbig et al. 2005; Jiang et al.
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2008), HIV-1 (Rivieccio et al. 2006), FLUAV (Wang et al. 2007), SINV (Zhang

et al. 2007), WNV and DV (Jiang et al. 2010). Concerning the mechanism of

action, detailed studies are only available for FLUAV infections (Wang et al.

2007). Viperin strongly impairs FLUAV release and, consequently, reduces virus

replication in stably transfected HeLa cells. The authors demonstrate that inhibi-

tion of virus release occurs via disruption of plasma membrane lipid rafts.

Viperin expression results in higher fluidity of membranes and, correspondingly,

in an increased mobility of the viral haemagglutinin protein. No effect of viperin

was observed in the course of VSV infection, a virus whose replication is

believed to be lipid raft-independent. Additionally, farnesyl diphosphate synthase

(FPPS) was identified as viperin-interacting protein and overexpression of FPPS

reversed the effects of viperin on FLUAV replication. Consistently, siRNA-

mediated knockdown of FPPS reduces virus release. Thus viperin exerts antiviral

activity by sequestering FPPS to the ER and inhibiting its enzymatic activity

(Wang et al. 2007). FPPS has important roles in isoprenoid biosynthesis by

catalyzing the formation of farnesyl diphosphate, the precursor of sterols,

dolichols, carotenoids, and ubiquinones (Szkopinska and Plochocka 2005). It

remains to be determined which of the FPPS-regulated pathways is essentially

involved in facilitating viral release.

Viperin might inhibit other viruses by different mechanisms, however, data

are still scarce. Retrovirally expressed viperin inhibits late, but not early, HCMV

protein accumulation and strongly reduces HCMV replication in human

fibroblasts (Chin and Cresswell 2001). Viperin relocates from the ER to the

Golgi and to vacuoles, the sites of viral glycoprotein maturation and viral

assembly, respectively. It is unclear if relocation of viperin is beneficial or

detrimental for viral replication. In the case of HCV and WNV, ER-association

of viperin is important, but not absolutely required, for its antiviral activity

(Jiang et al. 2008, 2010). Recently, viperin has been structurally characterized

in more detail and its proposed S-adenosyl-L-methionine (SAM) enzyme activ-

ity catalyzing the formation of 50-deoxyadenosyl radicals was confirmed

(Shaveta et al. 2010). This is of particular importance, as enzymatic activity is

required for the effect against HCV (Jiang et al. 2008), WNV and DV (Jiang

et al. 2010).

Bone Marrow Stromal Antigen 2 (BST-2, Tetherin, mPDCA-1, CD137)

BST-2 is a small type II transmembrane protein that associates with lipid rafts at the

cell surface or with internal membranes (Andrew and Strebel 2011). The BST-2
promoter region contains GAS and ISRE consensus sites and is thus likely induced

by type I and type II IFN (Ohtomo et al. 1999). BST-2 antiviral function was first

suggested for HIV-1. HIV-1 requires its Vpu gene product for virus release in a cell

type-specificmanner. BST-2 has been identified as a virus restriction factor by its

ability to induce a Vpu-restricted phenotype in cells that otherwise show Vpu-

independent HIV-1 release (Andrew and Strebel 2011). BST-2 was also found to
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inhibit virus release of all retroviruses tested, but also of arenavirus (i.e. LASV),

filovirus (i.e. EBOV, MARV) and rhabdovirus (i.e. VSV) family members

(Jouvenet et al. 2009; Sakuma et al. 2009; Weidner et al. 2010). The exact

mechanism of how BST-2 inhibits virus release is still unclear, but BST-2 tethers

virions to the producer cell. BST-2 might contribute to IFN-mediated antiviral

activity against a wider range of enveloped viruses that bud from the host cell

plasma membrane, however, this remains to be shown. On the other hand, BST-

2 might also be proviral in the sense that it enables a shift of the mode of viral

transmission, i.e. cell-to-cell versus cell-free spread (Andrew and Strebel 2011).

Additional Pathways of Viral Inhibition

Tripartite Motif (TRIM) Proteins

The TRIM family has been originally defined as proteins that contain a so-called

tripartite motif consisting of a RING domain, one or two B-boxes, and a coiled-coil

domain. TheRINGdomain ofmanyTRIMproteins has anE3 ubiquitin ligase activity,

whereas the other two domains may be involved in mediating protein-protein

interactions. TRIM proteins form high-molecular-mass complexes and localize to

specific subcellular compartments either in the nucleus or the cytoplasm. TRIM

proteins are involved in diverse cellular processes like cell growth, apoptosis and

innate immunity (Ozato et al. 2008). The TRIM family consists of 72 genes in humans,

whereby 16 TRIM genes are induced by type I and/or type II IFN (Carthagena et al.

2009). Among the TRIM proteins, TRIM5, TRIM19 and TRIM22 are strongest

upregulated by type I and type II IFN. No homologs of TRIM5 and TRIM22 have

been found in mice (Carthagena et al. 2009). Several members have reported antiviral

activity that is exerted at multiple levels (Kajaste-Rudnitski et al. 2010), but their

contribution to the IFN-mediated antiviral response is largely unknown.

TRIM19, better known as promyelocytic leukaemia (PML) protein, is a constitu-

tive component of PML nuclear bodies (PML NBs), which are small nuclear sub-

structures. PML, Sp100 and small ubiquitin-like modifier (SUMO) are constitutively

present in PML NBs and many other proteins are transiently or permanently

associated with PMLNBs. PMLNBs are potentially highly dynamic and the proteins

associated can vary between cell types. PML is expressed constitutively, but type I and

type II IFNs lead to a strong increase in the size and number of PMLNBs. PML exists

as many different isoforms that are generated by alternative splicing and grouped into

seven classes (PML I-VII). PML isoforms likely have different functions, which still

remain to be defined. In addition, Sp100, Daxx and other PML NB proteins are IFN-

inducible. PML NBs are involved in the regulation of chromatin structure, transcrip-

tion and DNA repair, unfolded protein responses and, in the regulation of apoptosis.

Since PMLNBs are constitutively present, numerous reports described their contribu-

tion to the intrinsic antiviral defence against a broad range of DNA and RNA viruses.

The exact mechanisms of viral inhibition are still largely unknown, but they involve

inhibition of viral mRNA and protein synthesis (Geoffroy and Chelbi-Alix 2011).
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Despite the constitutive expression of PML NB constituents, the IFN-mediated

induction of PML and Sp100 has in several cases been linked to the antiviral function

of PMLNBs. For example, the IFN-mediated antiviral effect against anHSV-1 ICP10

mutant virus that lacks the ability to disrupt PMLNBswas strongly reduced inPml�/�

cells (Chee et al. 2003). Reduced IFN-induced protection against LCMV (Djavani

et al. 2001), human foamy virus (HFV) (Regad et al. 2001) and rabies virus (RV)

(Blondel et al. 2010) was reported in Pml�/� fibroblasts and Pml�/� mice are more

susceptible to LCMV and VSV infection (Table 1) (Bonilla et al. 2002).

PML and PML NBs can also affect p53 activity. IFN-induced p53 has been

shown to be required for the induction of apoptosis and the antiviral defence (Porta

et al. 2005; Takaoka et al. 2003). In the case of poliovirus (PV) infections, p53

activation and target gene expression is dependent on the presence of PML.

Induction of apoptosis and the resulting inhibition of virus replication is abolished

upon siRNA-mediated downregulation of PML and enhanced by PML III

overexpression. PV infection induces PML phosphorylation and SUMOylation

leading to enhanced recruitment and activation of p53 (Pampin et al. 2006).

In contrast to the direct antiviral activity of TRIM19, TRIM21 and TRIM25 have

emerged as crucial components of IFNa/b-inducing pathways (see below). Using

ectopic expression and siRNA knockdown experiments, it has just recently been

shown that TRIM56 inhibits BVDV replication. The mechanism is unclear, but the

antiviral activity was dependent on its ubiquitin ligase activity and not effective

against either VSV or HCV (Wang et al. 2011).

Virus Recognition and Amplification of Type I IFN Production

Several proteins involved in virus recognition and IFNa/b production are long-

known IFN-inducible proteins whose functions have only recently been identified.

Although these do not directly impact on virus replication, their proper function is

essential for sensing virus infections and initiating antiviral responses, i.e. by

directly or indirectly inducing genes with antiviral effector function and/or by

inducing autocrine/paracrine IFNa/b signalling (Kawai and Akira 2009;

McCartney and Colonna 2009). Proteins involved in virus recognition, including

RNA sensors like RIG-I (DDX58) and MDA5 (IFIH1), as well as proteins

implicated in the recognition of cytoplasmic DNA, e.g. DNA-dependent activator

of IFN-regulatory factors (DAI, ZBP1, DLM-1) and IFNg-inducible protein 16

(IFI16, p204) are induced by IFNs (Cui et al. 2004; Fu et al. 1999; Imaizumi et al.

2004; Kang et al. 2002; Trapani et al. 1992). The IFN-inducible protein absent in

melanoma 2 (AIM2, IFI210) has also been identified as a cytoplasmic DNA-sensor,

but associates with the inflammasome and does not lead to IFNa/b induction upon

activation. IFI202 belongs to the same HIN200 family of IFN-inducible proteins as

IFI16 and AIM2, but is a negative regulator of AIM2 at least in murine cells.

Notably, there are also indications that MCMV and HCMV require IFI16 for

replication (Gariglio et al. 2011).
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Type I IFN also mediates its own amplification via the induction of IRF7.

Similar to IRF3, IRF7 gets activated by several PRRs and transcriptionally induces

IFNa/b. Although IRF3 and IRF7 recognize similar consensus sequences in pro-

moter regions, IRF3 mainly regulates IFNa4 and IFNb, whereby IRF7 is required

for the induction of other IFNa subtypes. Different from the constitutively

expressed IRF3, IRF7 is normally not expressed (except for specialized cell

types) unless it is induced by IFNs. Hence, IRF7 mediates a switch from low-

level to high-level of IFNa/b production and broadens the range of IFNa subtype

expression in response to virus infections (Levy et al. 2002).

TRIM21 was found to interact with IRF3 and to increase IRF3 stability and

downstream target gene expression upon SeV infection (Yang et al. 2009). TRIM21

can also negatively impact on IFNa production. Together with FAS-associated

death domain (FADD) protein, TRIM21 directly ubiquitinates IRF7 and reduces its

phosphorylation, thereby limiting IFNa/b production in response to virus infection

(Young et al. 2010). TRIM25 has emerged as central component of the RIG-I

pathway. TRIM25 directly interacts and ubiquitinates RIG-I which is required for

its binding to the mitochondrial antiviral-signaling protein (MAVS, IPS1, VISA,

Cardiff) and the induction of IFNa/b (Gack et al. 2007).

Concluding Remarks and Future Directions

The complexity of host-virus interactions remains a challenging field for future

research on innate immune responses. While specificity and molecular mechanisms

of viral recognition are important issues, further characterization of antiviral

functions of specific ISGs seems equally essential. Many studies have so far only

been performed in vitro and/or in overexpression studies and it will be of particular

interest how these ISGs impact on antiviral responses under physiological

conditions and in vivo. This might not be trivial, as there is most likely a high

redundancy of pathways and ISGs can affect viral life cycles at multiple levels.

Moreover, several ISGs also exert important, but not fully characterized, cellular

functions. Genome-wide association studies in human populations provide another

important ongoing future direction. Genetic polymorphisms in any of the ISG loci

might reveal association with virus susceptibility or other potential novel immune

regulatory functions. Besides, a lot of information has been gained by studies of

virus mutants. Viruses have evolved very efficient mechanisms to counteract the

host immune system and further analysis from this perspective will help to decipher

the multiple levels of virus-host interactions. The more detailed understanding of

the exact interplay between viral and cellular factors might help to better control

virus infections and to more specifically direct antiviral responses.
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Interferon Regulation of the Innate
Response to Bacteria

Ali Abdul-Sater and Christian Schindler

Abstract

Characterization of potent antiviral response to Interferons (IFNs) led to identi-

fication of the JAK-STAT signaling cascade almost two decades ago. More

recently, studies have begun to explore how IFNs participate in the innate

response to bacterial infections. This includes the activation of classic

antibacterial responses, like expression on inducible nitric oxidase (iNOS) and

GTPases, as well as the induction of autophagy. Not surprisingly, studies on its

anti-bacterial activity of IFNs have provided important new insights into IFN

biology and JAK-STAT signaling.

Introduction

The potent antiviral activity of Interferons (IFNs) was first described by Isaacs and

Lindenmann well over 50 years ago (Isaacs and Lindenmann 1957). Subsequent

purification and cloning revealed that these four-helix bundle cytokines could be

divided into two major groups, the type I and type II IFNs (reviewed in Uze et al.

2007). Type I IFNs (IFN-Is), the larger and more pleiotropic group included both

fibroblast (a.k.a. – IFN-b) and leukocyte (a.k.a. – IFN-a’s) IFNs, whereas type II

IFN was represented by a single member, immune IFN (a.k.a. – IFN-g). Consistent
with these structural differences, type I and II IFNs were subsequently found to bind

to distinct receptors and activate unique, but partially overlapping programs of
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signal transduction and gene expression (reviewed in Schindler and Plumlee 2008).

A new family of type III IFNs (a.k.a. – IFN-ls or IL-28/29) was identified much

more recently and found to bind a distinct epithelially expressed receptor (Kotenko

et al. 2003; Sheppard et al. 2003). Although the antiviral activity mediated by each

of these IFN classes was critical in their characterization, as well as their receptors

and downstream signaling components, more recent studies have begun to explore

the ability of IFNs to regulate both the innate response to bacteria and the

subsequent transition to adaptive immunity (Douville and Hiscott 2010; Monroe

et al. 2010; Trinchieri 2010). Intriguingly, in contrast to their essentially universal

antiviral activity, the relationship between IFNs and an effective innate response to

a bacterial infection is more complicated. In general, type II IFN has been found to

potently activate the antibacterial program of phagocytes, especially towards bac-

teria that have evolved the capacity to replicate within cells (e.g. Chlamydiae,
Fransciella tularensis, Mycobacterium tuberculosis, Listeria monocytogenes and

Legionella pneumophila; (Monroe et al. 2010; Trinchieri 2010). Yet, the

antibacterial response directed by type I IFNs is far more complicated, likely

owing to the biphasic nature of IFN-I response. Although IFN-Is rapidly induce

many important inflammatory genes, prolonged IFN-I stimulation has been

associated with anti-inflammatory, anti-proliferative and pro-apoptotic activities,

which a number of bacterial pathogens have learned to exploit (Stockinger and

Decker 2008; Trinchieri 2010); see also section on Staphylococcus and Streptococ-
cus). More recently, IFN-Is have also been shown to contribute to the innate

response to a number of extracellular bacteria (e.g. Streptococci and Staphylococ-
cus aureus [Monroe et al. 2010; Trinchieri 2010]). The role epithelially active IFN-

IIIs play in the innate response to bacterial pathogens is a question many groups are

now beginning to explore.

IFN-I Mediated Antiviral Activity and the JAK-STAT Pathway

Initial biochemical and molecular analysis of IFN response was almost exclusively

focused on its potent antiviral activity (Pestka et al. 2004). However, with the

development of pure IFN preparations it became possible to investigate the biology

of IFN response. This included the important discovery that IFNs were able to

directly stimulate the expression of specific target genes (Friedman et al. 1984;

Larner et al. 1984). Characterization of IFN-I and IFN-II mediated gene expression

led to the identification of the JAK-STAT signaling pathway (Fig. 1), where JAKs

(JAunus Kinases) are IFN receptor associated kinases, and STATs (Signal

Transducers and Activators of Transcription) are the transcription factors they

activate (Schindler and Plumlee 2008). Underscoring their critical antiviral activity,

viruses have evolved sophisticated strategies to subvert all aspects of IFN response

(reviewed in Versteeg and Garcia-Sastre 2010). Similarly, genetic studies have

underscored the important role IFN-g plays in the response to intracellular bacterial
pathogens (Zhang et al. 2008). Yet, the strategies by which bacteria subvert IFN

response remain largely unexplored.
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IFN-II (i.e. IFN-g), which is expressed by a limited number of immune cells,

mediates its response through two receptor chains that are expressed by most cell

types (Fig. 1; reviewed in Schindler and Plumlee 2008). Upon stimulation, receptor

associated Janus Kinases (i.e. Jak1 and Jak2) sequentially activate each other and then

tyrosine 440 of the a-receptor chain. Phosphotyrosine 440, in the context of 3–4

carboxy terminal amino acids (a.k.a. a tyrosine motif), directs the SH2 dependent

recruitment of Stat1 to the receptor complex, where it is phosphorylated, in a JAK

dependent manner on tyrosine 701. Phosphorylated Stat1 forms an active homodimer

that translocates to the nucleus and binds to amember of the GAS (GammaActivation

Fig. 1 The IFN-I and IFN-g signaling paradigms. Upon binding their corresponding PAMPs, both

transmembrane spanning (e.g. TLR3 and TLR4) and cytoplasmically located PRRs (e.g. RLRs,

NLRs, and unknown receptors) direct the TBK1 (or IKKi/IKKe) dependent activation of IRF3 (or
IRF5), which drives the expression of IFN-b. Secreted IFN-b binds to the dimeric IFN-a receptor

(IFNAR1 and IFNAR2), directing activation of two receptor associated JAKs (Jak1 and Tyk2).

Once activated, the JAKs sequentially phosphorylate receptor tyrosine and then of Stat1 and Stat2,

which are recruited to the receptor in an SH2 domain dependent manner. Phosphorylated Stat1 and

Stat2 heterodimerize and associate with IRF9, whereupon they translocate to the nucleus, bind to

ISREs and drive the expression of target genes. One important target gene, IRF7 becomes

activated by TBK1 (or IKKi/IKKe) to drive the expression of IFN-a’s. Phosphorylated Stat1 can

also from active homodimers, which translocate to the nucleus, directly bind GAS elements and

drive the expression of a distinct set of genes. IFN-IIIs signal bind to a distinct receptor (IL-28R

and IL-10R2), activating the same JAKs and STATs and target genes as IFN-Is (not shown). In

contrast, IFN-g binds to a unique dimeric receptor (i.e. IFNGR1 and IFNGR2) that promotes the

activation of two distinct JAKs (i.e. Jak1 and Jak2). These JAKs phosphorylate a single IFNGR1

tyrosine, which directs the SH2 domain dependent recruitment and activation of Stat1.

Phosphorylated Stat1 forms homodimers, as above, which translocate to the nucleus, bind GAS

elements and drive target expression. However, the kinetics of Stat1 activation is prolonged in

IFN-g treated cells
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Site; TTTCCNGGAAA) family of enhancers (reviewed in Decker et al. 1997),

culminating in the expression of target genes. Stat1/GAS driven genes include tran-

scription factors (e.g. IRF1 and CIITA), iNOS, GTPases, chemokines and cell surface

immuno-regulatory molecules (Decker et al. 1997; Ehrt et al. 2001; Gil et al. 2001).

In contrast, members of the large family of type I IFNs, which are expressed by

most cell types, signal through the two chains of the IFN-a receptor (IFNAR; Fig. 1;

reviewed in Schindler et al. 2007; Uze et al. 2007). Intriguingly, the expression of

IFN-Is is controlled through an autocrine loop, which is initiated by a divergent set

of pattern recognition receptors (PRRs) and culminates in the sequential expression

of immediate IFN-Is (i.e. IFN-b & IFN-a4) and subsequently the delayed IFN-Is

(i.e. all other IFN-a’s; Fig. 1; [Hiscott 2007; Hiscott et al. 2006; Marie et al. 1998]).

Virtually all of the IFN-I inducing PRR/microbial sensor systems direct the TBK1

(TANK Binding Kinase 1) dependent activation/phosphorylation of IRF3 (Inter-

feron Regulatory Factor 3), which along with NF-kB and AP-1 drive IFN-b
expression (Seth et al. 2006; Wang et al. 2007). Secreted IFN-b binds to IFNAR,

promoting the activation of two receptor associated JAKs (i.e. Jak1 and Tyk2).

These tyrosine kinases phosphorylate specific receptor tyrosine motifs, and subse-

quently Stat1 (on Y701) and Stat2 (on Y689; Improta et al. 1994; Shuai et al. 1993;

Zhao et al. 2008). Phosphorylated Stat1 and Stat2 form active heterodimers, which

associate with IRF9 to form ISGF3 (Interferon Stimulated Gene Factor 3). ISGF3

translocates to the nucleus, where it directs the expression of genes featuring ISRE

(IFN Stimulated Response Element; AGTTTN3TTTCC) enhancers (Kessler et al.

1988). These genes include transcription factors (e.g. IRF1 and IRF7), many PRR/

sensor components, some GTPases, as well as a growing number of well-

characterized antiviral genes (Liu et al. 2011; Sadler and Williams 2008). IFN-Is

also transduce signals through Stat1 homodimers, especially in macrophages,

resulting in the expression many GAS-driven genes (see above; [Pine et al. 1994]).

IFN-IIIs (i.e. IFN-l1, IFN-l2 and IFN-l3; a.k.a., IL-29, IL-28a and IL-28b) are

largely active on mucosal epithelium, a specificity that has been attributed to tissue

restricted receptor expression (Ank et al. 2008; Dumoutier et al. 2004). Even

though IFN-IIIs transduce their signals through a distinct receptor, they activate

the same intracellular signaling pathways as IFN-Is, culminating in ISGF3 and

Stat1 dependent gene expression (Donnelly and Kotenko 2010). Analogous to

studies of type I and II IFNs, these signaling pathways have been extensively

validated through the analysis of numerous knockout mice (i.e. receptors, JAK,

STAT and IRF knockouts; reviewed in Donnelly and Kotenko 2010; Schindler and

Plumlee 2008; Uze et al. 2007).

Chlamydia

Chlamydia species, important agents of sexually transmitted and pulmonary

diseases, were the first non-viral pathogens found to be inhibited by type I IFN

(IFN-I; Sueltenfuss and Pollard 1963). These early studies, employing partially

purified IFNs, determined that IFN-Is suppress chlamydial replication and
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maturation in a variety of human and murine cell types (Hanna et al. 1966; Kazar

et al. 1971). These initial findings were subsequently confirmed and extended with

purified and recombinant IFNs. In addition, cells infected with Chlamydia were

found to secrete autocrine/paracrine IFN-Is, culminating in the expression of IFN

target genes (Nagarajan et al. 2005). A number of IFN-I target genes, which are also

synergistically activated by other inflammatory cytokines (e.g. TNF-a and IL-1),

have been shown to suppress Chlamydia growth. These includes iNOS (NOS2) and

the tryptophan-degrading enzyme (Indoleamine 2,3-dioxygenase; IDO), which

deprives Chlamydia of an essential metabolite (Carlin et al. 1989; Carlin andWeller

1995; Devitt et al. 1996; Ishihara et al. 2005; Rothfuchs et al. 2001; Shemer-Avni

et al. 1989). However, in vivo systemic IFN-Is appear to exert a largely immuno-

suppressive activity, leading to an exacerbation of chlamydial infections

(Nagarajan et al. 2005; Qiu et al. 2008).

Studies exploring the mechanism by which Chlamydia induce IFN-I expression

have yielded conflicting results. Some studies have highlighted an important role

for TLR3 and TRIF (Derbigny et al. 2007, 2010), whereas others implicate a

MyD88 dependent pathway (Nagarajan et al. 2005; Naiki et al. 2005). There is

however agreement that the TBK1-IRF3 axis is required for Chlamydia dependent

IFN-I expression (Derbigny et al. 2007; Nagarajan et al. 2005; Prantner et al. 2010).

More recent studies have explored the role inflammasome activation may play in

contributing to an effective innate response towards this important human pathogen

(Abdul-Sater et al. 2009; Abdul-Sater et al. 2010).

Staphylococcus and Streptococcus

Although neutrophils play a critical role in the host response to gram-positive,

phagocytic bacteria, like Staphylococcus aureus and Group A/B Streptococcus,

several studies have highlighted a role for IFNs (reviewed in Monroe et al. 2010;

Trinchieri 2010). More limited studies on Staphylococcus aureus reveal that both
type I and II IFNs are able to render hosts more susceptible to lung infections

(Martin et al. 2009; Shahangian et al. 2009; Sun and Metzger 2008). This effect is

particularly pronounced in mice recovering from an antecedent influenza pneumo-

nia. Mechanistic studies suggest that virally induced IFN-g suppresses the expres-

sion of MARCO, a phagocytic scavenger receptor, on resident alveolar

macrophages, whereas virally induced IFN-Is suppress the expression of CXCL1

and CXCL2, two important neutrophil chemo-attractants (Martin et al. 2009;

Shahangian et al. 2009; Sun and Metzger 2008). Other studies have highlighted

the ability of IFN-Is to induce the expression of IL-10 and IL-27, two immuno-

suppressive cytokines that may also contribute to this phenotype (Chang et al. 2007;

Shinohara et al. 2008). However, there is also evidence that Staphylococcus aureus
directly induces IFN-I expression in host tissues, rendering them more susceptible to

bacterial infection, even absent an antecedent influenza infection (Martin et al. 2009).

The potent immuno-suppressive activity associated with prolonged IFN-I
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expression can be attributed to the growing list of IFN dependent negative

regulators (Schindler et al. 2007; Schindler and Plumlee 2008).

In stark contrast to Staphylococcus aureus, IFN-Is play an important role in

promoting an effective innate response to infection by Group A and B Streptococcus

(Mancuso et al. 2007), whereas IFN-g plays a more important role in the subsequent

adaptive response (Chaussee et al. 2011). Studies exploring the IFN-I response have

largely focused on macrophages, ascribing the ability of these bacteria to induce

IFN-Is in a TLR-independent pathway that senses endosomally accumulating for-

eign DNA (Charrel-Dennis et al. 2008; Mancuso et al. 2007; Parker et al. 2011).

Although the specific DNA sensor remains controversial, several studies support a

role for STING (STimulator of INterferon Genes; Ishikawa and Barber 2011), an

endosomal IFN regulator, as well as TBK1 and IRF3 (Gratz et al. 2011; Ishikawa

and Barber 2011). Intriguingly, studies on conventional DCs have attributed IFN-I

induction to a TLR-dependent pathway that senses Streptococcal RNA and activates

IRF5 (Gratz et al. 2011; Mancuso et al. 2009).

Mycobacterium tuberculosis

Mycobacterium tuberculosis (Mtb), an evolutionarily ancient scourge, is a potent

stimulator of the immune system, yet persists in hosts, owing to its abilities to: take

up residence macrophages; subvert their activity; and to become dormant

(Gutierrez et al. 2005; Harris et al. 2009). Even though IFN-g secreting Th1 cells

activate an effective antibacterial program within macrophages, dormant Mtb

persist in many hosts. Consistent with the important role that IFN-g secreting Th1

cells play in the immune response to Mtb, analysis of patients with a predisposition

to mycobacterial infections has identified several distinct inborn errors in IFN-g
response (Zhang et al. 2008). These human pedigrees feature mutations in genes

either regulating IFN-g production (i.e. the IL-12 receptor and NEMO) or IFN-g
response (i.e. the IFN-g receptor and Stat1). Careful studies have shown that IFN-g
suppresses Mtb growth through both iNOS dependent and independent

mechanisms. In sum, these enable macrophages to overcome the blockade in

phagosome maturation that is mediated by bacterial products. This includes the

IFN-g dependent induction of Irgm1, a p47 GTPase, LC3 (microtubule-associated

protein 1 light chain 3) and an associated autophagocytic response (Harris et al.

2009; Tiwari et al. 2009).

Although induced during an infection, the role type I IFNs play during the innate

response to Mtb remains more controversial (Giacomini et al. 2001; Remoli et al.

2002; Weiden et al. 2000). Several studies, exploiting either ectopic IFN-I treat-

ment or IFN-I unresponsive mice suggest that IFN-Is are beneficial to the host

during a Mtb infection (Denis 1991; Giosue et al. 1998; Kuchtey et al. 2006).

Consistent with this, IFN-Is induce the expression of two genes associated with

Mtb suppression, iNOS (a.k.a. NOS2) and Lpr1 (Kuchtey et al. 2006; Pan et al.

2005). In addition, IFN-I signaling appears to be suppressed in Mtb infected cells

(Prabhakar et al. 2005). Alternatively however, IFN-I induction has been associated
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with a hypervirulent Mtb strain (Manca et al. 2001). Moreover, IFN-I pretreatment

was found to increase pulmonary Mtb loads and mortality (Manca et al. 2001).

Similarly, IFN-I pretreated monocytes were reported to exhibit enhanced M. bovis
BCG growth (Bouchonnet et al. 2002). More recently, a potent IFN-I stimulating

agent (i.e. Poly-ICLC) was found to exacerbate Mtb growth in wild type, but not

IFNAR mutant mice through the recruitment of a permissive population of

myelocytes (Antonelli et al. 2010). However, IFN-I levels were considerably higher

than during a native MTB infection. In another high profile study, active Mtb

infection was shown to correlate with an IFN-I transcriptional profile within

neutrophils, but this study was not able to distinguish between cause and effect

(Berry et al. 2010; Prabhakar et al. 2005). Future studies, rigorously controlling for

the biphasic nature response to IFN-Is (i.e. the inflammatory response associated

with acute treatment vs. the anti-inflammatory activity associated with prolonged

stimulation; see above) may provide important insight into this controversy.

Another active area of investigation has been the mechanism by which Mtb

stimulates IFN-I expression. Consistent with studies from other intracellular bacte-

ria, the TLR-MyD88 pathway does not appear to play an important role in IFN-I

induction (Shi et al. 2005; Stanley et al. 2007). Likewise, IFN-I expression was

found to be dependent on the Mtb ESX secretion system, which is critical for

bacterial virulence (Stanley et al. 2007). More recently, genetic studies have

provided evidence that Mtb stimulated IFN-b expression is directed by a Nod2-

Rip2-Tyk2 dependent activation of IRF5, with an uncharacteristically modest

contribution from IRF3 (Pandey et al. 2009). These studies have also identified

an N-glycolated mural dipeptide (N-glycolyc MDP) as one critical PAMP initiating

this response (Pandey et al. 2009).

Francisella tularensis

Francisella tularensis is an aggressive facultative intracellular bacterium that has

been shown to induce both type I and II IFNs (reviewed in Sjostedt 2003). Since as

few as ten inhaled organisms can cause a lethal infection, most studies have been

carried out on attenuated vaccine strains (F. tularensis subspecies novicida or
holarctica). Analogous to Mtb, IFN-g is an important component of an effective

response towards this virulent pathogen. It appears to suppress intracellular

F. tularensis growth by stimulating both reactive oxygen species (ROS) and

reactive nitrogen species (RNS) production, as well as by IDO dependent depletion

of tryptophan stores (Chu et al. 2011; Lindgren et al. 2004; Peng and Monack

2010). In contrast, the role of IFN-Is, whose expression is robustly induced when

F. tularensis escapes from the phagosome, is more complicated. On a cellular level,

autocrine/paracrine IFN-Is promote the pyroptosis of infected macrophages,

removing the replicative niche (Henry et al. 2007). However, systemically IFN-Is

appear to antagonize the normal accumulation and activity of IL-17A+ gd T cells

and neutrophil (Henry et al. 2010; Navarini et al. 2006). Notably, IFNAR1
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knockout mice are less susceptible to infection with F. tularensis, suggesting the

overall effect of IFN-Is is harmful to the host.

Genetic studies exploring the mechanism by which cytosolic F. tularensis
stimulates IFN-I (i.e., IFN-b) expression have highlighted an important role for

IRF3, but not for RIG-I, MDA5, Nod1 or Nod2 (Henry et al. 2007). A potential role

for TLRs remains more controversial. A study with F. tularensis ssp novicida
infected MyD88/Trif double knockout bone marrow macrophages convincingly

excluded an important role for TLRs in IFN-b induction (Henry et al. 2007).

Consistent with this, F. tularensis ssp novicida stimulated IFN-b expression was

dependent on STING (STimulator of INterferon Genes), a component of a partially

characterized cytosolic DNA sensor (Ishikawa and Barber 2011; Jones et al. 2010).

However, a second study exploiting knockout peritoneal macrophages implicated

TLR2 in the ability of live vaccine strain (LVS) F. tularensis to induce IFN-b
expression (Cole et al. 2007). More intriguing has been recent evidence that the

cytosolic DNA sensor AIM2 (Absent in Melanoma 2) and ASC (apoptosis-

associated speck-like protein containing a CARD; a.k.a. PYCARD) directs

the F. tularensis dependent activation of the caspase1 inflammasome, which

culminates in IL-1b and IL-18 secretion (Fernandes-Alnemri et al. 2010; Jones

et al. 2010). This response is enhanced but not dependent on autocrine IFN-Is.

Moreover, AIM2 knockout mice mounted a defective response to F. tularensis
infection, suggesting the inflammasome plays in important role in the host response

to this pathogen (Fernandes-Alnemri et al. 2010; Jones et al. 2010).

Listeria monocytogenes

Listeria monocytogenes is a stubbornly persistent food bourne pathogen that causes
severe disease in immunocompromised hosts through its capacity to replicate within

macrophages (reviewed in Stockinger and Decker 2008; Trinchieri 2010). Of the

virulence factors that enable L. monocytogenes to infect phagocytes, Listeriolysin O
(LLO), a pore-forming cytolysin that facilitates escape from the phagosome, has

been characterized most extensively. Similar to other facultative bacteria,

L. monocytogenes is sensitive to the robust inflammatory response stimulated by

IFN-g. This has been attributed to the Stat1 dependent expression of specific

inflammatory genes (Varinou et al. 2003). Among these target genes, two members

of the p47 family of GTPases (i.e. LRG-47 and IGTP), but not iNOS (NOS2), play a

particularly important role in suppressing L. monocytogenes growth (Stockinger and
Decker 2008; Taylor 2007). Intriguingly, NO production may actually impede an

effective host response towards this pathogen (Bogdan et al. 2000).

Like many intracellular microbes, L. monocytogenes has been shown to induce

the expression of IFN-Is. However, in contrast to IFN-g, this autocrine IFN-I

undermines the immune response towards this pathogen. Several mechanisms

have been identified by which IFN-Is suppress the immune response to

L. monocytogenes. First, IFN-Is have been shown to increase the susceptibility of

macrophages and T-cells to apoptotic death. Second, IFN-Is appear to antagonize
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both the production and response to IFN-g (Rayamajhi et al. 2010). There is also

evidence that IFN-Is limit T-cell dependent secretion of IL-17 during infection

(Guo et al. 2008; Henry et al. 2010). Finally, IFN-Is subvert the innate response by

limiting the specific recruitment, activity and lifespan of critical populations of

myeloid cells (Jia et al. 2009; Navarini et al. 2006; Shahangian et al. 2009).

The mechanism by which L. monocytogenes induces IFN-I expression remains

an active area of investigation. Although genetic studies have excluded significant

roles for both the TLR and Nod (i.e. Nod1 and Nod2) families of PRRs, the

response is dependent on IRF3, especially in macrophages, which are the most

important source of IFN-Is during a L. monocytogenes infection (O’Connell et al.

2004; Stockinger et al. 2004). As with other bacterial pathogens, a number of

studies have suggested that foreign nucleic acids may initiate the IFN-I response

(i.e. induce IFN-b expression; Fig. 1), but there are conflicting results over whether

this is through a known or novel sensor system (Pollpeter et al. 2011; Stetson and

Medzhitov 2006). Intriguingly, a recent unbiased genetic screen has identified

MdrM, a multi drug resistance transporter encoded by L. monocytogenes, as

contributing to the IFN-I response (Crimmins et al. 2008). Moreover, a search for

the critical substrate transported through this channel has identified 30,50-cyclic
diadenylate (c-diAMP) as a new and effective IFN-I stimulating PAMP (Woodward

et al. 2010; A. Abdul-Sater, unpublished observation). The potential relationship

between c-diAMP and the structurally analogous c-diGMP (30,50-cyclic
diguanylate; see below), also produced by L. monocytogenes, is an active area of

investigation.

Legionella pneumophila

Legionella pneumophila, a facultative intracellular bacterium, is the causative agent

of Legionnaires’ disease. Prevalent in the environment (i.e., water aerosols), this
bacterium continues to be an important cause of nosocomial and community-

acquired pneumonias, especially in the elderly and immuno-compromised host

(Marston et al. 1997; Mykietiuk et al. 2005). Like other facultative intracellular

pathogens, L. pneumophila avoids being targeted to the lysosome through the

formation of a specialized replicative compartment (reviewed in Franco et al.

2009; Isberg et al. 2009). Its ability to subvert normal vesicular trafficking within

phagocytes is dependent on the Icm/Dot type IV secretion system, which serves to

inject > 140 “effector” proteins into the host cell. Like most other intracellular

microbes, IFN-g effectively suppresses L. pneumophila growth in wild type, but not
Stat1 deficient macrophages (Plumlee et al. 2009). However, the IFN-g stimulated

target genes critical for suppressing L. pneumophila growth have not yet been

identified.

Intriguingly, the ability of IFN-Is to antagonize L. pneumophila growth is not

affected by the loss of Stat1, the canonical component of both IFN-I stimulated

transcription factors (Fig. 1; Plumlee et al. 2009). Likewise, IFN-Is effectively
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suppress L. pneumophila replication in Stat2 knockout macrophages, but this

response is lost in Stat1/Stat2 double knockout macrophages (Plumlee, unpublished

observation). These observations suggest that Stat1 and Stat2 are functionally

redundant in their ability to suppress L. pneumophila growth. While responses

mediated solely by Stat1 appear similar to those stimulated by IFN-g (Fig. 1), the

responses directed by Stat2 that are independent of Stat1 (i.e. “Stat2 signaling”) are

not well characterized (Hahm et al. 2005; Hofer et al. 2010; Perry et al. 2011; Sarkis

et al. 2006). Recent additional characterization of the “independent Stat2 pathway”

has revealed that it entails the formation of Stat2-Stat2-IRF9 complex, which

directs the expression of ISRE-driven genes, albeit with considerably delayed

kinetics (A. Abdul-Sater, unpublished observation). It is intriguing to speculate

that this pathway evolved as a defense towards pathogens that target Stat1 for

degradation (Versteeg and Garcia-Sastre 2010).

Both L. pneumophila’s sensitivity towards IFN-Is and its ability to stimulate

IFN-I production underscores the important role the IFN-I autocrine/paracrine loop

plays in protecting infected macrophages (Coers et al. 2007; Plumlee et al. 2009;

Schiavoni et al. 2004). As is the case with other intracellular bacterial pathogens,

neither the PAMP nor PRR(s) that direct L. pneumophila dependent IFN-I secretion
have been characterized. Consistent with other bacteria, recent studies have how-

ever revealed that TBK1 and IRF3 are critical in IFN-b induction (Plumlee et al.

2009). The dearth of progress in the IFN-I response is contrasted by elegant studies

highlighting the role L. pneumophila flagellin plays in directing a Naip5–IPAF

(NLRC4) dependent activation of the caspase1 inflammasome, culminating in IL-

1b secretion and pyroptosis (Lightfield et al. 2008; Molofsky et al. 2006; Vance

2010). Intriguingly, several recent studies have implicated L. pneumophila, DNA,
RNA and 30,50-cyclic diguanylate (c-diGMP) as critical IFN-I stimulating PAMPs

(McWhirter et al. 2009; Monroe et al. 2009; Stetson and Medzhitov 2006; Abdul-

Sater, unpublished observation). Moreover, “foreign” cytosolic nucleic acids

appear to stimulate both IFN-I expression and inflammasome activation, where

secreted IFN-Is appear to facilitate inflammasome activation (Fernandes-Alnemri

et al. 2010; Goubau et al. 2010; Jones et al. 2010; Sander et al. 2011). It seems likely

that characterizing this IFN-I response will provide important new insight into

innate immunity.

Conclusion

The evolutionary contest between host and pathogen drove the development of

an elaborate host defense system that features an adaptive immune response in

addition to the innate response found in more primitive eukaryotes. This entailed

the development of leukocyte lineages, as well as cytokines, like Interferons,

that regulate the activity of these immune cells. Initially characterized for their

antiviral activity, the IFN family is increasingly recognized for its role in the host

response to bacterial pathogens. Thus, IFN-g, largely produced by lymphocytes,

potently stimulates the antibacterial program of phagocytes, whereas IFN-Is
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direct more pleiotropic antibacterial responses, as well as the subsequent transi-

tion towards adaptive immunity. Consistent with this role, a growing number of

intracellular PPRs that stimulate IFN-I production have been identified. More-

over, PRRs and components of the IFN-I response vary significantly between

cell types. Although time will tell, new tools to specifically probe IFN-III

response are likely to highlight an important role for these IFNs, especially at

mucosal surfaces. In addition, studies on all three classes of IFNs are likely to

reveal why this family of ligands is so large, as well as how, when and why

exuberant IFN response contributes to chronic inflammatory disease.

Note added in Proof Some as the data cited as unpublished observation has now been published

in: Abdul-Sater A, Grajkowski A, Erdjument-Bromage H, Plumlee C, Levi A, Schreiber MT,

Lee C, Shuman H, Beaucage SL, Schindler C (2012) The overlapping host responses to bacterial

cyclic dinucleotides. Microbes & Infection 14(2):188–197.
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