
Chapter 7

Astacins: Proteases in Development and

Tissue Differentiation

Walter Stöcker and F. Xavier Gomis-Rüth

7.1 Introduction

The astacins form a versatile family of multi-domain zinc peptidases within the

metzincin superfamily (Bond and Beynon 1995; Gomis-Rüth 2003, 2009; Stöcker

et al. 1995). To date, the MEROPS database (http://merops.sanger.ac.uk/) of pro-

teolytic enzymes and their inhibitors lists more than a thousand astacin proteases of

both prokaryotic and eukaryotic origin. Most of them are secreted proteins; only the

members of the meprin subfamily are translated with a membrane anchor. Astacins

are generally synthesized as inactive zymogens (pro-enzymes). Thus, their activity

relies on the post-translational removal of amino terminal pro-peptides. Thereafter,

biological protein inhibitors control their activity.

Eukaryotic astacin proteases are composed of amino terminal signal peptides and

pro-segments, zinc-binding protease modules, various carboxy terminal domains,

trans-membrane anchors, and cytosolic domains. TheX-ray crystal structures of four

astacins and one complete zymogen have been solved. The catalytic domain

comprises about 200 residues and contains in its center the conserved zinc-binding

sequence, HEXXHXXGXXH, typical for metzincin peptidases.

The first family member to be discovered was the digestive metalloprotease

astacin from the European fresh water crayfish Astacus astacus L.—originally

termed ‘low molecular weight protease’ or ‘Astacus protease’ (Stöcker and

Zwilling 1995). Generally, the genomes of lower vertebrates and invertebrates
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contain more astacin genes than mammalian genomes. MEROPS lists 7–18 astacins

in amphibians and fishes, at least four in cnidarians, 13–25 in insects, and up to

40 in nematodes such as Caenorhabditis elegans. The large number in the latter

example can at least partially be attributed to the parasitic lifestyle of nematodes,

which require an array of proteases to break down host connective tissue.

Characterized examples of this phylum are enzymes from Trichinella spiralis
(Lun et al. 2003) and Onchocerca volvolus (Borchert et al. 2007). Astacins with
digestive function have been observed in several invertebrate (mostly decapod

crustacean) species (Möhrlen et al. 2003; Stöcker and Zwilling 1995). However,

most astacins are not involved in digestion, but rather in proteolytic processing of

precursors of extracellular matrix constituents and growth factors, including their

antagonists and cell surface receptors, during embryonic patterning and cell

differentiation.

The first astacin reported to participate in development was bone morphogenetic

protein 1 (BMP1, also known as procollagen C-protease), which is co-expressed with

TGFβ-like, non-proteolytic growth factors termed BMPs due to their capability to

induce ectopic bone formation in mice (Wozney et al. 1988). Since then a variety of

astacins have been discovered, which are key players in developmental processes,

tissue differentiation, and embryonic hatching, as exemplified by UVS.2 from clawed

frog (Sato and Sargent 1990), tolloid from the fruit fly (Shimell et al. 1991), the low

(LCE) and high (HCE) choriolytic enzymes frommedaka fish (Yasumasu et al. 1992),

and SPAN and blastula protein BP10 from sea urchin (Lepage et al. 1992; Reynolds

et al. 1992). Consequently, due to these basic regulatory functions, astacins have found

to be linked to diseases like cancer, connective tissue disorders, neuro-degenerative

disorders like Alzheimer’s disease, etc.

This review will focus on the structure and function of astacin proteases involved

in various aspects of development, morphogenesis and tissue differentiation.

7.2 Structure of Astacin Proteases

7.2.1 Modular Composition of Astacins

The smallest prokaryote astacins consist only of a catalytic domain of approxi-

mately 200 amino acid residues. Eukaryote astacins are larger, at least elongated by

an amino terminal pro-peptide, which renders the enzyme inactive (Yiallouros

et al. 2002) (Fig. 7.1).

A distinct subfamily of astacins are the BMP-1/tolloid-like proteases (BTPs),

named after bone morphogenetic protein 1 and the dorso-ventral patterning protein

tolloid, first described in Drosophila embryos. The BTPs contain additional down-

stream domains such as CUB modules (named according to their occurrence in
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complement C1s and C1r, sea urchin UEGF and BMP1), EGF (epidermal growth

factor like) modules (Bond and Beynon 1995; Stöcker et al. 1995). Some of these

domains have been shown to bind calcium and facilitate protein-protein

interactions. Especially, they seem to be important for the selective substrate

specificity of BTPs (Garrigue-Antar et al. 2004; Hintze et al. 2006; Sieron

et al. 2000; Wermter et al. 2007). Sea urchin astacins like SPAN and BP10 are

structurally related to tolloids (Lepage et al. 1992; Reynolds et al. 1992), because

they also contain CUB and EGF domains.

Astacins of the meprin subfamily are distinguished by TRAF domains (from tumor

necrosis factor receptor-associated factor) (Rothe et al. 1994; Zapata et al. 2001) and

MAM domains initially identified in meprins, A5 protein, and receptor tyrosine

phosphatase μ (Beckmann and Bork 1993). MAM domains alone are also present in

HMP2 from hydra (Yan et al. 2000a, b), LAST-MAM from the horseshoe crab

(Becker-Pauly et al. 2009) and in the so-called myosinases from squids (Tamori

et al. 1999). A considerable number of astacin proteases contain less characterized

additional modules often termed LC (regions of low complexity) with little similarity

to other proteinmodules. Such regions have been identified inCaenorhabditis elegans

astacin / HE / nephrosin / alveolin

meprin

BMP1

PROTEASEPROS

EGFCUBPROTEASEPROS CUB CUB

IPROTEASEPROS MAM TRAF EGF TM C

CUBPROTEASEPROS

LCPROTEASEPROSovastacin

EGFCUBPROTEASEPROS CUB CUB EGF CUB CUBtolloids

EGF TM CPROTEASEPROS MAM TRAFmeprin

CAM1

SPAN / BP10 EGF CUBPROTEASEPROS CUB

HE

BTP

MEP

CUBPROTEASEPROSUVS.2 CUB

a

b

Fig. 7.1 Domain composition of selected astacin proteases. S ¼ (signal peptide); PRO ¼
(pro-peptide); PROTEASE ¼ (catalytic domain); EGF (epidermal growth factor; PFAM

PF00008); CUB (domain found in complement C1r/1s, sea urchin Uegf, BMP1; PF00431);

MAM (domain found in meprins, A5 receptor protein, and tyrosine phosphatase μ; PF00629);
TRAF (tumor necrosis factor receptor-associated factor; PF00917); LC (low complexity domain);

C (cytosolic domain); I (inserted domain); TM (transmembrane anchor); HE ¼ (hatching

enzymes); BTP ¼ (BMP1/Tolloid-subfamily); MEP ¼ (meprin subfamily)
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astacins, sea urchin astacins SPAN/BP10 (Lepage et al. 1992; Reynolds et al. 1992)

and ovastacin (Quesada et al. 2004). Likewise, there are other uncharacterized protein

domains such as the EBmodule found in someC. elegans proteins and the TT domain

of bacterial astacins, which has been named after the viral ORF2 (open reading frame)

of the TT virus. Several C. elegans astacins have thrombospondin type 1 repeats,

which are also found in other metzincins, such as the ADAMTS peptidases (Apte

2009). Further extracellular domains seen in astacins are ShK toxin moieties,

i.e. six-cysteine (SXC) domains, which were originally observed in metridin, a toxin

from sea anemone, and several hypotheticalC. elegans proteins. Formore information

on astacin domain confer to http://merops.sanger.ac.uk (Rawlings et al. 2010).

Based on the sequences of their catalytic domains, the astacins can be grouped in

several major subfamilies (Fig. 7.1). There is the distinct BTP cluster present in all

animal phyla. On the other hand, the meprin cluster is as yet only present in

vertebrates. Another cluster is formed by the hatching enzymes, which in amphibians

and fishes have evolved in several divergent lineages. A different scenario becomes

evident in cnidarians, nematodes, insects, and mollusks, where specific clusters not

seen outside the respective phyla have evolved (Gomis-Rüth et al. 2012b).

Most structural and functional details are known of the pro-peptide regions and

catalytic domains (Fig. 7.2). In the pro-domain, there is a unique conserved motif

termed ‘aspartate-switch’; in the middle of the catalytic domain there is the zinc-

binding consensus sequence; 40 residues downstream, the ‘Met-turn’ is found; a

further 25 residues later, the absolutely crucial S1
0-subsite shaping “170-loop” is

found engaged in substrate recognition and cleavage specificity within the catalytic

domain.

7.2.2 Structure of Catalytic Domains and Metal Binding
Sites

The three dimensional structures of five astacins have been solved by X-ray

crystallography so far. These are crayfish astacin (Bode et al. 1992; Gomis-Rüth

et al. 1993; Grams et al. 1996), human BMP1 and Tll1 (Mac Sweeney et al. 2008),

the zebrafish hatching enzyme ZHE1 (Okada et al. 2010) and the human meprin

beta dimer (Arolas et al. 2012) (Fig. 7.2). Astacin catalytic domains are compact

kidney-shaped ellipsoids with dimensions of about 55 � 45 � 35 Å (Fig. 7.3). If

viewed in standard orientation (Gomis-Rüth et al. 2012a), the active-site cleft

divides the catalytic domain into an upper N-terminal and a lower C-terminal

sub-domain. Superposition of the catalytic domains of BMP1, ZHE1, meprin and

astacin reveals high topological equivalence.

In all cases, the catalytic domain is composed of a twisted five-stranded β-sheet of
four parallel strands and one antiparallel strand, which forms the upper edge of the

active site cleft. After passing the sheet, the polypeptide chain enters the active-site
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helix, which provides the first two His residues of the typical metzincin-type zinc-

binding motif, H92EXXHXXG99XXH102 (mature astacin numbering, single letter

amino-acid code; X ¼ any residue) (Bode et al. 1993; Gomis-Rüth 2003, 2009;

Stöcker and Bode 1995; Stöcker et al. 1993, 1995). At G99 the active-site helix is

terminated, and the chain is bent sharply thereby placing the third zinc-binding residue

Fig. 7.2 Alignment of pro- and catalytic domains of selected astacins. On black background: the
aspartate-switch residue in the pro-peptide, the activation site, the zinc binding motif, the

Met-turn, and disulfide-forming cysteines; in pink: residues shaping the S1
0-subsite. Proteins and

UniProt database accession numbers: AAS_AST (P07584) astacin from the crayfish Astacus
astacus (Titani et al. 1987); ATE_TLL (Q75UQ6) tolloid from house spider Achaearanea
tepidariorum; CJA_CAM1 (P42662) hatching enzyme from Japanese quail Coturnix japonica
(Elaroussi and DeLuca 1994); DME_SEMI (CG11864, Q9VJN9) seminase from the fruitfly

Drosophila melanogaster (LaFlamme et al. 2012); DRE_ZHE (Q75NR9) zebrafish hatching

enzyme from Danio rerio (Okada et al. 2010); DRE_NEPH (Q8AYF4) zebrafish nephrosin

from Danio rerio (Hung et al. 1997); HSA_BMP1 (P13497) human BMP1 (Wozney

et al. 1988); HSA_MEPa (Q16819) human meprin α (Dumermuth et al. 1991); HSA_MEPb

(Q16820) human meprin β (Dumermuth et al. 1991); HSA_OVAST (Q6HA08) human ovastacin

(Quesada et al. 2004); OLA_HCE (P31580) medaka fish high choriolytic enzyme from Oryzias
latipes (Yasumasu et al. 1992); OLA_LCE (P31579) medaka fish low choriolytic enzyme from

Oryzias latipes (Yasumasu et al. 1992); OLA_ALV (Q9VJN9) alveolin from Oryzias latipes
(Shibata et al. 2003); SPU_SPAN (P98068) sea urchin blastula protease from Strongylocentrotus
purpuratus (Reynolds et al. 1992); and XLA_UVS.2 (P42664) hatching enzyme from the clawed

frog Xenopus laevis (Sato and Sargent 1990)
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BMP1 ZHE1

C198-C42
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H96
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Fig. 7.3 Structure of astacin proteases. Shown are ribbon representations based on the X-ray

crystal structures of the mature catalytic domains of crayfish astacins in grey (AST) (PDB

accession code: 1AST), human BMP1 (PDB accession code 3LQB) in red and zebrafish ZHE1

(PDB accession code 3EDH) modeled with CHIMERA (http://www.cgl.ucsf.edu/chimera/) in

blue. Labeled in AST are the side chains of the three zinc-binding histidines, Y149 of the

Met-turn, the two conserved disulfide bonds (between C42–C198 and C64–C84) and the zinc-

bound water symbolized by a red dot. (SUP) superposition of BMP1 and ZHE1 onto the structure

of astacin (es edge strand, ash active site helix)
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H102 in a competent position, and the astacin family-specific E103 (Stöcker et al. 1993),

which is salt bridged to the mature amino terminus (see below).

The subsequent part of the lower sub-domain contains little regular secondary

structure except for a short 310-helix and two short strands before the chain enters

the prominent C-terminal helix. However, this rather unstructured C-terminal half

contains a unique 1,4-β-turn immediately beneath the zinc-site. This turn is

characterized by a methionine residue (M147), shown in a close-up view of the

zinc site in Fig. 7.4, which is conserved even for its side-chain conformation in all

metzincins of known structure (Gomis-Rüth 2009; Goulas et al. 2010;

Waltersperger et al. 2010), although its ultimate functional and structural

implications are still under debate (Boldt et al. 2001; Butler et al. 2004; Hege and

Baumann 2001; Oberholzer et al. 2009; Perez et al. 2007; Pieper et al. 1997; Tallant

et al. 2010; Walasek and Honek 2005). Also located in the Met-turn is Y149, which

is engaged in zinc binding and catalysis.

The astacin catalytic domains contain two or three internal disulfide bonds.

Conserved in most astacins are C42–C198 and C64–C84 first observed in crayfish

astacin (Figs. 7.2 and 7.3). The first connects the end of the C-terminal helix to the

body of the protein. The second links the so-called edge strand (es) to the active-site

helix (ash) and thus contributes to shaping the active-site cleft at its primed side and

to substrate binding (Figs. 7.2 and 7.5) (Stöcker et al. 1993). The hatching enzymes

like ZHE1 contain an additional pair of cysteines within the amino terminal

segment (Fig. 7.2). As seen in ZHE1 (Fig. 7.3), these cysteines are cross-linked,

thus locking the amino terminus distant from E103 (Fig. 7.3). BMP1 and TLL1,

likewise contain an additional disulfide bond, albeit in a different position com-

pared to the hatching enzymes. Interestingly, this additional pair of cysteines

rearranges the conserved disulfide pattern (Figs. 7.2 and 7.3) by introducing another

unique link between the side chains of two consecutive cysteines of the edge strand

(C64–C65; BMP1 numbering), whereas the remaining C62 in the edge strand is now

linked to C84. This ‘cysteine-rich loop’, is unique for the tolloid subfamily (Fig. 7.2)

and has implications for substrate binding, because the two consecutive cysteines

Fig. 7.4 Zinc-binding

region of astacin. Shown are

the zinc ligands H92, H96,

H102, Y149, the catalytic

base E93, the water-

mediated (red dot) salt
bridge between A1 and E103,

and the methionine residue

M147 of the Met-turn

backing the zinc site.

Modeling of PDB 1AST

was performed with

CHIMERA (http://www.

cgl.ucsf.edu/chimera/)
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generate a flap occluding the active site. Substrate binding requires opening of this

flap (Mac Sweeney et al. 2008).

7.2.3 Buried N-Terminal Region in Mature Astacins

In mature astacin, the three N-terminal residues A1-A2-I3 are plugged into a cavity

and the A1-ammonium integrates in a buried hydrogen-bonding network together

with eight solvent molecules (one of them shown as a red dot in Fig. 7.4) and the

carboxylate of E103, the direct neighbor of zinc ligand H102 (Fig. 7.4) (Stöcker

et al. 1993, 1995). The solvent molecule is further hydrogen bonded to the side

chain of Q189. These interactions are crucial for the structural stability in mature

astacin catalytic domains. Replacement of E103 by Q or A did not diminish catalytic

efficiency, but caused thermal instability (Yiallouros et al. 2002). In both BMP1

and TLL1, the amino terminal alanine is acetylated and the carbonyl oxygen of the

acetyl group is integrated in the aforementioned network of hydrogen bonds. There

is also electron density indicating a second metal ion (Fig. 7.3), which is inserted

between Q189 of the terminal helix and E103 (Mac Sweeney et al. 2008).

A different scenario is seen in ZHE1, where the amino terminus is more than 8 Å

apart from the conserved family-specific glutamate, which, instead, is linked to

H99

H109

Y155

H103

E100

R182

Y72

P1‘

P2‘
S2

P1
P2P3

S1‘

S1
S2‘

S3

Fig. 7.5 Active site of astacins. Superposition of the structure of the zebrafish hatching enzyme

ZHE1 (PDB accession code 3LQB, in blue) (Okada et al. 2010) onto the complex of astacin with

the phosphinic pseudopeptide inhibitor, BOC-PKRΨ(PO2CH2)AP-OCH3 (PDB accession code

1QJI) (BOC ¼ benzoyl-oxycarbonyl) (Ki ¼ 14 μM against astacin) (Grams et al. 1996; Yiallouros

et al. 1998). Shown are the inhibitor in grey, the zinc-binding histidine imidazoles, Y155 (ZHE1

numbering) in hydrogen-bonding distance to the lower phosphinyl oxygen, the catalytic base E100

and, finally, R182, which is thought to be responsible for the specificity of ZHE1 for acidic side

chains in P1
0 and P20 of the substrate. The substrate positions from P3 to P2

0 and their corresponding
binding sites in the enzyme, S3 to S2

0, are labeled according to (Schechter and Berger 1967). The

metal-chelating phosphinyl group adopts the geometry of a tetrahedrally coordinated carbon as

visualized with CHIMERA, http://www.cgl.ucsf.edu/chimera/, during peptide bond cleavage
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R189 (rather than Q189) provided by the carboxy terminal helix (Fig. 7.3). This

distinct arrangement can in part be attributed to the additional disulfide bond, which

locks the amino terminus in a glutamate-distal position (see above). Alignment and

modeling of the mature amino termini of representative astacin family members

(Figs. 7.2 and 7.3) (Stöcker et al. 1993) suggests that most of them are arranged in

structures similar to astacin/BMP1/TLL1 or the hatching enzymes like ZHE1. This

also implicates that variability in the length of the amino terminal segment is

restricted. This is a structural analogy to the salt bridged amino terminus of

trypsin-like serine proteinases to an aspartate that neighbors the catalytic serine

residue (Fehlhammer et al. 1977; Huber and Bode 1978).

7.2.4 Active-Site Cleft and Substrate Specificity

The catalytic mechanism suggested for astacin-like zinc-peptidases relies on the

polarization of the metal-bound water between the zinc(II)-ion, which acts as a

Lewis-acid, and the glutamic acid residue (E93), which acts as the general base

(Grams et al. 1996). Since the catalytic water is also bound to Y149 (Figs. 7.3, 7.4,

and 7.5), both residues were mutated to assay their significance in catalysis. The

Y149F mutant still retained low activity, whereas the E93A mutant was completely

inactive (Yiallouros et al. 2000). This supports the role of E93 as a general base and

proton shuttle to the leaving amino group during catalysis in analogy to E143 of

thermolysin (Matthews 1988) or E270 of carboxypeptidase A (Christianson and

Lipscomb 1989). Y149 on the other hand seems to stabilize the transition state

similarly to H231 in thermolysin and Y248 of carboxypeptidase A.

The specific interactions of astacin with the reaction-intermediate analog inhibi-

tor, BOC-PKRΨ(PO2CH2)AP-OCH3, have provided insight into the catalytic

mechanism of astacin-like enzymes (Grams et al. 1996) (Fig. 7.5). In this mimic,

the scissile peptide bond is replaced by a phosphinic pseudo peptide bond

Ψ(PO2CH2), in which the PO2 mimicks the tetrahedrally coordinated carbon of

the intermediate during peptide bond cleavage.

Astacins bind protein substrates in an extended conformation by antiparallel

alignment to their upper-rim edge β-strand (es) (Figs. 7.3 and 7.5). The non-primed

part (Schechter and Berger 1967) is hydrogen bonded via backbone carbonyl and

amide groups (Fig. 7.5). The two phosphinyl oxygens of the PO2 group chelate the

metal ion. Most importantly, upon inhibitor binding, the tyrosine side chain moves

into a position about 5.0 Å removed from the metal, and becomes hydrogen-bonded

with the PO2 group, which mimics a water-attacked peptide bond (Fig. 7.5). This

‘tyrosine switch’ is a unique feature of the astacin-like proteinases and also of

serralysins. In the structures of BMP1 and ZHE1 dimethyl sulfoxide and sulfate

were found, respectively, to bind the zinc ion. This is probably the reason, why in

these structures the tyrosine is shifted into this remote position even in the absence

of an inhibitor, for sterical reasons. The overlay of ZHE1 and BOC-PKRΨ
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(PO2CH2)AP-OCH3 depicted in Fig. 7.5 therefore most likely resembles the

‘inhibited’ conformation of ZHE1.

The side chain carboxy terminally of the cleavage site is an alanine methyl group

in BOC-PKRΨ(PO2CH2)AP-OCH3 (Fig. 7.5). For the subsite specificity of zinc

endopeptidases, this is the most important side chain, since it points directly into the

specificity pocket. According to Schechter and Berger (1967), this is the P1
0

position of the substrate, which is harbored in the corresponding S1
0 subsite of the

enzyme. Remarkably, the great majority of astacin proteases in the MEROPS

database are very similar in their S1
0 regions (see Fig. 7.2). Particularly, the

consensus motif highlighted in Fig. 7.2 contains a conserved arginine residue,

which forms the bottom of the S1
0-pocket in the structures of ZHE1, TLL1, and

BMP1 as seen in Fig. 7.5. Crayfish astacin belongs to the minority of astacins,

which do not share this arginine but instead have a rather shallow S1
0 subsite. This is

probably the reason for the preference of acidic side chains of aspartate and

glutamate in P1
0 and P2

0 by most astacins, whereas astacin itself prefers small

aliphatic residues, as shown recently on a quantitative basis in a proteomics

approach covering cleavage sites in complete cellular proteomes employing several

astacins. This preference is even more pronounced in meprin β and BTP astacins

(e.g. BMP1), which have additional basic side chains for recognition of acidic

substrates in their S2
0 subsites (Becker-Pauly et al. 2011).

In astacin and ZHE1 the upper-rim strand lines the top of the cleft on its primed

side, together with the conserved disulfide bond between Cys64 and Cys84 (astacin

numbering; Figs. 7.2 and 7.3). By contrast, in BMP1 and TLL1 this disulfide bond

is slightly displaced and a further, unique SS-bridge is found between two conse-

cutive cysteines within a cysteine-rich loop that replaces the upper-rim strand in

astacin and ZHE1. This gives rise to an eight-membered, largely hydrophobic ring

above the S1 pocket (Fig. 7.3), which prevents substrate binding to the cleft and

causes the upper rim to deviate from a regular β-strand. This cysteine-rich loop is

disordered in the inhibitor free structures, and it has been proposed to act as a

mobile flap clamping substrates into a competent position for a Michaelis complex

(Mac Sweeney et al. 2008). On its non-primed side, the cleft is limited in astacins by

the end of the edge strand. At its bottom, the cleft is constrained on its non-primed

side by I4-G5 and the loops following the active-site helix and connecting the 310-

helix with the Met-turn, and, on its primed side, by the Met-turn and the down-

stream segment up to W158.

7.2.5 Zymogen Structure and Activation Mechanism

Eukaryotic astacins are synthesized as inactive pro-proteases (zymogens), which

require proteolytic removal of an amino terminal pro-peptide (Guevara et al. 2010).

The pro-segments of distinct family members are aligned in Fig. 7.2. They differ in

length (from 34 to 393 residues), but they share a unique consensus sequence

F18PXGD21P (pro-peptide residues are labeled with the suffix ‘P’). The only
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structurally characterized zymogen of the astacin family is that of crayfish

pro-astacin (Guevara et al. 2010) (Fig. 7.6). Pro-astacin could be purified from

Escherichia coli inclusion bodies and correctly folded as a potentially activatable

zymogen (Reyda et al. 1999; Yiallouros et al. 2000, 2002). It contains a short

pro-peptide of 34 residues, which is not required for folding as an intramolecular

chaperon (Reyda et al. 1999). However, this possibility cannot been excluded for

pro-domains, which are even larger than the catalytic domain, as it is the case in

Drosophila tolloid-related (Nguyen et al. 1994).

The pro-segment of the astacin zymogen runs across the front surface of the

catalytic domain in the inverse direction of a substrate (Fig. 7.6). This prevents self-

cleavage, as observed in cysteine-protease and matrix metalloproteinase zymogens

(Khan and James 1998). Most remarkable is a Z-shaped loop directly in front of the

zinc site, which posts D21P as a bidentate chelator of the catalytic zinc ion (Figs. 7.2

and 7.6). This loop contains two tight 1,4-β-turns, which also explains the conser-

vation of a glycine next to the aspartate, and it also contains conserved hydrophobic

residues that facilitate the formation of a compact globular moiety backing D21P

(Fig. 7.5).

The activation site (Figs. 7.2 and 7.6), G34P*A1, is buried like the amino-

terminus of the mature form and is located at the tip of a sharp turn. Activation

occurs through successive cleavages by trypsin and mature astacin, which liberate

the mature N-terminus at A1 (Guevara et al. 2010; Yiallouros et al. 2002) and

enable formation of the salt bridge to E103 and the release of the pro-peptide’s D21P

from the zinc ion. In a similar fashion, the amino terminus of matrix metallopro-

teinases (MMPs) is trimmed by successive cleavage events to become finally

Fig. 7.6 Structure of

pro-astacin. Ribbon model

of pro-astacin (standard

view) shown in grey with
the pro-peptide in yellow.
The ellipsoid shows the

interaction of D21P with the

metal. Modeling of PDB

3LQ0 was performed with

CHIMERA (http://www.

cgl.ucsf.edu/chimera/)
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engaged in a hydrogen bond with a conserved aspartate of the C-terminal helix

(Nagase 1997; Reinemer et al. 1994). In analogy to the cysteine-switch of MMPs

the removal of the zinc-blocking aspartate has been termed ‘aspartate-switch’

(Guevara et al. 2010). This causes major rearrangement of the ‘activation domain’

beneath the mature amino terminus, which adopts a rigid and competent conforma-

tion in the mature enzyme only (Fig. 7.6). This increase in rigidity and stability is

another analogy to trypsin-like serine proteinases (Bode and Huber 1978; Khan and

James 1998).

7.2.6 Protein Inhibitors and Enhancers of Astacins

Astacins are resistant to inhibition by tissue inhibitors of metalloproteinases

(TIMPs), which are effective against MMPs ad ADAMs. However, the general

protein scavenger and regulator of vascular and interstitial proteolysis, α2-macro-

globulin, is a potent inactivator of members of the astacin family. This holds true

not only for small single domain astacins, but also for middle-sized multi-domain

proteins like BMP1 (Marrero et al. 2012; Meier et al. 1994; Stöcker et al. 1991;

Zhang et al. 2006). However, α2-macroglobulin does not inhibit larger oligomeric

astacins such as meprins (Kruse et al. 2004).

Another natural protein inhibitor of astacins was discovered in complex with

nephrosin, an astacin-like protease from the carp, Cyprinus carpio (Hung

et al. 1997; Tsai et al. 2004). The enzyme was termed nephrosin after its site of

biosynthesis, the head kidney, which is a hematopoietic organ in fishes. The

nephrosin inhibitor turned out to be the fish homolog of fetuin, a large mammalian

plasma protein with many functions (Jahnen-Dechent et al. 2011; Schäfer

et al. 2003). These fetuins contain cystatin-like domains and are related to cystatin

C-like inhibitors of papain-like cysteine proteases. It has been shown recently that

the plasma proteins fetuin and cystatin C act as physiological inhibitors of

human astacin proteases such as ovastacin and meprins (Hedrich et al. 2010;

Dietzel et al. 2013).

Other protein inhibitors of astacin proteases have been discovered in the context

of body axis formation during early embryogenesis in amphibians and fishes. In

these lower vertebrates secreted frizzled like proteins (sFRPs) are potent

antagonists of BTPs (Lee et al. 2006). sFRPs are composed of a carboxy terminal

netrin-like domain and an amino terminal frizzled domain. Frizzled is a cell surface

receptor of the Wnt-signalling pathway. Interestingly, there are several sFRPs in

Xenopus, which are expressed in different regions of the embryo. One of these,

the dorsally expressed crescent protein enables cross talk between Wnt- and

BMP-pathways, since it is an inhibitor of BTPs and can also trigger Wnt signalling

(Ploper et al. 2011). By contrast, the mammalian sFRPs do not inhibit BTS

proteases (Bijakowski et al. 2012) but may act as BTS protease enhancers

(Kobayashi et al. 2009), albeit this enhancing function has yet to be corroborated

(von Marschall and Fisher 2010b).
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However, there are true enhancers, which regulate BTPs in a highly substrate

specific manner. These enhancers have been termed procollagen C-proteinase

enhancers (PCPE1 and PDCPE2), because they bind selectively to the

C-propeptides of fibrillar collagens and increase the activity of BTS proteases by

about 20-fold. PCPEs are composed of two CUB domains and a netrin-like domain

(Kessler et al. 1990; Kronenberg et al. 2009; Moali et al. 2005; Steiglitz et al. 2002;

Vadon-Le Goff et al. 2011). Studies with PCPE�/�mice also indicate a role of these

proteins for proper collagen fiber assembly (Steiglitz et al. 2006).

7.3 Distribution and Physiological Role of Astacins

In the human and mouse genomes (see http://degradome.uniovi.es/met.html), there

are six genes encoding astacin proteases, namely bmp1, tll1, tll2,mep1a,mep1b and
astl. The first three code for the BTPs, which include protein BMP1 and its major

splice variant, mammalian tolloid, and the mammalian tolloid-like proteins mTll1

and mTll2 (Muir and Greenspan 2011). Genes mep1a and mep1b encode the multi-

domain proteins meprin α and meprin β, respectively (Sterchi et al. 2008). The third
subgroup of astacins in vertebrates and invertebrates comprises the so-called

hatching enzymes, which degrade embryonic envelopes during the free water

developmental stage of crustaceans, echinoderms, fishes, and frogs (Kawaguchi

et al. 2010a).

7.3.1 BMP1/Tolloid Proteases (BTPs)

BTPs cleave precursors of fibrillar procollagens for proper matrix assembly. They

also process other matrix proteins including proteoglycans, laminins, and anchoring

fibrils. In addition, tolloids also cleave growth factors and their antagonists, which

are crucial for dorso-ventral patterning during gastrulation in the embryo (for

reviews, see Ge and Greenspan 2006b; Hopkins et al. 2007; Muir and Greenspan

2011). In vertebrates, the four major BTPs are all expressed during embryonic

development in the gastrula (Ploper et al. 2011). They are crucial for dorso-ventral

patterning through cleavage of chordin, an antagonist of the transforming growth

factor-like bone morphogenetic proteins BMP2 and BMP4. In later development

and in the adult, BMP1, mTLD, and mTLL1 are further required for bone formation

and connective tissue differentiation, because they specifically activate and trim a

variety of procollagens and therefore are also termed ‘procollagen C-proteases’

(Kessler et al. 1996; Li et al. 1996). mTLL2, by contrast, localizes to skeletal

muscle in later development (Scott et al. 1999). However, it has been found in

bmp1�/� mice that it also may be involved in procollagen VII processing

(Rattenholl et al. 2002). Validated BTP substrates are listed in Table 7.1.
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In lower vertebrates BTPs have been studied in the zebrafishDanio rerio (Blader
et al. 1997) and the frog Xenopus laevis (Holley et al. 1996; Ploper et al. 2011).

Basic insight on BTPs has been gained for Drosophila tolloid, which cleaves the

chordin homolog short gastrulation, the antagonist of the BMP2/4 homolog

decapentaplegic (DPP) in fly embryos (Shimell et al. 1991), and for tolloid related

(tolkin) from Drosophila larvae (Serpe and O’Connor 2006). BTPs are not only

expressed in the ECM, but also in the developing and adult nervous system of both

Table 7.1 Cleavage sites of BMP1 in extracellular matrix proteins

ProCOLL α1(I) YYRA*DDAN Kessler et al. (1996), Li et al. (1996)

ProCOLL α2(I) FYRAA*DQPR Kessler et al. (1996), Li et al. (1996)

ProCOLL α1(II) YMRAA*DQAA Kessler et al. (1996), Li et al. (1996)

ProCOLL α1(III) PYYGA*DEPM Kessler et al. (1996), Li et al. (1996)

ProCOLL α1(V)C-Pro QLLDA*DGNG Pappano et al. (2003), Unsöld et al. (2002)

ProCOLL α2(V)C-Pro EFTEA*DQAA Pappano et al. (2003), Unsöld et al. (2002)

ProCOLL α1(VII) SYAAA*DTAG Rattenholl et al. (2002)

ProCOLL α3(V)N-Pro SFQQA*AQAQ Gopalakrishnan et al. (2004)

ProCOLL α1(V)N-Pro TPQSA*QDPN Pappano et al. (2003), Unsöld et al. (2002)

IGFBP3 ESQSA*TDTQ Kim et al. (2011)

α1(XI)COLL AAQAA*QEPQ Pappano et al. (2003), Unsöld et al. (2002)

α2(XI)COLL RPQNA*QQPH Pappano et al. (2003), Unsöld et al. (2002)

Pro-LOX RMVGA*DDPY Borel et al. (2001), Uzel et al. (2001)

Pro-LOX-like VAVGA*DSTG Borel et al. (2001), Uzel et al. (2001)

Pro-LOX-like VRSSA*DAPP Borel et al. (2001), Uzel et al. (2001)

Laminin 332 γ2 CYSGA*DENP Veitch et al. (2003)

Laminin 332 α3 QEPKA*DSSP Veitch et al. (2003)

Probiglycan FMMNA*DEEA Scott et al. (2000a)

Decorin FLMEA*DEAS von Marschall and Fisher (2010a)

DMP1 EMQSA*DDPE Steiglitz et al. (2004)

DSPP SMQGA*DDPN Tsuchiya et al. (2011), von Marschall and

Fisher (2010b)

Myostatin DVQRA*DDSS Wolfman et al. (2003)

GDF11 DFQGA*DALQ Ge et al. (2005)

LTBP

N-term IPSLA*DQEK Ge and Greenspan (2006a)

C-term YFIQA*DRFL Ge and Greenspan (2006a)

Perlecan SGGNA*DAPG Gonzalez et al. (2005)

Chordin

N-term RSYSA*DRGE Piccolo et al. (1997)

C-term PMQAA*DGPR Piccolo et al. (1997)

Osteoglycin QLQKA*DEVI Ge et al. (2004)

Gliomedin AIPNA*DDTL Maertens et al. (2007)

Cleavage sites with four adjacent amino acid residues (single-letter code) on either side of the

scissile bond (marked by an asterisk *) are indicated

Procoll procollagen, coll collagen, IGFBP3 insulin-like growth factor binding protein III, LOX
lysyloxidase, DMP1 dentin matrix protein 1, DSPP dentin sialophosphoprotein, GDF11 growth

and differentiation factor 11, LTBP latent TGFβ binding protein
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invertebrates as the sea hare Aplysia (Liu et al. 1997) or the fruitfly Drosophila
(Serpe and O’Connor 2006) and mammals (Clark et al. 1999; Scott et al. 2000b;

Takahara et al. 1994, 1996).

Related to BTPs are the sea urchin proteases SPAN from Strongylocentrotus
purpuratus (Reynolds et al. 1992) and blastula protein 10 (BP10) from

Paracentrotus lividus (Lepage et al. 1992). They are expressed in the blastula

stage and as BTPs they play roles in early gastrulation. For example they are

involved in spicule formation, the larval skeleton of echinoderms. Their domain

composition is similar to that of vertebrate BTPs (Fig. 7.1).

bmp1�/� mice have skeletal abnormalities and incomplete ventral body closure

due to abnormal collagen fibrils; however, they do have bony skeleton because of

the partially compensating effect of mTLL1 (Suzuki et al. 1996). mTLL1 defi-

ciency, on the other hand, causes defects in heart compartmentalization (Clark

et al. 1999). mtll2�/� mice have less muscle tissue (Lee 2008). mTld, the longer

splice form derived from the bmp1 gene is thought to circulate in the blood and to

play a role in bone fracture healing (Grgurevic et al. 2011) and kidney fibrosis

(Grgurevic et al. 2007).

Other matrix proteins like lysyl oxidase and lysyl oxidase like enzymes (Borel

et al. 2001; Uzel et al. 2001), dentin matrix protein 1, and dentin sialophospho-

protein, osteoglycin and leucin-rich proteoglycans like biglycan (Scott et al. 2000a)

and decorin (von Marschall and Fisher 2010a) are also activated by BTS proteases,

which thereby promote extracellular matrix assembly in manifold ways. Likewise,

BTPs proteolytically modify basement membrane-laminin-332 (Veitch et al. 2003)

and perlecan (Gonzalez et al. 2005) (Table 7.1).

Transforming growth factor β (TGFβ, an important regulator of cell functions is

released from latent TGFβ-binding proteins by BTPs (Ge and Greenspan 2006a).

TGFβ-related factors like GDF8 and 11 (Ge et al. 2005) (Table 7.1) as well as

myostatin acting as negative regulators of skeletal muscle growth are also

activated by BTS proteases, which adds an intriguing facet to BTP function

(Wolfman et al. 2003).

Other BTP substrates are IGFBPs (insulin growth factor binding proteins), as

shown for IGFBP3, which regulate cell differentiation and development (Kim

et al. 2011).

7.3.2 Meprin Proteases

Meprins are membrane-bound or soluble astacin proteases (Barnes et al. 1989;

Beynon et al. 1981; Bond and Beynon 1995; Corbeil et al. 1993; Dumermuth

et al. 1991; Johnson and Hersh 1992, 1994; Milhiet et al. 1994; Sterchi

et al. 1982, 1988a, 2008; Broder and Becker-Pauly 2013). They are composed of

an amino terminal pro-domain, followed by the astacin-like catalytic domain.

Typical meprins also contain a MAM domain (meprin, A5 protein, and receptor

protein tyrosine phosphatase μ (Beckmann and Bork 1993) (Sterchi et al. 1988b), a
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TRAF domain (tumor necrosis factor receptor-associated factor) (Rothe et al. 1994;

Zapata et al. 2001), an EGF-like domain, a transmembrane segment, and a cytosolic

domain (Fig. 7.1).

There is a significant difference between the α subunit and the β subunit. Meprin

α contains an additional I-domain inserted between the TRAF and the EGF-like

domain, which can be cleaved by furin like enzymes (Fig. 7.1) during the passage

through the endoplasmic reticulum and Golgi (Dumermuth et al. 1993; Gorbea

et al. 1993; Grünberg et al. 1992; Hahn et al. 2000; Jiang et al. 1992; Kounnas

et al. 1991; Milhiet et al. 1995; Sterchi et al. 2008). For this reason, meprin α is

secreted as a soluble enzyme and forms high-molecular weight multimers up to

megadalton size (Becker et al. 2003; Ishmael et al. 2001). Therefore it appears to be

the largest extracellular protease reported so far. By contrast, meprin β homodimers

and αβ heterodimers remain cell-surface-bound unless shed proteolytically (Hahn

et al. 2003). Meprins are important for tissue differentiation and pericellular

signaling. In this context, a variety of meprin substrates have been reported

(Bertenshaw et al. 2001) including biologically active peptides such as gastrin

and cholecystokinin, substance P, cytokines, and chemokines (for a review see

Sterchi et al. 2008). Of special interest is the fact that meprins cleave components of

the extracellular matrix (Kruse et al. 2004; Walker et al. 1998), in particular the

basal lamina but also adhesion proteins at the cell-cell interface (Ambort

et al. 2010; Huguenin et al. 2008; Sterchi et al. 2008; Vazeille et al. 2011).

Recent proteomics approaches have identified previously known and new phys-

iologically relevant in vivo substrates such as vascular endothelial growth factor

(Schütte et al. 2010), amyloid precursor protein (Jefferson et al. 2011), procollagens

I and III (Kronenberg et al. 2010), interleukin-1β (Herzog et al. 2005), interleukin

18 (Banerjee and Bond 2008), pro-kallikrein 7 (Ohler et al. 2010), and fibroblast

growth factor 19 (Becker-Pauly et al. 2011). Their ability to cleave procollagens at

exactly the same sites as BTPs sheds additional light on the differential function of

meprins in health and disease (Becker-Pauly et al. 2007) (Kronenberg et al. 2010;

Broder et al. 2013).

Meprins have been found to be implicated in various pathological situations. The

processing of interleukins by meprins might explain the observation that meprin�/�

mice have deficiencies in their immune system (Bylander et al. 2008; Crisman

et al. 2004; Sun et al. 2009). Meprins are also linked to intestinal disorders like

inflammatory bowel disease (Banerjee et al. 2009), Crohn’s disease (Vazeille

et al. 2011), and celiac disease (Lottaz et al. 2007). Furthermore they are linked

to atherosclerosis (Gao et al. 2009), kidney disorders (Bylander et al. 2008;

Carmago et al. 2002; Herzog et al. 2007; Mathew et al. 2005; Oneda et al. 2008;

Red Eagle et al. 2005; Takayama et al. 2008; Yura et al. 2009) and tumor metastasis

(Heinzelmann-Schwarz et al. 2007; Matters et al. 2005; Rösmann et al. 2002).
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Recent observations of meprins in Alzheimer’s disease support their basic regu-

latory signaling functions. The amyloid precursor protein is obviously processed by

meprin β at several sites including the β-secretase site (Jefferson et al. 2011;

Bien et al. 2012).

7.3.3 Hatching Enzymes

The embryonic development of many aquatic invertebrates, e.g. crustaceans, fishes,

amphibians and reptiles, takes place in free ambient water. The eggs and embryos

of these organisms are protected by a durable envelope of extracellular matrix (also

termed zona pellucida or vitelline membrane), which has to be cleaved off after a

certain stage of embryogenesis to release the young larva. This process is called

‘hatching’ and is frequently triggered by proteolytic enzymes.

Among the members of the astacin family there is a considerable number of

so-called ‘hatching enzymes’ (Figs. 7.1 and 7.2). Some of these are composed only

of a pro-domain and an astacin-like catalytic domain, others additionally contain

carboxy terminal CUB domains or other protein modules. Examples include cray-

fish embryonic astacin (Geier and Zwilling 1998), and the ‘low choriolytic

enzymes’ (LCE) and ‘high chorolytic enzymes’ (HCE), first described in teleost

fishes (Yasumasu et al. 1996), or corresponding proteases from amphibians like the

UVS.2 gene product from the frog Xenopus laevis (Fan and Katagiri 2001; Katagiri
et al. 1997; Sato and Sargent 1990).

The hatching process has been studied most intensively in the medaka fish

Oryzias latipes and other euteleosts. In these organisms, the hatching seems to be

organized in a conserved fashion. Enzymes of the HCE type cleave zona pellucida
proteins at specific sites, which allow for swelling of the envelope. In a second step,

enzymes of the LCE type then completely digest the egg envelope (Hiroi

et al. 2004; Kawaguchi et al. 2006, 2010a, b; Sano et al. 2010; Yasumasu

et al. 2010a, b). LCE and HCE hatching enzymes are distinguished by an additional

pair of cysteine residues in the amino terminal segments of their catalytic astacin-

like domains (Figs. 7.2 and 7.3).

Closely related to hatching enzymes is nephrosin from carp head kidney (Hung

et al. 1997). The physiological function of this protease is not clarified yet.

However, since it is expressed in the head kidney, which is an ancient hematopoetic

organ, it might be involved in immune defense and/or general blood cell

differentiation.

Also sequentially related to hatching enzymes is bird CAM1 (chorio allantoic

membrane protein 1) from the Japanese quail, which is important for calcification

of the egg shell (Elaroussi and DeLuca 1994).

Other hatching-type enzymes are alveolin fommedaka fish (Shibata et al. 2000) and

ovastacin from mammals (Quesada et al. 2004). Both are involved in zona pellucida
hardening (ZPH). Ovastacin cleaves zona pellucida protein 2 at a highly conserved

diacidic site (Burkart et al. 2012), typical for astacins (Becker-Pauly et al. 2011),
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which results in ZPH immediately after sperm penetration in order to prevent poly-

spermy; this is supported by the presence of ovastacin in cortical granules of the egg,

which are released into the zona pellucida upon sperm penetration (Burkart

et al. 2012). As observed recently, ovastacin is controlled by fetuin B, a cystatin-like

plasma protein, in order to prevent premature ZPH (Dietzel et al. 2013). Another report

on ovastacin suggested also a role in sperm-egg interaction (Sachdev et al. 2012).

7.3.4 Seminase Activated Astacin-Like Protease

The seminal fluid of many animal taxa contains proteases and protease inhibitors. In

mammals these are important for regulating seminal clot liquefaction, for example.

An intriguing protolytic network has recently been discovered in the seminal fluid

of the fruitfly Drosophila melanogaster. During mating of fruit flies, seminal fluid

proteases are transferred from males to females (Ravi Ram et al. 2006). These

enzymes form a cascade and one of them is an astacin-like metalloprotease

(Ayroles et al. 2011; Sirot et al. 2009). Obviously, this protease cascade is required

for post-mating responses in the female. In the first step, a serine protease termed

‘seminase’ (CG10586) activates the astacin protease CG11864, which subsequently

cleaves the sex peptide ovulin and other seminal plasma proteins. These

observations indicate an important role for this protease cascade to temporally

regulate many responses in females after mating (LaFlamme et al. 2012).
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Ambort D, Brellier F, Becker-Pauly C, Stöcker W, Andrejevic-Blant S, Chiquet M, Sterchi EE

(2010) Specific processing of tenascin-C by the metalloprotease meprinbeta neutralizes its

inhibition of cell spreading. Matrix Biol 29:31–42

Apte S (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type

1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497

Arolas JL, Broder C, Jefferson T, Guevara T, Sterchi EE, Bode W, Stöcker W, Becker-Pauly C,
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Bode W, Gomis-Rüth FX, Stöcker W (1993) Astacins, serralysins, snake venom and matrix

metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and

Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’.

FEBS Lett 331:134–140

Boldt HB, Overgaard MT, Laursen LS, Weyer K, Sottrup-Jensen L, Oxvig C (2001) Mutational

analysis of the proteolytic domain of pregnancy-associated plasma protein-A (PAPP-A):

classification as a metzincin. Biochem J 358:359–367

Bond JS, Beynon RJ (1995) The astacin family of metalloendopeptidases. Protein Sci 4:

1247–1261

Borchert N, Becker-Pauly C, Wagner A, Fischer P, Stöcker W, Brattig NW (2007) Identification
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Möhrlen F, Hutter H, Zwilling R (2003) The astacin protein family in Caenorhabditis elegans.

Eur J Biochem 270:4909–4920

Muir A, Greenspan DS (2011) Metalloproteinases in Drosophila to humans that are central players

in developmental processes. J Biol Chem 286:41905–41911

Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

Nguyen T, Jamal J, Shimell MJ, Arora K, O’Connor MB (1994) Characterization of tolloid-

related-1: a BMP-1-like product that is required during larval and pupal stages of Drosophila

development. Dev Biol 166:569–586

Oberholzer AE, Bumann M, Hege T, Russo S, Baumann U (2009) Metzincin’s canonical methio-

nine is responsible for the structural integrity of the zinc-binding site. Biol Chem 390:875–881

Ohler A, Debela M, Wagner S, Magdolen V, Becker-Pauly C (2010) Analyzing the protease web

in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading

to processing of proKLK7 thereby triggering its activation. Biol Chem 391:455–460

Okada A, Sano K, Nagata K, Yasumasu S, Ohtsuka J, Yamamura A, Kubota K, Iuchi I, TanokuraM

(2010) Crystal structure of zebrafish hatching enzyme 1 from the zebrafish Danio rerio. J Mol

Biol 402:865–878
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