
Chapter 4

Cathepsins: Getting in Shape for Lysosomal

Proteolysis

Ann H. Erickson, Ciro Isidoro, Lukas Mach, and John S. Mort

4.1 Introduction

Besides their pivotal functions in general cellular protein turnover, cathepsins play

important roles in a diverse range of other physiological processes which include

tissue remodelling during embryogenesis and development, programmed cell death,

autophagy, prohormone and neuropeptide processing, antigen presentation, wound

healing and bone resorption. Furthermore, substantial experimental evidence has

been accumulated that cathepsins are of pathological relevance in disease states such

as cancer, arthritis, osteopetrosis, pancreatitis, cholestatic liver disease, and epilepsy

(Mohamed and Sloane 2006; Vasiljeva et al. 2007; Turk and Turk 2009; Reiser

et al. 2010). To prevent tissue damage due to unwanted proteolysis, the activities of

cathepsins have to be strictly controlled in situ. The main regulatory pathways rely

on restricting the subcellular localization of these proteases to lysosomes, the

presence of specific cathepsin inhibitors in other cellular compartments, and their

initial synthesis as latent proenzymes (Cygler andMort 1997; Mort and Buttle 1997;
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Turk et al. 2001b). Interference with any of these control mechanisms can lead to

pathological consequences. It is therefore crucial to understand the molecular basis

of cathepsin biosynthesis and intracellular transport as well as the mechanisms

leading to activation of their precursors in a cellular context.

4.2 Mannose 6-Phosphate Receptors: Key Cellular

Interaction Partners of Lysosomal Cathepsins

The extracellular accumulation of various cathepsins in cancer, arthritis and other

human disorders indicates disease-associated changes in the biosynthesis and

intracellular transport of these proteinases. However, extensive studies on the

biosynthesis of individual cathepsins have been performed only for three of them:

cathepsin B, cathepsin D, and cathepsin L. These proteinases are synthesized and

targeted to their final intracellular destination in a similar manner as most other

soluble lysosomal proteins, involving the following general steps: synthesis as

latent preproenzymes by ribosomes associated with the rough endoplasmic reticu-

lum (ER), translocation into the lumen of this compartment, delivery to and passage

through the different stacks of the Golgi apparatus, and finally receptor-mediated

transport from the trans-Golgi network (TGN) to lysosomal compartments

followed by receptor-ligand dissociation and proteolytic maturation of the protein-

ase precursors in situ (Erickson 1989; Hasilik 1992; Mach 2002).

Like most other soluble lysosomal enzymes, cathepsins are glycoproteins which

are modified in their N-glycosidically linked oligosaccharide chains with mannose 6-

phosphate (M6P) residues. This unique post-translational modification is critical for

the correct intracellular targeting of the proteinases. Two enzymes are responsible

for the creation of the M6P recognition marker: UDP-N-acetylglucosamine-1-

phosphotransferase (phosphotransferase) andN-acetylglucosamine-1-phosphodiester

α-N-acetyl-glucosaminidase (uncovering enzyme). Phosphotransferase, a cis-Golgi
enzyme, attaches GlcNAc-1-phosphate residues from UDP-GlcNAc to the C-6

hydroxyl group of selected mannoses in the high mannose-type oligosaccharides of

newly synthesized lysosomal hydrolases (Reitman and Kornfeld 1981; Tiede

et al. 2005). This generates a phosphodiester, Man-P-GlcNAc. The sugar moiety

masking the phosphate group is then removed by the uncovering enzyme localized

in the TGN (Waheed et al. 1981; Rohrer and Kornfeld 2001). This exposes the

phosphomonoester residue that is then recognized by specific M6P receptors residing

in the same compartment, which then deliver the newly synthesized enzymes to

lysosomes (Braulke and Bonifacino 2009; Saftig and Klumperman 2009).

Phosphotransferase is unique in its requirement for specific oligosaccharide

acceptor sites only present in lysosomal proteins. The fundamental importance of

this enzyme for lysosome biogenesis is documented by the fact that its deficiency

leads to the inherited disorder mucolipidosis II, also referred to as I-cell disease
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(Tiede et al. 2005). It is still unclear how phosphotransferase distinguishes between

lysosomal and secretory proteins. However, it has been proposed that its interaction

with cathepsins B, D and L involves the recognition of a structural motif based on

distinct spatial positioning of certain lysine residues (Cuozzo et al. 1998; Lukong

et al. 1999). At least for fibroblast cathepsin B, modification with M6P residues

seems mandatory for delivery of the enzyme to lysosomes, since cells from I-cell

disease patients almost quantitatively fail to retain their newly-synthesized

procathepsin B (Hanewinkel et al. 1987). The latter is also observed in the case

of murine fibroblasts lacking both M6P receptors (Probst et al. 2006).

Two distinct M6P-binding proteins occur in mammalian cells, the 300-kDa

mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) and the

46-kDa cation-dependent mannose 6-phosphate receptor (MPR46). The compari-

son of their cDNA sequences has revealed that the two receptors are related

proteins. While M6P/IGF2R has an extracytoplasmic domain consisting of

15 repeating segments, the entire extracytoplasmic domain of MPR46 is similar

to each of the repeating units of the former protein. This suggests that the two

receptors may be derived from a common ancestor (Ghosh et al. 2003; Dahms

et al. 2008). Fibroblasts devoid of both receptors have a phenotype similar to cells

from patients with mucolipidosis II, quantitatively secreting most of their newly

synthesized lysosomal enzymes. In cells lacking only one of the two proteins, the

remaining receptor cannot fully compensate for the absence of the other (Ludwig

et al. 1994; Pohlmann et al. 1995). Interestingly, hypersecretion of lysosomal

enzymes by cells lacking M6P/IGF2R can be only partially rescued by

overexpression of MPR46 (Watanabe et al. 1990).

Besides sorting newly synthesized lysosomal enzymes from the Golgi apparatus

to lysosomes, M6P receptors also function in the endocytosis of extracellular

lysosomal enzymes. It is remarkable that M6P/IGF2R, but not MPR46, is capable

of mediating this process. Thus, mammalian cells have two means to deliver

M6P-tagged proteins to lysosomes: (a) the biosynthetic route via vesicles derived

from the Golgi apparatus, and (b) recapture of mistargeted and hence secreted

lysosomal enzymes via the endocytic route, with the latter process being strictly

dependent on M6P/IGF2R. It has been proposed that the secretion-recapture path-

way contributes significantly to the efficiency of lysosomal enzyme sorting in

mammalian cells (Kasper et al. 1996). Taken together, this indicates that two

distinct M6P receptors are engaged in cathepsin trafficking to lysosomes, with

M6P/IGF2R being the major protein responsible for this important cellular process.

The displacement of M6P-modified cathepsins from their sorting receptors

occurs upon reaching endosomes, followed by rapid M6P hydrolysis due to the

action of phosphatases. Receptor-ligand dissociation is thought to be due to the

reduced affinities of M6P receptors for their ligands at the low pH of the endosomal

lumen. In cells expressing both M6P receptors, agents that perturb endosomal

acidification have been shown to interfere with cathepsin trafficking to lysosomes

(Braulke et al. 1987). However, such lysosomotropic amines do not noticeably

affect the residual intracellular retention of cathepsins B, D and L in fibroblasts

and epithelial cells lacking M6P/IGF2R. Intriguingly, intracellular transport of
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cathepsin B in M6P/IGF2R-deficient cells is still entirely dependent on the presence

of the M6P recognition marker, indicating that it is mediated by MPR46. These

findings strongly suggest that at least dissociation of MPR46 and its ligands can also

occur in the absence of endosomal acidification (Probst et al. 2006).

Although the M6P receptor system is the main pathway for lysosomal enzyme

sorting, it has become evident that in specialised cell types intracellular transport of

soluble acid hydrolases to lysosomes can also occur in an M6P-independent

manner. The strongest support for the existence of M6P-independent lysosomal

trafficking pathways comes from studies involving cells of lymphocytic origin. In

lymphoblasts from I-cell disease patients, transport of cathepsin D to lysosomal

compartments is not dependent on N-glycosylation of the protein (Glickman and

Kornfeld 1993). Cathepsin B was also localized in lysosomal compartments of

I-cell disease lymphoblastoid cell lines (Griffiths and Isaaz 1993). Moreover,

murine thymocytes deficient in both M6P receptors retain their newly-synthesized

procathepsin D as efficiently as their normal counterparts (Dittmer et al. 1999).

Recently, evidence has been provided that sortilin could be involved in

M6P-independent targeting of cathepsin D to lysosomes (Canuel et al. 2008).

Alternatively, M6P-independent transfer of cathepsins to lysosomes could rely on

a secretion-recapture pathway, possibly engaging cell-surface lectins such as the

asialoglycoprotein receptor or the mannose receptor. M6P-independent uptake of

secreted cathepsins might also occur by means of direct cell-to-cell contact, involv-

ing pinocytotic microinvaginations and non-coated vesicles (Dittmer et al. 1999).

Cathepsins are delivered to endosomes as latent proenzymes. It is generally

believed that proteolytic maturation of the precursors is initiated once receptor-

mediated delivery to endosomal compartments has been achieved. Proteinase acti-

vation is then triggered by the local acidic environment. It has been demonstrated

that purified procathepsins B, D and L can undergo autocatalytic activation in acidic

conditions (Hasilik et al. 1982; Mach et al. 1994a; Ménard et al. 1998). Activation is

quickly followed by cleavage of the latent proenzymes into the single-chain forms of

the respective proteinases (see chapter 4.5 for details). Finally, terminal processing

of the single-chain enzymes into the corresponding double-chain forms occurs as a

late biosynthetic event in the lysosomes.

4.3 Cysteine Cathepsins: Endopeptidases and

Exopeptidases

Protein degradation in lysosomes and related compartments is thought to involve

two main phases. The initial digestion of the substrates is achieved by the action of

cathepsins with endopeptidase activity. The fragments thus generated are then

converted by exopeptidases into small peptides and free amino acids. Three

endopeptidases appear to be present in all mammalian lysosomes: the aspartic

proteinase cathepsin D, and the cysteine proteinases cathepsin B and cathepsin
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L. Cathepsin B also displays dipeptidylcarboxypeptidase activity. In contrast,

cathepsin D and cathepsin L are classical proteinases lacking any exopeptidolytic

potential (Brix et al. 2008; Masson et al. 2010).

Cathepsin B and cathepsin L are members of the so-called papain superfamily of

lysosomal cysteine proteinases, which includes another nine human enzymes:

cathepsins C, F, H, K, O, S, V, W and X. Two ubiquitously expressed genuine

exopeptidases without endopeptidolytic activity belong to this family, the

dipeptidylaminopeptidase cathepsin C and the carboxypeptidase cathepsin

X. Cathepsin H exhibits both aminopeptidase and endopeptidase activity. Some

specialised cell types express other family members with close homology to

cathepsin L. The best studied of these tissue-specific lysosomal cysteine proteinases

are cathepsins K and S (Turk et al. 2000; Brix et al. 2008).

Of the 11 human cysteine cathepsins, 7 appear to be obligate endopeptidases.

Three of these—cathepsins K, L and S—have been studied extensively whereas

cathepsins F, O, V and W have received less attention. The mature forms of these

proteases consist of a two-lobed papain-like structure, the junction between which

forms the substrate-binding cleft. This channel is usually capable of housing three

amino acid residues on the unprimed side of the peptide linkage targeted for

cleavage and at least two residues on the primed side (Turk et al. 1998; Stern

et al. 2004). The major selectivity of the cysteine cathepsins lies in the P2 position.

As endopeptidases, cathepsins K, L and S are very efficient protein dismantling

agents.

Building on the basic papain model, additional structural elements have evolved

to restrict the active site cleft so that the resulting enzyme becomes one of four

exopeptidase types. Cathepsins B and C remove dipeptides from the C- or

N-terminus, while cathepsins X and H are monocarboxy- and aminopeptidases,

respectively. The carboxypeptidase activities are mediated by the inclusion of an

extra loop in the basic structure of the mature protease. Termed the occluding loop

in the case of cathepsin B (Musil et al. 1991) and the mini loop in the case of

cathepsin X (Nägler et al. 1999b), these elements block off the primed side of the

active site cleft and position a histidine side chain to accept the negative charge on

the substrate C-terminus. The size of the loop allows for the positioning of two or

one residues, respectively, at the primed side of the site of cleavage. In cathepsin B

the occluding loop is held in position by an ionic interaction between a second

histidine residue in the loop and an aspartate residue located in the main body of the

enzyme. Disruption of this interaction as occurs with increasing pH permits the

loop to reorient (Nägler et al. 1997), and the enzyme then acts as an endopeptidase.

The molecular basis for aminopeptidase activity is more complex and depends

on the positioning of remnants of the propeptides which restrict the unprimed side

of the active-site cleft so that it can only accept one or two residues. In the case of

cathepsin H an octapeptide mini-chain is disulfide bonded in place providing space

for only a single residue before the cleavage site. The positive charge on the

substrate N-terminus is matched by the carboxylate of the C-terminus of the

mini-chain (Guncar et al. 1998). As would be expected, cathepsin H lacking the

mini-chain is a functional endopeptidase (Vasiljeva et al. 2003). In cathepsin C a
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119-residue β-barrel unit termed the ‘exclusion domain’ is employed for position-

ing of an aspartate side chain as the acceptor for the substrate N-terminus in the S2

pocket of the enzyme (Turk et al. 2001a). With this diversity of activities, the

combined actions of the cysteine cathepsins can recycle a substrate protein to its

constituent amino acids.

4.4 Structures of Cysteine Cathepsin Precursors

Proteolytic activity is inherently destructive and thus potentially hazardous to the

cell. Proteases are therefore usually synthesized as inactive precursors which

require processing to release functional enzymes at cellular locations where their

action is required. Various strategies are employed by different protease families to

realize this self-defense mechanism (Khan et al. 1998). In most cases the proen-

zyme contains an N-terminal propeptide extension which folds back onto the active

site of the protease, thus blocking access to the substrate. The propeptides can be as

small as a dipeptide as in the case of some serine proteases such as neutrophil

elastase (Salvesen and Enghild 1990) and granzymes, or domains with over

90 residues as for various cysteine cathepsins.

In 1993, based on an analysis of the proenzyme sequences, the cysteine

cathepsins were divided into two classes based on the presence of a highly

conserved interspersed motif termed ‘ERFNIN’ (Karrer et al. 1993) which

represents a series of residues predicted to lie along one surface of a large

α-helix. Variants of this motif are present in the cathepsin L-like class members

but absent in the cathepsin B-like enzymes. The three-dimensional structures of

procathepsins K (LaLonde et al. 1999; Sivaraman et al. 1999), L (Coulombe

et al. 1996) and S (Kaulmann et al. 2006) show a distinct α-helix-rich domain

which is stabilized by a conserved tripartite tryptophan motif located at the interac-

tion site between the two major α-helices (Kreusch et al. 2000), the second of which
contains the ERFNIN motif. This double-helical domain is linked to the body of the

catalytic unit by the insertion of an aromatic side chain into a hydrophobic pocket

formed by a region termed the propeptide binding loop (Fig. 4.1). The structures of

the proenzymes immediately explain their inability to cleave protein substrates

since the propeptide extends through the active site blocking access to the catalytic

machinery. Critically, the sense of the propeptide strand is reversed relative to that

required for normal substrate binding, thus hampering processing of the propeptide

(Cygler and Mort 1997). The inhibitory nature of the propeptide regions of these

enzymes has been demonstrated by their production as independent modules. These

can fold into helix-rich domains and were shown to be tight-binding inhibitors of

their cognate enzymes (Schilling et al. 2009).

With 38 residues, the propeptide of cathepsin X is the shortest in the whole

cysteine cathepsin family (Fig. 4.2), barely reaching beyond the active-site cleft

(Sivaraman et al. 2000). However, its position is stabilized by a disulfide bond

located between the prosegment and the active-site cysteine residue.
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The propeptide of cathepsin B is intermediate in length between that of cathepsin X

and those of the cathepsin L-like class. As in procathepsin L, an α-helical structural
element is present which is bound to the protease through a hydrophobic interaction

(Cygler et al. 1996; Turk et al. 1996). In mature cathepsin B, the occluding loop is

positioned to accept the carboxylate of the P20 substrate residue, as illustrated in the
structure of a complex between the protease and the irreversible inhibitor CA-074

(Yamamoto et al. 2000) (Fig. 4.3b, c). In the proenzyme however, the position of

the occluding loop is deflected by the propeptide (Fig. 4.3a). In fact, the occluding

loop appears to be also adaptable in other situations such as the binding of the

inhibitors chagasin (Redzynia et al. 2008) and cystatin A (Renko et al. 2010).

The large variation in the size of the cysteine cathepsin proregions suggests that

the α-helical structural element may have additional functional roles. Some evi-

dence for this is provided by the characterization of a receptor for procathepsin L

(McIntyre and Erickson 1993) and binding of procathepsin B to annexin II (Mai

et al. 2000). These interactions may play a role in the processing of the proenzyme

forms or the targeting of the enzymes to lysosomes or other subcellular locations.

Procathepsin F is a unique member of this family of enzymes since it contains a

cystatin-like domain N-terminal to the cathepsin L-like propeptide region (Nägler

Fig. 4.1 Three-

dimensional structure of

human procathepsin L. The

propeptide is illustrated in

red while the mature

enzyme is in green.
Disulfide bridges are

displayed in yellow. The
side chains of the catalytic

cysteine and histidine

residues are shown in stick
representation, as is the side

chain of the phenylalanine

residue in the propeptide

which anchors the

propeptide to the mature

enzyme through

hydrophobic interactions

(PDB 1CJL)
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Fig. 4.2 Three-dimensional structure of human procathepsin X. The propeptide is illustrated in

redwhile the mature enzyme is in green. Disulfide bridges are displayed in yellow. The side chains
of the catalytic cysteine and histidine residues are shown in stick representation, as is the side chain
of the histidine residue of the mini-loop which is the acceptor for the C-terminal carboxylate of the

substrate (PDB 1DEU)

Fig. 4.3 Three-dimensional structures of human procathepsin B and the mature enzyme. (a)

Procathepsin B (PDB 3PBH) showing the propeptide in red and the mature enzyme in green.
Disulfide bridges are displayed in yellow. The side chains of the catalytic cysteine and histidine

residues are shown in stick representation, as is the side chain of the tryptophan residue in the

proregion which anchors the propeptide to the mature enzyme through hydrophobic interactions.

The occluding loop is illustrated in blue. Note that the loop is deflected by the presence of the

propeptide. (b) A complex (PDB 1QDQ) between the mature protease and the irreversible

inhibitor CA-074 (trans-epoxysuccinyl(propylamide)-Ile-Pro, chemical structure shown in c).

The Ile-Pro portion of the inhibitor occupies the S10 and S20 subsites. The occluding loop is

indicated in pink. The carboxylate of the Pro residue of the inhibitor interacts with the side chain of
His111 located in the occluding loop
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et al. 1999a; Wex et al. 1999). The functional significance of this domain is,

however, still unclear.

The proregions of the exopeptidases follow the same overall strategy of using

the propeptide to obstruct the active site cleft, but the N-terminal regions of the

propeptides differ widely. No structural studies have been published so far for the

proforms of cathepsins H and C. However, their sequences indicate that a similar

crossed α-helix structure is present. This is also supported by a model of the

procathepsin H structure (Horn et al. 2005).

4.5 Activation and Maturation of Cysteine Cathepsin

Precursors

Activation of cysteine cathepsin precursors generally accompanies acidification of

their environment as they are transported to the lysosome. Proteolytic cleavage of

the proregion then occurs, and as was demonstrated in kinetic studies on the isolated

proregions of cathepsins B (Fox et al. 1992), K (Billington et al. 2000) and L

(Carmona et al. 1996), the binding affinity of the propeptide for its cognate enzyme

decreases dramatically as the pH is lowered. Thus, once cleaved the propeptide

dissociates from the catalytic unit and becomes a substrate for further proteolysis.

Autoprocessing of several proenzymes has been observed in many cases and this

can be facilitated by interactions with surfaces and with anionic polymers (Mason

and Massey 1992; Caglic et al. 2007). Autoprocessing can occur through two

possible mechanisms, intra-molecular or inter-molecular. Early studies using a

procathepsin B in which the active-site cysteine residue had been mutated into

serine demonstrated that processing can occur in trans with the propeptide being

liberated by several lysosomal proteases including cathepsin B itself acting as an

endopeptidase (Rowan et al. 1992). Claims of intra-molecular processing have been

controversial (Rozman et al. 1999). Studies on the concentration dependence of

autoprocessing of procathepsin B (Mach et al. 1994a), procathepsin L (Ménard

et al. 1998) and procathepsin S (Quraishi and Storer 2001) clearly showed, by

extrapolation of the observed rates to zero proenzyme concentration, that intra-

molecular processing occurs, which probably requires the transient formation of

short-lived processing intermediates (Quraishi and Storer 2001; Pungercar

et al. 2009). While the propeptide passes through the active site in the reverse

orientation to that required for normal substrate hydrolysis, the carbonyl residue of

the peptide bond closest to the active-site cysteine is close enough to form a

tetrahedral intermediate although this cannot be stabilized by the canonical

oxyanion-hole mechanism. However, slow peptide-bond hydrolysis still occurs

and this is followed by removal of the residual propeptide segment by inter-

molecular processing. In contrast to cathepsin B and the members of the cathepsin

L class, maturation of procathepsins X (Nägler et al. 1999b) and C (Dahl

et al. 2001) requires the action of cathepsin L-like proteases.
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4.6 Unconventional Cysteine Cathepsin Gene Products

For cathepsins B and L, isoforms have been described which lack parts of their

respective propeptides. These variants are also devoid of a signal peptide for

translocation into the ER and are therefore not transported to lysosomes. In the

case of cathepsin B, an alternate transcript lacking exons two and three is produced

in various tissues (Mehtani et al. 1998). In addition to placing the translation start

site within the propeptide region, this deletion leads to the generation of a mito-

chondrial import targeting sequence so that the newly synthesized protein product

is located in that organelle (Müntener et al. 2004). The functional significance of the

presence of the truncated proenzyme in this location and its status as a protease are

still not clear. It has been shown that such a shortened propeptide reduces the

folding competence of cathepsin B (Müntener et al. 2005). However, evidence has

been provided that expression of truncated cathepsin B can provoke cell death in a

manner independent of its enzymatic activity (Müntener et al. 2003; Baici

et al. 2006).

Truncated procathepsin L gene products have also been reported. Here it was

shown that initiation of translation occurs at methionine codons 30 to the conven-

tional initiation codon (Goulet et al. 2004). The translation product lacks the signal

peptide and several residues of the propeptide. The resulting protein is cytoplasmic

and the activity of such a product has been implicated in the processing of dynamin

in proteinuric kidney disease (Sever et al. 2007). It has also been detected in the

nucleus and is believed to process the transcription factor CPD/Cux (Goulet

et al. 2006). However, it is still unclear whether proper disulfide bond formation

and processing of the truncated proenzyme is possible in this cellular environment.

4.7 Biosynthesis and Molecular Forms of Cathepsin B

Cathepsin B usually occurs in human tissues and cell lines as a mixture of single-

chain and double-chain variants. The ratio between the two forms can differ consid-

erably between individual cell types.While conversion into the double-chain form is

essentially complete in HepG2 cells (Mach et al. 1992), the single-chain enzyme is

only partially processed in skin fibroblasts (Hanewinkel et al. 1987). In both cell

types, cathepsin B is initially synthesized as a latent proenzyme of 45 kDa. Upon

delivery to the lysosomal pathway, procathepsin B is first converted into the mature

single-chain form of the proteinase (33 kDa). Further processing of this protein leads

to the generation of the double-chain enzyme, consisting of subunits of 27 kDa

(heavy chain) and 5 kDa (light chain). This endoproteolytic cleavage is

accompanied by the excision of a dipeptide that connects the N-terminal light

chain with the C-terminal heavy chain. The large fragment carries one N-glycan
that is gradually lost due to the action of lysosomal glycosidases, ultimately giving

rise to a carbohydrate-free, 24-kDa polypeptide (Mach et al. 1992). Furthermore,
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cathepsin B is subject to exopeptidolytic trimming in the lysosomes, resulting in the

removal of N- and C-terminal extensions each consisting of six amino acids.

However, the extent of C-terminal cathepsin B processing varies between cell

types. Removal of the C-terminal extension is quantitative in HepG2 cells (Mach

et al. 1993), while C-terminal processing of cathepsin B is incomplete in human

fibroblasts (Schmid et al. 1999).

In the case of cathepsin B, the subunits of the double-chain enzyme are held

together by disulfide bridges. It has been shown that single-chain and double-chain

forms are equivalent in their enzymatic properties. However, double-chain cathep-

sin B appears less stable than its single-chain counterpart (Hasnain et al. 1992). This

is consistent with the hypothesis that intralysosomal generation of double-chain

cathepsins represents a first step in the autocatalytic degradation of these proteinases

(Erickson 1989).

Detailed information is also available on the proteolytic maturation of cathepsin

B in rodent cells. In murine fibroblasts, cathepsin B is first synthesised as a 42-kDa

precursor, which is then converted into the mature, single-chain enzyme (35 kDa).

Further processing into the double-chain form of the proteinase is not observed.

Therefore, at least two proteolytic steps occur during the biosynthesis of human

fibroblast cathepsin B, while mouse procathepsin B is processed only at one site in

these cells (Lorenzo et al. 2000; Probst et al. 2006). Similar results have been

reported for rat hepatocytes, where single-chain cathepsin B also resists further

proteolytic processing (Nishimura et al. 1988). However, a small amount of

double-chain cathepsin B is generated during the biosynthesis of this enzyme in

rat macrophages (Kominami et al. 1988).

4.7.1 Proteolytic Maturation of Cathepsin B: A Lysosomal
Proteinase as Catalyst and Substrate

In most mammalian cells, the generation of the mature single-chain forms of

lysosomal proteinases including cathepsin B is believed to take place in acidic

post-Golgi compartments. The local acidic environment in endosomes could be

sufficient to trigger cathepsin B self-activation, as demonstrated for recombinant

procathepsin B in vitro (Mach et al. 1994a). Presumably, activation is then quickly

followed by both intra-molecular (Mach et al. 1994a; Quraishi and Storer 2001) and

inter-molecular (Rowan et al. 1992; Rozman et al. 1999) autocatalytic cleavage

events yielding mature single-chain cathepsin B. Terminal processing into the

double-chain form is a much slower event and hence occurs most likely in

lysosomes (Fig. 4.4).

In human and rodent cells, generation of double-chain cathepsin B can be

abolished by treatment with synthetic cysteine proteinase inhibitors such as

leupeptin, E-64d and Z-Phe-Ala-CHN2 (Hanewinkel et al. 1987; Hara et al. 1988;

Mach et al. 1992). This provided support for the proposal that processing of human
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cathepsin B in lysosomes is executed by cysteine cathepsins such as cathepsins B

and L (Mach et al. 1992; Ishidoh and Kominami 2002). However, gene disruption

studies have indicated that an unrelated cysteine proteinase, asparaginyl endopep-

tidase (legumain), plays a role in lysosomal processing of cathepsin B in murine

kidney cells (Shirahama-Noda et al. 2003). Apart from internal fragmentation,

cathepsin B appears to be also subject of processing by lysosomal exopeptidases

(Mach et al. 1993). It has been proposed that cathepsin C accounts for the progres-

sive trimming of three dipeptides from the N-terminus of the enzyme (Rowan

et al. 1992), whereas the C-terminal extension of the proteinase can be removed

by the dipeptidylcarboxypeptidase activity of cathepsin B itself (Rowan

et al. 1993).

4.7.2 Biosynthesis of Cathepsin B in Cancer Cells

Various investigators have reported the elevated synthesis and secretion of cathep-

sin B in response to viral transformation or malignant dedifferentiation (Sloane

et al. 1981; Joyce et al. 2004). In the case of Moloney-murine-sarcoma-virus-

transformed mouse fibroblasts, enhanced secretion of procathepsin B was attributed

to the lack of functional M6P receptors on the cell surface (Achkar et al. 1990). The

biosynthesis and molecular forms of cathepsin B have been studied in various

human and rodent carcinoma cell lines. In most cases, no major differences to

normal cells were detected (Mach et al. 1992; Braulke et al. 1992). However,

unique glycoforms of cathepsin B as well as enhanced secretion of the proenzyme

were observed in M6P/IGF2R-deficient SCC-VII murine squamous carcinoma

self-cleavage

cysteine proteinase(s)

propeptide

heavy chain
(27 kDa)

procathepsin B (45 kDa)

single-chain cathepsin B (33 kDa)

light chain
(5 kDa)

Fig. 4.4 Proteolytic

maturation of cathepsin

B. The key steps in the

proteolytic maturation of

human cathepsin B are

illustrated. Cathepsin B

from other species is

processed in an analogous

manner. Cysteine

proteinases of different

families have been

implicated in the

intralysosomal generation

of the double-chain form of

the enzyme
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cells. Interestingly, SCC-VII cells lack mature dense lysosomes, with the bulk of

intracellular acid hydrolases residing in immature granules with properties remi-

niscent of late endosomes (Lorenzo et al. 2000). Reconstitution of functional

M6P/IGF2R expression in SCC-VII cells was sufficient to restore dense lysosome

formation and cathepsin B retention (Probst et al. 2009). In contrast to SCC-VII

cells, all other carcinoma cell lines studied so far were found to be M6P/IGF2R-

positive. Accordingly, these tumour cells secrete normal amounts of procathepsin B

(Mach et al. 1992; Braulke et al. 1992). Interestingly, this also applies to SW1116

human colon carcinoma cells which are unable to internalise M6P-modified

proteins despite normal M6P/IGF2R expression (Braulke et al. 1992). These

findings suggest that receptor-mediated endocytosis of secreted procathepsin B

does not contribute significantly to lysosomal sorting of the enzyme in tumour cells.

4.7.3 Extracellular Forms of Cathepsin B and the
Mechanisms of Its Release and Activation

Under normal conditions, lysosomal proteinases occur in the pericellular environ-

ment only as their latent precursors. However, enzymatically active extracellular

forms of cathepsin B have been found in tumours, either in a soluble state (Poole

et al. 1978) or bound to the plasma membrane (Sloane et al. 1986). Possible

explanations for these phenomena include autoactivation of secreted latent

procathepsin B and/or regulated exocytosis of the mature enzyme from lysosomes.

It has been demonstrated that secreted procathepsin B may undergo self-activation

triggered by the acidic microenvironment around tumour cells, leading to the

transient formation of non-covalent complexes between cathepsin B and its

autoinhibitory propeptide and thus stabilisation of the mature enzyme which

would be otherwise short-lived in body fluids (Mach et al. 1994b). Interestingly,

it has been observed that self-activation of procathepsin B is accelerated in the

presence of negatively charged macromolecules like glycosaminoglycan chains,

which are major constituents of the extracellular matrix (Mach et al. 1994a).

Recently, evidence has been provided that the proregion accounts for the interac-

tion of the cathepsin B precursor with negatively charged molecules as found on

cellular surfaces (Caglic et al. 2007). Cathepsin B has been detected at the plasma

membrane of transformed breast epithelial cells and colon carcinoma cells (Sloane

et al. 1994; Cavallo-Medved et al. 2005). In addition, procathepsin B was found to

interact with the small subunit of the peripheral membrane protein annexin II,

which could contribute to the presence of cathepsin B on the surface of tumour

cells (Mai et al. 2000).

An alternative hypothesis to explain the extracellular occurrence of enzymati-

cally active cathepsin B in tumours relies on the observation that this enzyme is

frequently redistributed to peripheral vesicles in tumour cells (Rozhin et al. 1994).

It was proposed that this could promote exocytosis of cathepsin B due to retrograde
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transport from lysosomes along the endocytic pathway followed by fusion of

endosomal compartments with the plasma membrane. Such processes also occur

under physiological conditions, as for instance in the case of the degranulation of

the highly specialised secretory lysosomes of lymphocytes (Blott and Griffiths

2002). However, other cell types are also able to secrete their lysosomal contents.

For instance, such a regulated release of cysteine cathepsins seems to occur in the

process of the generation of thyroid hormones. It was observed that thyroid epithe-

lial cells secrete mature cathepsin B, thus initiating limited extracellular proteolysis

of the hormone precursor thyroglobulin which ultimately culminates in the genera-

tion of the thyroid hormone thyroxine (Friedrichs et al. 2003). It was shown that

regulated secretion of cathepsin B by thyroid epithelial cells is linked to the

redistribution of cathepsin B-containing vesicles from the perinuclear region to

the cell periphery, indicating that the enzyme is first delivered to endosomal/

lysosomal compartments and then secreted (Linke et al. 2002).

4.8 Biosynthesis of Cathepsin L

Cathepsin L was initially reported to be ‘the most active endopeptidase from rat

liver lysosomes acting at pH 6–7’ (Kirschke et al. 1977). Later, a protein secreted

by various transformed cells (Gottesman 1978) was determined to be procathepsin

L (Gal and Gottesman 1986; Joseph et al. 1988), suggesting that the physiological

functions of this cathepsin are not limited to general protein turnover within

lysosomes. A cDNA cloned from mouse macrophages (Portnoy et al. 1986) was

predicted to encode procathepsin L based on alignment with sequences of human

liver cathepsin L (Mason et al. 1986). The cDNA of the rat enzyme was sequenced a

year later (Ishidoh et al. 1987), and the sequence of the cDNA encoding the human

enzyme was reported in 1988 (Gal and Gottesman 1988; Joseph et al. 1988). The

first crystal structure of human procathepsin L (Fig. 4.1) was reported in 1996

(Coulombe et al. 1996).

Procathepsin L was initially predicted to reach lysosomes via the classic secre-

tory pathway based on the fact that the enzyme possesses high-mannose N-linked
oligosaccharides. Thus the presence of a 17-amino acid signal peptide mediating

ER import was predicted (Portnoy et al. 1986) and subsequently confirmed experi-

mentally by radiosequence analysis of immunoprecipitated proenzyme (Erickson

1989). Disc electrophoretograms of the purified enzyme first identified multiple

forms of cathepsin L in rat liver (Kirschke et al. 1977), suggesting that enzyme

maturation requires post-translational proteolysis. This was confirmed and the

relationship of the various cathepsin L isoforms was established by pulse-chase

analysis of the mouse enzyme (Gal et al. 1985; Portnoy et al. 1986).

Preprocathepsin L from all species loses a signal peptide co-translationally, an

activation peptide in late endosomes, and undergoes chain cleavage in lysosomes

(Fig. 4.5a).
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Co-translationally, before synthesis of the protein is complete, high-mannose

carbohydrate chains are added to one and sometimes two selected asparagine

residues of procathepsin L. For the mouse proenzyme, the sugar chain is added at

Asn221 (numbering from the first residue of the signal peptide). Mouse Asn268 is

normally not modified, but high expression levels resulting in chaperone shortage

and thus slow folding, point mutations in the propeptide, or addition of a C-terminal

epitope tag can modify the conformation sufficiently to expose this site to oligosac-

charyltransferase (Chapman et al. 1997). Glycosylation of cathepsin L is not

essential for enzymatic function and has little effect on protein folding or stability

(Smith et al. 1989). Procathepsin L that lacks carbohydrate and thus M6P residues is

secreted (Kane 1993; Smith et al. 1989). Procathepsin L that acquires two high-

mannose carbohydrate chains subsequently undergoes modification with complex

sugars, which are detected by increased molecular mass and resistance of the sugar

Fig. 4.5 Procathepsin L synthesis, storage and secretion are increased in transformed fibroblasts.

(a) Diagram of preprocathepsin L. The N-terminal signal peptide is cleaved off co-translationally,

while the propeptide is removed to activate the enzyme once the protein reaches late endosomes.

In late endosomes or lysosomes single-chain cathepsin L is cleaved into a heavy and a light chain

held together by a disulfide bridge. (b) These biosynthetic forms of cathepsin L can be visualized

in Kirsten virus-transformed KNIHmouse fibroblasts and wild-type mouse fibroblasts incubated in

serum-free medium for 2 h. Equal amounts of cellular protein (Cell) and proteins secreted to the

culture medium (Sec) were resolved by polyacrylamide gel electrophoresis and visualized by

western blotting. Cell transformation results in increased synthesis of cathepsin L, increased

secretion of the proenzyme, and cellular storage of the proenzyme. The majority of the cathepsin

L protein synthesized by the KNIH cells (46 %) is present in the 2 h culture medium as the 38-kDa

proform of the protease. Significant procathepsin L remains in the transformed fibroblasts (23 %),

avoiding activation in lysosomes. Figure published in Traffic 1: 724–737 (2000)
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chain to endoglycosidase H (Chapman et al. 1997; Collette et al. 2004a). This form

of the protease is also rapidly secreted and is not detectable within cells unless a

reagent such as brefeldin A is utilized to block constitutive secretion (Chapman

et al. 1997).

Modification of the high-mannose carbohydrate chain(s) on lysosomal proteases

with phosphate is critical for segregation out of the secretory pathway. For mouse

cathepsin L, the key residues for recognition by phosphotransferase are Lys54 and

Lys99, but low levels of M6P modification can still be detected when these residues

are ablated, indicating that other lysines can substitute (Cuozzo et al. 1998; Warner

et al. 2002). The oligosaccharides bound to procathepsin L are thought to be

uniformly processed to diphosphorylated species (Lazzarino and Gabel 1990;

Stearns et al. 1990). As correctly folded procathepsin L has only a single carbohy-

drate chain and as phosphorylated high-mannose oligosaccharides cannot be

converted into complex N-glycans (Kornfeld and Kornfeld 1985), procathepsin L

remains sensitive to endoglycosidase H. The M6P recognition marker generated by

phosphotransferase recognition of the patch of charged lysine residues is bound by

one of the two M6P receptors, M6P/IGF2R or MPR46. As procathepsin L has only

a single phosphorylated oligosaccharide, its affinity for M6P/IGF2R is low relative

to other lysosomal enzymes (Dong and Sahagian 1990). Additionally,

uncharacterized protein determinants are thought to impair its interaction with

M6P/IGF2R (Lazzarino and Gabel 1990).

4.8.1 Proteolytic Processing and Activation of Procathepsin L

Most cysteine cathepsin precursors contain an autoinhibitory propeptide to avoid

premature enzymatic activity during intracellular targeting. As for other cathepsins, it

is believed that proteolytic removal of the cathepsin L propeptide/activation peptide

only occurs once the protein reaches the acidic endolysosomal membrane system.

Pulse-chase analysis in mouse fibroblasts (Gal et al. 1985) and mouse macrophages

(Portnoy et al. 1986) confirmed that a propeptide is removed from a 36–38 kDa

proenzyme precursor (Fig. 4.5b). The site of the cleavage that releases the 96-amino-

acid mouse macrophage propeptide was determined by radiosequencing of

immunoprecipitated protein (Erickson 1989). The cleavage site can vary, however,

suggesting that either multiple sites are utilized and/or that exopeptidase cleavage

occurs. Intermediates have been detected (Ishidoh and Kominami 1994; Ishidoh

et al. 1998; Ménard et al. 1998; Salminen and Gottesman 1990), but these are not

necessarily fully proteolytically active (Ishidoh and Kominami 2002). Structural

studies of the procathepsin L propeptide show that the N-terminal portion of the

propeptide occludes the active site (Carmona et al. 1996), while the C-terminal

portion serves as a chaperone that initiates correct folding of the protein within the

ER (Schilling et al. 2001; Tao et al. 1994). The propeptide avoids degradation,

although positioned in the active site, because it lies in the pocket in opposite

orientation to cleavable substrates (Coulombe et al. 1996).
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Procathepsin L can autoactivate in vitro (Mason et al. 1987; Ménard et al. 1998)

and in vivo (Nomura and Fujisawa 1997; Salminen and Gottesman 1990) if the pH

drops below 5. Self-activation can also occur at higher pH (5.5–6.0) if the proen-

zyme is in the presence of a negatively charged surface, such as that presented by

dextran sulfate (Mason and Massey 1992) or glycosaminoglycans, e.g. those of

heparan sulfate or chondroitin sulfate proteoglycans (Ishidoh and Kominami 1995;

Kihara et al. 2002). Cathepsin D has also been shown to be capable of activating

procathepsin L (Nishimura et al. 1989; Wiederanders and Kirschke 1989). The

activation of procathepsin L is a regulated event; thus the amount of proenzyme in

cells varies with the cell type and its physiological state (Fig. 4.5b). While the

proenzyme is barely detectable in normal fibroblasts, it is commonly the major form

of cathepsin L in transformed fibroblasts (Ahn et al. 2002; Collette et al. 2004a).

Thus, measuring enzyme activity alone does not reveal the total amount of the

protease in cells, while assaying mRNA levels alone does not provide a reliable

measure of active cathepsin L levels present in cells or tissues.

Once the enzyme reaches acidic compartments, additional proteolysis leads to

generation of light and heavy cathepsin L chains. As initially detected by pulse-chase

analysis, conversion of the mouse 36–38 kDa proform to a 28-kDa single-chain

enzyme is followed by cleavage to a 21-kDa heavy chain derived from the

N-terminus of the single chain and a 6–7 kDa light chain derived from the

C-terminus of the single chain (Fig. 4.5a). The small light chain is not routinely

detected on standard polyacrylamide gels (Gal et al. 1985; Portnoy et al. 1986). The

sites of cleavage in human and rat cathepsin L have been determined by sequencing

of the purified double-chain enzymes, which revealed that 2–3 amino acids are

missing at the light-heavy chain boundary due to exopeptidase cleavage (Mason

et al. 1986; Ishidoh et al. 1987; Towatari and Katunuma 1988; Ritonja et al. 1988).

Recently, asparaginyl endopeptidase has been implicated in double-chain cathepsin L

formation as mouse cells lacking the former enzyme accumulate the single-chain

form (Shirahama-Noda et al. 2003; Maehr et al. 2005). However, inhibitor studies

have also provided evidence for the involvement of cysteine cathepsins, including

cathepsin L itself, in this process (Hara et al. 1988; Salminen and Gottesman 1990;

Nishimura et al. 1995; Ahn et al. 2002). The two chains remain connected through a

disulfide bridge. Active-site labelling experiments established that both the single and

the double-chain forms of the enzyme are proteolytically active (Mason et al. 1989).

Like removal of the activation peptide, the efficiency of this secondary cleavage

depends on the cell type. The amount of heavy chain detected in cell extracts relative

to the single-chain form is thus variable (Erickson 1989).

4.8.2 Non-lysosomal Localization of Cathepsin L

Cathepsin L activity has been detected at multiple intra- and extracellular sites,

suggesting the protease has specific physiological functions in addition to general

protein turnover in lysosomes. In certain cell types, enzyme activity is found in
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endosomes, in secretion granules and/or secretory lysosomes, in the cytoplasm, and

in the nucleus. Thus, targeting mechanisms must exist to mediate transport to sites

other than lysosomes.

An initial indication that procathepsin L can function extracellularly,

contributing to cancer cell metastasis, came from the observation that transformed

mouse fibroblasts secrete large quantities of a protein (Fig. 4.5b) initially named the

‘major excreted polypeptide’ or MEP (Gottesman 1978). Expression of this protein

is induced by oncogenic Ras (Joseph et al. 1987). MEP was shown to be modified

with M6P moieties (Sahagian and Gottesman 1982), localized to lysosomes (Gal

et al. 1985), and eventually found to be identical to procathepsin L (Joseph

et al. 1987; Mason et al. 1987; Troen et al. 1987). Support for the idea that secreted

cathepsin L might serve physiological functions extracellularly came from the

demonstration that MEP could degrade extracellular matrix (Gal and Gottesman

1986), and that purified enzyme could efficiently degrade kidney glomerular base-

ment membrane (Baricos et al. 1988). Additional evidence that cathepsin L can

serve a physiological function outside cells comes, for example, from demonstra-

tion that secreted cathepsin L can liberate thyroid hormone (Brix et al. 1996) and

from the extensive studies of cathepsin L-like proteases secreted by parasites

(Robinson et al. 2008).

Most lysosomal proteases are constitutively secreted to some minor extent,

presumably because of failure to bind to M6P receptors in the TGN, but relative

to procathepsin L, other endogenous lysosomal enzymes are efficiently targeted to

lysosomes in transformed fibroblasts. Thus this secretion is selective for

procathepsin L. The upregulation of gene expression that is characteristic of

transformation (Ishidoh and Kominami 1998) would lead to increased synthesis

of protein that could swamp M6P receptors, causing the excess proenzyme to be

secreted by the constitutive secretory pathway. This, however, should concomi-

tantly result in increased secretion of other lysosomal enzymes synthesized at lower

levels, which must compete for binding to M6P receptors; surprisingly, this is not

detected. Consistent with this, while ectopic expression of Ras leads to increased

expression of procathepsin L in both fibroblasts and epithelial cells, high secretion

is only detected in fibroblasts, which secrete 50 % of their total cathepsin L,

compared to 16 % for epithelial cells (Collette et al. 2004b). Recently, procathepsin

L secretion by human melanoma cells has been correlated with Rab4 expression

and/or function (Barbarin and Frade 2011). However, the exact nature of the

molecular mechanisms underlying these unique properties of procathepsin L within

the secretory pathway remains unknown.

The primary form of cathepsin L detected outside transformed fibroblasts is the

proteolytically inactive proenzyme, leading to questions as to the physiological

relevance of the secreted protease, as the extracellular pH is normally assumed to be

neutral and cathepsin L has been reported to be the most unstable of the lysosomal

cysteine proteases at neutral or alkaline pH (Turk et al. 1993). The demonstration

that extracellular matrix-like molecules rich in negative charge can induce
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self-activation provides a mechanism for activation of the secreted protease

(Ishidoh and Kominami 1995; Kihara et al. 2002). Additionally, numerous studies

have established that the pericellular pH of tumour cells can be sufficiently low to

enable cathepsins to be active (Stubbs et al. 2000). Finally, the activity of cathepsin

L has been shown to be modulated by the extracellular matrix proteoglycan

testican-1 (Bocock et al. 2003) and by purified thyroglobulin type-1 domain (Meh

et al. 2005) found not only in secreted proteins such as thyroglobulin (Brix

et al. 1996) and testican-1, but also in the p41 isoform of the invariant chain

associated with MHCII molecules (Bevec et al. 1996; Hitzel et al. 2000). The p41

protein not only stabilizes mature cathepsin L in endocytic compartments of

antigen-processing endosomes (Turk et al. 1999), but like testican-1 (Bocock

et al. 2003), stabilizes active cathepsin L in the neutral extracellular environment,

possibly potentiating its role in the inflammatory response (Fiebiger et al. 2002).

Together these observations argue that the secreted proenzyme can impact extra-

cellular events.

Active, mature cathepsin L can also be detected in cell culture medium under

certain physiological conditions. Activated thioglycollate-elicited mouse

macrophages abundantly secrete single-chain and double-chain forms of

cathepsin L, in contrast to macrophages resident in the peritoneum, which primar-

ily secrete proenzyme (Erickson 1989; Collette et al. 2004a). The cellular pathway

mediating secretion of active cathepsin L has not been elucidated but may relate to

the recent finding that almost all proteins in human primary macrophages lack

M6P and thus utilize an M6P-independent pathway for targeting proteases to

lysosomes (Pohl et al. 2010).

4.8.3 M6P-Independent Intracellular Transport of Cathepsin L

Early evidence that cathepsin L could be packaged in regulated secretory vesicles

came from the detection of the protease in sperm acrosomes (McDonald and

Kadkhodayan 1988) and in melanosomes (Diment et al. 1995). Cathepsin L has

more recently been documented to cleave perforin in cytotoxic granules of natural

killer cells and cytotoxic T lymphocytes (Konjar et al. 2010) and to participate in

neuropeptide production in neuroendocrine cells (Yasothornsrikul et al. 2003).

Incorporation into vesicles capable of regulated secretion allows directed delivery

to specific sites on the membrane, such as an immunological synapse (Griffiths

et al. 2010), while constitutive secretion from the TGN would deliver the protease

to basolateral surfaces. These observations suggest that, at least in certain cell types,

a mechanism exists to target procathepsin L to secretory granules, as well as to

lysosomes.

Procathepsin L has been detected in dense-core vesicles of transformed mouse

fibroblasts (Yeyeodu et al. 2000; Ahn et al. 2002), suggesting that the protease can
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be stored in regulated secretory vesicles even in a non-secretory cell type (Fig. 4.6).

The use of an antibody specific for the propeptide established that it is the latent

proenzyme that is concentrated in these vesicles, explaining the stability of the large

amount of proenzyme detectable in these cells under steady-state conditions

(Yeyeodu et al. 2000; Ahn et al. 2002), in contrast to untransformed fibroblasts

such as NIH3T3 or L fibroblasts which contain primarily mature single-chain and

double-chain cathepsin L (Fig. 4.5b). Colocalization with the transmembrane

protein CD63 (Ahn et al. 2002) indicates that this site of storage is a multivesicular

endosome, an endosome that can undergo fusion with the plasma membrane in

response to signaling (Piper and Katzmann 2007). This is consistent with the recent

demonstration that fibroblasts contain specialized endosomes which fuse with the

plasma membrane in response to changes in cytosolic calcium levels (Laulagnier

et al. 2011).

Procathepsin L has been observed to undergo self-association in yeast

two-hybrid assays (Yeyeodu et al. 2000), suggesting that high synthesis levels

could lead to formation of procathepsin L aggregates, possibly as early as in the

ER. These aggregates might react less efficiently with M6P receptors than the

monomeric proenzyme. The low affinity of procathepsin L for M6P/IGF2R

(Dong and Sahagian 1990; Lazzarino and Gabel 1990) may also contribute to

storage granule targeting. Alternatively, an unidentified alternate targeting receptor

which could mediate the transport of these proteases to secretory vesicles could be

selectively expressed or upregulated upon cell transformation.

The existence of M6P-independent or alternate targeting pathways for lysosomal

proteins has been suggested since the early observation that I-cell hepatocytes,

Kupffer cells and leukocytes that lack phosphotransferase activity possess func-

tional lysosomes (Owada and Neufeld 1982; Waheed et al. 1982). Sortilin has

recently been reported to bind several lysosomal enzymes, explaining their

M6P-independent targeting to lysosomes in I-cell fibroblasts, but cathepsin L

reaches lysosomes in these cells without binding sortilin (Canuel et al. 2009),

suggesting the existence of additional, yet unidentified targeting receptor(s).

Procathepsin L, but not the active protease, has been observed to undergo

pH-dependent M6P-independent association with a 43-kDa mouse fibroblast mem-

brane protein (McIntyre and Erickson 1991, 1993), an interaction inhibited by a 9-

residue fragment of the N-terminal activation peptide (McIntyre et al. 1994).

Procathepsin D undergoes similar M6P-independent membrane association in

these and other cells (McIntyre and Erickson 1991; Zhu and Conner 1994; Godbold

et al. 1998). A receptor mediating this interaction has not been isolated so far.

Precedence for M6P-independent, concentration-dependent sorting of proteases to

storage vesicles comes from studies of plant cells that contain protein storage

vacuoles, which likewise store enzymes in dense cores comprised of internal

membranes (Wang et al. 2011). Protein targeting to these vacuoles is mediated by

43-kDa homology-transmembrane RING-H2 (RMR) proteins (Jiang et al. 2000),
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integral endosomal membrane PA-TM-RING proteins (Erickson 2011) which have

an N-terminal protease-associated (PA) domain that recognizes C-terminal

sequences on ligands (Wang et al. 2011).

4.9 Biosynthesis of Other Cysteine Cathepsins

Cathepsin H is one of the two other cysteine cathepsins whose biosynthesis and

intracellular transport has been thoroughly characterized. This enzyme is

synthesized in rat hepatocytes and rat macrophages as a 41-kDa proenzyme.

Fig. 4.6 Procathepsin L of

transformed fibroblasts is

stored in dense cores of

multivesicular endosomes.

Procathepsin L was

localized in Kirsten virus-

transformed KNIH mouse

fibroblasts (Panel a) using

polyclonal rabbit antibodies

specific for the 96-amino

acid propeptide of mouse

procathepsin L detected

with goat anti-rabbit Fab

fragments conjugated with

15-nm gold (Panel b). In

Panel (c), the multivesicular

endosome marker protein

CD63 was colocalized in

the same section using

guinea pig anti-rat CD63

antibodies that were

detected with biotinylated

goat anti-guinea pig IgG,

followed by avidin

conjugated to 20-nm gold.

Procathepsin L was

detected with antibodies

specific for the propeptide

followed by goat anti-rabbit

IgG conjugated with 10-nm

gold. Figure published in

Traffic 3: 147–159 (2002).

ER endoplasmic reticulum,

Nu nucleus
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The latent precursor is rapidly converted into the mature single-chain form of the

proteinase (28 kDa). A double-chain form of cathepsin H composed of an

N-terminal large subunit (22 kDa) and a C-terminal light chain (6 kDa) is generated

in macrophages (Kominami et al. 1988), while single-chain cathepsin H persists in

hepatocytes even upon prolonged incubation (Nishimura et al. 1988). Generation of

the double-chain form can be inhibited by treatment with the cysteine cathepsin

inhibitor E-64d (Hara et al. 1988). Interestingly, genetic ablation of asparaginyl

endopeptidase expression exerts a similar inhibitory effect on cathepsin H

processing in mice (Shirahama-Noda et al. 2003). In contrast to cathepsin B, mature

cathepsin H is not subject of N- and C-terminal trimming by exopeptidases. A

glycosylated octapeptide derived from the prosegment is linked to the mature

enzyme through a disulfide bridge, binding to the active-site cleft of the proteinase

in a substrate-like manner. Cathepsin H is also N-glycosylated within its catalytic

domain, carrying high-mannose N-glycans as typical for soluble lysosomal

proteins. Evidence has been provided that the presence of these oligosaccharides

is required for the delivery of the enzyme to lysosomes (Nishimura et al. 1988).

Recently, it has been shown that cathepsin H binds to M6P/IGF2R in an

M6P-dependent manner (Sleat et al. 2006). These findings indicate that cathepsin

H can be transported to lysosomes via the M6P receptor pathway. However, a

recent study has highlighted that lysosomal targeting of cathepsin H could also

involve interactions with alternate sorting receptors such as sortilin (Canuel

et al. 2008).

The biosynthesis and intracellular transport of cathepsin C has been studied in

rat hepatocytes and hepatoma cells. This oligomeric enzyme is first synthesized as a

precursor with an apparent molecular mass of 55 kDa. Procathepsin C is N-
glycosylated and carries the M6P recognition marker in its carbohydrate moiety.

Transport to lysosomes has been shown to depend on its interaction with M6P

receptors (Mainferme et al. 1985; Muno et al. 1993). Upon delivery to lysosomes,

the cathepsin C precursor is proteolytically processed into 25-kDa and 8-kDa

fragments, corresponding to the heavy and light chains of the mature enzyme

(Ishidoh et al. 1991). In contrast to cathepsins B and L, procathepsin C maturation

is not affected by treatment of the cells with the cysteine proteinase inhibitor

Z-Phe-Ala-CHN2 (Mainferme et al. 1985).

Comparatively little information is available on the biosynthesis and intracellu-

lar transport of other cysteine cathepsins. Evidence has been provided that

procathepsins F, K, S and X are modified with M6P residues (Czupalla

et al. 2006), and their mature counterparts have been localized in lysosomes

(Wiederanders et al. 1992; Tepel et al. 2000; Kos et al. 2005; Tang et al. 2006;

van Meel et al. 2011). None of these cathepsins seems to undergo processing into a

double-chain species. Two variants of mature cathepsin V have been detected in

lysosomal fractions of human thyroid carcinoma cells (Tedelind et al. 2010), which

suggests intralysosomal conversion of the single-chain enzyme into a double-chain

form as in the case of its close relative cathepsin L. Opposite to all other cysteine

cathepsins, the precursor of cathepsin W is retained in the endoplasmic reticulum
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and appears to be resistant to proteolytic maturation (Wex et al. 2001; Ondr

and Pham 2004).

4.10 Biosynthesis and Intracellular Transport of

Cathepsin D

The major non-cysteine cathepsin is the aspartyl proteinase cathepsin D. The open

reading frame of human cathepsin D cDNA (Faust et al. 1985) encodes a polypep-

tide of 412 amino acids with N-terminal pre- and prosegments of 20 and 44 residues,

as judged by comparison with the N-terminal sequences of the biosynthetic

precursors of porcine cathepsin D (Erickson and Blobel 1979; Erickson

et al. 1981). From a structural point of view, mature human cathepsin D exists as

a single-chain protein, which is relatively more abundant in endosomes, and as a

double-chain form, which is relatively more abundant in lysosomes (Hasilik and

Neufeld 1980; Follo et al. 2007). The initial product of its biosynthesis is

preprocathepsin D, which upon entry into the lumen of the rough ER loses its

signal peptide, leading to the formation of procathepsin D consisting of 392 amino

acids. While synthesis is still ongoing, procathepsin D is N-glycosylated on both

Asn134 and Asn263, belonging to the N-terminal and C-terminal lobes, respec-

tively, in the double-chain mature polypeptide (Faust et al. 1985). These Asn

residues are located in a peptide region specifically involved in the recognition of

cathepsin D by phosphotransferase (Baranski et al. 1990, 1991, 1992; Cantor

et al. 1992; Dustin et al. 1995) and thus can be decorated with N-linked oligosac-

charides harbouring M6P residues. The last step of M6P biosynthesis occurs in a

compartment beyond the site of action of brefeldin A (Radons et al. 1990), a fungal

antibiotic that disrupts the organization of the Golgi stacks and causes retrograde

transport of Golgi proteins to the ER (Lippincott-Schwartz et al. 1989). The facts

that ammonium chloride impairs the uncovering of phosphorylated procathepsin D

and stimulates the secretion of procathepsin D bearing masked M6P residues

(Isidoro et al. 1990) further support the view that the two reactions are spatially

separated, in agreement with the different subcellular localizations of the two

enzymes involved in the generation of the M6P recognition marker (Rohrer and

Kornfeld 2001; Tiede et al. 2005).

The molecular weight of doubly glycosylated procathepsin D is about 53 kDa.

Procathepsin D is then entrapped within vesicles budding from the TGN and

transported to the endosomal compartments by M6P-dependent and

M6P-independent routes. In the TGN, M6P receptors sequester procathepsin D

into transport vesicles that travel along microtubules and then fuse with

pre-lysosomal organelles, whereupon procathepsin D is discharged and activated

due to the mild acidic milieu of these compartments. Both M6P/IGF2R and MPR46

are involved in this transport (Braulke and Bonifacino 2009), though the former

receptor exhibits a greater affinity for procathepsin D (Pohlmann et al. 1995).
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Nonetheless, procathepsin D devoid of M6P residues may reach endosomal

compartments (Glickman and Kornfeld 1993) by an M6P-independent route that

possibly involves the transient interaction with the lysosomal protein prosaposin

(Zhu and Conner 1994; Gopalakrishnan et al. 2004). Very recently, it has been

shown that transport of procathepsin D to lysosomes at least partially depends on its

interaction with sortilin (Canuel et al. 2008).

Once procathepsin D is released into the lumen of late endosomes, the

propeptide segment of 44 amino acids is proteolytically removed and an enzymati-

cally active, single-chain enzyme is formed (Fig. 4.7). This molecular form has a

molecular weight of about 48 kDa and consists of 348 amino acids. The removal of

the propeptide is not purely an autoproteolytic process, as it occurs also in a mutant

form (D295N) of human procathepsin D in which the active site of the enzyme has

been inactivated. Rather, cysteine cathepsins such as cathepsins B and L are

probably involved in this processing event (Laurent-Matha et al. 2006). The

predominant molecular form of human cathepsin D is in fact the mature double-

chain protein. It is composed of an N-terminal light chain of 14 kDa and a

C-terminal heavy chain of 34 kDa (Hasilik and Neufeld 1980; Gieselmann

et al. 1983). The light and heavy chains of cathepsin D are not covalently linked

by inter-chain disulfide bonds, as previously believed; rather, their association

arises from hydrophobic and steric interactions between the two chains, which

keep their proper conformations due to intra-chain disulfide bridges. The conver-

sion of single-chain cathepsin D into the double-chain form is a lysosomal event

and depends on the activity of cysteine cathepsins (Gieselmann et al. 1985; Samarel

et al. 1989). Cathepsin D accumulating in lysosomes undergoes progressive

C-terminal trimming that removes the two residues Leu412 and Arg411, and

probably others, from the heavy chain. The trimming at the heavy-chain

C-terminus was first shown for the double-chain form of porcine cathepsin D

(Erickson and Blobel 1983). It has been proposed that this late processing initiates

the turnover of cathepsin D (Erickson 1989).

4.10.1 Biosynthesis of Rodent Cathepsin D

Purified rat liver cathepsin D is a mixture of a single-chain form (approximately

95 %) and two different double-chain proteins. The rat cathepsin D cDNA encodes

a polypeptide containing a 20-residue signal sequence followed by a 44-residue

propeptide (Fujita et al. 1991). A plethora of molecular forms of rat cathepsin D,

comprising the 53 kDa precursor, the 47 kDa intermediate, the 43 kDa mature

single-chain proteinase, two 34/30 kDa heavy chains and two 9/14 kDa light chains

has been described in rat basophilic leukemia cells (Dragonetti et al. 2000). This

study confirmed that the most abundant rat cathepsin D form is the mature single-

chain enzyme, and revealed that the predominant double-chain isoform is com-

posed of the 34-kDa and 9-kDa chains.
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The complete cDNA sequence coding for mouse cathepsin D has also been

reported (Grusby et al. 1990). The molecular forms of cathepsin D found in mouse

3T3 fibroblasts include the precursor (with a molecular weight of about 52 kDa) and

mature polypeptides mostly represented by a 48 kDa single-chain isoform and, to a

minor extent, by a double-chain protein composed of 31-kDa and 16-kDa heavy and

light chains (Isidoro et al. 1995). Rat and mouse cathepsin D both contain two

potential N-glycosylation sites, one in each chain.

4.10.2 Biosynthesis and Molecular Forms of Cathepsin D in
Non-mammalian Species

Chicken (Gallus gallus) cathepsin D has been purified from oocytic yolk,

pre-ovulatory follicle and liver homogenates by affinity chromatography. Based

on peptide sequencing of the N-terminus, a full-length cDNA clone encoding

chicken cathepsin D was isolated from a chicken follicle cDNA library. It is

predicted that chicken cathepsin D exists as a double-chain isoform (Retzek

et al. 1992). In 1997, Gerhartz and colleagues purified and characterized cathepsin

D from the yolk-sac membrane of quail (Coturnix coturnix japonica) eggs. The
molecular forms of mature quail cathepsin D include a double-chain isoform

composed of a light chain of 14 kDa and a heavy chain of 30 kDa, which is the

most abundant molecular species, and a single-chain isoform of about 44 kDa

Fig. 4.7 Proteolytic maturation of cathepsin D. The key steps in the proteolytic maturation of

human cathepsin D (CD) are illustrated. The intralysosomal generation of the double-chain form

of the enzyme does not occur in all species. GC Golgi complex, LE late endosome, LYS lysosome,

N nucleus, RER rough endoplasmic reticulum
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(Gerhartz et al. 1997). The entire amino-acid sequence of quail cathepsin D is not

known, and its cDNA has not been cloned yet.

The molecular features of cathepsin D isolated from Chionodraco hamatus
(Antarctic icefish) and Clupaea harengus (Atlantic herring) are known. The mature

enzyme purified from the liver of Antarctic icefish shows a molecular weight of

40 kDa (Capasso et al. 1999), whereas that isolated from herring muscle shows a

molecular weight of 38–39 kDa (Nielsen and Nielsen 2001). In both fishes cathep-

sin D has been found to occur exclusively as a single-chain isoform. The N-termini

of icefish and herring cathepsin D have been determined by automated Edman

degradation (Capasso et al. 1999; Nielsen and Nielsen 2001). No data are available

about the glycosylation status of icefish cathepsin D. Glycosidase treatments (with

endoglycosidase H or N-glycosidase F) and binding to the lectin concanavalin A

indicate that herring cathepsin D contains only one N-linked carbohydrate moiety

of the high-mannose type (Nielsen and Nielsen 2001). Very recently, the biosyn-

thesis of Danio rerio (zebrafish) cathepsin D has been characterized. The protein is

synthesized as a mono-glycosylated precursor of 43 kDa that is transported in an

M6P-dependent manner to endosomal-lysosomal compartments where it matures

and accumulates as a single-chain peptide of 41 kDa (Follo et al. 2011).

Xenopus laevis is a frog commonly used as a model organism for studies on

embryonic development. Mature cathepsin D of Xenopus laevis shows different

isoforms, depending on the examined tissue: in fact, two different isoforms of

43 and 36 kDa can be isolated from ovarian extracts, while only the 36-kDa isoform

is present in liver extracts (Nakamura et al. 1996).

Aedes aegypti is a mosquito that can spread the Dengue and Yellow fever

viruses. A cDNA coding for a mosquito cathepsin D-like lysosomal aspartic

proteinase was cloned and sequenced. The cDNA encodes a polypeptide of

387 amino acids starting with an 18-residue signal sequence and a 35-residue

pro-segment. Mosquito cathepsin D purified by pepstatin A-agarose displayed an

apparent molecular weight of 80 kDa or 40 kDa under non-denaturing or denaturing

conditions, respectively. Two-dimensional gel electrophoresis revealed a predomi-

nant spot of 40 kDa with an isoelectric point of 5.4. The mature enzyme is a single-

chain polypeptide with only one N-glycosylation site in the N-terminal part of the

protein (Cho and Raikhel 1992). Cathepsin D cDNA from the silkworm Bombyx
mori was cloned in 2006 (Gui et al. 2006) and encodes a single-chain protein of

385 amino acids bearing one potential N-glycosylation site, with an apparent

molecular weight of 40–44 kDa. B. mori cathepsin D contains the two active-site

aspartic acid residues as well as the six cysteine residues characteristic of aspartic

proteinases, and displays substantial amino-acid identity with the aspartic

proteinases of the mosquitoes Anopheles gambiae (64 % identity) and Aedes
aegypti (63 % identity). Three cDNAs coding for preprocathepsin D-like

proteinases have been cloned from Musca domestica, but these await further

characterization on the protein level (Padilha et al. 2009).

Caenorhabditis elegans is a small unsegmented nematode. Cathepsin D purified

by affinity chromatography from this worm is a mixture of several enzymatically

active single-chain isoforms, which differ in their glycosylation status, with an
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apparent molecular weight of 36 and 34 kDa (the most abundant forms) and of

32, 38 and 44 kDa (Jacobson et al. 1988). Cathepsin D has been also isolated from

the trematode Schistosoma japonicum (commonly known as blood fluke). The

precursor and the active single-chain enzyme showed an apparent molecular weight

of 47 kDa and 41 kDa, respectively (Verity et al. 1999).

The slime mold Dictyostelium discoideum is a eukaryotic amoeba phylogen-

etically very distant from man. Slime mold cathepsin D, Ddp 44, was first identified

in 1999 by peptide sequence analysis of soluble endosomal/lysosomal proteins.

D. discoideum preprocathepsin D is composed of 383 amino acids. The short signal

sequence (18 amino acids) is co-translationally removed upon translocation into the

ER lumen, while the propeptide segment (from position 19 to 48) is removed later

in endosomal compartments. Mature D. discoideum cathepsin D is a single-chain

enzyme that shows a molecular weight of about 44 kDa. It mainly presents with

only one N-linked oligosaccharide (on Asn118), although two other potential

N-glycosylation sites (Asn238 and Asn310) are present in the protein (Journet

et al. 1999).

4.10.3 Maturation of Cathepsin D

The initial biogenetic events leading to the biosynthesis of N-glycosylated
procathepsin D and its transport from the TGN to endosomes are substantially

similar in all mammals, whereas the processing of procathepsin D into the mature

enzyme(s) may present species-specific peculiarities in the generation of the single-

chain and of the double-chain isoforms. Thus, in human and porcine cells, the

single-chain polypeptide is rapidly processed and the double-chain enzyme is the

most predominant molecular form of mature cathepsin D (Hasilik and Neufeld

1980; Erickson et al. 1981). The most abundant isoform of purified porcine cathep-

sin D is a double-chain protein formed by a 15-kDa light chain and a 31-kDa heavy

chain, although a 43-kDa single-chain intermediate can also be isolated (Barth and

Afting 1984). It was shown that porcine double-chain cathepsin D originated from

the latter through the removal of five amino acids (Yonezawa et al. 1988). By

contrast, in ovine, rat, hamster and mouse cells cathepsin D accumulates mainly as

a single-chain isoform (Fujita et al. 1991; Isidoro et al. 1991, 1995; Tyynelä

et al. 2000). In these mammalian species, the processing of the single-chain isoform

into the double-chain isoform proceeds very slowly and, as a consequence, at steady

state the latter represents less than 10–15 % of the whole cathepsin D isolated from

acidic compartments. Of note, rodent cells possess the enzymatic machinery for the

single- to double-chain processing of cathepsin D. In fact, human cathepsin D

heterologously expressed in hamster cells is efficiently maturated into the double-

chain isoform (Conner et al. 1989; Isidoro et al. 1991).
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4.10.4 Mechanism and Physiological Significance of the
Single- to Double-Chain Processing of Cathepsin D

Based on the observation that single-chain bovine cathepsin D converts into the

double-chain form upon incubation at pH 3.5, it was suggested that the active

intermediate molecule can process itself through an autocatalytic cleavage once it

reaches the lysosome (Lah and Turk 1982). A more recent study proposes that

human cathepsin D is processed into the double-chain form by cathepsins B and/or

L (Laurent-Matha et al. 2006), which is consistent with earlier studies employing

different cysteine cathepsin inhibitors (Gieselmann et al. 1985; Samarel

et al. 1989). However, other cysteine cathepsins might also be involved in this

process since cathepsin B/L double-knockout mice still contain normal levels of

mature double-chain cathepsin D (Felbor et al. 2002; Stahl et al. 2007). Whether

this processing occurs in endosomes before the single-chain intermediate is

translocated into lysosomes or within the lysosome soon after the intermediate

reaches this compartment is not yet fully clarified (Hasilik 1992). Recently, in an

attempt to clarify the molecular mechanism and the nature of the acidic compart-

ment(s) involved in this maturation step, a human cathepsin D mutant was studied

in which the beta-hairpin loop excised during double-chain processing had been

deleted (Follo et al. 2007). While wild-type human cathepsin D was efficiently

maturated, thus establishing the lysosomal processing capacity of the recipient

mouse cells, the cathepsin D mutant was not converted into the mature double-

chain form although it reached the lysosome (Follo et al. 2007). These data argue

against a quality control mechanism that would impair the transport of unprocessed

intermediate cathepsin D from endosomes to lysosomes, and are rather compatible

with the view that the last maturation step occurs within lysosomes.

What about the physiological relevance of the single- to double-chain

processing? It can be hypothesized that these two cathepsin D variants have

different substrate specificity. In general, single-chain cathepsin D seems more

prone to act on small substrates and to be active at neutral or slightly acidic

pH. Endosomal single-chain rabbit cathepsin D was shown to be able to process

parathyroid hormone into bioactive peptides (Diment et al. 1989). Rat single-chain

cathepsin D secreted at the basolateral site of mammary acini was shown to be able

to mediate, at neutral pH, the cleavage of the hormone prolactin into bioactive

peptides (Lkhider et al. 2004). During apoptosis associated with lysosomal mem-

brane disruption, endosomal/lysosomal cathepsin D translocates into the cytosol

and cleaves a so-far unknown substrate followed by activation of Bax (Bidère

et al. 2003; Castino et al. 2007). In vitro cathepsin D activity is classically assayed

using bovine haemoglobin, a rather complex substrate, at very acidic pH. Single-

and double-chain cathepsin D isolated from bovine spleen were shown to possess

different activity in such an assay, the double-chain form being more active towards

haemoglobin at pH 3.5 (Lah et al. 1984). Similarly, Tanji et al. (1991) demonstrated

that two different isoenzymes of cathepsin D purified from skeletal muscle of

Japanese monkey differ in their specificity towards oxidized insulin β-chain.
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Human double-chain cathepsin D also shows a higher affinity towards haemoglobin

than its single-chain counterpart (Kawada et al. 1997). It is interesting to note that

these authors found that single-chain cathepsin D was the most abundant form of

the enzyme in epithelial cells of healthy skin, whereas the double-chain form was

the major cathepsin D variant present in psoriatic skin biopsies. This observation

would indicate that the extent of the cathepsin D maturation process likely depends

on the tissue, the microenvironment and on particular pathophysiological

conditions.

4.10.5 Structure and pH-Dependent Activation of Cathepsin D

In vivo, procathepsin D is activated by acid-dependent proteolytic removal of the

44-residue propeptide culminating in generation of an active single-chain interme-

diate (see above). However, at least in vitro, procathepsin D can undergo another

type of acid-dependent proteolytic activation that leads to ‘pseudo’-cathepsin D

which misses only the first 26 amino acids (Conner and Richo 1992). Pseudo-

cathepsin D is enzymatically active (Gopalakrishnan et al. 2004) and retains the last

18 residues of the prosegment (amino acids 27–44). Interestingly, this residual

fragment of the propeptide has been claimed to possess mitogenic properties

(Vetvicka et al. 1998). Whether generation of pseudo-cathepsin D also occurs

during pro-cathepsin D maturation in vivo is still debated (Richo and Conner

1994; Wittlin et al. 1999). It is also unclear whether this process is purely autocata-

lytic (Wittlin et al. 1999; Laurent-Matha et al. 2006). Although complete removal

of the propeptide seems obligatory for cathepsin D to gain full enzymatic activity,

in vitro studies indicated that at acid pH the propeptide does not occupy the active

site, implying that procathepsin D could be active under these conditions (Wittlin

et al. 1998). A better understanding of the pH-dependent mechanism of cathepsin D

activation has been made possible by the elucidation of the three-dimensional

structures of native and pepstatin-inhibited cathepsin D in combination with

modelling studies (Baldwin et al. 1993; Metcalf and Fusek 1993; Lee et al. 1998;

Goldfarb et al. 2005). By comparing the crystal structures obtained at pH 5.1 and

7.5, it was observed that an N-terminal segment (residues 3–7) relocated into the

active site at neutral pH, thus explaining its inaccessibility for substrates or

inhibitors at pH above 7.0 (Lee et al. 1998). A recent study proposes that the

pH-dependent conformational change occurring in the molecule is initiated by

charge repulsion between the two carboxylates of Glu180 and Asp187 (Goldfarb

et al. 2005). Such a pH-dependent conformational switching may have physiologi-

cal relevance for general and restricted cathepsin D-mediated proteolysis in terms

of substrate specificity, compartmentalized activity, as well as for procathepsin D

function as mitogenic ligand (Beyer and Dunn 1996; Berchem et al. 2002).
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4.10.6 Cathepsin D in Biological Fluids and Pathological
Conditions

Environmental stimuli (e.g. cytokines, growth factors, hormones, pH, hypoxia) or

genetic factors (e.g. mutations in proteins involved in lysosomal protein traffic)

may affect lysosomal targeting of cathepsin D or induce the exocytosis of the

enzyme from endosomal-lysosomal compartments (Chiarpotto et al. 1999; Carini

et al. 2004; Koo et al. 2008; Takenouchi et al. 2011). As a consequence, a

substantial portion of procathepsin D and/or mature cathepsin D may be located

extracellularly. This event is likely to occur for instance in cancer cells (Vashishta

et al. 2005; Liaudet-Coopman et al. 2006), but also under certain physiological

conditions such as allergen stimulation of mast cells (Dragonetti et al. 2000; Puri

and Roche 2008), activation of dendritic cells following interaction with cytotoxic

lympocytes (Gardella et al. 2001), bone remodelling (Czupalla et al. 2006), lacta-

tion (Lkhider et al. 2004; Castino et al. 2008) and luteal regression (Erdmann

et al. 2007). Therefore, it is not surprising that cathepsin D, either as inactive

precursor or as mature enzyme, can be found in biological fluids. Cathepsin D

has been found in serum or plasma (Zühlsdorf et al. 1983; Naseem et al. 2005), milk

(Vĕtvicka et al. 1993; Larsen and Petersen 1995; Benes et al. 2002; Christensen

et al. 2010), urine (Zühlsdorf et al. 1983) and even sweat (Baechle et al. 2006) or

gastric juice (Ruan et al. 2011). The basal presence of cathepsin D in biological

fluids probably merely reflects default lysosomal spillage into extracellular fluids

and/or limited tissue damage. However, during abnormal ‘leakage’ from pathologi-

cal tissues the plasma level of cathepsin D rises far above its physiological

concentration and thus often represents a disease marker. Thus, for instance,

abnormal levels of cathepsin D are found in the serum of cancer patients (Abbott

et al. 2010; Szajda et al. 2008; Fukuda et al. 2005; Nicotra et al. 2010) and in the

plasma of patients after myocardial infarction (Naseem et al. 2005). The physio-

logical role of cathepsin D in milk is still obscure, but it is known that this protease

is involved in coagulation and degradation of milk proteins (Larsen et al. 1996;

Hurley et al. 2000). More recently, cathepsin D has been shown to process

osteopontin in milk (Christensen et al. 2010). Cathepsin D found in urine presents

with a glycosylation pattern different from that of its counterpart found in serum

which suggests a local origin from renal tissue, and not from blood, as also

supported by the elevated level of urinary cathepsin D in patients with nephritic

syndrome (Zühlsdorf et al. 1983). The presence of active mature cathepsin D in

eccrine sweat has been related to antimicrobial activity and immune defense on the

skin surface (Baechle et al. 2006).

Abnormalities in the expression and secretion of cathepsin D have been reported

in a variety of diseases, including psoriasis (Chen et al. 2000), atherosclerosis

(Li and Yuan 2004), Alzheimer’s disease (Cataldo et al. 1995; Zhou et al. 2006;

Hamano et al. 2008), Parkinson’s disease (Qiao et al. 2008; Cullen et al. 2009) and

cancer (Nicotra et al. 2010). Cathepsin D appears implicated in all critical steps of

cancer development and progression (Garcia et al. 1990; Isidoro et al. 1995; Liaudet
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et al. 1995; Berchem et al. 2002; Benes et al. 2008; Ohri et al. 2008), including

chemoresistance (Wu et al. 1998; Sagulenko et al. 2008; Castino et al. 2009) and

formation of metastases (Liaudet et al. 1994; Glondu et al. 2002; Vashishta

et al. 2007). It has been noticed that the role of cathepsin D in tumourigenesis is

not only attributable to its proteolytic activity. In fact, an enzymatically inactive

mutant of cathepsin D was shown to still possess mitogenic properties (Glondu

et al. 2001). This mitogenic ability seems to reside on a fragment of the propeptide

(amino acids 27–44) that interacts with a so far unknown membrane receptor

(Fusek and Vetvicka 1994; Vetvicka et al. 1997, 2004).

4.11 Cathepsins in Lysosomal Storage Disorders

Lysosomal storage diseases comprise a heterogeneous group of about 50 inherited

metabolic disorders. Many of these disease states can be attributed to the selective

loss of a single hydrolase involved in the strictly ordered breakdown of

glycoproteins, proteoglycans and sphingolipids. These deficiencies result in the

gradual accumulation of the respective substrate within lysosomes, ultimately

blocking the functions of these organelles (Neufeld 1991; Futerman and van

Meer 2004). Surprisingly, only one lysosomal storage disease, pycnodysostosis, is

due to a cathepsin deficiency. This disorder, manifested by osteosclerosis and short

stature, is caused by mutations in the cathepsin K gene (Gelb et al. 1996). This is

consistent with cathepsin K being the main collagenolytic proteinase produced by

osteoclasts, as is evident from the analysis of cathepsin K-deficient mice (Saftig

et al. 1998).

Another congenital disorder associated with a cathepsin deficiency is Papillon-

Lefevbre syndrome, a hereditary disease characterised by hyperkeratosis and severe

periodontitis. This disorder is due to genetic inactivation of cathepsin C (Toomes

et al. 1999). However, as yet it is not clear which metabolic pathways are affected

by the absence of the enzyme. In mice, disruption of the cathepsin C gene abolishes

the cytolytic activity of T-lymphocytes, owing to interference with the activation of

the destructive and pro-apoptotic serine proteinases granzymes A and B (Pham and

Ley 1999) which requires cathepsin C-mediated removal of their N-terminal

dipeptide proregions.

The neuronal ceroid lipofuscinoses constitute a group of neurodegenerative

lysosomal storage diseases characterised by progressive psychomotor retardation,

blindness and premature death. Interestingly, an inactivating mutation of cathepsin

D accounts for a related disease in sheep (Tyynelä et al. 2000). Furthermore,

disruption of the murine cathepsin F gene causes neuronal lipofuscinosis and

neuropathological symptoms (Tang et al. 2006). Intriguingly, cathepsin F is the

only cysteine cathepsin whose individual inactivation leads to such a lysosomal

storage defect in mice. Animals deficient in both cathepsin B and cathepsin L die

soon after birth due to massive brain atrophy and neuronal degeneration whereas
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mice lacking either cathepsin B or cathepsin L are relatively healthy, indicating that

these proteinases may functionally compensate for each other (Felbor et al. 2002).

4.12 Concluding Remarks

Cathepsins play a fundamental role in a wide range of important physiological

processes. However, these enzymes also contribute to various devastating disease

states. The latter is frequently associated with changes in cathepsin biosynthesis and

intracellular transport. This chapter summarizes our current knowledge of the

molecular mechanisms governing cathepsin trafficking and in vivo activation in

the context of the pathophysiological significance of these potent proteases.
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Wittlin S, Rösel J, Hofmann F, Stover DR (1999) Mechanisms and kinetics of procathepsin D

activation. Eur J Biochem 265:384–393

Wu GS, Saftig P, Peters C, El-Deiry WS (1998) Potential role for cathepsin D in p53-dependent

tumor suppression and chemosensitivity. Oncogene 16:2177–2183

Yamamoto A, Tomoo K, Hara T, Murata M, Kitamura K, Ishida T (2000) Substrate specificity of

bovine cathepsin B and its inhibition by CA074, based on crystal structure refinement of the

complex. J Biochem (Tokyo) 127:635–643

Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Toneff T, Bundey R, Miller R, Schilling B,

Petermann I, Dehnert J, Logvinova A, Goldsmith P, Neveu JM, Lane WS, Gibson B,

Reinheckel T, Peters C, Bogyo M, Hook V (2003) Cathepsin L in secretory vesicles functions

as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter.

Proc Natl Acad Sci U S A 100:9590–9595

Yeyeodu S, Ahn K, Madden V, Chapman R, Song L, Erickson AH (2000) Procathepsin L self-

association as a mechanism for selective secretion. Traffic 1:724–737

Yonezawa S, Takahashi T, Wang XJ, Wong RN, Hartsuck JA, Tang J (1988) Structures at the

proteolytic processing region of cathepsin D. J Biol Chem 263:16504–16511

Zhou W, Scott SA, Shelton SB, Crutcher KA (2006) Cathepsin D-mediated proteolysis of

apolipoprotein E: possible role in Alzheimer’s disease. Neuroscience 143:689–701

Zhu Y, Conner GE (1994) Intermolecular association of lysosomal protein precursors during

biosynthesis. J Biol Chem 269:3846–3851

Zühlsdorf M, Imort M, Hasilik A, von Figura K (1983) Molecular forms of beta-hexosaminidase

and cathepsin D in serum and urine of healthy subjects and patients with elevated activity of

lysosomal enzymes. Biochem J 213:733–740

4 Cathepsins: Getting in Shape for Lysosomal Proteolysis 173


	Chapter 4: Cathepsins: Getting in Shape for Lysosomal Proteolysis
	4.1 Introduction
	4.2 Mannose 6-Phosphate Receptors: Key Cellular Interaction Partners of Lysosomal Cathepsins
	4.3 Cysteine Cathepsins: Endopeptidases and Exopeptidases
	4.4 Structures of Cysteine Cathepsin Precursors
	4.5 Activation and Maturation of Cysteine Cathepsin Precursors
	4.6 Unconventional Cysteine Cathepsin Gene Products
	4.7 Biosynthesis and Molecular Forms of Cathepsin B
	4.7.1 Proteolytic Maturation of Cathepsin B: A Lysosomal Proteinase as Catalyst and Substrate
	4.7.2 Biosynthesis of Cathepsin B in Cancer Cells
	4.7.3 Extracellular Forms of Cathepsin B and the Mechanisms of Its Release and Activation

	4.8 Biosynthesis of Cathepsin L
	4.8.1 Proteolytic Processing and Activation of Procathepsin L
	4.8.2 Non-lysosomal Localization of Cathepsin L
	4.8.3 M6P-Independent Intracellular Transport of Cathepsin L

	4.9 Biosynthesis of Other Cysteine Cathepsins
	4.10 Biosynthesis and Intracellular Transport of Cathepsin D
	4.10.1 Biosynthesis of Rodent Cathepsin D
	4.10.2 Biosynthesis and Molecular Forms of Cathepsin D in Non-mammalian Species
	4.10.3 Maturation of Cathepsin D
	4.10.4 Mechanism and Physiological Significance of the Single- to Double-Chain Processing of Cathepsin D
	4.10.5 Structure and pH-Dependent Activation of Cathepsin D
	4.10.6 Cathepsin D in Biological Fluids and Pathological Conditions

	4.11 Cathepsins in Lysosomal Storage Disorders
	4.12 Concluding Remarks
	References


