
Chapter 10

Proteases in the Nervous System

Holger Cynis, Stefan F. Lichtenthaler, Leona Wagner,

and Hans-Ulrich Demuth

10.1 Proteases in Alzheimer’s Disease

Alzheimer’s disease (AD) is characterized by the massive accumulation of the short

cleavage product (beta-amyloid, Aβ) liberated from the transmembrane amyloid

precursor protein (APP). The stepwise cleavage of APP is accomplished by

membrane-bound β- and γ-secretase. This pathway competes with a

non-amyloidogenic pathway characterized by processing of APP by α-secretase.
Although the mechanism of Aβ-toxicity is still not well understood, its liberation

from APP is considered as the central event in AD pathogenesis underlined by

numerous mutations around the secretase cleavage sites in APP or in leading to

early-onset AD.
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10.1.1 α-Secretase

α-secretase cleavage occurs within the Aβ domain of APP and, thus, has the

potential to prevent Aβ generation. α-secretase cleavage of APP occurs constitu-

tively (constitutive α-secretase activity) (Esch et al. 1990), but can additionally be

stimulated above its constitutive level (regulated α-secretase) by different pharma-

cological agents (reviewed in Bandyopadhyay et al. 2007; Lichtenthaler 2011), as

first shown for muscarinic agonists (Nitsch et al. 1992).

The constitutive α-secretase cleavage of APP is mediated by the metalloprotease

ADAM10 (A disintegrin and metalloprotease 10) [EC 3.4.24.81]. Other proteases,

such as ADAM9 [EC 3.4.24.–] and ADAM17 [EC 3.4.24.86] were recently ruled-

out as constitutive α-secretases (Kuhn et al. 2010). Knock-out or knock-down of

ADAM10 in primary neurons as well as in several cell lines largely prevents APP

α-secretase cleavage (Jorissen et al. 2010; Kuhn et al. 2010). Conversely,

overexpression of ADAM10 in cell lines as well as in mouse brain increases APP

α-secretase cleavage and consequently, reduces Aβ generation (Lammich

et al. 1999; Postina et al. 2004). Additionally, ADAM10 cleaves APP derived

peptides in vitro at the correct peptide bond (Lammich et al. 1999). The initial

protease cleavage occurs between amino acids lysine16 und leucine17 of the Aβ
sequence and appears to be followed by an as yet unidentified carboxypeptidase

cleavage selectively removing lysine16 (Esch et al. 1990; Lammich et al. 1999;

Kuhn et al. 2010).

ADAM10 has 748 amino acids and is a member of the large ADAM protease

family. ADAMs are type I membrane proteins of the metzincin family requiring a

zinc ion for proteolytic activity (reviewed in Edwards et al. 2008; Reiss and Saftig

2009). The large ectodomain of ADAM10 consists of an N-terminal signal peptide,

followed by the prodomain, the metalloprotease domain with the conserved zinc-

binding amino acid motif HEXGHXXGXXHD, a disintegrin domain and a

cysteine-rich domain. In contrast to other ADAM proteases, an EGF-like domain

is missing in the ADAM10 ectodomain (Janes et al. 2005). The ectodomain is

followed by the transmembrane domain and a proline-rich cytoplasmic domain,

which provides binding sites for SH3 domain containing proteins, such as SAP-97

(Marcello et al. 2007). A more detailed description of the ADAM protease domains,

their structure and specific functions can be found in recent reviews (Edwards

et al. 2008; Reiss and Saftig 2009). ADAM10 is post-translationally modified by

complex N-glycosylation (Escrevente et al. 2008), and the prodomain is removed

by the proprotein convertases furin and PC7 (Anders et al. 2001). Prodomain

removal results in the active protease, which mediates proteolysis in late

compartments of the secretory pathway and at the plasma membrane. Interestingly,

the ADAM10 ectodomain can be released from the cell by ADAM9 and ADAM15

[EC 3.4.24.–] (Parkin and Harris 2009; Tousseyn et al. 2009). The ectodomain

shedding is followed by γ-secretase mediated intramembrane proteolysis and trans-

location of the ADAM10 intracellular domain into the nucleus, where it is found in

nuclear speckles, which are assumed to be involved in gene regulation (Parkin and

Harris 2009; Tousseyn et al. 2009). This raises the possibility that ADAM10 may

function as a signaling protein in addition to its role as protease.
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APP is not the only substrate for ADAM10. By now over 30 different ADAM10

substrates have been identified, including cell adhesion proteins (e.g. N-cadherin),

receptors (e.g. Notch) and growth factors (e.g. epidermal growth factor, EGF)

(Pruessmeyer and Ludwig 2009; Reiss and Saftig 2009). This demonstrates that

ADAM10 has a general function in the ectodomain shedding of membrane proteins.

Importantly, ADAM protease-mediated shedding occurs for substrates on the same

cell surface, but can also happen in trans as shown for ephrin-Eph receptor signaling

(Janes et al. 2005). In vivo, the cell surface receptor Notch is a particularly

important ADAM10 substrate and requires ADAM10-mediated cleavage for its

signal transduction (Bozkulak and Weinmaster 2009; van Tetering et al. 2009).

ADAM10 knock-out mice die embryonically due to a loss of Notch signaling

(Hartmann et al. 2002). Likewise, mice with a conditional ADAM10 knock-out

in the brain die perinatally, again due to a loss of Notch signaling and a major defect

in brain development (Jorissen et al. 2010). An ADAM10 knock-out specifically in

B cells demonstrated an essential function of ADAM10 in Notch2-mediated B cell

development (Gibb et al. 2010).

ADAM10 possesses a broad substrate specificity and can cleave after distinct

amino acids (Caescu et al. 2009). In the case of APP, the cleavage site seems to be

located in an α-helical structure and appears to be determined by the distance from

the membrane surface (Sisodia 1992), which is in agreement with ADAM10 being a

membrane-bound protease.

Expression of ADAM10 is controlled at the level of transcription and translation.

Posttranslational regulation of ADAM10 activity occurs through the activation of

numerous signaling pathways (reviewed in Bandyopadhyay et al. 2007;

Lichtenthaler 2011). Additionally intracellular protein transport is increasingly

recognized as a major mechanism to control the localization of ADAM10, the

access to its substrates and consequently the substrate turnover by ADAM10

(reviewed at the example of APP in Lichtenthaler 2011).

In contrast to the constitutive α-secretase the identity of the regulated α-secretase
remains to be fully clarified and may be mediated by different proteases. At least

ADAM10 andADAM17 can act as regulated α-secretases after specific stimuli, such

as PACAP peptides and the phorbol ester PMA (Buxbaum et al. 1998; Kojro

et al. 2006). Many other stimuli, such as neurotransmitters, growth factors and

cytokines, are also known to increase APP α-secretase cleavage, but it remains

unclear whether the increased α-secretase cleavage occurs through ADAM10 or

ADAM17 or yet other metalloproteases. In fact, overexpression of ADAM8

[EC 3.4.24.–], ADAM9 and several matrix metalloproteases also increases

α-secretase cleavage of APP. This suggests that the activation or increased expres-

sion of a variety of different metalloproteases may be tested as a means to increase

α-secretase cleavage and reduce Aβ generation in AD. Indeed, muscarinic agonists

increase APP α-secretase cleavage and reduce amyloid pathology in an AD mouse

model, presumably due to enhanced expression of ADAM17 (Caccamo et al. 2006).

The therapeutic potential of ADAM10 and othermetalloproteases has been reviewed

elsewhere in further detail (Endres and Fahrenholz 2010; Lichtenthaler 2011).

Taken together, constitutive α-secretase cleavage of APP is mediated by

ADAM10, whereas the regulated α-secretase cleavage occurs through both

ADAM10 and ADAM17 and possibly additional metalloproteases.
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10.1.2 β-Secretase

In contrast to α-secretase, β-secretase catalyzes the first step in Aβ generation and,

thus, is a major drug target for Alzheimer’s disease. β-secretase was identified as the
transmembrane aspartyl protease BACE1 (β-site APP cleaving enzyme)

[EC 3.4.23.46] (Hussain et al. 1999; Sinha et al. 1999; Vassar et al. 1999; Yan

et al. 1999; Lin et al. 2000), which is related to the pepsin and retroviral aspartic

protease families. Aβ-generation is largely reduced in BACE1 knock-out mice (Cai

et al. 2001; Luo et al. 2001; Roberds et al. 2001; Dominguez et al. 2005). A close

homolog, called BACE2 [EC 3.4.23.45], was identified shortly thereafter (Saunders

et al. 1999; Yan et al. 1999; Solans et al. 2000). Much less is known about BACE2

compared to BACE1.

BACE1 is an N-glycosylated type I membrane protein with 501 amino acids.

The N-terminal signal peptide is followed by a prodomain, the protease domain, a

transmembrane domain and a short cytoplasmic tail. The catalytic domain

comprises the two catalytic aspartic acid residues [amino acids 93–96 (DTGS)

and amino acids 289–292 (DSGT)]. In the secretory pathway, the propeptide is

cleaved by furin, leading to the active BACE1 protease (Bennett et al. 2000; Capell

et al. 2000; Huse et al. 2000; Creemers et al. 2001). BACE1 forms dimers, which

have a higher activity than the monomers (Schmechel et al. 2004; Westmeyer

et al. 2004). The crystal structure of the BACE1 ectodomain shows a conserved

general folding of aspartyl proteases (Hong et al. 2000).

In contrast to the ADAM proteases, which seem to be less dependent on specific

amino acid motifs around the cleavage site, BACE1 has a more pronounced

substrate specificity and prefers a leucine at the P1 position (Citron et al. 1995;

Gruninger-Leitch et al. 2002).

BACE1 is ubiquitously expressed. The highest BACE1 expression level is found

in neurons (Vassar et al. 1999), which explains why neurons are particularly

vulnerable in AD due to increased Aβ generation. In mice, BACE1 expression is

very high in the nervous system shortly after birth and then decreases to much lower

levels (Willem et al. 2006). BACE1 localizes to the Golgi, the trans-Golgi network

and to the endosomes (Vassar et al. 1999; Capell et al. 2000; Huse et al. 2000).

BACE1 has an acidic pH-optimum and seems to be specifically active within acidic

cellular compartments such as the late Golgi and endosomes. BACE1 activity has

also been observed in other compartments, but this seems to occur only upon

overexpression of the protease (Huse et al. 2002).

BACE1 is a major drug target for AD, as its inhibition lowers Aβ generation.

Potent BACE1 inhibitors have been developed, but mostly do not reach sufficiently

high concentrations in the brain (Vassar et al. 2009). A new generation of BACE1

inhibitors with significantly improved pharmacokinetics has been developed

recently, and is currently being tested in patients. Other preclinical strategies to

inhibit BACE1 activity consist of targeting BACE1 with antibodies and with

modified drugs, which are specifically delivered to endosomes, where BACE1
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cleaves APP (Chang et al. 2007; Rajendran et al. 2008; Mitterreiter et al. 2010;

Zhou et al. 2011).

In addition to APP several other BACE1 substrates have been identified over the

past few years, namely neuregulin-1 type III (NRG1), the P-selectin glycoprotein

ligand-1, the sialyltransferase ST6Gal I, β-subunits of voltage-gated sodium

channels, the amyloid precursor-like proteins 1 and 2, the interleukin-1 receptor

2, and the LDL receptor-related protein (Kitazume et al. 2002; Lichtenthaler

et al. 2003; Li and Sudhof 2004; von Arnim et al. 2005; Wong et al. 2005; Willem

et al. 2006; Kuhn et al. 2007). Additionally, a proteomic study identified further

proteins as potential BACE1 substrates (Hemming et al. 2009). However, most of

these substrates were not confirmed under BACE1 knock-out or knock-down

conditions and should be discussed with some care. The most prominent phenotypic

change in the BACE1 knock-out is a hypomyelination in the peripheral nervous

system during postnatal development, which stems from the reduced cleavage of

the BACE1 substrate NRG1 (Hu et al. 2006; Willem et al. 2006). Remyelination

also appears to be affected (Hu et al. 2008; Farah et al. 2011). Moreover, BACE1-

deficient mice show behavioral changes related to schizophrenia, which may also

be due to the reduced NRG1 cleavage (Savonenko et al. 2008). Additional functions

of BACE1 in the central nervous system, such as epileptic seizures, are less well

understood (Hitt et al. 2010; Hu et al. 2010).

BACE1 protein expression is controlled at the transcriptional level, for example

by the transcription factors NFkB, PPARγ and YY1 (reviewed in Rossner

et al. 2006). Additionally, distinct mechanisms control the translation of the

BACE1 mRNA, including the 50 non-translated region, a naturally occurring

antisense transcript and microRNAs (De Pietri Tonelli et al. 2004; Lammich

et al. 2004; Rogers et al. 2004; Faghihi et al. 2008; Hebert et al. 2008; O’Connor

et al. 2008; Wang et al. 2008). The translational mechanisms seem to be

dysregulated in AD, providing an explanation for the 2–5-fold increase in

BACE1 protein levels observed in AD brains.

10.1.3 Alternative β-Secretases

10.1.3.1 Problems with BACE1 as Sole β-Secretase

BACE 1 was identified as major β-secretase in vivo since genetic deficiency in mice

dramatically reduced the amount of generated Aβ-peptides (Vassar et al. 1999; Cai
et al. 2001). However, some concerns have been raised for BACE1 being the only

protease possessing β-secretase activity in humans.

A major criticism is the exceptionally low catalytic specificity of BACE1 for

cleavage of wildtype APP with kcat/KM between 40 and 62 M�1 s�1 in solution (Lin

et al. 2000; Shi et al. 2001) compared to, e.g. artificial BACE1 substrates being

cleaved with kcat/KM 3.42 � 105 M�1 s�1 (Turner et al. 2001).
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A second concern is the spectrum of N-terminal Aβ variants generated by

BACE1, which differs significantly from the Aβ-composition found in human

sporadic Alzheimer’s disease (Kawarabayashi et al. 2001). BACE1 dominantly

generates full-length Aβ-peptides starting with an N-terminal aspartate in vitro

and in vivo, whereas a heterogeneous mixture of N-terminally truncated and

modified Aβ peptides has been identified in human brain extracts (Saido

et al. 1996). Among others, pyroglutamate (pGlu)-modified Aβ-peptides are a

major species found in human AD brain (Saido et al. 1995). The truncated Aβ
peptides might be generated by subsequent aminopeptidase cleavage by, e.g.

aminopeptidase A (Sevalle et al. 2009) however, other studies suggest a direct

liberation of Aβ-peptides differing from the full-length variants by alternative

processing (Cynis et al. 2008).

A third concern is the identification of BACE1 using screening techniques based

on a rare human familial Alzheimer’s disease modification, namely the “Swedish”

mutation (KM595/596/NL) (Vassar et al. 1999). Introduction of the “Swedish”

mutation into the APP sequence makes it a much better substrate for BACE1 (kcat/

KM 1.03 � 105 M�1 s�1) than wildtype APP (Hook et al. 2008a, b) and. From the

present perspective it is not surprising that BACE1 was identified using the

APPswedish variant for beta-secretase screening, however, it might have precluded

the identification of other putative candidates with higher preference for

wildtype APP.

Although information on putative alternative β-secretases besides BACE1 are

limited and frequently contradictory, considerable evidence exists, that also other

proteases might at least exert some β-secretase activity in vitro and/or in vivo.

10.1.3.2 Cathepsins

Among the first proteases suspicious for β-secretase activity, several cathepsins

were studied. These investigations included the cysteine proteases cathepsin B

(CatB) [EC 3.4.22.1], cathepsin L (CatL) [EC 3.4.22.15] and cathepsin S (CatS)

[EC 3.4.22.27] belonging to the papain family, in addition to the aspartic protease

cathepsin D (CatD) [EC 3.4.23.5] belonging to the pepsin A family of proteases

(Cataldo and Nixon 1990; Cataldo et al. 1997; Ladror et al. 1994; Munger

et al. 1995). The rationale for investigating lysosomal proteases was the finding

of internalization of APP from the cell surface and its degradation in the

endosomal-lysosomal compartment. Among the tested cathepsins only CatS

showed considerably increased Aβ production in co-transfection experiments in

293 cells. Neither CatB and CatL nor CatD showed an effect on APP processing

under these conditions (Munger et al. 1995). CatD was later ruled out as relevant

β-secretase since the gene knock out did not change Aβ generation in mice (Saftig

et al. 1996). In contrast, CatB remained a putative alternative β-secretase candidate
(Hook and Reisine 2003). The findings are mainly based on the sub-cellular

distribution of BACE1 and CatB in primary chromaffin cells as model system for

constitutive and regulated secretion. CatB seems to be localized in the regulated
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secretory pathway, whereas BACE1 was found to be primarily present in vesicles of

the constitutive secretory pathway. Since neurons and neuronal-like cells like

bovine chromaffin cells release neurotransmitters and neuropeptides as well as

Aβ in a regulated fashion, it was postulated, that CatB accounts for the majority

of Aβ released from chromaffin vesicles. The approach was substantiated by

application of E64d as CatB-specific inhibitor to wildtype APP and “Swedish”

APP mice as well as the analysis of the respective gene knock outs crossed with

APP overexpressing mice (Hook et al. 2008a, b, 2009, 2011).

However, it has to be noticed, that these findings are controversial. Mueller-

Steiner et al. found CatB to be involved in Aβ degradation rather than Aβ genera-

tion (Mueller-Steiner et al. 2006) and the role of CatB as alternative β-secretase has
not been confirmed by other groups so far.

10.1.3.3 Caspases

Caspases play an essential role in apoptosis by cleaving a subset of cellular

polypeptides at Asp-X bonds (Nicholson and Thornberry 1997). It has been

demonstrated, that apoptotic cells secrete higher amounts of Aβ compared to

controls (LeBlanc 1995). Therefore, the idea was raised, that activated caspases

might play a role in APP turnover under apoptotic conditions. Especially caspase

3 [EC 3.4.22.56] from peptidase family C14 was found to be able to cleave APP but

not in a β-secretase like fashion (Gervais et al. 1999). Interestingly, besides the

absence of direct β-secretase activity of caspase 3, increased amounts of Aβ in the

cell culture supernatant have been demonstrated under apoptotic conditions

suggesting a shift of substrate into the amyloidogenic pathway after caspase

activation. Therefore, apoptosis in general and caspase 3 in particular might play

an indirect role for Aβ generation.

In addition to caspase 3, caspase 6 [EC 3.4.22.59] from peptidase family C14

was shown to be able to cleave Aβ directly at the β-secretase site. As it has already
demonstrated for BACE1 and CatD, caspase 6 preferentially cleaves the “Swedish”

mutant of APP with kcat/KM 2.2 � 104 M�1 s�1, a specificity only 4–5 times lower

than the specificity constant of BACE1 for “Swedish” APP. Notably, also the

wildtype APP sequence was processed by caspase 6 with a specificity constant of

kcat/KM 0.8 � 104 M�1 s�1, which makes wildtype APP a 14–20 times better

substrate for caspase 6 than for BACE 1 in vitro (Hook et al. 2008a, b; Gervais

et al. 1999). However, the sub-cellular localization of caspases in the cytosol and

their restricted activation upon apoptosis excludes them as relevant β-secretases,
since the physiological turnover of APP was found to be approx. 8 %/h (Bateman

et al. 2006). Nevertheless, under certain conditions, caspases could increase the

heterogeneity of N-terminal Aβ-species, since caspase-activation was found to lead
preferentially to the generation of truncated Aβ(2–x) via caspase 6 (Gervais

et al. 1999) or to Aβ(5–x) via an yet unidentified mechanism (Takeda et al. 2004).

Summarizing, compelling evidence exist, that BACE1 is not the sole enzyme

possessing β-secretase activity. Instead it appears that a number of proteases are
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able to cleave APP around the β-secretase cleavage site leading to the generation of
a heterogeneous mixture of N-terminal truncated Aβ variants later found in brains

of patients suffering from Alzheimer’s disease.

10.1.4 γ-Secretase: A Hetero-tetrameric Intramembrane
Protease Complex

γ-secretase cleaves the C-terminal fragments arising through the initial α- or

β-secretase cleavage and results in the secretion of the p3 and Aβ-peptides, respec-
tively. γ-secretase is an unusual aspartyl protease, in that it cleaves its substrate

proteins within the phospholipid bilayer of the membrane. γ-secretase belongs to

the larger family of GXGD proteases, which also comprises signal peptide pepti-

dase and its homologs (reviewed in Fluhrer et al. 2009). γ-secretase forms a hetero-

tetrameric protein complex (Seeger et al. 1997; Capell et al. 1998; Thinakaran

et al. 1998; Yu et al. 1998; Li et al. 2000a) composed of its catalytic subunit

presenilin (PS) [EC 3.4.23.–] (Steiner et al. 1999; Wolfe et al. 1999; Esler

et al. 2000; Kimberly et al. 2000; Li et al. 2000b; Seiffert et al. 2000) and three

other proteins nicastrin (NCT), APH-1 and PEN-2 (Yu et al. 2000; Lee et al. 2002;

Steiner et al. 2002; Edbauer et al. 2003; Kimberly et al. 2003; Takasugi et al. 2003).

These four proteins are necessary and sufficient for γ-secretase activity, as shown

by reconstitution experiments in yeast (Edbauer et al. 2003).

All four γ-secretase subunits are integral membrane proteins. NCT is a type I

membrane protein and is the largest subunit of the complex (Yu et al. 2000). PS has

nine transmembrane domains (TMDs) and harbors the two catalytically active

aspartyl residues within its TMDs 6 and 7 (Henricson et al. 2005; Laudon

et al. 2005; Oh and Turner 2005a, b; Spasic et al. 2006). APH-1 spans the

membrane seven times (Fortna et al. 2004), while PEN-2 contains two TMDs and

is the smallest subunit of the γ-secretase complex (Crystal et al. 2003). Mammalian

cells have two homologs of PS (PS1 and PS2) as well as of APH-1 (APH-1a and

APH-1b) (Francis et al. 2002). Additionally, APH-1a exists as a short and a long

splice variant (Lee et al. 2002). PS1 and PS2 as well as APH-1a and APH-1b do not

coexist in the same γ-secretase complex (Yu et al. 1998; Steiner et al. 2002; Hebert

et al. 2004; Shirotani et al. 2004). As a consequence up to six different γ-secretase
complexes can exist. Whether these differ in their proteolytic properties, specifi-

cally in their ability to produce Aβ42 remains controversial (Shirotani et al. 2007;

Serneels et al. 2009). The γ-secretase complex is assumed to contain one protein of

each subunit (1:1:1:1 ratio) (Sato et al. 2007), but there is also evidence for a

dimeric γ-secretase complex (Schroeter et al. 2003).

Several proteins have been described as γ-secretase interactors (Wakabayashi

et al. 2009; Winkler et al. 2009). They are not integral subunits of the complex, but

appear to be transient interactors, which may modulate the activity or the intracel-

lular trafficking of γ-secretase. Examples are transmembrane protein 21 (TMP21)
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(Chen et al. 2006a, b) and the recently identified γ-secretase activating protein

GSAP (He et al. 2010).

A high-resolution structure of the γ-secretase complex is not yet available, but

biochemical experiments demonstrated that the aspartyl-containing TMDs 6 and

7 of PS face each other and form a hydrophilic pore or cavity (Sato et al. 2006; Tolia

et al. 2006), in which a substrate is assumed to be cleaved. Cross-linking

experiments revealed several amino acids, which are part of this cavity including

residues of the catalytic GXGD motif (Sato et al. 2006; Tolia et al. 2006). Amino

acids in other TMDs of PS also contribute to formation of the cavity. In addition,

the evolutionarily conserved amino acids PAL, which are very close to TMD6, are

part of the cavity (Sato et al. 2008; Tolia et al. 2008).

γ-secretase cleaves over 80 different type I membrane proteins (Haapasalo and

Kovacs 2011), demonstrating a broad role in regulated intramembrane proteolysis.

Similar to the α-secretase ADAM10, the major γ-secretase substrate during devel-

opment is the Notch receptor. Mice deficient in PS1 die embryonically from a loss-

of-Notch signaling phenotype (De Strooper et al. 1999). Binding of a ligand induces

ADAM10-mediated ectodomain shedding of Notch. This is followed by

γ-secretase-mediated intramembrane proteolysis, which results in the translocation

of the Notch intracellular domain into the nucleus, where it acts as a transcriptional

activator of Notch target genes. Given the broad spectrum of γ-secretase substrates,
a complete inhibition of γ-secretase is associated with severe side effects in mice

and men and, thus, is not longer considered a viable approach to therapeutically

reduce Aβ levels in AD patients.

The γ-secretase complex assembles in the endoplasmic reticulum. After assem-

bly is complete, PS is cleaved in its large cytoplasmic loop domain between TMDs

6 and 7 into characteristic N- and C-terminal fragments. This cleavage is considered

to activate γ-secretase and occurs autocatalytically (Fukumori et al. 2010).

γ-secretase does not cleave the full-length proteins, but only after their

ectodomain was shortened by ectodomain shedding (e.g. α- or β-secretase cleav-

age). The shortened substrates seem to first bind to an exosite, before getting access

to the active site. Although evidence was presented that NCT serves as an initial

substrate receptor, recognizing the free N-terminus of the substrate (Shah

et al. 2005), follow-up studies have yielded both additional supporting data (Dries

et al. 2009) as well as further conflicting data (Chavez-Gutierrez et al. 2008; Martin

et al. 2009; Zhao et al. 2010). γ-secretase cleavage occurs in a stepwise manner.

This has been elucidated in detail for APP and seems to occur in a similar manner

for other substrates, such as Notch and CD44. APP is first cleaved by γ-secretase at
the C-terminal end of the transmembrane domain. This initial cleavage, called the

ε-cleavage site (Gu et al. 2001; Sastre et al. 2001; Yu et al. 2001; Weidemann

et al. 2002), is followed by further γ-secretase cleavages, each removing three or

four amino acids from the C-terminus (Takami et al. 2009), until the resulting

peptide is short enough to be released from the membrane. The ε-cleavage site is

located after amino acid 48 or 49 of the Aβ-sequence. This gives rise to two distinct
“product lines”. The major product line is Aβ49–Aβ46–Aβ43–Aβ40–Aβ37 from

which Aβ40 is the principal end product (Qi-Takahara et al. 2005). The minor
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product line is Aβ48–Aβ45–Aβ42–Aβ38 giving rise to the pathogenic Aβ42 and the
non-pathogenic Aβ38 in comparable amounts. Mutations in PS, which are linked to

familial forms of AD, affect the product lines and result in more of the pathogenic

Aβ42 relative to Aβ40 and Aβ38 (reviewed in Lichtenthaler et al. 2011).

γ-secretase has a broad substrate specificity (Tischer and Cordell 1996;

Lichtenthaler et al. 1999, 2002; Murphy et al. 1999), but amino acids in the

juxtamembrane domains and within the transmembrane domains can affect the

total amount of γ-secretase cleavage as well as the sites of γ-secretase cleavage

(Zhang et al. 2002; Ren et al. 2007; Hemming et al. 2008). Additionally, dimeriza-

tion of the APP TMD has been suggested to modulate the final cleavage sites of

γ-secretase (Munter et al. 2007, 2010). In this model, APP dimerization sterically

prevents γ-secretase from further shortening the Aβ42 peptides to Aβ38. Reducing
APP dimerization—by site-directed mutagenesis or by using γ-secretase modula-

tory drugs—allows γ-secretase to continue cleavage, resulting in more Aβ38 and

less Aβ42.
Taken together, γ-secretase is an unusual aspartyl protease, which acts as a

heterotetrameric complex and cleaves APP and other substrates within the

membrane.

10.1.5 Aβ-Degrading Proteases

10.1.5.1 Rationale

Due to the pivotal role of β- and γ-secretase in generation of Aβ-peptides,
Alzheimer’s disease was considered as a result of abnormal proteolysis followed

by misfolding of the excessively produced Aβ molecules. However, it has been

shown, that Aβ is a product of physiological APP turnover (Haass et al. 1992),

rather than a per se pathophysiological side-product. Turnover of APP was found to

be approx. 8 %/h throughout the life span of a human and impaired Aβ-degradation
rather than increased Aβ-generation has been identified in AD patients (Bateman

et al. 2006; Mawuenyega et al. 2010). Therefore, catabolism of Aβ peptides and

identification of catabolic enzymes is crucial for understanding AD. To date a

number of potential Aβ-degrading proteases have been identified.

10.1.5.2 Neprilysin and Endothelin-Converting Enzymes

Neprilysin (NEP) [EC 3.4.24.11] also known as neutral endopeptidase or CD10 is a

zinc-dependent, membrane-bound metalloendopeptidase from the peptidase family

M13 playing a pivotal role in Aβ-degradation in vivo. NEP was identified by

investigating the degradation of radio-labeled Aβ(1–42) in the rat brain (Iwata

et al. 2000). In this study, it could be shown, that a thiorphan and

phosphoramidon-sensitive protease later identified as NEP accounts for the
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majority of the Aβ-degradation potential in vivo. The important role was further

underlined by investigations using NEP knockout mice showing elevated A-

β-deposition (Iwata et al. 2001).

In addition, the NEP-related endothelin-converting enzymes 1 and 2 (ECE-1 and

-2) [EC 3.4.24.71] are able to degrade Aβ in vitro (Eckman et al. 2001). Similar to

NEP, ECEs are membrane-bound zinc-dependent metalloendopeptidases of pepti-

dase family M13. Especially ECE-1 is present at the cell membrane and within

compartments of the secretory pathway and might be able to degrade Aβmolecules

in vivo. First evidence comes from ECE-1 heterozygous knockout mice showing

increased Aβ-deposition (Eckman et al. 2003). In addition, NEP and ECE-1 knock-

outs possess a more pronounced Aβ-deposition, than the single knockouts

underlining a concerted proteolysis of Aβ in vivo (Eckman et al. 2006).

10.1.5.3 Insulin-Degrading Enzyme

The insulin-degrading enzyme (IDE) [EC 3.4.24.56] is another example of an

Aβ-degrading metalloendopeptidase. IDE belongs to the peptidase family M16

and was described to be primarily localized in the cytosol with a prominent function

in insulin degradation (Duckworth et al. 1998). In addition, IDE was found to

degrade Aβ-peptides in cell culture (Vekrellis et al. 2000), however, the localization
of IDE in the cytosol raised some skepticism about the relevance for extracellular

Aβ degradation. Recently, IDE was shown to be secreted via an “unconventional”

pathway into the extracellular space (Zhao et al. 2009). This finding is in line with

increased Aβ deposition in IDE knock-out animals underlining the importance of

IDE for Aβ metabolism (Farris et al. 2003, 2004). Together with NEP and the

mitochondrial presequence protease “PreP”, IDE possesses a characteristic cata-

lytic chamber, which is able to encapsulate peptides of a length of 70 amino acids or

less. This might explain the selectivity of these proteases for their respective

substrates including Aβ (Malito et al. 2008; de Strooper 2010).

10.1.5.4 Other Aβ-Degrading Proteases

Besides NEP and IDE, a number of different proteolytic enzymes have been shown

to be able to degrade Aβ peptides in vitro. Among them the metalloendopeptidase

Matrix Metalloproteinase 2 (MMP-2) [3.4.24.24], MMP-9 [EC 3.4.24.35] and the

serine protease Plasmin [3.4.21.7], have been identified to possess a potential for

Aβ degradation.

MMP-2 and MMP-9 belong to the peptidase family M10 and degrade large

macromolecules of the extracellular matrix such as collagens (e.g. IV, V, VII, X).

They are expressed at low levels in brain but can be induced by stress in cell culture.

Of notice is the ability of MMP-9 to degrade fibrils in contrast to most other Aβ
degrading proteases (Yan et al. 2006; de Strooper 2010).
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Plasmin is a serine protease of peptidase family S1, which is activated by

proteolytic cleavage with uPA or tPA from its precursor protein plasminogen.

Plasmin is primarily responsible for degradation of fibrin aggregates in blood

(Takada and Takada 1988) and the ability of degrading fibrin aggregates makes it

an interesting protease for Aβ aggregate turnover in AD. Indeed, the expression of

plasminogen and its activator proteins uPA and tPA have been linked to the central

nervous system (Sappino et al. 1993). In addition, uPA and tPA can be induced

under certain conditions such as ischemic insults or excitotoxicity (Tsirka

et al. 1995). Plasmin has been shown to degrade fibrillar Aβ in vitro with approxi-

mately 1/10th of the rate of plasmin degrading fibrin (Tucker et al. 2000). However,

the knockout of plasminogen does not show altered steady-state levels of Aβ
(Tucker et al. 2004). Obviously, there is no significant contribution of plasmin to

the physiological catabolism of Aβ, which is conceivable in the light of plasmin

activation as prerequisite step for its proteolytic function. However, under defined

experimental conditions such as traumatic brain injury, e.g. by intra-cortical appli-

cation of Abeta peptides, the expression of uPA and tPA might be induced, which

eventually leads to plasmin activation and, therefore, to significant turnover of Aβ
peptides (Melchor et al. 2003).

In addition, Angiotensin-converting enzyme (ACE) [EC 3.4.15.1] has been

shown to possess some potential of Aβ degradation. ACE is able to degrade

monomeric Aβ in vitro (Hu et al. 2001; Zou et al. 2007), however, this finding

could not be corroborated in vivo. Neither genetic inactivation (Eckman et al. 2006)

nor treatment with anti-hypertensive drugs inhibiting ACE, such as captopril

(Hemming et al. 2007) showed an effect on Aβ levels in mouse brain. Therefore,

despite the genetic linkage of ACE polymorphisms to the risk of developing AD

(Hu et al. 1999; Farrer et al. 2000), a direct role of ACE in Aβ-catabolism could not

be provided.

Finally, in spite of its discussed role as putative alternative β-secretase, CatB
also has been implicated in Aβ degradation in vivo. It has been found that CatB

deficiency in mice expressing the “Swedish” and “Indiana” mutant of APP leads to

an increased plaque load in hippocampus and cortex. Furthermore, the ability of

CatB for degradation of monomeric and fibrillar Aβ could be demonstrated and the

concentration of Aβ peptides generated from wildtype APP in CatB-deficient

neurons was increased suggesting a catabolic activity of CatB for Aβ (Mueller-

Steiner et al. 2006). As mentioned above, especially the role of CatB in AD is

highly contradictory and needs further elucidation.
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10.2 Proline-Specific Peptidases in Brain and

Neurodegeneration

Nature has evolved a number of neuropeptides, neurotrophic peptide hormones and

cardiovascular peptides with a proline residue determining their structural confor-

mation and biological activity. In general, the proline peptide bond has shown to be

resistant to proteolytic cleavage and therefore an exclusive number of proline

specific peptidases have emerged to regulate these peptides (Yaron and Naider

1993). These include two endopeptidases, five dipeptidyl peptidases, two

aminopeptidases, two carboxypeptidases and two dipeptidases. They are either

serine peptidases of clan SC or metallopeptidases of clan MG or MH. Except for

the three members of clan MG, all of them are post-proline peptidases, whereas

soluble aminopeptidase P (sAmpP), membrane aminopeptidase P (mAmpP) and

prolidase from subfamily M24B are able to hydrolyze the imide peptide bond.

Interestingly, out of the 12 peptidases, 9 require proline at the penultimate position

and 7 of them truncate at the N-terminus. Thus, a great number of neuropeptides

contain a penultimate proline at their N-termini and their truncation results either in

altered receptor selectivity or inactivation (Table 10.1). The best-characterized

post-proline dipeptidyl aminopeptidase is dipeptidyl peptidase 4 (DP 4), followed

by dipeptidyl peptidase 2 (DP 2) (Lambeir et al. 2003; Maes et al. 2007). However,

only recently three additional post-proline dipeptidyl aminopeptidases have been

discovered (Abbott and Gorrell 2002; Abbott et al. 2000; Ajami et al. 2004; Scanlan

et al. 1994; Gorrell 2005). The resulting X-Pro dipeptides readily cross the cell

where they are cytosolically metabolized by prolidase (Cunningham and O’Connor

1997; Mitsubuchi et al. 2008).

10.2.1 Serine Peptidases of Clan SC

Serine peptidases of the SC clan have a unique catalytic triad in the order of Ser,

Asp and His located in an α/β-hydrolase fold compared to the chymotrypsin

catalytic triad of His, Asp, Ser. They are comprised of both exopeptidases as well

as endopeptidases and include the families S9, S10, S15, S28, S33 and S37.

However, only S9 and S28 contain eukaryotic proline-specific peptidases, whereas

X-Pro dipeptidyl peptidase (S15.001) of S15, prolyl aminopeptidase (S33.001) of

S33 as well as prolyl tripeptidyl peptidase (S09.017) of S9 are only distributed in

microbial species (http://www.merops.sanger.ac.uk).

10.2.1.1 Prolyl Oligopeptidase Family S9

The S9 family, also referred to as prolyl oligopeptidase family, consists of four

subfamilies represented by their respective enzymes prolyl endopeptidase (9A),
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dipeptidyl peptidase 4 (9B), acyl aminoacyl peptidase (9C) and glutamyl endopep-

tidase (9D) as well as several peptidases and homologues not assigned to any of the

above subgroups (Abbott and Gorrell 2002; Barrett and Rawlings 1992; Gorrell

2005; Polgar 2002; Rosenblum and Kozarich 2003; Yu et al. 2010) (http://www.

merops.sanger.ac.uk).

PEP Gene Family S9A

Prolyl endopeptidase (PEP) [EC 3.4.21.26] is the only true proline-specific endo-

peptidase, representing the S9A subfamily. It is also the only monomer, consisting

of 710 amino acids with a molecular weight of approx. 80 kDa (Shirasawa

et al. 1994). The human gene of PEP is located on 6q22 (Garcia-Horsman

et al. 2007). PEP is located cytosolically in the perivascular space and is associated

with the microtubulin cytoskeleton (Schulz et al. 2005; Rossner et al. 2005). It is

ubiquitously expressed with the highest expression found in brain, kidney, testis

and thymus, whereas very low levels of PEP could be detected in the liver

(Myohanen et al. 2008c). In brain it is mainly expressed in neurons of the cerebral

cortex, CA1 of hippocampus and Purkinje cells of cerebellum. In cerebral cortex

and hippocampus, PEP was specifically expressed in glutameric pyramidal cells,

while it also co-localized with gamma-aminobutyric acid (GABAergic) and cho-

linergic interneurons of the cortex and thalamus. However, no expression of PEP

could be detected in nigrostriatal dopaminergic neurons or in astrocytes (Myohanen

et al. 2008b). Altered activity and expression of PEP were found in aged wildtype

mice, APP transgenic mice and human brains of patients with Alzheimer’s disease

(AD), revealing increased levels of PEP in the hippocampus of aged wildtype and

APP transgenic mice, whereas lower PEP levels were found at the amyloid-beta

plaques in brains of human AD and APP transgenic mice (Rossner et al. 2005).

Application of PEP selective inhibitors in vivo suggested PEP to play an important

role in learning as well as memory formation and PEP has been reported to be

involved in the maturation and degradation of several peptide hormones and

neuropeptides (Table 10.1), with substance P (SP), arginine vasopressin (AV),

thyroliberin, gonadoliberin and alpha melanocyte stimulating hormone (α-MSH)

implicated to be physiological substrates according to in vivo animal models

(Garcia-Horsman et al. 2007; Perroud et al. 2009; Toide et al. 1995a, b, 1996;

Shinoda et al. 1995; Morain et al. 2002; Bellemere et al. 2003, 2005; Schneider

et al. 2002; Yamanaka et al. 1999). The crystal structure of PEP revealed a

two-domain structure comprised of a α/β-hydrolase domain typical for the SC

clan with catalytic triad Ser554, Asp641 and His680 and an open seven bladed

propeller domain. Since the catalytic triad is covered by a central tunnel of an

unusual beta propeller, the size of the peptide substrates is restricted up to approxi-

mately 30 amino acids (Fulop et al. 1998). Nonetheless, although the presence of a

membrane-bound PEP has been reported in the brain, PEP currently generally

considered to be located cytosolically associated with the perinuclear cytoskeleton,

where it has no access to hydrolyze secreted or vesicular neuropeptides (O’Leary
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et al. 1996; O’Leary and O’Connor 1995; Schulz et al. 2005; Tenorio-Laranga

et al. 2008). Recently PEP has been reported to hydrolyze fragments of α-synuclein,
thereby stimulating aggregation of α-synuclein (Brandt et al. 2005, 2008). In

addition, PEP has been shown to be involved in the regulation of inositol-3-

phosphate (IP3) signaling by its activity and association with SP, NK1 and

IP3-1R (Myohanen et al. 2008a; Schulz et al. 2002). Furthermore, PEP has also

been described to bind to growth-associated protein 43 (GAP43, neuromodulin)

(Di Daniel et al. 2009). Finally, PEP has been associated with various neurodegen-

erative diseases such as Huntington’s Parkinson’s, Alzheimer’s and Lewis body

disease (Mannisto et al. 2007).

Dipeptidyl Peptidase 4 (DP4) Gene Family S9B

DP4

DP4 [EC 3.4.14.5] belongs to the serine peptidase clan SC, subfamily 9B. Cur-

rently, four members have been identified belonging to the dipeptidyl peptidase

subfamily 9B, including dipeptidyl peptidase 4 (DP4), fibroblast activation protein

alpha (FAP), dipeptidyl peptidase 8 (DP8) and dipeptidyl peptidase 9 (DP9)

(Lambeir et al. 2003; Scanlan et al. 1994; Abbott et al. 2000; Olsen and Wagtmann

2002; Ajami et al. 2004; Abbott and Gorrell 2002).

DP 4 as representative member of the DP4 gene family is the best-characterized

post-proline-dipeptidyl peptidase with most known in vivo substrates (Table 10.1)

(Lambeir et al. 2003). The human gene location of DP4 is 2q24.2, encompassing

81.8 kb, spanning 26 exons, that code for two mRNAs of 2.8 kb and 4.2 kb,

respectively (Abbott et al. 1994). Interestingly, the nucleotides coding for the

residues of the catalytic triad are found on three different exons. The resulting

protein has 766 amino acids and the primary structure consists of a short six amino

acid cytoplasmic tail, a 22 amino acid transmembrane, a 738 amino acid extracel-

lular portion comprised of a flexible stalk, glycosylation rich region, cysteine rich

region and catalytic region with the catalytic triad. Although DP4 is a type II

transmembrane glycoprotein, it has also a soluble shedded form in the blood

circulation as illustrated in Fig. 10.1 (De Meester et al. 1999; Mentlein 2004;

Cordero et al. 2009). The human crystal structure of DP4 reveals two domains,

an eight bladed propeller and a catalytic α/β-hydrolase domain. The active site is

composed of the catalytic triad Ser630, Asp708 and His740, two anchoring residues

Glu204, Glu205 as well as substrate stabilizing residues Arg125, Asn710 and

Tyr457. The propeller is open and consists of two subdomains made up of blades

II–V and VI–VIII, I, respectively. Each blade has four anti-parallel β-sheets, except
for blade IV that has an additional α-helix and two β-sheets forming an extended

arm. There are two openings, a side opening and a propeller tunnel (Rasmussen

et al. 2003). In a crystal structure, the substrate NPY suggested an entry at the side

opening (Aertgeerts et al. 2004b). DP4 is reported to be a homodimer with glyco-

sylation contributing to 23 % of the molecular weight of 110 kDa per subunit
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(Lambeir et al. 2003). Tetramerization has also been described in porcine DP4

(Engel et al. 2003). Post-transcriptional modifications include nine N-terminal

glycosylation sites and five disulfide bonds, though O-glycosylation and phosphor-

ylation have also been reported (Rasmussen et al. 2003; Engel et al. 2003; Fan

et al. 1997; Aertgeerts et al. 2004a; Alfalah et al. 2002; Tansi et al. 2010; Bilodeau

et al. 2006). DP4 is known to cleave neuropeptides such as NPY, substance P,

endomorphin 1 and 2; peptide hormones including GLP-1, GLP-2, GIP, glucagon,

IGF-1, GHRH as well as various chemokines (Lambeir et al. 2003). According to

kinetic analysis, DP4 has a very high selectivity for the neuropeptides NPY and

PYY (Mentlein 1999; Medeiros and Turner 1993, 1994, 1993; Lambeir et al. 2003).

Thus, it is involved in food up-take, anxiety, stress, cardiovascular, nociception,

glucose homeostasis and chemotaxis. Furthermore, it functions as an extracellular

adhesion molecule by binding to collagen, fibronectin and plasminogen. In addi-

tion, it is implicated in various immune responses via its interaction with several

immunological molecules such as ADA or CD45 and acts as a marker for activated

T-cells (De Meester et al. 1999; Ohnuma et al. 2008a, b). It is ubiquitously

distributed with the highest expression in kidney, lung, liver and small intestine,

whereas low expression is found in brain, heart and skeletal muscle (Lambeir

et al. 2003; Gossrau 1979; Dikov et al. 1999; Frerker et al. 2007; Yu et al. 2009).

However, though low levels of DP4 are found in brain parenchyma, elevated

Fig. 10.1 Subcellular localization of proline-specific peptidases. Schematic representation of a

neuron and a supplying blood microcapillary including pH-values in different compartiments.

Further depicted are the discussed proline-specific peptidases and their sub-cellular localization.

Note, that DP4 and FAP exist as membrane bound form present at the plasma membrane. In

addition, a soluble form can be found in circulation. NP represents the sub-cellular localization of

processed neuropeptides
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activity and expression of DP4 could be detected in the meninges, brain capillaries,

choroid plexus and circumventricular organs (CVOs) (Aimes et al. 2003; Barnes

et al. 1991; Bourne et al. 1989; Nagy et al. 1996; Frerker et al. 2007; Chappa

et al. 2006, 2007). These results imply that DP4 is at the interphase between the

CNS and the periphery via the blood circulation and CSF respectively, thereby

modulating and inactivating neuropeptides and neurotrophic growth factors

(Table 10.1). This already explains the possible involvement of DP4 in social and

stress-related behavior as observed in DP4�/� knock-out mice, DP4-deficient rats

and after in vivo application of DP4 inhibitors, since the CVO’s median eminence

and area postrema link the CNS with the endocrine and immune system, thereby

integrating the two stress axis hypothalamic-pituitary adrenal axis (HPA) and

neuro-sympathico axis and resulting in the release of stress hormones and altered

cytokines (El Yacoubi et al. 2006; Frerker et al. 2009; Karl et al. 2003; Lautar

et al. 2005; Sewards and Sewards 2003; Elenkov et al. 2000). Aging and

neurodegeneration is associated with a dysfunctional blood brain barrier (BBB)

causing it to become more leaky and eventually disintegrate (Zlokovic 2008, 2010;

Pahnke et al. 2009; Altman and Rutledge 2010; Dickstein et al. 2010; Ujiie

et al. 2003; Bell et al. 2010; Bell and Zlokovic 2009; Deane et al. 2009; Deane

and Zlokovic 2007; Mackic et al. 1998, 2002; Martel et al. 1996; Zlokovic

et al. 1990). Thus, DP4 at the altered microvascular may regulate by its enzymatic

activity the bioavailability of neuropeptide, neurotrophic growth hormone, cardio-

vascular peptides and immunological substrates and thus contribute to the patho-

genesis of neurodegeneration such as vascular dementia, brain infarcts and

Alzheimer’s disease.

FAP

FAP [EC 3.4.21.–] also referred to as seprase, has the highest sequence identity to

DP4 and is believed to arise from gene duplication due to its gene proximity. FAP is

localized on 2q24.3, encompassing 72.8 kb, spanning 26 exons and yielding a

2.8 kb mRNA, that codes for 760 amino acids. Introns are also found between the

exon coding for the catalytic residues. Similar to DP4, FAP is a type II glycopro-

tein. In addition to a low DP4 activity, FAP also exhibits gelatinase and collagenase

activity, which is collagen type I specific. Its endopeptidase activity requires the

sequence Xaa-Gly-Pro-Yaa (Edosada et al. 2006a, b). Recently, the crystal struc-

ture of FAP has been elucidated and comparison with the crystal structure of DP4

points to a lower anchoring of substrates by Glu203–Glu204 due to shielding

effects of surrounding hydrophobic residues and lack of Asp663. This in turn,

results in a lower exopeptidase activity and enables its endopeptidase activity as

confirmed by site-directed mutagenesis with subsequent kinetic studies (Aertgeerts

et al. 2005). Although low levels of FAP mRNA have been detected in healthy

tissue, expression at protein level is restricted to pathogenic tissues such as human

meningioma and astrocytoma, in particular in close vicinity to extracellular matrix.

Interestingly, while the contributions of DP8 and DP9 were higher in meningioma

compared to FAP and DP4, increased levels of DP4/FAP were associated with
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malignancy (Stremenova et al. 2007, 2010; Mentlein et al. 2011). Thus, the

expression of FAP has been investigated in several types of cancers, as to identify

it as a pharmaceutical target (Garin-Chesa et al. 1990; Henry et al. 2007; Ariga

et al. 2001; Iwasa et al. 2003, 2005; Jin et al. 2003; Huber et al. 2003; Mori

et al. 2004; Okada et al. 2003; Goodman et al. 2003; Huang et al. 2004; Skubitz

and Skubitz 2004; Wesley et al. 2004).

DP8

DP8 [EC 3.4.14.5] consists of 882 amino acids, has a molecular weight of 100 kDa

and its human gene localization is 15q22, encompassing 71 kb, spanning 20 exons,

encoding four alternatively spliced mRNA products between 3.8 and 4.1 kb and

yielding a 882 amino acid protein (Abbott et al. 2000). Although DP8 has previ-

ously been reported to be monomeric, current data gave strong evidence for a

dimeric structure with an apparent molecular weight above 200 kDa (Bjelke

et al. 2006a). So far, it has been suggested to be located in the cytoplasm as a

soluble protein and up to now, there has been no evidence for any secretion, though

recently loose association of extra-cellular DP8 on plasma membrane was reported

(Abbott et al. 2000; Chen et al. 2003a, b; Bank et al. 2011). Recent proteomic

screening has revealed phosphorylation of Tyr331 and Thr334 (Yu et al. 2007).

Using several chromogenic substrates, DP-8 was shown to display post-proline

dipeptidyl aminopeptidase activity similar to that of DP4 (Abbott et al. 2000; Bjelke

et al. 2006a). Hydrolysis of NPY, GLP-1, GLP-2, PYY, ITAC, IP-10, SDF-1α and

SDF-1β, but not of MIG, Gro-β and Eotaxin could be demonstrated in vitro, though

the rate of cleavage was slower compared to DP-4, in particular for PYY (Bjelke

et al. 2006a, b; Ajami et al. 2008). The mRNA of DP-8 is ubiquitously distributed

with its highest expression in brain and peripheral tissues, such as testis and ovaries

(Abbott et al. 2000; Wagner et al. 2006; Qi et al. 2003). In baboon brains, DP 8 was

shown to be highly expressed in Purkinje cells and neuronal cells in the granular

layer, as well as neurites in the molecular layer, but not in cortex, forebrain or

midbrain as shown by ISH. However, homogenates of mice cortex as well as pooled

mid and hindbrain showed high levels of DP8 and/or DP9 activity (Yu et al. 2009).

Nevertheless, its physiological function is presently unknown and still awaits

further studies.

DP9

DP9 [EC 3.4.14.5] has previously been reported to be active as a cytosolic mono-

mer, comprised of 863 amino acids with a molecular weight of approximately

100 kDa (Ajami et al. 2004). It lacks a transmembrane domain and is found

intracellular near the Golgi complex, though secretion from transfected cells has

not been observed yet. The gene is located on chromosome 19p13.3, encompassing

48 kb, spanning 23 exons and encoding for two alternatively spliced mRNA

isoforms of 4.4 kb and 5.0 kb, respectively, with different tissue distribution

(Frerker et al. 2007; Abbott and Gorrell 2002; Ajami et al. 2004; Bjelke
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et al. 2006a). The enzymatical active protein contains 892 amino acids (Bjelke

et al. 2006a). This variant was shown to be active as homodimer with an estimated

molecular weight above 200 kDa, whereas no activity could be detected for the

shorter variant comprised of 863 amino acids (Olsen and Wagtmann 2002). Using

several chromogenic substrates, DP9 exhibited post-proline dipeptidyl aminopepti-

dase activity similar to that of DP4 and it was shown to truncate NPY, GLP-1,

GLP2 and to a far lesser extent PYY in vitro (Table 10.1) (Bjelke et al. 2006a, b).

However, very recently the cytoplasmic proteasome-derived antigenic peptide

RU134-42 could be identified as the first natural substrate of DP9, suggesting

DP9 to play an important role in peptide turnover and antigen presentation

(Geiss-Friedlander et al. 2009). DP9 contains an Arg-Gly-Asp cell attachment

motif and two potential glycosylation sites, though SDS-analysis of expressed

DP9 revealed no mass differences based on deglycosylation (Olsen and Wagtmann

2002; Qi et al. 2003). Similar to mRNAs of DP4 and DP8, mRNA of DP9 is

ubiquitously distributed however, with its highest expression in liver, heart and

skeletal muscle (Qi et al. 2003; Ajami et al. 2004; Olsen and Wagtmann 2002; Yu

et al. 2009). Its physiological function has not been elucidated yet, though an

up-regulation of DP9 mRNA was detected in human meningioma (Stremenova

et al. 2010).

So far, one cannot differentiate between DP8 and DP9 enzymatic activity due to

lack of selective inhibitors, however DP8/DP9 activity could be detected in rodent

brain (Frerker et al. 2007). Furthermore, brain and testis have been the only organs

in which DP8/DP9 activity precedes over DP4 activity (Yu et al. 2009; Frerker

et al. 2007; Dubois et al. 2008). Interestingly, there seems to be a difference

between the distribution of DP8 and DP9 in primates such as baboon compared

to rodents, expressing low and high levels in cortex, respectively (Yu et al. 2009;

Frerker et al. 2007; Ansorge et al. 2009). Similarly, histochemical enzymatic

staining of brain sections obtained from DP4 deficient Fischer rats as well as their

respective wildtype, revealed ubiquitous staining of DP8 and/or DP9 in both

DP4-deficient as well as DP4 wildtype rats, whereas DP4 was only found at the

meninges in wildtype rats. Using a DP4-selective inhibitor as well as a DP4-like

inhibitor P32/98 in both fluorogenic activity assay with Ala-Pro-AMC as well as

NPY hydrolysis by MALDI-TOF-MS, high levels of DP8 and/or DP9 were found in

extracts of primary neuronal cells from rat compared to glial cell extracts.

Yet, the suggested cytotoxicity of DP8/DP9 inhibition is currently controver-

sially discussed (Lankas et al. 2005; Burkey et al. 2008; Kirby et al. 2010; Wu

et al. 2009; Bank et al. 2011; Ansorge et al. 2011). Non-enzymatic functions of

DP8/DP9 include cell adhesion, migration and apoptosis (Yu et al. 2006). Interest-

ingly, similar to PEP, but unlike DP4 and FAP, DP8 and DP9 are reversibly

inactivated by H2O2 oxidation involving two cysteins in each monomer (Park

et al. 2008). Up to now, there are no crystal structures of DP8 and DP9 available,

although molecular modeling based on DP4 and FAP crystal structures indicate

similar overall structures comprised of a β-propeller and a α/β-hydrolase domains,

with the active site being located at the interphase of the two domains. However,

two loops and one helix of the propeller domain extending to the interphase cavity
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appear to play a role at the active site. While the R125-loop and the E205/E206-

helix have been described in the crystal structures of DP4, the P2-loop, containing

F357 and R358, seems to be unique to DP8 and DP9 and is suggested to influence

substrate and inhibitor binding to the P2-pocket (Rummey and Metz 2007; Engel

et al. 2003; Rasmussen et al. 2003; Thoma et al. 2003; Oefner et al. 2003). Due to

the shortest gene sizes, lowest numbers of exons, the active site being located in one

exon in comparison to DP4 and FAP as well as their closest phylogenetic relation-

ship with respect to prokaryotic members of the family, DP8 and DP9 are believed

to be the ancestral genes of the DP4 gene family (Abbott and Gorrell 2002).

Although all of these enzymes described above display DP4-like activity, they

exhibit distinct features with respect to cellular compartmentation and glycosyla-

tion as illustrated in Fig. 10.1.

Dipetidyl Peptidase-Like Proteins

DP-like proteins 1 (DPL1, DP6, DPP X, S09.973) and 2 (DPL2, DP10, DPP Y,

S09.974) were previously assigned to the DP4-gene family S9B based on their

sequence homologies to DP4 (Abbott and Gorrell 2002; Gorrell 2005). However,

since they lack DP4-like activity due to mutations at the active site, they were

moved to S9 family unassigned to any subfamily (http://merops.sanger.ac.uk/cgi-

bin/famsum?family¼S9). Both of them are type II membrane-bound glycoproteins,

suggested to interact with the voltage-gated potassium channel Kv4 (Abbott and

Gorrell 2002; Strop et al. 2004; Wada et al. 1992; Chen et al. 2003a, b, 2006a, b;

Nadal et al. 2003; Kin et al. 2001; Zagha et al. 2005; Qi et al. 2003). While DPL1 is

exclusively expressed in the brain as two variants, i.e. a short and a long form,

DPL2 is found in brain, pancreas and adrenal gland (Qi et al. 2003; Chen

et al. 2006a, b). The crystal structure of DPL1 resembles that of DP4 (Strop

et al. 2004). DPL2 has additionally been associated with asthma.

Ex-DP4-Like Enzymes

In addition, enzymes structurally unrelated to the DP4 gene family have also been

reported to display DP4 activity. These include attractin (Duke-Cohan et al. 1996)

and N-acetyl alpha-linked acidic dipeptidases (NAALADases I, NAALADases II

and NAALADases L) from the metalloprotease clan MH, family M28B (Pangalos

et al. 1999). However, elevated DP4-like activity of the NAALADases has previ-

ously been detected only in crude extracts after cloning and expression, whereas

detailed kinetic analysis of expressed and purified NAALADase I did not reveal any

DP 4-like activity (Pangalos et al. 1999; Barinka et al. 2002). Likewise, the DP 4-

like activity of attractin in the serum has been controversially discussed for several

years (Friedrich et al. 2003; Duke-Cohan et al. 1995, 1996, 2004; Durinx

et al. 2000) and only recently been disproved (Friedrich et al. 2007).
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10.2.1.2 Family S28

As a member of clan SC, the S28 family has its catalytic residues in the order of Ser,

Asp and His located in a α/β hydrolase fold. Peptidases of S28 contain

exopeptidases that hydrolyze prolyl bonds, and are known only from eukaryotes.

Human members include Prolyl carboxypeptidase (PCP), dipeptidyl peptidase

2 (DP2) and thymus-specific serine protease (TSSP), though the catalytic specificity

of latter enzyme has not been elucidated yet. Intriguingly, while DP2 displays post-

proline dipeptidyl aminopeptidase activity like the DP4-gene family, its high

sequence homology to prolyl carboxypeptidase (PCP) designates it to family S28

(Soisson et al. 2010; Kozarich 2010).

Prolylcarboxypeptidase

PCP [EC 3.4.16.2] (prolycarboxypeptidase, Proline carboxypeptidase, lysosomal

Pro-X carboxypeptidase, S28.001) hydrolyzes amino acids from the C-terminal end

of oligopeptides having proline at the penultimate position (Skidgel et al. 1981). It

is found soluble in lysosomes, having a pH optimum of 5.5, but its enzymatic

activity is still retained at neutral pH (Odya and Erdos 1981; Odya et al. 1978). The

gene location of PCP is 11q14, encompassing 147 kb covering nine exons that code

for a 2.2 kb mRNA. The resulting protein contains 496 amino acids, composed of a

signal peptide (1–21), propeptide (22–45) and mature PCP (46–496) (Tan

et al. 1993; Watson et al. 1997; Abeywickrema et al. 2010). The enzyme is

functional as a homodimer and each subunit has a molecular weight of 58 kDa

(Tan et al. 1993). PCP is heavily N-glycosylated, containing six N-glycosylation

sites, and the enzyme has also four disulfide bonds (Chen et al. 2009; Soisson

et al. 2010). The crystal structure (pdb: 3N2Z) has only recently been elucidated,

revealing the typical catalytical α/β-hydrolase domain as well as a novel SKS

domain composed of five α-helices forming a novel bundle that caps the catalytical

α/β-hydrolase domain. Interestingly, the active site holding the catalytic triad

Ser179, Asp430 and His455 has apparently an additional charge-relay system that

links the catalytic His455 with His456 and Arg460 and might even suggest a kind of

dual catalytic triad bifurcated off Ser179, the ultimate nucleophile. Such His456/

Arg460 diad may explain the acidic pH optimum of PCP (Soisson et al. 2010;

Kozarich 2010). PCP is expressed in hypothalamus but also in lymphocytes,

fibroblasts, endothelial cells, kidney and lung. It is also found soluble in CSF

(Zhao et al. 2010a, b; Wardlaw 2011; Palmiter 2009; Kumamoto et al. 1981;

Odya and Erdos 1981; Odya et al. 1978). Substrate hydrolysis include inactivation

of Angiotensin II and III, desArg-bradykinnin and α-MSH, activation of

prekallikrein and degradation of YPRPIHPA peptide fragment of human endothelin

B-receptor-like protein 2 in CSF (Shariat-Madar et al. 2002, 2004; Moreira

et al. 2002; Wallingford et al. 2009; Zhao et al. 2010a, b; Yang et al. 1968).

Hence, it has been implicated in cardiovascular functions such as hypertension,
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blood coagulation, food-intake, tissue proliferation and smooth-muscle growth and

proposed as a pharmaceutical target for obesity, hypertension and anti-

inflammatory therapy (Adams et al. 2011; Mallela et al. 2009; Shariat-Madar

et al. 2010; Ngo et al. 2009; Diano 2011; Wang et al. 2006b; Zhou et al. 2010;

Zhu et al. 2010; Hagedorn 2011; Javerzat et al. 2009).

Dipeptidyl Peptidase 2 (DP2)

DP2 [EC 3.4.14.2] (DP7, quiescent proline cell dipeptidase, QPP, EC 3.4.14.2,

S28.002) is a proline specific serine protease, that hydrolyzes dipeptides from the

N-termini of tripeptides and small peptide fragments if proline, norisoleucine or to a

lesser extent alanine are at the penultimate position (Leiting et al. 2003; Maes

et al. 2005; Mentlein and Struckhoff 1989). DP2 has also been identified with

quiescent proline cell dipeptidase (QPP) based on genetic homology and kinetic

parameters (Araki et al. 2001; Leiting et al. 2003; Maes et al. 2005). The human

gene is located on chromosome 9q34.3 corresponding to 3p13 in rat and the human

gene encompasses 2,850 kb comprised of 13 exons. The soluble serine protease

contains a proform and has a length of 492 amino acids with a molecular weight of

58 kDa (Underwood et al. 1999; Chiravuri et al. 2000a; Maes et al. 2007). Glyco-

sylation and dimerization are required for the catalytic activity and latter occurs via

a leucine zipper motif, which is novel for proteases (Chiravuri et al. 2000a, b).

Recently, the crystal structure of DP2 was published in the Protein Data Bank

(Bezerra et al. 2012), revealing a α/β-hydrolase domain as well as a novel SKS

domain, comprised of 5 α-helices arranged in a helix bundle fold, capping the active
site. An insertion from the SKS domain to the active site results in steric hindrance

of larger substrates and contains Asp334 for anchoring N-terminus of the peptide

substrate.

The homodimer is located either in cellular vesicles that are distinct from

lysosomes with secretion being regulated by an increased Ca2+ flux, in lysosomes

and parts of Golgi complex or in lipofuscin granules (Chiravuri et al. 2000a;

Gorenstein and Ribak 1985; Gorenstein et al. 1985; Maes et al. 2007; McDonald

et al. 1968). In addition, in some brain fractions a membrane-associated form of

DP2 has also been reported and northern blot analysis of rat DP2 revealed two

spliced variants in the brain (Araki et al. 2001; Mentlein and Struckhoff 1989). DP2

is ubiquitously distributed with high expression in kidney, brain, testis, heart,

resting lymphocytes and differentiated macrophages (Gossrau and Lojda 1980;

Maes et al. 2006, 2007; Chiravuri et al. 1999; Underwood et al. 1999). Within

various brain regions, high enzyme activities were reported in rat pituitary, human

cerebellum and rat human hypothalamus (Maes et al. 2005). In contrast, others

found the highest level of DP2 activity in rat brain extracts from the circumven-

tricular organs and meninges, followed by cerebellum, hypothalamus, hippocam-

pus, striatum, subventricular zone (SVZ), amygdala, cortex and spinal cord

(Wagner et al. 2008). Furthermore, real-time RT-PCR analysis revealed the highest

expression of DP2 mRNA in CVOs followed by cerebellum, moderate levels in
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hypothalamus, hippocampus, amygdala, striatum, SVZ and spinal cord, whereas

cortex had the lowest mRNA (Wagner et al. 2008). Since it was previously thought

to be a lysosomal enzyme, its physiological function to date is unknown. However,

altered serum activities of DP2 have been associated with various pathogenic

conditions, such as Sjörgen Syndrome, rheumathoid arthritis, Lupus erythematosus,

various cancers and Parkinson’s disease (Maes et al. 2007). Lately, neurogenin 3-

specific DP2-/- deficiency revealed a phenotype with impaired glucose tolerance,

insulin resistance and visceral obesity (Danilova et al. 2009). Using chromogenic

substrates, DP2 displays post-proline dipeptidyl aminopeptidase activity similar to

DP4, however over a broad pH range with an acidic to neutral pH optimum

(Underwood et al. 1999; Mentlein and Struckhoff 1989; Leiting et al. 2003; Maes

et al. 2005, 2007). While DP2 readily hydrolyses tripeptides, its activity decreases

rapidly with increasing chain length of peptide. Thus, it was shown to cleave only

fragments of substance P1–4, bradykinin1–3 or bradykinin1–5 (Mentlein and

Struckhoff 1989; Brandt et al. 2006; Frerker et al. 2007). Recently the N-terminal

truncated tripeptide Gly-Pro-Glu (GPE) of IGF-1 was found to be a substrate of

DP2. GPE has been reported to be neuroprotective by stimulating acetylcholine

secretion and it has been associated with various neurodegenerative diseases such

as Huntington’s disease and AD. DP2 has been reported to be involved in apoptosis

as a decrease of DP 2 activity caused cells to exit their G0-phase in quiescent

lymphocytes and fibroblasts, resulting in an induction of apoptosis by up-regulation

of p53 and c-Myc as well as a down-regulation of Bcl-2 (Chiravuri et al. 1999;

Chiravuri and Huber 2000; Mele et al. 2009). Nevertheless, another study reported

participation in necrosis rather than apoptosis (Maes et al. 2006). Interestingly,

ADA was recently discovered to also bind to DP2 through with an order of

magnitude lower potency compared to DP4 (Sharoyan et al. 2008).

10.2.2 Metallo-peptidases of Clan MG

Peptidases of the clan MG are described as being co-catalytic having water as

nucleophile bound by two cobalt or manganese ions that are ligated by Asp, Asp,

His, Glu, Glu. The metal ligands are pentahedrally coordinated by a Glu and the

catalytic residues are three histidines. The MG clan contains only the family M24

that is divided into subfamilies M24A and M24B, respectively. The peptidases of

the two subfamilies are grouped together on the basis of a common ‘pitta-bread

fold’ comprised of both α-helices and an anti-parallel β-sheets within two structur-

ally similar domains that are thought to be derived from an ancient gene duplication

(Bazan et al. 1994). The active site is located between the two domains. The

subfamily M24B holds the unique proline-specific peptidases aminopeptidase P1

(AmpP1), aminopeptidase P2 (AmpP2), aminopeptidase P3 (AmpP3) and Prolidase

(PEPD), that are able to cleave the imidopeptide bond N-terminally of proline

(http://merops.sanger.ac.uk/cgi-bin/famsum?family¼m24b).

10 Proteases in the Nervous System 343

http://merops.sanger.ac.uk/cgi-bin/famsum?family=m24b
http://merops.sanger.ac.uk/cgi-bin/famsum?family=m24b


10.2.2.1 X-Prolyl Aminopeptidases

AmpP1

AmpP1 [EC 3.4.11.9] (X-prolyl aminopeptidases 1, XPNPEP1, M24.009) is a

soluble cytosolic protein, lacking the hydrophobic signal sequence at the

N-terminus and the GPI-anchor at the C-terminus (Cottrell et al. 2000a). The

human gene location is 10q25.3, spans 59 kb with 19 exons and yields a 2.5 kb

mRNA (Sprinkle et al. 2000). The resulting protein is a homodimer with each

subunit comprised of 623 amino acids and a molecular weight of 71 kDa (Vanhoof

et al. 1997a, b; Cottrell et al. 1998; Sprinkle et al. 2000). AmpP1 is not

glycosylated, but has N6-acetylation at Lys304 (Choudhary et al. 2009). Recently,

a 1.6 Å resolution structure of AmpP1 (pdb: 2CTZ) was elucidated, revealing an

atypical three domain structure, compared to two domains in bacterial X-Pro

aminopeptidase (pdb: 1A16) and prolidase (pdb: 2OKN_A). The three domains

are referred to as N-terminal domain I, middle domain II and C-terminal domain III,

containing the active site. While domain I and II are composed of a six-stranded

mixed β-sheet, flanked by six α-helices, domain III contains three β-sheets of

variable strands covered by six α-helices. The active site consists of three nucleo-
philic water molecules bound to two Mn2+ ions ligated by Asp415, Asp426, H489,

Glu523 and Glu537. The side-chains of His395, His485, His498 and Glu41,

surrounding the two Mn2+ ions are suggested to play a role in substrate recognition

and catalysis (Li et al. 2008). Due to its proline specificity, AmpP1 is suggested to

hydrolyze peptide hormones, neuropeptides such as tachykinins and otherwise

resistant dietary protein fragments, as deficiency of AmpP1 results in excretion of

large amounts of imino-oligopeptides. Thus, in vitro substrates of AmpP1 include

bradykinin, NPY, β-casomorphin, substance P (SP), [Tyr1]-melanostatin,

corticotropin-like intermediate lobe peptide (CLIP), IL-6, morphiceptin and kentsin

(Harbeck and Mentlein 1991; Rusu and Yaron 1992; Frerker et al. 2007). Unlike the

remaining proline-specific peptidases, AmpP1 is able to cleave Xaa-Pro-Pro-Yaa

peptides, such as bradykinin, catalyzing it in a divalent cation-dependent manner

(Griswold et al. 1996, 1999). AmpP1 is found in the brain parenchyma, particularly

in astrocytes, though its physiological function in brain has not been elucidated yet.

In addition, AmpP1 is ubiquitously distributed in peripheral tissues, with its highest

expression in pancreas, followed by heart and muscle (Mentlein et al. 1990; Frerker

et al. 2007).

AmpP2

AmpP2 [EC 3.4.11.9] (X-prolyl-aminopeptidase 2, XPNPEP2, EC 3.4.11.9,

M24.005) is a GPI-anchored membrane-bound aminopeptidase encoding for

673 amino acids with a molecular mass of 75.5 kDa. The human gene localization

is Xq25 encompassing 31 kb, containing 20 exons and a mRNA of 3.5 kb (Sprinkle
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et al. 1998; Venema et al. 1997). In addition to lipidation at Ala649 by

GPI-amidation, AmpP2 is also heavily N-glycosylated, with five sugar chains

contributing to about 15 % of the molecular weight, thereby increasing the

predicted molecular weight to about 90 kDa per subunit. However, the functional

enzyme forms a homooligomer of 217–360 kDa (Ersahin et al. 2005). Prior to

GPI-anchoring to the plasma membrane, the C-terminal propeptide has to be

removed from the precursor to yield the mature form of AmpP2. Currently, there

is no crystal structure of AmpP2 available, however, model building of the catalytic

C-terminal domain and site directed mutagenesis suggest an active site with two

Mn2+ ions ligated to Asp450, Asp461, His524, Glu555 and Glu569 as well as the

catalytic residues His430, His524 and His533, all located at the typical ‘pitta-bread

fold’ (Cottrell et al. 2000b). AmpP2 is highly expressed in kidney, followed by

lung, heart, placenta, liver, small intestine, colon as well as endothelial and smooth

muscle cells of capillaries and lymphatic vessels, but not in brain, skeletal muscle,

pancreas, spleen, thymus, prostate, testis, ovary, or leukocytes (Venema et al. 1997;

Cottrell et al. 2000b; Mentlein and Roos 1996; Ersahin et al. 2003; Taylor-McCabe

et al. 2001; Frerker et al. 2007). It hydrolyzes NPY, PYY, SP and bradykinin

(Medeiros and Turner 1994, 1996; Taylor-McCabe et al. 2001; Ersahin and

Simmons 1997; Orawski and Simmons 1995; Orawski et al. 1987; Maggiora

et al. 1999; Abid et al. 2009; Chappa et al. 2007). Though not expressed in brain

parenchyma, N-terminal truncation of NPY and SP by AmpP2 was detected in vitro

BBB studies, brain perfusion and sub-cellular membrane fraction, and therefore

implies expression of AmpP2 in the brain microvasculature (Frerker et al. 2007;

Chappa et al. 2006, 2007). Similar to AmpP1, AmpP2 is also able to cleave

Xaa-Pro-Pro-Yaa peptides such as inactivating bradykinin. Hence, it is predomi-

nantly involved in cardiovascular diseases, also associated with angioedema

induced by ACE inhibitors and the selective inhibitor Apstatin has been

investigated as potential drug candidate (Adam et al. 2002; Blais et al. 1999;

Ersahin et al. 1999; Ersahin and Simmons 1997; Taylor-McCabe et al. 2001;

Maggiora et al. 1999; Prechel et al. 1995; Wolfrum et al. 2001).

AmpP3

AmpP3 [EC 3.4.11.9] (X-prolyl aminopeptidase 3, XPNPEP3, M24.026) has been

discovered by nucleotide sequencing recently. Its gene location is 22q13.2,

encompasses 70.2 kb with 10 exons translating a 3 kb mRNA (O’Toole

et al. 2010). Two alternative spliced isoforms have been reported, determining

mitochondrial and cytosolic sub-cellular localization of AmpP3, respectively

(Ersahin et al. 2005). The resulting protein is composed of 507 amino acids with

a molecular weight of 51 kDa for the mature mitochondrial isoform and 57 kDa for

the immature cytosolic one. AmpP3 is ubiquitously expressed both at mRNA as

well as protein level with highest expression in heart followed by pancreas, kidney,

and testis then T cells, B cells, and monocytes. Transcripts encoding the predicted

mitochondrial protein predominated in all samples (O’Toole et al. 2010). Sequence
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analysis with AmpP1/2 and Prolidase points to two domains composed of an

N-terminal Aminopeptidase P domain and a C-terminal Prolidase domain, which

is also the catalytic domain (O’Toole et al. 2010). The enzyme is suggested to

display similar activities as AmpP1 and AmpP3, having a proposed active site of

two Mn2+ ions ligated by Asp331, Asp342, His424, Glu475 and Glu475 as deter-

mined by similarity. Substrates of AmpP3 were shown to be ciliary proteins.

Mutation of AmpP3 results in nephronophthisis-like nephropathy 1 (NPHPL1),

an autosomal recessive kidney disease with a phenotype of nephropathy, kidney

cysts, cardiomyopathy, hypertension, seizure, tremor, mental retardation,

subarchnoidal cysts, cerebellar vermis aplasia, retinal degeneration, hearing loss

and liver fibrosis (O’Toole et al. 2010).

10.2.2.2 Prolidase

Prolidase [EC 3.4.13.9] (imidodipeptidase, peptidase D, PEPD, EC3.4.13.9,

M24.007) catabolizes the resulting Xaa-Pro/Hyp dipeptides derived from the vari-

ous DP4-like enzymes to their respective amino acids (Cunningham and O’Connor

1997). The enzyme belongs to the clan MG, subfamily M24B, requires two Mn2+

ions to coordinate to Asp276, Asp287, His370, Glu412 and Glu452, and has the

catalytic residues H255, H366 and H377 (Besio et al. 2010). Its crystal structure

revealed the typical ‘pitta-bread fold’ comprised of 21 α-helices and 5 anti-parallel

β-sheets within two structurally similar domains, contributing 36 % and 16 % to the

overall crystal structure, respectively (pdb’s: 2OKN, 2IW2). It is ubiquitously

distributed in the cytosol of many tissues such as brain, kidney, heart, liver,

muscles, thymus, spleen, prostate, testis and placenta, where it exists as a

homodimer with a molecular weight of 54.3 kDa per subunit. Posttranscriptional

modifications include N-acetylation at Ala2 as well as phosphorylation at Thr188

and Thr487, respectively (Gevaert et al. 2005; Gauci et al. 2009; Beausoleil

et al. 2004). Tyr-phosphorylation was shown to activate the enzyme (Surazynski

et al. 2001). The gene is located at 19q12-q13.11, spans 130 kb and has 15 exons.

Natural mutations of PEPD, comprised of several point mutations and deletions,

result in prolidase deficiency (PD), a very rare autosomal recessive disorder

associated with massive iminodipeptiduria. The clinical phenotype of PD includes

skin ulcers, mental retardation, recurrent infections and abnormalities in collage-

nous tissues. However, these features are incompletely penetrant and highly vari-

able in both age of onset and severity. There is a tight linkage between the

polymorphisms of prolidase and the myotonic dystrophy trait as well as an

increased risk factor for developing Lupus erythematosus (Tanoue et al. 1990a, b,

c, 1991a, b; Endo et al. 1989a, b, 1990; Kikuchi et al. 2000; Ledoux et al. 1994,

1996; Forlino et al. 2002; Wang et al. 2006a; Falik-Zaccai et al. 2010; Lupi

et al. 2004, 2006; Shrinath et al. 1997). Treatment of PD involves administration

of L-proline and L-glycine containing ointments for skin, dietary supplementation

with L-proline and essential amino acids, as well as erythrocytes transfusion. In

addition to its Xaa-Pro dipeptidase activity, human recombinant prolidase also
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displays organophosphoric acid anhydrolase (OPAA) activity and is therefore

suggested as a treatment for organophosphorous toxins such as soman (Wang

et al. 2004, 2005, 2006c).

10.2.3 Metallo-peptidase of Clan MH

10.2.3.1 Prolinase

Prolinase [EC 3.4.13.18] (cytosol non-specific dipeptidase, carnosine dipeptidase

2, carnosinase 2, Pro-X-dipeptidase, peptidase A, EC3.4.13.18, M20.005)

catabolizes Pro-Xaa dipeptides into respective amino acids, displaying a pH opti-

mum between 8.0 and 9.5. However, amongst all the proline-specific peptidases

described above, it has the broadest specificity, since P1 can be occupied by any

amino acids (Teufel et al. 2003). The enzyme belongs to the clan MG, subfamily

20A, having the catalytic residues Asp101 and Glu166 and requiring two Mn2+ ions

to coordinate to His99, Asp132, Glu167, Asp195 and His445 (Unno et al. 2008).

The enzyme is strongly inhibited by p-hydroxymercurybenzoate and bestatin with

IC50s of 13 μM and 7 nM, respectively (Teufel et al. 2003). A 1.7 Å crystal

structure revealed a homodimer and each subunit is comprised of two domains

referred to as A and B. While domain A contains the metal and bestatin-binding

site, domain B provides the major interface for dimerization. Since bestatin bound

to domain A of one subunit also interacts with the domain B of the other subunit, the

dimer interphase is suggested to be involved in the substrate hydrolysis, which

would also require structural flexibility between the domain A and B (Unno

et al. 2008). The CNDP2 gene is located at 18q22.3, encompasses 27 kb containing

14 exons. The 5 kb mRNA encodes for 475 amino acids with a molecular weight of

53 kDa per subunit (McDonough et al. 2009; Wanic et al. 2008; Teufel et al. 2003).

Three potential N-glycosylation sites were identified in the protein sequence and

post-transcriptional modifications include N-acetylation at Ala2 as well as

N6-acetylation at Lys9 (Choudhary et al. 2009). The homodimer is found in the

cytosol, ubiquitously distributed in various tissues both at mRNA as well as protein

levels (Teufel et al. 2003). In brain, its protein is highly expressed in the

parafascicular nucleus of the thalamus, tuberomammillary nucleus of the hypothal-

amus and the mitral cell layer of the olfactory bulb, while in striatum only the

neuronal process, but not cell bodies are stained. No expression could be detected in

glial cells (Otani et al. 2005, 2008). In CNS and autonomic nervous system, the

major substrate of prolinase is L-carnosine, a pseudodipeptide comprised of

β-alanyl-L-histidine that has neuroprotective functions by intra-cellular buffering,

chelating capabilities, anti-oxidant properties and free radical scavenger (Balion

et al. 2007; Min et al. 2008; Unno et al. 2008; Stvolinsky et al. 1999; Boldyrev

1993, 1994; Boldyrev et al. 1999a, b, 2010; Klebanov et al. 1997, 1998). It is also

reported to have neurotransmitter properties in the olifactory system and hypotha-

lamic network (Unno et al. 2008; Bonfanti et al. 1999; De Marchis et al. 2000a, b;
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Tabakman et al. 2002). L-carnosine is secreted via ependymal and glial cells and it

was shown to protect β-amyloid induced cell death in granular neurons of the

cerebellum by free radical scavenging (Bonfanti et al. 1999; De Marchis

et al. 1997, 2000b; Biffo et al. 1990a, b; Boldyrev et al. 2004b). Methylation and

acetylation results in the formation of = beta-Alanyl-N(pi)-methyl-L-histidine and

N-acetyl carnosine, respectively, being less neuroprotective though (Boldyrev

2000; Bonfanti et al. 1999; Boldyrev and Abe 1999; Boldyrev et al. 1995). Based

on its neuroprotecting properties, L-carnosine, its respective analogues as well as

prolinase-resistant analogues have been investigated as pharmaceutical target for

neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease,

ischemia and aging (Boldyrev et al. 1999a, 2001, 2004a, b, 2010; Boldyrev 2005;

Pegova et al. 2000; Chasovnikova et al. 1990; Gallant et al. 2000; Stvolinsky

et al. 1999, 2000, 2003, 2010; Quinn et al. 1992; Min et al. 2008; Orioli

et al. 2011; Vistoli et al. 2009). Polymorphism of carnosinase alias prolinase is

associated with diabetic nephropathy in type 1 diabetes, though this is currently

controversially discussed (Ahluwalia et al. 2011; McDonough et al. 2009; Wanic

et al. 2008).
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