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Abstract Red blood cell (RBC) lysis and iron release con-
tribute to intracerebral hemorrhage (ICH)-induced brain 
injury. Tissue-type transglutaminase (tTG), which has a role 
in neurodegeneration, is upregulated after ICH. The current 
study investigated the effect of RBC lysis and iron release on 
brain tTG levels and neuronal death in a rat model of ICH. 
This study had three parts: (1) Male Sprague-Dawley rats 
received an intrahippocampal injection of 10 mL of either 
packed RBCs or lysed RBCs; (2) rats had a 10 mL injection 
of either saline, hemoglobin or FeCl

2
; (3) rats received a 

10 mL injection of hemoglobin and were treated with an iron 
chelator, deferoxamine or vehicle. All rats were killed 24 h 
later, and the brains were sectioned for tTG and Fluoro-Jade 
C staining. Lysed but not packed RBCs caused marked tTG 
upregulation (p < 0.05) and neuronal death (p < 0.05) in the 
ipsilateral hippocampus CA-1 region. Both hemoglobin and 
iron mimicked the effects of lysed RBCs, resulting in tTG 

expression and neuronal death (p < 0.05). Hemoglobin-
induced tTG upreglution and neuronal death were reduced 
by deferoxamine (p < 0.05). These results indicate that 
RBC lysis and iron toxicity contribute to neurodegenera-
tion after ICH.

Keywords Cerebral hemorrhage · Iron · Tissue-type trans-
glutaminase · Neurodegeneration

Introduction

Intracerebral hemorrhage (ICH) is a subtype of stroke with 
high morbidity and mortality [1]. Community-based studies 
have indicated a mortality of more than 40%, and many sur-
vivors are left with significant neurological deficits [2, 3]. 
Previous studies have demonstrated that lysed red blood cells 
(RBC) but not packed RBCs result in marked brain edema at 
24 h in a rat ICH model [4]. Both in vivo and in vitro experi-
ments have demonstrated that hemoglobin and its degrada-
tion products, especially iron, contribute to brain injury after 
ICH [5, 6].

Tissue-type transglutaminase (tTG) is abundantly expressed 
in the brain, and upregulation of tTG may contribute to the 
pathology of several neurodegenerative conditions, including 
Alzheimer’s disease, Parkinson’s disease, and Huntington’s 
disease [7, 8]. Neurodegeneration also occurs after ICH, and 
evidence indicates that ICH induces perihematomal tTG 
upregulation and that cystamine, a tTG inhibitor, can reduce 
ICH-induced brain swelling and neurological deficits [3]. 
Fluoro-Jade C staining has been used to detect neuronal 
degeneration [9], and we have developed the intra-hippocam-
pal injection model in rats [10]. In this study, we investigated 
the effect of iron on the expression of tTG and neuronal death 
in the hippocampus.
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Materials and Methods

Animal Preparation and Intracerebral Infusion

The University of Michigan Committee on the Use and Care 
of Animals approved the animal protocols. Adult male 
Sprague-Dawley rats (275–350 g, Charles River Laboratories, 
Portage, MI) were anesthetized with pentobarbital (45 mg/kg, 
i.p.). Physiological parameters were recorded immediately 
before intrahippocampal injections and were in the normal 
range. Core body temperature was maintained at 37.5°C. 
Saline, hemoglobin (Hb), FeCl

2
, packed RBCs and lysed 

RBCs were infused into the right hippocampus stereotacti-
cally (coordinates: 3.8 mm posterior, 3.2 mm ventral, and 
3.5 mm lateral to the bregma).

Experiment Groups

This study has three parts: (1) rats (n = 6, each group) received 
an intrahippocampal injection of 10 mL of either packed 
RBCs or lysed RBCs; (2) rats (n = 6 each group) had a 10 mL 
injection of saline, bovine Hb (150 mg/mL) or FeCl

2
 (1 mM); 

(3) rats (n = 6 each group) received a 10 mL injection of 
bovine Hb (150 mg/mL) and were treated with either defer-
oxamine (100 mg/kg, i.p. given immediately after Hb injec-
tion and then every 12 h) or vehicle. All rats were killed 24 h 
later, and the brains were sectioned for immunohistochemis-
try and Fluoro-Jade C staining.

Immunohistochemistry

Rats were anesthetized with pentobarbital (60 mg/kg; i.p.) 
and underwent transcardiac perfusion with 4% paraformalde-
hyde in 0.1 mol/L (pH 7.4) phosphate-buffered saline. Brains 
were removed and kept in 4% paraformaldehyde for 6 h, then 
immersed in 30% sucrose for 3 to 4 days at 4°C. Brains were 
then placed in optimal cutting temperature embedding com-
pound (Sakura Finetek, Inc., Torrance, CA) and 18-mm sec-
tions taken on a cryostat. Sections were examined using the 
avidin-biotin complex technique. The primary antibody was 
mouse anti-transglutaminase-2 monoclonal antibody (1:200 
dilution, NeoMarkers, Fremont, CA), and the secondary anti-
body was anti-mouse immunoglobulin G antibody (1:500 
dilution, Vector Laboratories, Inc., Burlingame, CA). Normal 
horse immunoglobulin G (Vector Laboratories, Inc. 
Burlingame, CA) was used as a negative control. The number 
of tTG positive cells in the CA1 region was counted.

Fluoro-Jade C Staining

Brain sections were kept in 0.06% potassium permanganate 
(KMnO

4
) for 15 min and rinsed in distilled water. Sections 

were stained by gently shaking for 30 min in a working 
solution of Fluoro-Jade C (10 mL 0.01% Fluoro-Jade C in 
distilled water and 90 mL 0.1% acetic acid), then rinsed in 
distilled water three times. After drying with a blower, 
slides were quickly dipped into xylol and covered after 
mounting with DPX. Fluoro-Jade-positive C cells were 
counted in the CA1 on the pictures taken by a digital cam-
era at high power (×40 magnification) [11].

Statistical Analysis

All the data in this study are presented as mean ± SD. Data 
were analyzed by Student’s t test. A level of P < 0.05 was 
considered statistically significant.

Results

After lysed RBC injection, tTG positive cells were mostly 
expressed in the ipsilateral hippocampus with very few in the 
contralateral hippocampus. The number of tTG positive cells 
was significantly higher in the ipsilateral CA-1 area after 
injection of lysed RBCs compared to packed RBCs (91 ± 22 
vs. 29 ± 13 cells/mm, p < 0.01, Fig. 1a). Lysed RBCs, but not 
packed RBCs, also induced more Fluoro-Jade C-positive 
cells in the ipsilateral CA-1 region (81 ± 28 vs. 15 ± 11 cells/mm, 
n = 6, p < 0.01; Fig. 1b).

Intrahippocampal injection of Hb and iron mimicked 
the effects of lysed RBCs on tTG expression and neuronal 
degeneration. Much higher numbers of tTG positive cells 
were induced in the ipsilateral hippocampus CA-1 by Hb 
(125 ± 44 cells/mm) and FeCl

2
 (127 ± 35 cells/mm) com-

pared to saline (6 ± 6 cell/mm; p < 0.01, Fig. 2a). Also, 
there were many more Fluoro-Jade-positive cells in the 
ipsilateral hippocampus after Hb (92 ± 31 cells/mm) and 
iron injection (110 ± 35 cells/mm) than after saline injec-
tion (7 ± 6 cells/mm, p < 0.01, Fig. 2b).

Deferoxamine was used to examine the effect of iron in 
Hb-induced tTG upregulation and neuronal death. Hb-induced 
neuronal degeneration was abolished by deferoxamine (tTG 
positive cells: 29 ± 13 vs. 101 ± 45 cell/mm in vehicle-treated 
group, p < 0.01, Fig. 3a; Fluoro-Jade C-positive cells: 48 ± 30 
vs. 100 ± 26 cells/mm in vehicle-treated group, p < 0.05, 
Fig. 3b).
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Discussion

In this study we demonstrate: (1) lysis of RBCs induces brain 
tTG expression and causes neuronal death in the hippocam-
pus; (2) Hb and iron can mimic the effect of lysed RBCs, 
causing expression of tTG in hippocampus and resulting in 

neuronal death; (3) deferoxamine blocks Hb-induced tTG 
upregulation and neuronal death.

Tissue-type transglutaminase (tTG) has been implicated 
in various neurodegenerative diseases. tTG has a role in neu-
ral development and function [8], but several studies have 
demonstrated that tTG is present in cells and tissues during 
apoptotic cell death and is associated with apoptosis [12]. 
Thus, upregulation of brain tTG has been found in different 
animal models of CNS diseases, including cerebral isch-
emia, traumatic brain injury, calcium-induced hippocampal 
damage and spinal cord injury [13–16]. Our recent study 
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Fig. 1 tTG (a) and Fluoro-Jade C (b) positive cells in the ipsilateral 
hippocampus CA-1 area 24 h after an injection of 10 mL lysed RBCs or 
packed RBCs. Values are expressed as mean ± SD, n = 6, #p < 0.01 vs. 
packed RBCs
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Fig. 2 tTG (a) and Fluoro-Jade C (b) positive cells in the ipsilateral 
hippocampus CA-1 area 24 h after injection of 10 mL saline, Hb 
(150 mg/mL) or FeCl

2
 (iron, 1 mM) into the right hippocampus. Values 

are mean ± SD, n = 6, #p < 0.01 vs. saline
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showed that brain tTG levels are increased in the perihema-
tomal area after ICH, and cystamine, a tTG inhibitor, reduces 
ICH-induced brain edema and neurological deficits [3]. 
Release of Hb from RBCs and Hb breakdown products cause 
brain damage after ICH. Iron overload occurs in the brain 
after ICH, and intracerebral infusion of iron causes brain 
damage, such as brain edema and oxidative brain injury [17]. 
The results from our current study suggest that iron can 
upregulate brain tTG and that such upregulation may con-
tribute to iron-induced brain damage.

To clarify the role of iron in Hb-induced tTG upregula-
tion, an iron chelator, deferoxamine, was used. We found that 
deferoxamine attenuates Hb-induced upregulation of brain 
tTG, suggesting that the effects of Hb on tTG are, at least 
partially, mediated by iron. The mechanisms by which Hb 

and iron upregulate tTG still need to be fully elucidated. 
However, it is known that oxidative stress can upregulate 
tTG in neuronal and astrocyte cultures [18, 19]. This effect 
may be via both transcriptional regulation [18, 19] and 
 inhibition of proteasomal degradation [20]. In conclusion, 
iron can increase brain tTG levels and cause brain injury.
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Fig. 3 tTG (a) and Fluoro-Jade C (b) positive cells in the ipsilateral 
hippocampus CA-1 area 24 h after an injection of 10 mL hemoglobin 
(150 mg/mL) in rats treated with either deferoxamine (100 mg/kg) or 
vehicle. Values are mean ± SD, n = 6, #p < 0.01, *p < 0.05 vs. vehicle-
treated group
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