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Abstract  Brain arteriovenous malformations (AVMs) are a 
rare but important cause of intracranial hemorrhage (ICH) in 
young adults. In this paper, we review both human and animal 
studies of brain AVM, focusing on the: (1) natural history of 
AVM hemorrhage, (2) genetic and expression studies of AVM 
susceptibility and hemorrhage, and (3) strategies for develop-
ment of a brain AVM model in adult mice. These data target 
various mechanisms that must act in concert to regulate 
normal angiogenic response to injury. Based on the various 
lines of evidence reviewed in this paper, we propose a 
“response-to-injury” model of brain AVM pathogenesis.

Keywords  Brain arteriovenous malformations · Intracranial 
hemorrhage · Gene expression · Genetics · Angiogenesis · 
Inflammation · Animal models

Brain arteriovenous malformations (AVM) represent a 
relatively infrequent but important source of neurological 
morbidity in relatively young adults [1]. Brain AVMs have a 
population prevalence of 10–18 per 100,000 adults [2, 3], 
and a new detection rate (incidence) of approximately 1.3 
per 100,000 person-years [4, 5]. The basic morphology is of 
a vascular mass, called the nidus, that directly shunts blood 
between the arterial and venous circulations without a true 
capillary bed. There is usually high flow through the feeding 
arteries, nidus, and draining veins. The nidus is a complex 
tangle of abnormal, dilated channels, not clearly artery or 
vein, with intervening gliosis.

Seizures, mass effect, and headache are causes of associated 
morbidity, but prevention of new or recurrent intracranial 
hemorrhage (ICH) is the primary rationale to treat AVMs, 
usually with some combination of surgical resection, embo-
lization, and stereotactic radiotherapy. The risk of spontane-
ous ICH has been estimated in retrospective and prospective 
observational studies to range from 2% to 4% per year [6], but 
approximately 50% of patients present initially with a bleed. 
Other than non-specific control of symptoms, e.g., headache 
and seizures, primary medical therapy is lacking.

Treatment of unruptured AVMs is controversial and has 
led to an ongoing randomized clinical trial to test whether the 
best medical therapy has better outcomes than procedural 
intervention (http://clinicaltrials.gov/ct/show/NCT00389181). 
Because of the complexity of AVM treatment and a wide range 
of expert opinions, it is unlikely that a single clinical trial can 
settle all of the questions related to management strategies. 
Thus, understanding the pathogenesis of AVM formation and 
progression to ICH will be important for informing patient 
management decisions.

In this review, we propose a novel “response-to-injury” 
paradigm to explain sporadic brain AVM pathogenesis, based 
on findings from clinical research studies of AVM patients 
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and animal models investigating AVM formation to date. 
Figure 1 shows a speculative synthesis of pathways involved 
in AVM pathogenesis. Inciting event(s), while not known, 
might include sequelae of even modest injury from an other-
wise unremarkable episode of trauma, infection, inflamma-
tion, irradiation, or a mechanical stimulus such as 
compression. The normal response to these inciting events 
would involve angiogenesis, endothelial mitogenesis, and 
vascular stabilization. However, when superimposed on an 
underlying structural defect, such as a microscopic develop-
mental venous anomaly or some sort of venous outflow 
restriction in a microcirculatory bed, or an underlying genetic 
background, such as mutations in key angiogenic genes, the 
normal injury response is shifted towards an abnormal dys-
plastic response. In the next few sections, we will review the 
available data on factors involved in the abnormal “response-
to-injury” in AVMs.

Evidence for Abnormal Angiogenesis  
and Inflammation in AVM

Studies of surgically resected AVM tissue suggest an active 
angiogenic and inflammatory lesion rather than a static con-
genital anomaly. Several groups [7, 8] have shown that a 

prominent feature of the AVM phenotype is relative overex-
pression of vascular endothelial growth factor (VEGF-A) at 
both the mRNA and protein level. Extrapolating from animal 
models, VEGF may contribute to the hemorrhagic tendency 
of AVMs [9]. The vascular phenotype of AVM tissue may be 
explained, in part, by an inadequate recruitment of peri-
endothelial support structures, which is mediated by angio-
poietins and TIE-2 signaling. For example, angiopoietin-2 
(ANG-2), which allows loosening of cell-to-cell contacts, is 
overexpressed in the perivascular region in AVM vascular 
channels [10].

A key downstream consequence of VEGF and ANG-2 
signaling, contributing to the angiogenic phenotype, is matrix 
metalloproteinase (MMP) expression. MMP-9 expression, in 
particular, appears to be at least an order of magnitude higher 
in AVM than in control tissue [11, 12], with levels of natu-
rally occurring MMP inhibitors, TIMP-1 and TIMP-3, also 
increased, but to a lesser degree. Additional inflammatory 
markers that are overexpressed include myeloperoxidase 
(MPO) and interleukin 6 (IL-6), both of which are highly 
correlated with MMP-9 [11, 13]. MMP-9 expression is cor-
related with the lipocalin-MMP-9 complex, suggesting neu-
trophils as a major source. In a subset of unruptured, 
non-embolized AVMs, neutrophils (MPO) and macrophages/
microglia (CD68) were all prominent in the vascular wall and 
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Fig. 1  “Response-to-injury” paradigm for formation of brain AVMs. In 
the normal circulation, an injury upregulates the expression of angio-
genic factors, such as VEGF, which induces EC mitogenesis; newly 
formed vessels will develop into a stable neovasculature under normal 
conditions (gray arrow). In addition to EC mitogenesis, formation of 
stable vessels also involves recruitment of mural cells including peri-
cytes and, in the case of arterial or venous structures, smooth muscle. 
All of these processes involve TGF-b signaling. The blue box on the 
left details the canonical TGF-b signaling pathway. The genes that are 
mutated in HHT are circled in red; BMP-9 may also be a physiological 

ligand for ALK-1 signaling. In the presence of certain genetic back-
grounds, this otherwise normal injury repair process can lead to a vas-
cular dysplastic response (red arrow) when signaling through aberrant 
ALK-1 and/or ENG, or in a closely related pathway (question marks). 
Other contributory pathways may include EFNB2 and EPHB4 imbal-
ance, possibly through involvement of Notch signaling. Additional 
modifier influences are indicated, and may include increased endothe-
lial shear stress from the high flow rates through a fistulous A-V con-
nection. Inflammation and involvement of circulating precursor cells 
may also be relevant
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intervening stroma of AVM tissue, whereas T and B lympho-
cytes were present but rarely observed [14]. Higher immuno-
globulin levels have been reported in AVM tissue than in 
control brain [15].

Exactly how the dysplastic response propagates is not 
known, but recruitment of progenitor cell populations may 
be one source influencing AVM growth and development, 
and is an area in need of further exploration. For example, 
endothelial progenitor cells (EPCs) are present in the nidus 
of brain and spinal cord AVMs, and may mediate pathologi-
cal vascular remodeling and impact the clinical course of 
AVMs. Gao et  al. demonstrated that both brain and spinal 
AVM tissues displayed more CD133-, SDF-1-, and CD68-
positive signals than epilepsy and basilar artery control tis-
sues [16]. EPCs, identified as CD133 and KDR double 
stained-positive cells, were increased in the brain and spinal 
cord AVM nidus, mainly at the edge of the vessel wall. The 
expression of SDF-1 was co-localized with CD31-positive 
and a-smooth muscle cell expression, and was predomi-
nantly found within the vessel wall. More generally, circulat-
ing bone-marrow derived cells have a major role in both 
microcirculatory angiogenesis [17, 18] and conductance ves-
sel remodeling [19, 20]. If AVM pathogenesis involves these 
two processes, it is reasonable to infer that bone-marrow 
derived cells may have an underappreciated role in lesion 
formation and growth. An unresolved issue with all stem cell 
interactions is the extent to which progenitor cells actually 
integrate into existing tissue compartments, or whether they 
provide a nursing function by supplying critical components 
of the repair response such as cytokines, growth factors, and 
enzymes to the tissue, i.e., do progenitor cells supply “troops” 
or merely “ordinance.”

Evidence for Genetic Influences in AVMs

Candidate genes and pathways for brain AVM pathogene-
sis have been suggested by Mendelian disorders, which 
exhibit AVMs as part of their clinical phenotype, and gene 
expression studies. AVMs in various organs, including the 
brain, are highly prevalent in patients with hereditary hem-
orrhagic telangiectasia (HHT, OMIM#187300), an auto-
somal dominant disorder of mucocutaneous fragility. 
Compared to sporadic lesions, brain AVMs in HHT tend to 
be smaller and are more likely to have single draining 
veins, be located superficially, and be multiple. However, 
they are generally similar to the sporadic lesions and can-
not be distinguished individually on the basis of their 
angioarchitecture.

The two main subtypes of HHT (HHT1 and 2) are caused 
by loss-of-function mutations in two genes [21] originally 
implicated in TGF-b signaling pathways (Fig. 1). The first is 
endoglin (ENG), which encodes an accessory protein of 
TGF-b receptor complexes. The second is activin-like kinase 

1 (ALK1, or ACVLR1), which codes for a transmembrane 
kinase also thought to participate in TGF-b signaling. There 
are hundreds of reported mutations in ALK1 and ENG [22], 
but the functional effect appears to be haplo-insufficiency 
rather than a mutation-specific set of dysfunctions. A third 
candidate gene for AVM pathogenesis is SMAD4, encoding 
a downstream participant in TGF-b and bone morphogenic 
protein (BMP) signaling. SMAD4 is mutated in a combined 
syndrome of juvenile polyposis and HHT [23]. These HHT 
mutations can be viewed as risk factors for brain AVM since 
the prevalence in HHT1 (ENG) is 1,000-fold higher and 
HHT2 (ALK1) is 100-fold higher compared to the prevalence 
of brain AVMs in the general population (10/100,000) [24].

At the earliest stages of vascular development, mice 
lacking Alk-1 (Acvrl1) form systemic A-V fistulae from 
fusion of major arteries and veins [25]. Endothelial cell-
specific ablation of the murine Alk-1 gene causes vascular 
malformations to form during development, whereas mice 
harboring an EC-specific knockout of Alk-5 (the type I 
TGF-b receptor) or Tgfbr2 show neither vascular malfor-
mation formation nor any other perturbation in vascular 
morphogenesis [26]. The exact signaling pathways for 
ALK-1 and ENG are complex and interrelated, and their 
relative importance and cellular specificity are controversial 
[27]. ENG interacts with multiple TGF-b-related signaling 
pathways and interacts with TGFBR2 (the type II TGF-b 
receptor) as well as with type I TGF-b receptors, ALK-1 
and ALK-5 [28]. ENG can also bind ligands besides TGF-b, 
including activins and BMP family members [29, 30]. 
Regardless of the exact signaling mechanism leading to 
vascular malformation, it is clear that mutations and likely 
genetic variation in TGF-beta signaling genes are important 
players in the “response-to-injury” paradigm of AVM 
pathogenesis.

Candidate Gene Studies in Non-HHT  
AVM Patients

The mechanism of AVM initiation is as yet unknown. Even if 
it involves a structural aberration or mechanical insult – per 
se not a heritable trait – the subsequent growth and behavior 
of the lesion may still be influenced by genetic variation. For 
example, multiple genetic loci influence VEGF-induced 
angiogenesis [31, 32]. Therefore, a pathogenesis that involves 
a “response-to-injury” at any level may be at least partially 
influenced by heritable aspects of such a response.

Candidate gene studies of sporadic AVM cases have iden-
tified single nucleotide polymorphisms (SNPs) in several 
genes associated with risk of AVM susceptibility and/or pro-
gression to ICH. Previously, SNPs in ALK1 (IVS3-35A>G) 
and ENG (207G>A) were found to be associated with an 
increased risk of AVM [33]. The ALK1 finding was later 
replicated in an independent cohort of AVM patients from 
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Germany [34, 35]. Additionally, common SNPs in interleu-
kin (IL) genes have been associated with increased risk of 
AVM among certain race-ethnic groups. Among Hispanics, 
a promoter SNP in IL-6 (–174G>C) was associated with a 
two-fold increased risk of AVM after adjusting for age, sex, 
and genetic ancestry. Among self-reported Caucasians, com-
mon SNPs in IL-1b, two promoter (–31T>C and –511C>T) 
and one exonic (+3953C>T), were also associated with an 
increased risk of AVM susceptibility [36]. The IL-1b pro-
moter polymorphisms have also been reported to have func-
tional effects on IL-1b transcription. Thus, genetic variation 
in these cytokines may contribute to AVM pathogenesis by 
enhancing or maintaining a proinflammatory state necessary 
for lesion formation.

Evidence for genetic influences on the clinical course of 
AVM rupture resulting in intracranial hemorrhage (ICH) has 
also been reported in three different settings: presentation 
with ICH [36–38], new ICH after diagnosis [39, 40], and ICH 
after treatment [41]. The same IL-6 promoter polymorphism 
(–174G>C) was associated with clinical presentation of ICH 
[37], and the high-risk G allele correlated with increasing 
IL-6 mRNA and protein levels in AVM tissue [13]. More 
recently, SNPs in the EPHB4 gene, encoding a tyrosine kinase 
receptor involved in embryogenic arterial-venous determina-
tion, were also reported to be associated with increased risk of 
ICH presentation [38]. Loss of function mutations in EphB4 
(receptor) and Efnb2 (ligand) cause vascular defects and AVM 
formation in mice similar to that observed in Notch1 gain-of-
function mutants, but these results suggest that different 
mechanisms can lead to the same phenotype [42].

Not surprisingly, SNPs in inflammatory genes also appear 
to influence the risk of ICH in the natural course of AVMs, 
including promoter SNPs in TNF-a (–238G>A) [39] and 
IL1B (–31T>C and –511C>T) [36]. In addition to their asso-
ciation with spontaneous ICH in the natural, untreated 
course, both APOE e2 [40] and TNF-a-238 A [39] alleles 
appear to confer greater risk for post-radiosurgical and post-
surgical hemorrhage [41].

Genome-Wide SNP and Expression Studies  
in AVM Patients

A drawback of candidate gene studies is that, while they are 
hypothesis driven, they represent at best an educated guess 
as to which genes are involved. An alternative approach is to 
conduct a genome-wide association (GWAS) or expression-
profiling study. The GWAS approach relies upon scanning 
all common variations in the genome utilizing microarrays 
that feature hundreds of thousands to millions of SNPs or 
probes covering known genes. GWAS can identify associ-
ated genes if the causal variants are common in the general 

population and have shown moderate success for several 
common complex diseases. An advantage of the GWAS 
approach is the ability to uncover completely novel biologi-
cal mechanisms. For example, inflammation was not previ-
ously known to be causally involved in age-related macular 
degeneration (AMD), but a series of studies published in 
2005, including the first successful example of GWAS [43], 
implicated the Y204H polymorphism in the complement 
factor H gene with risk of AMD [44]. These genetic findings 
were subsequently replicated in several independent cohorts 
and have paved the way for development of new therapeutic 
interventions [44]. Preliminary results from the first GWAS 
study in Caucasian brain AVM patients have recently been 
reported [45].

Genome-wide expression profiling can also be used to 
identify genes that are likely to have a functional role in the 
disease process. The basic premise is that different patient 
groups (diseases) can be distinguished by their gene expres-
sion “signature,” defined as the unique and consistent pattern 
of up- and down-regulation of genes. Two small genome-
wide expression studies of brain AVM tissue have identified 
overexpression of inflammatory and angiogenesis-related 
genes, including VEGFA, ENG, ANGPT2, ITGAV, VEGFR1 
(FLT1), and MMP9 [7, 46]. Decreased expression was 
observed for TIE1, TEK (TIE2), and ANGPT1 [7, 46].

Increasingly, there is interest in performing genome-wide 
expression profiling of peripheral blood to identify vascular 
disease-specific gene expression signatures that may serve as 
clinically useful molecular biomarkers [47–50]. Identifying 
blood biomarkers for ICH may have clinical utility in identi-
fying high-risk AVM patients, especially those who come to 
clinical attention without ICH. The first such study in brain 
AVM patients has recently been published in abstract form 
[51], demonstrating differential blood expression profiles 
in  ruptured compared to unruptured brain AVM patients. 
Pathway analysis of differentially expressed genes impli-
cated inflammatory pathways and VEGF, MAPK, and Wnt 
signaling, which has relevance for AVM model development 
as discussed below. Integration of data from multiple 
genome-wide approaches, including both SNP genotype and 
gene expression data, may offer additional insight into dis-
ease mechanisms.

Experimental AVM Models

Model systems for studying AVM are needed to test mecha-
nistic hypotheses and develop novel therapies. We have pre-
viously discussed the development of cerebral microvascular 
dysplasia, a surrogate model for brain AVM [52]. There has 
been considerable progress in AVM model development  
during the past year.
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A logical approach to animal models is to focus on genes 
that are clearly related to the human disease phenotype, 
which for AVM are those genes described above leading to 
HHT. It is known that both Eng+/– [53] and Alk1+/– [54] 
adult mice develop vascular lesions in various organs, but 
spontaneous lesions in the brain are quite modest, and only 
seen in older Eng+/– mice using scanning electron micros-
copy [55]. Our group showed that more pronounced forms of 
cerebral microvascular dysplasia can be induced using VEGF 
stimulation in Eng+/– or Alk1+/– mice [56–58], which can 
be enhanced by local increases in tissue perfusion rates in the 
Alk1+/– background [56]. Recently, we found that, for a 
given degree of virally mediated VEGF overexpression, 
Eng+/– mice have more severe cerebrovascular dysplasia 
than Alk1+/– mice, which simulates the relative penetrance 
of brain AVM in HHT patients (HHT1 > HHT2) (Fig.  2c) 
[57]. These experiments result in enlarged, dysmorphic vas-
cular structures at the capillary level, not the large vessels 
seen in the human disease.

Oh and colleagues have developed several innovative 
inducible knockout systems using a novel endothelial Cre 
transgenic line [26, 59]. Antenatal conditional deletion of 
Alk1 causes severe cerebrovascular dysplasia and apparent 
fistula formation (Fig.  2a). Interestingly, conditional Alk1 
deletion in adult mice induced AV fistulas and hemorrhage in 
the lung and GI tracks, but not in skin or brain. Importantly, 
upon induction of skin wounding, Alk1 deleted mice devel-
oped vascular dysplasia and direct A-V connections, sug-
gesting an abnormal response to injury (Fig. 2b). Direct A-V 
connections have also been detected in the retina of Eng-
deficient neonatal mice [60]. The combination of local ang
iogenic stimulation (Matrigel + VEGF/FGF) and Eng loss 
led to gross venous enlargement [60]. These results suggest 
that physiological or environmental factors, in addition to 
genetic variation, are required for Alk1 and Eng-deficient 
vessels to develop vascular malformations in adult mice. In 
support of this notion, Walker et al. recently described cere-
brovascular dysplasia and apparent A-V shunting after focal 
VEGF stimulation in mice subjected to regional conditional 
Alk1 deletion [61].

An additional mechanism of potential interest – especially 
to the phenomenon of AVM rupture – was suggested by a 
recent study by Lebrin et  al. [62]. Thalidomide reduced 
epistaxis and enhanced blood vessel stabilization in nasal 
mucosa of HHT patients. In Eng+/– mice, thalidomide treat-
ment stimulated mural cell coverage and thus rescued vessel 
wall defects partially through upregulation of platelet-derived 
growth factor-B (PDGF-B) expression in endothelial cells 
and stimulated mural cell activation.

Notch signaling appears important for the determination 
of arterial and venous fate, a process that seems to depend on 
local levels of VEGF [63]. There is empirical evidence that 
proteins involved in Notch signaling – including the receptor, 

its ligands, and downstream signals – are expressed in excised 
surgical specimens [64, 65]. Animal experiments support a 
potential link with the human disease. Using conditional 
endothelial expression, Murphy and colleagues used a tetra-
cycline-responsive promoter to suppress overexpression dur-
ing development and then, by withdrawal of doxycycline, 
overexpressed the intracellular signaling portion of Notch-4 
(int3) in early post-natal mice. They observed a rapidly lethal 
phenotype, which mimicked aspects of human AVMs, includ-
ing dysplastic posterior fossa vasculature with apparent A-V 
shunting.

Taken together, both genetic manipulation and angiogenic 
stimulation appear to be important aspects of AVM model 
development. The angiogenic stimulus can be varied, for 
example via injury, exogenous growth factor delivery, or the 
use of young, perinatal animals that have high inherent 
angiogenic activity in the brain. An ideal AVM model should 
strive to contain the following components: (1) anatomic: 
nidus of abnormal vessels of varying sizes at micro- and 
macro-circulatory levels; (2) physiologic: A-V shunting, 
hemodynamically significant, i.e., sufficient to decrease 
feeding artery or increase draining venous pressures; (3) bio-
logical: alterations in angiogenic and inflammatory protein 
expression, involvement of or intersection with known 
genetic pathways; (4) clinical: relative quiescence, sponta-
neous hemorrhage into the parenchyma or CSF spaces. 
Currently, such an ideal animal model that would more 
closely mimic the human phenotype has not been developed 
in adults. However, insights from the current AVM models 
suggest that regional conditional gene deletion plus angio-
genic stimulation may promote the ideal AVM development 
in adult mouse brain.

Since submission of this article, Walker et al. [66] have 
reported on focal VEGF stimulation coupled with regional 
homozygous deletion of Alk1 in the adult mouse brain. This 
report describes post-natal vascular malformations with phe-
notypic aspects of human bAVM, including arteriovenous 
shunting, which provides additional proof-of-principle for 
the scenario shown in Fig. 1.

Summary and Synthesis of Data Regarding 
the Etiology and Pathogenesis of AVM

Elucidating the mechanisms and factors influencing AVM 
lesion formation and progression to ICH offers promise for 
developing innovative treatments and better risk stratifica-
tion for clinical management or clinical trial design. Further, 
study of brain AVM could be a powerful platform from 
which to gain insights into general vascular biologic mecha-
nisms relevant to a wide variety of diseases affecting the vas-
cular system.
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Fig. 2  Brain AVM in Alk1 or Eng deficient mice. (A) Endothelial Alk1 
deletion results in AVMs in the brain [59]. (a–e) Dissection microscopic 
views of vascular images of control (WT, a, c) and mutant (Alk1–/–; b, 
d, e) in postnatal day 3 mouse brains by latex dye injected into the left 
ventricle of the heart. Magnified views of blood vessels in the hipocam-
pal area (d, e). Asterisks indicate peculiar looping of vessels at the distal 
tips of arteries shunting to veins (e). A artery, V vein. (B) Wounding can 
induce de  novo AVM formation in Alk1-deleted adult mice [59]. 
Vascular patterns shown by latex dye injected into the left heart of con-
trol (WT, a, c) and mutant (Alk1–/–, b, d) mice bearing wounds in the 
ear (a, b) or dorsal skin (c, d), 8 days after induction of Alk1 gene dele-
tion. The images were taken after clearing in organic solvents. Center 
of the wound is indicated by asterisks. Note that only mutant mice 

developed AV shunts shown by the presence of latex dye in both arter-
ies and veins. AV shunting and abnormal vascular morphologies were 
apparent only in the wound areas. Blood vessels away from the wound 
indicated by arrows with asterisks (b and d) showed normal appear-
ance. Inset in d shows a magnified view of AV fistulas formed in the rim 
area of the mutant wound. (C) Overexpression of VEGF in the striatum 
of Alk1 and Eng haplo-insufficient mice resulted in vascular dysplasia 
[57]. (a) Injection site (grey square). (b) Angiogenic foci and dysplastic 
capillaries (arrows). Inserts are enlarged images of dysplastic capillar-
ies. Scale bars: 100 mm (top panel) and 50 mm (bottom panel). (c, d) 
Capillary density and dysplasia index. *p<0.05, vs. AAV-LacZ group. 
#p < 0.05, vs. AAV-VEGF-transduced WT or Alk1+/– mice. VEGF 
AAV-VEGF-injected mice, LacZ AAV-LacZ-injected mice

Fig. 2  (continued)
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