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Abstract Background: Germinal matrix hemorrhage (GMH) is 
a neurological disorder associated with very low birth weight 
premature infants. This event can lead to post-hemorrhagic 
hydrocephalus, cerebral palsy, and mental retardation. This study 
developed a novel animal model for pre-clinical investigations.

Methods: Neonatal rats underwent infusion of clostridial 
collagenase into the right germinal matrix (anterior caudate) 
region using stereotaxic techniques. Developmental milestones 
were evaluated over 10 days, cognitive function at 3 weeks, 
and sensorimotor function at 4 weeks after collagenase infu-
sion. This was accomplished by anthropometric quantifica-
tions of cranial, cerebral, cardiac, and splenic growths.

Results: Collagenase infusion led to delays in neonatal 
developmental milestones, followed by cognitive and senso-
rimotor dysfunctions in the juvenile animals. Cranial growth 
was accelerated during the first week after injury, and this 
was followed by significant brain atrophy, splenomegaly, 
and cardiac hypertrophy 3 weeks later.

Conclusion: This study characterized the developmental 
delays, mental retardation, and cerebral palsy features 
resembling the long-term clinical course after germinal 
matrix hemorrhage in premature infants. Pre-clinical testing 
of therapeutics in this experimental model could lead to 
improved patient outcomes while expanding upon the 
pathophysiological understanding of this disease.
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Introduction

Germinal matrix hemorrhage (GMH) is the rupture of imma-
ture blood vessels within the subventricular (anterior caudate) 
progenitor cell region of neonatal brains [1] during the first 
7 days of life [2]. GMH occurs in 20–25% of very low birth 
weight (VLBW £ 1,500 g) premature infants [3–5] and affects 
3.5/1,000 births in the United States each year [6]. This is an 
important clinical problem, since the consequences are hydro-
cephalus (post-hemorrhagic ventricular dilation), cognitive and 
motor developmental delay, cerebral palsy, and mental retarda-
tion [4, 7]. However, available animal models to study the 
pathophysiological basis of these outcomes are lacking [8].

An important research priority is the development and vali-
dation of experimental models of brain hemorrhage for trans-
lational studies of human conditions [9]. Elevated MMP-2 
and MMP-9 are associated with GMH induction in humans 
[10, 11]. Stereotaxic collagenase infusion is one of the most 
commonly used methods in adult experimental intracerebral 
hemorrhage (ICH) studies [12, 13] and functions as an MMP 
to lyse the extracellular-matrix around blood vessels to cause 
vascular rupture [13, 14]. This approach enables investiga-
tions of neurological and brain injury outcomes [12–19].

In this study, we hypothesized that unilateral germinal-
matrix collagenase infusion in neonatal rats would model 
features similar to clinical GMH [4, 7]. With this approach, 
applications of therapeutic strategies can be tested to improve 
outcomes and to gain a better pathophysiological under-
standing of this disease [9].

Methods and Materials

Animal Groups and General Procedures

This study was in accordance with the National Institutes of 
Health guidelines for the treatment of animals and was 
approved by the Institutional Animal Care and Use Committee 
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at Loma Linda University. Timed pregnant Sprague-Dawley 
rats were housed with food and water available ad libitum. 
Postnatal day 7 (P7) pups were blindly assigned to the fol-
lowing (n = 8/group): sham (naive), needle (control), and 
collagenase infusion. All groups were evenly divided within 
each litter.

Experimental Model of GMH

Using an aseptic technique, rat pups were gently anesthe-
tized with 3% isoflurane (in mixed air and oxygen) while 
placed prone on a stereotaxic frame. Betadine sterilized the 
surgical scalp area, which was incised in the longitudinal 
plane to expose the skull and reveal the bregma. The follow-
ing stereotactic coordinates were determined: 1 mm (ante-
rior), 1.5 mm (lateral) and 3.5 mm (ventral) from bregma.  
A bore hole (1 mm) was drilled, into which a 27-gauge nee-
dle was inserted at a rate of 1 mm/min. A microinfusion 
pump (Harvard Apparatus, Holliston, MA) infused 0.3 units 
of clostridial collagenase VII-S (Sigma, St Louis, MO) 
through a Hamilton syringe. The needle remained in place 
for an additional 10 min after injection to prevent “back-
leakage.” After needle removal, the burr hole was sealed with 
bone wax, the incision sutured closed, and the animals were 
allowed to recover. The entire surgery took an average of 
20 min. Upon recovering from anesthesia, the animals were 
returned to their dams. Needle controls consisted of needle 
insertion alone without collagenase infusion, while naïve 
animals did not receive any surgery.

Developmental Milestones

Animals were assessed over 10 days after collagenase infu-
sion. For the righting reflex, time needed for the rat pups to 
completely roll over onto all four limbs after being placed on 
their backs was measured [20]. For negative geotaxis, the 
time needed for complete rotation (180°) after being placed 
head down on a slope (20° angle), was recorded [20]. The 
maximum allotted time was 60 s/trial (two trials/day).

Cognitive Measures

Higher order brain function was assessed during the third 
week after collagenase infusion. The T-Maze assessed short-
term (working) memory [21]. Rats were placed into the stem 
(40 cm × 10 cm) of a maze and allowed to explore until one 
arm (46 cm × 10 cm) was chosen. From the sequence of ten 

trials, of left and right arm choices, the rate of spontaneous 
alternation (0% = none and 100% = complete, alternations/
trial) was calculated, as routinely performed [22, 23]. The 
Morris water maze assessed spatial learning and memory on 
four daily blocks, as described previously in detail [16, 17]. 
The apparatus consisted of a metal pool (110 cm diameter), 
filled to within 15 cm of the upper edge, with a platform 
(11 cm diameter) for the animal to escape onto, that changed 
location for each block (maximum = 60 s/trial), and was digi-
tally analyzed by Noldus Ethovision tracking software. Cued 
trials measured place learning with the escape platform vis-
ible above water. Spatial trials measured spatial learning 
with the platform submerged, and probe trials measured spa-
tial memory once the platform had been removed. For the 
locomotor activity, in an open field, the path length in open-
topped plastic boxes (49 cm-long, 35.5 cm-wide, 44.5 cm-
tall) was digitally recorded for 30 min and analyzed by 
Noldus Ethovision tracking software [17].

Sensorimotor Outcome

At 4 weeks after collagenase infusion, animals were tested 
for functional ability. Neurodeficit was quantified using a 
summation of scores (maximum = 12), given for (1) postural 
reflex, (2) proprioceptive limb placing, (3) back pressure 
towards the edge, (4) lateral pressure towards the edge, (5) 
forelimb placement, and (6) lateral limb placement (2 = severe, 
1 = moderate, 0 = none), as routinely performed [22]. For the 
rotarod, striatal ability was assessed using an apparatus con-
sisting of a horizontal, accelerated (2 rpm/5 s), rotating cyl-
inder (7 cm diameter × 9.5 cm wide), requiring continuous 
walking to avoid falling recorded by photobeam circuit 
(Columbus Instruments) [16, 17]. For foot fault, the number 
of complete limb missteps through the openings, was counted 
over 2 min while exploring over an elevated wire (3 mm) 
grid (20 cm × 40 cm) floor [23].

Assessment of Growth

Over 28 days after collagenase infusion, the head (width and 
height) and rump-to-crown (length) measurements were per-
formed using a Boley Gauge (Franklin Dental Supply, 
Bellmore, NY), as previously described [24]. Head width 
was measured anterior to the side of the ears, head height 
from posterior to the adjacent mandible, and rump-to-crown 
was the greatest cranial (caudal) to tail (rostral) extension. At 
the completion of experiments, the brains were removed, and 
hemispheres separated by a midline incision (loss of brain 
weight has been used as the primary variable to estimate 
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brain damage in juvenile animals after neonatal brain injury 
[25]). For organ weights, the spleen and heart were sepa-
rated from surrounding tissue and vessels. The quantification 
was performed using an analytical microbalance (model AE 
100; Mettler Instrument Co., Columbus, OH) capable of 
1.0 mg precision.

Statistical Analysis

Significance was considered at P < 0.05. Data were analyzed 
using analysis of variance (ANOVA), with repeated measures 
(RM-ANOVA) for long-term neurobehavior. Significant 
interactions were explored with conservative Scheffe post hoc 
and Mann-Whitney rank sum tests when appropriate.

Results

Collagenase infusion delayed the developmental acquisition 
of eye opening, negative geotropism and righting reflex by 
2–3 days (Fig. 1a–c, P < 0.05). Three weeks after GMH, sig-
nificant deficits were discovered in spatial learning and 
memory (Fig. 2a, b, P < 0.05), T-maze (working) memory 
(Fig. 2c, P < 0.05), and hyperactivity, in the open field (dec-
reased corner time and increased center crossings, Fig. 2d, e, 
P < 0.05). Juvenile animals had significant sensorimotor dys-
function, as revealed by the neurodeficit score, accelerating 
rotarod and foot fault (Fig. 3a–c, P < 0.05). These dysfunc-
tions were associated with increased cranial size at 7 days 
(Fig. 4a, P < 0.05), and dysfunctional growth of the body, 
brain, heart, and spleen (Fig. 4b–e, P < 0.05) 3 weeks later.

Discussion

Germinal matrix hemorrhage (GMH) is an important prob-
lem affecting approximately 12,000 births in the United 
States each year [6]. The clinical consequences of GMH are 
developmental delay, cerebral palsy, and mental retardation 
[4, 7]. In this study collagenase was infused into the germi-
nal matrix of neonatal rats as an approach to model these 
features, since animal models to study the basis of these out-
comes are lacking [8].

This neonatal rat model of GMH resembles the neurologi-
cal consequences seen in the pediatric population after 
hemorrhagic brain injury. Collagenase infusion led to devel-
opmental delays in the neonates that were followed by 
cognitive and sensorimotor dysfunction in the juvenile 
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developmental stage. The cranium was enlarged compared to 
somatic growth during the first week, with significant brain 
atrophy 3 weeks later. This presentation is likely a reflection 
of hydrocephalic cerebrospinal fluid build-up, leading to cra-
nial expansion and compression of the brain tissue into an 
atrophic developmental growth pattern. Splenomegaly and 
cardiac hypertrophy presented at 1 month after injury, and 
this could either be a reflection of the disproportionate 
somatic growth or of prolonged peripheral hemostatic or 
inflammatory consequences of the brain bleed.

In summary, we have characterized a highly reliable and 
easily reproducible experimental model of germinal matrix 
hemorrhage using neonatal rats. This provides the basis for 
studying the clinical and pathophysiological features of this 
disease, and establishes a foundation for performing further 
preclinical therapeutic investigations.
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