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Abstract The main issues regarding damage detection in elements
of structures are discussed in the particular case that the detection
is conducted by the use of methods based on the phenomenon of
elastic wave propagation. The emphasis is placed on modelling the
phenomenon of elastic wave propagation in composite elements of
structures, along with issues of wave interactions with damage and
problems of damage location.

1 Introduction to SHM Methods Based on the
Phenomenon of Elastic Wave Propagation

The scope of Structural Health Monitoring (SHM) includes constant moni-
toring of the structure’s material condition (in real-time), for the elements
of the structure as well as for the whole structure during its useful lifetime.
The condition of the structures material is required to remain within the
limits specified by the standards of the design process. Those standards,
regarding the material, ought to take into consideration changes caused by
standard exploitation wear during the operation process, changes caused by
environmental conditions, in which the structure is being used, and coin-
cidental situations influencing the condition of the material. Owing to the
fact that the monitoring process is being conducted continuously during
operation, there will be a record of the complete history of utilisation. Such
information may be used for future condition prognosis as well as prediction
of faults and the structure’s safe utilisation time.

According to a number of publications, SHM is being defined as a new
approach to non-destructive inspection of a structure (also called Non-
Destructive Testing/Evaluation - NDT/E). The innovation of this approach
is based on the continuous monitoring of the material’s condition during
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the exploitation process of the device. It requires certain structural and
utilisation solutions distinctive for this new discipline.

SHM is combined of such disciplines as sensorics, IT, electronics (es-
pecially microprocessor technology), mechanics and materials engineering.
The effect of synergy is achieved by combining former disciplines, and it
enables raised safety levels of the structure’s utilisation along with lowering
of the maintenance expenses.

Systems executing SHM processes ought to be structure integrated; this
allows insertion of changes into the structure in such a way that the prob-
ability of a failure is minor. It also enables minimisation of the failure risk
through management of the structure’s utilisation and treating it as part of
a bigger system. The first layer of a SHM system is the monitoring layer
specified by the type of physical phenomenon that is being monitored by
the sensors. It is dependent on the damage type to be detected and the
type of physical phenomenon that is being used by the sensors in order
to generate the signals (mostly electrical) containing features and process-
able information regarding damage. Several (perhaps up to a few dozen)
connected sensors can work together in a system measuring environmen-
tal factors influencing the condition and process of the exploitation of the
structure. Data gathered from all the sensors along with historical data
from previous structures allow diagnostic synthesis of information (signal
fusion) regarding the condition of the structure. Once the above-mentioned
information is linked with all the data from the general system of knowl-
edge about the phenomenon of damage and structural wear, it is possible
to gain prognosis of condition and data defining the scope of any necessary
repair. It is now common for such purposes that simulation systems are
used; such systems enable extremely quick generation of results, similar to
those obtained from the chain of sensors based on familiar damage models
(virtual exploitation of the structure).

The motivation for applying such systems is:

e ability to avoid failures with catastrophic consequences;

e ability to optimise the utilisation process (minimisation of emergency

stoppage time);

e gaining essential information for designers regarding structural modi-

fication;

e ability to minimise maintenance costs and to raise the efficiency of

a device thanks to the use of a methodology of repair according to
condition, as well as avoiding disassembly, and replacement of non-
damaged and non-used elements;

e ability to avoid operator mistakes regarding evaluation of the condi-

tion of the structure.
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The systems mentioned are being used for air force and aviation, military
equipment, construction industry infrastructure, and machines crucial for
industry (e.g. power industry, chemistry, etc.). An extremely important
factor influencing the common use of SHM systems is the economical factor.
The justification may be found in several papers and it lies in comparing
maintenance costs with the efficiency of the structure. For the structure
without SHM systems installed, costs rise along with the utilisation time and
at the same time efficiency drops. Installation of SHM systems potentially
enables one to fix maintenance costs with equally fixed efficiency of the
structure. However, one condition of applying SHM systems must be met;
this condition limits the general ability of putting them into practice i.e.
the cost of the system itself ought to be lower than the positive economical
effect connected with its application.

The necessity of reducing the cost of SHM systems is nowadays connected
with the application of intelligent materials and structures; they enable
integration of the structure and the built-in sensors into one system. In order
to be effective, such actions must be taken during the stage of designing of
the structure.

From the beginning of the 80’s, a tendency towards intelligent struc-
ture applications are were observed, especially in aviation and construction
industry. Their characteristic feature is adaptation of those structures to
the exploitation conditions. In intelligent structures, this adaptation takes
place autonomically. Within the range of intelligent structures, distinctions
can be made as follows: structures sensitive to utilisation conditions, struc-
tures controlled within the range of their properties, and auto-adaptative
structures that adjust their properties to their utilisation needs. In practice,
homogeneous materials commonly used in structures are being replaced by
composite materials or other multi-materials (materials composed of lay-
ers of various physical properties). Within the range of materials and in-
telligent structures one can distinguish structures of adjustable geometry
(shape), structures with adjustable vibration behaviour and structures with
adjustable condition. In particular, the last type of structure is constantly
in use with SHM techniques. Most often, intelligence is expressed through
structure-integrated sensors made from intelligent materials (embedded sen-
sors) or executive modules (embedded actuators), for which the task is to
identify defects and alleviate the effects of failure. Operation of such mod-
ules depends on generating deformations of the structure in such a way as to
decrease stresses in these areas of concentration. Nowadays, the search for
phenomena, and methods of their measurement, which enable continuous
monitoring of structural condition through monitoring of the condition of
its material, continues.
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Research on the development of SHM systems is very often inspired
by discoveries in the fields of biology and living organisms (biomimetics).
Very similar research is being conducted in the fields of medicine and SHM
method development. SHM systems find application not only in the life-
time of the structure but also in the time of its production, transport and
installation. They also enable proper management of the structure’s wear,
through suitable choice of missions that must be executed, and service ac-
tions required for safe meeting of given criteria. Methods that could be
used as the most economically effective and durable, in every stage of the
product usage, are still being searched for.

To put it briefly, the foregoing survey regarding SHM allow one to say
that it is a new interdisciplinary area, gathering such sciences as mechan-
ics, materials engineering, electronics, computer science, physics, optics and
many others. This area has applications in the utilisation of structures in
aviation, construction industry, motor industry and power industry includ-
ing those connected with nuclear power. The spectrum of applications is
constantly expanding. Among the many methods used in SHM systems, one
can distinguish between active or passive methods. In the passive methods,
one can observe signals generated by the structure’s inbuilt sensors and on
this basis, the condition can be evaluated. Active methods depend on forc-
ing disturbances by the use of properly inbuilt executive cores that cause
structural responses, measured by sensors. On the basis of response signals
registered by the sensors, the condition is evaluated. Some of the widespread
SHM methods are those based on structural vibration measurement. Among
them: symptomatic methods, in which the symptoms of damage are certain
estimators from the signals of structural response, or model-based methods,
where the symptoms of damage are parameter changes or changes to the
structure of a model.

Many methods used in practice to build SHM systems are being adopted
from widely-known and applied disciplines e.g. NDT. Classical NDT meth-
ods can be executed continuously, such as: measurement of acoustic emis-
sion, Lamb waves, temperature, or mechanical impedance or direct moni-
toring of the displacement field with the use of visual methods; all these
are examples of applying NDT techniques in SHM systems. In those kinds
of solution, two sets of methods may be distinguished: methods where the
sensors are integrated with the structure and non-contacting methods. The
latter have wider application owing to miniaturisation and the costs of SHM
system installation.

One of such methods, that can be applied passively as well as actively,
and where the measurements are executed in a non-contacting way, is the
method based on examination of thermo-flexibility phenomena accompany-
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ing damage, especially its formation and propagation. Currently, interest in
this method is increasing due to the opportunity of non-contact measure-
ments of thermal phenomena within structures and intensive development
in temperature measurement. Another method is the method of surface
Lamb wave excitation within the structure. This method uses a grid of sen-
sors/actuators. Registration and processing of transmitted waves as well as
reflected waves is conducted. Evaluation of the condition of the structure
takes place on the basis of wave profile deformations due to damage in the
interrogated area of the structure.

A different method is one based on parameters of modal models of the
monitored structure. One very effective method is the modal filter method
and the statistical evaluation of detected changes in the model. More and
more common, is the application of scanning pictures for evaluation of struc-
tural deformation. In this way, one may monitor static as well as dynamic
changes. Depending on measurement requirements, methods using laser
beam are applied (strain methods, holographic methods, and interferom-
etry methods characterised by nanometer sensitivity of measurements of
displacement fields) or non-coherent light methods (fotogrametric meth-
ods, the picture correlation method, moiré pattern techniques and pattern
projection techniques). The most commonly-used technique of picture pro-
cessing is correlation of images of non-deformed and deformed structures.
Contemporary techniques of image measurement and recording enable mon-
itoring of even minor changes in the condition of the structure owing to
applications of the so-called phase methods of analysis of pattern images or
subpixel techniques in fotogrametric methods or methods of picture corre-
lation. Contemporary quick cameras enable recording of dynamic changes
of deformation with frequencies up to 32000 Hz. Pulse laser sources of light
enable transmission of highly sensitive interferencial methods from the lab,
directly to the studied structure. In new structures, where utilisation safety
is of the greatest importance, sensors in the form of intelligent materials,
piezoelectrics and optical fibres (fibre Bragg gratings), are currently embed-
ded; they become an inseparable part of the structure and continuously
gather information about the structure’s fatigue limit and condition of the
material. This enables prediction of properties, estimation of time of safe
utilisation and evaluation of planned repair ranges. As presented in the re-
view of current knowledge, investigations conducted using SHM techniques
are more and more precise and enable evaluation of condition within the
range of local changes, especially, in the degradation of structural material.
This enables more and more accurate predictions of the condition of the
structure during its lifetime.
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2 Modeling of Structural Stiffness Loss Due
to Damage

Fatigue cracking and delamination are particularly dangerous and, at the
same time, the most common kinds of damage in elements of machines
and structures. It is of great importance for safe operation to ensure that
elements of machines and structures are free of any fatigue cracks and de-
laminations and in the case of their presence, to determine their extent.
Since existing non-destructive methods for detection of fatigue cracks and
delaminations fail in many practical cases, vibration methods in diagnosis of
such damage have been continuing for nearly twenty years. These methods
are based on diagnostic relations between the size and location of failures
and changes in some dynamic characteristics of constructional elements. In
order to establish such relations and to identify changes of the dynamic
characteristics, efficient models that facilitate the assessment of the influ-
ence of fatigue cracks and delaminations must be established. A review
of the existing models used for analysis of the influence of fatigue cracks
and delaminations on changes in dynamic characteristics of constructional
elements is presented in this section.

2.1 Discrete models

In general, discrete models of fatigue damage are not restricted geomet-
rically. Such restrictions are one of the biggest disadvantages of the contin-
uous or discrete—continuous models. In order to create a discrete model of
a constructional element with a fatigue crack, the Finite Element Method
(FEM) is most usually applied. Although other methods like the boundary
element method, graph method, transition matrix method and the analogue
method are also used, these methods are not as popular and commonly used
as the finite element method.

The simplest method applied to model constructional elements with fa-
tigue damage is based on the use of classical finite elements. In this case
a fatigue crack in the finite element is modelled by reduction of elastic co-
efficients of the element (Cawley and Adams, 1979), by reduction of its
Young’s modulus (Yuen, 1985), and by reduction of the cross—sectional area
of the element at the crack position (Bachschmid et al., 1984). The main
disadvantage of these approaches is the fact that the reduced parameters
describing a fatigue crack are chosen arbitrarily. Generally, their values are
not directly related to the actual size of a crack and due to that fact, a
precise study of the influence of the crack depth on changes in dynamic
characteristics cannot be made. The singular character of the stress and
strain fields around the crack tip is also neglected in these methods.
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In the last decade, new FEM-based models have been formulated. Some
authors have assumed that the failure appears inside a special finite element
(Ostachowicz and Krawczuk, 2001). A model of a truss finite element with
an open one-sided transverse crack has been developed by Krawczuk (1992).
Models of beam finite elements with fatigue cracks of different types can be
found in the work of Haisty and Springer (1988), Gounaris and Dimarog-
onas (1988), Chen and Chen (1988). Krawczuk and Ostachowicz (1993b)
investigated a mathematical, FEM-based model of a beam with a crack,
loaded at the end with a constant tensile axial force; the authors assumed
that the crack does not propagate and remains open during the beam’s vi-
brations. Assumption of a complete opening of the crack in this case was
correct because the beam was subjected to the action of a constant axial
force.

Ostachowicz and Krawczuk (1992) also developed a model of a rotor shaft
of constant cross—section with a crack. The shaft was modelled by finite
elements; the crack was considered to be open. The stiffness matrix for the
element with the crack was formulated. The model took into consideration
the torsional-bending interaction in the rotor vibration.

The curved-beam finite element with a transverse, one-edged, nonprop-
agating, open crack has been investigated by Krawczuk and Ostachowicz
(1997). The authors presented an analysis of the effect of the crack posi-
tion and location on the changes of the in—plane natural frequencies and
mode shapes of the clamped—clamped arch. The authors assumed that the
crack only changes the stiffness of the element, with the mass of the element
remaining unchanged. The investigated model of the cracked element was
restricted to curved beams with rectangular cross—section.

A cracked-beam finite element that is based on elasto—plastic fracture
mechanics has been formulated by Krawczuk et al. (2000, 2001). Crack
tip plasticity at the cracked cross-section was included in the model of the
local flexibility. The inertia and stiffness matrices took into account the
effect of flexural bending deformation due to the crack presence; they were
formulated in closed form.

Apart from one-dimensional models, special models of two or three—
dimensional constructional elements with fatigue cracks have been also in-
vestigated. The cracks occurring in a plate can be modelled by the finite
element method in various ways. Plate finite elements with fatigue cracks
have been used by Qian et al. (1991), Krawczuk (1993), and Krawczuk and
Ostachowicz (1994), while a solid finite element with a fatigue crack has
been developed by Krawczuk and Ostachowicz (1993a), and a shell element
by Krawczuk (1994).

Krawczuk (1993) presented a method of creating the stiffness matrix of
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a finite plate element with a non-propagating, internal open crack. The
method is similar to the one described by Qian et al. (1991) but contrary
to their approach, the stiffness matrix of the cracked element was given
in closed-form. The additional flexibility matrix was calculated by taking
into account the additional elastic stress energy due to the occurrence of
the crack in the plate. The method is restricted to cracks whose length is
smaller than the dimensions of the element; It is assumed that the crack
changes only the stiffness of the element and the mass of the element remains
unchanged.

A method of creating the stiffness matrix of a hexahedral eight-node
finite element, with a single, nonpropagating, transverse, single-edge crack
at half of its length, has been investigated by Krawczuk and Ostachowicz
(1993a). The crack was modeled by adding an additional flexibility matrix
to the non-cracked element. The terms of the additional matrix have been
calculated by the use of an approximate model of the stress intensity factor.

Many researchers have studied damage models in composite structures
extensively. Krawczuk et al. (1997) proposed the formulation of a finite
composite beam element with an open crack. The damaged part of the beam
was modelled by a special finite element with a crack, while the undamaged
part was substituted by three-node beam element. The crack is placed
in the middle of the element and remains open. The element has three
nodes; each of them has two degrees of freedom: transverse displacements
and rotations. In the paper (Krawczuk et al., 1997), only the case of flat
bending was considered.

Krawczuk et al. (1997) have investigated a model of a layered, delam-
inated composite beam. The beam was modelled by beam finite elements
with three nodes and three degrees of freedom per node. In the delaminated
region, additional boundary conditions were applied. It was assumed that
the delamination was open (i.e. the contact forces between lower and upper
parts are neglected). The delaminated region was modelled by three finite
elements connected at the delamination crack tip where additional boundary
conditions were applied. Each element had three nodes with three degrees
of freedom: axial displacements, transverse displacements, and the inde-
pendent rotations. In addition to general conditions of beam theory, it was
assumed that the extensional and bending stiffness were uncoupled.

A model of a finite delaminated plate element has been developed by
Zak et al. (2000); Zak et al. (2001). The delamination was modelled by
three plate finite elements and to connect them, additional boundary condi-
tions were applied at the delamination front. Each finite element had eight
nodes with five degrees of freedom per node. Later papers (Krawczuk and
Ostachowicz, 2002; Ostachowicz et al., 2002, 2003; Zak et al., 2003) present
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results for the identification of the location of failures in both isotropic
and composite structures by means of a genetic algorithm search technique
based on changes in natural frequencies. The location and size of failures
are determined by minimisation of an error function which expresses the
difference between calculated and measured natural frequencies.

Laboratory experiments have been conducted to ensure the reality of
analytical and numerical models; the results obtained are promising, par-
ticularly because they have confirmed investigated models. Results of ex-
perimental tests have been presented in (Krawczuk et al., 2000, 1997; Zak
et al., 2000; Ostachowicz et al., 2003; Zak et al., 2003).

3 Lamb Waves

Elastic waves that propagate in solid media bounded by two free and parallel
surfaces are known in the literature as Lamb waves or guided waves. Lamb
waves are named after Horace Lamb in honour of his fundamental contribu-
tions in this area of research. Lamb developed a mathematical theory that
describes this kind of elastic waves, but interestingly he never managed to
generate this type of wave in a real structure. Lamb waves propagate both
as symmetric (S0, S1, S2, ...) and antisymmetric (A0, A1, A2, ...) modes
and the number of these modes depends on the product of the excitation
frequency and the element thickness. For example, up to about 2 MHz-mm,
only the two fundamental Lamb wave modes SO and AQ will propagate in
an Aluminum alloy plate.

Table 1. Characteristic phase velocities and wave lengths in a 1mm thick
aluminium plate.

Frequency | Phase velocity [mm/us] | Wavelength [mm]
[kHz] SHO | A0 S0 SHO | A0 | SO
100 3182 | 964 5496 31.82 | 9.64 | 54.96
150 3182 | 1161 5495 21.21 | 7.74 | 36.63
200 3182 | 1318 5494 15.91 | 6.59 | 27.47
250 3182 | 1450 5492 12.73 | 5.80 | 21.97
300 3182 | 1564 5490 10.61 | 5.21 | 18.30

A characteristic feature of this type of wave motion is elliptical particles
motion in contrast to Rayleigh (surface) waves, where the wave motion is
circular.

The solution of the Lamb wave equations must be obtained numerically.
As a result, dispersion relations for various Lamb wave modes are obtained,
i.e. the dependence of the wave number on the frequencythickness product.
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Figure 1. Phase velocity dispersion curves for an aluminium plate - shear
horizontal waves.

It is interesting to look at the phase and group velocities of Lamb wave
modes as well as shear modes corresponding to shear deformation. Typical
results obtained for the group and phase velocity dispersion curves for the
shear wave modes and the Lamb wave modes are presented in Figs. 1-4.
These curves have been calculated analytically and obtained for an alu-
minium plate with the material properties as follows: Young’s modulus
72.7 GPa, Poisson’s ratio 0.33, mass density 2700 kg/m?.

It can be noticed that in the frequency range up to around 2 MHz, only
the fundamental modes can propagate in the plate. Some characteristic
wave velocities and wave lengths in the case of the Aluminium plate under
consideration are given in Table 1. The wave lengths are calculated from a
simple equation,

Cmin
A ! (1)
where ¢p,p, s the minimal phase velocity and f denotes the carrier frequency
of a wave packet. It can be noticed that the A0 mode has much shorter
wavelengths in the lower frequency range than the SHO and SO modes; this
means that A0 mode is well-suited to the detection of damage of rather small
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Figure 2. Group velocity dispersion curves for an aluminium plate - shear
horizontal waves.

dimensions. In the case of the SO and SHO modes much higher frequency
must be used in order to achieve comparable damage sensitivity. In contrast,
the SO mode is much less dispersive than A0 mode, while at the same
time SHO mode is almost nondispersive over all frequencies. (The term
nondispersive means that a wave packet propagates in a structure without
any observable distortion in shape.

Lamb waves propagating in a bounded solid media can be modelled
assuming an appropriate displacement field, which in a accurate manner
modes paths of particle motion through the thickness of the media. The
displacement field can be approximated by,

u(z,y, 2) = uo(z,y) + 0u(®,y) - 2 + Vo, y) - 2%+ xa(2,9) - 25 ..

v(x,y, Z) = ’Uo(iC, y) + Qﬁy(fﬂ, y) “z A+ 1/)y(337y) ) 22 + Xy(x7y) : Z3 cee (2)

w(z,y,z) = wo(x,y) + pz(x,y) 2+ oz, y) - 22+ xa(2,y) - 2° ..

where ug, vg and wg represent the displacement components of the points
located on a certain midplane surface, while ¢, and ¢, physically denote
the rotations of appropriate solid sections about the z and y axes respec-
tively. It is worth noting that the odd-order terms with respect to z in
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Figure 3. Phase velocity dispersion curves for an aluminium plate - sym-
metric and antisymmetric modes.

the x and y displacements together with the even-order terms in w with
respect to z describe the antisymmetric wave modes and the other terms
depict symmetric wave modes. Structural Health Monitoring (SHM) sys-
tems are usually based on the use of the fundamental modes of Lamb waves
(SO and A0), because in those cases it is usually much easier and convenient
to analyse the received signals. An adequate approximation of the A0 mode
requires at least the linear terms with respect to z in the v and v displace-
ments and a constant term in the w displacement; this is consistent with the
assumption of First-Order Shear Deformation Theory for plates. However,
in order to capture the dispersion effect of the SO mode, some additional
terms must be included in the displacement field. It should be emphasised
that application of the first-order shear deformation theory for plates in the
case of spectral finite elements results in a diagonal form of the mass matrix
for isotropic materials or symmetric laminates. In contrast, application of
higher-order theories leads to generation of nonzero offdiagonal elements in
the mass matrix; this means that the equations of motion are solved with
much lower efficiency.
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Figure 4. Group velocity dispersion curves for an aluminium plate - sym-
metric and antisymmetric modes.

4 Modelling of Elastic Waves

Wave propagation in structural elements has been studied over a consider-
able period of time. Although mathematical frameworks are well established
and developed, wave propagation in real scale engineering structures still
remains an open area of research. For simulation of stress wave propaga-
tion, the best way is to give an exact solution. However, even in some
simple cases, such as elastic media, if local inhomogeneities (joints, inclu-
sions, holes, etc.) are included, it is difficult to obtain exact solutions. For
a specific geometry and finite periodic or semi-infinite boundary conditions,
many solution techniques have been proposed and reported so far an ex-
cellent overview of theses techniques is given in (Bond, 1990).

In the case of SHM systems, piezoelectric actuators generate impulse
wave signals and usually these are various modes of Lamb waves. The main
problems in the analysis of high frequency (50 to 350 kHz) elastic wave
propagation in structures with high velocities (1 to 6 km/s), are related to
spatial discretisation. In order to obtain an accurate solution of the equa-
tion of motion, and to capture the effect of wave scattering at boundaries
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and structural discontinuities, a huge number of degrees of freedom (dof) is
necessary. Conventional modal methods, when extended to high-frequency
regimes, become computationally inefficient since many higher modes that
should participate in the motion are misrepresented. For this reason, appli-
cation of some approximation method is necessary.

Among many methods used for modelling and studying the phenomena
of propagation of elastic waves, many numerical methods can be distin-
guished including: the finite difference method (FDM) (Strickwerda, 1989),
the finite element method(FEM) (Yamawaki and Saito, 1992; Koshiba et al.,
1984; Verdict et al., 1992; Alleyne and Cawley, 1992) and the boundary el-
ement method (BEM) (Cho and Rose, 1996). Unfortunately, the first two
methods are not only time—consuming, but also require large computational
memory even in the case of simple two—dimensional (2D) wave propagation
problems. Moreover, they suffer from numerical dispersion which leads
to improper wave velocity or false waves, which do not exist in the exact
solution. In contrast, the boundary element method (BEM) is less time—
consuming but application of the method to complex media with inhomo-
geneities is problematic.

Other methods are the finite strip element method (FSEM) and the
semi—numerical method (SNM)(Cheung, 1976; Liu and Xi, 2002; Liu et al.,
1990), which require much less memory storage space for necessary data due
to a lower level of discretisation and application of the exact solution in one
direction. SNM is very effective for the computation of forced wave motion
in the frequency domain and can be used for much higher frequencies than
the methods based on FEM. As with the BEM, the FSEM uses a Green’s
function but in a different manner. On the other hand, variable size of
strip stiffness matrices and modification of spline functions at the boundary
nodes are inconvenient in implementation.

A method that incorporates the advantages of FEM (discretisation)
and the FDM (time integration schemes) is the unstructured grid method
(UGM) (Liu et al., 2004, 2005). This method is based on the dynamic equi-
librium equations of computational cells formed around auxiliary triangular
grids. The solution is obtained by the calculation of nodal displacements and
central point stresses of spatial grids alternately. A different approach has
been proposed by Schechter et al. (1994) and extended by Yim and Sohn
(2000). In the mass-spring-lattice-model (MSLM), inertia and stiffness
properties are calculated using lumped parameters. More recent develop-
ments in this area include the new Local Interaction Simulation Approach
(LISA) (Delsanto et al., 1992, 1994, 1997). This method simulates wave
propagation heuristically, i.e. directly from physical phenomena and prop-
erties. It should be noted that the LISA approach suffers from inaccuracy
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in some cases (Ruffino and Delsanto, 1999).

More recently, various spectral methods have been proposed for the
analysis of elastic wave propagation in complex media: the fast Fourier
transform-based spectral finite element method (FFT-based SFEM) (Doyle,
1997) and the spectral element method (SEM) (Patera, 1984) also called the
pseudospectral method. It should be stressed that despite the terminology,
which may be misleading, these methods are completely different.

The FFT-based SFEM proposed by Doyle (1997) is very similar to the
technique of the FEM as far as the assembly and the solution of the equation
of motion is considered. The formulation of this method starts from exact
solutions of the governing partial differential equations in the frequency
domain. Excitation signals are transformed into a number of frequency
components using the FFT. Next, as a part of a large frequency loop, the
dynamic stiffness matrix is generated, transformed, and a solution is found
for each unit impulse at each frequency. This yields directly the frequency
response function (FRF) of the analysed problem. The calculated frequency
domain responses are then transformed back to the time domain using the
inverse fast Fourier transformation (IFFT).

The FFT-based SFEM proposed by Doyle is computationally efficient
but the inverse Fourier transform is very difficult to do in an exact analyt-
ical manner. For this reason, many approximate and asymptotic schemes
have usually been resorted to (Amaratunga and Williams, 1995). Such ap-
proaches reduce the problems associated with “wrap around”! due to the
assumed periodicity of solutions in the FFT-based SFEM and thus may
result in a decreased number of points in the time window for the same
problem (Mitra and Gopalakrishnan, 2006). Further, FFT-based SFEM
cannot be used for finite-length undamped structures. For such cases, a
semi-infinite element (throw-off element (Doyle, 1997)) is normally used to
allow some leakage of response, which in turn amounts to adding artificial
damping through the release of trapped energy.

Consequently, the FFT-based SFEM is well suited to simple 1D prob-
lems (Palacz and Krawczuk, 2002; Krawczuk et al., 2003; Mahapatra and
Gopalakrishnan, 2003), but becomes difficult to use for complex geometries.
A comparative study of the FFT-based SEM with the LISA approach can
be found in Lee et al. (2004). Despite problems with the periodic nature
of the FFT, recent work in this area shows some application of the FFT-
based SFEM to wave propagation phenomena in anisotropic plates and in-
homogeneous layered media (Chakraborty and Gopalakrishnan, 2004, 2005,

! The “wrap around” effect means that the remaining part of the response beyond the
chosen time window will start appearing first, which totally distorts the signal.
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2006a,b).

The SEM, as proposed by Patera (1984), is much more versatile for the
investigation of the propagation of elastic waves in structures of complex
geometry. This method originates from the use of spectral series for the
solution of partial differential equations (Boyd, 1989). The idea of the SEM
is very similar to the FEM except for the specific approximation functions
it uses. Elemental interpolation nodes are located at points corresponding
to zeros of an appropriate family of orthogonal polynomials (Legendre or
Chebyshev). A set of local shape functions consisting of Lagrange polynomi-
als, which are spanned on these points, is built and used. As a consequence
of this, as well as the use of the Gauss-Lobatto-Legendre integration rule,
a diagonal form of the mass matrix is obtained. In this way, the cost of
the time domain integration is much less expensive than in the case of the
classic FE approach. Moreover, the numerical errors decrease faster than
any power of 1/p (so-called spectral convergence), where p is the order of
the applied polynomial (Pozrikidis, 2005). The main fields of application of
SEM nowadays include fluid dynamics (Canuto et al., 1991), heat transfer
(Spall, 1995), acoustics (Dauksher and Emery, 1997; Seriani, 1997), seis-
mology (Komatitsch and Vilotte, 1998; Seriani, 1999), etc.

The application of SEM for problems of propagating waves in anisotropic
crystals has been shown by Komatitsch et al. (2000).

The first attempt to use SEM for problems of propagation of elastic waves
in 2D structural elements with cracks has been made by Zak et al. (2006).
A 36-node spectral membrane element with two degrees of freedom per
node has been developed. The crack has been modelled by simple splitting
of the nodes between appropriate spectral elements. This approach has
been extended to isotropic and composite plates (Zak et al., 2006; Kudela
et al., 2007b,a). Also, the SEM found applications for the problems of
wave propagation in anisotropic and inhomogeneous uncracked and cracked
beams (Sridhar et al., 2006) as well as for the problems of cracked composite
rods based on the three-mode theory of rods (Kudela and Ostachowicz,
2007).

A 3D spectral element has been developed and used for SHM purposes
by (Kim et al., 2008).

It seems that the SEM is a most versatile and promising tool for wave
propagation modelling and is becoming more and more popular in this field.
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L \*\ fiber — b

Figure 5. Composite spectral rod element.

4.1 The FFT-Based Spectral Finite Element Method — Cracked
Rod

A multilayer composite spectral rod element is presented in Fig. 5. The
crack is located at a distance of L from the left hand end. The element has
two nodes and one degree of freedom per node (longitudinal displacement).
Nodal spectral displacements for the left and right parts of the rod are
assumed as follows,

ﬂl (ZE) = Aleiiknx + Bleiikn(Lliz)v HAES (07 Ll) (3)

lg(x) = Age*n@FLy) 4 pye=thnll=(lnta)l e (0L — Ly)  (4)

where the wave number is obtained from the equation,

m:%¢g (5)

The mass density per unit length can be expressed as,

w=pbh, pu=1Iy (6)

for the isotropic and anisotropic cases, respectively. The material stiffness
matrix has the forms,

D=Ebh, D=Apnb (7)

for the isotropic and anisotropic cases, respectively. The mass density per
unit length from Eq. (6) in the case of a composite rod can be expressed
as,

N
Io=bY pr (i1 = ) (8)

k=1
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where N is the number of composite layers, pj is the mass density of the
k-th layer and b is the rod width. The material stiffness matrix from Eq. (7)
in the case of a composite rod can be expressed as (Vinson and Sierakowski,
1989),

N
D= b3 (Qu)e (hior — i) (©)
k=1

Qll = E11 Sin4 0 + 2(V12E22 + 2G12) sin2 9COS2 0 + E22 Sin4 0

where F7;1 is the Young’s modulus along the reinforcing fibres, Eoo is the
Young’s modulus in the direction perpendicular to the direction of the fibres,
V19 is the Poisson ratio, G152 is the shear modulus and 6 is the angle between
the material axis parallel to the reinforcing fibres and the x axis.

The coefficients Ay, By, As and Bs can be calculated as functions of the
nodal spectral displacements using the following boundary conditions,

e at the left end of the element,
111 (0) =q1 (10)

e at the crack location (total change of displacements and compatibility
of shear forces),

t2(0) — g (Ly) =0 o (11)
Oty (Ly) _ 0u9(0)
or  Ox (12)
e at the right end of the element:
ta(L — L1) = g2 (13)

where § = Ebhc and c is the flexibility at the crack location (see section 4.3).
Taking into account the formulae describing nodal spectral displacements
for the left and right parts of the element, the boundary conditions can be
written in a matrix form as,

(14)
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1 e~ thnln 0 0
W — (zkné —1)e"Hnls 1 — ik, e "tknla e~ thn(L—L1)
B —ikp e~ hnln ikn, ikpe~knln ik, e=hn(L=La)
0 0 e~ thnlL 1

(15)
The nodal spectral forces can be determined by differentiating the spectral
displacements with respect to x, and then can be expressed as follows,

~ 91 (0)

B = D=L (16)
= DW (17)

The relation between nodal displacements and forces can be shown as,

[ ]-=la] w

where the dynamic stiffness matrix is given by,

ik, —ikpe thnla 0 0

Ka=D [ 0 0 ikpe kel ik,

} w! (19)

Unlike conventional finite elements, a special case is derived here where
the rod is very long and application of any load at any location causes no
secondary disturbances other than incident waves departing from that lo-
cation. This simulates a condition, wherein the boundaries are at such a
distance that the effect of reflected waves becomes negligible due to atten-
uation throughout their long travel, and do not reach the location under
consideration within the time of observation. In other words, the throw—off
element is a non-resonant single-node element that acts as a conduit to
allow the propagation of the trapped energy out of the system. The nodal
spectral displacement for the throw—off element is assumed in the following
form,

() = Cre*n® 4 Dye~#=2) g€ (0,L) (20)

After using transformations similar to Egs. (10 — 19) the frequency de-
pendent stiffness matrix K¢ for the throw—off rod element can be defined
as,

K, = Dik, (21)
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4.2 The Time Domain Spectral Element Method — Cracked Rod

Spectral rod finite elements with crack, are formed by the connection
of two classic spectral finite elements with nodes separated by the use of a
spring. Spectral elements based on the elementary and three-mode theory
are presented in Figure 6.

z z
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Figure 6. Schematic diagrams of models a) model of the composite rod
fragment with crack, b) spectral finite element for the elementary theory,
¢) spectral finite element for the three-mode theory.

The stiffness of the spring modelling the size of a transverse, non-growing
crack is calculated according to the laws of fracture mechanics. The effect
of the crack is achieved at the stage of global stiffness matrix assembly.

The rod spectral finite element has been derived according to elementary
theory; the element consists of 6 nodes. With each node, one degree of
freedom is given, i.e. longitudinal displacement. Nodes are placed unequally.
Local nodal coordinates & € [-1,1], ¢ € 1,...,6 are obtained as roots of
the equation,

(1-€%) Pye) =0 (22)

where P5/ (€) denotes the first derivative of Legendre’s 5th-order polynomial.
The obtained coordinates correspond to Gauss-Lobatto-Legendre integra-
tion points. On such selected points, Lagrange’s approximation is defined
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which gives a set of shape functions. The same set of shape functions can
be used for displacement field approximation inside the element as well as
for element geometry approximation. A spectral rod element applied to the
modelling of a composite rod with crack derived according to the elemen-
tary theory of rods is presented in Figure 6a. The element contains 6 nodes;
each node has one degree of freedom — longitudinal displacement. In the
elementary theory of the rod, displacements take the following form,

u(x, z) = up(x) (23)

where ug is the average axial displacement. The strain field may be ex-

pressed by the equation,
8’[1,0

oxr

Assuming an approximation of the displacement field within the element,

ex(,2) = (24)

ut(€) = N°q° = Z NE(€) q°(&) (25)

where N° are shape functions, and q° are nodal degrees of freedom within
the element, and substituting into equation (24), one obtains the strain
approximation,

€56 =Ba" =D Bi(€) (&) (26)

where B¢ is the matrix connecting strains with nodal displacements calcu-
lated as,

0 0

B — Ne(e), 0 ox

— 71 _
or =7 ae 7T e @7

Matrices of mass and stiffness are calculated numerically with the use of the
Gauss-Lobatto-Legendre integration rule,

me = / [N“(a)]" Ig N¥(z) da ~ Zw [NY(&)]" I N¥(&;) det(J)  (28)

QE

6
€ € T € € € T € € €
k :/[B (2)] D*B(z) de~ > w; [BY&)] D°BY&) det(J°)  (29)
O, i=1
Quadrature weights w; > 0, that are independent of the element are esti-
mated from the formula,

2
n(n—1)[Pay(&)]”

w; = icl,...,n (30)
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where n = 6 for the 6-node element.

Time Domain Integration For the sake of the accuracy of solution,
discretisation of the area with the use of the spectral finite element method
ought to provide at least 5 nodes per wave length?. Moreover, the mesh of
the elements should be, if possible, homogeneous over the entire area. After
spatial discretisation with spectral elements, to achieve a solution, only the
following system of differential equations in the time domain is needed,

MQ+KQ=F (31)

where M is the global inertia (mass) matrix, K is the global stiffness matrix,
Q is the vector of global degrees of freedom, and F is the vector of time
dependent forces. Damping is omitted, as it is possible to consider wave
attenuation based on experimental measurements.

Discretisation in the time domain of the system of differential equations
of the second degree (31), may be conducted with the classic Newmark’s
scheme or the central difference scheme. The given methods are condition-
ally stable methods of direct integration, where the equation of the motion
is integrated step by step; this means that the equation of motion (31)
ought to be fulfilled only at chosen moments in time. For the stability of
the solution (to avoid accumulation of integration errors and rounding er-
rors) the integration step At must be adequately small. The calculation of
an adequate integration step in the simulation of wave propagation within
composite elements is difficult owing to the great number of parameters of
the problem (minimum and maximum speed, carrier wave frequency, time of
analysis, and number of nodes per wavelength). In practice, in the applica-
tion of the central difference method, the number of integration steps should
be chosen individually for the considered problem. It may be assumed that
the integration step At is proportional to p~2, where p denotes the order of
the approximating polynomial in the spectral element. This means that a
high degree of polynomial leads to a significant cost of calculation. In the
case of too small a number of integration steps, the algorithm is unstable
and this manifests itself in a violent increase of the displacements with each
time step.

It should be emphasised that in the method of spectral elements, spa-
tial discretisation is very accurate, owing to the fact that it is based on
high—-order polynomials. On the contrary, in the case of time domain dis-
cretisation with the use of a central difference scheme only second—degree
accuracy is obtained, which means that global accuracy is reduced. For this

2For 5th-order approximating polynomials
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reason, application of a higher—order scheme in the time domain would be
interesting.
In the method of central differences, one assumes changeability of the
acceleration vectors in time in the form of:
. 1
Q ~ AtQ (ut+At -2 us + lltht) (32)
Substituting the difference formula (32) into equation (31) and marking the
displacement vector at time t as u; = Q, one obtains,

1

A2 (wpar — 20 +u_pny) M+ Ku, = F (33)

From equation (33) one calculates the sought displacement condition at the
time step t + At, meaning uzya¢. This is obtained based on the solution at
time t. For this reason, this method is numbered among ezplicit methods.
The great advantage of this manner of solving equation (31) is the fact that
the matrix of stiffness does not have to be inverted.

One should draw attention to the fact that calculation of the results
at the current time step, using results obtained at the previous time step,
requires assuming a certain starting procedure. One assumes that the vec-
tors Qo, QO, Qo are known at the initial time, namely at the time ¢ = 0.
This way, using the difference formula for the second derivative (32) and a
difference formula for the first derivative,

Ui At — We—At

)~ 34
Q AT (34)
one can calculate the displacement vector u;_a; at a fictional moment,

which will precede the beginning of the motion,

2

war= Qo — A + 2 & (35)

2

Frontal method Despite using various formats to store sparse matrices,
which provides saving of the computer’s RAM, wave issues are so complex
that the computer’s memory resources are usually not sufficient. It is possi-
ble, in some cases, to use the frontal method, in which algebraic equations
of a matrix are calculated at the level of the finite element without the
necessity to formulate global matrices.

(Kudela, 2008) proposed an integration method for the wave equations,
where assembly of the global stiffness matrix does not take place. The
algorithm of the method is presented below.
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After ordering, equation (33) takes the form,

1 1 2
(At2 M) Uerar =Fy - K+ (At2 M) o (At2 M) w-ae (36)
%’_/ F

Mo Mo Mo

In the equation (36), the vector F may be calculated in such a manner that
the use of the global stiffness matrix K is not necessary. The proposed
explicit time integration algorithm has the following steps:
e Loop over elements e
— For each element calculate the characteristic elemental matrices

k¢, m®

— Assemble each diagonal mass matrix of the element e into the
global vector M = :élldiag (m®), where Z:l denotes the assembly
operator

— Successive elemental stiffness matrices k¢ can be stored in a bi-
nary file
End of loop over elements e
Define constants ag = 1/At?, as = 2ao
Calculate the auxiliary vectors Mg = ag M, My = a; M, M® = 1/ Mg
The displacement vector u;—a¢ is calculated from Eq. (35)
Apply the initial conditions at the time instant ¢t = ¢g
Loop over time instants ¢
— Set up a pointer to the elemental stiffness matrix k¢ at the be-
ginning of the file

— Loop over elements e
* Read the stiffness matrix k® from the file and move the
pointer
% Perform multiplication f = keu!, where I denotes the vector
with numbers of degrees of freedom corresponding to element
e

N el g
* Assemble vector F = A (fe)

e=1

— End of loop over elements e

— Calculate effective vector R = Fy, — F + Mgug — Msug 4,
where indices a denote that multiplication is performed element
by element without summation

— The solution of the equation of motion at the time instant ¢t 4+ At
is achieved by multiplication of element by element: uf ,, =
M R®
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— Wi_Ap = U, Uy = Weyas, t =1+ At

e End of loop over time instants ¢

The proposed integration algorithm of the wave equation provides opti-
mal use of computer memory resources - the global stiffness matrix is not
assembled; this enables the solving of problems with a great number of de-
grees of freedom on an ordinary PC. The proposed algorithm is extremely
efficient since it uses the diagonal form of the mass matrix so that inversion
of the matrix is completely eliminated.

4.3 Flexibility at the crack location

The flexibility at the crack location for a spectral rod element can be
calculated using the Castigliano theorem (Przemieniecki, 1968):

0?U

Cij = m (fOI’ 1=7]= 1) (37)

where U denotes the elastic strain energy of the element caused by the
presence of the crack and the S; are the independent nodal forces acting
on the element. The following relation can express the elastic strain energy
due to the crack,

_]' 2
UfE/AKIdA (38)

where A denotes the area of the crack and K is a stress intensity factor
corresponding to the first mode of the crack formation (Tada et al., 1973).
The stress intensity factor can be expressed as follows,

= v (7) o

where «, b and h denote the crack depth, height of the rod and width of the
rod at the crack location respectively (see Fig. 6), and f is the correction
function in the form (Tada et al., 1973),

o\ [tan(ma/2h) 0.752 + 2.02(a/h) + 0.37[1 — sin(war/2h)]?
/ ( h) N o /2h cos(ma/2h) (40)

After some simple transformations, the flexibility of the elastic element,
which is used for modeling the cracked cross section of the rod, can be
rewritten as,

c= Z; af*(a)da (41)
0
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where E denotes Young’s modulus (averaged with respect to any layers of
composite).

It should be noted that application of the technique of static node con-
densation as presented in section 4.1 in the case of SEM, causes the mass
matrix to lose diagonality. In order to maintain the diagonal form of the
mass matrix it is necessary to split nodes between two spectral elements
and add to the global stiffness matrix a special matrix. This special matrix
is a consequence of the inverse form of the flexibility at the crack location
and can be expressed as follows:

= 2 ] (1

In such a case, the mass matrix of the elements located next to the crack is
identical with that of classical spectral elements.

4.4 Comparative example

Numerical calculations were conducted for an unconstrained rod with
dimensions: length 2 m, height 0.02 m and width 0.02 m. The following
properties of materials were assumed: Young’s modulus 210 GPa and mass
density 7860 kg/m3. Excitation, in the form of an impulsive force with
amplitude 100 N was applied to the node on the left end of a rod. A forcing
signal in the form of a sine with five cycles, modulated with a Hanning
window, was applied.

The aim of the numerical example is to compare results obtained by the
use of the spectral element method with the spectral element method based
on FFT (Palacz and Krawczuk, 2002). In this example, the applied forcing
signal had a carrier frequency of 100 kHz. However, for signal amplitudes
to be compared, the excitation amplitude for the second method is twice
as large. Such a procedure is necessary because in the method based on
the FFT, on the left end of the rod an element of the throw-off type is
added. This causes the actuated wave to propagate simultaneously in two
directions: to the left it is led ad infinitum by the throw-off element, and
to the right it propagates because of the element with the crack. The crack
was inserted exactly in the centre of the rod. It was assumed that the depth
of the crack was 15% of the height of the rod.

Figures 7-9 present comparisons of the signals obtained by the use of
both methods. For legibility, the distance covered by the wave was placed
on the horizontal axis. Distance was obtained by calibration of the time
axis with the theoretical velocity v = \/E/p = 5168.9 m/s. In addition, the
beginning of the excitation was shifted adequately to half of the impulse
time.
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Figure 7. Comparison of signals on the left end of the rod, obtained with
the method of spectral elements (SEM) and the method of spectral elements
based on the FFT (FFT-SEM).
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Figure 8. Comparison of signals on the right end of the rod, obtained with
the method of spectral elements (SEM) and the method of spectral elements
based on the FFT (FFT-SEM).

In Figure 7 one can observe that for both methods, the wave velocity
corresponds to the theoretical velocity - the centre of the impulse occurs
almost precisely at the distance of 2 m, i.e. once the wave covers the distance
from the left end of the crack and back to the left end. The next centre of
the impulse occurs at the distance equal to 4 m and it corresponds to the
reflection from the right end of the rod. In both methods the shape of the
signal remains the same, whereas amplitudes differ.

Taking into account the fact that issues of wave propagation in a medium
without damping are discussed, the signal amplitude value should not un-
dergo changes. This is the case only when the method of spectral elements
is applied, as is presented in Figures 7-8, where the impulse amplitudes at
the distance of 4 m (Figure 7) and 2 m (Figure 8) are identical. For the
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Figure 9. Comparison of signals in the point located 20 cm from the left
end of the rod, obtained with the method of spectral elements (SEM) and
the method of spectral elements based on the FFT (FFT-SEM).

spectral element method based on FFT, the signal amplitude decreases as
a result of energy transfer from the system through the throw-off element.

Influence of the throw-off element on the signal received at the a location
of 20 cm from the left end of the rod is presented in Fig. 9. The wave
generated at the left end of the rod, while propagating, travels through
discussed location (impulse at the distance of 0.2 m), it reflects from the
crack and returns to this location (impulse at the distance of 1.8 m), next
it reaches the left end of the rod, where the wave is transferred ad infinitum
without reflection from the edge (no impulse at the distance of 2.2 m).

The comparative analysis allows one to state that the method of spectral
elements shows a certain advantage over the FFT-based spectral elements
method in the fidelity of modelling the phenomenon of wave propagation.
When only the first reflection (from the crack) is analyzed, the considered
methods lead to compatible results. The only condition is, that in the FFT-
based spectral element method, the analyzed location will not agree with
the degree of freedom where the throw-off was added. The advantage of
the FFT-based spectral element method is that if one searches for solutions
only at several locations, the time of calculation is shorter. Continuing the
theoretical deliberation, the numerical examples presented will be based on
the spectral element method.

Attention should be brought to the fact that the formalism presented
in paragraphs 4.3-4.1 refers to the elementary theory of rods. However, ex-
panding this formalism to other theories of rods, beams or plates is straight-
forward. From the point of view of SHM, the elementary theory of rods is
not sufficient at higher frequency ranges because it does not take into ac-
count the dispersive character of the waves. The above aspect is clearly
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presented in Fig.10, where comparison of signals received in a composite
rod with a crack modelled using elementary and three-mode theory was
presented. Signals received by the use of the model based on elementary
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Figure 10. Comparison of the signals received on the left end of the rod
with crack at the depth of 15% of section height for the tree-mode and
elementary theory.

theory, significantly differ from signals received with the use of the model
based on three-mode theory, in regard to both wave velocity and shape of
signal packet.

4.5 Influence of crack on wave propagation

Influence of crack location and crack depth on wave propagation
Figure 11 presents the absolute values of signals obtained at the left end
of the rod for various locations of a crack with 15% of the cross-section
height. Location of the crack close to the left end of the rod causes multiple
reflections and superpositions of waves. With the location of the crack at a
shorter distance from the half-length of the rod (Figure 11), one can observe



[\
-3
D

W. Ostachowicz and P. Kudela

|

A " :
L
m; AW .nl“
\"_w_ n |

L

’ |

Amplitude [m/s 2]
S
S

| I
]

i |

Crack location [m]

02 06 10 14 18 22 26 30 34 38

Distance [m]

Figure 11. Influence of crack location at the depth of 15% of cross—section
height, on wave propagation.

two reflections from the crack and a reflection from the right end of the rod.
The example presented shows that the location of the crack may be easily
identified based on the time of flight and the velocity of the wave packet.

In the next example, the effect of depth of the crack was studied. The
crack was located at a distance of 1.2 m from the left end of the rod.
With an increase in crack size, the amplitude of the signal reflected from
the crack increases, and the amplitude of the signal passing through the
crack decreases, as presented in Figure 12. For a crack depth of 5% of the
cross-section height, the wave impulse reflected from the crack also occurs,
although this is not very visible in Figure 12

Influence of signal frequency on amplitude of the reflected wave
It follows from Figure 13 that along with an increase of forcing signal fre-
quency, there is increased amplitude of the signal reflected from the crack
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Figure 12. Influence of the crack depth, situated at the distance of 1.2 m
from the left end of the rod, on wave propagation.

in relation to the amplitude of the signal received at the place of excitation.
This means that sensitivity of damage detection methods based on changes
in elastic wave propagation will be higher for higher frequency ranges. How-
ever, one must take into account the fact that, in reality one deals with
elastic waves whose velocity depends on frequency, and therefore the signal
undergoes dispersion. In order to take into consideration the above effect,
one must apply Love’s theory, Mindlin—-Hermann’s theory or three-mode
theories, depending on the frequency range (Krawczuk et al., 2004).

5 Damage Identification in 1D Structures

Damage identification problems may be treated as inverse problems, but it
is also possible to do damage identification based on knowledge in the field
of wave propagation. In the former case, a high-fidelity numerical model
of the analysed structure is necessary. Moreover, reference signals (signals
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Figure 13. Signal frequency impact, on propagation of the wave reflected
from a crack with the size of 15% of section height.

received for non-damaged structures) theoretically are not necessary. But
in practice higher signal-to-noise ratio is obtained using differential signals.
In the latter case, identification of damage may take place by processing the
signals registered at sensors embedded in real objects. Monitoring of the
structure in real-time is also possible because calculation time is very short
in comparison with the former case. The use of reference signals means
that better damage identification results can be obtained. Aspects of the
application of both techniques, are illustrated by the example of the rod in
Figure 14.

It was assumed that the geometry of the rod, material properties, and
signal parameters were the same as in the comparative analysis of sec-
tion 4.4. The rod was divided into 255 spectral elements. Damage of a
size of 15% of the section height, at a distance of L, = 60.16 cm from the
left end of the rod, was inserted into the model. Simulation of experimen-
tal measurements was conducted, assuming an arbitrary distribution of two
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Figure 14. Schematic diagram of the rod with crack and sensors.

“PZT transducers” at distances of L1 = 89.84 ¢cm and Lo = 110.16 cm. It
was also assumed that each of the transducers could also work as a wave
actuator and as a sensor at the same time. In this way, 4 signals were ob-
tained. These were next contaminated by random noise with a quantity not
exceeding 3% of the maximum amplitude of the signal. A similar simulation
was conducted for the non-damaged rod.

Detection Because signals coming from real measurements contain noise,
it should be minimised by filtering and the level of noise ought to be es-
timated. Giving an estimate of noise level is difficult in automation. The
level of the noise may be estimated by making several measurements from
the same sensors and conducting a statistical analysis. After performing
an operation of subtraction on two signals registered in various operating
conditions one will obtain the noise. If within the structure there is enough
damage that there is the difference between signals, one will observe ex-
ceedance of the noise level (Fig. 15a). Unfortunately in this way, damages
for which the amplitude of the reflected wave is lower than the noise level,
will not be detected (Figure 15b). To overcome these obstacles, two meth-
ods of extracting features connected with damage from the signals could be
proposed. The objective of these methods is to to get a smooth function
with improved signal-to-noise ratio.

Method I The first method is simple weighted summation of signal am-
plitudes in a moving window (a type of cross-correlation) according to the
equation,
Ny
. 2
e(t;) = > [F(t:) S (t; + (i — 1)At)] (43)
i=1
where S is the processed signal, F' is a weight function, which may be
a window modulating the signal (e.g. a Hanning window or a Gaussian
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window), At denotes the time step, N, is the number of points in the
moving window (in practice N,, = t./At, where t. stands for the excitation
time).

Method IT The second method is a similar weighted summation, but
corresponding to the power spectrum,

e(t;) =|F (fc)| = |IDFT [F(t;) S (t; + (i — D)AY)]|, i=1,...,Ny, (44)

where F denotes the linearly interpolated amplitude corresponding to the
carrier frequency of the excited signal f., DFT denotes the discrete Fourier
transform. To clarify, e is named as the intensity function of reflected waves
because this function gives peaks corresponding to the location of reflected
wave packets.

Application of the above—mentioned techniques regarding the signal pre-
sented in Figure 15b and alteration of the time scale causes amplification
of the function e at the location of wave reflections (after transformation
the signal is shorter by the width of moving window), which is presented
in Figure 16. Method II introduces signal operations in the time domain
as well as in frequency; this enables signal filtration to be more favourable
than in the case of method I. In Figure 16 one can observe, that in method
IT the relation of the maximum value of the intensity function of reflected
waves to the estimated noise level is much higher than in the case of method
L.

In the literature many other methods of feature extraction can be found
(wavelet analysis, pattern recognition, outlier analysis, etc.).

Localisation Estimation of the propagation time is a basis for adequate
location of the damage. Techniques of time propagation estimation, based
on the maximal signal envelope created using the Hilbert transform, may be
unreliable if the level of noise in the signal is too high. Instead of the signal
envelope, one may use, as suggested in section 5, the intensity function of
reflected waves.

Estimation of the propagation time may be conducted on the signal
received at the sensor number 2, when excitation occurs in transducer num-
ber 1 (t1—2) and inversely (¢2_1). From the experimental simulation one
obtains adequately t1_o = to_1 = 0.0393 ms, which gives, with the distance
between sensors Lo — L1 = 20.32 cm, a propagation velocity of 5166 m/s,
almost identical to the theoretically calculated velocity. Those values were
obtained through application of the above-mentioned methods I and II. The
time of propagation, calculated with the use of the envelope and Hilbert



Elastic Waves for Damage Detection in Structures 281

1000 T T T T T

Differential sig.

[m/s 7]

— — — Noise level

500

_

Amplitude

1 1 L 1

| 1 L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time [ms]

-500

(a) Crack with a size of 15% of the height of the rod.
1000 T T T T T

Differential sig.

[m/s 7]

— — — Noise level

500 4

Amplitude
l

1 1 1 1 1 Il

U | L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time [ms]

(b) Crack with a size of 5% of the height of the rod.

Figure 15. Difference in signals between non-damaged rod and rod with
crack against estimated noise level background.

transform, adequately shows ¢1_o = 0.0391 ms and t5_; = 0.0395 ms. Such
a discrepancy shows the lower precision of estimation.

Knowing the velocity of wave propagation and the location of the sensors,
the intensity function of reflected waves can be transformed from the time
domain to the distance domain in such a way that suitable superpositions
of reflected waves occur,

Ng p ;
E(zj) = Zei (t(z;)),  tz;) = %

dp, =/(x; —or)?, g = /(2 —25)? (46)

where z; is the presently considered rod coordinate, z7 stands for the exci-
tation coordinate, g stands for the sensor coordinate, Ng denotes the total
number of sensors, and c is the estimated velocity of wave propagation.

(45)
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Figure 16. Differential signal filtered with the use of methods I and II,
against estimated noise level background.
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Figure 17. Amplification intensity function of reflected waves with appli-
cation of two and three sensors.

The procedure presented in equations (45)-(46) was applied for the sensor
configuration given in Figure 14 and for a configuration with additional
sensors located between sensors number 1 and number 2. As a result, the
amplified intensity functions of reflected waves presented in Fig. 17 were
obtained. Amplification of the wave reflected from the crack occurs about
0.6 m from the left end of the rod (amplitude E;). However, the wave
reflected from the edge of the rod is also amplified (amplitude E7). It can
be observed, that the amplification is connected with the number of sensors
and is equal to F/e = N2.

Estimation of the damage size The size of the damage may be es-
timated by taking into account the relation of the amplitude of the wave
reflected from the damage Ar with the amplitude of the excited wave Ar.
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Because of the noise in the signal, the amplitudes Ag and Ar may be re-
placed with the amplitudes of the intensity functions of reflected waves er
and epr. However, it is necessary to familiarise oneself with the relation of
er/er to crack depth. Such a relation may be defined in the process of
experimental research or based on a numerical model (Fig. 18).
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Figure 18. Relative crack influence on relation er/er with carrier fre-
quency 100 kHz (numerical model).

Attention should be brought to the fact that, for very small cracks, it
is difficult to calculate the amplitudes er from signals containing noise.
Therefore, it is easier to calculate the relation er/er indirectly. Assuming
amplitude symbols according to Figure 17 for the case with three sensors,
one obtains Fy = 818.0. Applying the procedures given in equation (44) for
signals registered for a rod without damage, one obtains the amplitude of
the intensity function of reflected waves directly at the location of excitation

eref = 728.25. The relation er/er may be expressed by the equation,
Ey/N?
er _ Ep/Ng (47)
er Eref

In the analysed example, eg/er = 0.1248, and with the reference to the
relation presented in Fig. 18, corresponds to a crack with a depth of 15% of
the height in cross—section of the rod.

Genetic algorithms in the problem of identification Genetic al-
gorithms are extremely suitable for the problem of optimisation of func-
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tions with multiple minima (maxima) or discontinuous functions (Gold-
berg, 1989). The genetic algorithm (GA) differs substantially from more
traditional search and optimisation methods. The four most significant dif-
ferences are:

e GAs search a population of points in parallel, not a single point.

e GAs do not require derivative information or other auxiliary knowl-
edge; only the objective function and corresponding fitness levels in-
fluence the directions of search.

e GAs use probabilistic transition rules, not deterministic ones.

e GAs work on an encoding of the parameter set rather than the pa-
rameter set itself.

Those features predestine genetic algorithms to applications in problems
regarding damage identification.

It is important to note that the GA provides a number of potential solu-
tions to a given problem and the choice of final solution is left to the user. In
cases where a particular problem does not have one individual solution (for
example the solution is a family of crack locations) as in the case of multi-
objective optimisation and scheduling problems, then the GA is potentially
useful for identifying these alternative solutions simultaneously (Chipper-
field et al., 1994).

Having the signals from the simulated experiment and numerical model
of the rod presented in Section 4.2, an attempt was made to identify the
location and size of the damage simultaneously. It was assumed that both
decision variables, location of the crack m and depth of the crack n, would
be encrypted in one chromosome divided into two parts,

100100 1v1 1
m n

The decision variables are represented by integers, ranging over [0, 27 — 1],
where p denotes the number of bits in the chromosome. This enables easy
modelling of the damage, because the locations agree with nodes of the
mesh of the spectral finite elements. What is more, the following data were
assumed:

e number of individuals 40,

e maximum number of generations 20,

e crossover probability 0.7,

e mutation probability 1/40,
The objective function, which is to be minimised, was suggested in the form
of,

f(m,n) = ZZ |(Rij = Sij(m,n))| (48)



Elastic Waves for Damage Detection in Structures 285

where N denotes the number of points in the registered signal, R;; stands
for the j-th amplitude of the i-th signal from the simulated experiment,
and S(m,n) are the signal amplitudes obtained by using the numerical
model, with the parameters specified by the decision variables m and n.
The signals S(m,n) are continuously calculated, because the number of
possible locations and sizes of the crack may be relatively large (depending
on the precision of the calculation). To shorten the calculation time, the
problem was solved in two stages.

Stage I In this stage a 9-bit chromosome was assumed, where 5 bits fall
to the decision variable m, and 4 bits fall to decision variable n. This
assumption corresponds with ranges of representation, m € [0,31] and n €
[0,15], when m = 0 and n = 0 denote that damage does not occur, and the
remaining whole numbers correspond to positions of the crack location and
size given by the number of divisions (Figure 19). In this way the crack
cannot occur at the distance equal to 0 as well as equal the length of the
rod, and the size of the crack cannot reach 100% of the cross—section height.

0 AL Le=m AL ] ] L
Figure 19. Schematic diagram of rod division in stage I.

In the analysed example, the genetic algorithm already converges to a
result after two generations: m! = 10, n! = 2; this refers to a coordinate of
crack location LI = 0.625 and a size of crack a’ = 0.125. This solution is
the first approximation, which is the starting point to stage II.

Stage II In this stage an 8-bit chromosome is assumed, where 4 bits fall
to the decision variables m and n. The solution is searched for within a
range situated to the left and to the right of the approximation found in
stage I, thus,

Lee [(m" =1 AL, (m" +1)AL")

and similarly for the size of the crack a. The division resulting from the
assumption of a four-bit representation of the decision variables, is presented
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in Figure 20. This time, the decision variables m = 0 and n = 0 correspond
to the left ends of the ranges.

6 1 m

2 . 15 16
AL
= : : —\ ; —
(m-1)AL L L // (m +1AL
AL=2AL'/16 Le=(m'-1)AL*m AL

Figure 20. Schematic diagram of rod division in stage II.

In this example, after six generations the genetic algorithm gives a so-
lution: m!f = 5, n'! = 11; this corresponds to coordinates of the crack
location LI = 0.6016 m and the size of the crack a’! = 0.1484. The ob-
tained solution is exact as far as the location of the crack is concerned - this
results from the assumed discretisation (255 elements, between which one
may model the crack), and shows about 0.2% deviation as far as the depth
of the crack is concerned.

Conclusions To summarise, the conception of a damage identification
system based on knowledge of the field of wave propagation as well as the
conception based on genetic algorithms, leads to considerable results. In
both cases, the location and size of the damage were identified with high pre-
cision. On the other hand, the identification of damage in two—dimensional
elements of a structure based on genetic algorithms may be too complex for
contemporary computers.

6 Experimental Applications of Lamb Waves

6.1 Test stand profile

The test stand in the Department of Mechanics of Intelligent Structures
in The Institute of Fluid-Flow Machinery of the Polish Academy of Sciences
consists of piezoelectric transducers, measuring devices designed for wave
generation and data acquisition, and a computer (Fig. 21). The measuring
device is a prototype device, constantly developed and improved. In gen-
eral, the device is superb for the needs of wave propagation analyses. An
electronical system enables registration of signals from 12 measuring chan-
nels, while the 13th channel is used for wave generation. The device may
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be connected to the computer through a USB connector in order to control
its parameters and transfer measured signals.

(X

Figure 21. View of the fragment of a test stand.

The configuration of the matrix of piezoelectric transducers is in the
shape of a clock with transducers placed on each “hour” of the round “clock
face” and an additional transducer which is placed in the centre of the
transducer configuration (Fig. 22). Elastic waves are generated by means
of a central piezoelectric transducer CMAP11 (5 mm x 5 mm x 2 mm)
or CMAPI10 (3 mm x 3 mm x 2 mm) made by Noliac. Wave registration
takes place at circumferential transducers CMAP10 (3 mm x 3 mm x 2 mm)
also made by Noliac. However, it is also possible to generate the waves in
the circumferential transducers. The limitation of the device is that the
transducer generating the elastic waves cannot operate at the same time as
the sensor registering the elastic waves.

The subject of research here is a composite panel, whose shape and
dimensions are given in Figure 22. It is a part of a door from an Agusta
AW-139 helicopter. The panel is made of six layers of carbon-epoxy laminate
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Figure 22. Geometry of the sample and distribution of sensors.

with the ply stacking sequence [+45/-45/0/90/+45/-45], and covered with
a sealing compound with a thickness of about 0.14 mm, which makes up
the face board of the door. The theoretical total thickness of the composite
plate is equal to about 1.15 mm.

Transducers were attached to the studied specimen using a wax sub-
stance, the same that is used in assembling accelerometers. This enables
easy assembly and non-destructive disassembly of transducers, which is im-
portant owing to the lowered costs of the experimental research. Connecting
transducers to the surface of a structure using wax is a relatively cheap solu-
tion and at the same time practical. However, it is not an optimal solution
because the wax strongly attenuates elastic waves and what is more, pre-
cise bonding of transducers is difficult. In practical monitoring systems,
one should apply durable bonding e.g. using epoxy resin with mechanical
properties similar to the surface, to which transducers are attached. The in-
fluence of the bonding layer thickness and its Young’s modulus, on the glued
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Table 2. Properties of materials (Zak et al., 2000; com)

Sealing compound  Epoxy resin  Carbon fibre

Youngs Module, GPa 3.43 3.43 230
Poissons coefficient 0.35 0.35 0.2
Density, kg/m? 1350 1250 1750

connection of the piezoelectric element, was studied in the work by Qing
et al. (2006). Experimental results indicate that increasing the glue thick-
ness changes the electromechanical impedance, the resonance frequency of
piezoelectric element and the amplitude of the signal registered by the sen-
sor. The influence of Young’s modulus of the bonding layer on the signal
amplitude is insignificant.

6.2 Theoretical dispersion curves

Because the mechanical properties of the specimen are unknown, for the-
oretical calculations the data given in the Table 2 were assumed. These val-
ues are verified according to group velocity profiles measured by experiment.
With the use of a procedure described in work by Kudela et al. (2007b),
dispersion curves were calculated (i.e. the group velocity dependence on fre-
quency). It should be emphasised that this procedure was extended in a
way that takes into account the asymmetrical ply stacking sequence and
covering face lamina. Results are presented in Figure 23. Within the range
of frequency around 1-600 kHz the longitudinal wave propagates the fastest
(S0), next is the shear wave (SHO), and the slowest is the bending wave
(A0). Above a frequency of about 600 kHz there occur other modes of
Lamb waves.

Similarly, a group velocity distribution diagram was obtained depending
on propagation angle (Figure 24) with frequency of 120 kHz. It is important
that values of group velocities of the longitudinal wave (S0) and the shear
wave (SHO) significantly differ from the average, i.e. the shape of the profile
of group velocity significantly differs from a circle. The situation is different
in the case of the bending wave (A0), where the mentioned differences are
much smaller. Owing to this fact, in methods of damage localisation based
on the time of flight of waves reflected from the damage, the most favourable
modes for analysis are the bending waves. It is also important that in the
analysed element of structure, the bending wave is characterised by minimal
dispersion within the frequency range above 100 kHz (the course of the
dispersion curve for the velocity of A0 mode for frequencies above 100 kHz
in Figure 23 is similar to a horizontal line).
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Figure 23. Theoretical dispersion curves obtained for the studied carbon-
epoxy laminate.

6.3 Estimation and verification of wave group velocities

Measurements were conducted using a sinusoidal excitation modulated
by a Hanning window within a frequency range of 50-150 kHz with a 10 kHz
step. As a result of the modulation, signals with 3, 5, 7 and 10 cycles
have been investigated. For the estimation of group velocity, a windowing
method based on the signal spectrum energy was used. Selected results of
the experiment are presented in Fig. 25.

Figure 25 presents the dependence of group velocities on the wave propa-
gation direction, with given excitation frequencies for different number of cy-
cles. Individual points are distributed with a 30 degree angle, corresponding
to the distribution of sensors. Diagrams were also plotted with a dashed line,
the theoretical curve of velocity profile for a composite with a fibre stacking
sequence [+45/-45/0/90/+45/-45]. With frequencies above 100 kHz (the
minimal dispersion area) the velocities estimated based on experimental
signals almost agree regardless of the number of cycles, and their distribu-
tion depending on propagation angle to a large extent agrees with the the-
oretical profile. It should also be added that for a frequency range corre-
sponding to the dispersion profile, velocities are the most similar to circles,
which is beneficial in application to the methods of damage localisation.

A conclusion from this research is that, owing to high wave attenuation
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Figure 24. Theoretical graph of group velocity distribution depending on
propagation angle, obtained for the studied laminate with a frequency of
120 kHz.

(due to composite material damping), inspection of a panel area is only
possible within a radius of 0.5 m for a frequency of 50 kHz. With an
increase of the frequency, wave attenuation also increases.

It should be emphasised that, in the registered signals, the predominant
wave amplitudes are connected with bending waves. Shear and longitudinal
waves are also present in the signals but their amplitudes are very small
with reference to the amplitudes of the bending waves. For this reason,
based on registered signals one cannot estimate the velocity of longitudinal
and shear wave propagation. However, shear and longitudinal waves prop-
agate with higher velocity than bending waves. Moreover, they undergo
mode conversion, which causes additional signal disturbances.

6.4 Damage detection

Piezoelectric transducers were attached to the studied sample using wax.
A “clock” configuration of sensors with a radius of about 4 cm was applied.
A series of measurements for a non-damaged sample as well as for a sample
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Figure 25. Group velocity dependence on the propagation angle with ex-
citation frequency of 120 kHz for an even number of cycles.

with various artificially inserted damages were conducted. Signal processing
was carried-out using an algorithm suggested by Kudela et al. (2008). The
complicated geometry of the studied sample and the composite material
with strong damping behaviour, of which the sample was made, mean that
distinction between waves reflected from damage and reflected from features
of the structure (edges, stiffener, depth change, etc.) is impossible. For this
reason, it is necessary to use reference signals. That is why, after application
of the signal processing procedure, the amplitudes of signals registered for
the damaged sample s, were linked to the amplitudes of signals registered
for the non—-damaged sample s4 using a dB scale:

FE,
Eq_, = 10log,, < Ed> (49)
s

where E; and FE,. refer to superimposed intensity functions of reflected waves
eq and e, given by Eq. (44) in the case of signals registered for the damaged
(sq) and reference (s,) structure, respectively. The functions E; and FEy in
the case of 2D problems can be described by the formula:

E:Z/ek(x,y)dszzzek(xm%)a
r US ko i,j

k=1,...,12 i=1,....N j=1,....M
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Table 3. Inserted cracks scenario

crack no 1 crack no 2

depth [mm] | length [mm] | depth [mm] | length [mm)]

0.2 4 - -
4 - -
8 - -
14
18
18
18
18

=
(@]

SR - 0 T
— e e e
1
1

— = =
0]

where S is the surface of the investigated structure, and N and M stand for
the total number of nodes i and j, located on the surface of the investigated
structure; k is the sensor number. This function gives a map which can be
called a damage influence map or damage intensity map.

As an indicator of the damage level of the element of structure, a value
described with the following formula was assumed:

D =Y |Eqr(xi,y;)l (51)
ij
After a series of tests it was found that a frequency of about 120 kHz
is the optimal frequency for signal excitation®. Further researches were

conducted using only a frequency of excitation of 120 kHz.

6.5 Crack detection

Within the studied sample, cracks were inserted according to the scenario
given in Table 3. As a result of the damage detection algorithm suggested
in the work by Kudela et al. (2008), one finds maps of damage influence as
presented in Figure 26. On the maps of damage influence, the real location
of the crack for reference purposes was clearly marked with a white line.

While analyzing the maps of damage influence presented in Figures 26a—
¢ one may notice an increase in the value of map amplitudes in the form
of circumferential stripes, which the radius agrees with the radius where
damage is located. By increasing the damage to a length of 8 mm, the
map of damage influence (Figure 26¢) reaches a maximal value in the close

3For a signal excitation frequency of 120 kHz the biggest differences were noted between
signals in damaged and non-damaged sample, what manifested in the biggest values of
damage level indicator D
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neighbourhood of the damage (difference between centre of the crack and
maximal value of damage influence map is equal to about 25 mm). Further
increasing of the crack length brings about surprising results. Amplitudes
of damage influence maps presented in Figures 26d—e undergo strengthen-
ing, not only in the place where the crack occurs but also in other areas.
What is more, the maximal amplitude value of the damage influence map
decreases with increase of the damage length. The observed anomalies may
be explained by the effect of mode conversion. Shear and longitudinal waves
converted from the bending mode propagate faster. Damage influence maps
are made based on the bending wave velocity profile, therefore strengthen-
ing or attenuation of the amplitudes of the damage influence maps occur
also in areas which do not agree with the location of the crack. What is
more, a problem may be caused by noise (coherent noise) that results from
inaccuracy in signal amplitude subtraction (in the dB scale of logarithmic
relation between signal amplitudes), which for example are shifted at ran-
dom against one another.

Insertion of the second crack causes significant changes in the damage
influence maps (Figures 26f~h). One may observe that the maximal value
of the damage influence maps increase along with the increase of the second
crack’s length. Despite the fact that the second crack is located closer to
the sensor configuration, it is impossible to locate unambiguously the crack
based on the damage influence map. One may only estimate the radius
where the crack is located, and only in the case of the crack with a length
over 10 mm (Figure 26h).

Despite difficulties in formulating a crack localisation method, experi-
mentation in their detection proves to be relatively simple. Damage de-
tection may occur based on the damage indicator values represented in
formula (51). First, one must experimentally establish a threshold value
which, once surpassed, will indicate damage of the structure. Figure 27
presents dependence of the damage level indicator on the damage scenarios
put together in Table 3. Also, an arbitrary established threshold level of
the value 1.75 - 10° was applied to the Figure 27. The damage level indica-
tor takes a lower value than the threshold level only in the case of damage
scenario “a”,i.e. a crack within the face layer of the sample. Insertion of a
crack with a depth of 1 mm into studied sample, causes exceedance of the
threshold level. One may state that the indicator of damage level, shows an
increasing tendency along with size and number of inserted cracks with the
exception of damage scenario “d”. This indicator may be effectively used
for damage detection purposes in the early stage of development.

In the case of experimental research concerning delamination detection,
the situation is similar to the case of matrix crack detection. However,
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Figure 26. Experiment: damage influence maps.
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location of the delamination is much more difficult. It derives from the fact
that amplitudes of waves reflected from delamination are significantly lower
than amplitudes of waves reflected from cracks.

x 10°

+

& b c d &  .f g h
Damage scenario

Figure 27. Damage size indicator.

6.6 Conclusions

Analyses of signals measured with the use of specialist testing equipment
were conducted. Estimation of wave group velocities for various frequencies
and numbers of cycles was made. Dispersion curves, and profiles of depen-
dence of wave group velocities on the angle of propagation, were calculated.
Experimental results were compared with theoretical results. High confor-
mity between theory and experiment both in dispersion curves and profiles
of velocity depending on wave propagation angle were observed.

A serious problem with the studied specimen of a composite structure
is the high damping, which increases in proportion to the frequency of the
excitation signal.

The developed damage detection algorithm enables detection of extremely
small cracks. In some cases, it is also possible to locate the crack.
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