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Abstract This chapter deals with the estimation of modal param-
eters from measured vibration data using subspace techniques. An
in-depth review of subspace identification for operational modal
analysis is provided. In addition, two recent developments are em-
phasised: the estimation of the probability density function of the
modal parameters, and the use of an exogenous force in addition to
the unmeasured operational excitation.

1 Introduction

Vibration-based SHM methods very often rely on modal parameters that
are estimated from measured vibration data. Classical Ezperimental Modal
Analysis (EMA) techniques obtain the modal parameters from input-output
measurements, i.e., measured, artificial forces are applied to the structure,
and the response to these forces is recorded. The response to unmeasured,
ambient forces is considered as unwanted noise. In general, such EMA
methods are not suitable for large structures and buildings because these
structures are inherently tested in operational rather than in laboratory con-
ditions, and the contribution of the measured forces to the total structural
response is usually rather low. A bridge for instance can only be excited to
a limited vibration level by an artificial excitation source such as a shaker,
unless it has a very heavy mass. This implies that the ever-present ambi-
ent excitation, due to for example wind or traffic, can most often not be
neglected, especially at low frequencies. Output-only or Operational Modal
Analysis (OMA) techniques have therefore been developed. They extract
the modal parameters from the dynamic response to operational forces. The
unmeasured, ambient forces are usually modeled as stochastic quantities
with unknown parameters but with known behavior, for example, as white
noise time-series with zero-mean and unknown covariances. Peeters and
De Roeck (2001) provide a review of operational modal analysis techniques.
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However, the OMA approach has two disadvantages when compared to
EMA: the mode shapes can not be mass-normalised, and the frequency
content of the excitation is usually narrow-banded. For these reasons, there
has been an increasing interest in the last few years towards combined modal
testing techniques, also called hybrid vibration testing or Operational Modal
Analysis with eXogenous inputs (OMAX), where an artificial force is used
in operational conditions. The main difference between OMAX and the
traditional EMA approach is that the operational forces are included in the
identified system model: they are not considered as noise, but as useful
excitation. As a consequence, the amplitude of the artificial forces can be
equal to, or even lower than the amplitude of the operational forces. This
is of crucial importance for the modal testing of large structures. It allows
the use of excitation devices that are small and practical when compared to
the actuators that are needed for EMA testing such as electromechanical or
hydraulic shakers, which are heavy and difficult to transport.

This chapter deals with the estimation of modal parameters from mea-
sured vibration data using time-domain subspace identification methods,
both from the OMA and the OMAX perspective. These methods identify
a discrete-time state-space model. In Section 2, it is demonstrated that
this is a valid model for a vibrating structure, by deriving it from a finite
element description. The deterministic state-space model is then extended
with unobserved inputs and output disturbances, which are both modeled
as stochastic quantities. Section 3 provides insight into the basic ideas
that lie behind subspace methods; the subspace identification algorithms
themselves are presented in Section 4. Two important recent developments
are discussed in detail: the estimation of the uncertainty on the identified
system parameters, and the use of an exogenous input in addition to the
unmeasured operational excitation, for OMAX testing. In Section 5, the
derivation of the modal parameters from the identified state-space model
is treated, as well as the estimation of their probability density function.
Finally, in Section 6, two real-life applications are discussed in detail.

2 State-space models of vibrating structures

2.1 Introduction

In this section, the use of a state-space model for operational modal
analysis, with or without exogenous inputs, is discussed. Starting from a
finite element description, that is commonly used for realistic physical mod-
eling of structures in forward vibration problems, a state-space model, that
is more convenient for solving inverse problems, is derived. This determin-
istic state-space model is then extended with unobserved inputs and output
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disturbances, which are both modeled as stochastic quantities.

2.2 Linear dynamic finite element model

The finite element method is the most common tool for forward mod-
eling of vibrating structures. In the case of a linear dynamic model with
general viscous damping, one has the following system of ordinary differen-
tial equations:

d*v(t) »dv(t)
a T

where v(t) € R™/¢ is the vector with nodal displacements, M € R"™fe*"fe,
Cv? € R"ex"fe and K € R"<*"fe are the mass, viscous damping, and
stiffness matrices, respectively, and Bge; € R™fe*™u ig a selection matrix
such that the vector with externally applied forces, u(t) € R™, has only
elements that are not identically zero.

M + Kv(t) = Boaqul(t) (1)

2.3 Continuous-time state-space model

State-space equation. By rearranging (1) and assuming that M has
full rank!, a continuous-time state space model

dx(t)
= Aczx(t) + Beu(t), (2)

where

2(t) = '2’58]
- dt

0 I

-M~'K -M-'Cv
[0

Be= MlBseJ’

is obtained. The vector x(t) € R™ is called the state of the structure.
The number of elements of x(t), n, is called the model order. If the state-
space model is derived from a finite element model, as in this case, one
has n = 2ny.. When the state at ¢ = 0 is known, the system of ordinary
differential equations (2) can be solved for x(t):

x(t) = e'z(0) + / eA<(=7) Bou(r)dr. (3)
[0,¢]

'In a beam model, for example, this implies that rotational inertia is included.
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Input-output equation. If the output quantities of interest are linear
combinations of nodal displacements, velocities or accelerations, one has

) d*v(t) Lc, dvo(t)

y(t) = Cy FTE 7 + Cyu(t)
= [ C, — Ci;M_lK | Cy — Ci;M‘lc’” ] :E(t) + CﬁMﬁlBselu(t)
_ C.a(t) + Doult) (4)

where Cy € R™*", Cy € R™*™ and C, € R™*" are selection matrices.
Finite strains can be included in y(t), since they can be obtained by divid-
ing the difference between two displacement DOFs by the initial distance
between their nodes.

Transfer function - poles. A Laplace transform of both sides of (2) and
(4) leads to a parametrisation of the transfer function:

Y(s) = (Ce(sI — Ae)™' Be + De)u(s) = H(s)ul(s). (5)
Following Cramer’s rule, one has

adj(sI — A¢)

T— A, =24 =4
(s ) det (sI — A.)’

where det (0) denotes the determinant and adj (0) the adjoint matrix of a
square matrix 0. Since det (sI — A.) is the characteristic polynomial of A,
the poles of the transfer function are the eigenvalues of A..

Change of basis - decoupling. When the state is transformed to a new
basis,  — T 'z with T € C™*" nonsingular, the input-output map pro-
vided by the state-space description is preserved when (Ac, Be, Ce, D) —
(T7'A.T, T 'B.,C.T,D,), as follows from (2) and (4). In particular,
when A, has a similarity transform,

Ao = U AT (6)

with A, a diagonal matrix, (2) and (4) are decoupled by putting T = ¥:

dwc’;(t) Ao () + L u(t) (7)
Y(t) = Bomm(t) + Doult). (8)

The subscript m denotes modal, as will be explained shortly.
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2.4 Discrete-time state-space model

Definition - ZOH assumption. Since for a given input w(t), solving the
continuous-time state-space description analytically is usually impossible in
the time domain, it seems natural to convert this model to discrete time:

T+l = Az + Buy, (9)
Yy = Czp+ Dug. (10)

For free vibration problems, where the inputs are identically zero, an exact
discretisation is possible by solving the system of equations (2,4) using (3):

a((k + 1)T) = eATa(kT)
y(kT) = Cex(KT),

where T denotes the sampling period. This leads to an exact map with
(A, C) = (e4T C,). The map is very important when solving the inverse
modal analysis problem by fitting (9-10) to measured sampled data. When
converting the fitted discrete-time state-space model to a continuous-time
equivalent, the inverse map leads to the exact continuous-time equivalents
of the discrete poles and mode shapes.

For forced vibration problems, a Zero-Order-Hold (ZOH) assumption
is often made, which means that the force is assumed constant (equal to
w(kT)) in [kT, (k 4+ 1)T). With this assumption, the following map is ob-
tained from (3):

(k+1)T

A=eAT  B= eAHDT=7) 1B, = (A—T)A;'B, (11)

kT

Cc=C., D=D..

A proof for the second equality in the expression for B can be found in
(Juang, 1994, p. 20). Although alternative discretisation strategies are pos-
sible (Franklin et al., 1998, ch. 6), the ZOH discretisation has the advantage
that it is exact when w(t) = 0, as discussed above. However, the input
matrix B,, that is calculated through the inverse map, is not a good ap-
proximation of the true B, when the sampling frequency is not much larger
than twice the largest important frequency that is present in the spectra of
the input and output signals.

Solution of the state equations - impulse response. The state equa-
tions (9-10) can be solved by simple forward calculation:

k
Yo = CA*zg +> CA"'Bfi_i + Dfe.
=1
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From this result, the impulse response is readily obtained as

Hy=D, H,=CA"'B, k>1. (12)

Transfer function - poles. By taking the z-transform of both sides of
(9-10), a parametrisation of the transfer function is obtained:

y(2) = (C(:1 — A)"'B + D)u(z) = H(2)u(z) (13)

Just as for the continuous-time state-space model (see Section 2.3), it follows
from Cramer’s rule that the poles of the transfer function are the eigenvalues
of A.

Change of basis - decoupling. Following the same lines as for the
continuous-time case, one has that the input-output map provided by the
discrete-time state-space description is preserved when (A, B,C,D) +—
(T-'AT, T~ 'B,CT, D), and that, when A has a similarity transform,

A=TuA,7,", (14)
where A4 is a diagonal matrix, (9-10) is decoupled by putting T' = ¥ q4:

Tm,k+1 = Ada}m,k + Lguk (15)
Y = Patmk+ Dug. (16)

2.5 Modeling loads and sensor noise

In this section, a step closer to the experimental world is made. The
goal is to obtain a more realistic description for the measured input-output
behavior of real structures. Therefore, measurement noise is taken into
account, and the inputs u(t) that were considered in the previous section,
are split into two parts: a part that can be measured in an operational
vibration test, and a part that can not be measured.

Unobserved loads. When the loads can not be measured, they have to
be identified together with the system, from the measured response. The
concerned discipline is called output-only or blind system identification.
When identifying the input and the system at the same time, a problem
of identifiability occurs: the system can not be determined unless extra
assumptions are made concerning the unknown inputs.

Most ambient excitation sources, such as seismic waves (Clough and Pen-
zien, 1995), turbulent wind or water pressure (Durbin and Petterson Reif,
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2001; Durbin and Medic, 2007), or road or railway traffic (Braun and Hellen-
broich, 1991; ORE, 1971), are often modeled as stochastic loads in forward
calculations. An exception is excitation due to rotating machinery, such as
wind turbines, which usually has a harmonic nature, i.e., its frequency con-
tent consists approximately of discrete peaks that occur at integer multiples
of a fundamental frequency.

When unobserved ambient or harmonic loads are taken into account
during system identification, the presented model structures need to be
extended. Pintelon et al. (2008) present a model for a structure’s response
to non-stationary harmonic excitation, and use it for operational modal
analysis. This model is generally applicable and could be combined with
the presented discrete-time state-space model. Stochastic load modeling is
discussed in detail in the next paragraph.

Stationarity, ergodicity, and zero mean. When a system that is
driven by an unmeasured, stochastic input, needs to be identified, extra
assumptions on the input, that is, other that stochasticity, are needed.
Wide-sense stationarity, which means that the covariance between two time
samples depends only on the time difference, not on the time instances at
which the samples were taken, and quadratic mean ergodicity, i.e., ensem-
ble averaging can be replaced by time averaging, are classical assumptions
(Dougherty, 1999). They are mild in the sense that if they are not valid,
they only increase the variance errors of the identified system description.
The zero mean assumption holds exactly when the constant trend is re-
moved from the outputs (hence also from the unmeasured inputs) and from
the measured inputs. In this case, the covariance functions of the inputs
and outputs equal their correlation functions.

Discrete-time white noise. Another classical, but more restrictive as-
sumption, is that the stochastic unobserved input is a white noise vector.
The sampled, stationary stochastic input sequence (u3,) is said to be a zero-
mean discrete-time white noise sequence when its correlation function obeys
(Dougherty, 1999, p. 154)

Cov(uz), j=0
Rusus,j = 5 (’U,Z_I_JUZT) = { 0, ( k) i;& 0 R

where £ denotes the expectation operator and Cov the covariance operator.
The discrete Power Spectral Density (PSD) of (uf), which is defined as the
Discrete Fourier Transform (DFT) of Ry,z,= j, obeys

Susus,j = Rusus,O‘
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This means that the discrete PSD of a discrete-time white noise sequence
is real and constant.

Colored noise. Whether the white noise assumption is approximately
true for the unobserved stochastic inputs entirely depends on the PSD of
the inputs in the considered frequency band. Often coloured noise is a more
realistic assumption: the unobserved inputs are assumed to be white noise
that has passed through a linear time-invariant system, called the noise
colour. If in that case, white noise inputs are assumed, the noise colour
of the unmeasured excitation is part of the identified system model (see
Figure 1). It can only be separated from the true system model if some
prior knowledge is available. For instance, if it can be assumed that the
modes of the vibrating structure are lowly damped real normal modes, then
highly damped and complex modes can be assumed to represent the input
noise colour.

Sensor noise. Even if all inputs could be measured and the vibrating
structure would obey all assumptions, that is, no model errors are made,
there would still be a discrepancy between the measured inputs and outputs
and their true values. This is due to electric disturbances in the measure-
ment equipment. These disturbances can be important when the amplitudes
of the measured signals are low compared to the noise floor of the equipment.

Based on physical principles, it can be shown that many important
electr(on)ic disturbances have a white noise nature. Nyquist (1928) de-
rived that at room temperature, the thermal noise voltage at both ends of
a resistor is approximately white below 1000GHz. However, the measure-
ment equipment makes up a dynamical system of its own, and the distur-
bances that it generates are not perfectly white. When nonwhite output
measurement noise is modeled as white, the noise colour becomes part of
the identified system, just as with nonwhite unmeasured inputs (see Figure
1). Harmonic measurement noise is often due to harmonic AC components
in the electricity grid, and could be modeled just as harmonic unobserved
loads.

2.6 A combined deterministic-stochastic state-space model

Continuous combined state-space model. When the observed (de-
terministic) inputs wu(¢) and outputs y(t) are corrupted by additive sensor
noise, denoted as u™(t) € R™ and y™(t) € R™v, respectively, and when un-
observed stochastic inputs u®(t) € R™: are present, the state-space model
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Identified System

White
Noise | Noise
g Color |
White
Noise | .|  Noise R True Outputs
v Color ”| System >
A

Measured Inputs

Figure 1. Block diagram of the identified system description when the
unmeasured excitation is coloured noise.

(2, 4) can be extended to

d"';—f) — Aua(t) + Bou(t) + wl(t) (17)
y(t) = Cex(t) + Deu(t) + v(t), (18)
where
w(t) £ Biu®(t) — B.u™(t), v(t) £ Dius(t) — Deu™(t) + y™ (),
(19)
B - [ A lz} . and  D:=CsM B,

with Bgejz € R <X g gelection matrix.

Discrete combined state-space model - decomposition. With a dis-
cretisation scheme such as ZOH, (17-18) can be converted to

Tr+1 = Axp + Bug, + wy (20)
Yy = Cxi+ Dug + vg. (21)

When it is assumed that the samples of u™(t), y™(t), and u*(¢t) make up
discrete-time white noise sequences, wy and vy, are discrete-time white noise

sequences as well:
w wy]” Q S
k+l K _
5( 'Uk:| > - |:ST R:| 51(l)7 (22)

V41




64 E. Reynders and G. De Roeck

where §; (0) is the unit impulse function, i.e., §1(0) = 1 and é; (o) = 0 if
O #£ 0. With the decomposition of the states and outputs in a deterministic
and a stochastic part,

e =xp+x; and Y =yp+ Y5,
(20-20) is decomposed into a deterministic subsystem
a:‘,:_H = Azl + Buy (23)
vk = Cuzi+ Duy, (24)
and a stochastic subsystem
Thi1 = Az + wg (25)
yp = Cuxj, +vg. (26)

Just as for the deterministic subsystem, the eigenvalue decomposition of A,
(14), decouples the stochastic subsystem:

T kt1 = NdTh, g+ Wmk (27)
Yr = Pazy, )+ Vm,k, (28)

where W,k = \Ilglwk.
Correlation matrices. The following definitions of correlation matrices

of the stochastic subsystem (25-26) and the relationships between them are
very frequently used, both in solving forward and inverse problems:

w0 2 ¢ (appein”) = € ((Azg +wi) (Azg + o))
= AX*AT +Q (29)
G 2 &(2iaui”) =€ ((Axf +wi) (Cap + )"
= AxCT +S (30)
A2 € (’!/ZH?JET)

£ ((Cm; + ) (C + vk)T> —C3*CT+R, 1=0
E((Cxip +vip)yy") = CAT'G, 1>0(31)
£ (iwiyn") =GT(a ) cT, 1<0

where, as before, stationarity and ergodicity of all stochastic sequences was
assumed, as well as the fact that xy is independent of wg and wvg, which
follows immediately from equations (20-21).
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Positive output correlation function and positive output power
spectral density. When comparing (12) and (31), it follows that the
impulse response function of the deterministic subsystem (23-24) and the
positive output correlation function of the stochastic subsystem (25-26) have
the same structure: the quadruplet (A, G, C, Ag/2) of the stochastic pos-
itive correlation function plays the role of the quadruplet (A, B,C, D) of
the deterministic impulse response function. Since the transfer function of
the deterministic subsystem is the z-transform of its impulse response func-
tion and the positive power spectral density of the stochastic subsystem is
the z-transform of its positive correlation function, it follows from (13) that

_ 1
St () =C(zI - A)'G+ o Ao. (32)

State estimation - the reference-based Kalman filter. Because the
stochastic terms wy, and v, are unknown, the state xx cannot be calculated
exactly from (20-21). Nevertheless, a one-step ahead estimate of xf ; can
be calculated if the current output vector yg is known. From yg, yg is
obtained after subtracting the deterministic part y,‘j. The Kalman filter
offers a technique for determining the optimal linear estimate because the
estimator is unbiased and has minimum variance (Kalman, 1960).

Reynders and De Roeck (2008) worked out a reference-based Kalman
filter. Reference outputs form a subset (containing n, elements) of the
complete set of n, outputs:

Yt 2 STy,

where S™ € N %™ ig a selection matrix. In order not to lose information,
it is important that any mode of interest is clearly present in at least one
reference output. Good reference output candidates are usually driving
point outputs, or, in case of measurements performed in different setups,
the output channels common to each setup. The reference outputs can be
written as

yzef =8"Czp + S"Dug + S"vi, 2 C™F xp, + D" Fuy, + vzef.

Reynders and De Roeck (2008) showed that the optimal linear one-step-
ahead state estimate &, and the reference-based non-stationary Kalman
filter K} can be calculated from the following set of equations, using the
current state estimate &7, and the measured current reference output vector
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y;’ref and assuming &3 = & (§):
1 = (A- Koz + Kyy™e! (33)
Kk: — (APkCrefT + Sref)(Rref + CrekaCrefT)—l (34)
T
Poy1 = APLAT +Q — (AP,CTeF 4 Sef)

_(Rref +CrekaCrefT)—l(APkCrefT _|_Sref)T (35)

where R™ef = §"RS™T §ref — §8™T and Py is correlation of the state
estimation error:

€L £ L — :i?k = :l:z - iﬁz, Pk e & (ekeg) . (36)

After solving (35) for Py, K} can be calculated with (34), and the optimal
estimate of &1 is then obtained using (33). It is usually assumed that
Z§ = 0 and Py = 0, see Van Overschee and De Moor (1996), but other
choices can be made.

Since the stochastic part of the model (20-21) is driven by stationary
random processes, the Kalman filter K, is equal to the time-invariant ma-
trix K when no initial conditions are taken into account (as is the case when
taking a double-sided z transform), which is formally shown in (Anderson
and Moore, 1979, ch. 4). In this case, Py equals the time-invariant matrix
P, and the subscript & in (34) and (35) disappears. Since the effect of initial
conditions dies out for a stable system when k — oo, it also follows that
K, — K, k— oo.

Reference-based forward innovation model. The (reference-based)

forward innovation e,(:ef ) is defined as

eref &y reh) _ c(reg,  predy,

By decomposing the Kalman filter state ®xyq into its deterministic and
stochastic components, one has

Trt1 = Thiq+ 251 = Azl + Bug + (A — KpC™) @5 + Ky o
= Ady + Bug + Ki(yp® — C™ i@y, — D™ uy,)
= A#j + Buy + Ki,S"e], (37)

where the second equality follows from (33). Obviously, one has

Y — Cz + Duy + (yk —Czp, — Duk)
= CZp+ Duy + €. (38)
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Equations (37-38) represent the reference-based forward innovation model of
the structure. It follows that for large k, the Kalman filter states constitute
a particular state-space basis, since when k — oo, K — K as explained
above, and (K S”ei ) and (e,{) are system and measurement noise sequences,
respectively, that obey the discrete-time white noise assumption.

3 Subspace identification: principles and strategies

3.1 Introduction

System Identification can be defined as the field of study where models
are fitted to measured data. It involves three basic entities (Ljung, 1999,
p. 13):

e designing an experiment that is as informative as possible and obtain-

ing the data;

e choosing a set of candidate models, like for instance a stochastic state
space model structure;

e choosing an identification method, i.e., a strategy for determining the
model in the set that explains the data ‘best’, and an identification
algorithm, i.e., a numerical algorithm that calculates the actual esti-
mate.

A myriad of system identification algorithms is available from the liter-
ature, but, as shown by Ljung (1999), they can be considered as particular
implementations of just a few general ideas. This section introduces the
main ideas that lie behind the class of subspace identification algorithms
for fitting the discrete-time state-space model of a vibrating structure, pre-
sented in the previous section, to measured data.

In the remainder of this chapter, the following assumptions are made.

Assumption 3.1. The stochastic output sequence y3 is generated by (25-
26). The white process and measurement noise sequences are not identically
Zero.

Assumption 3.2. When exogenous forces are measured, the force sequence
(ug),k=0,...,N—1, is observed free of noise and it is persistently exciting
of order > 21+ n. The latter is a technical assumption which ensures that
a block Hankel input matrix with 22 + n block rows has full row rank. The
response sequence (yg) due to the input sequence (uy) is generated by the
deterministic subsystem (23-24), which is controllable.

Assumption 3.3. When exogenous forces are measured, they are uncor-
related with the stochastic outputs, i.e.,

Vk,1: € (ygul ) = 0.
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3.2 System realisation

Introduction. The realisation problem was originally defined by Kalman
(1963) as the problem of identifying a linear dynamic system from a non-
parametric impulse response sequence that was generated by this system.
Ho and Kalman (1966) found an efficient way to solve this problem, begin-
ning with a finite-dimensional block Hankel matrix composed of noise-free
impulse responses and ending with the system matrices of a determinis-
tic state-space model. Later, Zeiger and McEwen (1974) and Kung (1978)
proposed to perform the factorisation step of the Ho-Kalman procedure by
singular value decomposition, where only the significant singular values and
the corresponding singular vectors are retained. This truncation enabled
one to deal with noise on the impulse responses, which is always present
in experimental data. Another variant called the Eigensystem Realisation
Algorithm (ERA), developed by Juang and Pappa (1985), introduced the
idea of reference outputs into the realisation procedure. Later, Juang et al.
(1988) proposed a variant of ERA that starts from correlations of impulse re-
sponses instead of the impulse response matrices themselves. This version is
called the ERA with data correlations (ERA/DC). Akaike (1974) extended
the realisation theory to stochastic systems and also gave a stochastic in-
terpretation of the Ho-Kalman algorithm.

Stochastic system realisation. Suppose a nonparametric estimate of
the stochastic output correlation sequence (Azef ) is available. From (31),
it follows that these correlation matrices can be parametrised as follows:

AT =cAFlgres k>

Stochastic realisation starts with gathering the correlation matrices in a
block Hankel matrix:

ATeF Azef o ATeS

ARef ATer AT

fa 2 3 141
Ly =1 : A (39)

Arer AT AT

where 2 is chosen in such a way that, if n is the expected system order,
Nyt > n, Nyt > n and 2 > 2. The block Hankel matrix decomposes into the
extended observability matrix O, and the reference-based extended stochas-
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tic controllability matrix C2 € R >

c
Lpf— | CA | grer agrer . amigrer] ()
CA! £cs
(@

The matrices O, and CZS can be obtained from L'lT’Zf , up to a similarity

transformation of the A matrix, using reduced singular value decomposition:

el = usv?,  o,=Us"?, cS=8VVT, ()

1|2

where S € R™*" contains only the nonzero singular values and U € R*v*"

and V' € R %" contain the corresponding singular vectors. If the stochas-
tic output correlation matrices Azef are exact, the number of nonzero sin-
gular values equals the system order n. If not, the system order is lower
than the number of nonzero singular values. It then needs to be estimated
as the number of significant singular values. In this case S contains only the
significant singular values and U and V contain the corresponding singular
vectors.

The C matrix can be determined as the first n, rows of O, and the
G"¢f matrix can be determined as the first n, columns of C,. Different
algorithms have been proposed for the determination of A. The algorithm
of Kung (1978) is computationally the most efficient one. It makes use of
the shift structure of the matrix O, :

A=0;10;. (42)

where O, is equal to O, without the last n, rows and O, is equal to O,
without the first n, rows. 0f denotes the Moore-Penrose pseudo-inverse of
the matrix O, see Ben-Israel and Greville (1974).

3.3 Subspace identification

Introduction. As shown in this section, subspace identification can be
considered as an extension of system realisation. Instead of starting from a
nonparametric impulse response or stochastic correlation function, subspace
methods start directly from the measured data samples, which are put in
different Hankel matrices. Projections between the data Hankel matrices
then lead to a matrix from which the extended observability matrix O, is
derived by performing a singular value decomposition, just as in the system
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realisation technique discussed above. In a second step, the state-space
matrices are identified using O,. Several algorithms exist for this, and
some of them are discussed in the next section. The discussion hereunder
is restricted to the time domain, but as shown by Cauberghe (2004), the
same techniques can be employed starting from frequency-domain data.

Orthogonal and oblique projections. Subspace identification methods
make extensive use of geometric projections. This paragraph provides a
concise review on the topic. Consider the matrices My € R™>*J M, €
R™2*7 and Mg € R™3*J. The row space spanned by the rows of My,
denoted as Ms, is defined as the set of all possible linear combinations of
the rows of Mo:

My 2 {yeR|y=Mjz, Vo € R™}.
The orthogonal projection of My onto Mo is defined as
My /My 2 My MY (MyME)' M.

When M, /Ms = 0, the rows of My and M2 are said to be orthogonal to
each other. The orthogonal projection M; /M is graphically depicted in
Figure 2 for m; = mo =1 and j = 2.

M,

|

|

|

1

|

|
»l > M2
> >

My /M

Figure 2. The orthogonal projection of M3 on the row space of My, for
the case m; = mo =1 and 3 = 2.

The oblique projection of M7 onto M along the row space of Ms,
denoted as Mg, is defined as

s 3] (o] ) ]

From the definition, it follows immediately that Mg/, M2 = 0. The
oblique projection M4/, Mo is graphically depicted in Figure 3 for m; =
mg =msg =1and 3= 2.



Subspace Identification for Operational Modal Analysis 71

> M,

M [ ps Mo

Figure 3. The oblique projection of M3 on the row space of My along
M3, for the case my = mgy=m3=1and y=2.

Matrix input-output equations. From (23-24), one has the following
relationship for the deterministic subsystem of a combined deterministic-
stochastic state-space model:

yd C D 0 07 [uo
y$ CA CB D 0| |uy
: : : : 0
y | CA! CA 2B CA B D| |u,
=0, éy:g
Define a block Hankel matrix of outputs as
[ Yk, Yei+1 -+ Yki+3—1
A |YRr+1l Yrkit2 - Ykidy
Yei ik, = ) ) . ;
L Yk Yrot+1 -+ Ykaoty—1
a block Hankel matrix of inputs as
[k, Ukt1 o Uk g1
A | YR+l Uki42 - Uky+;
Uk, |ko = . . . )
L Uks Ukz+1 - Uky43—1

and a block row vector of states as

A
Xk1|k1 = [(Bkl (Bk1+1 :Bk1+3_1] .
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With these definitions, (43) generalises to
Yk1|k2 = Ok2_k1+1X;€11|k1 + F;jUk1|k2 + Yk:31|k:27 (44)

where Y,? denotes the stochastic part of Y, |k, and X the deter-
ki|k2 1|k2 ki|k1
ministic part of Xy, |x,. As a special case, one has

Y201 = O, X3, + FlU, 9,1 + Y, j2—1- (45)

12

As noted by Goethals (2005), the primary objective of subspace identifica-
tion is to extract the extended observability matrix O, from this equation.
The system matrices are obtained in a second step.

Obtaining the observability matrix Starting from the forward inno-
vation description (37-38), one has

o d
Y21 = O X+ FiUpze1 + Y5, (46)
where Yz|f21—1 contains the contributions of the forward innovations:
In, 0 .. 0
CsKj ST I .. 0
f A f
Yk1|k2 - : : : Ek1|k2
CoAPMTIKE 8™ CsAP™MTEKE ST L I,
S F k141
(47)
and a block Hankel matrix of forward innovations is defined as
f f f
€k Ckit1 - Ckitg—1
g s |fatl Gtz o Gy
kalkz : : :
f f f
€2 Chot1 0 Chaty—1

X 2|« contains in each column a non-stationary reference-based Kalman filter
state, see Section 2.6, that is estimated from the corresponding columns of
Up|,—1 and Yoqffl. Since the Kalman filter is linear, it follows that X,,
lies in the row space of Up|,—1, denoted as %|,—1, and the row space of
Yoﬁff 1> denoted as ?!/()Tff 1~ As the row space of Ug|,—1 is a subset of the

row space of Up|z,—1, which is denoted as %)2,—1, one has

row space (Xm) - (@/0\1—1 4 %T‘ffl) - (%0|21—1 \ %TffJ )
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where V denotes joint row space. Given that the forward innovations are
uncorrelated with the measured inputs and the outputs that were used for
the estimation of the Kalman filter states, projection of both sides of (46)
onto the row space spanned by the inputs and the ‘past’ outputs yields

a.slimY, g, 1/ (%0|21—1 \ %TfL) = lim O, X, + FiUpyz—1.  (48)
j‘)OO ‘]*)OO

The almost-sure limit, denoted as a.s.lim, is a stochastic limit. A stochastic
variable is said to converge almost surely to a certain value, when this con-
vergence holds for almost all realisations of the stochastic variable, except
for those with probability zero (Dougherty, 1999). When the orthogonal
projection is replaced by an oblique projection along %,2,—1, the second
term of the right hand side drops:

as imYy 2,1 /2., (%21_1 v %Tffl) = lim 0,%,),.
‘]*}OO ‘]‘)OO

This is the rationale behind the so-called N4SID (Numerical algorithms for

Subspace State Space System IDentification) approach of Van Overschee and

De Moor (1994a). The oblique projection is depicted in Figure 4.

Uoj2.—1

Figure 4. Subspace identification, N4SID approach: graphical representa-
tion of the estimation of O, X,|, from Y, 2,1 by oblique projection.

By introducing left and right weighting matrices Wy and W,

a.slimW1Y, 2.1/ %, . (@/0|21_1 v ayres ) Wy = Wy lim (’),X,hWZ,
7—00 7—00

0fe—1
(19)
it was shown by Van Overschee and De Moor (1994b) that other sub-
space methods, such as the Past-Outputs Multi-variable Output-Error State
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sPace (PO-MOESP) method of Verhaegen (1994), and the Canonical Vari-
ate Analysis (CVA) approach of Larimore (1990), fall into this framework.
From a singular value decomposition of the left hand side of this equation,
which can be calculated from measured data only, O, can be determined
up to a nonsingular right factor, after left multiplication with Wy~ 1

Output-only case. When no inputs are measured, (49) simplifies to the
following orthogonal projection:

a.simW1 Y, 2,1 /@Jljf \Wa =W lim 0, X,,,Wa. (50)

The projection is graphically depicted in Figure 5. The choice of the weight-
ing matrices is further discussed in Section 4.3.

A

Ozth E Yref

Olz—1
»

Figure 5. Output-only subspace identification: graphical representation of
the estimation of O, X,|, from Y,|2,_1 by orthogonal projection.

4 Subspace identification: algorithms

4.1 Introduction

Three powerful subspace algorithms for the identification of a state-
space description from measured data are discussed. In Section 4.2, the
REFerence-based COVariance-driven Stochastic Subspace Identification (SSI-
cov/ref) algorithm is treated. It combines the nonparametric estimation
of output correlations with the stochastic realisation algorithm presented
in Section 3.2. Advantages of this output-only algorithm are its concep-
tual simplicity, and the ability to compute the Probability Density Function
(PDF) of the identified system parameters.

The REFerence-based DATA-driven Stochastic Subspace Identification
(SSI-data/ref) algorithm is presented in Section 4.3. It is also an output-
only system identification algorithm, whose main advantage is an optimal
statistical performance when the weighting matrices are properly chosen.
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The REFerence-based DATA-driven Combined deterministic-stochastic
Subspace Identification (CSI-data/ref) algorithm is discussed in Section 4.4.
It allows to use exogenous forces in addition to the unmeasured operational
excitation. Since these measured forces are exactly known, they reduce the
uncertainty of the identified system description compared to the output-only
case.

4.2 Covariance-driven stochastic subspace identification

Nonparametric estimation of output correlations. Denote E’lnlezfl 1

as the matrix containing stacked stochastic output correlation matrices, i.e.,

T
ref A T T
L ey [!rlef !rzef ,!'r-ef

T
1|2:—1 22—1

It can be easily estimated from the measured data:

~ref 1. A T
AN SN i

In order to derive the distribution of the correlation estimates, ?1|27,—1
and Yoﬁgf are divided into np blocks that contain each jp = floor(y/np)
columns, where floor(0) takes the nearest lower integer of the real number 0.

The blocks are indicated as f’1|21_1,k and Yorlgfck, respectively. If ) = jpnp,

one has?
np
~ref 1"3 "srefT 1 1 - ~ ref T
£1|2z—1 = 1|2z—1Y0|b = E : Y1|21—1,kY0|0,k : (51)
J np;,—JB
~ref
é£1|2z—1,k

When jp is large enough in order for the ﬁ;rzfz_l’k to be considered as

independent samples, the central limit theorem ensures that Z::T;z—1 con-
verges in law to a normal distribution when ng — oco. The covariance of

vec (Zl:rzfl_1> can be calculated as the covariance of the sample mean:

1 <Z ~ref ~ref T
Y ire =———— ) vec (AL', o ) vec (AE o ) . (52
fret np(ns —1) 1; 1|2:—1,k 1|2:—1,k (52)

1]22—1

The operator vec(DO) stacks the columns of the matrix O on top of each other.

21f 7 # jBnB, the last block can contain the additional j—7pn g columns. The derivation
still holds when this block is scaled with 35 + () — 7gnp) instead of jp.
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The SSI-cov/ref algorithm. When the estimate Z::rzfz_p is used to

build the block Hankel matrix Lief of the stochastic realisation algorithm
presented in Section 3.2, the result makes up an output-only system identifi-
cation algorithm, called the (REFerence-based) COVariance-driven Stochas-
tic Subspace Identification (SSI-cov(/ref)) algorithm?.

Asymptotic distribution of the estimates. Due to the noise on the
measurement data and the fact that only a finite number of samples are
available, only approximative estimates A% and L;‘lif for the matrices

AGE and L;lelf are available. In addition, the number of nonzero singular

values of f/;elf is larger than the system order n, as explained in Section
3.2. Therefore, the realisation algorithm does not yield the exact system
matrices (A, GTeF, C, AL /2), but only estimates (A, Gef, C, ALT /2).
If I:Iﬁf is accurate, its estimation error, defined as

ref Ao yref ref
ALl|'1, _L1|z 7L1|z’

Lyf) and LT7Y
system realisation (A, G"¢f, C, Ay /2) can be investigated using a first-order
sensitivity analysis, as shown below.

From (39), one has

is small compared to and , and the influence of this error on the

vec(Lq),) = Syvee(Lrer ), vec(Ag) = Savec(LTE ), (53)

0|2:—1 0[22—1

where S7 and S5 are selection matrices,
s, & [sF, ST, .. ST,
S2 Inu (29 [Iny Onyx(2z—1)ny]

Sl,k £ Inu®[01ny>(nyk: Izny Oznyx(z—k)ny]a

]T

(1>

and ® denotes the Kronecker product.
From (41), a first-order perturbation of @, and C2 can be written as

AQO,

Q

1
U 25*1/%5 + AUSY? (54)
1
ACP =~ 25*1/2ASVT + SY2AVT, (55)

PR . . .
Since the stochastic outputs are assumed to have a zero mean value, their correlation
matrices equal their covariance matrices, hence the name SSI-cow.
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The first-order perturbation of S equals (Pintelon et al., 2006):

(1 ® ul)T
diag(AS) ~ : vec(ALy,), (56)
(v, ® un)T
where diag(nD) takes the diagonal of a square matrix 0, u; is the j* column
of U, and vj is the j** column of V. Pintelon et al. (2006) derived a
formula for the first-order sensitivity of the singular vectors of a matrix,
which enables one to link AU and AV to ALy ,:

Bic, ]
AZ =~ vec(ALyy,), (57)
B},Cn]
where
z o w(f]) ol [ ]
V9’ T o (u?@([mu—vjvJTUPl’
L, - rw my .
moe | me Y S E e mm
o) ., k=1 ka=1

Using Kronecker algebra (Brewer, 1978) and substituting equations (56-57),
(54) yields

vee(AO,) =~ (In ® U;S‘1/2> vec(AS) + (sWT ® Imy) vec(AU)
~ (Ay+ Az)vec(ALyy,), (58)
where
(v1 ® U1)T
A £ (In ® (;US‘VQ)) Ss : :
(vn ® Un)T
Bic,
Az 2 (82" @ L, ) (In @ [Tiny Oumyxena]) |3 |

BlChn
:(51/2T®[Izny Oznyxznu])
Ss £ Z E&nxf)lmrk k
k=1



78 E. Reynders and G. De Roeck

With Kronecker algebra and (56-57), (55) can be converted to

1
vec(ACS) =~ (V ® 251/2) AS + (Imu ® 51/2) PyvecAV
~ Agvec(ALy,) + Agvec(ALyy,), (59)
where
P, = Z Z Ei?:—?’ilff)z,(k1—l)znu+k2
k1=1ko=1
) (v1 @ u1)"
Az = (V@ 255> Ss3
(vn ® un)T
Bic,
A4 = (I'L""'u ® 51/2) P2 (I’I‘L ® [Oznquny Il’ﬂu})
Bi.Ch,

The first-order perturbation of A, calculated via (42), can be expressed as:

vec(AA) =~ Azvec(AO,),

where
As 2 I,2(0,'8,)-AT®(0,'85)
+((0." 55 - 470, 55) 2 (0,70,) 1) Py
Sa & [0a—1yn,xt Te—1)n,]
Ss = [Ta—1)n, Oa-1)n,xn,]
n iy
P2 33 B s my e

Substitution of (58) and (53) into this result yields

vec(AA) ~ A (Az + Az) Sivec(ALTSS ) = Agvee(ALT ). (60)

0]2:—1 0]2:—1

As G"ef corresponds to the first n,. columns of C2, application of (59) and
(53) yields

vec(AB) ~ A7 (As + Ay) Slvec(Aﬁg'gI_l) = Agvec(A£ST£_1)7 (61)
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where A7 £ [Innu On(z—l)nu]- As C is determined as the first [ rows of
O,, application of (58) and (53) leads to
vec(AC) ~ Ag (Az + Az) S1vec(ALTS ) = Ajovec(ALTE ), (62)

0]2:—1 0]2:—1
where Ag = I, ® [Iny Ony,(z_l)ny]. Finally, the application of (53) yields

vec(AAg) = Savec(ALT ). (63)

0[2:—1
With the definition
A 2 AT AT AL, s,

the following expression for the covariances of the identified system matrices
is obtained (Reynders et al., 2008):

) =AZ.er AT, ALY 0 (64)

A,Gref ,C A5 )2 olae—1 0[22—1 )

where

) WerE ol Vo)

£ Cov ([VGC(A)T Vec(é’"ef)T VGC(C’)T Vec(ASef)T]T) .

Since the output correlations are asymptotically normally distributed, it
follows from the first-order sensitivity analysis that the same holds for the
estimated system matrices, when Aﬁglegz _,—0.

A note on the choice of :. In theory, any value ¢ that is larger than
ceil(n/ny) + 1 with ceil(0) a function that rounds real argument O to the
nearest integer towards +o00, can be chosen for the identification. However,
the quality of the identified system model depends on this choice. If the
lowest eigenfrequency f; of the structure is low compared to the sampling
frequency, and if the value of ¢ is low, it is possible that each column of
H,|, contains only a small part of the corresponding eigenperiod and as
a consequence the eigenfrequency is not well identified. A solution is to
choose 1 as large as possible, but then the calculation time and memory
usage might become excessive. Therefore, Reynders and De Roeck (2008)
proposed the following rule of thumb for choosing :

12> mv (65)

with fy the lowest frequency of interest.



80 E. Reynders and G. De Roeck

Summary. Figure 6 lists the different steps of the SSI-cov/ref algorithm
for the identification of the state-space matrices A, G™f, C, and Ag and
the estimation of their joint probability density function.

SSI-cov/ref algorithm.

1. Compute Z::Tzfz_l and X sres  using (51) and (52), respec-
1]22—1

tively. Build L;lezf using (39).

2. Choose the system order n and compute the extended observ-
ability matrix @, and the reference-based extended stochastic
controllability matrix Cf from the singular value decomposi-
tion of L;lelf using (41).

3. Estimate the state-space matrices. C equals the first Ny TOWS
of O,, Gref equals the first n, columns of C,, and A is deter-
mined from (42).

4. Compute EA,Gref7c",,Agef/2 using (64), where an expression
for A is derived in the above linear sensitivity analysis.

Figure 6. The SSI-cov/ref algorithm with estimation of the probability
density function of the estimated state-space matrices.

4.3 Data-driven stochastic subspace identification

A strongly consistent subspace algorithm. In Section 3.3, it was
derived that, under assumption 3.1,
asimWiY s, /% Wy = Wilim, oo 0, X, Wa. (50)
This is the basic relationship for the DATA-driven Stochastic Subspace Iden-
tification (SSI-data) class of subspace algorithms, that only differ up to
specific choices for the weighting matrices W7 and W5. From the reduced
singular value decomposition
WYl 1 /% W USVT,
where the diagonal matrix S € R™*™ contains only the n highest singular

values and U € R"*" and V € R*" contain the corresponding singu-
lar vectors, it follows from (50) that the following estimates are strongly
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consistent? under assumption 3.1:

s 8

@Z ﬁ W 1U52 X'Lh é ‘L|2‘L 1/%77,7‘8{’ and

-

Xop1psr 2 0V, 1/%7;“”‘- (66)

From the reference-based forward innovation model (37-38), one has

X Al - KiEf’ref
1le+1 | — s 2|2
R R A A R

2|2

Since it can be shown that & (ek:EZT> = 0, one has

a.s.lim Xt xs = A )
J—00 le ’le C

so an estimate of A and C that is strongly consistent under assumption 3.1

is obtained from
S

[A] = F(wrllwl] X T (68)

C oo

2|2

As explained in Section 2.6, K, — K when 1+ — co. Therefore, one has

firef firef re re
e e I
1,)—500 ) E E Sref R |’

2 2|2

For finite ¢+ and 3, the left-hand side of this equation can be estimated from
(67), after estimating A and C. From the equations (29), (30), (31), (34),
and (35), it is then possible to calculate estimates for X%, G, Ag, K, and
P, respectively.

Asymptotic statistical efficiency and the choice of weighting ma-
trices. The general formulation of the SSI-data/ref algorithm presented
above leaves some freedom in the choice of the weighting matrices W3 and
W5. In order not to lose the consistency property, it is obvious that W;
should be of full rank, and that W5 should preserve the rank of the matri-
ces with which it is multiplied. Van Overschee and De Moor (1996) showed
that by specific choices of the weighting matrices, the SSI-cov/ref algorithm,

4An estimate is strongly consistent when its almost-sure limit equals the exact value.
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presented in Section 4.2, the Unweighted Principal Component (UPC) al-
gorithm of Arun and Kung (1990), and the CVA approach (Akaike, 1974,
1975; Arun and Kung, 1990) fit into this framework.

For a correctly specified system order n, the choice of the weighting
matrix Wa doesn’t have an influence on the asymptotic distribution of the
estimated system, see Bauer et al. (2000), but as shown by Bauer and Ljung
(2002), the choice of W7 is important. Recently, Bauer (2005) proved that
the output-only CVA algorithm, for which

1 —1/2
Wy = <]Yz|21—1Y;|T21_1) and ~ Wy =1,

is asymptotically statistically efficient for 3 — oo. This means that the
covariance matrix of the estimates equals asymptotically the Cramér-Rao
lower bound, i.e., no estimator with lower covariance can be found. Since
the choice of Wy is unimportant, this result obviously holds for a class
of algorithms having the same W; as CVA, called the Larimore type of
algorithms. This type of algorithms leads to a theoretically optimal choice
of weighting matrices. Also for SSI-data/ref, the rule of thumb (65) for the
choice of 1 is advised.

Implementation. As shown by Peeters and De Roeck (1999), the SSI-
data/ref algorithm can be efficiently implemented by making use of the
LQ-factorisation technique, where the explicit computation of the Q factor
can be avoided. Figure 7 contains a step-by-step overview of this implemen-
tation in case of CVA weighting.

4.4 Data-driven combined deterministic-stochastic subspace iden-
tification

Introduction. The RFEFerence-based DATA-driven Combined Subspace
Identification (CSI-data/ref) algorithm of Reynders and De Roeck (2008)
identifies the combined deterministic-stochastic state-space model that was
presented in Section 2.6. It is the reference-based generalisation of the ro-
bust combined subspace algorithm of Van Overschee and De Moor (1996).

A strongly consistent subspace algorithm. In Section 3.3, it was
derived that, under assumptions 3.1, 3.2, and 3.3,

a.s imW1Y, 2,1/, 5, _, (07/0|2171 v arel ) Wa = Wilim, 5000, X, ,Wa.  (49)

J—>o0 0f2—1

This is the basic relationship for the CSI-data/ref class of algorithms,
that only differ up to the weighting matrices W1 and Wa. The initial-



Subspace Identification for Operational Modal Analysis

83

SSI-data/ref algorithm (CVA weighting).

1. Construct the block Hankel matrices Yo‘qi’:ef , Y542, and

YzT; ref where Yzls[ref contains the non-reference rows of ¥,7,.
Perform the following LQ decomposition, with L lower trian-

gular and @ orthonormal:

s,ref
Y0|z—:} Lix 0 0 07 /[Q:
YZTZE _ 1 |Lz1 L2z O 0 Q2
Y, ref V7 |Ls1 Lsz Lsz 0 Qs |’
ys Ly Lsz Lyz Las| Q4
1+1]22—1 N
L Q

where Lqi1 € ]R”LTX”LT, Loy € Rnrxnr, and L33 €
R(w=nr)x(ny=nr) - @ does not need to be determined.
2. Compute W; as

Lyy Lz O 0 Lyy Lz O 01"
Wy = |Lsy Lzz Lzz O L3; L3z L3z O

Ly Lys Lgz3 Lys| |Lax Laz Lys Lyy

3. Compute the singular value decomposition USVT =

Ly,

Wi | La1|. Choose the system order n and retain only the
Ly

n highest singular values and the corresponding singular vec-

tors.

4. Compute the observability matrix as @, = Wi US:. Deter-
mine O, by deleting the last n, rows of O,.

5. Finally, compute the system estimates:

Loy O, | L3

[/1] B O.'La 4 | L2
L3, Ly

Figure 7. Implementation of the SSI-data/ref CVA algorithm.
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state matrix for the sequence of reference-based Kalman filter states X@I@ is
X, oo = Xg|0 / AT Up|,—1- Using the reduced singular value decomposition

WY 2u 1/ %, (%0\21—1 \ %Tfﬁ) WarUSVT,
where the diagonal matrix S € R™*™ contains the highest n singular values
and U € RU™wtnu)Xn and V' e RI*™ contain the corresponding singular
vectors, one has from (49) that the following estimate for the observability
matrix is strongly consistent under assumptions 3.1, 3.2, and 3.3:

O, 2w, US>. (69)

For the estimation of Xm and X1+1|z+17 (49) can unfortunately not be used
62/0"“ which

is different from the initial state matrix of X,h. As noted in Van Overschee
and De Moor (1994a), this would lead to an inconsistent algorithm for finite
values of 7. Therefore, the orthogonal projection (48), which was derived in
Section 3.3, is considered instead:

since the initial state matrix of Xl+1|,+1 would be Xgm/%ﬂ\zl

a.s.lim YL|21_1/ <%0|21—1 V grcj’ ) = hmj_mo OIX”, + .’F;iUz|21_1. (48)

Pl 0]s—1

£z,

The initial state matrix for the sequence of reference-based Kalman filter
states X,), is now Xojo = Xg|o/%0|2l—1' Following the same lines, one has

ajilgom Yot1)20-1/ (%om—l \Y %Tff)

ézz-l»l
= lim 01—1X1+1|1,+1 + f;i—lU1,+1|2z—17 (70)

J—o0

where X'L—I—llz—f—l has the same initial state matrix as in the previous ex-
pression. From the reference-based forward innovation model (37-38), one

has
X1,+1|z+1 _ Al 5 B
|: Y"Ll’l, = C_ Xz|z + D

Yy

2

} U, . + (71)

K, El"Y 1

Substitution of (69-70) yields

[ . Al ~
a.s.lim {01—1214—1} = lim ] @IZZ + K,Uyj2,—1+

firef
2|
B

2

(2

] , (72)
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where

A0 Fd t o rd
K, = [ AOLF! + |B 01—1}7—1” . (73)

~-COIF¢+ D 0]
Since the state estimation error ey is orthogonal to the state estimate &

(Juang, 1994), it follows that a strongly consistent estimate of A, C, and
K, is obtained from

Al o 1.
~ K‘L =
¢ =]
AT Tre At re t
O, 1Yt1)2./ <02/O|2171 v %“f) 0,Y,2.-1/ (02/0\2271 \ %‘ZL)
YLl‘L Uz|1,

K, is linear in B and D (see (73)), so if K, € R"*™ is defined as the
k™ block column of K,, My € R**™ as the k' block column of 01—1’
L1, € R"™ as the k" block column of AOI and La) € R™*™ as the
k" block column of COJ, one has:

K, =N [DT BT]"

Ny = —L11 Mi—-L12 ... M,_1—L1, InyO
Lo | Iny, — L21 —Lo22 . —La2, 0 o,
Nk _ Mg_1—Lik ... Mu_1—L1, Onxl(k—l) Inyo
#1 —Lak —La2, Oixi(k—1) 0 0O;

With this factorisation, it follows from (72) that strongly consistent esti-
mates of B and D can be obtained from

D s AT A
e ([B]> - (Z U’T'“k—llz+k—1 ®Nk> vec(P)
k=1

At A
P2 [Oz—fﬁl] - E} oz,

where U, 4 g—1]o4k—1 is the (1 +k — 1)*" block row of Up|2,—1- Finally, the
noise covariance matrices can be estimated from the residuals of (71):

) [KZEf;mf] [K’Ef e

By

a.s.lim ST R

1,00 ]

el || B

1|2 2|2

The fact that ¢ needs to go to infinity is explained by the non-stationarity of
the Kalman filter in (71) for finite + values, see Van Overschee and De Moor
(1996).
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Choice of weighting matrices. The general formulation of the CSI-data
algorithm presented above leaves some freedom in the choice of the weighting
matrices W; and W5. In order not to lose the consistency property, it
is obvious that W7y should be of full rank, and that W5 should preserve
the rank of the matrices with which it is multiplied. It was shown by
Van Overschee and De Moor (1994b) that by specific choices of the weighting
matrices, the N4SID algorithm of Van Overschee and De Moor (1994a),
the PO-MOESP algorithm of Verhaegen (1994), and the CVA algorithm
of Larimore (1990) can be obtained. However, it is well known that an
oblique projection, which is an essential step in the algorithm (49), is a
numerically ill-conditioned problem. Goethals (2005) indicated that the
ill-conditioning can be removed by choosing W3 and W3 in such a way
that W1 O; W consists of an orthogonal projection. A possible choice is
Wi =1 and W, = Pai T with Pai 201 the orthogonal projector onto
the orthogonal complement of %, 3,_;. This corresponds to the PO-MOESP
algorithm. Also for CSI-data/ref, the rule of thumb (65) for the choice of 2
is advised.

Implementation. The CSI-data/ref algorithm can, like the SSI-data/ref
algorithm, be efficiently implemented by making use of the LQ-factorisation
technique, where the explicit computation of the Q factor can be avoided.
The interested reader is referred to (Reynders and De Roeck, 2008) for the
implementation details.

5 Estimation of the modal parameters

5.1 Introduction

When a state-space model is identified from measured input-output or
output-only data, a free vibration analysis and a modal decomposition of the
identified model results in eigenfrequencies, damping ratios, mode shapes,
and modal participation vectors of the structure. If a driving point mea-
surement is made, absolute mode scaling is possible as well.

5.2 Estimation of the modal parameters

When a discrete-time deterministic (A, B,C, D) or stochastic state-
space model (A, G("¢f) C Agy/2) is identified, the modal parameters can
be estimated as follows. The eigenvalue decomposition (14) leads to the
system description in modal form (15-16), from which the unscaled mode
shapes ¢; and the discrete-time modal participation vectors l4; are imme-
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diately obtained. From the ZOH map (11), it follows that

_hl()\dj)
Mg = . (75)

The undamped frequency and damping ratio are then obtained as

_ Al
2w

_ AR
Aejl 7

Juj (76)

and &5
respectively. Reynders and De Roeck (2008) showed that, when at least one
driving point measurement is made, and the response DOFs are displace-
ments, velocities, or accelerations, the modal scaling factors can be obtained
from the following expression:

T .
W — )\cj ¢j’u T d)g'v T
q; = vec m Zoéd)j{, ¢je vec 1_;{:'77‘” ldj s (77)
W Pjis =1 Db

where the subscripts 0,, 0;, and 0O; select the displacement, velocity, and
acceleration response DOFs, respectively. Since in an identified model, it
is most probable that the contribution of a mode is modeled best near its
resonance frequency, it is suggested to choose w = w; for the estimation.
Alternatively, a series of frequencies, containing for example also the half
power points, could be used. For the scaling of the mode shapes, two
schemes are quite popular.
o In the unit modal displacement weighting scheme, the mode shape ¢;
is scaled in such a way that one of the elements, usually the one with
the largest amplitude, of the scaled mode shape ¢; is unity:

i = ¥
J Qsj,k

e When a driving point FRF can be calculated, the unity modal mass
weighting scheme leads to (Heylen et al., 1997)

Pi =20 b5 (79)

5.3 Distribution of the estimates

(78)

In Section 4.2, the distributions of the parameters estimated with SSI-
cov/ref were found to be asymptotically normally distributed because of
the central limit theorem and the fact that a linear combination of nor-
mally distributed random variables is again normally distributed. Since the
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coefficient of variation of the estimated parameters is usually low, a linear
sensitivity analysis of the modal parameters as a function of the model pa-
rameters is sufficiently accurate to determine the covariances of the modal
parameters. Their distribution is then asymptotically normal.

Discrete-time and continuous-time poles. As shown by Reynders
et al. (2008), one has that, for the discrete-time poles Ag;,

where xq4; and 1q; denote the left and right eigenvectors corresponding to
the eigenvalue Ag; of A, respectively.

The relationship between the discrete-time system poles and the continuous-
time system poles is given by (75). It follows that the real and imaginary
parts of A.; are given as

In [Ag;[*

Ak = o

R S ¥
and Aejr = T tan <)\de> . (80)

A linear sensitivity analysis of these expressions leads to (Pintelon et al.,
2007)

1 AR A1
Aejire = Ir, MAgire,  wh oo | Mir o Aar]
A Js J)\cJ Ad]a ’ where J)‘CJ T‘)\d]|2 |:_)\de )\de

Eigenfrequencies and damping ratios. The relationship between the
eigenfrequencies, damping ratios and the continuous-time system poles is
given by (76). A linear sensitivity analysis of these expressions yields (Pin-
telon et al., 2007)

5 WERI
A
{A§J:| = ijEjA)\cj,re, where Jpie; = P )\:rﬂz )\cjl?g‘cjf ’
: | Acjl TG | T AGE

Mode shapes. In order to derive the first-order sensitivity of the mode
shapes, the first-order sensitivity of the eigenvectors 1pg; of A is needed.
For the generic case, where A has n different eigenvalues, a first-order per-
turbation of 1q4; with respect to the elements of A was derived by Reynders
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et al. (2008):
ANT 1 Yaj X
Atpg; ~ (I— Mj) . <¢§j ® (I— d’;‘)"b)) vec(AA).  (81)

A
ETpy

Using Kronecker algebra, the first-order perturbation of the corresponding
mode shape ¢; can be calculated:

Agjre © (CAYgj + ACY ), = [ Ty | Y45 © In, ], [Xiﬁgﬁ‘éﬂ :

When the modes are scaled to a unit modal displacement in one of the
degrees of freedom, a first-order sensitivity analysis of (78) leads to

1
Apjre ~ (

d)j,k (I - Sajs¢j,k)) A¢j,re7

Re

Je;

A

where Sg, , = [Ol,k_l 1 01,ny—k]-

Covariance matrix of the modal parameters. Combining the sen-
sitivity formulae for the modal parameters derived above, their complete
covariance matrix is obtained:

g fi i
vec(A)
Cov & || & = Jpep,jC0V ({Vec(é)}) J?ﬁ%“ (82)
Pj,re Pl,re
where
J A Jrie5Ine; Ing 02xnyn
Fép,i Jypai o, (1@ ® Iny) Jop;

Distribution of damping ratios for lightly damped modes. When
a mode is lightly damped, it follows from (80) that the real part of its
continuous-time pole, A;r, is not only close to zero, but it also has a poten-
tially large coefficient of variation, such that a linear sensitivity analysis, as
presented above, is not sufficiently accurate for determining its asymptotic
Probability Density Function (PDF). This affects significantly the PDF of
the damping ratio, see (76), but not of the other modal parameters. Since
the damping ratio {; is a nonlinear function of the discrete-time system
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pole \g only, and since the real and imaginary parts of A\g; are to a good
approximation asymptotically jointly normally distributed, the PDF of &;
can be calculated using a Monte Carlo simulation, where the joint PDF of
Adj,re, estimated using the linear sensitivity approach, is sampled. Because
each Monte Carlo simulation step is computationally very cheap, the total
computational cost of this approach is sufficiently low for modal testing.

6 Applications

6.1 Introduction.

In this section, the application of operational modal analysis techniques,
with and without exogenous forces, is investigated for two different types of
structures.

In Section 6.2, the feasibility of using an exogenous force in operational
modal testing of a prestressed concrete bridge is investigated. The perfor-
mance of the CSI-data/ref algorithm on the shaker data of the Z24 bridge,
that have been proposed as a benchmark for testing modal parameter esti-
mation algorithms, is investigated and compared with previously reported
results.

The second application deals with operational modal analysis of a steel
transmitter mast under wind loading, and is presented in Section 6.3. The
goal is to demonstrate the feasibility of estimating confidence intervals on
modal parameters obtained from a single operational modal test.

6.2 Z24 bridge

Introduction. The Z24 bridge was part of the road connection between
the villages of Koppigen and Utzenstorf, Switzerland, over-passing the Al
highway between Bern and Ziirich. It was a classical post-tensioned concrete
two-cell box-girder bridge with a main span of 30m and two side spans of
14m, see Figure 8. The bridge was built as a free standing frame with the
approaches backfilled later. Both abutments consisted of triple concrete
columns connected with concrete hinges to the girder. Both intermediate
supports were concrete piers clamped into the girder. An extension of the
bridge girder at the approaches provided a sliding slab. All supports were
rotated with respect to the longitudinal axis which yielded a skew bridge.
The bridge, that dated from 1963, was demolished at the end of 1998,
because a new railway adjacent to the highway required a new bridge with
a larger side span.

Before complete demolition, the bridge was subjected to a long-term
continuous monitoring test and a short-term progressive damage test in the
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<= Utzenstorf Koppigen =
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H
To Bern 4.50 To Zurich

Figure 8. Side view of the Z24 bridge. Distances are in m.

framework of the Brite-EuRam project CT96 0277 SIMCES (De Roeck,
2003).

e A long-term continuous monitoring test took place during the year
before demolition. The aim was to quantify the environmental vari-
ability of the bridge dynamics.

e A Progressive Damage Test (PDT) took place in a one-month time
period, shortly before complete demolition. The aim was to prove
experimentally that realistic damage has a measurable influence on
bridge dynamics. Each PDT step alternated with short-term modal
tests, while the continuous monitoring system was still running during
these tests.

In order for the applied damage scenarios to be significant and realistic,
it was made sure that (1) they were relevant for the safety of the bridge
and (2) the simulated damage occurred frequently, a condition which was
checked in the literature and by questioning Swiss bridge owners. Since the
A1l highway was never closed to traffic, some damage scenarios that meet
these criteria could not be applied without reducing the safety of the traffic
which was considered of paramount importance. The traffic on the Z24
bridge was diverted to the A36 highway. Table 1 gives a complete overview
of all progressive damage tests that were performed.

Before and after each applied damage scenario, the bridge was subjected
to a forced and an ambient vibration test. Since the ambient forces such as
wind excitation or traffic under the bridge could not be excluded during the
vibration measurements, all modal tests can be considered as operational
tests, with or without the use of artificial (exogenous) forces. With a mea-
surement grid consisting of a regular 3 x 45 grid on top of the bridge deck
and a 2 x 8 grid on each of the two pillars, 291 degrees of freedom were mea-
sured: all three displacement components on the pillars, and mainly vertical
and lateral displacements on the bridge deck. Because of the limited num-
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No. | Date Scenario Description /
(1998) Simulation of real damage cause
1 04.08 15 reference measurement Healthy structure
2 09.08 274 reference measurement | After installation of lowering system
3 10.08 Lowering of pier, 20 mm Settlement of subsoil, erosion
4 12.08 Lowering of pier, 40 mm
5 17.08 Lowering of pier, 80 mm
6 18.08 Lowering of pier, 95 mm
7 19.08 Tilt of foundation Settlement of subsoil, erosion
8 20.08 379 reference measurement | After lifting of bridge to initial
position
9 25.08 Spalling of concrete, 12 m? | Vehicle impact, carbonisation and
10 26.08 Spalling of concrete, 24 m? | subsequent corrosion of reinforcement
11 27.08 Landslide at abutment Heavy rainfall, erosion
12 31.08 Failure of concrete hinge Chloride attack, corrosion
13 02.09 Failure of anchor heads I Corrosion, overstress
14 03.09 Failure of anchor heads I1
15 07.09 Rupture of tendons I Erroneous or forgotten injection of
16 08.09 Rupture of tendons II tendon tubes, chloride influence
17 09.09 Rupture of tendons 111

Table 1. Z24 progressive damage test: overview of applied damage scenar-
ios.

ber of accelerometers and acquisition channels, the data were collected in
9 setups using 5 reference channels, see Figure 9. The forced excitation
was applied by two vertical shakers of EMPA, Switzerland, placed on the
bridge deck. A 1kN shaker was placed on the middle span and a 0.5kN
shaker was placed at the Koppigen side span, see figure 8. The shaker input
signals were generated with an inverse FFT algorithm, resulting in a fairly
flat force spectrum between 3 and 30Hz. After scenario 8, a drop weight
test was also performed. The applied shaker and drop weight forces were
periodic with 8 periods. In each modal test, a total of 65536 samples were
collected at a sampling rate of 100Hz, using an anti-aliasing filter with a
30Hz cut-off frequency. Kramer et al. (1999) provide a detailed description
of all vibration tests on the Z24 bridge.

The measurement data have been used for two benchmarks.

e The shaker, ambient and drop weight vibration data from the third
reference measurement on the 724 bridge (scenario 8, Table 1) were
presented as a benchmark study for system identification methods for
operational modal analysis at the IMAC XIX conference in 2001.

e The data from the long-term continuous monitoring test and the
progressive damage test were presented as benchmark data for al-
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0.5kN

Utzenstorf

Figure 9. 724 bridge: Measurement grid, reference positions and shaker
positions.

gorithms for structural health monitoring and damage identification
in the framework of the European Cost Action F3.

Reynders and De Roeck (2009) provide a literature review of benchmark
results. Here, the benchmark shaker data from PDT scenario 8 are used
to test the performance of the CSI-data/ref algorithm with respect to the
results presented in the literature.

Previous results. Peeters and Ventura (2003) compared the modal pa-
rameter estimates obtained by 7 different research teams in the framework
of the system identification benchmark with the data from scenario 8. In
addition, new modal parameter estimation techniques have been validated
on the benchmark data, such as a parametric and nonparametric setup as-
sembly approach followed by maximum likelihood estimation, proposed by
Parloo et al. (2003), and an iterative SDOF technique, proposed by Allen
and Ginsberg (2006). The best reported result was obtained by applying a
subspace identification algorithm (Peeters and Ventura, 2003) and a maxi-
mum likelihood algorithm (Parloo et al., 2003) to the shaker data. In this
way, 10 modes could be determined.

Results obtained with CSI-data/ref. When analyzing the shaker data
of damage scenario 8 for the system identification benchmark, both the
classical CSI-data algorithm and the reference-based version CSI-data/ref
were used. For CSI-data, » = 30 was chosen, and a stabilisation diagram of
good quality was constructed up to a model order of 160. For CSI-data/ref,
the 5 acceleration channels common to every setup were chosen to be the
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references for the identification, + = 50 was chosen, and a stabilisation
diagram of good quality was constructed up to a model order of 160. Note
that, in order to obtain similar computation time and memory usage, the
values of ¢ differ for CSI-data and CSI-data/ref. A choice of «+ = 30 for both
CSI-data and CSI-data/ref would have resulted in a faster calculation and
a smaller memory usage for CSI-data/ref. According to the rule of thumb
(65), the choice of + corresponds to fo = 1.67Hz for CSI and f, = 1Hz for
CSI/ref.

From the stabilisation diagram constructed with the CSI-data and CSI-
data/ref methods, 13 and 14 modes could be identified, respectively. Table
2 shows the sample mean values of the eigenfrequencies and damping ra-
tios, obtained with each method, as well as the sample standard deviations,
calculated from the 9 different setups. The CSI-data/ref method clearly
yields more accurate estimates of both eigenfrequencies and damping ra-
tios for modes 3, 6 and 8, while the opposite is true for mode 7. With
the CSI-data/ref method, one more mode could be obtained than with the
CSI-data method. Table 2 also shows the MAC values between the corre-
sponding mode shapes determined using CSI-data and CSI-data/ref. The
mode shapes are all very well correlated. An almost perfect correlation is
observed for modes 1, 2, 5, 6, 7, 8 and 10. Mode 9 has the lowest MAC
value, which indicates that the mode shape estimated with one or both
methods is of a lower quality than the other modes. This corresponds to
a relatively high uncertainty on the eigenfrequency and damping ratio of
mode 9 for both CSI-data and CSI-data/ref.

Figure 10 shows the identified bending modes. Mode 13 could only be
identified with CSI-data/ref. The identified lateral modes are plotted in
Figure 11. The identification of these modes proves experimentally that
the combined deterministic-stochastic subspace identification method en-
ables one to identify modes excited by both forced or ambient loading or
a combination of both. Indeed, these lateral modes are almost exclusively
excited by ambient forces. Modes 3 and 4 were not detected in previous
studies. The quality of the mode shape of mode 4 is lower because the only
horizontal reference DOF is located near the center of the middle span, in
the zone with almost zero modal displacement. This results in a ‘stepped’
mode shape.

Due to the skewness of the bridge supports, some modes occur where
bending and torsion are combined. Two of these modes are shown in Figure
12. Their eigenfrequencies are closely spaced. Although they look very
similar, they are truly different, as is confirmed by their experimental MAC
value (Heylen et al., 1997) of 0.18 for CSI-data/ref.

Figure 13 shows the higher torsion modes that were identified. The mode
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mode CSI-data CSI-data/ref MAC
fHz) oyMz) &%) o0a(%) | f(Hz) opHz) E(%R) oa(%)

1 3.871 0.001 0.89 0.05 3.871 0.002 0.88 0.04 1.00
2 4.823 0.008 1.63 0.06 4.818 0.011 1.66 0.04 1.00
3 6.697 0.127 4.23 1.45 6.722 0.028 3.82 0.62 0.98
4 8.355 0.059 8.91 1.77 8.346 0.104 9.37 1.33 0.96
5 9.769 0.005 1.54 0.03 9.772 0.005 1.57 0.02 1.00
6 10.51 0.011 1.45 0.06 10.50 0.007 1.43 0.04 1.00
7 1242  0.020 311  0.03 | 1242  0.025 315  0.12 1.00
8 13.21 0.033 4.76 0.29 13.21 0.018 4.72 0.17 1.00
9 17.45 0.212 4.34 0.38 17.52 0.169 3.64 1.39 0.92
10 19.27 0.019 2.43 0.10 19.28 0.022 2.46 0.06 1.00
11 19.68 0.080 5.58 0.31 19.65 0.113 5.51 0.29 0.98
12 26.64 0.054 3.20 0.11 26.62 0.055 3.12 0.11 0.95
13 / / / 33.18  0.202 433  1.78 /

14 37.25 0.198 3.69 0.48 37.20 0.106 3.94 0.61 0.95

Table 2. Z24 bridge, scenario 8: eigenfrequencies f; and damping ratios
&; determined with CSI-data and CSI-data/ref, and MAC values between
corresponding mode shapes.

mode 1

3.871Hz - 0.9%

Vel

mode 13

mode 11

mode 7
12.42Hz - 3.2%

19.65Hz - 5.5%

Figure 10. Z24 bridge, scenario 8:
data(/ref).

mode 8
13.21Hz - 4.7%

33.18Hz - 4.3%

bending modes identified with CSI-

shape of mode 9 is less smooth than the mode shapes of the other modes; this
corresponds to the higher uncertainty on the corresponding eigenfrequency
In mode 12, the Koppigen pier (Figure 9)
has the highest participation, which could be due to the fact that a cut

and damping ratio (Table 2).
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mode 2 mode 3 mode 4

4.823Hz - 1.7% 6.722Hz - 3.8% 8.355Hz - 9.4%

Figure 11. Z24 bridge, scenario 8: lateral modes identified with CSI-
data(/ref).

mode 5 mode 6
9.772Hz - 1.6% 10.50Hz - 1.4%

Figure 12. 724 bridge, scenario 8: two closely spaced mixed tor-
sion/bending modes identified with CSI-data(/ref).

mode 9 mode 10

17.52Hz - 3.6% 19.27Hz - 2.5%

mode 12 mode 14

26.64Hz - 3.1% 37.25Hz - 3.9%

Figure 13. Z24 bridge, scenario 8: higher torsion modes identified with
CSI-data(/ref)

was made through this pier for the simulation of a settlement: although the
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mode | DOF CSI CSI/ref
u(mm) oy (mm) u(mm) oy, (mm)
1 Roz | 1.28 + 0.06i 0.05 + 0.04i | 1.30 + 0.07i  0.03 + 0.03i
2 Roy | -1.38 4+ 0.381 0.18 + 0.21i | 1.38 + 0.151  0.13 + 0.06i
3 Roy | -0.22-0.221  0.10 + 0.191 | 0.15 + 0.131  0.09 + 0.30i
4 Rsz | 0.27 4+ 0.051 0.18 + 0.13i | 0.46 + 0.13i 0.20 + 0.16i
5 R3z | -3.69-0.42i 0.42 + 0.14i | 3.75 + 0.55i 0.36 + 0.22i
6 Roz | 1.16 + 0.291  0.05 + 0.07i | -1.11 - 0.251  0.05 + 0.05i
7 Ryz | -4.74-0.83i 0.23 + 0.09i | -4.65-0.751 0.27 + 0.19i
8 Ryz | -3.01-0.63i 0.41 + 0.19i | 2.96 + 0.70i 0.16 + 0.13i
9 Ryz | -3.11-1.351 0.55 + 0.59i | -2.34-1.04i 1.29 4+ 0.71i
10 Rsz | 3.08 + 1.051 0.33 + 0.19i | 3.12 + 1.16i 0.31 4 0.07i
11 Roz | -0.92-0.33i 0.38 + 0.18i | -0.94 - 0.191 0.23 + 0.18i
12 Roz | -1.36-0.42i 0.08 + 0.11i | 1.31 + 0.321 0.11 + 0.12i
13 Roz / / -0.39 - 0.071  0.19 + 0.54i
14 Ryz | 1.563 4+ 1.551 0.58 + 0.34i | -1.73-1.631 0.47 + 0.39i

Table 3. Z24 bridge, scenario 8: modal displacements, scaled to unity

modal mass.

The standard deviations consist of the standard deviation

of the real part and the standard deviation of the imaginary part of the
corresponding displacement. They are the sample standard deviations for
the total of nine setups.

settlement was removed, the original state was only approximately reached.
The identification of mode 14 at 37.25Hz, despite the fact that the cut-off
frequency of the analog anti-aliasing filter was set to 30Hz, indicates that
the method is able to identify modes that are only very weakly present in

the data.

Modes 1, 2, 5, 6, 7, 8, 9, 10, 11 and 12 have been detected in previ-
ous benchmark analyses; the other modes were only detected in the present
study. Because CSI-data and CSI-data/ref identify a combined deterministic-
stochastic state-space model, they enable a mass-normalisation of the modes
that are excited by the deterministic forces. Table 3 shows, for each scaled
mode, the largest of the reference displacement DOF's (Figure 9). From this
table, bearing in mind that none of the identified modes is truly complex,
the following can be noticed.

e For modes 1, 5, 6, 7, 8 10, 11 and 12, all in the frequency band of

forced excitation (3-30Hz), the largest reference displacements are in
the direction of the forced excitation and the real part of the scaled
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mode shapes is much larger than the imaginary part. This indicates
that they are properly scaled.

e Although mode 2 is mainly a lateral mode and the forced excitation is
purely vertical, the real part of the scaled mode shape is much larger
than the imaginary part. Together with the small sample variance of
the modal displacement, this is an indication that the mode is properly
scaled.

e As indicated by the large imaginary part and the large sample vari-
ance, the lateral modes 3 and 4 are not properly scaled because they
are not well excited by the artificial forces. However, using an OMAX
approach, it is possible to identify these modes because they are ex-
cited by ambient forces.

e The rather large uncertainty on the scaled displacements of mode 9
corresponds to the large uncertainty on the frequency and damping
ratio (Table 2) and the quality of the mode shape (Figure 13).

e Modes 13 and 14 can not be properly scaled, as their eigenfrequencies
lie outside the frequency band of the forced excitation and above the
cut-off frequency of the anti-aliasing filter.

6.3 Steel transmitter mast

Introduction. In this section, the SSI-cov/ref algorithm is applied to the
operational modal analysis of a truss structure, situated in the harbor of
Antwerp, Belgium. It is a mast of 30m height which contains sectorial
antennae for a cellular phone network at the top (Figure 14). The antennae
comprise about 10% of the total weight of the structure.

Vibration measurements and signal preprocessing. On March 26,
1998, an ambient vibration test was performed on the structure. Peeters and
De Roeck (1999) presented the results of this test. Here, their uncertainty
is investigated.

The aim of the test was to investigate the structure’s modal parame-
ters, particularly the damping ratios, in the frequency range of 0 — 5Hz.
17 degrees of freedom (DOFs), all horizontal accelerations, have been mea-
sured in 3 setups using 3 reference DOFs that were common to each setup.
Three horizontal accelerations were measured at heights of 6.17m, 12.17m,
18.17m, 24.17m and 29.90m. If it is assumed that the cross-section of the
mast remains undeformed during the vibration test, which is a reasonable
assumption in the frequency band considered, three DOFs are sufficient to
describe the complete horizontal movement of the cross-section. Two or-
thogonal accelerations at the top of the mast (at a height of 33.00m) were
measured as well.
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Figure 14. Steel mast with sectorial antennae at the top.

The data were sampled at a rate of 100Hz. The cut-off frequency of
the anti-aliasing filter was set to 20Hz. The number of samples was set
to N = 30720, which resulted in a measurement time of approximately 5
minutes. Afterwards, the data were digitally filtered with a low-pass filter
with a cut-off frequency of 5Hz and re-sampled at 12.5Hz, which reduced
the number of samples to N = 3840.

Modal parameters. With SSI-cov/rev, the eigenfrequencies, damping
ratios, and mode shapes, as well as covariances of these modal parameters,
are identified for each individual setup. The identification parameters are
1 =10, n = 20 and n, = 100. According to the rule of thumb (65), the
choice of 2 corresponds to fo = 0.63Hz. The parts of the mode shapes that
result from the different setups are combined with linear least squares. They
are scaled to 1 in one of the reference DOFs. The variances of the different
modal displacements are adopted accordingly.

The identified eigenfrequencies and their estimated 95% confidence in-
tervals are shown in Table 4. The eigenfrequency estimates obtained in each
setup match very well. The estimated confidence intervals correspond very
well with the variation of the actual values from setup to setup.

The identified damping ratios and their estimated 95% confidence in-
tervals are shown in Table 5. The damping ratio estimates differ quite a
lot from setup to setup, which is also reflected in the high values of the
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mode setup 1 setup 2 setup 3
1 1.172+£0.003 | 1.168 £ 0.006 | 1.166 £ 0.004
2 1.178 £0.005 | 1.178 £0.005 | 1.180 £ 0.005
3 1.948 £0.009 | 1.956 £0.008 | 1.951 £ 0.004
4 2.603 +£0.006 | 2.599 +£0.008 | 2.601 + 0.006
5 2.7114+0.002 | 2.7124+0.007 | 2.711 +0.004
6 3.686 £ 0.008 | 3.689 +0.005 | 3.685 %+ 0.006
7 4.632+0.010 | 4.633 £0.011 | 4.631 £ 0.008

Table 4. Steel mast: identified eigenfrequencies (in Hz) with their estimated
95% confidence interval.

estimated confidence intervals. Because of their high relative uncertainty,
the confidence intervals of the damping ratios are calculated using a Monte
Carlo sampling of the discrete-time poles, which have a low relative uncer-
tainty. The values obtained from a linear sensitivity approach are given
between brackets. Despite the large relative uncertainty on the damping
ratios, both estimates for the confidence intervals agree very well.

The identified mode shapes and their estimated 95% confidence interval
are shown in Figure 15. Only the third mode is a torsion mode, the other
modes are bending modes. It can be seen that the mode shapes of modes
3 through 6 are very accurate, mode 7 is fairly accurate and modes 1 and
2 are inaccurate. This difference in mode shape quality is also apparent
when the real and imaginary parts of the identified modes are plotted in
the complex plane (see Figure 16): while modes 3 through 7 are fairly real,
modes 1 and 2 have important imaginary components.

This can be physically understood from the fact that the structure is
almost triply symmetric, since perfect multiple symmetric structures have
pairs of eigenmodes with identical eigenfrequencies, reflecting that the mode
shapes are indefinite. Dooms et al. (2006) illustrate this for a nearly ax-
isymmetric structure. Here, the symmetry is somewhat disturbed by the
diagonals and a ladder at one of the masts. Only the first two modes are
very close, with estimated eigenfrequencies of 1.172 and 1.178Hz in the first
setup. The next pair of bending modes are already better separated, thanks
to the symmetry disruptions, with eigenfrequencies at 2.602 and 2.711Hz.
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mode 1 mode 2 mode 3 mode 4

Figure 15. Steel mast: identified mode shapes (black) with their estimated
95% confidence interval (grey).
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mode setup 1 setup 2 setup 3
1 0.14 +0.26 (0.26) | 0.55 £0.42 (0.42) | 0.60 +0.35 (0.37)
2 0.67 £ 0.33 (0.37) | 0.57+0.42 (0.43) | 0.95+ 0.45 (0.45)
3 0.64 £0.32 (0.31) | 0.80+0.27 (0.26) | 0.47 +0.22 (0.22)
4 0.36 +0.26 (0.28) | 0.57 £0.39 (0.39) | 0.354+0.21 (0.21)
5 0.08 +0.09 (0.10) | 0.27 £0.19 (0.22) | 0.194+0.11 (0.12)
6 0.28 +0.32 (0.33) | 0.17£0.18 (0.19) | 0.27 +0.19 (0.20)
7 0.27£0.23 (0.23) | 0.16 +0.46 (0.51) | 0.18 £ 0.15 (0.17)

Table 5. Steel mast: identified damping ratios (in %) with their estimated
95% confidence interval, estimated from a Monte Carlo sampling of the
discrete-times poles and using a linear sensitivity analysis (between brack-
ets).

mode 1 mode 2 mode 3 —7
1 1 — 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0@ ® 0.2 % 0.2
0 o o o 0 ° §oo © o of8

-0.4 -0.4 -0.4
-0.6 -0.6 -0.6
-0.8 -0.8 -0.8

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 16. Steel mast: real vs. imaginary part of the identified modal
displacements, scaled to 1 at the largest displacement value.

7 Conclusions

This chapter addressed the extraction of eigenfrequencies, damping ratios,
mode shapes and, whenever possible, modal scaling factors, from measured
operational data.

A conversion between finite element models, that are frequently used
in forward modeling of vibrating structures, and discrete-time state-space
models, that are identified from measured data, was derived. This con-
firms that the latter models are valid also from a forward point of view.
Furthermore, it was shown that modeling the operational excitation due to
turbulent fluid pressure, micro-tremors, or roadway or footfall excitation,
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as stochastic quantities, has a clear physical basis. This justifies the use of
stochastic system identification algorithms for OMA, and the use of com-
bined deterministic-stochastic system identification algorithms for OMAX.

The use of subspace identification methods and their predecessors, sys-
tem realisation methods, for the identification of stochastic and combined
deterministic-stochastic state-space models from operational data, was dis-
cussed. The general ideas that lie behind this class of system identification
methods were separated from the algorithms themselves. Two subspace
algorithms that are commonly used for OMA were discussed in detail: SSI-
cov/ref and SSI-data/ref. For SSI-cov/ref, the probability density function
of the identified state-space matrices was derived. Recently, it was shown
that the SSI-data/ref is statistically asymptotically efficient, i.e., no estima-
tor with lower asymptotic covariance can be found. This confirms previous
experience with subspace identification algorithms, that have shown to out-
perform alternative system identification algorithms in several comparative
studies, see, e.g., Peeters and De Roeck (2001). Since OMAX testing can
enhance the current ambient vibration testing practice in the sense that it
allows the mode shapes to be mass-normalised and the frequency content
of the excitation to be extended, a recently developed subspace algorithm
that can be used for OMAX, was presented: CSI-data/ref.

In a first real-life application, this CSI-data/ref algorithm was seen to
yield the most complete set of modal parameters for the Z24 bridge bench-
mark data reported so far. In a second real-life application, the estimation
of confidence intervals of modal parameters identified with SSI-cov/ref was
illustrated for a steel transmitter mast.
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