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Abstract This introduction begins with a brief history of SHM
technology development. Recent research has begun to recognise
that a productive approach to the Structural Health Monitoring
(SHM) problem is to regard it as one of statistical pattern recog-
nition (SPR); a paradigm addressing the problem in such a way is
described in detail herein as it forms the basis for the organisation
of this book. In the process of providing the historical overview and
summarising the SPR paradigm, the subsequent chapters in this
book are cited in an effort to show how they fit into this overview of
SHM. In the conclusions are stated a number of technical challenges
that the authors believe must be addressed if SHM is to gain wider
acceptance.

1 Introduction

The process of implementing a damage identification strategy for aerospace,
civil and mechanical engineering infrastructure is referred to as Structural
Health Monitoring (SHM). A wide variety of highly-effective local Non-
Destructive Evaluation (NDE) tools are traditionally available for such
monitoring. However, the majority of SHM research conducted over the
last thirty years has attempted to identify damage in structures on a more
global basis using permanently installed sensors. The past ten years has seen
a rapid increase in the amount of research related to SHM as quantified by
the significant escalation in papers published on this subject. The increased
interest in SHM and its associated potential for significant life-safety and
economic benefits has motivated the need for this book.

In the most general terms, damage is usually understood as changes
introduced into a system that adversely affect its current or future perfor-
mance. Implicit in this definition is the idea that damage is not meaningful
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without a comparison between two different states of the system, one of
which is assumed to represent the initial, and often undamaged, state. This
book is focused on the study of damage identification in structural and me-
chanical systems. Therefore, the definition of damage will be limited to
changes to the material and/or geometric properties of these systems, in-
cluding changes to the boundary conditions and system connectivity, which
adversely affect the current or future performance of these systems.

In terms of length-scales, all damage begins at the material level. Al-
though not necessarily universally accepted terminology, such damage is
referred to as a defect or flaw and is present to some degree in all materials.
Under appropriate loading scenarios the defects or flaws grow and coalesce
at various rates to cause component, and then system-level, damage. The
term damage does not necessarily imply total loss of system functionality,
but rather that the system is no longer operating in its optimal manner.
As the damage grows it will reach a point where it affects the system op-
eration to a point that is no longer acceptable to the user. This point is
referred to as failure. In terms of time-scales, damage can accumulate in-
crementally over long periods of time such as that associated with fatigue
or corrosion damage evolution. On relatively shorter time-scales, damage
can also result from scheduled discrete events such as aircraft landings and
from unscheduled discrete events such as enemy fire on a military vehicle or
natural hazards such as earthquakes.

The SHM process involves the observation of a structure or mechanical
system over time using periodically-spaced measurements, the extraction
of damage-sensitive features from these measurements, and the statistical
analysis of these features to determine the current state of system health.
For long-term SHM, the output of this process is periodically updated in-
formation regarding the ability of the structure to continue to perform its
intended function in the light of the inevitable aging and damage accumula-
tion resulting from the operational environments. Under an extreme event,
such as an earthquake or unanticipated blast loading, SHM could be used
for rapid condition screening. This screening is intended to provide, in near
real-time, reliable information about system performance during such ex-
treme events and the subsequent integrity of the system. A more detailed
description of SHM can be found in Worden and Dulieu-Barton (2004).

Damage identification is carried out in conjunction with five closely re-
lated disciplines that include SHM, Condition Monitoring (CM, see Bently
and Hatch (2003)), Non-Destructive Evaluation (NDE, see Shull (2002)),
Statistical Process Control (SPC, See Montgomery (1997)) and Damage
Prognosis (DP, see Farrar et al. (2001, 2003)). Typically, SHM is associ-
ated with on-line, global damage identification in structural systems such
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as aircraft and buildings. CM is analogous to SHM, but addresses dam-
age identification in rotating and reciprocating machinery, such as used in
manufacturing and power generation. NDE is usually carried out off-line
in a local manner after the damage has been located, and requires access
to the component or structure of interest. There are exceptions to this
rule, as NDE is also used as a monitoring tool for in situ structures such
as pressure vessels and rails. NDE is therefore primarily used for damage
characterisation and as a severity check when there is a priori knowledge
of the damage location. SPC is process-based rather than structure-based
and uses a variety of sensors to monitor changes in a process, one cause of
which can result from structural damage. Once damage has been detected,
DP is used to predict the remaining useful life of a system.

1.1 Motivation for SHM Technology Development

Almost all private industries and government organisations want to de-
tect damage in their products as well as in their manufacturing infrastruc-
ture at the earliest possible time. Such detection requires these industries
to perform some form of SHM and is motivated by the potential life-safety
and economic impact of this technology. As an example, the semiconductor
manufacturing industry is adopting this technology to help minimise the
need for redundant machinery necessary to prevent inadvertent downtime
in their fabrication plants. Such downtime can cost these companies on
the order of millions of dollars per hour. Aerospace companies in the US
along with government agencies are investigating SHM technology for iden-
tification of damage to the space shuttle control surfaces hidden by heat
shields. Clearly, such damage identification has significant life-safety impli-
cations. Also, there are currently no quantifiable methods to determine if
buildings are safe for reoccupation after a significant earthquake. SHM may
one day provide the technology to significantly reduce the uncertainty asso-
ciated with such post-earthquake damage assessments. The prompt reoccu-
pation of buildings, particularly those associated with manufacturing, can
significantly mitigate economic losses associated with major seismic events.
Finally, many portions of our technical infrastructure are approaching or
exceeding their initial design life. As a result of economic issues, these civil,
mechanical, and aerospace structures are being used in spite of aging and
the associated damage accumulation. Therefore, the ability to monitor the
health of these structures is becoming increasingly important.

Most current structural and mechanical system maintenance is done in a
time-based mode. As an example missiles are retired after a set amount of
captive-carry hours on the wing of an aircraft. SHM represents the group of
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technologies that will allow the current time-based maintenance philosophies
to evolve into potentially more cost effective condition-based maintenance
philosophies. The concept of condition-based maintenance is that a sensing
system on the structure will monitor the system response and notify the
operator that damage has been detected. Life-safety and economic benefits
associated with such a philosophy will only be realised if the monitoring
system provides sufficient warning such that corrective action can be taken
before the damage evolves to a failure level. The trade-off associated with
implementing such a philosophy is that it requires a more sophisticated
monitoring hardware to be deployed on the system and it requires a sophis-
ticated data analysis procedure that can be used to interrogate the measured
data. It is also critical that any monitoring system installed should be at
least as reliable as the structure or system of interest.

Finally, many companies that produce high-capital-expenditure prod-
ucts such as airframes, jet engines, and large construction equipment would
like to move to a business model where they lease this equipment as op-
posed to selling it. With these models the company that manufactures the
equipment would take on the responsibilities for it’s maintenance. SHM
has the potential to extend the intervals between scheduled maintenance
and, hence, keep the equipment out in the field where it can continue to
generate revenue for the owner. Also, the equipment owners would like to
base their lease fees on the amount of system life used up during the lease
time rather than on the current simple time-based lease fee arrangements.
Such a business model will not be realised without the ability to monitor
the damage initiation and evolution in the rental hardware.

1.2 Motivation for this Book

Directly reflecting the increased interest in this emerging technology,
there have been several conference series initiated in the last fifteen years
that focus directly on SHM; (the most recent examples in these series be-
ing!+2:3:4.) Focussed meetings and conferences related to the condition mon-

! The 7t" International Workshop on Structural Health Monitoring, Palo Alto, CA,
2009.

2The 8t" International Conference on Damage Assessment of Structures, Beijing, China,
2009.

3 14th International Symposium on Nondestructive Evaluation and Health Monitoring
of Aging Infrastructure, San Diego, CA, 2009.

4 The 4th European Workshop on Structural Health Monitoring, Krakow, Poland, 2008
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itoring of rotating machinery are much older®%. These conferences have
shown that the topic of SHM is of interest to a wide range of industries and
government agencies; They have also shown that many technical disciplines
need to be integrated to properly address the SHM problem. In addition,
the first refereed journal devoted specifically to SHM has recently been ini-
tiated”, and others have followed. The proceedings of the specialised confer-
ences as well as the extensive number of refereed journal articles devoted to
various aspects of SHM show that significant knowledge and experience has
been gained through the reported studies. Finally, the emergence of a num-
ber of specialised courses on SHM technologies and methodologies is further
testimony to the interest expressed by industry. Despite the clear interest,
there is a limited number of published textbooks and monographs on the
subject of SHM (recent exceptions of note are Adams (2007); Giurgiutiu
(2007); Staszewski et al. (2003)). A theme issue of the Transactions of the
Royal Society of London was also devoted to the topic (Farrar and Wor-
den (2007)), and makes a useful first port-of-call for an overview. Most
notably, a comprehensive reference work has also recently appeared, Boller
et al. (2009); although the focus of this work is not pedagogical. All of this
means that it is timely to devote a new book in an effort to provide the
engineering community with an up-to-date overview of SHM technology
focussed on vibration-based methods and statistical pattern recognition -
aspects of the subject which are arguably neglected in the coverage of SHM
to date.

2 Brief Historical Overview

The current authors believe that damage identification - as determined by
changes in the dynamic response of systems - has been practiced in a qualita-
tive manner, using acoustic techniques (e.g tap tests on train wheels), since
modern man has used tools. More recently, the development of quantifiable
SHM approaches has been closely coupled with the evolution, miniaturi-
sation and cost reductions of digital computing hardware. In conjunction
with these developments SHM has received considerable attention in the
technical literature and a brief summary of the developments in this tech-
nology over the last thirty years is presented below. Specific references are
not cited; instead the reader is referred to a number of comprehensive sur-

5The 2274 Conference on Condition Monitoring and Diagnostic Engineering Manage-
ment - COMADEM, San Sebastian, Spain, 2009.

5The 6374 Meeting of the Society for Machinery Failure and Prevention Technology,
Dayton, OH, 2009.

7 Structural Health Monitoring, An International Journal, Sage Publications, London.
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veys (Doebling et al. (1996); Sohn et al. (2003); Randall (2004a,b), for more
detailed summaries of this subject.

To date, the most successful applications of SHM technology have been
for the monitoring of rotating machinery. The rotating machinery appli-
cations have taken an almost exclusively data-based (as opposed to model-
based) approach to damage identification. The identification process is usu-
ally based on pattern recognition methods applied to displacement, velocity
or acceleration time-histories (or spectra), generally measured at a single
point on the housing or shafts of the machinery during normal operating
conditions or start-up or shut-down transients. Often this pattern recogni-
tion is performed only in a qualitative manner based on a visual comparison
of the spectra obtained from the system at different times; this is nonethe-
less pattern recognition. Databases have been developed that allow specific
types of damage to be identified from particular features of the vibration sig-
nature. For rotating machinery systems the approximate damage location
is generally known, making a single-channel fast-Fourier-transform (FFT)
analyser sufficient for most periodic monitoring activities. Typical damage
that can be identified includes loose or damaged bearings, misaligned shafts,
and chipped gear teeth. Today, commercial software integrated with mea-
surement hardware is marketed to help the user systematically apply this
technology to the operating equipment.

The success of CM is due in part to:

1. Minimal operational and environmental variability associated with
this type of monitoring,

2. Well-defined damage types that occur at known locations,

Large databases that include data from damaged systems,

4. Well-established correlation between damage and features extracted
form the measured data, and

5. Clear and quantifiable economic benefits that this technology can pro-
vide.

©w

These factors have allowed this application of SHM to make the tran-
sition from a research topic to industry practice several decades ago re-
sulting in comprehensive condition management systems such as the U.S.
Navy’s Integrated Condition Assessment System. Condition monitoring is
not discussed in any further detail here, the curious reader can find many
interesting texts and reviews; a good recent review is by Randall (2004a,b).

During the 1970s and 1980s, global oil industry made considerable ef-
forts to develop vibration-based damage identification methods for offshore
platforms. This damage identification problem is fundamentally different
from that of rotating machinery because the damage location is not known
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a priori and because the majority of the structure is not readily accessible
for measurement. To circumvent these difficulties, a common methodology
adopted by this industry was to simulate candidate damage scenarios with
numerical models, examine the changes in resonance frequencies that were
produced by these simulated changes, and correlate these changes with those
measured on a platform. A number of very practical problems were encoun-
tered including measurement difficulties caused by platform machine noise,
instrumentation difficulties in hostile environments, changing mass caused
by marine growth and varying fluid storage levels, temporal variability of
foundation conditions, and the inability of wave motion to excite higher
vibration modes. These issues prevented adoptation of this technology, and
efforts at further developing SHM technology for offshore platforms were
largely abandoned in the early 1980s.

The aerospace community began to study the use of vibration-based
damage identification during the late 1970s and early 1980s in conjunction
with the development of the space shuttle. This work has continued with
current applications being investigated for the National Aeronautics and
Space Administration’s space station and future reusable launch vehicle de-
signs. The Shuttle Modal Inspection System (SMIS) was developed to iden-
tify fatigue damage in components such as control surfaces, fuselage panels
and lifting surfaces. These areas were covered with a thermal protection
system making them inaccessible and, hence, impractical for conventional
local non-destructive examination methods. The Shuttle Modal Inspection
System has been successful in locating damaged components that are cov-
ered by the thermal protection system. All orbiter vehicles have been pe-
riodically subjected to SMIS testing since 1987. Space station applications
have primarily driven the development of experimental/analytical methods
aimed at identifying damage to truss elements caused by space debris im-
pact. These approaches are based on correlating analytical models of the
undamaged structure with measured modal properties from both the un-
damaged and damaged structure. Changes in stiffness indices as assessed
from the two model updates are used to locate and quantify the damage.
Since the mid-1990s, studies of damage identification for composite mate-
rials have been motivated by the development of a composite fuel tank for
a reusable launch vehicle. The failure mechanisms, such as delamination
caused by debris impacts, and corresponding material response for compos-
ite fuel tanks are significantly different than those associated with metallic
structures. Also, the composite fuel tank problem presents challenges be-
cause the sensing systems must not provide a spark source. This challenge
has lead to the development of SHM methodologies based on fibre-optic
sensing systems. The overview Boller and Buderath (2007) provides a more
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detailed discussion of SHM applied to aerospace structures for the interested
reader.

The civil engineering community has studied vibration-based damage
assessment of bridge structures and buildings since the early 1980s. Modal
properties and quantities derived from these properties such as modeshape
curvature and dynamic flexibility matrix indices have been the primary
features used to identify damage in bridge structures. Environmental and
operating condition variability presents significant challenges in the bridge
monitoring applications. The physical size of the structure also presents
many practical challenges for vibration-based damage assessment. Regula-
tory requirements in Asian countries, which mandate that the companies
that construct the bridges periodically certify their structural health, are
driving current research and commercial development of bridge SHM sys-
tems. Good references on these specific issues are Brownjohn (2007); Lynch
(2007) and a useful very recent collection of articles is by Karbhari and
Ansari (2009). The International Society for Structural Health Monitor-
ing of Intelligent Infrastructures (ISHMII) has emerged recently and has
periodic conferences on SHM issues in civil engineering®. Some of the con-
cerns with respect to civil infrastructure are highlighted in the chapter by
Deraemaeker later in this volume.

In summary, the comprehensive reviews of the technical literature pre-
sented in Doebling et al. (1996); Sohn et al. (2003), show an increasing
number of research studies related to damage identification. These stud-
ies identify many technical challenges to the adaptation of SHM that are
common to all applications of this technology. These challenges include the
development of methods to optimally define the number and location of the
sensors, identification of the features sensitive to small damage levels, the
ability to discriminate changes in these features caused by damage from
those caused by changing environmental and/or test conditions, the de-
velopment of statistical methods to discriminate features from undamaged
and damaged structures, and performance of comparative studies of dif-
ferent damage identification methods applied to common data sets. These
topics are currently the focus of various research efforts by many industries
including defence, civil infrastructure, automotive, and semiconductor man-
ufacturing where multi-disciplinary approaches are being used to advance
the current capabilities of SHM and CM.

8SHMII - 4 Conference, ETH Zurich, Switzerland, 2009.
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3 The Statistical Pattern Recognition Paradigm

There are many ways by which one can organise a discussion of SHM. The
authors have chosen to follow the one described in the article Farrar et al.
(2001), that defines the SHM process in terms of a four-step statistical
pattern recognition paradigm. This process includes:

1. Operational evaluation,

2. Data acquisition, normalisation and cleansing,

3. Feature selection and information condensation, and,

4. Statistical model development for feature discrimination.

Almost all papers published in the fields of SHM and CM arguably ad-
dress some parts of this paradigm, but the number of studies that address
all portions of the paradigm is much more limited. An alternative approach
to SHM which is often pursued is based on the solution of inverse problems
using linear-algebraic methods; this is not discussed in any detail here, the
reader can refer to Doebling et al. (1996); Sohn et al. (2003); Friswell (2007)
for the background and further references.

3.1 Operational Evaluation

Operational evaluation attempts to answer four questions regarding the
implementation of a damage identification capability:

1. What are the life-safety and/or economic justifications for performing
the SHM?

2. How is damage defined for the system being investigated and, for
multiple damage possibilities, which cases are of the most concern?

3. What are the conditions, both operational and environmental, under
which the system to be monitored functions?

4. What are the limitations on acquiring data in the operational envi-
ronment?

Operational evaluation begins to set the limitations on what will be
monitored and how the monitoring will be accomplished. This evaluation
starts to tailor the damage identification process to features that are unique
to the system being monitored and tries to take advantage of unique features
of the damage that is to be detected.

3.2 Data Acquisition, Normalisation and Cleansing

The data acquisition portion of the SHM process involves selecting the
excitation methods, the sensor types, number and locations, and the data
acquisition/storage/transmittal hardware. Again, this process will be
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application-specific. Economic considerations will play a major role in mak-
ing these decisions. The intervals at which data should be collected is an-
other consideration that must be addressed.

Because data can be measured under varying conditions, the ability to
normalise the data becomes very important to the damage identification
process. As it applies to SHM, data normalisation is the process of sepa-
rating changes in sensor readings caused by damage from those caused by
varying operational and environmental conditions. One of the most common
procedures is to normalise the measured responses by the measured inputs.
When environmental or operational variability is an issue, the need can arise
to normalise the data in some temporal fashion to facilitate the comparison
of data measured at similar times of an environmental or operational cycle.
Sources of variability in the data acquisition process and with the system
being monitored need to be identified and minimised to the extent possible.
In general, not all sources of variability can be eliminated. Therefore, it is
necessary to make the appropriate measurements such that these sources
can be statistically quantified. Variability can arise from changing envi-
ronmental and test conditions, changes in the data reduction process, and
unit-to-unit inconsistencies. These issues are discussed in some detail in the
chapter by Kullaa later in this volume; a recent survey on environmental
variations in SHM which is of value is given in Sohn (2007).

Data cleansing is the process of selectively choosing data to pass on to
or reject from the feature selection process. The data cleansing process is
usually based on knowledge gained by individuals directly involved with the
data acquisition. As an example, an inspection of the test setup may reveal
that a sensor was loosely mounted and, hence, based on the judgment of the
individuals performing the measurement, this set of data or the data from
that particular sensor may be selectively deleted from the feature selection
process. Signal processing techniques such as filtering and re-sampling can
also be thought of as data cleansing procedures.

Finally, it should be noted that the data acquisition, normalisation, and
cleansing portion of the structural health-monitoring process should not be
static. Insight gained from the feature selection and statistical model de-
velopment processes will invariably provide information regarding changes
that can improve the data acquisition process. Issues relating to data ac-
quisition and processing will be discussed in all of the later chapters in this
book.
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3.3 Feature Extraction and Information Condensation

The area of the structural health-monitoring process that receives the
most attention in the technical literature is the identification of data features
that allows one to distinguish between the undamaged and damaged struc-
ture. As such, the chapters in this book will devote considerable space to
the feature extraction portion of SHM; in particular, the pattern recognition
context of feature selection is the major focus of sections in the chapters
by Kullaa and Worden. Inherent in the feature selection process is the
condensation of the data. The best features for damage identification are,
again, application-specific. In the context of vibration-based SHM, the fea-
tures are usually those measurements associated with structural dynamic
(or modal) testing. The extraction of dynamic parameters: frequencies,
dampings, modeshapes etc., is an art in itself; the chapter by Reynders and
De Roeck in this volume discusses an algorithm for this purpose which is
state-of-the-art.

One of the most common feature extraction methods is based on cor-
relating measured system response quantities, such as vibration amplitude
or frequency, with first-hand observations of the degrading system. An-
other method of developing features for damage identification is to apply
engineered damage, similar to that expected in actual operating conditions,
to systems and develop an initial understanding of the parameters that
are sensitive to the expected damage. The damaged system can also be
used to establish that the diagnostic measurements are sensitive enough to
distinguish between features identified from the undamaged and damaged
systems. The use of analytical tools such as experimentally-validated finite
element models can be a great asset in this process. In many cases the an-
alytical tools are used to perform numerical experiments where the damage
is introduced through computer simulation. Damage accumulation testing,
during which significant structural components of the system under study
are degraded by subjecting them to realistic loading conditions, can also be
used to identify appropriate features. This process may involve induced-
damage testing, fatigue testing, corrosion growth, or temperature cycling
to accumulate certain types of damage in an accelerated fashion. Insight
into the appropriate features can be gained from several types of analytical
and experimental studies as described above and is usually the result of
information obtained from some combination of these studies.

One of the main issues faced in using statistical classifiers in a SHM
context is that the amount of training data - the a priori data needed in order
to establish the diagnostic - grows explosively with the dimension of the
feature vector. Because data sets acquired by engineering experimentation
are typically small, it becomes crucial to reduce the dimension of feature
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vectors without compromising their information content. Many statistical
(and other) methods are available for these purposes, including principal
component analysis and factor analysis, techniques which are discussed in
some detail in the later chapters by Kullaa and Worden.

The operational implementations of the diagnostic measurement tech-
nologies needed to perform SHM invariably produce more data than is tra-
ditional in the use of structural dynamics information. A condensation of
the data is usually advantageous and can be essential when comparisons
of many feature sets obtained over the lifetime of the structure are envi-
sioned. Also, because data will be acquired from a structure over an ex-
tended period of time and in potentially many operational environments,
robust data reduction techniques must be developed to retain feature sensi-
tivity to the structural changes of interest in the presence of environmental
and operational variability (again, the reader can consult Sohn (2007) for a
survey). To further aid in the extraction and recording of the high-quality
data needed to perform SHM, the statistical significance of the features
should be characterised and used in the condensation process. The disci-
pline of data-mining has emerged recently as a means of bringing together
methods for the extraction of information from large data sets; however,
although there are projects successfully applying data-mining in a SHM
context Liang and Austin (2004), they are rather rare.

3.4 Statistical Model Development

The portion of the SHM process that has arguably received least atten-
tion in the technical literature is the development of statistical models for
discrimination between features from the undamaged and damaged struc-
tures. Statistical model development is concerned with the implementation
of algorithms that operate on the extracted features to quantify the damage
state of the structure. The algorithms used in statistical model development
usually fall into three categories. When data are available from both the
undamaged and damaged structure, the statistical pattern recognition algo-
rithms fall into the group concerned with supervised learning; Group classi-
fication and regression analysis are examples of learning algorithms which
fall into this category. The term unsupervised learning refers to those algo-
rithms that are applied to data not containing examples from the damaged
structure. As engineering structures are typically produced at very high
cost; unsupervised learning is often the only course of action as it is not
economically viable to damage structures in order to produce data for su-
pervised learning. The group of algorithms based around the idea of outlier
or novelty detection is the primary one applied in the unsupervised learn-
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ing context. All of the algorithms analyse statistical distributions of the
measured or derived features to enhance the damage identification process.
The damage identification process for a system or structure can be sum-
marised in terms of a hierarchical structure along the lines discussed in
Rytter (1993); where the objective is to answer the following questions:

Existence: Is there damage in the system?;
Location: Where is the damage in the system?;
Type: What kind of damage is present?;
Extent: How severe is the damage?; and
Prognosis: How much useful life remains?

Answers to these questions in the order presented, represent increasing
knowledge of the damage state. When applied in an unsupervised learning
mode, statistical models are typically used to answer questions regarding
the existence (and sometimes the location) of damage. When applied in a
supervised learning mode and coupled with analytical models, the statistical
procedures can be used to better determine the type of damage and the
extent of damage. Prognosis of remaining useful life is more difficult and
will usually require detailed physical models of the damage processes of
interest and good predictions of the future loading regime of the structure
of interest.

The statistical models are also required to minimise false indications of
damage. False indications of damage fall into two categories: (1) False-
positive damage indication (indication of damage when none is present),
and (2) False-negative damage indication (no indication of damage when
damage is present). Errors of the first type are undesirable as they will
cause unnecessary downtime and consequent loss of revenue as well as loss
of confidence in the monitoring system. More importantly, there are clear
safety issues if misclassifications of the second type occur. Many pattern
recognition algorithms allow one to weigh one type of error above the other,
this weighting may be one of the factors decided at the operational evalua-
tion stage.

The chapter by Worden later in this volume discusses pattern recognition
approaches to SHM in detail and the chapter by Kullaa discusses some
powerful statistical algorithms in detail.

4 Challenges for SHM

The basic premise of vibration-based SHM feature selection is that damage
will significantly alter the stiffness, mass or energy dissipation properties of a
system, which, in turn, alter the measured dynamic response of that system.
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Although the basis for feature selection appears intuitive, its actual appli-
cation poses many significant technical challenges. The most fundamental
challenge is the fact that damage is typically a local phenomenon and may
not significantly influence the lower-frequency global response of structures
that is normally measured during system operation. (As an adjunct or alter-
native to vibration-based approaches to SHM, a number of strategies based
on the use of high-frequency waves have developed as a means of detecting
small damage; the last chapter of this book by Kudela and Ostachowicz, is
concerned with one such approach.) Stated another way, this fundamental
challenge is similar to that in many engineering fields where the ability to
capture the system response on widely varying length and time scales, as
is needed to model turbulence or to develop phenomenological models of
energy dissipation, has proven difficult.

Another fundamental challenge is that in many situations feature se-
lection and damage identification must be performed in an unsupervised
learning mode; that is, data from damaged systems are not available. Dam-
age can accumulate over widely varying time scales, which poses significant
challenges for the SHM sensing system. This challenge is supplemented by
many practical issues associated with making accurate and repeatable mea-
surements over long periods of time at a limited number of locations on
complex structures often operating in adverse environments.

Finally, a significant challenge for SHM is to develop the capability to
define the required sensing system properties before field deployment and, if
possible, to demonstrate that the sensor system itself will not be damaged
when deployed in the field. If the possibility of sensor damage exists, it
will be necessary to monitor the sensors themselves. This monitoring can
be accomplished either by developing appropriate self-validating sensors or
by using the sensors to report on each other’s condition. Sensor networks
should also be ’fail-safe’. If a sensor fails, the damage identification algo-
rithms must be able to adapt to the new network. This adaptive capability
implies that a certain amount of redundancy must be built into the sensor
network.

In addition to the challenges described above, there are other non-
technical issues that must be addressed before SHM technology can make
the transition from a research topic to actual practice. These issues include
convincing structural system owners that the SHM technology provides an
economic benefit over their current maintenance approaches and convinc-
ing regulatory agencies that this technology provides a significant life-safety
benefit. All these challenges lead to the current state of SHM technology,
where outside of condition monitoring for rotating machinery applications,
SHM remains a research topic that is still making the transition to field
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demonstrations and subsequent field deployment. There are lots of ongo-
ing and new structural monitoring activities, but these systems have been
put in place without a pre-defined damage to be detected and without the
corresponding data interrogation procedure. As such, these monitoring ac-
tivities do not represent a fully integrated hardware/software SHM system
with pre-defined damage identification goals. A final non-technical chal-
lenge is concerned with providing the educational materials and opportuni-
ties for engineers to learn the (rapidly-developing) state-of-the-art in SHM
technologies and analysis.

5 Concluding Remarks

The development of robust SHM technologies has many elements that make
it a potential ”Grand Challenge” for the engineering community. First, al-
most every industry wants to detect damage in its structural and mechani-
cal infrastructure at the earliest possible time. Industries’ desire to perform
such monitoring is based on the tremendous economic and life-safety bene-
fits that this technology has the potential to offer. However, as previously
mentioned with the exception of rotating machinery condition monitoring,
there are few examples of where this technology has made the transition
from research to practice.

Significant future developments of this technology will, in all likelihood,
come by way of multi-disciplinary research efforts encompassing fields such
as structural dynamics, signal processing, motion and environmental sensing
hardware, computational hardware, data telemetry, smart materials, and
statistical pattern recognition, as well as other fields yet to be defined.
These topics are the focus of significant discipline-specific research efforts,
and it is the authors’ speculation that to date not all technologies from these
fields that are relevant to the SHM problem have been explored by the SHM
research community. Furthermore, there are few efforts that try to advance
and integrate these technologies with the specific focus of developing SHM
solutions. Without such a focus in mind, these technologies may well evolve
in manner that is not optimal for solving the SHM problem. Finally, the
problem of global SHM is so significantly complex and diverse that it will
not be solved in the immediate future. Like so many other technology fields,
advancements in SHM will most likely come in small increments requiring
diligent, focused and coordinated research efforts over long periods of time.
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