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Vibration Based Structural Health
Monitoring Using Large Sensor Arrays:

Overview of Instrumentation and Feature
Extraction Based on Modal Filters

Arnaud Deraemaeker

Universite Libre de Bruxelles, Active Structures Laboratory
50 av. F.D. Roosevelt, CP 165/42, B-1050 Brussels, Belgium

Abstract Vibration based Structural Health Monitoring (SHM)
techniques are based on the measurement of vibration signals on
structures. The first part of this chapter is dedicated to an overview
of the existing sensors and acquisition units which are available for
such measurements, with an emphasis on recent advances in this
area. With these recent advances in sensors and instrumentation,
structures can be equipped with very large sensor arrays which mon­
itor the vibration in real time. The difficulty is to be able to extract
meaningful information from the huge amount of data generated by
these large arrays. The second part of the chapter presents a data
reduction technique based on modal filters. It is shown how features
can be extracted from the output of these filters and subsequently
used for damage detection.

1 Sensors and Instrumentation for Vibration Based
SHM

Measuring vibrations has been possible for many years, so what has changed
during the last decade? Important advances have been made in senSors
and instrumentation. For existing sensors, the quality has been improved.
New types of sensors (such as fibre optics) have appeared, and also new
manufacturing techniques (MEMS technology) have allowed lowering of the
price of sensors considerably. Acquisition units have also benefited from the
great advances in electronics and computing. Sampling rates, filtering and
storage rates have all improved; prices have also considerably decreased.
Where in the past, a structure was instrumented only for the short time
of testing, it is nOW possible to monitor continuously, and in real-time, its
vibrations.
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2 Vibration-Based SHM Using Modal Filters

1

=1



Structural Health Monitoring Using Large Sensor Arrays 39

ë2

ë1

ën

+

+
+

linear combiner

..
.

y1

y

yn

y2structure

f

sensor array

sensor

0 dB

!l!a !b

=1
2 2



40 A. Deraemaeker

=1

=1 =1

=1
2 2

=1

1



Structural Health Monitoring Using Large Sensor Arrays 41

=1

=1

=1 =1

=1

2 2

=1



42 A. Deraemaeker

dB

Undamaged

!a !l

!

Effect of a local change

in stiffness

dB

!a !l !b

!

Undamaged

Effect of a global change

in stiffness



Structural Health Monitoring Using Large Sensor Arrays 43

2



44 A. Deraemaeker

dB

!a
!

Main peak

of the modal

filter 4 peak indicators

1 2

2



Structural Health Monitoring Using Large Sensor Arrays 45

1

s( )

2

1 2

2 1



46 A. Deraemaeker

s( )

1 2 3 4 5 67 8

Intervals for the computation

of the peak indicators

s( )



Structural Health Monitoring Using Large Sensor Arrays 47



48 A. Deraemaeker

2

2

2

Gaussian distribution second derivative of a

Gaussian distribution

x x

f(x) f’’(x)

2

2



Structural Health Monitoring Using Large Sensor Arrays 49

s ( )f

s ( )f



50 A. Deraemaeker

Concrete Concrete
Excitation

Damage

Steel



Structural Health Monitoring Using Large Sensor Arrays 51



52 A. Deraemaeker



Structural Health Monitoring Using Large Sensor Arrays 53

Bibliography



54 A. Deraemaeker



Subspace identification for operational modal
analysis

Katholieke Universiteit Leuven, Structural Mechanics Division
Kasteelpark Arenberg 40, B-3001 Leuven

Abstract This chapter deals with the estimation of modal param-
eters from measured vibration data using subspace techniques. An
in-depth review of subspace identification for operational modal
analysis is provided. In addition, two recent developments are em-
phasised: the estimation of the probability density function of the
modal parameters, and the use of an exogenous force in addition to
the unmeasured operational excitation.

1 Introduction

Experimental Modal
Analysis

noise

Operational Modal
Analysis
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Operational Modal
Analysis with eXogenous inputs

2 State-space models of vibrating structures



Subspace Identification for Operational Modal Analysis 57

2

2

R R

R R

R

R

1

( )

1 1

1

R state
model order

[0 ]

( )
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3 Subspace identification: principles and strategies

System Identification
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REFerence-based COVariance-driven Stochastic Subspace Identification

Probability Density Function

REFerence-based DATA-driven Stochastic Subspace Identification
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REFerence-based DATA-driven Combined deterministic-stochastic
Subspace Identification
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2If = , the last block can contain the additional columns. The derivation

still holds when this block is scaled with + ( ) instead of .
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3Since the stochastic outputs are assumed to have a zero mean value, their correlation

matrices equal their covariance matrices, hence the name SSI-cov.
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4An estimate is strongly consistent when its almost-sure limit equals the exact value.
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6 Applications

single
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No. Date Scenario Description /
(1998) Simulation of real damage cause

1 04.08 1 reference measurement Healthy structure

2 09.08 2 reference measurement After installation of lowering system
3 10.08 Lowering of pier, 20 Settlement of subsoil, erosion
4 12.08 Lowering of pier, 40
5 17.08 Lowering of pier, 80
6 18.08 Lowering of pier, 95
7 19.08 Tilt of foundation Settlement of subsoil, erosion

8 20.08 3 reference measurement After lifting of bridge to initial
position

9 25.08 Spalling of concrete, 12 2 Vehicle impact, carbonisation and
10 26.08 Spalling of concrete, 24 2 subsequent corrosion of reinforcement
11 27.08 Landslide at abutment Heavy rainfall, erosion
12 31.08 Failure of concrete hinge Chloride attack, corrosion
13 02.09 Failure of anchor heads I Corrosion, overstress
14 03.09 Failure of anchor heads II
15 07.09 Rupture of tendons I Erroneous or forgotten injection of
16 08.09 Rupture of tendons II tendon tubes, chloride influence
17 09.09 Rupture of tendons III
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mode CSI-data CSI-data/ref MAC
(Hz) (Hz) (%) (%) (Hz) (Hz) (%) (%)

1 3.871 0.001 0.89 0.05 3.871 0.002 0.88 0.04 1.00
2 4.823 0.008 1.63 0.06 4.818 0.011 1.66 0.04 1.00
3 6.697 0.127 4.23 1.45 6.722 0.028 3.82 0.62 0.98
4 8.355 0.059 8.91 1.77 8.346 0.104 9.37 1.33 0.96
5 9.769 0.005 1.54 0.03 9.772 0.005 1.57 0.02 1.00
6 10.51 0.011 1.45 0.06 10.50 0.007 1.43 0.04 1.00
7 12.42 0.020 3.11 0.03 12.42 0.025 3.15 0.12 1.00
8 13.21 0.033 4.76 0.29 13.21 0.018 4.72 0.17 1.00
9 17.45 0.212 4.34 0.38 17.52 0.169 3.64 1.39 0.92
10 19.27 0.019 2.43 0.10 19.28 0.022 2.46 0.06 1.00
11 19.68 0.080 5.58 0.31 19.65 0.113 5.51 0.29 0.98
12 26.64 0.054 3.20 0.11 26.62 0.055 3.12 0.11 0.95
13 / / / / 33.18 0.202 4.33 1.78 /
14 37.25 0.198 3.69 0.48 37.20 0.106 3.94 0.61 0.95
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3 Sensor Validation
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4 Damage Detection Using Control Charts
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5 SHM Under Changing Environmental or
Operational Conditions: Linear Models
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6 SHM Under Changing Environmental or
Operational Conditions: Nonlinear Models
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7 Mechanical Engineering Application: A Hydraulic
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2 Intelligent Fault Detection

2.1 Terminology
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2.2 Intelligence



186 K. Worden



Health Monitoring Using Pattern Recognition 187



188 K. Worden



Health Monitoring Using Pattern Recognition 189

2.3 Data Processing and Fusion for Damage Identification
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3 Novelty Detection



Health Monitoring Using Pattern Recognition 193

3.1 Gaussian-Distributed Normal Condition - Outlier Analysis
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Figure 3.
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Figure 4.

4 Neural Networks

4.1 Biological Neural Networks
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The Biological Neuron
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4.2 The McCulloch-Pitts Neuron

Boolean Functions
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Figure 7.
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Figure 9.
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4.3 Perceptrons
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Limitations of Perceptrons
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4.4 Multi-Layer Perceptrons
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Existence of Solutions
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5 Novelty Detection Again

5.1 Non-Gaussian Normal Condition - Neural Networks
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Figure 16.
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Figure 17.
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Figure 18.
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Figure 19.

6 Statistical Pattern Recognition

6.1 Introduction
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6.2 Connection to Neural Networks
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7 Experimental Illustrations

7.1 Level One - Damage Detection

Damaged Inspection Panels
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Figure 21.

Data Capture
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Figure 22.
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Feature Selection
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Novelty Detection
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Figure 26.

7.2 Level Two - Damage Location
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Figure 27.
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Test Set-up and Data Capture
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Figure 29.
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Feature Selection and Novelty Detection

Network of Novelty Detectors for Damage Location
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Figure 30.
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for number of hidden layer neurons = 1 to 50
{
for different random initial conditions = 1 to 10

{
train network on training data
evaluate on validation data
terminate training at minimum in validation set error
}

}

Table 2.
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Table 3.

8 Discussion and Conclusions
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2.1 Discrete models
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Figure 1.
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Figure 2.
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4.1 The FFT–Based Spectral Finite Element Method – Cracked
Rod
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4.2 The Time Domain Spectral Element Method – Cracked Rod
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Time Domain Integration
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4.3 Flexibility at the crack location
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4.4 Comparative example
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Figure 7.

Figure 8.
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Figure 9.
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Figure 10.

4.5 Influence of crack on wave propagation

Influence of crack location and crack depth on wave propagation
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Influence of signal frequency on amplitude of the reflected wave
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Figure 16.

Figure 17.

Estimation of the damage size
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Genetic algorithms in the problem of identification
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Conclusions

6.1 Test stand profile



Elastic Waves for Damage Detection in Structures 287

Figure 21.



288 W. Ostachowicz and P. Kudela

12

d

8720

400

700

6
2
3

3
1
3

R125 R125

R125R125

stiffener

transducers

double thickness

Figure 22.



Elastic Waves for Damage Detection in Structures 289

Table 2.

6.2 Theoretical dispersion curves
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Figure 23.

6.3 Estimation and verification of wave group velocities
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Figure 24.

6.4 Damage detection
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Figure 25.
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6.5 Crack detection
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Figure 26.
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Figure 27.

6.6 Conclusions
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