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PREFACE

This book is the outcome of a FEuropean project sponsored by the
FEuropean Science Foundation(ESF) under the EUROCORES S3T
scheme, called S3HM (Smart Sensing for Structural Health Monitor-
ing). It all began in July 2004 at the European Workshop on Struc-
tural Monitoring in Munchen, Germany, where we had the first dis-
cussions for the preparation of the project. It was clear from the
beginning that we wanted a collaborative project, where the partners
had complimentary expertise. This is essential in vibration-based
structural health monitoring (SHM) which is a truly multidisciplinary
topic. It was also clear that we wanted to look ahead, to explore new
paths in vibration-based SHM. Apart from the numerous conference
and journal papers produced during the project, we decided to share
our views on vibration-based SHM through a course at the CISM in
Udine, in September 2009. The course was entitled ”"New trends in
vibration based SHM”. This book, with the same name, is the next
logical step.

In constructing this book, we wanted it to be a reference book for
students, scientists and engineers starting in the field of SHM. The
book, of course is not exhaustive in describing all the methods avail-
able in SHM, but it illustrates, through simple examples, the neces-
sary steps for the successful implementation of an SHM system: (i)
sensor networks, and data acquisition, (ii) signal processing, data re-
duction and feature extraction, (iii) statistical analysis of the data.
Emphasis is put on important issues for the practical implementation
of SHM systems such as data reduction in large sensor networks,
sensor failure detection, extraction of modal parameters from opera-
tional data, removal of the variability due to changing environmental
or operational conditions, statistical analysis of the data through su-
pervised (neural networks) or unsupervised (outlier analysis, control
charts) learning techniques. The last chapter is dedicated to wave-
based methods, which are not, as such vibration-based SHM tech-
niques, but are seen as a very promising complementary technique to
the vibration-based methods presented in this book. All the methods
and techniques presented are illustrated through numerical examples,
experimental data from small scale laboratory demonstrators, or field
measurements made on real structures.



It is our hope that the reader will share the enthusiasm of the many
scientists who have contributed to all the research work presented in

this book.

Arnaud Deraemaeker
Keith Worden
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An Introduction to Structural Health
Monitoring

Charles R. Farrar! & Keith Worden?

!The Engineering Institute,
Los Alamos National Laboratory Los Alamos, New Mexico, USA.
2Dynamics Research Group, Department of Mechanical Engineering,
University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.

Abstract This introduction begins with a brief history of SHM
technology development. Recent research has begun to recognise
that a productive approach to the Structural Health Monitoring
(SHM) problem is to regard it as one of statistical pattern recog-
nition (SPR); a paradigm addressing the problem in such a way is
described in detail herein as it forms the basis for the organisation
of this book. In the process of providing the historical overview and
summarising the SPR paradigm, the subsequent chapters in this
book are cited in an effort to show how they fit into this overview of
SHM. In the conclusions are stated a number of technical challenges
that the authors believe must be addressed if SHM is to gain wider
acceptance.

1 Introduction

The process of implementing a damage identification strategy for aerospace,
civil and mechanical engineering infrastructure is referred to as Structural
Health Monitoring (SHM). A wide variety of highly-effective local Non-
Destructive Evaluation (NDE) tools are traditionally available for such
monitoring. However, the majority of SHM research conducted over the
last thirty years has attempted to identify damage in structures on a more
global basis using permanently installed sensors. The past ten years has seen
a rapid increase in the amount of research related to SHM as quantified by
the significant escalation in papers published on this subject. The increased
interest in SHM and its associated potential for significant life-safety and
economic benefits has motivated the need for this book.

In the most general terms, damage is usually understood as changes
introduced into a system that adversely affect its current or future perfor-
mance. Implicit in this definition is the idea that damage is not meaningful
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without a comparison between two different states of the system, one of
which is assumed to represent the initial, and often undamaged, state. This
book is focused on the study of damage identification in structural and me-
chanical systems. Therefore, the definition of damage will be limited to
changes to the material and/or geometric properties of these systems, in-
cluding changes to the boundary conditions and system connectivity, which
adversely affect the current or future performance of these systems.

In terms of length-scales, all damage begins at the material level. Al-
though not necessarily universally accepted terminology, such damage is
referred to as a defect or flaw and is present to some degree in all materials.
Under appropriate loading scenarios the defects or flaws grow and coalesce
at various rates to cause component, and then system-level, damage. The
term damage does not necessarily imply total loss of system functionality,
but rather that the system is no longer operating in its optimal manner.
As the damage grows it will reach a point where it affects the system op-
eration to a point that is no longer acceptable to the user. This point is
referred to as failure. In terms of time-scales, damage can accumulate in-
crementally over long periods of time such as that associated with fatigue
or corrosion damage evolution. On relatively shorter time-scales, damage
can also result from scheduled discrete events such as aircraft landings and
from unscheduled discrete events such as enemy fire on a military vehicle or
natural hazards such as earthquakes.

The SHM process involves the observation of a structure or mechanical
system over time using periodically-spaced measurements, the extraction
of damage-sensitive features from these measurements, and the statistical
analysis of these features to determine the current state of system health.
For long-term SHM, the output of this process is periodically updated in-
formation regarding the ability of the structure to continue to perform its
intended function in the light of the inevitable aging and damage accumula-
tion resulting from the operational environments. Under an extreme event,
such as an earthquake or unanticipated blast loading, SHM could be used
for rapid condition screening. This screening is intended to provide, in near
real-time, reliable information about system performance during such ex-
treme events and the subsequent integrity of the system. A more detailed
description of SHM can be found in Worden and Dulieu-Barton (2004).

Damage identification is carried out in conjunction with five closely re-
lated disciplines that include SHM, Condition Monitoring (CM, see Bently
and Hatch (2003)), Non-Destructive Evaluation (NDE, see Shull (2002)),
Statistical Process Control (SPC, See Montgomery (1997)) and Damage
Prognosis (DP, see Farrar et al. (2001, 2003)). Typically, SHM is associ-
ated with on-line, global damage identification in structural systems such
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as aircraft and buildings. CM is analogous to SHM, but addresses dam-
age identification in rotating and reciprocating machinery, such as used in
manufacturing and power generation. NDE is usually carried out off-line
in a local manner after the damage has been located, and requires access
to the component or structure of interest. There are exceptions to this
rule, as NDE is also used as a monitoring tool for in situ structures such
as pressure vessels and rails. NDE is therefore primarily used for damage
characterisation and as a severity check when there is a priori knowledge
of the damage location. SPC is process-based rather than structure-based
and uses a variety of sensors to monitor changes in a process, one cause of
which can result from structural damage. Once damage has been detected,
DP is used to predict the remaining useful life of a system.

1.1 Motivation for SHM Technology Development

Almost all private industries and government organisations want to de-
tect damage in their products as well as in their manufacturing infrastruc-
ture at the earliest possible time. Such detection requires these industries
to perform some form of SHM and is motivated by the potential life-safety
and economic impact of this technology. As an example, the semiconductor
manufacturing industry is adopting this technology to help minimise the
need for redundant machinery necessary to prevent inadvertent downtime
in their fabrication plants. Such downtime can cost these companies on
the order of millions of dollars per hour. Aerospace companies in the US
along with government agencies are investigating SHM technology for iden-
tification of damage to the space shuttle control surfaces hidden by heat
shields. Clearly, such damage identification has significant life-safety impli-
cations. Also, there are currently no quantifiable methods to determine if
buildings are safe for reoccupation after a significant earthquake. SHM may
one day provide the technology to significantly reduce the uncertainty asso-
ciated with such post-earthquake damage assessments. The prompt reoccu-
pation of buildings, particularly those associated with manufacturing, can
significantly mitigate economic losses associated with major seismic events.
Finally, many portions of our technical infrastructure are approaching or
exceeding their initial design life. As a result of economic issues, these civil,
mechanical, and aerospace structures are being used in spite of aging and
the associated damage accumulation. Therefore, the ability to monitor the
health of these structures is becoming increasingly important.

Most current structural and mechanical system maintenance is done in a
time-based mode. As an example missiles are retired after a set amount of
captive-carry hours on the wing of an aircraft. SHM represents the group of
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technologies that will allow the current time-based maintenance philosophies
to evolve into potentially more cost effective condition-based maintenance
philosophies. The concept of condition-based maintenance is that a sensing
system on the structure will monitor the system response and notify the
operator that damage has been detected. Life-safety and economic benefits
associated with such a philosophy will only be realised if the monitoring
system provides sufficient warning such that corrective action can be taken
before the damage evolves to a failure level. The trade-off associated with
implementing such a philosophy is that it requires a more sophisticated
monitoring hardware to be deployed on the system and it requires a sophis-
ticated data analysis procedure that can be used to interrogate the measured
data. It is also critical that any monitoring system installed should be at
least as reliable as the structure or system of interest.

Finally, many companies that produce high-capital-expenditure prod-
ucts such as airframes, jet engines, and large construction equipment would
like to move to a business model where they lease this equipment as op-
posed to selling it. With these models the company that manufactures the
equipment would take on the responsibilities for it’s maintenance. SHM
has the potential to extend the intervals between scheduled maintenance
and, hence, keep the equipment out in the field where it can continue to
generate revenue for the owner. Also, the equipment owners would like to
base their lease fees on the amount of system life used up during the lease
time rather than on the current simple time-based lease fee arrangements.
Such a business model will not be realised without the ability to monitor
the damage initiation and evolution in the rental hardware.

1.2 Motivation for this Book

Directly reflecting the increased interest in this emerging technology,
there have been several conference series initiated in the last fifteen years
that focus directly on SHM; (the most recent examples in these series be-
ing!+2:3:4.) Focussed meetings and conferences related to the condition mon-

! The 7t" International Workshop on Structural Health Monitoring, Palo Alto, CA,
2009.

2The 8t" International Conference on Damage Assessment of Structures, Beijing, China,
2009.

3 14th International Symposium on Nondestructive Evaluation and Health Monitoring
of Aging Infrastructure, San Diego, CA, 2009.

4 The 4th European Workshop on Structural Health Monitoring, Krakow, Poland, 2008
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itoring of rotating machinery are much older®%. These conferences have
shown that the topic of SHM is of interest to a wide range of industries and
government agencies; They have also shown that many technical disciplines
need to be integrated to properly address the SHM problem. In addition,
the first refereed journal devoted specifically to SHM has recently been ini-
tiated”, and others have followed. The proceedings of the specialised confer-
ences as well as the extensive number of refereed journal articles devoted to
various aspects of SHM show that significant knowledge and experience has
been gained through the reported studies. Finally, the emergence of a num-
ber of specialised courses on SHM technologies and methodologies is further
testimony to the interest expressed by industry. Despite the clear interest,
there is a limited number of published textbooks and monographs on the
subject of SHM (recent exceptions of note are Adams (2007); Giurgiutiu
(2007); Staszewski et al. (2003)). A theme issue of the Transactions of the
Royal Society of London was also devoted to the topic (Farrar and Wor-
den (2007)), and makes a useful first port-of-call for an overview. Most
notably, a comprehensive reference work has also recently appeared, Boller
et al. (2009); although the focus of this work is not pedagogical. All of this
means that it is timely to devote a new book in an effort to provide the
engineering community with an up-to-date overview of SHM technology
focussed on vibration-based methods and statistical pattern recognition -
aspects of the subject which are arguably neglected in the coverage of SHM
to date.

2 Brief Historical Overview

The current authors believe that damage identification - as determined by
changes in the dynamic response of systems - has been practiced in a qualita-
tive manner, using acoustic techniques (e.g tap tests on train wheels), since
modern man has used tools. More recently, the development of quantifiable
SHM approaches has been closely coupled with the evolution, miniaturi-
sation and cost reductions of digital computing hardware. In conjunction
with these developments SHM has received considerable attention in the
technical literature and a brief summary of the developments in this tech-
nology over the last thirty years is presented below. Specific references are
not cited; instead the reader is referred to a number of comprehensive sur-

5The 2274 Conference on Condition Monitoring and Diagnostic Engineering Manage-
ment - COMADEM, San Sebastian, Spain, 2009.

5The 6374 Meeting of the Society for Machinery Failure and Prevention Technology,
Dayton, OH, 2009.

7 Structural Health Monitoring, An International Journal, Sage Publications, London.
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veys (Doebling et al. (1996); Sohn et al. (2003); Randall (2004a,b), for more
detailed summaries of this subject.

To date, the most successful applications of SHM technology have been
for the monitoring of rotating machinery. The rotating machinery appli-
cations have taken an almost exclusively data-based (as opposed to model-
based) approach to damage identification. The identification process is usu-
ally based on pattern recognition methods applied to displacement, velocity
or acceleration time-histories (or spectra), generally measured at a single
point on the housing or shafts of the machinery during normal operating
conditions or start-up or shut-down transients. Often this pattern recogni-
tion is performed only in a qualitative manner based on a visual comparison
of the spectra obtained from the system at different times; this is nonethe-
less pattern recognition. Databases have been developed that allow specific
types of damage to be identified from particular features of the vibration sig-
nature. For rotating machinery systems the approximate damage location
is generally known, making a single-channel fast-Fourier-transform (FFT)
analyser sufficient for most periodic monitoring activities. Typical damage
that can be identified includes loose or damaged bearings, misaligned shafts,
and chipped gear teeth. Today, commercial software integrated with mea-
surement hardware is marketed to help the user systematically apply this
technology to the operating equipment.

The success of CM is due in part to:

1. Minimal operational and environmental variability associated with
this type of monitoring,

2. Well-defined damage types that occur at known locations,

Large databases that include data from damaged systems,

4. Well-established correlation between damage and features extracted
form the measured data, and

5. Clear and quantifiable economic benefits that this technology can pro-
vide.

©w

These factors have allowed this application of SHM to make the tran-
sition from a research topic to industry practice several decades ago re-
sulting in comprehensive condition management systems such as the U.S.
Navy’s Integrated Condition Assessment System. Condition monitoring is
not discussed in any further detail here, the curious reader can find many
interesting texts and reviews; a good recent review is by Randall (2004a,b).

During the 1970s and 1980s, global oil industry made considerable ef-
forts to develop vibration-based damage identification methods for offshore
platforms. This damage identification problem is fundamentally different
from that of rotating machinery because the damage location is not known
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a priori and because the majority of the structure is not readily accessible
for measurement. To circumvent these difficulties, a common methodology
adopted by this industry was to simulate candidate damage scenarios with
numerical models, examine the changes in resonance frequencies that were
produced by these simulated changes, and correlate these changes with those
measured on a platform. A number of very practical problems were encoun-
tered including measurement difficulties caused by platform machine noise,
instrumentation difficulties in hostile environments, changing mass caused
by marine growth and varying fluid storage levels, temporal variability of
foundation conditions, and the inability of wave motion to excite higher
vibration modes. These issues prevented adoptation of this technology, and
efforts at further developing SHM technology for offshore platforms were
largely abandoned in the early 1980s.

The aerospace community began to study the use of vibration-based
damage identification during the late 1970s and early 1980s in conjunction
with the development of the space shuttle. This work has continued with
current applications being investigated for the National Aeronautics and
Space Administration’s space station and future reusable launch vehicle de-
signs. The Shuttle Modal Inspection System (SMIS) was developed to iden-
tify fatigue damage in components such as control surfaces, fuselage panels
and lifting surfaces. These areas were covered with a thermal protection
system making them inaccessible and, hence, impractical for conventional
local non-destructive examination methods. The Shuttle Modal Inspection
System has been successful in locating damaged components that are cov-
ered by the thermal protection system. All orbiter vehicles have been pe-
riodically subjected to SMIS testing since 1987. Space station applications
have primarily driven the development of experimental/analytical methods
aimed at identifying damage to truss elements caused by space debris im-
pact. These approaches are based on correlating analytical models of the
undamaged structure with measured modal properties from both the un-
damaged and damaged structure. Changes in stiffness indices as assessed
from the two model updates are used to locate and quantify the damage.
Since the mid-1990s, studies of damage identification for composite mate-
rials have been motivated by the development of a composite fuel tank for
a reusable launch vehicle. The failure mechanisms, such as delamination
caused by debris impacts, and corresponding material response for compos-
ite fuel tanks are significantly different than those associated with metallic
structures. Also, the composite fuel tank problem presents challenges be-
cause the sensing systems must not provide a spark source. This challenge
has lead to the development of SHM methodologies based on fibre-optic
sensing systems. The overview Boller and Buderath (2007) provides a more
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detailed discussion of SHM applied to aerospace structures for the interested
reader.

The civil engineering community has studied vibration-based damage
assessment of bridge structures and buildings since the early 1980s. Modal
properties and quantities derived from these properties such as modeshape
curvature and dynamic flexibility matrix indices have been the primary
features used to identify damage in bridge structures. Environmental and
operating condition variability presents significant challenges in the bridge
monitoring applications. The physical size of the structure also presents
many practical challenges for vibration-based damage assessment. Regula-
tory requirements in Asian countries, which mandate that the companies
that construct the bridges periodically certify their structural health, are
driving current research and commercial development of bridge SHM sys-
tems. Good references on these specific issues are Brownjohn (2007); Lynch
(2007) and a useful very recent collection of articles is by Karbhari and
Ansari (2009). The International Society for Structural Health Monitor-
ing of Intelligent Infrastructures (ISHMII) has emerged recently and has
periodic conferences on SHM issues in civil engineering®. Some of the con-
cerns with respect to civil infrastructure are highlighted in the chapter by
Deraemaeker later in this volume.

In summary, the comprehensive reviews of the technical literature pre-
sented in Doebling et al. (1996); Sohn et al. (2003), show an increasing
number of research studies related to damage identification. These stud-
ies identify many technical challenges to the adaptation of SHM that are
common to all applications of this technology. These challenges include the
development of methods to optimally define the number and location of the
sensors, identification of the features sensitive to small damage levels, the
ability to discriminate changes in these features caused by damage from
those caused by changing environmental and/or test conditions, the de-
velopment of statistical methods to discriminate features from undamaged
and damaged structures, and performance of comparative studies of dif-
ferent damage identification methods applied to common data sets. These
topics are currently the focus of various research efforts by many industries
including defence, civil infrastructure, automotive, and semiconductor man-
ufacturing where multi-disciplinary approaches are being used to advance
the current capabilities of SHM and CM.

8SHMII - 4 Conference, ETH Zurich, Switzerland, 2009.
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3 The Statistical Pattern Recognition Paradigm

There are many ways by which one can organise a discussion of SHM. The
authors have chosen to follow the one described in the article Farrar et al.
(2001), that defines the SHM process in terms of a four-step statistical
pattern recognition paradigm. This process includes:

1. Operational evaluation,

2. Data acquisition, normalisation and cleansing,

3. Feature selection and information condensation, and,

4. Statistical model development for feature discrimination.

Almost all papers published in the fields of SHM and CM arguably ad-
dress some parts of this paradigm, but the number of studies that address
all portions of the paradigm is much more limited. An alternative approach
to SHM which is often pursued is based on the solution of inverse problems
using linear-algebraic methods; this is not discussed in any detail here, the
reader can refer to Doebling et al. (1996); Sohn et al. (2003); Friswell (2007)
for the background and further references.

3.1 Operational Evaluation

Operational evaluation attempts to answer four questions regarding the
implementation of a damage identification capability:

1. What are the life-safety and/or economic justifications for performing
the SHM?

2. How is damage defined for the system being investigated and, for
multiple damage possibilities, which cases are of the most concern?

3. What are the conditions, both operational and environmental, under
which the system to be monitored functions?

4. What are the limitations on acquiring data in the operational envi-
ronment?

Operational evaluation begins to set the limitations on what will be
monitored and how the monitoring will be accomplished. This evaluation
starts to tailor the damage identification process to features that are unique
to the system being monitored and tries to take advantage of unique features
of the damage that is to be detected.

3.2 Data Acquisition, Normalisation and Cleansing

The data acquisition portion of the SHM process involves selecting the
excitation methods, the sensor types, number and locations, and the data
acquisition/storage/transmittal hardware. Again, this process will be
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application-specific. Economic considerations will play a major role in mak-
ing these decisions. The intervals at which data should be collected is an-
other consideration that must be addressed.

Because data can be measured under varying conditions, the ability to
normalise the data becomes very important to the damage identification
process. As it applies to SHM, data normalisation is the process of sepa-
rating changes in sensor readings caused by damage from those caused by
varying operational and environmental conditions. One of the most common
procedures is to normalise the measured responses by the measured inputs.
When environmental or operational variability is an issue, the need can arise
to normalise the data in some temporal fashion to facilitate the comparison
of data measured at similar times of an environmental or operational cycle.
Sources of variability in the data acquisition process and with the system
being monitored need to be identified and minimised to the extent possible.
In general, not all sources of variability can be eliminated. Therefore, it is
necessary to make the appropriate measurements such that these sources
can be statistically quantified. Variability can arise from changing envi-
ronmental and test conditions, changes in the data reduction process, and
unit-to-unit inconsistencies. These issues are discussed in some detail in the
chapter by Kullaa later in this volume; a recent survey on environmental
variations in SHM which is of value is given in Sohn (2007).

Data cleansing is the process of selectively choosing data to pass on to
or reject from the feature selection process. The data cleansing process is
usually based on knowledge gained by individuals directly involved with the
data acquisition. As an example, an inspection of the test setup may reveal
that a sensor was loosely mounted and, hence, based on the judgment of the
individuals performing the measurement, this set of data or the data from
that particular sensor may be selectively deleted from the feature selection
process. Signal processing techniques such as filtering and re-sampling can
also be thought of as data cleansing procedures.

Finally, it should be noted that the data acquisition, normalisation, and
cleansing portion of the structural health-monitoring process should not be
static. Insight gained from the feature selection and statistical model de-
velopment processes will invariably provide information regarding changes
that can improve the data acquisition process. Issues relating to data ac-
quisition and processing will be discussed in all of the later chapters in this
book.
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3.3 Feature Extraction and Information Condensation

The area of the structural health-monitoring process that receives the
most attention in the technical literature is the identification of data features
that allows one to distinguish between the undamaged and damaged struc-
ture. As such, the chapters in this book will devote considerable space to
the feature extraction portion of SHM; in particular, the pattern recognition
context of feature selection is the major focus of sections in the chapters
by Kullaa and Worden. Inherent in the feature selection process is the
condensation of the data. The best features for damage identification are,
again, application-specific. In the context of vibration-based SHM, the fea-
tures are usually those measurements associated with structural dynamic
(or modal) testing. The extraction of dynamic parameters: frequencies,
dampings, modeshapes etc., is an art in itself; the chapter by Reynders and
De Roeck in this volume discusses an algorithm for this purpose which is
state-of-the-art.

One of the most common feature extraction methods is based on cor-
relating measured system response quantities, such as vibration amplitude
or frequency, with first-hand observations of the degrading system. An-
other method of developing features for damage identification is to apply
engineered damage, similar to that expected in actual operating conditions,
to systems and develop an initial understanding of the parameters that
are sensitive to the expected damage. The damaged system can also be
used to establish that the diagnostic measurements are sensitive enough to
distinguish between features identified from the undamaged and damaged
systems. The use of analytical tools such as experimentally-validated finite
element models can be a great asset in this process. In many cases the an-
alytical tools are used to perform numerical experiments where the damage
is introduced through computer simulation. Damage accumulation testing,
during which significant structural components of the system under study
are degraded by subjecting them to realistic loading conditions, can also be
used to identify appropriate features. This process may involve induced-
damage testing, fatigue testing, corrosion growth, or temperature cycling
to accumulate certain types of damage in an accelerated fashion. Insight
into the appropriate features can be gained from several types of analytical
and experimental studies as described above and is usually the result of
information obtained from some combination of these studies.

One of the main issues faced in using statistical classifiers in a SHM
context is that the amount of training data - the a priori data needed in order
to establish the diagnostic - grows explosively with the dimension of the
feature vector. Because data sets acquired by engineering experimentation
are typically small, it becomes crucial to reduce the dimension of feature
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vectors without compromising their information content. Many statistical
(and other) methods are available for these purposes, including principal
component analysis and factor analysis, techniques which are discussed in
some detail in the later chapters by Kullaa and Worden.

The operational implementations of the diagnostic measurement tech-
nologies needed to perform SHM invariably produce more data than is tra-
ditional in the use of structural dynamics information. A condensation of
the data is usually advantageous and can be essential when comparisons
of many feature sets obtained over the lifetime of the structure are envi-
sioned. Also, because data will be acquired from a structure over an ex-
tended period of time and in potentially many operational environments,
robust data reduction techniques must be developed to retain feature sensi-
tivity to the structural changes of interest in the presence of environmental
and operational variability (again, the reader can consult Sohn (2007) for a
survey). To further aid in the extraction and recording of the high-quality
data needed to perform SHM, the statistical significance of the features
should be characterised and used in the condensation process. The disci-
pline of data-mining has emerged recently as a means of bringing together
methods for the extraction of information from large data sets; however,
although there are projects successfully applying data-mining in a SHM
context Liang and Austin (2004), they are rather rare.

3.4 Statistical Model Development

The portion of the SHM process that has arguably received least atten-
tion in the technical literature is the development of statistical models for
discrimination between features from the undamaged and damaged struc-
tures. Statistical model development is concerned with the implementation
of algorithms that operate on the extracted features to quantify the damage
state of the structure. The algorithms used in statistical model development
usually fall into three categories. When data are available from both the
undamaged and damaged structure, the statistical pattern recognition algo-
rithms fall into the group concerned with supervised learning; Group classi-
fication and regression analysis are examples of learning algorithms which
fall into this category. The term unsupervised learning refers to those algo-
rithms that are applied to data not containing examples from the damaged
structure. As engineering structures are typically produced at very high
cost; unsupervised learning is often the only course of action as it is not
economically viable to damage structures in order to produce data for su-
pervised learning. The group of algorithms based around the idea of outlier
or novelty detection is the primary one applied in the unsupervised learn-
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ing context. All of the algorithms analyse statistical distributions of the
measured or derived features to enhance the damage identification process.
The damage identification process for a system or structure can be sum-
marised in terms of a hierarchical structure along the lines discussed in
Rytter (1993); where the objective is to answer the following questions:

Existence: Is there damage in the system?;
Location: Where is the damage in the system?;
Type: What kind of damage is present?;
Extent: How severe is the damage?; and
Prognosis: How much useful life remains?

Answers to these questions in the order presented, represent increasing
knowledge of the damage state. When applied in an unsupervised learning
mode, statistical models are typically used to answer questions regarding
the existence (and sometimes the location) of damage. When applied in a
supervised learning mode and coupled with analytical models, the statistical
procedures can be used to better determine the type of damage and the
extent of damage. Prognosis of remaining useful life is more difficult and
will usually require detailed physical models of the damage processes of
interest and good predictions of the future loading regime of the structure
of interest.

The statistical models are also required to minimise false indications of
damage. False indications of damage fall into two categories: (1) False-
positive damage indication (indication of damage when none is present),
and (2) False-negative damage indication (no indication of damage when
damage is present). Errors of the first type are undesirable as they will
cause unnecessary downtime and consequent loss of revenue as well as loss
of confidence in the monitoring system. More importantly, there are clear
safety issues if misclassifications of the second type occur. Many pattern
recognition algorithms allow one to weigh one type of error above the other,
this weighting may be one of the factors decided at the operational evalua-
tion stage.

The chapter by Worden later in this volume discusses pattern recognition
approaches to SHM in detail and the chapter by Kullaa discusses some
powerful statistical algorithms in detail.

4 Challenges for SHM

The basic premise of vibration-based SHM feature selection is that damage
will significantly alter the stiffness, mass or energy dissipation properties of a
system, which, in turn, alter the measured dynamic response of that system.
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Although the basis for feature selection appears intuitive, its actual appli-
cation poses many significant technical challenges. The most fundamental
challenge is the fact that damage is typically a local phenomenon and may
not significantly influence the lower-frequency global response of structures
that is normally measured during system operation. (As an adjunct or alter-
native to vibration-based approaches to SHM, a number of strategies based
on the use of high-frequency waves have developed as a means of detecting
small damage; the last chapter of this book by Kudela and Ostachowicz, is
concerned with one such approach.) Stated another way, this fundamental
challenge is similar to that in many engineering fields where the ability to
capture the system response on widely varying length and time scales, as
is needed to model turbulence or to develop phenomenological models of
energy dissipation, has proven difficult.

Another fundamental challenge is that in many situations feature se-
lection and damage identification must be performed in an unsupervised
learning mode; that is, data from damaged systems are not available. Dam-
age can accumulate over widely varying time scales, which poses significant
challenges for the SHM sensing system. This challenge is supplemented by
many practical issues associated with making accurate and repeatable mea-
surements over long periods of time at a limited number of locations on
complex structures often operating in adverse environments.

Finally, a significant challenge for SHM is to develop the capability to
define the required sensing system properties before field deployment and, if
possible, to demonstrate that the sensor system itself will not be damaged
when deployed in the field. If the possibility of sensor damage exists, it
will be necessary to monitor the sensors themselves. This monitoring can
be accomplished either by developing appropriate self-validating sensors or
by using the sensors to report on each other’s condition. Sensor networks
should also be ’fail-safe’. If a sensor fails, the damage identification algo-
rithms must be able to adapt to the new network. This adaptive capability
implies that a certain amount of redundancy must be built into the sensor
network.

In addition to the challenges described above, there are other non-
technical issues that must be addressed before SHM technology can make
the transition from a research topic to actual practice. These issues include
convincing structural system owners that the SHM technology provides an
economic benefit over their current maintenance approaches and convinc-
ing regulatory agencies that this technology provides a significant life-safety
benefit. All these challenges lead to the current state of SHM technology,
where outside of condition monitoring for rotating machinery applications,
SHM remains a research topic that is still making the transition to field
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demonstrations and subsequent field deployment. There are lots of ongo-
ing and new structural monitoring activities, but these systems have been
put in place without a pre-defined damage to be detected and without the
corresponding data interrogation procedure. As such, these monitoring ac-
tivities do not represent a fully integrated hardware/software SHM system
with pre-defined damage identification goals. A final non-technical chal-
lenge is concerned with providing the educational materials and opportuni-
ties for engineers to learn the (rapidly-developing) state-of-the-art in SHM
technologies and analysis.

5 Concluding Remarks

The development of robust SHM technologies has many elements that make
it a potential ”Grand Challenge” for the engineering community. First, al-
most every industry wants to detect damage in its structural and mechani-
cal infrastructure at the earliest possible time. Industries’ desire to perform
such monitoring is based on the tremendous economic and life-safety bene-
fits that this technology has the potential to offer. However, as previously
mentioned with the exception of rotating machinery condition monitoring,
there are few examples of where this technology has made the transition
from research to practice.

Significant future developments of this technology will, in all likelihood,
come by way of multi-disciplinary research efforts encompassing fields such
as structural dynamics, signal processing, motion and environmental sensing
hardware, computational hardware, data telemetry, smart materials, and
statistical pattern recognition, as well as other fields yet to be defined.
These topics are the focus of significant discipline-specific research efforts,
and it is the authors’ speculation that to date not all technologies from these
fields that are relevant to the SHM problem have been explored by the SHM
research community. Furthermore, there are few efforts that try to advance
and integrate these technologies with the specific focus of developing SHM
solutions. Without such a focus in mind, these technologies may well evolve
in manner that is not optimal for solving the SHM problem. Finally, the
problem of global SHM is so significantly complex and diverse that it will
not be solved in the immediate future. Like so many other technology fields,
advancements in SHM will most likely come in small increments requiring
diligent, focused and coordinated research efforts over long periods of time.
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Abstract Vibration based Structural Health Monitoring (SHM)
techniques are based on the measurement of vibration signals on
structures. The first part of this chapter is dedicated to an overview
of the existing sensors and acquisition units which are available for
such measurements, with an emphasis on recent advances in this
area. With these recent advances in sensors and instrumentation,
structures can be equipped with very large sensor arrays which mon-
itor the vibration in real time. The difficulty is to be able to extract
meaningful information from the huge amount of data generated by
these large arrays. The second part of the chapter presents a data
reduction technique based on modal filters. It is shown how features
can be extracted from the output of these filters and subsequently
used for damage detection.

1 Sensors and Instrumentation for Vibration Based
SHM

Measuring vibrations has been possible for many years, so what has changed
during the last decade? Important advances have been made in sensors
and instrumentation. For existing sensors, the quality has been improved.
New types of sensors (such as fibre optics) have appeared, and also new
manufacturing techniques (MEMS technology) have allowed lowering of the
price of sensors considerably. Acquisition units have also benefited from the
great advances in electronics and computing. Sampling rates, filtering and
storage rates have all improved; prices have also considerably decreased.
Where in the past, a structure was instrumented only for the short time
of testing, it is now possible to monitor continuously, and in real-time, its
vibrations.
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1.1 Most Common Transducers for SHM Applications

There are so many types of sensors on the market that it is not possible
to give a comprehensive list of them. The goal of this section is to introduce
the most common types of sensors as well as show the new trends in this
area.

Accelerometers By far the most common sensor for measuring vibra-
tions is the accelerometer. The basic working principle of such a device
is presented in Figure 1(a). It consists of a moving mass on a spring and
dashpot, attached to a moving solid. The acceleration of the moving solid
results in a differential movement x between the mass M and the solid. The
governing equation is given by,

Mg+ ct + kx = —Mxy (1)
In the frequency domain x /%y is given by,

T —1

= (2)

Ty —w?+ w2+ 25¢ww,

and for frequencies w << wy,, one has,

x -1
R 3)

Zo Wi
showing that at low frequencies compared to the natural frequency of the
mass-spring system, x is proportional to the acceleration . Note that since
the proportionality factor is wlz, the sensitivity of the sensor is increased

as w2 is decreased. At the same time, the frequency band in which the
accelerometer response is proportional to #y is reduced.

The relative displacement x can be measured in different ways which are
presented in Figure 2: using piezoelectric material (longitudinal or shear
mode), in which case the strain results in an electric charge that can be
measured with a charge amplifier, or using piezoresistive material, for which
the strain results in a change in the resistance. Strain gauges are made
of piezoresistive material and can be placed at different locations on the
material playing the role of the spring. The advantage of the piezoresis-
tive accelerometer is the possibility to measure acceleration down to 0 Hz,
which cannot be achieved with piezoelectric materials. There exists a very
wide family of accelerometers, ranging from very heavy seismic accelerom-
eters able to measure very small accelerations at low frequency, to tiny
light accelerometers, with a lower sensitivity but a much wider frequency
bandwidth.
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Figure 1. Working principle of an accelerometer
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Figure 2. Different sensing principles for standard accelerometers
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In the last decade, MEMS (Micro-Electro-Mechanical-Systems) sensors
have started to appear on the market (Stein (2001)). These small devices
come in very different shapes and characteristics. Their main advantage
is the very low cost (in the range of 50 Euros compared to traditional ac-
celerometers which are in the range of several hundreds of Euros). MEMS
are flat devices (due to the silicone ”layer” manufacturing technology). As
in traditional accelerometers, they consist of a moving mass attached to a
spring. The most common way to measure the relative motion between the
casing and the moving mass is through the change of capacitance (Figure 3).

y5 M

——
s

Double capacitor

Figure 3. Working principle of a MEMS capacitive accelerometer

A more recent kind of MEMS accelerometer is the resonant MEMS (Se-
shia (2002)). There, the longitudinal strain due to the acceleration of the
moving mass is responsible for a change in the first lateral natural frequency
of a beam which is excited electrostatically (Figure 4). The main advantage
is a better signal-to-noise ratio (the frequency of the signal transmitted is
less sensitive to noise than the amplitude).

Strain Sensors

Piezoresistive Strain Gauges The strain gauge is the fundamental
sensing element for many type of sensors (accelerometers, pressure sensors,
load cells etc.). It consists of a pattern of metallic conductor mounted on a
backing material (Figure 5). As the conductor is stretched or compressed,
the electrical resistance changes. This change of resistance can be measured
using a Wheatstone bridge. Many applications with strain gauges are at
low frequencies, but it is possible to measure vibrations, even up to several
kHz.

Piezoelectric Strain Sensors Piezoelectric materials can produce an
electric charge when deformed. In order to increase this effect, the materials
are poled in a preferential direction (the poling direction). Charge can be
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Figure 4. Working principle of a MEMS resonant cantilever beam

iy
| X |

Metallic conductor

Figure 5. Working principle of a piezoresistive strain gauge

produced for different deformation mechanisms as illustrated in Figure 6.
Because of the isotropic nature of most piezoelectric materials in the plane
perpendicular to the poling direction, it is difficult to produce a strain sensor
which reacts to only one of the strain components in the plane, so that
lateral sensitivity is a problem. Electric charges are measured using charge
amplifiers which are not suitable for static measurements, but can work
up to several MHz. In the last decade, piezocomposite strain sensors have
been developed (Deraemaeker et al. (2009)). For certain volume fractions,
they exhibit a strong orthotropy, making them potential candidates for uni-
directional piezoelectric strain sensors.

Fibre Bragg Grating Sensors As an alternative to the traditional strain
gauges, new sensors based on fibre optics have appeared on the market in
the last ten years (Glisic and Inaudi (2007)). Fibre Bragg Grating Sensors
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Figure 6. Three modes of deformation generating a charge on a piezoelec-
tric material

(FBGS) consist of a grating written on an optical fibre. When a broadband
light source is directed into the optical fibre, a specific wavelength, propor-
tional to the gratings’s size A (distance between the lines) is reflected (Fig-
ure 7). When strain is induced into the grating, the grating’s size changes,
therefore changing the frequency of the reflected wavelength and allowing
the measurement of the strain applied to the grating. The main advantages
of the technique are:

e immunity to electromagnetic interferences;

e the possibility to introduce several sensors on one long fibre optic
cable. Two techniques can be used: (i) using different wavelengths
for each sensor, and (ii) sending pulses instead of broadband light and
calculating each sensor’s response based on the time of flight.

The main disadvantage of fibre optic sensors is the brittleness of the fibres
and the rather high cost associated with the interrogation units. Typical
interrogation units scan at low rates (100 Hz) but new systems can reach
up to 20kHz.

Brillouin Scattering Sensors Brillouin scattering is a quite complex
phenomenon (Glisic and Inaudi (2007)). When light travels through a
medium, a small portion of it is back-scattered, due to inhomogeneities
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Figure 7. Working principle of a fibre Bragg Grating Sensor (FBGS)

of the refractive index. Brillouin scattering is one of the components of the
back-scattered light, the frequency of which is dependent on the strain and
temperature. The interrogation unit sends a light pulse at a given frequency
and records the back-scattered spectrum as a function of time. The opera-
tion is repeated for a wide range of frequencies. The time information is then
used to determine the position along the fibre, and a three-dimensional plot
can be drawn, giving the frequency of the back-scattered light as a function
of the distance along the fibre. In this manner, strain can be measured with
a very high spatial distribution (but not simultaneously at all the points).
Strains can be monitored over very large distances (10km or more), but the
scanning time is high so that only static measurements can be made. No
special treatment (such as writing a grating) is necessary, so the sensors are
very cheap, but the acquisition unit is rather expensive.

Vibrating Wires Vibrating wires are commonly used for quasi-static
measurements of strains in civil engineering structures. The principle is
based on the relationship between the first eigenfrequency f of a taut string
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and the applied tension T : f = 1/2L+/T/p, where L is the length and
p is the mass per unit length of the cable (Yu and Gupta (2005)). The
string in this case is ferromagnetic and both ends are fixed to the structure
(Figure 8). By sending a pulse to the electromagnet, the string is attracted
and released, resulting in a vibration of the string in its first mode. The
motion of the string is then measured with the same coil (the movement of
the string, which acts as a moving magnet, induces a voltage difference in
the wires). The post-processing consists of estimating the frequency (and
therefore the tension in the wire) by ”counting” the periods. The tension
in the wire can be directly transformed into a strain. The main advantage
of the system is the low sensitivity of the identified frequency to the noise
in the signal, so that the signal can be sent over large distances for post-
processing at a remote distance. Note that this is not truly a vibration
sensor, since the sampling rate is rather low, but it operates on a vibration
principle.

Output signal

Ny
'\

S Iy
L Input pulse

I
i

e i
Wire AL

Figure 8. Working principle of a vibrating wire

Cable Force Sensor Load cells or strain gauges can be used for the mea-
surement of forces in cables. For strain gauges, the disadvantage is that they
only give a very local value of the strain which may not be representative
of the average force in a section. The disadvantage of load cells is that they
have to be inserted in the path of the force, and modify the structure of the
cable attachment.

One nice alternative is to use electromagnetic sensors (Wang et al. (2005),
Figure 9). The underlying principle is that the magnetic permeability p of
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the cable changes with the applied stress. Two windings are installed around
the cable. A pulse input current is applied to the first coil, resulting in a
magnetic field H. The change in the magnetic field causes a difference of
potential V' in the second coil, which is proportional to B. The permeability
1 = B/H is measured and is proportional to the applied stress.

Sensor
coil

Current pulse
generator

a.aqa.aq.a II/‘IA 1A
A\VARVARVARVLVANVANV ALV ARV ARV

Figure 9. Working principle of an electromagnetic cable force sensor

Another possibility is to measure the vibrations of the cable in order to
determine the tension. The principle is similar to that of the vibrating wire.
For a string (without sag), the eigen frequencies are given by,

k |T
fk_%\/p @

where fy, is the k*" eigenfrequency of the cable, L is the length and p is mass
per unit length. By measuring the first or the lowest eigenfrequencies, it
is possible to determine the tension in the cable (Figure 10). The eigenfre-
quencies are traditionally measured with an accelerometer attached to the
cable. More advanced techniques take into account the flexural rigidity of
the cable as well as the effect of the attachments in order to obtain a more
accurate measure of cable tension (Geier et al. (2005)).

Position Sensors: GPS The GPS (Global Positioning System) allows
one to determine the position of a receiver, based on a set of satellites
deployed in space. The receivers have become cheaper and cheaper and
the possibility of measuring the vibrations of large structures with such
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Figure 10. Measuring the force in a cable via measurement of the acceler-
ation spectrum

sensors has been studied by many research groups (Meng (2002)). In order
to get a good accuracy, a typical setup is made of one or several reference
receivers positioned outside of the structure and an array of receivers on the
structure (Figure 11). The technique used is referred to as differential GPS.
The sampling frequency can reach up to 20Hz with a centimetre accuracy.
If time averaging is performed, mm accuracy can be reached, at the cost of
a much lower sampling rate.

Other Sensors Although these sensors do not measure vibrations, they
are often used as a complement to the mechanical sensors.

e Humidity sensors: highly accurate humidity sensors are available nowa-
days at very economical prices. Different types exist: resistive, ca-
pacitive and thermal conductivity. In most cases, the environmental
conditions dictate the sensor choice.

e Temperature sensors: temperature sensors can be classified into two
types: contact and non-contact. For contact sensors, it is assumed
that the temperature of the sensor is in thermal equilibrium with the
material to which it is in contact. Non-contact sensors measure the
radiant power of the infrared or optical radiation.

e Tilt meters: a tilt meter is used to measure the static angle with re-
spect to gravity. The most common type of tilt meter is the ”bubble”
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Figure 11. Principle of a differential GPS system for the measurement of
vibrations on a bridge

tilt meter. Modern types include electrodes which enable the mea-
surement of the position of the bubble in an electrolyte solution. This
measurement has a much higher precision.

e Corrosion sensors: corrosion produces areas in concrete where there
is a large concentration of negative ions, which creates a small electric
voltage potential. By mapping the electric potential along a rebar, it
is possible to detect corrosion. This is done usually using a half-cell
potential method, which measures the potential difference between
the rebar and the half-cell.

e Crack sensors: typically, these are strain sensors which measure the
relative displacement between the two sides of a crack. The simplest
crack sensor is a crack-width gauge which allows one to measure visu-
ally and by hand the size of a crack. Alternatively, the reading can be
performed with a more precise dial. More advanced types of measure-
ment techniques include inductive non-contact measurement, optical
fibres, strain gauges, etc. Another interesting idea is the CVM (crack
vacuum monitoring, http://www.smsystems.com.au/). A small vol-
ume of vacuum is kept in a series of interconnected tubes. As the crack
propagates, the tubes break causing a leak in the vacuum; The size of
the leak is proportional to the number of broken tubes, hence the prop-
agation of a crack along the sensor can be monitored. Modern crack
monitoring techniques can rely on 2D image correlation techniques,
allowing one to detect automatically the position and evolution of a
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crack in the range of vision of a camera.

1.2 Acquisition Units

Many different types of acquisition units exist on the market. The most
sophisticated type is made of an independent platform equipped with ADC
(analog to digital converters) for acquisition and DAC (digital to analog
converters) for actuation purposes (Figure 12). The platform can include
on-board storage as well as a processor and an operating system. This
platform is linked to a regular or laptop computer. The computer is used
to program the processor and send and receive information to and from the
platform. The link is a fast link such as fibre optic or ethernet. This type of
platform is usually modular, and can be configured for a given application.

Sensor Actuator

Lo

Ampl Ampl
Analog l I
ADC DAC
+ t
(Real-time)
05 Storage
Digital
H Fast Link
PC Storage

Figure 12. Block diagram of an acquisition unit with on-board storage and
computation capabilities

Cheaper alternatives exist; the first one is a simpler platform without on-
board computing and storage capabilities, which is linked to the computer
via a standard USB link (Figure 13). This type of platform can also be
modular.

For dedicated applications, it is also possible to use PCI (Peripheral
Component Interconnect) acquisition cards, directly inserted into the com-
puter chassis (Figure 14).

The important factors to take into account when choosing an acquisition
unit are:
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the signal-to-noise ratio (linked to the type of ADC/DAC),

the sampling frequency,

the time delays,

the presence and type of anti-aliasing filters,

the transfer rate to the storage (hard disk),

the number of channels (or possibility to extend it),

the possibility to use preamplified accelerometers (IEPE - Integral
Electronics Piezoelectric, or ICP - Integrated circuit piezoelectric’).

Wifi Networks With the development of wireless networks for home in-
ternet, there have been a lot of developments in this area. The main ad-
vantages of such systems are:
e low cost,
e ease of installation (this is probably the most important point),
e case of maintenance.
There are however some major drawbacks in current systems for appli-
cations to vibration measurements:
e packet loss (loss of data transmitted from the sensor to the base sta-
tion),
e high power needed for transmission (this is a problem since wireless
sensors are usually battery powered),
e problems of synchronization of the sensors,
e reliability and stability of the network.
Examples of applications of wireless sensor networks for structural health
monitoring can be found in Lynch and Loh (2006).

1.3 Examples of Instrumented Bridges

Figure 15 shows a plot of the evolution of the instrumentation put on
bridges over the years, in China and elsewhere. It is clear that China has
been the first country to put massive instrumentation on bridges, back in
1997 with the Tsing Ma and the Ting Kau bridges (more than 400 sensors
on each). The Stonecutters bridge, currently under construction, is going to
become the most instrumented bridge in the world; more than 1100 sensors
are foreseen on the bridge. The interested reader can find a description of
many case studies of instrumented bridges on the following websites,

e http://www.samco.org: website of the thematic network SAMCO (Struc-
tural Assessment, Monitoring and Control).

e http://www.ishmii.org/: website of the International Society for Struc-
tural Health Monitoring of Intelligent Infrastructure.
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Figure 15. Examples of instrumented bridges : evolution of the number of
sensors with time

e http://nomotida.net: this website developed by EMPA in Switzerland
allows one to follow in real time a wireless sensor network monitoring
the frequencies of the cables of a bridge.

Although many of the case studies are very interesting, the data col-
lected on the structures cannot always be obtained by other research teams
around the world, and is sometimes not adequate in order to test a given
SHM strategy. Small-scale laboratory experiments have advantages over
real structures: they are always available and induce much smaller operat-
ing costs; the instrumentation is less costly and testing campaigns are much
easier to organize. There are many examples of such structures in the SHM
community. Described below is the experimental setup developed at the
Université Libre de Bruxelles (ULB) in the Active Structures Laboratory
(ASL).

The test structure is a small-scale mock-up of a cable-stayed bridge in the
construction phase. The bridge is made of a central steel pillar, a deck made
of two U-shaped aluminum beams and steel rectangular stiffeners, forty
additional masses and 8 steel cables (Figure 16). The total length is 3m, the
height is 1.4 m and the width of the deck is 18cm. The central pillar is resting
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on a concrete block. Two wooden blocks are placed between the concrete
base and the floor; this introduces flexibility between the concrete and the
floor which is necessary for the seismic excitation described hereafter.

Figure 16. The bridge demonstrator : description of the main components

At the pillar side, each cable is attached to a screw which can move
relatively to the pillar, allowing the tension to be adjusted manually (Fig-
ure 17).

Each cable is equipped with a collocated actuator-sensor pair consisting
of a piezoelectric elliptic actuator (Cedrat APA 100M for the long cables
and APA 50S for the short cables), and a piezoelectric force sensor (B&K
8200) (Figure 18).

The actuators can be used to induce vibrations in the bridge as well as
for active vibration control. In addition, a shaker is attached to the concrete
base in order to induce seismic type excitation (Figure 19).

The deck and the pillar are equipped with traditional accelerometers.
The left part of a U-shaped beam has also been equipped with five dynamic
fibre optic strain sensors distributed on a single fibre (fibre Bragg grating
sensors - FBGS). Each grating is 8 mm long and measures the average
strain applied to it. The position of the five strain measurements is shown
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Figure 17. Cable tension tuning system installed at the top of the pillar

(@ (b)

Piezoelectric actuator Piezoelectric actuator

Force sensor

Force sensor

Figure 18. Cables equipped with a piezoelectric actuator and a force sensor:
(a) long cable with large piezoelectric actuator, (b) short cable with small
piezoelectric actuator
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Shaker
Figure 19. Shaker attached to the concrete base in order to induce seismic
excitation

on Figure 20. The measurements are made using the hi-speed Dynosense
300 from FOS& S which allows one to measure on all sensors simultaneously
at 4.3 kHz.

The data acquisition system consists of a DSpace DS1005 modular board
equipped with 64 ADC used for the sensors and 6 DAC used for the actu-
ators (all 16 bit converters). Control or signal processing routines can be
implemented on the DSP using the Matlab/Simulink environment. DSpace
Control Desk Software is used to interact with the DSP board in real time
to adjust settings and retrieve measurements from the sensors and actuators
(usually in the form of time domain signals).

For the FBGS sensors, the signal processing is not implemented fully in
hardware, so that a special software for data acquisition is needed.

Currently, experimental as well as numerical studies are carried out on
the small-scale bridge. The main focus is on cable vibrations. Point masses
have been added to one of the cables of the bridge in order to increase the
linear mass and introduce some sag (Figure 21).

1.4 Summary

An overview of instrumentation for vibration-based SHM has been pre-
sented, together with links to real case studies and the description of a small
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FBGS sensors

—

Figure 20. Position of the five FBGS sensors on the U-shaped beam

Figure 21. Cable with additional point masses. The additional weight is
responsible for a small sag of the cable
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scale test setup developed at ULB-ASL. For the reader interested in recent
advances in instrumentation, valuable information can be found on the web-
site http://www.sensorsportal.com/, where one can also find the open access
journal " The Sensors & Transducers Journal (S&T e-Digest)”

2 Vibration-Based SHM Using Modal Filters

2.1 Introduction

The first, and most crucial step in vibration based structural health mon-
itoring is to extract meaningful features from vibration measurements. The
most widely used features are eigenfrequencies and modeshapes (Doebling
et al. (1998)). Even in the case where only sensor outputs are known and the
excitation forces cannot be measured, adequate modal analysis techniques
can be used to extract those features from ambient vibrations (Peeters and
Roeck (1999)).

With the very recent advances in sensors and instrumentation, massive
instrumentation can be implemented on large civil engineering structures
such as bridges. As explained in Section 1.1, hundreds, even thousands
of sensors can monitor the vibration of such structures in real time. The
difficulty is that most algorithms are not suited to treat such a large amount
of data in real-time. Moreover, modal analysis techniques still rely today
on some user interactions, although some efforts have been made to make
this task as automatic as possible (Deraemaeker et al. (2008)).

The motivation for the present study is therefore to develop a very sim-
ple and robust methodology to detect changes in modeshapes of structures
under ambient vibrations without any user interaction. The idea is based
on the principle of spatial and modal filtering which is complemented with
signal processing techniques.

2.2 Data Reduction Using Spatial and Modal Filters

Consider a structure equipped with a large array of n sensors. The
array is linked to a linear combiner such that the sensor outputs y; ... yn

n
are combined to form a single output y(t) = > axyx(t).
k=1

Depending on the selection of ay, various meaningful outputs may be
constructed, for example, modal filters. The idea behind modal filtering is
to select the coefficients ay, such that they are orthogonal to all the modes
of a structure in a frequency band of interest, except mode [. The modal
filter is then tuned to mode [ and all the contributions from the other modes
are removed from the signal. Figure 23 represents the FRF of a modal filter
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Figure 22. Principle of spatial filtering based on a network of n sensors

tuned to mode I.

0dB

Wq w @b=
Figure 23. Perfect modal filter tuned to mode [ within the bandwidth
[wWa, wp)-

If one assumes that the m modeshapes, eigenfrequencies and modal
damping coefficients are known in the frequency band of interest [wq,ws];
for a given input, the modal expansion of the FRF of the sensor array reads,

- Ckz 4
= ]{: - 1... 5
=2 i) ! ®)

where b; is the modal input gain (at the actuator) and cy; is the modal
output gain of sensor k in the array. If the n sensors in the array are
connected to a linear combiner with gain ay, for sensor k, the output of the
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n
linear combiner is y(¢) = > axyk(t) and the global frequency response is,
k=1

n N { Z QkChi 1b;
Gl) = 2 lle) = 2 T T i) ©

i=1

A modal filter which isolates mode [ can be constructed by selecting the
weighing coefficients oy of the linear combiner in such a way that,

Z agcri(w) = & (7)
k=1

{a}" 0] = {er}" (8)

where {a} is the vector of the linear combiner coefficients, [C] is the matrix
of modal output gain (column i is the sensor array output when the structure
vibrates according to mode i ) and {e;}” = (00...1...0)7 is the vector with
all entries equal to 0 except entry [ which is equal to 1. Assuming that
matrix [C] is known accurately, the modal filter coefficients for mode ! can
be found by solving the rectangular system of equations,

€] {eu} = {er} (9)

The number of columns of [C’]T is equal to the number of sensors n and
the number of lines is equal to the number of modes in the frequency band
of interest m. In order to satisfy equation (9), the rank of matrix [C] must
be > m. There are two situations in which rank(C) < m : (i) the number
of sensors is smaller than the number of modes, (ii) some columns of [C] are
linearly dependent, which leads to a spatial aliasing effect. In both of these
situations, it is not possible to obtain a perfect modal filter in the frequency
band of interest.

When rank([C]) > m, some care must be taken in order to solve the
over-determined system of equations (9). The most common approach is to
use the Moore-Penrose pseudo-inverse of [C’]T defined as

~1

(eI = (leler) [ (10)

which gives the best approximation in the least-squares sense. This ap-
proach is however not well-suited when some of the singular values of the
matrix are very small. In such a case, the computation of the inverse leads
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to very irregular coefficients. This problem can be overcome using a singular
value decomposition of the matrix and a truncation,

1" = WS v (11)

where [U] and [V] are unitary matrices and [S] is a rectangular matrix of
dimension [m,n] with the singular values o; on the diagonal. If u; are the
column vectors of [U] and v; the column vectors of [V], equation (11) can

be written,
-
i=1

where 7 is the rank of the matrix [C]. The solution of equation (9) is,

fou) = (Z Lol ) @) (13

i=1

This shows that the solution is dominated by the small singular values.
The solution to this problem is to truncate the expression of the inverse,
neglecting the contribution of the small singular values. For more details on
the subject of spatial filtering, the interested reader may refer to Preumont
et al. (2003).

2.3 Effect of Damage and Environment on Modal Filters

If one now assumes that the structure is damaged, the FRF of the output
of the linear combiner is given by,

n i N { Z Chi s
w) = ZakYk = Z (14)
k=1

i—1 W2 + 2J§zwz )

where " refers to the damaged structure.

The impact of damage can be decomposed into the three effects on:

e b;: the change in the modeshapes of the structure will affect the modal
input gain which changes the amplitude of the modal filter;

° (032,52) the change in the eigenfrequencies and modal damping will
affect respectively the position and peak amplitude of the modal fil-
ters;

n
e > axck;: because of the change in the modeshapes, equation(7) may

k=1
not be satisfied. In this case, the output of the modal filter does
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not isolate mode [ perfectly and the other modes may appear in the
response.

The third effect is interesting because it is a clear indicator that the
shapes of the eigenmodes have changed. As a result, peaks will appear at
some of the resonant frequencies of the damaged system (Figure 24a). The
appearance of these peaks can be used to detect damage. When the stiffness
change is global and proportional to the stiffness matrix, the modeshapes are
not altered and equation (7) still holds. In this case, no peaks will appear,
but the existing peak will shift due to a change in the eigenfrequencies of
the system (Figure 24 b).

a) b)
Effect of a local change Effect of a global change
,instiffness ,instiffness
B | dB | -
Undamaged i Undamaged
: w : W
Wy w; > Wa w; W

Figure 24. Example of changes in a modal filter tuned to mode 1: a) Effect
of local changes (damage), b) effect of global changes (i.e. environment)

From the above, one can conclude that the appearance of new peaks in the
FRF of the modal filters can be used to detect local changes due to damage.
In addition, if the environment induces global changes to the stiffness and
mass of the structure, the modeshapes will be very slightly altered, so that
only very small peaks will appear, and the damage detection will be robust
to such environmental changes. This idea was first proposed and developed
in Deraemaeker and Preumont (2006).

One major drawback of using FRF measurements is the fact that input
forces are not always available when monitoring a structure in its envi-
ronment. For large structures such as bridges, ambient measurements are
generally used for damage detection (Wenzel and Pichler (2005)). Vibra-
tions are induced by natural excitations (wind, traffic etc.) and output-only
measurements are recorded. Since spatial filtering is applied in the time do-
main, modal filters can also be used with output-only measurements. The
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idea is to compute the power spectral density Sy,(w) of the time domain
output of the modal filter defined as,

o0

Sw@) = [ Ryy(r)eromdr (15)

— 00

where Ry, (7) is the auto-correlation of y(t) defined by,

Ryy(7) = Ey(t) y(t — 7)] (16)

E[.] is the mathematical expectation. In addition, for a linear system with
transfer function H (jw) the following relationship holds (Preumont (1994)),

in which S, (w) is the power spectral density of the input to the system. If
Sza(w) is constant, one easily sees that,

Syy(w) = C[H(jw)] (18)

where C' is a constant, so that /Sy, (w) is proportional to the amplitude
of the transfer function. If S, (w) is not constant but smooth (no sharp
peaks), the peaks in /Sy, (w) will correspond to the eigenfrequencies of the
system. Even if strong components exist at specific frequencies in the input
spectrum Sy, (w), this is not a problem as long as that frequency does not
correspond to an eigenfrequency of the system, since the peak detection will
be performed close to the known eigenfrequencies of the undamaged system.

In conclusion, in the general case for a perfect modal filter, only one
sharp peak will appear in /Sy, (w), and the same conclusions with respect
to the appearance of new peaks can be drawn. The next step for autonomous
damage detection is to define a procedure to detect the appearance of the
new peaks automatically.

2.4 Feature Extraction Based on Modal Filter Outputs

Each frequency point of /Sy, (w) of a modal filter can be used as a
feature for damage detection. This is not a very good approach, since, as
discussed before, not all the frequencies contain information about the dam-
age to be detected, and this would lead to a very large number of features.
Moreover, one is interested in detecting the appearance of peaks around the
natural frequencies of the undamaged system. The approach followed is to
define a peak indicator in each of these frequency bands (Figure 25). For ny
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modal filters, the total number of peak indicators extracted is nyf (ne — 1)
where n, is the number of eigenfrequencies in the frequency band for which
the modal filters are computed.

Main peak
4 of the modal
daB | fil‘rer‘\ 4 peak indicators
w
Wy g

Figure 25. Feature extraction from the output of the modal filter in the fre-
quency domain : computation of peak indicators in frequency bands around
the natural frequencies of the undamaged system

Let us assume that the entire frequency bandwidth is divided into fre-
quency bands [wy,ws] around each natural frequency of the structure (the
bandwidth is given in % of the natural frequency, typical values are 10% or
20 %). One notes s(w) = /Syy(w) and computes the following quantities
(Figure 26, Jarman et al. (2003)),

J ws(w)dw

e The frequency center (FC)

ufs(w)dw

w1

uf (w— FC)? s(w)dw :

w1

e The root variance frequency (RVF) =

w2

[ s(w)dw

w1
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s(w)

@, 0,
Figure 26. Restriction of s(w) = /Syy(w) to the frequency band [wy, wo]
for the computation of the peak indicator

The peak indicator is given by,
2v3(RVF)

(02 —w1) (19)

Ipeak =
It has the following properties,
e if s(w) is a Dirac function, Ipeqr = 0
o if s(w) is constant, Ipeqr = 1
e A drop of Ipeqr below 1 corresponds to the appearance of a peak.
In practice, a threshold value of 0.8 should be used for robust peak
detection

IMlustration In Figure 27, s(w) is plotted for a modal filter tuned to mode
1 of an undamaged structure (a), and of a damaged structure (b). This
example is based on the numerical model of a three span bridge developed
in Section 2.5. The frequency intervals used for the computation of the peak
indicators are shown in Figure 27b), and the values of the peak indicators
are given in Figure 28. For the undamaged structure, the peak indicators
are all close to unity, except for interval 1 which corresponds to the main
peak of the modal filter. For the damaged structure, the peak indicators
for intervals 3 and 4 decrease clearly below 1, but for intervals 6 and 7,
there is only a very small drop in the peak indicators, although the peaks
can be clearly seen on Figure 27b). As illustrated in the next section,
it is possible to improve the detection of smaller peaks using some signal
processing techniques.
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Figure 27. s(w) computed from the output of a modal filter tuned to
mode 1: a) undamaged structure; b) damaged structure and definition of
the intervals for the computation of the peak indicators
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Figure 28. Value of the peak indicator in each interval for: a) the undam-

aged structure; b) the damaged structure

Improved Peak Indicator Using Signal Processing Techniques In
order for the peak indicator to be more sensitive (increase of signal-to-noise
ratio), a technique called ”second-derivative matched filtering” (Danielsson
et al. (2002)) is proposed. Let s(w) be the signal to be filtered and f(£2) be
the filtering function. Simple filtering consists of computing the following
convolution integral,

oo

i) = [ F@)s(e+0)d (20)

In order to remove background noise, the second derivative is computed,

oo oo

sl(w) = /f(Q)s”(w+Q)dQ: /f”(wa)s(Q)dQ (21)

This expression shows that it is only necessary to differentiate the filtering
function, which is much less sensitive to the noise than differentiating the
signal itself. On the other hand, the filtering function needs to be twice-
differentiable. Although the philosophy of matched filtering is to have a
filtering function equal to the equation of the peak to be detected, this
choice is not adopted here (due to the complicated expression for the second
derivative). Instead, a simpler and more typical choice for such a function
is a Gaussian distribution. There is in fact an analogy of this method
with wavelet analysis where the so-called ” Mexican-hat” corresponds to the
second derivative of the Gaussian (Daubechies (1992)). Both the Gaussian
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distribution and its second derivative are represented in Figure 29. Their
analytical expressions are given by,

f@)=c® (22)
F(x) = 012 (1 — jj) e b (23)

where o is the standard deviation of the Gaussian distribution (the mean
is 0). It is an analog of the scaling factor in wavelet analysis. For an
optimal filtering of s(w), one needs to define a o which is not constant with
frequency, it should in fact, be a ratio of the frequency w. This is because
the width of a peak in s(w) is proportional to the central frequency of that
peak. As shown in Figure 29, the width of the filtering function is close to
20, and if one assumes that the width of a peak in s(w) is approximately
20% of the central frequency, one has,

o~0.1w (24)

) #64

05,

5 0

@

second derivative of a

Gaussian distribution S R
Gaussian distribution

Figure 29. Gaussian distribution and its second derivative

The approach adopted to filter the signal s(w) is as follows,
e compute s*(w) = log(s(w))
e Apply a second-derivative gaussian matched filter to s*(w);

SHw) = ]o {(1 - (“;729)2> e(“)} S A (25)

with 0 = 0.1w
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e recover the filtered signal;
sp=10°7 (26)
The results of the filtering for both the undamaged and the damaged
structure are shown in Figure 30. The peak indicators are computed based

on the filtered signals and shown in Figure 31. The results show that peaks
6 and 7 are now well detected.

a)
25

1
s¢(®)
0.5

-0.5

10
Frequency(Hz)

25

15

05
s¢(w) o

-0.5

-1.5

-25
10
Frequency(Hz)

Figure 30. Filtered signal s;(w) computed from s(w): a) undamaged struc-
ture; b) damaged structure
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b) (*) peaks detected
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Figure 31. Value of the peak indicator in each interval for: a) the undam-
aged structure; b) the damaged structure, computed on the filtered signal

sf(w)

2.5 Numerical Example

The structure considered is a three-span bridge similar to the one pre-
sented in Yan et al. (2005) and Deraemaeker et al. (2008) (Figure 32). The
motion is restricted to in-plane vibrations. The structure is made of two
materials: steel and concrete; it is excited by a uniform pressure acting on
the first span of the bridge. The excitation is a band-limited white noise in
the frequency band 0-100 Hz, containing the first 10 eigenfrequencies of the
structure.

Steel
Excitation \

JEEER Concrete < :Ccﬂete: N
v
Z” Damage l& k

Figure 32. Three-span bridge subject to different temperature gradients
and damage

Generation of Pseudo-measurements The bridge is discretised with
32 Euler-Bernoulli finite elements using the Structural Dynamics Toolbox
(SDTools) under Matlab. The response is computed in the time domain
using an in-house time integration scheme based on Duhamel’s formula
(Preumont (1982)). A total of 29 accelerometers are placed, one at each
node of the finite element model (except boundary conditions). The time
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domain response (200 seconds of measurement at a sampling rate of 1000
Hz) is computed for each accelerometer.

In order to study the impact of damage on the peak indicators Ipeqx
proposed as new features for damage detection, the response of the bridge
is generated for (i) the undamaged structure (ii) the damaged structure in
which the damage is gradually introduced in the central span of the bridge
(Figure 32). The damage is modelled by a stiffness reduction going from 2%
to 30%. In total, 25 sets of acceleration measurements are made, 10 on the
undamaged structure, and 15 on the gradually damaged structure (increase
of 2% at each sample).

Feature Extraction for Damage Detection The modal filter coeffi-
cients ay, (k=1..10) are computed for the 10 modeshapes in the frequency
band of interest (0-100 Hz). This example focuses on the output of the
modal filter tuned to mode 1. The following steps are applied in order to
extract features from the acceleration measurements,

e compute the time domain output of the modal filter tuned to mode 1
(linear combination of the sensor outputs),

y(t) = oy (t) (27)
e compute s(w),
s(w) =4/ Syy(w) (28)

where Sy, is the power spectral density estimated using Welch’s av-
erage periodogram method (Oppenheim and Schafer (1975)).
o filter the signal s(w) in order to get sy(w), as described in section 2.4,
e compute the peak indicators for the intervals represented in Figure 27b).

Figure 33 shows the evolution of the peak indicators for intervals 3 and
7 as a function of the sample number (samples 1-10 are undamaged, then
damage is gradually increased). The figures show that I,c.; gradually de-
creases from sample 11, following the evolution of the amplitude of damage.
The figure also shows a comparison between the peak indicator extracted
from the unfiltered signal s(w) and the filtered signal s;(w). In interval 7,
filtering helps in detecting smaller damage levels.

Summary Modal filters can be used to efficiently combine in real time
the information from very large arrays of sensors. Using the modal sensor
outputs, it is shown here that it is possible to detect changes in mode-
shapes which are indicative of damage in structures. The proposed tech-
nique relies on signal processing techniques and allows one to program a
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Figure 33. Evolution of Ip..; for intervals 3 and 7 as a function of the
sample number: samples 1-10: undamaged structure; samples 11-25: grad-
ually increasing damage. Ipeqr is extracted both from the unfiltered signal
s(w) and the filtered signal sz (w)
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fully automated procedure for feature extraction based on output-only mea-
surements on structures excited by ambient vibrations. The features ex-
tracted from modal filters using the technique described here above can then
be used for damage detection, as illustrated for example in Deraemaeker
et al. (2008), where a comparison with traditional features (modeshapes
and eigen-frequencies) is made. The main advantages of this technique are
the very low computational cost and the automation of the procedure.
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Subspace identification for operational modal
analysis

Edwin Reynders and Guido De Roeck

Katholieke Universiteit Leuven, Structural Mechanics Division
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Abstract This chapter deals with the estimation of modal param-
eters from measured vibration data using subspace techniques. An
in-depth review of subspace identification for operational modal
analysis is provided. In addition, two recent developments are em-
phasised: the estimation of the probability density function of the
modal parameters, and the use of an exogenous force in addition to
the unmeasured operational excitation.

1 Introduction

Vibration-based SHM methods very often rely on modal parameters that
are estimated from measured vibration data. Classical Ezperimental Modal
Analysis (EMA) techniques obtain the modal parameters from input-output
measurements, i.e., measured, artificial forces are applied to the structure,
and the response to these forces is recorded. The response to unmeasured,
ambient forces is considered as unwanted noise. In general, such EMA
methods are not suitable for large structures and buildings because these
structures are inherently tested in operational rather than in laboratory con-
ditions, and the contribution of the measured forces to the total structural
response is usually rather low. A bridge for instance can only be excited to
a limited vibration level by an artificial excitation source such as a shaker,
unless it has a very heavy mass. This implies that the ever-present ambi-
ent excitation, due to for example wind or traffic, can most often not be
neglected, especially at low frequencies. Output-only or Operational Modal
Analysis (OMA) techniques have therefore been developed. They extract
the modal parameters from the dynamic response to operational forces. The
unmeasured, ambient forces are usually modeled as stochastic quantities
with unknown parameters but with known behavior, for example, as white
noise time-series with zero-mean and unknown covariances. Peeters and
De Roeck (2001) provide a review of operational modal analysis techniques.
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However, the OMA approach has two disadvantages when compared to
EMA: the mode shapes can not be mass-normalised, and the frequency
content of the excitation is usually narrow-banded. For these reasons, there
has been an increasing interest in the last few years towards combined modal
testing techniques, also called hybrid vibration testing or Operational Modal
Analysis with eXogenous inputs (OMAX), where an artificial force is used
in operational conditions. The main difference between OMAX and the
traditional EMA approach is that the operational forces are included in the
identified system model: they are not considered as noise, but as useful
excitation. As a consequence, the amplitude of the artificial forces can be
equal to, or even lower than the amplitude of the operational forces. This
is of crucial importance for the modal testing of large structures. It allows
the use of excitation devices that are small and practical when compared to
the actuators that are needed for EMA testing such as electromechanical or
hydraulic shakers, which are heavy and difficult to transport.

This chapter deals with the estimation of modal parameters from mea-
sured vibration data using time-domain subspace identification methods,
both from the OMA and the OMAX perspective. These methods identify
a discrete-time state-space model. In Section 2, it is demonstrated that
this is a valid model for a vibrating structure, by deriving it from a finite
element description. The deterministic state-space model is then extended
with unobserved inputs and output disturbances, which are both modeled
as stochastic quantities. Section 3 provides insight into the basic ideas
that lie behind subspace methods; the subspace identification algorithms
themselves are presented in Section 4. Two important recent developments
are discussed in detail: the estimation of the uncertainty on the identified
system parameters, and the use of an exogenous input in addition to the
unmeasured operational excitation, for OMAX testing. In Section 5, the
derivation of the modal parameters from the identified state-space model
is treated, as well as the estimation of their probability density function.
Finally, in Section 6, two real-life applications are discussed in detail.

2 State-space models of vibrating structures

2.1 Introduction

In this section, the use of a state-space model for operational modal
analysis, with or without exogenous inputs, is discussed. Starting from a
finite element description, that is commonly used for realistic physical mod-
eling of structures in forward vibration problems, a state-space model, that
is more convenient for solving inverse problems, is derived. This determin-
istic state-space model is then extended with unobserved inputs and output
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disturbances, which are both modeled as stochastic quantities.

2.2 Linear dynamic finite element model

The finite element method is the most common tool for forward mod-
eling of vibrating structures. In the case of a linear dynamic model with
general viscous damping, one has the following system of ordinary differen-
tial equations:

d*v(t) »dv(t)
a T

where v(t) € R™/¢ is the vector with nodal displacements, M € R"™fe*"fe,
Cv? € R"ex"fe and K € R"<*"fe are the mass, viscous damping, and
stiffness matrices, respectively, and Bge; € R™fe*™u ig a selection matrix
such that the vector with externally applied forces, u(t) € R™, has only
elements that are not identically zero.

M + Kv(t) = Boaqul(t) (1)

2.3 Continuous-time state-space model

State-space equation. By rearranging (1) and assuming that M has
full rank!, a continuous-time state space model

dx(t)
e Aczx(t) + Beu(t), (2)

where

2(t) = '2’58]
- dt

0 I

-M~'K -M-'C®
[0

Be= MlBseJ’

is obtained. The vector x(t) € R™ is called the state of the structure.
The number of elements of x(t), n, is called the model order. If the state-
space model is derived from a finite element model, as in this case, one
has n = 2ny.. When the state at ¢ = 0 is known, the system of ordinary
differential equations (2) can be solved for x(t):

x(t) = e'z(0) + / eA<(=7) Bou(r)dr. (3)
[0,¢]

'In a beam model, for example, this implies that rotational inertia is included.
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Input-output equation. If the output quantities of interest are linear
combinations of nodal displacements, velocities or accelerations, one has

) d*v(t) Lc, dvo(t)

y(t) = Cy oTE 7 + Cyu(t)
= [ C, — Ci;M_lK | Cy — Ci;M‘lc’” ] :E(t) + CﬁMﬁlBselu(t)
_ C.a(t) + Doult) (4)

where Cy € R™*", Cy € R™*™ and C, € R™*" are selection matrices.
Finite strains can be included in y(t), since they can be obtained by divid-
ing the difference between two displacement DOFs by the initial distance
between their nodes.

Transfer function - poles. A Laplace transform of both sides of (2) and
(4) leads to a parametrisation of the transfer function:

Y(s) = (Ce(sI — Ae)™' Be + De)u(s) = H(s)ul(s). (5)
Following Cramer’s rule, one has

adj(sI — A¢)

T— A, =274
(s ) det (sI — A.)’

where det (0) denotes the determinant and adj (0) the adjoint matrix of a
square matrix 0. Since det (sI — A.) is the characteristic polynomial of A,
the poles of the transfer function are the eigenvalues of A..

Change of basis - decoupling. When the state is transformed to a new
basis,  — T 'z with T € C™*" nonsingular, the input-output map pro-
vided by the state-space description is preserved when (Ac, Be, Ce, D) —
(T7'A.T, T 'B.,C.T,D,), as follows from (2) and (4). In particular,
when A, has a similarity transform,

Ae =W AT (6)

with A, a diagonal matrix, (2) and (4) are decoupled by putting T = ¥:

dwc’;(t) Ao () + L u(t) (7)
Y(t) = Bomm(t) + Doult). (8)

The subscript m denotes modal, as will be explained shortly.
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2.4 Discrete-time state-space model

Definition - ZOH assumption. Since for a given input w(t), solving the
continuous-time state-space description analytically is usually impossible in
the time domain, it seems natural to convert this model to discrete time:

T+l = Az + Buy, (9)
Yy = Czp+ Dug. (10)

For free vibration problems, where the inputs are identically zero, an exact
discretisation is possible by solving the system of equations (2,4) using (3):

a((k + 1)T) = eATa(kT)
y(kT) = Cex(KT),

where T denotes the sampling period. This leads to an exact map with
(A, C) = (e4T C,). The map is very important when solving the inverse
modal analysis problem by fitting (9-10) to measured sampled data. When
converting the fitted discrete-time state-space model to a continuous-time
equivalent, the inverse map leads to the exact continuous-time equivalents
of the discrete poles and mode shapes.

For forced vibration problems, a Zero-Order-Hold (ZOH) assumption
is often made, which means that the force is assumed constant (equal to
w(kT)) in [kT, (k 4+ 1)T). With this assumption, the following map is ob-
tained from (3):

(k+1)T

A=eAT  B= eAHDT=7) 1B, = (A—T1)A;'B, (11)

kT

Cc=C., D=D..

A proof for the second equality in the expression for B can be found in
(Juang, 1994, p. 20). Although alternative discretisation strategies are pos-
sible (Franklin et al., 1998, ch. 6), the ZOH discretisation has the advantage
that it is exact when w(t) = 0, as discussed above. However, the input
matrix B,, that is calculated through the inverse map, is not a good ap-
proximation of the true B, when the sampling frequency is not much larger
than twice the largest important frequency that is present in the spectra of
the input and output signals.

Solution of the state equations - impulse response. The state equa-
tions (9-10) can be solved by simple forward calculation:

k
Yo = CA*zg +> CA"'Bfi_; + Dfe.
=1
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From this result, the impulse response is readily obtained as

Hy=D, H,=CA"'B, k>1. (12)

Transfer function - poles. By taking the z-transform of both sides of
(9-10), a parametrisation of the transfer function is obtained:

y(z) = (C(z1 — A)"'B + D)u(z) = H(2)u(z) (13)

Just as for the continuous-time state-space model (see Section 2.3), it follows
from Cramer’s rule that the poles of the transfer function are the eigenvalues
of A.

Change of basis - decoupling. Following the same lines as for the
continuous-time case, one has that the input-output map provided by the
discrete-time state-space description is preserved when (A, B,C,D) +—
(T~'AT, T~ 'B,CT, D), and that, when A has a similarity transform,

A=TuA,0,", (14)
where A4 is a diagonal matrix, (9-10) is decoupled by putting T' = ¥ q4:

Tm,k+1 = Ada}m,k + Lguk (15)
Y = Patmk+ Dug. (16)

2.5 Modeling loads and sensor noise

In this section, a step closer to the experimental world is made. The
goal is to obtain a more realistic description for the measured input-output
behavior of real structures. Therefore, measurement noise is taken into
account, and the inputs u(t) that were considered in the previous section,
are split into two parts: a part that can be measured in an operational
vibration test, and a part that can not be measured.

Unobserved loads. When the loads can not be measured, they have to
be identified together with the system, from the measured response. The
concerned discipline is called output-only or blind system identification.
When identifying the input and the system at the same time, a problem
of identifiability occurs: the system can not be determined unless extra
assumptions are made concerning the unknown inputs.

Most ambient excitation sources, such as seismic waves (Clough and Pen-
zien, 1995), turbulent wind or water pressure (Durbin and Petterson Reif,
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2001; Durbin and Medic, 2007), or road or railway traffic (Braun and Hellen-
broich, 1991; ORE, 1971), are often modeled as stochastic loads in forward
calculations. An exception is excitation due to rotating machinery, such as
wind turbines, which usually has a harmonic nature, i.e., its frequency con-
tent consists approximately of discrete peaks that occur at integer multiples
of a fundamental frequency.

When unobserved ambient or harmonic loads are taken into account
during system identification, the presented model structures need to be
extended. Pintelon et al. (2008) present a model for a structure’s response
to non-stationary harmonic excitation, and use it for operational modal
analysis. This model is generally applicable and could be combined with
the presented discrete-time state-space model. Stochastic load modeling is
discussed in detail in the next paragraph.

Stationarity, ergodicity, and zero mean. When a system that is
driven by an unmeasured, stochastic input, needs to be identified, extra
assumptions on the input, that is, other that stochasticity, are needed.
Wide-sense stationarity, which means that the covariance between two time
samples depends only on the time difference, not on the time instances at
which the samples were taken, and quadratic mean ergodicity, i.e., ensem-
ble averaging can be replaced by time averaging, are classical assumptions
(Dougherty, 1999). They are mild in the sense that if they are not valid,
they only increase the variance errors of the identified system description.
The zero mean assumption holds exactly when the constant trend is re-
moved from the outputs (hence also from the unmeasured inputs) and from
the measured inputs. In this case, the covariance functions of the inputs
and outputs equal their correlation functions.

Discrete-time white noise. Another classical, but more restrictive as-
sumption, is that the stochastic unobserved input is a white noise vector.
The sampled, stationary stochastic input sequence (u3,) is said to be a zero-
mean discrete-time white noise sequence when its correlation function obeys
(Dougherty, 1999, p. 154)

Cov(uz), j=0
Rusus,j = 5 (’U,Z_I_JUZT) = { 0, ( k) i;& 0 R

where £ denotes the expectation operator and Cov the covariance operator.
The discrete Power Spectral Density (PSD) of (uf), which is defined as the
Discrete Fourier Transform (DFT) of Ry,z,= j, obeys

Susus,j = Rusus,O‘
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This means that the discrete PSD of a discrete-time white noise sequence
is real and constant.

Colored noise. Whether the white noise assumption is approximately
true for the unobserved stochastic inputs entirely depends on the PSD of
the inputs in the considered frequency band. Often coloured noise is a more
realistic assumption: the unobserved inputs are assumed to be white noise
that has passed through a linear time-invariant system, called the noise
colour. If in that case, white noise inputs are assumed, the noise colour
of the unmeasured excitation is part of the identified system model (see
Figure 1). It can only be separated from the true system model if some
prior knowledge is available. For instance, if it can be assumed that the
modes of the vibrating structure are lowly damped real normal modes, then
highly damped and complex modes can be assumed to represent the input
noise colour.

Sensor noise. Even if all inputs could be measured and the vibrating
structure would obey all assumptions, that is, no model errors are made,
there would still be a discrepancy between the measured inputs and outputs
and their true values. This is due to electric disturbances in the measure-
ment equipment. These disturbances can be important when the amplitudes
of the measured signals are low compared to the noise floor of the equipment.

Based on physical principles, it can be shown that many important
electr(on)ic disturbances have a white noise nature. Nyquist (1928) de-
rived that at room temperature, the thermal noise voltage at both ends of
a resistor is approximately white below 1000GHz. However, the measure-
ment equipment makes up a dynamical system of its own, and the distur-
bances that it generates are not perfectly white. When nonwhite output
measurement noise is modeled as white, the noise colour becomes part of
the identified system, just as with nonwhite unmeasured inputs (see Figure
1). Harmonic measurement noise is often due to harmonic AC components
in the electricity grid, and could be modeled just as harmonic unobserved
loads.

2.6 A combined deterministic-stochastic state-space model

Continuous combined state-space model. When the observed (de-
terministic) inputs wu(¢) and outputs y(t) are corrupted by additive sensor
noise, denoted as u™(t) € R™ and y™(t) € R™v, respectively, and when un-
observed stochastic inputs u®(t) € R™: are present, the state-space model
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Identified System

White
Noise | Noise
g Color |
White
Noise | .|  Noise R True Outputs
v Color ”] System >
A

Measured Inputs

Figure 1. Block diagram of the identified system description when the
unmeasured excitation is coloured noise.

(2, 4) can be extended to

d"';—f) — Aua(t) + Bou(t) + wl(t) (17)
y(t) = Cex(t) + Deu(t) + v(t), (18)
where
w(t) £ Biu®(t) — B.u™(t), v(t) £ Dius(t) — Deu™(t) + y™ (),
(19)
B - [ A lz} . and  D:=CsM B,

with Bgejz € R <X g gelection matrix.

Discrete combined state-space model - decomposition. With a dis-
cretisation scheme such as ZOH, (17-18) can be converted to

Tr+1 = Axp + Bug, + wy (20)
Yy = Cxi+ Dug + vg. (21)

When it is assumed that the samples of u™(t), y™(t), and u*(¢t) make up
discrete-time white noise sequences, wy and vy, are discrete-time white noise

sequences as well:
w wy]” Q S
k+l K _
5( 'Uk:| > - |:ST R:| 51(l)7 (22)

V41
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where §; (0) is the unit impulse function, i.e., §1(0) = 1 and é; (o) = 0 if
O #£ 0. With the decomposition of the states and outputs in a deterministic
and a stochastic part,

e =xp+x; and Y =yp+ Y5,
(20-20) is decomposed into a deterministic subsystem
a:‘,:_H = Azl + Buy (23)
vk = Cuzi+ Duy, (24)
and a stochastic subsystem
Thi1 = Az + wg (25)
yp = Cuxj, +vg. (26)

Just as for the deterministic subsystem, the eigenvalue decomposition of A,
(14), decouples the stochastic subsystem:

T kt1 = NdTh, g+ Wmk (27)
Yr = Pazy, )+ Vm,k, (28)

where W,k = \Ilglwk.
Correlation matrices. The following definitions of correlation matrices

of the stochastic subsystem (25-26) and the relationships between them are
very frequently used, both in solving forward and inverse problems:

w0 2 ¢ (appein”) = € ((Azg +wi) (Azg + o))
= AX*AT +Q (29)
G 2 &(2iaui”) =€ ((Axf +wi) (Cap + )"
= AxCT +S (30)
A2 € (’!/ZH?JET)

£ ((Cm; + ) (C + vk)T> —C3*CT+R, 1=0
E((Cxfp +vip)yy") = CAT'G, 1>0(31)
£ (yiwiyn") =GT (a7 cT, 1<0

where, as before, stationarity and ergodicity of all stochastic sequences was
assumed, as well as the fact that xy is independent of wg and wvg, which
follows immediately from equations (20-21).
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Positive output correlation function and positive output power
spectral density. When comparing (12) and (31), it follows that the
impulse response function of the deterministic subsystem (23-24) and the
positive output correlation function of the stochastic subsystem (25-26) have
the same structure: the quadruplet (A, G, C, Ag/2) of the stochastic pos-
itive correlation function plays the role of the quadruplet (A, B,C, D) of
the deterministic impulse response function. Since the transfer function of
the deterministic subsystem is the z-transform of its impulse response func-
tion and the positive power spectral density of the stochastic subsystem is
the z-transform of its positive correlation function, it follows from (13) that

_ 1
St () =C(zI - A)'G+ o Ao. (32)

State estimation - the reference-based Kalman filter. Because the
stochastic terms wy, and v, are unknown, the state xx cannot be calculated
exactly from (20-21). Nevertheless, a one-step ahead estimate of xf ; can
be calculated if the current output vector yg is known. From yg, yg is
obtained after subtracting the deterministic part y,‘j. The Kalman filter
offers a technique for determining the optimal linear estimate because the
estimator is unbiased and has minimum variance (Kalman, 1960).

Reynders and De Roeck (2008) worked out a reference-based Kalman
filter. Reference outputs form a subset (containing n, elements) of the
complete set of n, outputs:

Yt 2 STy,

where S™ € N %™ ig a selection matrix. In order not to lose information,
it is important that any mode of interest is clearly present in at least one
reference output. Good reference output candidates are usually driving
point outputs, or, in case of measurements performed in different setups,
the output channels common to each setup. The reference outputs can be
written as

yzef =8"Czp + S"Dug + S"vi, 2 C™F xp, + D" Fuy, + vzef.

Reynders and De Roeck (2008) showed that the optimal linear one-step-
ahead state estimate &, and the reference-based non-stationary Kalman
filter K} can be calculated from the following set of equations, using the
current state estimate &7, and the measured current reference output vector
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y;’ref and assuming &3 = & (§):
1 = (A- Koz + Kyy™e! (33)
Kk: — (APkCrefT + Sref)(Rref + CrekaCrefT)—l (34)
T
Poy1 = APLAT +Q — (AP,CTeF 4 Sef)

_(Rref +CrekaCrefT)—l(APkCrefT _|_Sref)T (35)

where R™ef = §"RS™T §ref — §8™T and Py is correlation of the state
estimation error:

€L £ L — :i?k = :l:z - iﬁz, Pk e & (ekeg) . (36)

After solving (35) for Py, K} can be calculated with (34), and the optimal
estimate of &1 is then obtained using (33). It is usually assumed that
Z§ = 0 and Py = 0, see Van Overschee and De Moor (1996), but other
choices can be made.

Since the stochastic part of the model (20-21) is driven by stationary
random processes, the Kalman filter K, is equal to the time-invariant ma-
trix K when no initial conditions are taken into account (as is the case when
taking a double-sided z transform), which is formally shown in (Anderson
and Moore, 1979, ch. 4). In this case, Py equals the time-invariant matrix
P, and the subscript & in (34) and (35) disappears. Since the effect of initial
conditions dies out for a stable system when k — oo, it also follows that
K, — K, k— oo.

Reference-based forward innovation model. The (reference-based)

forward innovation e,(:ef ) is defined as

eref &y reh) _ c(reg,  predy,

By decomposing the Kalman filter state ®xyq into its deterministic and
stochastic components, one has

Trt1 = Thiq+ 251 = Azl + Bug + (A — KpC™) @5 + Ky o
= Ady + Bug + Ki(yp® — C™ i@y, — D™ uy,)
= A#j + Buy + Ki,S"e], (37)

where the second equality follows from (33). Obviously, one has

Y — Cz + Duy + (yk —Czp, — Duk)
= CZp+ Duy + €. (38)
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Equations (37-38) represent the reference-based forward innovation model of
the structure. It follows that for large k, the Kalman filter states constitute
a particular state-space basis, since when k — oo, K — K as explained
above, and (K S”ei ) and (e,{) are system and measurement noise sequences,
respectively, that obey the discrete-time white noise assumption.

3 Subspace identification: principles and strategies

3.1 Introduction

System Identification can be defined as the field of study where models
are fitted to measured data. It involves three basic entities (Ljung, 1999,
p. 13):

e designing an experiment that is as informative as possible and obtain-

ing the data;

e choosing a set of candidate models, like for instance a stochastic state
space model structure;

e choosing an identification method, i.e., a strategy for determining the
model in the set that explains the data ‘best’, and an identification
algorithm, i.e., a numerical algorithm that calculates the actual esti-
mate.

A myriad of system identification algorithms is available from the liter-
ature, but, as shown by Ljung (1999), they can be considered as particular
implementations of just a few general ideas. This section introduces the
main ideas that lie behind the class of subspace identification algorithms
for fitting the discrete-time state-space model of a vibrating structure, pre-
sented in the previous section, to measured data.

In the remainder of this chapter, the following assumptions are made.

Assumption 3.1. The stochastic output sequence y3 is generated by (25-
26). The white process and measurement noise sequences are not identically
Zero.

Assumption 3.2. When exogenous forces are measured, the force sequence
(ug),k=0,...,N—1, is observed free of noise and it is persistently exciting
of order > 21+ n. The latter is a technical assumption which ensures that
a block Hankel input matrix with 22 + n block rows has full row rank. The
response sequence (yg) due to the input sequence (uy) is generated by the
deterministic subsystem (23-24), which is controllable.

Assumption 3.3. When exogenous forces are measured, they are uncor-
related with the stochastic outputs, i.e.,

Vk,1: € (ygul ) = 0.
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3.2 System realisation

Introduction. The realisation problem was originally defined by Kalman
(1963) as the problem of identifying a linear dynamic system from a non-
parametric impulse response sequence that was generated by this system.
Ho and Kalman (1966) found an efficient way to solve this problem, begin-
ning with a finite-dimensional block Hankel matrix composed of noise-free
impulse responses and ending with the system matrices of a determinis-
tic state-space model. Later, Zeiger and McEwen (1974) and Kung (1978)
proposed to perform the factorisation step of the Ho-Kalman procedure by
singular value decomposition, where only the significant singular values and
the corresponding singular vectors are retained. This truncation enabled
one to deal with noise on the impulse responses, which is always present
in experimental data. Another variant called the Eigensystem Realisation
Algorithm (ERA), developed by Juang and Pappa (1985), introduced the
idea of reference outputs into the realisation procedure. Later, Juang et al.
(1988) proposed a variant of ERA that starts from correlations of impulse re-
sponses instead of the impulse response matrices themselves. This version is
called the ERA with data correlations (ERA/DC). Akaike (1974) extended
the realisation theory to stochastic systems and also gave a stochastic in-
terpretation of the Ho-Kalman algorithm.

Stochastic system realisation. Suppose a nonparametric estimate of
the stochastic output correlation sequence (Azef ) is available. From (31),
it follows that these correlation matrices can be parametrised as follows:

AT =cAFlgres k>

Stochastic realisation starts with gathering the correlation matrices in a
block Hankel matrix:

ATeF Azef o ATeS

ARef ATer AT

fa 2 3 141
Ly =1 : A (39)

Arer AT AT

where 2 is chosen in such a way that, if n is the expected system order,
Nyt > n, Nyt > n and 2 > 2. The block Hankel matrix decomposes into the
extended observability matrix O, and the reference-based extended stochas-
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tic controllability matrix C2 € R >

c
Lpf— | A | grer agrer . amigrer] ()
CA! £cs
(@

The matrices O, and CZS can be obtained from L'lT’Zf , up to a similarity

transformation of the A matrix, using reduced singular value decomposition:

el = usv?,  o,=Uus"?, cS=8VVT, (4

1|2

where S € R™*" contains only the nonzero singular values and U € R*v*"

and V' € R %" contain the corresponding singular vectors. If the stochas-
tic output correlation matrices Azef are exact, the number of nonzero sin-
gular values equals the system order n. If not, the system order is lower
than the number of nonzero singular values. It then needs to be estimated
as the number of significant singular values. In this case S contains only the
significant singular values and U and V contain the corresponding singular
vectors.

The C matrix can be determined as the first n, rows of O, and the
G7"ef matrix can be determined as the first n, columns of C,. Different
algorithms have been proposed for the determination of A. The algorithm
of Kung (1978) is computationally the most efficient one. It makes use of
the shift structure of the matrix O, :

A=0;10;. (42)

where O, is equal to O, without the last n, rows and O, is equal to O,
without the first n, rows. 0f denotes the Moore-Penrose pseudo-inverse of
the matrix O, see Ben-Israel and Greville (1974).

3.3 Subspace identification

Introduction. As shown in this section, subspace identification can be
considered as an extension of system realisation. Instead of starting from a
nonparametric impulse response or stochastic correlation function, subspace
methods start directly from the measured data samples, which are put in
different Hankel matrices. Projections between the data Hankel matrices
then lead to a matrix from which the extended observability matrix O, is
derived by performing a singular value decomposition, just as in the system
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realisation technique discussed above. In a second step, the state-space
matrices are identified using O,. Several algorithms exist for this, and
some of them are discussed in the next section. The discussion hereunder
is restricted to the time domain, but as shown by Cauberghe (2004), the
same techniques can be employed starting from frequency-domain data.

Orthogonal and oblique projections. Subspace identification methods
make extensive use of geometric projections. This paragraph provides a
concise review on the topic. Consider the matrices My € R™>J M, €
R™2*7 and Mg € R™3*J. The row space spanned by the rows of My,
denoted as Ms, is defined as the set of all possible linear combinations of
the rows of Mo:

My 2 {yeR|y=Mjz, Vo € R™}.
The orthogonal projection of My onto Mo is defined as
My /My 2 My MY (MyME)' M.

When M, /Ms = 0, the rows of My and M2 are said to be orthogonal to
each other. The orthogonal projection M; /M is graphically depicted in
Figure 2 for m; = mo =1 and j = 2.

M,

|

|

|

1

|

|
»l 3> M2
> >

My /M

Figure 2. The orthogonal projection of M3 on the row space of My, for
the case m; = mo =1 and 3 = 2.

The oblique projection of M7 onto M along the row space of Ms,
denoted as Mg, is defined as

s 3] (o] ) ]

From the definition, it follows immediately that Mg/, M2 = 0. The
oblique projection M4/, Mo is graphically depicted in Figure 3 for m; =
mg =msg =1and 3= 2.
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> M,

M [ ps Mo

Figure 3. The oblique projection of M3 on the row space of My along
M3, for the case my = mgy=m3=1and y=2.

Matrix input-output equations. From (23-24), one has the following
relationship for the deterministic subsystem of a combined deterministic-
stochastic state-space model:

yd C D 0 07 [uo
y$ CA CB D 0| |uy
: : : : 0
y | CA! CA 2B CA B D| |u,
=0, éy:g
Define a block Hankel matrix of outputs as
[ Yi, Yei+1 -+ Yki+3—1
a |YRr+1l Yrit2 - Ykidy
Yei ik, = ) . . ;
L Yk Yrot+1 -+ Ykaoty—1
a block Hankel matrix of inputs as
[k, U1 Uk g1
A | YR+l Uki42 - Uky+;
Uk, |ko = ) . . )
L Uks Ukz+1 - Uky43—1

and a block row vector of states as

A
Xk1|k1 = [(Bkl (Bk1+1 :Bk1+3_1] .



72 E. Reynders and G. De Roeck

With these definitions, (43) generalises to
Yk1|k2 = Ok2_k1+1X;€11|k1 + "F'ItjUk1|k2 + Yk:31|k:27 (44)

where Y,? denotes the stochastic part of Y, |k, and X the deter-
k1i|k2 1|k2 ki|k1
ministic part of Xy, |x,. As a special case, one has

Y, 201 = O, X3, + FlU, 9,1 + Y, j2—1- (45)

12

As noted by Goethals (2005), the primary objective of subspace identifica-
tion is to extract the extended observability matrix O, from this equation.
The system matrices are obtained in a second step.

Obtaining the observability matrix Starting from the forward inno-
vation description (37-38), one has

o d
Y21 = O Xy + FiUpze1 + Y, (46)
where Yz|f21—1 contains the contributions of the forward innovations:
In, 0 .. 0
CsKj ST I .. 0
f A f
Yk1|k2 - : : : Ek1|k2
CoAPMTIKE 8" CsAPTMTEKE ST L I,
S F k141
(47)
and a block Hankel matrix of forward innovations is defined as
f f f
€k Ckit1 - Ckitg—1
g s |fatl Gtz o Gy
kalkz : : :
f f f
€2 Chot1 0 Chaty—1

X 2|« contains in each column a non-stationary reference-based Kalman filter
state, see Section 2.6, that is estimated from the corresponding columns of
Up|,—1 and Yoqffl. Since the Kalman filter is linear, it follows that X,,
lies in the row space of Up|,—1, denoted as %|,—1, and the row space of
Yoﬁff 1> denoted as ?!/()Tff 1~ As the row space of Ug|,—1 is a subset of the

row space of Up|z,—1, which is denoted as %)2,—1, one has

row space (Xm) - (@/0\1—1 4 %T‘ffl) - (%0|21—1 \ %TffJ )
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where V denotes joint row space. Given that the forward innovations are
uncorrelated with the measured inputs and the outputs that were used for
the estimation of the Kalman filter states, projection of both sides of (46)
onto the row space spanned by the inputs and the ‘past’ outputs yields

a.slimY, g, 1/ <%0|21—1 \ %TfL) = lim O, X, + FUpyze—1.  (48)
j‘)OO ‘]*)OO

The almost-sure limit, denoted as a.s.lim, is a stochastic limit. A stochastic
variable is said to converge almost surely to a certain value, when this con-
vergence holds for almost all realisations of the stochastic variable, except
for those with probability zero (Dougherty, 1999). When the orthogonal
projection is replaced by an oblique projection along %,2,—1, the second
term of the right hand side drops:

as imYy 2,1 /2., (%21_1 v %ijl) = lim 0,%,),.
‘]*}CXD ‘]‘)OO

This is the rationale behind the so-called N4SID (Numerical algorithms for

Subspace State Space System IDentification) approach of Van Overschee and

De Moor (1994a). The oblique projection is depicted in Figure 4.

Uoj2.—1

Figure 4. Subspace identification, N4SID approach: graphical representa-
tion of the estimation of O, X,|, from Y, 2,1 by oblique projection.

By introducing left and right weighting matrices Wy and W,

a.slimW1Y, 2.1/ %, (@/0|21_1 v ayres ) Wy = Wy lim (’),X,hWZ,
7—00 7—00

0fe—1
(19)
it was shown by Van Overschee and De Moor (1994b) that other sub-
space methods, such as the Past-Outputs Multi-variable Output-Error State
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sPace (PO-MOESP) method of Verhaegen (1994), and the Canonical Vari-
ate Analysis (CVA) approach of Larimore (1990), fall into this framework.
From a singular value decomposition of the left hand side of this equation,
which can be calculated from measured data only, O, can be determined
up to a nonsingular right factor, after left multiplication with Wy~ 1

Output-only case. When no inputs are measured, (49) simplifies to the
following orthogonal projection:

a.simW1 Y, 2,1 /@Jljf \Wa =W lim 0, X,,,Wa. (50)

The projection is graphically depicted in Figure 5. The choice of the weight-
ing matrices is further discussed in Section 4.3.

A

Ozth E Yref

Olz—1
Ll

Figure 5. Output-only subspace identification: graphical representation of
the estimation of O, X,|, from Y, 2,1 by orthogonal projection.

4 Subspace identification: algorithms

4.1 Introduction

Three powerful subspace algorithms for the identification of a state-
space description from measured data are discussed. In Section 4.2, the
REFerence-based COVariance-driven Stochastic Subspace Identification (SSI-
cov/ref) algorithm is treated. It combines the nonparametric estimation
of output correlations with the stochastic realisation algorithm presented
in Section 3.2. Advantages of this output-only algorithm are its concep-
tual simplicity, and the ability to compute the Probability Density Function
(PDF) of the identified system parameters.

The REFerence-based DATA-driven Stochastic Subspace Identification
(SSI-data/ref) algorithm is presented in Section 4.3. It is also an output-
only system identification algorithm, whose main advantage is an optimal
statistical performance when the weighting matrices are properly chosen.
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The REFerence-based DATA-driven Combined deterministic-stochastic
Subspace Identification (CSI-data/ref) algorithm is discussed in Section 4.4.
It allows to use exogenous forces in addition to the unmeasured operational
excitation. Since these measured forces are exactly known, they reduce the
uncertainty of the identified system description compared to the output-only
case.

4.2 Covariance-driven stochastic subspace identification

Nonparametric estimation of output correlations. Denote E’lnlezfl 1

as the matrix containing stacked stochastic output correlation matrices, i.e.,

T
ref A T T
L ey [!rlef !rzef ,!'r-ef

T
1|2:—1 22—1

It can be easily estimated from the measured data:

~ref 1. A T
AN SN i

In order to derive the distribution of the correlation estimates, ?1|27,—1
and Yoﬁgf are divided into np blocks that contain each jp = floor(y/np)
columns, where floor(0) takes the nearest lower integer of the real number 0.

The blocks are indicated as f’1|21_1,k and Yorlgfck, respectively. If ) = jpnp,

one has?
np
~ref 1"3 "srefT 1 1 - ~ ref T
£1|2z—1 = 1|2z—1Y0|b = E : Y1|21—1,kY0|0,k : (51)
J np;,—JB
~ref
é£1|2z—1,k

When jp is large enough in order for the i:;rzfz_l’k to be considered as

independent samples, the central limit theorem ensures that 2:T2fz—1 con-
verges in law to a normal distribution when ng — oco. The covariance of

vec (ﬁ:rzfl_1> can be calculated as the covariance of the sample mean:

1 <Z ~ref ~ref T
Y ire =———— ) vec (AL', o ) vec (AE o ) . (52
fret np(np —1) 1; 1|2:—1,k 1|2:—1,k (52)

1]22—1

The operator vec(DO) stacks the columns of the matrix O on top of each other.

21f 7 # jBnB, the last block can contain the additional j—7pn g columns. The derivation
still holds when this block is scaled with 35 + () — 7gnp) instead of jp.
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The SSI-cov/ref algorithm. When the estimate Z::rzfz_p is used to

build the block Hankel matrix Lief of the stochastic realisation algorithm
presented in Section 3.2, the result makes up an output-only system identifi-
cation algorithm, called the (REFerence-based) COVariance-driven Stochas-
tic Subspace Identification (SSI-cov(/ref)) algorithm?.

Asymptotic distribution of the estimates. Due to the noise on the
measurement data and the fact that only a finite number of samples are
available, only approximative estimates A% and L;‘lif for the matrices

AGE and L;lelf are available. In addition, the number of nonzero singular

values of f/;elf is larger than the system order n, as explained in Section
3.2. Therefore, the realisation algorithm does not yield the exact system
matrices (A, GTeF, C, AL /2), but only estimates (A, Gef, C, ALT /2).
If I:Iﬁf is accurate, its estimation error, defined as

ref Ao yref ref
ALl|'1, _L1|z 7L1|z’

Lyf) and LT7Y
system realisation (A, G"¢f, C, Ay /2) can be investigated using a first-order
sensitivity analysis, as shown below.

From (39), one has

is small compared to and , and the influence of this error on the

vec(Lq),) = Syvee(Lrer ), vec(Ag) = Savec(LTE ), (53)

0|2:—1 0[22—1

where S7 and S5 are selection matrices,
s, & [sF, ST, .. ST,
S2 Inu (29 [Iny Onyx(2z—1)ny]

Sl,k £ Inu®[01ny>(nyk: Izny Oznyx(z—k)ny]a

]T

(1>

and ® denotes the Kronecker product.
From (41), a first-order perturbation of @, and C2 can be written as

AQO,

Q

1
U 25*1/%5 + AUSY? (54)
1
ACP =~ 25*1/2ASVT + SY2AVT, (55)

3Since the stochastic outputs are assumed to have a zero mean value, their correlation
matrices equal their covariance matrices, hence the name SSI-cow.
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The first-order perturbation of S equals (Pintelon et al., 2006):

(1 ® ul)T
diag(AS) ~ : vec(ALy,), (56)
(v, ® un)T
where diag(nD) takes the diagonal of a square matrix 0, u; is the j* column
of U, and vj is the j** column of V. Pintelon et al. (2006) derived a
formula for the first-order sensitivity of the singular vectors of a matrix,
which enables one to link AU and AV to ALy ,:

Bic, ]
AZ =~ vec(ALyy,), (57)
B},Cn]
where
z o w(f]) ol [ ]
V9’ T o (u?@([mu—vjvJTUPl’
L, - rw my .
moe |t me Y S E e mm
o) ., k=1 ka=1

Using Kronecker algebra (Brewer, 1978) and substituting equations (56-57),
(54) yields

vee(AO,) =~ (In ® U;S‘1/2> vec(AS) + (sWT ® Imy) vec(AU)
~ (A1 + Az)vec(ALyy,), (58)
where
(v1 ® U1)T
A £ (In ® (;US‘VQ)) Ss : :
(vn ® Un)T
Bic,
Az 2 (82" @ L, ) (In @ [Tiny Oumyxena]) | 1 |

BlChn
:(51/2T®[Izny Oznyxznu])
Ss £ Z E&nxf)lmrk k
k=1
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With Kronecker algebra and (56-57), (55) can be converted to

1
vec(ACS) =~ (V ® 251/2) AS + (Imu ® 51/2) PyvecAV
~ Agvec(ALy,) + Agvec(ALyy,), (59)
where
P, = Z Z Ei?:—?’ilff)z,(kl—l)znu—i—kz
k1=1ko=1
) (v1 @ u1)"
Az = (V@ 255> Ss3
(vn ® un)T
Bic,
A4 = (I'L""'u ® 51/2) P2 (I’I‘L ® [Oznquny Il’ﬂu})
Bi.Ch,

The first-order perturbation of A, calculated via (42), can be expressed as:

vec(AA) =~ Azvec(AO,),

where
As 2 I,2(0,'8,)-AT®(0,'85)
+((0." 55 - 470, 55) 2 (0,70,) 1) Py
Sa & [0a—1yn,xt Te—1)n,]
Ss = [Ta—1)n, Oa-1)n,xn,]
n iy
P2 33 B s my e

Substitution of (58) and (53) into this result yields

vec(AA) ~ A (Az + Az) Sivec(ALTSS ) = Agvee(ALTS ). (60)

0]2:—1 0]2:—1

As G"ef corresponds to the first n,. columns of C2, application of (59) and
(53) yields

vec(AB) ~ A7 (As + Ay) Slvec(Aﬁg'gI_l) = ./élgvec(Allg'li‘fcl_1)7 (61)
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where A7 £ [Innu On(z—l)nu]- As C is determined as the first [ rows of
O,, application of (58) and (53) leads to
vec(AC) ~ Ag (Az + Az) S1vec(ALTS ) = Ajovec(ALTE ), (62)

0]2:—1 0]2:—1
where Ag = I, ® [Iny Ony,(z_l)ny]. Finally, the application of (53) yields

vec(AAg) = Savec(ALT ). (63)

0[2:—1
With the definition
A 2 (AL AL AL, s7)”

the following expression for the covariances of the identified system matrices
is obtained (Reynders et al., 2008):

) =AZ.er AT, ALY 0 (64)

A,Gref ,C A5 )2 olae—1 0[22—1 )

where

) WerE ol Vo)

£ Cov ([VGC(A)T Vec(é’"ef)T VGC(C’)T Vec(ASef)T]T) .

Since the output correlations are asymptotically normally distributed, it
follows from the first-order sensitivity analysis that the same holds for the
estimated system matrices, when Aﬁglegz _,—0.

A note on the choice of :. In theory, any value ¢ that is larger than
ceil(n/ny) + 1 with ceil(0) a function that rounds real argument O to the
nearest integer towards +o00, can be chosen for the identification. However,
the quality of the identified system model depends on this choice. If the
lowest eigenfrequency f; of the structure is low compared to the sampling
frequency, and if the value of ¢ is low, it is possible that each column of
H,|, contains only a small part of the corresponding eigenperiod and as
a consequence the eigenfrequency is not well identified. A solution is to
choose 1 as large as possible, but then the calculation time and memory
usage might become excessive. Therefore, Reynders and De Roeck (2008)
proposed the following rule of thumb for choosing :

12> mv (65)

with fy the lowest frequency of interest.
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Summary. Figure 6 lists the different steps of the SSI-cov/ref algorithm
for the identification of the state-space matrices A, G™f, C, and Ag and
the estimation of their joint probability density function.

SSI-cov/ref algorithm.

1. Compute Z::Tzfz_l and X sres  using (51) and (52), respec-
1]22—1

tively. Build L;lezf using (39).

2. Choose the system order n and compute the extended observ-
ability matrix @, and the reference-based extended stochastic
controllability matrix Cf from the singular value decomposi-
tion of L;lelf using (41).

3. Estimate the state-space matrices. C equals the first Ny TOWS
of O,, Gref equals the first n, columns of C,, and A is deter-
mined from (42).

4. Compute EA,Gref7c",,Agef/2 using (64), where an expression
for A is derived in the above linear sensitivity analysis.

Figure 6. The SSI-cov/ref algorithm with estimation of the probability
density function of the estimated state-space matrices.

4.3 Data-driven stochastic subspace identification

A strongly consistent subspace algorithm. In Section 3.3, it was
derived that, under assumption 3.1,
asimWiY s, /% Wy = Wilim, oo 0, X, Wa. (50)
This is the basic relationship for the DATA-driven Stochastic Subspace Iden-
tification (SSI-data) class of subspace algorithms, that only differ up to
specific choices for the weighting matrices W7 and W5. From the reduced
singular value decomposition
WYl 1 /% W USVT,
where the diagonal matrix S € R™*™ contains only the n highest singular

values and U € R"*" and V € R*" contain the corresponding singu-
lar vectors, it follows from (50) that the following estimates are strongly
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consistent? under assumption 3.1:

s 8

@Z ﬁ W 1U52 X'Lh é ‘L|2‘L 1/%77,7‘8{’ and

-

Xopapsr 2 0 Y, 1/%7;“”‘- (66)

From the reference-based forward innovation model (37-38), one has

X Al - KiEf’ref
1le+1 | — s 2|2
R R A A R

2|2

Since it can be shown that & (ek:EZT> = 0, one has

a.s.lim Xt xs = A )
J—00 le ’le C

so an estimate of A and C that is strongly consistent under assumption 3.1

is obtained from
S

[A] = F(wrllwl] X T (68)

C oo

2|2

As explained in Section 2.6, K, — K when 1+ — co. Therefore, one has

firef firef re re
e e I
1,)—500 ) E E Sref R |’

2 2|2

For finite ¢+ and 3, the left-hand side of this equation can be estimated from
(67), after estimating A and C. From the equations (29), (30), (31), (34),
and (35), it is then possible to calculate estimates for X%, G, Ag, K, and
P, respectively.

Asymptotic statistical efficiency and the choice of weighting ma-
trices. The general formulation of the SSI-data/ref algorithm presented
above leaves some freedom in the choice of the weighting matrices W3 and
W5. In order not to lose the consistency property, it is obvious that W;
should be of full rank, and that W5 should preserve the rank of the matri-
ces with which it is multiplied. Van Overschee and De Moor (1996) showed
that by specific choices of the weighting matrices, the SSI-cov/ref algorithm,

4An estimate is strongly consistent when its almost-sure limit equals the exact value.
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presented in Section 4.2, the Unweighted Principal Component (UPC) al-
gorithm of Arun and Kung (1990), and the CVA approach (Akaike, 1974,
1975; Arun and Kung, 1990) fit into this framework.

For a correctly specified system order n, the choice of the weighting
matrix Wa doesn’t have an influence on the asymptotic distribution of the
estimated system, see Bauer et al. (2000), but as shown by Bauer and Ljung
(2002), the choice of W7 is important. Recently, Bauer (2005) proved that
the output-only CVA algorithm, for which

1 ~1/2
Wy = <]Yz|21—1Y;|T21_1) and ~ Wy =1,

is asymptotically statistically efficient for 3 — oo. This means that the
covariance matrix of the estimates equals asymptotically the Cramér-Rao
lower bound, i.e., no estimator with lower covariance can be found. Since
the choice of Wy is unimportant, this result obviously holds for a class
of algorithms having the same W; as CVA, called the Larimore type of
algorithms. This type of algorithms leads to a theoretically optimal choice
of weighting matrices. Also for SSI-data/ref, the rule of thumb (65) for the
choice of 1 is advised.

Implementation. As shown by Peeters and De Roeck (1999), the SSI-
data/ref algorithm can be efficiently implemented by making use of the
LQ-factorisation technique, where the explicit computation of the Q factor
can be avoided. Figure 7 contains a step-by-step overview of this implemen-
tation in case of CVA weighting.

4.4 Data-driven combined deterministic-stochastic subspace iden-
tification

Introduction. The RFEFerence-based DATA-driven Combined Subspace
Identification (CSI-data/ref) algorithm of Reynders and De Roeck (2008)
identifies the combined deterministic-stochastic state-space model that was
presented in Section 2.6. It is the reference-based generalisation of the ro-
bust combined subspace algorithm of Van Overschee and De Moor (1996).

A strongly consistent subspace algorithm. In Section 3.3, it was
derived that, under assumptions 3.1, 3.2, and 3.3,

a.s imW1Y, 2, 1/%, 5, _, (07/0|2171 v arel ) Wa = Wilim) 5000, X, ,Wa.  (49)

J—>o0 0f2—1

This is the basic relationship for the CSI-data/ref class of algorithms,
that only differ up to the weighting matrices W1 and Wa. The initial-
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SSI-data/ref algorithm (CVA weighting).

1. Construct the block Hankel matrices Yo‘qi’:ef , Y542, and

YzT; ref where Yzls[ref contains the non-reference rows of ¥,7,.
Perform the following LQ decomposition, with L lower trian-

gular and @ orthonormal:

s,ref
Y0|z—:} Lix 0 0 07 /[Q:
YZTZE _ 1 |Lz1 L2z O 0 Q2
Y, ref V7 |Ls1 Lsz Lsz 0 Qs |’
ys Ly Lsz Lyz Las| Q4
1+1]22—1 N
L Q

where Lqi1 € Rznrxznr, Loy € Rnrxnr, and L33 €
R(w=nr)x(ny=nr) - @ does not need to be determined.
2. Compute W; as

Lyy Lz O 0 Lyy Lz O 01"
Wy = |Lsy Lzz Lzz O L3; L3z L3z O

Ly Lys Lgz3 Lys| |Lax Laz Lys Lyy

3. Compute the singular value decomposition USVT =

Ly,

Wi | La1|. Choose the system order n and retain only the
Ly

n highest singular values and the corresponding singular vec-

tors.

4. Compute the observability matrix as @, = Wi US:. Deter-
mine O, by deleting the last n, rows of O,.

5. Finally, compute the system estimates:

Loy O, | L3

[A] B O, La 4 | L2
L3, Ly

Figure 7. Implementation of the SSI-data/ref CVA algorithm.
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state matrix for the sequence of reference-based Kalman filter states X@I@ is
X, oo = Xg|0 / AT Up|,—1- Using the reduced singular value decomposition

WY 2u 1/ %, (%0\21—1 \ %Tfﬁ) WarUSVT,
where the diagonal matrix S € R™*™ contains the highest n singular values
and U € RU™wtnu)Xn and V' e RI*™ contain the corresponding singular
vectors, one has from (49) that the following estimate for the observability
matrix is strongly consistent under assumptions 3.1, 3.2, and 3.3:

O, 2w, 'US>. (69)

For the estimation of Xm and X1+1|z+17 (49) can unfortunately not be used
62/0"“ which

is different from the initial state matrix of X,h. As noted in Van Overschee
and De Moor (1994a), this would lead to an inconsistent algorithm for finite
values of 7. Therefore, the orthogonal projection (48), which was derived in
Section 3.3, is considered instead:

since the initial state matrix of Xl+1|,+1 would be Xgm/%ﬂ\zl

a.s.lim YL|21_1/ <%0|21—1 V grcj’ ) = hmj_mo OIX”, + .’F;iUz|21_1. (48)

Pl 0]s—1

£z,

The initial state matrix for the sequence of reference-based Kalman filter
states X,), is now Xojo = Xg|o/%0|2l—1' Following the same lines, one has

ajilgom Yot1)20-1/ (%om—l \Y %Tff)

ézz-l»l
= lim 01—1X1+1|1,+1 + f;i—lU1,+1|2z—17 (70)

J—o0

where X'L—I—llz—f—l has the same initial state matrix as in the previous ex-
pression. From the reference-based forward innovation model (37-38), one

has
X1,+1|z+1 _ Al 5 B
|: Y"Ll’l, = C_ Xz|z + D

Yy

2

} U, . + (71)

K, El"Y 1

Substitution of (69-70) yields

[ . |A] ~
a.s.lim {01—1214—1} = lim ] @IZZ + K,Uyj2,—1+

firef
2|
B

2

(2

] , (72)



Subspace Identification for Operational Modal Analysis 85

where

A0 Fd t o rd
K, = [ AOLF! + |B 01—1}7—1” . (73)

~-COIF¢+ D 0]
Since the state estimation error ey is orthogonal to the state estimate &

(Juang, 1994), it follows that a strongly consistent estimate of A, C, and
K, is obtained from

Al o 1.
~ K‘L =
¢ =]
At Tre AT re t
O, 1Yt1)2./ <02/O|2171 v %“f) 0,Y,2.-1/ (02/0\2271 \ %‘ZL)
YLl‘L Uz|1,

K, is linear in B and D (see (73)), so if K, € R"*™ is defined as the
k™ block column of K,, My, € R**™ as the k' block column of (’)I_l,
L1, € R"™ as the k" block column of AOI and La) € R™*™ as the
k" block column of COJ, one has:

K, =N [DT BT]"

Ny = —L11 Mi—L12 ... M,_1—L1, InyO
Lo | Iny, — L21 —Lo22 . —La2, 0 o,
Nk _ Mg_1—Lik ... Mu_1—L1, Onxl(k—l) Inyo
#1 —Lak —La2, Oixi(k—1) 0 0O;

With this factorisation, it follows from (72) that strongly consistent esti-
mates of B and D can be obtained from

D s AT A
e ([B]> - (Z U’T'“k—llz+k—1 ®Nk> vec(P)
k=1

~ t A
P2 [Oz—fﬁl] - E} oz,

where U, 4 g—1]o4k—1 is the (1 +k — 1)*" block row of Up|2,—1- Finally, the
noise covariance matrices can be estimated from the residuals of (71):

) [KZEf;mf] [K’Ef e

By

a.s.lim ST R

1,00 ]

el || B

1|2 2|2

The fact that ¢ needs to go to infinity is explained by the non-stationarity of
the Kalman filter in (71) for finite + values, see Van Overschee and De Moor
(1996).
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Choice of weighting matrices. The general formulation of the CSI-data
algorithm presented above leaves some freedom in the choice of the weighting
matrices W; and W5. In order not to lose the consistency property, it
is obvious that W7y should be of full rank, and that W5 should preserve
the rank of the matrices with which it is multiplied. It was shown by
Van Overschee and De Moor (1994b) that by specific choices of the weighting
matrices, the N4SID algorithm of Van Overschee and De Moor (1994a),
the PO-MOESP algorithm of Verhaegen (1994), and the CVA algorithm
of Larimore (1990) can be obtained. However, it is well known that an
oblique projection, which is an essential step in the algorithm (49), is a
numerically ill-conditioned problem. Goethals (2005) indicated that the
ill-conditioning can be removed by choosing W3 and W3 in such a way
that W1 O; W5 consists of an orthogonal projection. A possible choice is
Wi =1 and W, = Pai P with Pai 21 the orthogonal projector onto
the orthogonal complement of %, 3,_;. This corresponds to the PO-MOESP
algorithm. Also for CSI-data/ref, the rule of thumb (65) for the choice of 2
is advised.

Implementation. The CSI-data/ref algorithm can, like the SSI-data/ref
algorithm, be efficiently implemented by making use of the LQ-factorisation
technique, where the explicit computation of the Q factor can be avoided.
The interested reader is referred to (Reynders and De Roeck, 2008) for the
implementation details.

5 Estimation of the modal parameters

5.1 Introduction

When a state-space model is identified from measured input-output or
output-only data, a free vibration analysis and a modal decomposition of the
identified model results in eigenfrequencies, damping ratios, mode shapes,
and modal participation vectors of the structure. If a driving point mea-
surement is made, absolute mode scaling is possible as well.

5.2 Estimation of the modal parameters

When a discrete-time deterministic (A, B,C, D) or stochastic state-
space model (A, G("¢f) C Agy/2) is identified, the modal parameters can
be estimated as follows. The eigenvalue decomposition (14) leads to the
system description in modal form (15-16), from which the unscaled mode
shapes ¢; and the discrete-time modal participation vectors l4; are imme-
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diately obtained. From the ZOH map (11), it follows that

_hl()\dj)
Mg = (75)

The undamped frequency and damping ratio are then obtained as

_ Al
2w

_ AR
Aejl 7

Juj (76)

and &5
respectively. Reynders and De Roeck (2008) showed that, when at least one
driving point measurement is made, and the response DOFs are displace-
ments, velocities, or accelerations, the modal scaling factors can be obtained
from the following expression:

T .
W — )\cj ¢j’u T d)g'v T
q; = vec m Zoéd)j{, ¢je vec 1_;{:'77‘” ldj s (77)
W Pjis Sy =1 Db

where the subscripts 0,, 0;, and 0O; select the displacement, velocity, and
acceleration response DOFs, respectively. Since in an identified model, it
is most probable that the contribution of a mode is modeled best near its
resonance frequency, it is suggested to choose w = w; for the estimation.
Alternatively, a series of frequencies, containing for example also the half
power points, could be used. For the scaling of the mode shapes, two
schemes are quite popular.
o In the unit modal displacement weighting scheme, the mode shape ¢;
is scaled in such a way that one of the elements, usually the one with
the largest amplitude, of the scaled mode shape ¢; is unity:

i = ¥
J Qsj,k

e When a driving point FRF can be calculated, the unity modal mass
weighting scheme leads to (Heylen et al., 1997)

Pi =20 b5 (79)

5.3 Distribution of the estimates

(78)

In Section 4.2, the distributions of the parameters estimated with SSI-
cov/ref were found to be asymptotically normally distributed because of
the central limit theorem and the fact that a linear combination of nor-
mally distributed random variables is again normally distributed. Since the
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coefficient of variation of the estimated parameters is usually low, a linear
sensitivity analysis of the modal parameters as a function of the model pa-
rameters is sufficiently accurate to determine the covariances of the modal
parameters. Their distribution is then asymptotically normal.

Discrete-time and continuous-time poles. As shown by Reynders
et al. (2008), one has that, for the discrete-time poles Ag;,

where xq4; and 1q; denote the left and right eigenvectors corresponding to
the eigenvalue Ag; of A, respectively.

The relationship between the discrete-time system poles and the continuous-
time system poles is given by (75). It follows that the real and imaginary
parts of A.; are given as

In [Ag;[*

Ak = o

R S (¥
and Aejr = T tan <)\de> . (80)

A linear sensitivity analysis of these expressions leads to (Pintelon et al.,
2007)

1 AR A1
Aejire = Ir, MAgire,  wh oo | Mir o Aar]
A Js J)\cJ Ad]a ’ where J)‘CJ T‘)\d]|2 |:_)\de )\de

Eigenfrequencies and damping ratios. The relationship between the
eigenfrequencies, damping ratios and the continuous-time system poles is
given by (76). A linear sensitivity analysis of these expressions yields (Pin-
telon et al., 2007)

5 WERI
A
{A§J:| = ijEjA)\cj,re, where Jpie; = P )\:rﬂz )\cjl?g‘cjf ’
: | Acjl TG | T AGE

Mode shapes. In order to derive the first-order sensitivity of the mode
shapes, the first-order sensitivity of the eigenvectors 1pg; of A is needed.
For the generic case, where A has n different eigenvalues, a first-order per-
turbation of 1q4; with respect to the elements of A was derived by Reynders
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et al. (2008):
ANT 1 Yaj X
Atpg; ~ (I— Mj) . <¢§j ® (I— d’;‘)"b)) vec(AA).  (81)

A
ETpy

Using Kronecker algebra, the first-order perturbation of the corresponding
mode shape ¢; can be calculated:

Agjre © (CAYgj + ACYg),, = [ Ty | Y45 © In, ], [Xiﬁgﬁ‘éﬂ :

When the modes are scaled to a unit modal displacement in one of the
degrees of freedom, a first-order sensitivity analysis of (78) leads to

1
Apjre ~ (

d)j,k (I - Sajs¢j,k)) A¢j,re7

Re

Je;

A

where Sg, , = [Ol,k_l 1 01,ny—k]-

Covariance matrix of the modal parameters. Combining the sen-
sitivity formulae for the modal parameters derived above, their complete
covariance matrix is obtained:

g fi i
vec(A)
Cov & || & = Jpep,jC0V ({Vec(é)}) J?ﬁ%“ (82)
Pj,re Pl,re
where
J A Jrie5Ine; Ing 02xnyn
Fép,i Jypai o, (1@ ® Iny) Jop;

Distribution of damping ratios for lightly damped modes. When
a mode is lightly damped, it follows from (80) that the real part of its
continuous-time pole, A;r, is not only close to zero, but it also has a poten-
tially large coefficient of variation, such that a linear sensitivity analysis, as
presented above, is not sufficiently accurate for determining its asymptotic
Probability Density Function (PDF). This affects significantly the PDF of
the damping ratio, see (76), but not of the other modal parameters. Since
the damping ratio {; is a nonlinear function of the discrete-time system
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pole \g only, and since the real and imaginary parts of A\g; are to a good
approximation asymptotically jointly normally distributed, the PDF of &;
can be calculated using a Monte Carlo simulation, where the joint PDF of
Adj,re, estimated using the linear sensitivity approach, is sampled. Because
each Monte Carlo simulation step is computationally very cheap, the total
computational cost of this approach is sufficiently low for modal testing.

6 Applications

6.1 Introduction.

In this section, the application of operational modal analysis techniques,
with and without exogenous forces, is investigated for two different types of
structures.

In Section 6.2, the feasibility of using an exogenous force in operational
modal testing of a prestressed concrete bridge is investigated. The perfor-
mance of the CSI-data/ref algorithm on the shaker data of the Z24 bridge,
that have been proposed as a benchmark for testing modal parameter esti-
mation algorithms, is investigated and compared with previously reported
results.

The second application deals with operational modal analysis of a steel
transmitter mast under wind loading, and is presented in Section 6.3. The
goal is to demonstrate the feasibility of estimating confidence intervals on
modal parameters obtained from a single operational modal test.

6.2 Z24 bridge

Introduction. The Z24 bridge was part of the road connection between
the villages of Koppigen and Utzenstorf, Switzerland, over-passing the Al
highway between Bern and Ziirich. It was a classical post-tensioned concrete
two-cell box-girder bridge with a main span of 30m and two side spans of
14m, see Figure 8. The bridge was built as a free standing frame with the
approaches backfilled later. Both abutments consisted of triple concrete
columns connected with concrete hinges to the girder. Both intermediate
supports were concrete piers clamped into the girder. An extension of the
bridge girder at the approaches provided a sliding slab. All supports were
rotated with respect to the longitudinal axis which yielded a skew bridge.
The bridge, that dated from 1963, was demolished at the end of 1998,
because a new railway adjacent to the highway required a new bridge with
a larger side span.

Before complete demolition, the bridge was subjected to a long-term
continuous monitoring test and a short-term progressive damage test in the
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<= Utzenstorf Koppigen =
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H
To Bern 4.50 To Zurich

Figure 8. Side view of the Z24 bridge. Distances are in m.

framework of the Brite-EuRam project CT96 0277 SIMCES (De Roeck,
2003).

e A long-term continuous monitoring test took place during the year
before demolition. The aim was to quantify the environmental vari-
ability of the bridge dynamics.

e A Progressive Damage Test (PDT) took place in a one-month time
period, shortly before complete demolition. The aim was to prove
experimentally that realistic damage has a measurable influence on
bridge dynamics. Each PDT step alternated with short-term modal
tests, while the continuous monitoring system was still running during
these tests.

In order for the applied damage scenarios to be significant and realistic,
it was made sure that (1) they were relevant for the safety of the bridge
and (2) the simulated damage occurred frequently, a condition which was
checked in the literature and by questioning Swiss bridge owners. Since the
A1l highway was never closed to traffic, some damage scenarios that meet
these criteria could not be applied without reducing the safety of the traffic
which was considered of paramount importance. The traffic on the Z24
bridge was diverted to the A36 highway. Table 1 gives a complete overview
of all progressive damage tests that were performed.

Before and after each applied damage scenario, the bridge was subjected
to a forced and an ambient vibration test. Since the ambient forces such as
wind excitation or traffic under the bridge could not be excluded during the
vibration measurements, all modal tests can be considered as operational
tests, with or without the use of artificial (exogenous) forces. With a mea-
surement grid consisting of a regular 3 x 45 grid on top of the bridge deck
and a 2 x 8 grid on each of the two pillars, 291 degrees of freedom were mea-
sured: all three displacement components on the pillars, and mainly vertical
and lateral displacements on the bridge deck. Because of the limited num-
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No. | Date Scenario Description /
(1998) Simulation of real damage cause
1 04.08 15 reference measurement Healthy structure
2 09.08 274 reference measurement | After installation of lowering system
3 10.08 Lowering of pier, 20 mm Settlement of subsoil, erosion
4 12.08 Lowering of pier, 40 mm
5 17.08 Lowering of pier, 80 mm
6 18.08 Lowering of pier, 95 mm
7 19.08 Tilt of foundation Settlement of subsoil, erosion
8 20.08 379 reference measurement | After lifting of bridge to initial
position
9 25.08 Spalling of concrete, 12 m? | Vehicle impact, carbonisation and
10 26.08 Spalling of concrete, 24 m? | subsequent corrosion of reinforcement
11 27.08 Landslide at abutment Heavy rainfall, erosion
12 31.08 Failure of concrete hinge Chloride attack, corrosion
13 02.09 Failure of anchor heads I Corrosion, overstress
14 03.09 Failure of anchor heads I1
15 07.09 Rupture of tendons I Erroneous or forgotten injection of
16 08.09 Rupture of tendons II tendon tubes, chloride influence
17 09.09 Rupture of tendons 111

Table 1. Z24 progressive damage test: overview of applied damage scenar-
ios.

ber of accelerometers and acquisition channels, the data were collected in
9 setups using 5 reference channels, see Figure 9. The forced excitation
was applied by two vertical shakers of EMPA, Switzerland, placed on the
bridge deck. A 1kN shaker was placed on the middle span and a 0.5kN
shaker was placed at the Koppigen side span, see figure 8. The shaker input
signals were generated with an inverse FFT algorithm, resulting in a fairly
flat force spectrum between 3 and 30Hz. After scenario 8, a drop weight
test was also performed. The applied shaker and drop weight forces were
periodic with 8 periods. In each modal test, a total of 65536 samples were
collected at a sampling rate of 100Hz, using an anti-aliasing filter with a
30Hz cut-off frequency. Kramer et al. (1999) provide a detailed description
of all vibration tests on the Z24 bridge.

The measurement data have been used for two benchmarks.

e The shaker, ambient and drop weight vibration data from the third
reference measurement on the 724 bridge (scenario 8, Table 1) were
presented as a benchmark study for system identification methods for
operational modal analysis at the IMAC XIX conference in 2001.

e The data from the long-term continuous monitoring test and the
progressive damage test were presented as benchmark data for al-
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Figure 9. 724 bridge: Measurement grid, reference positions and shaker
positions.

gorithms for structural health monitoring and damage identification
in the framework of the European Cost Action F3.

Reynders and De Roeck (2009) provide a literature review of benchmark
results. Here, the benchmark shaker data from PDT scenario 8 are used
to test the performance of the CSI-data/ref algorithm with respect to the
results presented in the literature.

Previous results. Peeters and Ventura (2003) compared the modal pa-
rameter estimates obtained by 7 different research teams in the framework
of the system identification benchmark with the data from scenario 8. In
addition, new modal parameter estimation techniques have been validated
on the benchmark data, such as a parametric and nonparametric setup as-
sembly approach followed by maximum likelihood estimation, proposed by
Parloo et al. (2003), and an iterative SDOF technique, proposed by Allen
and Ginsberg (2006). The best reported result was obtained by applying a
subspace identification algorithm (Peeters and Ventura, 2003) and a maxi-
mum likelihood algorithm (Parloo et al., 2003) to the shaker data. In this
way, 10 modes could be determined.

Results obtained with CSI-data/ref. When analyzing the shaker data
of damage scenario 8 for the system identification benchmark, both the
classical CSI-data algorithm and the reference-based version CSI-data/ref
were used. For CSI-data, » = 30 was chosen, and a stabilisation diagram of
good quality was constructed up to a model order of 160. For CSI-data/ref,
the 5 acceleration channels common to every setup were chosen to be the
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references for the identification, + = 50 was chosen, and a stabilisation
diagram of good quality was constructed up to a model order of 160. Note
that, in order to obtain similar computation time and memory usage, the
values of ¢ differ for CSI-data and CSI-data/ref. A choice of «+ = 30 for both
CSI-data and CSI-data/ref would have resulted in a faster calculation and
a smaller memory usage for CSI-data/ref. According to the rule of thumb
(65), the choice of + corresponds to fo = 1.67Hz for CSI and f, = 1Hz for
CSI/ref.

From the stabilisation diagram constructed with the CSI-data and CSI-
data/ref methods, 13 and 14 modes could be identified, respectively. Table
2 shows the sample mean values of the eigenfrequencies and damping ra-
tios, obtained with each method, as well as the sample standard deviations,
calculated from the 9 different setups. The CSI-data/ref method clearly
yields more accurate estimates of both eigenfrequencies and damping ra-
tios for modes 3, 6 and 8, while the opposite is true for mode 7. With
the CSI-data/ref method, one more mode could be obtained than with the
CSI-data method. Table 2 also shows the MAC values between the corre-
sponding mode shapes determined using CSI-data and CSI-data/ref. The
mode shapes are all very well correlated. An almost perfect correlation is
observed for modes 1, 2, 5, 6, 7, 8 and 10. Mode 9 has the lowest MAC
value, which indicates that the mode shape estimated with one or both
methods is of a lower quality than the other modes. This corresponds to
a relatively high uncertainty on the eigenfrequency and damping ratio of
mode 9 for both CSI-data and CSI-data/ref.

Figure 10 shows the identified bending modes. Mode 13 could only be
identified with CSI-data/ref. The identified lateral modes are plotted in
Figure 11. The identification of these modes proves experimentally that
the combined deterministic-stochastic subspace identification method en-
ables one to identify modes excited by both forced or ambient loading or
a combination of both. Indeed, these lateral modes are almost exclusively
excited by ambient forces. Modes 3 and 4 were not detected in previous
studies. The quality of the mode shape of mode 4 is lower because the only
horizontal reference DOF is located near the center of the middle span, in
the zone with almost zero modal displacement. This results in a ‘stepped’
mode shape.

Due to the skewness of the bridge supports, some modes occur where
bending and torsion are combined. Two of these modes are shown in Figure
12. Their eigenfrequencies are closely spaced. Although they look very
similar, they are truly different, as is confirmed by their experimental MAC
value (Heylen et al., 1997) of 0.18 for CSI-data/ref.

Figure 13 shows the higher torsion modes that were identified. The mode
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mode CSI-data CSI-data/ref MAC
fHz) oyMz) &%) o0a(%) | f(Hz) op(Hz) E(%R) oa(%)

1 3.871 0.001 0.89 0.05 3.871 0.002 0.88 0.04 1.00
2 4.823 0.008 1.63 0.06 4.818 0.011 1.66 0.04 1.00
3 6.697 0.127 4.23 1.45 6.722 0.028 3.82 0.62 0.98
4 8.355 0.059 8.91 1.77 8.346 0.104 9.37 1.33 0.96
5 9.769 0.005 1.54 0.03 9.772 0.005 1.57 0.02 1.00
6 10.51 0.011 1.45 0.06 10.50 0.007 1.43 0.04 1.00
7 1242  0.020 311  0.03 | 1242  0.025 315  0.12 1.00
8 13.21 0.033 4.76 0.29 13.21 0.018 4.72 0.17 1.00
9 17.45 0.212 4.34 0.38 17.52 0.169 3.64 1.39 0.92
10 19.27 0.019 2.43 0.10 19.28 0.022 2.46 0.06 1.00
11 19.68 0.080 5.58 0.31 19.65 0.113 5.51 0.29 0.98
12 26.64 0.054 3.20 0.11 26.62 0.055 3.12 0.11 0.95
13 / / / 33.18  0.202 433  1.78 /

14 37.25 0.198 3.69 0.48 37.20 0.106 3.94 0.61 0.95

Table 2. Z24 bridge, scenario 8: eigenfrequencies f; and damping ratios
&; determined with CSI-data and CSI-data/ref, and MAC values between
corresponding mode shapes.

mode 1

3.871Hz - 0.9%

el

mode 13

mode 11

mode 7
12.42Hz - 3.2%

19.65Hz - 5.5%

Figure 10. Z24 bridge, scenario 8:
data(/ref).

mode 8
13.21Hz - 4.7%

33.18Hz - 4.3%

bending modes identified with CSI-

shape of mode 9 is less smooth than the mode shapes of the other modes; this
corresponds to the higher uncertainty on the corresponding eigenfrequency
In mode 12, the Koppigen pier (Figure 9)
has the highest participation, which could be due to the fact that a cut

and damping ratio (Table 2).
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mode 2 mode 3 mode 4

4.823Hz - 1.7% 6.722Hz - 3.8% 8.355Hz - 9.4%

Figure 11. Z24 bridge, scenario 8: lateral modes identified with CSI-
data(/ref).

mode 5 mode 6
9.772Hz - 1.6% 10.50Hz - 1.4%

Figure 12. 724 bridge, scenario 8: two closely spaced mixed tor-
sion/bending modes identified with CSI-data(/ref).

mode 9 mode 10

17.52Hz - 3.6% 19.27Hz - 2.5%

mode 12 mode 14

26.64Hz - 3.1% 37.25Hz - 3.9%

Figure 13. Z24 bridge, scenario 8: higher torsion modes identified with
CSI-data(/ref)

was made through this pier for the simulation of a settlement: although the
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mode | DOF CSI CSI/ref
u(mm) oy (mm) u(mm) oy, (mm)
1 Roz | 1.28 + 0.06i 0.05 + 0.04i | 1.30 + 0.07i  0.03 + 0.03i
2 Roy | -1.38 4+ 0.381 0.18 + 0.21i | 1.38 + 0.151  0.13 + 0.06i
3 Roy | -0.22-0.221  0.10 + 0.191 | 0.15 + 0.131  0.09 + 0.30i
4 Rsz | 0.27 4+ 0.051 0.18 + 0.13i | 0.46 + 0.13i 0.20 + 0.16i
5 R3z | -3.69-0.42i 0.42 + 0.14i | 3.75 + 0.551 0.36 + 0.22i
6 Roz | 1.16 + 0.291  0.05 + 0.07i | -1.11 - 0.251  0.05 + 0.05i
7 Ryz | -4.74-0.831 0.23 + 0.09i | -4.65-0.751 0.27 + 0.19i
8 Ryz | -3.01-0.63i 0.41 + 0.19i | 2.96 + 0.70i 0.16 + 0.13i
9 Ryz | -3.11-1.351 0.55 + 0.59i | -2.34-1.04i 1.29 4+ 0.71i
10 Rsz | 3.08 4 1.051 0.33 + 0.19i | 3.12 + 1.16i 0.31 4 0.07i
11 Roz | -0.92-0.33i 0.38 + 0.18i | -0.94 - 0.191 0.23 + 0.18i
12 Roz | -1.36-0.421 0.08 + 0.11i | 1.31 + 0.321 0.11 + 0.12i
13 Roz / / -0.39 - 0.071  0.19 + 0.54i
14 Ryz | 1.53 4+ 1.551 0.58 + 0.34i | -1.73-1.631 0.47 + 0.39i

Table 3. Z24 bridge, scenario 8: modal displacements, scaled to unity

modal mass.

The standard deviations consist of the standard deviation

of the real part and the standard deviation of the imaginary part of the
corresponding displacement. They are the sample standard deviations for
the total of nine setups.

settlement was removed, the original state was only approximately reached.
The identification of mode 14 at 37.25Hz, despite the fact that the cut-off
frequency of the analog anti-aliasing filter was set to 30Hz, indicates that
the method is able to identify modes that are only very weakly present in

the data.

Modes 1, 2, 5, 6, 7, 8, 9, 10, 11 and 12 have been detected in previ-
ous benchmark analyses; the other modes were only detected in the present
study. Because CSI-data and CSI-data/ref identify a combined deterministic-
stochastic state-space model, they enable a mass-normalisation of the modes
that are excited by the deterministic forces. Table 3 shows, for each scaled
mode, the largest of the reference displacement DOF's (Figure 9). From this
table, bearing in mind that none of the identified modes is truly complex,
the following can be noticed.

e For modes 1, 5, 6, 7, 8 10, 11 and 12, all in the frequency band of

forced excitation (3-30Hz), the largest reference displacements are in
the direction of the forced excitation and the real part of the scaled
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mode shapes is much larger than the imaginary part. This indicates
that they are properly scaled.

e Although mode 2 is mainly a lateral mode and the forced excitation is
purely vertical, the real part of the scaled mode shape is much larger
than the imaginary part. Together with the small sample variance of
the modal displacement, this is an indication that the mode is properly
scaled.

e As indicated by the large imaginary part and the large sample vari-
ance, the lateral modes 3 and 4 are not properly scaled because they
are not well excited by the artificial forces. However, using an OMAX
approach, it is possible to identify these modes because they are ex-
cited by ambient forces.

e The rather large uncertainty on the scaled displacements of mode 9
corresponds to the large uncertainty on the frequency and damping
ratio (Table 2) and the quality of the mode shape (Figure 13).

e Modes 13 and 14 can not be properly scaled, as their eigenfrequencies
lie outside the frequency band of the forced excitation and above the
cut-off frequency of the anti-aliasing filter.

6.3 Steel transmitter mast

Introduction. In this section, the SSI-cov/ref algorithm is applied to the
operational modal analysis of a truss structure, situated in the harbor of
Antwerp, Belgium. It is a mast of 30m height which contains sectorial
antennae for a cellular phone network at the top (Figure 14). The antennae
comprise about 10% of the total weight of the structure.

Vibration measurements and signal preprocessing. On March 26,
1998, an ambient vibration test was performed on the structure. Peeters and
De Roeck (1999) presented the results of this test. Here, their uncertainty
is investigated.

The aim of the test was to investigate the structure’s modal parame-
ters, particularly the damping ratios, in the frequency range of 0 — 5Hz.
17 degrees of freedom (DOFs), all horizontal accelerations, have been mea-
sured in 3 setups using 3 reference DOFs that were common to each setup.
Three horizontal accelerations were measured at heights of 6.17m, 12.17m,
18.17m, 24.17m and 29.90m. If it is assumed that the cross-section of the
mast remains undeformed during the vibration test, which is a reasonable
assumption in the frequency band considered, three DOFs are sufficient to
describe the complete horizontal movement of the cross-section. Two or-
thogonal accelerations at the top of the mast (at a height of 33.00m) were
measured as well.
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Figure 14. Steel mast with sectorial antennae at the top.

The data were sampled at a rate of 100Hz. The cut-off frequency of
the anti-aliasing filter was set to 20Hz. The number of samples was set
to N = 30720, which resulted in a measurement time of approximately 5
minutes. Afterwards, the data were digitally filtered with a low-pass filter
with a cut-off frequency of 5Hz and re-sampled at 12.5Hz, which reduced
the number of samples to N = 3840.

Modal parameters. With SSI-cov/rev, the eigenfrequencies, damping
ratios, and mode shapes, as well as covariances of these modal parameters,
are identified for each individual setup. The identification parameters are
1 =10, n = 20 and n, = 100. According to the rule of thumb (65), the
choice of 2 corresponds to fo = 0.63Hz. The parts of the mode shapes that
result from the different setups are combined with linear least squares. They
are scaled to 1 in one of the reference DOFs. The variances of the different
modal displacements are adopted accordingly.

The identified eigenfrequencies and their estimated 95% confidence in-
tervals are shown in Table 4. The eigenfrequency estimates obtained in each
setup match very well. The estimated confidence intervals correspond very
well with the variation of the actual values from setup to setup.

The identified damping ratios and their estimated 95% confidence in-
tervals are shown in Table 5. The damping ratio estimates differ quite a
lot from setup to setup, which is also reflected in the high values of the
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mode setup 1 setup 2 setup 3
1 1.172+£0.003 | 1.168 £ 0.006 | 1.166 £ 0.004
2 1.178 £0.005 | 1.178 £0.005 | 1.180 £ 0.005
3 1.948 £0.009 | 1.956 £0.008 | 1.951 £ 0.004
4 2.603 +£0.006 | 2.599 +0.008 | 2.601 + 0.006
5 2.7114+0.002 | 2.7124+0.007 | 2.711 +0.004
6 3.686 £ 0.008 | 3.689 +0.005 | 3.685 %+ 0.006
7 4.632+0.010 | 4.633 +£0.011 | 4.631 £ 0.008

Table 4. Steel mast: identified eigenfrequencies (in Hz) with their estimated
95% confidence interval.

estimated confidence intervals. Because of their high relative uncertainty,
the confidence intervals of the damping ratios are calculated using a Monte
Carlo sampling of the discrete-time poles, which have a low relative uncer-
tainty. The values obtained from a linear sensitivity approach are given
between brackets. Despite the large relative uncertainty on the damping
ratios, both estimates for the confidence intervals agree very well.

The identified mode shapes and their estimated 95% confidence interval
are shown in Figure 15. Only the third mode is a torsion mode, the other
modes are bending modes. It can be seen that the mode shapes of modes
3 through 6 are very accurate, mode 7 is fairly accurate and modes 1 and
2 are inaccurate. This difference in mode shape quality is also apparent
when the real and imaginary parts of the identified modes are plotted in
the complex plane (see Figure 16): while modes 3 through 7 are fairly real,
modes 1 and 2 have important imaginary components.

This can be physically understood from the fact that the structure is
almost triply symmetric, since perfect multiple symmetric structures have
pairs of eigenmodes with identical eigenfrequencies, reflecting that the mode
shapes are indefinite. Dooms et al. (2006) illustrate this for a nearly ax-
isymmetric structure. Here, the symmetry is somewhat disturbed by the
diagonals and a ladder at one of the masts. Only the first two modes are
very close, with estimated eigenfrequencies of 1.172 and 1.178Hz in the first
setup. The next pair of bending modes are already better separated, thanks
to the symmetry disruptions, with eigenfrequencies at 2.602 and 2.711Hz.
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mode 1 mode 2 mode 3 mode 4

Figure 15. Steel mast: identified mode shapes (black) with their estimated
95% confidence interval (grey).
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mode setup 1 setup 2 setup 3
1 0.14 +0.26 (0.26) | 0.55 £0.42 (0.42) | 0.60 4+ 0.35 (0.37)
2 0.67 £0.33 (0.37) | 0.57+0.42 (0.43) | 0.95+ 0.45 (0.45)
3 0.64 £0.32 (0.31) | 0.80+0.27 (0.26) | 0.47 +0.22 (0.22)
4 0.36 +0.26 (0.28) | 0.57 £0.39 (0.39) | 0.354+0.21 (0.21)
5 0.08 +0.09 (0.10) | 0.27 £0.19 (0.22) | 0.194+0.11 (0.12)
6 0.28 +0.32 (0.33) | 0.17£0.18 (0.19) | 0.27 +0.19 (0.20)
7 0.27 £0.23 (0.23) | 0.16 +0.46 (0.51) | 0.18 £ 0.15 (0.17)

Table 5. Steel mast: identified damping ratios (in %) with their estimated
95% confidence interval, estimated from a Monte Carlo sampling of the
discrete-times poles and using a linear sensitivity analysis (between brack-
ets).

mode 1 mode mode 3 —7
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
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Figure 16. Steel mast: real vs. imaginary part of the identified modal
displacements, scaled to 1 at the largest displacement value.

7 Conclusions

This chapter addressed the extraction of eigenfrequencies, damping ratios,
mode shapes and, whenever possible, modal scaling factors, from measured
operational data.

A conversion between finite element models, that are frequently used
in forward modeling of vibrating structures, and discrete-time state-space
models, that are identified from measured data, was derived. This con-
firms that the latter models are valid also from a forward point of view.
Furthermore, it was shown that modeling the operational excitation due to
turbulent fluid pressure, micro-tremors, or roadway or footfall excitation,
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as stochastic quantities, has a clear physical basis. This justifies the use of
stochastic system identification algorithms for OMA, and the use of com-
bined deterministic-stochastic system identification algorithms for OMAX.

The use of subspace identification methods and their predecessors, sys-
tem realisation methods, for the identification of stochastic and combined
deterministic-stochastic state-space models from operational data, was dis-
cussed. The general ideas that lie behind this class of system identification
methods were separated from the algorithms themselves. Two subspace
algorithms that are commonly used for OMA were discussed in detail: SSI-
cov/ref and SSI-data/ref. For SSI-cov/ref, the probability density function
of the identified state-space matrices was derived. Recently, it was shown
that the SSI-data/ref is statistically asymptotically efficient, i.e., no estima-
tor with lower asymptotic covariance can be found. This confirms previous
experience with subspace identification algorithms, that have shown to out-
perform alternative system identification algorithms in several comparative
studies, see, e.g., Peeters and De Roeck (2001). Since OMAX testing can
enhance the current ambient vibration testing practice in the sense that it
allows the mode shapes to be mass-normalised and the frequency content
of the excitation to be extended, a recently developed subspace algorithm
that can be used for OMAX, was presented: CSI-data/ref.

In a first real-life application, this CSI-data/ref algorithm was seen to
yield the most complete set of modal parameters for the Z24 bridge bench-
mark data reported so far. In a second real-life application, the estimation
of confidence intervals of modal parameters identified with SSI-cov/ref was
illustrated for a steel transmitter mast.
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Abstract The main postulate in vibration-based structural health
monitoring (SHM) is that structural damage can be detected from
changes in the damage-sensitive features extracted from vibration
measurements. In order to detect damage with a high sensitivity
and reliability, several functions are needed. Control charts are
applied to detect statistically significant changes in the features,
sensor faults are identified using the minimum mean square error
(MMSE) estimation, and the undesired effects of environmental or
operational variations are removed using the linear factor analysis
or the nonlinear mixture of linear factor analysers model. Different
applications and data sets are analysed, including a wooden bridge
and a vehicle crane.

1 Introduction

Structural health monitoring (SHM) of aerospace, civil, and mechanical
engineering systems is becoming increasingly important from both the eco-
nomic and life-safety viewpoints. In vibration-based SHM, it is assumed
that the vibration characteristics of the structure change due to damage,
and by identifying the new characteristics and comparing them to those of
the healthy structure, the existence of damage can be detected. Vibration-
based damage detection is considered an attractive technique, because (1)
it is a non-destructive testing method, and (2) it is global, i.e. the existence
of structural damage can be detected remote from the sensor.

This chapter introduces the different functions needed in a structural
health monitoring system. Some functions are studied in more detail, while
the others are merely introduced. The underlying idea in SHM is that



108 J. Kullaa

structural damage can be detected from changes in the monitored damage-
sensitive features. These features are often extracted from vibration mea-
surements.

Section 2 gives an overview of the functions needed in a structural health
monitoring system. The characteristics of the system are its modularity and
automation. The following aspects are discussed: instrumentation, excita-
tion, data acquisition, signal processing, sensor fault identification, feature
extraction, feature processing, damage detection, and alarms and reports.
An example of a vibration-based structural health monitoring system is
presented. Many of the details are postponed to later sections.

Section 3 introduces a technique for sensor validation using the mini-
mum mean square error estimation. Experimental multichannel acceleration
measurements with different sensor faults are used to verify the proposed
method to detect, identify, and correct the faulty sensor.

Section 4 studies damage detection with an outlier analysis using con-
trol charts - one of the primary techniques of statistical process control.
An advantage of control charts is that they can be automated for on-line
structural health monitoring. A comparison of different control charts is
performed using numerical modal data. The following control charts are
studied: univariate Shewhart, , CUSUM, and EWMA charts, and multi-
variate Shewhart T', Hotelling 7', MCUSUM, and MEWMA control charts.
The reliability and sensitivity of the control charts are investigated. Dif-
ferences between off-line and on-line results are discussed. Dimensionality
reduction, an essential function in damage detection, is implemented using
principal component analysis.

In practice, damage detection may be difficult due to environmental or
operational variations influencing the damage-sensitive features and causing
false indications of damage. In Section 5, factor analysis is applied to remove
these undesired effects. Factor analysis is a latent variable model, which has
several advantages. The underlying variables need not be measured and the
affecting physical quantities need not be known. The estimation of the
model parameters and the elimination of the environmental or operational
effects can be automated. Also, several environmental or operational vari-
ables can act simultaneously. The proposed method is applied to numerical
data and to a wooden bridge in the laboratory.

While Section 5 studies a linear model to take into account environmen-
tal or operational variability, Section 6 introduces a mixture of linear factor
analysers model, which is used to compensate nonlinear effects. The learn-
ing algorithm combines factor analysis and clustering. The model is first
applied to numerical data and next to experimental data of the Z24 Bridge,
in which the natural frequencies vary due to the temperature.
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Section 7 studies SHM in a mechanical engineering application. Vibration-
based structural health monitoring is applied to a vehicle crane. The per-
formance of two different features to detect damage is investigated after
eliminating the normal operational variations using factor analysis. Dam-
age is introduced by adding additional masses at different locations of the
structure.

Finally, Section 8 gives concluding remarks on different functions in SHM
and some suggestions for an SHM system design.

2 Functions of a Structural Health Monitoring
System

SHM is not just a single technique, but it comprises several functions, each
of which must be carefully designed. These functions include (1) instru-
mentation, (2) excitation, (3) data acquisition, (4) signal processing, (5)
sensor fault identification, (6) feature extraction, (7) feature processing, (8)
damage detection, and (9) alarms and reports (Figure 1). Each function is
briefly discussed in the following. An example of a complete vibration-based
structural health monitoring system is presented. The system is modular,
which means that the implementation of any function is easy without any
need to design the whole system starting from scratch. It is also relatively
easy to design an SHM system for a new structure by utilising the modu-
larity.

Instrumentation |——| Excitation F*I Data acquisition }7

e : ~ Sensor fault [ —]
Signal processing identification = Fealure extraction ,—’
| Training data
—_—

| Pre-processing of - | Alarms and
L\ the feature vector | Damage detection | reports |

Figure 1. Functions and data flow in a structural health monitoring system.
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2.1 SHM Functions

Instrumentation. The question of instrumentation includes the decision
of which quantities should be measured and the selection of the transduc-
ers and their locations. In SHM with repeated measurements, permanent
instrumentation is usually implemented, while temporary solutions are also
possible. Traditionally, wired sensors are used, but wireless sensors and
sensor networks are undergoing active research. The advantage of wireless
sensors is that no wires have to be assembled. This is especially true with
a monitoring system consisting of numerous sensors. The wires and con-
nectors are also sensitive to wear. The main issues of wireless sensors are
the power consumption, data transmission, and synchronisation. Therefore,
special features and algorithms are studied for such systems.

Because vibration measurements can also be used to detect damage re-
mote from the sensor, the number of sensors can vary from one to several
hundreds. The sensor type depends on the application. Typical sensors
are accelerometers, strain gauges, fiber optics, and lasers (as discussed in
the chapter here by Deraemaeker). The measured motion is typically very
small and at a low frequency; therefore, the sensitivity of the sensor has to
be high. The number and positions of sensors can be determined using a
finite element model of the structure and the anticipated damage scenarios
and by utilising optimisation or heuristic methods.

Excitation. Excitation is either ambient or artificial. In a typical health
monitoring application for civil engineering structures, the excitation can-
not be measured. Vibration is caused by wind, traffic, waves, ice, or micro-
seismic tremors. Artificial excitation must be used if ambient excitation
is not available. The advantage of artificial excitation is that it can be
controlled and measured. This is especially true, because it is essential
that the whole frequency range of interest is excited using a broad-band
excitation. This can be arranged using a shaker, an impact device, or an
already available actuator in the machine. Artificial excitation can be used
with smaller structures and in the laboratory. However, with large civil
engineering structures with low natural frequencies, artificial excitation is
difficult and expensive with a need for large hydraulic shakers and a lot of
power. Also the normal operation must be interrupted in order to acquire
reliable data. However, there are always disturbances due to wind, ground
motion, or other sources making the controlled measurement difficult. The
advantages of using ambient excitation are that loading is always available,
it is inexpensive, and it easily excites the low frequencies. The main disad-
vantages are that the force cannot be measured and the frequency content



Health Monitoring Under Variable Conditions 111

can be an issue.

Data acquisition. A sensor converts a measured quantity to an analogue
electrical signal. The objective of the data acquisition system is to store the
time series in a computer for further analysis. There are several issues to
consider. If the extracted features depend on more than a single sensor,
the sensors have to be sampled simultaneously. The sampling rate and the
record length must be adjusted to the extraction of the selected features.
Also, automatic data acquisition can be based on a clock or a trigger.
Signal digitisation also needs attention. If the sampling rate is fs, the
maximum frequency fmax that can be observed in a sampled signal is,

. 1)

If the sampling rate is lower, frequencies above fs/2 are incorrectly inter-
preted as lower frequencies. This phenomenon is called aliasing. After the
A /D converter, the aliasing cannot be corrected. An analogue anti-aliasing
filter is therefore always required before the A/D converter.

The analogue signal is converted (quantised) to the closest discrete value
of the A/D converter. Typically the A/D converters have n = 10 — 24 bit
resolution. The measurement range is divided into 2" uniform intervals. For
the best resolution, the whole dynamic range should be used. However, the
signal must not exceed the limits, which would lead to an overload and con-
sequently clip the signal. The data acquisition system should therefore be
able to detect an overload event and reject the measurement. The dynamic
range can be found in preliminary tests of the monitored structure.

fmax =

Signal processing. Signal processing can be used to extract features di-
rectly or to act as a pre-processing step in the feature extraction. Typically,
signal processing extracts some useful information from the time-histories
using their stochastic properties or other assumptions. Filtering is often
used to limit the frequency range of the signal; however, it should be noted
that the aliasing effect, if present, cannot be removed. In vibration measure-
ments the mean or trend in the signal is usually removed as they normally
contain no useful information. The Fast Fourier Transform (FFT) is an im-
portant tool to convert signals between the time domain and the frequency
domain. The method is fast and no information is lost in the transforma-
tion. However, because the Fourier transform is defined for time series of
infinite length, the FFT results in a leakage effect. The FFT assumes a
periodic time series, and if the signal is not periodic, some energy leaks to
the adjacent spectral lines. Leakage can be decreased but not completely
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eliminated using windowing. The time series is multiplied with a window
function forcing the signal to be (almost) periodic.

Several functions can be extracted from the time series. Some of the most
often used functions are the correlation function, power spectral density
function, impulse response function, and the frequency response function
(FRF). They can be used directly as features or as intermediate variables
to extract other features.

Sensor fault identification. Vibration-based structural health monitor-
ing relies heavily on the measurement data recorded during the structure’s
life. It is therefore most important to detect possible sensor faults to main-
tain the reliability of the system. Monitoring systems typically include
several sensors measuring the global motion, or the lowest modes, of the
structure. The sensor system is therefore redundant. Cross-correlation of
the sensors can be utilised to detect sensor malfunction or failure, to iden-
tify the faulty sensor, and to correct the sensor signal. Section 3 is devoted
to sensor validation.

Feature extraction. Time histories include a lot of data, which has to
be compressed, resulting in some characteristic properties of the structure.
These features are considered as ”fingerprints” of the system and they are
extracted from time-history measurements. The objective is to find features
that are sensitive to damage but insensitive to natural variability of the en-
vironment (loading, temperature, etc.). A change in the features is then
an indication of damage. Because monitoring systems perform repeated
measurements during the structure’s life, the feature extraction must be
automatic. Some of the features are easily extracted automatically, while
others may need a lot of supervision and rules to automate. The feature
extraction (in some cases equivalent to system identification) can be clas-
sified into parametric or non-parametric methods. Another classification is
into input/output or output-only methods, depending on the measurability
of the excitation. In many civil engineering applications, only output-only
identification is possible. The features should then be independent of the
amplitude of excitation, which makes some features less attractive for SHM.

Typical features of a structure are the natural frequencies, modeshapes,
and modal dampings. Other features include spectral functions, e.g. power
spectra, FRF, AR coefficients, transmissibilities, wavelets, and modal filters.

Feature processing. The dimensionality of the feature vector is consid-
erably lower than that of the time series. Each single feature could be used
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for damage detection, or a multivariate statistic can be utilised. The first
step is to select the training data acquired from the undamaged structure
which represents the reference structural condition. The training data must
also comnsist of a full range of normal environmental or operational condi-
tions, because they also affect the features and can result in false indications
of damage if not properly taken into account.

There can be different types of features, the ranges of which depend on
the selected units and can vary considerably. For example natural frequen-
cies may vary from 0.2 to 200 Hz, while the damping ratios are typically
between 0.001 and 0.1. When considering damage detection, features with
large absolute values or variation tend to dominate. Therefore each feature
is usually standardised to have a zero mean and a unit variance within the
training data to make the features equally important.

The number of features can still be too high for a reliable statistical anal-
ysis (curse of dimensionality). Even ten features may be too many in prac-
tice, with a finite amount of training data. Those features can be selected
which are most sensitive to damage. However, the required information is
usually not available. Another possibility is to let the data decide which
features are the most sensitive by selecting all features and utilising all avail-
able information. Only features with frequent outliers in the training data
and constant features containing no information should be removed. The
resulting dimensionality problem can be solved by applying dimensional-
ity reduction techniques, for example principal component analysis (PCA).
Later sections discuss different techniques for feature processing.

Damage detection. The objective of damage detection is to determine
if damage is present in the structure. The decision must be made using
statistical methods, because all features vary between the measurements.
A statistically significant change is an indication of damage. In most cases
data from the undamaged structure are only available in the training phase
and therefore unsupervised learning has to be used. A control chart (Mont-
gomery, 1997) is one of the primary techniques of statistical process control
and can also be used for structural health monitoring (Sohn et al., 2000a). It
plots a quality characteristic as a function of the sample number. The chart
has lower and upper control limits, which are computed from those samples
when the process is assumed to be in control. When unusual sources of
variability are present, sample statistics will plot outside the control limits
and an alarm signal is produced. Different control charts are available; they
can be univariate or multivariate. Damage detection using control charts is
discussed in Section 4 and utilised in all the examples in this chapter.
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Alarms and reports. The monitoring system has to be connected to the
network to transfer information about the condition of the structure and the
monitoring system itself. At least three functions are necessary. First, the
monitoring system must be able to send alarms if it has detected a possible
damage. Second, the engineer should have an access to the remote com-
puter to transfer data to the office for an off-line analysis or to change the
parameters of the monitoring system. It is also essential that the monitor-
ing system periodically informs the engineer about the state of the system.
An automatic alarm and warning system can be designed depending on the
application. A good rule of thumb is that at least two consecutive damage
detection events are needed for an alarm. Warning messages and reports
can be sent on less evident occasions.

2.2 Example

The structure under investigation in the laboratory was the wooden
bridge shown in Figure 2. It was supported by a flexible rubber bearing
at each corner. The total mass of the structure was 36 kg. The healthy
structure was monitored for one day to acquire training data. Two artificial
damage scenarios were then introduced by adding small point masses of dif-
ferent size to the structure. During the measurements labelled 95-103, two
small weights were inserted on the top flanges. The second damage scenario
during measurements 104—112 included weights of different sizes at different
locations of the structure. The last measurements 113-119 were again from
a healthy structure. The added masses were small compared to the total
weight of the structure.

Instrumentation. The bridge was permanently instrumented with fif-
teen Kistler 8712A5M1 piezo-electric accelerometers (Figure 2). The lo-
cations of the accelerometers were determined from an eigenvalue analysis
using the finite element model of the bridge. After studying the lowest
modeshape vectors it was decided to measure accelerations at three differ-
ent positions in the longitudinal direction. Each of the three longitudinal
positions had five accelerometers: vertical and transverse accelerations were
measured at each top flange but transverse acceleration only at one of the
bottom flanges.

Excitation. Natural excitation, typical for civil engineering structures,
was not available in the laboratory. Therefore a random excitation signal
was generated with an electrodynamic shaker to excite the vertical, trans-
verse, and torsional modes (Figure 2). It should be noted that the excitation
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Figure 2. Wooden bridge with a monitoring system.

signal was not used in the analysis, representing a realistic monitoring of
civil structures.

Data acquisition and signal processing. Data acquisition was per-
formed using an OROS OR25 PC-Pack II 16-channel dynamic signal anal-
yser with simultaneous sampling and an integrated anti-aliasing filter. The
process was automated using a pre-defined time interval between measure-
ments. After digitising, the signals were stored on a hard disk for further
processing. The record length of the signals was 32 s with a sampling rate
of 256 Hz. The total number of samples in a single measurement with 15
sensors was then 122880. Before feature extraction, the data were digitally
low-pass filtered below 128 Hz and re-sampled. The number of samples
decreased to half of the original number. An example of the time-histories
from the first eight sensors is shown in Figure 3.

Sensor fault identification. Sensor validation was done using the min-
imum mean square error (MMSE) estimation (Kullaa, 2006). First, the
training data and the test data were selected. The training data were three
subsequent measurements from the undamaged structure (12226 samples
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per channel). The test data were a measurement with an added mass of
size 197 g (4076 samples per channel). Also the environmental effects were
different to those of the training data. Samples 5001-10000 were used to
build the model, whereas samples 1-5000 were used as in-control samples
to design the control charts. The control chart in Figure 4 shows no sensor
fault, because the statistic stays below the upper control limit (horizontal
line).

Time

Figure 3. Time histories of the first eight channels.

Feature extraction. The objective of the study was to develop a fully
automatic health monitoring system; therefore the structural features had
to be extracted automatically from the response data only. The features
selected for damage detection were the modal parameters of the structure:
natural frequencies, modeshapes, and damping ratios. The identification of
the modal parameters was performed using the stochastic subspace identi-
fication technique (Overschee and Moor, 1996; Peeters, 2000); it was made
automatic by using a stabilisation diagram to find the structural modes.
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Hotelling T Control Chart
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Figure 4. Control chart for sensor fault detection. Training data are the
first 12226 samples.

After the identification, mode pairing had to be performed to find similar
modes from different measurements. An example of the mode pairing is
shown in Figure 5. The identified stabilised frequencies are shown at the
top of Figure 5. The result of the classification (mode pairing) is shown at
the bottom of Figure 5. The dots in the bottom diagram represent modes
not identified from the corresponding measurement.

Feature processing. The features used in damage detection were the
natural frequencies of modes 7 and 9-16 resulting in a feature vector with a
dimensionality of p = 9. The lowest five modes were discarded as they rep-
resented the rigid body modes. Modes 6 and 8 were not properly identified
and were therefore discarded. Every other sample between 1 and 70 was
used for training data. After eliminating the environmental effects using the
MMSE estimation (Kullaa, 2005), a further dimensionality reduction was
made using principal component analysis (PCA) (Sharma, 1996). These
terms will be defined in later sections.
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Figure 5. Mode pairing. Top: identified frequencies; bottom: paired
modes. The dots in the bottom diagram represent missing modes.

Damage detection. After MMSE estimation, the largest principal value
of the multivariate feature vector was used for damage detection using the
Hotelling T control chart (Montgomery, 1997). Every other sample between
2 and 70 was used as in-control samples to design the control charts. The
control chart after MMSE estimation and the subsequent principal compo-
nent analysis is shown in Figure 6 showing an excellent detection perfor-
mance. All damage levels were clearly detected and the damage statistic
T increased with an increasing damage level. No false indications of dam-
age were present. After removing the point masses, the damage statistic
returned to the original level.

Alarms and reports. The remote measurement computer was connected
to the GSM network with a mobile phone (Figure 7). If the system found
a possible damage, a short text message was sent to the operator’s mobile
phone. The system also informed periodically about its running, also using
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Figure 6. Control chart for damage detection.

SMS.

2.3 Summary

Functions for a vibration-based structural health monitoring system were
introduced. The system was made modular in order to facilitate the system
design and the introduction of new ideas without a need to re-design the
whole system. A complete vibration-based SHM system was built in the
laboratory. The basic elements of the system were described. The system
was designed to work autonomously sending an alarm signal if the struc-
ture is damaged. The selection of the features for the damage detection
is a difficult problem, because no information is available on the damaged
structure. The features should be sensitive to possible changes due to dam-
age, which suggests using a large number of features. On the other hand,
a high-dimensional feature vector results in a low accuracy in the damage
detection. The lowest natural frequencies can be identified relatively accu-
rately and their number is usually low, whereas the dimensionality of the
complex modeshape vectors may be high depending on the number of trans-
ducers in the system. The dimensionality can be reduced using principal
component analysis. (Damping ratios were not found to be good indicators
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Figure 7. Data acquisition system with an alarm transmission using SMS.

of damage.)
This section gave an overview of different functions of an SHM system.
Several functions are discussed in detail in later sections.

3 Sensor Validation

Structures equipped with sensors are becoming common due to the devel-
opment of the sensor technology and different applications that exploit the
sensor information. Vibration-based structural health monitoring is heavily
based on the measurement data recorded during a long period. It is most
important to detect possible sensor faults to maintain the reliability of the
system. Monitoring systems typically include several sensors in order to
obtain information from different locations of the structure. Such a sensor
network is typically redundant, and can then be utilised to detect sensor
malfunction or failure and to identify and correct the faulty sensor. These
topics are discussed in this section.

Identification and reconstruction of a faulty sensor has been studied e.g.
by Dunia et al. (1996) and by Kerschen et al. (2004) using principal com-
ponent analysis (PCA). One disadvantage of PCA is that the number of
principal components must be determined, which can be difficult. In this
section, a more straightforward method is introduced, which uses direct
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estimation.

It is assumed as in Kerschen et al. (2004) that the number of sensors is
higher than the number of excited modes. If the number of active modes
is larger than the number of sensors, there is a lack of redundancy; in that
case, the time-histories must be filtered to a limited frequency bandwidth.

This section focuses on sensor validation using the correlation or redun-
dancy of the sensors. The minimum mean square (MMSE) estimation model
is derived, which can be used for detection, identification, and reconstruc-
tion of a faulty sensor. It is assumed here that only one sensor is faulty
at a given time. Different fault types: bias, complete failure, drifting, and
precision degradation (Dunia et al., 1996) are studied using experimental
acceleration data and modifying one sensor to represent the faulty sensor.
Also, the effects of the environment and minor damage are present.

3.1 Minimum Mean Square Error (MMSE) Estimation

In the measurement some variables may be missing or incorrectly mea-
sured. These variables can be reproduced using minimum mean square
(MMSE) estimation. The method uses correlation between the variables.
The model is created using the training data with all variables correctly
measured. The data can be time signals or static features. The MMSE
model is derived in the following.

With a multivariable feature vector, a subset of variables can be es-
timated using the remaining variables. Each observation is divided into
observed variables v and missing variables u,

)

There are two cases in which the estimator of u is linear (Sorenson,
1980): (1) The data x are multinormally distributed, and (2) the estimator
1 is constrained to be a linear function of the observed data,

i =FE(uv)=Kv (3)

where F(-) is the expectation operator, u|v is a conditional random vari-
able u given v. K is an unknown matrix, and u and v are assumed to
be random vectors with zero means and known covariances, but the joint
distribution need not be Gaussian. Both cases result in identical estima-
tors. The derivation of case 1 can be found for example in Sorenson (1980)
and Kullaa (2006). Here, only case 2 is presented, as the assumption of a
Gaussian distribution is not generally valid, e.g. for harmonic vibration.
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The optimal linear estimator @ is obtained by minimising the mean-
square error (MSE),

ems = El(u - fl)T(u — )]

=trE[(u — ) (u —a)7]

where tr is the trace operator. Also,

cov(ulv) = E[(u — @) (u — a)7]

[(u—Kv)(u—-Kv)T]

[uu’] — E[uv’ KT — KE[vu’] + KE[vvT|K”
=Yy — BwK' -~ K%, + K2, K"

b )
. 5)

By completing the square with respect to K, equation 5 can be written
in the form,

Siu — 2K —KZ,, + K2, K' = (K+QPXK+Q7T+R  (6)

from which the unknown matrices can be obtained,

P = 3,
Q = —Xuw E;;l
R = 2uu - Eu’uxr;vl 2'uu

resulting in,

cov(ulv) = (K - Euvijvl)zvv(K - Euvijvl)T + X — EuUEJJEW (7)

The gain matrix K appears only in the first term on the right hand side.
To minimise the mean-square error (equation 4), each diagonal element of
equation 7 is minimised by choosing,

K= Equ;} (8)
and finally,

a=Kv=3,2lv (9)
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The error covariance matrix is directly obtained by substituting equation
8 into equation 7,

cov(ulv) = Zyy — Tuo T3 o (10)

The results extend readily to variables with nonzero means (Sorenson,
1980),

U=y + zuvzv_vl (V= p) (11)

where u, and p, are the mean values of u and v, respectively. The error
covariance matrix in equation 10 remains unchanged.

Sensor fault detection. The first step in sensor validation is sensor fault
detection. The correlation model is built using the training data from the
full undamaged sensor set. Then, each sensor is removed in turn and the
sensor is estimated using the remaining sensors. The estimated sensor data
is then subtracted from the measured sensor data and the resulting residual
is used for fault detection. Each residual is normalised according to the
training data, because the magnitudes of the residuals are generally different
due to different levels of correlation. The number of variables is equal to
the number of sensors. This number is usually too large for a statistical
analysis and a dimensionality reduction is made using principal component
analysis (PCA) of the whole data range including the training data and the
test data. If one variable of the test data has deviation from the natural
variability, the largest principal component would be in this direction in the
multidimensional space. The largest principal value is finally used to design
the control chart to detect sensor faults. For different types of sensor faults,
the best fault indicator depends on whether the fault affects the mean value
or the variance.

MMSE estimation is applied to sensor fault detection using the following
procedure.
Define the training data with no sensor faults.
Estimate the mean p and covariance matrix ¥ of the training data.
Select a sensor and set it as a missing variable u.
Form matrices fy, fty, Lyy, Xy, Zuw, and X, by partitioning p and
3.
Compute the mean of u|v for each sample using equation 11.
Compute the residual r = u — E(u|v).
Return to 3 until the residuals of all sensors have been evaluated.
Scale each residual according to the residual of the training data.
Perform a dimensionality reduction using principal component analy-
sis.

L
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10. Define the in-control samples with no sensor faults.

11. Perform a statistical analysis using control charts.

12. If the control chart raises an alarm, it is an indication of a sensor fault.
Move on to fault isolation and reconstruction.

The variance of u|v (equation 10) can be used to determine the con-
fidence limits, but it is not used here, because a further dimensionality
reduction is performed using the PCA and new control limits are set for the
new features.

Faulty sensor isolation. Once a sensor fault is detected, the faulty sen-
sor must be identified. It is assumed that one sensor only is faulty. The
algorithm is as follows.

One sensor is removed in turn and a model is built according to the
training samples of the remaining sensors. If the faulty sensor is present,
the test data should give large residuals. On the other hand, if the faulty
sensor is missing, the residual would be at the same level as for the training
data. The residuals are scaled according to the mean residual of the training
data; then the minimum rms value of the scaled residuals indicates the
faulty sensor. The faulty sensor is the missing sensor in the data set with
the minimum rms value.

The algorithm has an outer loop and an inner loop resulting in a higher
computation time. While in structural health monitoring the largest resid-
ual from the full sensor set may indicate the damage location, the same
approach cannot be used here. As one sensor gives faulty information, it
propagates also to other sensors; as a consequence it could result in an
erroneous identification of the faulty sensor.

MMSE estimation is applied to sensor identification using the following
procedure.

1. Define the training data with no sensor faults.

2. Set i =1.

3. Select sensor ¢ and remove it from the data.

4. Estimate mean p and covariance matrix ¥ of the training data without
Sensor 4.

Select sensor j # i and set it as a missing variable u.

Form matrices piy, ty, Zuu, Xov, 2uw, and 3y, by partitioning p and
3.

Compute the mean of u|v for each sample using equation 11.
Compute the residual r = u — E(u|v).

Return to 5 until the residuals of all sensors has been evaluated.
Scale each residual according to the residual of the training data.
Compute a single rms(i) value of all residuals.
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12. Next 7. Return to 3 until all sensors have been evaluated.
13. The lowest rms(i) value indicates the faulty sensor i.
14. Move on to sensor correction.

Sensor correction. The sensor correction can be made once the faulty
sensor has been isolated. The procedure is very similar to that in fault
detection except that only the faulty sensor is studied. The model is built
using the training data from all sensors without faults. The faulty sensor is
corrected by removing the sensor from the set and estimating it using the
remaining sensors. The procedure is as follows.
1. Define the training data with no sensor faults.
2. Estimate mean p and covariance matrix ¥ of the training data.
3. Set the faulty sensor as a missing variable u.
4. Form matrices fiy, fy, ZDuu, Dov, 2uv, ad 3y, by partitioning p and
3.
5. Compute the mean E(u|v) for each sample using equation 11. It is
the reconstructed sensor.
6. Compute the variance cov(u|v) using equation 10. It can be used to
compute the estimation error.

3.2 Experimental Results

Sensor faults were investigated with a monitoring system built in the
laboratory. The structure was the wooden model bridge shown in Figure 8.
The monitoring system was described in Section 2.2. See also Figure 2.

The modal parameters were identified from the output-only data, which
resulted in 20 natural modes below 100 Hz. As this number was larger than
the number of sensors, there was a lack of redundancy; therefore, the signals
were low-pass filtered below 50 Hz. In this frequency range, the structure
contained 14 natural modes.

In order to study the sensor fault identification, the training data and
the test data were selected. The training data were three subsequent mea-
surement sets from the undamaged structure (12226 samples per channel).
The test data were a measurement set with an added mass of size 197 g
(4076 samples per channel). Also the environmental effects were different
to those of the training data. (The damage scenarios and the environmental
effects will be discussed in more detail in Section 5.3.) The test data were
scaled according to the training data resulting in equal rms values for both
data sets. The relative magnitude between sensors was not changed. Test
samples 5001-10000 were used to build the model, whereas samples 1-5000
were used as in-control samples to design the control charts. Different fault
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Figure 8. Wooden bridge.

types in different sensors are studied in the following sections: bias, com-
plete failure, drifting, and precision degradation (Dunia et al., 1996). In
sensor fault detection, MMSE estimation resulted in residual accelerations
for each sensor. The dimensionality of the feature vector was 15, and fur-
ther dimensionality reduction was made using PCA. The largest principal
value was then used in sensor fault detection using control charts. Once a
fault was detected, more detailed procedures were triggered to identify and
correct the faulty sensor.

No sensor fault. First, the test data without a faulty sensor is studied.
This analysis is made to study the effect of the added mass and the environ-
mental changes to the model. The Hotelling T' control chart (Montgomery,
1997) was used to detect sensor failure as shown in Figure 9; Note the loga-
rithmic scale. It can be seen that the chart shows no indication of abnormal
operation and it can be concluded that all sensors are working.

The effect of the added mass was detected with the structural health
monitoring system using the modal parameters as features. The influences
of the environment were eliminated using factor analysis (Kullaa, 2002).
The sensor fault detection was insensitive to these variations, validating the
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proposed approach in distinguishing between the sensor fault and structural
damage or environmental changes.

Hotelling T Control Chart
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Figure 9. Control chart without sensor fault.

Bias. Bias gives values that are shifted by a constant from the true value.
In the test data, sensor 3 was biased by a value of 0.01. The standard devi-
ation of the sensor data was 0.02. The control chart for the fault detection
is shown in Figure 10 (left; note the logarithmic scale) and the faulty sensor
identification is shown in Figure 10 (right) plotting the rms value of the
residuals for each sensor. The sensor fault was perfectly detected and the
faulty sensor was correctly identified by the minimum residual.

Complete failure. In the case of complete failure the sensor gives a con-
stant value. In the test data, sensor 13 was given a value of 0.01. The
control chart for the fault detection is shown in the left of Figure 11 and the
faulty sensor identification is shown in the right of Figure 11. The sensor
fault could be detected using the S chart (Montgomery, 1997) monitoring
the change in variance; Note the logarithmic scale. Also, the faulty sensor
was correctly identified.

Drifting. Drifting of sensor 1 was simulated by adding a linearly varying
value to the test data. The value varied from 0 to 0.1 over the measurement
range. The control chart for the fault detection is shown in the left of Figure
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Figure 10. Left: control chart for the biased sensor 3. Right: faulty sensor
isolation from the minimum rms of the residuals.
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Figure 11. Left: control chart for the complete failure of sensor 13. Right:
faulty sensor isolation from the minimum rms of the residuals.

12 and the faulty sensor identification is shown in the right of Figure 12.
The sensor fault was perfectly detected; Note the logarithmic scale. Also,

the faulty sensor was correctly identified.

Precision degradation. In the case of precision degradation, sensor 4
was multiplied by a random value between 0.5 and 1.5. This resulted in a
change in variance and the S chart was the best indicator to detect the sen-
sor failure and is shown in Figure 13 (left). The faulty sensor identification
is shown in Figure 13 (right). The sensor fault was perfectly detected; Note
the logarithmic scale. Also, the faulty sensor was correctly identified. The
rms values for sensors 4, 5, and 6 were close to each other and made sensor
identification difficult. In particular, when sensor 5 was faulty, sensor 4 was
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Figure 12. Left: control chart for the drifting sensor 1. Right: faulty
sensor isolation from the minimum rms of the residuals.

incorrectly identified as the faulty sensor; however, fault detection caused
no difficulties.
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Figure 13. Left: control chart for sensor 4 with precision degradation.
Right: faulty sensor isolation from the minimum rms of the residuals.

Sensor correction. Sensor 3 with the bias studied in section 3.2 was
reconstructed. The true signal (full line) and the estimated signal (dashed
line) are shown in Figure 14, in which it is difficult to see much difference
between the two. It was therefore possible to reconstruct a sensor when
enough redundancy existed in the measured data.

Failure in fault detection, isolation, and reconstruction. The previ-
ous sections showed successful cases in sensor fault detection, isolation, and
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Figure 14. Correction of sensor 3. Left: whole range. Right: detail. Full
line: true signal; Dashed line: estimated signal.

reconstruction. In the following, a case with erroneous results is discussed.

Sensor 14 was modified by the same amount of precision degradation as
in Section 3.2. The results are shown in Figure 15. The sensor fault was not
detected and the faulty sensor was incorrectly identified as sensor 15. The
rms value for sensor 14 was only the third lowest. In sensor reconstruction
(Figure 15 right) it can be seen that for sensor 14 there is not enough
redundancy, resulting in poor reconstruction. The problem would probably
have not existed if more sensors had been used.
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Figure 15. Left: control chart for sensor 14 with precision degradation.
Right: sensor correction, detail. Full line: true signal; Dashed line: esti-
mated signal.
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3.3 Summary

A straightforward method for sensor fault detection, identification, and
correction was introduced. All steps were based on minimum mean square
error estimation using the correlation of the variables to estimate the re-
moved sensor. The main assumption is that initially no sensor is faulty so
that training data can be acquired to build the model. The method was val-
idated using experimental vibration data. If the sensor set provided enough
redundancy, the results were excellent. For some sensors, however, this was
not the case and erroneous results were obtained: a) no fault was detected;
b) a fault was detected but an incorrect sensor was identified. In these
cases the reconstruction was also inaccurate. The number of sensors (15)
was close to the number of modes (14), which probably caused a lack of re-
dundancy. The results would probably have been better if more sensors had
been used or if the frequency bandwidth had been reduced. It was assumed
that a single sensor only was faulty; the method can be further developed to
allow more faulty sensors. Also, the faulty sensor isolation may be too slow
in practice with several sensors, and a faster method should be developed.
It is anticipated that in the future more structures will be equipped with a
sensor array having numerous sensors; this fact makes the proposed method
valuable and available for practical applications.

4 Damage Detection Using Control Charts

In structural health monitoring, each measurement is classified into two
categories according to the state of the structure: undamaged or dam-
aged. This classification must usually be done using unsupervised learning
methods, because data from the damaged structure are not available in the
training phase. It is assumed that the vibration characteristics of the struc-
ture change due to damage, and by identifying the appropriate features and
monitoring their variation in time, the existence of damage can be observed.
However, no measurement set results in exactly the same numbers, and the
features have natural variability. The objective is therefore to decide if the
change of the features is statistically significant. In an outlier analysis, the
distribution of the training data is estimated and when new data arrive, the
fit in the distribution is tested. In this section, damage detection is studied
using control charts (Sohn et al., 2000a; Kullaa, 2003).

Damage detection can be performed either on-line or off-line; the ulti-
mate goal is a monitoring system with on-line damage detection. There
are however still problems to be solved: (1) Which variables should be se-
lected for the damage detection? (2) Which damage detection algorithm
or control chart would observe the possible damage? (3) How should false
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alarms be handled? In off-line damage detection, one can experiment with
different variables and algorithms and study their sensitivity. Moreover, in
an interactive study the final decision can be made by a human, not by the
computer, facilitating the solution considerably.

A comparison of different control charts is performed here using numer-
ical modal data. The features include natural frequencies and modeshapes.
The following control charts are studied: univariate Shewhart, z, CUSUM,
and EWMA charts, and multivariate Shewhart T', Hotelling 7', MCUSUM,
and MEWMA control charts. The reliability and sensitivity of the control
charts are investigated. Differences between off-line and on-line results are
discussed. Dimensionality reduction is discussed and applied using principal
component analysis.

4.1 Control Charts

Statistical methods must be used for damage detection. A control chart
(Montgomery, 1997) is one of the primary techniques of statistical process
control and is a very useful process monitoring technique. It plots a quality
characteristic as a function of the sample number. The chart has lower
and upper control limits, which are computed from those samples when the
process is assumed to be in control. When unusual sources of variability are
present, sample statistics will plot outside the control limits; in that case
an alarm signal will be produced. An advantage of control charts is that
they can be automated for on-line structural health monitoring. Different
control charts are studied including univariate and multivariate Shewhart,
CUSUM, and EWMA control charts. They are described briefly below.

Shewhart chart. In the Shewhart chart, or xbar chart (Montgomery,
1997) the subgroup mean x of a variable is plotted. The upper and lower
control limits, UCL and LCL, respectively, are,

UCL

LCL } =x+ A3S (12)
where © = mean(z) is the average of the subgroup means, S is the average
of the subgroup standard deviations, and Ag is a constant depending on the
subgroup size, which is typically 4, 5, or 6.

Shewhart T chart. The multivariate counterpart of the Shewhart chart
is the Shewhart T, or Hotelling T' control chart (Montgomery, 1997), where
the plotted characteristic is,
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T? =n(x —x)TS7 (x — x) (13)

where x is the subgroup average, x is the process average, which is the mean
of the subgroup averages when the process is in control, and S is the matrix
consisting of the grand average of the subgroup variances and covariances.
The upper control limit is,

_ p(m+1)(n—1)

UCL
mn—m-—p-+1

a,p,mn—m—p+1 (14)
where p is the dimension of the variable, n is the subgroup size, m is the
number of subgroups when the process is assumed to be in control, and
Fo p.mn—m—p+1 denotes the o percentage point of the F' distribution with
p and mn — m — p + 1 degrees of freedom.

x chart. Control charts for individual measurements include the = chart,
cumulative sum, and exponentially weighted moving average control charts.
On the z chart (Montgomery, 1997) the variable x should fall between the
control limits,

M
UCL}:xi?, R

LCL ds (15)

where z is the sample average and MR is the average of the moving ranges
of two successive observations MR; = |z; — ;1| and dy = 1.128.

There is a well-known relationship between the range of a sample from a
normal distribution and the standard deviation of that distribution (Mont-
gomery, 1997). If R = Zpax — Tmin 1S the range of the sample of size n and
R is the average range, the quantity R/ds is an estimate of the standard
deviation o, where dy depends on the sample size n. For an x chart, n = 2
and equation 15 with = 4+ 30 limits follows.

Hotelling T chart with n = 1. The multivariate counterpart of the x
chart is the Hotelling T' chart with the subgroup size n = 1 (Montgomery,
1997). The plotted statistic 7% (Mahalanobis distance) and the upper con-
trol limit are defined as,

T? = (x —x)TS !} (x — x) (16)
yor = PmEDim =1) (17)
m2 —mp op,m=p
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where x is the mean of x, and S the data covariance matrix, when the
process is in control.

CUSUM chart. The cumulative sum (CUSUM) and the exponentially
weighted moving average (EWMA) control charts are good alternatives to
those above, when detection of small shifts is important. While the con-
trol charts above use the information of the last sample only, the CUSUM
and EWMA charts incorporate all the information in the sequence of sam-
ple values. The tabular cusum (Montgomery, 1997) works by accumulating
deviations from x that are above target with one statistic CT and accu-
mulating deviations from z that are below target with another statistic
C~. The statistics C™ and C~ are the one-sided upper and lower cusums,
respectively. They are computed as follows,

Ct = max{0,7; — (z + ko) + C;" |}
C7 = max{0, (z — ko) — 2, + C;,}

(2

(18)

where Cf = Cy = 0, x is the target value for the characteristic z, and k is
called the reference value and is often chosen halfway between the target and
the out-of-control value that one is interested in detecting quickly. o is the
standard deviation of the variable used in forming the cusum. The process
is considered to be out of control, if either C* or C~ exceeds the decision
interval H = ho, where h depends on the shift to be detected. Notice
that C;" and C; accumulate deviations from the target value z that are
greater than ko, with both quantities reset to zero upon becoming negative
(Montgomery, 1997).

MCUSUM chart. A vector-valued CUSUM (Crosier, 1988), or MCUSUM
is a multivariate counterpart of the CUSUM chart. The multivariate CUSUM
chart signals when the plotted characteristic Y; > h, where the constant h

depends e.g. on the dimension of the feature vector.

Yf = S;TFS*ISi (19)
where,
o, C; <k
Si_{ (sic1+x —x)(1—k/C)), Ci>k (20)
C? = (si—1+% — x) T8 (s;_1 + x5 — x) (21)

where sg = 0 and k > 0 is the same as for the CUSUM chart.
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EWMA chart. The exponentially weighted moving average (EWMA)
chart (Montgomery, 1997) is also a good alternative when one is interested
in small shifts. It is defined as,

zi = Ax; + (1 — /\)Zi—l (22)

where 0 < A < 1. The control limits are as follows,

U } - Lo\/% [ = (1— )] (23)

where L is the design parameter of the chart.

MEWMA chart. A multivariate exponentially weighted moving average
(MEWMA) chart (Lowry et al., 1992) is a multivariate counterpart of the
EWMA chart. It is defined analogously by,

where 0 < A <1 and Zg = 0. The quantity plotted on the control chart is,

T? = Z]S,'Z; (25)
where the covariance matrix is,

A 2
Szizm[l—(l_” 'S (26)
The MEWMA chart signals when T? > h, where the constant h depends
e.g. on the dimension of the feature vector.

4.2 Numerical Example

Description of structure and data. The application here is to a finite
element model of a vehicle crane (Figure 16) at varying joint positions and
tip loads. Experimental results of the same structure will be given in Section
7. The structure was modelled with planar beam and plane stress elements.
The hydraulic cylinders were modelled with spring and dashpot elements.
A point mass represented the load at the tip. The bottom of the fixed link
was clamped and constraint equations were used in the modelling of the
joints.

The natural frequencies and complex modeshapes were first chosen as
the damage-sensitive features. They were influenced by four latent variables
corresponding to the configuration: three cylinder strokes and the load at
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the tip, which were assumed unknown. In the simulations they varied ran-
domly in a limited range. Figure 17 shows the limit configurations. The
load varied randomly between 0 and 50 kg. In addition, the relationship
between the cylinder stiffness and stroke was nonlinear.

— - - —

(113n

Figure 16. Vehicle crane HIAB-022-2L.

Figure 17. Finite element models of the crane in the limit configurations.

Damage was modelled as a stiffness reduction in the bottom beam el-
ement of the fixed link. Different sizes of damage were studied, ranging
from 1 to 10 percent of the original stiffness. The undamaged structure
was first monitored with 2000 measurements; then, damage was gradually
increased, and each case was monitored with 250 measurements. Noise with
five percent standard deviation was added to all features.
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The modeshapes were recorded at four different positions of the struc-
ture in the links’ transverse direction. The five lowest modes were used
for damage detection, and after the normalisation of the modeshapes, this
resulted in 35 features.

The first 700 observations were used as training data to remove the oper-
ational effects using minimum mean square error (MMSE) estimation. Next
700 observations were used as the in-control samples to compute the con-
trol limits for the control chart. After MMSE estimation, the dimensionality
of the multivariate residual vector was reduced using principal component
analysis and the remaining variables were used for damage detection using
different control charts.

Dimensionality reduction. Feature extraction from measured time his-
tories into modal parameters compresses the data considerably. However,
the dimensionality of the feature vector is still often too high for a reli-
able statistical analysis. For example, when five natural frequencies and
the corresponding modeshapes from four sensors were used for the dam-
age detection, the dimension of the feature vector was 35, being too high
with 700 samples only from the undamaged structure. Therefore, a further
dimension reduction was required.

Several dimensionality reduction techniques have been proposed, the
most popular being principal component analysis (PCA) (Sharma, 1996).
Suppose that instead of using all the original variables one only uses a few
new variables to represent most of the information contained in the data.
Principal component analysis projects the original data into new orthogonal
axes, which are the eigenvectors of the data covariance matrix. The new
variables, called principal component scores, are ordered so that the first
variable accounts for the maximum variance in the data. The number of
variables selected for subsequent analysis depends on the application. In this
study, the first principal component only is used in the univariate control
charts, whereas for the multivariate control charts, the number of principal
components was determined so that the remaining variables explained at
least 90% of the variance.

Results. In all control charts of this study the number of in-control sam-
ples used was 700. In the Shewhart and Shewhart T' control charts the
subgroup size was 4. The dimension of the feature vector was 35, being too
high for a reliable statistical analysis. Therefore, those first principal com-
ponents were selected which explained 90% of the variance in the features.
The resulting number of principal components was 16. The multivariate
control charts for the features are shown in Figure 18. The initialisation of
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each damage size is also shown. Because the damage cases were known, the
sensitivity and reliability of different control charts could be assessed. The
number of outliers in different control charts at each damage level is shown
in Table 1. It can be seen that damage levels 2-4 were clearly detected
with all multivariate charts, except that the Hotelling T control chart was
relatively insensitive to damage level 2. The MCUSUM chart was the most
sensitive as expected, detecting also the level 1 damage. It is interesting that
the Hotelling T control chart resulted in most false indications of damage
together with the MEWMA chart and that the MCUSUM chart produced
no false indications of damage.

For the univariate control charts, the first principal component only
was used. It was seen to explain 53% of the variance in the features and
resulted in the control charts shown in Figure 19 and the number of outliers
at each damage level listed in Table 1. All control charts worked perfectly
for damage levels 2—4; only the x chart classified half of the data of damage
level 2 as undamaged. The CUSUM chart was the most sensitive for the
damage level 1. All charts had some false indications of damage, but their
number was statistically acceptable.

Comparison between the univariate and multivariate control charts is,
however, difficult, because the variables in the charts were different. Gen-
erally, multivariate control charts offer more flexibility, as they can always
be applied regardless of the dimensionality of the feature vector. For a
higher accuracy, the dimensionality should, however, be reduced below five,
preferably even lower. The choice of the control chart depends also on the
application. Generally, the Shewhart and Shewhart T charts are quite ro-
bust, because they are based on sample averages. The main disadvantage
is that a higher amount of training is needed. If high sensitivity is desired
to detect small faults, then the MCUSUM control chart would be justified.

On-line damage detection. In the previous section, the control charts
were plotted after all data had arrived with information on all four levels of
damage. In a real monitoring application, the control charts are applied on-
line after each measurement. As the new sample has arrived, it can change
the direction of the principal axes and consequently the control chart. Also,
the number of remaining principal components may vary. On the other
hand, the control charts are identical in the on-line or off-line mode, if no
dimensionality reduction is applied.

The results in the previous section hold essentially only for that par-
ticular condition of the structure. With information on the lowest damage
levels only, the directions of the principal axes are probably not yet estab-
lished. In this section, different control charts are studied in an on-line mode
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Figure 18. Multivariate control charts for the first 16 principal components.

when data arrive sequentially. The objective is to study the performance
of early damage detection. When the last measurement has arrived, the
results agree with those in the previous section.

Multivariate and univariate control charts were applied to on-line dam-
age detection. The modified on-line control charts are shown in Figures 20
and 21, where the statistics of the most recent measurement only and the
corresponding control limits are plotted. The number of principal compo-
nents in the multivariate control charts varied between 16 and 20 depending
on the damage size. The lowest number corresponded to the largest damage
level as expected.

The modified on-line control charts can be applied also in practice when
information of damage is not available. In this example, damage is known
and the sensitivity and reliability can be analysed as follows. Figures 22
and 23 show the proportion of outliers at each damage level after the most
recent sample. The figures show that the Shewhart T'and MEWMA control
charts detect damage at level 2, the Hotelling T" control chart only from level
3, and the MCUSUM chart from level 1. Reasonably few false indications
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Figure 19. Univariate control charts for the first principal component.

Table 1. Number of outliers in different control charts. The first four charts

are for the first 16 principal components, while the last four charts are for
the first principal component.

Control chart | Undamaged | Damage 1 | Damage 2 | Damage 3 | Damage 4
Shewhart T’ 0/325 8/62 57/63 62/62 63/63
Hotelling T' 6/1300 3/250 23/250 246/250 250/250
MCUSUM 0/1300 234/250 250/250 250/250 250/250
MEWMA 9/1300 89/250 249/250 250/250 250/250
Shewhart 2/325 32/62 63/63 62/62 63/63

x chart 3/1300 13/250 126/250 250/250 250/250
CUSUM 5/1300 244/250 250/250 250/250 250/250
EWMA 3/1300 127/250 250/250 250/250 250/250
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of damage occur in each chart at different levels of damage. The univariate
control charts show similar behaviour. The Shewhart chart, CUSUM, and

EWMA charts detected damage at level 2, whereas detection in the x chart
occurred clearly only at level 3. Also here the number of false indications

of damage was not excessive.
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Figure 20. Multivariate on-line control charts for the first 16—20 principal
components. The charts represent the most recent sample and the corre-

sponding instantaneous limits.

4.3 Summary
Damage detection is a statistical problem to find changes in a structure

through changes in damage-sensitive features. Control charts are powerful
and visual tools, and also easy to apply to damage detection. Different uni-
variate and multivariate control charts were studied to monitor the change
in the mean. Also the change in the variability can be studied using the S
charts (Montgomery, 1997). They are useful e.g. for detecting multiplicative

sensor faults.
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Figure 21. Univariate on-line control charts for the first principal compo-
nent. The charts represent the most recent sample and the corresponding

instantaneous limits.

The control charts were applied to detect damage in a vehicle crane.
The multivariate control charts offer

All control charts performed well.
more flexibility as they can be applied to any number of features. How-

ever, in practice the maximum number of features is restricted to around
five, because the statistical accuracy decreases with an increasing number
of variables. Dimensionality reduction is therefore an essential step before
applying control charts. Principal component analysis was applied to the
whole data range including the training data and the test data; it finds the
directions of maximum variability indicating damage. Projecting the fea-
tures onto these directions, the dimensionality can be considerably reduced
without a loss of relevant information needed for damage detection. Expe-
rience has shown that usually one or two largest principal components are
sufficient. In this study, however, the applied criterion resulted in a larger

number of principal components.
The control chart can be chosen based on the size of damage that must
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Figure 22. The proportion of outliers in multivariate on-line control charts
at each damage level (D, ..., Dy) after the most recent sample.

be detected. To detect small changes, CUSUM or EWMA charts can be
applied. Increasing the sensitivity to detect small changes also increases
the sensitivity to false alarms. Shewhart and = charts can detect moderate
changes, but they are more insensitive to false alarms. One suggestion
to eliminate false alarms is to state that a certain percentage of the last
N samples must be out of control. This decision strategy would be more
reliable, but the alarm may be received after a delay. For the CUSUM
and EWMA charts an equivalent strategy would be to extend the control
limits. Another strategy would be to disregard the sample indicating the
first out-of-control condition and to make another measurement.

Usually the statistic plotted is assumed to be normally distributed; in
many cases this assumption cannot be guaranteed. The statistic in the
Shewhart charts is an average of 4—6 successive variables, which makes the
distribution of the plotted statistic close to normal. However, if the fea-
tures are autocorrelated, the features must be pre-processed to remove the
autocorrelation. For example, the autocorrelation can be modelled with
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Figure 23. The proportion of outliers in univariate on-line control charts
at each damage level (D, ..., Dy) after the most recent sample.

appropriate time series models, and one then applies control charts to the
residuals.

As the SHM systems work on-line trying to detect damage once it occurs,
it is necessary to apply on-line methods to assess different control charts.
If PCA is applied, the plotted statistic is different after each measurement
and the control chart must be re-designed. Off-line methods with all data
available tend to give too-optimistic results suggesting that also small dam-
age levels can be detected. However, an on-line study revealed that small
damage is often invisible, but is detected only after it has grown to a certain
level.

The visual effect of the control chart cannot be underestimated. A con-
trol chart gives a picture of the damage evolution with time at a glance,
and makes it also possible to subjectively assess the reliability of the anal-
ysis. Control charts can be easily automated and different reports can be
generated from the results.
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5 SHM Under Changing Environmental or
Operational Conditions: Linear Models

Structural health monitoring of machines and structures often utilises infor-
mation extracted from vibration measurements. Changes in the selected fea-
tures extracted from the measurements compared with those of the healthy
structure can be interpreted as an indication of damage. However, the nat-
ural variation in environmental or operational conditions may also influence
the same features and thus yield false indications of damage (Wahab and
Roeck, 1997; Farrar et al., 1997; Alampalli, 1998; Cornwell et al., 1999;
Peeters and De Roeck, 2000; Rohrmann et al., 2000; Sohn et al., 2000b,
2001, 2003; Manson, 2002; Kullaa, 2002, 2003). For example, temperature,
humidity, wind, traffic, etc. can cause such natural variability; if their
effects are not taken into account, they can make vibration-based health
monitoring unreliable.

In spite of the importance of the problem, there are only a few studies
investigating the normal variation of dynamic response of structures due
to changes in environmental or operational conditions. Problems in health
monitoring due to these effects include:

1. Although temperature measurements are relatively easy to perform,
the sensor locations may be difficult to determine.

2. Other environmental or operational quantities may affect the data.
Some quantities may be ignored or can be difficult to measure.

3. Each structure is individual. Models accounting for environmental ef-
fects may be complicated and need a lot of effort to develop separately
for each structure.

4. Long monitoring is needed before automatic damage detection can be
initiated.

5. Only part of the measurements can be utilised, for example data from
similar conditions (Sohn et al., 2000b) or features for which a model
has been developed (Peeters and De Roeck, 2000).

This study introduces a technique, factor analysis, that attempts to elim-
inate most of the problems above. The measurement of environmental vari-
ables is not needed; affecting quantities need not be known; there can be
several environmental variables acting simultaneously; the same model can
be used for different structures; and all monitoring data can be utilised
regardless of current conditions. The restriction of the model is the as-
sumption of a linear relationship between the features and the unknown
latent variables.
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5.1 Factor Analysis

Let it be assumed that the environmental changes (temperature, humid-
ity, etc.) have an effect on the measured variables (e.g. natural frequencies).
The environmental variables are not measured but their effects are merely
observed from the measured variables. The objective of factor analysis is to
search for or identify the underlying latent factors that can explain the cor-
relation among the variables (Sharma, 1996). The measured variables are
functions of these factors, and they reflect the presence of the latent con-
structs. Although factor analysis is typically labelled as a data-reduction
technique, this is not the case in this application. The amount of data is
not changed during factor analysis, because the factors themselves are not
used, but their influences are only removed from the observations.

Figure 24. Factor model. The measured variables x; are also called in-
dicators, & are common factors, €; are unique factors, and \;; are factor
loadings.

The underlying model is sketched in Figure 24. Mathematically it can
be written as,

x=A{+e¢ (27)

where x is a p X 1 vector of the measured variables, A is a p X m matrix
of factor loadings (m < p), £ is an m x 1 vector of unobservable factors,
and € is a p x 1 vector of unique factors. Equation 27 is the basic factor
analysis equation. It is assumed that the factors are not correlated with the
unique factors, and without loss of generality it is assumed that the means
and variances of the factors are zero and one, respectively.
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In a structural health monitoring application, the measured variables x
can be, for example, the lowest natural frequencies of the structure; the
factors £ are the latent variables affecting those natural frequencies, e.g.
temperature or the joint positions of a manipulator. Usually the objective
of factor analysis is to search for or identify the underlying latent factors.
In structural health monitoring, however, one is not usually interested in
the quantitative values of the factors, but merely in their effects on the
measured variables.

The factor model is constructed using the measurements from the un-
damaged structure under different conditions. This model is then used to
estimate the underlying factors and finally to eliminate their effects from
the data. What remains are the unique factors e, which now should be
independent variables and insensitive to the environmental or operational
conditions. These unique factors are then used for damage detection. If
the structure deteriorates so that the measured variables change, the pre-
viously trained factor model cannot explain their changes. These changes
would therefore remain and result in an alarm. The learning phase should
contain a full range of operational conditions. It should also be empha-
sised that the model is solely based on measurement data; no mathematical
model of the structure is needed.

It is assumed that the factors are mutually independent and normally
distributed with zero mean and unit variance: ¢ ~ N(0,I). The vector
of unique factors ¢ is normally distributed with zero mean and a diagonal
covariance matrix ¥: & ~ N(0, ¥). The diagonality of ¥ is one of the key
assumptions in factor analysis. According to the model (equation 27), x is
therefore distributed with zero mean as in,

E(x) = E(A +¢)

— AB(§) + E(e) (28)
=0
and with covariance matrix, R,
R = BE(xxT)
= E[(AE +€)(AE +¢)T]
= B[(AE +e) (AT + 7)) (29)

= E(AEETAT) + B(ee”)
=AAT + @
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The measured variables are then also normally distributed: x ~ A(0, AAT +
). In equation 29 it was assumed that E(¢£7) = 0.

The objective of factor analysis is to estimate the parameter matrices
A and ¥ that best model the covariance structure of x. This can be done
using e.g. principal factor analysis. After studying the algorithm, the factor
score estimates f are discussed.

The real, symmetric and non-singular data covariance matrix R can be
decomposed as in PCA,

R = PIrP”
r, ol[p;
=[P, P
[P1 P [0 Fz] {Pz] (30)
=PI'P] + P,I',P]
=AAT + @

where P is an orthogonal matrix containing the eigenvectors of matrix R.
T is a diagonal matrix containing the eigenvalues of R in a decreasing order.
In the third row of equation 30, the eigenvectors P are partitioned into Py
and P corresponding to the largest and lowest eigenvalues, respectively. If
P consists of the m largest eigenvalues, where m is the number of factors,
the last row of equation 30 follows provided that,

A =P1}/? (31)

and,

¥ = P,T,PT (32)

However, the model assumptions are violated, because W in equation 32 is
a full matrix. An iterative algorithm is needed to force ¥ diagonal. The ith
iteration includes the following two steps. First, A is estimated assuming
¥ is known and assuming ¥(©) =0,

. . . N . . T
R w0 p{TOp(” 4 pOrRy) )
_ADAGT L pipOpi”
2 2 2

The error covariance matrix ¥ is updated in the second step,

T = diag |[R — ADAD" (34)
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The iteration is continued until ¥ converges.

Given A and W, the estimate of the factor scores é can be obtained. Dif-
ferent estimates have been suggested; their comparison in damage detection
can be found in Kullaa (2004). The Thomson’s factor score (Mardia et al.,
1979) is obtained using the Bayesian approach. The posterior probability
distribution can be computed by Bayes’ rule,

px|p(§) _ N(x|AE, ¥)N(£]0,1)

p(x) N(x[0,AAT + @) (35)

p(€lx) =
= ¢1exp —;(x —AOTO Y (x— AE) — ;ng + ;XT(AAT + W) x

which is a multinormal density and c; is a constant. The mean and co-
variance of £ are obtained by completing the square of the exponent with
respect to &,

- ;(x —AOT® N (x — Ag) — ;ng + ;XT(AAT +¥)"x

1 1 1

= 2XT\If_1X +TAT® 1x — 2§TAT\II‘1A§ — 2xT(AAT +¥)"x
1 1

=— 2§T(I + ATO A+ TATO Ix — QXT[xI/—l — (AAT + @) )x

1

- 1" @+ ATEA)

[E—T+ATT A ATE '
x [ = (T+ATTA)TATE %] + o
(36)

where co is a constant. The Thomson’s factor score is the mean of the
distribution and can be readily found from above,

E=T+ATOT'A)ATE® 'k (37)

and the covariance of ¢ given x is (I + ATW1A)~L.
For damage detection, the unique factors € can be computed from equa-
tion 27 once the factor scores £ have been estimated,

£=x—A¢ (38)

These unique factor scores are then used for damage detection. Applications
of the factor analysis are given below.
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The dimensionality of the feature vector is not affected by the factor
analysis; therefore, it is usually necessary to perform a dimensionality re-
duction before using statistical methods to assess damage. Principal com-
ponent analysis (Sharma, 1996) is again used in this study. Moreover, if the
multivariate Hotelling T statistic is used in damage detection, factor anal-
ysis alone is not sufficient, because the Hotelling T statistic of the original
variables x and the unique factor score estimates £ are identical (Fukunaga,
1990).

5.2 Numerical Analysis

The numerical data here simulates four natural frequencies monitored
once a day during nine years under varying temperature. The variation of
the natural frequencies is considered to be a consequence of temperature,
damage, and normal statistical fluctuation,

fi = fi(To) + ki(T — To) + e (39)
fip = fip(To) + ki(T — Tp) + €; (40)

where f; and f;p are the natural frequencies (i = 1,2, 3, 4) of the undamaged
and damaged structure, respectively; T is the current temperature; Ty is the
reference temperature; coefficient k; defines the linear relationship between
temperature and frequency 4; and e; ~ N(0,0?) is the natural variability,
or the error term. Notice that the damage was assumed to affect the mean
value of the frequency only. The second and third terms in equation 40 were
unaffected by damage.

The structure was undamaged during the first two years. Damage was
introduced in the beginning of the third year, causing the natural frequencies
to decrease. Different magnitudes of damage were defined and the influence
of damage level D on the natural frequencies was modelled using a coefficient
d;p for frequency i:

fin(To) = fi(To) — dipo (41)

The damage level increased in the beginning of each successive year
and remained constant until the end of the year. The coefficient d;p varied
between 0 and 4. The reference temperature was Ty = 14°C. The simulation
parameters are shown in Table 2.

Temperature 7" was simulated by random sampling given the minimum
and maximum average values in each month. The temperature and fre-
quency variations during nine years are shown in Figure 25. It should be
noted that the simulation might not be physically realistic for structures
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Table 2. Simulation parameters.

i | fi(To) ks 0 div | dig | diz | dia | dis | dig | dir
Hz Hz/K | Hz

1 4.0 —0.01 0.02 0 0.5 1 1.5 2 2.5 3

2 9.0 —0.015 | 0.06 | 0.33 | 0.83 | 1.33 | 1.83 | 2.33 | 2.83 | 3.33

3 10.0 —0.02 | 0.06 | 0.67 | 1.17 | 1.67 | 2.17 | 2.67 | 3.17 | 3.67

4 12.0 —0.03 0.1 1 1.5 2 2.5 3 3.5 4

including materials that tend to behave nonlinearly below freezing point.
nonlinear effects are considered in Section 6.
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Figure 25. Temperature (left) and the four natural frequencies (right)
during nine years.

It was assumed that temperature T was not measured, but the four
frequencies only were available. The factor model was estimated using the
data from the first year of monitoring. The first year was also considered
as the in-control period, the data of which were used to design the control
charts for damage detection.

Multivariate Shewhart charts (Montgomery, 1997) for all four natural
frequencies before and after factor analysis are shown in Figure 26. The
day of initiation of each damage scenario is also shown. The improvement
using factor analysis for damage detection can be clearly observed. Factor
analysis clearly eliminated the temperature effect. All damage scenarios
were detected and no false indication of damage was obtained.

One of the remaining problems is how many factors should be chosen.
In the simulated data, there was only one underlying factor, but in reality
the number of latent factors is usually not known. The effect of the number
of factors was tested using 1, 2, and 3 latent factors. All produced excellent
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results and no final conclusion could be made. The number of factors is also
studied with real measurement data as reported in the following section.

Shewhart T Control Chart Shewhart T Control Chart
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Figure 26. Control charts for Hotelling T statistic for original data (left),
and after factor analysis followed by PCA (right).

5.3 Wooden Bridge

The structure in the laboratory was the wooden model bridge shown in
Figures 2 and 8. The experimental setup was described in Section 2.2.

The healthy structure was monitored for several days to acquire training
data at different environmental conditions. Five artificial damage scenarios
were then introduced by adding small point masses of different size to the
structure. They were attached on the top flange, 600 mm left from the
midspan. The damage scenarios are shown in Table 3, in which damage
number 0 means the healthy structure. The last measurements were again
from a healthy structure. The added mass was very small compared to the
total weight of the structure, even the highest mass increase was only half
a percent.

The environmental effects in the laboratory were not anticipated, but
it was noticed that the identified features of the bridge varied significantly.
The reason for the environmental changes was assumed to be due to the fan,
running during working hours and being turned off for the night. Because
the structure was made of wood, it was assumed that the variation of the
modal properties was mostly due to temperature and humidity variations.

The features used in damage detection were the natural frequencies and
modal co-ordinates of modes 6-8, 10, and 12-16. The first 800 samples were
used as the in-control samples. Control charts for the natural frequency of
mode 6 before and after factor analysis are shown in Figure 27. The number
of factors used was 87. Factor analysis resulted in much better performance
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Table 3. Increase of the structure’s mass at each damage scenario and the
corresponding measurement numbers.

Damage case 0 1 2 3 4 5 0
Added mass (g) 0 235 | 47.0 | 70.5 | 123.2 | 193.7 0
Proportional 0 0.065 | 0.13 | 0.20 | 0.34 | 0.54 0

increase (%)

First measurement 1 1881 | 1901 | 1924 | 1946 | 1966 | 1986
number

Last measurement | 1880 | 1900 | 1923 | 1945 | 1965 1985 | 2008
number

and different damage levels can be observed. However, several outliers are
present also in the in-control stage.

The effect of the number of underlying factors in the model was studied
using 0, 1, 2, 3, 20, and 87 factors. The Hotelling T" control charts are shown
in Figure 28. The dimensionality of the feature vector was p = 261, and
dimensionality reduction was made using PCA. Samples 801-1600 were used
for factor analysis, whereas samples 1-800 were used as in-control samples
to design the control charts. This distinction is important, because if the
same data were used for both the factor model construction and control
chart design, too-tight control limits may result. It can be seen that there
were probably two significant factors affecting the modal properties, because
using two factors produced superior results compared to those with 0, 1, or
3 factors. However, increasing the number of factors to 20 or higher also
resulted in reliable damage detection. The number of factors is usually not
known in advance, and the results may be sensitive to the choice, as seen
in Figure 28. It is therefore suggested to use quite a few factors, because
it was found that the results stayed stable with an increasing number of
factors. In this study, the number of factors was determined to account for
at least 99.9% of the variance in the data, resulting in 87 factors. All damage
configurations were detected. Occasional false indications of damage were
also present, suggesting that at least two successive out-of-control samples
should be present before an alarm is generated.

5.4 Summary

A promising attempt was made to eliminate environmental and opera-
tional effects from a structural health monitoring system using factor anal-
ysis. Factor analysis offers many advantages compared to existing tech-
niques: the underlying quantities need not be measured, they need not be
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Figure 27. Control charts for the 6th natural frequency, before (left), and
after factor analysis (right).

even known, there can be several factors affecting simultaneously, and the
same model can be used for different structures. The technique assumes
a linear relationship between the features and latent factors. The training
data must include at least one complete cycle of in-service conditions to
build the factor model.

Because the number of factors is not usually known, it is suggested to use
quite a few factors. This was also found to produce the most reliable results.
It was found that Hotelling T control charts, both for the original features
and features after factor analysis, produced identical results. Therefore, in
order to exploit the advantageous influence of factor analysis in removing
environmental and operational effects, the factor analysis was followed by
principal component analysis. It was also found with the laboratory ex-
periments that not all features individually were in control after the factor
analysis, whereas the multivariate Hotelling T control chart worked well.

It is recommended to use different data segments for the factor model
construction and for the control chart design. It is also suggested to use
a high-dimensional feature vector, letting PCA decide which variables are
affected by damage. This approach can be utilised in the SHM system
design, since it is usually difficult to tell in advance, which features are
sensitive to damage.

6 SHM Under Changing Environmental or
Operational Conditions: Nonlinear Models

Damage in a structure can be indirectly detected from changes in features
extracted from the measurement data. However, the influence of environ-
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mental or operational variations on the same features is often stronger than
that of damage, making damage detection difficult and unreliable. If this ef-
fect is not taken into account, it can result in false identifications of damage
or incapability to detect minor damage.

The effects of environmental or operational variations on the damage-
sensitive features can be eliminated using latent variable models. Such
methods which are able to compensate linear influences on structural fea-
tures have been developed, including factor analysis (Kullaa, 2002), princi-
pal component analysis (PCA) (Manson, 2002; Yan et al., 2005a), robust
singular value decomposition (Vanlanduit et al., 2004), and minimum mean
square error (MMSE) estimation (Kullaa, 2004, 2005). All the methods
are based on the correlation structure between the features. The main ad-
vantage of latent variable models is that the environmental or operational
variables need not be measured.

However, the environmental or operational variations have often a non-
linear effect on the features. For example, as the temperature falls below
zero, its influence on the features can change abruptly. Usually this results
also in a nonlinear correlation structure between the features. There are
only a few studies of nonlinear models. Kullaa (2003) used a piecewise lin-
ear model to compensate the nonlinear effects. A similar approach was used
by Yan et al. (2005b) having local PCA models for local regions in the data
space. Sohn et al. (2003) used an autoassociative neural network that can
be thought of as a nonlinear PCA (Kramer, 1991).

The mixture of factor analysers model (Ghahramani and Hinton, 1996) is
used here to compensate the nonlinear effects. It is based on piecewise linear
factor analysers each modelling a region in the input space. An advantage
of the algorithm is that the clustering and factor analysis are performed
simultaneously using the expectation maximisation (EM) algorithm.

In the following sections, the model is introduced, the model parameters
identified, and the method is subsequently applied to a numerical study. The
second application is the Z24 Bridge, in which the natural frequencies vary
due to the temperature. The method is also compared to factor analysis
and nonlinear principal component analysis.

6.1 Mixture of Factor Analysers

Ghahramani and Hinton (1996) developed a nonlinear model, which is
an extended factor analysis allowing different local linear factor models for
different regions in the input space. For each factor analyser j, the model
is,
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X =pj+A;§+e (42)

where x is a p x 1 vector of the measured variables, y; is the mean vector,
A is a p x m matrix of factor loadings, £ is an m x 1 vector of unobservable
factors, and € is a p x 1 vector of unique factors. The factors are assumed
to be N (0,1) distributed (independent of the factor analyser j), and ¢ is
N (0, ¥;) distributed, with a diagonal ¥ .

In the mixture of factor analysers (MFA) model having m factor anal-
ysers, an m-dimensional binary random variable w is introduced, having a
1-of-m representation in which a particular element w; is equal to 1 and
all other elements are equal to 0 (Bishop, 2006). The marginal distribution
over w is specified in terms of the mixing coefficients 7;, such that,

7y = plw; = 1) (43)

in which,

0<m <1 (44)

and,

d om=1 (45)
J

The unknown parameters 6 of the model are 7, 115, A, and ¥; for each
factor analyser (j = 1,...,m). Ghahramani and Hinton (1996) assumed
that each mixture component has the same W. The analysis here, however,
is not restricted to this assumption.

For every observed data point x;, there are corresponding latent variables
& and w;, where ¢ = 1,...,n and n is the number of observations.

Consider a joint distribution of the complete data given the model pa-
rameters 6,

p(x, & w) = p(x|€, w)p({[w)p(w) (46)
The distributions in (46) are,

p(x[§, w) = H NVl + A€ ;)] (47)
p(€lw) = p(§) = N(£]0,1) (48)
p(w) = HW}”’ (49)
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resulting in,

p(x,&,w) = H [N (x| + A&, ;)] N(£]0,T) (50)

The likelihood function for the complete data set to be maximised is,
= W) = [T T [N Geili + A6, )" N(&l0.T) (51)
g

The model parameters can be obtained by maximising the likelihood
function. The last conditional distribution can be left out as it contains no
unknown parameters. However, the maximisation of the likelihood function
above cannot be done, because the latent variables are not available, only
the incomplete data X.

The expectation maximisation (EM) algorithm can be used to estimate
the unknown parameters of a probabilistic model that maximise the likeli-
hood. The algorithm starts with an initial estimate for the parameters and
iteratively modifies them to increase the likelihood of the observed data.
The EM-algorithm has two steps: the expectation step (E-step) and the
maximisation step (M-step). The E-step computes expectations given pa-
rameters, and the M-step provides new estimates of the parameters. The
algorithm guarantees that the log-likelihood will increase monotonically in
each iteration.

The expected values of the latent variable functions given the model pa-
rameters are computed in the E step of the EM algorithm. The expectation
is taken from the log-likelihood function, resulting in the following function,

Q=F logH H [N (%35 + A&, ‘I’j)]wij
(N

=F logHH{ﬂj(Qﬁ)_p/2|\Ilj|_1/2
L l j
1 Tg—1 o (
X exp [2(XiﬂjAa‘§i) W (xi — py — A'&')]} ]
=F logHH{ (2m)7P/2| W, | 71/2

X ex —1 x; — [iz) "0 (x; — Tz
p 92 J J J

52)
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in which,

7= {f} (53)

L;=[A; 1) (54)

Apply first the logarithm,

1 1
Q=c+E |} (“’ij logm; — , wi;log | %] — Zwijxf‘l’jlxi
i

1
+ win?q’gleri +

1 _ 1 _
9 wijoI‘;‘-F'Ilj 1Xi — ZZ?qu,j 1I‘jzi>]

2 (3
1 1 (55)
=c+ E Z <wij logm; — o Wi log |¥;| — 2wijx;!\1,;1xi

(2]

1
+wijxiT\Il]71I‘jzi — 2tI‘ (w”I‘JT\Iljll"]zlle))]

where c is a constant and tr is the trace operator. Next apply the expecta-
tion operator,

1 1
Q=c+ Z (hij logm; — thj log || — 2hin?‘I’;1xi
i,j
1
+X1‘T\Ilj_1]__‘jE [wijz|xi} — 2tI‘ (]_"]T‘I,J—II\JE [wijZZT‘Xi] ))
1 1 (56)
i,

_ 1 .
+hinlT‘Ilj 1I‘jE [Z|X7;,Wi} — 2hijt1‘ (]__‘]T‘I/] 1I‘jE [ZZTXZ',WZ']))
where,

hij =F [wj\xi] o ij(xi|wi) = 71']‘./\/ (xi\,uj, A]AJT + lI’]) (57)

Equation 57 was derived using Bayes’ rule and marginalising variable
¢. In the E-step, h;; and the other expectations for all data points x;
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and mixture components j must be computed given the model parameters
Wj,/jj,Aj, and ‘I’j,

Bl wi] = { 7P (59)
Tlx: ws W
E [zz"|x;, w;] = [EE[[%XJ?(;XTJ E[£|x11,w1]} (59)
The expectations are (Ghahramani and Hinton, 1996),
E[glxi, wi] = B;(xi — 1) (60)
E[¢6" [xi,wi] =T = BiA; + B;(xi — ) (xi — 115)" 8] (61)

where 8; = (I+ A?‘I’;lAj)_lAf\Iljl (see equation 37). Equation 61 was
derived as follows,
E [£€7 %, w;| = cov(é]x;, w;) + E [€]x;, wi] E (€], wi] " (62)

The first term in the right hand side is derived taking into account the
covariance expression below equation 37,

cov(é|x;,wy) = (I+ A?\Illej)_l
=(T+AJ® A [T+ AJ®A) — AT WA
=I—-(I+A]® A TAT U A,
=1-3jA,

In the M-step the log-likelihood is maximised by differentiation with
respect to the unknown parameters (the latent variables are held constant
at their expected values),

(63)

oQ

_ T -
or; Zl: (hm"I’j 'x{ E[zlx;, wi]" —hyy®;'T;E [ZZT|X“W1]) =0

(64)

oQ 1 1
F = Z <2hij‘Ilj — thinX;r + thI‘JE [Z|Xi,Wi] X;r
J 7

1 (65)
—2hiijE [ZZT|Xi,Wi] r?) =0
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from which the updates are obtained,

-1
r;= (Z hijx; E [zxi,wi]T> (Z hi; E [ZZT|xl,Wl]> (66)
i 1

v, - diagy=, ; hij (x; — T E [z]x;, wi) x| (67)
22 i
The solution in equation 67 was obtained by substituting equation 66 for
the last T'; in equation 65 and using the diagonal constraint (Ghahramani
and Hinton, 1996).
The mixing coefficients 7; are solved using a Lagrange multiplier A and
maximising the following function (Bishop, 2006),

Q1= (hijlogm) + A [ > m—1 (68)
i, J

Differentiating with respect to 7; and using (45) results in,

o1 :th‘j_i_)\:o
— T

a’/Tj f
= hij+7Tj)\:0
; (69)
= Zhij—i—AZm:O
i,j J
= A=-—-n

Substituting this into the equation on the second line results finally in,

1
Ty = nZhw (70)

The factor model is constructed using the measurements from the un-
damaged structure as the training data. The model is then used to estimate
the underlying factors. Once they have been estimated, the unique factor
scores are computed by,

£ = x = B(x|&) =x— 3 w1y + As8) (71)

where £ is computed from equation 60. The unique factor scores, or resid-
uals, are used for damage detection. After the factor analysis, it is usu-
ally necessary to perform a dimensionality reduction before using statistical
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methods to assess damage. Principal component analysis (Sharma, 1996) is
used again in this study.

6.2 Numerical Analysis

The mixture of factor analysers model is first applied to numerical data
with two variables generated by a single factor and two factor analysers.
The nonlinear correlation of the two variables is shown in Figure 29. The
training data are plotted with symbol ’x’. The two clusters with a nonlinear
correlation can be clearly observed. Also shown are groups of test data at
different regions of the input space. These are used to test the clustering
and outlier diagnosis performance of MFA. Groups 1-4 are undoubtedly
outliers as they do not fit in either of the two factor analysers. On the other
hand, the diagnosis of the data in groups 5-12 depends on which factor
analyser they belong to. In this simple example it is easy to see that groups
5,8, 11, and 12 expand the range of the training data, making extrapolation
possible. However, with groups 6, 7, 9, and 10, extrapolation is probably not
desired due to the assumed continuity of variables. Therefore, these groups
preferably belong to the other factor analyser and should be diagnosed as
outliers. This example shows that in the nonlinear case, clustering addresses
an additional problem to structural health monitoring. A similar problem
was also noticed with the data from the Z24 Bridge and is discussed in the
following section.

When equation 71 was used in the residual estimation, groups 6, 7,
9, and 10 were assigned to the extension of the lines defining the factor
analysers. These groups then were not diagnosed as outliers. A modified
clustering criterion was used, which was based on the factor scores computed
for each factor analyser. As the model assumes that the factors are (0, 1)
distributed, the minimum distance of each factor score from the distribution
determined the corresponding factor analyser. This method assigned groups
6, 7,9, and 10 to the other factor analysers and were diagnosed as outliers.
The proposed solution to the clustering problem works only if there is one-
to-one correspondence between the variables. If this is not the case, the
probability criterion should be used.

The results of the MFA are shown in Figure 30. The plot on the left
shows the fit of each data point to the model. On the right is the control
chart with the group number indicated. All outliers were correctly detected
and linear extrapolation was also possible. As a comparison, the linear
factor analysis was used for the same data, and the results are plotted in
Figure 31. In this case, there is a single line that best describes the training
data. The variance of the residual € in the training data was higher and



Health Monitoring Under Variable Conditions 163

100

801 1

601

40

201

Variable 2

40 - y - -
-40 -20 0 20 40 60 80 100
Variable 1

Figure 29. nonlinear correlation of variables. Training data are marked
with 'x’. The numbered data clusters are test data.

the sensitivity to detect damage was decreased: from groups 1-4, group 2
only was diagnosed as an outlier. All other groups 5—12 were all diagnosed
as outliers. The linear factor analysis is nevertheless a very useful tool as
it works reasonably well in most cases. It is fast, automatic, and it can be
easily applied to high-dimensional data. It should always be preferred as
the first choice before applying any nonlinear models.

As a third method, an autoassociative neural network (Kramer, 1991;
Sohn et al., 2003) was applied to the same data set and the results are shown
in Figure 32. The number of neurons in the mapping layer was chosen to be
5, a result from different trials. All groups in the test data were identified as
outliers. The advantage of this method is that it is fully nonlinear. However,
extrapolation was not feasible. Also the training by trial and error was more
time-consuming.

6.3 The Z24 Bridge

The pairwise correlation of the four lowest identified natural frequencies
of the Z24 Bridge (see Peeters (2000) for details) is plotted in Figure 33. It
can be seen that the frequencies varied considerably due to environmental
effects and are nonlinearly correlated. The physical reason was the different
behaviour of the bridge below and above the freezing point. From the figure
it was decided to use two factor analysers and one factor.
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Figure 31. Model fit and diagnosis using the linear factor analysis.
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analysers). Right: Control chart for the first principal component after
MFA.



166 J. Kullaa

Shewhart Chart Shewhart Chart

a4
10

2 1 8

: Dimhw 'M'N : j
: [ eyl

&

200 A0 B0 Boo A0 s00
Sampla Numbar Sampla Number
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The training data were the first 3000 samples (see Figure 34 left) shown
with a darker colour in Figure 33. Classifying the data from the damaged
structure showed similar difficulties as with the numerical data in the pre-
vious section. This can be explained by looking at Figure 33, in which
the data from the damaged structure are located at the extension of the
line of the training data measured below freezing point. Therefore, the
clustering algorithm decides that the data belongs to the low temperature
cluster. However, the Euclidian distance of the new data to the data mea-
sured above freezing point is lower. As a solution to the clustering problem
the same method as with the numerical model was used using the factor
score distance as the criterion. This assigned the new data to correct factor
analysers. The four lowest identified natural frequencies of the Z24 Bridge
are plotted in Figure 34 left with different symbols and colours indicating
the two clusters.

After the factor analysis MFA, the largest principal value of the multi-
variate feature vector was used for damage detection using the Shewhart
control chart (Montgomery, 1997) shown in Figure 34 right. In this control
chart, each point is the subgroup average of four samples. From the figure it
can be seen that different sizes or types of damage could be clearly detected.
However, the control limits are too tight resulting in frequent false indica-
tions of damage. Moreover, the temperature effect could not be totally
eliminated. If more variables were available, for example the modeshapes,
the temperature compensation would probably be better.

For a comparison, the linear factor analysis and the autoassociative neu-
ral network were applied to the same data set and the results are shown in
Figure 35. In the autoassociative neural network, the number of neurons
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in the mapping layer was chosen to be 6. Comparing Figures 34 and 35
it can be seen that the nonlinear models were able to better fit the data
and the damage was more clearly detected. However, the model fit was far
from perfect, resulting in several false identifications of damage, especially
during the cold season. Also, the performance of one nonlinear method was
not distinctively better than the other.

6.4 Summary

The mixture of factor analysers model was applied to eliminate non-
linear environmental or operational effects from the monitoring data. The
main advantage is that the environmental variables need not be measured.
Compared to the linear case, the proposed method is more involved. The
assessment of the number of factors is more important. Also, the estimation
of the number of factor analysers is needed and clustering needs more at-
tention. The results are better than when using linear models, provided the
model parameters are correctly assessed. The method was also compared
to nonlinear principal component analysis. As in the case of many other
engineering problems, linear methods should be preferred as the first choice
before applying any nonlinear models.

7 Mechanical Engineering Application: A Hydraulic
Crane

Diverse applications can profit from structural health monitoring (SHM),
including: civil infrastructures, aircraft, space structures, land and marine
structures, offshore structures, and critical devices. In mechanical engineer-
ing, especially with rotating machinery, the term ”condition monitoring”
is traditionally used. However, there are also other mechanical engineering
systems, for which SHM could be beneficial. Such systems include different
cranes and forest harvesters. Monitoring of the manipulator structure of
those systems is a relatively new application. Diagnostics of the hydraulic
system is also important. Moreover, the new ergonomic regulations urge
monitoring of vibrations experienced by the operator.

The monitoring of mobile hydraulic machines is motivated both by safety
and economic interests. A structural failure can cause a loss of human
lives or increased costs due to an interrupted process or higher maintenance
efforts; therefore, damage detection at an early stage is important before a
complete failure occurs.

Some characteristics of mobile hydraulic machines related to SHM are
listed in the following. (1) The structure is neither a fixed structure nor a
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rotating machine. The manipulator consists of joints and links. The system
behaviour is therefore highly nonlinear due to a variable geometry. (2)
A human operator is needed, resulting in a non-stationary process, which
depends on the operator. (3) The machines are used in harsh environments
subject to weather, debris, impacts, contacts, and vibrations that affect both
the structure and the hydraulics as well as the operator. (4) The anticipated
damage scenarios of such systems are: fatigue cracks in the welds or joints,
which are often hidden; local buckling of joints; and leakage in the hydraulic
system. (5) An advantage compared to civil engineering structures is that
excitation is readily available and controllable via the hydraulic system. (6)
The extraction of modal parameters (natural frequencies, modeshapes, and
damping) is often difficult due to high damping in the hydraulic system;
therefore, other damage-sensitive features must be studied. (7) Natural
variability is present in the system due to variable joint positions, loads,
friction in joints, hydraulic oil viscosity, etc. In order to detect damage of
a desired level, their effects must be compensated for.

In this section, vibration-based SHM is applied to the manipulator of a
vehicle crane. Monitoring of the hydraulic system is beyond the scope of
this study. It should be noted, however, that monitoring is applied to the
integrated system, and the viscosity of the hydraulic oil has an effect on
the dynamic properties of the structure. In order to reduce the amount of
nonlinearities and operational variations, a solution is proposed, in which
scheduled vibration measurements are performed around a fixed static equi-
librium with (almost) the same static load and a controlled dynamic excita-
tion. A reasonable amount of training data should nevertheless be acquired,
because the operational conditions most probably have a large variability.

Several features have been studied for damage identification when the
excitation is not known. Some of them are listed in the following, but the
list is by no means exhaustive. Natural frequencies and modeshapes have
been utilised by several researchers (Doebling et al., 1996); AR coefficients
have been studied e.g. by Sohn et al. (2000a) and Kullaa (2005); power
spectra were investigated by Kullaa (2004); transmissibilities were applied
by Worden et al. (1999) and Sampaio et al. (2000); wavelets were used by
Sun and Chang (2002); and modal filters by Deraemaeker et al. (2006).

In this section, the objective is to study two features used in damage
detection: coefficients of the auto-regressive (AR) model and transmissibil-
ities (TR). They are estimated from experimental response data and their
performance to detect damage is compared. The best features would be
sensitive to damage and would result in few false indications of damage.
An experimental monitoring test is performed on a vehicle crane by mea-
suring accelerations from eight positions of the structure. The same data
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records are used to extract both features. Normal operational variability is
eliminated from the features before damage detection using factor analysis.

7.1 Features

The two features studied in this application are the coefficients of the
autoregressive (AR) model and the transmissibilities (TR). Both features
are related to the spectral properties and are therefore global. The AR
model is parametric, while TR is a non-parametric quantity. Therefore, the
AR model often results in relatively few features, whereas the number of
features in TR can be large. A high number of features can be advanta-
geous, because it is usually not known in advance which features change as
the structure is deteriorated. A disadvantage is that the statistical relia-
bility of damage detection decreases with a large number of features (curse
of dimensionality) and more training data are needed. AR coefficients are
identified from a single sensor, while TR involves a pair of sensors. In-
dependent sensors are technically less demanding, because synchronisation
between sensors is not needed. However, synchronised sensors provide addi-
tional information of the structure, e.g. modeshapes. Both of the proposed
features would be appropriate also in a wireless sensor network, in which
local computing in the node is preferred due to a high power consumption
in data transmission.

AR coefficients. The autoregressive (AR) model of order n is defined as,

yk) = —a1y(k—1) — ... — apy(k —n) + e(k)

= ST (K6 + (k) (72)

y(k) is the response at time kAt, where At is the time increment; a; are the
unknown AR coefficients, and e(k) is the error term. The AR coefficients
in vector 6 can be solved from the latter equation using the minimum least
squares algorithm. In this study, the order n is chosen to be 10 (Ljung,
1999).

Transmissibilities. Assuming a single-point excitation, the transmissi-
bility (TR) function is the transfer function between two responses,
Yi(w)
TR;; = (73)
7 YWw)
where Y;(w) and Yj(w) are the Fourier transforms of responses y;(t) and
y;(t), respectively. In practice, TR is computed using the spectral densities,
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_Yi(w) YWY (w)  Si(w)
= Y w0) T V@Y @) Sy (74)

where S;;(w) is the cross-spectral density between y;(t) and y;(t), and
Sjj(w) is the power spectral density of y;(t). Y;"(w) is the complex conjugate
of Yj(w). TR is a complex function having information on the amplitude
and phase.

Since the lengths of the measured responses are finite, TR has to be
estimated. The estimation is done easily using the Fast Fourier Transform
(FFT). Welch’s method (Newland, 1994) is used, in which the time series
is divided into overlapping segments (50% overlap), the Hamming window
is applied to each segment, and an n-point FFT is applied to the windowed
data. Finally, the results of each segment are averaged to form the spectral
density estimate. Averaging is done in order to decrease the estimation
error.

In this section, 32 or 64 spectral lines are estimated in the frequency
range of interest. The absolute transmissibilities using the FFT length
n = 32 resulted in estimation at n/2 + 1 = 17 frequencies for each sensor
pair. Correspondingly, the FFT length n = 64 resulted in 33 features.

It should be noted that the transmissibility concept, if defined as in equa-
tion 73, must be used with caution. In the crane application, a single DOF
excitation is applied with the lift cylinder. In that case, the transmissibility
between any two responses is justified. In a more general case, there can
be several independent excitations acting at different DOF. In that case,
the validity of using equation 73 directly in SHM is questionable. A more
detailed theoretical development for the transmissibility with a number of
forces can be found e.g. in Maia et al. (2007).

7.2 Monitoring Experiments and Results

Vibration-based monitoring tests for a vehicle crane HIAB022-2L (Figure
36) were performed in the laboratory. The features were extracted from the
response of the crane vibrating around a slightly varying static equilibrium.
The crane was excited with a random excitation using its own hydraulic
lift cylinder (Figure 36). The excitation force was not measured. Eight
accelerometers, the positions and directions of which are shown in Figure
36, were used. A constant static mass of 300 kg was attached to the tip.
The first 400 measurements were recorded from the undamaged structure.
Fifteen different structural changes were then made using additional masses
of five different sizes at three locations. The magnitudes of the additional
masses for each damage scenario were 1.4, 3.4, 5.4, 7.4, and 9.4 kg, and their
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locations are shown in Figure 36. Each damage scenario was monitored with
50 measurements. The time period of each measurement was 60 seconds and
the data were stored after filtering with a 100 Hz low-pass filter. These tests
were performed during a relatively short time period. Much later, control
measurements were made without additional masses to check if the system
had changed.

6 T:‘ Ts
Ny b L |
L=y ' * -
£ L :
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Figure 36. Vehicle crane HIAB-022-2L. The numbered broad arrows indi-
cate the damage locations, the double arrow is the excitation, and the single
arrows are the response positions.

Ten AR coefficients were extracted from each time record resulting in 80
features plotted in Figure 37 left including the undamaged structure (sam-
ples 1-400), damage position 1 (samples 401-650), and the control measure-
ments (samples 651-777). Transmissibilities were estimated between sensor
pairs 1-2, 3-4, 5-6, 5-7, and 5-8 (Figure 36). These pairs were chosen to
see if it is easier to detect damage in a boom from the transmissibilities
between the sensors on that boom, or if the transmissibilities give global
information of the structure. The absolute transmissibilities using 32 spec-
tral lines (85 features) of the undamaged structure and damage case 1 are
shown in Figure 37 on the right.

From Figure 37 it can be seen that the variation of the features was large,
especially with the transmissibilities. Also, occasional jumps in features can
be clearly observed. They occurred due to applied lubrication to joints and
larger motions driven with the crane between two measurements. These
clearly affected the features.

Damage detection was performed using control charts (Montgomery,
1997). Every other sample between 1 and 400 was used as training data and
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Figure 37. AR coefficients (left) and absolute transmissibilities (right).
Damage case 1.

samples 1-300 were used as the in-control samples to compute the control
limits for the control chart. Control charts for the features after factor anal-
ysis and subsequent principal component analysis are shown in Figure 38.
It can be seen that damage was detected with either feature, but the control
data signalled as well. This is an indication of a change in the system, a
change that is not exactly known. It can also be due to a relatively small
amount of training data or change in the operational conditions. Recall
that the control measurements were performed much later than the actual
monitoring experiments. It can be concluded that in practice the collec-
tion of the training data should be scheduled for several days. To see how
the damage (added masses) can be observed with the proposed features, in
the subsequent analyses the training data are extended to have also every
second sample of the control data.

To see the effect of the factor analysis, AR coefficients for damage case
1 were analysed with and without factor analysis. The control charts are
plotted in Figure 39. The advantageous effect of the factor analysis is ob-
vious. The operational influences could be eliminated from the data, even
without knowing the affecting quantities. Factor analysis is applied to all
subsequent analyses.

The performance of the two features to detect the three damage cases
is studied in the following. Control charts for damage cases 1, 2, and 3
are shown in Figures 40, 41, and 42, respectively. The analyses of the AR
coeflicients are shown in the left, and transmissibilities in the right. All
damage cases were correctly detected with either feature and without false
indications of damage. For damage case 1, the increase of the damage level
can also be observed, whereas for damage cases 2 and 3 the damage level is
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Figure 38. Control charts for AR coefficients (left) and absolute transmis-
sibilities (right). Damage case 1.
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Figure 39. Control charts of the largest PC:s of the AR coefficients with
damage case 1. Left: without FA; right: with FA.

not clearly seen from the control charts. Transmissibilities proved to be more
sensitive to damage than the AR coefficients. Transmissibilities showed no
intrinsic capability to localise damage, probably because local changes in
the structure are propagated to transmissibilities around the structure. All
damage cases were detected from transmissibilities both near damage and
remote from damage.

The most sensitive results were obtained using complex transmissibil-
ities (Figure 43). Transmissibilities having 32 and 64 spectral lines were
estimated, resulting in 160 and 320 features, respectively. It should be
noted that the training data consisted of only 264 samples, which was less
than the dimensionality of the feature vector. Using the proposed approach
with factor analysis, followed by the principal component analysis, good re-



174 J. Kullaa
Shewhart T Control Chart Shewhart T Contral Chart
B T N e
, ] % na
: " 40 i
: | :
10 [\'] | a0 |
[ l lJ
| T‘nf y
A ! 20
P -\»-'.I'\ |i"ﬂ"l," ol il ’ i 1..! .
. P i L S Lo el

1 D2 D3 D4 DS

1 DzD3 D4 0s

Figure 40. Damage case 1. Left: AR coefficients. Right: absolute trans-
missibilities.
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Figure 41. Damage case 2. Left: AR coefficients. Right: absolute trans-
missibilities.
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Figure 42. Damage case 3. Left: AR coefficients. Right: absolute trans-
missibilities.
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sults were obtained. The most sensitive results were obtained with complex
transmissibilities having 64 spectral lines. These features also showed no
false indications of damage.
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Figure 43. Control charts for complex transmissibilities. Top left: damage
case 1, 32 spectral lines. Top right: damage case 1, 64 spectral lines. Bottom
left: damage case 2, 64 spectral lines. Bottom right: damage case 3, 64
spectral lines.

7.3 Summary

The condition of a vehicle crane manipulator structure was monitored
using multichannel measurements. Monitoring was solely based on the mea-
surement data; no mathematical model of the structure was used. Damage
detection was based on features extracted from the vibration measurements.
Training data were first collected from the healthy structure. The perfor-
mance of two different features to detect damage was studied: AR param-
eters and transmissibilities. The operational variations were first removed
from the features using factor analysis. After this data normalisation proce-
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dure, the effectiveness of different features could be compared. Both features
correctly detected all damage cases. Transmissibilities proved to be more
sensitive to the introduced damage than the AR coefficients. The AR model
may not correctly represent the dynamics of structures but more appropri-
ate would be the ARMA model. However, its estimation is harder as it is
a nonlinear problem. Complex transmissibilities with more features than
the training samples (p > n) showed the most sensitive detection capability
with no false indications of damage. It should be noted, however, that the
training data must include all operational variations and consequently the
collection of the training data should be scheduled for a long time period.
The conclusions were drawn for artificial damage with added masses. A
similar study should also be made for more realistic damage scenarios with
stiffness degradation.

8 Conclusion

The most important functions needed in a vibration-based structural health
monitoring system were introduced and some of them were studied in more
detail. The main contribution was in damage detection and sensor valida-
tion under variable environmental or operational conditions using statistical
tools applied to the features extracted from the measurement data. All tech-
niques were data-based, and no mathematical model of the structure was
needed.

Sensor validation was based on MMSE, while for damage detection of
the structure under different environmental or operational conditions, factor
analysis was applied. It should be noted that these two techniques are
comparable with each other and either of them can be used for each function.

Control charts were used for damage detection, because they are simple,
visual, and possible for automation. The importance of the visualisation
cannot be overestimated; it gives the operator more confidence than just a
simple message that the structure may be damaged. Occasional false alarms
are also possible. Therefore, a good rule of thumb is to have at least two
alarms in a sequence before taking action.

In many cases, the linear methods to eliminate the environmental or
operational effects from the features work well. They are simple, fast, and
automatic. Factor analysis requires one parameter, the number of factors,
whereas MMSE needs no parameters. In contrast, nonlinear models are
more complex, relatively slow, and need a lot of tuning due to a higher
number of parameters. Nevertheless, in all methods, the training can be
performed off-line when the data from the undamaged structure have been
acquired. After training, the model is fixed and the performance of both
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the linear and nonlinear models is fast. However, it is probable that the
operator needs to configure the SHM system, for example using different
features. In that case, the models have to be re-trained, which is automatic
with the linear techniques.

Linear models should always be applied first, and only after they fail,
nonlinear methods should be utilised. In many cases, even if the physical
phenomenon from the latent variables to the features is nonlinear, a linear
correlation model is often sufficient. This effect takes place when there
are several features to which the same nonlinear model applies, resulting
in a linear correlation between them so that the nonlinear effect can be
removed. nonlinear models are most useful in cases, where the number of
features is small and linear correlation models are not capable of removing
the influences of the environmental or operational conditions.

When designing an SHM system, the following configuration can be used
as the first choice: Use MMSE to detect a sensor fault using both the
Shewhart and S charts. After extracting the features from the time history
measurements, select the training samples. Use factor analysis to remove the
environmental or operational effects and compute the principal components
of the standardised residuals using all data. Select 1-3 largest principal
components, depending on the information contents of the components.
Then use the multivariate Shewhart 7" control chart for damage detection.
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Abstract There are two main approaches to the diagnostic phase
of Structural Health Monitoring (SHM): the first, is based on the
solution of inverse problems, and the second, is based on pattern
recognition or machine learning. The first approach usually depends
on the construction of a model of the structure based on physical
principles, while the second relies on building a model based on
measured data. The complexity of many modern structures and
their environments sometimes makes the second option an attractive
proposition. While many engineers are familiar with the process of
building physics-based models e.g. finite element models, familiarity
with the principles of pattern recognition is less common. The ob-
jective of this chapter is to provide an introduction to the concepts
of data-based modelling and pattern recognition in the context of
the SHM problem.

1 Introduction

Hopefully, the previous chapters in this book have convinced the reader that
Structural Health Monitoring (SHM) is a good idea. The objective of this
chapter is to argue that one particular approach to SHM is a good idea. This
approach is based on the discipline of machine learning or, more specifically
pattern recognition. The idea is that one can learn relationships from data.
In the context of SHM, this means that one can learn to assign a damage
state or class to a given measurement vector from the structure or system
of interest. The measurement vectors must be formed from measurements
which are sensitive to the damage; in the normal terminology of pattern
recognition, they are referred to as features. An example of a feature vector
for SHM might simply be the first five natural frequencies, or it might be
more sophisticated e.g. a set of wavelet coefficients. Once features have
been established, the map between the features and the diagnosis can be
constructed, and many algorithms are available for this purpose. The most



184 K. Worden

popular algorithm in use today is the Artificial Neural Network (ANN) and
this will be the basis for much of the discussion in this chapter. The use of
pattern recognition offers the possibility of automating the SHM process i.e.
removing the need for the intervention of human experts as far as possible.
So that one does not lose this benefit, the rest of the SHM process should
be automated as far as possible and this leads one to the idea of intelligent
fault detection.

The layout of this chapter is as follows: Section 2 describes the basis
for carrying out intelligent fault detection and discusses the role of data
fusion. Section 3 introduces the idea of novelty detection, the lowest level
of damage identification; a basic statistical algorithm is used for illustra-
tion. Section 4 describes how artificial neural networks have developed as
a means of learning relationships in data; the historical development of the
subject is briefly outlined. Section 5 returns to the idea of novelty detec-
tion and describes a more sophisticated approach based on neural network
technology. Section 6 describes the theoretical basis for statistical pattern
recognition and sketches the relationship with neural networks. Section 7
provides illustrations of the use of pattern recognition for damage detection
and also for the more difficult problem of damage location. The chapter
finishes with a section of discussion and conclusions.

2 Intelligent Fault Detection

2.1 Terminology

The purpose of this section will be to describe a framework for intelligent
fault detection where the disciplines of pattern recognition or machine learn-
ing in general play a major part. Before proceeding, it is necessary to make
a digression on the subject of taxonomy. In the past, engineers adopted a
conservative design strategy whereby the structure or system was, by the
considered application of design safety factors, required to function safely
without problems for a prescribed lifetime. This safe-life approach has given
way in many cases to fail-safe or damage tolerant philosophies. In the latter
case, the structure is anticipated to sustain damage and still perform in a
satisfactory manner. The following terms will be adopted in the current
study in order to describe imperfections in systems in a consistent manner.

e A defect is inherent in the material and statistically all materials will
contain some unknown amount of defects; this means that the struc-
ture can operate at its design condition if the constituent materials
contain defects

e Damage is when the structure is no longer operating in its ideal condi-
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tion but can still function satisfactorily, i.e. in a sub-optimal manner

e A fault is when the structure can no longer operate satisfactorily. If
one defines the quality of a structure or system as its fitness for purpose
or its ability to meet customer or user requirements, it suffices to
define a fault as a change in the system that produces an unacceptable
reduction in quality.

The above notation allows a hierarchical relationship to be developed;
i.e., defects lead to damage and damage leads to faults. In the approach
discussed here, it is necessary to introduce monitoring systems in order to
obtain a damage tolerant structure, so that it can be decided when the
structure is no longer operating in a satisfactory manner. This means that
a fault has to have a strict definition, e.g. the stiffness of the structure has
deteriorated beyond a certain level. In some cases a simple definition based
on one parameter may not be sufficient. A good example of this is when a
crack is propagating in a stable manner; there will be an increase in strain
in the component and hence a reduction in component stiffness. Once the
strain has increased above a certain level a decision may be made to take
the component out of service. On inspection it may be found that the crack
is growing in such a direction that the component will fail safe, so service
could have been prolonged. In this situation, along with the strain monitor
it would have been useful to monitor the direction of crack growth by some
means. The choice of fault monitoring system clearly needs to take into
account the material type and the operating environment. This approach
ensures that the quality of the measurement will be optimised and hence
an important issue will be the limitations of the sensor system. From the
above it can be seen that the question - what is a fault - is not only based
on the structures operating environment but also the type of monitoring
system that is used.

2.2 Intelligence

Having established a precise terminology relating to sub-optimal be-
haviour of structures and systems, the discussion can proceed to matters
of detection and how it can be achieved with intelligence. The first ob-
servation one might make is that fault detection is in a sense trivial, as a
fault is defined as a change in the condition of the structure that produces
an unacceptable reduction in quality. By implication, such a change will
be evident. Thus, intelligent fault detection actually entails detecting the
damage that will, if not corrected, lead to a fault.

Detection of damage is a facet of the broader problem of damage aware-
ness or damage identification. The objective of a monitoring system must be
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to accumulate sufficient information about the damage for appropriate re-
medial action to be taken to restore the structure or system to high-quality
operation or at least to ensure safety. Also, efficiency demands that only
the necessary information should be returned by the monitor. With this in
mind, it is helpful to think of the identification problem as a hierarchical
structure, in the same way as one can think of the evolution of the fault
as a hierarchical structure. This train of thought began with Rytter in his
PhD thesis (Rytter (1993)). The original specification cited four levels:

DETECTION. The method gives a qualitative indication that damage
might be present in the structure.

LOCALISATION. The method gives information about the probable po-
sition of the damage.

ASSESSMENT. The method gives an estimate of the extent of the damage.

PREDICTION. The method offers information about the safety of the
structure e.g. estimates a residual life.

The vertical structure is clear; each level (essentially) requires that all
lower-level information is available. Note that the damage identification
scheme should if at all possible, be implemented on-line i.e. during operation
of the structure; in this case prediction must also be understood as an
estimate of the residual safe-life of the structure obtained during operation.
For an aircraft in flight, for example, this is critical; if the diagnostic system
signals serious damage but fails to indicate that there is time to land, the
aircraft may be lost needlessly and at great expense when the crew bail out.
Note that the primary concern is that the crew do bail out; issues of life
safety far outweigh economic considerations.

Few would argue that the structure above summarises the main issues
in SHM with one major exception; this is remedied by the introduction of
a new level. At the risk of repetition, the new structure is:

DETECTION. The method gives a qualitative indication that damage
might be present in the structure.

LOCALISATION. The method gives information about the probable po-
sition of the damage.

CLASSIFICATION. The method gives information about the type of dam-
age.

ASSESSMENT. The method gives an estimate of the extent of the damage.

PREDICTION. the method offers information about the safety of the
structure e.g. estimates a residual life.

Classification is important, if not vital, for effective identification at level
5 and possibly at level 4. Level 5 is distinguished from the others in that
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it cannot be accomplished without an understanding of the physics of the
damage, i.e. characterisation. Level 1 is also distinguished in the sense that
it can be accomplished with no prior knowledge of how the system will
behave when damaged. In order to explain this, a digression on pattern
recognition or machine learning is needed.

The approach to SHM discussed here is based on the idea of pattern
recognition (PR). In the broadest sense, a PR algorithm is simply one that
assigns to a sample of measured data a class label, usually from a finite set.
In the case of damage identification, the measured data could be vibration
modeshapes, full-field thermoelastic data, scattered wave profiles etc. The
appropriate class labels would encode damage type, location etc. In order to
carry out the higher levels of identification using PR, it will almost certainly
be necessary to obtain examples of data corresponding to each class. That
is, in order to establish that a given set of measurements from a composite
panel shows the presence of a delamination, the algorithm must have prior
knowledge of what data from a delaminated panel looks like as opposed to
one with say, a resin-rich area. Each possible fault class should usually have
a training set of measurement vectors that are associated uniquely with it.
Many PR algorithms work by training a diagnostic; for example a neural
network can learn by example - it is shown the measurement data and asked
to produce the correct class label; if the result differs from the desired label,
the network is corrected. Typically many presentations of data are required.
This type of learning algorithm in which the diagnostic is trained by showing
it the desired label for each data set is called supervised learning.

If supervised learning is required, there will be serious demands asso-
ciated with it; data from every conceivable damage situation should be
available. The two possible sources of such data are modelling and exper-
iment. Modelling presents problems if the structure or system of interest
is geometrically or materially complex, for example finite element analysis
of structures requiring a fine mesh can be extremely time-consuming even
if the material is well understood. Structures with composite or viscoelas-
tic elements may not even have accurate constitutive models. The damage
itself may be difficult to model; it may also make the structure dynami-
cally nonlinear, i.e. an opening-closing fatigue crack, and this also presents
a formidable problem. Unfortunately, the situation is no better for experi-
ment. In order to accumulate enough training data, it would be necessary
to make copies of the system of interest and damage it in all the ways that
might occur naturally; for high-value structures like aircraft, this is simply
not possible.

Fortunately there is an alternative to supervised learning - unsupervised
learning. However, this mode of learning only applies to level 1 diagnostics,
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i.e. it can only be used for detection. The techniques are often referred to as
novelty detection or anomaly detection methods (Bishop (1994); Tarassenko
et al. (1997); Worden (1997)). The idea of novelty detection is that only
training data from the normal operating condition of the structure or sys-
tem is used to establish the diagnostic. A model of normal condition is
created. Later, during monitoring, newly-acquired data are compared with
the model. If there are any significant deviations the algorithm indicates
novelty. The implication is that the system has departed from normal con-
dition, i.e. acquired damage. The advantage of such an approach is clear; if
the training data is generated from a model, only the unfaulted condition is
required and this will simplify matters considerably. From an experimental
point of view, there is no need to damage the structure of interest. Although
novelty detection is only a level 1 approach, there are many situations where
this suffices, i.e. safety-critical systems where any fault on the system would
require it to be taken out of service.

It is an important qualifier that the novelty detectors should flag only
significant deviations from normal operating condition. All real systems are
subject to measurement noise and usually operate in a changing environ-
ment; the monitor must be able to distinguish between a statistical fluctu-
ation in the data and a real deviation from normality. This means that of
the various flavours of pattern recognition existing (Schalkoff (1992)), the
most appropriate one is Statistical Pattern Recognition (SPR). Another im-
portant observation is that there may be variations in the normal condition
that are not statistical, i.e. the characteristics of the structure may vary
with changing environmental conditions, and this must be addressed (This
is discussed in more detail in the chapter by Kullaa in this volume). In
general, it is important that the algorithms used for damage identification
should account properly for sources of uncertainty and variation in the data.
The algorithms should also, as far as possible, return a confidence interval
with their diagnosis.

The term normal operating condition requires some discussion. As im-
plied earlier, the nature of engineering materials means that there will al-
ways be defects and sometimes even damage present in a structure to some
extent. The normal operating condition therefore means a state of the sys-
tem when there is some assurance, statistical or otherwise, that the system
is fit-for-purpose. In some cases there may be macroscopic damage i.e. a
fatigue crack; however, if it is known that the crack will not grow under the
standard loadings on the system, the state qualifies as a normal operating
condition. Novelty detection will then look for new cracks or unexpected
growth of the old crack.

The discussion above is intended to show that there is often a trade-
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off between the level of a diagnostic system and the expense of training
it adequately. Given this fact, the main requirement of an intelligent fault
detection system is that it should return information at the apposite level for
the context. It should measure the appropriate data and process this with
the appropriate algorithm. It should take proper account of uncertainty in
the data and return a confidence level in its diagnosis.

2.3 Data Processing and Fusion for Damage Identification

Once an operational evaluation stage has passed and a sensor network
has been designed (and these are, by no means, trivial processes), the health
monitoring system can begin to deliver data. The choice and implementa-
tion of algorithms to process the data and carry out the identification is
arguably the most crucial ingredient of an intelligent fault detection strat-
egy. Before even choosing the algorithm, it is necessary to choose between
two complementary approaches to the problem:

e damage identification is an inverse problem;
e damage identification is a pattern recognition problem.

The first approach usually adopts a physics-based model of the structure
and tries to relate changes in measured data from the structure to changes
in the model, sometimes locally linearised models are used to simplify the
analysis. The algorithms used are mainly based on linear algebra or opti-
misation theory, and an excellent survey of the dominant methods can be
found in Doebling et al. (1996).

The second approach is based on the idea described above, whereby
measured data from the system of interest are assigned a damage class by
a pattern recognition algorithm. This is the approach that is chosen here
for detailed discussion. There is no implied criticism of the inverse problem
approach; the author is simply concentrating on an alternative and self-
consistent framework. For a critical appraisal of inverse problem approaches
to damage identification, the reader can consult Friswell and Penny (1997).

The data processing element of a monitoring system comprises all actions
on the data upstream from the point of acquisition by the sensors. The
ultimate product of the analysis is a decision as to the health of the system.
The analysis has been neatly summed up by Lowe (2000) as the D2D (Data
to Decision) process; the basic steps are summarised in Figure 1.

Beyond the sensing level which generates the raw data, the first stage is
signal processing. This should more properly be called pre-processing. The
purpose is to prepare the data for feature extraction, but more of that later.
The pre-processing stage can encompass two tasks. The first of these is data
cleansing. Examples of cleansing processes are: filtering to remove noise,
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Figure 1. The D2D Process.

spike removal by median filtering, removal of outliers (care is needed here as
the presence of outliers is one indication that the data is not from normal
condition), and treatment of missing data values. The second (optional)
pre-processing stage is a preliminary attempt to reduce the dimensions of
the data vectors and further de-noise the signal. For example, given a
random time-series with many points, it is often useful to convert the data
to a spectrum by Fourier transformation. The number of points in the
spectrum can be much lower than in the original time-history and noise can
be averaged away. Another advantage of treating the time signal this way is
that the data vector obtained should be independent of time. If the original
time-series is random, it makes little sense to compare measurements at
different starting times. The pre-processing is usually carried out on the
basis of engineering judgement and experience. At this stage, the aim would
be to reduce the dimension of the data set from possibly many thousands
to perhaps a hundred.

The second stage is feature extraction. The term feature comes from the
pattern recognition literature and is short for 'distinguishing feature’. The
fundamental problem of pattern recognition is to assign a class label to a
vector of measurements; this task is made simple if the data contains dom-
inant features that distinguish it from data from other classes. In general,
the components of the signal that distinguish the various damage classes
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will be hidden by features that characterise the normal operating condition
of the structure, particularly when the damage is not yet severe. The task
of feature extraction is to magnify the characteristics of the various damage
classes and suppress the normal background. Suppose the raw data from
the sensors is a time-series of accelerations from the outside of a gearbox
casing. Further suppose that the time data has been pre-processed and
converted into an averaged spectrum. Feature extraction in this situation
could be extracting only the spectral lines at the meshing frequency and
its harmonics as these lines are known to be sensitive to damage. So fea-
ture extraction can be carried out on the basis of engineering judgement
also. Alternatively, statistical algorithms can be used to reduce the di-
mension like Principal Component Analysis (Bishop (1998)). The resulting
low-dimensional data set is the feature vector or pattern vector that the
pattern recognition algorithm will use to assign a class. The aim of this
stage would be to generate a feature vector of dimension less than ten. A
low-dimensional feature vector is a critical element in any pattern recog-
nition problem as the number of data examples needed for training grows
explosively with the dimension of the problem. Care must be taken at this
stage that the information discarded in the dimension reduction is not rel-
evant for diagnosing the damage. Feature extraction should only discard
components of the data that are irrelevant for the purposes of identifying
damage.

The next stage is pattern processing. This is the application of an algo-
rithm which can decide the damage state on the basis of the given feature
vector. An example would be a neural network that has been trained to
return the damage type and severity when presented with say, condensed
spectral information from a gearbox. Three types of algorithm can be dis-
tinguished depending on the desired diagnosis.

1. Nowelty detection. In this case, the algorithm is required to simply
indicate if the data comes from normal operating condition or not.
This is a two-class problem which has the advantage that unsuper-
vised learning can be used. Methods for novelty detection include:
outlier analysis (Worden (1997)), kernel density methods (Tarassenko
(1998)), autoassociative neural networks (Pomerleau (1993)), Koho-
nen networks (Taylor et al. (1999)), growing radial basis function net-
works (Roberts and Tarassenko (1994)) and methods based on Statis-
tical Process Control (SPC) control charts (Sohn and Farrar (2000)).

2. Classification. In this case, the output of the algorithm is a discrete
class label. In order to apply such an algorithm, the damage states
must be quantised, i.e. for location, the structure should be divided
into labelled substructures. In this case, the algorithm could only lo-
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cate to within a sub-structure, so resolution of what is essentially a
continuous parameter may not be good unless many labels are used.
However, this type of algorithm is useful in the sense that the algo-
rithms can be trained to give the probability of class membership; this
gives an inbuilt confidence factor in the diagnosis. In the case where
the desired diagnosis is from a discrete set, e.g. for diagnosing damage
type, this class of algorithms is singled out. Examples of algorithms
include: neural network classifiers trained with the 1 of M rule, lin-
ear and quadratic discriminant analysis, kernel discriminant analysis
and nearest neighbour classifiers. A comparison of some of these ap-
proaches on a damage classification problem is given in Worden and
Manson (2000).

3. Regression. In this case the output of the algorithm is one or more
continuous variables. For location purposes, the diagnosis might be
the Cartesian coordinates of the fault, for severity assessment it could
be the length of a fatigue crack. The regression problem is often
nonlinear and is particularly suited to neural networks. As in the
classification case, it is often possible to recover a confidence interval
for a neural network prediction (Lowe and Zapart (1999)).

In all cases, the pattern processing is subject to an important limitation.
There is a trade-off between the resolution of the diagnosis and the noise-
rejection capabilities of the algorithm. Put simply, if the data is always
noise-free, there will be very little fluctuation in the measurement from
normal operating condition; in this case, small damages will cause detectable
deviations. If there is much noise on the training data, it will be difficult to
isolate deviations due to damage unless the damage is severe. One of the
tasks of feature extraction is to eliminate as far as possible, fluctuations on
the normal condition data. This optimisation for performance is a requisite
feature of intelligent fault detection.

The final stage in the D2D chain is the decision. This is a matter of
considering the outputs of the pattern recognition algorithm and deciding
whether action needs to be taken, and what that action should be.

Having stressed the importance of adopting an intelligent approach to
SHM, the next sections will outline in greater detail how pattern recognition
and machine learning facilitate this process.

3 Novelty Detection

As discussed in the previous section, the property that sets apart damage
detection from the higher levels of identification is that it can often be
approached using unsupervised learning; the body of techniques concerned
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are called novelty detection methods. The philosophy of novelty detection
is simply stated; if one is in possession of data guaranteed to be from the
normal condition of a system or structure, one can construct a statistical
(or other) model of that data. Any subsequent data from the system can
be tested to see if they conform in some strict sense with the model of
normality; noncomformity can then be said to infer damage.

The main advantage of novelty detection is substantial. At the risk of
repetition, the major problem in machine learning approaches to SHM is
the question of where the data corresponding to damage is obtained from.
If the data is to be obtained from modelling, it is clear that for say, wave
scattering from damage in composite structures, one will have a formidable
modelling task which may be very difficult and may be expensive to run.
Alternatively, unless the structures of interest are extremely inexpensive,
it will not be possible to obtain the data from an experimental program.
The nature of novelty detection means that one only ever needs to model
or take measurements from the undamaged structure. The main problem
with novelty detection is that it is sometimes accomplished by inferring the
probability density function of the normal condition data in some way or
another. If this exercise is attempted in its full generality, it is essentially
the hardest of all machine learning problems.

The objective of this section is to illustrate the technique of novelty
detection in a number of different contexts. First, it is shown how the
simplest technique - one based on outlier analysis - is applied to a simulated
system. In Section 5 a more general methodology based on auto-associative
neural networks is discussed

This section is by no means intended as a comprehensive review of nov-
elty detection methods, this has already been conducted by Markou and
Singh (2003a,b). The reader is referred to these papers for a survey of the
many alternative techniques available and also of the rest of the literature.

3.1 Gaussian-Distributed Normal Condition - Outlier Analysis

The method discussed in this section is tailored to the Gaussian distribu-
tion by its implicit assumption that the data can be characterised by its first
two statistical moments. This is a situation where the probability density
of the normal data is estimated in a simple parametric fashion; however,
the assumption of Gaussianity is by no means always merited.

A discordant outlier in a data set is an observation that is surprisingly
different from the rest of the data and therefore is believed to be generated
by an alternate mechanism to the other data. The discordancy of the can-
didate outlier is a measure which may be compared against some objective
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criterion allowing the outlier to be judged as statistically likely or unlikely
to have come from the assumed generating model. The standard reference
on outlier analysis is Barnett and Lewis (1994).

Outlier detection in the case of univariate data is relatively straightfor-
ward in that any outliers must ‘stick out’ from one end or other of the data
set. There are numerous discordancy tests but one of the most common,
and the one whose extension to multivariate data will be employed later, is
based on deviation statistics and given by,
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where z¢ is the potential outlier and = and o, are the mean and stan-
dard deviation of the undamaged data sample respectively. The latter two
values may be calculated with or without the potential outlier in the sam-
ple depending upon whether inclusive or exclusive measures are preferred.
This discordancy value is then compared to some threshold value and the
observation declared, or not, to be an outlier.

This discordancy measure is not restricted to a Gaussian normal condi-
tion and will work to some extent for data from any unimodal distribution;
however if one is confident of Gaussianity, then a rigorous definition of con-
fidence interval or threshold is available i.e. the 95% confidence level for an
outlier is given by £1.96 for z.

The case of outliers in multivariate data is a little more complicated.
A multivariate data set consisting of observations in p variables may be
represented as points in a p-dimensional feature space. It becomes clear
that detection of outliers in multivariate data is more difficult than the
univariate situation due to the potential outlier having more ‘room to hide’.

The discordancy test which is the multivariate equivalent of Equation (1)
is the Mahalanobis squared-distance measure given by,

D} = (z; —2)"S Nz, — 2) (2)

where z. is the potential outlier, z is the mean of the sample observations
and Y, the sample covariance matrix.

As with the univariate discordancy test, the mean and covariance may
be inclusive or exclusive measures. In many practical situations the outlier
is not known beforehand and so the test would necessarily be conducted in-
clusively; in general for SHM however, the potential outlier is always known
beforehand and so it is more sensible to calculate a value for the Mahalanobis
squared-distance without this observation ‘contaminating’ the statistics of
the normal data. Whichever method is used, the Mahalanobis squared-
distance of the potential outlier is checked against a threshold value, and
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its status determined. For the multivariate case, the threshold value is de-
pendent on both the number of observations and the number of dimensions
of the problem being studied.

A Monte Carlo method (based on extreme-value statistics) can be used
to arrive at the threshold value. The procedure for this is to construct a ma-
trix with each element a randomly generated number from a zero mean and
unity standard deviation normal distribution. The Mahalanobis squared-
distances are calculated for all the elements, using (2) where the statistics
are inclusive measures, and the largest value stored. This process is repeated
for say, 1000 trials, whereupon the array containing all the largest Maha-
lanobis squared distances is then ordered in terms of magnitude. The critical
values for the 5% and 1% tests of discordancy for a p-dimensional sample
of n observations are then given by the Mahalanobis squared-distances in
the array above which 5% and 1% of the trials occur. The calculation of
the threshold again ties the method to the Gaussian distribution.

As an illustration, A data set from a computer simulation described
in Worden et al. (2000) is considered, it is formed from the responses of
the three-degree-of-freedom (3-DOF) lumped-parameter system shown in
Figure 2. The equations of motion of this system are:

myl + Cyl + /{J(2y1 — y2) = xl(t)

mia + cy2 + k(2y2 — y1 — y3) = x2(t)
m?jg + Cyg + /{J(2y3 — y2) = xg(t) (3)

The values m = 1, ¢ = 20 and k = 10* were used for the unfaulted
condition.

The feature which was used for the detection process was the transmissi-
bility function between the two top masses. It was computed by simulating
the responses to a harmonic excitation on mass 3 for a frequency range
between 0 and 50 Hz. In this case the magnitude of the transmissibility
function was sampled at 50 regularly spaced points on the frequency range
to give the pattern to be used as the unfaulted condition in the analysis
(Figure 3).

The fault in this system was simulated by reducing the stiffness between
the top two masses in Figure 2 by 1%, 10% and 50% of the original value
and the three faulted patterns were calculated in the same manner as above
with the stiffness altered in the equations of motion.

In order to construct a suitable mean vector and covariance matrix, for
the normal condition data, the unfaulted pattern was copied 1000 times
and each copy was subsequently corrupted with different Gaussian noise
vectors of RMS 0.05. This procedure was repeated for the three damage
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Figure 2. The three-degree-of-freedom simulated system.
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Figure 3. Transmissibility function for the unfaulted data.

cases which would form the testing patterns here. These three data sets
were then concatenated on to the normal data to give a 4000 observation
testing data set.

The exclusive Mahalanobis squared-distances for each of these 4000 ob-
servations were then calculated using Equation (2) and the results plotted
as shown in Figure 4. The 99% threshold value for a 1000 observation, 50-
dimensional problem was found to be 101 after 1000 trials. The plot shows
that the unfaulted data set (first 1000 observations) were all correctly la-
belled as inliers, as expected, and that all the observations corresponding to
the 10% and 50% stiffness reductions (third and fourth sets of 1000 observa-
tions respectively) were correctly diagnosed as outliers. Unfortunately, the
method is unable to classify virtually any of the 1% reduction observations
(second set of 1000 observations) as outliers. This is a general property of
novelty detectors, as mentioned previously, there is a trade-off between the
noise rejection capabilities and the sensitivity to damage, more details of
this can be found in Worden et al. (2007).
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Figure 4. Mahalanobis squared-distances for the unfaulted and faulted
data.

4 Neural Networks

4.1 Biological Neural Networks

Advanced as contemporary computers are, none have the capability of
carrying out certain tasks - notably pattern recognition - as effectively as
the human brain (or mammalian brain for that matter). The reason is that
there are essential differences in the way in which the brain and standard
serial machines compute. A conventional Von Neumann computer operates
by passing instructions sequentially to a single processor. The processor is
able to carry out moderately complex instructions very quickly. As an ex-
ample, at one point many IBM compatible Personal Computers were based
on the Intel 80486 microprocessor. This chip operated with a clock cycle
of 66 MHz, and was capable of carrying out approximately 60 distinct op-
erations. Averaging over long and short instructions, the chip was capable
of performing about 25 Million Instructions per Second (MIPs). (There is
little point in describing the performance of a more modern processor as it
will without doubt be obsolete by the time this book is published.) State-
of-the-art vector processors may make use of tens or hundreds of processors.

In contrast, neurons - the processing units of the brain - can essentially
carry out only a single instruction. Further, the delay between instructions
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is of the order of milliseconds; the neuron operates at approximately 0.001
MIPs. The essential difference with an electronic computer is that the
brain comprises a densely interconnected network of about 10'° processors
operating in parallel.

It is clear that any superiority that the brain enjoys over electronic com-
puters can only be due to its massively parallel nature; the individual pro-
cessing units are considerably more limited. (In tasks where an algorithm
is serial by nature, the brain cannot compete).

The construction of Artificial Neural Networks (ANNs) has been an ac-
tive field of research since the mid-1940s. In the first case, it was hoped
that theoretical and computational models would shed light on the proper-
ties of the brain. Secondly, it was hoped that a new paradigm for a computer
would emerge which would prove more powerful than a Von Neumann serial
computer when presented with certain tasks.

Before proceeding to a study of Artificial Neural Networks, it is useful
to discuss the construction and behaviour of biological neurons in order to
understand the properties which have been incorporated into model neu-
rons.

The Biological Neuron As discussed above, the basic processing unit
of the brain is the nerve cell or neuron; the structure and operation of the
neuron is the subject of this section. In brief, the neuron acts by summing
stimuli from connected neurons. If the total stimulus or activation exceeds
a certain threshold, the neuron fires’ i.e. it generates a stimulus which is
passed on into the network. The essential components of the neuron are
shown in the schematic Figure 5.

The cell body, which contains the cell nucleus, carries out those biochem-
ical reactions which are necessary for sustained functioning of the neuron.
Two main types of neuron are found in the cortex (the part of the brain asso-
ciated with the higher reasoning capabilities), they are distinguished by the
shape of the cell body. The predominant type have a pyramid-shaped body
and are usually referred to as pyramidal neurons. Most of the remaining
nerve cells have star-shaped bodies and are referred to as stellate neurons.
The cell bodies are typically a few microns in diameter. The fine tendrils
surrounding the cell body are the dendrites, they typically branch profusely
in the neighbourhood of the cell and extend for a few hundred microns. The
nerve fibre or axon is usually much longer than the dendrites, sometimes
extending for up to a metre. The axon only branches at its extremity where
it makes connections with other cells.

The dendrites and axon serve to conduct signals to and from the cell
body. In general, input signals to the cell are conducted along the dendrites,
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Figure 5. The biological neuron.

while the cell output is directed along the axon. Signals propagate along the
fibres as electrical impulses. Connections between neurons, called synapses,
are usually made between axons and dendrites although they can occur
between dendrites, between axons and between an axon and a cell body.

Synapses operate as follows: the arrival of an electrical nerve impulse at
the end of an axon say, causes the release of a chemical - a neurotransmitter
into the synaptic gap (the region of the synapse, typically 0.01 microns).
The neurotransmitter then binds itself to specific sites - neuroreceptors usu-
ally in the dendrites of the target neuron. There are distinct types of neuro-
transmitters: excitatory transmitters which trigger the generation of a new
electrical impulse at the receptor site, and inhibitory transmitters which act
to prevent the generation of new impulses.

The operation of the neuron is very simple. The cell body carries out
a summation of all the incoming electrical impulses directed inwards along
the dendrite. The elements of the summation are individually weighted by
the strength of the connection or synapse. If the value of this summation -
the activation of the neuron - exceeds a certain threshold, the neuron fires
and directs an electrical impulse outwards via its axon. From synapses with
the axon, the signal is communicated to other neurons. If the activation is
less than the threshold, the neuron remains dormant.

A mathematical model of the neuron, exhibiting most of the essential
features of the biological neuron was developed as early as 1943 by McCul-
loch and Pitts (1943). This model forms the subject of the Section 4.2; the
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remainder of this section is concerned with those properties of the brain
which emerge as a result of its massively parallel nature.

Memory Information is actually stored in the brain in the network con-
nectivity and the strengths of the connections or synapses between neurons.
In this case, knowledge is stored as a distributed quantity throughout the
entire network. The act of retrieving information from such a memory is
rather different from that for an electronic computer. In order to access data
on a PC say, the processor is informed of the relevant address in memory,
and it retrieves data from that location. In a neural network, a stimulus
is presented (i.e. a number of selected neurons receive an external input),
and the required data are encoded in the subsequent pattern of neuronal
activations. Potentially, recovery of the pattern is dependent on the entire
distribution of connection weights or synaptic strengths.

One advantage of this type of memory retrieval system is that it has
a much greater resistance to damage. If the surface of a PC hard disk is
damaged, all data at the affected locations may be irreversibly corrupted.
In a neural network, because the knowledge is encoded in a distributed
fashion, local damage to a portion of the network may have little effect on
the retrieval of a pattern when a stimulus is applied.

Learning According to the argument in the previous section, knowledge is
encoded in the connection strengths between the neurons in the brain. The
question arises of how a given distributed representation of data is obtained.
On way is that the initial state of the brain at birth is gradually modified as a
result of its interaction with the environment. This development is thought
to occur as an evolution in the connection strengths between neurons as
different patterns of stimuli and appropriate responses are activated in the
brain as a result of signals from the sense organs.

The first explanation of such learning in terms of the evolution of synap-
tic connections was given by Hebb (1949):

”When a cell A excites cell B by its axon and when in a repetitive
and persistent manner it participates in the firing of B, a process
of growth or of changing metabolism takes place in one or both
cells such that the effectiveness of A in stimulating and impulsing
cell B is increased with respect to all other cells which can have
this effect.”

If some similar mechanism could be established for computational models
of neural networks, there would be the attractive possibility of 'program-
ming’ these systems simply by presenting them with a sequence of stimulus-
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response pairs so that the network can learn the appropriate relationship
by reinforcing some of its internal connections.

4.2 The McCulloch-Pitts Neuron

Having found a description of a biological neural network, the first stage
in deriving a computational model was to represent mathematically the
behaviour of a single neuron. This step was carried out in 1943 by the neu-
rophysiologist Warren McCulloch and the logician Walter Pitts (McCulloch
and Pitts (1943)).

The McCulloch-Pitts model (MCP model) constitutes the simplest pos-
sible neural network model. Because of its simplicity it is possible without
too much effort to obtain mathematically rigorous statements regarding its
range of application; the major disadvantage of the model is that this range
is very limited. The object of this section is to demonstrate which input-
output systems or functions allow representation as a MCP model. In doing
this, a number of techniques which are generally applicable to more complex
network paradigms are encountered.

Boolean Functions For a fruitful discussion, limits must be placed upon
the range of systems or functions which the MCP model will be asked to
represent; the output of a nonlinear dynamical system, for example, can be
represented as a nonlinear functional of the whole input history. This is
much too general to allow a simple analysis. For this reason, the objects
of study here are the class of Multi-Input Single-Output (MISO) systems
which have a representation as a function of the instantaneous input values,
ie.

y:f(xlax27"'7xn> (4)
y being the output and z1,...,z, being the inputs. A further constraint
is imposed that the variables y and z1,...,z, are only allowed to take

the values 0 and 1. Functions of this type are call Boolean. They arise
naturally in symbolic logic where the value 1 is taken to indicate truth of
a proposition while 0 indicates falsity (depending on which notation is in
use, 1 =T = .true. and 0 = F = .false.). In the following, curly brackets
shall be used to represent those Boolean functions which are represented by
logical propositions, e.g. the function,

f(z1,22) = {71 = 22} (5)

Given the inputs to this function, the output is evaluated as follows,
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f(0,0) = {0=0} = .true. = 1
f(0,1) = {0=1} = .false. = 0
(1,00 = {1=0} = .false. = 0
f(,1) = {1=1} = drue. = 1

A Boolean function which is traditionally of great importance in neural
network theory is the ezclusive-or function X OR(x1, x2) which is true if one,
but not both, of its arguments is true. It is represented by the Boolean,

= O
—= OO
O =

Note that this function also has a representation as the proposition {1 #
xTo } .

There is a very useful pictorial representation of the Boolean functions
with two arguments. The possible combinations of input values can be rep-
resented as the vertices of the unit square in the Cartesian plane (Figure 6).

(1,0) 2%

(0,0)

Figure 6. Pictorial representation of a two-input Boolean function.

Each Boolean function on this domain is now specified by assigning the
value 0 or 1 to each point in the domain. If a point on which the function
is true is represented by a white circle, and a point on which the function is
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false by a black circle, one obtains the promised pictorial representation. As
an example, the XOR function has the representation shown in Figure 7.
Unfortunately, the pictorial representation is only really useful for functions
of two or three variables.

Figure 7. Pictorial representation of the XOR function.

The MCP Model Neuron In the MCP model, each input to a neuron is
assumed to come from a connected neuron, the only information considered
to be important is whether the connected neuron has fired or not (all neurons
are assumed to fire with the same intensity). This allows a restriction of
the possible input values to 0 and 1. On the basis of this information, the
neuron will either fire or not fire, so the output values are restricted to be
0 or 1 also. This means that a given neuron can be identified with some
Boolean function. The MCP model should therefore be able to represent
an arbitrary Boolean function.

The MCP neuron can be illustrated as in Figure 8.

The input values z; € {0,1} are weighted by a factor w; before they
are passed to the body of the MCP neuron (this allows the specification
of a strength for the connection). The weighted inputs are then summed
and the MCP neuron fires if the weighted sum exceeds some predetermined
threshold 8. So the model fires if,

iwixi > ﬁ (6)
=1
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Figure 8. The McCullough-Pitts neuron.

and doesn’t fire if,
> wiz < B (7)
i=1

Consequently, the MCP neuron has a representation as the proposition,
n
O wixi > B} (8)
i=1

which is clearly a Boolean function. As a real neuron could correspond to
an arbitrary Boolean function, there are two fundamental questions which
can be asked:

1. Can a MCP model of the form (8) represent an arbitrary Boolean
function f(z1,...,2,)? i.e. do there exist values for wy,...,w, and 8
such that f(z1,...,2,) = {1 jwix; > 5}7?

2. If a MCP model exists, how can the weights and thresholds be de-
termined? In keeping with the spirit of neural network studies one
would like a training algorithm which would allow the MCP model to
learn the correct parameters by presenting it with a finite number of
input-output pairs; does such an algorithm exist?

The answer to Question 2 is yes; unfortunately the answer to the more
fundamental Question 1 is no. The simplest way to determine the limita-
tions of the class of MCP models is to consider the geometry of the situation.
In n dimensions the equation,

Zwizi =0 (9)
i=1

represents a hyperplane which separates two regions of the n-dimensional
input space. One region U consists of all those points (z1,...,2,) (where
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the z; can take any real values), such that,
n
> wizi > (10)
i=1
The other region L contains all those points such that,
n
Zwizi < ﬁ (11)
i=1

This means that each MCP model (9) specifies a plane which divides the
input space into two regions U and L (where L is now defined to include the
plane itself). Further, by Equations (10) and (11) the MCP model takes the
values 0 on L and 1 on U. This means that if one is to represent an arbitrary
Boolean function f by a MCP model, there must exist a plane which splits
off the points on which f = 1 from the points on which f = 0. Using the
pictorial representation described earlier, such a plane should separate the
white dots from the black dots. It is now obvious why there is no MCP
model for the Boolean {z1 = x2}, no such plane exists (Figure 9).

Figure 9. Decision boundary for problem Boolean.

The XOR function of Figure 7 is a further example. In fact, these are
the only two-input Boolean functions which do not have a MCP model.
There are actually 16 two-input Boolean functions, of which only two are
not representable by a MCP model. This is not such a bad result. However,
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the percentage of functions which can be represented falls off rapidly with
increasing number of inputs.

The solution to the problem is to use more than one MCP unit to rep-
resent a MISO system. For example, if two MCP units are used in the
two-input case, one can partition the plane of the XOR(z1,22) function
into four regions as below, and thereby solve the problem.

Figure 10. Partition of feature space for XOR function.

Consider the two lines in Figure 10. The parameters of the first line
w121 +waze = [ define a MCP model M C Pg, the parameters of the second
U121 +ug22 = vy define a model M CP,. This configuration of lines separates
the white dots (in region I) from the black dots as required. The points
where the XOR function is 1 are in the region I where the outputs yg
and y, from MCPg and MCP, are 1 and 0 respectively, all other pairs
of outputs indicate regions where XOR is false. It is possible to define a
Boolean function f(yg,y,) whose output is 1, if and only if (ys, y,) = (1,0).
The pictorial representation of this Boolean is shown in Figure 11.

It is clear from the figure that this function has a MCP model, say
MCPs (with weights v1,ve and threshold ). Considering the network of
MCP models shown in Figure 13, it is clear that the final output is 1 if, and
only if, the input point (z1,2) is in region I in Figure 12. Consequently,
the network provides a representation of the XOR function. Note that the
end result is a heterogeneous network structure in which there are three
types of neurons:
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Figure 11. Decision function for multi-neuron solution to XOR problem.
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Figure 12. Network solution to XOR problem.
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Input neurons Communicate directly with the outside world, but serve
no computational purpose beyond distributing the input signals to all
of the first layer of computing neurons.

Hidden neurons Do not communicate with the outside world; compute.

Output neurons Do Communicate with the outside world; compute.

Signals pass forward through the input layer and hidden layers and
emerge from the output layer. Such a network is called a feed-forward
network.

The constructions that have been presented suggest why the MCP model
proves to be of interest, by passing to networks of MCP neurons, it can be
shown fairly easily that any Boolean function can be represented by an
appropriate network. Furthermore, a training algorithm exists for such
networks which terminates in a finite time (Minsky and Papert (1988)).

4.3 Perceptrons

In the last section, it was shown how the failure of the MCP model to
represent certain simple functions led to the construction of simple networks
of MCP neurons which could overcome the problems. The first serious
study of such networks was carried out by Rosenblatt and is documented
in his 1962 book (Rosenblatt (1962)). Rosenblatt’s Perceptron networks are
composed of an input layer and two layers of MCP neurons as shown in
Figure 13. The hidden layer is referred to as the associative layer while the
output layer is termed the decision layer. Only the connections between
the decision nodes and associative nodes are adjustable in strength; those
between the input nodes and associative nodes have to be preset somehow
before training takes place.

The neurons operate as threshold devices exactly as described in Sec-
tion 4.2: if the weighted summation of inputs to a neuron exceeds the
threshold, the neuron output is unity, otherwise it is zero.

It is immediately apparent that the perceptrons have applications in
pattern recognition. For example, the input layer could be associated with
a screen or retina as in Figure 14, such that an input of 0 corresponds to
a white pixel and 1 to a black pixel. The network could then be trained
to respond at the decision layer only if certain patterns appeared on the
screen.

This pattern recognition problem is clearly inaccessible to an MCP model
since there are no restrictions on the form of Boolean function which could
arise. However, it is possible to show that any Boolean function can be
represented by a perceptron network (Minsky and Papert (1988)). Unfor-
tunately, it transpires that it can be necessary to use compute all possible
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Figure 13. Structure of Rosenblatt perceptron.
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Figure 14. Perceptron image recognition.
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products of inputs in forming the necessary networks. In this case, for N
inputs, 2%V products and hence 2% associative nodes (which effectively com-
pute the products) are required. The XOR function above is an example
of this type of network.

Having established that any Boolean function can be computed using
a perceptron, the next problem is to establish a training algorithm which
will lead to the correct connection weights. A successful learning rule was
obtained by Rosenblatt (1962) called the Delta rule; this rule corrects the
weights after comparing the network outputs for a given input with a set of
desired outputs; the approach is therefore one of supervised learning.

Limitations of Perceptrons The results that have been presented in-
dicate why perceptrons were initially received with enthusiasm; they can
represent a Boolean function of arbitrary complexity and are provided with
a training algorithm which is guaranteed to converge in finite time. The
problem is that in representing a function with N arguments, the percep-
tron may need 2V elements in the associative layer; the networks grow
exponentially in complexity with the dimension of the problem.

A possible way of avoiding this problem was seen to be to restrict the
number of connections between the input layer and associative layer, so
that each associative node connects to a (hopefully) small subset of the
inputs. A perceptron with this restriction is called a diameter-limited per-
ceptron. The justification for such perceptrons is that the set of Booleans
which require full connections might consist of a small set of uninteresting
functions. Unfortunately, this has proved not to be the case, as shown in
the book Percetrons (Minsky and Papert (1988)).

Another possible escape-route was the use of perceptrons with several
hidden layers in the hope that the more complex organisation would avoid
the exponential growth in the number of neurons. The problem here is that
the adjustment of connection weights to a node by the Delta rule requires
an estimate of the output error at that node. However, only the errors at
the output layer are given, and at the time there was no means of assigning
meaningful errors to the internal nodes. This was referred to as the credit-
assignment problem. The problem remained unsolved until 1974 (Werbos
(1974)). Unfortunately, Minsky and Papert’s book resulted in the almost
complete abandonment of neural network research until Hopfield’s paper of
1982 brought about a resurgence of interest. As a result of this, Werbos’
1974 solution of the credit assignment problem was overlooked until after
Rumelhart et al independently arrived at the solution in 1985 (Rumelhart
et al. (1986)). The new paradigm the latter introduced - the Multi-Layer
Perceptron (MLP) - is probably the most widely-used neural network to
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date.

4.4 Multi-Layer Perceptrons

The network is a natural generalisation of the perceptrons described in
Section 4.3. The main references for this discussion are Bishop (1998) or
Rumelhart and McClelland (1988). A detailed analysis of the network struc-
ture and learning algorithm is given in Bishop (1998), but a brief discussion

is given here.
yl
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Figure 15. Multi-Layer Perceptron (MLP).

The MLP is a feedforward network with the neurons arranged in layers
(Figure 15). Signal values pass into the input layer nodes, progress forward
through the network hidden layers, and the result finally emerges from the
output layer. Each node 7 is connected to each node j in the preceding and
following layers through a connection of weight w;;. Signals pass through
the nodes as follows: in layer k a weighted sum is performed at each node i



Health Monitoring Using Pattern Recognition 213

of all the signals xgk_l) from the preceding layer k — 1, giving the excitation

2

. of the node; this is then passed through a nonlinear activation function

f to emerge as the output of the node xgk) to the next layer i.e.,

oM = ) = FOQ wd el Y) (12)
J

Various choices for the function f are possible, the hyperbolic tangent
function f(x) = tanh(x) is a good choice. A novel feature of this network
is that the neuron outputs can take any value in the interval [-1,1]. There
are also no explicit threshold values associated with the neurons. One node
of the network, the bias node, is special in that it is connected to all other
nodes in the hidden and output layers; the output of the bias node is held
fixed throughout in order to allow constant offsets in the excitations z; of
each node.

The first stage of using a network is to establish the appropriate values
for the connection weights w;; i.e. the training phase. The type of train-
ing usually used is a form of supervised learning and makes use of a set of
network inputs for which the desired network outputs are known. At each
training step, a set of inputs is passed forward through the network yielding
trial outputs which can be compared with the desired outputs. If the com-
parison error is considered small enough, the weights are not adjusted. If
however a significant error is obtained, the error is passed backwards through
the net and the training algorithm uses the error to adjust the connection
weights so that the error is reduced. The learning algorithm used is usually
referred to as the backpropagation algorithm, and can be summarised as
follows. For each presentation of a training set, a measure J of the network
error is evaluated where,

n®

I = 5 ()~ iu(0) (13

i=1

and n is the number of output layer nodes. J is implicitly a function of
the network parameters J = J(61,...,60,) where the 6; are the connection
weights, ordered in some way. The integer ¢ labels the presentation order of
the training sets. After presentation of a training set, the standard steepest-
descent algorithm requires an adjustment of the parameters according to,

o
1= o,

where V; is the gradient operator in the parameter space. The parameter
1 determines how large a step is made in the direction of steepest descent

YA?) = —nViJ (14)
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and therefore how quickly the optimum parameters are obtained. For this
reason 7 is called the learning coefficient. Detailed analysis (Bishop (1998))
gives the update rule after the presentation of a training set,

wi (1) = wl™ (¢ — 1) + o™ (0)2{" ) (1) (15)

J

where 6§m) is the error in the output of the i*” node in layer m. This error

is not known a priori but must be constructed from the known errors 6§l) =
y; — U; at the output layer [. This is the source of the name backpropagation,
the weights must be adjusted layer by layer, moving backwards from the
output layer.

There is little guidance in the literature as to what the learning coefficient
7 should be; if it is taken too small, convergence to the correct parameters
may take an extremely long time. However, if 17 is made large, learning is
much more rapid but the parameters may diverge or oscillate. One way
around this problem is to introduce a momentum term into the update rule
So that previous updates persist for a while, i.e.,

2w (1) = 95™ ()2 () + et (t - 1) (16)

where « is termed the momentum coefficient. The effect of this additional
term is to damp out high-frequency variations in the backpropagated error
signal. This is the form of the algorithm used throughout the case studies
later.

Existence of Solutions Before advocating the use of neural networks
in representing functions and processes, it is important to establish what
they are capable of. As described above, artificial neural networks were all
but abandoned as a subject of study following Minsky and Papert’s book
(Minsky and Papert (1988)) which showed that perceptrons were incapable
of modelling very simple logical functions. In fact, recent years have seen
a number of rigorous results (Cybenko (1989), is a good example), which
show that a MLP network is capable of approximating a given function
with arbitrary accuracy, even if possessed of only a single hidden layer.
Unfortunately, the proofs are not constructive and offer no guidelines as to
the complexity of network required for a given function. A single hidden
layer may be sufficient but might require many more neurons than if two
hidden layers were used.

Uniqueness of Solutions This is the problem of local minima. The
error function for a MLP network is an extremely complex object. Given
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a converged MLP network, there is no way of establishing if it has arrived
at the global minimum. Some attempts to avoid the problem are centred
around the association of a temperature with the learning schedule. Roughly
speaking, at each training cycle the network may randomly be given enough
‘energy’ to escape from a local minimum. The probable energy is calculated
from a network temperature function which decreases with time. Recall
that molecules of a solid at high temperature escape the energy minimum
which specifies their position in the lattice. An alternative approach is to
seek network paradigms with less severe problems e.g. Radial-basis function
networks (Bishop (1998)).

5 Novelty Detection Again

5.1 Non-Gaussian Normal Condition - Neural Networks

The outlier approach made an implicit assumption of the Gaussian na-
ture of the normal condition data through the use of the Mahalanobis dis-
tance. In many cases, this will be an unwarranted assumption and more
general techniques will be needed. One approach which is able to cope
with non-Gaussian normal conditions is that based on the idea of an Auto-
Associative Neural Network (AANN); the application of this network was
first proposed in Pomerleau (1993) within a slightly different context.

The approach taken here is simply to train an (AANN) on the patterns.
This simply means a feed-forward Multi-Layer Perceptron (MLP) network
(Bishop (1998)), which is asked to reproduce at the output layer, those
patterns which are presented at the input. This would be a trivial exercise
except that the network structure has a ’bottleneck’ i.e. the patterns are
passed through hidden layers which have fewer nodes than the input layer
(Figure 16). This forces the network to learn the significant features of
the patterns; the activations of the smallest, central layer, correspond to
a compressed representation of the input. Training proceeds by presenting
the network with many versions of the pattern corresponding to normal
condition corrupted by noise and requiring a copy at the output.

The novelty index v(x) corresponding to a pattern vector x is then de-
fined as the Euclidean distance between the pattern and the result of pre-
senting it to the network z,

v(z) = ||z -2l (17)

It is clear how this works. If learning has been successful, then for all data
in the training set so v(x) ~ 0 if x represents the normal condition. If z
corresponds to damage, v(x) will be significantly non-zero. Note that there
is no guarantee that v will increase monotonically with the level of damage,
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Figure 16. Auto-associative neural network.

this is why novelty detection only gives a level one diagnostic. Note that
universal approximation property of the neural network (Bishop (1998)),
means that the novelty detector can learn the properties of any normal
condition distribution, it does not have to be Gaussian or even unimodal.
In fact, the case study following will consider the extreme case of a normal
condition set defined on two disconnected components.

As an illustration, the three degree-of-freedom system with concentrated
masses described in Equation (3) and shown in Figure 2 was simulated
again. In the first normal condition (NCI) the following values were used:
m =1, ¢ = 20 and k = 10*. In the second normal condition (NCII) the
same parameters were used with the exception that the bottom mass was
reduced by 50%. This problem with two normal conditions with different
masses is intended to mimic the situation where an aeroplane drops a store.
The fault in the system was simulated by decreasing the stiffness between
the top two masses in Figure 3 by different degrees.

In both conditions, the response transmissibility function between the
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top two masses was calculated in terms of the transverse displacement for
a harmonic excitation applied at the top mass.

In the simulations performed, the frequency of the harmonic exciting
force was varied in the range from 0 to 50 Hz in order to encompass the three
natural frequencies of the system. Figure 17 illustrates the transmissibility

Transmissibility 2-1 (NCI)
3 T T T T T T

0 5 10 15 20 2 30 8 40 45 50

[Hz]
Figure 17. Transmissibilities for normal condition 1 (solid line) and corre-
sponding damage cases (dashed lines)

function corresponding to the structure in NCI together with the functions
relative to three damage conditions, denoted DCI, with 2%, 10% and 50%
reductions in stiffness of the spring of interest respectively. Figure 18 shows
equivalent functions corresponding to NCII together with damaged cases
with the same reductions in stiffness, denoted DCII.

Note that the normal conditions NCI and NCII are significantly different
from each other compared to the differences between a normal condition
and its corresponding damage states. This means that an outlier analysis
conducted on a given normal condition would strongly indicate damage for
data from the other normal condition.

The training data for the neural network diagnostic system was obtained
by making 500 copies of the transmissibility functions corresponding to the
undamaged structure for each of the two normal conditions, and then pol-
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Transmissibility 2—-1 (NCII)
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Figure 18. Transmissibilities for normal condition 2 (solid line) and corre-
sponding damage cases (dashed lines)

luting each of these independently by adding Gaussian noise with an RMS
value equal to 1% of the peak value of the transmissibility function. The
testing sets were constructed by concatenating 500 noise-corrupted copies
of the transmissibility functions relative to the different damage scenarios
considered for both operating conditions.

For the task of pattern recognition, an AANN with 5 layers and node
structure 50:40:30:40:50 was selected and trained for 100000 presentations
of individual training patterns in random order. A slight modification of
the novelty index in Equation (17) was used here, in which the two normal
condition sets were normalised to the same level, details can be found in
Surace and Worden (1997).

The results shown in Figure 19 correspond to a 10% stiffness reduction.
As one can see, the normalised novelty index permits unambiguous identifi-
cation of the presence of the fault and gives the required near-zero response
on both normal conditions. As in the case of outlier analysis, a confidence
threshold can be computed (Worden (1997)).

This example illustrates a case where it is necessary to design a novelty
detector which does not fire when operational variations occur. In the field
of SHM it is often even more important to be able to neglect environmental
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Figure 19. Novelty detection of the two 10% damage conditions.

changes e.g. changes due to variation in temperature. A useful survey of
these issues can be found in Sohn (2007), and the matter is also discussed
at length in the later chapter in this book by Kullaa.

6 Statistical Pattern Recognition

6.1 Introduction

There are currently three entirely separate theoretical frameworks for
developing pattern classifiers. The most recent, based on the use of neural
networks, is the main approach described here. The other two, the statisti-
cal and syntactic approaches, are more well established. In some respects,
the three approches complement each other, so in attacking a particular
problem the ideal situation would be to know something of all three. This
is the approach taken in Schalkoff (1992), which provides the main source
of reference for this lecture. However, as the syntactic approach is rather
abstract and calls for a certain amount of mathematical sophistication, the
discussion here is restricted to the statistical approach.

In brief, the problem of pattern recognition is to associate classes C;, 7 =
1,..., N, with measured data. Statistical methods allow two distinct ap-
proaches.



220 K. Worden

(SPR1) Given a measurement/feature vector z, calculate the probability
that this is associated with a given class Cj;; this is the conditional
probability P(C;|z). Repeat for all possible classes and choose that

which gives the highest probability.
(SPR2) Form a measure of the error associated with choosing a particular

class and then pick the class which minimises it.

The discussion below concentrates on SPR1. Statistical methods are
necessary because in general, many different measurement vectors will cor-
respond to noisy or distorted versions of the same basic pattern or template
and thus require assignment to the same class.

It is assumed throughout that training data is available i.e. a sequence
of measurement vectors z(®) k = 1,..., N; are known, together with the
correct class for each vector C’i(k). This allows the construction of the a
priori conditional probability density function (PDF) p(z|C;) which specifies
the probability that a measurement vector x can arise from a class C;. An
application of Bayes’ theorem (see the Appendix to this chapter) yields the
required P(C;|x) via,
p(z|C)) P(Ci)

p(x)
where p(z) is the unconditional density function which can also be com-
puted from the training set. P(C;) is the probability of finding an example
from class C; without considering any measurement information. The re-
quirement of a training set makes this approach one of supervised learning
in the terminology of neural networks.

To give an idea how this all leads to a decision rule, consider the following
simple example from Schalkoff (1992). Suppose there are two classes Cy and
Cy with equal a priori (i.e. before measurement) probabilities i.e P(Cy) =
P(C3). Further suppose that there is a single distinguishing feature x and
that the PDFs p(z|C) and p(x|C3) have been established as Gaussians with
the same variance o but different means p; and ps. So,

1 1 /x—py 2
i ol 3 oo

The basic decision rule is,

Choose Ci if P(C1|z) > P(Cs|z), otherwise choose Cy

P(Cilz) = (18)

Bayes theorem shows that P(C1|z) > P(Cs|z) implies,

p(x|C1)P(Ch) S p(x|C2) P(C2)
p(x) p(z)
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so using the fact that P(Cy) = P(Cs) yields,
P(Cilz) > P(Colz) = p(x|Ch) > p(z|C2)
and this allows a decision rule,
Choose C1 if p(z|Cy) > p(z|Cs), otherwise choose Cs

which is based only on PDFs calculated from the training set. (In this
case, determining the PDF simply requires estimates of p1, po and o.) The
decision boundary is a single number «, fixed by the condition,

p(a|Cy) = p(a|C2)
which gives, on using the functional form for the Gaussian,,

1t e
o= HrTH2
2

So « is mid-way between w1 and us, this agrees with intuition as the dis-
tributions have the same width (same o). The situation is illustrated in
Figure 20 (the densities shown are schematics and not intended to be rep-
resentative of true Gaussians). The decision regions R; and Ry are simply
the half-lines meeting at «.

As the probability density functions for the two classes overlap, there
will always be the possibility of choosing incorrectly on the basis of a given
measurement x. It is possible to compute the probability of making such a
wrong decision. By the total probability theorem it follows that,

P(error) = P(error|C1)P(C1) 4+ P(error|C2)P(C3)

= P({L‘ € R2|01)P(C1) + P({E € R1|CQ)P(CQ)
= P({E > a|Cl)P(Cl) + P({E < a|CQ)P(CQ)
So, finally,

oo [e3

p(z|Cy)dz + P(Cg)/ p(z]|C2)dz (19)

— 00

P(error) = P(Cl)/
(0%
And this can be computed from a priori information i.e. the training set.
In the general problem where many measurements/features are used to
distinguish between many classes, the approach SPR1 can be summarised
as follows:

1. Establish a training set {z(7), Cl-(j)},j =1,..., NN, for each class C;.
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Figure 20. Solution to simple classification problem.

2. Compute the a priori information p(x|C;), P(C;) and P(C;).
3. Given a new unclassified measurement y, use Bayes’ theorem to obtain
the measurement conditioned probability P(C;|y) = p(y|C;)P(C;)/p(y)

for each class C;.
4. Choose C; such that P(C;|y) > P(Cjly) for all ¢ # j.

In point 3 above, the denominator of the expression, p(y) is common
to all of the measurement-conditioned probabilities, so step 4 above can be
modified to,

Choose C; if p(y|C;)P(C;) > p(y|C;)P(C;) for all i # j (20)

and the measurement PDF need not be computed at step 2.

Note that step 2 is not trivial. There are two possibilities here, a para-
metric form can be assumed for the PDF with the training set used to
determine the values of the parameters, or a non-parametric form can be
obtained. In the latter case, the PDF can be constructed from a frequency
histogram of the training data and stored as an array of values. It is most
usual to use the former approach, and in the vast majority of cases, the
PDF is assumed to be Gaussian, i.e.

p(alC) = NCRTA LA CEVR] SEY

B S {_
2m ¥ /) T2
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for an N-component measurement/feature vector. ¥; and M, are respec-
tively the covariance matrix and mean vector for the measurement vectors
associated with class C;. |X;| is the determinant of ;. In this case, the
problem of parameter estimation is reduced to obtaining ¥; and p, - stan-
dard statistical estimates.

6.2 Connection to Neural Networks

All of the above theory allows the construction of effective classifiers
which can be used in SHM problems. However, in recent years it has be-
come common practice to implement the classifier using a neural network
structure; the MLP structure described in Section 4 is most common. At
first, when such techniques were used, a certain amount of suspicion arose
as a result of the black-box nature of the networks and the difficulty of de-
termining precisely how they worked. Fortunately, researchers soon realised
that the neural networks, if trained appropriately, will work according to
the SPR principles discussed above. The main result, described in Bishop
(1998) shows that neural networks trained according to certain principles
will actually generate Bayesian posterior probabilities for the possible classes
when presented with a data pattern.

The appropriate training strategy to make contact with statistical pat-
tern recognition is the 1 of M strategy (Bishop (1998)). This approach is
quite simple; each pattern class is associated with a unique network out-
put on presentation of a pattern during training, the network is required to
produce a value of unity at the output corresponding to the desired class
and zero at all other outputs. When the trained network is presented with
a new pattern it will respond at each output with the posterior probability
appropriate to that class. This means that such a network actually imple-
ments a Bayesian decision rule if each pattern vector is identified with the
class associated with the highest output.

It is not quite as simple as this. Conditions are best if the following
conditions are adhered to:

1. The training patterns for each class should be represented in the train-
ing data set in numbers proportional to their prior probabilities. In
practice, most people adopt a balanced training set where possible,
containing equal numbers corresponding to each class. It is possi-
ble to post-process the network outputs for a network trained on a
balanced set in order to compensate for unequal priors (Tarassenko
(1998)).

2. The network should ideally be trained to minimise the cross-entropy
error function, although a standard least-squares function is adequate.
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3. The nonlinear activation function for the output layer should ideally
be the softrax function as described in Bishop (1998); however, this
is not mandatory.

In practice, the procedure for training the neural network should make
use of multiple data sets following the guidelines in Tarassenko (1998). The
data should be divided into a training set, a validation set and a testing set.
The training set is used simply to establish the network weights for a given
network topology (number of layers, numbers of hidden units) and training
parameters (learning rate etc.). However, the network topology itself should
be determined in a principled manner. This can be accomplished by training
networks with different numbers of hidden units and learning rates and
minimising the error over an independent data set - the validation set. As
the network has now been tuned to both the training set and validation set,
a third independent data set - the testing set - should then presented to
this optimised network in order to arrive at a final classification error. The
number of input and output neurons is usually fixed by the nature of the
data and do not require optimisation.

7 Experimental Illustrations

The work discussed in this section is concerned with a programme of exper-
imental validation for a SHM methodology based on novelty detection and
neural network classification. The work is reported in considerably more
detail in Worden et al. (2008); Manson et al. (2003a,b). The philosophy of
the programme of work was to develop methods which are robust enough
to be successful on real aircraft structures. The programme spanned a pe-
riod of around three years. The structure of interest was a Gnat trainer
aircraft, or more specifically, the starboard wing of the aircraft as shown in
Figure 21.

The first phase of the work was concerned with level one in the damage
hierarchy - novelty detection.

7.1 Level One - Damage Detection

Damaged Inspection Panels As it was not permitted to damage the
aircraft, damage was effectively introduced into an inspection panel. This
was accomplished by making ten copies of the panel; one was left intact
and the remaining nine received controlled damage. Figure 22 shows a
schematic of the damage conditions. Damage states f1, 2 and f3 were holes
of diameter 20mm, 38mm and 58mm respectively. States f4, f5 and f6
were saw-cuts across the panel width with f4 an edge cut of 50mm and f5
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Figure 21. Gnat aircraft and acquisition system.

and f6 central cuts of extent 50mm and 100mm respectively. States {7, {8
and f9 were saw-cuts along the longer axis of the panel with {7 a 100mm
edge cut and f8 and f9 central cuts 100mm and 200mm long respectively.
The original point of introducing different damage types was to explore the
possibility of classifying the different types and orientations. This could
be, and sometimes is, added as an extra level in Rytters hierarchy (see
Section 1).

Data Capture Transmissibilities were used as the base measurements
from which novelty detection features would later be selected. The trans-
missibility between two points ¢ and j is here defined as the ratio of the
acceleration spectra measured at those points i.e. Tjj(w) = A;(w)/A4;(w) =
Y;(w)/Y;(w), where A;(w) is an acceleration spectrum and Y;(w) is the cor-
responding displacement spectrum. These spectra were obtained by Fourier
transforming acceleration time data obtained from piezoelectric accelerom-
eters; appropriate windowing and averaging was employed. The reasons
for the choice of transmissibility were based on their success in a previous



226

K. Worden

* + + + + - " * + + v 7; + N
LN +
| AN +
+2N t
+ +
; .
), e @), O
. .
. .
‘
+ o+ o+ o+ o+ o+ o+ o+ + + + + + + + + + +

@) Q G '

+ +
+ v s
+ o+ o+ o+ o+ o+ o+ o+ R S T S g
+ " TTm-——— + It --
t t + oo+ o+ g

@) (f6)

¥ B +
R S S ™ oo+ o+ T T P
N +
+\ +
+ + \
+ +
(£7) (f8)
+ +
+ +
+ +
+ ;

(f9)

Figure 22. Different simulated damage states.
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study on a laboratory structure (Worden et al. (2003)), and because they
were thought to be susceptible to local changes in the region between the rel-
evant sensors (accelerometers). The sensitivity to local changes is important
for detecting small damage. Many other vibrational features are possible,
like natural frequencies and modeshapes; however, many are global quan-
tities which are not sensitive to small damage. Four sensors were used in
all: one pair to establish the transmissibility across the panel in the length
direction and one pair across the width (Figure 23).

| 195mm |
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Figure 23. Panel and sensor layout.

The wing was excited with a white Gaussian excitation using an electro-
dynamic shaker attached directly below the inspection panel on the bottom
surface of the wing. Transmissibilities were recorded in the 1-2 kHz range
as this was found to be sensitive to the types of damage being investigated.
In all cases 2048 spectral lines were recorded. Figure 24 shows two exam-
ples of the transmissibility (128 averages here for clarity) measured across
the length of the panel area when the panel had been completely removed.
(This shows the degree of variability in the measurements that is to be ex-
pected from environmental changes and instrumental drift. The degree of
variability as a result of re-fixing the plate with the boundary screws was
considerably higher; this is discussed later.)

For the undamaged panel a 128-average transmissibility and 110 one-
shot transmissibilities (100 for the novelty detector training and 10 held



228 K. Worden

20.0

15.0 - .

10.0 - ‘ g

Transmissibility Magnitude

;ff'\;/‘\ N /

0-0 L | -
1250 1350 1450 1550 1650 1750
Spectral Lines

Figure 24. Examples of averaged transmissibility measurements.

back for the testing set) were obtained. Next, for each damaged panel and
for the undamaged panel again (for testing purposes) a 128-average trans-
missibility and 10 one-shot transmissibilities were obtained. Finally, a set
of measurements were recorded with the panel completely removed and, for
repeatability purposes, a further four tests were carried out to obtain 128-
average transmissibilities for the undamaged panel. The panel was removed
and replaced between each of the latter tests. The test sequence, which
identifies the purpose of each test is given in Table 1 (the labels for the
fault conditions correspond to those in Figure 22).

Feature Selection In many situations there is a requirement for some
pre-processing of the raw data signals before proceeding to the feature se-
lection phase, this is represented by the Signal Processing box in Figure 1. In
this study however, pre-processing of the transmissibilities was not deemed
necessary.

It can be argued that the process of selecting or extracting good features
is probably the most important and most difficult phase in the Data to De-
cision process (Section 1). Essentially, in the context of pattern recognition,
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Test Status Number of Number of Purpose
Label Patterns Averages

uff Undamaged 1 128 Feature selection
uft ” 100 1 Training

uf ” 10 1 Testing

f1f 20mm diameter hole 1 128 Feature selection
f1 ” 10 1 Testing

f2f 38mm diameter hole 1 128 Feature selection
f2 ” 10 1 Testing

£3f 58mm diameter hole 1 128 Feature selection
3 ” 10 1 Testing

f4f 50mm width/edge cut 1 128 Feature selection
f4 ” 10 1 Testing

f5f 50mm width/centre cut 1 128 Feature selection
5 ” 10 1 Testing

fef 100mm width/centre cut 1 128 Feature selection
f6 ” 10 1 Testing

f7f 100mm length/edge cut 1 128 Feature selection
7 ” 10 1 Testing

£8f 100mm length/internal cut 1 128 Feature selection
8 ” 10 1 Testing

fof 200mm length/internal cut 1 128 Feature selection
f9 ” 10 1 Testing

npf Panel removed 1 128 Feature selection
np ” 10 1 Testing

uf2 Undamaged 10 1 Testing

Table 1. Test sequence for novelty detection experiment on Gnat.

what is meant by a feature is some set of values drawn from or calculated
from the measured (or pre-processed) data. The choice of feature will de-
pend upon the purpose of the novelty detector or classifier. For damage
detection, one desires a feature that is capable of distinguishing between
the undamaged and damaged states. It is obvious that a poor choice of
feature will probably result in a poor novelty detector. Conversely, a good
feature will often result in a successful novelty detector irrespective of the
underlying method used to construct the detector.

In the case of the Gnat damage detection study here, the 128-average
transmissiblities from all the undamaged and damaged cases were compared.
It was found that there was a significant variability between the undamaged
state transmissibilities due to the panel boundary conditions (23 screws).
This raises the issue of robust features: a feature will clearly be of little
value, even if it does distinguish between the damaged and undamaged
states, if it results in a novelty detector which flags damage when there is
merely a slight change in the boundary conditions. The issue of robustness
against environmental variability will be discussed later and is highlighted
elsewhere in this book (in the chapter by Kullaa).

The procedure for selecting potential features for the detection of one
or more of the damage states was straightforward: each of the 128-average
transmissibilities measured from the various damage conditions was com-
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pared to the five 128-average transmissibilities measured from the undam-
aged structure. This resulted in between one and three areas of interest
being highlighted for each of the four main damage types (namely: no
panel, holes, width-spanning cuts and length-spanning cuts) for each of the
two transmissibilities. Figure 25 shows an example of one of these features,
selected to detect length-spanning cuts in the panel. In total, ten areas of
interest were highlighted from the transmissibilities across the panel length
and eight from those recorded across the panel width. It is a simple matter
to convert these areas of interest into feature patterns; the transmissibility
function is simply sub-sampled over the required region to give an array
of 50 sample points or a 50-dimensional pattern in multivariate statistics
terminology. This means that there were 18 potential features in total, each
of 50 dimensions.

One might argue that if data are available from the damaged and undam-
aged data, a better course of action would be to train a classifier. However,
the intention here is to only to illustrate a detection method and unsuper-
vised learning will suffice here. The damage state data is only used here to
define novelty detectors which are likely to work well for illustrative pur-
poses. One of the main problems with data-driven approaches, and this
will be discussed in more detail later, is that data for the damage cases are
rarely available. In the absence of damage data, one conceivable strategy is
to define novelty detectors for a number of features and then observe them
all to see if any signal damage.

Novelty Detection Once the features have been selected, the next step
is to construct a novelty detector. There are many possible techniques
for novelty detection; the method used for this study was outlier analysis
as discussed in Section 3.1; this assumes that the training data can be
represented by a multivariate Gaussian distribution. If this were not the
case, a method capable of handling more complicated probability density
functions such as the AANN of Section 5.1 could be used.

Novelty detectors were constructed for each of the 18 potential features
discussed above. This was done using 500 artificially noise-contaminated un-
faulted features. In the test programme, six separate tests were conducted
under normal condition; however, although a 128-average transmissibility
was obtained in each case, due to time constraints the 110 one-shot mea-
surements were only obtained in one test (that labelled uf below). The test
labelled uf2 below extracted 10 one-shot measurements. The use of five
different normal condition data sets allowed robust features to be selected
which were not subject to substantial variation as a result of the boundary
conditions. Testing sets were constructed using the final 10 of the unfaulted
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Figure 25. Novelty detection feature to detect length-spanning cuts.

patterns (denoted uf in Figure 26), followed by 10 of each fault condition f1
to f9. The testing set was completed with 10 patterns drawn from the panel
removed condition (np) and 10 patterns with the unfaulted panel reattached
(uf2) - see Table 1.

Four of the 18 features were capable of detecting some of the damage
conditions whilst correctly classifying the 20 unfaulted patterns. The rest
produced some false positives and were discarded. (In the event that no
damage data were available to allow a judgement of performance and all
novelty detectors were being monitored a problem arises as to which nov-
elty detectors to trust. A voting scheme might help, but this is a difficult
problem which requires further research.) Figures 26 and 27 show the nov-
elty detector results for two of these features which, when combined, are
able to detect all nine damage types and the panel removed condition while
correctly returning below-threshold values for the unfaulted patterns.

All threshold values were calculated using the Monte Carlo method out-
lined in Section 3.1 based upon the critical value of 1% test of the discor-
dancy.
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7.2 Level Two - Damage Location

This phase of the work investigated the next level in Rytters damage hi-
erarchy namely, damage location. Having detected that damage is present
in the structure, there is generally a desire for further information regard-
ing the location of the damage. This problem can be cast in a regression
framework with the output being the coordinates of the damage. This
was the framework used to locate impacts on a composite panel in Worden
and Staszewski (2000). However, in the study here, due to the restrictions
upon actually damaging the structure, the problem of damage location was
changed into one of classification. As in the first phase of the study, the
Gnat aircraft was the experimental structure and inspection panels on the
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Figure 27. Outlier analysis results for feature from spectral lines 1900 to
2000 of T34 (UJ)

starboard wing were used to introduce damage into the structure.

The

question on this occasion was concerned with identifying which of nine in-
spection panels had been removed. Although the casting of the problem in
a classification framework was imposed by restrictions, it could be argued
that this may be a more robust approach to the damage location problem.
Consider the problem of damage in an aircraft wing: it may be sufficient to
classify which skin panel is damaged rather than give a more precise damage
location. It is likely that, by lowering expectations, a more robust damage
locator will be the result.

Due to the success of using novelty detectors for the damage detection
problem, it was decided to extend this approach to see whether it could
be used for the Level Two problem. A network of sensors was used to
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establish a set of novelty detectors, the assumption being that each would
be sensitive to different regions of the wing. Once the relevant features for
each detector had been identified and extracted, a neural network was used
to interpret the resulting set of novelty indices. (A further reason for using
novelty indices for localisation features is that this substantially reduces the
dimension of the feature vector.) As the panels were of different sizes, the
analysis gave some insight into the sensitivity of the method.

Test Set-up and Data Capture As described above, damage was sim-
ulated by the sequential removal of nine inspection panels on the starboard
wing: this also had the distinct advantage that each damage scenario was
reversible and it would therefore be possible to monitor the repeatability of
the measurements. Figure 28 shows a schematic of the wing and panels.

The area of the panels varied from about 0.008 m? to 0.08 m? with
panels P3 and P6 the smallest. Transmissibilities were again used and
were recorded in three groups, A, B and C as shown in Figure 29. Each
group consisted of four sensors (a centrally placed reference transducer and
three others). Only the transmissibilities directly across the plates were
measured in this study. The excitation and recording of the transmissi-
bilites were conducted in the same manner as during the first phase. One
16-average transmissibility (for feature selection) and 100 one-shot mea-
surements (for training and testing) were recorded across each of the nine
panels for the seven undamaged conditions (to increase robustness against
variability caused by boundary conditions) and the 18 damaged conditions
(two repetitions for the removal of each of the nine panels). The overall test
sequence was:

1. Normal condition (all plates in place).
2. Plate P1 removed.
3. Plate P2 removed.
4. Plate P3 removed.
5. Normal condition.
6. Plate P1 removed.
7. Plate P2 removed.
8. Plate P3 removed.
9. Normal condition.
10. Plate P4 removed.
11. Plate P5 removed.
12. Plate P6 removed.
13. Normal condition.
14. Plate P4 removed.
15. Plate P5 removed.
16. Plate P6 removed.
17. Normal condition.
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Figure 28. Schematic of the starboard wing inspection panels.
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18.
19.
20.
21.
22.
23.
24.
25.

Plate P7 removed.
Plate P8 removed.
Plate P9 removed.

Normal condition.

Plate P7 removed.
Plate P8 removed.
Plate P9 removed.
Normal condition.

Figure 29. Schematic of the starboard wing transducer locations.
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Feature Selection and Novelty Detection The feature selection pro-
cess was essentially conducted in the same manner as previously with the
only difference being a visual classification of potential features as weak, fair
or strong. In order to simplify matters, only the group A transmissilibilities
were considered to construct features for detecting the removal of the group
A panels; similarly for groups B and C.

Candidate features were then evaluated using outlier analysis. The best
features were chosen according to their ability to correctly identify the 200
(per panel) damage condition features as outliers while correctly classifying
those features corresponding to the undamaged condition as inliers. Fig-
ure 30 shows the results of the outlier analysis for the feature that was
designed to recognise removal of inspection panel 4. The data are divided
into training, validation and testing sets in anticipation of presentation to
the neural network classifier. As there are 200 patterns for each damage
class, the total number of patterns is 1800. These were divided evenly be-
tween the training, validation and testing sets, so (with a little wastage)
each set received 594 patterns, comprising 66 representatives of each dam-
age class. The plot shows the discordancy values returned by the novelty
detector over the whole set of damage states. The horizontal dashed lines
in the figures are the thresholds for 99% confidence in identifying an out-
lier, they are calculated according to the Monte Carlo scheme described in
Section 3.1. The novelty detector substantially fires only for the removal of
panel 4, for which it has been trained. This was the case for most panels
but there were exceptions (e.g. there were low sub-threshold discordancies
for the smaller panels and some novelty detectors were sensitive to more
than one damage type).

Network of Novelty Detectors for Damage Location The final stage
of the analysis was to produce a damage location system. The algorithm
chosen was a standard Multi-Layer Perceptron (MLP) neural network as
described in detail in Bishop (1998). The neural network was presented
with 9 novelty indices at the input layer and required to predict the damage
class at the output layer.

Note that there are now two layers of feature extraction. At the first
level, certain ranges of the transmissibilities were selected for sensitivity to
the various damage classes. These were used to construct novelty detectors
for the classes. At the second level of extraction, the 9 indices themselves
are used as features for the damage localisation problem. This depends
critically on the fact that the various damage detectors are local in some
sense, i.e., they do not all fire over all damage classes. This was found to
be true in this case.
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Figure 30. Outlier statistic for all damage states for the novelty detector
trained to recognise panel 4 removal.

The procedure for training the neural network followed the guidelines
in Tarassenko (1998). The data were divided into a training set, a valida-
tion set and a testing set. The training set was used to establish weights,
whilst the network structure and training time etc. were optimised using
the validation set. The testing set was then presented to this optimised
network to arrive at a final classification error. For the network structure,
the input layer necessarily had nine neurons, one for each novelty index,
and the output layer had nine nodes, one for each class. A single hidden
layer was assumed, as it is known that such networks are universal approx-
imators (Cybenko (1989)).

In terms of pseudo-code, the training strategy was:
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for number of hidden layer neurons = 1 to 50

{
for different random initial conditions = 1 to 10
{
train network on training data
evaluate on validation data
terminate training at minimum in validation set error
}
}

The training phase used Tarassenko’s implementation of the 1 of M
strategy as discussed earlier. The best network had 10 hidden units and
resulted in a testing classification error of 0.135 i.e. 86.5% of the patterns
were classified correctly. The confusion matrix is given in Table 2. The
main errors were associated with the two small panels P3 and P6 and the
panels P8 and P9 whose novelty detectors sometimes fired when either of
two panels was removed.

| Prediction [ 1 2 3 4 5 6 7 8 9
True Class 1 | 62 1 0 0 2 0 0 1 0
True Class2 | 0 61 O 0 5 0 0 0 0
True Class 3 | 0 1 52 0 7 4 0 2 0
True Class 4 | 1 0 3 60 O 1 0 1 0
True Class 5 | 2 1 0O 0 60 3 0 0 O
True Class 6 | 2 0 6 0 8 52 0 0 0
True Class 7 | 1 0 4 0 1 1 58 1 0
True Class 8 | 0 0 0 0 1 1 0 62 2
True Class 9 | 2 1 1 0 0 0 0 15 47

Table 2. Confusion matrix from best neural network: testing set

Note that these results follow from a rather subjective approach to se-
lecting features. Although a discussion of the method is beyond the scope
of the current article, it is possible to select features by an optimisation
procedure, Worden et al. used a genetic algorithm to select the 9 best fea-
tures from the set of 44 candidates for the location problem above. When
these features were used to train a neural network classifier as above, the
confusion matrix of Table 3 resulted.

This corresponds to a classification rate of 98.1% or alternatively, only 11
misclassifications on the testing set of 594 patterns. This sort of performance
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| Prediction [ 1 2 3 4 5 6 7 8 9|
True Class 1 | 65 0 0 0 0 0 0 0 1
True Class2 | 0 65 0 1 0 0 0 0 0
True Class 3 | 1 0 62 0 0 1 0 1 1
TrueClass4 | 0 0 0O 66 O O O 0 O
TrueClass5| 0 0 0 0 66 0 0 0 O
True Class 6 | 0 3 0 0 0 62 0 1 0
True Class 7 | 0 0 0 0 0 0 66 O 0
True Class 8 | 1 0 0 0 0 0 0 65 O
TrueClass9 | 0 0 0 O O O 0 0 66

Table 3. Confusion matrix from neural network trained with optimised
features: testing set

is approaching a level where one might trust a neural network for automated
SHM.

8 Discussion and Conclusions

There are many lessons to be learned from the examples in the previous
sections. The overwhelming message is that an SHM system based on ma-
chine learning can only perform as well as the data that has been used to
train the diagnostic, the adage garbage in - garbage out is particularly apt.

The most important question for SHM based on machine learning is al-
ready raised at the lowest level of detection; how does one acquire data
corresponding to any damage states? The reason that this question is al-
ready pertinent at the detection level is that it is necessary to decide features
that distinguish between the normal condition of the system or structure
and the damaged conditions, and this is not possible without examples of
the damage conditions. In the examples in Section 7 above, the features
were selected regions of certain transmissibility functions. In the absence
of examples from the damage cases it was not possible to assess if a given
transmissibility peak was sensitive to a given type of damage, or in fact any
type of damage. In the case of damage detection, this problem can poten-
tially be overcome by training novelty detectors for each candidate feature
and then monitoring all of them for threshold crossings on new data. This
would be tedious but effective. In the case of a damage location system,
data for each class of damage becomes essential. This can only be acquired
in two ways, by modelling or from experiment. Both approaches have po-
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tential problems. If one considers modelling, one must hope that a low-cost
model should suffice otherwise one simply invests all the effort that a model-
driven approach like FE updating would require anyway. If one considers
experiment, it will not generally be possible to accumulate data by damag-
ing the structure in the most likely ways unless the structure is extremely
cheap and mass-produced. It is obvious that a testing programme based
on imposed damage could not be used on say, an aircraft wing. If one can-
not impose real damage, one might be able to experimentally simulate the
effects of damage.

The second major problem in damage identification was also raised in
Section 7. Without careful feature selection, the variations in the mea-
sured data due to boundary condition changes in the structure swamped
the changes due to damage. (This is also a problem for model-based ap-
proaches.) This is an observation that is particularly pertinent for Civil
Engineering. If one wishes to carry out a program of automatic monitoring
for an aircraft, it is conceivable that one might do it off-line in the rea-
sonably well-controlled environment of a hangar. This is not possible for a
bridge that is at the mercy of the elements. It is known that changes in the
natural frequencies of a bridge as a result of daily temperature variation are
likely to be larger than the changes from damage (Sohn (2007)). Bridges
will also have a varying mass as a result of taking up moisture from rain etc.
There are two possible solutions to this problem. The first is to accumulate
normal condition data spanning all the possible environmental conditions.
This is time-consuming and will generate such a large normal condition set
that it is likely to be insensitive to certain types of damage. The second so-
lution is to determine features that are insensitive to environmental changes
but sensitive to damage. This of course raises the first problem discussed
above, where is the damage-state data coming from?

A third problem relating to data-driven approaches is that the collection
or generation of data for training the diagnostic is likely to be expensive, this
means that the data sets acquired are likely to be sparse. This puts pressure
on the feature selection activities as sparse data will usually require low-
dimensional features if the diagnostic is ever going to generalise away from
the training set. There are possible solutions to this, e.g. regularisation can
be used in the training of neural networks in order to aid generalisation and
this can be as simple as adding noise to the training data. Other possibilities
are to use learning methods like Support Vector Machines (Cristianini and
Shawe-Taylor (2000)) which are implicitly regularised and therefore better
able to generalise on the basis of sparse data.

One issue which applies equally to data-driven and model-driven ap-
proaches is that they are more or less limited to Levels One to Three in
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Rytters hierarchy. If one is to pursue damage prognosis, it is necessary
to extrapolate rather than interpolate and this is a problem for machine
learning solutions. If prognosis is going to be possible, it is likely to be very
context specific and to rely critically on understanding the physics of the
damage progression. In certain simple cases, it is already possible to make
calculations. For example, for a crack in a metallic specimen with a simple
enough geometry to allow the theoretical specification of a stress intensity,
one can use the Paris-Erdogan law to predict the development of the crack
given the loading history (or rather future). Even here there are problems.
First of all, the loading future is uncertain and it may only be possible
to specify bounds. Secondly, the constants of the Paris-Erdogan equation
are strongly dependent on microstructure and would probably have to be
treated as random variables in a given prediction. These observations are in-
tended to show that prognosis is only likely to be possible in the framework
of a statistical theory where the uncertainty in the calculation is monitored
at all stages. Another major stumbling block in the application of prognosis
is that most realistic situations will not be backed up by applicable theory,
i.e. the laws of damage progression are not known for simple materials with
complicated geometry or for complicated materials like composite laminates
even with simple geometries.

The overall conclusion for this chapter is that if the conditions are
favourable, machine learning algorithms can be applied to great effect on
damage identification problems. In the light of the comments above, favourable
conditions’ largely means that data are available in order to train the ma-
chine learning diagnostics. Even if the conditions seem to exclude such a
solution, one should bear in mind that even a model-driven approach will
need appropriate data for model validation.
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9 A Little Probability Theory

In general, random variables will not all be mutually independent; the prob-
ability of an event A may well depend on the previous or simultaneous oc-
curence of an event B. A is said to be conditioned on B. The need to
incorporate this type of dependence into the theory results in the definition
of the conditional probability P(A|B), which is the probability that A will
occur given that B already has. Note that the unconditional P(A) can still
be computed but will have a different value. A definition can be made via
fairly intuitive reasoning.

Suppose that N experiments are conducted, one can define the condi-
tional probability P(A|B) as,

N(ANB)
N(B)
where N(AN B) is the number of times A occurs when B occurs and N (B)
is the total number of times B occurs. This equation can be rewritten as,
N(ANB)/N P(ANB)
N(B)/N —  P(B)

so that,
P(ANB) = P(A|B)P(B)
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where the RHS sort of decomposes the probability into two independent-
looking events.
Interchanging variables in the defining equation gives,

P(ANB)

P(BIA) = =55

and combining the two equations produces Baye’s theorem

P(A|B)P(B) = P(B|A)P(A) (22)
p(A|B) = ZEIDEA) (B]L‘?g )

Now suppose that A is actually conditioned on a continuous random variable
X. What is P(A|X = z)? Consider first the probability that the value taken
by X lies in a small interval [z, + Ax]. From Bayes Theorem,

P(A|X € [z,2 + A2])P(X € [z,z + Az]) = P(X € [z, 2 + Az]|A)P(A)

z+Ax z+Ax
— P(AIX € [z,2 + Am])/ p(z)dz = / p(z|A)dz P(A)
x x
where the conditional probability density function (PDF) is defined in the
usual way. If Ax is small, the integrals are well approximated by assuming

a rectangular area under the curves and
P(A|X € [z,z + Az])p(x)Az ~ p(z|A)AzP(A)

with the approximation getting better as Az gets smaller. In fact, in the
limit as Az — 0

P(AJX = 2)p(z) = p(z|4)P(4)

or,
p(z|A)P(A)
p(z)
in an obvious shorthand. This last equation is the basis of the Bayesian
approach to pattern recognition described in the main body of the text.
P(A) is called the prior probability of A i.e. before one sees the data or
evidence x. The term p(z|A) is called the likelihood and P(A|z) is called
the posterior probability i.e. after one has seen the evidence.

P(Alz) = (23)
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Abstract The main issues regarding damage detection in elements
of structures are discussed in the particular case that the detection
is conducted by the use of methods based on the phenomenon of
elastic wave propagation. The emphasis is placed on modelling the
phenomenon of elastic wave propagation in composite elements of
structures, along with issues of wave interactions with damage and
problems of damage location.

1 Introduction to SHM Methods Based on the
Phenomenon of Elastic Wave Propagation

The scope of Structural Health Monitoring (SHM) includes constant moni-
toring of the structure’s material condition (in real-time), for the elements
of the structure as well as for the whole structure during its useful lifetime.
The condition of the structures material is required to remain within the
limits specified by the standards of the design process. Those standards,
regarding the material, ought to take into consideration changes caused by
standard exploitation wear during the operation process, changes caused by
environmental conditions, in which the structure is being used, and coin-
cidental situations influencing the condition of the material. Owing to the
fact that the monitoring process is being conducted continuously during
operation, there will be a record of the complete history of utilisation. Such
information may be used for future condition prognosis as well as prediction
of faults and the structure’s safe utilisation time.

According to a number of publications, SHM is being defined as a new
approach to non-destructive inspection of a structure (also called Non-
Destructive Testing/Evaluation - NDT/E). The innovation of this approach
is based on the continuous monitoring of the material’s condition during
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the exploitation process of the device. It requires certain structural and
utilisation solutions distinctive for this new discipline.

SHM is combined of such disciplines as sensorics, IT, electronics (es-
pecially microprocessor technology), mechanics and materials engineering.
The effect of synergy is achieved by combining former disciplines, and it
enables raised safety levels of the structure’s utilisation along with lowering
of the maintenance expenses.

Systems executing SHM processes ought to be structure integrated; this
allows insertion of changes into the structure in such a way that the prob-
ability of a failure is minor. It also enables minimisation of the failure risk
through management of the structure’s utilisation and treating it as part of
a bigger system. The first layer of a SHM system is the monitoring layer
specified by the type of physical phenomenon that is being monitored by
the sensors. It is dependent on the damage type to be detected and the
type of physical phenomenon that is being used by the sensors in order
to generate the signals (mostly electrical) containing features and process-
able information regarding damage. Several (perhaps up to a few dozen)
connected sensors can work together in a system measuring environmen-
tal factors influencing the condition and process of the exploitation of the
structure. Data gathered from all the sensors along with historical data
from previous structures allow diagnostic synthesis of information (signal
fusion) regarding the condition of the structure. Once the above-mentioned
information is linked with all the data from the general system of knowl-
edge about the phenomenon of damage and structural wear, it is possible
to gain prognosis of condition and data defining the scope of any necessary
repair. It is now common for such purposes that simulation systems are
used; such systems enable extremely quick generation of results, similar to
those obtained from the chain of sensors based on familiar damage models
(virtual exploitation of the structure).

The motivation for applying such systems is:

e ability to avoid failures with catastrophic consequences;

e ability to optimise the utilisation process (minimisation of emergency

stoppage time);

e gaining essential information for designers regarding structural modi-

fication;

e ability to minimise maintenance costs and to raise the efficiency of

a device thanks to the use of a methodology of repair according to
condition, as well as avoiding disassembly, and replacement of non-
damaged and non-used elements;

e ability to avoid operator mistakes regarding evaluation of the condi-

tion of the structure.
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The systems mentioned are being used for air force and aviation, military
equipment, construction industry infrastructure, and machines crucial for
industry (e.g. power industry, chemistry, etc.). An extremely important
factor influencing the common use of SHM systems is the economical factor.
The justification may be found in several papers and it lies in comparing
maintenance costs with the efficiency of the structure. For the structure
without SHM systems installed, costs rise along with the utilisation time and
at the same time efficiency drops. Installation of SHM systems potentially
enables one to fix maintenance costs with equally fixed efficiency of the
structure. However, one condition of applying SHM systems must be met;
this condition limits the general ability of putting them into practice i.e.
the cost of the system itself ought to be lower than the positive economical
effect connected with its application.

The necessity of reducing the cost of SHM systems is nowadays connected
with the application of intelligent materials and structures; they enable
integration of the structure and the built-in sensors into one system. In order
to be effective, such actions must be taken during the stage of designing of
the structure.

From the beginning of the 80’s, a tendency towards intelligent struc-
ture applications are were observed, especially in aviation and construction
industry. Their characteristic feature is adaptation of those structures to
the exploitation conditions. In intelligent structures, this adaptation takes
place autonomically. Within the range of intelligent structures, distinctions
can be made as follows: structures sensitive to utilisation conditions, struc-
tures controlled within the range of their properties, and auto-adaptative
structures that adjust their properties to their utilisation needs. In practice,
homogeneous materials commonly used in structures are being replaced by
composite materials or other multi-materials (materials composed of lay-
ers of various physical properties). Within the range of materials and in-
telligent structures one can distinguish structures of adjustable geometry
(shape), structures with adjustable vibration behaviour and structures with
adjustable condition. In particular, the last type of structure is constantly
in use with SHM techniques. Most often, intelligence is expressed through
structure-integrated sensors made from intelligent materials (embedded sen-
sors) or executive modules (embedded actuators), for which the task is to
identify defects and alleviate the effects of failure. Operation of such mod-
ules depends on generating deformations of the structure in such a way as to
decrease stresses in these areas of concentration. Nowadays, the search for
phenomena, and methods of their measurement, which enable continuous
monitoring of structural condition through monitoring of the condition of
its material, continues.
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Research on the development of SHM systems is very often inspired
by discoveries in the fields of biology and living organisms (biomimetics).
Very similar research is being conducted in the fields of medicine and SHM
method development. SHM systems find application not only in the life-
time of the structure but also in the time of its production, transport and
installation. They also enable proper management of the structure’s wear,
through suitable choice of missions that must be executed, and service ac-
tions required for safe meeting of given criteria. Methods that could be
used as the most economically effective and durable, in every stage of the
product usage, are still being searched for.

To put it briefly, the foregoing survey regarding SHM allow one to say
that it is a new interdisciplinary area, gathering such sciences as mechan-
ics, materials engineering, electronics, computer science, physics, optics and
many others. This area has applications in the utilisation of structures in
aviation, construction industry, motor industry and power industry includ-
ing those connected with nuclear power. The spectrum of applications is
constantly expanding. Among the many methods used in SHM systems, one
can distinguish between active or passive methods. In the passive methods,
one can observe signals generated by the structure’s inbuilt sensors and on
this basis, the condition can be evaluated. Active methods depend on forc-
ing disturbances by the use of properly inbuilt executive cores that cause
structural responses, measured by sensors. On the basis of response signals
registered by the sensors, the condition is evaluated. Some of the widespread
SHM methods are those based on structural vibration measurement. Among
them: symptomatic methods, in which the symptoms of damage are certain
estimators from the signals of structural response, or model-based methods,
where the symptoms of damage are parameter changes or changes to the
structure of a model.

Many methods used in practice to build SHM systems are being adopted
from widely-known and applied disciplines e.g. NDT. Classical NDT meth-
ods can be executed continuously, such as: measurement of acoustic emis-
sion, Lamb waves, temperature, or mechanical impedance or direct moni-
toring of the displacement field with the use of visual methods; all these
are examples of applying NDT techniques in SHM systems. In those kinds
of solution, two sets of methods may be distinguished: methods where the
sensors are integrated with the structure and non-contacting methods. The
latter have wider application owing to miniaturisation and the costs of SHM
system installation.

One of such methods, that can be applied passively as well as actively,
and where the measurements are executed in a non-contacting way, is the
method based on examination of thermo-flexibility phenomena accompany-



Elastic Waves for Damage Detection in Structures 251

ing damage, especially its formation and propagation. Currently, interest in
this method is increasing due to the opportunity of non-contact measure-
ments of thermal phenomena within structures and intensive development
in temperature measurement. Another method is the method of surface
Lamb wave excitation within the structure. This method uses a grid of sen-
sors/actuators. Registration and processing of transmitted waves as well as
reflected waves is conducted. Evaluation of the condition of the structure
takes place on the basis of wave profile deformations due to damage in the
interrogated area of the structure.

A different method is one based on parameters of modal models of the
monitored structure. One very effective method is the modal filter method
and the statistical evaluation of detected changes in the model. More and
more common, is the application of scanning pictures for evaluation of struc-
tural deformation. In this way, one may monitor static as well as dynamic
changes. Depending on measurement requirements, methods using laser
beam are applied (strain methods, holographic methods, and interferom-
etry methods characterised by nanometer sensitivity of measurements of
displacement fields) or non-coherent light methods (fotogrametric meth-
ods, the picture correlation method, moiré pattern techniques and pattern
projection techniques). The most commonly-used technique of picture pro-
cessing is correlation of images of non-deformed and deformed structures.
Contemporary techniques of image measurement and recording enable mon-
itoring of even minor changes in the condition of the structure owing to
applications of the so-called phase methods of analysis of pattern images or
subpixel techniques in fotogrametric methods or methods of picture corre-
lation. Contemporary quick cameras enable recording of dynamic changes
of deformation with frequencies up to 32000 Hz. Pulse laser sources of light
enable transmission of highly sensitive interferencial methods from the lab,
directly to the studied structure. In new structures, where utilisation safety
is of the greatest importance, sensors in the form of intelligent materials,
piezoelectrics and optical fibres (fibre Bragg gratings), are currently embed-
ded; they become an inseparable part of the structure and continuously
gather information about the structure’s fatigue limit and condition of the
material. This enables prediction of properties, estimation of time of safe
utilisation and evaluation of planned repair ranges. As presented in the re-
view of current knowledge, investigations conducted using SHM techniques
are more and more precise and enable evaluation of condition within the
range of local changes, especially, in the degradation of structural material.
This enables more and more accurate predictions of the condition of the
structure during its lifetime.
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2 Modeling of Structural Stiffness Loss Due
to Damage

Fatigue cracking and delamination are particularly dangerous and, at the
same time, the most common kinds of damage in elements of machines
and structures. It is of great importance for safe operation to ensure that
elements of machines and structures are free of any fatigue cracks and de-
laminations and in the case of their presence, to determine their extent.
Since existing non-destructive methods for detection of fatigue cracks and
delaminations fail in many practical cases, vibration methods in diagnosis of
such damage have been continuing for nearly twenty years. These methods
are based on diagnostic relations between the size and location of failures
and changes in some dynamic characteristics of constructional elements. In
order to establish such relations and to identify changes of the dynamic
characteristics, efficient models that facilitate the assessment of the influ-
ence of fatigue cracks and delaminations must be established. A review
of the existing models used for analysis of the influence of fatigue cracks
and delaminations on changes in dynamic characteristics of constructional
elements is presented in this section.

2.1 Discrete models

In general, discrete models of fatigue damage are not restricted geomet-
rically. Such restrictions are one of the biggest disadvantages of the contin-
uous or discrete—continuous models. In order to create a discrete model of
a constructional element with a fatigue crack, the Finite Element Method
(FEM) is most usually applied. Although other methods like the boundary
element method, graph method, transition matrix method and the analogue
method are also used, these methods are not as popular and commonly used
as the finite element method.

The simplest method applied to model constructional elements with fa-
tigue damage is based on the use of classical finite elements. In this case
a fatigue crack in the finite element is modelled by reduction of elastic co-
efficients of the element (Cawley and Adams, 1979), by reduction of its
Young’s modulus (Yuen, 1985), and by reduction of the cross—sectional area
of the element at the crack position (Bachschmid et al., 1984). The main
disadvantage of these approaches is the fact that the reduced parameters
describing a fatigue crack are chosen arbitrarily. Generally, their values are
not directly related to the actual size of a crack and due to that fact, a
precise study of the influence of the crack depth on changes in dynamic
characteristics cannot be made. The singular character of the stress and
strain fields around the crack tip is also neglected in these methods.
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In the last decade, new FEM-based models have been formulated. Some
authors have assumed that the failure appears inside a special finite element
(Ostachowicz and Krawczuk, 2001). A model of a truss finite element with
an open one-sided transverse crack has been developed by Krawczuk (1992).
Models of beam finite elements with fatigue cracks of different types can be
found in the work of Haisty and Springer (1988), Gounaris and Dimarog-
onas (1988), Chen and Chen (1988). Krawczuk and Ostachowicz (1993b)
investigated a mathematical, FEM-based model of a beam with a crack,
loaded at the end with a constant tensile axial force; the authors assumed
that the crack does not propagate and remains open during the beam’s vi-
brations. Assumption of a complete opening of the crack in this case was
correct because the beam was subjected to the action of a constant axial
force.

Ostachowicz and Krawczuk (1992) also developed a model of a rotor shaft
of constant cross—section with a crack. The shaft was modelled by finite
elements; the crack was considered to be open. The stiffness matrix for the
element with the crack was formulated. The model took into consideration
the torsional-bending interaction in the rotor vibration.

The curved-beam finite element with a transverse, one-edged, nonprop-
agating, open crack has been investigated by Krawczuk and Ostachowicz
(1997). The authors presented an analysis of the effect of the crack posi-
tion and location on the changes of the in—plane natural frequencies and
mode shapes of the clamped—clamped arch. The authors assumed that the
crack only changes the stiffness of the element, with the mass of the element
remaining unchanged. The investigated model of the cracked element was
restricted to curved beams with rectangular cross—section.

A cracked-beam finite element that is based on elasto—plastic fracture
mechanics has been formulated by Krawczuk et al. (2000, 2001). Crack
tip plasticity at the cracked cross-section was included in the model of the
local flexibility. The inertia and stiffness matrices took into account the
effect of flexural bending deformation due to the crack presence; they were
formulated in closed form.

Apart from one-dimensional models, special models of two or three—
dimensional constructional elements with fatigue cracks have been also in-
vestigated. The cracks occurring in a plate can be modelled by the finite
element method in various ways. Plate finite elements with fatigue cracks
have been used by Qian et al. (1991), Krawczuk (1993), and Krawczuk and
Ostachowicz (1994), while a solid finite element with a fatigue crack has
been developed by Krawczuk and Ostachowicz (1993a), and a shell element
by Krawczuk (1994).

Krawczuk (1993) presented a method of creating the stiffness matrix of
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a finite plate element with a non-propagating, internal open crack. The
method is similar to the one described by Qian et al. (1991) but contrary
to their approach, the stiffness matrix of the cracked element was given
in closed-form. The additional flexibility matrix was calculated by taking
into account the additional elastic stress energy due to the occurrence of
the crack in the plate. The method is restricted to cracks whose length is
smaller than the dimensions of the element; It is assumed that the crack
changes only the stiffness of the element and the mass of the element remains
unchanged.

A method of creating the stiffness matrix of a hexahedral eight-node
finite element, with a single, nonpropagating, transverse, single-edge crack
at half of its length, has been investigated by Krawczuk and Ostachowicz
(1993a). The crack was modeled by adding an additional flexibility matrix
to the non-cracked element. The terms of the additional matrix have been
calculated by the use of an approximate model of the stress intensity factor.

Many researchers have studied damage models in composite structures
extensively. Krawczuk et al. (1997) proposed the formulation of a finite
composite beam element with an open crack. The damaged part of the beam
was modelled by a special finite element with a crack, while the undamaged
part was substituted by three-node beam element. The crack is placed
in the middle of the element and remains open. The element has three
nodes; each of them has two degrees of freedom: transverse displacements
and rotations. In the paper (Krawczuk et al., 1997), only the case of flat
bending was considered.

Krawczuk et al. (1997) have investigated a model of a layered, delam-
inated composite beam. The beam was modelled by beam finite elements
with three nodes and three degrees of freedom per node. In the delaminated
region, additional boundary conditions were applied. It was assumed that
the delamination was open (i.e. the contact forces between lower and upper
parts are neglected). The delaminated region was modelled by three finite
elements connected at the delamination crack tip where additional boundary
conditions were applied. Each element had three nodes with three degrees
of freedom: axial displacements, transverse displacements, and the inde-
pendent rotations. In addition to general conditions of beam theory, it was
assumed that the extensional and bending stiffness were uncoupled.

A model of a finite delaminated plate element has been developed by
Zak et al. (2000); Zak et al. (2001). The delamination was modelled by
three plate finite elements and to connect them, additional boundary condi-
tions were applied at the delamination front. Each finite element had eight
nodes with five degrees of freedom per node. Later papers (Krawczuk and
Ostachowicz, 2002; Ostachowicz et al., 2002, 2003; Zak et al., 2003) present
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results for the identification of the location of failures in both isotropic
and composite structures by means of a genetic algorithm search technique
based on changes in natural frequencies. The location and size of failures
are determined by minimisation of an error function which expresses the
difference between calculated and measured natural frequencies.

Laboratory experiments have been conducted to ensure the reality of
analytical and numerical models; the results obtained are promising, par-
ticularly because they have confirmed investigated models. Results of ex-
perimental tests have been presented in (Krawczuk et al., 2000, 1997; Zak
et al., 2000; Ostachowicz et al., 2003; Zak et al., 2003).

3 Lamb Waves

Elastic waves that propagate in solid media bounded by two free and parallel
surfaces are known in the literature as Lamb waves or guided waves. Lamb
waves are named after Horace Lamb in honour of his fundamental contribu-
tions in this area of research. Lamb developed a mathematical theory that
describes this kind of elastic waves, but interestingly he never managed to
generate this type of wave in a real structure. Lamb waves propagate both
as symmetric (S0, S1, S2, ...) and antisymmetric (A0, A1, A2, ...) modes
and the number of these modes depends on the product of the excitation
frequency and the element thickness. For example, up to about 2 MHz-mm,
only the two fundamental Lamb wave modes SO and AQ will propagate in
an Aluminum alloy plate.

Table 1. Characteristic phase velocities and wave lengths in a 1mm thick
aluminium plate.

Frequency | Phase velocity [mm/us] | Wavelength [mm]
[kHz] SHO | A0 S0 SHO | A0 | SO
100 3182 | 964 5496 31.82 | 9.64 | 54.96
150 3182 | 1161 5495 21.21 | 7.74 | 36.63
200 3182 | 1318 5494 15.91 | 6.59 | 27.47
250 3182 | 1450 5492 12.73 | 5.80 | 21.97
300 3182 | 1564 5490 10.61 | 5.21 | 18.30

A characteristic feature of this type of wave motion is elliptical particles
motion in contrast to Rayleigh (surface) waves, where the wave motion is
circular.

The solution of the Lamb wave equations must be obtained numerically.
As a result, dispersion relations for various Lamb wave modes are obtained,
i.e. the dependence of the wave number on the frequencythickness product.
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Figure 1. Phase velocity dispersion curves for an aluminium plate - shear
horizontal waves.

It is interesting to look at the phase and group velocities of Lamb wave
modes as well as shear modes corresponding to shear deformation. Typical
results obtained for the group and phase velocity dispersion curves for the
shear wave modes and the Lamb wave modes are presented in Figs. 1-4.
These curves have been calculated analytically and obtained for an alu-
minium plate with the material properties as follows: Young’s modulus
72.7 GPa, Poisson’s ratio 0.33, mass density 2700 kg/m?.

It can be noticed that in the frequency range up to around 2 MHz, only
the fundamental modes can propagate in the plate. Some characteristic
wave velocities and wave lengths in the case of the Aluminium plate under
consideration are given in Table 1. The wave lengths are calculated from a
simple equation,

Cmin
A ! (1)
where ¢p,p, s the minimal phase velocity and f denotes the carrier frequency
of a wave packet. It can be noticed that the A0 mode has much shorter
wavelengths in the lower frequency range than the SHO and SO modes; this
means that A0 mode is well-suited to the detection of damage of rather small
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Figure 2. Group velocity dispersion curves for an aluminium plate - shear
horizontal waves.

dimensions. In the case of the SO and SHO modes much higher frequency
must be used in order to achieve comparable damage sensitivity. In contrast,
the SO mode is much less dispersive than A0 mode, while at the same
time SHO mode is almost nondispersive over all frequencies. (The term
nondispersive means that a wave packet propagates in a structure without
any observable distortion in shape.

Lamb waves propagating in a bounded solid media can be modelled
assuming an appropriate displacement field, which in a accurate manner
modes paths of particle motion through the thickness of the media. The
displacement field can be approximated by,

u(z,y, 2) = uo(z,y) + 0u(®,y) - 2 + Vo, y) - 2%+ xa(2,9) - 25 ..

v(x,y, Z) = ’Uo(iC, y) + Qﬁy(fﬂ, y) “z A+ 1/)y(337y) ) 22 + Xy(x7y) : Z3 cee (2)

w(z,y,z) = wo(x,y) + pz(x,y) 2+ oz, y) - 22+ xa(2,y) - 2° ..

where ug, vg and wg represent the displacement components of the points
located on a certain midplane surface, while ¢, and ¢, physically denote
the rotations of appropriate solid sections about the z and y axes respec-
tively. It is worth noting that the odd-order terms with respect to z in
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Figure 3. Phase velocity dispersion curves for an aluminium plate - sym-
metric and antisymmetric modes.

the x and y displacements together with the even-order terms in w with
respect to z describe the antisymmetric wave modes and the other terms
depict symmetric wave modes. Structural Health Monitoring (SHM) sys-
tems are usually based on the use of the fundamental modes of Lamb waves
(SO and A0), because in those cases it is usually much easier and convenient
to analyse the received signals. An adequate approximation of the A0 mode
requires at least the linear terms with respect to z in the v and v displace-
ments and a constant term in the w displacement; this is consistent with the
assumption of First-Order Shear Deformation Theory for plates. However,
in order to capture the dispersion effect of the SO mode, some additional
terms must be included in the displacement field. It should be emphasised
that application of the first-order shear deformation theory for plates in the
case of spectral finite elements results in a diagonal form of the mass matrix
for isotropic materials or symmetric laminates. In contrast, application of
higher-order theories leads to generation of nonzero offdiagonal elements in
the mass matrix; this means that the equations of motion are solved with
much lower efficiency.
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Figure 4. Group velocity dispersion curves for an aluminium plate - sym-
metric and antisymmetric modes.

4 Modelling of Elastic Waves

Wave propagation in structural elements has been studied over a consider-
able period of time. Although mathematical frameworks are well established
and developed, wave propagation in real scale engineering structures still
remains an open area of research. For simulation of stress wave propaga-
tion, the best way is to give an exact solution. However, even in some
simple cases, such as elastic media, if local inhomogeneities (joints, inclu-
sions, holes, etc.) are included, it is difficult to obtain exact solutions. For
a specific geometry and finite periodic or semi-infinite boundary conditions,
many solution techniques have been proposed and reported so far an ex-
cellent overview of theses techniques is given in (Bond, 1990).

In the case of SHM systems, piezoelectric actuators generate impulse
wave signals and usually these are various modes of Lamb waves. The main
problems in the analysis of high frequency (50 to 350 kHz) elastic wave
propagation in structures with high velocities (1 to 6 km/s), are related to
spatial discretisation. In order to obtain an accurate solution of the equa-
tion of motion, and to capture the effect of wave scattering at boundaries
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and structural discontinuities, a huge number of degrees of freedom (dof) is
necessary. Conventional modal methods, when extended to high-frequency
regimes, become computationally inefficient since many higher modes that
should participate in the motion are misrepresented. For this reason, appli-
cation of some approximation method is necessary.

Among many methods used for modelling and studying the phenomena
of propagation of elastic waves, many numerical methods can be distin-
guished including: the finite difference method (FDM) (Strickwerda, 1989),
the finite element method(FEM) (Yamawaki and Saito, 1992; Koshiba et al.,
1984; Verdict et al., 1992; Alleyne and Cawley, 1992) and the boundary el-
ement method (BEM) (Cho and Rose, 1996). Unfortunately, the first two
methods are not only time—consuming, but also require large computational
memory even in the case of simple two—dimensional (2D) wave propagation
problems. Moreover, they suffer from numerical dispersion which leads
to improper wave velocity or false waves, which do not exist in the exact
solution. In contrast, the boundary element method (BEM) is less time—
consuming but application of the method to complex media with inhomo-
geneities is problematic.

Other methods are the finite strip element method (FSEM) and the
semi—numerical method (SNM)(Cheung, 1976; Liu and Xi, 2002; Liu et al.,
1990), which require much less memory storage space for necessary data due
to a lower level of discretisation and application of the exact solution in one
direction. SNM is very effective for the computation of forced wave motion
in the frequency domain and can be used for much higher frequencies than
the methods based on FEM. As with the BEM, the FSEM uses a Green’s
function but in a different manner. On the other hand, variable size of
strip stiffness matrices and modification of spline functions at the boundary
nodes are inconvenient in implementation.

A method that incorporates the advantages of FEM (discretisation)
and the FDM (time integration schemes) is the unstructured grid method
(UGM) (Liu et al., 2004, 2005). This method is based on the dynamic equi-
librium equations of computational cells formed around auxiliary triangular
grids. The solution is obtained by the calculation of nodal displacements and
central point stresses of spatial grids alternately. A different approach has
been proposed by Schechter et al. (1994) and extended by Yim and Sohn
(2000). In the mass-spring-lattice-model (MSLM), inertia and stiffness
properties are calculated using lumped parameters. More recent develop-
ments in this area include the new Local Interaction Simulation Approach
(LISA) (Delsanto et al., 1992, 1994, 1997). This method simulates wave
propagation heuristically, i.e. directly from physical phenomena and prop-
erties. It should be noted that the LISA approach suffers from inaccuracy
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in some cases (Ruffino and Delsanto, 1999).

More recently, various spectral methods have been proposed for the
analysis of elastic wave propagation in complex media: the fast Fourier
transform-based spectral finite element method (FFT-based SFEM) (Doyle,
1997) and the spectral element method (SEM) (Patera, 1984) also called the
pseudospectral method. It should be stressed that despite the terminology,
which may be misleading, these methods are completely different.

The FFT-based SFEM proposed by Doyle (1997) is very similar to the
technique of the FEM as far as the assembly and the solution of the equation
of motion is considered. The formulation of this method starts from exact
solutions of the governing partial differential equations in the frequency
domain. Excitation signals are transformed into a number of frequency
components using the FFT. Next, as a part of a large frequency loop, the
dynamic stiffness matrix is generated, transformed, and a solution is found
for each unit impulse at each frequency. This yields directly the frequency
response function (FRF) of the analysed problem. The calculated frequency
domain responses are then transformed back to the time domain using the
inverse fast Fourier transformation (IFFT).

The FFT-based SFEM proposed by Doyle is computationally efficient
but the inverse Fourier transform is very difficult to do in an exact analyt-
ical manner. For this reason, many approximate and asymptotic schemes
have usually been resorted to (Amaratunga and Williams, 1995). Such ap-
proaches reduce the problems associated with “wrap around”! due to the
assumed periodicity of solutions in the FFT-based SFEM and thus may
result in a decreased number of points in the time window for the same
problem (Mitra and Gopalakrishnan, 2006). Further, FFT-based SFEM
cannot be used for finite-length undamped structures. For such cases, a
semi-infinite element (throw-off element (Doyle, 1997)) is normally used to
allow some leakage of response, which in turn amounts to adding artificial
damping through the release of trapped energy.

Consequently, the FFT-based SFEM is well suited to simple 1D prob-
lems (Palacz and Krawczuk, 2002; Krawczuk et al., 2003; Mahapatra and
Gopalakrishnan, 2003), but becomes difficult to use for complex geometries.
A comparative study of the FFT-based SEM with the LISA approach can
be found in Lee et al. (2004). Despite problems with the periodic nature
of the FFT, recent work in this area shows some application of the FFT-
based SFEM to wave propagation phenomena in anisotropic plates and in-
homogeneous layered media (Chakraborty and Gopalakrishnan, 2004, 2005,

! The “wrap around” effect means that the remaining part of the response beyond the
chosen time window will start appearing first, which totally distorts the signal.
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2006a,b).

The SEM, as proposed by Patera (1984), is much more versatile for the
investigation of the propagation of elastic waves in structures of complex
geometry. This method originates from the use of spectral series for the
solution of partial differential equations (Boyd, 1989). The idea of the SEM
is very similar to the FEM except for the specific approximation functions
it uses. Elemental interpolation nodes are located at points corresponding
to zeros of an appropriate family of orthogonal polynomials (Legendre or
Chebyshev). A set of local shape functions consisting of Lagrange polynomi-
als, which are spanned on these points, is built and used. As a consequence
of this, as well as the use of the Gauss-Lobatto-Legendre integration rule,
a diagonal form of the mass matrix is obtained. In this way, the cost of
the time domain integration is much less expensive than in the case of the
classic FE approach. Moreover, the numerical errors decrease faster than
any power of 1/p (so-called spectral convergence), where p is the order of
the applied polynomial (Pozrikidis, 2005). The main fields of application of
SEM nowadays include fluid dynamics (Canuto et al., 1991), heat transfer
(Spall, 1995), acoustics (Dauksher and Emery, 1997; Seriani, 1997), seis-
mology (Komatitsch and Vilotte, 1998; Seriani, 1999), etc.

The application of SEM for problems of propagating waves in anisotropic
crystals has been shown by Komatitsch et al. (2000).

The first attempt to use SEM for problems of propagation of elastic waves
in 2D structural elements with cracks has been made by Zak et al. (2006).
A 36-node spectral membrane element with two degrees of freedom per
node has been developed. The crack has been modelled by simple splitting
of the nodes between appropriate spectral elements. This approach has
been extended to isotropic and composite plates (Zak et al., 2006; Kudela
et al., 2007b,a). Also, the SEM found applications for the problems of
wave propagation in anisotropic and inhomogeneous uncracked and cracked
beams (Sridhar et al., 2006) as well as for the problems of cracked composite
rods based on the three-mode theory of rods (Kudela and Ostachowicz,
2007).

A 3D spectral element has been developed and used for SHM purposes
by (Kim et al., 2008).

It seems that the SEM is a most versatile and promising tool for wave
propagation modelling and is becoming more and more popular in this field.
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Figure 5. Composite spectral rod element.

4.1 The FFT-Based Spectral Finite Element Method — Cracked
Rod

A multilayer composite spectral rod element is presented in Fig. 5. The
crack is located at a distance of L from the left hand end. The element has
two nodes and one degree of freedom per node (longitudinal displacement).
Nodal spectral displacements for the left and right parts of the rod are
assumed as follows,

ﬂl (ZE) = Aleiiknx + Bleiikn(Lliz)v HAES (07 Ll) (3)

lg(x) = Age*n@FLy) 4 pye=thnll=(lnta)l e (0L — Ly)  (4)

where the wave number is obtained from the equation,

m:%¢g (5)

The mass density per unit length can be expressed as,

w=pbh, pu=1Iy (6)

for the isotropic and anisotropic cases, respectively. The material stiffness
matrix has the forms,

D=Ebh, D=Apnb (7)

for the isotropic and anisotropic cases, respectively. The mass density per
unit length from Eq. (6) in the case of a composite rod can be expressed
as,

N
Io=bY pr (i1 = ) (8)

k=1
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where N is the number of composite layers, pj is the mass density of the
k-th layer and b is the rod width. The material stiffness matrix from Eq. (7)
in the case of a composite rod can be expressed as (Vinson and Sierakowski,
1989),

N
D= b3 (Qu)e (hior — i) (©)
k=1

Qll = E11 Sin4 0 + 2(V12E22 + 2G12) sin2 9COS2 0 + E22 Sin4 0

where F7;1 is the Young’s modulus along the reinforcing fibres, Eoo is the
Young’s modulus in the direction perpendicular to the direction of the fibres,
V19 is the Poisson ratio, G152 is the shear modulus and 6 is the angle between
the material axis parallel to the reinforcing fibres and the x axis.

The coefficients Ay, By, As and Bs can be calculated as functions of the
nodal spectral displacements using the following boundary conditions,

e at the left end of the element,
111 (0) =q1 (10)

e at the crack location (total change of displacements and compatibility
of shear forces),

t2(0) — g (Ly) =0 o (11)
Oty (Ly) _ 0u9(0)
or  Ox (12)
e at the right end of the element:
ta(L — L1) = g2 (13)

where § = Ebhc and c is the flexibility at the crack location (see section 4.3).
Taking into account the formulae describing nodal spectral displacements
for the left and right parts of the element, the boundary conditions can be
written in a matrix form as,

(14)
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(15)
The nodal spectral forces can be determined by differentiating the spectral
displacements with respect to x, and then can be expressed as follows,

~ 91 (0)

B = D=L (16)
= DW (17)

The relation between nodal displacements and forces can be shown as,

[ ]-=la] w

where the dynamic stiffness matrix is given by,

ik, —ikpe thnla 0 0

Ka=D [ 0 0 ikpe kel ik,

} w! (19)

Unlike conventional finite elements, a special case is derived here where
the rod is very long and application of any load at any location causes no
secondary disturbances other than incident waves departing from that lo-
cation. This simulates a condition, wherein the boundaries are at such a
distance that the effect of reflected waves becomes negligible due to atten-
uation throughout their long travel, and do not reach the location under
consideration within the time of observation. In other words, the throw—off
element is a non-resonant single-node element that acts as a conduit to
allow the propagation of the trapped energy out of the system. The nodal
spectral displacement for the throw—off element is assumed in the following
form,

() = Cre*n® 4 Dye~#=2) g€ (0,L) (20)

After using transformations similar to Egs. (10 — 19) the frequency de-
pendent stiffness matrix K¢ for the throw—off rod element can be defined
as,

K, = Dik, (21)
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4.2 The Time Domain Spectral Element Method — Cracked Rod

Spectral rod finite elements with crack, are formed by the connection
of two classic spectral finite elements with nodes separated by the use of a
spring. Spectral elements based on the elementary and three-mode theory
are presented in Figure 6.
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Figure 6. Schematic diagrams of models a) model of the composite rod
fragment with crack, b) spectral finite element for the elementary theory,
¢) spectral finite element for the three-mode theory.

The stiffness of the spring modelling the size of a transverse, non-growing
crack is calculated according to the laws of fracture mechanics. The effect
of the crack is achieved at the stage of global stiffness matrix assembly.

The rod spectral finite element has been derived according to elementary
theory; the element consists of 6 nodes. With each node, one degree of
freedom is given, i.e. longitudinal displacement. Nodes are placed unequally.
Local nodal coordinates & € [-1,1], ¢ € 1,...,6 are obtained as roots of
the equation,

(1-€%) Pye) =0 (22)

where P5/ (€) denotes the first derivative of Legendre’s 5th-order polynomial.
The obtained coordinates correspond to Gauss-Lobatto-Legendre integra-
tion points. On such selected points, Lagrange’s approximation is defined
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which gives a set of shape functions. The same set of shape functions can
be used for displacement field approximation inside the element as well as
for element geometry approximation. A spectral rod element applied to the
modelling of a composite rod with crack derived according to the elemen-
tary theory of rods is presented in Figure 6a. The element contains 6 nodes;
each node has one degree of freedom — longitudinal displacement. In the
elementary theory of the rod, displacements take the following form,

u(x, z) = up(x) (23)

where ug is the average axial displacement. The strain field may be ex-

pressed by the equation,
8’[1,0

oxr

Assuming an approximation of the displacement field within the element,

ex(,2) = (24)

ut(€) = N°q° = Z NE(€) q°(&) (25)

where N° are shape functions, and q° are nodal degrees of freedom within
the element, and substituting into equation (24), one obtains the strain
approximation,

€56 =Ba" =D Bi(€) (&) (26)

where B¢ is the matrix connecting strains with nodal displacements calcu-
lated as,

0 0

B — Ne(e), 0 ox

— 71 _
or =7 ae 7T e @7

Matrices of mass and stiffness are calculated numerically with the use of the
Gauss-Lobatto-Legendre integration rule,

me = / [N“(a)]" Ig N¥(z) da ~ Zw [NY(&)]" I N¥(&;) det(J)  (28)

QE

6
€ € T € € € T € € €
k :/[B (2)] D*B(z) de~ > w; [BY&)] D°BY&) det(J°)  (29)
O, i=1
Quadrature weights w; > 0, that are independent of the element are esti-
mated from the formula,

2
n(n—1)[Pay(&)]”

w; = icl,...,n (30)
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where n = 6 for the 6-node element.

Time Domain Integration For the sake of the accuracy of solution,
discretisation of the area with the use of the spectral finite element method
ought to provide at least 5 nodes per wave length?. Moreover, the mesh of
the elements should be, if possible, homogeneous over the entire area. After
spatial discretisation with spectral elements, to achieve a solution, only the
following system of differential equations in the time domain is needed,

MQ+KQ=F (31)

where M is the global inertia (mass) matrix, K is the global stiffness matrix,
Q is the vector of global degrees of freedom, and F is the vector of time
dependent forces. Damping is omitted, as it is possible to consider wave
attenuation based on experimental measurements.

Discretisation in the time domain of the system of differential equations
of the second degree (31), may be conducted with the classic Newmark’s
scheme or the central difference scheme. The given methods are condition-
ally stable methods of direct integration, where the equation of the motion
is integrated step by step; this means that the equation of motion (31)
ought to be fulfilled only at chosen moments in time. For the stability of
the solution (to avoid accumulation of integration errors and rounding er-
rors) the integration step At must be adequately small. The calculation of
an adequate integration step in the simulation of wave propagation within
composite elements is difficult owing to the great number of parameters of
the problem (minimum and maximum speed, carrier wave frequency, time of
analysis, and number of nodes per wavelength). In practice, in the applica-
tion of the central difference method, the number of integration steps should
be chosen individually for the considered problem. It may be assumed that
the integration step At is proportional to p~2, where p denotes the order of
the approximating polynomial in the spectral element. This means that a
high degree of polynomial leads to a significant cost of calculation. In the
case of too small a number of integration steps, the algorithm is unstable
and this manifests itself in a violent increase of the displacements with each
time step.

It should be emphasised that in the method of spectral elements, spa-
tial discretisation is very accurate, owing to the fact that it is based on
high—-order polynomials. On the contrary, in the case of time domain dis-
cretisation with the use of a central difference scheme only second—degree
accuracy is obtained, which means that global accuracy is reduced. For this

2For 5th-order approximating polynomials
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reason, application of a higher—order scheme in the time domain would be
interesting.
In the method of central differences, one assumes changeability of the
acceleration vectors in time in the form of:
. 1
Q ~ AtQ (ut+At -2 us + lltht) (32)
Substituting the difference formula (32) into equation (31) and marking the
displacement vector at time t as u; = Q, one obtains,

1

A2 (wpar — 20 +u_pny) M+ Ku, = F (33)

From equation (33) one calculates the sought displacement condition at the
time step t + At, meaning uzya¢. This is obtained based on the solution at
time t. For this reason, this method is numbered among ezplicit methods.
The great advantage of this manner of solving equation (31) is the fact that
the matrix of stiffness does not have to be inverted.

One should draw attention to the fact that calculation of the results
at the current time step, using results obtained at the previous time step,
requires assuming a certain starting procedure. One assumes that the vec-
tors Qo, QO, Qo are known at the initial time, namely at the time ¢ = 0.
This way, using the difference formula for the second derivative (32) and a
difference formula for the first derivative,

Ui At — We—At

)~ 34
Q AT (34)
one can calculate the displacement vector u;_a; at a fictional moment,

which will precede the beginning of the motion,

2

war= Qo — A + 2 & (35)

2

Frontal method Despite using various formats to store sparse matrices,
which provides saving of the computer’s RAM, wave issues are so complex
that the computer’s memory resources are usually not sufficient. It is possi-
ble, in some cases, to use the frontal method, in which algebraic equations
of a matrix are calculated at the level of the finite element without the
necessity to formulate global matrices.

(Kudela, 2008) proposed an integration method for the wave equations,
where assembly of the global stiffness matrix does not take place. The
algorithm of the method is presented below.
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After ordering, equation (33) takes the form,

1 1 2
(At2 M) Uerar =Fy - K+ (At2 M) o (At2 M) w-ae (36)
%’_/ F

Mo Mo Mo

In the equation (36), the vector F may be calculated in such a manner that
the use of the global stiffness matrix K is not necessary. The proposed
explicit time integration algorithm has the following steps:
e Loop over elements e
— For each element calculate the characteristic elemental matrices

k¢, m®

— Assemble each diagonal mass matrix of the element e into the
global vector M = :élldiag (m®), where Z:l denotes the assembly
operator

— Successive elemental stiffness matrices k¢ can be stored in a bi-
nary file
End of loop over elements e
Define constants ag = 1/At?, as = 2ao
Calculate the auxiliary vectors Mg = ag M, My = a; M, M® = 1/ Mg
The displacement vector u;—a¢ is calculated from Eq. (35)
Apply the initial conditions at the time instant ¢t = ¢g
Loop over time instants ¢
— Set up a pointer to the elemental stiffness matrix k¢ at the be-
ginning of the file

— Loop over elements e
* Read the stiffness matrix k® from the file and move the
pointer
% Perform multiplication f = keu!, where I denotes the vector
with numbers of degrees of freedom corresponding to element
e

N el g
* Assemble vector F = A (fe)

e=1

— End of loop over elements e

— Calculate effective vector R = Fy, — F + Mgug — Msug 4,
where indices a denote that multiplication is performed element
by element without summation

— The solution of the equation of motion at the time instant ¢t 4+ At
is achieved by multiplication of element by element: uf ,, =
M R®
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— Wi_Ap = U, Uy = Weyas, t =1+ At

e End of loop over time instants ¢

The proposed integration algorithm of the wave equation provides opti-
mal use of computer memory resources - the global stiffness matrix is not
assembled; this enables the solving of problems with a great number of de-
grees of freedom on an ordinary PC. The proposed algorithm is extremely
efficient since it uses the diagonal form of the mass matrix so that inversion
of the matrix is completely eliminated.

4.3 Flexibility at the crack location

The flexibility at the crack location for a spectral rod element can be
calculated using the Castigliano theorem (Przemieniecki, 1968):

0?U

Cij = m (fOI’ 1=7]= 1) (37)

where U denotes the elastic strain energy of the element caused by the
presence of the crack and the S; are the independent nodal forces acting
on the element. The following relation can express the elastic strain energy
due to the crack,

_]' 2
UfE/AKIdA (38)

where A denotes the area of the crack and K is a stress intensity factor
corresponding to the first mode of the crack formation (Tada et al., 1973).
The stress intensity factor can be expressed as follows,

= v (7) o

where «, b and h denote the crack depth, height of the rod and width of the
rod at the crack location respectively (see Fig. 6), and f is the correction
function in the form (Tada et al., 1973),

o\ [tan(ma/2h) 0.752 + 2.02(a/h) + 0.37[1 — sin(war/2h)]?
/ ( h) N o /2h cos(ma/2h) (40)

After some simple transformations, the flexibility of the elastic element,
which is used for modeling the cracked cross section of the rod, can be
rewritten as,

c= Z; af*(a)da (41)
0
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where E denotes Young’s modulus (averaged with respect to any layers of
composite).

It should be noted that application of the technique of static node con-
densation as presented in section 4.1 in the case of SEM, causes the mass
matrix to lose diagonality. In order to maintain the diagonal form of the
mass matrix it is necessary to split nodes between two spectral elements
and add to the global stiffness matrix a special matrix. This special matrix
is a consequence of the inverse form of the flexibility at the crack location
and can be expressed as follows:

= 2 ] (1

In such a case, the mass matrix of the elements located next to the crack is
identical with that of classical spectral elements.

4.4 Comparative example

Numerical calculations were conducted for an unconstrained rod with
dimensions: length 2 m, height 0.02 m and width 0.02 m. The following
properties of materials were assumed: Young’s modulus 210 GPa and mass
density 7860 kg/m3. Excitation, in the form of an impulsive force with
amplitude 100 N was applied to the node on the left end of a rod. A forcing
signal in the form of a sine with five cycles, modulated with a Hanning
window, was applied.

The aim of the numerical example is to compare results obtained by the
use of the spectral element method with the spectral element method based
on FFT (Palacz and Krawczuk, 2002). In this example, the applied forcing
signal had a carrier frequency of 100 kHz. However, for signal amplitudes
to be compared, the excitation amplitude for the second method is twice
as large. Such a procedure is necessary because in the method based on
the FFT, on the left end of the rod an element of the throw-off type is
added. This causes the actuated wave to propagate simultaneously in two
directions: to the left it is led ad infinitum by the throw-off element, and
to the right it propagates because of the element with the crack. The crack
was inserted exactly in the centre of the rod. It was assumed that the depth
of the crack was 15% of the height of the rod.

Figures 7-9 present comparisons of the signals obtained by the use of
both methods. For legibility, the distance covered by the wave was placed
on the horizontal axis. Distance was obtained by calibration of the time
axis with the theoretical velocity v = \/E/p = 5168.9 m/s. In addition, the
beginning of the excitation was shifted adequately to half of the impulse
time.
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Figure 7. Comparison of signals on the left end of the rod, obtained with
the method of spectral elements (SEM) and the method of spectral elements
based on the FFT (FFT-SEM).
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Figure 8. Comparison of signals on the right end of the rod, obtained with
the method of spectral elements (SEM) and the method of spectral elements
based on the FFT (FFT-SEM).

In Figure 7 one can observe that for both methods, the wave velocity
corresponds to the theoretical velocity - the centre of the impulse occurs
almost precisely at the distance of 2 m, i.e. once the wave covers the distance
from the left end of the crack and back to the left end. The next centre of
the impulse occurs at the distance equal to 4 m and it corresponds to the
reflection from the right end of the rod. In both methods the shape of the
signal remains the same, whereas amplitudes differ.

Taking into account the fact that issues of wave propagation in a medium
without damping are discussed, the signal amplitude value should not un-
dergo changes. This is the case only when the method of spectral elements
is applied, as is presented in Figures 7-8, where the impulse amplitudes at
the distance of 4 m (Figure 7) and 2 m (Figure 8) are identical. For the
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Figure 9. Comparison of signals in the point located 20 cm from the left
end of the rod, obtained with the method of spectral elements (SEM) and
the method of spectral elements based on the FFT (FFT-SEM).

spectral element method based on FFT, the signal amplitude decreases as
a result of energy transfer from the system through the throw-off element.

Influence of the throw-off element on the signal received at the a location
of 20 cm from the left end of the rod is presented in Fig. 9. The wave
generated at the left end of the rod, while propagating, travels through
discussed location (impulse at the distance of 0.2 m), it reflects from the
crack and returns to this location (impulse at the distance of 1.8 m), next
it reaches the left end of the rod, where the wave is transferred ad infinitum
without reflection from the edge (no impulse at the distance of 2.2 m).

The comparative analysis allows one to state that the method of spectral
elements shows a certain advantage over the FFT-based spectral elements
method in the fidelity of modelling the phenomenon of wave propagation.
When only the first reflection (from the crack) is analyzed, the considered
methods lead to compatible results. The only condition is, that in the FFT-
based spectral element method, the analyzed location will not agree with
the degree of freedom where the throw-off was added. The advantage of
the FFT-based spectral element method is that if one searches for solutions
only at several locations, the time of calculation is shorter. Continuing the
theoretical deliberation, the numerical examples presented will be based on
the spectral element method.

Attention should be brought to the fact that the formalism presented
in paragraphs 4.3-4.1 refers to the elementary theory of rods. However, ex-
panding this formalism to other theories of rods, beams or plates is straight-
forward. From the point of view of SHM, the elementary theory of rods is
not sufficient at higher frequency ranges because it does not take into ac-
count the dispersive character of the waves. The above aspect is clearly
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presented in Fig.10, where comparison of signals received in a composite
rod with a crack modelled using elementary and three-mode theory was
presented. Signals received by the use of the model based on elementary
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Figure 10. Comparison of the signals received on the left end of the rod
with crack at the depth of 15% of section height for the tree-mode and
elementary theory.

theory, significantly differ from signals received with the use of the model
based on three-mode theory, in regard to both wave velocity and shape of
signal packet.

4.5 Influence of crack on wave propagation

Influence of crack location and crack depth on wave propagation
Figure 11 presents the absolute values of signals obtained at the left end
of the rod for various locations of a crack with 15% of the cross-section
height. Location of the crack close to the left end of the rod causes multiple
reflections and superpositions of waves. With the location of the crack at a
shorter distance from the half-length of the rod (Figure 11), one can observe
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Figure 11. Influence of crack location at the depth of 15% of cross—section
height, on wave propagation.

two reflections from the crack and a reflection from the right end of the rod.
The example presented shows that the location of the crack may be easily
identified based on the time of flight and the velocity of the wave packet.

In the next example, the effect of depth of the crack was studied. The
crack was located at a distance of 1.2 m from the left end of the rod.
With an increase in crack size, the amplitude of the signal reflected from
the crack increases, and the amplitude of the signal passing through the
crack decreases, as presented in Figure 12. For a crack depth of 5% of the
cross-section height, the wave impulse reflected from the crack also occurs,
although this is not very visible in Figure 12

Influence of signal frequency on amplitude of the reflected wave
It follows from Figure 13 that along with an increase of forcing signal fre-
quency, there is increased amplitude of the signal reflected from the crack
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Figure 12. Influence of the crack depth, situated at the distance of 1.2 m
from the left end of the rod, on wave propagation.

in relation to the amplitude of the signal received at the place of excitation.
This means that sensitivity of damage detection methods based on changes
in elastic wave propagation will be higher for higher frequency ranges. How-
ever, one must take into account the fact that, in reality one deals with
elastic waves whose velocity depends on frequency, and therefore the signal
undergoes dispersion. In order to take into consideration the above effect,
one must apply Love’s theory, Mindlin—-Hermann’s theory or three-mode
theories, depending on the frequency range (Krawczuk et al., 2004).

5 Damage Identification in 1D Structures

Damage identification problems may be treated as inverse problems, but it
is also possible to do damage identification based on knowledge in the field
of wave propagation. In the former case, a high-fidelity numerical model
of the analysed structure is necessary. Moreover, reference signals (signals
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Figure 13. Signal frequency impact, on propagation of the wave reflected
from a crack with the size of 15% of section height.

received for non-damaged structures) theoretically are not necessary. But
in practice higher signal-to-noise ratio is obtained using differential signals.
In the latter case, identification of damage may take place by processing the
signals registered at sensors embedded in real objects. Monitoring of the
structure in real-time is also possible because calculation time is very short
in comparison with the former case. The use of reference signals means
that better damage identification results can be obtained. Aspects of the
application of both techniques, are illustrated by the example of the rod in
Figure 14.

It was assumed that the geometry of the rod, material properties, and
signal parameters were the same as in the comparative analysis of sec-
tion 4.4. The rod was divided into 255 spectral elements. Damage of a
size of 15% of the section height, at a distance of L, = 60.16 cm from the
left end of the rod, was inserted into the model. Simulation of experimen-
tal measurements was conducted, assuming an arbitrary distribution of two
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Figure 14. Schematic diagram of the rod with crack and sensors.

“PZT transducers” at distances of L1 = 89.84 ¢cm and Lo = 110.16 cm. It
was also assumed that each of the transducers could also work as a wave
actuator and as a sensor at the same time. In this way, 4 signals were ob-
tained. These were next contaminated by random noise with a quantity not
exceeding 3% of the maximum amplitude of the signal. A similar simulation
was conducted for the non-damaged rod.

Detection Because signals coming from real measurements contain noise,
it should be minimised by filtering and the level of noise ought to be es-
timated. Giving an estimate of noise level is difficult in automation. The
level of the noise may be estimated by making several measurements from
the same sensors and conducting a statistical analysis. After performing
an operation of subtraction on two signals registered in various operating
conditions one will obtain the noise. If within the structure there is enough
damage that there is the difference between signals, one will observe ex-
ceedance of the noise level (Fig. 15a). Unfortunately in this way, damages
for which the amplitude of the reflected wave is lower than the noise level,
will not be detected (Figure 15b). To overcome these obstacles, two meth-
ods of extracting features connected with damage from the signals could be
proposed. The objective of these methods is to to get a smooth function
with improved signal-to-noise ratio.

Method I The first method is simple weighted summation of signal am-
plitudes in a moving window (a type of cross-correlation) according to the
equation,
Ny
. 2
e(t;) = > [F(t:) S (t; + (i — 1)At)] (43)
i=1
where S is the processed signal, F' is a weight function, which may be
a window modulating the signal (e.g. a Hanning window or a Gaussian
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window), At denotes the time step, N, is the number of points in the
moving window (in practice N,, = t./At, where t. stands for the excitation
time).

Method IT The second method is a similar weighted summation, but
corresponding to the power spectrum,

e(t;) =|F (fc)| = |IDFT [F(t;) S (t; + (i — D)AY)]|, i=1,...,Ny, (44)

where F denotes the linearly interpolated amplitude corresponding to the
carrier frequency of the excited signal f., DFT denotes the discrete Fourier
transform. To clarify, e is named as the intensity function of reflected waves
because this function gives peaks corresponding to the location of reflected
wave packets.

Application of the above—mentioned techniques regarding the signal pre-
sented in Figure 15b and alteration of the time scale causes amplification
of the function e at the location of wave reflections (after transformation
the signal is shorter by the width of moving window), which is presented
in Figure 16. Method II introduces signal operations in the time domain
as well as in frequency; this enables signal filtration to be more favourable
than in the case of method I. In Figure 16 one can observe, that in method
IT the relation of the maximum value of the intensity function of reflected
waves to the estimated noise level is much higher than in the case of method
L.

In the literature many other methods of feature extraction can be found
(wavelet analysis, pattern recognition, outlier analysis, etc.).

Localisation Estimation of the propagation time is a basis for adequate
location of the damage. Techniques of time propagation estimation, based
on the maximal signal envelope created using the Hilbert transform, may be
unreliable if the level of noise in the signal is too high. Instead of the signal
envelope, one may use, as suggested in section 5, the intensity function of
reflected waves.

Estimation of the propagation time may be conducted on the signal
received at the sensor number 2, when excitation occurs in transducer num-
ber 1 (t1—2) and inversely (¢2_1). From the experimental simulation one
obtains adequately t1_o = to_1 = 0.0393 ms, which gives, with the distance
between sensors Lo — L1 = 20.32 cm, a propagation velocity of 5166 m/s,
almost identical to the theoretically calculated velocity. Those values were
obtained through application of the above-mentioned methods I and II. The
time of propagation, calculated with the use of the envelope and Hilbert
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(b) Crack with a size of 5% of the height of the rod.

Figure 15. Difference in signals between non-damaged rod and rod with
crack against estimated noise level background.

transform, adequately shows ¢1_o = 0.0391 ms and t5_; = 0.0395 ms. Such
a discrepancy shows the lower precision of estimation.

Knowing the velocity of wave propagation and the location of the sensors,
the intensity function of reflected waves can be transformed from the time
domain to the distance domain in such a way that suitable superpositions
of reflected waves occur,

Ng p ;
E(zj) = Zei (t(z;)),  tz;) = %

dp, =/(x; —or)?, g = /(2 —25)? (46)

where z; is the presently considered rod coordinate, z7 stands for the exci-
tation coordinate, g stands for the sensor coordinate, Ng denotes the total
number of sensors, and c is the estimated velocity of wave propagation.

(45)
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Figure 16. Differential signal filtered with the use of methods I and II,
against estimated noise level background.

2000 — T T T . I x T T T
El 2 transducers
1500 p 3 transducers 2
=1000 | E2 -
= I\
500 F AR ]
\ \ N e P

0 : =3 = i 2 | e RE———— i = s e e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Rod coordinate [m]

Figure 17. Amplification intensity function of reflected waves with appli-
cation of two and three sensors.

The procedure presented in equations (45)-(46) was applied for the sensor
configuration given in Figure 14 and for a configuration with additional
sensors located between sensors number 1 and number 2. As a result, the
amplified intensity functions of reflected waves presented in Fig. 17 were
obtained. Amplification of the wave reflected from the crack occurs about
0.6 m from the left end of the rod (amplitude E;). However, the wave
reflected from the edge of the rod is also amplified (amplitude E7). It can
be observed, that the amplification is connected with the number of sensors
and is equal to F/e = N2.

Estimation of the damage size The size of the damage may be es-
timated by taking into account the relation of the amplitude of the wave
reflected from the damage Ar with the amplitude of the excited wave Ar.
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Because of the noise in the signal, the amplitudes Ag and Ar may be re-
placed with the amplitudes of the intensity functions of reflected waves er
and epr. However, it is necessary to familiarise oneself with the relation of
er/er to crack depth. Such a relation may be defined in the process of
experimental research or based on a numerical model (Fig. 18).
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Figure 18. Relative crack influence on relation er/er with carrier fre-
quency 100 kHz (numerical model).

Attention should be brought to the fact that, for very small cracks, it
is difficult to calculate the amplitudes er from signals containing noise.
Therefore, it is easier to calculate the relation er/er indirectly. Assuming
amplitude symbols according to Figure 17 for the case with three sensors,
one obtains Fy = 818.0. Applying the procedures given in equation (44) for
signals registered for a rod without damage, one obtains the amplitude of
the intensity function of reflected waves directly at the location of excitation

eref = 728.25. The relation er/er may be expressed by the equation,
Ey/N?
er _ Ep/Ng (47)
er Eref

In the analysed example, eg/er = 0.1248, and with the reference to the
relation presented in Fig. 18, corresponds to a crack with a depth of 15% of
the height in cross—section of the rod.

Genetic algorithms in the problem of identification Genetic al-
gorithms are extremely suitable for the problem of optimisation of func-
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tions with multiple minima (maxima) or discontinuous functions (Gold-
berg, 1989). The genetic algorithm (GA) differs substantially from more
traditional search and optimisation methods. The four most significant dif-
ferences are:

e GAs search a population of points in parallel, not a single point.

e GAs do not require derivative information or other auxiliary knowl-
edge; only the objective function and corresponding fitness levels in-
fluence the directions of search.

e GAs use probabilistic transition rules, not deterministic ones.

e GAs work on an encoding of the parameter set rather than the pa-
rameter set itself.

Those features predestine genetic algorithms to applications in problems
regarding damage identification.

It is important to note that the GA provides a number of potential solu-
tions to a given problem and the choice of final solution is left to the user. In
cases where a particular problem does not have one individual solution (for
example the solution is a family of crack locations) as in the case of multi-
objective optimisation and scheduling problems, then the GA is potentially
useful for identifying these alternative solutions simultaneously (Chipper-
field et al., 1994).

Having the signals from the simulated experiment and numerical model
of the rod presented in Section 4.2, an attempt was made to identify the
location and size of the damage simultaneously. It was assumed that both
decision variables, location of the crack m and depth of the crack n, would
be encrypted in one chromosome divided into two parts,

100100 1v1 1
m n

The decision variables are represented by integers, ranging over [0, 27 — 1],
where p denotes the number of bits in the chromosome. This enables easy
modelling of the damage, because the locations agree with nodes of the
mesh of the spectral finite elements. What is more, the following data were
assumed:

e number of individuals 40,

e maximum number of generations 20,

e crossover probability 0.7,

e mutation probability 1/40,
The objective function, which is to be minimised, was suggested in the form
of,

f(m,n) = ZZ |(Rij = Sij(m,n))| (48)
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where N denotes the number of points in the registered signal, R;; stands
for the j-th amplitude of the i-th signal from the simulated experiment,
and S(m,n) are the signal amplitudes obtained by using the numerical
model, with the parameters specified by the decision variables m and n.
The signals S(m,n) are continuously calculated, because the number of
possible locations and sizes of the crack may be relatively large (depending
on the precision of the calculation). To shorten the calculation time, the
problem was solved in two stages.

Stage I In this stage a 9-bit chromosome was assumed, where 5 bits fall
to the decision variable m, and 4 bits fall to decision variable n. This
assumption corresponds with ranges of representation, m € [0,31] and n €
[0,15], when m = 0 and n = 0 denote that damage does not occur, and the
remaining whole numbers correspond to positions of the crack location and
size given by the number of divisions (Figure 19). In this way the crack
cannot occur at the distance equal to 0 as well as equal the length of the
rod, and the size of the crack cannot reach 100% of the cross—section height.

0 AL Le=m AL ] ] L
Figure 19. Schematic diagram of rod division in stage I.

In the analysed example, the genetic algorithm already converges to a
result after two generations: m! = 10, n! = 2; this refers to a coordinate of
crack location LI = 0.625 and a size of crack a’ = 0.125. This solution is
the first approximation, which is the starting point to stage II.

Stage II In this stage an 8-bit chromosome is assumed, where 4 bits fall
to the decision variables m and n. The solution is searched for within a
range situated to the left and to the right of the approximation found in
stage I, thus,

Lee [(m" =1 AL, (m" +1)AL")

and similarly for the size of the crack a. The division resulting from the
assumption of a four-bit representation of the decision variables, is presented
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in Figure 20. This time, the decision variables m = 0 and n = 0 correspond
to the left ends of the ranges.

6 1 m

2 . 15 16
AL
= : : —\ ; —
(m-1)AL L L // (m +1)AL
AL=2AL'/16 Le=(m'-1)AL*m AL

Figure 20. Schematic diagram of rod division in stage II.

In this example, after six generations the genetic algorithm gives a so-
lution: m!f = 5, n'! = 11; this corresponds to coordinates of the crack
location LI = 0.6016 m and the size of the crack a’! = 0.1484. The ob-
tained solution is exact as far as the location of the crack is concerned - this
results from the assumed discretisation (255 elements, between which one
may model the crack), and shows about 0.2% deviation as far as the depth
of the crack is concerned.

Conclusions To summarise, the conception of a damage identification
system based on knowledge of the field of wave propagation as well as the
conception based on genetic algorithms, leads to considerable results. In
both cases, the location and size of the damage were identified with high pre-
cision. On the other hand, the identification of damage in two—dimensional
elements of a structure based on genetic algorithms may be too complex for
contemporary computers.

6 Experimental Applications of Lamb Waves

6.1 Test stand profile

The test stand in the Department of Mechanics of Intelligent Structures
in The Institute of Fluid-Flow Machinery of the Polish Academy of Sciences
consists of piezoelectric transducers, measuring devices designed for wave
generation and data acquisition, and a computer (Fig. 21). The measuring
device is a prototype device, constantly developed and improved. In gen-
eral, the device is superb for the needs of wave propagation analyses. An
electronical system enables registration of signals from 12 measuring chan-
nels, while the 13th channel is used for wave generation. The device may
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be connected to the computer through a USB connector in order to control
its parameters and transfer measured signals.

(X

Figure 21. View of the fragment of a test stand.

The configuration of the matrix of piezoelectric transducers is in the
shape of a clock with transducers placed on each “hour” of the round “clock
face” and an additional transducer which is placed in the centre of the
transducer configuration (Fig. 22). Elastic waves are generated by means
of a central piezoelectric transducer CMAP11 (5 mm x 5 mm x 2 mm)
or CMAPI10 (3 mm x 3 mm x 2 mm) made by Noliac. Wave registration
takes place at circumferential transducers CMAP10 (3 mm x 3 mm x 2 mm)
also made by Noliac. However, it is also possible to generate the waves in
the circumferential transducers. The limitation of the device is that the
transducer generating the elastic waves cannot operate at the same time as
the sensor registering the elastic waves.

The subject of research here is a composite panel, whose shape and
dimensions are given in Figure 22. It is a part of a door from an Agusta
AW-139 helicopter. The panel is made of six layers of carbon-epoxy laminate
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Figure 22. Geometry of the sample and distribution of sensors.

with the ply stacking sequence [+45/-45/0/90/+45/-45], and covered with
a sealing compound with a thickness of about 0.14 mm, which makes up
the face board of the door. The theoretical total thickness of the composite
plate is equal to about 1.15 mm.

Transducers were attached to the studied specimen using a wax sub-
stance, the same that is used in assembling accelerometers. This enables
easy assembly and non-destructive disassembly of transducers, which is im-
portant owing to the lowered costs of the experimental research. Connecting
transducers to the surface of a structure using wax is a relatively cheap solu-
tion and at the same time practical. However, it is not an optimal solution
because the wax strongly attenuates elastic waves and what is more, pre-
cise bonding of transducers is difficult. In practical monitoring systems,
one should apply durable bonding e.g. using epoxy resin with mechanical
properties similar to the surface, to which transducers are attached. The in-
fluence of the bonding layer thickness and its Young’s modulus, on the glued
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Table 2. Properties of materials (Zak et al., 2000; com)

Sealing compound  Epoxy resin  Carbon fibre

Youngs Module, GPa 3.43 3.43 230
Poissons coefficient 0.35 0.35 0.2
Density, kg/m? 1350 1250 1750

connection of the piezoelectric element, was studied in the work by Qing
et al. (2006). Experimental results indicate that increasing the glue thick-
ness changes the electromechanical impedance, the resonance frequency of
piezoelectric element and the amplitude of the signal registered by the sen-
sor. The influence of Young’s modulus of the bonding layer on the signal
amplitude is insignificant.

6.2 Theoretical dispersion curves

Because the mechanical properties of the specimen are unknown, for the-
oretical calculations the data given in the Table 2 were assumed. These val-
ues are verified according to group velocity profiles measured by experiment.
With the use of a procedure described in work by Kudela et al. (2007b),
dispersion curves were calculated (i.e. the group velocity dependence on fre-
quency). It should be emphasised that this procedure was extended in a
way that takes into account the asymmetrical ply stacking sequence and
covering face lamina. Results are presented in Figure 23. Within the range
of frequency around 1-600 kHz the longitudinal wave propagates the fastest
(S0), next is the shear wave (SHO), and the slowest is the bending wave
(A0). Above a frequency of about 600 kHz there occur other modes of
Lamb waves.

Similarly, a group velocity distribution diagram was obtained depending
on propagation angle (Figure 24) with frequency of 120 kHz. It is important
that values of group velocities of the longitudinal wave (S0) and the shear
wave (SHO) significantly differ from the average, i.e. the shape of the profile
of group velocity significantly differs from a circle. The situation is different
in the case of the bending wave (A0), where the mentioned differences are
much smaller. Owing to this fact, in methods of damage localisation based
on the time of flight of waves reflected from the damage, the most favourable
modes for analysis are the bending waves. It is also important that in the
analysed element of structure, the bending wave is characterised by minimal
dispersion within the frequency range above 100 kHz (the course of the
dispersion curve for the velocity of A0 mode for frequencies above 100 kHz
in Figure 23 is similar to a horizontal line).
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Figure 23. Theoretical dispersion curves obtained for the studied carbon-
epoxy laminate.

6.3 Estimation and verification of wave group velocities

Measurements were conducted using a sinusoidal excitation modulated
by a Hanning window within a frequency range of 50-150 kHz with a 10 kHz
step. As a result of the modulation, signals with 3, 5, 7 and 10 cycles
have been investigated. For the estimation of group velocity, a windowing
method based on the signal spectrum energy was used. Selected results of
the experiment are presented in Fig. 25.

Figure 25 presents the dependence of group velocities on the wave propa-
gation direction, with given excitation frequencies for different number of cy-
cles. Individual points are distributed with a 30 degree angle, corresponding
to the distribution of sensors. Diagrams were also plotted with a dashed line,
the theoretical curve of velocity profile for a composite with a fibre stacking
sequence [+45/-45/0/90/+45/-45]. With frequencies above 100 kHz (the
minimal dispersion area) the velocities estimated based on experimental
signals almost agree regardless of the number of cycles, and their distribu-
tion depending on propagation angle to a large extent agrees with the the-
oretical profile. It should also be added that for a frequency range corre-
sponding to the dispersion profile, velocities are the most similar to circles,
which is beneficial in application to the methods of damage localisation.

A conclusion from this research is that, owing to high wave attenuation
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Figure 24. Theoretical graph of group velocity distribution depending on
propagation angle, obtained for the studied laminate with a frequency of
120 kHz.

(due to composite material damping), inspection of a panel area is only
possible within a radius of 0.5 m for a frequency of 50 kHz. With an
increase of the frequency, wave attenuation also increases.

It should be emphasised that, in the registered signals, the predominant
wave amplitudes are connected with bending waves. Shear and longitudinal
waves are also present in the signals but their amplitudes are very small
with reference to the amplitudes of the bending waves. For this reason,
based on registered signals one cannot estimate the velocity of longitudinal
and shear wave propagation. However, shear and longitudinal waves prop-
agate with higher velocity than bending waves. Moreover, they undergo
mode conversion, which causes additional signal disturbances.

6.4 Damage detection

Piezoelectric transducers were attached to the studied sample using wax.
A “clock” configuration of sensors with a radius of about 4 cm was applied.
A series of measurements for a non-damaged sample as well as for a sample
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Figure 25. Group velocity dependence on the propagation angle with ex-
citation frequency of 120 kHz for an even number of cycles.

with various artificially inserted damages were conducted. Signal processing
was carried-out using an algorithm suggested by Kudela et al. (2008). The
complicated geometry of the studied sample and the composite material
with strong damping behaviour, of which the sample was made, mean that
distinction between waves reflected from damage and reflected from features
of the structure (edges, stiffener, depth change, etc.) is impossible. For this
reason, it is necessary to use reference signals. That is why, after application
of the signal processing procedure, the amplitudes of signals registered for
the damaged sample s, were linked to the amplitudes of signals registered
for the non—-damaged sample s4 using a dB scale:

FE,
Eq_, = 10log,, < Ed> (49)
s

where E; and FE,. refer to superimposed intensity functions of reflected waves
eq and e, given by Eq. (44) in the case of signals registered for the damaged
(sq) and reference (s,) structure, respectively. The functions E; and FEy in
the case of 2D problems can be described by the formula:

E:Z/ek(x,y)dszzzek(xm%)a
r US ko i,j

k=1,...,12 i=1,....N j=1,....M
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Table 3. Inserted cracks scenario

crack no 1 crack no 2

depth [mm] | length [mm] | depth [mm] | length [mm)]

0.2 4 - -
4 - -
8 - -
14
18
18
18
18

=
(@]

SR - 0 T
— e e e
1
1

— = =
0]

where S is the surface of the investigated structure, and N and M stand for
the total number of nodes i and j, located on the surface of the investigated
structure; k is the sensor number. This function gives a map which can be
called a damage influence map or damage intensity map.

As an indicator of the damage level of the element of structure, a value
described with the following formula was assumed:

D =Y |Eqr(xi,y;)l (51)
ij
After a series of tests it was found that a frequency of about 120 kHz
is the optimal frequency for signal excitation®. Further researches were

conducted using only a frequency of excitation of 120 kHz.

6.5 Crack detection

Within the studied sample, cracks were inserted according to the scenario
given in Table 3. As a result of the damage detection algorithm suggested
in the work by Kudela et al. (2008), one finds maps of damage influence as
presented in Figure 26. On the maps of damage influence, the real location
of the crack for reference purposes was clearly marked with a white line.

While analyzing the maps of damage influence presented in Figures 26a—
¢ one may notice an increase in the value of map amplitudes in the form
of circumferential stripes, which the radius agrees with the radius where
damage is located. By increasing the damage to a length of 8 mm, the
map of damage influence (Figure 26¢) reaches a maximal value in the close

3For a signal excitation frequency of 120 kHz the biggest differences were noted between
signals in damaged and non-damaged sample, what manifested in the biggest values of
damage level indicator D
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neighbourhood of the damage (difference between centre of the crack and
maximal value of damage influence map is equal to about 25 mm). Further
increasing of the crack length brings about surprising results. Amplitudes
of damage influence maps presented in Figures 26d—e undergo strengthen-
ing, not only in the place where the crack occurs but also in other areas.
What is more, the maximal amplitude value of the damage influence map
decreases with increase of the damage length. The observed anomalies may
be explained by the effect of mode conversion. Shear and longitudinal waves
converted from the bending mode propagate faster. Damage influence maps
are made based on the bending wave velocity profile, therefore strengthen-
ing or attenuation of the amplitudes of the damage influence maps occur
also in areas which do not agree with the location of the crack. What is
more, a problem may be caused by noise (coherent noise) that results from
inaccuracy in signal amplitude subtraction (in the dB scale of logarithmic
relation between signal amplitudes), which for example are shifted at ran-
dom against one another.

Insertion of the second crack causes significant changes in the damage
influence maps (Figures 26f~h). One may observe that the maximal value
of the damage influence maps increase along with the increase of the second
crack’s length. Despite the fact that the second crack is located closer to
the sensor configuration, it is impossible to locate unambiguously the crack
based on the damage influence map. One may only estimate the radius
where the crack is located, and only in the case of the crack with a length
over 10 mm (Figure 26h).

Despite difficulties in formulating a crack localisation method, experi-
mentation in their detection proves to be relatively simple. Damage de-
tection may occur based on the damage indicator values represented in
formula (51). First, one must experimentally establish a threshold value
which, once surpassed, will indicate damage of the structure. Figure 27
presents dependence of the damage level indicator on the damage scenarios
put together in Table 3. Also, an arbitrary established threshold level of
the value 1.75 - 10° was applied to the Figure 27. The damage level indica-
tor takes a lower value than the threshold level only in the case of damage
scenario “a”,i.e. a crack within the face layer of the sample. Insertion of a
crack with a depth of 1 mm into studied sample, causes exceedance of the
threshold level. One may state that the indicator of damage level, shows an
increasing tendency along with size and number of inserted cracks with the
exception of damage scenario “d”. This indicator may be effectively used
for damage detection purposes in the early stage of development.

In the case of experimental research concerning delamination detection,
the situation is similar to the case of matrix crack detection. However,
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Figure 26. Experiment: damage influence maps.
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location of the delamination is much more difficult. It derives from the fact
that amplitudes of waves reflected from delamination are significantly lower
than amplitudes of waves reflected from cracks.

x 10°

+

& b c d &  .f g h
Damage scenario

Figure 27. Damage size indicator.

6.6 Conclusions

Analyses of signals measured with the use of specialist testing equipment
were conducted. Estimation of wave group velocities for various frequencies
and numbers of cycles was made. Dispersion curves, and profiles of depen-
dence of wave group velocities on the angle of propagation, were calculated.
Experimental results were compared with theoretical results. High confor-
mity between theory and experiment both in dispersion curves and profiles
of velocity depending on wave propagation angle were observed.

A serious problem with the studied specimen of a composite structure
is the high damping, which increases in proportion to the frequency of the
excitation signal.

The developed damage detection algorithm enables detection of extremely
small cracks. In some cases, it is also possible to locate the crack.
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