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Abstract This part of the CISM course addresses basics and ad-
vanced topics on the computational homogenization of the mechan-
ics of highly non-linear solids with (possibly evolving) microstruc-
ture under complex non-linear loading conditions. The key com-
ponents of the computational homogenization scheme, i.e. the for-
mulation of the microstructural boundary value problem and the
coupling between the micro and macrolevel based on the averag-
ing theorems, are addressed. The numerical implementation of the
framework, particularly the computation of the macroscopic stress
tensor and extraction of the macroscopic consistent tangent opera-
tor based on the total microstructural stiffness, are treated in de-
tail. The application of the method is illustrated by the simulation
of pure bending of porous aluminum. The classical notion of a rep-
resentative volume element is introduced and the influence of the
spatial distribution of heterogeneities on the overall macroscopic
behaviour is investigated by comparing the results of multi-scale
modelling for regular and random structures. Finally, an extension
of the classical computational homogenization scheme to a frame-
work suitable for multi-scale modelling of macroscopic localization
and size effects is briefly discussed.

1 Introduction

The past years have been marked by a significant interest in the various
length scales that govern the mechanics of materials. The main issue con-
sists in identifying the relationships that bridge those various scales, i.e.
multi-scale mechanics. The multi-scale methodology aims to predict, de-
scribe, quantify or qualify the 'macroscopic’ behaviour of engineering ma-
terials through the consistent modelling of the mechanics and physics of
the heterogeneous, multi-phase, anisotropic, discrete microstructure. Var-
ious techniques have been proposed to contribute to this challenging task.
Among them, a large class of homogenization techniques exists, also called
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coarse graining in the physics community (Ridderbos, 2002; Nguyen and
Ortiz, 2002).

Homogenization techniques were first developed within the framework of
elasticity, as an excellent tool to predict the effective or apparent linear elas-
tic properties of heterogeneous materials. Several closed-form homogeniza-
tion techniques have been proposed in this context, e.g. the Voigt-Reuss-
Hill bounds, the Hashin-Shtrikman variational principle, the self-consistent
method, etc., see (Nemat-Nasser and Hori, 1993) for an overview. Asymp-
totic or mathematical homogenization schemes have been used frequently to
assess effective properties of elastic heterogeneous materials (Chung et al.,
2001; Fish and Chen, 2001). Extensions towards higher-order and non-
local constitutive equations have been considered as well, e.g. develop-
ments including Cosserat media (Forest et al., 2001), couple stress the-
ory (Smyshlyaev and Fleck, 1994), nonlocal effective continua (Drugan and
Willis, 1996) or higher-order gradient homogenized elastic materials (Tri-
antafyllidis and Bardenhagen, 1996; Smyshlyaev and Cherednichenko, 2000;
Peerlings and Fleck, 2001).

Other interesting approaches towards the analysis of random (phys-
ically nonlinear) microstructures (Ponte Castaneda, 1992; Suquet, 1993;
Ponte Castanieda, 2002) are the Taylor-Bishop-Hill estimates, several gener-
alizations of self-consistent schemes and asymptotic procedures (Fish et al.,
1997). Homogenization of solids in a geometrically and physically nonlinear
regime is clearly more cumbersome. Several analyses have been performed
on unit cells, from which the parameters in a priori assumed macroscopic
constitutive equations can be assessed. Some of them also include higher-
order continuum formulations, e.g. Cosserat (van der Sluis et al., 1999) and
couple stress media (M. Ostoja-Starzewski, 1999). The added value of these
multi-scale methods depends on the accuracy (geometrical, physical, me-
chanical) with which the microstructure is modelled, as well as the technique
that is used to perform the homogenization towards the macroscopic level.
Closed-form homogenization towards constitutive material frameworks or
effective (or rather apparent) material properties of composites turns out
to be really cumbersome if one wishes to take into account more complex
physics, geometrical nonlinearities or damage and localization.

Another class of hierarchical techniques are generally known as varia-
tional multi-scale methods (Hughes et al., 1998; Garikipati and Hughes,
2000). In here, the weak form of the governing equations is the point of
departure, which can be separated in a coarse and a fine scale part on
the basis of suitable assumptions on the fine scale field. The key issue re-
sides in the elimination of the fine scale from the obtained formulation.
Though promising, the method relies strongly on the assumptions made on
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the fine scale and the restrictions that apply to enable the elimination in
practice. Well-known fine scale patterns, e.g. displacement discontinuities
modelled by Heaviside functions, can be easily implemented. The obtained
method then shows considerable similarities with the extended finite ele-
ment method (Sukumar et al., 2000; Moés and Belytschko, 2002).

Since a few years, substantial progress has been made in the two-scale
computational homogenization of complex multi-phase solids. This tech-
nique is essentially based on the solution of nested boundary value problems,
one for each scale. If attention is focused on the nonlinear characteristics
of the material behaviour, this technique proves to be a valuable tool in
retrieving the constitutive response. First-order (i.e. including first-order
gradients of the macroscopic displacement field only) computational homog-
enization schemes fit entirely in a standard continuum mechanics framework
(principle of local action) and are now readily available in literature (Su-
quet, 1985; Ghosh et al., 1996; Smit et al., 1998; Miehe et al., 1999b,a; Feyel
and Chaboche, 2000; Terada et al., 2000; Ghosh et al., 2001; Kouznetsova
et al., 2001; Terada and Kikuchi, 2001; Miehe and Koch, 2002). Main char-
acteristics of this solution strategy are

e The constitutive response at the macro scale is a priori undetermined.
No explicit assumptions are required at that level, since the macro-
scopic constitutive behaviour ensues from the solution of the micro
scale boundary value problem.

e The method deals with large displacements (large strains and rota-
tions) in a trivial way under the condition that the microstructural
constituents are modelled adequately.

e The different phases in the microstructure can be modelled with ar-
bitrary nonlinear and time-dependent constitutive models.

e The influence of the evolution of the microstructure (as described on
the micro-scale) can be assessed directly on the macro-scale.

e The micro scale problem is a classical boundary value problem, for
which any appropriate solution strategy can be used, e.g. Finite El-
ement Method (Smit et al., 1998; Feyel and Chaboche, 2000; Ter-
ada et al., 2000; Kouznetsova et al., 2001), the Voronoi cell method
(Ghosh et al., 1995, 1996), a crystal plasticity framework (Miehe
et al., 1999b,a) or numerical methods based on Fast Fourier Trans-
forms (Michel et al., 1999; Moulinec and Suquet, 1998). Galerkin,
etce.

e Macroscopic constitutive tangent operators can be obtained from the
microscopic overall stiffness tensor through static condensation. Con-
sistency is preserved through this scale transition.

In spite of the huge computational cost of a nested two-scale solution

problem, efficiency can be achieved by solving the problem through parallel
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computations (Feyel and Chaboche (2000); Kouznetsova (2002)). Another
option is selective usage, where non-critical regions are modelled by con-
tinuum closed-form homogenized constitutive relations or by the constitu-
tive tangents obtained from the microstructural analysis but kept constant
in the elastic domain, while in the critical regions the multi-scale analy-
sis of the microstructure is fully performed (Ghosh et al. (2001)). Despite
the required computational efforts the computational homogenization tech-
nique has proven to be a valuable tool to establish non-linear micro-macro
structure-property relations, especially in the cases where the complexity of
the mechanical and geometrical microstructural properties and the evolving
character prohibit the use of other homogenization methods.

Cartesian tensors and associated tensor products will be used throughout
this chapter, making use of a Cartesian vector basis {€, €3, €3}. Using the
Einstein summation rule for repeated indices, the following conventions are
used in the notations of well-known tensor products

—
—

C =ab = aibjé;-é'j

C = AB = A;;Bj1é @&,

C = 4A :B = Aijlelk eﬂ é}'
C

4p T4 -
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2 Underlying principles and assumptions

2.1 Scale separation

At the macro-scale, the material is considered as a homogeneous con-
tinuum, whereas at the micro level it is generally heterogeneous (the mor-
phology consists of distinguishable components or phases, i.e. inclusions,
grains, interfaces, cavities, etc.). This is schematically illustrated in figure 1.
The microscopic length scale is much larger than the molecular dimensions

é‘ll

Iy,

~

Figure 1. Macroscopic continuum point representation (M) in relation to
its underlying heterogeneous microstructure.
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Lyiscrete, SO that a continuum approach is justified for every constituent.
At the same time, in the context of the principle of separation of scales,
the microscopic length scale £,,;cr is assumed to be much smaller than the
characteristic length £,,,4¢r0 Over which the size of the macroscopic loading
varies in space, i.e.

ediscrete K Emicro K emacro (1)

Note that it is not the size of the macroscopic domain which is important,
but rather the spatial variation of the kinematic fields and stress fields within
that domain.

2.2 Local periodicity

Most of the homogenization approaches rely on the assumption of global
periodicity of the microstructure, implying that the whole macroscopic do-
main consists of spatially repeated unit cells. In a computational homoge-
nization approach, a more realistic assumption is made, which is commonly
denoted by local periodicity. According to this assumption, the microstruc-
ture can have different morphologies corresponding to different macroscopic
points, whereas it repeats itself only in a small vicinity of each individ-
ual macroscopic point. The concepts of local and global periodicity are
schematically illustrated in figure 2. The assumption of local periodicity
adopted in the computational homogenization allows to incorporate a non-
uniform distribution of the microstructure at the macroscopic level (e.g. in
functionally graded materials). Note that the local periodicity assumption
is directly linked to the principle of separation of scales.

(a) local periodicity (b) global periodicity

Figure 2. Local periodicity (a) versus global periodicity (b).
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2.3 Homogenization principles

The basic principles of computational homogenization have gradually
evolved from the concepts employed in other homogenization methods and
well fit into the four-step homogenization scheme established by Suquet
Suquet (1985):

1. definition of a microstructural representative volume element (RVE),
of which the constitutive behaviour of individual constituents is as-
sumed to be known;

2. formulation of the microscopic boundary conditions from the macro-
scopic input variables and their application on the RVE (macro-to-
micro transition);

3. calculation of the macroscopic output variables from the analysis of
the deformed microstructural RVE (micro-to-macro transition);

4. obtaining the (numerical) relation between the macroscopic input and
output variables.

The main ideas of the first-order computational homogenization have been
established in Suquet (1985); Guedes and Kikuchi. (1990); Terada and
Kikuchi (1995); Ghosh et al. (1995, 1996) and further developed and im-
proved in more recent works Smit et al. (1998); Miehe et al. (1999b); Miehe
and Koch (2002); Michel et al. (1999); Feyel and Chaboche (2000); Ter-
ada and Kikuchi (2001); Ghosh et al. (2001); Kouznetsova et al. (2001);
Kouznetsova (2002).

2.4 Computational homogenization scheme

A computational homogenization generally departs from the computa-
tion of a macroscopic deformation (gradient) tensor Fyy, which is calculated
for every material point of the macrostructure (e.g. the integration points
within a macroscopic finite element domain). Here and in the following
the subscript “M” refers to a macroscopic quantity, while the subscript
“m” will denote a microscopic quantity. The deformation tensor Fy; for a
macroscopic point is next used to formulate the boundary conditions to be
imposed on the RVE that is assigned to this point. Upon the solution of
the boundary value problem for the RVE, the macroscopic stress tensor Py
is obtained by averaging the resulting RVE stress field over the volume of
the RVE. As a result, the (numerical) stress-deformation relationship at the
macroscopic point is readily available. Additionally, the local macroscopic
consistent tangent is extracted from the microstructural stiffness. The entire
framework is schematically illustrated in figure 3. The computational ho-
mogenization technique defined in this sense, is entirely consistent with the
principle of local action in continuum mechanics. Therefore, the response at
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Figure 3. Computational homogenization scheme.

a (macroscopic) material point depends only on the first gradient of the dis-
placement field. This macroscopically local computational homogenization
framework may therefore be categorized as a “first-order” approach.

2.5 Kinematically driven multi-scale scheme

The multi-scale procedure outlined in this chapter is “deformation driven”.
The point of departure is thereby the macroscopic deformation gradient
tensor Fy;, which is used to determine the stress Py and the constitu-
tive tangent, based on the response of the underlying microstructure. A
“stress driven” procedure (given a local macroscopic stress, obtain the de-
formation) is also possible. However, such a procedure does not directly
fit into a standard displacement-based finite element framework, which will
be here employed to solve the macroscopic boundary value problem. More-
over, in case of large deformations the macroscopic rotational effects have
to be added to the stress tensor in order to uniquely determine the defor-
mation gradient tensor, thus complicating the implementation. Therefore,
the “stress driven” approach, which is often used in the analysis of single
unit cells, is generally not adopted in coupled multi-scale computational
homogenization strategies of the type described here.

3 The micro-scale problem

3.1 The representative volume element

The physical and geometrical properties of the microstructure are iden-
tified by a representative volume element (RVE) (Hill, 1963; Drugan and
Willis, 1996). An example of a typical two-dimensional RVE is depicted in
figure 4. The actual choice of the RVE is a rather delicate task. The RVE
should be large enough to represent the microstructure, without introducing
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non-existing properties (e.g. undesired anisotropy) and at the same time it
should be small enough to allow efficient computational modelling. Some
issues related to the concept of a representative cell are discussed furtheron,
in section 7. Here it is supposed that an appropriate RVE has been al-
ready selected. Then the problem on the RVE level can be formulated as a
standard problem in quasi-static continuum solid mechanics.

Figure 4. Schematic picture of a typical two-dimensional representative
volume element (RVE).

3.2 Micro-scale characterization & equilibrium

The RVE deformation field in a point with the initial position vector X
(in the reference domain V;)) and the actual position vector Z (in the current
domain V') is described by the microstructural deformation gradient tensor
Fm = (ﬁo,mf)c, where the gradient operator 6O,rn is taken with respect
to the reference microstructural configuration; the superscript “c” indicates
conjugation.

The RVE is in a state of equilibrium. This is mathematically expressed
through the standard equilibrium equation in terms of the Cauchy stress
tensor o, or, alternatively, in terms of the first Piola-Kirchhoff stress tensor
P, = det(Fy)om-(FS) ™! according to (in the absence of body forces)

-

ViOm=0 in V, or ﬁQm-PC =0 in V, (2)

m

where V, is the the gradient operator with respect to the current configu-
ration at the micro-scale.

The mechanical characterization of the microstructural components are
described by their constitutive laws, specifying a time and history dependent
stress-deformation relationship for every microstructural constituent

oD (t) = FOUF (1), 7€ (0,4}, or PO (t) = FHFD (r), 7€ (0,4},
(3)
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where ¢ denotes the current time; o = 1, N, with N the number of mi-
crostructural constituents to be distinguished (e.g. matrix, inclusions, etc.).
Note that the knowledge of the separate constitutive laws for each of the
individual phases is essential.

3.3 The macro-micro scale transition

The macro-micro scale transition requires a method to impose the macro-
scopic deformation gradient tensor Fy; or stress tensor Pp; on the mi-
crostructural RVE. Classical simplified methods to do this are:

e by imposing that all the microstructural constituents undergo a con-
stant deformation identical to the macroscopic one (the Taylor or
Voigt assumption).

e by imposing an identical constant stress (and additionally identical
rotation) to all the components (the Sachs or Reuss) assumption).

e by intermediate procedures, where the Taylor and Sachs assumptions
are applied only to certain components of the deformation and stress
tensors.

These simplified procedures do not satisfy all local static equilibrium and
compatibility conditions and generally provide only rough estimates of the
overall material properties. They are therefore not well-suited in complex
non-linear deformation regimes. The Taylor assumption usually overesti-
mates the overall stiffness, while the Sachs assumption leads to an under-
estimation of the stiffness. A computational homogenization scheme does
enforce local equilibrium and compatibility between phases, and therefore
necessitates a different macro-micro scale transition method.

The first-order scheme naturally departs from the classical linearization
of the macroscopic nonlinear deformation map, ¥ = (b(X ), applied to a finite
material vector AZ in the deformed state:

A7 = Fy\pAX + 0 (AX2> , (4)

with # and X associated position vectors in the deformed and reference
state, respectively, and in which Fy; = (607M£’)T is the macroscopic defor-
mation gradient tensor. Considering an undeformed volume Vj of material
with its centre positioned at XC, permits to write the deformed position
of any point of this volume (with respect to the centre of that volume) as
the sum of a macroscopic (or coarse scale) and a microscopic (or fine scale)
contribution: L

T—7T, = Fy (X — X,) + @ (5)
The fine scale contribution is here represented by the microfluctuation field
w. The vector X, is the actual position of the reference RVE center X..



336 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

Obviously, rigid body displacements have to be eliminated to uniquely de-
termine Z. An arbitrary boundary point may be fixed to this purpose, e.g.
for a point with label 1 (see figure 4) by imposing #; = X,. Substituting
this in (5) leads to

T =+ Fu(X — Xe) + (@ — ) (6)

where ; is the microfluctuation in point 1 and where vector ¢is determined
from X7, being independent of the fine scale field

7= X, —Fy (X - X)) (7)

The deformed position Z. of the reference centre X, is then (using the trivial
relation W, = 6) given by
Z. = C—h (8)
Note that this deformed position is unknown and implicitly depends on
the fine scale field. The scale transition between the kinematics at the fine
and the coarse scale typically involves the volume average F, of the fine
scale deformations tensors, i.e.

_ 1
F. = F..d
" / Vo ()
Vo

This volume integral can be rewritten to the boundary I'g of the RVE by
making use of the divergence theorem

_ 1 1 . 2\ ¢
Fm VO/Fdeb = VO/(VO,m(I‘r)) dVE)

Vo VO
1 = . c
B vo/(N'(Ix)) o (10)
o
1 -
= N dl’
Vo /m 0
o

where I represents the second-order unit tensor, I'g the external boundary of
the undeformed RVE Vj and N the outward unit normal on that boundary.

Computing the fine scale deformation gradient tensor Fy, by taking the
fine scale spatial gradient of the position vector given in equation (6) results
in

Frn = (60,mf)c = FM + (607111@3 - U_jl))c = FM + (60,Illw)c (11)
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Alternatively, making use of the micro-fluctuation field, F,, can be expanded
to

_ 1 - X 1 = e
FIn — FM + /[Vom ('LU — U_jl)](’d‘/o = FM + /[VO,Inw]Cd‘/O
Vo v Vo v
1 L (12)
= Fu+ /(’LU — wl)NdFO = Fu+ /’LUNdFO
FO FO
Fo FO

In the case where Fy is known and displacements at the RVE boundary
are to be prescribed are constrained, use is made of a scale transition relation
that enforces the macroscopic deformation gradient Fy to equal the volume
average of its microscopic counterparts Fm,

Fuv = Fu (13)

Enforcing the scale transition relation (13) clearly leads to a constraint in
the form of a boundary integral

/(w—wl)ﬁdro =0 = /wﬁdro (14)
Fg FO

The boundary integral (14) is the necessary condition that enforces the aver-
aging theorem (13), which will be used in the scale transition, see also (Miehe
et al., 2002). Stronger conditions are obtained by making specific choices
for w that enforce this boundary integral to vanish. A few possible choices
for these boundary conditions are discussed further on.

The following remarks can be made with respect to the macro-micro

scale transition:

e Irom equation (6) and (14) it appears that the microfluctuation field
only enters the kinematics relative to w in point 1, i.e. through w—;.
Taking the microfluctuation field in this point w; equal to zero will not
influence the obtained solution, since the averaging theorem remains
valid. The only difference resides in the resulting vector Z., which is
entirely determined from the coarse scale, i.e. Z, = ¢see equation (8).
Clearly, . no longer represents the deformed position of the original
RVE centre )ZC, since it is translated with respect to this position. The
choice w; = 0 is often made in practical implementations of the first-
order homogenization scheme, since it leads to the correct solution in
a practical way.

e For the first-order case, any base point could have been taken to ex-
pand Z according to (4) into the RVE, leading to the same solution as
the specific choice made here (the RVE center X.).
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e Logically, the solution does not depend on the point that was fixed at
the boundary. A point inside the volume V[ can be taken as well to
eliminate rigid body displacements in (6). Again the deformed shape
of the RVE and the stress state extracted from it, remain the same.

3.4 Micro-scale RVE boundary conditions

As emphasized in the previous section, possible RVE boundary condi-
tions naturally result from the constraint (14) imposed by the scale transi-
tion. Among the various choices possible, only three particular cases will be
considered hereafter in more detail. Note that the Taylor assumption triv-
ially satisfies (14) since the microfluctuation field is then zero in the entire
volume Vj and hence also at its boundary I'y.

Displacement boundary conditions The first case considered is de-
fined by constraining each point at the RVE boundary through the macro-
scopic deformation by

f=Fy-X with X on I\, (15)

This simply implies that the micro-fluctuation field  is zero at the bound-
ary [, which trivially satisfies (14). The position of all points at the bound-
ary are determined through the macroscopic deformation only, leading to a
linear mapping of the RVE boundary. The boundary will therefore repro-
duce typical stretch (tension/compression) and shear modes only.

Traction boundary conditions This case departs from the assumption
that Py is to be prescribed to the RVE. The boundary conditions are then
defined by constraining all tractions at the RVE boundary to the macro-
scopic stress tensor by

t=moym on T, or ﬁzN'Pﬁ/I on I, (16)

with 7 the normal to the current (I') RVE boundary. Note that the trac-
tion boundary conditions (16) do not completely define the microstructural
boundary value problem, since rotations are yet undetermined. As em-
phasized earlier, these boundary conditions are a priori not appropriate in
a deformation driven procedure as pursued in the present computational
homogenization scheme. The interested reader is referred to the work of
Miehe (2002, 2003), where it is shown that the traction boundary condition
is the weakest condition to enforce (14). From a practical point of view,
these boundary conditions generally yield unsatisfactory results. Therefore,
the RVE traction boundary conditions will not be explored further in this
chapter.
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Periodic boundary conditions Making use of the earlier introduced
concept of local periodicity, periodic boundary conditions are next intro-
duced. The periodicity conditions for the microstructural RVE are written
in a general format as

Pt -1 =Fy (Xt - X"), (17)
or formulated in terms of the micro-fluctuation fields
W =W (18)

Deformations are periodic since micro-fluctuations on opposite sides are
identical. Here the (opposite) parts of the RVE boundary I'y and F(T are
defined such that N~ = —N* at corresponding points on I'; and F(J{, see
figure 4. The periodicity condition (17), being prescribed on an initially
periodic RVE, preserves the periodicity of the RVE in the deformed state.

The periodic boundary conditions (17) clearly satisfy the constraint (14).
This is easily observed by splitting the RVE boundary into the parts I‘(J)r
and I'y

/ WNdly = / @t NtArg + / @ N—dl'y

To ry Iy
- /w+1\7+dr0+ - /w+1\7+drg (19)
ry ry
=0

Note that as a result of microstructural equilibrium, tractions will be
anti-periodic on opposite sides:

pt=-p, (20)
Note that, as has been observed by several authors (e.g. van der Sluis et al.
(2000); Terada et al. (2000)), periodic boundary conditions provide a better
estimation of the overall properties, than the prescribed displacement or
prescribed traction boundary conditions.

4 The macro-scale problem

4.1 The micro-macro scale transition

Once the micro-scale problem has been solved, macroscopic quantities
have to be extracted from the obtained results. Whereas deformation aver-
aging was the key assumption for the macro-micro transition, energy aver-
aging constitutes the key assumption for the reverse transition. This energy
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averaging theorem, known in the literature as the Hill-Mandel condition or
macro-homogeneity condition Hill (1963); Suquet (1985), requires that the
macroscopic volume average of the variation of work performed on the RVE
is equal to the local variation of the work on the macro-scale, i.e.

Wonr = 0Wor, (21)

Formulated in terms of a work conjugated set, i.e. the deformation gradient
tensor and the first Piola-Kirchhoff stress tensor, the Hill-Mandel condition
reads

1
Py : 0FS, = / P, : 6F,dV; (22)
N~~~ 7 Vo
SWonm N Vo _
~
6W0m

The averaged microstructural work in the right-hand side of (22) may
be expressed in terms of RVE boundary quantities

1 1
Woy = P, : 0F¢ dVy = p-0x dly, 2
Om Vvo/ m“4Yo Vo /p T 0 ( 3)
Vo Ty

where the relation (with account for microstructural equilibrium)

Pt V0% = Vo, (Pg0%) — (Vo Py )07 = Vi, (P, -07),

m

and the divergence theorem have been used.

As will be shown next, an important result of postulating the Hill-Mandel
condition for an RVE with kinematic boundary conditions (fully prescribed
or periodically tied), is the fact that the macroscopic stress tensor Py equals
the volume average P, of the microscopic stress tensors. To this purpose,
it is convenient to establish the boundary relation for the mean RVE stress
P, ie.

P ! P.,dV
m — ‘/0 / m 0
Vo

1 = —
= Vo (P, X)dV,
b [ TP Xt
- (24)
= N-(P¢, X)dr
v [ N Ryary
To
1 o
= /ﬁXdFO

Vo
To
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Displacement boundary conditions In case of fully prescribed bound-
ary displacements (15), substitution of the variation of the boundary posi-
tion vectors 0% = 5FM-X into the expression for the averaged microwork
(23) with incorporation of (33) gives

1 - 1 - _
Wom = /ﬁ((SFMX) dl'y = /ﬁX dly | : 0Fg; = Py, @ 6FY
Vo Vo
To

o
(25)
Enforcing the Hill-Mandel condition (22) thus implies that
Py = Py, (26)

Traction boundary conditions Substitution of the traction boundary
condition (16) into (23), with account for the variation of the average of the
microscopic deformation gradient tensor obtained by varying relation (9),
leads to

1 = 1 = =
Vo Vo
To

o
(27)
In this case, the Hill-Mandel condition (22) enforces the resulting macro-
scopic deformation gradient to be taken as the volume average of the mi-
croscopic deformation gradients, i.e..

This implies that the traction boundary conditions, complemented by the
Hill-Mandel conditions, constitute the weakest kinematic constraint for the
boundary displacements, i.e. equation (14). Computing the volume average



342 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

of the micro-scale RVE stresses from equation (24) now yields

_ 1 .
P, = 5 X AT
Vo/p 0
To
_ ! /(NPC))?dF
= e 0
To

1 oo
= Pwu- NXdI’
M ‘/E)/ 0
To

1

:P-
w |y

VoI]

:PM

Again, the macroscopic stress equals the volume average of the microscopic
stress, but this time this conclusion does not result from the Hill-Mandel
condition.

Periodic boundary conditions For the periodic boundary conditions
(17) and the resulting anti-periodic tractions (20)

Wom = ‘i {/75”“-6:5”“ dl“0+/]5’_-5f_ dFO}
0

e Iy
1
= /ﬁ*-(df*—éf’)dl“ar
Vo
Iy
1 -
= VO/ﬁ*(X+ XT)drf| : 0F§ = V/ﬁXdFO OF§,
ry To
:széFf\/I
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4.2 Macroscopic stress tensors

Since the scale transition implies stress averaging for all considered bound-
ary conditions, the macroscopic stress tensor is given by

1
Py = P..dV; 32
M Vo/ ’ (32)
Vo
= 1/*Xdr (33)
= Vo p 0
To

The volume average of the microscopic Cauchy stress tensor o, over the
current RVE volume V' can be elaborated similarly to (33)

1 1 -
al*vlzv/ade:V/tde‘. (34)
% r

Just as it is the case for kinematic quantities, the usual pull-back push-
forward relations between stress measures (e.g. the Cauchy and the first
Piola-Kirchhoff stress tensors) are, in general, not valid for the volume av-
erages of the microstructural counterparts oy; # Pa-F§;/ det(Fa). If the
averaging is based on Py, the Cauchy stress tensor on the macrolevel should
be defined as

1

= det(Fy) M T (35)

oM

Clearly, there is some arbitrariness in the choice of the governing de-
formation and stress tensors, whose macroscopic measures are equal to the
volume average of their microscopic counterparts (through the imposed scale
transition relations). Macroscopic measures defined on another configura-
tion are then expressed in terms of the governing averaged quantities using
the standard pull-back push-forward relations. The specific selection made
here is mainly based on its ease of implementation. The actual choice of
the “primary” averaging measures used here, i.e. the deformation gradient
tensor F' and the first Piola-Kirchhoff stress tensor P (and their rates), has
been advocated in Miehe et al. (1999b); Hill (1984); Nemat-Nasser (1999)
(in the last two references the nominal stress Sy = det(F)F~ 1.0 = P¢ has
been used). This particular choice is motivated by the fact that these two
measures are work conjugated, combined with the observation that their
volume averages can exclusively be defined in terms of the microstructural
quantities of the undeformed RVE boundary.
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5 Two-scale numerical solution strategy

Once the boundary conditions have been properly defined through one of
the methods outline above and once all phases in the microstructure have
been characterized, a standard boundary value problem (BVP) has been
obtained. The solution of this BVP follows standard procedures. In the
present computational homogenization method, it will be assumed that the
finite element method has been used to this purpose. The solution of this
BVP problem automatically leads to the proper determination of all position
vectors in the RVE and all tractions along its boundary. The analysis is
further restricted to kinematic RVE boundary conditions only.

5.1 RVE boundary value problem

The RVE problem to be solved is a standard non-linear quasi-static
boundary value problem with kinematic boundary conditions. Following
the standard finite element procedure for the microlevel RVE, after dis-
cretization, the weak form of equilibrium (2) with account for the constitu-
tive relations (3) leads to a system of non-linear algebraic equations in the
unknown nodal displacements u

fint(y):fewt» (36)

expressing the balance of internal and external nodal forces. This system
has to be completed by the governing boundary conditions. To this purpose,
the earlier introduced kinematic boundary conditions (15) or (17) will be
elaborated in more detail.

Fully prescribed boundary displacements In the case of the fully
prescribed displacement boundary conditions (15), the displacements of all
nodes on the boundary is simply given by

iy, = (Fy —1)-X,, p=1,N, (37)

where N, is the number of prescribed nodes, which in this case simply equals
to the number of boundary nodes. The boundary conditions (37) are simply
added to the system (36) in a standard manner by static condensation,
Lagrange multipliers or penalty functions.

Periodic boundary conditions Prior to the incorporation of the peri-
odic boundary conditions (17), they have to be rewritten into a format that
is more suitable for a finite element framework. Consider a two-dimensional
periodic RVE schematically depicted in figure 4. The boundary of this RVE
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can be split into four parts, here denoted as “T” top, “B” bottom, “R”
right and “L” left. To ease application of the periodicity constraint, a finite
element discretization is next considered which has a periodic distribution
of nodes on opposite edges. Exploiting the initial periodicity of the RVE
(in its reference configuration) allows to write for every respective pair of
nodes on the top-bottom and right-left boundaries:

X1 — Xp=X4— Xy,
Xp— XL = X5 — Xy, (38)
where )?p, p = 1,2,4 are the position vectors of the corner nodes 1, 2 and

4 in the undeformed state. Considering pairs of periodic nodes on opposite
boundaries, allows to express (17) as

i — g = Fy (X4 — X)),
iR — 7L = Fu-(Xo — X1). (39)

Applying these relations to the four corner nodes, permits to conclude that
the position vectors of the corner nodes in the deformed state are in fact
prescribed according to

i, =Fu-X, p=124 (40)

The periodic boundary conditions may finally be rewritten as

R = T + Ty — 7. (41)

Since these conditions are trivially satisfied in the undeformed configuration,
they may be formulated in terms of displacements

Ut = up + Ug — Uz,
R = UL, + Ug — U1, (42)

1

whereby .
U, = (Fm —I)-X), p=1,2,4 (43)

In a discretized format the relations (42) lead to a set of homogeneous
constraints of the type
Cata =0, (44)

with C, a matrix containing coefficients in the constraint relations and u, a
column with the degrees of freedom involved in the constraints. Procedures
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for imposing constraints (44) include the direct elimination of the depen-
dent degrees of freedom from the system of equations, or the use of Lagrange
multipliers or penalty functions. In the following, constraints (44) are en-
forced by elimination of the dependent degrees of freedom. Although such
a procedure may be found in many textbooks on finite elements (e.g. Cook
et al. (1989)), it is here summarized for the sake of clarity and completeness,
since it will be applied in section 5.3 for the derivation of the macroscopic
tangent stiffness.

To this purpose, the homogeneous constraint relations (44) are parti-
tioned according to

Ui | _
ccl| B -0 (15)
where u; are the independent degrees of freedom (to be retained in the
system) and u, are the dependent degrees of freedom (to be eliminated
from the system). Because there are as many dependent degrees of freedom
uq as there are independent constraint equations in (45), matrix Cy is square

and non-singular. Solution for u, yields

ug = Cgiu,  with Cg = —C;'C;. (46)
This relation may be further rewritten as
Yl =y ith 7= ! (47)
wg |~ v | Cai |’

where I is a unit matrix of size [N; x N;|, with N; the number of the
independent degrees of freedom.

With the transformation matrix T defined such that d = T d', the
common transformations ' = T7r and K’ = TT KT can be applied to a
linear system of equations of the form K d = r, leading to a new system
K'd =1

The standard linearization of the non-linear system of equations (36)
leads to a linear system in the iterative corrections du to the current estimate
u. This system may be partitioned as

Kii Kiq ou; || ory
|:Kdi Kdd][éyd]_[(sfd]’ (48)
with the residual nodal forces at the right-hand side. Noting that all the
constraint equations considered above are linear, and thus their linearization

is straightforward, application of the transformation (47) to the system (48)
gives

[Kii + KiaCuai + C5 K g; + CL K 4aCai] 6u; = [o1; + Clidra) - (49)
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Note that the boundary conditions (43) prescribing displacements of the
corner nodes have not yet been applied. The column of “independent”
degrees of freedom u; includes the prescribed corner nodes u, among other
nodes. The boundary conditions (43) should be applied to the system (49)
is a standard manner.

The condition of antiperiodic tractions (20) will be addressed in sec-
tion 5.2.

5.2 Extraction of the macroscopic stress

After the analysis of a microstructural RVE is completed, the RVE av-
eraged stress have to be extracted. Of course, the macroscopic stress tensor
can be calculated by numerically evaluating the volume integral (32). How-
ever it is computationally more efficient to compute the boundary integral
(33), which can be further simplified for the case of the periodic boundary
conditions.

Fully prescribed boundary displacements For the case of prescribed
displacement boundary conditions the boundary integral (33) simply leads
to

1 <& » =
PM: VO ;prpv (50)

3

where f}; are the resulting external forces at the boundary nodes and X p the
position vectors of these nodes in the undeformed state; IV, is the number
of the nodes on the boundary.

Periodic boundary conditions In order to simplify the boundary inte-
gral (33) for the case of periodic boundary conditions, consider all the forces
acting on the RVE boundary subjected to the boundary conditions accord-
ing to (42)—(43). At the three prescribed corner nodes the resulting external
forces ﬁ‘j, p = 1,2,4 act. Additionally, there are forces involved in every
constraint (tying) relation (42). For example, for each constraint relation
between pairs of the nodes on the bottom-top boundaries there is a tying
force at the node on the bottom boundary pl, a tying force at the node
on the top boundary pf. and tying forces at the corner nodes 1 and 4, g s
and 72, respectively. Similarly there are forces p PR T 'Loand 7 EL cor-
responding to the left-right constraints. All these forces are schematically
shown in figure 5.
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Figure 5. Tractions acting on the boundary of a two-dimensional RVE
subjected to periodic boundary conditions.

Each constraint relation satisfies the condition of zero virtual work, i.e.
PR-0Tp + Ph-0Fr + Pi°-0F) + P08, = 0,
Py OT + ph-0FR + P07 + Pl = 0. (51)
Substitution of the variation of the constraints (41) into (51) gives
(P + Pr)-0ds + (B — Pip)-0%1 + (P + P3P)-0%s = 0,
(FL + PR)-OTL + (B — PR)-0T1 + (P + Pa")-0d2 = 0. (52)

These relations should hold for any 6Zg, 021, 021, 0&2, 74, therefore

Pp=—Pr =P =0,
PL=—Pr= D" =05 (53)

Equation (53) reflects the antiperiodicity of tying forces on the opposite
boundaries, which has been introduced previously in equation (20).

With account for all forces acting on the RVE boundary, the boundary
integral (33) is written as

]. - =2 - = - = = — N —
Pu= o (ffX1+f§X2+fffX4+ /pEXB dl'o + /p%XT dlo+
0
Fop Tor
/ piXL dlo + / FrXr dlo + ( / Fi dlo) X+

oL Tor Top

( / i Do) X, + ( / i dTo) K + ( / Y dl“o))_fg). (54)

Tor, Tom Tor
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Making use of the relation between tying forces (53) gives

1 - = N — —
Py= ( SRR+ /ptB(XB—XT) dTo+
0 \p=1,24 -
[P - Sy ara ([ 5 arg) %o ([ 7 dro) K
Top Fos Tor,
(/ 5 dlo) Xs + (/ piL dFO)X) (55)
0B Toy,

Inserting the conditions of the initial periodicity of the RVE (38) results in

1 o e o
Py= < > X+ /(pEerjtlB)Xl dlo + /(p£+p§L)X1 dlo+

p=1,2,4 Top Tow
/(ﬁZB — )Xy dlo + /(*tL — 1) X> dFO) (56)
Top Tor

which after substitution of the remaining relations between tying forces (53)

gives
> X (57)

0 =124

Therefore, when the periodic boundary conditions are used, all the terms
with forces involved into the periodicity constraints cancel out from the
boundary integral (33) and the only contribution left is by the external
forces at the three prescribed corner nodes.

5.3 Extraction of the macroscopic tangent operator

When the micro-macro approach is implemented within the framework of
a non-linear finite element code, the stiffness matrix at every macroscopic
integration point is required. Because in the computational homogeniza-
tion approach there is no explicit form of the constitutive behaviour on the
macrolevel assumed a priori, the stiffness matrix has to be determined nu-
merically from the relation between variations of the macroscopic stress and
variations of the macroscopic deformation at such a point. This may be real-
ized by numerical differentiation of the numerical macroscopic stress-strain
relation, for example using a forward difference approximation as has been
suggested in Miehe (1996). Another approach is to condense the microstruc-
tural stiffness to the local macroscopic stiffness. This is achieved by reducing
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the total RVE system of equations to the relation between the forces acting
on the RVE boundary and the associated boundary displacements. Such a
procedure in combination with the Lagrange multiplier method to impose
boundary constraints has been elaborated in Miehe and Koch (2002). Here
an alternative scheme, which employs the direct condensation of the con-
strained degrees of freedom, as has been presented in Kouznetsova et al.
(2001); Kouznetsova (2002) will be considered. After the condensed mi-
croscopic stiffness relating the prescribed displacement and force variations
is obtained, it needs to be transformed to arrive at an expression relating
variations of the macroscopic stress and deformation tensors, typically used
in the finite element codes. These two steps are elaborated in the following.

Condensation of the microscopic stiffness matrix:
fully prescribed boundary displacements First the total microstruc-
tural system of equations (in its linearized form) is partitioned as

K K 5yp - 6fp
e =) &

where du, and §f, are the columns with iterative displacements and ex-
ternal forces of the boundary nodes, respectively, and duy the column with
the iterative displacements of the remaining (interior) nodes; K ,p, Ky,
Ky, and K f; are the corresponding partitions of the total RVE stiffness
matrix. The stiffness matrix in the formulation (58) is taken at the end of a
microstructural increment, where a converged state is reached. Elimination
of duy from (58) leads to the reduced stiffness matrix Ky relating boundary
displacement variations to boundary force variations

KMéyp = 6fpv with Ku = Ky — Kpf(Kff)ilep. (59)

Condensation of the microscopic stiffness matrix:

periodic boundary conditions In the case of the periodic boundary
conditions the point of departure is the microscopic system of equations
(49) from which the dependent degrees of freedom have been eliminated (as
described in section 5.1)

K*du; = or*, (60)
with K" = Ky + KiaCai + Chi Kai + CiiKaaClai,
5% = 61y + L bra.

Next, system (60) is further split, similarly to (58), into the parts corre-
sponding to the variations of the prescribed degrees of freedom du, (which
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in this case are the varied positions of the three corner nodes prescribed ac-
cording to (43)), variations of the external forces at these prescribed nodes
denoted by ¢f5, and the remaining (free) displacement variations du;:

5 gl
o Kip ] L 0w 0

Then the reduced stiffness matrix K7}, in case of periodic boundary condi-
tions is obtained as

Kybup, =0f5,  with Ky =Ky, — K5 (K5) 7' Kf,. (62)
Note that K} is [6 x 6] matrix only (in the two-dimensional case).

Final macroscopic tangent Finally, the resulting relation between dis-
placement and force variations (relation (59) if prescribed displacement
boundary conditions are used, or relation (62) if periodicity conditions are
employed) needs to be transformed to arrive at an expression relating vari-
ations of the macroscopic stress and deformation tensors

Py = ICY; : OFg,, (63)

where the fourth order tensor 401}\)/[ represents the required consistent tangent
stiffness at the macroscopic integration point level.

In order to obtain this constitutive tangent from the reduced stiffness
matrix Ky (or K3;), first relations (59) and (62) are rewritten in a specific
vector /tensor format

> K\ -5ii ) = 6f1, (64)
J

where indices i and j take the values ¢, j = 1, N, for prescribed displacement
boundary conditions (NN, is the number of boundary nodes) and i,j = 1,2,4
for the periodic boundary conditions. In (64) the components of the tensors
Kl(\ﬁ[j ) are simply found in the tangent matrix Ky (for displacement bound-
ary conditions) or in the matrix K3, (for periodic boundary conditions) at
the rows and columns of the degrees of freedom in the nodes i and j. For
example, for the case of the periodic boundary conditions the total matrix
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K3 has the format

r 11 11) i 12 12) i 14 14) T 7
s s s B s
L K5 K, | L K3 K, ] L K3 K, |
[ (21) (21) T i (22) (22) i (24) (24) 1
K= | | oty oo || b || et i | |
L Ky Ky, | L Ky Ky ] L Ky Ky, |
41 41 42 42) ] 44 44
s s B s O
L | K5 Ky Ky K Ky Ky, |

(65)
where the superscripts in round brackets refer to the nodes and the sub-
scripts to the degrees of freedom at those nodes. Then each submatrix in
(65) may be considered as the representation of a second-order tensor K(” )

Next, the expression for the variation of the nodal forces (64) is substl—

tuted into the relation for the variation of the macroscopic stress following
from (50) or (57)

SPur = ZZ K7 -5ii ) X - (66)
Substitution of the equation §i ;) = X(j)-(SF]C\/I into (66) gives
1 L = .
= SN (XK X )k - 6FSy, (67)

where the superscript LC' denotes left conjugation, which for a fourth-order
tensor “T is defined as Tlgﬁ = Tjiry. Finally, by comparing (67) with (63)
the consistent constitutive tangent is identified as

1 L
Cu= SN (XK X))k (68)
)

If the macroscopic finite element scheme requires the constitutive tangent
relating the variation of the macroscopic Cauchy stress to the variation of
the macroscopic deformation gradient tensor according to

Som = ‘C§; : 0FY, (69)

this tangent may be obtained by varying the definition equation of the
macroscopic Cauchy stress tensor (35), followed by substitution of (50) (or
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(57)) and (67). This gives

) 1 g v —c c
Son = l: ZZ K( J) ))LC + v Zf(i)IX(i) —ouFy | : 0FYy

(70)
where the expression in square brackets is identified as the required tangent
stiffness tensor %C¢;. In the derivation of (70) it has been used that in
case of prescribed displacements of the RVE boundary (15) or of periodic
boundary conditions (17), the initial and current volumes of an RVE are
related according to Jy = det(Fy) = V/ V.

5.4 Nested solution strategy

Based on the above developments the actual implementation of the com-
putational homogenization strategy may be described by the following sub-
sequent steps.

The macroscopic structure to be analyzed is discretized by finite el-
ements. The external load is applied by an incremental procedure. In-
crements can be associated with discrete time steps. The solution of the
macroscopic non-linear system of equations is performed in a standard it-
erative manner. To each macroscopic integration point a discretized RVE
is assigned. The geometry of the RVE is based on the microstructural mor-
phology of the material under consideration.

For each macroscopic integration point the local macroscopic deforma-
tion gradient tensor Fy; is computed from the iterative macroscopic nodal
displacements (during the initialization step, zero deformation is assumed
throughout the macroscopic structure, i.e. Fy = I, which allows to obtain
the initial macroscopic constitutive tangent). The macroscopic deformation
gradient tensor is used to formulate the boundary conditions according to
(37) or (42)—(43) to be applied on the corresponding representative cell.

The solution of the RVE boundary value problem employing a fine scale
finite element procedure, provides the resulting stress and strain distribu-
tions in the microstructural cell. Using the resulting forces at the prescribed
nodes, the RVE averaged first Piola-Kirchhoff stress tensor Py is computed
according to (50) or (57) and returned to the macroscopic integration point
as a local macroscopic stress. From the global RVE stiffness matrix the
local macroscopic consistent tangent “CY; is obtained according to (68).

When the analysis of all microstructural RVEs is finished, the stress
tensor is available at every macroscopic integration point. Thus, the in-
ternal macroscopic forces can be calculated. If these forces are in balance
with the external load, incremental convergence has been achieved and the
next time increment can be evaluated. If there is no convergence, the pro-
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cedure is continued to achieve an updated estimation of the macroscopic
nodal displacements. The macroscopic stiffness matrix is assembled using
the constitutive tangents available at every macroscopic integration point
from the RVE analysis. The solution of the macroscopic system of equa-
tions leads to an updated estimation of the macroscopic displacement field.
The solution scheme is summarized in Table 1. It is remarked that the
two-level scheme outlined above can be used selectively depending on the
macroscopic deformation, e.g. in the elastic domain the macroscopic con-
stitutive tangents do not have to be updated at every macroscopic loading
step.

Table 1. Incremental-iterative nested multi-scale solution scheme for the
computational homogenization.

MACRO MICRO

1. Initialization
> initialize the macroscopic model
> assign an RVE to every integration

Foint . X .
> loop over all integration points

Initialization RVE analysis
set Fy =1 Fu

- > prescribe boundary conditions
> assemble the RVE stiffness
> calculate the tangent ‘C},
store the tangent M 8 M

> end integration point loop

2. Next increment
> apply increment of the macro load

3. Next iteration
> assemble the macroscopic tangent stiff-

ness
> solve the macroscopic system

> loop over all integration points RVE analysis

calculate Fyy Fu
prescribe boundary conditions

assemble the RVE stiffness
solve the RVE problem

v v Vv

calculate Pyt

]
2
v

store Py

calculate the tangent ‘Chy

v

store the tangent tangent
> end integration point loop
> assemble the macroscopic internal
forces
4. Check for convergence
> if not converged = step 3
> else = step 2
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6 Example: two-scale coupled analysis in bending

As an example, the computational homogenization approach is applied to
pure bending of a rectangular strip under plane strain conditions. Both
the length and the height of the sample equal 0.2 m, the thickness is taken
1m. The macromesh is composed of 5 quadrilateral 8 node plane strain
reduced integration elements. The undeformed and deformed geometries of
the macromesh are schematically depicted in figure 6. At the left side the
strip is fixed in axial (horizontal) direction, the displacement in transverse
(vertical) direction is left free. At the right side the rotation of the cross
section is prescribed. As pure bending is considered the behaviour of the
strip is uniform in axial direction and, therefore, a single layer of elements
on the macrolevel suffices to simulate the situation.

|
|

Figure 6. Schematic representation of the undeformed (a) and deformed
(b) configurations of the macroscopically bended specimen.

0 000 00000000,

In this example two heterogeneous microstructures consisting of a ho-
mogeneous matrix material with initially 12% and 30% volume fractions
of voids are studied. To generate a random distribution of cavities in the
matrix with a prescribed volume fraction, maximum diameter of holes and
minimum distance between two neighbouring holes, for a two-dimensional
RVE, the procedure from Hall (1991) and Smit (1998) has been adopted.
The microstructural cells used in the calculations are presented in figure 7.
It is worth mentioning that the absolute size of the microstructure is ir-
relevant for the first-order computational homogenization analysis (see also
discussion in section 8).

The matrix material behaviour has been described by a modified elasto-
visco-plastic Bodner-Partom model van der Aa et al. (2000). This choice is
motivated by the intention to demonstrate that the method is well-suited
for complex microstructural material behaviour, e.g. non-linear history and
strain rate dependent at large strains. The material parameters for annealed
aluminum AA 1050 determined in van der Aa et al. (2000) have been used;
elastic parameters: shear modulus G' = 2.6 x 10* MPa, bulk modulus K =
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Figure 7. Microstructural cells used in the calculations with 12% voids (a)
and 30% voids (b).

7.8 x 10* MPa and viscosity parameters: I'g = 108572, m = 13.8, n = 3.4,
Zy = 81.4 MPa, Z; = 170 MPa.

Micro-macro calculations for the heterogeneous structure, represented by
the RVEs shown in figure 7 have been carried out, simulating pure bending
at a prescribed moment rate equal to 5 x 10° Nms~!. Figure 8 shows the
distribution plots of the effective plastic strain for the case of the RVE with
12% volume fraction voids at an applied moment equal to 6.8 x10° Nm in the
deformed macrostructure and in three deformed, initially identical RVEs at
different locations in the macrostructure. Each hole acts as a plastic strain
concentrator and causes higher strains in the RVE than those occurring in
the homogenized macrostructure. In the present calculations the maximum
effective plastic strain in the macrostructure is about 25%, whereas at RVE
level this strain reaches 50%. It is obvious from the deformed geometry of
the holes in figure 8 that the RVE in the upper part of the bended strip is
subjected to tension and the RVE in the lower part to compression, while
the RVE in the vicinity of the neutral axis is loaded considerably milder than
the other RVEs. This confirms the conclusion that the method realistically
describes the deformation modes of the microstructure.

In figure 9 the moment-curvature (curvature defined for the bottom edge
of the specimen) diagram resulting from the computational homogeniza-
tion approach is presented. To give an impression of the influence of the
holes also the response of a homogeneous configuration (without cavities)
is shown. It can be concluded that even the presence of 12% voids induces
a reduction of the bending moment (at a certain curvature) of more than
25% in the plastic regime. This significant reduction in the bending moment
may be attributed to the formation of microstructural shear bands, which
are clearly observed in figure 8. This indicates that in order to capture such
an effect a detailed microstructural analysis is required. A straightforward
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Figure 8. Distribution of the effective plastic strain in the deformed
macrostructure and in three deformed RVEs, corresponding to different
points of the macrostructure.
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Figure 9. Moment-curvature diagram resulting from the first-order com-
putational homogenization analysis.

application of, for example, the rule of mixtures would lead to erroneous
results.
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7 The RVE in first-order computational
homogenization

7.1 General concept of an RVE

The computational homogenization approach, as well as most of other
homogenization techniques, are based on the concept of a representative vol-
ume element (RVE). An RVE is a model of a material microstructure to be
used to obtain the response of the corresponding homogenized macroscopic
continuum in a macroscopic material point. Thus, the proper choice of the
RVE largely determines the accuracy of the modelling of a heterogeneous
material.

There appear to be two significantly different ways to define a representa-
tive volume element Drugan and Willis (1996). The first definition requires
an RVE to be a statistically representative sample of the microstructure,
i.e. to include virtually a sampling of all possible microstructural configu-
rations that occur in the composite. Clearly, in the case of a non-regular
and non-uniform microstructure such a definition leads to a considerably
large RVE. Therefore, RVEs that rigorously satisfy this definition are rarely
used in actual homogenization analyses. This concept is usually employed
when a computer model of the microstructure is being constructed based on
experimentally obtained statistical information (see e.g. Shan and Gokhale
(2002)).

Another definition characterizes an RVE as the smallest microstructural
volume that sufficiently accurately represents the overall macroscopic prop-
erties of interest. This usually leads to much smaller RVE sizes than the
statistical definition described above. However, in this case the minimum
required RVE size also depends on the type of material behaviour (e.g. for
elastic behaviour usually much smaller RVEs suffice than for plastic be-
haviour), macroscopic loading path and difference of properties between
heterogeneities. Moreover, the minimum RVE size, that results in a good
approximation of the overall material properties, does not always lead to
adequate distributions of the microfields within the RVE. This may be im-
portant if, for example, microstructural damage initiation or evolving mi-
crostructures are of interest.

The latter definition of an RVE is closely related to the one established
by Hill Hill (1963), who argued that an RVE is well-defined if it reflects the
material microstructure and if the responses under uniform displacement
and traction boundary conditions coincide. If a microstructural cell does
not contain sufficient microstructural information, its overall responses un-
der uniform displacement and traction boundary conditions will differ. The
homogenized properties determined in this way are called “apparent”, a no-
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tion introduced by Huet Huet (1990). The apparent properties obtained by
application of uniform displacement boundary conditions on a microstruc-
tural cell usually overestimate the real effective properties, while the uniform
traction boundary conditions lead to underestimation. As has been verified
by a number of authors van der Sluis et al. (2000); Terada et al. (2000), for
a given microstructural cell size, the periodic boundary conditions provide
a better estimation of the overall properties, than the uniform displacement
and uniform traction boundary conditions. This conclusion also holds if
the microstructure does not really possess geometrical periodicity Terada
et al. (2000). Increasing the size of the microstructural cell leads to a bet-
ter estimation of the overall properties, and, finally, to a “convergence” of
the results obtained with the different boundary conditions to the real ef-
fective properties of the composite material, as schematically illustrated in
figure 10. The convergence of the apparent properties towards the effective
ones at increasing size of the microstructural cell has been investigated in
Huet (1990, 1999); Ostoja-Starzewski (1998, 1999); Pecullan et al. (1999);
Terada et al. (2000).

apparent property

microstructural cell size
(a) (b)
Figure 10. (a) Several microstructural cells of different sizes. (b) Con-

vergence of the apparent properties to the effective values with increasing
microstructural cell size for different types of boundary conditions.

7.2 Unit cells versus RVEs

In practice, instead of a representative volume element, a unit cell is often
used as a microstructural model, since it requires substantially less compu-
tational effort. This section examines the possible error, which is made in
the obtained overall response of a multi-phase material, if the analysis is
performed on a unit cell instead of an RVE.

As the simplest unit cell, a piece (for example a square or cube) of the
matrix material containing a single heterogeneity (e.g. inclusion or void)
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could be suggested. The use of such a unit cell implicitly assumes a reg-
ular arrangement of the heterogeneities in the matrix, which contradicts
the observations that almost all materials have a non-periodic or even spa-
tially random microstructural composition. Examples are precipitates in
metal alloys arranged randomly by their nature and artificial fiber rein-
forced composites, possessing a non-regular distribution of the fibers due to
the production process. At the same time, several experimental evidences
exist showing that the spatial variability in the microstructure significantly
influences the overall behaviour and particularly the fracture characteristics
of composites, as reported in Mackay (1990); Barsoum et al. (1992).

Different authors, e.g. Brockenbrough et al. (1991); Nakamura and
Suresh (1993); Ghosh et al. (1996); Moulinec and Suquet (1998), have per-
formed a comparison of the overall composite responses resulting from the
modelling of regular and random structures. They have found a significant
response difference in the plastic regime, while there is almost no deviation
in elastic regime. Also it has been shown Smit et al. (1999), that softening
behaviour of a regularly composed structure may change to hardening in
the case of a random composition. Most of these considerations, except for
the latter, have been performed for small deformations, very simple elasto-
plastic behaviour and relatively stiff inclusions (fibers). In this section the
overall behaviour of regular and random structures is compared at large
deformations, non-linear history dependent material behaviour, for voided
material (an appropriate approximation for material with soft inclusions).
Apart from the calculations on the microstructural cell (tensile configura-
tion), also a full multi-scale analysis (pure bending) of both regular and
random structures is presented.

A material with a 12% volume fraction of voids is considered. The
regularly stacked structure is modelled by a square unit cell containing a
single hole (figure 11a). For the modelling of a random structure 10 different
unit cells with non-regular arrangements of voids with a distribution of void
sizes have been generated (figure 11b). The averaged behaviour of these 10
unit cells is expected to be representative for the real random structure with
a given volume fraction of heterogeneities. Using several small non-regular
unit cells instead of one larger RVE also allows to estimate the amount of
deviation of the apparent properties obtained by the unit cell modelling,
from the effective values for different types of material models and loading
histories.

In the subsequent sections a comparison is performed for three differ-
ent constitutive models of the matrix material: hyper-elastic, elasto-visco-
plastic with hardening and elasto-visco-plastic with intrinsic softening. First
uniaxial extension (under plane strain conditions) of a macroscopic sample
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(b)

Figure 11. Unit cell with one hole (a), representing a regular structure,
and 10 randomly composed unit cells (b).

is considered. Because in this case the macroscopic deformation field is ho-
mogeneous a full micro-macro modelling is not necessary and an analysis of
an isolated unit cell with adequate boundary conditions (periodic) suffices.
In the last section the results of a micro-macro simulation of bending using
random and regular microstructures are compared.

Elastic behaviour, tension First, a comparison of the overall behaviour
of regular and random structures is carried out for the case of hyper-
elastic behaviour of the matrix material, modelled as a compressible Neo-
Hookean material. The material parameters used in the calculations are
K = 2667 MPa, G = 889 MPa.

Figure 12 shows the stress-strain curves for the unit cells with regu-
lar and random void stacking. For small deformations there is almost no
difference in the responses originating from the regular and random void
distributions. This result is in agreement with the experiences reported in
the literature for small deformations, see, e.g. Brockenbrough et al. (1991);
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Nakamura and Suresh (1993); Moulinec and Suquet (1998). For large de-
formations the stiffer behaviour of the regular structure becomes a little bit
more pronounced, however, the deviations remain small. The difference be-
tween the response of the regular structure and the response averaged over
the random unit cells does not exceed 2%. This small deviation is explained
by figure 13, presenting the distribution of the equivalent von Mises stress
in the regular unit cell and in a random unit cell for 20% macroscopic strain.
The stress field around any hole of the random structure is almost the same
as around the hole of the regular structure, which indicates little interac-
tion between voids. If only the averaged elastic constants are of interest, it
is concluded that calculations performed on the simplest regular unit cell
usually provide an answer within an acceptable tolerance.

40

Axial stress, MP:
a
g

—— unit cell with one hole
501 random void stack
--- averaged for random void stack

10 15 20
Linear axial strain, %

Figure 12. Tensile stress-strain responses (unit cell averages) of the regular
and random structures in a voided hyper-elastic matrix material.

Figure 13. Distribution of the equivalent von Mises stress (MPa) in the
deformed regular (a) and random (b) structures in a voided hyper-elastic
matrix material.



Computational Homogenization 363

Elasto-visco-plastic behaviour with hardening, tension The influ-
ence of the randomness of the microstructure on the macroscopic response
becomes more significant when plastic yielding of one or more constituents
occurs. This section investigates the responses of the regular and random
unit cells under tensile loading when the matrix material exhibits elasto-
visco-plastic behaviour with hardening. The constitutive description is
given by the Bodner-Partom model van der Aa et al. (2000). The ma-
terial parameters are the same as those used in section 6. The unit cells are
subjected to uniaxial tension at a constant strain rate of 0.5s7 .

In figure 14 the stress-strain curves are presented. In this case the differ-
ence between the overall response of the regular structure and the averaged
response of the random structures reaches 10%. The rather large scattering
in the responses of different random cells is due to the small number of voids
included. As has been demonstrated in Smit (1998), the scattering is signif-
icantly reduced if microstructural cells contain more heterogeneities. The
averaged response is, however, hardly affected, provided that a sufficient
number of random realizations has been considered.

Axial stress, MPa

20 —— unit cell with one hole
random void stack
10 ---  averaged for random void stack

5 10
Linear axial strain, %

Figure 14. Tensile stress-strain responses (unit cell averages) of the regu-
lar and random structures for an elasto-visco-plastic matrix material with
hardening.

The fundamental mechanism that governs the difference between the
response of the regular structure and the averaged response of the random
structures is illustrated in figure 15, where the distribution of the effective
plastic strain in the deformed regular and random unit cells at 15% applied
macroscopic strain is presented. In the regular unit cell the ligaments yield
simultaneously rather than sequentially with increasing macroscopic strain,
which is the case for the random unit cell. As a result, at the same value of
the macroscopic strain the regular unit cell is deformed relatively smoothly,
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while some ligaments in the random unit cell have already accumulated a
significant amount of plastic strain. Consequently, the regular unit cell (in
fact a structure with a periodic stacking of heterogeneities) has a larger
overall stiffness than a random configuration.

-
(@) (b)
B
0 20 40 60 80 100

Figure 15. Distribution of the effective plastic strain in the deformed regu-
lar (a) and random (b) structures for an elasto-visco-plastic matrix material
with hardening.

Elasto-visco-plastic behaviour with softening, tension The differ-
ence in yielding mechanisms for regular and random microstructures out-
lined in the previous section causes not only a quantitative deviation in
the responses of these structures (as illustrated by figure 14), but in some
cases also the qualitative character changes, as has been shown in Smit
et al. (1999). For example, such a phenomenon can be observed when the
matrix material is described by a generalized compressible Leonov model
with intrinsic softening and subsequent hardening. The model is designed
for the plastic deformation of polymers and incorporates a stress dependent
Eyring viscosity extended by pressure dependence and intrinsic softening
effects. Details of this model can be found in Baaijens (1991); Tervoort
(1996); Govaert et al. (2000).

The resulting stress-strain curves for uniaxial tension of polycarbonate
at a constant strain rate of 0.01s™! are given in figure 16. The overall
behaviour of the regular structure in the plastic regime exhibits some initial
softening followed by hardening. The response of the regular structure is, in
fact, similar to the response of one single ligament, that softens according
to the intrinsic material behaviour. A completely different response can
be observed for the random configurations. Although some of the random
unit cells also demonstrate some softening behaviour, originating from the
relatively simple composition of the unit cells used in the calculations, the
average response of the random unit cells does not show any softening but
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exhibits continuous hardening. This is caused by the sequential appearance
of elastic, softening and hardening zones within the random microstructure.

Axial stress, MPa

10 —— unit cell with one hole
random void stack
---  averaged for random void stack

5 10
Linear axial strain, %

Figure 16. Tensile stress-strain responses (RVE averages) of the regular
and random structures for an elasto-visco-plastic matrix material with in-
trinsic softening and subsequent hardening.

This example illustrates that the overall response of heterogeneous ma-
terials, when detersi3joda!mined from a modelling by a regular structure,
should be interpreted with great care, particularly in the case of complex
material behaviour (e.g. in case of softening followed by hardening or vice
versa).

Elasto-visco-plastic behaviour with hardening, bending The com-
parison of the overall behaviour of the regular and random microstructures
performed above has been based on the averaged behaviour of a single unit
cell subjected to a particular loading history (uniaxial tension). The ques-
tion remains how the randomness of the microstructure does influence the
overall behaviour when a macroscopic sample is deformed heterogeneously,
so that potentially every material point of the sample is subjected to a dif-
ferent loading history. In order to investigate this item the computational
homogenization approach is a helpful tool.

As an example the influence of the spatial composition of the microstruc-
ture on the overall moment-curvature response of the voided material un-
der pure bending is studied. The behaviour of the matrix material is de-
scribed by the Bodner-Partom elasto-visco-plastic model with hardening.
The macrogeometry and the material parameters are the same as these
used in section 6.

Figure 17 shows the moment-curvature diagram resulting from the full
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micro-macro analysis of pure bending of the material using the regular and
the random microstructures. Again, the regular structure exhibits a stiffer
response than the averaged random result, while the maximum deviation
is only about 5%, which is considerably less than for the tensile test with
the same material behaviour (figure 14). This smaller deviation originates
from the fact that in case of bending all the unit cells assigned to the various
macroscopic points over the height of the bended strip are loaded differently,
see figure 8. The unit cell at the top of the bended strip experiences tension,
so that the observations dealt with in the previous examples apply. At the
same time, there are also unit cells that are stretched less or still are in
elastic regime, like for example the one in the vicinity of the neutral line, so
that in average for the whole bending process the influence of randomness
can be expected to be smaller than for uniaxial extension.

Moment, N m
e

(%)

—— unit cell with one hole
1 random void stack 1
---  averaged for random void stack

0.4 0.6 0.‘8 1
Curvature,1/m
Figure 17. Moment-curvature responses of the regular and random struc-
tures for an elasto-visco-plastic matrix material with hardening.

8 Second-order computational homogenization

In spite of the attractive characteristics listed above, there are a few impor-
tant limitations of the first-order framework, which can be summarized as
follows
e The principle of separation of scales must be respected. Hence, the
characteristic length that characterizes the spatial variations of the
macroscopic loading must be very large with respect to the size of the
microstructure. As a consequence, only simple first-order deformation
modes (tension, compression, shear or combinations thereof) of the
microstructure can be retrieved. The case shown in figure 8, which is
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a typical bending mode, which from a physical point of view should
appear for small, but finite, microstructural cells, cannot be found.

e The framework is completely insensitive to the absolute size of the mi-
crostructural constituents (scale independent). Size effects emanating
from the absolute size at the micro scale cannot be dealt with properly.

e Macroscopic gradients must remain very small with respect to the
micro scale. Localization problems, where non-uniform macroscopic
deformations arise, cannot be solved properly.

Whenever strong gradients appear at the macro-level (localization, size ef-
fects) care must be taken in using a first-order scheme. In all other cases,
one should continue using it and not jump to a second-order scheme for
which an additional price in complexity and computational costs is to be
paid.

In order to overcome these shortcomings, the computational homog-
enization methodology has been extended recently to higher-order con-
tinua (Geers et al., 2001; Kouznetsova et al., 2002; Kouznetsova, 2002; Geers
et al., 2003; Kouznetsova et al., 2004b,a). In this course, the methodology
and the essential parts of the multi-scale kinematics and statics will be out-
lined briefly, whereas more details can be found in the cited references. The
method is next applied to heterogeneous multi-phase microstructures, as
typically the case in most metals, polymer blends and composites. Some
comments on the parallel implementation of the multi-scale technique are
given and an illustrative example is used to scrutinize the added value of the
second-order framework in relation to the more standard first-order scheme.

8.1 Principles

The second-order case, which may be considered as a generalization of
the classical first-order scheme, departs from a Taylor series expansion of the
classical nonlinear deformation map, & = ¢(}Z ), applied to a finite material
vector AZ in the deformed state:

AT = FyrAX 4 JAX Gy AX +0 (AX9) (71)

Using this Taylor series expansion, the macroscopic (coarse scale) kinemat-
ics is determined through the deformation gradient tensor Fy; and its La-
grangian gradient Gy = ﬁoyMFM. The key point in the second-order
two-scale framework, resides in applying relation (71) to a representative
part of the microstructure, such that a classical boundary value problem is
obtained at the micro scale (or fine scale). The scale bridging is then real-
ized through the application of averaging theorems. This is schematically
depicted in figure 18. Note that the tensor 3Gy has a minor symmetry,
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Higher-order
continuum
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Figure 18. Second-order computational homogenization

3Gu = 3G (or Guriji = Gugji in index notation), which is used through-
out this chapter.

8.2 Two-scale higher-order kinematics

In order to apply equation (71) to the fine scale, all higher-order terms
(represented by O(AX3)) are condensed into an unknown microfluctua-
tion field @, which represents the fine scale contribution in the kinematics.
Hence,

AT = FyrAX + LAX Gy AX + @ (72)
Applying this to an undeformed volume V; (the RVE) with a geometrical
center X, that is located in 7, after deformation gives (notice the similarity
and differences with the elaboration in the previous section, equation (5)).

F—T. = Fu(X - X))+ L(X - X)) %G (X - Xo)+@ (73)

Eliminating rigid body displacements like for the first-order case (e.g. by
fixing a boundary point 1) then leads to

7 =C+Fu(X —Xo)+ J(X - X) %G (X — Xo) + (@ — 1) (74)
with

¢ =X +Fu-(X1 — X)) + LX) - X)) (X - X,) (75)

T =C— W (76)

The microscopic deformation gradient tensor F, is easily reconstructed as

Fro = (Vou)T

I - (77)
= FM + (X - Xc)'gGM + (VO,m(u_j - u_jl))T
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Applying the earlier introduced scale transition relation (13) with respect
to equation (77) then leads to two kinematical constraints (to be imposed
on the RVE)

1

Ve /(X’—X'c)dvo =0 (78)
Vo
1 [ . o L[
(Vo,m(w —wl)) dVQ = ( —wl)N dFo =0 (79)
Vo Vo
Vo To

where the divergence theorem was used to derive the latter relation. Equa-
tion (78) is clearly satisfied here, since the Taylor series has been expanded
with respect to the geometrical centre X, in equation (73). This appears
to be a necessary condition in the second-order case, which deviates from
the first-order scheme where any point to develop (4) around (instead of
X.) gives the same result. The second constraint (79) applies to the un-
known fluctuation field. Logically, the integral involves (& — w4 ), which im-
plies a constraint on the boundary position vectors Z through (74). There
are various ways to make this boundary integral zero, e.g. by constrain-
ing (@ — w;) = 0 for all points of the RVE (Taylor/Voigt), or by con-
straining (@ — ) = 0 at the boundary of the RVE only (displacement
or kinematic boundary condition), or through the application of periodic
boundary conditions on the microfluctuation field (the macroscopic field is
generally not periodic in the second-order case!). The latter conditions are
used here, leading to the following microperiodicity equations valid between
the left(L)-right(R) and bottom(B)-top(T) boundaries of a two-dimensional
rectangular RVE as shown in figure 19.

U_}'L = u_)'R u_)'B = _)T (80)

Note that again all equations involve the microfluctuation field with respect
to wh. Any choice for w; will then lead to the same solution (except for Z.).
This is also obvious from the constraint relation (79), which can be easily
elaborated to a format in which the contribution of w; vanishes, i.e.

/(w—wl)ﬁ iry = /wﬁ iry = 0 (81)

FO 1_‘O

It is easy to show that the micro scale problem defined by the equa-
tions (72), (78), (80), applied to the rectangular 2D RVE depicted in fig-
ure 19 with periodic microfluctuations, fully determines the kinematics of
the four corner points (Geers et al., 2001; Kouznetsova et al., 2002). This
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Figure 19. Lagrangian undeformed 2D reference RVE

set of equations imposes 8 macroscopic degrees-of-freedom to the 2D mi-
crostructure, whereas the full macroscopic kinematics consists of 12 degrees-
of-freedom (2 rigid body displacement, 4 degrees-of-freedom in Fy; and
6 degrees-of-freedom in the minor-symmetric 3Gy). The missing kine-
matical quantities appear to be the stretch gradients (Geers et al., 2001;
Kouznetsova et al., 2002), i.e. so far an RVE with 8 macroscopic degrees-
of-freedom has been established, where the displacements are prescribed
through the four corner nodes. This is a typical example of couple stress
homogenization.

In order to incorporate the entire gradient field, the set of averaging re-
lations needs to be completed in order to account for the missing stretch
gradient degrees-of-freedom of 3Gy;. On the basis of the Taylor series
expansion (72), it is easy to show that the following averaging theorem
can be derived (by means of some manipulations of the equations given
in Kouznetsova et al. (2002)), relating 3Gy to the position vectors Z (im-
plicitly incorporating the fine scale contribution through (74)) of all material
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points in the the square RVE with initial size W and volume Vj:

W2

1y |G+ L (i)™ + 19T -

1 =3 o — oo
[ (Fom@) + Fom@) ave (2
2Vo
Vo
In here, I is the second-order unit tensor, and 7 stands for the right trans-
pose, i.e. Tl}fg = Tji; in index notation. The third term in the left-hand

side of this equation is present to account for the deformed position Z. of
the center of the undeformed RVE, which is generally no longer the center
of the deformed RVE. Computing the integral in the right-hand side of the
latter equation through substitution of equation (74), reveals

1 /(ﬁo,m(f X) + [Vom(Z )]T) vy =

2Vo
Vo
w2, w? RT\ BT RT
1o GMF o, (I1: %Gy )" + 1™ +
1 b 2PN N — =, = —
2V0/<X(w—w1)N+N(w—w1)X) Ty (83)
To

Enforcing the averaging relation (82) requires that the last integral in (83)
should vanish, which leads to a new constraint on the microfluctuation field.

/ (X (@ )N + N(@ )X dry =0 (84)

T'o

This boundary integral clearly incorporates (w — ), which constrains the
position vectors Z of the boundary points through (74). The microfluctu-
ation @y (in the fixed boundary point) cannot be eliminated in general as
done in the previously introduced boundary integral (81). If constraint (84)
is enforced, it is easy to rewrite the averaging equation (82) as a boundary
integral

Gyt ) (I 9GEN) Ty 12 e = O

e = Jow / (XaN + N#xX) dry (s5)

1)
Equation (85) typically illustrates that 3Gy is imposed on the RVE bound-

ary, which is necessary to construct a classical boundary value problem at
the micro scale.
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For an initially square RVE (H = W in figure 19), on which the mi-
croperiodicity equations (80) for the microfluctuation field hold, the con-
straint (84) can be simplified to

/ (@, — ,)dly = 0

Tor

/ (g — 1 )dly = 0

Top

Clearly, these two conditions enforce the shape of a part of the boundary to
be equal in average to the shape ensuing from the macroscopic field. Pre-
scribing (86) at the boundaries can be done by generalized displacement con-
straints (non-homogeneous tying relations), see (Kouznetsova et al., 2002;
Kouznetsova, 2002) for more details on this topic. Again, it is obvious that
imposing w; = 0 does not influence the solution for the two-scale homoge-
nization.

Note that the macroscopic Gy is not the volume average of the mi-
croscopic 3G, = ﬁo}mFm. This not possible if one wants to construct a
classical boundary value problem at the micro scale. The scale transition
is here driven by boundary integrals involving displacements of boundary
points of the RVE only. Enforcing *Gy to be the volume average of 3G,
would lead to higher-order boundary conditions on the microstructural fluc-
tuation field, which would make the fine scale problem second-order as well.

8.3 Extracting stress tensors

The macroscopic stress quantities are next extracted from the analysis of
the deformed RVE by equating the macroscopic work per unit of volume to
the average work performed on the RVE (Hill-Mandel or macrohomogeneity
condition). For the second-order case, this condition reads

1

v / P OFLdVy =Py : 0F +°Qu © %Gy (87)
0

Vo

In here, Py is the macroscopic first Piola-Kirchhoff stress tensor, Py, its
microstructural counterpart and Qu the higher-order stress tensor which
is work-conjugated to 3Gy;. Note that equation (87) in fact defines the two
macroscopic stress tensors Py and *Quy.

The microstructural work (per unit of volume in the reference state) can
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be written as

1
SWon = / P, : 6F¢dV, =

1
0-0 AT dI’ 88
b V/p # dTo, (8)

0
V() FD

where use has been made of the divergence theorem and the static equilib-
rium equation in the microstructure (2). Taking the variation of the position
vector 0AZ according to (72) leads to

SAT = 6F\- X + L X -6°Gn-X + 0AW, (89)

which after substitution in equation (88) yields

1 . 1 - . 1
Won = v /ﬁX dry : 6F1‘§4+2V0 /XﬁX dry : 53GM+V0 /ﬁ.mw dry,.
T'o

To o

(90)
Since the boundary constraints (80) do not contribute to the total work and
accounting for (86), the last term in (90) can be proven to disappear

/ﬁ.mw dTy = 0, (91)

To

manifesting the fact that the microstructural fluctuation field does not affect
the average variation of the microscopic work.

Elaboration of this equation leads to two boundary integrals that permit
to compute the stress tensors Py and 2Qur:

1 .
Py = / X dly (92)
Vo
To
Qu = ! /X”Xdl“ (93)
M = W p 0
To

Both stress tensors can be easily computed once the boundary value problem
on the micro scale has been solved.

The above formulas relate the macroscopic stress tensor and the macro-
scopic higher-order stress tensor to microstructural variables defined on the
RVE boundary. The relations (92) and (93) can also be transformed into
volume integrals, allowing the macroscopic stress measures to be expressed
in terms of volume averages of microstructural quantities. The macroscopic
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stress tensor Py again equals the volume average of the microscopic stress

tensor P,
1

Py = / P..dVy (94)
Vo
Vo

The proof of this equation is identical to that for the first-order framework
(for the derivation see (32)-(33)).

The derivation for the higher-order stress tensor Qs follows the same
procedure. Applying the divergence theorem to transform the boundary
integral in (93) to a volume integral gives

1 > o 1 - Lo
Qu = XpXdly = /N.PC XX)kedr
Qui= gy, [ X¥dro = 1 [ (NP XX)Car,
L e (%)
= Vom: (P, XX dV,
vy [ (Vo (PLET))FCat;

Vo
where the superscript LC' denotes left conjugation, T5F = Tjix. Finally

using the equality
Vo (PLXX) = (Vou Pi) XX + Pu (Vo X)X + (XP (Vo X)) M
=P, X + (XP,)C,
(96)

where equilibrium has been exploited, the relation between the macroscopic
higher-order stress tensor and microstructural quantities is obtained

Qu= !

o / (PLX + XP.) avo (97)

Vo
Note that the macroscopic higher-order stress tensor Quy does not equal the
volume average of its microscopic counterpart ﬁO,um' Like for 3Gy this
is due to the fact that the micro scale problem is formulated as a classical
boundary value problem. It is clear from (97) that Qy can be interpreted

as the first moment (with respect to the RVE center) of the microscopic
first Piola-Kirchhoff stress tensor P, over the initial RVE volume Vj.

8.4 Two-scale computational solution strategy

The boundary constraints (86) can be explicitly written in terms of the
displacement vectors of the boundary points in the form

/aL dlg = @ip-(Fu, °Gum), /aB dly = ip-(Fyp, °Gy)  (98)
ToL Tos
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where up+ and up~ solely depend on the given F); and 3Gy and RVE
geometry as apparent from their definitions

e —(Far — 1) / (X — X)) dly + 9GLC . / (XL X0 — X1 %) dy

Top Tor,
5 —(Fy — 1) / (Xp — %) dTp + 1GLC . / (Xp Xy — X1 %) dT
Tog Fop

(99)

Once the BVP associated to the microstructural RVE problem is de-
fined (boundary conditions, constitutive equations) the micro-problem can
be solved with a standard finite element method. On the basis of the result-
ing boundary tractions, the RVE averaged stress tensors are extracted (see
equations (94), (97))) and transported to the corresponding macroscopic
material point.

For the finite element solution of the macroscopic problem a stiffness
matrix at every macroscopic integration point is required. As emphasized
earlier, in computational homogenization schemes there is no explicit form of
the macroscopic constitutive behaviour assumed a priori. Like for the first-
order case, the tangent operator is determined numerically by condensation
of the microscopic stiffness matrix. For this, first the elaborated constraint
relations between boundary nodes (equations (80), (86)) are applied to the
total assembled stiffness matrix of the RVE following a similar procedure
as presented for the first-order case. Details for the second-order case are
given in Kouznetsova (2002); Kouznetsova et al. (2004b,a). This results
in the elimination of the dependent degrees of freedom from the system of
equations. The next step is to partition the remaining system of equations

as
K K 5yp - 5fp
HaAlrANEd (10)

where the subscript p refers to “prescribed” degrees of freedom (degrees of
freedom through which the macroscopic tensors Fy; and Gy are imposed
on the RVE). In the present framework these are the degrees of freedom
corresponding to the four corner nodes of the RVE (u@;,7 = 1,4) and to
the degrees of freedom entering the RVE system of equations through the
boundary constraints (98). The subscript f in (100) refers to all remaining
“free” nodes. Elimination of dus from the system (100) then leads to the
reduced stiffness matrix Ky; that relates the variations of the prescribed
degrees of freedom to the variations of the associated forces

Knbup =6fp,  with Ky = Kpp — Kpp(Kpp) ' Ky (101)
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The linearized constitutive relations for the second gradient continuum can
be written as

Py = ‘e :oFg +°c | SGEC (102)
#Qu = ¢ oF +cld o sGRC (103)

where the fourth-order tensor 4C§}[), the fifth-order tensors E‘Cﬁ) and 501(\2)

and the sixth-order tensor GC&L) are the macroscopic consistent tangents.
Using the RVE reduced stiffness matrix K y; rewritten in a tensor format
such that

ST ody = ofw,  i,j=1,2,34,L"B" (104)
J
permits to extract the macroscopic consistent tangents in the following for-
mat (see Kouznetsova et al. (2004&) for the derivation)

M _ KU
Cur = ZZX< X

2 _ s peliDys |LO
i = oy ZZ(Xu)KM Yi)

i g

O =y, 30 VR Ky

w = gy 22 2 (YK XG)
Ol =y, 2 VY (105)

with the superscript Cas mdlcatlng conjugation on the second and third
indices and

X — X for i=1,2,34,
% ) J (Xp—Xq))dro, for i=L" (106)
(1) = YToy,
f (XB - X(l)) dro, for ¢= B*
Top
XX - XX, for ©=1,2,3,4,
Y*, = f (XLXL - X(l)X(l)) dro, for i= L*, (107)
(%) Tor,

f(XBXB—X(l)X(l))dro, for i= B*

Top
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In the second-order computational homogenization framework the macro-
scopic problem represents a full second gradient continuum (Mindlin, 1964;
Toupin, 1964; Fleck and Hutchinson, 1997). For such a second gradient con-
tinuum the local equilibrium equation (in the absence of body forces and
body moments) is written as

Vou: (P§ — (Vou-"Qu)) =0 (108)

The natural boundary conditions associated with this system of partial dif-
ferential equations are expressed in (i) the surface traction ty

M = Nu (P — (Vo Qu)°) + (VSM'NM)NM'(NM'g(;zM)C
— Vin (M) (109)

where the surface gradient operator is defined as V§,; = (I— NuNu)-Vou

with NM the unit outward normal on the surface of the macroscopic body
in the undeformed configuration and (ii) the double stress traction 7y

v = N Q- Nu (110)

In the case of a non-smooth surface of the body (with edges) also an addi-
tional line load appears. The kinematic boundary conditions for the second
gradient continuum include prescribed displacements @y and normal gra-
dients of displacements Doyjun with Doy = NM'VQM.

The constitutive equations relating the macroscopic first Piola-Kirchhoff
stress tensor Py and the higher-order stress tensor *Quy to the history of the
macroscopic deformation tensor Fy; and its gradient 3Gy are thus obtained
numerically, whereas their variations are obtained in the linearized form
(102)—(103) with the macroscopic consistent tangents calculated from the
condensed microscopic stiffness matrix according to (105).

8.5 Parallel solution of the multi-scale nested boundary value
problems

In spite of the large computational effort required by a computational
homogenization scheme, it is well possible to make an efficient analysis if
optimal use is made of the inherent parallel nature of this multi-scale frame-
work. Whenever microstructural constitutive information is needed in a
macroscopic (integration) point, a separate subroutine can be started on
the RVE-level that solves the requested boundary value problem. This can
be done in parallel in as many integration points as available processors. Us-
ing PVM (Parallel Virtual Machine) or MPI (Message Passing Interface), it
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is relatively easy to construct such a parallel implementation for this type of
problems, as schematically depicted in figure 20. Evidently, this procedure
drastically reduces the total calculation time.

MACRO
FE analysis of the second gradient
continuum

{P‘j,{‘“: QLN tangents1--N] { El-N, 5Gl-N J

master program

»
R Qi

micro T micro
RVE 1 L Q%
tangents® RVE'N
micro micro

Figure 20. Schematic overview of the parallel solution of the multi-scale
nested BVPs

9 Higher-order issues

9.1 First-order versus second-order

The first example concerns the comparison of the mechanical and kine-
matical response of a heterogeneous microstructure for the first-order and
the second-order scale transition. To this purpose, an RVE is considered,
which is depicted in its undeformed state in figure 21. The material consid-

Figure 21. Undeformed two-dimensional RVE of a voided metal

ered is a metal with very weak inclusions, which have a negligible mechanical
contribution (e.g. voids). The matrix material is elasto-viscoplastic, consti-
tutively prescribed by a Bodner-Partom viscosity function. Following the
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conventional multiplicative split of F, the elastic response is modelled by
a classical (isotropic) Neo-Hookean relationship, where the Kirchhoff stress
tensor is given by

T = K(J—-1)I+Gb? (111)

In here, J is the volume change ratio, K is the bulk modulus, G is the shear
modulus, b? is the deviatoric part of the isochoric elastic left Cauchy-Green
deformation tensor. The plastic part is determined through the plastic
deformation rate tensor D,

D, = (112)

where the viscosity 7 is related to the von Mises equivalent stress o, and
the effective plastic strain €, by

= jan, O (é [ff") (113)

J = 71+ (ZO — Zl)e_mep

with T'g, n, Zp, Z1 and m material constants. In the present analysis, an
aluminum matrix (AA 1050) has been considered for which the material
parameters are given by G = 2.6-10* MPa, K = 7.8-10* MPa, 'y = 10852,
m = 13.8, n = 3.4, Zy = 81.4 MPa, Z; = 170 MPa.

The comparison between the first and second-order formulation is next
made for a microstructure with a second phase (12% volume fraction of
voids in this case) with an average size of about 6.6 um. The macroscopic
deformation history of a specific material point representing bending with
superimposed tension is extracted. This history is imposed to the RVE, after
which the micro scale BVP can be solved. The deformed microstructures
shown in figure 22 are then obtained for the considered point (with the
same macroscopic deformation history!). The deformation modes obtained
and the small scale strain fields are obviously different, which reflects the
kinematical enrichment of the second-order approximation. Note that the
RVE is clearly bending in the second-order case, which is the result of the
presence of the higher-order deformation modes that properly account for
the size of the microstructure. The periodicity of the microfluctuation field
can also be noticed. The macro field however, is no longer periodic for the
second-order case.

9.2 Full gradient versus couple stress

Considerable attention has been devoted in the literature to the use
of a couple stress theory (Toupin, 1962; Koiter, 1964), in which only the
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Figure 22. Deformed RVEs for the second-order (a) and first-order (b)
RVE with their micro fields of the effective plastic strain

rotational gradient field is taken into account (the curl of Fyr). In order to
illustrate the contribution of the stretch gradients, the deformation history
of a material point in the vicinity of the notch of a notched tensile specimen
has been considered. This deformation history is used to construct the
full gradient micro scale RVE and the couple stress micro scale RVE, the
latter involving the antisymmetric part :’Gl‘\“/I of 3Gy only (i.e. switching to
index notation, 36}1‘\‘}I = gGMijk — é(GMjki + Grkij), which is a third-order
representation of the second-order curvature tensor that is normally used in
couple stress theories). The analysis has been performed on the RVE shown
in figure 21, with an average void size of 0.13 pum. The comparison between
the full gradient RVE and the couple stress RVE is shown in figure 23. This

Figure 23. Full gradient, full 3Gy (left) deformed RVE versus the cou-
ple stress, antisymmetric part of 3Gy deformed RVE (right) in the same
macroscopic point in the vicinity of the notch of a notched tensile specimen.
Equivalent plastic strain fields are depicted inside the RVEs

example illustrates the difference between the full gradient and couple stress
case and particularly emphasizes the relevance of the stretch gradients in
the scale transition.
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9.3 Geometrical size effects

The intrinsic role of the size of the microstructure becomes obvious
through the complexity of the deformed RVE obtained and the constitu-
tive response at the microscale which is triggered through the macroscopic
deformation. Clearly, large microstructures will show a more pronounced
gradient effect (e.g. the bending mode). Performing such a microstructural
size analysis in a single macroscopic material point for a given constant
loading history but with different underlying microstructures is straightfor-
ward. The extracted stress tensors are characteristic for the size effect that
has been obtained. The scalar norm of the macroscopic first Piola-Kirchhoff
stress tensor Py (i.e. defined as (PMi]-PMij)l/Q) and the higher-order ten-
sor *Qu (i.e. by taking (Qnrijk QMijk)l/Q) are good measures to illustrate
this, see figure 24. Deviations from the first-order theory are increasingly
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Figure 24. Scalar stress norms of the macroscopic first Piola-Kirchhoff
stress tensor (top) and the higher-order stress tensor (bottom) as a function
of the microstructural size in a given macroscopic material point

important for larger microstructures. In the limit of an infinitesimal RVE,
the first-order solution is always recovered.

9.4 Large macroscopic gradients

For a given microstructure with fixed intrinsic sizes, the second-order
framework turns out to be relevant again if local macroscopic deforma-
tions tend to be highly non-uniform, i.e. if the gradient Gy becomes non-
negligible with respect to the microstructural size. This is typically the case
upon localization of the deformation at the macro scale, where deformations
vary strongly in narrow zones. Localization leads to increasing values of
3G, which strongly interacts with the constitutive behaviour of the under-
lying microstructure. This is shown for the heterogeneous two-phase mate-



382 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

rial considered with an average size of the weak phase of 13 um. The gradient

3Gy is increased proportionally from G54 = (Gyr @ °Gy)'/? = Omm™!
to 0.19mm~', 0.39mm ™!, 0.78 mm~" and 0.98 mm~"'. The deformed RVEs
with their effective plastic strain fields are shown in figure 25. The most left
RVE has a zero macroscopic gradient, which reflects a first-order loading
mode. For larger gradients, the deformed shape of the RVE becomes clearly
more complex (and more representative compared to a first-order result for
the real physical geometry of the microstructure).

n ng g dnt of th m o dfemten

0% 20% 40% 60% 80% 100%

Figure 25. Higher-order RVE response as the result of an increasing macro-
scopic gradient in a material point with a given microstructure. Equivalent
plastic strain fields are depicted inside the RVEs

9.5 Macroscopic localization

In order to scrutinize the added value of the second-order method on
the macro scale, an academic benchmark problem was set up in which large
macroscopic gradients appear and in which the material softens moderately
on the global RVE-scale. The example consists in a periodic micro-voided
plate, made of a commercial steel (T67CA), for which the matrix material
can be modelled with a (hypo)elasto-perfectly plastic constitutive model
(E = 210 GPa, v = 0.3, 0,0 = 507 MPa). The voids in the plate have a
diameter of 4 microns, whereas the periodic cell itself measures d = 10um,
see figure 26. An imperfection (i.c. a reduction) of 20 % is applied to the
yield stress in the left bottom cell, in order to trigger the appearance of
macroscopic gradients, that may lead to localization of deformations. The
second-order equilibrium scheme used requires higher-order boundary con-
ditions that have to be prescribed at the edges of domain. In this case, the
bottom and left edge in figure 26 are symmetry axes where normal displace-
ments and tangential stress tractions are taken zero. The top edge undergoes
a uniform vertical displacement, whereas the right edge is free. The nor-
mal derivatives of the tangential displacement components at the bottom,



Computational Homogenization 383

A A O

homogeneous

material IT‘

12d

voided material

X, imperfection

© ° X, J
- T /o2d | ol T I
7d 7d

Figure 26. Benchmark problem for computational homogenization analysis
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left and top edge are constrained as well. Double stress vectors (Fleck and
Hutchinson, 1997) N3QM]\7 are zero at all edges.

Strong shear bands occur inside the unit cells, which leads to moderate
(geometrical) softening on the global RVE-level, see figure 27. The inade-
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Figure 27. Single unit cell under uniaxial tension. (a) Deformed geometry
and distribution of the equivalent Green-Lagrange strain within the unit
cell. (b) Stress-strain response.

quacy of the first-order scheme to deal with this type of behaviour becomes
apparent in figure 28, where the prescribed macroscopic displacement mea-
sures 0.9um. In here, the solution for two different mesh sizes is depicted,
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Figure 28. Localized (equivalent) Green-Lagrange strain field for two mesh
sizes on the basis of the first-order scheme

where the solution fully localizes according to the size of the elements used.
It is not surprising, that this homogenization method suffers from exactly
the same shortcomings as classical (local) constitutive softening models as
extensively investigated by many authors in the past decade (Schreyer and
Chen, 1986; Bazant and Pijaudier-Cabot, 1988; Aifantis, 1992; de Borst and
Miihlhaus, 1992; de Borst and Pamin, 1996; Peerlings et al., 1996; Svedberg
and Runesson, 1997; Geers et al., 1998; Engelen et al., 2003). This prop-
erty is inherently linked to the principle of local action, which associates for
each macroscopic point a volume with infinitesimal size at the RVE level.
Upon further refinement of the macroscopic mesh, the energy dissipated in
the softening RVE on the micro-scale is in fact dissipated in a shrinking
volume at the macroscopic scale, which is one of the main manifestations
of the ill-posedness of the boundary value problem (at the macro scale) to
be solved.

The second-order computational homogenization method leads to a higher-
order boundary value problem, for which the regularizing effects are known
to exist. The size of the microstructural volume element implicitly sets the
length scale in the macro scale analysis, which makes the numerical solu-
tion independent of the mesh size (the localization band converges to a finite
width), see figure 29.

A two-scale overview of the deformed state of the perforated plate is
shown in figure 30. Note that the behaviour ensuing from a regularized con-
tinuum theory for failure at the micro scale or a well-posed discrete failure
model at the micro scale cannot be upscaled with a first-order homogeniza-
tion method. In fact, the well-posedness at the micro scale basically implies
that the corresponding constitutive response at the macro scale does not
depend on the discretization at the micro scale. This is of course a neces-
sary condition, though not sufficient. The volume in which the energy was



Computational Homogenization 385

w

‘ 0.01
Figure 29. Localized (equivalent) Green-Lagrange strain field for two mesh
sizes on the basis of the second-order scheme
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Figure 30. Deformed unit cell patterns and their equivalent Green-

Lagrange strain fields embedded in the corresponding macroscopic solution
field

dissipated at the micro scale has to be transported correctly to the macro
scale to prevent loss of well-posedness at the macro scale. This is impossi-
ble within the standard local continuum mechanics framework (first-order
scheme), which again underlines the need for higher-order homogenization
methods for the upscaling of failure processes accompanied by macroscopic
softening.



386 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

9.6 The higher-order RVE

It has already been emphasized that the requirement of statistical rep-
resentativeness constituted an important aspect in the definition of an RVE
for a classical first-order homogenization approach. As a result, there was no
restriction on the (maximum) size of a representative cell (on the contrary,
taking the first-order RVE as large as possible, allows to represent given
statistical characteristics more accurately). This is related to the fact that
the first-order computational homogenization scheme (as well as most other
conventional homogenization methods) deals with an ordinary local contin-
uum on the macroscopic level. Such a continuum does not possess a material
length scale and accordingly the size of a microstructural cell does not play
a role. For the second-order case, size does play a role and the definition
of an RVE is therefore not trivial. A detailed analysis on this subject has
been performed in Kouznetsova et al. (2004b). In here, it has been shown
that the size of the microstructural RVE used in a second-order compu-
tational homogenization scheme is intrinsically related to the length scale
of the resulting macroscopic homogenized higher-order continuum. Fur-
thermore, material and geometrical non-linearities significantly contribute
to the relation between the RVE size and the obtained macroscopic re-
sponse. In a second-order computational homogenization two conflicting
requirements on the microstructural representative volume element have to
be accommodated. On the one hand, the accurate determination of the
overall behaviour of a multi-phase material requires a large representative
cell with many (interacting) heterogeneities. On the other hand, the size of
a representative cell used in the second-order computational homogeniza-
tion scheme implicitly sets the length scale of the macroscopic homogenized
higher-order continuum.

In most cases, it is possible to give a reasonable estimate of the required
size of the representative cell based on the qualitative assessment of the
basic mechanisms of the underlying microstructural evolution, interaction
and the statistics of the considered microstructure. The lower limit for
the size of the RVE should be selected as the minimum size that contains
enough microstructural features to allow the development of the governing
microstructural physical mechanisms that are relevant for the problem un-
der consideration. The upper limit for the RVE size directly results from
the underlying assumption that the macroscopic deformations vary linearly
over the microstructural cell. If this assumption does not apply (i.e. if the
macroscopic deformations vary too strongly on the scale of the microstruc-
tural constituents) a computational homogenization scheme can never pro-
vide accurate results, since a separation of scales is not applicable. In such
cases the analysis should be performed by detailed microstructural mod-
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elling. This, in fact, sets an upper limit on the RVE size, which may be
used for the second-order homogenization analysis.

10 Conclusions

This contribution presented an overview of two computational homogeniza-
tion techniques for the multi-scale analysis of the mechanical behaviour of
(physically and geometrically) complex microstructures. It has been shown
that length scales can be bridged more accurately by transferring more in-
formation between the two scales considered. Rigourous scale transitions
have been established by making use of averaging theorems and the Hill-
Mandel energy condition. The first-order computational homogenization
strategy fully complies with the principle of local action and the principle
of separation of scales. The kinematics are essentially based on the lineariza-
tion of the macroscopic nonlinear deformation map. The second-order case
was based on the proper incorporation of the macroscopic gradient of the
deformation tensor into the kinematical micro-macro framework. Work-
conjugated stress and higher-order stress tensors are naturally retrieved
and a full gradient continuum is obtained on the macro scale. The main
advantage of the performed scale transition resides in the fact that the con-
stitutive response (either first- or second-order) is obtained directly from
the collective behaviour of all constituent phases at the micro scale. No
assumptions need to be made on the format of the macroscopic constitu-
tive relationship, which makes the proposed scale transition a versatile tool
to assess macroscopic constitutive relations. Furthermore, the methodol-
ogy can be fully implemented in a hierarchical solution scheme, where two
nested boundary value problems have to be solved. Consistency of the tan-
gent operator is preserved by the scale transition. The presented two-scale
framework is parallel in its nature, which makes the implementation of the
numerical solution method on a multi-processor cluster clearly beneficial.
Whether or not a second-order model should be used has to be de-
cided considering the governing scales, loading and the presence of fail-
ure/softening. Whenever the principle of separation of scales continues to
hold, macroscopic gradients remain small and failure does not occur, it is
certainly recommended to use the first-order computational homogeniza-
tion method. However, if damage and failure are of interest and need to be
linked to microstructural events, it is obvious that a higher-order technique
will be necessary. Even if a well-posed regularized solution strategy (either
continuum or discrete) is used on the micro level, a second-order scheme
will remain necessary. The length scale, which may be well defined on the
microstructural scale is not preserved through a first-order scale transition.
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Evidently, this becomes most apparent for failure analyses with softening.

Likewise, geometrical size effects, for which the size of the microstructure
is not negligible with respect to the geometry of the macro-specimen, have
to be captured by such a technique as well. Note that microstructural size
effects, which emerge from size-dependent small scale deformation mecha-
nisms (e.g. dislocation plasticity leading to the Hall-Petch effect, the Friedel
effect, etc.) can still be upscaled appropriately with a first-order scheme.
In here, the microstructural size effect becomes apparent in the constitu-
tive response of the microstructural phases. Most important property of
a second-order method is the fact that it implicitly incorporates a length
scale, which depends on the size of the microstructure. This size becomes
apparent on the macro-scale as the length scale that sets the width of local-
ization zones, or that governs geometrical size effects. The role of the RVE
size in a second-order scheme is crucial and has been discussed extensively
in Kouznetsova et al. (2004b).

Computational homogenization seems to make constitutive modelling
considerably easier. The first-order or second-order constitutive response
(which is difficult to capture in a closed format with its constitutive tensors),
is retrieved directly from the microstructure. This is particularly useful
to assess the homogenized ’continuum’ response of microstructural discrete
systems, in which e.g. atomistics, molecular dynamics or discrete dislocation
dynamics are used to obtain the fine scale response. Undoubtedly, many
issues are still to be explored: assessing higher-order boundary conditions
from the microstructure, upscaling various failure mechanisms within the
microstructure that lead to macroscopic degradation, the appearance of
geometrical size effects in miniaturization, etc.
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