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Abstract This part is an introduction to phenomenological crystal
plasticity models, to their properties and their use either in compo-
nent calculations or in microstructure modelling. Time dependent
or time independent versions of the models are presented. The ap-
plications deal with single crystal or polycrystalline materials. In
this last case, the aggregate is modelled either by a finite element
mesh, in order to represent the local microstructure, or by using so
called uniform fields models, which allow to introduce the average
effect of each crystalline phase in the global behaviour.

1 Introduction

The theoretical framework needed to develop single crystal models has been
built in the seventies (Mandel, 1971; Hill, 1966; Hill and Rice, 1972; Rice,
1970, 1971; Asaro and Rice, 1977), and the first practical applications a few
years later (Asaro, 1983a,b). The history of crystal plasticity is then well
known, and can be reviewed in classical books (Havner, 1992; Teodosiu,
1997). The purpose of this section is then not to add a new description of
rather classical approaches, but to enter the topic according to an alternative
route, namely the framework of thermodynamics of irreversible processes,
and to present a mechanical approach, seen as a multipotential theory, and
to illustrate its capabilities by a series of examples.

The interest of this thermodynamical approach is to provide natural
schemes for the choice of the evolution equations and the type of the hard-
ening variables. The deformation mechanisms are restricted to slip, on given
planes and along given directions. This class of model can be applied to
single crystal or polycrystal description. Single crystal slip is illustrated in
Fig.1, which shows the development of plasticity on a Ni-base superalloy
specimen, after 1, 2 and 11 cycles: a first plane is activated after the initial
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tension; more and more slip activity can be observed after 2 and 11 cycles.
The crystal was oriented for single slip, so that only one line can be seen.
Multiple slip can also be found, depending on the orientation of the speci-
men. In polycrystals, various grain orientations are present, so that single
and multiple slips are both present in the deformation process. Figure 2
shows the case of a FCC polycrystal (Fig.2a) and the case of a HCP poly-
crystal (Fig.2b). For the second one, the number of slip planes is reduced, if
compared to FCC material, so that other mechanisms may become active,
like twinning, or intergranular damage.

Volume element as well as finite element simulations will be shown. A
series of models have been built in the last twenty years, coming from two
communities of research: the literature shows either “purely phenomeno-
logical” models, or “dislocation based” models. Due to the reduced space,
it has been decided to promote the ”operational” aspect of the models, so
that the presentation will be focused on the phenomenological models. Nev-
ertheless, a link will be made between the two approaches. The outline of
the part is as follows:

e to be complete, a short introduction to thermodynamical approach
is first given, and followed by the presentation of a class of crystal
plasticity models;

e some applications of these models in finite element computations are
then shown: this will concern first material identification and finite
element computations of components or specimens, then some “mi-
crostructure computations”, where single crystal models are used to
represent individual grains in polycrystals;

e the last part is devoted to the applications of these models in uniform
fields approaches, that may offer sometimes an interesting compromise
between the macroscopic models and the full microstructure compu-
tations.
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Figure 1. Slip system activity on a single crystalline specimen (Hanriot,
1993)

(b)
Figure 2. Slip system activity in polycrystalline specimens:

paloy (Clavel, 1980), (b) zircaloy, with intergranular damage (Kubo et al.,
1985)

(a) was-
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2 A thermodynamical approach to single crystal
plasticity

The thermodynamical framework Coleman (1964); Halphen and Nguyen
(1975); Germain et al. (1983) is recalled for the general case of inelastic
constitutive equations. The presentation is restricted to the case of small

strains, since this is the typical deformation range used in the present doc-
ument.

2.1 General framework

First and second principle. The first principle is the expression of the
conservation of the energy. On a domain D, the internal energy FE, that
is obtained by integrating the specific internal energy, e, is the sum of the
power of the external forces and of the heat exchanges:

dFE de .
= —plo) 1
" /Dpdth PO 40 (1)

with the following definitions:
e Power of external forces:

Pl = / a:edV (2)
D

e Heat exchanged, using the rate of captured heat, q, and n, outside
normal to the surface 9D, and r, volumetric heat:

Q= /D rdV — o q.ndS = /D (r — divg) dV (3)

This provides the following expression for the first principle:

de

pdt:gzg—i—r—divq (4)

The second principle provides an upper bound of the heat rate received

by the volume D at a temperature T, and can be expressed as a function of
the entropy S or of the specific entropy s :

ds r q.n
> —
dt = /D Tdv /81) T ® ©)

ds r Y
: - >
then /D (p P + div (T)) av =0 (6)
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Using Helmoltz free energy ¥, such as e = U + T's, one get the so called
Clausius-Duhem inequality:

dv .1
g:&—p , —psT~ qgradT)>0 (7)

The method of local state assumes that the whole history of the material
can be represented by the temperature T and by a set of state variables o,
that are involved in W, and which will be used in the classical Coleman—Noll
argument. One successively get:

v ov. oV

dt 8TT + Oay; i (8)
oV
T Tor ©)
. ov . 1
Uijeij —p Ba-ai — T q grad(T) 2 0 (4) (10)

The intrinsic dissipation ®; and the thermal dissipation ®5 are considered:

ov

. 1
=P 5y, G Oy =—_q.grad(T) (11)

T

(1)1 = Uijéij

One assumes then that both of them must be positive. This is directly
given by the Fourier’s law, which provides the heat equation in presence of
mechanical strain

q = —k(T, ;) grad(T) (12)
) . ) ov 0% )
div (kgrad(T)) = pC.T — 1 — 035 + p (3% B T@T@Oéi) “ )

(13)
(with C; = T'0s/0T, specific heat at a constant strain) The shape of the
mechanical part may take various forms, according to the type of material.

Thermoelasticity. The only internal variable is the elastic strain. Since
elasticity is a non dissipative process, ®; remains equal to zero. This pro-
vides a definition for the stress tensor:

ov
Bi=gigopl E=0 (14)

These constitutive equations involve then two state variables, 7" and €°, and
two conjugated variables, the entropy s and the stress tensor g. ¥ can be
seen as a thermodynamic potential which characterises reversible processes.
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Dissipative processes. A series of hardening variables is now related to
the list of the state variables o, so that the model is formulated according
to the following scheme:

State variables Conjugated variables
ov
temperature T §=— gg entropy
elastic strain € g =p Dee stress

state variables oy Ar=p hardening variables

6a1

The intrinsic dissipation can be rewritten:
Oy =0:&"—Arar =177 (15)

with: Z ={g,4;} ; z={e?,—as}
A model is standard (Halphen and Nguyen, 1975) if one can find a po-
tential Q = Q(Z) such as:
o0
) = 16
T oz (16)
If Q is a convex function of Z which includes the origin, the dissipation
is then automatically positive, since:

¢ =17 (17)

07
One can also define (through the Legendre-Fenchel transform) a companion
potential in terms of 7:

O (3) = max (27 — Q7)) (18)

As a consequence, either Q*(7) or Q(Z) can be introduced to characterize
the dissipative processes. A dissipative model can then be fully characterised
by the definition of two potentials ¥ and 2. The relation between state
variables and hardening variables will then be derived from W, and the
nature of the hardening variables and their evolution rules from €. As
an example, isotropic and nonlinear kinematic hardenings come from the
following choice for the sets (Ay, ay) is:

Type of hardening  State variable Conjugated variable
Isotropic hardening T R
Kinematic hardening a X
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o0 o0 o0
p_ S — 1
€9 TTTor 97 Tox (19)
Assuming that .J is a von Mises norm, such as J(z) = ((3/2)z : z)'/?, a

viscoplastic model is simply obtained by means of a potential €2, according
to the following steps:

e Definition of a viscoplastic yield:
fle, X,R)=J(g—-X)—-R (20)

e Definition of a potential, function of f:

AN (21)
n+1 \K
e Viscoplastic flow:
p_ 00 _0Q0f (22)
g Of 0o
e Intensity of the flow (here, Norton with internal stress):
a0 [ F\"
= = 2
=7 = (1) )
e Flow direction (normal to the yield surface):
of
"= g (24)
e Hardening:
o0 o0
S — 9
T=Tor 2T Tox (25)

One can switch from a viscoplastic to a time independent plastic model
by replacing the viscoplastic potential by a plastic pseudo-potential, as
shown in Fig.3, where Ind(f) jumps from 0 (for f < 0) to infinity (for
f = 0). The strain rate is then no longer given by the partial derivative
of Q with respect to f, but by the consistency condition. The direction of
the flow is recovered by introduction of Hill’s principle, which assumes that
the real stress field provides a maximum of the intrinsic dissipated power
®; = g™ : €7 of any admissible stress field, when there is no hardening:

Vg* admissible (g —g™)é’ > 0 (26)
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A Ind(f)

(a) (b)
Figure 3. Tllustration of (a) the viscoplastic potential, (b) the plastic
pseudo-potential

For the case of a material with hardening, the preceding equation has to be
reformulated as:

by =g &l —Ajar=g:e’-V,=77  maximum (27)
where Z includes stress and the hardening variables A;, and z includes
plastic strain and the state variables (-ay):

(Z —7%)% >0 (28)

The maximization of ®; under the constraint f < 0 can be seen as an
extension of Hill’s principle. Let us define F(Z) =Zz — X f and search for
the zero of OF/JZ

. Of

. COf . of
2=y

then: gf = A dg =An ar = — A, (29)

A (at first unknown) plays in plasticity the role of the equivalent strain rate
in viscoplasticity.
This type of approach offers the opportunity to introduce two types of
coupling;:
e State coupling, in the free energy (note the symmetry of the interac-
tions):

1 1 1
U(ag, ) = 201104% + 2022063 + o C1201 02 (30)
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a1 et Q9
04 _ 04y _ % (31)
8042 8041 80418042

e Dissipative coupling, when € is the sum of several potential functions,
QK:
00k
[ = 32

More information about the development of specific models can be found
in (Germain et al., 1983; Lemaitre and Chaboche, 1990; Besson et al.,
1998).

2.2 Derivation of single crystal models

General framework The single crystal is seen as a collection of N slip
systems, defined by their slip planes n® and slip direction I°. The orientation
tensor is:

1 : :
m’ = 2(ns®lb+lb®ns) (33)

In small perturbation, the resolved shear stress is computed as

P=0g:m’ (34)

and the strain partition involves an elastic and an inelastic strain
E=gcrer (35)

The elasticity is characterized as usual, meanwhile dissipative behaviour
must be expressed for each slip system. As a consequence, isotropic and
kinematic variables have to be defined on each slip system. The resulting
set of variables is then as follows:

Phenomenon State variable Associated variable
Elasticity €° log
Isotropic hardening p’,s=1.N r®, s =1.N
Kinematic hardening «*, s=1..N %, s =1..N

The relation between state and associated variables comes from free en-
ergy, where the elastic and the inelastic part are assumed to be disconnected:

pY(e®, p°s ) = pY©(e®) + pyP (p°, @) (36)
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The elasticity (non—dissipative process) is fully defined by

1
pYe= et Al (37)

The state variables a® and p° are present in the free energy, and the
hardening variables x° and r° are defined as their partial derivatives:

= e (@4 L QS e (39)
i =ca” ;5 r=0bQ Zhrsps (39)

Note the interaction matriz, whose components h,, characterize self—
hardening (if r = s) and cross-hardening (if » # s). The multi-mechanism
effect has been studied in detail in the past (Koiter, 1960; Mandel, 1965)
from a theoritical point of view. Experimental aspects will be discussed
later.

Viscoplasticity needs the definition of a viscoplastic potential, plasticity
needs the definition of a plastic pseudopotential. They are built using the
expression of the yield criterion on each slip system

fP=rt =2t —r* =1 (40)

Viscoplastic formulation A viscoplastic potential is introduced. As an
example, a power function of the yield is chosen here, but any other increas-
ing function would be a good candidate:

K fr n+1
Q= Q.(f") = 41
o= (k) (a1)
The viscoplastic flow can then be derived as

. o0 o0, oQ,. Of" . .
y 2R — — — Toy T’ — T T
&= g =2 og Zafr oo van va (42)

In the preceding equation, " stand for sign(7" — z"); the scalar part of the
expression characterises the viscoplastic shear rate:

o Jfr
afr  \K
and the tensorial part the flow direction, given by the normality rule:

afr_aqmr:q*xq*rr*ﬁ))_ T

> =" AT =0"sign(t" —a") =0"n" (43)
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For a standard model, the variables attached to isotropic and kinematic
hardenings are imposed:
e Kinematic hardening on system s is driven by the actual slip on this
system, v*

o 00O OOF
T ows T Zeows T op e T

e Isotropic hardening on system s is driven by the accumulated slip on
this system, v*:

.09 o0, 09, of
S —— e — = S 4
P "oy Z ors — ofs ors " (46)

Non standard models can also be defined:

a® = (n® —da®)v* (47)
5 = (1 bp")i (48)

Since g gp =0 st,ys — Zq :ms,ys — ZTS;YS _ ZTsnsi}s the
s s s s

intrinsic dissipation writes:

=gl — szds — ZTSp'S (49)
= Z (T°n°0® — 2 (n°® — da®)0® — r®(1 — bp®)0®) (50)
=St L @) ) G1)

The following contributions are then exhibited:
e Viscous dissipation : Z ffo®

S
e Friction dissipation : 7 g 0°

d ,
e Dissipation due to nonlinear hardening;: ( (acs)2 + br5p§> v°
c

Plastic formulation. Figure 4 illustrates the difference between vis-
coplastic and plastic formulation. Like for the classical case (Fig.3), the
current state in the stress space must stay on the yield surface instead of
being on an equipotential. The plastic strain rate for each slip system is no
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(a)

Figure 4. Illustration of (a) the viscoplastic flow, (b) the plastic flow

longer defined by the distance to the relevant yield, but must be deduced
from the consistency condition. The regularisation provided by the viscous
effect is no longer present, and the direction of the flow has to be defined by
additional rules when the current point is on a corner of the domain, that is
in situation of multiple slip. The crucial point is then to determine the set
of active slip systems. One plastic multiplyier is determined for each slip
system. The non zero plastic multiplyiers are solutions of the linear system
formed by the consistency conditions on the active slip systems, fs = 0.
Several sets of slip systems can produce the same viscoplastic strain rate
tensor. An additional condition must be used to select the relevant set of
slips, as discussed in section (2.5).

N ofs N
n \ S _ \S, S
D DL pE 2)
s=1 ~ s=1
A rather simple computation allows to obtain the relevant system, start-

ing from:
e the strain partition

g=A: (s -> mv) (53)

e the consistency condition applied to active slip systems:
ff=m*:o—2°|—r*=7=0 0=m’:0—2°—n°r° (54)

using the notation n°* = sign(r° — x*)
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The following step consists in computing m® : g in equation (54), intro-
ducing H,, as specified below, and keeping the notation ©° for the plastic
shear strain rate on system r:

m’ g =i ' = Hyid" (55)

In the next step, one replaces ¢ by its expression in equation (53):
miAE—Y mt A im0 =) Hy" (56)
r T

Under prescribed strain rate, N equations are then defined (N = number
of active slip systems) to compute the plastic multiplyiers:

Z(mssé:mquHST)i;T:ms:é:g (57)

T

e The set of possible slip systems able to respect these equations is not
unique. Several combinations of slip can provide the same macroscopic
strain rate. This point will be examined later in section (2.5).

e Note that, in the present model, the matrix formed by the coefficients
Hg, is non symmetric:

2% = y® — da®v® = (en® — da®)v® = Z(cnr —dz") 050" (58)

P =Q bhe exp(—bv")i" (59)

Hy = (en” — da")dsr + Qbhg, exp(—bv") (60)

Nevertheless, it becomes symmetric with no kinematic hardening and
linear isotropic hardening, r° = Z herv"

Hgr = hgy (61)

e The following double dot products may be useful in the computations:

m®: I =mj;0;; = trace(m®) = mj; = njl; =0 (62)
1 1
m®:m® =mims; = 4(nflj +End)(nil +1inj) = 9 (63)
1
m®:m” =mjm; = 4(nfl; +1ny) (il +1inj) (64)
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Table 1. The components of the 12 orientation tensors for octahedral slip
systems

num syst 1 2 3 4 5 6 7T 8 9 10 11 12
Vémi, -1 0 -1 10 1 0 -1 -1 11
Véme 0 -1 1 0 -1 -1 11 0 1
V6mss 1 1 0 1 1 0 1 0 1 0o -1 -1

2V/6mi2 -1 -1 0 1 1 0 1 0 1 0o 1 1

2/6mses 1 0 1 -1 0 1 0 1 1 101

2v6ms; 0 1 -1 0o 1 1 -1 1 0 1 0 1

e For the case of isotropic elasticity, the system (57) can be simplified,

since
ANijir = X030 + p1(0irdj1 + 031051 (65)
Ajjramiy = pmg; (66)
m®: A:m” = pmgms; (67)
(68)

2.3 Yield surfaces

Yield surfaces provide a synthetic information on the behaviour of the
materials. This is illustrated here for the simple case of FCC materials,
where slip occurs on the four octahedral planes {111}, in the directions
(110). The case of Ni-Base superalloys, where cubic planes {001} may also
be involved, with the same slip directions (110), will be also mentioned.

The yield surfaces can be seen as a collection of hyperplans which equa-
tions are:

|7°| = 7.=0 or ¢:m*—71.=0 (69)

Plastic deformation of FCC materials classically involves the 12 octahedral
slip systems only. The components of the 12 orientation tensors are shown
in Table 1.
The shape of the yield loci can be illustrated on planes like biaxial or
tension—shear loading;:
e If the only non zero terms of the stress tensor are o1; and o099, the
criterion writes:
|orimir + o22mas| — 7. =0 (70)
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Table 2. Values of 7° for the 12 slip systems of a FCC single crystal

(a) case of a biazial tension loading o11-022

num syst 1 2 3 4 5 6
T —011 + 022 022 —011 —011 + 022 022 o11

num syst 7 8 9 10 11 12
T 022 —011 —011 + 022 —0o11 011 — 022 —022

(b) case of a tension—shear loading 011012

num syst 1 2 3 4 5 6
T° —011 — 012 —012 —011 —011 + 012 012 o11
num syst 7 8 9 10 11 12
T° 012 —011 —0o11 + 012 —011 o1 +012 012

The resulting equations for the 12 slip systems are shown in Table 2a.
e If the only non zero terms of the stress tensor are o171, 012 and o091,
the criterion writes:

lorimar + 2019ma2| — 7. =0 (71)

The resulting equations for the 12 slip systems are shown in Table 2b.

As a result, for biaxial tension loading, the domain is then defined by
three types of systems :

e systems 1, 4, 9 and 11 : |01y — 093] = 7.V/6

e systems 3, 6, 8, 10 : |o11| = 7.\/6

e systems 2, 5, 7, 13 : |o9a| = 7.\/6

meanwhile two types of systems are present for tension—shear loading,
as illustrated in Fig.5:

e systems 1 and 11 give : |o1; + 012 = 7.V/6

e systems 4 and 9 give : |o11 — o12| = 7.6

Figure 5 illustrates also the influence of the hardening matrix. It is as-
sumed that the current loading point is at the corner located located on the
012 axis, for a positive value of the resolved shear stress. A stress increment
is applied, with an angle # with the horizontal at this point. Numbers in
Fig.5a indicate the number of active slip systems if the interaction matrix
is diagonal. On the other hand, if cross hardening (the terms outside of the
diagonal) is high, slip on systems like 1 or 11 may dramatically increase the
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Figure 5. Graphical illustration of the slip system activation: (a) number
of potentially active slip systems for various load directions, (b) high la-
tent hardening, a few active systems, (c) low latent hardening, many active
systems

resolved shear stress on systems like 2, 5,... so that they will not become
active, even if the stress increment is in the sector indicated (6), as demon-
strated by Fig.5b. An intermediate solution is recovered for intermediate
values of the cross hardening terms (Fig.5c¢).

Multiple slip is often present in single crystal. This might be due to the
rotation of the slip planes during the deformation process. On the other
hand, this is also a character which is related to the balance between elastic
and plastic flow direction. For instance, in Fig.6a, two loading paths under
prescribed strain are considered: for the upper path, the ratio £74** /ei*
is equal to 0.525, for the lower path, the same ratio is equal to 0.475. Since
the ratio {5 " /el7""" remains always equal to 0.5, there is a continuous
deviation for the stress rate which explains the shape of the stress path.
The same argument is valid for explaining the stress path in Fig.6b. Note
that in Fig.6a, systems like 2, 5, 7, 12 start being active due to the loading
deviation for the upper path, and systems 3, 6, 8, 10 for the lower path.
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Figure 6. Initial and subsequent yield surfaces: (a) for tension—shear stress
states, (b) for biaxial stress states

2.4 Identification under tension and tension—shear loadings

For a given crystal orientation, the present model can be compared
with a macroscopic model. Its identification can then be made either by
curve fitting using tensile curves, or by a direct use of the material param-
eters of a macroscopic model. Examples of such an approach can be found
in (Méric et al., 1991; Hanriot et al., 1991) for superalloy single crystals.
For the case of multiple slip, with N equivalent slip systems, and a Schmid
factor m, one can transform the general expression giving &”:

é’p _ Z’IILS’L'}S :st <|7’S _ 1],:| —rs >n (72)

—Nm <m(a —kx) -r >" (73)

which can be compared to a macroscopic model

- X)-R\" ko1 Un
éP:<(” K) >withK:mmN X:Z R:; (74)

The relations between the macroscopic material parameters and the param-
eters of the crystalline models are given in Table 3 for the case of octahedral
slip and cube slip.

Two examples are given, in order to illustrate the various types of me-
chanical response of the mode. Figure 7 simply shows the tensile curves
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Table 3. Relation between the material parameters of macroscopic models
and of crystal plassticity models for octahedral slip and cube slip.

Coefficient | Value for multiple Value for Value for
slip (m,M) 001 tension 111 tension
N=8m=1/V6| N=6m=+2/3
K k V6k 3k
m(Mm)l/n (8/\/6)1/" 2(n+1)/2n
3
RO o \/67“0 "o
5 %
V6
Q : Q 9
b b V/6b b
mM 8 g 2
C c 3c c
Mm?2 4 2
D d V6d d
Mm 8 V2
- 001 ——
T T T
?ii """ o | 100
500 - = Q | -10
e I b | 1000
wol !/ i ¢ | 20000
' d | 300
K | 500
200 |-/ -
";,/I n 5
o / | | | hij 1
] pDods 00 005 002

£

Figure 7. Simulation of the tensile behaviour for various crystallographic

orientations

obtained with a negative value of the material parameter @ for isotropic
hardening. Figure 8 is the result of the identification of the model on
an experimental data base obtained on AM1 for various crystal orienta-

tions (Hanriot et al., 1991).
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Figure 8. Simulation of the cyclic behaviour for various crystallographic
orientations on AM1 specimens (Hanriot et al., 1991)
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2.5 Slip system selection

As previously pointed out (section 2.2), there is no unique set of slip
systems that provides a given plastic strain rate tensor. The condition to
fullfil for each set of slip systems to be admissible can be precised by means
of the variational approach, using either internal or external power.

The first problem is to select a set of admissible shear rates ©v° for a
prescribed plastic strain rate €¥ (assuming € = €P). This has to be done by
minimising the internal power of the material element (Taylor, 1938):

Pi=» T’ (75)
S
the shear strain rates being submitted to the constraint:

g(i*) =& => mo'n" =0 (76)

Let us define the lagrangian F;, and search for the saddle point

Fi(0°,A) =Pi+A:g (77)
afi_,p S5 a]:z_ s . 5,8 __

The tensor A is nothing but the stress tensor. To find the set of shear
strain rates, which minimizes internal power, it is then necessary to find a
stress tensor which obeys the yield conditions, id est which allows to build
resolved shear stresses that reach 77 on the active slip systems and that are
smaller than 77 on the inactive ones.

The problem can also be posed in terms of unknown stress, and
rephrased as “find the stress state which maximise the external power”
(Bishop and Hill, 1951), written as

Po=g:¢ (79)

under the constraint
9°(g)=1—-g:m’ >0 (80)

Felg,ji*) =Pe+ Y _ ji°g* (81)

oF. . OF,
F:gpfzmspszo f:rsfg:mS:O (82)
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The multiplyiers ° are nothing but plastic strain rates. To find a stress
tensor, one has to find a set of plastic shear strain rates which are zero on
the inactive slip systems, and positive on the active slip systems.

The two approaches can be summarised by the double inequality

g P < g el =) Tty T (83)
S S

This discussion can be found in (Chin and Mammel, 1969). It means that:

e between all the admissible stress states conjugated to the real plastic

strain rate, the real stress tensor maximises the plastic power. For

regular points of the yield surface, this ensures that the plastic strain

rate is normal to the yield surface. Nevertheless, this does not provide

the full information for a corner of the yield surface, in conditions of
multislip;

e between all the possible set of viscoplastic shear strain rates, the real
one minimizes the internal power.
The dissipation computed in the thermodynamical approach for such a
simple model has two terms only:

Oy =g’ =) r’ (84)

where the variables 7°, defined in equation (59), denote the increase of
critical resolved shear stress. According to equation (40) (with 2® = 0, since
there is no kinematic hardening here), if all the systems are equivalent, the
equation can be reduced:

Oy =) ot =1y i (85)

2.6 Other crystal plasticity models

The model which has been considered up to now represents the branch of
the phenomenological single crystal models, inspired from the macroscopic
formulations, like also for instance (Jordan and Walker, 1985). An other
class of models is represented by the so called dislocation based models,
like for instance (Busso and McClintock, 1996). On the other hand, crystal
plasticity is a versatile solution to express various phenomena acting on
the level of the crystal network, like twinning. These two topics are shown
in the present section. Additional capabilities will be shown later, namely
developments needed to represent volume changes and damage.
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Phenomenological and dislocation based models. We refer to the
first denomination when the hardening variables are plastic slip, and to
the second one when the dislocation mechanisms are explicitely introduced.
One has to get back to Taylor (Taylor, 1938) to read the expression of
the first phenomenological model, which assumes that the critical resolved
shear stress on the slip systems linearly depend on the slips on all the
systems, by means of the interaction matrix. The so called Taylor inter-
action is obtained when all the terms of the matrix are equal to 1: self-
hardening and cross-hardening are exactly equivalent. Experimental mea-
surement of cross hardening have then allowed to reach better estimations
of the hardening matrix (Kocks and Brown, 1966; Kocks, 1970; Franciosi,
1985a,b). This matrix is now estimated by means of Dislocation Dynamics
computations (Devincre et al., 2006). The most widely used phenomenolog-
ical model is written in a viscoplastic framework without threshold (Asaro,
1983b), so that all the systems are allways active. A multiplicative isotropic
hardening is introduced; it depends on accumulated slip:

5 1/m
. .
T

c

N

= hay" (87)
r=1

(88)

The phenomenological models previously presented in this paper and the
dislocations based models have the same nature: their variables globally
represent averages of the local dislocation densities. To fully illustrate this
point, one can take (equations 89-91) the example of a dislocation based
model (Tabourot et al., 1997), where b is the Burgers vector, and p® the
dislocation density on slip system s:

.\ 1/m
s . (T
¥ =0 ( ) (89)

S
Tu

N 1/2
7_5 = aub (Z hsrpr> (90)
r=1
/
(B e)”

— _2,8 S 1
= I yer® | & (91)
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After choosing r* = bzps and y. = bk., the last two equations can be
rewritten:

N 1/2
P (Z h) (52)
r=1

(EN asrrr) Ve
r=1
2k
K

-

o |y (93)

The variable r® which is defined here plays exactly the role of p® in equa-
tions (38) and (48).

Twinning and phase transformation Twinning and martensitic trans-
formation can be represented in a local frame n*, t* u* by a transformation
gradient F*

F=1+tkonk (94)

1
The stress-free transformation tensor is then 5 (F TFP—1 ) in large strain,

1
or 9 (FT + F) — I in a small perturbation framework. In this last case, the

transformation of the crystal lattice produced by the variant k£ can be seen
as a parametric strain

Etp -

= (95)

~

o2 ™
o o2
=N N

Various theories are available to determine vectors n and t, depending on
the material crystallography (for instance Wechsler-Lieberman-Read theory,
24 variants)

3 Finite element computations of single crystalline
components

The purpose of this section is to illustrate the behaviour of single crystal
laboratory specimens and of industrial components. After a quick look to
the algorithmic expression of the model, one shows the case of cylindrical
tension specimens, then tubular specimens. A few elements are given to
figure the type of calculations that can be made on turbine blades.
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3.1 Algorithm for the numerical integration

The integration of these equations in a finite element code can be
made either by an explicit or an implicit method. If compared with clas-
sical inelastic equations, single crystal models must solve the additional
problem of choosing the active slip systems. This is why, after classical
viscoplastic solutions where all the slip systems are active (Pierce et al.,
1985; Asaro and Needleman, 1985), many authors have proposed their
original solutions (Méric and Cailletaud, 1991; Cuitino and Ortiz, 1992;
Anand and Kothari, 1996; Schroder and Miehe, 1997; Simo and Hughes,
1997; McGinty and McDowell, 2006). The interest of the implicit approach
is that it provides the jacobian matrix needed for computing the consistent
tangent matrix. Classically, the system of ordinary differential equations
is solved by a Newton technique, which is applied to the incremental form
coming from the application of a #—method. For the sake of simplicity, the
present model is restricted to small strain, and linear isotropic hardening.
In such a case, the integration variables are the increment of elastic strain
Ae® and the increments of (visco)plastic shear strain, Ap®, which are pos-
itive for all the slip systems. For the case of time independent plasticity,
these two variables will be deduced from two types of equations:

e The strain partition:

Ag =N+ m'Ap’ (96)

e The expression of the criteria for the active slip systems:
Fr=pel-r =0 (97)
with 7° =m® : A : g° r® = Z hsrp"labeleq : hardx — (98)

As a result, the system to solve is formed of equations (99) and (100):

Fe=—Ac+ Ae® + Z m’Ap” (99)

Fp=m*: A (" + Agf)

p

—To — Z hs7'(pr + Apr) (100)

If the model is viscoplastic instead of being plastic, equations (100) must
be replaced by (101), the equation coming from the strain partition being
unchanged:

ApS 1/n
Fp=|m’:A: (ge—l—Age)’—TO—ZhS,.(pT—i—ApT)—K< Apt > (101)
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This algorithm is implemented in the Zmat library of the Zé&BuLoN
code (Foerch et al., 1997) which has been used for all the simulations of
this chapter.

3.2 Laboratory specimens

It is well known that the stress and strain state is not homogeneous in
“tensile” specimens which are not oriented along high symmetry directions
like {001} or {111}. If the rotations are blocked, the strain heterogene-
ity can even be very high, as illustrated in Fig.9a (Méric and Cailletaud,
1991). Other cases are still more remarkable: torsions of a thin wall tube.
According to the orientation of the tube axis, the number of “soft” zones
around the circumference will change. This can be easily understood by
computing the resolved shear stress along the circumference. For the case
of a {001} oriented specimen, there is four soft zones (Fig.9b), and for a
{111} oriented specimen, six soft zones (Fig.9¢). Note that a series of crite-
ria proposed in the literature for single crystal modelling, which are based
on Hill’s quadratic criterion do not capture this effect, since all the points
of the circumference have the same shear stress. Experiments have been
made to confirm the prediction given by the model. This is illustrated by
Fig.10, which shows the location of the jauges (Fig.10a), meanwhile Fig.10b
and c respectively show the loops measured by the jauges, respectively in
the < 110 > and in the < 100 > areas: the strain measured by the jauge is
on the horizontal axis, and the torsion couple is on the vertical axis. The
Schmid factor is rather small in the second case, thus the behaviour is not far
from purely elastic. On the contrary, < 110 > is a soft zone, with a large hys-
teresis loop. The reader is invited to go back to (Nouailhas and Cailletaud,
1995) for a more detailed view on the tests available. Yield surfaces have
been determined in tension—torsion. It is worth noting that, according to
the ratio between tensile and shear loadings, the softer zones can be either
< 110 > or < 100 > !

Other specimens have also be considered in the past, for instance bicrys-
talline specimens (Méric et al., 1994).

3.3 Turbine blades

Single crystals are used in industry, specially in the hotest sections of the
turbines (for planes or power plants), where they accept higher temperatures
than classical alloys (Cailletaud et al., 2001; Busso et al., 2003). Figure 11
shows a typical computation result performed in cooperation with Snecma
(Safran group): after stress—strain computations, specific post-processing
are used to estimate the creep—fatigue life of the component. The most re-
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Figure 9. Various loading cases producing strain heterogeneties on labo-
ratory specimens: (a) {123} oriented specimen loaded in tension; (b) {001}
oriented specimen loaded in torsion; {111} oriented specimen loaded in tor-
sion;

© ()

(b) ()

Figure 10. (a) Location of the jauges on the tube; (b) soft response of
the jauge located in < 110 > area; (¢) allmost elastic response of the jauge
located in < 100 > area
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Figure 11. (a) Life prediction on a turbine blade submitted to a thermo-
mechanical loading

cent advances in blade design are related to more and more complex shapes,
in relation with aerodynamics which make 3D computations mandatory, and
also with more and more clever cooling systems. Modern blades are hollow,
with a complex network of holes to have cool gas coming from inside the
blade and form a protective film against the combustion gases. This is the
reason why the critical zones are no longer predictable by inspired guessing
from the shape of the blade.

On the other hand, this complex geometry introduces sometime so many
details that they cannot be meshed with a reasonable precision. This is
illustrated in Fig.12a, where a series of 1 mm diameter holes are present
on the leading edge of the blade. The computation with the full geometry
can be made for a reference computation, but the relevant mesh to capture
all the details (several millions of nodes) cannot be used for parametric
studies. In such a case, the weak zone can be globally modelled by means of
homogenised models taking into account the holes. Drilling a hole in a single
crystal will produce a material that does not possess the cubic symmetry.
The axis of the hole is a preferential axis: along this axis, the material
behaviour is unchanged, except that a correction of effective surface has to
be made. For a tension or a compression along the two perpendicular axes,
the behaviour becomes pressure sensitive. The resulting model must then
be an orthotropic pressure sensitive single crystal. An homogenized model
can be calibrated by means of cell calculations, like in Fig.12b and Fig.12c.
The cells are loaded with periodic boundary conditions.

Assuming that the axis of the hole is es, a pressure effect is created for
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Figure 12. Development of a model to account for hole distribu-
tion (Cardona, 2000): (a) industrial component; (b) cell with a hole in
tension; (c¢) cell with a hole in shear

the other two directions, e; and e3 by introducing two new mechanisms in
addition to the normal slip: this is an opening/closure of the hole, driven
by the normal stress in the relevant direction, namely:

e two normal stresses are computed, o1 = e;.g.e; and 03 = e3.g.es

e two variables ' and §° are associated to these normal stresses:

. o —ri\"
51: v

e 6! and 6% have their own contribution to the strain rate tensor, eval-
uated by means of n! = e; ® ¢; and n® = e5 ® e; through the terms:

§lnt + §nd

The holes in the blades generate stress concentrations which lead to crack
initiation. It is then useful to study cracks in single crystals. Due to the
specificity of the yield criterion, the plastic zones ahead of the crack tip have
a particular aspect. This was predicted by early studies made by Rice (Rice,
1987). Experimental veerifications and the related numerical simulations
have been recently made(Flouriot et al., 2003). Figure 13, taken from this
last paper, shows for instance that there is no plasticity in the direction of
the crack ahead of the crack tip in an angle of about +30°, for the case of
a {001} oriented specimen of FCC material.
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(a) (b)

Figure 13. View of the plastic activity ahead of a crack tip. (a) Experi-
mental result; (b) Numerical simulation

4 Finite Element Crystal Plasticity

In the litterature, internal stresses in materials are classified into level I, 11
and III. Level III is the microscopic level, where intragranular stress present
fluctuations inside each grain, with different values in the core of the grain
and near grain boundaries, for instance. Level II denotes the result obtained
at the grain level, after averaging the intragranular stresses. This can be
made grain by grain; In this case, the resulting tensor is defined in each
in individual grain, and takes into account the real neighborhood. Most of
the time, measurements are rather able to capture stress on a given set of
grains having the same crystallographic nature. This leads to an alternative
definintion for level II, that is now obtained after an additional averaging
operation. Level I refers to macroscopical stress, the stress tensor resulting
from the averaging on a representative material element, large enough to
include all the significant phases and grains.

Numerical models are attached to each of these scales. Macroscopic
models naturally relates to level 1. Uniform field models represent level II.
The finite element method with embedded crystal plasticity models (Finite
Element Crystal Plasticity, FECP) can be used to capture stress and strain
fields on level III. It has been applied to calibrate the other levels too. This
is illustrated in the present section.
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(a) (b)
Figure 14. Use of regular meshes for studying large deformations of poly-

crystals and the related texture evolution: (a) 2D (Kalidindi et al., 1992),
(b) 3D (Miehe et al., 1999)

Polycrystal, simplified microstructures In the past, finite element
models have been used either to evaluate the homogenized behaviour of an
aggregate with a predefined microstructure, or to make comparisons with
local measurements in specimens with large grains.

Attempts to derive the global behaviour of an aggregate from the prop-
erties of its elementary constituents by means of 3D finite element com-
putations can be found in the seventies (Engel, 1978). The material was
represented by tetrahedric grains assembled in a cube, with a new crys-
tal orientation for each finite element. The severe limitation at that time
was the power of the computer, so that researchers had to wait for new
generation of machines. Figure 14 shows further typical studies, made on
2D meshes ((Kalidindi et al., 1992)) or 3D meshes ((Miehe et al., 1999)).
In these cases, authors wanted to check the global behaviour of the aggre-
gates, and predict the texture evolution in large deformation. The aggregate
has nothing to do with a realistic microstructure, since each finite element
has its own crystallographic orientation (one element-one grain), figuring
a set of cubic grains with regularly distributed neighbours. The model is
rather seen as an evolution of Taylor’s model, where the kinematic condi-
tions (uniform plastic strain) is known to be too restrictive. In fact, the
results obtained with such crude meshes are not far from Taylor solution:
this is not surprinsing, since there is not enough degrees of freedom to repro-
duce the high heterogeneity present in real aggregates. On the other hand,
the prediction of the texture evolution is often satisfactory. It remains that
the main reliable information that can be taken from these computations
are the so called first order stress and strain fields, that is the homogenized
fields.

Some more complex meshes have then been used, to represent more
precisely the local behaviour. A series of computations are illustrated in
Fig.15. Figure 15a shows the finite element model used to compute the av-
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Figure 15. Examples of meshes used in the literature to represent various
microstructures: (a) two phase material (Bugat et al., 1999), (b) attempt to
capture a realistic grain microstructure (Mika and Dawson, 1999), (c) grain
boundaries on a 3D cubic mesh (Evers et al., 2002), (d) grain boundaries
on 2D hexagonal grains (Kim et al., 2002)

erage stress tensors in a two phase material (Bugat et al., 1999). The first
phase (left) is represented by 20 elementary cubes, the second by 7 elemen-
tary cubes. Introducing symmetries, each phase forms a coninuous periodic
network. The respective volume fraction can be controlled by the size of the
internal cubes. The purpose of the computation is to evaluate a stress level
in each phase, to be used as an input in brittle failure models, that is level
IT stress. The next example in figure (15b) is between level IT and 11, since
a more realistic shape is introduced (Mika and Dawson, 1999). The last
two examples (Fig.15¢ and d) try to separate the interior of the grain and
a grain boundary area. Again, more realistic meshes would provide more
reliable computation of the rspective influence of each zone (Evers et al.,
2002; Kim et al., 2002).

Multicrystal, real microstructures The other traditional type of study
consists in computing real specimens with a relatively low number of grains.
Contrary to the previous case, there is a large number of elements in each
grain, so that the intragranular gradients can be obtained. This allows
authors to illustrate multislip effect (Delaire et al., 2000) inside the grain or
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Figure 16. Examples of experiments and simulation using multicrystalline
specimens: (a) experimental results on a copper specimen (Delaire et al.,
2000), (b) illustration of the perturbation due to grain boundaries on Taylor
factor (Raabe et al., 1981)

at the grain boundaries (Raabe et al., 1981). The state of the art for such
a class of calculations if as follows:
e there is a good agreement between experiments and numerical simu-
lations, specially for large grains;
e grain boundaries are still not well characterised; secondary slip might
be present in rather large zones;
e the behavior of a grain in its environment differs from the behaviour
of the corresponding single crystal;
e the unknown grains under the surface do affect the behaviour of the
surface grains.

Polycrystal, realistic microstructures An other trend in FECP is the
modeling of polycrystalline aggregates, involving a large number of grains
(several hundreds) to capture the polycrystal effect, using realistic synthetic
microstructures to capture the effects of the local morphology and of the
neighborhood, and involving a reasonnable number of elements in order
not to introduce artefacts due to the poor discretization. The interested
reader will consult papers like (Barbe et al., 2001a,b; Diard et al., 2002;
Cailletaud et al., 2004). The most popular solution to generate the numer-
ical model starts from a Voronoi tesselation. As shown in Fig.17a and b,
this construction provides domains around points that are initially dropped
in the material element. The distribution can be random. Alternatively,
a repulsion distance can be introduced, anisotropic distributions can be
considered... Other types of distributions are also in development: they
consider ellipsoids growing at various rates, or other types of assumptions
based on models for grain growth. Having a microstructure in hand, the
next step of a microstructure computation is to generate the finite element



Crystal Plasticity 303

(a) (b) () (d)
Figure 17. Mesh generation using Voronoi tesselation: (a) Distance func-
tion of a set of point sources, (b) Tesselation result after construction and
labelling, (c¢) multiphase element technique, (d) 3D mesh respecting grain
boundaries

mesh. In the past, authors have used either multiphase element technique
(Fig.17¢) or free mesh generation (Fig.17d). According to the first solu-
tion, material properties are affected to the Gauss points according to their
position in a cube which defines the material element. This is a quite flexi-
ble approach, nevertheless, grain boundaries are cumbersome, so that it is
not applicable for a good characterization of the grain boundaries. On the
other hand, free mesh generation do respect grain boundaries, and is a good
starting point to look for real intragranular fields (level IIT).

Figure 18 presents a typical result on a regular 28 x28x28 mesh. Mul-
tiphase element technique has been used. The general behaviour or the
strain fields is to form strain localization lines, as shown in Fig.18b. This
has nothing to do with instabilities, since the material presents hardening
everywhere, on a local and a global scale. This is just the fact that deforma-
tion propagates from one grain to the other, sometime without consideration
of the local orientation. On the other hand, stress levels do respect grain
boundaries. The von Mises equivalent stress field shown in Fig.18¢ is clearly
sensitive to the crystallographic morphology.

Convergence studies have been performed in (Barbe et al., 2001a,b).
The most remarkable points are the following:

e For moderate strains (a few percent), quadratic meshes with full inte-
gration provide more precise results than linear meshes, for the same
number of nodes. Nevertheless, an oscillation due to the spherical part
of the stress tensor may appear when classical element are used. Mixed
elements introducing the trace (and eventually the volume change) as
a degree of freedom provide more stable results. Alternatively, a post-
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Figure 18. Typical results on a polycrystalline aggregate: (a) a 28x28x28
mesh with 200 grains, (b) local field of total axial strain, (c¢) local field of
von Mises stress

treatment of the result can be made, to replace the trace on each
Gauss point by the trace of the element.

Reaching a stable curve for level I stress (macroscopic level) is rather
easy. This can even be achieved with a one element—one grain mesh !
The variations observed on a tensile curve reaches only a few percent
with two hundred grains for various mesh size.

Level III stresses and strains are much more difficult to capture. For
coarse meshes, the localization areas are not well defined, they are too
large, but the maximum values are too small: the finer the mesh, the
higher the maximum stress (or strain), the lower the minimum stress
(or strain). This is illustrated in Fig.19, on a slice made in several 3D
meshes, with an increasing number of elements.

Fully constraint boundary conditions (imposed strain) provide the
most homogeneous fields, and the highest resulting stress (at level I).
Figure 20 shows the resulting axial strain—axial stress curves for each
of the 200 grains of a polycrystalline aggregate (level II). In Fig.20a,
the stress—strain state of the grains follows the Berveiller—Zaoui ap-
proach, which will be explained later (section 5.2): for a given time
step, they are along a line whose slope decreases with strain. Ac-
cording to this uniform field model, each grain is surrounded by all
the other grains. This is not the case in the finite element method,
so that the distribution is not so smooth. Tension under strain con-
trol (Fig.20b) produces m ore scatter in stress (low scatter on strain),
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range: 0.012 — 0.058 range: 0.007 — 0.077
Geom 10 x 10 x 10 10 x 10 x 10 elts 18 x 18 x 18 elts

A

range: 0.003 — 0.083 range: 0.003 — 0.089
Geom 32 x 32 x 32 28 x 28 x 28 elts 32 x 32 x 32 elts

Figure 19. Evolution of the local strain field (von Mises equivalent) for
various mesh sizes, for an axial tension (0.2% in the vertical direction, 200
grains) on a quadratic mesh

meanwhile tension under stress control (Fig.20c) produces more scat-
ter in strain. The graphs in Fig.20d, e, f show the results for the
lateral stresses, whose average is equal to zero. This plot shows that
the stress state is triaxial inside the aggregate, even for a tensile strain.

e As far as level I1I is concerned, free faces promote scatter: for a given
mesh, the computation performed with a free face will produce lower
values and smaller values than the computation made under prescribed
strain. The same observation is made inside the grains. Grain bound-
aries promote also scatter: in its vicinity, maximum stress or strain
increase, minimum stress or strain decrease (see Fig.21).
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Figure 20. Local stress-strain curves for 200 grains for different boundary
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Figure 21. (a) Equivalent plastic strain (von Mises) versus dist to the GB;
(b) Equivalent stress (von Mises) versus dist to the GB
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Recent developments

In the preceding examples, Finite Element Crystal Plasticity has been used
either directly to compute specimens or components made of a single crystal,
or in representative material elements. For this last case, the output can be
the macroscopic stress and strain fields, the stress and strain fields in the
grains or the local intragranular fields (level I, II, III respectively). Results
at level I and II are devoted to a calibration of macroscopic or uniform field
models. Level IIT is more and more interesting, since the meshes are now
large enough to capture details near critical zones like grain boundaries.
On the other hand, this is the relevant scale to open dialogs with other
scales and other types of plasticity models, like the dynamic dislocation
simulations. Level IT or III can be the relevant scale to introduce failure
prediction models, like cleavage or integranular damage. Some example of
recent trends are now mentioned in this section.

Figure 22 shows the modeling of a test on a OFHC copper specimen.
Serial cuts were done to get the microstructure geometry below the surface,
so that the grain shape is known on a parallelipipedic box whose depth
is 100 pm, and the surface 200 pmx150 pm. Crystal orientations were
characterized by OIM. The material is modelled by the constitutive equa-
tions shown in section (2.2). The material parameters are fitted on the
macroscopic tension curve. Simulated results (strain and rotation fields)
are in good agreement with the measurements made by image comparison
technique (Musienko et al., 2007).

As stated previously, grain boundaries are the place where specific phe-
nomena may arise. This is the case when SCC mechanisms are active, for
instance in fuel assemblies of PWR. The expansion of the uranium dioxide
pellets may produce an interaction with Zy4 (a zirconium alloy) cladding,
producing the so called Pellet—Cladding Interaction, that generates inter-
granular cracks, whose propagation is promoted by iodine due to the nu-
clear reaction, then cleavage and failure of the tube. The mechanical effect
is related to an indentation of the tube by pellets: as a consequence, the
affected zone is very small, and important gradients can be observed on the
first few grains under the surface. An appropriate model has then to take
into account the crystallographic character. The numerical model devel-
oped (Cailletaud et al., 2004) introduces a coupled FE calculation: iodine
adsorption at the grain boundaries is represented by a diffusion calculation
(where the diffusivity strongly depend on damage of the grain boundary,
so that the high concentration profile follows the crack propagation) and a
mechanical calculation (where grain boundary affected zones are represented
by specific constitutive equations). A catastrophic process is produced by
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Figure 22. FE computation of a copper specimen. (a) OIM analysis on
serial cuts in the specimen, (b) associated mesh, (c¢) contour of equivalent
plastic strain for a macroscopic strain of 5% (range for local strain is 0-
0.214)
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Figure 23. Example of mesh generation with grain boundaries : (a) 2D,
(b) 3D

the fact that iodine concentration promotes damage, and damage promotes
iodine advance in the grain boundaries. 2D and 3D meshes are available
(Fig.23).

The model introduces an affected zone in each grain, so that the grain
boundary is made of two elements. In these area, the model collects first
the slip systems of the grain it belongs to: basal, (predominant) prismatic
and pyramidal slip planes are present, since the material has a HCP mi-
crostructure. Three other scalar variables are present, to represent Damage,
Opening and Sliding of the grain boundary (DOS model). Grain boundary
opening mechanisms is built with the tensorial product of the normal vector
n to the grain boundary by itself, meanwhile grain boundary sliding is built
with the tensorial product of n by the tangent vector in the grain boundary
plane, t. Damage is introduced in the model to increase the rate of opening
and sliding. Its evolution depends on a critical variable which account for
the normal and the shear stresses on the grain boundary. The resulting
equations are given below:

e Elasticity and plastic flow
="+ ¢ (102)

-

Strain decomposition:
Elastic law with isotropic damage: c=(1-D)L:e° (103)

Opening and sliding: e =bnon+inet
(104)
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e Flow rules for opening and sliding

. 1-D)—R,\™
Opening: o= << o> /( ) > (105)
1—-D)—R\™
Sliding: 4 = <T/ (1-D) t> sign(r) (106)
K
e Damage evolution
Critical variable: op = /o2 + B2 (107)

. —Rp\"
Damage evolution: D= <0D A D> (1-D)~* (108)

Figure 24 illustrates typical results obtained with the 2D aggregate of
Fig.23. Maps (a-c) illustrate the intergranular crack propagation which is
obtained by solving the mechanical problem only. In this case, cracks initiate
everywhere in the material element, and the propagation is a mixture of
crack growth and coalescence. For maps (d-f), iodine is introduced at the
left edge of the mesh, so that the grain boundaries are more critical at this
point. One main crack propagates. It is worth noting that crack branching
can be seen for each triple point. The crack propagation rate is in good
agreement with the experimental results. 3D simulations are still necessary,
in order to capture the real aspect of the cracks in space and avoid the
artefacts related to 2D computations (a crack is too critical, since it crosses
the whole mesh in the third direction !).

Fatigue—fretting is an other case where the description of the material by
a crystal plasticity model can be very helpful. Figure 25 shows the numerical
model developed to simulate a disk—plan test, both of them being made of
a titanium alloy. Grain size is around 50 pm, so that the stress gradient
under the surface corresponds to a few grains in depth (Dick and Cailletaud,
2006).

A typical effect related to the use of crystal plasticity instead of a tradi-
tional Jo model is shown in Fig.26: after some fretting cycles, local hetero-
geneities propagate much more in crystal plasticity than with a von Mises
material; eventually, local ratchetting can be observed, so that, starting
from the analytical value of the stress profile computed in elasticity (Hertz
solution), von Mises model leads to a smoothly modified curve, but crys-
tal plasticity produces a highly heterogeneous field, in which the maximum
stress can locally increase. This may have important consequence for the re-
sponse of subsequent damage models, trying to predict either wear of crack
initiation.
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Figure 24. Crack propagation predicted by intergranular damage evolu-
tion : (a,b,c) non-coupled case; (d,e,f) coupled case

5 Uniform field models

Developing models at level IT can be considered as an interesting alternative,
that allows the user to represent the constitutive equations of each phase,
and avoids unjustified mixture rules. The resulting models are more complex
than the models on the macroscale, but they are still manageable, either in
drivers of constitutive equations or even in finite element codes.

5.1 Yield surfaces

This section illustrates the transition from a single crystal surface, as
shown in Fig.6, that results from a collection of hyperplanes in the stress
space, to surfaces for directionnally solidified (DS) or polycrystalline ma-
terials. An uniform elasticity is assumed for each grain, so that the local
stresses are equal to the macroscopic stress in the elastic regime. In DS
material, grains are supposed to have the same (001) axis, and random ori-



312 G. Cailletaud
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Figure 25. Geometry of the mesh used for the numerical simulation and
grain morphology
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Figure 26. Comparison if the evolution of the contact pressure for J2
plasticity and for a crystallographic model
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Figure 27. Yield surface for a DS material: (a) geometry of the aggregate,
(b) yield surface in the o11—012 plane, (c) yield surface in the o33-031 plane

entation in the plane perpendicular to (001). The loading axes (x1,x2,23)
coincide with the crystallographic axes. The resulting model for such an ag-
gregate still presents crystal characteristics in the plane o33—03; (Fig.27¢),
due to the reduced number of slip systems available for shear. On the
other hand, the shape of the criterion in oq11-012 plane (Fig.27b) looks like
a macroscopic isotropic model. The present figure was plotted with only
three orientations, whose axis (100) makes an angle of 0°, 30°, 60° with ;.
The references to Tresca and von Mises are built by supposing that the criti-
cal shear stress for Schmid’s law in each single crystal is taken as the critical
shear for Tresca (the difference between the two extreme eignestresses), and
as the octahedral shear for von Mises (the square root of the half of the
sum of the squares of the three differences between the eigenstresses). A
full characterization of the elasto-plastic behaviour of this material can be
found elsewhere (Sai et al., 2006).

On the other hand, if the construction is made for a polycrystal with
random orientations (Fig.28), the resulting criterion is isotropic, and reaches
exactly Tresca criterion (the present plot uses 1000 grains).

5.2 Scale transition rules

As observed previously in FE computations, plastic or viscoplastic flows
are heterogeneous in the aggregates. The plots of Fig.20 demonstrate that
neither stresses nor strains are uniform from one grain to the other. The role
of the scale transition rule is to provide an estimation of the stress tensor in
each grain. The purpose of this section is to make a quick overview of the
various rules and of their physical meaning. The following notations will be
used:

e Stress in phase g, macroscopic stress: g¥, g = Zg f9g9



314 G. Cailletaud

VAN At

(b) ()

Figure 28. Yield surface for an isotropic polycrystalline material: (a) ge-
ometry of the aggregate, (b) yield surface in the o11-012 plane, (c) yield
surface in the o33—03; plane

e Strain in phase g, macroscopic strain: €9, € = Zg fe9
e For an uniform local elasticity, the macroscopic plastic strain is also
the average of the local plastic strains: e? = > f9eP9
More detailed comments are given elsewhere Besson et al. (2001). The
most popular models correspond to the following assumptions:
e Static, uniform stress, o9 =g
e From Taylor to Kroner
— Taylor (Taylor, 1938), uniform plastic strain, eP9 = P
— Lin—Taylor (Lin, 1957), uniform total strain, €9 = g
— Kroner (Kroner, 1971), elastic accommodation

g/=g+A:(L-9)("—£")

~ ~

where A is the elastic tensor and .S the Eshelby tensor (Mura,
1987).

— Kroner for an isotropic material (elastic and plastic) and pressure
insensitive plasticity

2 —
g’ =g+ po(el — ) with a= 1é7(1 _53

e Tangent and secant approximations (self-consistent framework)
— Hill (Hill, 1965), elastoplastic accommodation

g?=¢+L":(g—¢%

where L* is a tangent accommodation tensor.
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Figure 29. An illustration of polycrystal modelling: (a) actual aggregate,
(b) collection of auxiliary problems

— Berveiller-Zaoui (Berveiller and Zaoui, 1979) estimation, with «
varying typically between 1 and 0.001 (valid for the particu-
lar case of isotropic elasticity, pressure insensitive plasticity and
spherical inclusions), as shown later in equation (113)

g’ =g+ pae” —g") with o=

e Viscous and viscoplastic scheme
— Budianski, Hutchinson, Molinari. . . (Hutchinson, 1966; Molinari et al.,
1987)

— Translated fields (Sabar et al., 2002),

g - - SN 4 ug
g? =g +2u(l ﬂ)(3n+2ng§ e")
e Parametric scale transition rule
— Cailletaud, Pilvin, 8-model , that will be developed below.

The way the models are obtained in the self-consistent framework is
illustrated in Fig.29, which shows that all the realizations of a given grain
orientation in the aggregate are put together into a single sphere, that is
embedded in the homogeneous medium. The solution of the problem is
then obtained as a collection of auxiliary problems, leading to an implicit
scheme, since the behaviour of the homogeneous medium is not known. The
calculation result will have the shape:

g=%+L":(E-¢ (109)
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with L*, accommodation tensor:

L =g (g7 -

QN

) (110)

The value of Lef f is obtained by solving the following implicit equation
(Hill, 1965):

LY =< L@+ L) @ 4 ) > (111)

For the classical case of uniform elasticity, incompressible plastic flow,
radial loading path, a simplified expression can be written, with u’, actual
shear modulus, and ' = 2(4 — 5/)/15(1 — /)

/’L/(l - /6/) 2P _ 2pg
Bu+(1—p)w (=€) (112)

For pure tension, assuming v = 1/2 and introducing the secant modulus
H = o /eP, the model can be simplified:

67 =6 +2u

wH

P _ P9 113
fe 2, & =) (113)

0g =0+

At the onset of plastic flow, H tends to infinity, so that Kroner’s rule is
recovered. The accommodation factor C' = (09 — )/(e? — €P9) decreases
when plastic strain increases. This expression is easy to manage, neverthe-
less its domain of application is limited. This is why the —rule has been pro-
posed (Cailletaud, 1987; Pilvin and Cailletaud, 1990; Cailletaud and Pilvin,
1994).

The goal of this model is to represent the plastic accommodation, like
Hill’s approach, but in an explicit formulation. Instead of having a non
linear multiplicative term and a linear dependency from the difference be-
tween local and global plastic strain, like in Berveiller—Zaoui’s approach, it
was decided to keep the linear multiplicative term (like in Kroner’s formu-
lation), and to introduce a new phenomenological variable instead of plastic
strain to account for non linear accommodation.

The local stress decreases when the grain becomes more plastic than the
matrix, so that a typical shape of the model is:

g =g+C(8-4) (114)

with
B=> f,8 (115)
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[ is the volume fraction of phase g, 87 characterizes the state of redistri-
bution. b

The new interphase accommodation variables 37 follow a kinematic evo-
lution rule. Two evolution laws have been tested in the past.

- rule 1: 37=¢ — D4, 37 (116)
- rule 2: B'=¢9 — Dg (B9 — 5¢Y) (117)

In the two rules, the equivalent strain rate in the fading memory term can be
replaced by the sum of the slip rates on all the slip systems. Rule 2 is nothing
but a combination of a linear an a non linear term; a quick manipulation
shows that the expression can be recovered by assuming @ = 6@1 +(1- 6)@2

and:
.1

s
The parameters C, D and § are not free material coefficients, but scale
transition parameters. Kroner’s model can be found as a particular case by
assuming that D = § = 0 and C' = p. This is consistent with the fact that,
at the onset of plasticity, the matrix behaviour deviates only a little from
elastic behaviour, and an elastic accommodation is the proper response of
the material. On the other hand, the rest of the parameters can be cali-
brated by means of more complex approaches, namely finite elements. For
this purpose, a series of realistic aggregates (in terms of morphology and
crystal orientations) must be selected. A large number of aggregates must
be computed, to have a chance to place each grain orientation in an envi-
ronment which is representative of all the grains (this is not the case for one
unique computation, since, statistically, each real grain has between 15 and
25 neighbours only). A post-processing allows then to compute the macro-
scopic stress—strain curve, and the average values in each crystallographic
phase. The identification of the coefficients can then be made by solving an
inverse problem. The goal is to fit, not only the macroscopic curve, but also
the local stresses and strains with the S-model. Note that this information
is rather rich, so that it may be difficult to reproduce the local stresses (even
if is it rather easy to get the global behaviour).

. 22 . .
& and §'=¢" - DB,

5.3 Complex paths

When coupled with a crystal plasticity model in each grain, the (-rule
has been found able to provide interesting effects, which were observed in
the litterature, but that cannot be modelled by macroscopic approaches,
except by adding specific variables. Two classical examples are shown here:
figure 30 illustrates the example of the so called memory effect, that is
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Figure 30. Illustration of the strain memory effect coming from the slip
system activation

present for instance in austenitic stainless steels (Chaboche et al., 1979).
Three successive loading levels are applied to a tension—compression speci-
men, the first amplitude is 0.5%, the second one is 1.5%, and the third one
0.5% again. The maximum stress at the third level is much bigger than
the stress at the first one, even if the range is the same. The model repro-
duces correctly this effect due to a more intense slip system activation at
the second level.

An extra slip system activation is also present for non proportional load-
ing. This type of load (sinusoidal imposed tension and shear with a phase
lag of 90°) is know to produce maximum stresses on each components much
larger than the corresponding load type for a proportional loading. Fig-
ure 31 shows the response in the tension—shear stress plane, and the history
of the von Mises stress as a function of time. The illustration of the slip
system activity for the same test is shown in Fig.32, by comparison with
the result of a tensile test. The material has a FCC microstructure, and the
slip systems are represented on unfolded Thomson tetrahedra (four planes
represented by triangles, with three subtriangles in each of them figuring
the slip systems). The number of active slip system is 2.17 in average for
a tension at 1.5%, meanwhile the number is 3.25 for the non proportional
loading at the same equivalent strain. All these effects are discussed else-
where Cailletaud (1992).
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Figure 31. Extra-hardening due to non-proportional loading: (a) response
in the stress plane, (b) evolution of the equivalent stress

(a) Average number per grain: 2.17 (b) Average number per grain: 3.25

Figure 32. Illustration of the local behaviour of a FCC aggregate: active
systems are in white (a) case of a proportional loading, (b) case of a non
proportional loading
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6 Conclusion and perspectives

Classical crystal plasticity is now a mature theory. The material parameters
have been identified for many materials, so that the models can be used for
a large number of academic or industrial applications. The goal of the
present section was then to summarize a few possibilities of the models,
with a special view toward the operational aspect, that is their practical
use. A series of related subjects are not considered here, but would be of
interest for continuing the discussion.

One of the main extension of the classical framework is proposed
by the theory of generalized continua. There is an profuse litterature
on the subject. The reader can check for instance a recent synthesis
in (Papenfuss and Forest, 2006). These extended theories have already been
applied to single crystal (see for instance Forest et al. (2000, 2002)). This
new type of approach allows the user to take into account size effect, that
is specially meaningfull for materials that present small grains or specific
heterogeneous microstructures (like v—y').

The second type of connection is to be made with other classes of ap-
proaches. For collecting information at the scale of the grain, or, generally
speaking, on submicronic sizes, the relevant theories do not refer to con-
tinuous, but to discrete modeling frameworks. This is the case of discrete
dynamics of dislocations (DDD), and of molecular dynamics (MD), which
have both their own space and time scales. In the future, the progress of
these approaches will allow to provide inputs for the higher scales: one will
bridge the lenghtscales by taking information for DDD from MD, and for
crystal plasticity from DDD (see the rest of the present course).

Finally, a previously unattained chance of progress is now given to the
theories devoted to material modeling by the advance of experimental tools
and methods. Field measurements are now possible, with a very good defi-
nition (Musienko et al., 2007; Kempf et al., 2007). Using powerfull beams,
experimentalists will be able to provide data like 3D-microstructure shape
and crack population inside the material. Having in hand local data and
local material modeling, one will be able to develop new classes of damage
models, based on real mechanisms at the microstructure level.
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