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1 Introduction

The concept of dislocation was introduced by Polanyi, Orovan and Taylor
in 1934 to explain the almost three orders of magnitude difference between
the measured and theoretically estimated flow stress of crystalline materials.
During the next 20-30 years, thanks to the contribution of a vast number of
scientists, the theory of dislocations was successfully applied to explain sev-
eral properties of the plastic deformation observed experimentally. Among
other things the basic phenomena leading to work and precipitation hard-
ening were understood [1, 2, 3].

On the other hand TEM investigations revealed that dislocations formed
during plastic deformation tend to form different dislocation patterns, like
the cell structure (see Figure 1.) developing at unidirectional load [4], or the
so called ladder structure (see Figure 2.) developing under cyclic loading [5].

In spite of several attempts (Kuhlmann-Wilsdorf et.al. [6, 7, 8], Holt [9],
Walgraef and Aifantis[10, 11, 12], Kratochvil et.al. [13, 14, 15]) proposed to
model the pattern formation, we are far from the complete understanding of
this typically self organizing phenomena. One of the most striking features
of the dislocation patterning, which is a great challenge to model, is the large
variety of the patterns observed. The variety manifests itself not just in the
”geometry” of the dense dislocation regions but also in several statistical
properties of the different dislocation ensembles. It is known for example
that cyclic loading can lead to periodic structures with well defined self
selected length scale [5], while unidirectional loading often results in fractal
like structures which do not have any length scales (Hahner et.al. [16, 17]).
Another interesting feature of the patterning process observed recently by
X-ray diffraction (Székely et.al.[18, 19]) is that in case of unidirectional
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Figure 1. Dislocation cell structure obtained on Cu single crystal oriented
for multiple slip [4].

Figure 2. Ladder structure obtained on Cu single crystal deformed cycli-
cally [5].
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loading the relative dislocation density fluctuation o2 defined as
o=V pr(F)dBT.
[f p(P)dor]*

where p(7) is the dislocation density and V is the crystal volumes, under-
goes a sharp maximum as deformation proceeds (see Figure 3). The result
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Figure 3. Relative dislocation density fluctuation versus applied stress,
obtained on Cu single crystal oriented for multiple slip. The two curves

correspond to relative dislocation density fluctuations determined from the
broadening of (200) and (220) Bragg peaks [18, 19].

indicates that during plastic deformation the dislocation system tends to
become more and more inhomogeneous, but after a certain deformation
level (depending on the crystal orientation and temperature ) this separa-
tion process cannot continue any longer and the system becomes more and
more homogeneous.

Another challenging problem intensively studied nowadays ( Flack et.al.[20],
McElhaney et.al. [21]) is that resent experimental investigations revealed
(see Figures 4 and 5), if the characteristic size of a specimen is less than
about 10um the plastic response of crystalline materials depend on the size.
The phenomenon is commonly called "size effect”. One can easily explain
this size dependence by assuming that the crystalline materials have an
internal degree of freedom which "feel” the sample surface. This immedi-
ately indicates that a theory able to account for the size effects has to be
non-local, since the sample surface is ”"seen” from the bulk. The simplest
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Figure 4. Normalised torque versus shear deformation obtained on torsion-
ally deformed wires with different diameters a. The curves indicates, if a
is smaller than 50um, the hardening of the wires increase with decreasing

diameter [20].
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Figure 5. Microhardness versus indentation depth obtained on cold rolled
Cu. It can be seen, if the indentation depth is less than 1um the micro-
hardness increases with decreasing indentation depth [21].
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possible way to introduce nonlocality is to add gradient terms to the ”local”
ones. There are several different phenomenological ways to do this. As a
possibility one may introduce an effective shear stress 7.5 as

Teff = T(77 /3/7 ) + ,Uzl2A’}/7 (2)

where 7(,7%, ...) is the ”classical” local stress-strain relation, v is the shear
deformation, p is the shear modulus and [ is a parameter with length dimen-
sion. It is important to stress that [ has to be introduced for the appropriate
dimension of the second term. Since size effects appears at micron scale,
the value of [ needs to be in the order of pum.

During the past 10 years several non-local plasticity theories based on
similar arguments explained above have been proposed (Aifantis [22, 23, 24],
Flack and Hutchinson [25], Gurtin [26], Svendsen [27]) and successfully
applied to explain experimental results. However, these phenomenological
non-local theories suffer from the common drawback, namely, the physical
origin of the gradient terms are not clear. This is especially pronounced
if one tries to explain the origin of a material parameter (1) with a value
around pm.

On the other hand, we know that in crystalline materials plastic defor-
mation is carried out by dislocations. They definitely act as internal degrees
of freedom. Due to the long range stress field of dislocations they ”feel” the
sample surface. This indicates that size effect is the result of the collec-
tive motion of dislocations. The results of discrete dislocation dynamics
simulations clearly demonstrate this (see Nicola et.al. [28]).

The aim of the present paper is to explain how the collective behaviour
of dislocations can be treated within a statistical physics framework. Since,
however, the dislocations form a strongly dissipative system, the classical
theory of statistical physics developed for Hamiltonian systems cannot be
directly applied. In the first part of the paper the field theory of dislocations
developed by Kroner and Kosevich is summarised [29, 30, 31, 32]. Although,
the Kroner and Kosevich theory is not able to capture all the statistical
features of dislocation systems, it plays an important role in our further
considerations.

In the second part of the paper it is shown that for a simple 2D dislo-
cation configuration a continuum theory of dislocations can be rigorously
derived. According to numerical investigations it is able to account for cer-
tain type of size effects. At the end of this chapter, attempts to generalise
the results for 3D are shortly explained.

Finally, in the last part the properties of the internal stress distribution
generated by dislocations are discussed.
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2 Kroner-Kosevich field theory of dislocations

2.1 Nye’s dislocation density tensor

Shortly after the concept of dislocation was introduced, the elastic field
generated by dislocation loops was determined (see for example [1]). In the
early 1950s Kroner and Kosevich reconsidered the problem and proposed an
extremely elegant formalism to describe the elastic properties of dislocated
crystals. In this section the dislocation field theory they have developed is
shortly summarised. For more details the reader is refereed to [29, 30, 31,
32].

Let us consider a body subject to shape change. Its deformation is
uniquely described by the displacement field @(7). In the small deformation
limit the change of atomic distances is measured by the total deformation

tensor
~ di
t =
(6 M m> | )

(For better understanding expressions are given both with component and
tensor notations. Tensors are denoted by hats.)

In the common theory of elasticity it is assumed that the stress tensor
6 is a unique function of the deformation tensor €. In linear elasticity
considered in this paper

045 = Lijklefk ((3' = IA/ : @t) (4)

t 1 {(’ml + auj:|

Eij a 2 a’l“j 8ri

where L is the tensor of elastic moduli.

Deformation of a body, however, does not necessarily leads to the devel-
opment of internal stress. If we cut a body into two pieces along a plane,
slide the two parts with respect to each other and glue them together, the
deformation is obviously nonzero along the plane, but the final stage is stress
free. This means, the deformation can have a part which generates stress
and another one which does not. According to this, the starting point of the
plasticity theory explained below is that the gradient of the displacement
field commonly referred as total distortion is the sum of two terms, the so
called plastic (37) and elastic (3) distortion i.e.

ou

or dr

; di 5 4

! =B+ B ( =ﬁ+ﬁp)- (5)
1

It needs to be mentioned, that the above expression is valid only in small
deformation limit. For large deformations, as a constitutive rule, it is com-

monly assumed that the final deformation stage of the body is reached by
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two successive steps, a plastic and an elastic deformation. For small de-
formations this is equivalent with Eq. (5 ). For the sake of simplicity we
consider only this case.

Splitting the total distortion into two terms is rather formal so far. The
plastic and elastic distortions need to be defined. It has to be mentioned
at this point that, as it is explained in details below, the separation is not
unique.

As it is indicated by its name the elastic distortion is that part of the
total one, which is related to the stress developed in the body due to the
deformation. In linear elasticity

0ij = Lijua Bk (6 =L: B) . (6)

However, due to the symmetric properties of ﬁ, ¢ determines only the sym-
metric part of S. With other words, the stress determines only the elastic
deformation ¢ defined as

1 L
€ij = 2(51‘;‘ + Bji) <€ = [5} ) . (7)
sym
From Egs. (6,7) the elastic deformation reads as
;=L (=130
€ij = Lo = 20, (8)

where L~1 denotes the inverse of the tensor of elastic moduli.
The next step is to define the plastic distortion. Since, by definition, the
total distortion is the gradient of the displacement field, it is curl free, i.e.

Cikl 8“ 87‘1‘ =0 <V X dr = O) N (9)

where e;i; is the antisymmetric tensor. The plastic distortion, however, is
not necessarily curl free. After Nye [33] the curl of the plastic distortion
is called dislocation density tensor &:

0

Ny (a —V x BP) (10)

Qij = €ikl
(In the literature & is often refereed to Nye’s dislocation density tensor.)
From Egs. (5,9,10) one easily obtains that

Qij = —€ikl

81 By (a = -V x B) . (11)
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In order to see the physical meaning of & introduced above, let us consider
its integral for an arbitrary surface A

A

From the (11) expression of &, with the help of the Stockes’ theorem, one
can find that

0
bj = —/ eikla ﬁljdAi = — ]{ﬁi]‘dsi = — %duf (13)
A Tk

Equation

b; = — f dug (14)

obtained is the one Burgers originally used [34] to define a dislocation as
a singularity of the elastic displacement field #¢. Therefore, & defined by
Eq. (10) is the net Burgers vector of line singularities crossing a unit area.
From Eq. (12) one can easily find that for a single straight dislocation

ai; = 1ib s (€) (a =lobs® (5)) : (15)

where [ is the tangential vector of the dislocation line and ¢ is the distance
from the line.

Before we proceed further, it should be mentioned that the dislocation
density tensor does not define uniquely the plastic distortion. Knowing &
leaves 37 uncertain up to a gradient of an arbitrary vector field. However,
as it is explained below, this does not affect the stress field created by the
dislocation system.

2.2 Internal stress generated by the dislocation system

In order to derive the field equations, let us consider the symmetric part
of the total distortion. According to Eq. (5)

1 a’U,j 5‘uz P du A ~p
=€ + € = , 1
9 <8’["i + 87‘]) €ij +Ez] <|:df,:| o €+ € ( 6)

where € and €P are the symmetric parts of the elastic and plastic distortions,
respectively. Using the curl grad = 0 identity one can find that

0 0 (0Ou; Ouy di
—CikmC€jin = 5 = (1
Cikm il ory Oy (87"1' * 87“]'> 0 (V 8 |:d7":| sym v 0) ( 7)
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It is useful to introduce the tensor operator inc (”incompatibility”) defined
as

. 0 0
inc = —eikmejin O Oy’ (18)
With this definition Eq. (17) reads as
du
i =0. 19
inc [dfl . (19)

For further considerations it is useful to introduce the symmetric tensor
field

0 0

Mij = —€ikm€jin Oy Or, €Emn (incée=n). (20)

After a long but straightforward calculation one can obtain from Egs. (10,
16, 19, 20) that

1 0 0 A
ij = 4 (ejln o, Qim, + €iln o, ajm> (77 = [a x V}Sym> . (21)

By substituting Eq. (8) into (20) we arrive at the equation that the stress
created by the dislocation has to fulfill:

o 0 __ . A .
Nij = —C€ikm€jin Ory O, Lmiwpaop ( inc (L 10) = 77) . (22)
Since, for an arbitrary vector field f

inc df
dr
sym

Eq. (22) itself does not determine 6 completely. However, supplementing it
with the equilibrium condition

0. (23)

0 o
ors o5 =0 (dive =0) (24)

we already have enough equations to determine the stress field generated
by the dislocations.
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2.3 Second order stress function tensor

Like in electrodynamics it is useful to reformulate Egs. (22,24) into a
potential theory. Let us introduce a second order stress function tensor y
defined with the relation

o 0 o
0ij = —€ikmEjin Oy O Xmn (6 = inc X). (25)
Due to the identity
div inc=0 (26)

the (22) form of 6 guarantees that the equilibrium condition (24) is fulfilled.
With the stress function tensor introduced above Eq. (21) reads as

L 0 9 0 0

Nij =  CikmCjinCoquCpuwls Xvw
J J =P mmnop 87’k C{)Tl C{)Tq 87’u

(h = inc (i—l inc x)) (27)

For an anisotropic medium the above equation is rather difficult to solve,
but for isotropic materials, with shear modulus p and Poisson’s ratio v, a
general solution can be obtained. It is expedient to introduce another tensor
potential X’ defined as

1 1%
U i — 5ii 2
X’LJ 2//1/ (XJ 1+2Vka J> ( 8)
v
Xij = 21 (Xéj t_ VXZk%) : (29)

By inserting Eq. (29) into Eq. (27) one can find, if ¥’ fulfills the gauge
condition

0

67"~ng =0 (div ¥’ =0) (30)

Eq. (25) simplifies to the biharmonic equation
VX = mij (VX' =1). (31)

A remarkable feature of this equation is that the different components of ¥’
obey separate equations making the problem much easier to solve. For an
infinite medium the general solution of Eq. (31) is

X” = 871-///|T_T|n” Yav’ (32)
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2.4 2D problems

In the next section the statistical properties of an ensemble of parallel
edge dislocations are discussed. In this case the stress and the strain do not
vary along the dislocation line direction [ Taking I parallel to the z axis
(with I'= (0,0, —1) in the above expressions the derivatives with respect to
z vanish (0/90z = 0). One can find that Eq. (25) simplifies to [30]:

2 2 2
0’11:—8><7 Jzzz—ax, g12 — aX, XEX?)S (33)
dy? 0x2 0xdy
09 _0¢ _ Oxe3 | Oxm
IBT g TBT g ¢ = or oy (34)

Furthermore, from Eqs. (21,27) one obtains that the two scalar fields x and
¢ introduced above obey the equations

i 2p o 0 -
Vix=,_ (b oy b2y (Pa+ — pa-) (35)
V29 = pbs(par — pa-); (36)

where by, by and by are the z, y, and z directional components of the Burgers
vector, respectively. The notations pgy and pg— stand for the dislocation
densities with positive and negative signs, respectively, They are the sum of
0(7—7;) Dirac delta functions, were 7; denotes the position of a dislocation.
For the sake of simplicity we assumed that all dislocations belong to the
same slip system (single slip), but the expressions can be easily generalised
for multiple slip.
For an infinite medium the solutions of Eqgs. (35,36) read as

xm:%j“)/(%g—mijmmm—m<mm%mfﬁwn
and

mmz—wfﬂWAH—Wmewaff (38)
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2.5 Time evolution of the dislocation density tensor

As it is explained above, if we know the dislocation density tensor (i.e.
we know the dislocation line geometry) the internal stress field can be de-
termined from Eq. (27). This is however, only a ”static” description. In
order to be able to describe the response of the dislocation system to exter-
nal signals, the governing equations of the time evolution of the dislocation
density tensor should be determined.

If we take the partial time derivative (denoted by ” -” ) of Eq. (10), we
find that

. 0 . : 5
Qij + € ark]lj =0 (a +Vxj= O) (39)
where

j=—p (40)

is called dislocation current density [31]. The above equation is the ”conser-
vation law of the Burgers vector” in differential form. Indeed, if we integrate
both sides of Eq. (39) for an arbitrary area contoured by the closed curve
L, according to Eq. (12), we obtain that

db; .
_ iids; 41
dt jij jds (41)

It is obvious from this relation that j is the Burgers vector carried by the
dislocations crossing a unit length part of the contour line L per unit time.
For an individual dislocation one can find that

jie = eitmlivmbrd® (€) (j = x®)ob 5<2>(g)) , (42)

where v is the velocity of the dislocation line at a given point. It is impor-
tant to note that if we added the gradient of an arbitrary vector field to J
given above, this would also satisfy the conservation law (39). The problem
is obviously related to the non-uniqueness of the plastic distortion discussed
earlier. However, expression (42) is the only one which is physically mean-
ingful. One expects that there is no plastic current anywhere else but at the
dislocation line. Nevertheless, strictly speaking we have to postulate this.
The above results clearly show that j has to be considered as an inde-
pendent quantity. In order to be able to describe the time evolution of the
dislocation system we have to set up a constitutive relation which gives how
7 depends on the dislocation density tensor and the external stress. Due
to the long range nature of the dislocation-dislocation interaction, the con-
stitutive relation is obviously non-local in &. Beside this, the constitutive
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relation has to be able to account for several different "local” phenomena
(self loop interaction, junction formation, annihilation etc.) making even
more difficult to determine its form.

One possible approach to handle this problem is to set up the constitutive
relation from phenomenological considerations. During the past years sev-
eral phenomenological expressions were proposed and successfully applied
for modelling certain phenomena [26] but the problem is far not completely
solved.

Another widely used approach to study the time evolution of dislocation
systems is discrete dislocation dynamics (DDD) simulation in which the dis-
location loops are considered individually. After setting up velocity laws for
the dislocation segments the dislocation loop geometry is updated numeri-
cally. Describing the actual numerical techniques used in DDD simulations
is out of the scope of this paper. The reader can find the details e.g. in
(35, 36, 37, 38, 39, 40, 42, 43, 44, 45]. Although DDD simulations are ex-
tremely important for the better understanding of the collective properties
of dislocations, due to their high computational demand their applicability
in engineering practice is limited.

2.6 Time evolution of the displacement field

In the previous part we have discussed how the stress field generated by
the dislocations can be determined and what can be said in general about
the time evolution of the dislocation density tensor. However, in many
applications it is important to determine the displacement field u(7), too.

Let us go back to our starting equation (5), multiply it with the tensor
of elastic moduli I:, and take the div of the equation. Using Egs. (6,24)
one obtains that

0 ouyp,

9 .. di P
8T,Lijk'l or 8r‘Lijkl6£l (le L~ = div Lﬁp) . (43)

dr

This is formally equivalent with the common equilibrium equation of elas-
ticity with body force density

fi= _ai Lisa By (7= aw L) )

Since, as it is explained earlier, the dislocation density tensor does not
determine the plastic distortion uniquely, the above equation is not enough
to determine the displacement field. Taking, however, the time derivative
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of Eq. (43), with the (40) definition of J, one finds that

9 du, 0 , adi e
87"1' Lijkl 87“1 = aTi Lijkl]kl (le Ldf = div L]) . (45)

As it is discussed above, based on physical arguments, J can be uniquely
defined, so the deformation velocity field @ can already be determined if
j is known. Integrating it with respect to time gives the change of the
displacement field which is the quantity one can really measure.

2.7 Problems related to coarse graining

The dislocation density tensor introduced above is a highly singular
quantity. It is infinite along the dislocation lines and vanishes elsewhere.
More precisely, it is proportional to a delta function along the dislocation
lines. The same holds for the dislocation current density. The conserva-
tion law (39) guarantees that during the evolution of the dislocation system
this delta function does not ”spread out”, only the shape of the loops can
change. This is certainly what we expect physically. This means, however,
if we want to follow the evolution of the system we have to follow the track
of each dislocation loop as it is done in DDD simulations.

We may hope, like for many other physical systems, to predict the macro-
scopic response of the dislocation system, we do not need this detailed
knowledge of the evolution of the dislocation configuration. Omne should
try to operate with locally averaged quantities. This means, the different
quantities, like dislocation density tensor, stress, dislocation current density,
etc., are convolved with a window function. In the physics literature the
procedure is commonly called as ”coarse graining”, while in the engineering
community the term “homogenisation” is more frequently used. One can
immediately raise the question what is the appropriate function we should
use for the shape of the window function, and what determines its half
width. One cannot have a general recipe how to resolve these problems.
Nevertheless, we can hope that within certain limits the result obtained by
the coarse graining is not sensitive to the actual window function shape and
its width. If this is not the case, this clearly indicates that all the microscop-
ical details are important. So, the coarse graining procedure always requires
extra care. Beside this, it is important to stress that, before the equations
obtained by coarse graining are applied, for predicting the response of the
material in a given situation, one always has to study the relevance of the
homogenisation.

In order to indicate the difficulties, as a simple example, let us consider
a set of parallel edge dislocations with +b Burgers vectors parallel to the x
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axis. For this case Eq. (35) simplifies to

2 P
Vix= _Hy (bay) i (46)

where kg = pq+ — pd— is the signed dislocation density that is a sum of delta
functions. If we take the convolution of Eq. (46) with a window function
w(7) we obtain that

2
/w(t VA () = H /w(F— ) <b 0 ) ka(F)d.  (47)
After partial integrations we get that
v /w(F— it = 2 (52 /w(F— Mra(P)d. (48)
1—v \ 9y ¢ ’
As it can be seen, the coarse grained fields denoted by
<x>= /w(?— P )x (7 )dri’ <K >= /w(F— Pka(F)d (49)
are related to each other as
1-v

Vi<ys>=_H (b;y)<n> (50)

that is formally equivalent with Eq. (46). With a similar argument, from
Eq. (33) one can find that

P 0% < x>
o = — ,
11 0y
0% < x>
<o> = — , 51
0 >99 92 (51)
P 0% < x>
g
12 0xdy

This means, the coarse grained fields are related to each other as the ”dis-
crete” ones.

However, important information is lost during coarse graining. If we
consider two dislocation configurations indicated in Figure 6 and coarse
grain them for the same square areas indicated by the boxes, we get the
same signed dislocation density value. On the other hand, it is obvious that
the response of the two configurations are strongly different, if one applies
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Figure 6. Two strongly different dislocation configurations giving the same
k if they are coarse grained for the areas indicated by the boxes.

an external shear. So, in a continuum theory of dislocations, in which we
operate with smooth fields, the coarse grained dislocation density tensor is
not enough to characterise the state of the system. In the next section we
discuss how a continuum theory can be derived from the equation of motion
of straight parallel dislocations and what relevant quantities are needed to
have an appropriate description of this simple dislocation system on the
mesoscopic scale.

3 Linking micro- to mesoscale for a 2D dislocation
system

3.1 Discrete dislocation dynamics simulations in 2D

In the early 90s due to the fast increase of the available computer power
it became possible to investigate the collective properties of dislocations by
computer simulations. In DDD simulations the equations of motion of the
dislocations (dislocation segments) are integrated numerically. During the
past 15 years a vast amount of DDD simulations were performed both in 2D
[46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] and 3D [35, 36, 37, 38, 39, 40, 42, 43,
44, 45]. The detailed descriptions of the numerical methods applied and the
results obtained are out of the scope of the paper, but to demonstrate the
potentials and the limitations of the numerical simulations we will shortly
review simulation results obtained by the author [50, 51] on the same system
that is studied below in the statistical physics considerations.

In the simulations, the evolution of a system of parallel edge dislocations
was studied in a square area with periodic boundary conditions. (This
means, the originally 3D problem was simplified to 2D.) The system was
subject of unidirectional deformation with a constant external deformation
rate é. The stress required to keep é constant was calculated. Dislocation
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motion was allowed in two slip systems (denoted by dotted lines in Figures 7)
with 60° between the two slip directions. The system was oriented for single
slip, i.e. in one of the two slip systems the shear stress generated by the
external load was much larger than in the other one.

In the simulations reported here only dislocation glide was allowed (i.e.
the velocity of the dislocations were parallel to their Burgers vectors). In the
equation of motion of the dislocations, the inertia term (ma) was neglected
beside the friction force ﬁf accounting for the energy dissipation during
dislocation motion. This is called overdamped dynamics. For simplicity, we
assumed that F' 'y was proportional to the dislocation velocity, F 't = —B7,
where the coefficient B is called as dislocation mobility.

Beside the friction force, if the stress is nonzero at the dislocation, the
Peach-Koehler force [1]

-

Frix =1 x (6b) (52)

also acts on a dislocation, where ¢ is the sum of the stress created by the
dislocations and the external stress. With these, the equation of motion of
the ¢th dislocation is

— 7, b;) + 67 | by (53)

_,
Z

<
|
i Mz

where §; and m; are unite vectors parallel and perpendicular to the slip
direction of the ith dislocation, respectively, d¢,+ is the external stress, and
G (7 — 7, b) is the stress field created by the ith dislocation (with Burgers
vector b). According to Egs. (33,35), 6""¢ needs to be determined from the
equations

- 2 0 0
4 ind 1 — —
= b —b or—r; 4
vt = P () <t )07 (54)
aQXind ) aQXind ) aQXind
ind __ wnd __ ind __
O11 - oyt Og2 = — oz2 012 = oy (55)

For periodic boundary conditions used in the simulations "¢ does not
depend on the absolute position of the dislocation position. "¢ can be
determined numerically either by the Fourier transformation of the above
equation or by adding the 61"¢ stress of the appropriate periodic mirror

dislocations, where de is the stress in an infinite medium. It has to be
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mentioned here that for other boundary conditions Needleman and cowork-
ers developed an efficient method in which the stress is the sum of the stress
the dislocation would create in an infinite medium plus a ”compensating”
component ¢°°"P needed to fulfill the boundary conditions. Since 5P
is nonsingular at the dislocations it can be calculated with finite element
methods.

During the system evolution dislocation multiplication was allowed with
a global and a local conditions. The global condition was set up to reflect
the experimental fact that a certain amount of external work is stored in
the self-energy of dislocations. To mimic this, if the external work increased
a certain amount, a new dislocation dipole was added. Since the new dis-
locations are generated by the stress as a "local” rule, the new dipole was
placed to a random position chosen with a probability proportional to the
local stress. For the sake of simplicity dislocation annihilation was not taken
into account.

A typical simulation result can be seen in Figure 7. As the stress-time
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Figure 7. The time variation of stress, dislocation density and elastic en-
ergy together with the ”final” dislocation configuration obtained on a dis-
location system subject of a constant external deformation rate.

relation obtained indicates, the system has a finite flow stress (the initial
part of the curve is linear and reversible). This is the consequence of the
relatively narrow random dipole initial configuration used. While the exter-
nal stress is less than the debounding stress of the dipoles there is no ”free”
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dislocation motion, so there is no plastic deformation. The deformation is
elastic. After this, the stress-strain curve is practically horizontal with a
few dislocations moving in the primary slip system. This stage shows sev-
eral similarities with the easy glide stage of plastic deformation of single
crystals. This stage is followed by a much steeper part of the stress-strain
curve. The transition is coupled with a quite sudden rearrangement of the
dislocations. A cell like structure starts to form.This stage is similar the to
stage II. deformation regime.
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Figure 8. Hardening obtained on the 2D dislocation system.

We have investigated if the stress increment needed to keep the deforma-
tion rate constant results the enhancement of the flow stress. In stage II at
a certain stress level the direction of the deformation was reversed and the
system was unloaded. After this the system was reloaded again with the
same rate applied earlier. As it can be seen in Figure 8 during unloading
after a short relaxation period the plastic deformation rate dropped to zero
(left bottom curve) and the system continued to deform elastically. During
the reloading period macroscopic plastic deformation did not occur until the
stress reached the level at which the system was unloaded. This means, that
this simple model system shows hardening. Similar results were observed
by several other authors ([54, 57]).

The above results demonstrate that already a strongly oversimplified 2D
dislocation system is able to reproduce several properties of plastic defor-
mation. Due to the huge computational demand needed for the numerical
integration of the equations of motion of the dislocations, one can afford only
a couple of thousand dislocations in the simulations. The problem is even
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more complex in 3D. At the moment about 10'?2m~2 dislocation density can
be reached in a 10x10x10 pm box [45] applying the world largest supercom-
puters. Although, these numerical investigations are extremely important,
at the moment their applicability is very limited in the engineering practice.

3.2 Continuum theories developed for other systems, analogies
and differences

At the end of the 19th century Boltzmann developed the statistical the-
ory of fluids and gases. The key quantity he introduced is the density
function f(t,7,p) giving the probability density of finding an atom at the
(7, p) point of the phase space. From the conservation of the phase space
volume (Liouville theorem) he obtained that the evolution of f(¢,7,p) is
described by the relation

9 P f

o B0+ D D p( )+ F@ 5 - (56)

where m is the mass of the atoms, ﬁ(F) is the external force and J f../dt is the
so called collision term accounting for the momentum change occurring at
the collision of two atoms. Its actual form is difficult to determine. Since,
however, the interaction between atoms is short ranged the collision is a
local short event. This means that the collision time 7. is much shorter
than the mean collision free travelling time. As a consequence of this the
collision term can be well approximated with a relaxation term leading to
the equation

SRR+ D R+ FE) ) SR == (- f) (5T)

where f. is the equilibrium Boltzmann distribution. An outstanding fea-
ture of Eq. (57) is that the Navier-Stokes equation of fluid dynamics can be
derived from Eq. (57).

On the other hand it is obvious that Eq. (57) cannot be used for systems
where the interaction between the particles is long ranged. Plasma is a
typical example for this. The Coulomb interaction between the charged
particles is long ranged. The same holds for dislocations. The interaction
between straight dislocations is proportional to 1/7.

For plasma, Vlasov obtained that the collision term 0 f./dt is the sum of
two terms

0 fe

N, . o
5t = el pf (657 + S(), (58)
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where ﬁsc(f') is the so called self-consistent field generated by the charge
density p.(7) and the electric current density j.(7). The relations between
pe(7), jc(f"), and ﬁSC(F) determined by the Maxwell equations, are strongly
non-local. However, due to the Debye screening appearing in charged sys-
tems, the second term denoted by S(7) is already local. According to these,
for plasma the Boltzmann equation (56) reads as

0 oL o 0
AR

P ol B+ [F0) + Eul@)] 105 =S, ()

As it is explained below, a similar equation can be derived for straight
dislocations. Certainly, the special properties of the dislocation-dislocation
interaction and the dissipative nature of dislocation motion have to be taken
into account.

3.3 Hierarchy of the different order density functions

Let us consider N straight parallel edge dislocations. As a first step let
us assume that each dislocation has the same Burgers vector b parallel to
the x axis. This simplification is needed only to have shorter equations.
The results obtained can be easily generalised. In order to get results that
are physically relevant some generalisation is definitely needed.

For this case the equation of motion of the dislocations given by the
general form (53) simplifies to

N
61' - Bilg ZTind(Fi - F]) + Teaxt | (60)
J#i

where 7., is the external shear and 7;,4(7) is the shear stress created by a
dislocation. In an infinite isotropic medium

b w(@® —y?)

2r(1 —v) (22 +y2)?’ (61

Tind (F) =

As it is well known from statistical physics, instead of giving the time de-
pendence of the coordinates of the N particles one can describe the state and
the evolution of the system with the N particle probability density function
fn varying in the 6N dimensional phase space. Although, the dislocations
form a nonconservative system, some of the results of statistical mechanics
can be applied. Since the equations of motion of dislocations are only first
order differential equations (assuming overdamped motion) for the problem
considered, fy is a 2N dimensional function of the dislocation coordinates.



234 I. Groma

By definition fy(t, 71, 7s...Fn )d*7F1d%7, ..d*Fy is the probability of finding
the N dislocations in the d?7 d?7..d*#y vicinity of the 7, 7...¥y points at
time ¢.

If we assume that the number of dislocations is conserved (later this
restriction will be lifted), fn has to fulfill the conservation law [58]

fN(t, 1,7, ey FN)d2F1d2F2, ey dZFN =
In(t+ AL+ TLAL 7 + To AL Py + TnAL) (62)
xd? (7 + U1 At)d* (7 + o At)...d* (P + TN AL).

The above relation reflects the simple fact that the probability of finding a
dislocation at a certain point can change only if the dislocation moves from
one point to another one. It is interesting to mention that in contrast with
the conservative systems

fn(t, 7,7, ., TN) #
Pt + AL+ 51 AL Ty + BoAL, . iy + T AL, (63)

This is the consequence of that the diydrs...dry volume is not conserved
during the evolution of the system.

After some simple algebraic manipulations Eq. (62) can be rewritten into
a partial differentiation equation

afN+zN: O (7P = 0 (64)
ot - 87_'; N\, T1,72, -5 TN )Uq .
By substituting the left hand side of Eq. (60) into #; we get that

N =0 [, .
o +;aﬁ {IWF@E-7)} = 0 (65)

where F(7) = bryna(7). (B is dropped out from Eq. (65). With the appro-
priate selection of the time unit one can always take B = 1.) For the sake
of simplicity in the above equation the external shear was not taken into
account. It is important to note that Eq. (65) is mathematically equivalent
with the original equations of motion of the dislocations (60). To find a
solution of the two equations are equally difficult.

For many applications, however, we do not need that detailed description
represented by the N particle probability density function. A less detailed
description of the system is the k-th order probability density function de-
fined as

fk(Fl,FQ,..,Fk)://../fN(t,Fl,Fg...FN)dZFkHd2fk+2...d2FN. (66)
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After integrating Eq. (65) with respect to the variables 711, P42, ..7n, from
the above definition of fi (66) we obtain that

ot

i=1j=1j#i

of Qg )
Y / o {IVE (s = 75) | i dFiga. dFn(6)

The double sum at the right hand side of the equation can be split into
three parts

N N 9 )
Z Z / or; {fNF(ﬁF; - FJ)} d2Fk+1d2Fk+2...d2FN =

i=1 j=1,j#i
LS 9, -
> X g AnFE -] (68)
i=1j=1,j#i
k N 8 B
+Z Z /8F~ {fNF(Fz - ﬁ)}d2fk+1d2fk+2...d2f}v
i=1 j=k+1 4

N N 8 -
+ Z Z /87—.{ {fNF(Fz _ﬁ)}d2fk+1d2f’k+2...d2f}v.

i=k+1j=1,j#i

The last term is the integral of a div, so it can be transformed into a contour
integral along the border of the system. Assuming that the distribution
functions tend to zero fast enough at infinity, this term vanishes. Taking
into account that fxy needs to be invariant with respects to swapping the
coordinates of two dislocations we get that

fr < o= D _
ot T2 X o (PG -] (69)
+(N — k)/ 82; {fk+1ﬁ(ﬂ —Fk+1)}d2Fk+1 =0.

As it can be seen the equation for the k-th order probability distribution
function depends on the k + 1-th order one. So, the reduction procedure
applied results a hierarchy of the equations. In fluid dynamics and plasma
physics this is called as BBGKY hierarchy.

For our further consideration the equations for f; and fy play an impor-
tant role, so we give their explicit forms [58]:

Ip1(71,) 9 N T [ S
6t +/8F1 {pg(’l‘l,’r‘g,t)F(’/’l—’/‘Q)}d T2 = 0 (70)
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and

0 F7F7t 0 0 Lo o .
p2(1 2 >+< o7, 8T2>p2(7‘1,7‘2,t)F(7‘1—7”2)

8 /Ps , T2, 73,1 F(Tl—Tg)d2T3+1<—>2—0 (71)

where the notations py = N f1,p2 = N(N — 1) fa, p3 = N(N — 1)(N — 2) f3
were introduced. The advantage of using these quantities is that, in contrast
with the probability densities f1, fo and f3 normalised to 1, they are system
size independent. They are commonly referred to as one, two and three
particle density functions, respectively.

It is useful to show that Eq. (70) can be derived with another method,
too [59]. This can help to have a deeper understanding of the physical
meaning of the equation obtained. As a first step let us multiply (60) with
0(7 — 1) and take its derivative with respect to 7

d {dr; d | [
df,{dté(r—ri)} = ZF(Ti—Tj) (F—7i)p. (72)

J#

It is useful to introduce the "discrete” dislocation density

N
> o8 —7) (73)
i=1

that is the same as pg4 defined in subsection 2.4, but since in the present
analysis only one type of dislocation was considered, the subscript + was
dropped. With this, the left hand side of Eq. (72) can be rewritten into a
weighted integral. Furthermore, taking into account that

d (dii . .\ dind . .. d__. .

df'{ it o7 — n)} =gt dr (rF—17) = dté(r i), (74)
from Eq. (72) we get that

- 06 =) (75)

= e ([ FE=0at) = o= 7 ) - 0}

(where (7 —7") beside pq(7) is needed to avoid self dislocation interaction.)
By summing up with respect to ¢ we conclude

@ = oA ([ FE= ) = 6= 15 ) o} (70
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which is a nonlinear strongly non-local equation for the ”discrete” disloca-
tion density pq(7). Like it was done with the field equation (46), to get rid of
the singular character of py(7) we can coarse grain Eq. (76). By introducing
the coarse grained quantities

P1 (F) =< pdisc(m > (77)

p2(71,72) =< pdisc(T1)pdisc(T2) — pdisc(T1)0(F1 — T2 >, (78)

we get back Eq. (70) derived earlier. The procedure applied above clearly
shows that the form of Eq. (70) does not depend on the actual form of
the window function applied for the coarse graining. However, p;(7) and
p2(71,72) can depend on w(7) chosen. Certainly, this is not a problem until
we do not assume some relation between p1 () and po (71, 7). We can say
that Eq. (70) is exact but it is not enough to describe the time evolution of
the dislocation density.

Before we discuss how a closed theory can be obtained, the above results
have to be generalised for the case where Burgers vector of the dislocations
are not the same. The simplest generalisation is if we allow that the Burgers
vectors of the dislocations can differ in sign. This is still a strong simplifica-
tion of a real dislocation ensemble but an important step forward. Without
going into the details with a similar procedure explained above one can find
that

3p+ (Fl ’ t) - 0 —
ot + ba,,;ol [p"r (7’1 ’ t>7—€iﬂt (79)

4 [ oot = pr- (1T O} a7 — ra)d@] ~0

0

ory

t
+/{P——(F17F2at) — p—4 (71,72, 8) } Tina (71 — 772)d772} =0

(9,0_ (’Fh t)

9 +b

[_p— (Flat)Tezt (80)

where b is the Burgers vector of the positive signed dislocations. The sub-
scripts 747 and ”-” indicate the sign of the Burgers vector the different
density functions are corresponding to. We mention here that the negative
signs in front of p;_ and p_1 in Egs. (79) and (80) come from the sim-
ple fact that the interaction force acting between dislocations with opposite
signs is — Fipq.
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By adding and substituting the two equations we obtain:

op(r1,t) -0 . Lo Lo
p(r, ) +b, [k, t)Teat +/{p++(7"1,?"2,t)+p——(7"177”2at)
ot (97“1
—pi— (71, T2, t) — p—y (71,72, t) }Tina(T1 — 72)dia] = 0, (81)

Ok(i,t) -0

ot + baF1 [p(frﬁlvt)TE’It + /{p++(7?177?25t) - p**(FlvaQat)

—p4— (71,72, t) + p— 4. (71,7, 1) }Tina (71 — 72)dr2] = 0 (82)

where p(7,t) = po (7, t)+p_ (7, t) is the total and (7, t) = p4 (7, t) — p— (7, 1)
is the signed dislocation density. (k is the same as < k > introduced in Eq.
(49) but to have shorter equations the brackets < .. > were omitted .)

3.4 Evolution of the plastic shear

Before we discuss how a closed theory can be obtained for the evolution
of p and k it is useful to analyse the evolution of plastic shear. For the
dislocation geometry considered the only non-vanishing component of the
dislocation density tensor is

3] = bk. (83)

According to the definition of & given by Eq. (10) for the plane problem
considered the only component of the plastic distortion contributing to as;
is A%, and
8%
be=— %" 84
K 9 (84)
With the notation v = %, commonly used, the above equation can be
rewritten as .
b dy
=— , 85
SN (85)
i.e. k is proportional to the gradient of the plastic shear. With other words,
this means, to get spatially varying plastic shear one has to introduce dis-
locations. This is why « is often called geometrically necessary dislocation
(GND) density.
Taking the time derivative of Eq. (85) we get that

ok b dy

ot b2 di (86)
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By comparing this with Eq. (82) we obtain an explicit expression for the
plastic shear rate *:

5 = Vo, ) reae + / (pis (P, 1) (87)

p——(T1, o, t) — py— (71, T2, t) + p— i (71, T, t) }Tina (F1 — 72)dPs].

3.5 Self-consistent field approximation

In order to have a closed continuum theory describing the evolution of
the dislocation system, the (69) hierarchy of equations has to be cut at some
order. In order to do this, from some considerations independent from the
Eq. (69) we have to give how the density functions with order higher than
a given one can be built from the lower order ones. The simplest possible
assumption is that the two particle density functions are the products of
the one particle density functions [59], i.e.

pss/(FhF%t) = ps(Fl)ps’(FZ)a 578/ S {+7 _}' (88)

This means, that the short range correlations are neglected. As it is ex-
plained below this leads to a self-consistent field theory. Similar approxi-
mation is often used in plasma physics.

By substituting Eq. (88) into Egs. (81,82) we arrive at

op(Ft) -0

o T EE D {Te(Ft) + reat}] = 0, (89)
8%((97:, t) + gaa??[p(ﬁ t) {Tsc(Fv t) + Tewt}] = 0, (90)

where
Tse(7) = /H(th)ﬂ'nd(F— ™ )dry (91)

is a field (with stress dimension) created by the coarse grained signed dis-
location density. 7. is often called as self-consistent stress field. However,
Tse 18 not a "new” quantity. From Eq. (61) one can see that 7. fulfill the
field equations

20 O 0?

A2 = sc —
X (1-v) 6yli(r)’ " Bx(?yx

(92)
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If we compare Eq. (92) with Egs. (50, 52) we can see that 7. is nothing but
the coarse grained shear stress < o >1s.

It is important to note that dislocation multiplication and annihilation
can also be taken into account by adding an f(p, Text + Tse, -..) SOUrce term
to the right hand side of Eq. (89):

dp(Ft) -0 }
”g; )+b8F[m(r,t){Tsc(r,t)+Tewt}] = F(pyTewt + Tser ). (93)

Determining the actual form of the source term is a difficult issue. We
will come back to this problem later on, but it has to be stressed at this
point that Eq. (90) has to remain unchanged because it expresses that the
total net Burgers vector of the dislocation system cannot change during
deformation.

3.6 Stability analysis

Since dislocation multiplication is a ”local” event, it is plausible to as-
sume that in a given point the source term f(p, Text + Tse, ...) depends on
only the local values of the dislocation density and the total shear stress
T = Teat + Tse [09]. It is easy to see that in this case Egs. (90, 93) have
a trivial solution that is x(7",t) = 0,and p(7,t) = po(t) where po(t) is the
solution of equation

dpo

dt = f(pOaTe;L't)- (94)

Since, however, the equations are strongly nonlinear it is important to
analyse the stability of this homogeneous solution [59]. For this, let us
linearise Eqgs. (89,90,92) around the trivial solution

d / 0 / o af / af /
a” T on {bTems’}y = dp p:pop s r:rmT’ (95)
d / 3} / / o
dtﬁ + P {b(Textp” + pot)} = 0, (96)
2
AZX/ _ 2[),u (3' / / a / (97)

A-wvyay™ T T gzoy*

where k', p’ = p — pp, and 7’ are small perturbations. The solution of the
linearised equations can be found in the form (assuming that pg(t) varies



Statistical Physical Approach to Dislocations 241

slowly in time)

T/ (7, ) T/

K/ (7, 1) K .

o (7, t) = o exp{ At +i(qz v + qyy)}- (98)
X' (7)) X

Substituting this form into the Eqgs. (95-96) one can find that A and the
wave vector (¢, qy) have to fulfill the characteristic equation

A 9f QDT T(®) of
. or P=po WaPTect 1 G Ol r =0, (99)
1G:DTent A+ poT (D)
where
2 2 2 2 2
@)= BH Gl TR Gang), (100)

Q=v) (g +q)* 20-v)

in which @ is the angle between the z axis and the wave vector.

The homogeneous solution is stable only if the real part of A is non-
positive for any wave vector (¢, ¢y). This guarantees that there is no grow-
ing perturbation.

As a first step let us analyse the stability of the homogeneous solution if
the total number of dislocations is conserved, i.e. if the source term f(p, 7)
is zero. In this case the solution of the characteristic equation (99) reads as

~T(®)p0 £ v/T(®)208 — A(breee)?a?
g .

Since, T'(®) is non-negative the real part of both A; and Ay are non-positive,
so in the absence of source term the homogeneous solution is stable. How-
ever, an important feature of the linearised equations is that if the wave
vector is parallel either to the z or the y axes the real parts of \; and
Ao vanish. This means, periodic perturbations which are either parallel or
perpendicular to the Burgers vector neither growth nor die out, they are
marginally stable.

To see the influence of the source term f(p,7) it is enough to study the
sum of the two roots A; and Ay. From Eq. (99) we get that

of
dp

Al2 (101)

A+ Ay = —T(®)pg + (102)
P=Po

Since T'(®) vanishes for ® = 0 and ® = 90, if 3f/0p is positive, there is
a wave vector domain where at least one of the two \-s is positive. This
means, if 9f/0p > 0 the homogeneous solution is not stable any more.
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3.7 Numerical studies

Since the self-consistent field equations (90,93) are complicated nonlin-
ear equations, studying the properties of their solutions requires numerical
investigations. The numerical results presented in this paper [59] were ob-
tained on a 128x128 grid defined in a square simulation area with periodic
boundary conditions. The time integration of Egs. (90,93) was carried out
by the Newton method. The internal stress was determined from Eq. (92)
by fast Fourier transformation. In each calculation a constant dislocation
density and a random « distribution was used as initial configuration. For
the source term the form

f(p,7) = C(H1 — 0.096* 1% p?) = C(p7? — 0.096*u* p?) (103)

was used. In expression (103) the first, dislocation creation term mimics the
experimental observation that a certain amount of plastic work is stored
as the self energy of dislocations. The second, annihilation term simply
expresses that annihilation requires to have two dislocations close to each
other. The constants are determined according to the Taylor relation

Text = 03bﬂ\/PO» (104)

which we expect to hold at steady state.

Since, apart from C, the size of the simulation area and the material
parameters can be scaled out from the equations the input parameters (p(t =
0,7), k(t = 0,7), Text, C') and the results of the numerical calculations are
given in arbitrary units.

A typical snapshot obtained at periodic external stress can be seen in
Figure 9. Both the dislocation density map (left box) and its autocorrelation
function (right box) indicate that the dislocations tend to form a more or less
periodic arrangement of dense regions. The dislocation pattern developed
is very similar to the so called "matrix” structure experimentally observed
on fatigued fcc single crystals [60] (see Figure 10).

It should be mentioned, that if the gradients in the dislocation pat-
tern developing during the deformation become large the numerical solution
blows up indicating that the self-consistent field theory can become unsta-
ble. In order to resolve this problem the influence of dislocation-dislocation
correlation has to be analysed.

3.8 The role of dislocation-dislocation correlation

The self-consistent field theory explained above was obtained by assum-
ing that the two particle density functions are the product of the correspond-
ing one particle densities. Without restricting generality, the two particle
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Figure 9. Dislocation density map (left box) and its autocorrelation func-
tion A(F) = [ p(F — 7)p(7)di (right box) obtained at periodic external

load. (The glide direction is horizontal.)

Figure 10. Dislocation ”matrix” structure obtained on fatigued Cu single

crystal oriented for single slip [60].
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density functions can be given in the form:
pss’(FlaF%t) :ps(Fl)ps'(FQ)(l+dss’(F1aF2)) 575/ € {+7_} (105)

where d, is called dislocation-dislocation correlation function. In order to
be able to say something about the correlation function as a first step it is
useful to analyse the properties of dislocation-dislocation correlations in an
originally homogeneous relaxed dislocation system [61, 62]. Although the
BBGKY hierarchy explained earlier gives the possibility to investigate the
properties of dgs analytically (assuming something about the three particle
density functions), but due to the complicated nonlinear character of the
equations, apart from some simple general statements, it is rather difficult
to say anything about dgs .

For initially homogeneous, relaxed dislocation systems dss can be deter-
mined by DDD simulations. For this we do not have to study large systems
(a few 100 dislocations is already enough), but we need several (around
1000) relaxed configurations to have the necessary statistics. Knowing the
relaxed positions of dislocations dss can be determined by simply counting
the number of dislocation pairs at different relative positions.

Figure 11 shows the correlation function d = dyy +d__ +dy_ +d_4
obtained numerically. In the simulations parallel straight edge dislocations

Figure 11. The total d = dy4+ +d__ +dy_ + d_ dislocation-dislocation
correlation function determined numerically at single slip geometry [61].

were considered at single slip geometry (5 is parallel to the x axis). The
number of dislocations was kept constant. Initially the dislocations were
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randomly distributed. By the numerical integration of Eq. (60) the relaxed
dislocation configuration was determined at zero external stress.

The two most important properties of the correlation function are that
next to the origin it is inversely proportional to the distance from the origin
(analytical investigations revealed the same), and it decays to zero expo-
nentially within a couple of average dislocation spacing. So, for originally
random relaxed dislocation configurations the dislocation-dislocation corre-
lation is short-ranged. With other words, if the distance of two dislocations
is larger than a couple of times the average dislocation spacing the correla-
tion between them is negligible [61, 62]. We have to keep in mind, however,
that this is valid only if the relaxed configuration is obtained from an initially
random dislocation distribution. One can obviously set up initial configu-
ration that relaxes to a strongly correlated state like for example a Taylor
lattice. The problem is related to the constrained motion of dislocations.
Since in the simulations only dislocation glide is allowed and dislocation
multiplication is excluded, the number of dislocations in any narrow strip
parallel to the Burgers vector cannot change during the relaxation of the
system. It is determined by the initial configuration. The system does not
"forget” fully the initial configuration. In reality, of course, the number of
dislocations in a strip is determined by the dislocation multiplication. Since,
however in 2D there is no "natural” law for dislocation multiplication one
should investigate the correlation properties in 3D. Investigations are under
their way, but at the moment we do not have conclusive results. Based on
the results of 2D simulations in the following we assume that the correlation
function is short range.

According to the results explained above it is plausible to assume that
the correlation functions dgg (71, 7%) defined by the Eq. (105) can be ap-
proximated with the correlation function corresponding to a homogeneous
system with dislocation density p(7). It follows that dss (71, 72) practically
depends only on (77 — %), the direct 71 or 7 dependence is weak, it appears
only through the spatial variation of the dislocation density, i.e.

psst (71,72, 1) = ps (1) psr (72) (1 + dssr (71 — 72)) s,s' € {+,-} (106)

Similar approximation is used successfully for many other systems like for
example in first principle quantum mechanics calculations to estimate the
exchange energy. It is called "local density approximation”.
By substituting Eq. (106) into Eqs. (81,82) after a long, but straightfor-
ward calculation we arrive at
op(ryt) -0

o +b8F[ﬁ(m){TSC(F)+Tm—Tf(F>+Tb(F)}] = 0, (107)
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D L8 D 1005 0) (e + 7w — 70 + 7MY = 0, (108)
where
77) = [ P = a7 7 (109)
() = / #(F)d(F — ™) Tina (F — 71)dr7, (110)
in which the notations
AR = A ) A ) de () (P (1)
) = 12 () d () (12)

are introduced. Due to the following obvious symmetry properties of the
correlation functions

(M) =dr(=7),  dq(F) =dyy (=7),  d——(F) =d__(-7) (113)

d(7) is an even, while d*(7) is an odd function of . Furthermore, since the
correlation functions correspond to a homogeneous system there is no other
internal length scale but the average dislocation spacing 1/,/p. It is obvious
from simple dimensional analysis that the correlation functions depend only
on the dimensionless quantity '\/p, i.e. d(,/pr) and d®(y/pr).

Taking into account that the corelation functions decay to zero within a
few dislocation spacing the fields «(7) and p(7 ) appearing in Eqgs. (109,110)
can be approximated by their Taylor expansion around the point 7. Keeping
only the first nonvanishing terms we get that [61, 62]

() = P17 / 4 (F)Tima (7 (114)

Ir (1)
o

—\

T(7) = — FAd(F) Tina (F)dF. (115)

(To obtain expressions (114,115) one has to take into account the symmetry
properties of d(7) and d*(7) explained above, and the relation 7;,4(7) =

TnLd( 4) )

With the variable substitution 77 = |/pr, 7¢(7) reads as

70 = VO [ @i (116)

!
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where we took into account that 7;,,¢ is proportional to 1/|7]. By substitut-
ing the actual form of 7,4 given by Eq. (61) into Eq. (116) we get that

75 (7) = AQCb\/p(F), (117)

where A = p/[27(1 — v)] and

Nz 77
C = / * d'“ N, My AN dn) 118)
R e i, (

in which the prime in d'*(n,, n,) indicates that 77 has to be measured in unit
of average dislocation spacing. In order to see the physical meaning of the
above expression, the external stress dependence of the parameter C has to
be analysed. The correlation function d;_ obviously varies with external
stress (the equilibrium configuration of dislocation dipoles varies if stress is
applied). Let us assume that the change of d;_ resulted by the external
stress increases C. Since the change in d_, is the opposite of the change
of dy_ this causes also the increase of C' because of the minus sign in front
of d_4 in the definition of d*. As we see, the parameter C' depends on the
external stress. Beside this, 7; scales with ,/p. These support association of
7 with the flow stress. Certainly, we have to be careful with this statement.
In real dislocation systems hardening is caused by the forest dislocations
which are not included into our model in any sense. Nevertheless, a stress
like term showing similar properties as the flow stress appears naturally in
the theory. The actual form of the stress dependence of C' is difficult to
determine, but one can speculate that 77 acts as static friction. It prevents
dislocation motion, but it has a maximum scaling with /p.

After this let us analyse 7, in more details. With the same variable
substitution applied above we get that

Ok(7) 1

) = — 7d’ (7) Tina (7)d> 7. 11
) =00 e | T (119)
i.e.
. ADbOx(7)
where
2 (02 2
= d' (Ng, My )dngd 121
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is a dimensionless constant. In contrast with C'; D has only a weak external
stress dependence because d(7) contains the sum of the two correlation
functions d4_ and d_ changing oppositely. The actual value of D can only
be determined numerically. According to the numerical studies explained
below it is in the order of magnitude of 1.

With the results obtained above the evolution equations (107,108) read

Op(in1) | 0 ln(F,t){T(F,t)TfAD ! ‘9“(5;;”)”1‘(%7%

as

ot or p(7t)
122
or(Ft) -0 | . . boook() ||
ot + b(?F [p(r,t) {T(T,t) Tf AD,O(F, n o oF =0 (123)

where 7 = T4 + Tezr is the total macroscopic stress.
From Eq. (87) the constitutive equation of the plastic shear rate can also
be given as

o L b Ok(7t)
'y—bp(r,t){T(T,t) Tf ADp(F,t) P . (124)

With Eq. (85)

1 S0\?
G120 N - ) 1
¥ =b"p(7,t) {T(T,t) Tr ADpr(F, " (bﬁf) 'y(T,t)} (125)
If we introduce the effective stress
7= -ap " (52 o (126)
Torr(F) = 7(7) — . . 7
s b2p(7) \ OrF v

it looks similar to the effective stress (2) suggested by E. Aifantis from
phenomenological considerations. An important difference, however, is that
in Eq. (126) the length scale [ = 1/,/p appearing in front of the gradient
term is a natural one, it is not a material parameter suggested in the phe-
nomenological non-local continuum theories. The length scale 1//p obeys
an evolution equation (Eq. (refgroma.rhof).

3.9 Deformation of a constrained channel

To illustrate some implications of the evolution equations derived in the
previous subsection we study a very simple example, namely a constrained
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L

-T 1.

L

Figure 12. Geometry of a constrained channel

channel deforming in simple shear as shown in Figure 12 [62]. A channel
of width L in the x direction and infinite extension in the y direction is
bounded by walls that are impenetrable for dislocations (i.e., the plastic
deformation in the walls is zero). The slip direction corresponds to the x
direction, and the layer is sheared by a constant shear stress 7.,:. The whole
assembly is embedded in an infinite crystal.

The system envisaged is particularly simple because it is homogeneous in
the y direction (the dislocation densities depend on the coordinate = in the
slip direction only). It follows from Eq. (92) that in this case the long-range
self-consistent stress field is zero for an arbitrary function s(x), i.e., any
dislocation interactions in the system are of short-range nature and hence
described by the flow stress 77 and the gradient-dependent stress 7.

Before investigating the behaviour resulting from Eqgs. (122) and (123)
and comparing it with the results obtained from discrete simulations, it is
instructive to have a look at the results we get from the mean-field model
defined by Eqs. (89) and (90). Since the self-consistent stress is zero, the
mean-field model becomes trivial: Whatever the initial conditions, for an
arbitrarily small, positive value of the external stress all positive dislocations
‘condense’ at the right wall and all negative dislocations at the left one.
For an initially homogeneous dislocation distribution with density pg, the
strain achieved by this condensation is 7., = pobL/2. Hence, the system
exhibits a trivial size effect (the achievable strain is proportional to the size
of the system, which determines the mean dislocation path). However, as
demonstrated in the following, the prediction that this strain is achieved at
arbitrarily small external stress is grossly unrealistic.

We now revert to the gradient-dependent model derived in the previous
subsection. We assume an initially homogeneous dislocation distribution
of density pg. To facilitate comparison with discrete simulations, it is con-
venient to introduce scaled stress, space and dislocation density variables
through 7 = Ab\/po7T, x = DZ/\/p, p = pop, and k = pok. In scaled
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variables and after corresponding re-scaling of time, Eqgs. (122) and (123)
read

Oup(,t) = =0 [R(Z, ) {7 — [1/p(Z, 1)]0zF(Z, 1)}], (127)

QR (E, 1) = —05 [3(2, ) {7 — [1/5(F, ))0:R(F, 1)}]. (128)

To formulate the boundary conditions at the walls located at & = +L/2, we
note that no dislocations can enter the system through the walls. Hence, the
density of positive dislocations (moving to the right) at the left wall and the
density of negative dislocations at the right wall are zero, i.e. &(—L/2) =
—p(—=L/2), &(L/2) = p(L/2). Furthermore, the dislocation fluxes at the
walls must be zero, which requires that [p7 — 9;%] = 0 at & = +L/2.

The initial conditions are p(z,0) = 1 and £(Z,0) = 0 everywhere ex-
cept directly at the walls where we assume non-zero values of x in a narrow
boundary layer to satisfy the boundary conditions. We make the simplifying
assumption that the effective stress can be represented as the external stress
diminished by the (spatially homogeneous) flow stress of an infinite system,
and perform a ’'deformation experiment’ as follows: we increase the effective
stress from zero in an adiabatically slow manner, i.e., after each small stress
increment the system is allowed to relax until it reaches a stationary config-
uration. After this relaxation, the scaled strain is calculated as ¥ = — [ &dZ
(see Eq. (85)), then the stress is increased again, etc. The resulting stress-
strain curves for different values of L are compiled in Figure 13 [62]. It

25

2.0

Effective stress [ubp01/2/(2n(1 -w)]

051 /

00 —
"o 2 4 6 s 10
Strain[bp, D]

Figure 13. Stress-strain curves obtained at different channel size L.

can be seen that the behaviour is very different from the prediction of the
mean-field model: the strain increases gradually with stress and reaches the
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Figure 14. Signed dislocation density and strain profiles for a system of
width L = 4/,/po at scaled stress 7 = 2; x(z) from discrete simulation
(data points), x(x) from continuum model (full line), strain profile from
continuum model (dashed line).

limit strain 7o (3o = L/2 in scaled units) only asymptotically. In phys-
ical terms this behaviour stems from the fact that there is a short-range
repulsion between individual dislocations of the same sign as they pile up
against the walls (see Figure 14). To increase the strain towards the asymp-
totic strain, this repulsion must be overcome, which requires an increasing
stress that diverges as v — Voo.

Looking at the distribution of dislocation densities and strains within
the channel, we find that at high stresses two boundary layers emerge near
the walls (Figure 14). Its properties can be analysed by the equilibrium
condition

Teat — AD =0 (129)

required to hold at steady state. (Since, for the geometry considered the
self-consistent field is zero, 7 = Tep). Near the boundaries most of the
dislocations have the same sign, p ~ |k|. According to this, near the left
boundary Eq. (129) reads as

Textlh = _ADbdZ;x) (130)
with solution
Te:c
k(z) = Koexp {_ADtbx} . (131)
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(A similar expression obviously holds near the right side, too.) As it is seen,
the width of the boundary layers decreases with increasing external stress.

It is interesting to compare this result with the prediction of the phe-
nomenological gradient approach. According to Eq. (2) for the problem
considered the equilibrium condition is

i) (132)

Text — l2 d.’E
with solution

l2
H(CC) = Ko + MTextm (133)

In the centre part of the channel, where p is nearly constant, the linear
relation predicted by the phenomenological gradient approach describes well
the observed variation of x, but it is not able to account for the boundary
layers.

Effective stress [ubp, “/(2x(1-v))]

00
Sc

¢ h n
o <) o <)
o L L L L

Figure 15. Comparison of stress-strain graphs; full line continuum model;
data points: discrete simulation. Parameters are the same as in Figure 14.

The results obtained are compared with DDD simulations performed
on the same system. To get reliable statistics, stress-strain graphs and
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the corresponding dislocation density profiles were averaged over a huge
ensemble (typically several thousands of simulations). An example of a
dislocation density profile obtained from this procedure is illustrated in
Figure 14 which shows a &(Z) profile averaged over 2000 simulations of
systems with length L = 4/,/po and (periodically repeated) height 16/,/po.
The profile shown in the figure has been taken at a scaled effective stress
7 = 2. It is seen that indeed two boundary layers emerge. From the
width of these boundary layers we can directly determine the constant D
for the present type of simulation, which turns out to be D = 0.8. Using
the continuum model with this value of D yields the full line in Figure 14,
which shows that the density profile obtained from the continuum model
matches well the discrete simulation except in the immediate vicinity of the
walls.

As seen from Figure 15, also the stress-strain curves for the discrete
and continuum models exhibit almost perfect agreement. By varying the
system size and initial dislocation density, we find that, for sufficiently high
stresses the width of the boundary layers at fixed stress 7.,; is within the
error margins indeed independent on the system size and the dislocation
density. If the applied stress is increased, the boundary layer width is found
to decrease. Again all these findings are in line with the predictions of the
continuum model.

3.10 Application to metal-matrix composite

In order to demonstrate the capability of the continuum theory of dis-
locations explained above we shortly summarise the simulation results ob-
tained on a 2D model system of a metal-matrix composite [54, 63]. Tt
contains rigid rectangular particles arranged in a hexagonal packing, as il-
lustrated in Figure 16. The cell is subjected to plane strain, simple shear,
which is prescribed through the boundary conditions

uy = +hl' | wup =0 along xo = +h, (134)

where T' is the applied shear. Periodic boundary conditions are imposed
along the lateral sides © = +w. The slip plane normal 7 is in the y-direction
and the Burgers vector is parallel to the z-direction. Two reinforcement
morphologies were analysed having the same area fraction of 20% but dif-
ferent geometric arrangements of the reinforcing phase. In one morphology,
material (i), the particles are square and are separated by unreinforced
veins of matrix material while in the other, material (iii), the particles are
rectangular and do not leave any unreinforced veins of matrix material.
The problem was studied in details by Cleveringa et al. [54, 63] with
DDD simulation. Here we compare their DDD simulation results with the
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2h

2w = 2,3h

Figure 16. Unit cell in a doubly-periodic array of elastic particles, sub-
jected to simple shear. The slip planes are taken to be parallel to the shear
direction (z).

results obtained by solving Eqs. (122,123) with a finite element method (for
the details of the numerical technique used see [64, 65]). For the dislocation
density field equations, boundary conditions need to be specified at the
boundary of the cell as well as along the interface with the elastic particles.
Along the cell sides x = 4w, periodic boundary conditions are applied,
while along y = +h we have the natural condition that there is no flux
of dislocations across these boundaries. Similar conditions apply along the
top and bottom interfaces with the particles. Along the vertical sides of the
particles, we impose that the slip rate vanishes.

As it is seen in Figure 17 the stress-strain curves obtained by DDD
simulation and from the continuum theory match extremely well for both
reinforcement morphologies investigated [64, 65]). Figure 18 shows the p
and k maps obtained for the (iii) morphology. It can be seen that, like at
the shear of the channel discussed above, a boundary layer of geometrically
necessary dislocations develops at the vertical unpenetrable surface of the
composite particles.

In conclusion it can be stated that for single slip the continuum theory
developed predicts the same behaviour as the DDD simulations. How to
generalise the continuum model to multiple slip is being studied intensively
[66, 67]. At the moment the theory is far from being fully developed. It
is even more difficult to extend the statistical approach to 3D. In order to
show the possible approaches, in the next part we shortly summarise two
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Figure 17. Stress-stain curves obtained by DDD simulations (dashed lines)
and by solving the continuum Egs. (122,123) (full line).

3D continuum models proposed recently.

3.11 Boltzmann theory of dislocations

To describe the evolution of dislocation loops El-Azab has recently pro-
posed a new theoretical framework [68], which is the generalisation of the
Boltzmann equation for line type objects. In his model only planar loops
are considered, i.e. dislocation climb is excluded.

In contrast with point like particles (considered in Boltzmann’s original
theory), beside its position a dislocation segment has another degree of
freedom, its line direction . Ina plane the line direction ['can be represented
with a scalar parameter © which is the angle between [and a given direction
in the plane. According to this, the probability density function f is the
function of 7, ¥ and ©. (To avoid the problems related to define the mass of
a dislocation, instead of the moment the velocity of the dislocation segment
is used to give the state of the segment.) Since, as it is explained earlier,
the probability density function is system size dependent (f is normalised
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Figure 18. p (top box) and s (bottom box) maps at 1$ deformation for
the (iii) morphology.

to 1) it is more convenient to operate with dislocation line length density ¢.
Hence, ¢ (7,7, ©,t) can be given the definition: ¢ (7,7, ©,t)d*7d>vdO is
the dislocation line length with Burgers vector b; (i = 1..N) in the d*7d35d©
phase space at time ¢. It has to be noted that since v is perpendicular to l_:
O is not an ”independent” variable, that is why it does not appear among
the arguments of ¢(®).

The conventional field variables are now derived from ¢ . The disloca-
tion line density is defined as follows:

p(Ft) =Y pl (1) (135)
where

pi0 = [ [o0 50,050 (136)
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According to Eq. (15) the dislocation density tensor & is given by

Qi (T 1) Za (137)

where

/ / L (00D ¢ (7, 5,0, t)d>5de, (138)

while from Eq. (42) the dislocation current density ; reads as

Jman (7 ) Z] (139)

where
/ / Enmplm (©)v,b 6D (7, 5,0, 1)d>5dO. (140)

Taking into account that the velocity of a dislocation segment is perpen-
dicular to the line direction, we can conclude that the evolution equation of
¢ has the form (for the details of the derivation see [68]):

0 0 ) . ,
, Y (A6 (i) (7 — (77 P
<8t + v Dz —|—U](a,a,..)avj> o\ (F0,0,t) ="V (FU,0), i=1,..,N
(141)

where s() (7, %, ©) represents all the possible source terms, and 0;(&,6,..)
stands for the acceleration of the dislocation. which is a function of the
different fields like & and 6. A remarkable feature of the above equation is
that the derivative with respect to © does not appear in the left hand side.

If we multiply the above equation with lm(@)bgf ) and integrate it with
respect to the velocity and O, after long but straightforward algebraic ma-
nipulations we conclude:

5
i + e o i =80 (142)

where

) — / / 1,(©)0) s (7, 7, ©)d*TdO. (143)
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By summing up Eq. (142) over all Burgers vectors and comparing the result
with Eq. (39) we obtain an important condition the source terms have to
fulfill

N
> sh =o. (144)
=1

To get a closed equation for the evolution of ¢(*) (7,7,0,t), the actual
forms of s (7,#,0) and 0j(&,4,..) should be given. At the present stage
of the theory these are not well established.

We mention that it has been proposed recently by Hochrainer and Zaiser
[69] that beside © the curvature of the dislocation line should also be consid-
ered as an independent variable. This may help setting up the constitutive
relations.

3.12 Hydrodynamics approach proposed
by Kratochvil and Sedlacek

In hydrodynamics the state of the material is described by the density
p(7,t) and the velocity @(7, t) fields. They are the appropriate mean values
of the probability density function f(7,p,t). One may operate with the same
quantities in dislocation theory. However, to account for the line direction
degree of freedom an additional field denoted by B(7, ¢) has to be introduced.
The three fields can be formally defined as

p(rt) = //d)(f’,@',@,t)dﬁd@ (145)

. - 1 IO S

u(r,t) = p(ﬁt)//vqﬁ(r,v,@,t)dvd@ (146)
S - 1 S S

B(r,t) = p(ﬁt)//Gqﬁ(r,v,@,t)dvd@, (147)

where for the sake of simplicity we assumed that all dislocation loops have
the same Burgers vector (the superscript (7) is dropped out) and their slip
planes are parallel.

Taking the z axis perpendicular to the slip plane of the loops, the two
nonvanishing components of the dislocation density tensor are

a1 = bpcos(f), ag1 = bpsin(f). (148)

Since the dislocation density tensor is the curl of the plastic distortion, it
has to be div free:

30[1-3-

87‘i 0 ( 9)
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One can find from Eqs(148,149) that p and /8 have to satisfy the conservation
law

dp cos(B) n Opsin(f)

o By 0 (150)

On the other hand, from the general expression of the evolution of the dis-
location density tensor given by Eq. (39),the following evolution equations
can be deduced for a and f fields(for details see [70])

: 0 0
pl = cos(8) 5"+ sin(B)"y
0 0
pr=sin(8) 5" = cos() 7 (151)

where v = |7].

To have a closed theory a constitutive relation is needed between the
three fields p(7,t), (7, t) and v(7, t). Kratochvil and Sedlacek [70] suggested
the following constitutive relation for the velocity field :

bo1s + Cks —brg — b7 if bois+ Crks > b1y + b1
Bv = 0 if |b0‘13 + CI<J5| < bry + bt (152)
bo1s + Cks +brg + b7 if boiz+ Crs < —brg — b1

where boi3 is the Peach-Koehler force due to the local shear stress, Cky
is the self-force, bry is the friction force, and b7 represents the interaction
between the gliding dislocations an the dislocation loops.

The self-force C'ky is considered in the line tension approximation, where
ks is the dislocation line tension. The curvature of a dislocation segment

C(7, B,t) = — divri, where 7 is the unit normal to the dislocation segment.

As it is explained in details in [70] C' can be approximated by the expression
0 0

C = cos(pB) ai + sin(p) 85 (153)

The most difficult problem is to set up an appropriate expression for br.
For this Kratochvil and Sedldcek [70] suggested that

br = Fet/3 (154)

were c is the loop density, and F' is a constant.

According to detailed analytical and numerical investigations [70] the
model explained above is able to predict both dislocation patterning and
size effect. Nevertheless, the justification of the assumptions used requires
further investigation.
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4 Internal stress distribution generated by the
dislocations

In order to describe the statistical properties of a dislocation ensemble, a key
quantity is the internal stress distribution. In this section the general form
of the probability distribution of the internal shear stress P(7) is determined
for a system of parallel edge dislocations. As it is discussed later the results
can be generalised to 3D systems.

4.1 General considerations

Like in the previous section, let us consider a system of N parallel
straight edge dislocations positioned at the points 7;, ¢ = 1, N in the zy
plane perpendicular to the dislocation lines. For the sake of simplicity, we
assume that each dislocation has the same Burgers vector b. As it is shown
later, the generalisation of the results for systems consisting of dislocations
with different Burgers vectors is straightforward [71].

The internal shear stress at the point 7 is the sum of the stress fields of
the individual dislocations

N
T(7) =Y Tina(F — 7). (155)
i=1

In the first part of our analysis we assume that there is no dislocation at the
point 7. Later on, the stress distribution at the dislocations is discussed,
too.

The precise definition of the problem addressed in this section is to de-
termine the P(79)dro probability of occurrence of 7 in the range

dTg
2

dT()

9 <7(r) <10+

TO — (156)

where 7y is a preassigned value for 7. P(7y) can be obtained as a direct
application of Markoff’s method [72] applied for several problems, like the
problem of random flights, or for the determination of the distribution of
forces in gravitationally interacting random systems. In contrast with the
two problem mentioned, for dislocations the N particle distribution func-
tion cannot be built up from the one particle distribution functions since
as it will be shown later it would lead to system size dependent internal
stress distribution function P(7). To avoid this, dislocation-dislocation

correlation must be taken into account.
Denoting the N particle dislocation density function by fx (71,72, ..., 7N )
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the internal stress distribution can be expressed as

P(T() dT() —/ /fN Tl,TQ,...,FN)dFldFQ...dFN, (157)

where the integration is effected only over that part of configuration space
for which the inequalities (156) are satisfied. By the introduction of the
factor

(158)

INGR: ) = 1 whenever To—dTO <T<To+dT°
o "1 0 otherwise.

the integral in Eq. (157) can be extended over 2N dimensional space R2V:

7'0 d’l‘o / / A FN)fN(Fl,...,’I_"N)df'ld...df']\]. (159)

For the determination on the structure of expression (159) one has to con-
sider the integral

5= 1 [ eiingag (160)

™

which is the well-known discontinuous integral of the Dirichlet function with
the properties

| 1 whenever —a<vy<a
0= { 0 otherwise. (161)
By taking
0 nd Z (162)
a= Tin — T
9 Y= a7 0

from Eq. (158) one gets that A = §. With the substitution of the (160)
form of § into Eq. (159), we obtain that

1 . . o .
P()dry = 7T/ dq/ Nd’l’ld’l’g...d’I’NfN(’I’l,’I’Q,...,TN)
R R2

y Sin(zda()q { lz Tima(F = 73)q — 7'0(]‘| } (163)

It can be seen from the structure of the above expression that the Fourier
transform of the internal stress distribution

An(7,q) = P(70) (164)



262 I. Groma

has the form
N
AN(F,q):/fN(Fl,...,FN)Hexp{iqT(F—Fj)}dzﬁdz...fﬁv. (165)
j=1

If we introduce the function
B(7,q) = 1 — exp{iTina(7)q} (166)
expression (165) can be rewritten into a power series of B(7, q)

N

Ax(ig) = /dmd@...difN(a,FQ,..., = B(F—7,q)
Jj=1
= 1- /Pl(fl)B(f— 1, q)d*m
1
T o5 /02(771’772)3(77— 1, q)B(F — %, q)d*7 d*F + ... (167)
where pi (71,72, . .., 7% ) is the k-th order dislocation-density function defined

by Eq. (66). Eq. (167) can be transformed into an exponential form

An(Foq) = exp{E(q,7)} (168)
where
Ban) = - [ m()BE-fodn
+ /D2 7,7 B(F — 71, q)B(F — o, q)d* % + .. (169)
in which
Do(F1,72) = pa(F1,72) — p1(71)pa(72)
= p1(f1)p1(72) (1 + d(7, 72)) (170)

is the dislocation-dislocation correlation function.
Eq. (169) is straightforward to generalise for the case where dislocations
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with Burgers vectors +b are allowed. One can find that

Eg,i) = —/‘ LB — 1) + p_(7)B* (7 — 71, )| P

l

+ /D++ 1, 7%)B(F — 71, q) B(F — 7, q)d* d*F

+ 2/D+_(F1,F2)B(77—

1
+ /D__(f’l,?:’g)B*(F—Fl,q)B*(F—FQ,q)d2F1d2772

1,q)B*(F—F2,q)d2F1d2F2 (171)

=

+ /D (71, 7) B* (7 — 71, q) B(F — 7, q)d*F d*7 + . ..

99 %9

where denotes complex conjugate.

4.2 Stress distribution at the dislocations

In the previous subsection we assumed that there is no dislocation at
point 77 at which the probability of the internal stress is determined. One can
also ask the probability distribution of the shear stress at the dislocations
Pe(r).

Let assume that the dislocation at which we ask the probability distri-
bution is at the point ;. The stress at the dislocation is obviously

N
M) =3 Tina(Fy — 7). (172)
i—2

The derivation procedure explained above can be repeated for this case,
but fn (71,72, ...,7n) needs to be replaced with the conditional probability
density fC(FQ, ey FN|771)

fe(ra, ..., Pn|7)diadis..diy s the the probability of finding the 2nd, 3th,
. Nth dislocation in the draydrs..dry vicinity of points 75, 73..7y assuming
there is a dislocation at point 7. One gets that the Fourier transform of
P¢(7) reads as

/d2f2d2F3 S GRS L))

N
[[0 - B@ —7.9) (173)
j=2
The conditional probability f¢(7%,..., x| ) can be given as
Fo(Fon il = YL T2 T (174)

J1(7m1)
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Substituting this into Eq. (173) and rewriting it into a power series of B(7, ¢)
we obtain

Ag) = 1- | {m:(%)z)B(n = 70)
P, r2)B*(F1 — 7, q)| P + ... (175)
p+(71)

where we assumed that the dislocation at point 7} has positive Burgers
vector. (A similar expression holds for dislocations with negative Burgers
vector.)

4.3 The mean values of distributions P(7) and P¢(7)

Since dislocations form strongly inhomogeneous distributions the explicit
form of P(7) and P¢(7) cannot be determined analytically. Nevertheless,
analytical results can be obtained for some of their properties [71, 73].

An important characteristic value of a distribution function P(z) is its
mean value < z >= [xP(x)dz. As it is well known the mean value can be
determined from the A(q) Fourier transform of the distribution function by
the relation

i dA(qg)

A(0)  dg (176)

<r> =

q=0

Applying the above expression for Eqgs. (172,175) we find that the mean
value of the internal stress at a point where there is no dislocations is

_ _, dB .
—i / lpm) i ]dﬁ
q=0

/ () Tima(F — 7). (177)

dB*
dq

—

< 7(7) > + p—(7)

q=0

If we compare this with expression (91) we can see that < 7(7) > is the
self-consistent field introduced earlier.

On the other hand, from Eq. (175) the mean value of shear stress at a
dislocation is

. [ | py4(71,72) dB
<T14(r1)> = —1 R
) /l pr(7)  dg

py— (71, 72) dB*
)

1,
+ -,
=0 p+ (7 dq

dry
q=0
1

= /[P++(F17F2) — po—(71,72)] Tina (7' — 71)dra (178)
p(71)
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(The subscript ”+” in < 74 () > indicates that it corresponds to a dislo-
cation with positive sign.)

If we compare the above expression with the third terms in Egs. (79,80)
we can see that Eqs. (79,80) can be rewritten as

8p+(F17t) > 0

PV bam {0471, V) [Teawt+ < T4.(71) >]} =0 (179)
8p—(7_"17t) T 8 — — o
o = Ao (D reat < 7 (71) >]} =0 (180)

giving a new physical interpretation of the form of the dislocation evolution
equations obtained.

4.4 Asymptotic properties of the stress distribution function

According to the investigations of Groma and Baké [71] for small enough
Fourier parameter ¢ the Fourier transform of P(7) reads as (for the deriva-
tion see [71]):

AN (7, q) = exp {z < 7(F) > ¢+ Cap(F)g* In Rq +.. } , (181)
eff
where Ry is an effective correlation length determined by the correlation
functions dy 4, d__, dy_, d_,, and

b2 27
Ca=ty [ rralro)de. (152)
0

For edge dislocations in isotropic medium

_ (Nb)2 /QW 2 2 _
Cq = 8r2(1 - )2 |, cos? (i) cos®(2¢)dp =

(ub)?

167(1 — v)2’ (183)

It has to be mentioned that if the dislocation system consists of more than
one type of dislocations, Eq. (181) remains valid. The only difference is that
in this case R.rs and Cy are the appropriate weighted average of the R £f

and C values corresponding to the dislocations with Burgers vector b
One can obtain (see [71]) that Eq. (181) follows that the tail of proba-
bility distribution function decays as

P(r) = Cap®) |,

(184)
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A remarkable feature of the above expression is that it is independent from
the dislocation- dislocation correlations. In other words it does not depend
on the microscopic arrangement of the dislocations. Certainly the stress
value from which the distribution function follows the above asymptotic
expression depends on dislocation-dislocation correlation. To demonstrate
this, the internal stress distribution was numerically determined on a system
of 1000 randomly distributed dislocation dipoles (seen Figure 19). As it can

0.1

0.001 -

le-05

le-07

0 500 1000 1500
T (arbitrary units)

Figure 19. P(7) obtained numerically on a randomly distributed dipole
system (full line) with the asymptotic curve given by Eq. (184) (dotted
line).

be seen the asymptotic curve describes extremely well the tail part of the
internal stress distribution obtained numerically. It has to be mentioned
that the asymptotic curve is not fitted, Cy is determined according to Eq.
(183).

Recent investigations revealed [73] that for a dipole system the centre
part of the distribution is Lorentzian:

de 1

P(r) = 7 124 (Dp)?

(185)

where the actual value of D can only be determined numerically. For edge
dislocation dipoles with 45° between the polarisation and the Burgers vec-
tors

by

Da= 27(1 —v)

3.55|p] (186)

As it can be seen in Figure 20 the centre part of P(7) is well described by
the Lorentzian given by Eq. (185).
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0.1

0.001

le-05

le-07 - - -
0 500 1000 1500
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Figure 20. P(7) obtained numerically on a randomly distributed dipole
system (full line) with the Lorentzian given by Eq. (185) (dotted line).
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