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Abstract In chapter 1 an introduction to basic dislocation proper-
ties in an elastic continuum is given. Displacements, strains, stresses
and energies of straight edge and screw dislocations are compiled as
well as forces on dislocations, implications of dislocation motion and
aspects of dislocations in real crystals. Chapter 2 details the models
of dislocation self interaction for curved dislocations including the
line tension model and linear elastic self interaction. The former is
essential for basic understanding, whereas the latter is the basis of
accurate dislocation dynamics simulations of plasticity. In chapter
3 these models are applied for 2-dimensional dislocation glide which
allow to calculate the strengthening effect of second phase particles
and solute atoms in a material. Finally, aspects of 3-dimensional
dislocation motion are outlined in chapter 4.

1 Basic Dislocation Theory

1.1 Heuristic Dislocation Creation

In the literature, a number of excellent introductions to the basics of
dislocation theory have been given (e.g. (Hirth and Lothe, 1992), (Hull and
Bacon, 1992), (Weertman, 1992)). They cover the historical development
of the dislocation concept (Volterra, 1907), (Peierls, 1940), experimental
discovery of dislocations in crystals (Orowan, 1934), (Polanyi, 1934), (Tay-
lor, 1934) and overviews of physical phenomena which can only show up
in the presence of dislocations. Moreover, detailed introductions to linear
elasticity theory have been given (Hirth and Lothe, 1992) because elastic
distortions and stresses determine most of the dislocation properties: about
80-90% of a dislocation’s energy is stored in the elastic strains. The present
compilation of dislocation theory addresses students and researchers who
already have a certain knowledge in dislocation theory, but who want to
refresh and extend their understanding, in particular with respect to dis-
location dynamics simulations. From the start, it is emphasized that, in
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Figure 1. Dislocation in a linear elastic medium. The dislocation (black
line) demarcates the area (light grey) in which the material has slipped by
the Burgers vector b, which is a lattice vector. The sign of b and of the line
vector s can only be defined in combination.

general, dislocations are curved and flexible.

The generation of a dislocation in a linear elastic continuum can be envis-
aged by the following hypothetical steps: First, a cut is performed through
part of a specimen along a certain plane. Then one of the surfaces which
have been newly created by the cut is shifted by a vector b, called the Burg-
ers vector. Finally the surfaces are rejoined and the specimen is allowed to
relax. An example for the outcome of this procedure is plotted in figure 1.
The light grey area is the plane in which the cut had been performed. This
area is framed by the specimen’s dimensions and by the line which the tip
of the hypothetical knife had moved along. This latter line (thick and black
in figure 1) is the new dislocation. All material that does not include a piece
of dislocation is distorted and elastically stressed, but it is still continuous.
This includes the area of the hypothetical cut.

The dislocaton itself is a displacement singularity, as can be seen from
the Burgers circuit. The construction of this circuit requires a lattice in the
material, which is naturally given by the atomic arrangement of any real
crystal. In figure 1 a simple cubic lattice has been used for simplification.
The Burgers circuit is started at any lattice point S. From S, a number
of 7, j, and k steps along the lattice vectors in z-, y-, and z-direction, re-
spectively, are drawn subsequently. From there, the same numbers of steps
are drawn in the same order along the lattice vectors in the opposite direc-
tion. This defines the final lattice point F. In a perfect lattice or even in a
distorted but continuous one, F equals S so that a closed circuit has been
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described by these six lattice vectors. But if the described sequence of six
vectors encloses a dislocation, an additional lattice vector from F to S is re-
quired to close the circuit. This defines the Burgers vector b. Disregarding
continuous lattice distortions, its magnitude and direction are independent
of the choice of the numbers i, j, and k and of the starting point S as
long the dislocation is enclosed by the circuit. However, a convention about
the sign of b is required because an inversion of the circuit’s sense would
yield —b instead of b, while the real geometry is not changed at all. The
convention must link the sign of b to the actual shift that had been used
in the above hypothetical dislocation generation. A convenient and always
applicable way is to assign a local tangent vector s to the dislocation. This
defines the line direction or ’line vector’. Then the Burgers circuit is per-
formed following the right-hand-rule, where the thumb points in the line
direction. b is defined as the vector from start (S) to finish (F). This is the
most frequently used rule (see (Hirth and Lothe, 1992)), and it is adopted
subsequently. However, there are prominent exceptions (Weertman, 1992);
therefore one must be careful about which convention is taken. In any case,
the sign of the Burgers vector b and the line vector s can only be defined
in combination. It is important for consistency that the right-hand Burgers
circuit yields the vector b indicated in the figure. This can easily be verified
on the front plane (y=const., with j=0) or on the right side (x=const., with
i=0) of the specimen. When s is inverted, b is reversed as well so that the
same geometry is described.

From the hypothetical way in which the dislocation in figure 1 had been
produced, several fundamental dislocation properties can be deduced. One
is that the Burgers vector b, being identical to the shift vector, is a lattice
vector, which is constant by definition with respect to magnitude and direc-
tion. Obviously three cases are to be distinguished: Firstly, b and the line
vector s are parallel and lie in the ’cutting plane’. This is the case for the
dislocation part that leaves the crystal on the right side of figure 1. Owing
to the geometry of the displacements visible on this free surface, this dislo-
cation part is said to have screw character. Secondly, s is normal to b but
both lie in the cutting plane. This case is found on the dislocation portion
that leaves the crystal on the front plane. This part has, by definition, edge
character. And thirdly, b is normal to the cutting plane (and to s); this case
is called a prismatic dislocation (see below).

Another feature becoming apparent from figure 1 is that a dislocation
cannot terminate inside a crystal because it represents the fringe of a plane,
the slipped area. Still it can be useful to refer to dislocation segments
or parts (short straight pieces) in order to describe local properties, like
the dislocation character. The possibility of a blurred fringe and hence a
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Figure 2. Straight screw dislocation. With s parallel to b, the glide plane
is undefined.

distributed dislocation is discussed later. When a dislocation moves, the
slipped region increases or decreases with the motion. This means that
the crystal is deformed, which enables crystal plasticity. In the following,
dislocation features are described in more detail.

1.2 Basic Dislocation Types

According to the hypothetical generation of a dislocation described in
the introduction, several basic types of dislocation can be distinguished,
depending on the angular relations between Burgers vector b, line vector s
and the ’cutting plane’. In the following, the coordinate system is equiva-
lently given either by =, = (21,0,0), x5 = (0,22,0), 3 = (0,0,z3), or by
x = (2,0,0), y = (0,y,0), z = (0,0, 2), whichever is more convenient.

Straight screw dislocation The displacement w, in the direction x
caused by a straight screw dislocation along the x-axis can be read directly
from figure 2: When the angle 6 around the dislocation line is increased by
27, a displacement of one lattice vector along the z-axis occurs. This is,
by the definition of the Burgers circuit, one Burgers vector b. When elastic
isotropy is assumed for the material and the block is extended infinitely in all
directions, the incremental displacement du, /df will be equally distributed
(i.e., constant) over the whole range 0 < 6 < 27. This yields

%(r,@)zb; _ btan_1<2) (1)

T 27 Y

Note that u, does not depend on the radius r of the circuit. In figure
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2 this has been relaxed: there the displacement has been assumed to be
distributed approximately over the range 0 < r < b = |b; this is equivalent
to a blurred fringe of the cutting plane mentioned earlier. With the general
definition of the strain tensor € or {e;;},

- 1 aui auj
T g (axj * axi) @

0ij = Cijkl €kl (3)

and with Hook’s law

which connects the stess tensor {o;;} with the strains {e;;} and the stiff-
ness tensor {Cj;u }, the stresses of the straight screw dislocation can be
derived from (1) by elementary mathematics. Note that in equation (3)
and subsequently, Finstein’s summation convention is applied: summa-
tion is to be performed over equal indices (k and [ in (3)). In case of
an elastically isotropic material the stiffness tensor {Cj;i} contains only
two independent elastic constants (see e.g. (Hirth and Lothe, 1992)), for
instance, the shear modulus p and Poisson’s ratio v. With these, the re-
sulting stresses for the screw dislocation along the z-axis can be written as
Oyz = Ogg = Oyy = 0, = 0 and

Oy = _nb oz Opr = by (4a)
xy 2ry? + 220 T 2w y2 4 22
or
b
o= — 4b
a0 27r (4b)

with all other components vanishing in cylindrical coordinates.

The stresses and strains around the dislocation mean that a certain
elastic energy is stored by the dislocation. As mentioned in the introduction,
this energy accounts for 80-90% of the total energy of a dislocation and
therefore controls many of its properties. In general, the elastic energy E
can be calculated by integrating over the volume the elastic energy density,
which is 0;;¢;;/2. For a dislocation it is more useful to calculate the energy
per unit length, E*, by integration over the area normal to it. Here and
subsequently, the asterisk is meant to indicate a length specific unit.

1

Er = 9 /O’ij Eij dy dz (5)

For the screw dislocation it is most convenient to use cylindrical coordinates
and equation (4b) for o,9. In case of elastic isotropy with e,9 = 040/, this
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yields

27 fTshield b .
E*(screw) / /rme 471'27“2 rdr df = 1 fshield (6a)

Tcore

Here the integration has been restricted to the range rcore < 7 < Tshield
because the integral diverges for 7 — 0 and for r — co. The divergence of
E*(r — 0) arises obviously because the validity of linear elasticity breaks
down when r reaches down to atomic scales, that is a few times b. Hence
with rcore = 3b, for example, the energy of the dislocation core is left out of
E*. Anyway, with an appropriate choice of r¢e, the missing core energy
with its atomistic nature can still be taken into account approximately: this
is usually done with a smaller core radius r¢ore = 1b.

In a real specimen the divergence of E*(r — o0) is prevented by the finite
size of the specimen. This shows that even if the core energy were known
accurately, it is not possible to ascribe a certain value to the total energy of
a dislocation. Usually a crystal contains a number of dislocations in each of
the opposite the signs. In that case these opposite dislocations compensate
for each other’s stresses and strains, in effect, shielding each other. There-
fore a useful shielding distance rghielq is half the distance between nearest
dislocations. Because of the logarithmic dependence of E*(rshield/Tcore) and
Tshield > Tcore, the exact choice of rgpjelg 18 not too important.

For the derivation of 0,9 (equation (4b)) it had been assumed that the
dimensions of the specimen are infinite in all directions. This condition is
obviously violated when rgphie1q 18 chosen to be finite in equation (6a), which
uses o.9. When 0,4 is derived for a screw dislocation in a rod with free
cylindrical boundaries, E* comes out to be lower than in equation (6aa) by
the term pb?/(47). Hence altogether, a good approximation for the energy
of a straight screw dislocation is

b2 shie
E*(screw) = /jl (lnr hb 4 1) (6b)
™

Straight edge dislocations The derivation of stresses and strains is
more elaborate for straight edge than for screw dislocations. The reasons are
that there is no radial symmetry around the dislocation, and that there are
normal stresses (0qz,0yy,0--) and normal strains (€44, €yy, €2-) involved.
Both can be seen in figure 3: The dislocation is the line which terminates the
half-plane inserted from the top or squeezed into the rod from the right side
during the hypothetical generation procedure outlined. Obviously, there is
a compressive stress o, above the light grey plane and a tension below it,
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Figure 3. A straight edge dislocation is equivalent to an additional or
missing half plane.

where the lattice is widened in z-direction. The derivation of all the stress
components are omitted here, but the results are compiled for later refer-
ence. For an edge dislocation in an infinite medium with the line vector s
equal to the y-axis and a Burgers vector b pointing in positive z-direction
(inverse to the case of figure 3), the stress components are o,y = 0y, = 0
and

b —z(3z% + 2?) B pb oz (2 — 22
e 21(1—-v) (a2 422)° 7 2m(1 —v) (22 + 22)?
- pb oz (2 —2?)
S 2n(1—v) (22 + 22)?

 (7)
Oyy = V (U$$ + UZZ) ) Oz

Again, elastic isotropy is assumed, and v denotes the Poisson ratio. The
strain energy of the edge dislocation is found in full analogy to E*(screw)
of equation (6a). This yields:

. opb? Tshield
E*(edge) = 41— v) (ln . 1) (8)

Dislocations with mixed character Edge and screw dislocations have
their line vectors s normal or parallel, respectively, to the Burgers vector
b. As is obvious from the hypothetical dislocation generation, a general
dislocation has neither edge nor screw, but mixed character. In case of a
curved dislocation, the character even varies locally along the dislocation
line: b is constant, but s varies (figure 1). Still, the distinction between edge
and screw character remains useful. For instance, the energy E* of a straight
dislocation with mixed character can be superimposed from equations (6ab)
and (8). This is possible because parallel screw and edge dislocations do
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not interact with each other (within linear elasticity): a screw dislocation
along the zs-direction (parallel to the edge dislocation in figure 3) has only
012 and 023 as non-vanishing stress components (and the respective strain
components €12 and £93); all other components equal zero. This can be seen
from (4b)) with x1- and xo-directions exchanged. For the edge dislocation
this is just vice versa (see above equation (8)): o12 = 023 = 0. With this
and the Peach-Koehler formula detailed in section 1.3, it can be shown that
E* of the mixed-character dislocation can be written as:

E* (1%, s°) = |b0 X so|2 E*(edge) + |b0 . 30|2E*(screw) 9)

Here and subsequently, the superscript 0 in ° and s° indicates that the
respective vectors have unit length. The fact that E* is an energy per unit
length suggests that the total energy of a curved dislocation can be found
by integrating equation (9) along its curved path. However, this is only an
approximation. The theory of curved dislocations is detailed in chapter 2.

Prismatic dislocation loops In case of the dislocations described in
the previous sections, the shift vector b lay in the cutting plane. If b is
normal to this plane, a layer of material must be inserted between the two
cutting surfaces before rejoining, as sketched in figure 4, or removed. The
dislocation bordering the cutting plane has edge character regardless of its
course in this plane. Consequently, its energy E* is essentially given by
equation (8). If the shape of the loop is assumed circular, the shield radius
Tshield 1S given by the radius of the loop: the dislocation part on the opposite
site of the loop has the opposite sign, because the line vector points in the
opposite direction there. Prismatic loops represent dislocation dipoles; as
such they hardly contribute to plasticity.

1.3 Moving Dislocations

The most important property of dislocations is that they enable plastic
deformation: the overall shape of a crystal changes permanently when dis-
locations move. For instance, a cube is transformed into the shape in figure
5 when a dislocation with the indicated Burgers vector b moves through it
in the grey surface. There are other mechanisms which enable plastic defor-
mation, like twinning, grain boundary sliding and phase transformations,
but in general, plasticity is dominated by dislocations.

Dislocation glide and climb Two basic types of dislocation motion are
to be distinguished: glide and climb. In figure 5, the effect of dislocation
glide has been sketched. Note that this shape may have resulted from the
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Figure 5. Sheared Cube after glide of dislocations in figures 1, 2 or 3.

motion of a screw dislocation, an edge dislocation or even a curved one: In
figure 2, the screw dislocation may have moved from the front to the back
plane; in figure 3, the edge dislocation may have moved from the right to
the left side. Or in figure 1, the quarter dislocation loop may have expanded
to the back left corner. For all three cases the grey area in figure 5 indicates
the glide plane. It is described by the dislocation’s line vector s and, in
principle, by the direction of its motion, which is always perpendicular to s.
It is more convenient, though, to use s and the Burgers vector b to define
the glide plane and its normal vector n°:

o bxs

= b s (10)

In the case of a screw dislocation, where s is parallel to b, the glide plane n°

is undefined: The screw dislocation can glide in any direction — but only
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in the continuum description used here. In real crystals, Burgers vectors
and glide planes are restricted to certain crystallographic directions (section
1.4). But within these restrictions, several glide directions (and hence actual
glide planes) are equivalent for screw dislocations. This means that screw
dislocations can even switch their glide plane; this effect is called cross-slip
and detailed in section 4.1.

For edge and mixed-character dislocations, though, the glide plane n? is
fixed. The motion normal to n? is called climb. It is associated with material
transport: when the edge dislocation in figure 3 moves up or downwards
(normal to the glide plane), material must be moved away from or towards
the dislocation line, respectively. This changes the total volume of the
rod; therefore, climb is called non-conservative motion, as opposed to glide,
which is conservative. The material transport can happen by diffusion.
Except at very high temperatures, diffusion is a very slow process. Hence
climb is extremely slow as compared to glide, which can proceed at sound
velocity. Therefore in most cases, plastic deformation is dominated by glide.

In case of the prismatic loop of figure 4, the glide plane is a cylinder: the
dislocation can glide up and down. To extend the loop, in contrast, reguires
material to diffuse towards the dislocation. However, prismatic dislocation
loops are usually of minor importance.

Macroscopic shape change Since the Burgers vector is usually very
small compared to the sample’s dimensions, the shape change caused by
dislocation glide can be considered as continuous since the steps on a surface
like in figure 3 are usually negligibly small. Still, the overall shape change is
of importance, for instance its elongation. To quantify the length change in
relation to dislocation glide, a rod is sketched in figure 6 before and after the
glide of a dislocation with arbitrary glide plane and Burgers vector. The
rod suffers the elongation Ah = b - cos\, where ) is the angle between b
and the z-direction, in which the length h is measured. The relative length
change, Ae = Ah/h, called strain, can be written as

B b cos
T h

Here V' = hAzAy is the volume of the rod, Ay, is the distance the dislo-
cation moves in its glide plane, and ¢ is the angle between the glide plane
vector n and the z-direction. The expression Ax/V can be interpreted as
the dislocation density in the rod, which is defined as the total dislocation
length (here: Ax) per volume. More accurately, p,, = Axz/V is the mobile
dislocation density because only dislocations that actually move contribute
to deformation. If we divide equation (11) by a time step At and read

Ae = b cosA AVx Ay = b cosA AVac Ay, coso (11)
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Figure 6. A rod before and after glide of a single general dislocation.

Ay, /At as the dislocation’s velocity v, we get the strain rate de/dt:
€ =b pm v COSA cOSP (12)

When we introduce the Schmid factor S = cosAcos¢ and the resolved strain
rate or ’shear rate’ 4 = £/5, we obtain the Orowan equation. It relates the
macroscopic amount of shear strain to the abundance and velocity of moving
dislocations (regardless of any forces that drive the dislocations)

Y=0bpmv (13)

Forces on dislocations When dislocation motion enables a shape change
of a piece of material, then the corresponding external work must be ’con-
sumed’ by the moving dislocation, for instance, for overcoming obstacles.
From this fact the forces on dislocations can be derived. In figure 7, a gen-
eral force F' = (F,, Fy, F,) is applied to shift the upper half of a cube to the
left along the vector b (figure 5). If this force is caused by a general stress
tensor ¢ acting on the top surface A, of the cube, then F' can be written as
F, = (A0.5, Asosy, As0o,,). With the shift vector b, the external work
is

AWy =0b-F, =by A0, +byA0.y + 04,0, (14)

The subscript g in AW, stands for the 'global” view of the energy. The
deformation is accomplished by an edge or screw dislocation, which takes
a more local view: when it glides a distance d while a general force F' is
acting on it (F and d have the same directions), it consumes the energy
AWy = Fd. Here the subscript 1 stands for "local’. By using AW = AW,
(no other energies are involved) and the dislocation’s length L = A,/d
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Figure 7. A force F' is used to transform a cube into the shape of figure 5.
The corresponding external work is equal to the energy that an edge (a) or
screw (b) dislocation ’consumes’ while gliding.

(figures 7(a) or 7(b)), we get

F
= bpOsp + byosy + b0 (15a)

or, if we define 7 = F'/(bL),
T =000 = b)0.y + b0, (15b)

7 is called the resolved shear stress. It is useful to keep in mind that by
the definition just introduced, the resolved shear stress multiplied by the
(constant) magnitude of the Burgers vector of a dislocation equals the force
per unit length on this dislocation: b7 = F/L. Tt should also be noted that
in the derivation of 7 we made no assumption about the line vector s, hence
7 is independent of s. However, we assumed that ¢ acts only on the top
surface A, in figure 7, which is parallel to the glide plane, and underhand we
prevented rotation. If we assume o to act on all surfaces instead, rotation
is avoided automatically and equation (15b) takes the more general form:

r=0"-0-n° (16)

Again, ng is the normalized glide plane vector. If we assume n° = (0,0, 1),
we retain equation (15b). Since the Burgers vector b lies in the glide plane its
component b, vanishes; from this it can be seen that only shear components
of a stress tensor o give rise to 7 and hence drive dislocation glide (o, and
0.y of equation (15b)). Equation (16) projects any stress tensor ¢ into the
‘glide system’, defined by the glide plane n and the Burgers vector b. Hence,
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Figure 8. A force F' is used to elongate a cube, which gives rise to a climb
force on an edge dislocation.

it is also a generalized version of Schmid’s law. The latter considers only a
single stress component like in figure 6, where the sketched elongation may
be caused by a force in z-direction on the upper and lower surfaces A,. This
means that all stress components of o vanish except for o,.. Equation (16)
can then be written as 7 = So,, where the Schmid factor, S = cosAcosg,
projects the normal stress o,, into the glide system.

But equation (16) is restricted to dislocation glide (as the ’glide system’
implies). The driving force on an edge dislocation to climb can be derived
in a similar way (figure 8): the external work AW, = F'4 - b = Ay0,,b, +
Apogyby + Ayog.b, is set equal to the energy AW) = F'd consumed by the
climbing dislocation. From this, the climb force per unit length, F//L, and
the respective climb stress 7. (¢ stands for climb) is found to be

Te = bgam + bgaw + bgam (17)

7. renders a driving force for material (interstitial atoms or vacancies) to
move towards or away from the dislocation. When all surfaces A,, 4,, and
A, are taken into account, 7 and 7., which are both scalar values, can be
combined to form the Peach-Koehler-formula (Peach and Koehler, 1950).
It describes the local force vector AF on a dislocation segment described
by the line vector of finite length As:

AF = (b-0) x As (18)

It should be emphasized that the cause for the stress o plays no role here;
it may result from an external force F' as assumed above, from other dislo-
cations as by equations (4) or (7), or from any other kind of stress source.

Forces on dislocations arise not only from elastic stresses a, but also
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Figure 9. A dislocation creating an antiphase boundary while gliding
through a long-range ordered crystal.

whenever the overall energy of a specimen is changed as a dislocation moves.
For example, when the atoms in a specimen are usually ordered in some way,
this order may be destroyed when a dislocation glides (or climbs) through
it. A simplified case is sketched in figure 9, where a dislocation creates an
antiphase boundary while gliding through a long-range ordered crystal. The
boundary means an energy increment by the amount E = A~g,u, where A
is the faulted area and ~g,1¢ is the specific fault energy. A dislocation of
length L moving by a distance x sweeps the area A = zL, therefore, senses
the force F' = —dE/dx = — L~ygaut. The force per unit length F/L equals
—Yfault, and by the definition above the corresponding shear stress is

Ty = _’Yfault/b (19)

An energy change depending on dislocation motion can also arise when the

elastic properties, the shear modulus p in particular, vary locally inside a
crystal. As can be seen from the derivation of equations (6ab) or (8), a
dislocation’s energy is stored in the elastic distortions around its core, and
it is proportional to u. For instance when a dislocation approaches a region
with low shear modulus (a constant lattice constant is assumed here), its
energy will decrease. Hence there will be a force that attracts the dislocation
towards the region with low pu.

Interaction between straight dislocations With the stress tensors of
screw and edge dislocations given by equations (4) and (7), respectively,
and applying the Peach-Koehler equation (16), we can calculate the driving
stress 7 for glide that parallel dislocations impose on each other. To derive
some qualitative insight in the interaction between dislocations we consider
two dislocations as a stress source and a receiver, lying in parallel glide
planes with normal vector n® = (0,0, 1) and with parallel line vectors s” =
(0,1,0), as sketched in figure 10. If we assume two screw dislocations first,
their Burgers vectors are b, = (0,bs,0) and b, = (0, b;,0), and their mutual
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Figure 10. A stress receiving dislocation parallel to a source dislocation.
The respective Burgers vectors b, and b, are meant to be arbitrary.

glide stress Tycrew—screw 1S

ubs

20
2 22 + 22 (20)

Tscrew—screw —
If the stress receiver is located right from the source (z > 0), it senses
a positive stress Tyerewscrew Which drives it to more positive x-values, i.e.
away from the source: parallel screw dislocations repel each other if they
have the same sign. With either b, or b, inverted, the dislocations are called
antiparallel, and they attract each other. When they meet, they annihilate
each other. For instance, the two opposing half planes of antiparallel edge
dislocations form a full plane of the crystal. For equation (20) it had been
assumed that the dislocations are bound to the glide plane n® = (0,0, 1).
Pure screw dislocations in a continuous medium are not bound to a glide
plane; for this case it may be derived that Tucrew—screw = tbs/(27d), where
d is the distance between the dislocations. However, in real crystals (sec-
tion 1.4), screw dislocation motion is still bound to certain crystallographic
planes.

If we consider two edge dislocations (as sketched in figure 10), the Burg-
ers vectors are b, = (bs,0,0) and b, = (by,0,0), and the mutual glide stress
Tedge—edge 18 Much more complicated. In particular, the sign of the interac-
tion depends on x and z:

ubs x (mQ — z2)

2n(1 —v) (22 + 22)° 1)

Tedge—edge —

If the stress receiver is close to the source’s glide plane (22 < 22) the edge
dislocations with equal sign repel each other, essentially like in the case of
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Figure 11. Interaction between edge dislocations in parallel glide planes:
(a) parallel ones tend to form low angle boundaries; (b) antiparallel ones
tend to form dipoles.

screw dislocations. But in the opposite case 22 < 2 the receiver is at-

tracted, so that these dislocations tend to group above each other along the
z-direction (figure 11(a)). Such groups form an interface between two parts
of a crystal with slightly tilted crystallographic orientation: They are low
angle tilt grain boundaries.

When edge dislocations of opposite sign are considered, Teqge—edge just
switches its sign. The effect of this can be seen in figure 11(b): the stress
receiving dislocation is attracted to the 45°-lines where z? = x2; there,
Tedge—edge = 0. This means that edge dislocations of opposite sign tend to
form dislocation dipoles, with a 45° angle between the glide plane and the
shortest vector connecting both.

Dislocation dipoles have the important property that they cannot be
driven by a homogeneous stress g: the two edge dislocations are driven in
opposite directions. This may break up the dipole, but it will not drive
it. In this sense, dipoles can be considered as immobile, in contrast to the
mobile dislocations which actually enable plasticity. Even if they move, the
bits of deformation the two edge dislocations cause cancel out each other
for the most part.

Another important feature of dipoles is that the dislocations involved can
move towards each other by a mix of glide and climb and finally annihilate.
Climb requires material transport by diffusion, and hence this annihilation
is kinetically inhibited. But since the edge dislocations attract each other,
the dipole renders a driving force which attracts or emits interstitial atoms
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or vacancies.

Between parallel edge and screw dislocations there is no elastic interac-
tion: the combinations of b, = (0,bs,0), b, = (b;,0,0), and by = (bs,0,0),
b, = (0,b;,0), both yield Tycrew—edge = 0 and Tedge—screw = 0, respectively.
Hence without energy change, parallel screw and edge dislocations can be
moved to fully coincide. By this procedure a straight dislocation with mixed
character is generated. Conversely, this means that any mixed character dis-
location with Burgers vector b may be considered as being composed of an
edge and a screw dislocation with Burgers vector components bedge = |- Y|
and bgerew = |b x 8°|, respectively. With these, the stress tensor ¢ of a mixed
character dislocation may be written as

gmixed (p) = gserew (p Y 4 gedse (Bedge) (22)

where the components of 65" and ¢°I8° are, in principle, given by equa-
tions (4a) or (7), respectively. But before that, equation (4a) must be
transformed such that the line vector s, which had been assumed to point
in z-direction for equation (4a) (figure 2), equals that for equation (7) (fig-
ure 3). This geometry has for instance been used in (Hirth and Lothe,
1992). However, in the present description, it has been chosen to use the
same Burgers vector b for the cases in figures 1 to 3 to emphasize that b
of a given dislocation is constant, so that a dislocation’s character is exclu-
sively determined by (variations of) the line vector s since, a variation of b
is impossible for a given dislocation.

Image stresses So far it has been assumed that the dislocations reside
in a specimen with infinite dimensions. However, often boundary condi-
tions like free surfaces need to be considered. As is usual in other physical
boundary condition problems, this can be done by assuming infinite di-
mensions, but adding entities which enforce the conditions involved with a
given boundary. In case of elasticity and hence dislocations, a free bound-
ary means that all forces on the boundary surface must vanish. In the case
of figure 12, in which a free surface is assumed normal to the z-axis, this
means Oy, = Ogy = 04, = 0. For a screw dislocation, this can easily be
achieved by adding an additional dislocation of opposite sign mirrored to
the opposite side of the surface: from equation (4b) it can be seen that the
only non-vanishing stress component in cylindrical coordinates of a disloca-

tion along the y-axis, 0,9, depends only on the distance r = (932 + 22)1/2,

which is always positive. Hence, all stresses of the dislocation (with b(l),
at (1) = —L, figure 12(a)) and its image counterpart (with b2 = —p),
at £(» = +L) combined vanish in the whole plane (0,7, z). The original
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Figure 12. Material with image dislocations used to account for a free
surface; (a) exact solution for a screw dislocation; (b) approximation for an
edge dislocation.

dislocation is attracted towards the image dislocation and hence towards
the free surface as described by equation (20) with z = 0 and = = 2L, i.e.
with 7(9)_.(1) = pb/(47L).

The case of an edge dislocation parallel to a free surface is more com-
plex. For the geometry used in figure 12(b), the stress components o,
vanish for both the original and the mirrored dislocation (section 1.2), and
the componens o,, of the two compensate for each other (equation (7)).
But in case of o,., the components for the two dislocations add up because
the sign of 0., depends not only on that of b but also on that of = (equation
(7)). In figure 12(b) the non-vanishing stress components are indicated by
grey arrows. In case of straight dislocations, the interaction between the
dislocation and its image is still given by equation (21), with 2 = 0 and
x = 2L, which results to 7(2)_1) = pb/(4wL(1 — v)) (Hirth and Lothe,
1992). The stress components o,. are simply removed by a minor transla-
tional shift along the directions of the grey arrows.

The case of a free surface may be considered as an interface inside
a specimen where the shear modulus switches from p to zero, or where
the material is infinitely soft. The other extreme is an interface to an in-
finitely rigid material (@ — oo), which allows no elastic (or plastic) strains:
€xx = Exy = €z- = 0. Similar to the case discussed above, this can be
achieved by adding material with an image dislocation with the same Burg-
ers vector: b® = +b(1). In that case the dislocation experiences the same
amount of stresses 7(2)_,(1), but with inverted sign: The dislocation is re-
pelled from the rigid part.

1.4 Dislocations In Real Crystals

In real crystals, the Burgers vector b and the glide plane vector n are
bound to crystallographic directions: the Burgers circuit (section 1.1) is to
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be performed along atomic positions, leaving an interatomic vector for b.
Since the energy of dislocations scales with b?, the Burgers vector must be
short; this leaves only a few possibilities. For a dislocation to glide, a glide
plane must be 'smooth’. This is the case only when its normal vector points
in certain crystallographic directions.

Perfect dislocations In a face centred cubic (fcc) lattice the elementary
cell consists of a cube with one eighth of an atom in all eight corners and
half an atom on all six faces. The shortest interatomic distance in this lat-
tice is along the diagonals of the sides; hence in terms of lattice vectors,
the Burgers vector has the type (110) and the length ao/2'/2, where ag
is the lattice constant. The closest packed planes are normal to the space
diagonal, hence the glide planes have Miller indices of the type {111}. In
each of the four independent glide planes (111), (111), (111), and (111),
there are three possible Burgers vector directions such that b-n = 0 (for
instance [110], [101] and [011] for (111)), hence there are 12 glide systems
of this kind. One example is sketched in figure 13. An edge dislocation
in the depicted (111)-plane with the indicated Burgers vector would have
the line vector s = 671/2[121] along the dark atoms. These latter atoms
can be seen as the first ones of the missing half plane inside the volume
that has not been plotted. There are actually two rows of dark atoms along
the dashed lines; this will be detailed later on in the context of partial (i.e.
non-perfect) dislocations.

The elementary cell of a body centred cubic (bcc) lattice is a cube with
one eighth of an atom in all eight corners and one atom in its centre. The
shortest interatomic vector and hence the Burgers vector is of the type (111)
and has the length (31/ 2/ 2) ag- There are three possible types of glide planes
which are experimentally observed: {110}, {112} and {123}. Among these,
the {110}-planes sketched in figure 14 have the closest packing. There are
six non-parallel planes of this type, and each of them can contain two Burg-
ers vectors, for instance, [111] and [111] for the (110)-plane. So there are
12 glide systems of this type. Of the {112}-planes there are 12. Each can
contain only one Burgers vector, for instance [111] for the (112)-plane. This
gives another 12 glide systems. Finally there are 24 {123}-planes, which
contain one Burgers vector each. Hence there are 48 glide systems alto-
gether in body centred cubic crystals.

In principle, any plane qualifies as a glide plane as long as it contains
the Burgers vector. For instance, the (134)-plane contains the direction
[111], but glide on {134}-planes is not observed: the glide is prevented by
the Peierls stress Tpejers- This stress describes all resistance against glide
that a dislocation experiences due to the atomistic nature of its core in a
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Figure 13. Glide plane n and Burgers vector b in a face centred cubic
crystal. The dark atoms indicate the direction of an edge dislocation, for
instance the first atoms of the missing half plane.
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Figure 14. A glide plane n = (101) and Burgers vector b = [111] in a body
centred cubic crystal. The dark atoms indicate the direction [121] of an
edge dislocation, for instance the first atoms of the missing half plane.
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given plane. This resistance has a short-ranged periodic nature inherited
from the crystal structure, the glide plane and the glide direction. Brown-
ian motion of the atoms, i.e. thermal pulses on them, helps a dislocation to
overcome this resistance, as if the glide plane were smoothed out by tem-
perature. Therefore, Tpeieris 1S a function of temperature. In case of face
centred cubic crystals the glide planes are closely packed (figure 13) and
therefore 'smooth’; the Peierls stress in these crystals is negligible even at
room temperature. But in body centred cubic materials, only the {110}-
planes are rather smooth. The other glide planes {112} and {123} need
to be ’smoothed’ by temperature, so that they are active only at higher
temperatures.

Among metals the hexagonal crystal structure is also of importance.
Here the basal planes {0001} enable three glide directions of the type (1120).
Furthermore, three prism planes of the type {1010} with one glide direction
each (type (1120)) can be active as well as the pyramidal {1011 }-planes, also
with a (1120) glide direction. As long as the axes of the hexagonal crystal
have a ratio ¢/a > 1.63, the basal plane is closest packed and always active.
However, in case of an axis ratio ¢/a < 1.63, the density in the plane can
get as low as that in the other planes. Again, temperature decides which
glide systems get activated first.

Partial dislocations As outlined before, a Burgers vector b must be short
because a dislocation’s energy scales with b2. So far we have assumed that
b is a lattice vector, but this is not always required. A face centred cubic
crystal, for instance, can be seen as a periodic stack of three closely packed
atom layers, as indicated in figure 15(a). The layers A, B, and C differ
by small translational vectors for valid atom positions in the plane, as can
be seen in figure 15(b). In a perfect fcc crystal, which has the closest
possible packing density, a C' layer must follow a sequence of A and B to
form an ABCABC stack. The same packing density can be found with
an ABABAB stacking sequence, but this would mean a slight increase of
the free energy. An ABABAB stack would form a hexagonal crystal with
closest packing and an axis ratio of ¢/a = 1.63. However, the quoted fcc
materials obviously prefer the fcc crystal and, therefore, the ABCABC
sequence.

In figure 15(b), part of the atoms in layer B, which lies on top of a C
layer, have been shifted such that they reach another valid B-position. This
corresponds to the Burgers vector b of a perfect dislocation. But instead,
these atoms can also shift so that they reach an A-position. This creates a
partial dislocation (here: Shockley partial dislocation) and a stacking fault
on one side of it. The stacking fault entails an increase of the free energy,
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Figure 15. Atom layers in a face centred cubic lattice. A row of atoms is
omitted to indicate the first missing atoms of the missing half plane of an
edge dislocation.
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Figure 16. Atom layers adjacent to the glide plane of a perfect/dissociated
dislocation of (a) edge and (b) screw character.

but the total energy is lowered because the Burgers vector b, of the partial
dislocation (short: partial) is smaller than that of a perfect one. Partials
are usually found in pairs of two; this keeps the energy penalty from the
stacking fault low. Together such a pair is called a dissociated dislocation.
Shockley partial Burgers vectors are of the type (112) and have the length
b, = (10/61/2 = b/31/2. The sum of the partial Burgers vectors of a pair
equals that of the dissociated perfect dislocation: b, + b, = b. In figure
16 an example is given for the glide plane n = (111) and a screw or edge
dislocation with the Burgers vector b = (ag/2'/2) (101) dissociated into
by = (ao/6'/%) (211) and by = (ag/6'/?) (112).

It should be noted that the Burgers circuit, which is used to define the
Burgers vector, cannot be performed for single partial dislocations unless
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the circuit is started and finished in a point in the stacking fault. The region
of stacking sequence ABAB around the stacking fault may be considered as
a small volume with hexagonal crystal structure. But besides that, partials
can be considered as normal dislocations, in particular with respect to all
properties deriving from elasticity. In section 1.3 it has been shown that a
dislocation with a faulted area on one side of it in the glide plane senses
the constant stress 7, = —7gau1t/b (equation (19)), where Ygaui is the energy
density of the faulted area. Accordingly, in case of partials with a stacking
fault energy ~er, the stress is 7y = £/bp. The sign of it is such that
it drives the partials towards each other. On the other hand, the partials
repel each other elastically reciprocal with their distance d, as can be seen
from equations (20) or (21) with z = 0. The equilibrium distance between
partials d.q can be found by equating the repulsive stress with 7y Here
we have to consider that the partial Burgers vectors are neither normal nor
parallel to each other, but they enclose an angle of 60°. As described by
equation (22), the dislocations can be decomposed in their screw and edge
components. Then the superimposed stress tensors g™*ed (x = deq, 2= 0)
for a distance deq can be subjected to the Peach-Koehler formula (16) to
calculate the glide component 7. Equating this with 7 yields for deq:

1ub? (b9 x %) - (b9 x s°)
doq = 271")1/; (b(lJ . 50) (bg . 50) + ! 1_ V2 (23)

When a material with v = 1/3 is considered with equation (23), edge dis-
locations are found to dissociate stronger than screw ones by a factor 7/3.
This strong difference is caused by the fact that the partials of a pair are
in part parallel and antiparallel when decomposed in edge and screw com-
ponents. The parallel parts repel each other, whereas the antiparallel ones
attract. Hence the edge components of the partials of a dissociated edge
dislocation repel rather strongly (factor 3/4/(1 — v), for beage/b = 3'/2/2
with o = 60° for Shockley partials) and attract rather weakly (factor 1/4,
for bscrew/b = 1/2 with o = 60°), whereas in the case of a dissociated
screw dislocation, repulsion (factor 3/4 with o = 30°) and attraction (fac-
tor 1/4/(1 —v)) are more balanced and deq is rather small. The dislocation
width is important for the probability of dislocations to cross-slip, as is de-
tailed in section 4.1. Cross-slip means that a screw dislocation leaves its
primary glide plane. Perfect screw dislocations have no fixed glide plane,
but dissociated ones have a primary glide plane which is defined by the
plane of the stacking fault regardless of the dissociation width deq.

In hexagonal crystals an equivalent stacking fault may occur in the base
plane, forming a region with an ABC ABC' stacking sequence enclosed by
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Shockley partials. However, this is only possible when the axis ratio ¢/a is
close to 1.63 because otherwise the stacking fault energy is likely to be high.
In body centred cubic crystals dislocation dissociation can even extend in
three dimensions.

2 Curved Dislocations

In section 1 on basic dislocation theory it has been emphasized from the
start that in general, dislocations are curved and flexible. While several
basic dislocation features are understood best by considering straight dislo-
cations, the flexibility should always be kept on mind. As a result of stresses,
dislocations can bend locally and thereby change their local line vector s.
The latter thereby changes the local dislocation character (edge/screw), be-
cause the Burgers vector b is constant.

The degree of flexibility, that is, the stress sensitivity of bending is quite
important for the course of events that may happen during plastic defor-
mation. The flexibility is defined by the dislocation’s self interaction: a
dislocation causes and at the same time senses elastic stresses, including
those from itself. Various models have been derived in the past to account
for this, with differing complexity and accuracy. Today even the rather
complex model for the elastic (self-) interaction of curved dislocations can
be utilized in computer programs to simulate dislocation glide in various
problems of plasticity. This self interaction model is described in section
2.2. But before that, the simple line tension model is described in detail
because it is required for understanding and proper interpretations of sim-
ulation results. The description of the line tension model given here differs
from other approaches. Unlike other descriptions it is fully consistent and
therefore believed to provide a better understanding.

2.1 Line Tension Model

In equation (9) the length specific energy E* of a straight dislocation
with mixed character had been given. The character dependence has been
expressed by the directions of the Burgers vector b and the line vector s.
Using the angle o between b and s, and R = rgpiela/e for simplification, we
can write:

b2 b2 R
E*(a) = 47r(/i ) sin®a + /jhr 005205] In ( b ) (24)
For later reference, the square bracket in equation (24) is called the pre-
logarithmic energy factor Kg(«). It contains the shear modulus p and
Poisson’s ratio v as elastic constants; elastic isotropy has been assumed in
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section 1. In general, Kg(«) is a more complex function (see e.g. (Nembach,
1996) containing more elastic constants, like Cyjx;. But for the time being,
K is considered constant.

Constant line energy With a constant energy per unit length E*, any
object and in particular a dislocation tries to contract itself in order to
reduce the free energy. The energy of a segment described by As is E*|As|.
This causes the force F' = —V (E*As), which obviously points along As and
has the magnitude F' = E*. This means that the dislocation behaves like a
string under constant tension in this model. This knowledge can be used to
evaluate the force equilibrium in the middle point of figure 17, which holds
the force caused by both adjacent dislocation arcs in their given circular
shape. The z-components of the forces from the arcs, I, = +FE*cosyp, cancel
each other; the superimposed y-component is F;, = 2E*sing. Assuming
small angles ¢ for simplicity (this is not a necessary condition) such that
sinp ~ @, and expressing ¢ by the arc length L and the curvature radius
R.(¢p=L/R.), we find F, = E*L/R.. This is the force that the arcs
cause in the middle point. But as mentioned above, the dislocation arcs
would try to contract; the same force Fj is needed for each point or arc
to keep the dislocation in its shape. Over the length L, the required stress
is known to be 7Teyy = Fy,/(bL) (stress definition in section 1.3). Since a
stress equilibrium must be fulfilled and no other stresses are involved, this
external stress must equal the stress Ty g that the dislocation produces
on itself in every point. Altogether this yields:
*
Tself—E — bERC (25)

According to equation (25) the dislocation’s self-interaction depends only
on the curvature 1/R., which is a very local property. This is only a rough
approximation, as is seen later. In addition, it must be emphasized here
that equation (25) holds only for the rather hypothetical case of a constant
line energy E*. The effects of E*(«) are described later on; before that,
we take a look at the importance of a dislocation’s flexibility or rigidity
in strengthening models. The rigidity is represented here by E*, and later
more accurately by the line tension S.

Simple Strengthening Models Strengthening models relate properties
of obstacles, which impede dislocation glide, to the critical stress required
to enforce dislocation glide to continue. The simplest but still important
strengthening model is that of Orowan (Orowan, 1934). It assumes that
dislocation glide in a plane is impeded by obstacles which, for any reasons,
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Figure 17. Force on the middle point: the z-components +FE*cosp of the
left and right dislocation arcs cancel each other, the y-components E*sing
add up. Often the cusp angle § = m — 2¢ is used instead of .

cannot be cut through by dislocations: the obstacles are impenetrable. Dis-
locations can still overcome these obstacles provided that an external stress
Text €xceeds some critical stress Torowan, as sketched in figure 18(a). Be-
tween obstacles, in a static configuration (no motion) 7Text equals Tseif— g
because no other stresses are involved. Hence according to equation (25)
Text Will cause a curvature with the radius R. = E*/ (bText)). When 7oxt
is high enough such that R, is equal or just below the free space L. — 2R
between the obstacles, the angle ¢ (see figure 17) will reach 7 /2, (or, 8 = 0).
This defines the Orowan stress
E*

TOrowan — b (Lcc . 2R) (26)
where R and L. are the obstacle radius and their centre-to-centre spacings,
respectively. At Text = TOrowan, the dislocation arcs are driven forwards by
the force (Lec — 2R)bText. This force equals 2E* and therefore is just enough
to keep the length of the two dislocation arcs that touch one obstacle. When
Text > TOrowan the dislocation length is increased, and the dislocation over-
comes the obstacles by circumventing them. Thereby parts of the dislo-
cation with opposite line vectors annihilate each other, and Orowan loops
around the particles are left behind, as indicated in figure 18(b). Equation
(26) describes the strengthening effect that the impenetrable obstacles give
to the material in terms of b, of the obstacle’s geometrical parameters L.
and R, and of E*. For the case R < L, only the obstacle spacing L. is of
importance, but no obstacle parameters. L.. may be expressed in more use-
ful terms, like a volume density of obstacles. But here only the importance
of E* is emphasized: apart from geometrical factors, the strengthening ef-
fect of the obstacles depends on the rigidity £*, which is a pure dislocation
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Figure 18. A dislocation overcoming an equidistant row of impenetrable
obstacles.

property.

Another simple but important strengthening model is that of Friedel
(Friedel, 1964), and derivations thereof. Here the obstacles are not impen-
etrable, so that they can only hold a finite maximum force Fy,.x. However,
we assume the obstacle to be point-like (R = 0) for simplification. In the
terms of figure 17, the finite force F,,x means that the range of possible
angles is reduced to sing < Finax/(2E*), or cos(3/2) < Fuyax/(2E*). This
influences the effective number of obstacles that prevent dislocation glide:
in a random field of point obstacles, an extremely rigid, i.e. straight dislo-
cation touches only very few obstacles, whereas a rather flexible dislocation
(E* — Fiax/2) will touch many. To derive the effect of this, we consider
the configurations given in figure 19, where a dislocation first lies behind a
row of three equidistant obstacles and then breaks free from the obstacle
in the middle. It then bows out until it touches another obstacle in a ran-
dom obstacle arrangement, thereby sweeping the area A. Before and after
the break-through the curvature radius R, is the same because the external
stress Text 18 constant.

Assuming a parabolic dislocation arc, for simplicity, instead of a circular
one (restricting the model to low angles ¢) before and after break-through,
the following purely geometrical relation can be derived:

2 1
A=2"(1-2/8) Lp-h=Lp-h with h= L} (27)
3 2R.
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Figure 19. Geometry for Friedel’s strengthening model. The grey area A
is swept when the dislocation breaks through the obstacle in the middle,
until the next obstacle is found.

Here so far, none of the variables A, Ly, and h are known. But it is known
that on average during dislocation glide, one new obstacle must be found by
the dislocation after it has overcome another. This means that 1/A equals
the area density of obstacles, ¢, which is fixed and can be measured, or
A= quuam, where Lgquare denotes the square lattice spacing. This is the
shortest distance between obstacles if they were arranged in a square lattice.
Next, the force equilibrium in the obstacles is applied: at the critical stress
TFriedel, the force bLpTrredel acts on one dislocation arc of the length Ly
and hence on the obstacles, so we get Fiiax = DLpTryiedel- Finally, from the
stress equilibrium between the obstacles we know that, like in the Orowan
model above, Trricdel = Tseli—p = FE*/ (bR.). With these considerations,
equation (27) can be resolved for the length Ly, called the Friedel length:
b quuare . Fmax
Ly = Jek T VE with k= o
Here k denotes a relative obstacle strength. If the obstacles are weak
(Fiax < 2E*, or k < 1), Ly is large compared to the square lattice spacing
Lgquare, which is a constant parameter given by the obstacle array. This
means that the dislocation touches only very few obstacles when they are
weak, or, as indicated above, when the dislocation is very rigid and remains
straight. This emphasizes the importance of the line tension model, because
the line energy is needed to rate the obstacle force Fiax, even in simula-
tions in which the line tension model is not used at all. However, it must
be stressed again that it had been assumed that E* is constant. If E* is a
function of the dislocation character, often (but not always) the line tension
S(«) introduced in section 2.1 is to be used instead of E*(«a). With Ly and

(28)
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k from equation (28), the strengthening effect Tryiedel Of the obstacles can
finally be written as:

Enax

29
bquuare ( )

TFriedel = \/k Tmax with Tmax —
At a given obstacle spacing Lgquare, the strengthening effect of obstacles
obviously increases with Fy.x with a power of 3/2, but only up to k& = 1.
When Fi.x > E*, only the obstacle spacing is of importance, as seen in the

Orowan model.

Line Torque So far it has been shown that a dislocation with the length
specific energy E* is under tension with the force FF = E* along its line di-
rection. The stress Tsit— g (equation (25)), and the force AFp = bTseir—pAS
normal to the segment vector As resulted from this assumption. This holds
for a constant line energy E*. But usually E* is a function of the disloca-
tion character, indicated by the angle a between Burgers- and line vector.
From E*(«), a dislocation segment of length As senses a torque AM that
attempts to rotate the segment such that its energy (E*As) is lowered:
O(E*As) oF*

M(a) = — or M*(a)=-—

Oa As Oa (30)

where M* = AM/As is a length specific torque, called line torque in anal-
ogy to the line energy. Here As is assumed to be constant because the
effect of a length change has already been covered by 7eef— g in section 2.1.
The torque tries to rotate the segment, but for the most part this is pre-
vented by the neighbouring segments since they want to rotate in the same
direction when they are close and sense the same torque. In figure 20 three
segments with the same lengths As are plotted. They sense slightly varying
torques AMCY, AM© and AM™D resulting from a varying M*. The
torques AM result in forces in the segments’ end points. Between the seg-
ments (0) and (+1), the sum of forces in y-direction is AFy; = (AM(?)/As)
— (AMGY/As) = M*© — M) With the distance between the con-
nections being the segment lengths As, the corresponding stress is

M*(O) o M*(+1) 1dM*

™= b As T T ds (31)

The second part of equation (31) is the transition to infinitesimally short.
For equation (31) no assumption has been used, so far, about the cause of
the difference between M*(©) and M*() | or for dM*/ds. The line torque
M* may have an explicit dependence on the location z, like in the case of
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Figure 20. A dislocation cut into short segments of length As. When a line
torque M™ with a gradient acts on the dislocation, a non-vanishing force
results in the segments’ connections.

elastic interaction between a dislocation and a size mismatched particle with
a fixed location x, (Mohles, 1997). Another possibility is the dependence
of M* on «:

dM=*  oM* ~ OM* da 39)

ds  0s * Oa ds (

When the dislocation has the curvature 1/R., then going from s to s + As
along the dislocation rotates the local line vector direction s by the angle
As/R., and « changes by the same amount. In figure 20 a slight curvature
is indicated, but R, and A« are not indicated because R. > As. With
Aa = As/R., M* from equation (30), and OM™*/ds = 0 (this is not used
here) we get for 7;:

192E%(a) 1

b 9?2 R, (33)

Tself—M = +
This ist the stress that a dislocation poses upon itself only because its line
energy E*(«) is character dependent, and because this results in a torque.
Usually, 7se1t—ps has the same order of magnitude as Tgor—p. But unlike
E*(a) itself, its derivative 8% E* /0a? can be negative.

Line Tension Both the stresses 7eet— g and Teet— s arise from the line en-
ergy E*. But they consider different, independent forces: 7yeit— g is derived
from forces along the line vector s, Tsr—ps from those normal to s. The
total self interaction stress Tjine — in the line tension model — is, therefore,
superimposed of both 7r g and Tseir—as:

S(a) . . PE*(a)
Tself = with  S(a) = E*(a) + 20

bR, (34)
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Figure 21. Pre-logarithmic factors Ky and Kg as functions of the dislo-
cation character for v = 1/3, and the corresponding equilibrium shape of a
dislocation loop.

S(a) is called the line tension and is actually a force, like E*(«). The rela-
tion (34) between S and E* holds in general, including elastically anisotropic
materials. S is the true rigidity in the line tension model, not E*. Consider
for instance the pre-logarithmic factor Kg(«) of E* for an isotropic material
as given in equation (24), and its counterpart Kg(«) for the line tension S:

B ub? 9 sino
Kg = i <cos a+1—y (35a)
and
b (1 1-2
Kg = /jhr (1+Zcos2a+ 1:sin2a) (35b)

As can be seen in figure 21, Kg and hence E* are larger for edge than for
screw dislocations, but for Kg and S, the opposite holds. This means that
screw dislocations are stiffer than edge ones: when a screw dislocation is
bent, edge components are generated, which needs much energy. On the
other hand, when an edge dislocation is bent, only the lower energy screw
components are generated. Accordingly, an equilibrium dislocation loop
with a constant self-stress 7, is elongated in the direction of the Burgers
vector.

It is frequently claimed or assumed that S were the actual force along
the dislocation line, but this perception is misleading and involves incon-
sistencies, as demonstrated below. The line tension model may be seen
as inconsistent, anyway, in light of the more accurate self interaction model
(section 2.2). But since the line tension is used for interpretations of simula-
tions using the dislocation self-interaction, inconsistencies in the line tension
model may lead to misinterpretations.
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Figure 22. Forces from a dislocation on a point obstacle.

Forces on Obstacles In figure 22 all forces from a dislocation exerted on
a point obstacle are plotted for two cases: large and small cusp angles .
The forces are E* along the dislocation and M* normal to it. The opposite
forces of the line torque M™ are not plotted; they are distributed along the
dislocation line in brsi¢— s (see above). Equation (36) describes this sum of
forces in terms of p = (7 — )/2.

F, =sin ¢ (E*(l) + E*(2)> +cos ¢ (M*(l) — M*(2)> (36)

Note that M*®2) in equation (36) and in figure 22 has a negative sign; this is
because this force acts on the left side of a dislocation segment, and not on
the right as M*(1). This is consistent with equation (31). Yet in figure 22,
both force vectors M*(1) and —M*2) point in positive y-direction against
the point obstacle. This is caused by the fact that M*(«) changes its sign as
the angle a between Burgers and line vector changes from —¢ to +¢ in the
obstacle; the sign of M* is always so that M™ tries to rotate the dislocation
into screw character, which has the lowest energy E*.

The only difference between figures 22(a) and 22(b) lies in the line vector
s, such that ¢ — 0 in figure 22(a) as for weak obstacles, and ¢ — 7/2 in
22(b) as for strong obstacles. In the latter case, the force contributions
M*1) and —M*?) cancel each other (figure 22(b)). Hence the total force
F, pulling on the obstacle equals 2E*: in case of strong obstacles, like for
Orowan’s strengthening model (see above), the line energy is the appropriate
force.

In contrast, for weak obstacles M*(1) and —M*®2) add up, and they add
to the force 2E*sing. With ¢ — 0, cosp = 1, and E*(1) = E*(?) = E*,
equation (36) can be written as

AM*

F, =2E" sin ¢ — Aa Aa (37)
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Here —AM* replaces M*1) — M*?) and A« is just inserted without
damage. Then (AM*/A«) can be read as the first derivative of M*(«).
While crossing the particle, the line vector s changes by Aa = 2¢ (figure
22(a)). Now inserting this and replacing ¢ by sing (¢ — 0), and using
M* = —0F*/da (equation (30)), we get:

. . 82E*
Fy,=2sin ¢ (E + 902 ) (38)

The bracket in equation (38) is obviously identical with the line tension
S as introduced in equation (34). Hence equation (38) can be read as if
in figure 22(a), two forces S(1) and S® acted on the obstacle instead of
E*M) and E*®), and no forces M*. Hence, for weak obstacles, the line
tension S may be considered as the appropriate force acting on an obstacle.
But this perception is not consistent because for strong obstacles, E* is
the appropriate force (see above). This means that at some point in the
transition from weak to strong obstacles, a ’switch’ from S to E* would
be needed if the line torque were to be disregarded. In case of obstacles of
medium strength, around ¢ = 7/4, either force S or E* would only be an
approximation. It seems more useful to keep a fully consistent view in mind,
in which the true forces, namely the line energy E* and the line torque M™,
are considered as in equation (36). With these, even the force components
F,, which act on the obstacle in figure 22 from the sides, can be treated
correctly with an equation equivalent to (36). Such side forces F,, may be
larger than Fj, and hence be critical for overcoming an obstacle.

While the line tension model as described here is consistent and exact
for a linear object with a line energy E*, it is still only an approximation
for dislocations because they have a long-ranged self-interaction.

2.2 Dislocation Self-Interaction

Each infinitesimal piece of a dislocation somehow interacts elastically
with every other piece. This can be stated, as seen later, in spite of the
fact that a single piece of dislocation does not exist. In principle the in-
teraction goes through every point in space; however, when an elastically
homogeneous material is assumed, the latter complication is dropped. Since
elasticity is linear, the stress and strain contributions caused by all dislo-
cation pieces can be calculated separately for an arbitrary point in space
and then superimposed later. This is Green’s principle, which is usually well
known and used in electrodynamics or heat conduction. In case of elasticity,
a Green’s displacement tensor is required instead of a Green’s function.
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Green’s displacement tensor The general elastic stress equilibrium
can be written as V -a + f = 0, where o is a general stress tensor, f
is a volume force (force per unit volume) and V denotes the gradient op-
erator. With the definition of a strain ¢ in terms of a displacement wu,
ew = (Ou/0x; + Ouy/Oxy) /2, and Hooke’s law o;; = Cijrien, the stress
equilibrium can be written as a relation between between a volume force f
and the corresponding displacements u:

. +fi=0 (39)

Here Cjj; denotes the 4th grade tensor of elastic constants, and Einstein’s
summation convention over equal indices is applied. The subsequent deriva-
tion is restricted to an elastically isotropic medium. For this, the tensor of
elastic constants can be written in terms of the shear modulus p and the
Poisson ratio v: Cijr = [0i0j1 + 0105 + (2v/(1 — 2v)) 04501] pt, where ;5
is the Kronecker symbol with ¢;; = 1 if ¢ = j, and 0;; = 0 if ¢ # j. Using
this in equation (39) and considering a volume force f = (§(r), 0,0) pointing
only to the x;-direction, we can write:

)
e (V) P+ 6) = 0
)
1_M2uax2(v~u)+uvzuz = 0 (40)
H 9 2 _
1_2yax3(v u)+puVuz = 0

This is a set of coupled differential equations for the displacement u caused
by the ’force’ d(r), which acts only in xi-direction and only in the origin
7 = 0 due to the delta function 6(r). This function has the dimension m~3
instead of Nm~2 for a volume force because by definition, a Green’s function
is the reaction of a system to the inhomogeneity of the §-function. With
some help from potential theory, equation (41) can be solved analytically
(e.g. (Hirth and Lothe, 1992)). The solution is u,, with the subindex
1 indicating the direction of the force used. Repeating this for forces in
x9- and x3-directions, we find the matrix u;;, where ¢ is the index for the
displacement component and j that for the force component. This is already
Greens displacement tensor. Because of the choice of the J-function as
the inhomogeneity in equation (40), the dimension of u;; is not that of a
displacement (m) but mN~!. Therefore, we rename the w;; into the usual
name for a Greens function or tensor, Gi;.

1 9 1 0?r
Gij = 8mp <6”V " 2(1 —v) axiaxj) (41)
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dislocation

Figure 23. A dislocation is generated by a cutting procedure along the area
A in the presence of a test force F' in the point r to derive the dislocation’s
displacements there.

As is the idea for any Green’s function, the displacement caused by a given
distribution of volume forces f(r), can then be found by integration over
the volume:

wlr) = [ Gy =) £ @V’ (42)

Dislocation stress due to Peach and Koehler To derive the stress
caused by an arbitrarily curved dislocation, the energy required to generate
this dislocation by the cutting procedure described in section 1.1 is consid-
ered in the presence of a test force F' acting in an arbitrary location r. The
cutting area A can be arbitrarily curved, as depicted in figure 23. The test
force contributes the energy

W =F - u(r) = Fpun(r) (43)

to the dislocation’s creation, where u is the displacement caused by the dis-
location. On the other hand, this energy can also be expressed by the stress
ol caused by F and the displacement in the area A during the dislocation’s
generation. In A, the displacements are obviously given by the Burgers

vector b.
W = —/A b; 05 (r' —r) dA] (44)

The sign in equation (44) is negative because F helps in the disloca-
tion creation. With Hooke’s law, 0;; = Cljrer;, and the strain definition
e = (Ouy/0x; + Ouy/Oxy,) /2, the stress o can be expressed by the dis-
placement u! that F' causes. Due to the symmetry of Cijrt (Cijrr = Cijix),
o is simplified to o;; = CjjrOui/0xz;. Since F acts in the point r, the dis-
placements u" are known from Green’s displacement tensor: v = F - G.
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Hence equation (44) can be rewritten as

OGm (' —

r)
A 4
O, d4; (45)

W = _Fm/ b; Cijnl
A

Now by comparing equation (45) with (43), the displacement components
Uy, caused by the dislocation in the point 7 is found. Subsequently, r is
chosen as the origin. To yield the strain tensor, u is differentiated with
respect to a general direction x:

ou O?Grm (1)
m_ (o m A 4
0z, /A bi (C”kl Oz’ 0x; ) d4; (46)

Here it has been used that 0/0x, = —0/0x’. Multiplying equation (46)
with Cjjms yields the stress tensor o;; of the dislocation, but this would be
an expression of the cutting area A, which is unhandy. Moreover, A has
no physical meaning; a line integral along the dislocation line is needed. In
the point of strain observation (the origin), which is not on the dislocation
itself, there are no volume forces. Therefore, by using the general stress
equilibrium of equation (39) with f; = 0, the bracket in equation (46) can
be rewritten such that

ou *Glm (1) Gl (1)
mo_ B m A m A 4
6;55 bz Cz_]kl A ( 6I;81’2 d j 81’36I2 d s ( 7)

This expression can be subjected to Stoke’s theorem to be converted into a
line integral along the dislocation:

6Um oG m !
O = €jsn bl Oijkl % IZ’)x’(T )dx;l (48)
S l

Here €;3, is the Einstein permutation operator with €;;, = 0 except for
€123 — €231 — €312 — 1 and €321 — €213 = €132 — —1. Equation (48) is
generally valid for anisotropic materials. However, here Green’ displacement
tensor G;; for isotropic materials of equation (41) and the isotropic constants
Cijkr = (0irdji + 0udjr + (2v/(1 — 21))6;0k ) p are inserted, and Hooke’s
law is applied to finally get the stress o of an arbitrary dislocation loop:

H Q-
Odislap = —g %C b ¥ (€imadafy + eimpday,) —

_ K ) 9 ! B 2,7 /
4n(1— 1) j{;bm Eimk oz (6%6% 0asV'or' | da), (49)
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where r’ = (2 + 28 + 2f) '/2 is the length of the vector from the origin to a
point on the dislocation curve C. Equation (49) is a useful result, as is seen
later on, and it seems as if the integrand defined the stress contribution
of a dislocation segment dz. But the integrand is not unequivocal; one
alternative is Brown’ stress formula (Brown, 1964), (Brown, 1967), (Hirth
and Lothe, 1992).

Dislocation stress due to Brown For the derivation of Brown’s stress
formula of a curved dislocation we start with equation (46), and the point
of stress observation in the origin, 7 = 0. When we insert Green’s tensor
Grm of equation (41) and remove all primes for simplicity, the result can be

written as

Oy, :/ ams (1 /1, 22/ 7) 1 das (50)
Oy A 73

where the term a,,s is just used as an abbreviation; it has been formulated

such that it depends on the dimensionless terms x;/r. The term a,,s/ r3

satisfies Euler’s identity of -3rd degree, which means that:

Ums 0 /11 0 /xa

s 01y (r3 am8> Oz (r3 ams> (51)
This can be verified with a,,s defined by the comparison of equation (50)
with the combination of equations (46) and (41). Subsequently, this par-
ticular function a,,s is not used. Instead, it is only assumed that du,,/dz;
can be expressed as in equation (50) with a function a,,s that is yet un-
known, but that satisfies Euler’s identity of equation (51). The advantage
of this procedure is that the assumption of elastic isotropy used for Gy,
in equation (41) is dropped. This allows for the consideration of elastically
anisotropic materials. Using equation (51) and Green’s theorem, equation
(50) can be rewritten as an integral along the dislocation line C:

R ( dzs _ 22 dx)m (w1 /r,aafr)ds  (52)
C

Oz r2 \ r ds r ds

The terms x1/r, xa/r, dzq1/ds, and dxs/ds can be interpreted as cos(6),
sin(#), cos(p) and sin(¢p), respectively, with the meanings of the angles ¢ and
0 given in figure 24(a). Using these angles, equation (52) can be rewritten

w My, [ 1sin(0 — )
_ ]fc s (0)ds (53)

0z r r

As mentioned above, the function a,,s(p) is still considered as unknown.
Subsequently, the known stress of a straight dislocation (section 1.2) is used
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(b)

Figure 24. Geometrical relations: (a) angles, (b) tangential segment ds.

to find aps(f). When we consider a straight dislocation, as in figure 24(b),
the distance h = r - sin(f — ¢) is constant, and 1/h can be taken out of the
integral. Further using the relation ds = r/sin (§ — ¢)) - df we can write:

O Ams(p) 1

Pt
s = h Th [0 sin (0 — ¢) ams(0)ds (54)

The defined integral A,,s(¢p) is still unknown; however, its second derivative
with respect to ¢ can be written as:

9%A s
8507;5 = 2ams(p) — /@w sin (0 — @) am,s(0)ds (55)
Here Leibniz’ formula has been used because the limits of integration depend
on . Combining equations (54) and (55) yields a simple relation between

Ams and A,,s:
1 0%A,,5
ms = Ams
omli) = 5 (Amet 700 (56)

This relation can be inserted for in equation (53), so that the strain &,,; =
O, [Oxs of a generally curved dislocation is expressed by the still unknown
expression A(f) + 02A/06? of piecewise straight segments ds. Applying
Hooke’s law leads to

sin(f — @) 0B,
Oij = %C 2 |:sz (0) + @20] ds (57)

with the tensor B;; = CijmsAms/2. Finally, considering the shear stresses
in a glide system with Burgers vector b and glide plane n by applying
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the Peach-Koehler-formula (41) and comparing these stresses with those
of straight dislocations given in section 1.2, the tensor B;; is identified, and
the shear stress of the curved dislocation is found to be

(0 —
Taist = b o n® = 7{ sin(0 = ¢) Kgs(0)ds (58)
c r?

where Kg(6) is the pre-logarithmic factor for the line tension of a straight
dislocation: Kg = K + 0?°Kg/002. For the case of elastic isotropy, the
function Kg(6) is given by equation (35b), but equation (58) is also valid
in case of anisotropy: isotropy has not been assumed, not even by using the
isotropic Green’s tensor Gy, of equation (41).

Dislocation segments To utilize a stress formula like (49) or (58) in
computer simulations of dislocation motion, a dislocation must be cut into
segments, like in case of a polygon. Hence the line integrals are decomposed
into contributions from segments k connecting the points A and B at r4
and rB:

_ seg A B :
0ij = E 0, (rk,rk) with
k

B
O’?;g = /A Ijds = crfjc-mi (TB, 50) - O’?;mi (TA, 50) (59)
where I;; is the integrand of (49) or (58). The integral is expressed as the
contributions from the two integration limits; these may be seen as the stress
contributions ¢*°™ from semi-segments. Besides on r, 6°°™ depends on the
direction s°. When equation (49) is used for integration this dependence
results from the direction of dz’, in case of equation (58) from the angle
of the tangent. For o%™ of a straight segment with fixed line vector s°,
Devincre (Devincre, 1995) derived:

semi
)

L (bxso)inJr(bst).Yi
27y 2 (b x Y)i (So)j + (b X Y)j (So)i B 11—y !
bxY.s° 2
*27:;2 1_ VS |:(Sij + (So)i (So)j ~ye2 (h:Y; + h;Y; + YZYJL/R)] (60)

with the definitions L = r-s°, h = r — Ls, and Y = (r — L)s” — h, and
the point of stress observation being the origin. Some of these definitions
are sketched in figure 25(a). The summation of stress contributions of semi-
segments in equation (59) is equivalent to considering single segments with



98 V. Mohles

’
. —k -
obserYatlon (© s \:V S Iy
point x =~
b = —
,7SELSL

Figure 25. (a) Geometrical meanings for equation (60); (b) segment sum-
mation; (¢) angular summation.

two different ending points  and the same line vector s°, as indicated in
figure 25(b). This type of summation may be inconvenient, depending on
the type of segmentation in a simulation code. An alternative approach is
to evaluate equation (60) for the connection points r between segments with
different line vectors s, as indicated in figure 25(c).

For 2-dimensional simulations using only one glide plane n?, it is useful
to apply a specialized and, therefore, simpler expression. With n® = (0,0, 1)
and the Peach-Koehler equation (16) applied to equation (49), the resolved
stress of a segment from r 4 to r 5 is found as (Mohles, 2001c):

(bs k1) (b? : SL)

pol 0
(bsk)(brs)+ 1-v

Tseg = 4r D (61)

with D = (14 Xrg),, § = (52,5,,0) =1 — 14, k= (km,ky,O):r%—r%,

s, = (—8y,52,0), bk, = (—ky,k5,0), and b, and b, denoting the Burgers
vectors of the stress source and the stress receiving dislocation, respectively.

Self interaction Equations (49), (58), (60), and (61) describe the stresses
a dislocation imposes on another one. In principle, the stress receiver can
be the same as the source. But on the dislocation line, elasticity theory pre-
dicts a stress singularity as can already be seen from straight dislocations
(equation (4) or (7)). This is an artifact of the dislocation being assumed
to exist in a continuous medium, which is a conflict. In real materials this
problem does not exist due to the atomistic nature of a real crystal. In ap-
plications of the quoted stress formulae, a bit of material around the point
of stress observation must be cut out, in analogy to the calculation of the
energy of straight dislocations.

One option for this is Brown’s approach (Brown, 1964), (Brown, 1967)
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(a) (b) (©

Figure 26. Cut-out procedures for the dislocation core introduced by (a)
Bacon (Bacon, 1967); (b), (¢) Brown (Brown, 1964), (Brown, 1967).

sketched in figure 26: instead of evaluating a stress formula on the dislo-
cation line C' itself (figure 26(a)), two lines Cy and C_ parallel to C' at
given distances of +r¢, are considered (figure 26(c)), and the mean value
of the corresponding stresses is used. By this procedure the dislocation core
with radius 7y is left out of the calculation. At large distances |r| this
calculation yields the same stress contribution as using the original line C'
because the vectors to Cy and C_ are very similar to r (figure 26(b)). But
in the vincinity of the node (figure 26(c)), the vectors to C; and C_ have
essentially opposite directions, and the respective stress contributions can-
cel each other. The additional computational effort of two, instead of one,
stress calculations can be mostly avoided by using C';. and C_ only in the
vincinity of each node.

Another option to cut out the dislocation core is to disregard the stress
contributions of the dislocation segments connected to the observation point,
as sketched in figure 26(a). However, this procedure must be used with
caution for two reasons: Firstly, the stress of a dislocation segment of fi-
nite length is not unique. As has been shown (Mohles, 2001c), the stress
b0 gisin® with o441 of equation (49) equals 74;41 of equation (58) if the same
closed dislocation loop is considered. But if a dislocation segment is left out
of the integration, the stresses do not match. After all, such a segment of
finite length does not exist anyway (section 1.1). But in the calculations,
errors of unknown magnitude can arise from this stress equivocality for non-
closed dislocations. Such errors can be avoided by a special segmentation
procedure described in section 3.1.

The second implication of disregarding the neighbour segments of a node
is that the cut-out length L.t has a meaning equivalent to that of reus: it
defines the energy associated with the dislocation core (see equation (6aa),
Teut = Teore) and hence influences a dislocation’s flexibility, as can be seen
from the line tension model. In simulations, the lengths of the neighbour
segments of every node will vary; but the core energy and the corresponding
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Figure 27. A curved dislocation segment (grey) of length 2L in different
approximations (black) with (a) three and (b) five segments.

length Lcope should be constant. In order to find a way to achieve this, we
consider a curved dislocation segment (arc) of constant length 2L and cur-
vature radius R.. This arc is approximated by two different sets of straight
segments, as sketched in figure 27. Subsequently, L. < R, is assumed; in
figure 27 this condition is disregarded in order to improve the visibility of
the angles. The dislocation arc is assumed to have a parabolic shape. With
these assumptions and equation (61) the stress of the arc on its centre point
can be calculated for the approximations with (a) three and (b) five seg-
ments. In both cases, the stress contribution of the segment in the centre
vanishes for symmetry reasons. This centre segment may be seen as being
cut out in the approximations. It gives no stress contribution, regardless of
the stress formula used.

B b 9+3v 9-12v
T(a)_24RC<1—V cos“a + 1_, Sne (62)
B b 13+ 7v 5 13-200v . ,
T(b)—24RC< 1_, cos a+ |, Siva (63)

Here « is the angle between Burgers and line vector. Note that 7(,) and 7,
depend on the curvature radius R, but they are independent of the length
L. This means that when approximation (a) had been constructed with the
same R, but with an overall length of L instead of 2L, the same stress 7(,)
would have been obtained. This is exactly the case for the middle part of
the approximation in figure 27(b). Hence, the outer parts of (b) generate
the stress 7(1,) — 7(a). This difference is the additional stress caused by the
transition from approximation (a) to (b). In this transition, the length of
the straight segment in the centre has been reduced by a factor two. Hence
if the length Lyt is actually cut out of the calculations in a simulation, but
L¢ore is the aspired cut-out length defined by the core energy, the additional
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stress Tare must be considered:

In Lcut

bR W L. (Y

Tarc = (T(b) - T(a)) 1Og2L = 31n2

core

Leus [ 2 ]Ks(a)

In the second part of equation (64), the pre-logarithmic stress factor Kg(«)
of equation (35b) has been used to replace (T(b) — T(a)). The similarity
of equation (64) with the self-stress 7gr in the line tension model (equa-
tion (34)) is not accidental: the line tension model is very local, just like
the stress of a dislocation arc of finite length. But in applications of the
line tension model, a more global, radial cutting procedure is used with
the factor In (rshicld/rcore) (equation (6b)) instead of the more local factor
In (Lcut/Lcore)~

The square bracket of equation (64) equals about 0.961. This resulted
from the comparison of approximations (a) and (b). When a higher order
approximation with halved segments and the cut-out length L/4 had been
compared with approximation (b), the factor [24/(35In2)] ~ 0.989 would
have been found. Obviously the square bracket can be set to equal 1.0, like
in the line tension model. Altogether the total self interaction of a disloca-
tion in a point 7, including stress contributions from distant segments can
be summarized by

Ksla(ro)] | Loos (rs)

Tt (1) = D T (rg =) 7o A

itk

(65)

where Lyeg (1,) is the local cut-out length and Leore & 2b is the length de-
termining the core energy.

With equation (65) and a segment fomula like that of equation (60)
or (61), the mathematics for dislocation dynamics simulations is complete.
But the numerical effort for such simulations using the self interaction con-
cept is very high because, in principle, the interaction of every dislocation
segment with every other one must be calculated in every time step. This
makes it inevitable to apply certain optimisations in a simulation code; some
successful ones are described in section 4.2.

3 2-D Applications

Many plasticity related properties of materials depend on the flexibility of
dislocations because the latter determines the actual number of obstacles a
dislocation encounters simultaneously while moving. This can be seen from
Friedel’s basic strengthening model (section 2.1) for 2-dimensional disloca-
tion glide, but it holds as well in three dimensions. The flexibility is mainly
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determined by the dislocation’s elastic self interaction (section 2.2) and
approximately described by the line tension (section 2.1). In the present
section, simulations of 2-D dislocation glide are described using both the
line tension model as well as true self interaction.

3.1 Simulation Technique

The dislocation is described as a flexible line in the glide plane; the
equilibrium of resolved stresses is considered along this line. Regardless
of the dislocation model, the local equilibrium of resolved shear stresses 7
along the dislocation line can be used as the basis for simulations:

Text T Tdisl T Tallobst = 0 (66)

Here 7yt is an external stress driving the dislocation forwards; it can be
derived from a global stress tensor via the Peach-Koehler formula (16). 7giq
denotes the dislocation’s self interaction, either as given by 7y of equation
(65) or approximated by Tsr of equation (34). The obstacle stress Taliobst
can be defined by solute foreign atoms, particles of secondary phases, other
dislocations, grain boundaries or any other kind of obstacles. The equi-
librium (66) holds generally for static dislocation configurations like those
considered in section 2.1; equation (66) has been used there implicitly.

If the equilibrium is violated the sum of resolved stresses renders a driv-
ing force on the line. For the simulations a non-static stress equilibrium is
introduced by adding a viscous drag stress Tgrag = —(B/b)vL to the left
hand side of equation (66), where v is the local velocity normal to the dis-
location line and B is a drag coefficient. Inertial effects can be considered
as well (see below) but are disregarded here so that the motion is assumed
to be overdamped. The viscous drag term 74 may be seen to represent
the phonon drag; Jassby and Vreeland (Jassby and Vreeland, 1973) have
measured coefficients B of real specimens. However, the physical basis for
Tdrag is irrelevant here because we are only looking for a static equilibrium
here (v, — 0). When completed by Tarag, equation (66) can be written as

v (2) = (b)B) (Text + Tdisl + Tallobst) (67)

where v defines the magnitude and the sign of the velocity, and it depends
on the observation point = on the dislocation. The direction of the motion is
defined by the unit vector s normal to the local line vector s. Since only one
glide plane is considered in 2-D, only planar vectors are noted subsequently.
The directions s” and 59 can be expressed by the derivatives 2/ = dx/ds and
y' = 0y/0s: s° = (2',9') (see figure 28), where s denotes the arc length, and
by definition s = (—y’,2’). The velocity vector dz/dt = (dz/dt,dy/d¢t) is
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Figure 28. Local line vector s(z,y), and two possible representations of
the same dislocation by different sets of nodes (empty and filled circles) of
equal mean distance As (segmentation coarseness). Individual distances As
vary. There are either 4 (empty) or 5 (filled) nodes inside the obstacle.

defined as dz/dt = s v, so that

d —0y/0s\ b
dt (Zj) = ( 5$y//888> B (Text =+ Tdisl + Tallobst) (68)

Tais1 depends on the local curvature with the radius R. = (y”2' — x”y’)_l,

where 2" and 3" denote the second derivatives §%x/ds? and 9%y/ds?, re-
spectively. The dependence on R, is obvious in the line tension model
(Tdisi = Tiine, €quation (35) but also holds for the self-interaction concept
(equation (65)). In a simulation the derivatives ' and y’, and R. must
be calculated for all points z; and in each time step from the present con-
figuration. This can be done for instance by constructing a circle through
three neighbouring nodes z;_,, x;, and z,,; and using the tangent in x; for
sy and the radius for R.. Altogether equation (68) is a partial differential
equation which can be solved numerically, for instance using a Runge-Kutta
type method (Press et al., 1992).

Dislocation discretisation For the simulations a discretisation is re-
quired. This means that a finite number of points x; must be chosen to
represent the dislocation line; equation (68) is then solved in these points.
In figure 28, two different but equivalent discretisations of the same dislo-
cation are plotted. Both representations have the same coarseness (average
node distance), but either four or five nodes are located inside an obstacle.
Individual distances As; vary during a simulation run as the nodes move.
But they have to be kept close to a mean value As by removing nodes or
inserting new ones (by interpolation) during a simulation as required locally.
This 'mean value’ As may be forced to depend on the local curvature in
order to keep the total number of nodes and hence the computational effort
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low. However, the present author advises to use a constant value As within
a simulation because a curvature dependent value As has sometimes been
found to cause minor but systematic errors in simulation results.

For the subsequent considerations all individual distances As; are as-
sumed to equal As. In the example of figure 28, five of the filled nodes, but
only four of the empty ones are inside the obstacle, where the dislocation
is supposed to experience a constant obstacle stress T,bst = —7/b (equation
(19)) as in the case of a long-range ordered particle as an obstacle. This
means that in y-direction (forward direction), the simulated dislocation in
its critical configuration senses either the force 4yAs or 5yAs, depending on
which set of nodes happens to represent the dislocation. Hence, in principle,
the simulated dislocation over- or underestimates the true maximum obsta-
cle force Fi,.x = 2r7 by the amount vAs/2, which causes a relative error
of £As/(4r). For the case of figure 28 this would mean an error of more
than +10% (£0.57As of ~ 4.5yAs). This statistical error can easily be
reduced by choosing a higher node density As~!. But this must be avoided
because the calculation effort in the computer is roughly proportional to
about As™3: the number of nodes is proportional to As~!. Likewise, in the
self-interaction concept, the number of interaction partners for each node is
proportional to As~!. Moreover, the number of integration steps the inte-
grator (any one) must take for a simulation run increases as As decreases.
Therefore, in order to keep the calculation times in the computer low, the
obstacle stress Tajobst Should be smoothed over the length As if it contains
a discontinuity, like on the surface of the obstacle in figure 28. In that case
As = r/3 can be chosen as the mean node distance for good simulation
results, where r is the obstacle radius. However, this is only an upper limit.
If two dislocations are simulated which get very close, like Shockley partial
dislocations (section 1.4), As must not be larger than the distance between
these dislocations (equation (23)). Otherwise, when As is too large, numer-
ical instabilities can occur.

A lower limit for As is given by the length Leoe (section 2.2), which is
basically equivalent to the inner cut-off radius 7core in the line tension model.
With a chosen length r¢ore = 2b it has been found that the simulations are
only stable if As > b/2. For the upper limit As = r/3 quoted above this
means that only obstacles with r > 1.5b can be treated, for instance, par-
ticles with a diameter larger than 1 nm. Obviously this restriction arises
from the linear elastic continuum model itself, which fails to cover atomistic
properties well. While As affects the accuracy of the simulation results and
the calculation speed, it does not affect the simulation results systematically
as long as it is chosen constant.
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/— intermediate segment
\ main segment

Figure 29. Segmentation procedure with main and intermediate segments
used to ensure that the nodes are in the centres of straight (main) segments.

Dislocation segmentation When the dislocation self interaction model
is used for 7gis1, a segmentation of the dislocation must be defined in ad-
dition to the discretisation in order to utilize a segment stress formula like
equation (61). A frequently applied segmentation method is to use the node
connecting vectors x,,, — x; as segments. However, for the dislocation self
interaction, a piece of dislocation around the point of stress observation
must be cut out because of the stress singularity on the dislocation line.
This may cause errors of unknown magnitude because the stress of a non-
closed dislocation is undefined, as outlined in section 2.2.

However, the subsequent segmentation procedure fully avoids such errors
becauses it enforces that every node is placed in the centre of a segment,
where the stress of this segment vanishes unequivocally. This is accom-
plished in three steps. At first in every time step, a circle (dashed in figure
29) through the points z; _;, z;, and x, , ; is constructed for each node i. The
local line direction s? = s°(z;) and the local curvature radius R.; = R. (z;)
are derived from this circle. Then a straight dislocation segment with the
direction s{ is assigned to node i so that this node lies in the centre of the
segment. This is called a main segment. In figure 29 the main segments are
drawn as thick lines. The length of main segments is chosen to be As;/2,
where As; = 1/2 {xl - xiflf + 1/2|x;41 — ;] is the mean distance to the
adjacent nodes. Finally, the end points of the main segments are connected
by intermediate segments so that a closed polygon results. In figure 29 the
intermediate segments are drawn as thin lines for distinction; they have no
nodes in their centres. With this segmentation there are twice as many
segments as nodes; to each node belong one main segment and two half
intermediate segments on the left and the right. This segmentation may
seem quite laborious, but possible errors arising from the stress ambiguity
of segment stresses are avoided. Moreover, numerical instabilities have not
been encountered with the present segmentation, even in cases which are
prone to such instabilities (Duesbery et al., 1992). For the cut-out length
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Lyt in the arc stress 7a,c of equation (64), the quoted value of As;/2 is to
be used.

Quasistatic simulation procedure A simulation run is started with any
dislocation configuration, for instance a straight dislocation (or several ones)
near the lower side of a rectangular obstacle field with the obstacle stress
Tallobst (). Usually this field contains many obstacles & at the locations x;
their stress contributions are superimposed locally:

7-allobst(x) - Z Tobst, k (I — Ty, Pk) (69)
k

In general the obstacles can have individual stress functions 7opst, 1 (Az) and
parameters Pj. By solving the differential equation (68) for subsequent time
steps, new configurations are found, hence dislocation glide is simulated.
Various approaches can be used to derive quantitative results from this
glide. One approach is to start with a low external stress 7ox¢. This drives
the dislocation forwards against the obstacles; usually there are many. The
dislocation bows out between them until a static equilibrium configuration
is found (v, = 0 in all points). Then 7ey is increased by a small step A7
so that the dislocation bows out a bit more. Thereby the dislocation may
overcome some obstacles by shearing or circumventing them before it finds
the next equilibrium. Then 7.y is increased again; this is repeated until the
dislocation touches the upper side of the obstacle field. Then the simulation
run is ended, and the last value of 7ex, called Max|Text], obviously suffices
to keep the dislocation running continuously in this obstacle field. The
simulated critical resolved shear stress 74, is defined as

Toim = Max [Text] — AT (70)

because this value is the highest one that yields a static dislocation config-
uration. A7 should be chosen to be about 2% or 3% of an estimation of the
end result g, which may, for instance, be the strengthening contribution
7p of particles. In figure 30 several dislocation configurations are plotted
while a single obstacle is overcome, either by shearing or by circumventing
it.

The present definition of 7y, may appear a bit arbitrary when an (ir-
regular) array of obstacles is considered: if the array is particularly long so
that the dislocation must overcome many obstacles successively, the proba-
bility will increase that the dislocation finds an obstacle arrangement which
is particularly hard to overcome. This would increase 7g,. On the other
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Figure 30. A dislocation overcoming an obstacle by (a) shearing or (b)
circumventing it. Black lines are static equilibrium configurations, the grey
lines are snapshots of the dislocation moving at a constant stress larger
than the critical one, 7. In (b) an Orowan loop is left behind around the
obstacle.

hand, if the obstacle array is particularly wide, so that a longer disloca-
tion sweeps out in forward direction, this longer dislocation will have an
increased chance to find an easy way to move on. This would lower Tgiy,.
These effects have been found to be rather weak and mostly compensate for
each other. In test simulations no systematic dependence of 74y, on the size
of the obstacle field has been detected when the length and the width of
the field were varied by equal factors. The typical scatter of 74y, involved
with individual obstacle fields of (mostly) equal statistical properties and
size has been found to be +6% for arrays with 500 to 1000 obstacles (Bacon,
1967), (Foreman and Makin, 1966), (Foreman and Makin, 1967).

The outlined approach to derive 7y, is quasistatic: The dislocation’s
velocity tends to vanish in the static equilibrium positions, the last of which
defines Tgip. This means that the derived result is independent of the strain
rate. Moreover this means that the drag coefficient B has no meaning and
is arbitrary in these simulations: According to equation (68), B defines the
time scale in the simulations, but the time required in reality to accomplish
the stress increments A7 is disregarded.

Dynamic simulation procedures In experiments the measured stress
to overcome obstacles is often found to depend on the strain rate €. Such a
dependence of 74, (€) can be introduced in simulations by assuming a mo-
bile dislocation density p,, and enforcing a predefined dislocation velocity:
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v = 4/(bpm) (Orowan equation (13)). This can be done by continuously
adjusting the external stress 7oyt accordingly (Monnet, 2006); in that case
Tsim 18 defined as the temporal average of Text. By this method the tendency
OTsim /0¢ > 0 is found, in agreement with experiments. But this strain rate
dependence is only linked to the viscous drag factor B, which accounts for
the phonon drag. The much stronger strain rate dependence resulting from
thermally activated dislocation motion is not considered in this approach.
In a truly dynamic simulation the thermal stress pulses Tiherm on a dis-
location are accounted for. They introduce probabilities for dislocations to
overcome obstacles by the help of these pulses at a given temperature. In
addition, effects of a dislocation’s inertia can be accounted for by a stress
term Tipert. Hence the stress equilibrium of equation (66) is extended to

Tinert + Tdrag + Text + Ttherm + Tdisl + Tallobst = 0 (71)
where again Tqrag = —(B/ b)v, and equivalently, the inertial stress is defined
as Tinert = —(mM*/b)ay with a length specific mass m* and the acceleration

a; normal to the dislocation line vector s°. It must be emphasized here

that the introduction of m* is as vague as the introduction of a line tension
because the dislocation’s inertia is not in the line but in the motion and
mass of all atoms surrounding it. Still, a mass of about one atom weight is
usually attributed to the length of one Burgers vector (Isaac and Granato,
1988), (Mohles, 1997). With a; being the second derivative in time, the
equivalent of equation (68) can be written as

d? o b
(_(B/b)UL + Text + Tallobst + Tdisl + 7-t:hcrm) (72)
The thermal stress pulses, Tiherm, are essentially random numbers without
correlation in time and space, which impose Brownian motion on the dis-
location. The pulses add or substract energy to the dislocation in random
amounts; on a temporal average energy is added by the term 7Tiherm. But as
the random motion of the dislocation increases, so does the dissipation via
Tdrag- Hence an equilibrium will be found in which the energy added to the
dislocation by Tinerm is compensated on a temporal average by 7Tqrag, such
that an average amount of random motion resides in the dislocation: this
is the temperature. This fluctuation-dissipation-theorem for dislocations
defines the amplitude of the random pulses Tiherm:

1 [ 2BkgT
Ttherm (Tqﬁ Atj) = b \/AS At Al»] (73)
? J

2
with  f(A) = \/127Texp (—[; )
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Here kg is the Boltzmann constant, 7" is the temperature, As; is the length
attributed to the dislocation segment located at r;, and At; is the time inter-
val during which the particular stress Tynerm (7;, At;) acts. A; ; are random
numbers picked individually from the indicated Gaussian distribution f(A)
for r; and At;. The dependence of Tiherm on the drag coeflicient B reflects
the energy equilibrium quoted above. Equation (74) ensures for instance
that each dislocation node in a fixed glide plane, which represents one de-
gree of freedom, has the average kinetic energy (1/2 (m*As;) v?) = 1/2kgT.

A simulation using the stochastic equation (72) never finds an equilib-
rium configuration due to the thermal stresses. Instead, the dislocation will
move through the obstacle field in a jerky manner, as is also observed by in-
situ transmission electron microscopy. Instead of a critical stress the mean
glide velocity can be evaluated as a function of temperature and 7Teyt; this
is discussed in section 3.4.

3.2 Static Simulations Using the Line Tension Model

The present section summarizes some simulations using the simple line
tension model to calculate the strengthening effect of simple obstacles which
give some general insights. This means that equation (68) is used, with Tjine
of equation (34) used for 7giq, and Text is imcremented by steps AT as
described in section 3.1. Hence only Tajobst is to be defined via equation
(69). For the simulations of the present section, the following simplifying
assumptions are used in order to allow for a direct comparison with analyt-
ical models (section 2.1) and the more refined simulations from literature:

(i) The obstacles are circular. Inside the obstacles Topst = —7/b = const.,
and outside 7ops; = 0. This corresponds to energy storing obstacles: When
the obstacle area ¢ is swept by a dislocation, the energy ¢ is employed (by
Text) and stored in form of a faulted boundary. This case is similar to order
strengthened materials (section 3.3, v = £yapp). (ii) The radius r of all
obstacles in the glide plane is the same. Accordingly the maximum obstacle
force Finax = 2ry and energy ¢y = 72y are well-defined. (iii) The obstacle
arrangement in the glide plane is purely random in section 3.2; later on,
this condition is relaxed to some extent. (iv) The line tension model is
used with the line energy E* and hence the line tension S being constant,
hence S = E* according to equation (34). (v) Only one dislocation is sim-
ulated. All simulated data are presented in the common scales described
subsequently. These scales have been chosen because they are convenient
for weak and strong obstacles of any extension and arrangement.

An important length scale in a real crystal is the obstacle radius r. An-
other length scale is the shortest distance L.. between the obstacles (centre
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to centre) which would hold if they were arranged in a square grid. L_2
is the number of obstacles per unit area. Each obstacle occupies the area
g = 7r?, hence

Lee =17/ f (74)

where f is the area fraction covered by the obstacles. The obstacle strength
Finax = 21y is related to the line tension S; the relative strength is denoted
by k. )
F

h= o=l = (75)
Note that the fraction S/v is another length scale in addition to r and
Lcc. One of these three scales may be taken as the unit length and be kept
constant in simulations. For analytical considerations, L.. may be useful as
a unit length; however, in the present simulations it is more convenient to
keep (S/7) constant. This latter parameter depends on material parameters
alone, and not on the geometry of the obstacles and their arrangement. This
geometry is subject to variations in the subsequent simulations.

All stresses are described in units of 7unit, which is defined as:

Tunit = Fmax/ (bLCC) = \/(4/7T)f (7/b> (76)

By definition, 7yt is independent of S. This is helpful since S is not known
exactly, neither in evaluations of experiments nor in simulations using the
self-interaction concept (section 3.3). But 7unit does already include the
basic stress dependence on [ : Tunit ~ fl/ 2. For instance, in these units
the critical stress predicted by Friedel’s model (section 2.1) simply reads as
Thriedel = kY2 Tuni¢ with apparently no dependence on f.

The magnitude b of the Burgers vector in equation (76) is, in principle,
a fourth length scale. But it appears only in 7y, and, therefore, does not
interfere with the other length scales.

The normalized simulation results Teit/Tunit are basically a function of
the parameters & and f alone. This gets obvious when all terms in the
stress equilibrium (equation (68) with 74qis1 = Tine) are divided by Tunit.
The ratio Tobst/Tunit depends only on f (7opst of assumption (i)). The ratio
Tline/ Tunit €can be written as a function of k, f, and the local curvature R, (in
units of the chosen unit length S/v). The latter stands for the dislocation
configuration (on the scale of S/v). This configuration adjusts itself to
the parameters (Text/Tunit), k, and f in the given obstacle arrangement.
The last stable equilibrium configuration for given values of k£ and f, which
defines 7ot = Max [Text], depends on the individual spatial arrangement
of the obstacle field used. Hence Teyit/Tunit 18 & function of k and f and
the geometry of the individual obstacle arrangement. The latter merely
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(a)

Figure 31. Critical dislocation configurations simulated with the line ten-
sion model for randomly distributed overlapping obstacles. Only parts of
the obstacle arrays are shown. The number of obstacles (=~ 440 of 8000
total) and the relative obstacle strength & = 0.304 are the same. The
area fractions of the obstacles and the critical resolved shear stress are (a)
f = 0.0025 (=~ point obstacles), Terit/Tunit = 0.60 ; (b) f = 0.16 (extended
obstacles), Terit/Tunit = 0.91.

produces a statistical scatter in 7..;. It has been found that this scatter is
about £6% for obstacle arrays containing 500 to 1000 obstacles (see section
3.1). For the present simulations with 8000 obstacles in the square-shaped
obstacle field, the scatter is estimated less than +4%.

Effects of the obstacle strength and size When obstacles are vanish-
ingly small (r < L¢c, or f — 0) they can be considered as point obstacles.
The effect of the relative obstacle strength k£ on dislocation configurations
and on 7.4 in arrays of point obstacles have been worked out in literature by
analytical models like Friedel’s and also by computer simulations (Foreman
and Makin, 1966), (Foreman and Makin, 1967). However, the condition
7 < L (or f < 1) is not sufficient to rate the applicability of the results
(Mott and Nabarro, 1948), (Schwarz and Labusch, 1978) because another
independent length scale beside r and L. is involved, namely the material
dependent constant S/~.

If obstacles have a finite extension, a distinction must be made whether
the obstacles are allowed to overlap each other spatially or not. Of course,
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objects like second phase particles cannot overlap in reality, but their ob-
stacle stresses can. Subsequently the respective obstacles are called overlap-
ping and discrete, respectively. The term 'non-overlapping’ as the opposite
of ’overlapping’ is avoided because it is prone to cause confusion. An ex-
ample for overlapping obstacles are particles with a lattice mismatch (see
e.g. section 3.3): their coherence stresses superimpose (overlap) linearly. In
contrast, in dispersion strengthening and order strengthening (section 3.3)
the stresses do not overlap spatially; these particles are discrete obstacles.

Figure 31 shows two examples of simulated critical dislocation config-
urations for a very low (f = 0.0025) and a rather high (f = 0.16) area
fraction. The relative obstacle strength £ = 0.304 is the same in both cases.
With f = 0.0025 the dislocation configuration is very similar to those found
by Foreman and Makin and successors by means of the circle rolling tech-
nique (Foreman and Makin, 1966), (Foreman and Makin, 1967), (Hanson
and Morris, 1975). Even with f = 0.16 the configuration looks rather sim-
ilar. This may surprise because with less free space between the obstacles
at f = 0.16, weaker bow-outs are to be expected. But in the obstacle array
this is 'compensated’ for by a higher external stress: Teuit/Tunit is found to
be higher for f = 0.16 than for f = 0.0025 by about 50% although the
obstacle strength k& and density (their number) are the same. Hence this
must be an effect of f, or the relative obstacle extension 7/ L.

In figure 32, 7ot is plotted (empty symbols) as a function of the square
root of the normalised obstacle strength k, equation (75), for four area
fractions f. For comparison results from literature are added. As to be
expected, Terit/Tunit for f = 0.0025 agrees well with results from literature
for point obstacles in the full range of k: with L.. > r the obstacles are
point-like. At low k, the simulations agree with Friedel’s result Tgyjeqer Of
equation (71) very well. Near k ~ 1 the strength reaches a maximum, albeit
Terit 18 reduced by a factor 0.8 relative to Trriedel; this is attributed to the
randomness of the obstacle array (Foreman and Makin, 1966), (Foreman
and Makin, 1967). In the range k > 1, Teit/Tunit decreases because the
Orowan process operates here.

At higher volume fractions f = 0.01, which might still be considered
as small, systematic deviations with increasing f are found: 7euit/Tunit in-
creases with increasing f, for weak and for strong obstacles. This means
that for reasonably strong particle strengthening effects, which usually re-
quire f > 0.01, point obstacles are rather inaccurate as a model. In the
following, generally, the data with f = 0.16 are discussed because they
show the strongest effects. But the statements and conclusions also hold for
lower area (or volume) fractions.

For weak obstacles an increase of 7.,i¢ with increasing obstacle extension
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Figure 32. Normalized critical stress as a function of £ and f. Empty
symbols represent simulations, filled symbols indicate the energy storing
effect: Tstore — fp)//bv - TFM — (1 - O'2k2)k1/27unit; - TOFM(f =
0) = 0.8k rumit; - - - - 7ns(f = 0.16) = (0.94k"/2 + 1.17fY/2) 1.

has already been found by Labusch and Schwarz (Labusch and Schwarz,
1992). The computer simulations of these authors were originally designed
for solid solution hardening, but the results can also be applied to particle
strengthening. Labusch and Schwarz used obstacles extended only in the
direction normal to the dislocation line. Similar to point obstacles, such
obstacles cannot overlap because they are one-dimensional (1-D); their ar-
eas vanish. This may lead to the perception that these obstacles are non-
overlapping and hence discrete, but physically these 1-D obstacles overlap
since a non-vanishing obstacle area (area fraction f > 0) is assigned to the
1-D obstacles in order to apply a simulation result, hence they inevitably
have a finite width w, > 0. The obstacle arrangement of Labusch and
Schwarz was purely random (a pre-requisite for the scaling used by these
authors); therefore, the obstacles can actually overlap, and they increasingly
do so with increasing w, or f.

In the units used here, the simulation results 7sy, of Labusch and Schwarz
for energy storing obstacles reads: 1.5 = (0.94k1/2 + 1.17f1/2) Tunit- As in-
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dicated for f = 0.16 in figure 32, this result also represents the present simu-
lations well. Essentially it appears that in the range 0 < k < 1, Tepit /Tunit 1S
increased relative to Tryiedel/Tunit = k'/2 by the amount f/2. This effect is
caused by the energy storing character of the obstacles: when a dislocation
is straight as in the case k = 0, the fraction f of it resides inside obstacles
and senses the obstacle stress Topst = —7/b. This leads to the critical stress
Terit = f/b = (7f/4)"?Tynit for straight dislocations. If the obstacles in-
volved negative and positive obstacle stresses 7opst in equal amounts, this
contribution to 7t would vanish. This latter case means that the dislo-
cation stores no energy when it overcomes obstacles, unlike in the present
case. More accurate statistical investigations have shown (Arsenault et al.,
1989a), (Arsenault et al., 1989b) that stress fluctuations also give rise to a
stress Teit (K = 0); however, this is beyond the scope of the present contri-
bution.

In the case of very strong obstacles with & > 1, which are circum-
vented by the Orowan process, 7.t decreases with increasing k because
the free space between the obstacles, L.. — 2r, scales with k& (equation
(75)). In the present units, Orowan’s stress prediction (26) reads Teit =

(1- (4f/7r)1/2)_1 k™ "unit. This also predicts an increase of the relative
Stress Terit/Tunit With increasing volume fraction f, in full agreement with
figure 32.

Around k = 1, 74t has a maximum. At f = 0.16 it can be seen that
Terit/Tunit < 1 defines a maximum for 7. It is reached when (i) the ob-
stacles exert the maximum force (i.e. 2S5) and (ii) the distance between
obstacles is small. The smallest distance that can be reached everywhere in
the glideplane for a given number density is L., the centre-to-centre square
lattice spacing. This had been used for the definition of Tyt (equation (76),
so that Terit < Tunit holds for any other obstacle arrangement, regardless of

1.

Effects of the obstacle arrangement The geometry of the obstacle ar-
rangement can affect the resulting critical stress, as can be seen in figure 33
by comparing the overlapping obstacles of figures 31 and 32 with discrete
obstacles as defined above. The arrangement of discrete obstacles is gener-
ated in the computer by assigning random locations to all obstacles first,
disregarding overlappings like above. Then all obstacles which are found
to overlap with others are assigned new random locations. The latter step
is repeated until no more overlaps are found. The prevention of overlaps
means a restriction for the randomness of the obstacle arrangement: at very
large area fractions f, the arrangement of rigid obstacles will be close to a
closest packing, which is a very regular arrangement. The restriction of
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Figure 33. Normalized critical stress as a function of k at f = 0.16 for
overlapping (black) and discrete (grey) obstacles; lines as in figure 32 except

for — - — ropm(f = 0.16) = 0.8k (1 — (4f/7)"/2) " Tumis-

randomness is obviously most pronounced at high area fractions; therefore
only the case f = 0.16 is considered subsequently.

In the range of strong obstacles (k > 1), the discrete obstacles yield a
higher critical stress than the overlapping ones (figure 33). This has two
reasons. Firstly, in the case of overlapping obstacles the fraction f of f, i.e.
f2, does not contribute to strengthening because it overlaps. This reduces
the effective volume fraction to f — f? and lowers 7. correspondingly.
Secondly, in case of a regular obstacle arrangement as is the tendency for
the discrete obstacles, the probability for the dislocation to find weak spots
(large individual obstacle distances) is low; this also increases 7t

For weak obstacles (k < 1), the overlapping obstacles yield a higher
stress than the discrete ones. This is most obvious for k'/2 ~ 0.7. A
possible explanation is that the overlapping areas can be seen as separate
obstacles with double strength (7obst = —27/b). The area fraction of these
obstacles of double strength equals f2 = 0.0256. The total area fraction
covered by obstacles is reduced from f to f — f2? due to overlapping. This
would lower 7., like in the case k > 1. But this is overcompensated by the
obstacles with double strength because they have a stronger influence than
the normal ones: Tt ~ k'/2Tunit according to Friedel’s model, where both
Tunit and k increase linearly with ~.
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The simulated data of discrete obstacles for f = 0.16 and k < 1 are
well represented by a linear function of k'/? (grey line in figure 33), sim-
ilar to s (see figure 32), but with different coefficients: 7eyit/Tunit =
0.37k'/2 4 1.42f'/? instead of TLs/Tunis = 0.94k'/2 4+ 1.17fY/2. While
TLs/Tunit 1S essentially in line with Tryeder and 7y (parallel lines in fig-
ure 32), which had also been derived for random obstacle arrangements,
the results for the more regular arrangement of the discrete obstacles de-
viates strongly. This emphasizes the importance of using realistic obstacle
arrangements in simulations.

3.3 Simulations Using Dislocation Self Interaction: Particle
Strengthening

The present section summarizes some simulations using the accurate dis-
location self interaction model and the quasi-static procedure to calculate
the strengthening effect of spherical second phase particles in a material.
This means that equation (68) is used, with 7ei¢ of equation (65) for 4.
Tallobst 18 defined by equation (69) with a realistic distribution of particles
as obstacles (locations xy, radii r;). The interaction functions 7opst (Ax)
depend on the particle types.

Realistic particle arrays As has been shown in section 3.2, the arrange-
ment of obstacles has a significant impact on the critical stress 7.,it; the same
holds for other geometrical properties. For instance, the impact of the size
distribution of particles on their strengthening effect has been worked out
statistically by Nembach (Nembach, 1996). Realistic particle arrangements
may be obtained from atom-probe tomographic reconstructions or phase
field or Monte-Carlo-simulations of precipitation. But in most cases, the
obtainable particle arrangements are too small, meaning that they contain
too few particles to keep the statistical scatter involved with individual ar-
rangements low.

For the subsequent simulations, an arrangement is used which has been
generated artificially and compared to real particle arrangements (Mohles
and Fruhstorfer, 2002). The particles are assumed to be spherical and to
have the radius distribution grsw(p) which has been derived analytically by
Lifshitz, Slyozov (Lifshitz and Slyozov, 1961) and Wagner (Wagner, 1961)
for the case of Ostwald ripened particles of low volume fractions f. In the
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range p = r/ro < 1.5,

7/3 11/3
4,0 3 1.5 p
= 77
JSW T gl (3+p> (1-5—p) eXp(p—lb) 0

and grsw (p > 1.5) = 0, where r are individual radii and ro is the mean
particle radius. With this size distribution a rather closely packed arrange-
ment of spheres is generated. Each of these spheres is meant to represent the
corona of volume from which one particle has obtained its material during
the Ostwald ripening process. By scaling appropriately all distances and
individual corona radii down to the particle radii, the mean particle radius
ro and the volume fraction f is selected. Finally, these particles are shifted
by small additional random vectors to adjust the arrangement’s random-
ness to experimental findings. The procedure is detailed and the resulting
arrangements are discussed in (Mohles and Fruhstorfer, 2002).

Dispersion strengthening In dispersion strengthened crystals the glide
system in the matrix is not continued inside the particles. Hence the parti-
cles are impenetrable; they must be circumvented by the Orowan process. In
simulations this is enforced with a negative obstacle stress of large amount
(Tobst — —o0) inside the obstacles and no stress outside. For reasons of
numerical stability it may be useful or even necessary (depending on the
numerical integration method) to assume a finite but sufficiently high stress
instead, and to smooth out the stress transition in 7,pst(Az) on the parti-
cle’s interface in order to the limit slope of the step function. Details on the
chosen stress value inside the particles and on the smoothing procedure are
given in (Mohles, 2001c¢).

To give an impression, two dislocation configurations of a simulation
using this obstacle stress are plotted in figure 34. Topst() is represented by
the dark grey disks: these are the intersections of the particles (arranged
in 3-D) with the glide plane. The size distribution of these disks result
from the particle size distribution grsw (r/r9) and from the distribution of
heights at which the particles intersect the plane. The starting configuration
was a straight screw dislocation (dashed; b is indicated in figure 34); how-
ever, the dislocation bends strongly while gliding such that all dislocation
characters are present. The local bending between the particles is stronger
in z- than in y-direction because edge dislocations are more flexible than
screw dislocations. This is predicted by the line tension model (section 2.1)
and obviously remains true in the present case, where each dislocation piece
interacts with every other one, including the Orowan loops. Quantitative
results of dispersion strengthening are presented and discussed in (Mohles
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Figure 34. Two dislocation configurations in a dispersion strengthened
crystal with rg = 1006, f = 0.1, Poisson ratio v = 0.4. The dashed line
indicates the starting position; on the left and right periodic boundary con-
ditions are applied. Dark grey: particle intersections with the glide plane;
medium / light grey: area swept out at 7ot = 226MPa / 230MPa. Rep-
resentative configurations for other parameters can be seen in (Mohles and
Fruhstorfer, 2002). Note that every piece of dislocation interacts elastically
with all other pieces.

and Nembach, 2001).

Order strengthening In order strengthened materials, the crystal struc-
ture is continued inside particles (they are coherent), and they usually have
long-range order whereas the matrix is disordered. This causes the dislo-
cations to glide in pairs of two: the first one of a pair is pushed backward
inside the particles because it destroys the order there, which takes energy,
and creates an antiphase boundary with the energy yapp. A second dis-
location in the same glide plane may restore this order and is, therefore,
pushed forward. Hence according to equation (19) the obstacle stress for
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Figure 35. Critical dislocation configurations in a peak-aged order
strengthened crystal for a pair of (a) screw and (b) edge dislocations. In the
screw configuration the leading dislocation D1 often penetrates the particles
(arrows) so that D2 is likely to follow immediately; edge dislocations do not
show this effect.

these dislocations is described by

—yapp/b for 1st dislocation inside particle (78)
+yapp/b for 2nd dislocation inside particle

Tobst (A.’E) = {
and Topst = 0 outside the particles. Like in dispersion strengthening a
smooth step function should be used for Topst () on the particle interfaces.

Figures 35(a) and (b) show sections of a pair of simulated screw and
edge dislocation pairs. All parameters are chosen close to those of the
Nickel based superalloy Nimonic PE16: b = 0.25nm, u = 65GPa, v = 0.4,
~vapp = 0.25Jm~2. The volume fraction is f = 0.1, and the mean particle
radius is rg = 49b. These latter parameters define the aging state of the
material: a thermal treatment (prior to our plastic deformation) will define
the amount (f) and the size (ro) of the particles that precipitate from the
matrix due to classical nucleation, growth and ripening.

If only one dislocation is considered, equation (78) is similar to the ob-
stacle stress —v/b assumed for the obstacles in section 3.1. Accordingly the
critical stress of order strengthed materials can be discussed in terms of the
relative obstacle strength k introduced in equation (75): for a given material,
which defines defines (S/vapp), the parameter k is essentially equivalent to
the mean particle radius r9. The line tension S is not defined in the present
simulations because the dislocation self interaction model is used, but S is
known to be rather constant as it depends on the surrounding dislocation
geometry only through a logarithm function (equation 24). Similar to the
simulation results of section 3.2, the strengthening of particles reaches a
maximum at some mean radius 7o (where k =~ 1). The corresponding ma-
terial is denoted as peak-aged. With smaller or larger radii, the material is



120 V. Mohles

in the underaged or overaged aging state, respectively.

The dislocation configurations in figure 35 belong to the peak-aged state.
The leading edge dislocation D1 in figure 35(b) bows out strongly between
the particles, almost as strong as in the case of dispersion strengthening in
figure 34: D1 almost circumvents the particles. Actually, in case of large
radii rg, the configuration of D1 looks just like in figure 34; D2 is stuck be-
hind Orowan loops left behind by D1. On the other hand, the leading screw
dislocation D1 in figure 35(a) shears the particles, as is indicated by arrows.
The trailing dislocation D2 is always rather straight because it touches al-
most no particles; and if it does so, it is pushed forwards as modelled. In
the underaged state (small radii) both dislocations are rather straight, and
D1 and D2 move as a pair. Altogether the dependence 7t (f,70) for or-
der strengthening is rather complex because of the combined shearing and
circumventing of the particles, as well as by D1 and D2 moving either as a
pair or individually. This is explained in more detail in (Mohles, 2004).

Lattice mismatch strengthening In the previous subsections of sec-
tion 3.3 the particles were discrete obstacles because only in their interior,
the dislocations interacted with them. This is different when the particles
have a lattice mismatch: inside the particles there is hydrostatic stress, and
outside there are shear stresses that cause a long-ranged interaction with
dislocations. Hence these particles are overlapping obstacles, and moreover,
their arrangement in 3-D space is important because the obstacle stresses
depend on the height Az of the particle centre over the glide plane. In the
former cases, only the particle intersections with the glide plane mattered.
The stress tensor of a spherical inclusion in an isotropic medium had been
derived by Eshelby (Eshelby, 1956); applying the Peach-Koehler formula
(16) on this yields the obstacle stress:

6epAzr3|Az| =4 (bo : Amo) outside the particle

Tobst ( x ) {0 inside : |Az| < r )

Here e denotes the constrained (relaxed) relative lattice mismatch. Inside
the particle 7opst vanishes because a driving force for dislocation glide re-
sults only from shear stresses. Outside, the stress depends on the direction
of the Burgers vector b (but not on the line vector s). This means that a
static simulation procedure with 7opst and Tanobst changes as b is rotated,
but for a given dislocation, b is constant and hence the obstacle stress is
unique for it. Still, edge and screw dislocations experience different overall
stresses because for a given b, screw and edge dislocations experience Topgt
in different locations (as s must differ).
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Figure 36. Configurations of one pair of Shockley partial dislocations in
an underaged lattice mismatch strengthened crystal with f = 0.1. The
greyscale plot of Tajebst (dark: > 0, light: < 0) is that of the corresponding
perfect dislocation. (a) Dissociated edge, (b) screw dislocation.

The partials of a dissociated dislocation sense different obstacle stresses
when their Burgers vectors b,; and b, differ, like in the case of Shockley
partials (section 1.4). In figure 36 several dislocation configurations of such
a case are plotted for a copper matrix with cobalt particles (@ = 42GPa,
v =043, b, = 0.148nm, ysp = 0.036Jm~2, ¢ = 0.015). The edge disloca-
tion in figure 36(a) is dissociated more strongly than the screw dislocation
in 36(b). With the elastic dislocation repulsion and the attraction stress
+vsr from the stacking fault considered in the simulation, the distance dgr
between the partials adjusts automatically in a simulation, and the mean
value of dgr agrees with deq of equation (23). The background of figures
36(a) and (b) is a greyscale plot of the obstacle stress Tanobst (Aa:, bo) , which
is the combination of equation (79) with (69) for a given arrangement of
particles k located at x,. Since Taobst depends on by, the vector of the
corresponding perfect dislocation has been used for the greyscale plot.

The dissociation width dgp is another length scale in addition to those
described in section 3.2. This makes analytic predictions of 7. very dif-
ficult, in particular when dgsg is in the range of the particle radius or the
free space between them, like in the case of figure 36. Another difficulty for
analytic considerations is that T,y0nst represents a wide spectrum of obstacle
strengths; the effective number and strength of obstacles cannot be defined
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unequivocally as can be seen from the greyscale plots. This makes it hard
to apply analytic strengthening models as those in section 2.1 (Nembach,
1996). However, in dislocation simulations all effects can be considered
concurrently. More details on such simulations can be found in (Mohles
and Nembach, 2001), (Mohles, 2001a), (Mohles, 2001b), (Mohles, 2002),
(Mohles, 2003).

3.4 Simulations of Thermally Activated Dislocation Glide

In section 3.1, the procedure for dynamic simulations considering ran-
dom thermal stress pulses has been described. The stochastic nature of the
differential equation (72) prevents the dislocations from ever finding a local
equilibrium; they always stay in motion. This makes simulations partic-
ularly slow when the self interaction concept is used because some of its
optimizations (section 4.2) remain useless. Therefore the line tension ap-
proach is used for the present simulations: Tqiss = Tiine 0f equation (34).

Thermal activation helps dislocations to overcome obstacles. This means
that the stress required to overcome the obstacles is lowered by a dimen-
sionless factor 7o < 1 which depends on the temperature 7', the imposed
shear rate 4 and possibly on other parameters:

Text = Trel (T7 % ) TOK (80)

where ok is the stress required to overcome the obstacles by mechanical
stress alone, that is at T = 0K. In the terms used so far for the static
simulations, Tok is the same as 7.yt with all its dependences on rg, on f or on
other parameters. When the obstacles are large, the thermal pulses are not
strong enough to push a dislocation over obstacles. In that case the stress
Text = ToK 18 required, or 7o — 1 virtually independent of T'. In contrast,
small obstacles like solved foreign atoms are overcome by thermal activation.
This causes solid solution strengthening to be temperature dependent.

Jerky dislocation glide In order to simulate solid solution strengthen-
ing, the obstacle stress Topst (Ax) of single foreign atoms must be defined.
Here only an approximating function can be used as long as the foreign
atom’s interaction with the atomistic nature of the dislocation core is not
known accurately. A possible approach is to consider a foreign atom as
a sphere and calculate its size mismatch by equation (79) with the radius
r = b/2. The locations xz; can be chosen to represent lattice or interstitial
sites of the crystal lattice considered. In the greyscale plots of Topst in fig-
ure 37 used later on, the foreign atoms are assumed to be substitutive in
a face centred cubic crystal. The stress of equation (79) is altered slightly
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Figure 37. Greyscale plot of the assumed atomic mismatch obstacle stress
at o,y = 1073/1072/10~ 1.

by ignoring the ’hole’ (vanishing stress) inside the atoms. Furthermore, the
stress is convoluted with a Gauss function exp(—|Az|?/b?/2) in order to
account for the non-discrete nature of a real dislocation core; details are not
important here. Figure 38 shows dynamic configurations of thermally ac-
tivated dislocation glide in such obstacle fields in equidistant time steps. In
some areas the dislocation moves fast (low line density) and in other places
its overall velocity vanishes; here the dislocation only fluctuates (black ar-
eas), waiting for activation. Accordingly, the mean velocity vmean of this
jerky motion through the whole field can be written as
A A

Vmean twait + trun - twait (81)
where A is the mean free path between waiting positions, and .., and tyait
are the mean time intervals of running and waiting, respectively. Usually
trun 1s fully negligible compared to tyait. The free path A may be considered
as a constant defined by the obstacle density, for instance by A\? ~ b%/c,s.
This is not always the case, especially when inertial effects become impor-
tant and the dislocation overruns obstacles with its kinetic energy (Mohles,
1997). Even in figure 38, an estimated A would be larger for ¢,; = 10% than
for c,; = 1%, which is in contradiction to the aforementioned definition of
A. Still; the mean velocity is mostly determined by i and its dependence
on the temperature 7" and the present stress 7oy, both of which assist acti-
vation (transition from waiting to running).

In figures 38(b) and (c), the same parameters have been used except for
the sets of random numbers for Tiperm. The resulting mean velocities vppean
for this obstacle field differ by a factor two in these simulation runs. Hence
in order to derive a function vyean (T, Text) from simulations, many single
simulation results must be averaged. This of course means a high numerical
effort, which is another argument against using the dislocation self interac-
tion concept for thermally activated dislocation glide. On the other hand,
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Figure 38. Dislocation configurations of thermally activated dislocation
glide after equidistant time intervals. (a) cap = 1%, Text = TMPa — Vpean =
10m/s; (b) cat = 10%, Text = 27TMPa — Umean = 6.1m/s; (¢) car = 10%,
Text = 27TMPa — Umean = 3.3m/s. In (b) and (c) all parameters are equal
except for the sets of random numbers for Tiperm, causing different con-
figurations and mean velocities vmean. Note that the y-direction has been
streched by a factor 8 for clarity.

Umean has essentially been broken down to the mean activation event with
its mean waiting time tyai;. Individual waiting times vary much stronger
than by a factor of two, but the activation event can be treated analytically
and also by simulation.

Simulated activation event In figure 39, three simulated activation
events are plotted. The obstacles are small size mismatched spherical parti-
cles which are not intersected by the glide plane; details are not important
here. In figure 39(a), the obstacles are arranged at random. They are all
equal in strength, size and shape, but there are attractive and repulsive
obstacles. Starting from the static equilibrium position found at 7" = 0K
(dashed line), the dislocation fluctuates for a while at T'= 300K (grey lines
around the dashed one) and eventually reaches a critical configuration (thick
black line). When such a configuration has been reached, the dislocation
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moves on (grey lines beyond the critical configuration): it has overcome
the obstacle arrangement. The fact that the activation takes place on the
boundary is physically meaningless because the boundary is periodic. The
critical configuration has been estimated from observation of many simu-
lated activation events; a different one has been published in (Mohles and
Ronnpagel, 1996) for the same obstacle and dislocation parameters. Al-
ways in a critical configuration, the dislocation has moved forwards from
its static equilibrium by Ay equal to about one obstacle diameter. The
length of dislocation which has moved forward is much larger than Ay, by
roughly two orders of magnitude. Note that in figure 39, the y-direction has
been stretched by a factor ten. The estimated number of obstacles that are
overcome concurrently in the critical configuration is two or three.

The activation event for the equidistant obstacle row in figure 39(b)
can be described in exactly the same way. Even the same estimated activa-
tion length Ly is found from the critical configuration. It has often been
assumed in literature (e.g. (Kocks et al., 1975), (Nadgornyi, 1988)) that
this length is related to the distance L. between obstacles, but figure 39(c)
proves that this assumption is fundamentally wrong. There, a continuous
obstacle wall with the stress Twan(y) replaces the obstacles such that

1 o
Twall (y) = L / Trow(a:a y)dx (82)

where Tyow (2, y) is the stress function of the obstacles in figure 39(b). The
obstacle wall stands for an obstacle row with a high density (Le. — 0) of
weak obstacles (dFax = bropstdz — 0). Since no length L. is involved
in the activation event of figure 39(c), the activation length L, (of which
Lest is an estimation) cannot be related to the obstacle density. Instead,
Lact depends on the dislocation’s flexibility (or, the line tension S) and the
present stresses Tywan and Text. This is similar to section 3.2, where the term
(bTobst /S) defined an important length scale. In the subsequent section the
activation event and the related length L,.4 are considered analytically.

Analytic description of the activation event In the simulations of
section 4.2, a critical dislocation configuration has been estimated from
simulations. The criticality of this configuration lies in the dislocation’s
decision to either move back and continue waiting or to move forward and
leave the waiting position: this is an unstable state close to an unstable
equilibrium (saddlepoint configuration). The static stress equilibrium of a
dislocation is given by equation (71) with Tyherm = Tdrag = Tinert = 0. For
the present case, Talobst (Z,¥) is replaced by Tywan (y), and 7iine (R of equation
(34)) is used for 74i51. The dislocation’s shape can be described as a function
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Figure 39. Dislocation configurations of activation events at different ob-
stacle arrangements: (a) random arrangement, (b) equidistant obstacle ar-
ray, (¢) continuous obstacle wall. In all cases 7ok = 25.3MPa, Toxt = 23MPa,
T = 300K. The obstacle wall stands for an infinite density of infinitely weak
obstacles (Lce — 0, Finax — 0). Note that the y-direction is stretched by a
factor 10 for improved visibility.
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Figure 40. Unstable (grey) and stable (black) equilibrium configuration
(T=0) of a dislocation at an obstacle wall (light grey).

y(x). Approximating the curvature (1/R.) by the derivative d®y/dz? yields
the differential equation

2

== ¢ () + 7ex) (53)
for y(x). The quoted approximation is justified because the critical config-
urations are known to be flat (figure 39). The function 7. (y) is described
by the wall’s maximum height, 79k, and by a function describing its ’shape’
in y-direction. The latter contains a depth parameter dy which is related to
the obstacle diameter. For simplicity a rectangular wall shape is assumed
here; in (Mohles, 1997) a parabolic shape has also been examined with
essentially the same results.

—ToK if 0 < Yy < d()
wa. = 84
Twail(9) { 0 otherwise (84)

With the simplified wall of equation (84), the solution y(x) of differen-
tial equation (83) can be found easily by assembling dislocation pieces of
constant curvature, as sketched in figure 40. A trivial solution is y = 0,
where |Twan| = Text by definition. This describes the stable configura-
tion. In the unstable configuration of figure 40, the curvature over the
length 2L, is Ky = brext/S (ie., K1 <0), and in the two pieces of Lo,
the curvature is Ko = b (Tox — Text) /S (i.e., K3 > 0). The length Lo is de-
fined geometrically by K5 and dp; with the quoted parabolic approximation
Ly = (2dy/ KQ)I/ %, In the inflection points the slopes have the magnitude
|m| = KyLs = K1Ly, which finally defines L;. Altogether this yields

2 — Tex 2
le\/ doS (Tok — Text) and Lz:\/b( doS (85)

2
b T2 TOK — Text)
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With the geometry y(z) of the unstable configuration known, the energy
AG can be calculated. AG is required to bring the dislocation from the
stable to the unstable configuration. AG is comprised of two contributions.
One is given by the obstacle stress between the configurations, reduced by
the energy that is expended by the external stress. This part is found by
integrating (b7wan — bText) in the area between the unstable and the stable
configuration; it is large if L; and Lo are large. The other contribution is

given by the increment of dislocation length [ i (dx2 + dy2)1/ 2} from the

stable to the unstable configuration; this part is large when Ly and Lo are
small. In the equilibrium configuration y(x), however, these contributions
have equal magnitudes, as can be verified. Together this yields

AG:4\3/2

1
Vodi S ok (1—ma) (86)

Trel

where Toxt has been expressed by the relative stress 71 introduced in equa-
tion (80). AG is the energy that must be expended by the thermal pulses for
activation. The energy contribution expended for this by the external stress
has already been accounted for in the first contribution outlined above. The
first square root in equation (86) is a universal feature of the activation en-
ergy, independent of the shape of the obstacle wall. It emphasizes that
the activation event is governed by both the integrated obstacle stress 7ok,
which equals the maximum of 7. from equation (82), and the line tension
S. The dependence of AG on T, and the pre-factor is defined by the wall
shape. Other wall shapes have been discussed in (Mohles, 1997). Instead of
a stress wall, a potential trough can also be considered. When the trough is
V-shaped with a slope equivalent to 7o, equation (86) is recovered (Kocks,
1985).

With equation (86) and the general Boltzmann equation, the proba-
bility of one attempted activation event (one attack) to be successful is
known. The attack frequency, v, is known to be in the range 10'° to
10'*Hz (Mohles, 1997), (Granato et al., 1964). Hence the waiting time for
activation is

1 AG
twait - o ekaBT (87)

with AG and its dependence on 7k, S, and dy defined by equation (86).
The dependence on Ty remains to be refined. In particular, close to the
top of the wall, i.e. for 7 — 1, the rectangular shape is not a good
approximation; however, for small obstacles like foreign atoms this is not so
critical.
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Solid solution strengthening In deformation experiments often a con-
stant shear rate ¥ is enforced. With a density of mobile dislocations py,
defined by the specimen’s deformation state this enforces a mean disloca-
tion velocity, as described by Orowan’s equation (13). When the mean free
running path A of dislocations is assumed to be constant, this means that
twait and hence AG is given (equations (81), (87), vp=const., T=const.).
Since 7ok, S and dyp are material parameters, this defines 7. (equation
(86)) and Text, (equation (80)), which here is called the solute strengthening
contribution 7y, here. Resolving for 7exy = 701 yields

2 8bd3 S
X with Tp = V/8bdSTo ,
1++/1+T2/T2 3kpln (Avobpm /%)

where T has no particular meaning as a special temperature; it is just an
abbreviation for the temperature scale. Altogether 74, depends on the so-
lute concentration cu, but this dependence only comes through 7ok (cat)-
Calculation of the latter dependence is an independent problem.

When reasonable values for solute atoms are inserted in equation (88)
(e.g. do = b, b=0.25nm, S = pb?/2, u=50GPa, 7ok =50MPa, In(A\vpbpm /5) =
20), Tyel comes out to be about 1/3 at room temperature: these small obsta-
cles are indeed overcome by thermal activation. On the other hand, small
particles with a diameter of only dy = 8b = 2nm yield 7y = 0.97. This
means that thermal pulses do not help (much) to overcome particles. As
noted above, the assumption of a rectangular wall shape is not a good one
for e1 — 1, so this result is not accurate. However, it can be shown with
a parabolic shape of Twan(y) (Mohles, 1997), which is more appropriate for
Trel — 1, that the statement remains valid that the strengthening contribu-
tion even of rather small particles (dy > 4nm) is independent of temperature
(no thermal activation).

Equation (88) shows that 7y, depends on the strain rate only weakly,
but that it decreases with increasing temperature considerably. However,
even at high temperatures the strengthening effect of solutes does not vanish
entirely. This is all in agreement with experimental findings (e.g. (Kocks,
1985)).

(88)

Tsol = T0

4 3-D aspects

When dislocations glide in their glide planes they will encounter other ones
in other glide planes. These dislocations interact mutually as described by
elasticity theory, but they are also subjected to a number of reactions and
effects that are intrinsically 3-dimensional. They lead to specific patterns of
dislocation arrangements. For instance in face centred cubic crystals during
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tensile or compression tests, the dislocations form cells with high dislocation
density in the cell walls and low density in the interiors. In contrast, fatigue
tests with thousands of loading and unloading cycles tend to lead to alter-
nating layers of high and low dislocation density. One aim of 3-dimensional
dislocation dynamics simulations is to investigate the corresponding pattern
formation and the associated work hardening effects. However, such inves-
tigations are still in their infancy due to the enormous computational effort
of dislocation dynamics simulations. Here some fundamental aspects of 3-D
dislocation motion are compiled, in particular those with implications on
the implementation of dislocation dynamics simulations.

4.1 Non-elastic 3-D effects

The elastic interaction between dislocations has already been described
in section 1.3 for straight dislocations and in section 2.2 for arbitrary config-
urations. The present section outlines additional effects which in particular
include irreversible dislocation reactions.

Intersecting dislocations When dislocations on different glide planes
cross each other they impose a shape change on each other. Several cases
are to be distinguished depending on the directions of the line and Burgers
vectors. In figure 41, four cases are plotted in which two initially straight
dislocations cross each other at right angles. In each of these cases and
in general, every dislocation acquires a piece of dislocation length (added
local line vector) of the magnitude and direction of the other dislocation’s
Burgers vector. This is simply a consequence of the Burgers vector being
a shift vector. In the cases (a) and (d), one of the two dislocations only
gains or loses length of the other dislocation’s Burgers vector, whereas in
the other cases both dislocations acquire a jog or kink.

In figure 41(b), each edge dislocation gets a short piece of screw dislo-
cation lying in the same glide plane. Such local character changes in the
same glide plane are called kinks; they can accompany the dislocations’
glide without resistance (planar Peierls stresses are disregarded here). The
edge dislocation in figure 41(d) has also acquired a kink, and the screw
dislocation in 41(c) also has a kink: the line vector of this kink lies in the
screw dislocation’s glide plane, which in the present case is defined by the
line vector and the direction of motion (see section 1.1).

The upper dislocation in figure 41(a) and the edge dislocation in 41(c)
have acquired a jog, i.e. a segment with a line vector s normal to its glide
plane (see 41(a)). With their own line vectors but unchanged Burgers vec-

tors, these jogs define their own glide planes n;,,. The glide directions of
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(a) (b)

Figure 41. Straight dislocations after intersecting with another one normal
to it; (a) two edges with normal Burgers vectors, (b) two edges with parallel
Burgers vectors, (c) edge and screw with normal Burgers vectors, (d) edge
and screw with parallel Burgers vectors.

the dislocations containing these jogs lies in the respective jog’s glide planes
Njog- This means that these jogs can, in principle, glide along with their par-
ent dislocation’s motion. If the glide plane n;,, is as "smooth” (section 1.4)
as the dislocations’ glide planes, the jogs will glide without additional resis-
tance. However, this is not necessarily the case; additional Peierls stresses
may apply for the jogs.

In figure 42 the intersection of two screw dislocations is considered;
their line vectors (and consequently the Burgers vectors) are normal to each
other. Both screws acquire jogs during the intersection. Unlike in the pre-
vious cases of figure 41, the jogs cannot glide with the rest of the dislocation
because the direction of this motion does not lie in the glide plane of the
jogs, as can be seen in figure 42(b). There the jogs may wait for approaching
vacancies in order to climb in the indicated direction. This allows only for
slow overall motion because the vacancy density is usually very low. On the
other hand, at high stresses driving the dislocation forwards, the jogs may
be dragged along, thereby emitting interstitial atoms. This can happen at
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(a) (b)

Figure 42. Straight screw dislocations after intersecting each other; (a)
both screws acquire jogs; (b) the jogs must climb in order to follow the dis-
location’s motion by emitting or attracting interstitial atoms or vacancies.
When the distance between the grey planes equals several atom layers, the
jogs between them are called superjogs.

higher rates because the number of interstitials that can be generated and
diffuse away is virtually unlimited. For motion in the opposite direction,
or for jogs of opposite sign, the roles of vacancies and interstitials are ex-
changed; however, the energetics for vacancy and interstitial creation and
mobility differ.

According to section 1.3 the critical stress 7jog required for the disloca-
tion to drag the jogs is Tjog = Fjog/ (bdjog), Where djo4 is the average distance
between them (figure 42(b)) and Fjog is the force to drag one jog. The lat-
ter is related to the energy FE. / to create a vacancy/interstitial, which is
expended while the jog climbs by the distance dpiane ~ b to the next plane.
Assuming that the climb force is homogeneously distributed over the length
dplane such that By /; = dplaneFjog yields

Tijog = Ev/i/ (bdplancdjog) (89)

For aluminium, for instance, the energy E, to create a vacancy is about
0.67¢V (Gottstein, 2004); the energy F; of interstitial atoms is about two to
four times higher. Even higher energies can occur when a screw dislocation
is intersected by several other screws in the same glide plane. In that case,
the length of the jog amounts to several times the Burgers vector. Such
larger jogs are called superjogs; in order to move them with the gliding
screw dislocation, several interstitials or vacancies must be created at once
for every step of motion. Accordingly, the respective energy and the force
of the superjog are larger.

In figure 42(b) it can be seen that the screw dislocation bows out between
the jogs, like between all obstacles. The curvature of bending is limited by
the obstacle force in relation to the line tension (see section 2.1), or by
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the normalized obstacle strength k = Fjo./(25) of equation (74). With
S ~ pub?/2 and the values p = 27GPa, b = 0.286nm and E, = 0.67eV
for aluminium, & for vacancy creating jogs is found to be about 0.17; this
means that the bending is weaker than in figure 31(a). Interstitials creating
jogs or superjogs will cause stronger bending. In case of superjogs with
k > 1 the dislocation will bend forwards like in the case of the Orowan pro-
cess, but annihilation like in figure 18 will not occur (immediately) in the
present case because the dislocation bows involved lie in parallel but differ-
ent planes. Further details on jogs and superjogs can be found in (Hull and
Bacon, 1992).

A possibly important effect of climbing jogs on plasticity is that this
motion is thermally activated. This can introduce a strain rate and temper-
ature dependence of plasticity in a similar way as solutes do (section 3.4).
But the activation events are different and involve different activation ener-
gies; moreover the vacancy density and the jog density play important roles.
Since these densities inevitably increase with continued plastic deformation
as dislocations intersect each other and move on, work hardening can be
affected in particular.

Dislocation reactions Dislocations can be subjected to exothermal re-
actions with other dislocations. A trivial example for this is when two
dislocations with opposite sign meet in the same glide plane: they will an-
nihilate each other irreversibly, like in the case of the Orowan process. Even
when they are not in the same glide plane but come very close (neighbouring
parallel planes, for instance), they can annihilate spontaneously and thereby
release a row of vacancies or interstitial atoms. These reactions lower the
free energy of the system and have a softening effect because the dislocation
density is lowered.

A dislocation reaction can also occur when two dislocations in different
non-parallel glide planes meet and partially annihilate, thereby lowering
their combined energy. A prominent example for this is the formation of
a Lomer-Cottrell lock, in which two partial dislocations lying in different
glide planes react, as outlined in figure 43: The reacting partials P2 and P3
have the Burgers vectors a/6[121] and a/6 [112], respectively. They have
the same magnitude b, = b/3'/2 and, for the most part, point in opposite di-
rections. The resulting dislocation after the reaction has the Burgers vector
a/6[011] with the length b,c = b/3. The energy of this dislocation is much
lower than the combined energy of the reacting partials (E* ~ b2, equations
(6) and (8)), therefore, this reaction is favourable and almost irreversible. In
a realistic network of curved dislocations the reaction will only occur over a
finite length, as indicated in figure 43. High stresses on the partials P2 and
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Figure 43. A Lomer-Cottrell-Lock formed locally by two Shockley partial
dislocations from different planes. The length of the combined Burgers
vector a/6 [011] is particularly small.

P3 may unzip this lock, but this is unlikely to happen because usually, the
initial dissociated dislocations have been driven by an external stress such
that they form the lock; hence essentially, a stress inversion is required to
unzip this lock. The Burgers vector of the combined lock dislocation does
not lie in either of the two initial glide planes. Therefore, this dislocation
cannot glide with the original dislocations and hence locks them.

Another possible dislocation reaction can occur when dislocations inter-
sect, like in figure 41(b). By the indicated motion of the two dislocations in
this figure, a cube of material will be transformed into the shape of figure
44(a). Two alternatives to create the latter shape are indicated in figures
44(b) and (c). In figure 44(b), two straight edge dislocations with parallel
Burgers vectors and normal line vectors move in the same direction; in 44(c)
two angular dislocations move. The particular feature to be noticed here is
that when the angular dislocations meet in their angles, this arrangement
is indistinguishable from the case when the straight dislocations of figure
44(b) intersect. In this moment the configuration may switch from (b) to
(¢) or vice versa; this switch is called a collinear reaction. This reaction
can be favourable for instance under certain stress conditions, or driven by
dislocation length reductions which are possible in real cases where disloca-
tions are actually curved.

A collinear reaction may also happen to the dislocations sketched in
figure 41(b), which move in opposite directions and are therefore certain to
intersect. The dislocations are driven in the indicated directions by given
stresses, the origin of which plays no role. After the reaction occurs, the
result is that of figure 44(d): for each of the angular dislocations created,
the driving stresses on the two arms are opposing each other. At least in
part this impedes further glide of the angular dislocations. Moreover, their
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Figure 44. The shape in (a) is created from a cube by the dislocation
motion in figure 41(b), or by the combined motion of the straight or angular
dislocations in (b) or (c¢). A switch between the configurations (b) and (c¢) is
possible when the two dislocations intersect. Likewise, (d) can be the result
of a switch when the dislocations of figure 41(b) intersect. The resulting
angular dislocations are essentially immobile.

glide can no longer lead to the shape of figure 44(a). Similar to the case
of dislocation dipoles (section 1.3), angular dislocations are immobile or at
least less mobile, so that new mobile dislocations must be created for con-
tinued plasticity. From this, a rise in material strength is to be expected,
increasingly so with the number of dislocation intersections. These, in turn,
increase with plastic strain. Dislocation dynamics simulations (Devincre
et al., 2005) have approved that the collinear reaction in fact makes a sig-
nificant contribution to work hardening.

Non-planar dislocations The angular dislocations of the previous sec-
tion generated during dislocation intersections are one example of non-
planar dislocations: each dislocation arm is curved in its own glide plane,
and two planes are involved. Another case of a non-planar dislocation is
given when a dislocation leaves its primary glide plane over a certain length.
Here, like in section 1.3, a distinction between climb and cross-slip must be
made: a piece of dislocation with screw character may glide into another
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Figure 45. (a) Double cross slip of a piece of screw dislocation, arrows
indicate glide directions; (b) a dislocation overcoming a particle by a com-
bination of cross slip (big arrows) and climb (smaller arrows); (¢) when a
particle is overcome by cross slip alone, two prismatic dislocation loops of
opposite signs are left behind, which may vanish later on by diffusion along
the particle interface.

glide plane; however, a piece of edge dislocation can only climb. The latter
involves material transport (diffusion) and is, therefore, slow.

In figure 45(a) a case of double cross slip is sketched: a piece of dislo-
cation changes its glide plane twice. Changing the glide plane involves an
angle to be created on the dislocation, which is energetically unfavourable.
Hence there must a driving force, like from an external stress, for cross
slip to occur. In contrast, climb may occur when there is an abundance of
vacancies: they are attracted by edge dislocations, thereby making them
climb.

Since dislocations are curved and have mixed character in general, cross
slip and climb will have to occur concurrently. This means for instance that
a driving force for cross slip will at the same time act as a driving force
for the generation or absorption of vacancies or interstitials: the line ten-
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Figure 46. Cross slip of a dissociated screw dislocation. The grey area
indicates the stacking fault.

sion will pull on the edge parts of the dislocation. In figure 45(b) a case is
sketched where a particle is about to be overcome by a dislocation. This
particle cannot be sheared. Hence it may be overcome by the Orowan pro-
cess (section 2.1), or by a combination of cross slip and climb (large/smaller
arrows in figure 45(b)). When cross slip and climb can take place at equal
velocities, the dislocation can locally leave its primary glide plane near the
particle and move back to this plane beyond it. On the other hand, when
the edge components of the dislocation are unable to climb (for instance due
to low temperature), the dislocation may overcome the particle by creating
two prismatic dislocation loops, as sketched in figure 45(c). The prismatic
loops can vanish later on by diffusing vacancies or interstitials, while the
dislocation moves on in its primary glide plane. The details of what actu-
ally happens depends on a number of parameters like all stress components
and the energetics and densities of vacancies and possibly interstitial atoms.
Here the term ”energetics” summarizes all activation energies for the cre-
ation and migration of vacancies and interstitials.

A dissociated screw dislocation cannot cross slip directly. One model for
cross slip in this case is that the corresponding partial dislocations recom-
bine to form a perfect dislocation over a certain length L before this piece of
dislocation glides into the secondary plane. There it may dissociate again,
as indicated in figure 46. The recombination of the two partials is a ther-
mally activated event similar to that described in section 3.4 for overcoming
obstacle walls. This explains the fact that cross slip is observed especially
at high temperatures. In materials with a high stacking fault energy, like
aluminium, the distance between the partials is very low (equation (23)).
This means that the corresponding activation enthalpy in these materials
is low, and that cross slip is very frequent even at low temperatures. This
is in fact observed in aluminium alloys. However, it should also be noted
that molecular dynamics simulations in literature have demonstrated the
possibillity that a dissociated screw dislocation can cross slip without the
recombination of the partials. In that case, cross slip must be accompanied
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Figure 47. Operation of a Frank-Read dislocation source. The points indi-
cate where the dislocation enters from another plane. In (b), two dislocation
parts with edge character and opposite sign are about to annihilate each
other; in (¢) an expanding loop has been generated, and the new source is
reestablished. The dashed line in (a) indicates a potential surface of the
material.

by climb of the edge components of the partials.

Dislocation sources A very important aspect of cross slip is that it gen-
erates a Frank-Read dislocation source that can generate a virtually infinite
number of new dislocations. Figure 47 represents the upper plane of figure
45(a), where double cross slip had just occurred. Under a given stress the
dislocation segment bows out forwards between the points in which it enters
this plane. When a critical stress is reached, the dislocation can move on
to form the configuration of figure 47(b). Then, two dislocation parts with
edge character and opposite sign annihilate each other (two half planes of
atoms combine to form a full plane). The result is that of figure 47(c): an
expanding dislocation loop enabling plastic deformation and a new segment,
which can act as a dislocation source again.

The aforementioned critical stress is similar to that for the Orowan pro-
cess: it depends on the distance between the fixed points, like Torowan Of
equation (26) depends on the free space L. — 2R between obstacles. How-
ever, this is only an approximation because the dislocation parts outside the
plane of figure 47 also cause significant stresses. Moreover, once the source
has created a loop or several ones, these loops shield the external stress to
some degree: the upper half of the loop in figure 47(c) repels the segment in
its centre, pushing it downwards, and the lower part of the loop attracts the
segment, also pulling it downwards. This means that only a finite number
of loops can be generated at a given external stress, before the source ”dries
up”. In dislocation dynamics simulations (as of yet, unpublished) it has
been shown that this shielding effect is essentially independent of the size
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of the (expanding) loops. For continued plastic deformation, the external
stress must be increased further. Obviously this shielding effect contributes
to work hardening.

When a dislocation changes its glide plane in a single point and ends
on a free surface, this point can act as a spiral dislocation source. This
is indicated in figure 47(a) by the dashed line: if this line describes a free
surface and only the right half, for instance, of the figure is actually present,
then the remaining dislocation arm can spiral around the fixed point and
create half dislocation loops extending to the right into the material, just
as if a mirrored counterpart were present on the left side (see section 1.3).
The single fixed point may stem from half a double cross slip event (for
instance, only the right half of figure 45(a)) or it may be one ending point
of a superjog (see figure 42(b)).

4.2 Computational Aspects for 3-D Simulations

Some aspects of 2-D dislocation dynamics simulations, like segmentation,
have been covered in section 3.1. They remain valid for 3-D simulations, but
additional considerations are necessary in 3-D. For instance, decisions must
be made on which glide planes are active, how cross slip is activated, and if or
how climb is enabled. Generally speaking, the local direction of motion must
be chosen. The subsequent considerations originate from the present author.
However, there are a number of other successful approaches in literature, all
with specific characteristics, see e.g. (Zbib et al., 2004), (Zbib et al., 2000a),
(Zbib et al., 2000b), (Schwarz, 1999), (Devincre et al., 2001), (Devincre and
Condat, 1992), (von Blanckenhagen et al., 2004), (von Blanckenhagen and
Gumbsch, 2004), (Hartmaier and Gumbsch, 2004) (Ghoniem, 2000).

Direction of motion The direction of motion is unequivocal in 2-D (nor-
mal to the line vector, figure 28), but in 3-D, the glide plane must be chosen.
This can be done by using predefined glide planes, depending on the crystal
structure, and switching between these planes randomly with certain prob-
abilities. These probabilities depend on temperature and on the resolved
shear stresses in the glide planes of choice. But they also depend on the
local dislocation configuration: a certain length of screw dislocation is re-
quired for cross-slip. But since dislocations are curved in general, it remains
difficult to define such a critical length. In case of dissociated dislocations,
the partial dislocations need to be merged into a perfect one over a certain
length L in order or cross slip, as indicated in figure 46. This is known to
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occur in a thermally activated manner, similar to the case of a dislocation
overcoming an obstacle wall in figure 39. The merged length L may be used
as a parameter to formulate the cross slip probability. But as seen later on,
the merged length is not well-defined either.

An alternative to the approach above with predefined glide planes is to
allow the simulated dislocations to move in any direction normal to its line,
in principle, and to confine the motion to the preferred directions by other
means. For instance, Xiang and Srolovitz (Xiang and Srolovitz, 2006) have
applied the level-set method to simulate a dislocation overcoming a second
phase particle. The authors used a strongly reduced dislocation mobility (a
large drag factor B) for climb directions in order to account for the slowness
of climb relative to slip.

Another concept using dislocations allowed to move in any direction is
suggested subsequently. In this concept, a 3-D Peierls potential is used to
make the dislocations prefer certain directions. It involves the symmetry
and periodicity of the crystal structure under consideration. A dislocation
tends to remain in low energy states within this potential; minor devia-
tions cause stresses that drive the dislocation back. But larger deviations,
caused for instance by thermal pulses, can make the dislocation leave its
primary glide plane. In figure 48(a) this concept is sketched. In every point
equivalent to that indicated by 707, the dislocation is free to move into the
directions indicated by A, B, or C, and it will do so with the probabilities
P4 > Pg > P when the arrow in figure 48 indicates the Peach-Koehler
force of equation (18).

In general, a dislocation would be curved in its glide plane, and it may
even have kinks as indicated in figure 48(b). There, a piece of the dis-
location (grey) has left its primary glide plane and moved into a parallel
one. This motion involved double cross slip and, at the same time, climb.
This means that a number of vacancies (or possibly interstitial atoms) have
been created or consumed. In the concept of the 3-D Peierls potential, this
means that also the energy for vacancy formation and consumption is to be
considered for every geometrically necessary vacancy. The strength of the
Peierls potential defines the degree of confinement.

Dislocation merging An important difference between 2-D and 3-D dis-
location dynamics simulations is that there are non-trivial dislocation reac-
tions possible in 3-D. Examples are the lock formation in figure 43 and the
switch between the configurations of figures 44(b) and (c). In such reactions,
dislocations can touch or intersect each other, which implicates numerical
problems due to the stress singularity in the dislocations’ cores. In order
to avoid such singularities, all stress components defined by stress formulas
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Figure 48. Concept of a 3-D Peierls potential to confine a dislocation
capable of moving in any direction to glide planes. Darker shades of grey
indicate a higher potential energy. (a) Straight screw dislocation along the
y-axis; (b) a curved dislocation (with kinks), a piece of which (grey) has
moved into a parallel glide plane.

like (49) or (58) can be multiplied by a function feore(r) like

72

2 2
e+ TCore

feore(r) = (90)
which accounts for the atomistic nature of the dislocation. Here, r is the
distance from the dislocation and r¢.e ~ b is an adjustable parameter for
the core radius. Equation (90) ensures that all stress components vanish
in the dislocation core. Applying this function is essentially equivalent to
using Peierls’ dislocation model (Peierls, 1940) instead of Volterra’s purely
elastic approach (Volterra, 1907), on which all previous functions are based.

Besides avoiding the stress singularity in the code, a decision must be
made for dislocation dynamics simulations on how to handle the joined dis-
location part, like the Lomer-Cottrell lock (figure 43). One possibility is
to ignore the joining, such that the dislocations coincide as indicated in
figure 49(a). As a result of feore ~ 12 for r < reore, and 7 ~ 771 for all
elastic stresses, actually a linearly increasing interaction stress proportional
to r would act inside the cores, which keeps attracting dislocations close
together in a numerically stable way. This approach allows the simulations
to automatically decompose the lock back into the two partial dislocations,
provided that strong stresses on the side arms P2 and P3 in figure 43 tear
them apart. This approach is convenient and useful if the dislocations that
have merged are distinguishable in general. In the case of the Lomer-Cottrell
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Figure 49. Merging of two dislocations (a), possibly in different glide
planes, by the introduction of triple junctions (b). For the reverse effect
from (b) to (a), the triple junctions may move towards each other until a
quadruple junction is formed. If the Burgers vectors b; and b, differ, the
respective dislocations are separated.

lock the distinction can always be made because the Burgers vectors of the
respective partials differ.

On the other hand, dislocation reactions may also occur between dislo-
cations with equal Burgers vectors, like in the case discussed in section 4.1
with regard to figures 44(b) and (c). There may even exist yet unidentified
kinds of dislocation reactions. In such cases, ignoring the ambiguity of the
dislocation configurations after intersections or after merging can lead to
possibly severe errors in continued simulated plasticity. Therefore, in gen-
eral, any possible cross-linking of dislocations should be considered. This
can be done for instance by allowing dislocations to fully merge in one or
several calculation nodes, i.e. in dislocation pieces with combined Burgers
vector, as indicated in figure 49(b). Merging may start in a single node
when two nodes from different dislocations come very close. This works for
attracting as well as for repelling dislocations which are driven towards each
other by external stresses. Starting from the first merged node (quadruple
junction), its neighbour nodes will (or will not) attract each other and ex-
tend the merging to a piece of dislocation with two triple junctions at its
ends. The reverse effect will be accomplished by the triple junctions mov-
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ing towards each other until a quadruple junction is formed. When this
happens, the junction can be resolved, and the four adjacent dislocation
segments can be rejoined to two full dislocations as the Burgers vectors
allow. In the case that all four Burgers vectors are equal (b; = b,) in fig-
ure 4.9(b)), a decision is required on which dislocation segments are to be
joined, depending on the local stresses.

Calculation effort In dislocation dynamics simulations (2-D or 3-D),
the largest numerical effort lies in the calculation of the elastic interaction
stresses between dislocation segments. Roughly spoken, every segment in-
teracts with every other segment, which leads to an effort proportional to
N2. In simulations, the number of interaction partners must be reduced to
those within a certain cut-off distance d..; in order to keep the effort low.
However, d.,;+ must be pretty large because the dislocation stress decreases
only as 1/dcy. For N segments with M interaction partners each, this leads
to a calculation effort per integration step proportional to N - M, where N
and M can easily exceed 10000. Assuming that one segment-segment inter-
action of a single time step takes one microsecond to compute, it becomes
obvious that the simulations are slow, given that at least tens of thousands
of time steps are required for a meaningful simulation. Therefore, when
aiming for dislocation dynamics simulations, measures to reduce the nu-
merical effort need to be planned from the start.

Three measures used by Mohles (Mohles, 2001c) have proved to be quite
successful. Firstly, it should be kept on mind that the calculations will im-
plicate several small error contributions. Examples are the error which is
introduced by a finite cut-off radius d.,t, or the errors involved with the
spatial resolution As; and with the finite stress increments A7 as discussed
in section 3.1. All error contributions have to be negligible. Reducing the
error limits involved with one special respect often means dramatically in-
creased calculation times. The overall error may still remain large as a
result of other error influences. Hence calculation time would be wasted; it
is, therefore, extremely useful to have equal error limits for all error influ-
ences involved.

Another measure to reduce the calculation effort is to introduce the pos-
sibility of local equilibria. Often, only parts of the dislocations move fast
while the rest is hardly moving. This latter part can be put to sleep until
something happens that might destroy the local equilibrium. The sleeping
parts still act as interaction partners, but they do no stress evaluations on
their own. When the external stress is increased, or when the stresses from
other dislocation parts in the vicinity changes due to motion, the sleeping
parts should be "awakened” to newly evaluate whether the state of local
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equilibrium is still valid. If so, these parts can be put back to sleep, and
otherwise they start moving. The definition of such local equilibria intro-
duces another error contribution, the amount of which should again be kept
as small or large as the other ones.

Thirdly, it can be exploited that the interaction stress of distant disloca-
tion segments is low. Like in molecular dynamics simulations, the numerical
effort can be reduced to N+ M (dcyt) where M (deys) is the number of interac-
tion partners within a cut-off distance dcy¢, beyond which, all contributions
from interaction partners can be neglected. To find the relevant interaction
partners fast, the cell method can be applied. This consists of two steps
both the efforts of which scale with N': Firstly all N objects (dislocation
segments or atoms in the case of molecular dynamics) tell ”the space” where
they are located; this space memorizes these locations in a discrete way, for
instance by means of a 2-D or 3-D array of pointers or indices represent-
ing subspaces (cells). The array covers the whole simulated space, and the
pointers or indices point to the corresponding objects. Secondly, all objects
can ask "the space” which other objects are close (d < dcyt) by examining
the neighbouring subspaces. Hence the neighbour objects are found quickly
with an effort that scales optimally with N*.

In the case of molecular dynamics, M (dcy < N), so that the numerical
effort is lowered strongly. But in the case of dislocation segments, the condi-
tion M < N it is not quite sufficient because the interaction is long-ranged:
T ~ d~'. This means that d.,, must be chosen pretty large so that the
number M (dcyt) also gets large, M ~ N. Hence the efficiency gain from
the cell method alone is limited.

However, the cell method can be refined by taking basic physical prin-
ciples into account. For instance, the interaction between very distant seg-
ments can change only slowly in time, depending on their velocities. Hence
the interaction stress of the more distant segments needs to be calculated
less often. This principle can be utilized most efficiently by introducing mul-
tiple shells of interaction distances around segments. Each segment should
remember the interaction stresses of all segments which are located in cer-
tain shells (distance intervals) around it, separately for each shell. Hence,
every segment can re-use the stress values it remembers instead of recal-
culating them. Since the outer, larger shells containing many interaction
partners collects only very distant partners, the high calculation effort for
this shell is required only infrequently.

With all the above measures to reduce the numerical effort combined,
discrete dislocation dynamics simulations are speeded up by several orders
of magnitude, increasingly so for larger simulated volumes.
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