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PREFACE

The main purpose of the
CISM-BIANCHI SESSION ON MULTISCALE MODELLING OF
PLASTICITY AND FRACTURE BY MEANS OF DISLOCATION
MECHANICS, Udine, July 4-8, 2005
was the discussion of the latest state of the modelling of plasticity and
fracture of crystalline materials on the nano- and micro-scale. The
present volume offers the revised lecture notes of all who contributed
the course and one contribution of the CISM-course on Multiscale
Modelling and Design of New Materials, held at the same time in
Udine. Plasticity and fracture are multi-scale problems. The course
was devoted to regimes from atomistic to meso-scale. The central
part was the discrete dislocation mechanisms and neighbouring fields
above and below molecular dynamics and crystal plasticity, respec-
tively. The contributions give an introduction to the physical phe-
nomena, the theoretical basis, the mathematical description and the
different types of simulations. Different important practical problems
such as plasticity of thin films, mechanics of polycrystalline mate-
rials, fatigue crack propagation, fracture of brittle and semi-brittle
materials, formation of dislocation structures, etc. were considered
as examples. All contributions start with text book like introductions,
describing the different simulation techniques and discussing the lat-
est state of possibilities and limitation of the different methods. A
further important part in all contributions is the interconnection of
the different hierarchical levels. The contributions in the present vol-
ume describe the different phenomena following the scale from the
bottom up.

The first contribution is focused to molecular dynamics methods.
It takes into account the theoretical background and gives practical
examples to demonstrate its capabilities and limitations. The main
topic is devoted to the fundamentals of the fracture processes. The
second contribution is devoted to basic dislocation properties in an
elastic continuum. The basics for accurate dislocation dynamic simu-
lation of plasticity, the dislocation-dislocation and the dislocation self
interaction is introduced in detail. The method is then applied to
2-dimensional and 3-dimensional problems. The third contribution
gives an introduction to the linear elastic stress and a strain field of a



crack taking into account the presence of dislocations. Then the con-
sequence of the discrete nature of plasticity is demonstrated with the
example of a moderately cyclic loaded crack. The example is used to
demonstrate the importance of the discrete dislocation consideration.

The fourth contribution deals also with discrete dislocation me-
chanics and its impact on fracture and fatigue crack propagation.
Whereas the methods introduced in chapter three are limited to special
geometries, in this part a method is introduced which permits a very
general application of discrete dislocation mechanics. The fifth con-
tribution deals with the formation of a dislocation pattern. It shows
the newest results, how the collective behaviour of dislocations can be
treated within a statistical physical framework

The sixth contribution gives an introduction to phenomenologi-
cal crystal plasticity models, to their properties and their use either
i component calculations or in microstructurally modelling. The
last contribution, presented in the Multiscale Modelling and Design
of New Materials-course is addressed to the key components of the
computational homogenization scheme, i.e. the formulation of the
microstructural boundary value problem and the coupling between the
different levels based on the averaging theorems. With the detailed
analyses of the different scales and bridging we do hope that the pre-
sented volume will contribute useful source of information on the fun-
damentals and the present-day techniques to model plastic deforma-
tion and fracture on the nano- and micro-scale.

It is the pleasure of the editors to express our gratitude to the
Scientific Council of CISM for supporting the course as well as per-
mitting these publications. We thank all the authors for their contri-
butions and the fruitful discussions with the participants.

Peter Gumbsch and Reinhard Pippan
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Atomistic Simulation Methods and their
Application on Fracture

Bernhard Eidel *, Alexander Hartmaier * and Peter Gumbsch
* Interdisciplinary Centre for Advanced Materials Simulation (ICAMS),
Ruhr-Universitdt Bochum, Stiepeler Strasse 129, 44801 Bochum, Germany
T Institut fiir Zuverléssigkeit von Bauteilen und Systemen, Universitit Karlsruhe
and Fraunhofer Institut fiir Werkstoffmechanik, Woéhlerstr. 11, 79108 Freiburg,
Germany

Abstract The present work on the molecular dynamics method cov-
ers the theoretical background of the method and gives practical ex-
amples to demonstrate its capabilities and limitations. The work
focusses on topics which reveal fundamental mechanisms associated
with fracture processes. Moreover, promising hybrid methods based
on a concurrent atomistic/continuum coupling are reviewed since
they combine accuracy and efficiency in a most favorable manner.

1 Introduction

For many engineering questions connected to the mechanical properties of
materials, one can of course profitably apply continuum mechanical descrip-
tions of materials behaviour. However, when it comes to describing small
specimens or when material specific questions need to be addressed, it is
usually indispensable to investigate defect properties. For plastic defor-
mation, discrete dislocation simulations (see (Kubin et al., 1992; Devincre
and Roberts, 1996; Deshpande et al., 2003; Weygand et al., 2002; Weygand
and Gumbsch, 2005) or the article by V. Mohles in this collection) can
be applied. In these simulations the interaction of dislocation with inter-
faces determines the influence of the microstructures. These discrete defect
based methods, however, require governing laws for the individual defect
properties and more detailed descriptions for the short range interaction
of defects. Such properties are difficult to obtain experimentally and are
therefore usually investigated by atomistic methods.

Therefore, atomistic modelling is essential in advancing our understand-
ing of the mechanical properties of materials. This is most obvious for
the investigation of fracture processes. Materials behaviour with respect to
fracture is of course ultimately determined by events on the atomic scale.
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In the case of brittle fracture this connection is obvious, since the crack in
a perfectly brittle material must be atomically sharp at its tip. The crack
moves by breaking individual bonds between atoms and can therefore be re-
garded as a macroscopic probe for the atomic bonding. The transition from
perfectly brittle to ductile behaviour similarly relies on atomistic processes
since the multiplication or nucleation of dislocations at the crack tip is an
indispensable ingredient of any modelling of the brittle to ductile transition.
Atomistically the nucleation or multiplication of dislocations at the crack
tip is identified with bond shearing events, which compete with the bond
breaking events at crack extension.

The interaction of multiple defects, like cracks and dislocations, is still
not routinely studied even with the simplest atomistic simulation methods
since such studies necessarily require models that significantly extend in
all three dimensions and consequently require the handling of millions of
atoms. Since the application of atomistic techniques has great potential (Li
et al., 2003; Kassner et al., 2005) but is still not widespread in the inves-
tigation of the mechanical properties of materials, it is probably advisable
to give a short overview on the applicable methods and then to provide a
few examples of successful application of atomistic modelling techniques to
explain experimentally observed phenomena.

In the following section we give a general overview of the different de-
scriptions for the atomic bonding, because they are the basis for all atomistic
modelling. The next section describes the molecular dynamics method in
some detail, also including the boundary conditions and visualisation of de-
fects. This part is intended to give the reader, who is not familiar with
atomistic simulation methods a feeling for the versatility of this approach.
The capabilities and limitations of atomistic methods are not just related
to the available description of the atomic bonding but also to the handling
of boundary conditions and the analysis of the results. The subsequent
section 4 deals with concurrent multiscale methods, which couple atomistic
and continuum descriptions in a rather seamless manner, hence enabling
the description of crystalline solids with atomistic accuracy but at smaller
computational costs. The Finite Element Atomistic Method (FEAt) and
variants of the Quasicontinuum (QC) method are reviewed and compared.

After this methods-oriented part, in Section 5 the phenomenology of
fracture is discussed in the light of atomistic modelling. First, brittle frac-
ture is put in the spotlight, which is the domain of the atomistic methods,
as we have seen above. Second, it is shown that the analysis of the plastic
zone around a crack tip is now within the scope of large scale atomistic
simulations.

It is noted here that this article can neither provide a practical guide
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for the use of atomistic methods nor can it claim to give an exhaustive
overview of all the work where these methods provide insight into atomistic
processes of fracture. It is rather meant to be a first introduction into the
topic, highlighting a few illustrative examples and showing the possibilities
and limitations of the most frequently used methods. Interested readers
should also consult recent overviews on the subject (Li et al., 2003; Kassner
et al., 2005) for more details and for additional references.

In order to limit the references to a useful number, we restrict ourselves
to citations concerning models and numerical simulations to the literature
dealing with fracture, where adequate. Furthermore, if the same authors
published a number of articles on similar topics in fracture, the most recent
work is usually given here since it will often provide guidance to previous
work.

2 Description of Interatomic Bonds

In this section the different atomistic methods that have been used to model
fracture processes are briefly introduced. The scope of this section is to give
a general introduction into the basic idea behind the atomistic, i.e. non-
continuum, method being used to model fracture of materials, to introduce
the essential terms, and to provide the basic literature for further read-
ing. No attempt is made to provide cooking recipes enabling the reader to
implement such methods solely based on this text.

Before presenting the different methods to describe the atomic interac-
tion, it is worth mentioning that atomistic modelling may be applied with
very different intentions. In some cases, the atomistic simulations are used
as testing grounds for ideas about the behaviour or energetics of defects.
It may then be perfectly justified to use the simplest generic form of the
interaction model. Alternatively, the goal may be to make quantitative or
semiquantitaive predictions about the properties of specific materials. In
this case one has to resort to materials-specific models or even quantum
mechanical ab initio methods.

2.1 Quantum Mechanics Based Descriptions of the Atomic Bond-
ing

The most fundamental description of interatomic bonds that may have
ionic, covalent, metallic or van-der-Waals character, or any mixture of these
pure bond types, is given by explicitly dealing with all the electrons involved
in the formation of the atomic bonds. The quantum mechanical description
of a crystalline material is a classical problem of solid state physics and
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appropriate tools have been developed there, which today are available for
the use in many different application areas. In all these codes, the many-
body problem of atomic nuclei and electrons must be solved for different
geometries. Lattice periodicity is usually imposed. The solution is generally
approached in three steps:

1. Within the Born-Oppenheimer approximation the motion of the atomic
nuclei is (adiabatically) decoupled from the motion of the electrons.
Since the mass and the inertia of the atomic nuclei is orders of magni-
tude larger than the mass of the electrons, the electronic quantum gas
follows the motion of the nuclei almost instantaneously. Furthermore
the electrons are always assumed to remain in their ground state with
respect to the momentary position of the nuclei.

2. The quantum mechanical ground state of the inhomogeneous electron
system in the system of the nuclei is determined then in an external
electrostatic potential, given by the charge at the instantaneous po-
sition of the nuclei. In practical calculations, the many particle state
of the interacting electrons is usually constructed from single particle
states of non-interacting electrons in an effective (mean) field of all
the other electrons. These single particle states are self consistently
determined by iteratively solving the coupled set of single particle
problems for all the electrons. The most successful approach to this
problem has been density functional theory (DFT) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). Within the local density ap-
proxzimation (LDA) it is assumed that the exchange correlation of the
electrons can be calculated based purely on the local electron density.
This is sometimes not enough and generalised gradient approximations
(GGA) have been introduced.

3. In the last step we now reintroduce the motion of the atomic nu-
clei. The ground state energy of the electron gas can be regarded as
the potential energy for the nuclei in their configurational space. The
atomic motion can then be simulated in this adiabatic potential. Local
minima in this adiabatic potential reflect statically stable structures
for the solid while saddle points are the static barriers for structural
transformations. With the knowledge of the adiabatic potential, it is
possible to determine kinetic, dynamic or statistical materials proper-
ties (e.g. phonon properties, transport properties, or phase equilibria)
either by classically solving Newtons equations of motion, by minimis-
ing the total energy of a structure or by solving quantum mechanical
problems for the nuclei (e.g. for zero point vibrations of light ele-
ments).
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The main task of electron theory is to solve for the electronic ground
state, the second step above, in a numerical way. There are several successful
methods available to do so, based on plane waves, localised orbitals or a
mixture of them. The Cambridge (Serial) Total Energy Package CASTEP,
the Vienna Ab-initio Simulation Package VASP or the Mixed Basis Pseudo-
Potential Code MBPP are standard packages for this task.

Since these quantum mechanical methods do not require any adjustable
parameters and are therefore often termed ab initio or first priciples tech-
niques. Their results provide highly accurate and predictive results on ma-
terials properties.

However, the methods are computationally very demanding and often
require periodic structures, which are constructed by defining a unit cell
comprising the atoms to be considered and repeating this unit cell periodi-
cally in all directions. This procedure is identical to the periodic boundary
conditions that are used extensively in molecular dynamics simulations, as
will be described below. However, the periodic cells in molecular dynamics
simulations may contain several million atoms, while ab initio methods, due
to their mathematical complexity are restricted to hundreds of atoms within
the unit cells. This limitation is rather severe for applications in mechanical
problems, because the generation of defects or the driving force on a defect,
like the energy release rate during crack advance, all depend on the total
elastic energy stored within the volume. Hence, if the volume under consid-
eration is extremely small, the elastic strains in the volume have to be close
to their theoretical limits in order to store sufficient elastic energy to drive
the defects. Therefore, ab initio simulations of defect behaviour must always
be carefully checked for size effects and artifacts caused by the restrictions
on the effective volume. Notwithstanding these words of warning, it must
be stated again that ab initio methods are the most fundamental methods
available to describe behaviour of materials and thus possess the most pre-
dictive power. There are also some interesting and potentially fruitful ideas
to combine ab initio methods with molecular dynamics simulations which
will be described in section 4.6.

Before leaving this section it is worth mentioning that ab initio methods
are not just applied to study some specific fracture problem, they also play
an important role in the verification and the adjustment of simpler models
of the atomic interaction. To develop material-specific (semi-) empirical
interaction models, various adjustable parameters and sometimes even the
functional form of the interaction model has to be chosen to reproduce
available data. However, experiment will usually only provide data close to
mechanical and thermodynamic equilibrium, whereas the interaction mod-
els will be used at grain boundaries or even in the highly strained region near
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crack tips. Therefore it is advisable to adjust the parameters of the interac-
tion models so that they perform well under these circumstances. Because
of the lack of experimental data, ab initio calculations of large deformations
or structural energy differences are often used instead. It therefore turned
out to be very useful to build up extensive ab initio data bases for the de-
velopment of simpler interaction models. While the first such data bases
for aluminium (Ercolessi and Adams, 1994) or the intermetallic nickelalu-
minide B2-NiAl (Ludwig and Gumbsch, 1995) still constituted demanding
calculations, such databases can today be generated routinely and very sys-
tematically.

2.2 Atomic Interaction Models, Potentials

While it is generally possible to use ab initio methods to study the dy-
namic evolution of an atomistic system, the computational burden is usually
too high and (semi-)empirical potentials are therefore applied in molecular
dynamics (MD) simulations. The atomic interaction as described by semi-
empirical potentials always depends on the distance of interacting pairs of
atoms and, for the more elaborate potentials, also on the bond angles and
the local electron density. All these distance or angle dependent functions
are represented either analytically or as tabulated functions of these pa-
rameters. The most simple pair potentials, like Lennard-Jones or the Morse
potential, have just two or three free parameters that are used to change
the characteristic properties of the potential like the lattice parameter, the
bulk elastic modulus or the cohesive energy. More sophisticated potentials
have a number of free parameters that yield much better results for mate-
rial specific properties like lattice constant, sublimation energy, anisotropic
elastic constants, vacancy formation energy, stacking fault energy, or what-
ever is felt necessary for a certain investigation. The free parameters of the
potentials are usually fitted to material properties by calculating exactly
these properties on rather small atomic ensembles and then varying the
potential parameters until a reasonable match to experimental or ab initio
data is reached. The interatomic potentials can roughly be categorized into
three classes according to their level of approximation of the "real” quantum
mechanical atomic interaction:

e angularly-dependent tight-binding or bond-order potentials

e multibody or embedded atom method (EAM) potentials

e pair potentials
The properties and characteristics of the different potentials are given in
some detail below. For application purposes, the choice of a potential will
usually involve a trade-off between the accuracy of the description of the
atomic interaction from first principles calculations over semi-empirical po-
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tentials to simple pair potentials and the size of the system that can be
studied, i.e. the number of atoms that can be explicitly treated in the
sample. The decision, whether higher accuracy in the description of the
interatomic forces or larger system size, has to be made for each problem
under consideration. For example, during fracture of covalently bonded sys-
tems like silicon, polymers or biological matter the behaviour of the entire
system depends critically on the behaviour of the individual atomic bonds
immediately in front of the crack tip (see Section 5.1). Here it becomes
necessary to accurately evaluate the interatomic forces in order to obtain
meaningful results. In contrast, for rather generic investigations of dynamic
crack stability as a function of crack driving force, where the energy release
rate and the stored elastic energy in the solid are decisive, it may be essen-
tial to have a reasonably large system (Gumbsch et al., 1997; Buehler et al.,
2003). Even in these cases, however, materials-specific questions must again
be treated with the more accurate DFT descriptions or coupled methods
(Kermode et al., 2008).

Pair potentials. Pair potentials are the simplest form of interatomic po-
tentials. This approach limits the interaction between two atoms to a depen-
dence on their mutual distance, thus excluding completely any information
about neighbouring atoms. Pair potentials in their most general form are
written as

1
Utot = > Vi) +UQ) (1)
i.g

where Vj; is the pair potential, r;; is the separation between atoms ¢ and
j and U(Q) is a contribution to the cohesive energy which depends on the
average volume per atom (). This latter term may mainly determine the
cohesive energy, while the pair potential always determines the structural
dependence.

Often, however, it is not attempted to mimic the properties of a partic-
ular material but more generic atomistic questions are of interest. Then,
potentials like the Lennard-Jones potential or the Morse potential are ap-
plied. These have only few adjustable parameters, which are fitted to the
nearest neighbour distance and the binding energy or the bulk modulus.
Despite their simplicity and the lack of materials specificity, pair poten-
tials can contribute significantly to our understanding of material behaviour
and fracture in particular. Their simple structure permits investigation of
generic effects, e.g. of the atomic size or of the role of elastic properties
for a certain phenomenon. Other examples are when the consequences of
the discrete crystal structure of solids shall be compared to predictions of
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continuum models or when the influence of non-linearities in the elastic be-
haviour shall be mentioned that can ideally be compared with linear-elastic
solids described by a harmonic pair potential (Buehler et al., 2003). In these
examples use is made of the simplicity of pair potentials that allows clean
studies of single effects, while excluding all other influences that render the
behaviour of ”real” materials so much more complex.

Of course, pair potentials cannot be used to describe situations where
directional bonds or bond angles play a role. They are also not well suited
to describe metals because the well established dependence of bond strength
on coordination cannot be represented. Furthermore, simple pair potentials
result in extremely low stacking fault energies, because they fail to distin-
guish the energy difference between face centred cubic (fcc) and hexagonal
close-packed (hep) structures.

Embedded atom method (EAM) potentials. The most widely used
interaction models for metals are the EAM potentials. In this scheme the
volume-dependent term from Equation (1) is expressed as a local density-
dependent contribution to the total potential energy

Utot, = ; > Vi(ri) + > Flpi) (2)

i,j71 @

with

pi =y pij(rij) (3)

J#i

where p;; can be viewed as the contribution from atom j to the total elec-
tron density at atom i and F is the embedding energy associated with
placing atom 7 in this environment. Finally, V;; is the pair potential contri-
bution to the potential energy of atom 4. Different physical interpretations
of the terms are possible and consequently the functional forms and the
way in which the various parameters are determined may differ. Usually
the functions are adjusted to reproduce at least the lattice parameter, the
cohesive energy and the anisotropic elastic constants of the metal under
consideration. For alloys it is additionally necessary to adjust structural
energy differences of intermetallic phases and heats of solution (Ludwig and
Gumbsch, 1995). As mentioned above, it is also desirable to not only adjust
to such equilibrium crystal properties, but to also compare to some ab initio
data from atomic structures far from equilibrium or for large deformations.
Reliable and well tested potentials are available for the noble metals and
nickel as well as for some aluminium alloys (e.g. (Ercolessi and Adams,
1994; Ludwig and Gumbsch, 1995; Mishin et al., 2001)).
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The main advantage of EAM potentials is that they can be applied to
inhomogeneous systems such as surfaces or cracks, since these potentials
approximately incorporate the variation of bond strength with coordina-
tion. Decreasing the coordination (density) at an atom usually increases the
strength of each of its bonds and decreases the bond length. In particular
for fcc materials it has been easily possible to reproduce anisotropic elastic
constants, sublimation energy, vacancy formation energy, surface and stack-
ing fault energies with EAM potentials and EAM potentials can be applied
to many different types of simulations. For body centred cubic (bcc) metals
the method may still give a sufficiently precise description. For some of
these metals, however, it has been shown that the EAM fails to give a valid
description of the core structure of dislocations (Mrovec et al., 2004) and
thus the Peierls stress to move the dislocation through the lattice. There-
fore, these potentials cannot be used reliably to model plasticity in these
materials. This may be seen as an indication of the importance of angular
bonding characteristics and one may consequently resort to tight binding
or bond order descriptions (Pettifor and Oleinik, 1999; Mrovec et al., 2004,
2007a).

Tight binding and bond order potentials. The need for material spe-
cific models and for accuracy in atomistic simulations implies that a quan-
tum mechanical description of the atomic interaction is required. The semi-
empirical tight binding scheme is such an approximate quantum mechanical
description of the energetics of systems of atoms (Harrison, 1980; Pettifor,
1995). The total energy of a system is given by:

Utot = Urep + Upond (4)

where Urep is a repulsive energy, generally given as a sum of pair potentials
and Upepg is the bonding part of the energy. The latter is obtained by
solving the eigenvalue problem for a given Hamiltonian, which is assumed
to be fixed and not evaluated self-consistently as in the ab initio methods.

The Hamiltonian matrix elements are usually assumed to be rapidly
decaying functions of the atomic separation, which have to be empirically
adjusted to experimental data or results of ab initio calculations to give a
material-specific model. The least clear but most important question in this
context is the transferability of these matrix elements from ideal structures
to highly distorted atomic environments.

The semi-empirical tight-binding scheme is in principle applicable to
materials with various types of bonding but is most naturally suited to
covalently bonded insulators and semiconductors as well as the transition
metals and intermetallics .
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The key computational aspect in solving a tight-binding model is the
diagonalisation of the eigenvalue problem. This can of course be attempted
in reciprocal space, where a whole set of very efficient methods is available,
which however usually scale to the third power with the number of atoms in
the system. Linear scaling can be achieved with real space methods of which
the density matrix method for semiconductors and insulators and the bond
order approach for metals and alloys are the most promising approaches. In
the simplest approximations the latter can even be formulated analytically
within the framework of bond order potentials (Pettifor and Oleinik, 1999)
where the energy of the system is written as

1
Utot = > Vig(ri)) + > HiajsOia s (5)
i,j#i io,jf

where V;; is the pair potential, depending on the type of atom and r;; is the
separation between atoms 7 and j. H is the Slater Koster hopping integral,
which also depends on distance r;; and where the Greek indices stand for
the type of orbital. © is the bond-order matrix which gives the difference
in the number of electrons in the bonding and antibonding states. Modern
bond order potentials for carbon (Mrovec et al., 2007b) and some transition
metals (Mrovec et al., 2004, 2007a) are just becoming available.

In the same spirit as the bond-order potentials, several simplified angularly-
dependent potentials of Tersoff and Brenner-type have been developed for
silicon and the hydrocarbons (see for example (Pastewka et al., 2008)).
These potentials have seen continuous improvements but were notoriously
difficult to adjust to bond breaking problems. Despite recent success with an
explicit screening formulation for the hydrocarbons (Pastewka et al., 2008)
giving up specific bonds in a way which does not require a self-consistent for-
mulation of the electronic configuration remains an important and difficult
problem.

3 The Molecular Dynamics Method

To continue we describe the pertinent methods used in atomistic simula-
tions with some focus on the application in fracture processes and related
problems. We start out in the present section with the Molecular Dynamics
(MD) method. A short overview of the main ingredients like time integra-
tion and relaxation is given, furthermore the role of boundary and initial
conditions is described and illustrated for mechanical problem sets in ma-
terials science. Section 3.6 gives a brief account of the visualisation and
analysis of defects in atomistic simulations, which plays an ever more im-
portant role in computational materials science. Some popular and powerful
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defect indicators are described. In Section 4 we analyse and compare two
concurrent multiscale methods.

The main ingredients of an MD simulation are basically threefold:

(i) A model is needed for the interaction between the system constituents
(e.g. atoms or molecules).

(ila) Time integration is required to advance the particle trajectories (posi-
tions and velocities) from time ¢ to t + At.

(iib) Alternatively one may want to solve a stability problem which in an
atomistic system requires an algorithm to relax the atomic coordinates to
positions of vanishing forces.

(iii) An ensemble has to be chosen, for which boundary conditions and ther-
modynamic quantities like temperature, pressure or the number of particles
are controlled.

3.1 Force Calculation

Forces are derived from the potential energy U that depends on the
positions of all atoms. The description for the calculation of the energy
can be based on different physical approximations as described above. The
force acting on an atom ¢ is given by taking the derivative of the potential
energy with respect to the position vector x; of atom i

dU (x)
.fi == de: (6)
L
where x denotes the coordinates of all atoms. Once the force vector f;
acting on all atoms is known, the Newtonian equation of motion

d2:13i
fi =m; dt2 ) (7)

can be integrated in time ¢ to yield the motion of the atoms in space. The
mass of the atom is given by m,.

3.2 Integrating the Equations of Motion

Equation (7) constitutes a set of second-order ordinary differetial equa-
tions (ODEs), which can be strongly nonlinear. By converting them to
first-order ODEs in the 6 N-dimensional space of {xx, &y}, general numer-
ical algorithms for solving ODEs such as the Runge-Kutta method could
be applied. However, these general methods are rarely used in practice,
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because the existence of a Hamiltonian allows for much simpler and even
more accurate integration algorithms.

To represent other thermodynamic ensembles than the micro-canonical
ensemble for which Equation (7) can be integrated directly, requires that
Equation (7) is modified to create a dynamics in phase space that has the
desired distribution density of e.g. a canonical or a grand-canonical ensem-
ble (see e.g. (Frenkel and Smit, 2002)). The time-average of a single-point
operator on such a trajectory then approaches the thermodynamic average.

An integrator serves the purpose of propagating particle positions and
velocities over small time increments At.

3N (to) — 3N (to + At) — ... — 23V (tg + L At) (8)

The time step At has to be chosen such that the thermal oscillations of the
atoms around their equilibrium positions are resolved in time. A typical
frequency of this oscillation is the Debye frequency vp = ¢;/a, where ¢
is the speed of transverse sound waves and a is the lattice parameter. A
typical value for metals is vp ~ 102 Hz. This implies that the typical time
step for MD simulations has to be on the order of femtoseconds (=1071%s),
which generally limits the method to simulations of fast processes such as
brittle fracture or high-strain-rate plastic deformation.

Some popular time integration algorithms are the central difference al-
gorithms: Verlet, velocity Verlet or leap-frog. They are shortly introduced
below.

e Verlet algorithm. Assuming that the x>V (t) trajectories are smooth,
one may perform a third-order Taylor expansion of the positions x; () for-
ward (z;(top + At)) and backward (x;(top — At)) in time; their sum yields

mi(to + At) + {Bi(to — At) = 2%1‘('&0) + ii(to)(At)Q + O((At)4) (9)

Since &;(to) = f;(to)/m; can be evaluated given the atomic positions at
t = to, >V (t + At) in turn may be approximated by,

zilto + A1) = —ifto — At) +2,(t0) +  £,(t0)(A1)? +O((A)"). (10)

Neglecting the O((At)?*) term, we obtain a recursion formula to compute
3N (to + At). Although velocities are not needed in the recursion, they are
often calculated since they are required for analysis of ensemble properties.
They can be approximated by

wite) = ds(to) = 2& [@s(to + A) — ai(to — AD] + O((AD2). (1)
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This algorithm is not only one of the simplest, but also a good choice in
general. It is fast, but not particularly accurate for long time steps, such
that the forces on all particles must be computed rather frequently. It
requires about as little memory as is at all possible. This is useful when
very large systems are simulated. Verlet’s short-term energy conservation
is fair but, more important, it exhibits little long-term energy drift. This
is related to the fact that the Verlet algorithm is time reversible and area
preserving. In fact, although the Verlet algorithm does not conserve the
total energy of this system exactly, strong evidence indicates that it does
conserve a pseudo-Hamiltonian approaching the true Hamiltonian in the
limit of infinitely short time steps.

e Velocity-Verlet algorithm. It starts with vV (t5) and 23" (o). One
then evaluates

Lf; (tO)
2 m;
with f3V(to + At) evaluated from @;(to + At) one gets
. 171
2| m
and has advanced by one step. This algorithm requires a little more com-
puting but is very popular since it gives 3V and v3*" simultaneously.

xi(to + At) = x4(to) + vy (to) At + (A)? + O((At)?), (12)

villo+ AL) = vi(to) Fito)+ L fto+ A1) At o((an?), (13)

e Leap-frog algorithm. In the leap-frog algorithm, position and velocities
are calculated with the same accuracies but are offset by At/2. It starts
with v3V (tg — At/2) and 3V (to). Time integration is then first done on v

vilto + HAN) = vilto — AN+ | F(to)A+O(AN),  (14)

?

followed by integration of x,
1
@;(to + At) = @i(to) + vilto + HA) + O((At)?). (15)

It can be shown that the leap-frog algorithm produces identical trajectories
to the Verlet algorithm besides numerical rounding errors. It therefore has
similar properties than the Verlet algorithm but of course provides coordi-
nates and velocities at once.

For the description of Predictor-Corrector Algorithms and Symplectic Inte-
grators we refer to standard text-books (Frenkel and Smit, 2002; Schlick,
2002; Rapaport, 2004).
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3.3 Relaxation Algorithms

Mechanically stable configurations or thermally activated processes are
extremely difficult if not impossible to assess with MD methods. Examples
for such difficult-to-study processes in the context of fracture would be void
formation and coalescence or motion of dislocations in lattices with high
Peierls barriers (Marian et al., 2004). For these cases it is usually advisable
to map out the energy landscape using relaxation algorithms and then to
perform a metadynamics on the basis of such an energy landscape.

Mechanically stable equilibrium configurations correspond to minima of
the total energy. Hence it is a most common task in computational mate-
rials science and solid state physics to find local or global minima of the
potential energy, where a given initial configuration is the point of depar-
ture. To solve this task a variety of well-established optimisation methods
are available (see e.g. in (Nocedal and Wright, 2006; Leach, 2001; Schlick,
2002)). The optimisation methods generally can be classified according
to the highest order derivative used to minimise the (energy) functional.
Hence, a non-derivative minimisation method like the simplex method can
be considered as zeroth-order method. Zeroth-order methods are rarely
used in molecular modelling since first derivatives of the energy (i.e. forces)
are usually available and these methods then do not exploit all the avail-
able information. In first-order minimisation methods, the gradient of the
energy indicates the direction to a minimum, its magnitude measures the
steepness of the local slope. These methods are frequently used in molecular
modelling. Prominent examples are the steepest descent method and vari-
ants of the conjugate gradient (CG) method. For a nice overview we refer to
(Shewchuk, 1994). Most recent MD integration-based methods that also fall
into this category are described below. Second order methods additionally
use the second derivatives and thus the information of the local curvature
to locate a minimum. Current state-of-the-art methods like the limited-
memory version of the Broyden-Fletcher-Goldfarb-Shanno scheme (I-BFGS)
(Nocedal and Wright, 2006) explicitly use only first order derivatives but
accumulate information to obtain some approximate representation for the
Hessian matrix to determine line search directions. Second order methods
are by far not as robust as first order methods and can therefore only be
used in molecular modelling if no structural changes occur.

MD-based methods, FIRE. Within the realm of molecular simulations,
some methods have been proposed that serve the purpose of energy min-
imisation, that start out with MD and proceed in removing kinetic energy
from the system, termed ’quenching’. This strategy has been successfully
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applied in local minimisation as well as in global minimisation. In (Bitzek
et al., 2006) a simple, yet powerful MD scheme for structural relaxation was
proposed which belongs to this family of minimisers. Different from exist-
ing schemes this new algorithm crucially relies on inertia, it has therefore
been named the Fast Intertial Relaxation Engine (FIRE). In the original
paper the method’s functional principle was explained by means of a blind
skier searching for the fastest way to the bottom of a valley in an un-
known mountain range described by the potential energy landscape E(x)
with @ = (21, 22). Assuming that the skier is able to retard and steer, the
recommended strategy for the skier is to follow an equation of motion given
by:

o(t) = 1/m F(t) —v()lo(t)|[8(t) — F(t)], (16)

with the mass m, the velocity v = @, the force F = —VE(x), and hat
denoting unit vector. The recommended strategy is that the skier introduces
acceleration in a direction that is ’steeper’ than the current direction of
motion via the function v(t), if the power P(t) = F(t) - v(¢) is positive,
and in order to avoid uphill motion he simply stops as soon as the power
becomes negative. 7(t) must be chosen appropriately but should not be too
large, because the current velocities carry information about the reasonable
‘average’ descent direction and energy scale. A discretised version of this
equation in combination with an adaptive time step results in a minimisation
scheme for multidimensional functions E(x1;...x)) which is competitive
in speed with the fastest optimisers currently available (Bitzek et al., 2006),
but has also other important features as we shall demonstrate.

The numerical treatment of the algorithm is simple. Any MD integrator
can be used as the basis for propagation of the trajectories due to the
conservative forces. The MD trajectories are continuously readjusted by
two kinds of velocity modifications: (a) the above-mentioned immediate
stop upon uphill motion and (b) a simple mixing of the global velocity and
force vectors v — (1 — a)v 4+ aF|v| resulting from an Euler-discretisation
of the last term in Equation (16) with time step At and o = agiay¢- Both,
At and «, are chosen adaptively on the fly.

The propagation rules for the FIRE algorithm can be summarised as
follows (given: initial values for At, o = agtapt and the global vectors x
and v = 0):

1. MD integrator: calculate &, F' = —VE(x) and v using any common
MD integrator; check for convergence.

2. calculate P = F - v.
3. set v — (1 — @)v + alv|F.
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4. if P > 0 and the number of steps since P was negative is larger than

Nipin increase the time step At — min(At fj,., Atmax) and decrease
a— afg.

5. if P <0, decrease time step At — Atfq,., freeze the system v — 0,
and set « back to agiqart-

6. Return to MD.

In relaxation an accurate calculation of the atomic trajectories is not
necessary, and the adaptive time step allows FIRE to increase At until either
the largest stable time step Atmax is reached, or an energy minimum along
the current direction of motion (P < 0) is encountered. In the latter case
the system is instantly frozen (v — 0) and the time step is substantially
reduced in order to have a smooth restart. A short 'latency’ time of Ny i,
MD steps before accelerating the dynamics is important for the stability of
the algorithm.

In (Bitzek et al., 2006) it is shown in several benchmark sets that FIRE is
very competitive with sophisticated algorithms like the I-BFGS scheme and
easily beats even advanced versions of the CG method (e.g. Polak-Ribiere).
The key advantage of the FIRE algorithm, however, is its extreme robust-
ness. It finds the (local) minima even for extreme structural rearrangements
like molecular folding and rotation or for atomic reconstructions in the core
of crystalline defects and therefore lends itself ideally as a general purpose
minimiser.

3.4 Boundary and initial conditions

Initial conditions. The integration of Newton’s equations of motion re-
quires an integrator and initial conditions (IC), namely 3V (¢ = 0) and
&*M (t = 0), the initial particle positions and velocities.

Generating 3V (t = 0) for crystalline solids is easily done by a structure
generator setting up a perfect crystal or an interface between two crystalline
phases. Generating suitable velocity distributions or structures for a liquid
or an amorphous solid is significantly more difficult. It can, however, often
be circumvented by running the system from an artificial set-up for an ex-
tended equilibration time. One can for example melt a crystal and obtain
the IC for an amorphous configuration then by quenching from the liquid.

Boundary conditions. Boundary conditions can be classified into two
major types: periodic boundary conditions (PBC) and isolated (or free)
boundary conditions (IBC). IBC, in which surface atoms exhibit dangling
bonds due to a lack of neighbours, are chosen for the analysis of surfaces,
clusters and molecules. In addition, there can be extra forces or displace-
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ments acting on the boundary atoms, resulting in so-called mechanical
boundary conditions.

PBC are intended to mimic bulk solids or liquids, or the cores of very large
systems, which are much larger than the simulated number of particles. The
particles are contained within a primary simulation volume. This volume is
sometimes referred to as the simulation box, unit cell or supercell.

When a particle leaves one side of this volume, it re-enters from the op-
posite side keeping the number of atoms in the central box constant. Atoms
sitting in the vicinity of one side of the box, through periodic repetition of
the box, are connected to the atoms on the other side of the box. The
simulations therefore proceed as if the primary volume was surrounded in
all directions by identical copies of itself to form a quasi-infinite volume.
PBC for the two-dimensional case are illustrated in Figure 1. If PBC are
used, the case that the cutoff radius is less than half the diameter of the
periodic box is of special interest since in that case only the interaction of a
given atom with the nearest periodic image of any other atom needs to be
considered (minimum image convention). This case is displayed in Figure
1, where the dotted box comprises all nearest images of any other atom.

Figure 1. Periodic boundary conditions: the basic simulation volume
(drawn in black) is repeated in all dimensions. Here, particles in neighbour
volumes are drawn in gray. Interactions of one atom with its neighbours
are indicated with arrows.

The cubic cell is the simplest geometry of an unit cell to visualise and
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to program. Of course, any other shape can be chosen provided it fills all
of space by translation operations. Five shapes satisfy this condition: the
cube (and its close relation, the parallelepiped), the hexagonal prism, the
truncated octahedron, the rhombic dodecahedron and the elongated dodec-
ahedron, see e.g. (Leach, 2001).

Using PBC, surface effects can be eliminated from the simulation, but some
inherent limitations dictate rules in applying them, see (Pdschel and Schwa-
ger, 2005).

(i) Since each particle or defect has an infinite number of images, there
is always an infinite number of interactions with each other particle
or defect.

(ii) If the chosen primary volume is too small, there appear correlations
between opposite edges of the primary volume. If the spatial struc-
tures are of the same characteristic size as the system itself, a particle
may interact directly or indirectly with itself across the primary vol-
ume. It is therefore not possible to achieve fluctuations that have a
wavelength greater than the length of the cell.

The first item causes problems when long-range forces, such as elec-
trostatic interactions or elastic defect-defect interactions are involved. So-
phisticated techniques have been developed, such as Ewald-summation to
simulate systems of charged or gravitating particles. For long-range electro-
static interactions it is frequently accepted that some long-range order will
be imposed upon the system. Hence, the range of the interactions between
particles in the system must generally be taken into account while planning
a simulation. No problems will arise if the periodic box is large compared
with the range over which the atomic interaction (e.g. of an EAM potential)
acts. A box size greater than three times the cut-off radius of the potential
is always sufficient. Specific measures have to be taken in the calculation of
the forces if shorter box lengths shall be realized.

The second complication listed above is more substantial, since it is
inherent to the system and cannot be solved by improved algorithms. Con-
sequently, the basic volume size has to be chosen large enough to avoid
undesired artificial correlations. Size scaling studies have to be performed
to assess such effects. In favourable cases, the long range interactions of
periodic arrays of defects are known and can be subtracted from the total
energy of the unit cell.

Boundary conditions that mix IBC and PBC can be required in case that
the simulated structure exhibits periodicity in some directions, but not in
the others. Typical examples are one-dimensional structures like very long
slabs or wires and systems where loads are applied in certain directions.
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Mechanical loading through boundary conditions. For the study of
the mechanical behaviour of solids like e.g. in fracture processes, a proper
definition of boundary conditions and their adequate application are nec-
essary. A simple approach to apply displacement boundary conditions is
realized via a domain decomposition, in that a domain is added at the
boundary with prescribed stress or displacements. In these domains, atoms
are not subject to the dynamics of Newton’s equation of motion in an MD
simulation; instead, they follow prescribed displacements of the boundaries,
see e.g. (Buehler, 2008). Figure 2 schematically displays this approach
for the simulation of fracture. A crystalline slab is strained by means of
rigid, sufficiently thick boundary layers which are subject to prescribed dis-
placements, whereas the atoms in the interior follow Newton’s equations of
motion.

YA

| | | | | v

Figure 2. Application of displacement boundary conditions: Atoms in
boundary domains (gray-shaded) follow prescribed boundary conditions and
are not subject to the equations of motion.

The application of pressure — or generally stress — instead of displace-
ment boundary conditions can be realized by utilizing appropriate ensem-
ble schemes such as the Parinello-Rahman scheme (Parinello and Rahman,
1980).

Since time steps in typical MD simulations are of the order of fem-
toseconds to keep track of thermal vibrations, the velocity of applied dis-
placement boundary conditions during dynamic straining is necessarily very
high. To apply increased mechanical loading, a linear velocity gradient can
be established prior to simulation to avoid shock wave generation from the
boundaries, see Figure 2, right. However, studying processes at low load-
ing rates is difficult. Sometimes, stress boundary conditions may allow to
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simulate somewhat slower loading.

For well controlled loading situations, however, one has to resort to the
application of constant displacement boundary conditions and study the
system as it evolves in a given field. In the example of Figure 2, the appli-
cation of a constant displacement u provides a constant (energetic) driving
force for the propagation of the crack. With such boundary conditions one
can reach the desired case of studying crack propagation at constant energy
release rate G.

Since a propagating crack is expected to generate heat, a local temperature
control (Finnis et al., 1991), resembling an electronic heat bath for the ions,
is applied there. At the outer border of the model the coupling (damping)
parameter is gradually increased to prevent reflections from the borders.
The model is then first equilibrated at an applied strain corresponding to
the Griffith load Gy = 2. During the equilibration time the crack re-
mains stationary. Thereafter the model is instantaneously strained further
to a defined overload AG by scaling all displacements. For small overloads
AG = 0.03—0.10 Gy a short acceleration phase can be detected immediately
after loading. This suggests that the crack has finite but very small inertia.
After this acceleration phase the crack runs at constant velocity.

3.5 Stable Defects under Load

For the investigation of discrete defects like an individual crack or an
individual dislocation one wants to supply the defect with the natural stress
and strain fields it also would experience in a realistically large system. This
is of course not possible with the rigid straight boundary conditions sketched
in Figure 2. Instead a finite size model must be supplied in the border
region with the forces or displacements determined from the continuum
mechanical stress and strain fields of the defect. For the case of a sharp
crack, the model is loaded by first applying the anisotropic linear elastic
continuum solution (Sih and Liebowitz, 1968) for a fixed value of the stress
intensity factor K to all atoms in the model. As a starting value for K
the stress intensity factor Kg (Griffith load) is used. Then all atoms are
relaxed to their equilibrium positions by a relaxation algorithm, except for
the outermost atoms, which are held fixed at their initial positions. This
configuration is then used for further incremental loading or unloading of the
model, which is achieved by scaling all displacements and relaxing the whole
model at each incremental step. Changes in the atomic configurations at the
crack tip are determined by visual inspection of the relaxed configurations.
The load at which one or more bonds are broken upon loading is taken as
the upper critical stress intensity KI. (See (Kohlhoff et al., 1991; Gumbsch,
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1995) for details about the loading procedure, size scaling tests and the
comparison to other methods.) Often periodic boundary conditions are
applied along the crack front.

3.6 Visualisation and Analysis of Defects

A key issue in large-scale atomistic simulations is the automatic identi-
fication and visualisation of defects and microstructures.

For that purpose algorithms have been developed to identify, highlight
and classify typical defect types, see e.g. (Li, 2007). Hence, pictures or
movies based on these indicators realize the interface between experiments
in the virtual laboratory and the scientist. They enable a transformation of
vast data sets to structured information. Since visualisation criteria allow
the judicious selection of regions of interest, they also serve a similar purpose
as concurrent multiscale methods, namely to compress or reduce large data
sets. In the following some of these visualisation criteria are put forward.

Energy method. One way to extract crystal defects from their undis-
turbed neighbourhood is the energy method. In this method, atoms with
an energy value larger than a defined threshold — or within a specified in-
terval — are targeted for display, which exploits the fact that defects exhibit
high-energy. The energy method has been successfully applied to visu-
alise microcracks, dislocations, nanovoids and the like. For nanoindentation
into (001) fcc aluminium the energy method selects dislocation loops slip-
ping on (111) planes as visualised in Figure 3. Moreover it can be seen
that the energy method accounts for the energy difference between free sur-
faces and bulk material. In order to avoid free surfaces preventing analysis,
a subregion of interest is chosen for visualisation. A shortcoming of the
energy-method is that it cannot be applied at elevated temperatures. Fur-
thermore, crystalline defects like stacking faults are hard to see using the
energy method. In these cases it is favorable to use defect-indicators which
take into account the structure of the crystal lattice and its symmetries.

Centrosymmetry parameter. The centrosymmetry parameter (CP) as
introduced by (Kelchner et al., 1998) is defined for an fcc atom according
to

6
P=>"|ri+r_if, (17)
1=1

where vectors r; and r_; correspond to the six pairs of next neighbours
lying at opposite sites with respect to the considered atom in the lattice. By
definition, the CP is zero for an atom in the bulk of a perfect material subject
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Figure 3. Simulation of nanoindentation into (001) fcc Al at zero tem-
perature: the internal energy criterion extracts the free surface and the
dislocation loops.

to purely homogeneous elastic deformations. The deviation of P from zero
therefore measures the strength of disturbed centrosymmetry at a lattice
site. Opposed to the Energy Method, the CP enables identification and
classification of defects like free surfaces, partial dislocations and stacking
faults by a certain number.

Since the CP — opposed to the Energy-Method — is related to the crystal’s
structure, it is invariant to thermal fluctuations and hence also applicable
at finite temperatures.

Slip vector analysis. The slip vector analysis (SVA) was proposed by
(Zimmerman et al., 2001) in the context of MD simulation of nanoindenta-
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Figure 4. Simulation of nanoindentation into (001) fcc Al: the centrosym-
metry parameter extracts the free surface and the dislocation loops.

tion; the slip vector of atom « is defined as

5% = 7115 nz {ro - R} (18)

BF#a

where ng is the number of slipped neighbours, n,, is the number of nearest
neighbours, r*# and R’ are the vector differences between atom a and
atom [ in the current and the reference configuration, respectively.

The particular advantage of the SVA over CP is, that Burgers vectors
are directly accessible and thus, SVA realizes the bridge to crystallography.
Furthermore, the slip vector approach can be applied to very different types
of defects in crystalline solids, whereas CP measures only disturbed centro-
symmetry.
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Figure 5. Simulation of nanoindentation into (001) fcc Al: The slip vector
analysis, Lo norm of s, extracts the dislocation loops.

Other criteria to identify and visualise defects in crystalline solids are
the common neighbour analysis (Honeycutt and Andersen, 1987) and the
Bond Angle Analysis (Ackland and Jones, 2006). The bond angle analysis
is particularly useful to determine the local coordination, distinguishing fcc,
hep, bee, and other relatively close-packed structures.

4 Concurrent Multiscale Methods

4.1 Introduction and Classification of Multiscale Methods

Despite the considerable achievements by means of molecular simula-
tions, which have been sped up by the ever more increasing computer power,
the range of applicability of atomistic models and methods is still rather lim-
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ited in that they have not yet reached the typical time and length scales of
engineering applications. The reason is that quite disparate time and length
scales have to be considered; for MD the maximum time step is dictated
by the frequency of thermal vibrations, hence in the order of femtoseconds,
whereas a process like e.g. crack propagation may occur in the order of sec-
onds. The spatial problem is not less demanding, since the length scale at
the bottom is in the range of atomic spacings, hence of nanometres, whereas
the world of engineering problems lives in the range of some centimetres -
and beyond. For that reason many efforts have been undertaken to overcome
the time scale and length scale dilemma by coarse-graining approaches. The
accurate, at best seamless information passing from a bottom scale to a cor-
responding coarse-grained scale —and eventually backwards— is one of the
key challenges in computational materials science.

In the following we will consider only the coupling of length scales and not
time scales, and doing this, we will moreover restrict to the atomistic-to-
continuum scale-coupling at zero temperature. Multiscale methods can be
generally separated into two main categories, hierarchical/sequential and
concurrent.

e Hierarchical or sequential multiscale methods. In this concept, ma-
terial information on the atomic scale is generated and passed to a
larger length scale. A simple example of this concept is the atomistic
calculation of material parameters like elastic constants, thermal ex-
pansion coefficients, hardening moduli which are then used as input
in continuum constitutive equations. The embedded atom method
(EAM) itself can be seen as an example of a hierarchical multiscale
method, since the parameters of EAM are determined in ab-initio
calculations. Another instance is the identification of parameters in
traction-separation laws of atomic debonding, which are employed in
cohesive zone finite elements.

This concept of information-passing from a small-scale model to a
larger scale model is relatively simple and cheap. Since the material’s
small-scale response is parametrised for a fixed set of tests to feed
the larger-scale model, the larger-scale model cannot account for the
full complexity of the material’s behaviour in situations far from the
test bed, where the model parameters were calibrated. In order to
overcome these limitations a second branch of multiscale methods has
emerged.

o Concurrent multiscale methods. Opposed to the aforementioned class
of methods, concurrent multiscale methods explicitly couple models
on different length scales. Corresponding computational frameworks
allow the running of simulations on disparate length scales in parallel,
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i.e. concurrently. For that aim the simulation domain is decomposed
into different regions, where fully atomistic resolution is retained in
critical regions, where deformation strongly varies and where inelastic
deformations occur. In regions with weakly varying, purely elastic de-
formations, continuum constitutive laws are typically employed along
with a coarse-graining as realized by the finite element method. The
overall goal is to achieve a result as accurate as necessary and as ef-
fective as possible.

Concurrent multiscale methods are typically used for problem sets
where inelastic deformations localise in regions of confined size. These
regions typically are embedded into other regions, which deform elas-
tically and which form the largest portion of the entire simulation
domain. Since crack propagation is a prominent example in this class,
research in the mechanics of fracture has driven the development of
concurrent multiscale models and methods, and vice versa.

A number of review articles for concurrent multiscale methods coupling
different length scales is available, see e.g. (Ortiz and Phillips, 1999; Miller
and Tadmor, 2002; Curtin and Miller, 2003; Miller and Tadmor, 2009), and
with a special focus on fracture processes, (Abraham et al., 2000).

In the following we describe two prominent concurrent multiscale meth-
ods, the Finite Element Atomistic Method (FEAt) and the Quasicontinuum
(QC) Method.

4.2 The Finite Element Atomistic (FEAt) Method

The Finite Element Atomistic (FEAt) Method as introduced in (Kohlhoff,
1990; Kohlhoff et al., 1991) is based on the decomposition of a crystal into
generally three different domains as visualised in Figure 6:

A : a lattice region with fully atomistic resolution, where interatomic
potentials are employed.

C : a continuum region, discretized by finite elements, where a local,
but nonlinear continuum constitutive law of anisotropic elasticity is
employed.

T : a transition region in between A and C, where the coupling between
the local continuum and the nonlocal lattice is mediated. In this region
the framework of Kroner’s nonlocal elasticity theory is used. It is a
continuum theory, which takes the finite range of internal forces into
account and therefore can be seen as a continuation of the lattice,
(Kromer, 1963).
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Figure 6. Scale transition scheme in FEAt.

Coupling conditions. The coupling between the atomistic and contin-
uum regions in FEAt is in the first place based on the (i) strong kinematical
compatibility and on (ii) stress/force compatibility.

Kinematical coupling. The kinematical compatibility in the transition
T region is realized as follows; the transition region where the lattice and the
continuum overlap is divided into two zones, IT and III, Figure 6. Each zone
provides the displacement boundary conditions for the other zone. Zone II,
which reduces to a surface in a three-dimensional model, supplies the bound-
ary conditions for the continuum, region IV. The FE nodes on this surface
coincide with the atoms of the lattice and move with them. Conversely, in
zone III the atoms, which constitute the outer shell of the lattice, are made
to move in accord with the FE nodes with which they coincide. A one-to-
one correspondence of nodes and atoms throughout the transition region is
obtained in this way. This is why this coupling is generally termed strong
compatibility in the classification of domain decompositions in multiscale
models.

The width of zone IIT must be at least equal to the cut-off length of
the potentials used to describe the atomistic core region. Note that the
transition zone I1I must be 2R+ thick when the underlying atomistic model
is of the EAM type, and thus atomic forces (derivatives of energy) depend
on the electron-density at an atom and at an atom’s neighbour R.,; away,
the latter of which depends on a neighbour’s neighbour, up to another R,
away.
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Force coupling. 'The design of the model ensures equality of the dis-
placement fields in the lattice and the continuum throughout the transition
region, and thus equality of strains at the interface. However, since the
use of forces has been explicitly avoided in this coupling scheme, any direct
interaction between the stress fields of the two media is prevented. This
means that force equilibrium or equality of stress between the lattice and
the continuum is not established a priori. Additional conditions are neces-
sary. In FEAt, the coupling condition is on the force level, whereas other
concurrent multiscale methods perform the coupling on the energy level. To
define these coupling conditions in a consistent fashion, the elastic energy
E=FE (¢) is expanded into a Taylor series about the state of zero strain
under the assumption of zero stress,

+1 0’FE
0 2 a&ijaakl

oE

+ + PE
Eij€
561']' ijCkl

E()=FE
(5) (O) 0 6 agijagklagmn 0

EijEKIEMnT- -+ -

(19)

For the equality of stresses, the strains and all coefficients in this series
must be equal in the atomistic region and in the continuum. Since the
strains have been made equal by means of the strong compatibility of dis-
placements, equality of the stresses amounts to the requirement, that the
elastic constants of the continuum equal those defined by the interatomic
potential in the atomistic region:

oE 0’FE PFE

Ci; = v Cijn = Cijkimn = (20)

881']' 0 a&ijaakl 0 ’ aaijaaklaamn 0 '
Since the reference state of the series in Equation (19) is a homogeneous
deformation, ¢ = 0, it is indeed permissible to assign to the continuum
the second- and higher order elastic constants as defined by Equation (20)
and which are derived from the interatomic potential. The first-order elas-
tic constants in the continuum are zero by definition, which imposes the
restriction on the potential that it must provide zero stress in a perfect lat-
tice. Within the framework of local and linear elasticity theory, equilibrium
between the lattice and the FE continuum is fulfilled, if terms up to the
second order are matched. FEAt accounts for elastic nonlinearity in that,
additionally, elastic constants of third order, are adapted as well.

Two approximations in this coupling scheme are made. First, that the
series in Equation (19) has to be cut off at some stage. Second, that there
is a transition at the discrete interface from interatomic and hence finite-
range forces to continuum Cauchy-type stresses. The latter approximation
introduces a discontinuity in the nonlocal part of the stress tensor whenever
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the strain gradient at the interface does not vanish. As a consequence, the
magnitudes of the strain and of the strain gradient at the atomic-continuum
influences the quality of the approximation in the model and the applica-
bility to various situations.

Since in the transition region, IT and III, finite element mesh nodes and
lattice sites as well as their degrees of freedom coincide by virtue of strong
compatibility, dispensable degrees of freedom are elimininated by conden-
sation before the solution process. In (Kohlhoff, 1990) it was observed, that
the global finite element stiffness matrix is not symmetric, which indicates
that the forces are not conservative and hence that the governing equations
are not derived from a variational principle. This is due to the fact, that
the FEAt model does not start out from a well-defined total energy for the
entire coupled problem but rather effects the coupling between the atomistic
and continuum domains on the force/stress level as described above.

The fundamental difference between force coupling and energy coupling,
its implications and consequences, are analyzed in Section 4.4 where we
compare two variants of the QC method.

Application to fracture simulation. The method was used in (Kohlhoff
et al., 1991) to analyse crack propagation on cleavage and non-cleavage
planes in bcc crystals, using potentials for iron and tungsten as examples.
The results explain why both, the {100} and {110} planes, are cleavage
planes in bee metals and why cleavage on {100} is easier than on the close-
packed {110} planes.

4.3 The Quasicontinuum-Method Based on the Cauchy-Born Rule

The quasicontinuum method is a prominent example of a bottom-up,
concurrent multiscale method aiming at a seamless link of atomistic with
continuum length scales. This aim is achieved by three main building blocks
which are common to each of the existing QC-versions, the QC based on
Cauchy-Born elasticity, (Tadmor et al., 1996), (Shenoy et al., 1999), and
two variants of a fully nonlocal QC method, (Knap and Ortiz, 2001), (Eidel
and Stukowski, 2009):

(i) acoarse-graining of fully atomistic resolution via kinematic constraints
in order to reduce the number of degrees of freedom. Full atomistic
resolution is retained where necessary.

(ii) an approximation of the energy/forces in coarse-grained regions via
numerical quadrature which avoids the explicit computation of the
site energy of all the atoms.

(iii) adaptivity, i.e. spatially adaptive resolution, is necessary to automati-
cally balance accuracy and efficiency. It must be directed by a suitable
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refinement indicator.

Figure 7. Finite-element discretisation of a crystal in the QC-method in
the (left) undeformed configuration and (right) in the deformed configu-
ration. Atoms within elements smoothly follow the mesh nodes by linear
interpolation.

To set the stage, we consider a crystal in d-dimensional space consisting
of a set . C Z¢ of atoms, that are initially located on a Bravais lattice
spanned by lattice vectors Aq,..., Ay. Their coordinates in the initial con-
figuration read X; = Zle IWA;, 1 €. cZ% The corresponding atomic
coordinates in the current configuration are denoted by vector ;.

Upscaling via coarse-graining. In regions of weakly varying elastic
deformation it is sufficient to consider the movement of some judiciously
selected, representative atoms (rep-atoms), £, C £. Ouly these atoms
keep their independent degrees of freedom, whereas all other atoms, .%}, =
L\L, are forced to follow via kinematic constraints borrowed from the fi-
nite element method: @ =, o, ®;p;(Xy), I € Z). FE shape functions,
i, , exhibit the properties, Zje_% v;(X;) =1V 1ie L (partition of
unity), and, ¢;(X;") = 6;;+ V 4,4 € £, (compact support). The use of
(here: linear) shape functions for interpolation requires the generation of a
triangulation with representative atoms as mesh nodes. Figure 7 schemati-
cally displays the discretisation of the crystal into finite elements.

The interpolation of nodal displacements implicitly introduces a contin-
uum assumption into the QC method. Notwithstanding, this first approx-
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imation is purely kinematical in nature, since no constitutive assumptions
are made.

The approximation step of discretisation or coarse-graining reduces the
number of arguments in the exact total potential, E**({x;| i € £}) —
E**({xz; | i€ 4,}) = E*%" and thus reduces the number of unknowns
in the computation. Both existing QC methods have this approximation
step in common, but differ in the way further approximations are made.

Next, we focus on the QC version based on Cauchy-Born elasticity, in
Section 4.4 the fully nonlocal QC versions are described and compared.

Efficient energy/force calculation: the local QC. After thinning-
out dispensable degrees of freedom via the kinematic constraints in terms
of linear finite-element shape functions, the first QC-version as proposed by
(Tadmor et al., 1996) accomplishes an efficient energy/force calculation in
the continuum region by recourse to the so-called Cauchy-Born (CB) Rule
-hence QC-CBR- resulting in what is referred to as the local formulation of
the QC.

The CBR postulates that when a monatomic crystal is subjected to a
small linear displacement of its boundary, then all atoms will follow this
displacement, see (Born and Huang, 1998), (Ericksen, 1983), (Zanzotto,
1996). The CBR is schematically illustrated in Figure 8 for a crystalline
cantilever undergoing elastic bending deformation.

(X, t)

S N

Figure 8. The Cauchy-Born-rule assuming a homogeneous deformation
state in small representative volumes.

The CBR is applied in the QC method in that the continuum defor-
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mation gradient as a macro-scale quantity is directly mapped to a uniform
deformation of a small volume on the atomistic or nano-scale. For crystalline
solids with a simple lattice structure the assumption of locally homogeneous
deformation state implies that every atom in a region subject to a uniform
deformation gradient will be energetically equivalent. As a consequence,
calculating the energy within a specific finite element can be approximated
by computing the energy of only one single atom in the deformed state and
multiplying this figure by the number of atoms in the specific finite element.
Within the QC-computational framework, the calculation of the CB energy
is done separately in a subroutine; for a given deformation gradient F' the
lattice vectors in a unit cell with PBC is deformed according to F

a; = FAZ‘, (21)

where A; and a; are the lattice vectors in the undeformed configuration
and in the deformed configuration, respectively.

The deformed lattice vectors enter the employed potential for energy
calculation, such that the CBR enables the free energy of a deformed crys-
talline body (as a function of lattice vectors) to be expressed alternatively as
a function of the deformation gradient F'. The corresponding strain energy
density in the element is then given by

Eo(F)

&= 0 (22)
where € is the unit cell volume (in the reference configuration) and Ej is
the energy of the unit cell when its lattice vectors are distorted according
to F'. Now the total energy of a finite element is this energy density times
the element volume, the total energy of the problem is simply the sum of
all element energies:

Netement

Bt = N QE(Fy), (23)
i=1

where €2; is the volume of element 1.

Linear interpolation functions in tetrahedral finite elements require only
one single Gauss-point for numerical quadrature and therefore imply a con-
stant deformation gradient per element as visualised in the right of Figure
7. Note, that the locally constant deformation gradient in the finite element
matches the assumption of a locally constant deformation gradient in the
CBR. As a consequence, the application of the CBR implies that in the en-
ergy calculation the summation over the number of lattice sites boils down
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to the number of finite elements Nejement, see Equation (23). Since the crys-
tal is in general subject to inhomogeneous deformations, the element-wise
constant deformation gradient is an approximation and so is the calculated
energy via the CBR. In settings where the deformation is varying slowly
and the element size is adequate with respect to the variations of the de-
formation, this type of energy calculation is sufficiently accurate and very
effective.

For a mathematical analysis on the range of validity of the CBR we
refer to (Friesecke and Theil, 2002), where it is found that the CBR fails
for relatively small elastic deformations. An extension of the classical linear
CBR to high order is proposed in (Sunyk and Steinmann, 2003).

Nonlocal QC. In nonlocal regions, which can be eventually refined to
fully atomistic resolution, the energy E,, of an atom residing on a mesh node
« is calculated by numerical quadrature. Specifically the new approximate
energy takes the form

Nyep
B =N " ngEo(un), (24)
a=1

where u, represents the finite element nodal displacements. The computa-
tional saving is that the summation of all the atoms is replaced by a sum
over all representative atoms Ny,. In the line of numerical quadrature, n,
is the weight function for repatom « which requires for consistency

Nrep

Zna:N. (25)

Hence, n,, is the number of atoms represented by atom «, which implies in
the limiting case of fully atomistic resolution n, = 1.

Mixed local-nonlocal QC. In order to combine the high accuracy of the
nonlocal formulation with the efficiency of the local formulation, the former
is employed in critical regions, where atomic scale accuracy is required,
where the latter formulation is employed in regions where the deformation
is changing relatively slowly on the atomic scale. As a result, the QC-CBR
runs both formulations concurrently in a single simulation.

As in the energy-based nonlocal QC, the coupled approach is based on
the ansatz that the energy can be approximated by computing only the
energy of the repatoms. In the coupled approach however, each repatom
is judiciously selected as being either local or nonlocal depending on its
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deformation environment. Thus, the repatoms are divided into N, local
repatoms and Nyonioe nonlocal repatoms (Nioe + Nponioe = Nyep). Doing
this, the total energy is approximated as

Nnontoc Nioc
B = N naEa(un) + Y naBa(un). (26)
a=1 a=1

The weights n,, for each repatom (local or nonlocal) are determined from
a tessellation that divides the body into cells around each repatom. The
numerically expensive Voronoi tessellation can be replaced by an approxi-
mate Voronoi diagram. The Voronoi cell of repatom « contains a total of
ne atoms. Of these atoms, n!, reside in element i adjacent to repatom .
The total weighted energy contribution of repatom « is then calculated by
use of the CBR within each element adjacent to a, hence

M M
NaEq = ZHLQOS(FQ, Ne = Zn’a ) (27)
i=1 i=1

where £ is the energy density in element i by the CB rule, Qg is the Wigner-
Seitz volume of a single atom and M is the number of elements adjacent to
a.

The scale transition from fully atomistic resolution to a coarse-grained
description is visualised in Figure 9.

The ghost-force problem. QC-CBR inherently exhibits so-called ghost
forces, defined as spurious forces arising at the interface between local and
nonlocal regions. These forces thus follow from the fact that the motion of
rep-atoms in the local region subject to the CBR will effect the energy of
nonlocal rep-atoms, while the converse may not be true. Hence, this force
mismatch stems from different physical assumptions on how atoms interact,
which is a compatibility-problem.

There are two different concepts to reduce ghost forces in QC-CBR:

1. Correction by applying a static correction force field.
This remedy against ghost forces proposed in (Shenoy et al., 1999)
exhibits the drawback that static correction forces are not derivable
from a ’correction potential energy’, i.e., they are nonconservative.
This may lead to serious problems with energy conservation during
a molecular-dynamics simulation as reported in (Shimokawa et al.,
2004).

2. Correction by continuation.
In order to cure the ghost force problem without new shortcomings
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Figure 9. The scale transition scheme in the QC-CBR, where the nonlocal
region (A) overlaps in the interface zone (I) with the continuum region (C),
which is discretised with finite elements and subject to the CBR.

(Shimokawa et al., 2004) introduced a buffer layer between the two
regions of space, where atoms are subject to specific rules concern-
ing how they interact with their local and nonlocal neighbourhood.
In a similar spirit is the contribution of (E. et al., 2006), where the
approach of local reconstruction schemes is generalised.

Application to fracture. In (Miller et al., 1998a) and (Miller et al.,
1998b) the QC-CBR method has been applied to crack tip deformation
and is shown to account for both brittle fracture and crack tip dislocation
emission. The analysis of a crack propagating into a grain boundary revealed
both, migration of the boundary and that the boundary is a source for the
emission of dislocations.

4.4 The Fully Nonlocal Cluster-Based Quasicontinuum-Method

A fully nonlocal QC-version (QC-FNL) as proposed by (Knap and Ortiz,
2001) aims to overcome the aforementioned force mismatch between local
and nonlocal regions in QC-CBR. For that aim they replace the CBR by a
unified nonlocal theory to be described in the following and thus avoid in-
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Figure 10. The scale transition scheme in fully nonlocal QC-versions based
on force/energy sampling in clusters: the atomistic-continuum coupling is
realized in a continuous manner by gradual coarse-graining enabling a seam-
less scale-transition.

compatibilities of different physical descriptions at discrete interfaces. This
then enables the seamless scale transition between fully atomistic resolution
and coarse-grained continuum regions. The scale transition in QC-FNL is
realized in a continuous manner by gradual coarse-graining, see Figure 10,
whereas in QC-CBR it is realized at the discrete interface where different
physical models meet, see Figure 9. In the above structure of QC building
blocks, (i)-(iii), fully nonlocal QC versions introduce for property (ii) the
use of summation rules for the sampling of forces or energies in spherical
clusters, which can be seen as representative crystallites.

Force versus energy sampling in clusters. FEven after coarse-graining,
the total energy still depends on the site energy Ej of each and every atom
k, Bttt = 3" & Ek. Due to the prohibitive computational expense of
this task, a second approximation becomes necessary, which is again, like
discretisation, a very standard in classical finite element methods: numerical
quadrature.

For that purpose Knap and Ortiz (2001) proposed to perform force eval-
uations no longer at each lattice site in the crystal but to restrict them to
sampling clusters. These sampling clusters %; are spheres of radius R, and
are chosen to have a mesh node in its centre, see Figures 10 and 11. Hence,
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they are defined as 6; = {k : | X — X;| < R.(i)}. Note, that the sam-
pling clusters may have different positions, e.g. in the interior of the finite
element.

Assuming a pair potential V' = V(rg) with rg = @ — 2 and omitting
here and in the following the contribution of an external potential V¢, the
force acting on node a reads for force sampling in clusters

=2 mi ) frpaXi) == ) mi )

1€EL) keE; €L, ke€;

>V |7'kz| ] Pa(Xk)-
le? |
(28)
The equilibrium configurations of interest are the minimisers of Et°%",
i.e. the solutions of the variational problem:

Etth . fh"—0 Vae. (29)

min

{za}
Energy minimisation physically corresponds to solving for the configuration
for which at every mesh node a the sum of forces on each degree of freedom
is zero. Based on this fact, Knap and Ortiz (2001) search for the equilibrium
by directly working from an approximate expression for the forces according
to Equation (28) rather than working from the explicit differentiation of a
total energy functional.

In Eidel and Stukowski (2009) however, the sampling is introduced at the
energy level, thus

©=>"ni ) Exw~E"", (30)

€%, keC;

which yields for energy sampling in clusters to the force expression

TS TS DI ol [ I ONE SEPE I
€L, kET; le.z’
(31)
which is the counterpart of Equation (28).
It is worth to note that for energy sampling — as opposed to force sam-
pling — the force expression fZ in Equation (31) is explicitly derived from
a well defined total potential EQC, see Equation (30).

Calculation of the weighting factors. In both cases, i.e. for force and
energy sampling, factor n; is the weighting of the force /energy contribution



38 B. Eidel, A. Hartmaier and P. Gumbsch

of cluster %;. The cluster weights n;, ¢ € %}, are calculated under the
requirement that the summation over all linear interpolation functions must
be exact, see Knap and Ortiz (2001), hence

domi > ei(XK) =Y 9i(Xe) YV jEL. (32)

1€L keC; keZ

The calculation of the weights implies the assumption that the quantity
subject to sampling can be exactly approximated if it is linear between the
mesh nodes.

When the clusters shrink to the size of the rep-atoms, i.e. €; = {i} Vi €
%, it holds that ¢q (X k) = dak, and the cluster summation rule boils down
to a node-based summation rule f = Y ke, "efrpa(Xk) = nafq. In
this case the weighting factor ny is the number of atoms represented by rep-
atom k, thus ng = >, o 0k (X)) V k € &, which implies ng = 1 for fully
atomistic resolution, i.e. I € %, and which ensures that >, o, nx = [-Z]
is fulfilled.
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Figure 11. Spherical clusters around mesh nodes for the explicit sampling
of forces or energies. The interaction of sampling atom k inside the cluster
with non-sampling atom [ outside the cluster must be symmetric to fulfill
Newton’s third law.

Is Newton’s third law of motion preserved? A critical issue in con-
current multiscale modelling is the coupling of atomistics with a continuum,
which is largely due to the general locality of continuum constitutive laws
and the nonlocality of interatomic forces.
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In the following we check both sampling schemes to ensure the symme-
try of atomic interactions. For that aim we consider the atomic interaction
of a sampling atom k (within the spherical cluster adjacent to mesh node
a) with a non-sampling atom ! as illustrated in Figure 11. Tt is instru-
mental to explicitly separate all four force terms (I)-(IV) (see below) for
this type of interaction and adhering therein to the lattice statics terms for
pair potentials. First, we consider force terms captured by energy sampling.
The nonlocal action of energy Ej.; induces a force on atom k within the
cluster, expression (I), and on atom [ outside the cluster, expression (II).
These two forces are equal up to the opposite sign, Newton’s third law
holds, actio=reactio. The interaction of atom k with atom [ is schemat-
ically illustrated in Figure 11. Both forces are distributed according to
their barycentric coordinates from k and I to adjacent nodes a, b and c;
for atom a the distribution is mediated by factor [pq (X ) — vq (X1)] in
Equation (31). Moreover, since energy sampling is conceptually restricted
to clusters, forces at site k and site [ due to the energy contribution Ej. g,
expressions (IIT) and (IV), are missing in Equation (31); this explains the
factor 1/2 therein. It is the function of properly defined weighting factors
n; to account for the energy contribution of non-sampling atoms.

(I) Force on atom k due to energy Eg.:

- 0Eky 1, Tk
= — [ V
fk aﬁﬂk ) (|rkl|)|rkl|
(IT) Force on atom ! due to energy Fg. ;:
- 0FEky 1, Tkl
= — = V
.fl 8:131 +2 (|Tkl|)|7'kl|

(ITI) Force on atom k due to energy Ej.g:

}.k _ _3EL<_k -

1 Tkl
=—_V'(Ir
8mk 2 (| kl|) |7'kl|

(IV) Force on atom I due to energy Ej.g:

= 8El&k 1 ’ Tkl
= — e V
fl aﬁl}l +2 (|rkl|)|rkl|

The application of the force-based ansatz, Equation (28), gives full ac-
count of forces acting on cluster atom k, summing up expressions (I) and
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(IIT). Contrary to the present ansatz however, Equation (28) does not con-
sider the opposite force acting on atom I, since I is not a sampling atom.
Briefly, energy-sampling preserves symmetry in atomic interactions whereas
force-sampling does not.

It can be equally shown, (Eidel and Stukowski, 2009), that this lack of
symmetry in the interaction of sampling atoms with non-sampling atoms
implies an asymmetry of the corresponding stiffness matrix, thus indicating
nonconservative forces. By contrast, energy sampling leads to strictly sym-
metric stiffness matrices indicating conservative forces.

The stiffness matrix for energy sampling reads

0?EQC
(9.’13,1(9:13()

S Y Y [ealXu) - palX0)] en(X0) - (X0

1€EYL, ket; leZ

{V’(|rkl|)1 N (v"(|m|) B v’(lml)> - ®m} (33)

h _
kab -

|7kt | 75 (MK

and for force sampling:

ofn of
Kay = Comy Z " Z _31‘:

Do Y valXk) Y [os(Xk) — en(X0)] -

€% ket e
[V/(|7°kl|)1 N V”(|’I"kl|) B V’(|’I’kl|) - ®7"kl] . (34)
|7kt =1 el

Summarising, the fully nonlocal QC formulation based on energy sam-
pling, QC-eFNL, exhibits advantages compared to force sampling: sampling
at the energy level instead of the force level preserves the variational struc-
ture of lattice statics leading to conservative forces, as indicated by symmet-
ric stiffness matrices. More specifically, energy sampling implies the strict
symmetry of atomic interactions in all regions, even across the boundary of
clusters, whereas force sampling does not in general. Energy sampling also
exhibits some numerical advantages. Standard algorithms for the numerical
minimisation of functionals like CG methods can directly be applied, since
they generally require gradients as well as evaluations of the functional (the
energy) itself. Moreover, a minimiser can be found, if the energy exhibits a
minimum.
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For residual forces observed in QC-eFNL simulations, the following prop-
erties have been shown in (Eidel and Stukowski, 2009). Residual forces are
conservative in nature; they do not follow from an asymmetry in atomic
interactions as a consequence of inconsistent a priori assumptions on how
atoms interact; they stem from the error in numerical quadrature and there-
fore can be reduced (to identically zero) by a sufficiently large cluster size.
As such, the present residual forces differ from ghost forces in QC-CBR by
source and property, which is the reason why we distinguish by name.

In (Eidel and Stukowski, 2009) QC-eFNL is employed to simulate nanoin-
dentation into (001) aluminium. The simulations have shown the promising
capacity of the method to reduce the prohibitive computational expense
of fully atomistic resolution (lattice statics) while faithfully simulating the
material’s response in significant details like the force-depth curve and the
load level and locus of dislocation nucleation.

4.5 Other Concurrent Multiscale Methods

There are a variety of concurrent multiscale methods based on a domain
decomposition method like FEAt and QC. Here we restrict to name some
of them along with key references for the interested reader.
e the Coupling of Length Scale (CLS) Method, (Rudd and Broughton,
1998), (Rudd and Broughton, 2000), (Rudd and Broughton, 2005).

e the Atomistic-to-Continuum Coupling (AtC) method, (Fish et al.,
2007).

e the Bridging Scale (BSM) method, (Wagner and Liu, 2003).

e the Coupled Atomistic and Discrete Dislocation (CADD) method,
(Shilkrot et al., 2002), (Shilkrot et al., 2004).

4.6 ’Learn-On-The-Fly’ - LOTF

FEAt and the variants of the QC method deal with the transition from
continuum (or coarsed grained) regions of the solid to its fully atomistic res-
olution, where e.g. EAM potentials are used to describe interatomic forces.
As mentioned previously, the parameters in EAM potentials are generally
fitted to the results of ab-initio calculations in different settings and are kept
fixed for a ’lifetime’. In this sense, EAM potentials themselves can be seen
as a hierarchical multiscale method. The method of 'learning on the fly’
(LOTF), (Csanyi et al., 2004), is a generalisation of this kind of hierarchical
multiscale method in that the parameters of the potential are recalculated
and hereby adjusted ’on the fly’ for judiciously selected atoms. Doing this,
the approach of LOTF ensures a maximum of accuracy and transferablity
to the broad variety of simulation settings which cannot be considered in
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total in a priori calculations that are performed for a conventional fitting of
empirical potential.

According to the general classification, LOTFE can also be seen as a
concurrent multiscale method. However, since LOTF is adhering to a unified
classical force model for the entire system it avoids the ’inherent boundary
problem’ between different physical models along with inconsistencies which
plague many of the concurrent multiscale methods. It is worth mentioning
that LOTF has turned out to be quite insensitive to the chosen potentials.
It selects simple parametrised potentials and 'augments’ it at run time with
the necessary extra information, which is computed on the fly by means of
quantum calculations.

According to this concept, the flow chart structure of LOTF can be
described as follows:

1. Initialisation: start out for the physical system in its initial condition

with a reasonably parametrised classical potential.

2. MD predictor, extrapolation: asin standard molecular dynamics (MD),
the chosen potential is used with fixed parameters to predict a system
trajectory for a small number of time steps.

3. Testing: in the latest configuration, the local validity of the classical
potential is assessed on a site by site basis, and a selected subset of
atoms is flagged for quantum treatment.

4. Quantum Mechanics: use any quantum method (DFT or TB) which
provides the desired accuracy to compute the forces on only the se-
lected subset of atoms.

5. Force Fitting: the parameters of the classical potential are tuned lo-
cally around the selected atoms until it reproduces the accurate force.

6. MD corrector: interpolation: return the state of the system to that
before the extrapolation and rerun the dynamics, interpolating the
potential parameters between the old and the new values.

7. Return to 2.

The successful application of LOTF critically depends on the proper

choice of criteria that will correctly identify regions for quantum treatment.

Recent application examples of the LOTF method include studies of
dynamic crack propagation (Kermode et al., 2008) which will be discussed
in some more details later. A review of recent progress in the methodology
of hybrid quantum/classical (QM/MM) atomistic simulations for solid-state
systems can be found in (Bernstein et al., 2009). In this reference a unified
terminology is defined into which the various and disparate schemes fit,
based on whether the information from the QM and MM calculations is
combined at the level of energies or forces. Moreover, the pertinent issues
for achieving ’seamless’ coupling and the advantages and disadvantages of
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the proposed schemes are discussed. Finally, the applications and scientific
results obtained to date are summarised.

5 Atomistic Aspects of Fracture

Fracture is a phenomenon which spans over many length scales. The macro-
scopic dimensions of the crack and the specimen determine the intensity of
the stress concentration at the crack tip and are equally important as the
microstructure of the material, which provides preferred fracture paths. Ul-
timately, fracture reduces to the breaking of atomic bonds, which in the
case of brittle fracture occurs at an atomically sharp crack tip (Lawn, 1993;
Clarke, 1992). In a perfectly brittle material, the crack moves by no other
process than the breaking of individual bonds between atoms. Nevertheless,
traditional theory of brittle fracture processes does not focus on individual
atomic bonds but resorts to the treatment of Griffith (Griffith, 1921), which
is based on continuum thermodynamics. Following Griffith, one may regard
the static crack as a reversible thermodynamic system for which one seeks
equilibrium. The equilibrium condition leads to the so-called Griffith cri-
terion, which balances the crack driving force and the material resistance
against fracture. The crack driving force can be expressed as the stress
intensity factor K while the material resistance against fracture for the per-
fectly brittle case must be at least the surface energy of the two fracture
surfaces. With the implication of thermodynamic equilibrium, the Griffith
picture provides a reference value K¢ for the analysis of the crack driving
forces. It however cannot explain why and how fracture proceeds.

From an atomistic point of view, one immediately identifies the mate-
rial’s resistance against fracture with the forces needed to break the crack tip
bonds successively. The first atomistic studies of fracture (Thomson et al.,
1971) showed that the discrete bond breaking event manifests itself in a
finite stability range, which was attributed to the discreteness of the lattice
and called the ”lattice-trapping” effect. Lattice trapping causes the crack
to remain stable and not to advance/heal until loads K or K, somewhat
larger/smaller than the Griffith load are reached. Other influences of the
atomic nature of a crack have recently been summarised in a series of arti-
cles in the MRS Bulletin (Selinger and Farkas, 2000). Consequences of the
lattice trapping have been reviewed (Gumbsch and Cannon, 2000; Gumb-
sch, 2001) and only two particularly important and enlightening aspects of
the lattice trapping, crack propagation anisotropy and the production of
metastable fracture surfaces, are discussed below.
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5.1 Lattice Trapping and the Directional Cleavage Anisotropy

Silicon is reported to have two principal cleavage planes: {111} planes,
usually the easy cleavage planes, and {110} planes (Michot, 1988; George
and Michot, 1993), the planes of easy cleavage in polar III-V semiconductors.
The most accurate constant-K experiments (Michot, 1988) seem to show
that {110} planes have a slightly lower fracture toughness than {111} planes.
For both cleavage planes, the measured fracture toughness gives surface en-
ergies (y110 = 2.3J/m?2, 111 = 2.7J/m?) which are significantly larger than
the values calculated atomistically using density functional theory (DFT)
based quantum mechanical methods (y119 = 1.7J/m?, v11; = 1.4J/m?)
(Pérez and Gumbsch, 2000a).

Propagation direction anisotropy has been observed for both cleavage
planes. The preferred propagation direction is along <110> on both cleav-
age planes (Michot, 1988; George and Michot, 1993). On the {111} fracture
surface, the anisotropy with respect to propagation direction is minimal. In
contrast, cleavage on the {110} plane is extremely anisotropic. Propagation
along the <110> direction results in nearly perfectly flat fracture surfaces
(Michot, 1988; George and Michot, 1993). Attempts to achieve propaga-
tion in the <001> direction, perpendicular to the preferred direction, have
not been successful because the crack deflects onto {111} planes (George
and Michot, 1993; Cramer et al., 2000). The relation of the calculated sur-
face energies and elastic anisotropy cannot account for this deviation of the
crack (Pérez and Gumbsch, 2000b) and an atomistic investigation therefore
is attractive.

DFT calculations of the crack tip stability, the anisotropy in fracture
behaviour with respect to the propagation direction on the {110} plane was
explained as a consequence of a difference in lattice trapping for the different
propagation directions (Pérez and Gumbsch, 2000b). A {110} crack prop-
agating in the ”easy” <110> direction (see Figure 12 (left) ) continuously
opens successive bonds at the tip of the crack. This continuous process leads
to a relatively small trapping, and it can be argued that the trapping may
further decrease as the size of the model (specimen) is increased. In con-
trast, a crack driven in the ”difficult” <001> direction on the {110} plane,
displayed in Figure 12 (right), shows a clearly discontinuous bond break-
ing. Figure 13 shows the bond distances of the crack tip bonds (labeled
"B” in Figure 12) for both systems. Further analysis of this discontinuous
bond breaking process shows that it is mainly a result of the relaxation of
the six or eight atoms around the crack tip and connected with a signifi-
cant load sharing between the crack tip bond and the one above (Pérez and
Gumbsch, 2000a). Comparing both the loading and unloading processes,
it is seen that the discontinuous bond breaking is also connected with a
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larger lattice trapping range (Pérez and Gumbsch, 2000b). This difference
in the trapping effectively destabilises the {110} crack propagation in the
<001> direction against deflection onto an inclined {111} cleavage plane.
Thereby lattice trapping appears to provide the only reasonable explana-
tion for the experimentally observed cleavage anisotropy with respect to the
propagation direction for the {110} cracks in silicon.

Figure 12. Sequence of bond breaking events during fracture in silicon for
different orientations as given in the text.
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Figure 13. Bond distances of crack tip bonds ”B” in Figure 12 during
loading.

The same type of propagation anisotropy has recently been found in DFT
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calculations of the cleavage of diamond (Pastewka et al., 2008). Similarly an
anisotropy with respect to the propagation direction had also been predicted
for the cleavage of tungsten single crystals (Kohlhoff et al., 1991; Riedle
et al., 1996; Gumbsch et al., 1998)

5.2 Metastable Fracture Surfaces

A crack which experiences significant trapping can be loaded above the
Griffith load and still does not propagate. Upon increasing the load, the
crack is expected to eventually take the path that is associated with the
lowest energy barrier to propagation. With trapping this path is not neces-
sarily the one which leads to the surface of lowest energy. A very prominent
example of such behaviour is the surface reconstruction after cleavage of
silicon {111} planes. Low temperature cleavage (< 600K) produces the 2x1
Pandey m-bonded chain reconstruction (Pandey, 1981), while high temper-
ature annealing gives the so called 7x7 reconstruction. This latter structure
is energetically more favourable but not directly accessible through the frac-
ture process.

Atomistically simulating the fracture of the intermetallic alloy B2-NiAl
(Ludwig and Gumbsch, 1998), using an embedded atom potential specifi-
cally developed for B2-NiAl (Ludwig and Gumbsch, 1995), it was observed
that a {100} crack driven in a <001> direction did not cleanly separate the
adjoining (200) Ni and Al layers. Tt instead took a zig-zag path which split
the Al (200) plane directly in front of the crack tip and deposited every sec-
ond row of atoms on the upper and the lower fracture surfaces, respectively
(see Figure 14). This result would not be so remarkable if the surface en-
ergy of the half-occupied Al (100) surface (1.86 J/m?) were not higher than
the average for the Ni and Al terminated surfaces (1.76 J/m?) (Ludwig and
Gumbsch, 1998). The crack had obviously been overloaded to the extent
that it could release enough elastic energy so as to create the high-energy
half-occupied surfaces. It did so because the energy barrier for this process
(0.18 J/m?) is lower than the trapping barrier for the ideal surfaces.

In this example of NiAl, the crack is creating two identical half-occupied
fracture surfaces instead of the asymmetric arrangement of the two sur-
faces being fully occupied by Ni and Al, respectively. Similar half-occupied
surfaces would also be expected in equilibrium for an ionic material where
the asymmetric fully occupied surfaces would be oppositely charged (Tasker,
1986). With this analogy in mind, one may search for even more pronounced
trapping effects in ionic materials where the crack faces the problem of sort-
ing out the charges.
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Figure 14. Rough fracture surface of B2-NiAl created during dynamic
fracture.

6 Dynamics of Brittle Crack Propagation

The fracture of materials can be a dynamic process, particularly in the
final stage of supercritical propagation. Although this final stage of frac-
ture might at first seem almost irrelevant, closer consideration shows that
it is precisely the dynamics of the brittle crack which competes with the
rate-dependent plasticity in the near tip region to determine whether a
propagating crack can ever be stopped. The dynamic crack propagation
has therefore recently attracted significant attention.

The first set of atomistic investigations of dynamically moving cracks
were directed towards understanding the steady state propagation, crack
speed and the onset of dynamic instabilities. Analytical atomistic studies
(Marder and Gross, 1995) on simplified one- and two-dimensional structures
show that the dynamically propagating crack can only access a limited ve-
locity regime. After initiation, crack tip speed immediately reaches about
20% of the Rayleigh wave velocity and approaches a branching instability
at about half the Rayleigh wave velocity (Marder and Gross, 1995). The in-
stability manifests itself in the breaking of bonds at the flanks of the crack
before the breaking of the next bond in the propagation direction and is
interpreted as a branching instability.

MD simulations (Gumbsch et al., 1997) of the propagation of a mode I
crack with a straight crack front and a short periodic length along the crack
front (quasi-two-dimensional geometry) essentially confirm the analytical
results. They confirm a lower band of forbidden velocities for the straight
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crack and also reveal an upper critical velocity. The upper critical velocity
for the mode I crack is shown to strongly depend on the non-linearity of
the atomic interaction. For harmonic snapping spring force laws (Gumbsch
et al., 1997) and for open crystal structures with strong directional bonds
(Hauch et al., 1999; Swadener et al., 2002) the velocities can be almost as
high as the Rayleigh wave velocity, the relativistic upper limit. Only 40%
of the Rayleigh wave velocity is reached for closed packed crystals and more
realistic non-linear atomic interactions (Gumbsch et al., 1997). Up to 50%
of the shear wave speed is reached in the more complex quasicrystalline
structures (Mikulla et al., 1998).

Increasing temperature reduces this band of forbidden velocities and
successively allows cracks to also propagate at lower speeds (Holland and
Marder, 1999; Rudhart et al., 2003). In amorphous or quasicrystalline struc-
tures, increasing the temperature may also lead to a change in crack prop-
agation mechanism from the propagation of a distinct crack tip to crack
propagation by successive opening of pores or daughter cracks in front of
the main crack and their backward propagation (Falk and Langer, 1998,
2000; Rudhart et al., 2003). This of course drastically reduces the crack
propagation speed.

Above the critical velocity, the MD simulations reveal a rich set of dif-
ferent types of instabilities depending on the crystallographic orientation of
the crack and on the crystal structure (Gumbsch et al., 1997; Hauch et al.,
1999; Mikulla et al., 1998). The generation of cleavage steps and dislocation
emission are usually observed at lower overloads, while crack bifurcation was
only observed at the highest overloads. Dislocation emission usually leads
to a pronounced change in crack propagation direction.

Surprisingly, a different dynamic instability was found in silicon on the
(111) cleavage plane not at high speeds but rather at low speeds. In (Ker-
mode et al., 2008) LOTF was applied to investigate this low-speed crack
propagation instability using quantum-mechanical hybrid, multi-scale mod-
elling and single-crystal fracture experiments. The simulations predict a
crack-tip reconstruction that makes low-speed crack propagation unstable
to deflect towards just one of the two crack faces on the (111) cleavage plane,
which is conventionally thought of as the most stable cleavage plane. An
asymmetrical crack tip reconstruction was found to be responsible for this
reconstruction. A small energy barrier needs to be overcome to assess this
crack tip reconstruction. Corresponding experiments confirm this instabil-
ity prediction at a range of low speeds, using an experimental technique
designed for the investigation of fracture under low tensile loads.

Further simulations (Kermode et al., 2008) also explain why, at moder-
ately high speeds crack propagation on the (110) cleavage plane becomes
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unstable and deflects onto (111) planes, as previously observed experimen-
tally.
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Figure 15. Propagation of the (111)[110] crack in silicon, using the LOTF
scheme and the SIESTA code as quantum engine. Brittle fracture propaga-
tion on a (111) cleavage plane is correctly predicted.

Large scale MD simulations have recently confirmed continuum mechan-
ical analysis (Gao et al., 1999) on the fact that mode II cracks just like
edge dislocations (Gumbsch and Gao, 1999) are not bound by the shear
wave speed as an upper limit (Gao et al., 2001). They show a transition
to intersonic propagation via the nucleation of a daughter crack out of a
subsonic mother crack. Large-scale MD simulations on dynamic fracture
under mode I conditions have revealed that the properties of atomic bonds
in the vicinity of the crack tip determine the maximum crack propagation
speed (Buehler et al., 2003). By taking into account that atomic bonds
under high strains, as they occur around crack tips, show non-linear elastic
behaviour, it was found that the the maximum velocity may deviate sig-
nificantly from that calculated by the global linear elastic properties of the
material. At large strains, metallic bonds typically weaken and thus show a
reduced stiffness before they break. In polymers, in contrast, the material
typically becomes stiffer at large tensile strain, because the long-chained
molecules are stretched. In (Buehler et al., 2003) it could be shown that
the local elastic properties in a certain critical volume around the crack tip
governs the dynamic fracture, rather than the global material properties.
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Hence, if the material stiffens under tensile load, the crack may become
supersonical compared to the global speed of sound in the material, while
it is locally still subsonical.

7 Summary

The flexibility of MD methods makes them a versatile tool for studying a
wide range of materials phenomena, and in particular fracture in dynamic
situations. Because the size of the samples under consideration is consid-
erably larger than in ab initio simulations, MD simulations can be used
to compare the instability of a crack tip against propagation with its in-
stability against shear. Since the latter process leads to the generation of
dislocations, the fracture behaviour is no longer pure cleavage, but is accom-
panied by some plasticity. In this article the fundamentals of classical MD
methods have been introduced, to demonstrate the possibilities and also the
limitations of atomistic method. Furthermore, scale bridging methods have
also been included which will in the future allow the community to study
fracture in larger volumes and possibly on larger time scales than classical
MD allows for.

Some applications of MD methods to studying and understanding frac-
ture processes have been briefly mentioned to demonstrate the power of this
method. In particular, MD simulations contributed to the understanding
of brittle crack advance as a process of continuous bond breaking, which is
necessarily described incompletely by any continuum method. Due to the
limitations of MD methods to short time scales, dynamic fracture is a fertile
field for investigations, but also the conditions for dislocation nucleation at
crack tips and the interaction of propagating cracks with dislocations or
pores can be studied at the atomic scale, (Zhou et al., 1996; Bitzek, 2006;
Bitzek and Gumbsch, 2007).

This article thus provides an introduction to atomistic simulation meth-
ods and their application to fracture processes. Literature for in depth
reading is also provided.
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Fundamental dislocation theory and 3D
dislocation mechanics

Volker Mohles *
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Germany

Abstract In chapter 1 an introduction to basic dislocation proper-
ties in an elastic continuum is given. Displacements, strains, stresses
and energies of straight edge and screw dislocations are compiled as
well as forces on dislocations, implications of dislocation motion and
aspects of dislocations in real crystals. Chapter 2 details the models
of dislocation self interaction for curved dislocations including the
line tension model and linear elastic self interaction. The former is
essential for basic understanding, whereas the latter is the basis of
accurate dislocation dynamics simulations of plasticity. In chapter
3 these models are applied for 2-dimensional dislocation glide which
allow to calculate the strengthening effect of second phase particles
and solute atoms in a material. Finally, aspects of 3-dimensional
dislocation motion are outlined in chapter 4.

1 Basic Dislocation Theory

1.1 Heuristic Dislocation Creation

In the literature, a number of excellent introductions to the basics of
dislocation theory have been given (e.g. (Hirth and Lothe, 1992), (Hull and
Bacon, 1992), (Weertman, 1992)). They cover the historical development
of the dislocation concept (Volterra, 1907), (Peierls, 1940), experimental
discovery of dislocations in crystals (Orowan, 1934), (Polanyi, 1934), (Tay-
lor, 1934) and overviews of physical phenomena which can only show up
in the presence of dislocations. Moreover, detailed introductions to linear
elasticity theory have been given (Hirth and Lothe, 1992) because elastic
distortions and stresses determine most of the dislocation properties: about
80-90% of a dislocation’s energy is stored in the elastic strains. The present
compilation of dislocation theory addresses students and researchers who
already have a certain knowledge in dislocation theory, but who want to
refresh and extend their understanding, in particular with respect to dis-
location dynamics simulations. From the start, it is emphasized that, in
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Figure 1. Dislocation in a linear elastic medium. The dislocation (black
line) demarcates the area (light grey) in which the material has slipped by
the Burgers vector b, which is a lattice vector. The sign of b and of the line
vector s can only be defined in combination.

general, dislocations are curved and flexible.

The generation of a dislocation in a linear elastic continuum can be envis-
aged by the following hypothetical steps: First, a cut is performed through
part of a specimen along a certain plane. Then one of the surfaces which
have been newly created by the cut is shifted by a vector b, called the Burg-
ers vector. Finally the surfaces are rejoined and the specimen is allowed to
relax. An example for the outcome of this procedure is plotted in figure 1.
The light grey area is the plane in which the cut had been performed. This
area is framed by the specimen’s dimensions and by the line which the tip
of the hypothetical knife had moved along. This latter line (thick and black
in figure 1) is the new dislocation. All material that does not include a piece
of dislocation is distorted and elastically stressed, but it is still continuous.
This includes the area of the hypothetical cut.

The dislocaton itself is a displacement singularity, as can be seen from
the Burgers circuit. The construction of this circuit requires a lattice in the
material, which is naturally given by the atomic arrangement of any real
crystal. In figure 1 a simple cubic lattice has been used for simplification.
The Burgers circuit is started at any lattice point S. From S, a number
of 7, j, and k steps along the lattice vectors in z-, y-, and z-direction, re-
spectively, are drawn subsequently. From there, the same numbers of steps
are drawn in the same order along the lattice vectors in the opposite direc-
tion. This defines the final lattice point F. In a perfect lattice or even in a
distorted but continuous one, F equals S so that a closed circuit has been
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described by these six lattice vectors. But if the described sequence of six
vectors encloses a dislocation, an additional lattice vector from F to S is re-
quired to close the circuit. This defines the Burgers vector b. Disregarding
continuous lattice distortions, its magnitude and direction are independent
of the choice of the numbers i, j, and k and of the starting point S as
long the dislocation is enclosed by the circuit. However, a convention about
the sign of b is required because an inversion of the circuit’s sense would
yield —b instead of b, while the real geometry is not changed at all. The
convention must link the sign of b to the actual shift that had been used
in the above hypothetical dislocation generation. A convenient and always
applicable way is to assign a local tangent vector s to the dislocation. This
defines the line direction or ’line vector’. Then the Burgers circuit is per-
formed following the right-hand-rule, where the thumb points in the line
direction. b is defined as the vector from start (S) to finish (F). This is the
most frequently used rule (see (Hirth and Lothe, 1992)), and it is adopted
subsequently. However, there are prominent exceptions (Weertman, 1992);
therefore one must be careful about which convention is taken. In any case,
the sign of the Burgers vector b and the line vector s can only be defined
in combination. It is important for consistency that the right-hand Burgers
circuit yields the vector b indicated in the figure. This can easily be verified
on the front plane (y=const., with j=0) or on the right side (x=const., with
i=0) of the specimen. When s is inverted, b is reversed as well so that the
same geometry is described.

From the hypothetical way in which the dislocation in figure 1 had been
produced, several fundamental dislocation properties can be deduced. One
is that the Burgers vector b, being identical to the shift vector, is a lattice
vector, which is constant by definition with respect to magnitude and direc-
tion. Obviously three cases are to be distinguished: Firstly, b and the line
vector s are parallel and lie in the ’cutting plane’. This is the case for the
dislocation part that leaves the crystal on the right side of figure 1. Owing
to the geometry of the displacements visible on this free surface, this dislo-
cation part is said to have screw character. Secondly, s is normal to b but
both lie in the cutting plane. This case is found on the dislocation portion
that leaves the crystal on the front plane. This part has, by definition, edge
character. And thirdly, b is normal to the cutting plane (and to s); this case
is called a prismatic dislocation (see below).

Another feature becoming apparent from figure 1 is that a dislocation
cannot terminate inside a crystal because it represents the fringe of a plane,
the slipped area. Still it can be useful to refer to dislocation segments
or parts (short straight pieces) in order to describe local properties, like
the dislocation character. The possibility of a blurred fringe and hence a
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Figure 2. Straight screw dislocation. With s parallel to b, the glide plane
is undefined.

distributed dislocation is discussed later. When a dislocation moves, the
slipped region increases or decreases with the motion. This means that
the crystal is deformed, which enables crystal plasticity. In the following,
dislocation features are described in more detail.

1.2 Basic Dislocation Types

According to the hypothetical generation of a dislocation described in
the introduction, several basic types of dislocation can be distinguished,
depending on the angular relations between Burgers vector b, line vector s
and the ’cutting plane’. In the following, the coordinate system is equiva-
lently given either by =, = (21,0,0), x5 = (0,22,0), 3 = (0,0,z3), or by
x = (2,0,0), y = (0,y,0), z = (0,0, 2), whichever is more convenient.

Straight screw dislocation The displacement w, in the direction x
caused by a straight screw dislocation along the x-axis can be read directly
from figure 2: When the angle 6 around the dislocation line is increased by
27, a displacement of one lattice vector along the z-axis occurs. This is,
by the definition of the Burgers circuit, one Burgers vector b. When elastic
isotropy is assumed for the material and the block is extended infinitely in all
directions, the incremental displacement du, /df will be equally distributed
(i.e., constant) over the whole range 0 < 6 < 27. This yields

%(r,@)zb; _ btan_1<2) (1)

T 27 Y

Note that u, does not depend on the radius r of the circuit. In figure
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2 this has been relaxed: there the displacement has been assumed to be
distributed approximately over the range 0 < r < b = |b; this is equivalent
to a blurred fringe of the cutting plane mentioned earlier. With the general
definition of the strain tensor € or {e;;},

- 1 aui auj
T g (axj * axi) @

0ij = Cijkl €kl (3)

and with Hook’s law

which connects the stess tensor {o;;} with the strains {e;;} and the stiff-
ness tensor {Cj;u }, the stresses of the straight screw dislocation can be
derived from (1) by elementary mathematics. Note that in equation (3)
and subsequently, Finstein’s summation convention is applied: summa-
tion is to be performed over equal indices (k and [ in (3)). In case of
an elastically isotropic material the stiffness tensor {Cj;i} contains only
two independent elastic constants (see e.g. (Hirth and Lothe, 1992)), for
instance, the shear modulus p and Poisson’s ratio v. With these, the re-
sulting stresses for the screw dislocation along the z-axis can be written as
Oyz = Ogg = Oyy = 0, = 0 and

Oy = _nb oz Opr = by (4a)
xy 2ry? + 220 T 2w y2 4 22
or
b
o= — 4b
a0 27r (4b)

with all other components vanishing in cylindrical coordinates.

The stresses and strains around the dislocation mean that a certain
elastic energy is stored by the dislocation. As mentioned in the introduction,
this energy accounts for 80-90% of the total energy of a dislocation and
therefore controls many of its properties. In general, the elastic energy E
can be calculated by integrating over the volume the elastic energy density,
which is 0;;¢;;/2. For a dislocation it is more useful to calculate the energy
per unit length, E*, by integration over the area normal to it. Here and
subsequently, the asterisk is meant to indicate a length specific unit.

1

Er = 9 /O’ij Eij dy dz (5)

For the screw dislocation it is most convenient to use cylindrical coordinates
and equation (4b) for o,9. In case of elastic isotropy with e,9 = 040/, this
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yields

27 fTshield b .
E*(screw) / /rme 471'27“2 rdr df = 1 fshield (6a)

Tcore

Here the integration has been restricted to the range rcore < 7 < Tshield
because the integral diverges for 7 — 0 and for r — co. The divergence of
E*(r — 0) arises obviously because the validity of linear elasticity breaks
down when r reaches down to atomic scales, that is a few times b. Hence
with rcore = 3b, for example, the energy of the dislocation core is left out of
E*. Anyway, with an appropriate choice of r¢e, the missing core energy
with its atomistic nature can still be taken into account approximately: this
is usually done with a smaller core radius r¢ore = 1b.

In a real specimen the divergence of E*(r — o0) is prevented by the finite
size of the specimen. This shows that even if the core energy were known
accurately, it is not possible to ascribe a certain value to the total energy of
a dislocation. Usually a crystal contains a number of dislocations in each of
the opposite the signs. In that case these opposite dislocations compensate
for each other’s stresses and strains, in effect, shielding each other. There-
fore a useful shielding distance rghielq is half the distance between nearest
dislocations. Because of the logarithmic dependence of E*(rshield/Tcore) and
Tshield > Tcore, the exact choice of rgpjelg 18 not too important.

For the derivation of 0,9 (equation (4b)) it had been assumed that the
dimensions of the specimen are infinite in all directions. This condition is
obviously violated when rgphie1q 18 chosen to be finite in equation (6a), which
uses o.9. When 0,4 is derived for a screw dislocation in a rod with free
cylindrical boundaries, E* comes out to be lower than in equation (6aa) by
the term pb?/(47). Hence altogether, a good approximation for the energy
of a straight screw dislocation is

b2 shie
E*(screw) = /jl (lnr hb 4 1) (6b)
™

Straight edge dislocations The derivation of stresses and strains is
more elaborate for straight edge than for screw dislocations. The reasons are
that there is no radial symmetry around the dislocation, and that there are
normal stresses (0qz,0yy,0--) and normal strains (€44, €yy, €2-) involved.
Both can be seen in figure 3: The dislocation is the line which terminates the
half-plane inserted from the top or squeezed into the rod from the right side
during the hypothetical generation procedure outlined. Obviously, there is
a compressive stress o, above the light grey plane and a tension below it,
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Figure 3. A straight edge dislocation is equivalent to an additional or
missing half plane.

where the lattice is widened in z-direction. The derivation of all the stress
components are omitted here, but the results are compiled for later refer-
ence. For an edge dislocation in an infinite medium with the line vector s
equal to the y-axis and a Burgers vector b pointing in positive z-direction
(inverse to the case of figure 3), the stress components are o,y = 0y, = 0
and

b —z(3z% + 2?) B pb oz (2 — 22
e 21(1—-v) (a2 422)° 7 2m(1 —v) (22 + 22)?
- pb oz (2 —2?)
S 2n(1—v) (22 + 22)?

 (7)
Oyy = V (U$$ + UZZ) ) Oz

Again, elastic isotropy is assumed, and v denotes the Poisson ratio. The
strain energy of the edge dislocation is found in full analogy to E*(screw)
of equation (6a). This yields:

. opb? Tshield
E*(edge) = 41— v) (ln . 1) (8)

Dislocations with mixed character Edge and screw dislocations have
their line vectors s normal or parallel, respectively, to the Burgers vector
b. As is obvious from the hypothetical dislocation generation, a general
dislocation has neither edge nor screw, but mixed character. In case of a
curved dislocation, the character even varies locally along the dislocation
line: b is constant, but s varies (figure 1). Still, the distinction between edge
and screw character remains useful. For instance, the energy E* of a straight
dislocation with mixed character can be superimposed from equations (6ab)
and (8). This is possible because parallel screw and edge dislocations do
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not interact with each other (within linear elasticity): a screw dislocation
along the zs-direction (parallel to the edge dislocation in figure 3) has only
012 and 023 as non-vanishing stress components (and the respective strain
components €12 and £93); all other components equal zero. This can be seen
from (4b)) with x1- and xo-directions exchanged. For the edge dislocation
this is just vice versa (see above equation (8)): o12 = 023 = 0. With this
and the Peach-Koehler formula detailed in section 1.3, it can be shown that
E* of the mixed-character dislocation can be written as:

E* (1%, s°) = |b0 X so|2 E*(edge) + |b0 . 30|2E*(screw) 9)

Here and subsequently, the superscript 0 in ° and s° indicates that the
respective vectors have unit length. The fact that E* is an energy per unit
length suggests that the total energy of a curved dislocation can be found
by integrating equation (9) along its curved path. However, this is only an
approximation. The theory of curved dislocations is detailed in chapter 2.

Prismatic dislocation loops In case of the dislocations described in
the previous sections, the shift vector b lay in the cutting plane. If b is
normal to this plane, a layer of material must be inserted between the two
cutting surfaces before rejoining, as sketched in figure 4, or removed. The
dislocation bordering the cutting plane has edge character regardless of its
course in this plane. Consequently, its energy E* is essentially given by
equation (8). If the shape of the loop is assumed circular, the shield radius
Tshield 1S given by the radius of the loop: the dislocation part on the opposite
site of the loop has the opposite sign, because the line vector points in the
opposite direction there. Prismatic loops represent dislocation dipoles; as
such they hardly contribute to plasticity.

1.3 Moving Dislocations

The most important property of dislocations is that they enable plastic
deformation: the overall shape of a crystal changes permanently when dis-
locations move. For instance, a cube is transformed into the shape in figure
5 when a dislocation with the indicated Burgers vector b moves through it
in the grey surface. There are other mechanisms which enable plastic defor-
mation, like twinning, grain boundary sliding and phase transformations,
but in general, plasticity is dominated by dislocations.

Dislocation glide and climb Two basic types of dislocation motion are
to be distinguished: glide and climb. In figure 5, the effect of dislocation
glide has been sketched. Note that this shape may have resulted from the
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Figure 5. Sheared Cube after glide of dislocations in figures 1, 2 or 3.

motion of a screw dislocation, an edge dislocation or even a curved one: In
figure 2, the screw dislocation may have moved from the front to the back
plane; in figure 3, the edge dislocation may have moved from the right to
the left side. Or in figure 1, the quarter dislocation loop may have expanded
to the back left corner. For all three cases the grey area in figure 5 indicates
the glide plane. It is described by the dislocation’s line vector s and, in
principle, by the direction of its motion, which is always perpendicular to s.
It is more convenient, though, to use s and the Burgers vector b to define
the glide plane and its normal vector n°:

o bxs

= b s (10)

In the case of a screw dislocation, where s is parallel to b, the glide plane n°

is undefined: The screw dislocation can glide in any direction — but only
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in the continuum description used here. In real crystals, Burgers vectors
and glide planes are restricted to certain crystallographic directions (section
1.4). But within these restrictions, several glide directions (and hence actual
glide planes) are equivalent for screw dislocations. This means that screw
dislocations can even switch their glide plane; this effect is called cross-slip
and detailed in section 4.1.

For edge and mixed-character dislocations, though, the glide plane n? is
fixed. The motion normal to n? is called climb. It is associated with material
transport: when the edge dislocation in figure 3 moves up or downwards
(normal to the glide plane), material must be moved away from or towards
the dislocation line, respectively. This changes the total volume of the
rod; therefore, climb is called non-conservative motion, as opposed to glide,
which is conservative. The material transport can happen by diffusion.
Except at very high temperatures, diffusion is a very slow process. Hence
climb is extremely slow as compared to glide, which can proceed at sound
velocity. Therefore in most cases, plastic deformation is dominated by glide.

In case of the prismatic loop of figure 4, the glide plane is a cylinder: the
dislocation can glide up and down. To extend the loop, in contrast, reguires
material to diffuse towards the dislocation. However, prismatic dislocation
loops are usually of minor importance.

Macroscopic shape change Since the Burgers vector is usually very
small compared to the sample’s dimensions, the shape change caused by
dislocation glide can be considered as continuous since the steps on a surface
like in figure 3 are usually negligibly small. Still, the overall shape change is
of importance, for instance its elongation. To quantify the length change in
relation to dislocation glide, a rod is sketched in figure 6 before and after the
glide of a dislocation with arbitrary glide plane and Burgers vector. The
rod suffers the elongation Ah = b - cos\, where ) is the angle between b
and the z-direction, in which the length h is measured. The relative length
change, Ae = Ah/h, called strain, can be written as

B b cos
T h

Here V' = hAzAy is the volume of the rod, Ay, is the distance the dislo-
cation moves in its glide plane, and ¢ is the angle between the glide plane
vector n and the z-direction. The expression Ax/V can be interpreted as
the dislocation density in the rod, which is defined as the total dislocation
length (here: Ax) per volume. More accurately, p,, = Axz/V is the mobile
dislocation density because only dislocations that actually move contribute
to deformation. If we divide equation (11) by a time step At and read

Ae = b cosA AVx Ay = b cosA AVac Ay, coso (11)
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Figure 6. A rod before and after glide of a single general dislocation.

Ay, /At as the dislocation’s velocity v, we get the strain rate de/dt:
€ =b pm v COSA cOSP (12)

When we introduce the Schmid factor S = cosAcos¢ and the resolved strain
rate or ’shear rate’ 4 = £/5, we obtain the Orowan equation. It relates the
macroscopic amount of shear strain to the abundance and velocity of moving
dislocations (regardless of any forces that drive the dislocations)

Y=0bpmv (13)

Forces on dislocations When dislocation motion enables a shape change
of a piece of material, then the corresponding external work must be ’con-
sumed’ by the moving dislocation, for instance, for overcoming obstacles.
From this fact the forces on dislocations can be derived. In figure 7, a gen-
eral force F' = (F,, Fy, F,) is applied to shift the upper half of a cube to the
left along the vector b (figure 5). If this force is caused by a general stress
tensor ¢ acting on the top surface A, of the cube, then F' can be written as
F, = (A0.5, Asosy, As0o,,). With the shift vector b, the external work
is

AWy =0b-F, =by A0, +byA0.y + 04,0, (14)

The subscript g in AW, stands for the 'global” view of the energy. The
deformation is accomplished by an edge or screw dislocation, which takes
a more local view: when it glides a distance d while a general force F' is
acting on it (F and d have the same directions), it consumes the energy
AWy = Fd. Here the subscript 1 stands for "local’. By using AW = AW,
(no other energies are involved) and the dislocation’s length L = A,/d
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Figure 7. A force F' is used to transform a cube into the shape of figure 5.
The corresponding external work is equal to the energy that an edge (a) or
screw (b) dislocation ’consumes’ while gliding.

(figures 7(a) or 7(b)), we get

F
= bpOsp + byosy + b0 (15a)

or, if we define 7 = F'/(bL),
T =000 = b)0.y + b0, (15b)

7 is called the resolved shear stress. It is useful to keep in mind that by
the definition just introduced, the resolved shear stress multiplied by the
(constant) magnitude of the Burgers vector of a dislocation equals the force
per unit length on this dislocation: b7 = F/L. Tt should also be noted that
in the derivation of 7 we made no assumption about the line vector s, hence
7 is independent of s. However, we assumed that ¢ acts only on the top
surface A, in figure 7, which is parallel to the glide plane, and underhand we
prevented rotation. If we assume o to act on all surfaces instead, rotation
is avoided automatically and equation (15b) takes the more general form:

r=0"-0-n° (16)

Again, ng is the normalized glide plane vector. If we assume n° = (0,0, 1),
we retain equation (15b). Since the Burgers vector b lies in the glide plane its
component b, vanishes; from this it can be seen that only shear components
of a stress tensor o give rise to 7 and hence drive dislocation glide (o, and
0.y of equation (15b)). Equation (16) projects any stress tensor ¢ into the
‘glide system’, defined by the glide plane n and the Burgers vector b. Hence,
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Figure 8. A force F' is used to elongate a cube, which gives rise to a climb
force on an edge dislocation.

it is also a generalized version of Schmid’s law. The latter considers only a
single stress component like in figure 6, where the sketched elongation may
be caused by a force in z-direction on the upper and lower surfaces A,. This
means that all stress components of o vanish except for o,.. Equation (16)
can then be written as 7 = So,, where the Schmid factor, S = cosAcosg,
projects the normal stress o,, into the glide system.

But equation (16) is restricted to dislocation glide (as the ’glide system’
implies). The driving force on an edge dislocation to climb can be derived
in a similar way (figure 8): the external work AW, = F'4 - b = Ay0,,b, +
Apogyby + Ayog.b, is set equal to the energy AW) = F'd consumed by the
climbing dislocation. From this, the climb force per unit length, F//L, and
the respective climb stress 7. (¢ stands for climb) is found to be

Te = bgam + bgaw + bgam (17)

7. renders a driving force for material (interstitial atoms or vacancies) to
move towards or away from the dislocation. When all surfaces A,, 4,, and
A, are taken into account, 7 and 7., which are both scalar values, can be
combined to form the Peach-Koehler-formula (Peach and Koehler, 1950).
It describes the local force vector AF on a dislocation segment described
by the line vector of finite length As:

AF = (b-0) x As (18)

It should be emphasized that the cause for the stress o plays no role here;
it may result from an external force F' as assumed above, from other dislo-
cations as by equations (4) or (7), or from any other kind of stress source.

Forces on dislocations arise not only from elastic stresses a, but also
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Figure 9. A dislocation creating an antiphase boundary while gliding
through a long-range ordered crystal.

whenever the overall energy of a specimen is changed as a dislocation moves.
For example, when the atoms in a specimen are usually ordered in some way,
this order may be destroyed when a dislocation glides (or climbs) through
it. A simplified case is sketched in figure 9, where a dislocation creates an
antiphase boundary while gliding through a long-range ordered crystal. The
boundary means an energy increment by the amount E = A~g,u, where A
is the faulted area and ~g,1¢ is the specific fault energy. A dislocation of
length L moving by a distance x sweeps the area A = zL, therefore, senses
the force F' = —dE/dx = — L~ygaut. The force per unit length F/L equals
—Yfault, and by the definition above the corresponding shear stress is

Ty = _’Yfault/b (19)

An energy change depending on dislocation motion can also arise when the

elastic properties, the shear modulus p in particular, vary locally inside a
crystal. As can be seen from the derivation of equations (6ab) or (8), a
dislocation’s energy is stored in the elastic distortions around its core, and
it is proportional to u. For instance when a dislocation approaches a region
with low shear modulus (a constant lattice constant is assumed here), its
energy will decrease. Hence there will be a force that attracts the dislocation
towards the region with low pu.

Interaction between straight dislocations With the stress tensors of
screw and edge dislocations given by equations (4) and (7), respectively,
and applying the Peach-Koehler equation (16), we can calculate the driving
stress 7 for glide that parallel dislocations impose on each other. To derive
some qualitative insight in the interaction between dislocations we consider
two dislocations as a stress source and a receiver, lying in parallel glide
planes with normal vector n® = (0,0, 1) and with parallel line vectors s” =
(0,1,0), as sketched in figure 10. If we assume two screw dislocations first,
their Burgers vectors are b, = (0,bs,0) and b, = (0, b;,0), and their mutual
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Figure 10. A stress receiving dislocation parallel to a source dislocation.
The respective Burgers vectors b, and b, are meant to be arbitrary.

glide stress Tycrew—screw 1S

ubs

20
2 22 + 22 (20)

Tscrew—screw —
If the stress receiver is located right from the source (z > 0), it senses
a positive stress Tyerewscrew Which drives it to more positive x-values, i.e.
away from the source: parallel screw dislocations repel each other if they
have the same sign. With either b, or b, inverted, the dislocations are called
antiparallel, and they attract each other. When they meet, they annihilate
each other. For instance, the two opposing half planes of antiparallel edge
dislocations form a full plane of the crystal. For equation (20) it had been
assumed that the dislocations are bound to the glide plane n® = (0,0, 1).
Pure screw dislocations in a continuous medium are not bound to a glide
plane; for this case it may be derived that Tucrew—screw = tbs/(27d), where
d is the distance between the dislocations. However, in real crystals (sec-
tion 1.4), screw dislocation motion is still bound to certain crystallographic
planes.

If we consider two edge dislocations (as sketched in figure 10), the Burg-
ers vectors are b, = (bs,0,0) and b, = (by,0,0), and the mutual glide stress
Tedge—edge 18 Much more complicated. In particular, the sign of the interac-
tion depends on x and z:

ubs x (mQ — z2)

2n(1 —v) (22 + 22)° 1)

Tedge—edge —

If the stress receiver is close to the source’s glide plane (22 < 22) the edge
dislocations with equal sign repel each other, essentially like in the case of
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Figure 11. Interaction between edge dislocations in parallel glide planes:
(a) parallel ones tend to form low angle boundaries; (b) antiparallel ones
tend to form dipoles.

screw dislocations. But in the opposite case 22 < 2 the receiver is at-

tracted, so that these dislocations tend to group above each other along the
z-direction (figure 11(a)). Such groups form an interface between two parts
of a crystal with slightly tilted crystallographic orientation: They are low
angle tilt grain boundaries.

When edge dislocations of opposite sign are considered, Teqge—edge just
switches its sign. The effect of this can be seen in figure 11(b): the stress
receiving dislocation is attracted to the 45°-lines where z? = x2; there,
Tedge—edge = 0. This means that edge dislocations of opposite sign tend to
form dislocation dipoles, with a 45° angle between the glide plane and the
shortest vector connecting both.

Dislocation dipoles have the important property that they cannot be
driven by a homogeneous stress g: the two edge dislocations are driven in
opposite directions. This may break up the dipole, but it will not drive
it. In this sense, dipoles can be considered as immobile, in contrast to the
mobile dislocations which actually enable plasticity. Even if they move, the
bits of deformation the two edge dislocations cause cancel out each other
for the most part.

Another important feature of dipoles is that the dislocations involved can
move towards each other by a mix of glide and climb and finally annihilate.
Climb requires material transport by diffusion, and hence this annihilation
is kinetically inhibited. But since the edge dislocations attract each other,
the dipole renders a driving force which attracts or emits interstitial atoms



Fundamental Dislocation Theory and 3D Dislocation Mechanics 75

or vacancies.

Between parallel edge and screw dislocations there is no elastic interac-
tion: the combinations of b, = (0,bs,0), b, = (b;,0,0), and by = (bs,0,0),
b, = (0,b;,0), both yield Tycrew—edge = 0 and Tedge—screw = 0, respectively.
Hence without energy change, parallel screw and edge dislocations can be
moved to fully coincide. By this procedure a straight dislocation with mixed
character is generated. Conversely, this means that any mixed character dis-
location with Burgers vector b may be considered as being composed of an
edge and a screw dislocation with Burgers vector components bedge = |- Y|
and bgerew = |b x 8°|, respectively. With these, the stress tensor ¢ of a mixed
character dislocation may be written as

gmixed (p) = gserew (p Y 4 gedse (Bedge) (22)

where the components of 65" and ¢°I8° are, in principle, given by equa-
tions (4a) or (7), respectively. But before that, equation (4a) must be
transformed such that the line vector s, which had been assumed to point
in z-direction for equation (4a) (figure 2), equals that for equation (7) (fig-
ure 3). This geometry has for instance been used in (Hirth and Lothe,
1992). However, in the present description, it has been chosen to use the
same Burgers vector b for the cases in figures 1 to 3 to emphasize that b
of a given dislocation is constant, so that a dislocation’s character is exclu-
sively determined by (variations of) the line vector s since, a variation of b
is impossible for a given dislocation.

Image stresses So far it has been assumed that the dislocations reside
in a specimen with infinite dimensions. However, often boundary condi-
tions like free surfaces need to be considered. As is usual in other physical
boundary condition problems, this can be done by assuming infinite di-
mensions, but adding entities which enforce the conditions involved with a
given boundary. In case of elasticity and hence dislocations, a free bound-
ary means that all forces on the boundary surface must vanish. In the case
of figure 12, in which a free surface is assumed normal to the z-axis, this
means Oy, = Ogy = 04, = 0. For a screw dislocation, this can easily be
achieved by adding an additional dislocation of opposite sign mirrored to
the opposite side of the surface: from equation (4b) it can be seen that the
only non-vanishing stress component in cylindrical coordinates of a disloca-

tion along the y-axis, 0,9, depends only on the distance r = (932 + 22)1/2,

which is always positive. Hence, all stresses of the dislocation (with b(l),
at (1) = —L, figure 12(a)) and its image counterpart (with b2 = —p),
at £(» = +L) combined vanish in the whole plane (0,7, z). The original
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Figure 12. Material with image dislocations used to account for a free
surface; (a) exact solution for a screw dislocation; (b) approximation for an
edge dislocation.

dislocation is attracted towards the image dislocation and hence towards
the free surface as described by equation (20) with z = 0 and = = 2L, i.e.
with 7(9)_.(1) = pb/(47L).

The case of an edge dislocation parallel to a free surface is more com-
plex. For the geometry used in figure 12(b), the stress components o,
vanish for both the original and the mirrored dislocation (section 1.2), and
the componens o,, of the two compensate for each other (equation (7)).
But in case of o,., the components for the two dislocations add up because
the sign of 0., depends not only on that of b but also on that of = (equation
(7)). In figure 12(b) the non-vanishing stress components are indicated by
grey arrows. In case of straight dislocations, the interaction between the
dislocation and its image is still given by equation (21), with 2 = 0 and
x = 2L, which results to 7(2)_1) = pb/(4wL(1 — v)) (Hirth and Lothe,
1992). The stress components o,. are simply removed by a minor transla-
tional shift along the directions of the grey arrows.

The case of a free surface may be considered as an interface inside
a specimen where the shear modulus switches from p to zero, or where
the material is infinitely soft. The other extreme is an interface to an in-
finitely rigid material (@ — oo), which allows no elastic (or plastic) strains:
€xx = Exy = €z- = 0. Similar to the case discussed above, this can be
achieved by adding material with an image dislocation with the same Burg-
ers vector: b® = +b(1). In that case the dislocation experiences the same
amount of stresses 7(2)_,(1), but with inverted sign: The dislocation is re-
pelled from the rigid part.

1.4 Dislocations In Real Crystals

In real crystals, the Burgers vector b and the glide plane vector n are
bound to crystallographic directions: the Burgers circuit (section 1.1) is to
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be performed along atomic positions, leaving an interatomic vector for b.
Since the energy of dislocations scales with b?, the Burgers vector must be
short; this leaves only a few possibilities. For a dislocation to glide, a glide
plane must be 'smooth’. This is the case only when its normal vector points
in certain crystallographic directions.

Perfect dislocations In a face centred cubic (fcc) lattice the elementary
cell consists of a cube with one eighth of an atom in all eight corners and
half an atom on all six faces. The shortest interatomic distance in this lat-
tice is along the diagonals of the sides; hence in terms of lattice vectors,
the Burgers vector has the type (110) and the length ao/2'/2, where ag
is the lattice constant. The closest packed planes are normal to the space
diagonal, hence the glide planes have Miller indices of the type {111}. In
each of the four independent glide planes (111), (111), (111), and (111),
there are three possible Burgers vector directions such that b-n = 0 (for
instance [110], [101] and [011] for (111)), hence there are 12 glide systems
of this kind. One example is sketched in figure 13. An edge dislocation
in the depicted (111)-plane with the indicated Burgers vector would have
the line vector s = 671/2[121] along the dark atoms. These latter atoms
can be seen as the first ones of the missing half plane inside the volume
that has not been plotted. There are actually two rows of dark atoms along
the dashed lines; this will be detailed later on in the context of partial (i.e.
non-perfect) dislocations.

The elementary cell of a body centred cubic (bcc) lattice is a cube with
one eighth of an atom in all eight corners and one atom in its centre. The
shortest interatomic vector and hence the Burgers vector is of the type (111)
and has the length (31/ 2/ 2) ag- There are three possible types of glide planes
which are experimentally observed: {110}, {112} and {123}. Among these,
the {110}-planes sketched in figure 14 have the closest packing. There are
six non-parallel planes of this type, and each of them can contain two Burg-
ers vectors, for instance, [111] and [111] for the (110)-plane. So there are
12 glide systems of this type. Of the {112}-planes there are 12. Each can
contain only one Burgers vector, for instance [111] for the (112)-plane. This
gives another 12 glide systems. Finally there are 24 {123}-planes, which
contain one Burgers vector each. Hence there are 48 glide systems alto-
gether in body centred cubic crystals.

In principle, any plane qualifies as a glide plane as long as it contains
the Burgers vector. For instance, the (134)-plane contains the direction
[111], but glide on {134}-planes is not observed: the glide is prevented by
the Peierls stress Tpejers- This stress describes all resistance against glide
that a dislocation experiences due to the atomistic nature of its core in a
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Figure 13. Glide plane n and Burgers vector b in a face centred cubic
crystal. The dark atoms indicate the direction of an edge dislocation, for
instance the first atoms of the missing half plane.
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Figure 14. A glide plane n = (101) and Burgers vector b = [111] in a body
centred cubic crystal. The dark atoms indicate the direction [121] of an
edge dislocation, for instance the first atoms of the missing half plane.
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given plane. This resistance has a short-ranged periodic nature inherited
from the crystal structure, the glide plane and the glide direction. Brown-
ian motion of the atoms, i.e. thermal pulses on them, helps a dislocation to
overcome this resistance, as if the glide plane were smoothed out by tem-
perature. Therefore, Tpeieris 1S a function of temperature. In case of face
centred cubic crystals the glide planes are closely packed (figure 13) and
therefore 'smooth’; the Peierls stress in these crystals is negligible even at
room temperature. But in body centred cubic materials, only the {110}-
planes are rather smooth. The other glide planes {112} and {123} need
to be ’smoothed’ by temperature, so that they are active only at higher
temperatures.

Among metals the hexagonal crystal structure is also of importance.
Here the basal planes {0001} enable three glide directions of the type (1120).
Furthermore, three prism planes of the type {1010} with one glide direction
each (type (1120)) can be active as well as the pyramidal {1011 }-planes, also
with a (1120) glide direction. As long as the axes of the hexagonal crystal
have a ratio ¢/a > 1.63, the basal plane is closest packed and always active.
However, in case of an axis ratio ¢/a < 1.63, the density in the plane can
get as low as that in the other planes. Again, temperature decides which
glide systems get activated first.

Partial dislocations As outlined before, a Burgers vector b must be short
because a dislocation’s energy scales with b2. So far we have assumed that
b is a lattice vector, but this is not always required. A face centred cubic
crystal, for instance, can be seen as a periodic stack of three closely packed
atom layers, as indicated in figure 15(a). The layers A, B, and C differ
by small translational vectors for valid atom positions in the plane, as can
be seen in figure 15(b). In a perfect fcc crystal, which has the closest
possible packing density, a C' layer must follow a sequence of A and B to
form an ABCABC stack. The same packing density can be found with
an ABABAB stacking sequence, but this would mean a slight increase of
the free energy. An ABABAB stack would form a hexagonal crystal with
closest packing and an axis ratio of ¢/a = 1.63. However, the quoted fcc
materials obviously prefer the fcc crystal and, therefore, the ABCABC
sequence.

In figure 15(b), part of the atoms in layer B, which lies on top of a C
layer, have been shifted such that they reach another valid B-position. This
corresponds to the Burgers vector b of a perfect dislocation. But instead,
these atoms can also shift so that they reach an A-position. This creates a
partial dislocation (here: Shockley partial dislocation) and a stacking fault
on one side of it. The stacking fault entails an increase of the free energy,
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Figure 15. Atom layers in a face centred cubic lattice. A row of atoms is
omitted to indicate the first missing atoms of the missing half plane of an
edge dislocation.
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Figure 16. Atom layers adjacent to the glide plane of a perfect/dissociated
dislocation of (a) edge and (b) screw character.

but the total energy is lowered because the Burgers vector b, of the partial
dislocation (short: partial) is smaller than that of a perfect one. Partials
are usually found in pairs of two; this keeps the energy penalty from the
stacking fault low. Together such a pair is called a dissociated dislocation.
Shockley partial Burgers vectors are of the type (112) and have the length
b, = (10/61/2 = b/31/2. The sum of the partial Burgers vectors of a pair
equals that of the dissociated perfect dislocation: b, + b, = b. In figure
16 an example is given for the glide plane n = (111) and a screw or edge
dislocation with the Burgers vector b = (ag/2'/2) (101) dissociated into
by = (ao/6Y/?) (211) and by = (ag/6'/?) (112).

It should be noted that the Burgers circuit, which is used to define the
Burgers vector, cannot be performed for single partial dislocations unless
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the circuit is started and finished in a point in the stacking fault. The region
of stacking sequence ABAB around the stacking fault may be considered as
a small volume with hexagonal crystal structure. But besides that, partials
can be considered as normal dislocations, in particular with respect to all
properties deriving from elasticity. In section 1.3 it has been shown that a
dislocation with a faulted area on one side of it in the glide plane senses
the constant stress 7, = —7gau1t/b (equation (19)), where Ygaui is the energy
density of the faulted area. Accordingly, in case of partials with a stacking
fault energy ~er, the stress is 7y = £/bp. The sign of it is such that
it drives the partials towards each other. On the other hand, the partials
repel each other elastically reciprocal with their distance d, as can be seen
from equations (20) or (21) with z = 0. The equilibrium distance between
partials d.q can be found by equating the repulsive stress with 7y Here
we have to consider that the partial Burgers vectors are neither normal nor
parallel to each other, but they enclose an angle of 60°. As described by
equation (22), the dislocations can be decomposed in their screw and edge
components. Then the superimposed stress tensors g™*ed (x = deq, 2= 0)
for a distance deq can be subjected to the Peach-Koehler formula (16) to
calculate the glide component 7. Equating this with 7 yields for deq:

1ub? (b9 x %) - (b9 x s°)
doq = 271")1/; (b(lJ . 50) (bg . 50) + ! 1_ V2 (23)

When a material with v = 1/3 is considered with equation (23), edge dis-
locations are found to dissociate stronger than screw ones by a factor 7/3.
This strong difference is caused by the fact that the partials of a pair are
in part parallel and antiparallel when decomposed in edge and screw com-
ponents. The parallel parts repel each other, whereas the antiparallel ones
attract. Hence the edge components of the partials of a dissociated edge
dislocation repel rather strongly (factor 3/4/(1 — v), for beage/b = 3'/2/2
with o = 60° for Shockley partials) and attract rather weakly (factor 1/4,
for bscrew/b = 1/2 with o = 60°), whereas in the case of a dissociated
screw dislocation, repulsion (factor 3/4 with o = 30°) and attraction (fac-
tor 1/4/(1 —v)) are more balanced and deq is rather small. The dislocation
width is important for the probability of dislocations to cross-slip, as is de-
tailed in section 4.1. Cross-slip means that a screw dislocation leaves its
primary glide plane. Perfect screw dislocations have no fixed glide plane,
but dissociated ones have a primary glide plane which is defined by the
plane of the stacking fault regardless of the dissociation width deq.

In hexagonal crystals an equivalent stacking fault may occur in the base
plane, forming a region with an ABC ABC' stacking sequence enclosed by
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Shockley partials. However, this is only possible when the axis ratio ¢/a is
close to 1.63 because otherwise the stacking fault energy is likely to be high.
In body centred cubic crystals dislocation dissociation can even extend in
three dimensions.

2 Curved Dislocations

In section 1 on basic dislocation theory it has been emphasized from the
start that in general, dislocations are curved and flexible. While several
basic dislocation features are understood best by considering straight dislo-
cations, the flexibility should always be kept on mind. As a result of stresses,
dislocations can bend locally and thereby change their local line vector s.
The latter thereby changes the local dislocation character (edge/screw), be-
cause the Burgers vector b is constant.

The degree of flexibility, that is, the stress sensitivity of bending is quite
important for the course of events that may happen during plastic defor-
mation. The flexibility is defined by the dislocation’s self interaction: a
dislocation causes and at the same time senses elastic stresses, including
those from itself. Various models have been derived in the past to account
for this, with differing complexity and accuracy. Today even the rather
complex model for the elastic (self-) interaction of curved dislocations can
be utilized in computer programs to simulate dislocation glide in various
problems of plasticity. This self interaction model is described in section
2.2. But before that, the simple line tension model is described in detail
because it is required for understanding and proper interpretations of sim-
ulation results. The description of the line tension model given here differs
from other approaches. Unlike other descriptions it is fully consistent and
therefore believed to provide a better understanding.

2.1 Line Tension Model

In equation (9) the length specific energy E* of a straight dislocation
with mixed character had been given. The character dependence has been
expressed by the directions of the Burgers vector b and the line vector s.
Using the angle o between b and s, and R = rgpiela/e for simplification, we
can write:

b2 b2 R
E*(a) = 47r(/i ) sin®a + /jhr 005205] In ( b ) (24)
For later reference, the square bracket in equation (24) is called the pre-
logarithmic energy factor Kg(«). It contains the shear modulus p and
Poisson’s ratio v as elastic constants; elastic isotropy has been assumed in
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section 1. In general, Kg(«) is a more complex function (see e.g. (Nembach,
1996) containing more elastic constants, like Cyjx;. But for the time being,
K is considered constant.

Constant line energy With a constant energy per unit length E*, any
object and in particular a dislocation tries to contract itself in order to
reduce the free energy. The energy of a segment described by As is E*|As|.
This causes the force F' = —V (E*As), which obviously points along As and
has the magnitude F' = E*. This means that the dislocation behaves like a
string under constant tension in this model. This knowledge can be used to
evaluate the force equilibrium in the middle point of figure 17, which holds
the force caused by both adjacent dislocation arcs in their given circular
shape. The z-components of the forces from the arcs, I, = +FE*cosyp, cancel
each other; the superimposed y-component is F;, = 2E*sing. Assuming
small angles ¢ for simplicity (this is not a necessary condition) such that
sinp ~ @, and expressing ¢ by the arc length L and the curvature radius
R.(¢p=L/R.), we find F, = E*L/R.. This is the force that the arcs
cause in the middle point. But as mentioned above, the dislocation arcs
would try to contract; the same force Fj is needed for each point or arc
to keep the dislocation in its shape. Over the length L, the required stress
is known to be 7Teyy = Fy,/(bL) (stress definition in section 1.3). Since a
stress equilibrium must be fulfilled and no other stresses are involved, this
external stress must equal the stress Ty g that the dislocation produces
on itself in every point. Altogether this yields:
*
Tself—E — bERC (25)

According to equation (25) the dislocation’s self-interaction depends only
on the curvature 1/R., which is a very local property. This is only a rough
approximation, as is seen later. In addition, it must be emphasized here
that equation (25) holds only for the rather hypothetical case of a constant
line energy E*. The effects of E*(«) are described later on; before that,
we take a look at the importance of a dislocation’s flexibility or rigidity
in strengthening models. The rigidity is represented here by E*, and later
more accurately by the line tension S.

Simple Strengthening Models Strengthening models relate properties
of obstacles, which impede dislocation glide, to the critical stress required
to enforce dislocation glide to continue. The simplest but still important
strengthening model is that of Orowan (Orowan, 1934). It assumes that
dislocation glide in a plane is impeded by obstacles which, for any reasons,
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Figure 17. Force on the middle point: the z-components +FE*cosp of the
left and right dislocation arcs cancel each other, the y-components E*sing
add up. Often the cusp angle § = m — 2¢ is used instead of .

cannot be cut through by dislocations: the obstacles are impenetrable. Dis-
locations can still overcome these obstacles provided that an external stress
Text €xceeds some critical stress Torowan, as sketched in figure 18(a). Be-
tween obstacles, in a static configuration (no motion) 7Text equals Tseif— g
because no other stresses are involved. Hence according to equation (25)
Text Will cause a curvature with the radius R. = E*/ (bText)). When 7oxt
is high enough such that R, is equal or just below the free space L. — 2R
between the obstacles, the angle ¢ (see figure 17) will reach 7 /2, (or, 8 = 0).
This defines the Orowan stress
E*

TOrowan — b (Lcc . 2R) (26)
where R and L. are the obstacle radius and their centre-to-centre spacings,
respectively. At Text = TOrowan, the dislocation arcs are driven forwards by
the force (Lec — 2R)bText. This force equals 2E* and therefore is just enough
to keep the length of the two dislocation arcs that touch one obstacle. When
Text > TOrowan the dislocation length is increased, and the dislocation over-
comes the obstacles by circumventing them. Thereby parts of the dislo-
cation with opposite line vectors annihilate each other, and Orowan loops
around the particles are left behind, as indicated in figure 18(b). Equation
(26) describes the strengthening effect that the impenetrable obstacles give
to the material in terms of b, of the obstacle’s geometrical parameters L.
and R, and of E*. For the case R < L, only the obstacle spacing L. is of
importance, but no obstacle parameters. L.. may be expressed in more use-
ful terms, like a volume density of obstacles. But here only the importance
of E* is emphasized: apart from geometrical factors, the strengthening ef-
fect of the obstacles depends on the rigidity £*, which is a pure dislocation
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Figure 18. A dislocation overcoming an equidistant row of impenetrable
obstacles.

property.

Another simple but important strengthening model is that of Friedel
(Friedel, 1964), and derivations thereof. Here the obstacles are not impen-
etrable, so that they can only hold a finite maximum force Fy,.x. However,
we assume the obstacle to be point-like (R = 0) for simplification. In the
terms of figure 17, the finite force F,,x means that the range of possible
angles is reduced to sing < Finax/(2E*), or cos(3/2) < Fuyax/(2E*). This
influences the effective number of obstacles that prevent dislocation glide:
in a random field of point obstacles, an extremely rigid, i.e. straight dislo-
cation touches only very few obstacles, whereas a rather flexible dislocation
(E* — Fiax/2) will touch many. To derive the effect of this, we consider
the configurations given in figure 19, where a dislocation first lies behind a
row of three equidistant obstacles and then breaks free from the obstacle
in the middle. It then bows out until it touches another obstacle in a ran-
dom obstacle arrangement, thereby sweeping the area A. Before and after
the break-through the curvature radius R, is the same because the external
stress Text 18 constant.

Assuming a parabolic dislocation arc, for simplicity, instead of a circular
one (restricting the model to low angles ¢) before and after break-through,
the following purely geometrical relation can be derived:

2 1
A=2"(1-2/8) Lp-h=Lp-h with h= L} (27)
3 2R.
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Figure 19. Geometry for Friedel’s strengthening model. The grey area A
is swept when the dislocation breaks through the obstacle in the middle,
until the next obstacle is found.

Here so far, none of the variables A, Ly, and h are known. But it is known
that on average during dislocation glide, one new obstacle must be found by
the dislocation after it has overcome another. This means that 1/A equals
the area density of obstacles, ¢, which is fixed and can be measured, or
A= quuam, where Lgquare denotes the square lattice spacing. This is the
shortest distance between obstacles if they were arranged in a square lattice.
Next, the force equilibrium in the obstacles is applied: at the critical stress
TFriedel, the force bLpTrredel acts on one dislocation arc of the length Ly
and hence on the obstacles, so we get Fiiax = DLpTryiedel- Finally, from the
stress equilibrium between the obstacles we know that, like in the Orowan
model above, Trricdel = Tseli—p = FE*/ (bR.). With these considerations,
equation (27) can be resolved for the length Ly, called the Friedel length:
b quuare . Fmax
Ly = Jek T VE with k= o
Here k denotes a relative obstacle strength. If the obstacles are weak
(Fiax < 2E*, or k < 1), Ly is large compared to the square lattice spacing
Lgquare, which is a constant parameter given by the obstacle array. This
means that the dislocation touches only very few obstacles when they are
weak, or, as indicated above, when the dislocation is very rigid and remains
straight. This emphasizes the importance of the line tension model, because
the line energy is needed to rate the obstacle force Fiax, even in simula-
tions in which the line tension model is not used at all. However, it must
be stressed again that it had been assumed that E* is constant. If E* is a
function of the dislocation character, often (but not always) the line tension
S(«) introduced in section 2.1 is to be used instead of E*(«a). With Ly and

(28)
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k from equation (28), the strengthening effect Tryiedel Of the obstacles can
finally be written as:

Enax

29
bquuare ( )

TFriedel = \/k Tmax with Tmax —
At a given obstacle spacing Lgquare, the strengthening effect of obstacles
obviously increases with Fy.x with a power of 3/2, but only up to k& = 1.
When Fi.x > E*, only the obstacle spacing is of importance, as seen in the

Orowan model.

Line Torque So far it has been shown that a dislocation with the length
specific energy E* is under tension with the force FF = E* along its line di-
rection. The stress Tsit— g (equation (25)), and the force AFp = bTseir—pAS
normal to the segment vector As resulted from this assumption. This holds
for a constant line energy E*. But usually E* is a function of the disloca-
tion character, indicated by the angle a between Burgers- and line vector.
From E*(«), a dislocation segment of length As senses a torque AM that
attempts to rotate the segment such that its energy (E*As) is lowered:
O(E*As) oF*

M(a) = — or M*(a)=-—

Oa As Oa (30)

where M* = AM/As is a length specific torque, called line torque in anal-
ogy to the line energy. Here As is assumed to be constant because the
effect of a length change has already been covered by 7eef— g in section 2.1.
The torque tries to rotate the segment, but for the most part this is pre-
vented by the neighbouring segments since they want to rotate in the same
direction when they are close and sense the same torque. In figure 20 three
segments with the same lengths As are plotted. They sense slightly varying
torques AMCY, AM© and AM™D resulting from a varying M*. The
torques AM result in forces in the segments’ end points. Between the seg-
ments (0) and (+1), the sum of forces in y-direction is AFy; = (AM(?)/As)
— (AMGY/As) = M*© — M) With the distance between the con-
nections being the segment lengths As, the corresponding stress is

M*(O) o M*(+1) 1dM*

™= b As T T ds (31)

The second part of equation (31) is the transition to infinitesimally short.
For equation (31) no assumption has been used, so far, about the cause of
the difference between M*(©) and M*() | or for dM*/ds. The line torque
M* may have an explicit dependence on the location z, like in the case of
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AM©/As AM“Y/As

Figure 20. A dislocation cut into short segments of length As. When a line
torque M™ with a gradient acts on the dislocation, a non-vanishing force
results in the segments’ connections.

elastic interaction between a dislocation and a size mismatched particle with
a fixed location x, (Mohles, 1997). Another possibility is the dependence
of M* on «:

dM=*  oM* ~ OM* da 39)

ds  0s * Oa ds (

When the dislocation has the curvature 1/R., then going from s to s + As
along the dislocation rotates the local line vector direction s by the angle
As/R., and « changes by the same amount. In figure 20 a slight curvature
is indicated, but R, and A« are not indicated because R. > As. With
Aa = As/R., M* from equation (30), and OM™*/ds = 0 (this is not used
here) we get for 7;:

192E%(a) 1

b 9?2 R, (33)

Tself—M = +
This ist the stress that a dislocation poses upon itself only because its line
energy E*(«) is character dependent, and because this results in a torque.
Usually, 7se1t—ps has the same order of magnitude as Tgor—p. But unlike
E*(a) itself, its derivative 8% E* /0a? can be negative.

Line Tension Both the stresses 7eet— g and Teet— s arise from the line en-
ergy E*. But they consider different, independent forces: 7yeit— g is derived
from forces along the line vector s, Tsr—ps from those normal to s. The
total self interaction stress Tjine — in the line tension model — is, therefore,
superimposed of both 7r g and Tseir—as:

S(a) . . PE*(a)
Tself = with  S(a) = E*(a) + 20

bR, (34)
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Figure 21. Pre-logarithmic factors Ky and Kg as functions of the dislo-
cation character for v = 1/3, and the corresponding equilibrium shape of a
dislocation loop.

S(a) is called the line tension and is actually a force, like E*(«). The rela-
tion (34) between S and E* holds in general, including elastically anisotropic
materials. S is the true rigidity in the line tension model, not E*. Consider
for instance the pre-logarithmic factor Kg(«) of E* for an isotropic material
as given in equation (24), and its counterpart Kg(«) for the line tension S:

B ub? 9 sino
Kg = i <cos a+1—y (35a)
and
b (1 1-2
Kg = /jhr (1+Zcos2a+ 1:sin2a) (35b)

As can be seen in figure 21, Kg and hence E* are larger for edge than for
screw dislocations, but for Kg and S, the opposite holds. This means that
screw dislocations are stiffer than edge ones: when a screw dislocation is
bent, edge components are generated, which needs much energy. On the
other hand, when an edge dislocation is bent, only the lower energy screw
components are generated. Accordingly, an equilibrium dislocation loop
with a constant self-stress 7, is elongated in the direction of the Burgers
vector.

It is frequently claimed or assumed that S were the actual force along
the dislocation line, but this perception is misleading and involves incon-
sistencies, as demonstrated below. The line tension model may be seen
as inconsistent, anyway, in light of the more accurate self interaction model
(section 2.2). But since the line tension is used for interpretations of simula-
tions using the dislocation self-interaction, inconsistencies in the line tension
model may lead to misinterpretations.
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Figure 22. Forces from a dislocation on a point obstacle.

Forces on Obstacles In figure 22 all forces from a dislocation exerted on
a point obstacle are plotted for two cases: large and small cusp angles .
The forces are E* along the dislocation and M* normal to it. The opposite
forces of the line torque M™ are not plotted; they are distributed along the
dislocation line in brsi¢— s (see above). Equation (36) describes this sum of
forces in terms of p = (7 — )/2.

F, =sin ¢ (E*(l) + E*(2)> +cos ¢ (M*(l) — M*(2)> (36)

Note that M*®2) in equation (36) and in figure 22 has a negative sign; this is
because this force acts on the left side of a dislocation segment, and not on
the right as M*(1). This is consistent with equation (31). Yet in figure 22,
both force vectors M*(1) and —M*2) point in positive y-direction against
the point obstacle. This is caused by the fact that M*(«) changes its sign as
the angle a between Burgers and line vector changes from —¢ to +¢ in the
obstacle; the sign of M* is always so that M™ tries to rotate the dislocation
into screw character, which has the lowest energy E*.

The only difference between figures 22(a) and 22(b) lies in the line vector
s, such that ¢ — 0 in figure 22(a) as for weak obstacles, and ¢ — 7/2 in
22(b) as for strong obstacles. In the latter case, the force contributions
M*1) and —M*?) cancel each other (figure 22(b)). Hence the total force
F, pulling on the obstacle equals 2E*: in case of strong obstacles, like for
Orowan’s strengthening model (see above), the line energy is the appropriate
force.

In contrast, for weak obstacles M*(1) and —M*®2) add up, and they add
to the force 2E*sing. With ¢ — 0, cosp = 1, and E*(1) = E*(?) = E*,
equation (36) can be written as

AM*

F, =2E" sin ¢ — Aa Aa (37)
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Here —AM* replaces M*1) — M*?) and A« is just inserted without
damage. Then (AM*/A«) can be read as the first derivative of M*(«).
While crossing the particle, the line vector s changes by Aa = 2¢ (figure
22(a)). Now inserting this and replacing ¢ by sing (¢ — 0), and using
M* = —0F*/da (equation (30)), we get:

. . 82E*
Fy,=2sin ¢ (E + 902 ) (38)

The bracket in equation (38) is obviously identical with the line tension
S as introduced in equation (34). Hence equation (38) can be read as if
in figure 22(a), two forces S(1) and S® acted on the obstacle instead of
E*M) and E*®), and no forces M*. Hence, for weak obstacles, the line
tension S may be considered as the appropriate force acting on an obstacle.
But this perception is not consistent because for strong obstacles, E* is
the appropriate force (see above). This means that at some point in the
transition from weak to strong obstacles, a ’switch’ from S to E* would
be needed if the line torque were to be disregarded. In case of obstacles of
medium strength, around ¢ = 7/4, either force S or E* would only be an
approximation. It seems more useful to keep a fully consistent view in mind,
in which the true forces, namely the line energy E* and the line torque M™,
are considered as in equation (36). With these, even the force components
F,, which act on the obstacle in figure 22 from the sides, can be treated
correctly with an equation equivalent to (36). Such side forces F,, may be
larger than Fj, and hence be critical for overcoming an obstacle.

While the line tension model as described here is consistent and exact
for a linear object with a line energy E*, it is still only an approximation
for dislocations because they have a long-ranged self-interaction.

2.2 Dislocation Self-Interaction

Each infinitesimal piece of a dislocation somehow interacts elastically
with every other piece. This can be stated, as seen later, in spite of the
fact that a single piece of dislocation does not exist. In principle the in-
teraction goes through every point in space; however, when an elastically
homogeneous material is assumed, the latter complication is dropped. Since
elasticity is linear, the stress and strain contributions caused by all dislo-
cation pieces can be calculated separately for an arbitrary point in space
and then superimposed later. This is Green’s principle, which is usually well
known and used in electrodynamics or heat conduction. In case of elasticity,
a Green’s displacement tensor is required instead of a Green’s function.
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Green’s displacement tensor The general elastic stress equilibrium
can be written as V -a + f = 0, where o is a general stress tensor, f
is a volume force (force per unit volume) and V denotes the gradient op-
erator. With the definition of a strain ¢ in terms of a displacement wu,
ew = (Ou/0x; + Ouy/Oxy) /2, and Hooke’s law o;; = Cijrien, the stress
equilibrium can be written as a relation between between a volume force f
and the corresponding displacements u:

. +fi=0 (39)

Here Cjj; denotes the 4th grade tensor of elastic constants, and Einstein’s
summation convention over equal indices is applied. The subsequent deriva-
tion is restricted to an elastically isotropic medium. For this, the tensor of
elastic constants can be written in terms of the shear modulus p and the
Poisson ratio v: Cijr = [0i0j1 + 0105 + (2v/(1 — 2v)) 04501] pt, where ;5
is the Kronecker symbol with ¢;; = 1 if ¢ = j, and 0;; = 0 if ¢ # j. Using
this in equation (39) and considering a volume force f = (§(r), 0,0) pointing
only to the x;-direction, we can write:

)
e (V) P+ 6) = 0
)
1_M2uax2(v~u)+uvzuz = 0 (40)
H 9 2 _
1_2yax3(v u)+puVuz = 0

This is a set of coupled differential equations for the displacement u caused
by the ’force’ d(r), which acts only in xi-direction and only in the origin
7 = 0 due to the delta function 6(r). This function has the dimension m~3
instead of Nm~2 for a volume force because by definition, a Green’s function
is the reaction of a system to the inhomogeneity of the §-function. With
some help from potential theory, equation (41) can be solved analytically
(e.g. (Hirth and Lothe, 1992)). The solution is u,, with the subindex
1 indicating the direction of the force used. Repeating this for forces in
x9- and x3-directions, we find the matrix u;;, where ¢ is the index for the
displacement component and j that for the force component. This is already
Greens displacement tensor. Because of the choice of the J-function as
the inhomogeneity in equation (40), the dimension of u;; is not that of a
displacement (m) but mN~!. Therefore, we rename the w;; into the usual
name for a Greens function or tensor, Gi;.

1 9 1 0?r
Gij = 8mp <6”V " 2(1 —v) axiaxj) (41)



Fundamental Dislocation Theory and 3D Dislocation Mechanics 93

dislocation

Figure 23. A dislocation is generated by a cutting procedure along the area
A in the presence of a test force F' in the point r to derive the dislocation’s
displacements there.

As is the idea for any Green’s function, the displacement caused by a given
distribution of volume forces f(r), can then be found by integration over
the volume:

wlr) = [ Gy =) £ @V’ (42)

Dislocation stress due to Peach and Koehler To derive the stress
caused by an arbitrarily curved dislocation, the energy required to generate
this dislocation by the cutting procedure described in section 1.1 is consid-
ered in the presence of a test force F' acting in an arbitrary location r. The
cutting area A can be arbitrarily curved, as depicted in figure 23. The test
force contributes the energy

W =F - u(r) = Fhun(r) (43)

to the dislocation’s creation, where w is the displacement caused by the dis-
location. On the other hand, this energy can also be expressed by the stress
ol caused by F and the displacement in the area A during the dislocation’s
generation. In A, the displacements are obviously given by the Burgers

vector b.
W = —/A b; 05 (r' —r) dA] (44)

The sign in equation (44) is negative because F helps in the disloca-
tion creation. With Hooke’s law, o;; = Cljrier, and the strain definition
e = (Ouy/0x; + Ouy/Oxy,) /2, the stress o can be expressed by the dis-
placement u!" that F' causes. Due to the symmetry of Cijrt (Cijrr = Cijik),
o is simplified to o;; = CjjrOui/0x;. Since F acts in the point r, the dis-
placements u" are known from Green’s displacement tensor: v = F - G.
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Hence equation (44) can be rewritten as

OGm (' —

r)
A 4
O, d4; (45)

W = _Fm/ b; Cijnl
A

Now by comparing equation (45) with (43), the displacement components
Uy, caused by the dislocation in the point 7 is found. Subsequently, r is
chosen as the origin. To yield the strain tensor, u is differentiated with
respect to a general direction x:

ou O?Grm (1)
m_ (o m A 4
0z, /A bi (C”kl Oz’ 0x; ) d4; (46)

Here it has been used that 0/0x, = —0/0x’. Multiplying equation (46)
with Cjjms yields the stress tensor o;; of the dislocation, but this would be
an expression of the cutting area A, which is unhandy. Moreover, A has
no physical meaning; a line integral along the dislocation line is needed. In
the point of strain observation (the origin), which is not on the dislocation
itself, there are no volume forces. Therefore, by using the general stress
equilibrium of equation (39) with f; = 0, the bracket in equation (46) can
be rewritten such that

ou *Glm (1) Gl (1)
mo_ B m A m A 4
6;55 bz Cz_]kl A ( 6I;81’2 d j 81’36I2 d s ( 7)

This expression can be subjected to Stoke’s theorem to be converted into a
line integral along the dislocation:

6Um oG m !
O = €jsn bl Oijkl % IZ’)x’(T )dx;l (48)
S l

Here €;3, is the Einstein permutation operator with €;;, = 0 except for
€123 — €231 — €312 — 1 and €321 — €213 = €132 — —1. Equation (48) is
generally valid for anisotropic materials. However, here Green’ displacement
tensor G;; for isotropic materials of equation (41) and the isotropic constants
Cijkr = (0irdji + 0udjr + (2v/(1 — 21))6;0k ) p are inserted, and Hooke’s
law is applied to finally get the stress o of an arbitrary dislocation loop:

H Q-
Odislap = —g %C b ¥ (€imadafy + eimpday,) —

_ K ) 9 ! B 2,7 /
4n(1— 1) j{;bm Eimk oz (6%6% 0asV'or' | da), (49)
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where r’ = (2 + 28 + 2f) '/2 is the length of the vector from the origin to a
point on the dislocation curve C. Equation (49) is a useful result, as is seen
later on, and it seems as if the integrand defined the stress contribution
of a dislocation segment dz. But the integrand is not unequivocal; one
alternative is Brown’ stress formula (Brown, 1964), (Brown, 1967), (Hirth
and Lothe, 1992).

Dislocation stress due to Brown For the derivation of Brown’s stress
formula of a curved dislocation we start with equation (46), and the point
of stress observation in the origin, 7 = 0. When we insert Green’s tensor
Grm of equation (41) and remove all primes for simplicity, the result can be

written as

Oy, :/ ams (1 /1, 22/ 7) 1 das (50)
Oy A 73

where the term a,,s is just used as an abbreviation; it has been formulated

such that it depends on the dimensionless terms x;/r. The term a,,s/ r3

satisfies Euler’s identity of -3rd degree, which means that:

Ums 0 /11 0 /xa

s 01y (r3 am8> Oz (r3 ams> (51)
This can be verified with a,,s defined by the comparison of equation (50)
with the combination of equations (46) and (41). Subsequently, this par-
ticular function a,,s is not used. Instead, it is only assumed that du,,/dz;
can be expressed as in equation (50) with a function a,,s that is yet un-
known, but that satisfies Euler’s identity of equation (51). The advantage
of this procedure is that the assumption of elastic isotropy used for Gy,
in equation (41) is dropped. This allows for the consideration of elastically
anisotropic materials. Using equation (51) and Green’s theorem, equation
(50) can be rewritten as an integral along the dislocation line C:

R ( dzs _ 22 dx)m (w1 /r,aafr)ds  (52)
C

Oz r2 \ r ds r ds

The terms x1/r, xa/r, dzq1/ds, and dxs/ds can be interpreted as cos(6),
sin(#), cos(p) and sin(¢p), respectively, with the meanings of the angles ¢ and
0 given in figure 24(a). Using these angles, equation (52) can be rewritten

w My, [ 1sin(0 — )
_ ]fc s (0)ds (53)

0z r r

As mentioned above, the function a,,s(p) is still considered as unknown.
Subsequently, the known stress of a straight dislocation (section 1.2) is used
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(b)

Figure 24. Geometrical relations: (a) angles, (b) tangential segment ds.

to find aps(f). When we consider a straight dislocation, as in figure 24(b),
the distance h = r - sin(f — ¢) is constant, and 1/h can be taken out of the
integral. Further using the relation ds = r/sin (§ — ¢)) - df we can write:

O Ams(p) 1

Pt
s = h Th [0 sin (0 — ¢) ams(0)ds (54)

The defined integral A,,s(¢p) is still unknown; however, its second derivative
with respect to ¢ can be written as:

9%A s
8507;5 = 2ams(p) — /@w sin (0 — @) am,s(0)ds (55)
Here Leibniz’ formula has been used because the limits of integration depend
on . Combining equations (54) and (55) yields a simple relation between

Ams and A,,s:
1 0%A,,5
ms = Ams
omli) = 5 (Amet 700 (56)

This relation can be inserted for in equation (53), so that the strain &,,; =
O, [Oxs of a generally curved dislocation is expressed by the still unknown
expression A(f) + 02A/06? of piecewise straight segments ds. Applying
Hooke’s law leads to

sin(f — @) 0B,
Oij = %C 2 |:sz (0) + @20] ds (57)

with the tensor B;; = CijmsAms/2. Finally, considering the shear stresses
in a glide system with Burgers vector b and glide plane n by applying



Fundamental Dislocation Theory and 3D Dislocation Mechanics 97

the Peach-Koehler-formula (41) and comparing these stresses with those
of straight dislocations given in section 1.2, the tensor B;; is identified, and
the shear stress of the curved dislocation is found to be

(0 —
Taist = b o n® = 7{ sin(0 = ¢) Kgs(0)ds (58)
c r?

where Kg(6) is the pre-logarithmic factor for the line tension of a straight
dislocation: Kg = K + 0?°Kg/002. For the case of elastic isotropy, the
function Kg(6) is given by equation (35b), but equation (58) is also valid
in case of anisotropy: isotropy has not been assumed, not even by using the
isotropic Green’s tensor Gy, of equation (41).

Dislocation segments To utilize a stress formula like (49) or (58) in
computer simulations of dislocation motion, a dislocation must be cut into
segments, like in case of a polygon. Hence the line integrals are decomposed
into contributions from segments k connecting the points A and B at r4
and rB:

_ seg A B :
0ij = E 0, (rk,rk) with
k

B
O’?;g = /A Ijds = crfjc-mi (TB, 50) - O’?;mi (TA, 50) (59)
where I;; is the integrand of (49) or (58). The integral is expressed as the
contributions from the two integration limits; these may be seen as the stress
contributions ¢*°™ from semi-segments. Besides on r, 6°°™ depends on the
direction s°. When equation (49) is used for integration this dependence
results from the direction of dz’, in case of equation (58) from the angle
of the tangent. For o%™ of a straight segment with fixed line vector s°,
Devincre (Devincre, 1995) derived:

semi
)

L (bxso)inJr(bst).Yi
27y 2 (b x Y)i (So)j + (b X Y)j (So)i B 11—y !
bxY.s° 2
*27:;2 1_ VS |:(Sij + (So)i (So)j ~ye2 (h:Y; + h;Y; + YZYJL/R)] (60)

with the definitions L = r-s°, h = r — Ls, and Y = (r — L)s” — h, and
the point of stress observation being the origin. Some of these definitions
are sketched in figure 25(a). The summation of stress contributions of semi-
segments in equation (59) is equivalent to considering single segments with
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Figure 25. (a) Geometrical meanings for equation (60); (b) segment sum-
mation; (¢) angular summation.

two different ending points  and the same line vector s°, as indicated in
figure 25(b). This type of summation may be inconvenient, depending on
the type of segmentation in a simulation code. An alternative approach is
to evaluate equation (60) for the connection points r between segments with
different line vectors s, as indicated in figure 25(c).

For 2-dimensional simulations using only one glide plane n?, it is useful
to apply a specialized and, therefore, simpler expression. With n® = (0,0, 1)
and the Peach-Koehler equation (16) applied to equation (49), the resolved
stress of a segment from r 4 to r 5 is found as (Mohles, 2001c):

(bs k1) (b? : SL)

pol 0
(bsk)(brs)+ 1-v

Tseg = 4r D (61)

with D = (14 Xrg),, § = (52,5,,0) =1 — 14, k= (km,ky,O):r%—r%,

s, = (—8y,52,0), bk, = (—ky,k5,0), and b, and b, denoting the Burgers
vectors of the stress source and the stress receiving dislocation, respectively.

Self interaction Equations (49), (58), (60), and (61) describe the stresses
a dislocation imposes on another one. In principle, the stress receiver can
be the same as the source. But on the dislocation line, elasticity theory pre-
dicts a stress singularity as can already be seen from straight dislocations
(equation (4) or (7)). This is an artifact of the dislocation being assumed
to exist in a continuous medium, which is a conflict. In real materials this
problem does not exist due to the atomistic nature of a real crystal. In ap-
plications of the quoted stress formulae, a bit of material around the point
of stress observation must be cut out, in analogy to the calculation of the
energy of straight dislocations.

One option for this is Brown’s approach (Brown, 1964), (Brown, 1967)
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Figure 26. Cut-out procedures for the dislocation core introduced by (a)
Bacon (Bacon, 1967); (b), (¢) Brown (Brown, 1964), (Brown, 1967).

sketched in figure 26: instead of evaluating a stress formula on the dislo-
cation line C' itself (figure 26(a)), two lines Cy and C_ parallel to C' at
given distances of +r¢, are considered (figure 26(c)), and the mean value
of the corresponding stresses is used. By this procedure the dislocation core
with radius 7y is left out of the calculation. At large distances |r| this
calculation yields the same stress contribution as using the original line C'
because the vectors to Cy and C_ are very similar to r (figure 26(b)). But
in the vincinity of the node (figure 26(c)), the vectors to C; and C_ have
essentially opposite directions, and the respective stress contributions can-
cel each other. The additional computational effort of two, instead of one,
stress calculations can be mostly avoided by using C';. and C_ only in the
vincinity of each node.

Another option to cut out the dislocation core is to disregard the stress
contributions of the dislocation segments connected to the observation point,
as sketched in figure 26(a). However, this procedure must be used with
caution for two reasons: Firstly, the stress of a dislocation segment of fi-
nite length is not unique. As has been shown (Mohles, 2001c), the stress
b0 gisin® with o441 of equation (49) equals 74;41 of equation (58) if the same
closed dislocation loop is considered. But if a dislocation segment is left out
of the integration, the stresses do not match. After all, such a segment of
finite length does not exist anyway (section 1.1). But in the calculations,
errors of unknown magnitude can arise from this stress equivocality for non-
closed dislocations. Such errors can be avoided by a special segmentation
procedure described in section 3.1.

The second implication of disregarding the neighbour segments of a node
is that the cut-out length L.t has a meaning equivalent to that of reus: it
defines the energy associated with the dislocation core (see equation (6aa),
Teut = Teore) and hence influences a dislocation’s flexibility, as can be seen
from the line tension model. In simulations, the lengths of the neighbour
segments of every node will vary; but the core energy and the corresponding
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Figure 27. A curved dislocation segment (grey) of length 2L in different
approximations (black) with (a) three and (b) five segments.

length Lcope should be constant. In order to find a way to achieve this, we
consider a curved dislocation segment (arc) of constant length 2L and cur-
vature radius R.. This arc is approximated by two different sets of straight
segments, as sketched in figure 27. Subsequently, L. < R, is assumed; in
figure 27 this condition is disregarded in order to improve the visibility of
the angles. The dislocation arc is assumed to have a parabolic shape. With
these assumptions and equation (61) the stress of the arc on its centre point
can be calculated for the approximations with (a) three and (b) five seg-
ments. In both cases, the stress contribution of the segment in the centre
vanishes for symmetry reasons. This centre segment may be seen as being
cut out in the approximations. It gives no stress contribution, regardless of
the stress formula used.

B b 9+3v 9-12v
T(a)_24RC<1—V cos“a + 1_, Sne (62)
B b 13+ 7v 5 13-200v . ,
T(b)—24RC< 1_, cos a+ |, Siva (63)

Here « is the angle between Burgers and line vector. Note that 7(,) and 7,
depend on the curvature radius R, but they are independent of the length
L. This means that when approximation (a) had been constructed with the
same R, but with an overall length of L instead of 2L, the same stress 7(,)
would have been obtained. This is exactly the case for the middle part of
the approximation in figure 27(b). Hence, the outer parts of (b) generate
the stress 7(1,) — 7(a). This difference is the additional stress caused by the
transition from approximation (a) to (b). In this transition, the length of
the straight segment in the centre has been reduced by a factor two. Hence
if the length Lyt is actually cut out of the calculations in a simulation, but
L¢ore is the aspired cut-out length defined by the core energy, the additional
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stress Tare must be considered:

In Lcut

bR W L. (Y

Tarc = (T(b) - T(a)) 1Og2L = 31n2

core

Leus [ 2 ]Ks(a)

In the second part of equation (64), the pre-logarithmic stress factor Kg(«)
of equation (35b) has been used to replace (T(b) — T(a)). The similarity
of equation (64) with the self-stress 7gr in the line tension model (equa-
tion (34)) is not accidental: the line tension model is very local, just like
the stress of a dislocation arc of finite length. But in applications of the
line tension model, a more global, radial cutting procedure is used with
the factor In (rshicld/rcore) (equation (6b)) instead of the more local factor
In (Lcut/Lcore)~

The square bracket of equation (64) equals about 0.961. This resulted
from the comparison of approximations (a) and (b). When a higher order
approximation with halved segments and the cut-out length L/4 had been
compared with approximation (b), the factor [24/(35In2)] ~ 0.989 would
have been found. Obviously the square bracket can be set to equal 1.0, like
in the line tension model. Altogether the total self interaction of a disloca-
tion in a point 7, including stress contributions from distant segments can
be summarized by

Ksla(ro)] | Loos (rs)

Tt (1) = D T (rg =) 7o A

itk

(65)

where Lyeg (1,) is the local cut-out length and Leore & 2b is the length de-
termining the core energy.

With equation (65) and a segment fomula like that of equation (60)
or (61), the mathematics for dislocation dynamics simulations is complete.
But the numerical effort for such simulations using the self interaction con-
cept is very high because, in principle, the interaction of every dislocation
segment with every other one must be calculated in every time step. This
makes it inevitable to apply certain optimisations in a simulation code; some
successful ones are described in section 4.2.

3 2-D Applications

Many plasticity related properties of materials depend on the flexibility of
dislocations because the latter determines the actual number of obstacles a
dislocation encounters simultaneously while moving. This can be seen from
Friedel’s basic strengthening model (section 2.1) for 2-dimensional disloca-
tion glide, but it holds as well in three dimensions. The flexibility is mainly
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determined by the dislocation’s elastic self interaction (section 2.2) and
approximately described by the line tension (section 2.1). In the present
section, simulations of 2-D dislocation glide are described using both the
line tension model as well as true self interaction.

3.1 Simulation Technique

The dislocation is described as a flexible line in the glide plane; the
equilibrium of resolved stresses is considered along this line. Regardless
of the dislocation model, the local equilibrium of resolved shear stresses 7
along the dislocation line can be used as the basis for simulations:

Text T Tdisl T Tallobst = 0 (66)

Here 7yt is an external stress driving the dislocation forwards; it can be
derived from a global stress tensor via the Peach-Koehler formula (16). 7giq
denotes the dislocation’s self interaction, either as given by 7y of equation
(65) or approximated by Tsr of equation (34). The obstacle stress Taliobst
can be defined by solute foreign atoms, particles of secondary phases, other
dislocations, grain boundaries or any other kind of obstacles. The equi-
librium (66) holds generally for static dislocation configurations like those
considered in section 2.1; equation (66) has been used there implicitly.

If the equilibrium is violated the sum of resolved stresses renders a driv-
ing force on the line. For the simulations a non-static stress equilibrium is
introduced by adding a viscous drag stress Tgrag = —(B/b)vL to the left
hand side of equation (66), where v is the local velocity normal to the dis-
location line and B is a drag coefficient. Inertial effects can be considered
as well (see below) but are disregarded here so that the motion is assumed
to be overdamped. The viscous drag term 74 may be seen to represent
the phonon drag; Jassby and Vreeland (Jassby and Vreeland, 1973) have
measured coefficients B of real specimens. However, the physical basis for
Tdrag is irrelevant here because we are only looking for a static equilibrium
here (v, — 0). When completed by Tarag, equation (66) can be written as

v (2) = (b)B) (Text + Tdisl + Tallobst) (67)

where v defines the magnitude and the sign of the velocity, and it depends
on the observation point = on the dislocation. The direction of the motion is
defined by the unit vector s normal to the local line vector s. Since only one
glide plane is considered in 2-D, only planar vectors are noted subsequently.
The directions s” and 59 can be expressed by the derivatives 2/ = dx/ds and
y' = 0y/0s: s° = (2',9') (see figure 28), where s denotes the arc length, and
by definition s = (—y’,2’). The velocity vector dz/dt = (dz/dt,dy/d¢t) is
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Figure 28. Local line vector s(z,y), and two possible representations of
the same dislocation by different sets of nodes (empty and filled circles) of
equal mean distance As (segmentation coarseness). Individual distances As
vary. There are either 4 (empty) or 5 (filled) nodes inside the obstacle.

defined as dz/dt = s v, so that

d —0y/0s\ b
dt (Zj) = ( 5$y//888> B (Text =+ Tdisl + Tallobst) (68)

Tais1 depends on the local curvature with the radius R. = (y”2' — x”y’)_l,

where 2" and 3" denote the second derivatives §%x/ds? and 9%y/ds?, re-
spectively. The dependence on R, is obvious in the line tension model
(Tdisi = Tiine, €quation (35) but also holds for the self-interaction concept
(equation (65)). In a simulation the derivatives ' and y’, and R. must
be calculated for all points z; and in each time step from the present con-
figuration. This can be done for instance by constructing a circle through
three neighbouring nodes z;_,, x;, and z,,; and using the tangent in x; for
sy and the radius for R.. Altogether equation (68) is a partial differential
equation which can be solved numerically, for instance using a Runge-Kutta
type method (Press et al., 1992).

Dislocation discretisation For the simulations a discretisation is re-
quired. This means that a finite number of points x; must be chosen to
represent the dislocation line; equation (68) is then solved in these points.
In figure 28, two different but equivalent discretisations of the same dislo-
cation are plotted. Both representations have the same coarseness (average
node distance), but either four or five nodes are located inside an obstacle.
Individual distances As; vary during a simulation run as the nodes move.
But they have to be kept close to a mean value As by removing nodes or
inserting new ones (by interpolation) during a simulation as required locally.
This 'mean value’ As may be forced to depend on the local curvature in
order to keep the total number of nodes and hence the computational effort
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low. However, the present author advises to use a constant value As within
a simulation because a curvature dependent value As has sometimes been
found to cause minor but systematic errors in simulation results.

For the subsequent considerations all individual distances As; are as-
sumed to equal As. In the example of figure 28, five of the filled nodes, but
only four of the empty ones are inside the obstacle, where the dislocation
is supposed to experience a constant obstacle stress T,bst = —7/b (equation
(19)) as in the case of a long-range ordered particle as an obstacle. This
means that in y-direction (forward direction), the simulated dislocation in
its critical configuration senses either the force 4yAs or 5yAs, depending on
which set of nodes happens to represent the dislocation. Hence, in principle,
the simulated dislocation over- or underestimates the true maximum obsta-
cle force Fi,.x = 2r7 by the amount vAs/2, which causes a relative error
of £As/(4r). For the case of figure 28 this would mean an error of more
than +10% (£0.57As of ~ 4.5yAs). This statistical error can easily be
reduced by choosing a higher node density As~!. But this must be avoided
because the calculation effort in the computer is roughly proportional to
about As™3: the number of nodes is proportional to As~!. Likewise, in the
self-interaction concept, the number of interaction partners for each node is
proportional to As~!. Moreover, the number of integration steps the inte-
grator (any one) must take for a simulation run increases as As decreases.
Therefore, in order to keep the calculation times in the computer low, the
obstacle stress Tajobst Should be smoothed over the length As if it contains
a discontinuity, like on the surface of the obstacle in figure 28. In that case
As = r/3 can be chosen as the mean node distance for good simulation
results, where r is the obstacle radius. However, this is only an upper limit.
If two dislocations are simulated which get very close, like Shockley partial
dislocations (section 1.4), As must not be larger than the distance between
these dislocations (equation (23)). Otherwise, when As is too large, numer-
ical instabilities can occur.

A lower limit for As is given by the length Leoe (section 2.2), which is
basically equivalent to the inner cut-off radius 7core in the line tension model.
With a chosen length r¢ore = 2b it has been found that the simulations are
only stable if As > b/2. For the upper limit As = r/3 quoted above this
means that only obstacles with r > 1.5b can be treated, for instance, par-
ticles with a diameter larger than 1 nm. Obviously this restriction arises
from the linear elastic continuum model itself, which fails to cover atomistic
properties well. While As affects the accuracy of the simulation results and
the calculation speed, it does not affect the simulation results systematically
as long as it is chosen constant.
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Figure 29. Segmentation procedure with main and intermediate segments
used to ensure that the nodes are in the centres of straight (main) segments.

Dislocation segmentation When the dislocation self interaction model
is used for 7gis1, a segmentation of the dislocation must be defined in ad-
dition to the discretisation in order to utilize a segment stress formula like
equation (61). A frequently applied segmentation method is to use the node
connecting vectors x,,, — x; as segments. However, for the dislocation self
interaction, a piece of dislocation around the point of stress observation
must be cut out because of the stress singularity on the dislocation line.
This may cause errors of unknown magnitude because the stress of a non-
closed dislocation is undefined, as outlined in section 2.2.

However, the subsequent segmentation procedure fully avoids such errors
becauses it enforces that every node is placed in the centre of a segment,
where the stress of this segment vanishes unequivocally. This is accom-
plished in three steps. At first in every time step, a circle (dashed in figure
29) through the points z; _;, z;, and x, , ; is constructed for each node i. The
local line direction s? = s°(z;) and the local curvature radius R.; = R. (z;)
are derived from this circle. Then a straight dislocation segment with the
direction s{ is assigned to node i so that this node lies in the centre of the
segment. This is called a main segment. In figure 29 the main segments are
drawn as thick lines. The length of main segments is chosen to be As;/2,
where As; = 1/2 {xl - xiflf + 1/2|x;41 — ;] is the mean distance to the
adjacent nodes. Finally, the end points of the main segments are connected
by intermediate segments so that a closed polygon results. In figure 29 the
intermediate segments are drawn as thin lines for distinction; they have no
nodes in their centres. With this segmentation there are twice as many
segments as nodes; to each node belong one main segment and two half
intermediate segments on the left and the right. This segmentation may
seem quite laborious, but possible errors arising from the stress ambiguity
of segment stresses are avoided. Moreover, numerical instabilities have not
been encountered with the present segmentation, even in cases which are
prone to such instabilities (Duesbery et al., 1992). For the cut-out length



106 V. Mohles

Lyt in the arc stress 7a,c of equation (64), the quoted value of As;/2 is to
be used.

Quasistatic simulation procedure A simulation run is started with any
dislocation configuration, for instance a straight dislocation (or several ones)
near the lower side of a rectangular obstacle field with the obstacle stress
Tallobst (). Usually this field contains many obstacles & at the locations x;
their stress contributions are superimposed locally:

7-allobst(x) - Z Tobst, k (I — Ty, Pk) (69)
k

In general the obstacles can have individual stress functions 7opst, 1 (Az) and
parameters Pj. By solving the differential equation (68) for subsequent time
steps, new configurations are found, hence dislocation glide is simulated.
Various approaches can be used to derive quantitative results from this
glide. One approach is to start with a low external stress 7ox¢. This drives
the dislocation forwards against the obstacles; usually there are many. The
dislocation bows out between them until a static equilibrium configuration
is found (v, = 0 in all points). Then 7ey is increased by a small step A7
so that the dislocation bows out a bit more. Thereby the dislocation may
overcome some obstacles by shearing or circumventing them before it finds
the next equilibrium. Then 7.y is increased again; this is repeated until the
dislocation touches the upper side of the obstacle field. Then the simulation
run is ended, and the last value of 7ex, called Max|Text], obviously suffices
to keep the dislocation running continuously in this obstacle field. The
simulated critical resolved shear stress 74, is defined as

Toim = Max [Text] — AT (70)

because this value is the highest one that yields a static dislocation config-
uration. A7 should be chosen to be about 2% or 3% of an estimation of the
end result g, which may, for instance, be the strengthening contribution
7p of particles. In figure 30 several dislocation configurations are plotted
while a single obstacle is overcome, either by shearing or by circumventing
it.

The present definition of 7y, may appear a bit arbitrary when an (ir-
regular) array of obstacles is considered: if the array is particularly long so
that the dislocation must overcome many obstacles successively, the proba-
bility will increase that the dislocation finds an obstacle arrangement which
is particularly hard to overcome. This would increase 7g,. On the other
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Figure 30. A dislocation overcoming an obstacle by (a) shearing or (b)
circumventing it. Black lines are static equilibrium configurations, the grey
lines are snapshots of the dislocation moving at a constant stress larger
than the critical one, 7. In (b) an Orowan loop is left behind around the
obstacle.

hand, if the obstacle array is particularly wide, so that a longer disloca-
tion sweeps out in forward direction, this longer dislocation will have an
increased chance to find an easy way to move on. This would lower Tgiy,.
These effects have been found to be rather weak and mostly compensate for
each other. In test simulations no systematic dependence of 74y, on the size
of the obstacle field has been detected when the length and the width of
the field were varied by equal factors. The typical scatter of 74y, involved
with individual obstacle fields of (mostly) equal statistical properties and
size has been found to be +6% for arrays with 500 to 1000 obstacles (Bacon,
1967), (Foreman and Makin, 1966), (Foreman and Makin, 1967).

The outlined approach to derive 7y, is quasistatic: The dislocation’s
velocity tends to vanish in the static equilibrium positions, the last of which
defines Tgip. This means that the derived result is independent of the strain
rate. Moreover this means that the drag coefficient B has no meaning and
is arbitrary in these simulations: According to equation (68), B defines the
time scale in the simulations, but the time required in reality to accomplish
the stress increments A7 is disregarded.

Dynamic simulation procedures In experiments the measured stress
to overcome obstacles is often found to depend on the strain rate €. Such a
dependence of 74, (€) can be introduced in simulations by assuming a mo-
bile dislocation density p,, and enforcing a predefined dislocation velocity:
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v = 4/(bpm) (Orowan equation (13)). This can be done by continuously
adjusting the external stress 7oyt accordingly (Monnet, 2006); in that case
Tsim 18 defined as the temporal average of Text. By this method the tendency
OTsim /0¢ > 0 is found, in agreement with experiments. But this strain rate
dependence is only linked to the viscous drag factor B, which accounts for
the phonon drag. The much stronger strain rate dependence resulting from
thermally activated dislocation motion is not considered in this approach.
In a truly dynamic simulation the thermal stress pulses Tiherm on a dis-
location are accounted for. They introduce probabilities for dislocations to
overcome obstacles by the help of these pulses at a given temperature. In
addition, effects of a dislocation’s inertia can be accounted for by a stress
term Tipert. Hence the stress equilibrium of equation (66) is extended to

Tinert + Tdrag + Text + Ttherm + Tdisl + Tallobst = 0 (71)
where again Tqrag = —(B/ b)v, and equivalently, the inertial stress is defined
as Tinert = —(mM*/b)ay with a length specific mass m* and the acceleration

a; normal to the dislocation line vector s°. It must be emphasized here

that the introduction of m* is as vague as the introduction of a line tension
because the dislocation’s inertia is not in the line but in the motion and
mass of all atoms surrounding it. Still, a mass of about one atom weight is
usually attributed to the length of one Burgers vector (Isaac and Granato,
1988), (Mohles, 1997). With a; being the second derivative in time, the
equivalent of equation (68) can be written as

d? o b
(_(B/b)UL + Text + Tallobst + Tdisl + 7-t:hcrm) (72)
The thermal stress pulses, Tiherm, are essentially random numbers without
correlation in time and space, which impose Brownian motion on the dis-
location. The pulses add or substract energy to the dislocation in random
amounts; on a temporal average energy is added by the term 7Tiherm. But as
the random motion of the dislocation increases, so does the dissipation via
Tdrag- Hence an equilibrium will be found in which the energy added to the
dislocation by Tinerm is compensated on a temporal average by 7Tqrag, such
that an average amount of random motion resides in the dislocation: this
is the temperature. This fluctuation-dissipation-theorem for dislocations
defines the amplitude of the random pulses Tiherm:

1 [ 2BkgT
Ttherm (Tqﬁ Atj) = b \/AS At Al»] (73)
? J

2
with  f(A) = \/127Texp (—[; )
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Here kg is the Boltzmann constant, 7" is the temperature, As; is the length
attributed to the dislocation segment located at r;, and At; is the time inter-
val during which the particular stress Tynerm (7;, At;) acts. A; ; are random
numbers picked individually from the indicated Gaussian distribution f(A)
for r; and At;. The dependence of Tiherm on the drag coeflicient B reflects
the energy equilibrium quoted above. Equation (74) ensures for instance
that each dislocation node in a fixed glide plane, which represents one de-
gree of freedom, has the average kinetic energy (1/2 (m*As;) v?) = 1/2kgT.

A simulation using the stochastic equation (72) never finds an equilib-
rium configuration due to the thermal stresses. Instead, the dislocation will
move through the obstacle field in a jerky manner, as is also observed by in-
situ transmission electron microscopy. Instead of a critical stress the mean
glide velocity can be evaluated as a function of temperature and 7Teyt; this
is discussed in section 3.4.

3.2 Static Simulations Using the Line Tension Model

The present section summarizes some simulations using the simple line
tension model to calculate the strengthening effect of simple obstacles which
give some general insights. This means that equation (68) is used, with Tjine
of equation (34) used for 7giq, and Text is imcremented by steps AT as
described in section 3.1. Hence only Tajobst is to be defined via equation
(69). For the simulations of the present section, the following simplifying
assumptions are used in order to allow for a direct comparison with analyt-
ical models (section 2.1) and the more refined simulations from literature:

(i) The obstacles are circular. Inside the obstacles Topst = —7/b = const.,
and outside 7ops; = 0. This corresponds to energy storing obstacles: When
the obstacle area ¢ is swept by a dislocation, the energy ¢ is employed (by
Text) and stored in form of a faulted boundary. This case is similar to order
strengthened materials (section 3.3, v = £yapp). (ii) The radius r of all
obstacles in the glide plane is the same. Accordingly the maximum obstacle
force Finax = 2ry and energy ¢y = 72y are well-defined. (iii) The obstacle
arrangement in the glide plane is purely random in section 3.2; later on,
this condition is relaxed to some extent. (iv) The line tension model is
used with the line energy E* and hence the line tension S being constant,
hence S = E* according to equation (34). (v) Only one dislocation is sim-
ulated. All simulated data are presented in the common scales described
subsequently. These scales have been chosen because they are convenient
for weak and strong obstacles of any extension and arrangement.

An important length scale in a real crystal is the obstacle radius r. An-
other length scale is the shortest distance L.. between the obstacles (centre
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to centre) which would hold if they were arranged in a square grid. L_2
is the number of obstacles per unit area. Each obstacle occupies the area
g = 7r?, hence

Lee =17/ f (74)

where f is the area fraction covered by the obstacles. The obstacle strength
Finax = 21y is related to the line tension S; the relative strength is denoted
by k. )
F

h= o=l = (75)
Note that the fraction S/v is another length scale in addition to r and
Lcc. One of these three scales may be taken as the unit length and be kept
constant in simulations. For analytical considerations, L.. may be useful as
a unit length; however, in the present simulations it is more convenient to
keep (S/7) constant. This latter parameter depends on material parameters
alone, and not on the geometry of the obstacles and their arrangement. This
geometry is subject to variations in the subsequent simulations.

All stresses are described in units of 7unit, which is defined as:

Tunit = Fmax/ (bLCC) = \/(4/7T)f (7/b> (76)

By definition, 7yt is independent of S. This is helpful since S is not known
exactly, neither in evaluations of experiments nor in simulations using the
self-interaction concept (section 3.3). But 7unit does already include the
basic stress dependence on [ : Tunit ~ fl/ 2. For instance, in these units
the critical stress predicted by Friedel’s model (section 2.1) simply reads as
Thriedel = kY2 Tuni¢ with apparently no dependence on f.

The magnitude b of the Burgers vector in equation (76) is, in principle,
a fourth length scale. But it appears only in 7y, and, therefore, does not
interfere with the other length scales.

The normalized simulation results Teit/Tunit are basically a function of
the parameters & and f alone. This gets obvious when all terms in the
stress equilibrium (equation (68) with 74qis1 = Tine) are divided by Tunit.
The ratio Tobst/Tunit depends only on f (7opst of assumption (i)). The ratio
Tline/ Tunit €can be written as a function of k, f, and the local curvature R, (in
units of the chosen unit length S/v). The latter stands for the dislocation
configuration (on the scale of S/v). This configuration adjusts itself to
the parameters (Text/Tunit), k, and f in the given obstacle arrangement.
The last stable equilibrium configuration for given values of k£ and f, which
defines 7ot = Max [Text], depends on the individual spatial arrangement
of the obstacle field used. Hence Teyit/Tunit 18 & function of k and f and
the geometry of the individual obstacle arrangement. The latter merely
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(a)

Figure 31. Critical dislocation configurations simulated with the line ten-
sion model for randomly distributed overlapping obstacles. Only parts of
the obstacle arrays are shown. The number of obstacles (=~ 440 of 8000
total) and the relative obstacle strength & = 0.304 are the same. The
area fractions of the obstacles and the critical resolved shear stress are (a)
f = 0.0025 (=~ point obstacles), Terit/Tunit = 0.60 ; (b) f = 0.16 (extended
obstacles), Terit/Tunit = 0.91.

produces a statistical scatter in 7..;. It has been found that this scatter is
about £6% for obstacle arrays containing 500 to 1000 obstacles (see section
3.1). For the present simulations with 8000 obstacles in the square-shaped
obstacle field, the scatter is estimated less than +4%.

Effects of the obstacle strength and size When obstacles are vanish-
ingly small (r < L¢c, or f — 0) they can be considered as point obstacles.
The effect of the relative obstacle strength k£ on dislocation configurations
and on 7.4 in arrays of point obstacles have been worked out in literature by
analytical models like Friedel’s and also by computer simulations (Foreman
and Makin, 1966), (Foreman and Makin, 1967). However, the condition
7 < L (or f < 1) is not sufficient to rate the applicability of the results
(Mott and Nabarro, 1948), (Schwarz and Labusch, 1978) because another
independent length scale beside r and L. is involved, namely the material
dependent constant S/~.

If obstacles have a finite extension, a distinction must be made whether
the obstacles are allowed to overlap each other spatially or not. Of course,
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objects like second phase particles cannot overlap in reality, but their ob-
stacle stresses can. Subsequently the respective obstacles are called overlap-
ping and discrete, respectively. The term 'non-overlapping’ as the opposite
of ’overlapping’ is avoided because it is prone to cause confusion. An ex-
ample for overlapping obstacles are particles with a lattice mismatch (see
e.g. section 3.3): their coherence stresses superimpose (overlap) linearly. In
contrast, in dispersion strengthening and order strengthening (section 3.3)
the stresses do not overlap spatially; these particles are discrete obstacles.

Figure 31 shows two examples of simulated critical dislocation config-
urations for a very low (f = 0.0025) and a rather high (f = 0.16) area
fraction. The relative obstacle strength £ = 0.304 is the same in both cases.
With f = 0.0025 the dislocation configuration is very similar to those found
by Foreman and Makin and successors by means of the circle rolling tech-
nique (Foreman and Makin, 1966), (Foreman and Makin, 1967), (Hanson
and Morris, 1975). Even with f = 0.16 the configuration looks rather sim-
ilar. This may surprise because with less free space between the obstacles
at f = 0.16, weaker bow-outs are to be expected. But in the obstacle array
this is 'compensated’ for by a higher external stress: Teuit/Tunit is found to
be higher for f = 0.16 than for f = 0.0025 by about 50% although the
obstacle strength k& and density (their number) are the same. Hence this
must be an effect of f, or the relative obstacle extension 7/ L.

In figure 32, 7ot is plotted (empty symbols) as a function of the square
root of the normalised obstacle strength k, equation (75), for four area
fractions f. For comparison results from literature are added. As to be
expected, Terit/Tunit for f = 0.0025 agrees well with results from literature
for point obstacles in the full range of k: with L.. > r the obstacles are
point-like. At low k, the simulations agree with Friedel’s result Tgyjeqer Of
equation (71) very well. Near k ~ 1 the strength reaches a maximum, albeit
Terit 18 reduced by a factor 0.8 relative to Trriedel; this is attributed to the
randomness of the obstacle array (Foreman and Makin, 1966), (Foreman
and Makin, 1967). In the range k > 1, Teit/Tunit decreases because the
Orowan process operates here.

At higher volume fractions f = 0.01, which might still be considered
as small, systematic deviations with increasing f are found: 7euit/Tunit in-
creases with increasing f, for weak and for strong obstacles. This means
that for reasonably strong particle strengthening effects, which usually re-
quire f > 0.01, point obstacles are rather inaccurate as a model. In the
following, generally, the data with f = 0.16 are discussed because they
show the strongest effects. But the statements and conclusions also hold for
lower area (or volume) fractions.

For weak obstacles an increase of 7.,i¢ with increasing obstacle extension
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Figure 32. Normalized critical stress as a function of £ and f. Empty
symbols represent simulations, filled symbols indicate the energy storing
effect: Tstore — fp)//bv - TFM — (1 - O'2k2)k1/27unit; - TOFM(f =
0) = 0.8k rumit; - - - - 7ns(f = 0.16) = (0.94k"/2 + 1.17fY/2) 1.

has already been found by Labusch and Schwarz (Labusch and Schwarz,
1992). The computer simulations of these authors were originally designed
for solid solution hardening, but the results can also be applied to particle
strengthening. Labusch and Schwarz used obstacles extended only in the
direction normal to the dislocation line. Similar to point obstacles, such
obstacles cannot overlap because they are one-dimensional (1-D); their ar-
eas vanish. This may lead to the perception that these obstacles are non-
overlapping and hence discrete, but physically these 1-D obstacles overlap
since a non-vanishing obstacle area (area fraction f > 0) is assigned to the
1-D obstacles in order to apply a simulation result, hence they inevitably
have a finite width w, > 0. The obstacle arrangement of Labusch and
Schwarz was purely random (a pre-requisite for the scaling used by these
authors); therefore, the obstacles can actually overlap, and they increasingly
do so with increasing w, or f.

In the units used here, the simulation results 7sy, of Labusch and Schwarz
for energy storing obstacles reads: 1.5 = (0.94k1/2 + 1.17f1/2) Tunit- As in-
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dicated for f = 0.16 in figure 32, this result also represents the present simu-
lations well. Essentially it appears that in the range 0 < k < 1, Tepit /Tunit 1S
increased relative to Tryiedel/Tunit = k'/2 by the amount f/2. This effect is
caused by the energy storing character of the obstacles: when a dislocation
is straight as in the case k = 0, the fraction f of it resides inside obstacles
and senses the obstacle stress Topst = —7/b. This leads to the critical stress
Terit = f/b = (7f/4)"?Tynit for straight dislocations. If the obstacles in-
volved negative and positive obstacle stresses 7opst in equal amounts, this
contribution to 7t would vanish. This latter case means that the dislo-
cation stores no energy when it overcomes obstacles, unlike in the present
case. More accurate statistical investigations have shown (Arsenault et al.,
1989a), (Arsenault et al., 1989b) that stress fluctuations also give rise to a
stress Teit (K = 0); however, this is beyond the scope of the present contri-
bution.

In the case of very strong obstacles with & > 1, which are circum-
vented by the Orowan process, 7.t decreases with increasing k because
the free space between the obstacles, L.. — 2r, scales with k& (equation
(75)). In the present units, Orowan’s stress prediction (26) reads Teit =

(1- (4f/7r)1/2)_1 k™ "unit. This also predicts an increase of the relative
Stress Terit/Tunit With increasing volume fraction f, in full agreement with
figure 32.

Around k = 1, 74t has a maximum. At f = 0.16 it can be seen that
Terit/Tunit < 1 defines a maximum for 7. It is reached when (i) the ob-
stacles exert the maximum force (i.e. 2S5) and (ii) the distance between
obstacles is small. The smallest distance that can be reached everywhere in
the glideplane for a given number density is L., the centre-to-centre square
lattice spacing. This had been used for the definition of Tyt (equation (76),
so that Terit < Tunit holds for any other obstacle arrangement, regardless of

1.

Effects of the obstacle arrangement The geometry of the obstacle ar-
rangement can affect the resulting critical stress, as can be seen in figure 33
by comparing the overlapping obstacles of figures 31 and 32 with discrete
obstacles as defined above. The arrangement of discrete obstacles is gener-
ated in the computer by assigning random locations to all obstacles first,
disregarding overlappings like above. Then all obstacles which are found
to overlap with others are assigned new random locations. The latter step
is repeated until no more overlaps are found. The prevention of overlaps
means a restriction for the randomness of the obstacle arrangement: at very
large area fractions f, the arrangement of rigid obstacles will be close to a
closest packing, which is a very regular arrangement. The restriction of
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Figure 33. Normalized critical stress as a function of k at f = 0.16 for
overlapping (black) and discrete (grey) obstacles; lines as in figure 32 except
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randomness is obviously most pronounced at high area fractions; therefore
only the case f = 0.16 is considered subsequently.

In the range of strong obstacles (k > 1), the discrete obstacles yield a
higher critical stress than the overlapping ones (figure 33). This has two
reasons. Firstly, in the case of overlapping obstacles the fraction f of f, i.e.
f2, does not contribute to strengthening because it overlaps. This reduces
the effective volume fraction to f — f? and lowers 7. correspondingly.
Secondly, in case of a regular obstacle arrangement as is the tendency for
the discrete obstacles, the probability for the dislocation to find weak spots
(large individual obstacle distances) is low; this also increases 7t

For weak obstacles (k < 1), the overlapping obstacles yield a higher
stress than the discrete ones. This is most obvious for k'/2 ~ 0.7. A
possible explanation is that the overlapping areas can be seen as separate
obstacles with double strength (7obst = —27/b). The area fraction of these
obstacles of double strength equals f2 = 0.0256. The total area fraction
covered by obstacles is reduced from f to f — f2? due to overlapping. This
would lower 7., like in the case k > 1. But this is overcompensated by the
obstacles with double strength because they have a stronger influence than
the normal ones: Tt ~ k'/2Tunit according to Friedel’s model, where both
Tunit and k increase linearly with ~.
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The simulated data of discrete obstacles for f = 0.16 and k < 1 are
well represented by a linear function of k'/? (grey line in figure 33), sim-
ilar to s (see figure 32), but with different coefficients: 7eyit/Tunit =
0.37k'/2 4 1.42f'/? instead of TLs/Tunis = 0.94k'/2 4+ 1.17fY/2. While
TLs/Tunit 1S essentially in line with Tryeder and 7y (parallel lines in fig-
ure 32), which had also been derived for random obstacle arrangements,
the results for the more regular arrangement of the discrete obstacles de-
viates strongly. This emphasizes the importance of using realistic obstacle
arrangements in simulations.

3.3 Simulations Using Dislocation Self Interaction: Particle
Strengthening

The present section summarizes some simulations using the accurate dis-
location self interaction model and the quasi-static procedure to calculate
the strengthening effect of spherical second phase particles in a material.
This means that equation (68) is used, with 7ei¢ of equation (65) for 4.
Tallobst 18 defined by equation (69) with a realistic distribution of particles
as obstacles (locations xy, radii r;). The interaction functions 7opst (Ax)
depend on the particle types.

Realistic particle arrays As has been shown in section 3.2, the arrange-
ment of obstacles has a significant impact on the critical stress 7.,it; the same
holds for other geometrical properties. For instance, the impact of the size
distribution of particles on their strengthening effect has been worked out
statistically by Nembach (Nembach, 1996). Realistic particle arrangements
may be obtained from atom-probe tomographic reconstructions or phase
field or Monte-Carlo-simulations of precipitation. But in most cases, the
obtainable particle arrangements are too small, meaning that they contain
too few particles to keep the statistical scatter involved with individual ar-
rangements low.

For the subsequent simulations, an arrangement is used which has been
generated artificially and compared to real particle arrangements (Mohles
and Fruhstorfer, 2002). The particles are assumed to be spherical and to
have the radius distribution grsw(p) which has been derived analytically by
Lifshitz, Slyozov (Lifshitz and Slyozov, 1961) and Wagner (Wagner, 1961)
for the case of Ostwald ripened particles of low volume fractions f. In the
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range p = r/ro < 1.5,

7/3 11/3
4,0 3 1.5 p
= 77
JSW T gl (3+p> (1-5—p) eXp(p—lb) 0

and grsw (p > 1.5) = 0, where r are individual radii and ro is the mean
particle radius. With this size distribution a rather closely packed arrange-
ment of spheres is generated. Each of these spheres is meant to represent the
corona of volume from which one particle has obtained its material during
the Ostwald ripening process. By scaling appropriately all distances and
individual corona radii down to the particle radii, the mean particle radius
ro and the volume fraction f is selected. Finally, these particles are shifted
by small additional random vectors to adjust the arrangement’s random-
ness to experimental findings. The procedure is detailed and the resulting
arrangements are discussed in (Mohles and Fruhstorfer, 2002).

Dispersion strengthening In dispersion strengthened crystals the glide
system in the matrix is not continued inside the particles. Hence the parti-
cles are impenetrable; they must be circumvented by the Orowan process. In
simulations this is enforced with a negative obstacle stress of large amount
(Tobst — —o0) inside the obstacles and no stress outside. For reasons of
numerical stability it may be useful or even necessary (depending on the
numerical integration method) to assume a finite but sufficiently high stress
instead, and to smooth out the stress transition in 7,pst(Az) on the parti-
cle’s interface in order to the limit slope of the step function. Details on the
chosen stress value inside the particles and on the smoothing procedure are
given in (Mohles, 2001c¢).

To give an impression, two dislocation configurations of a simulation
using this obstacle stress are plotted in figure 34. Topst() is represented by
the dark grey disks: these are the intersections of the particles (arranged
in 3-D) with the glide plane. The size distribution of these disks result
from the particle size distribution grsw (r/r9) and from the distribution of
heights at which the particles intersect the plane. The starting configuration
was a straight screw dislocation (dashed; b is indicated in figure 34); how-
ever, the dislocation bends strongly while gliding such that all dislocation
characters are present. The local bending between the particles is stronger
in z- than in y-direction because edge dislocations are more flexible than
screw dislocations. This is predicted by the line tension model (section 2.1)
and obviously remains true in the present case, where each dislocation piece
interacts with every other one, including the Orowan loops. Quantitative
results of dispersion strengthening are presented and discussed in (Mohles
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Figure 34. Two dislocation configurations in a dispersion strengthened
crystal with rg = 1006, f = 0.1, Poisson ratio v = 0.4. The dashed line
indicates the starting position; on the left and right periodic boundary con-
ditions are applied. Dark grey: particle intersections with the glide plane;
medium / light grey: area swept out at 7ot = 226MPa / 230MPa. Rep-
resentative configurations for other parameters can be seen in (Mohles and
Fruhstorfer, 2002). Note that every piece of dislocation interacts elastically
with all other pieces.

and Nembach, 2001).

Order strengthening In order strengthened materials, the crystal struc-
ture is continued inside particles (they are coherent), and they usually have
long-range order whereas the matrix is disordered. This causes the dislo-
cations to glide in pairs of two: the first one of a pair is pushed backward
inside the particles because it destroys the order there, which takes energy,
and creates an antiphase boundary with the energy yapp. A second dis-
location in the same glide plane may restore this order and is, therefore,
pushed forward. Hence according to equation (19) the obstacle stress for
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Figure 35. Critical dislocation configurations in a peak-aged order
strengthened crystal for a pair of (a) screw and (b) edge dislocations. In the
screw configuration the leading dislocation D1 often penetrates the particles
(arrows) so that D2 is likely to follow immediately; edge dislocations do not
show this effect.

these dislocations is described by

—yapp/b for 1st dislocation inside particle (78)
+yapp/b for 2nd dislocation inside particle

Tobst (A.’E) = {
and Topst = 0 outside the particles. Like in dispersion strengthening a
smooth step function should be used for Topst () on the particle interfaces.

Figures 35(a) and (b) show sections of a pair of simulated screw and
edge dislocation pairs. All parameters are chosen close to those of the
Nickel based superalloy Nimonic PE16: b = 0.25nm, u = 65GPa, v = 0.4,
~vapp = 0.25Jm~2. The volume fraction is f = 0.1, and the mean particle
radius is rg = 49b. These latter parameters define the aging state of the
material: a thermal treatment (prior to our plastic deformation) will define
the amount (f) and the size (ro) of the particles that precipitate from the
matrix due to classical nucleation, growth and ripening.

If only one dislocation is considered, equation (78) is similar to the ob-
stacle stress —v/b assumed for the obstacles in section 3.1. Accordingly the
critical stress of order strengthed materials can be discussed in terms of the
relative obstacle strength k introduced in equation (75): for a given material,
which defines defines (S/vapp), the parameter k is essentially equivalent to
the mean particle radius r9. The line tension S is not defined in the present
simulations because the dislocation self interaction model is used, but S is
known to be rather constant as it depends on the surrounding dislocation
geometry only through a logarithm function (equation 24). Similar to the
simulation results of section 3.2, the strengthening of particles reaches a
maximum at some mean radius 7o (where k =~ 1). The corresponding ma-
terial is denoted as peak-aged. With smaller or larger radii, the material is
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in the underaged or overaged aging state, respectively.

The dislocation configurations in figure 35 belong to the peak-aged state.
The leading edge dislocation D1 in figure 35(b) bows out strongly between
the particles, almost as strong as in the case of dispersion strengthening in
figure 34: D1 almost circumvents the particles. Actually, in case of large
radii rg, the configuration of D1 looks just like in figure 34; D2 is stuck be-
hind Orowan loops left behind by D1. On the other hand, the leading screw
dislocation D1 in figure 35(a) shears the particles, as is indicated by arrows.
The trailing dislocation D2 is always rather straight because it touches al-
most no particles; and if it does so, it is pushed forwards as modelled. In
the underaged state (small radii) both dislocations are rather straight, and
D1 and D2 move as a pair. Altogether the dependence 7t (f,70) for or-
der strengthening is rather complex because of the combined shearing and
circumventing of the particles, as well as by D1 and D2 moving either as a
pair or individually. This is explained in more detail in (Mohles, 2004).

Lattice mismatch strengthening In the previous subsections of sec-
tion 3.3 the particles were discrete obstacles because only in their interior,
the dislocations interacted with them. This is different when the particles
have a lattice mismatch: inside the particles there is hydrostatic stress, and
outside there are shear stresses that cause a long-ranged interaction with
dislocations. Hence these particles are overlapping obstacles, and moreover,
their arrangement in 3-D space is important because the obstacle stresses
depend on the height Az of the particle centre over the glide plane. In the
former cases, only the particle intersections with the glide plane mattered.
The stress tensor of a spherical inclusion in an isotropic medium had been
derived by Eshelby (Eshelby, 1956); applying the Peach-Koehler formula
(16) on this yields the obstacle stress:

6epAzr3|Az| =4 (bo : Amo) outside the particle

Tobst ( x ) {0 inside : |Az| < r )

Here e denotes the constrained (relaxed) relative lattice mismatch. Inside
the particle 7opst vanishes because a driving force for dislocation glide re-
sults only from shear stresses. Outside, the stress depends on the direction
of the Burgers vector b (but not on the line vector s). This means that a
static simulation procedure with 7opst and Tanobst changes as b is rotated,
but for a given dislocation, b is constant and hence the obstacle stress is
unique for it. Still, edge and screw dislocations experience different overall
stresses because for a given b, screw and edge dislocations experience Topgt
in different locations (as s must differ).
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Figure 36. Configurations of one pair of Shockley partial dislocations in
an underaged lattice mismatch strengthened crystal with f = 0.1. The
greyscale plot of Tajebst (dark: > 0, light: < 0) is that of the corresponding
perfect dislocation. (a) Dissociated edge, (b) screw dislocation.

The partials of a dissociated dislocation sense different obstacle stresses
when their Burgers vectors b,; and b, differ, like in the case of Shockley
partials (section 1.4). In figure 36 several dislocation configurations of such
a case are plotted for a copper matrix with cobalt particles (u = 42GPa,
v =043, b, = 0.148nm, ysp = 0.036Jm~2, ¢ = 0.015). The edge disloca-
tion in figure 36(a) is dissociated more strongly than the screw dislocation
in 36(b). With the elastic dislocation repulsion and the attraction stress
+vsr from the stacking fault considered in the simulation, the distance dgr
between the partials adjusts automatically in a simulation, and the mean
value of dgr agrees with deq of equation (23). The background of figures
36(a) and (b) is a greyscale plot of the obstacle stress Taobst (Aa:, bo) , which
is the combination of equation (79) with (69) for a given arrangement of
particles k located at x,. Since Taobst depends on by, the vector of the
corresponding perfect dislocation has been used for the greyscale plot.

The dissociation width dgp is another length scale in addition to those
described in section 3.2. This makes analytic predictions of 7. very dif-
ficult, in particular when dgsg is in the range of the particle radius or the
free space between them, like in the case of figure 36. Another difficulty for
analytic considerations is that T,0nst represents a wide spectrum of obstacle
strengths; the effective number and strength of obstacles cannot be defined
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unequivocally as can be seen from the greyscale plots. This makes it hard
to apply analytic strengthening models as those in section 2.1 (Nembach,
1996). However, in dislocation simulations all effects can be considered
concurrently. More details on such simulations can be found in (Mohles
and Nembach, 2001), (Mohles, 2001a), (Mohles, 2001b), (Mohles, 2002),
(Mohles, 2003).

3.4 Simulations of Thermally Activated Dislocation Glide

In section 3.1, the procedure for dynamic simulations considering ran-
dom thermal stress pulses has been described. The stochastic nature of the
differential equation (72) prevents the dislocations from ever finding a local
equilibrium; they always stay in motion. This makes simulations partic-
ularly slow when the self interaction concept is used because some of its
optimizations (section 4.2) remain useless. Therefore the line tension ap-
proach is used for the present simulations: Tqiss = Tiine 0f equation (34).

Thermal activation helps dislocations to overcome obstacles. This means
that the stress required to overcome the obstacles is lowered by a dimen-
sionless factor 7o < 1 which depends on the temperature 7', the imposed
shear rate 4 and possibly on other parameters:

Text = Trel (T7 % ) TOK (80)

where ok is the stress required to overcome the obstacles by mechanical
stress alone, that is at T = 0K. In the terms used so far for the static
simulations, Tok is the same as 7.yt with all its dependences on rg, on f or on
other parameters. When the obstacles are large, the thermal pulses are not
strong enough to push a dislocation over obstacles. In that case the stress
Text = ToK 18 required, or 7o — 1 virtually independent of T'. In contrast,
small obstacles like solved foreign atoms are overcome by thermal activation.
This causes solid solution strengthening to be temperature dependent.

Jerky dislocation glide In order to simulate solid solution strengthen-
ing, the obstacle stress Topst (Ax) of single foreign atoms must be defined.
Here only an approximating function can be used as long as the foreign
atom’s interaction with the atomistic nature of the dislocation core is not
known accurately. A possible approach is to consider a foreign atom as
a sphere and calculate its size mismatch by equation (79) with the radius
r = b/2. The locations xz; can be chosen to represent lattice or interstitial
sites of the crystal lattice considered. In the greyscale plots of Topst in fig-
ure 37 used later on, the foreign atoms are assumed to be substitutive in
a face centred cubic crystal. The stress of equation (79) is altered slightly
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Figure 37. Greyscale plot of the assumed atomic mismatch obstacle stress
at o,y = 1073/1072/10~ 1.

by ignoring the ’hole’ (vanishing stress) inside the atoms. Furthermore, the
stress is convoluted with a Gauss function exp(—|Az|?/b?/2) in order to
account for the non-discrete nature of a real dislocation core; details are not
important here. Figure 38 shows dynamic configurations of thermally ac-
tivated dislocation glide in such obstacle fields in equidistant time steps. In
some areas the dislocation moves fast (low line density) and in other places
its overall velocity vanishes; here the dislocation only fluctuates (black ar-
eas), waiting for activation. Accordingly, the mean velocity vmean Of this
jerky motion through the whole field can be written as
A A

Vmean twait + trun - twait (81)
where A is the mean free path between waiting positions, and .., and tyait
are the mean time intervals of running and waiting, respectively. Usually
trun 1s fully negligible compared to tyait. The free path A may be considered
as a constant defined by the obstacle density, for instance by A2 ~ b%/c,s.
This is not always the case, especially when inertial effects become impor-
tant and the dislocation overruns obstacles with its kinetic energy (Mohles,
1997). Even in figure 38, an estimated A would be larger for ¢,y = 10% than
for c,; = 1%, which is in contradiction to the aforementioned definition of
A. Still,; the mean velocity is mostly determined by i and its dependence
on the temperature 7" and the present stress 7oy, both of which assist acti-
vation (transition from waiting to running).

In figures 38(b) and (c), the same parameters have been used except for
the sets of random numbers for Tiperm. The resulting mean velocities vppean
for this obstacle field differ by a factor two in these simulation runs. Hence
in order to derive a function vyean (T, Text) from simulations, many single
simulation results must be averaged. This of course means a high numerical
effort, which is another argument against using the dislocation self interac-
tion concept for thermally activated dislocation glide. On the other hand,
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Figure 38. Dislocation configurations of thermally activated dislocation
glide after equidistant time intervals. (a) cap = 1%, Text = TMPa — Vpean =
10m/s; (b) cat = 10%, Text = 27TMPa — Umean = 6.1m/s; (¢) car = 10%,
Text = 27TMPa — Umean = 3.3m/s. In (b) and (c) all parameters are equal
except for the sets of random numbers for Tiperm, causing different con-
figurations and mean velocities vmean. Note that the y-direction has been
streched by a factor 8 for clarity.

Umean has essentially been broken down to the mean activation event with
its mean waiting time tyai;. Individual waiting times vary much stronger
than by a factor of two, but the activation event can be treated analytically
and also by simulation.

Simulated activation event In figure 39, three simulated activation
events are plotted. The obstacles are small size mismatched spherical parti-
cles which are not intersected by the glide plane; details are not important
here. In figure 39(a), the obstacles are arranged at random. They are all
equal in strength, size and shape, but there are attractive and repulsive
obstacles. Starting from the static equilibrium position found at 7" = 0K
(dashed line), the dislocation fluctuates for a while at T'= 300K (grey lines
around the dashed one) and eventually reaches a critical configuration (thick
black line). When such a configuration has been reached, the dislocation
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moves on (grey lines beyond the critical configuration): it has overcome
the obstacle arrangement. The fact that the activation takes place on the
boundary is physically meaningless because the boundary is periodic. The
critical configuration has been estimated from observation of many simu-
lated activation events; a different one has been published in (Mohles and
Ronnpagel, 1996) for the same obstacle and dislocation parameters. Al-
ways in a critical configuration, the dislocation has moved forwards from
its static equilibrium by Ay equal to about one obstacle diameter. The
length of dislocation which has moved forward is much larger than Ay, by
roughly two orders of magnitude. Note that in figure 39, the y-direction has
been stretched by a factor ten. The estimated number of obstacles that are
overcome concurrently in the critical configuration is two or three.

The activation event for the equidistant obstacle row in figure 39(b)
can be described in exactly the same way. Even the same estimated activa-
tion length Ly is found from the critical configuration. It has often been
assumed in literature (e.g. (Kocks et al., 1975), (Nadgornyi, 1988)) that
this length is related to the distance L. between obstacles, but figure 39(c)
proves that this assumption is fundamentally wrong. There, a continuous
obstacle wall with the stress Twan(y) replaces the obstacles such that

1 o
Twall (y) = L / Trow(a:a y)dx (82)

where Tyow (2, y) is the stress function of the obstacles in figure 39(b). The
obstacle wall stands for an obstacle row with a high density (Le. — 0) of
weak obstacles (dFax = bropstdz — 0). Since no length L. is involved
in the activation event of figure 39(c), the activation length L, (of which
Lest is an estimation) cannot be related to the obstacle density. Instead,
Lact depends on the dislocation’s flexibility (or, the line tension S) and the
present stresses Tywan and Text. This is similar to section 3.2, where the term
(bTobst /S) defined an important length scale. In the subsequent section the
activation event and the related length L,.4 are considered analytically.

Analytic description of the activation event In the simulations of
section 4.2, a critical dislocation configuration has been estimated from
simulations. The criticality of this configuration lies in the dislocation’s
decision to either move back and continue waiting or to move forward and
leave the waiting position: this is an unstable state close to an unstable
equilibrium (saddlepoint configuration). The static stress equilibrium of a
dislocation is given by equation (71) with Tyherm = Tdrag = Tinert = 0. For
the present case, Talobst (Z,¥) is replaced by Tywan (y), and 7iine (R of equation
(34)) is used for 74i51. The dislocation’s shape can be described as a function
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Figure 39. Dislocation configurations of activation events at different ob-
stacle arrangements: (a) random arrangement, (b) equidistant obstacle ar-
ray, (¢) continuous obstacle wall. In all cases 7ok = 25.3MPa, Toxt = 23MPa,
T = 300K. The obstacle wall stands for an infinite density of infinitely weak
obstacles (Lce — 0, Finax — 0). Note that the y-direction is stretched by a
factor 10 for improved visibility.
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Figure 40. Unstable (grey) and stable (black) equilibrium configuration
(T=0) of a dislocation at an obstacle wall (light grey).

y(x). Approximating the curvature (1/R.) by the derivative d®y/dz? yields
the differential equation

2

== ¢ () + 7ex) (53)
for y(x). The quoted approximation is justified because the critical config-
urations are known to be flat (figure 39). The function 7. (y) is described
by the wall’s maximum height, 79k, and by a function describing its ’shape’
in y-direction. The latter contains a depth parameter dy which is related to
the obstacle diameter. For simplicity a rectangular wall shape is assumed
here; in (Mohles, 1997) a parabolic shape has also been examined with
essentially the same results.

—ToK if 0 < Yy < d()
wa. = 84
Twail(9) { 0 otherwise (84)

With the simplified wall of equation (84), the solution y(x) of differen-
tial equation (83) can be found easily by assembling dislocation pieces of
constant curvature, as sketched in figure 40. A trivial solution is y = 0,
where |Twan| = Text by definition. This describes the stable configura-
tion. In the unstable configuration of figure 40, the curvature over the
length 2L, is Ky = brext/S (ie., K1 <0), and in the two pieces of Lo,
the curvature is Ko = b (Tox — Text) /S (i.e., K3 > 0). The length Lo is de-
fined geometrically by K5 and dp; with the quoted parabolic approximation
Ly = (2dy/ KQ)I/ %, In the inflection points the slopes have the magnitude
|m| = KyLs = K1Ly, which finally defines L;. Altogether this yields

2 — Tex 2
le\/ doS (Tok — Text) and Lz:\/b( doS (85)

2
b T2 TOK — Text)
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With the geometry y(z) of the unstable configuration known, the energy
AG can be calculated. AG is required to bring the dislocation from the
stable to the unstable configuration. AG is comprised of two contributions.
One is given by the obstacle stress between the configurations, reduced by
the energy that is expended by the external stress. This part is found by
integrating (b7wan — bText) in the area between the unstable and the stable
configuration; it is large if L; and Lo are large. The other contribution is

given by the increment of dislocation length [ i (dx2 + dy2)1/ 2} from the

stable to the unstable configuration; this part is large when Ly and Lo are
small. In the equilibrium configuration y(x), however, these contributions
have equal magnitudes, as can be verified. Together this yields

AG:4\3/2

1
Vodi S ok (1—ma) (86)

Trel

where Toxt has been expressed by the relative stress 71 introduced in equa-
tion (80). AG is the energy that must be expended by the thermal pulses for
activation. The energy contribution expended for this by the external stress
has already been accounted for in the first contribution outlined above. The
first square root in equation (86) is a universal feature of the activation en-
ergy, independent of the shape of the obstacle wall. It emphasizes that
the activation event is governed by both the integrated obstacle stress 7ok,
which equals the maximum of 7. from equation (82), and the line tension
S. The dependence of AG on T, and the pre-factor is defined by the wall
shape. Other wall shapes have been discussed in (Mohles, 1997). Instead of
a stress wall, a potential trough can also be considered. When the trough is
V-shaped with a slope equivalent to 7o, equation (86) is recovered (Kocks,
1985).

With equation (86) and the general Boltzmann equation, the proba-
bility of one attempted activation event (one attack) to be successful is
known. The attack frequency, v, is known to be in the range 10'° to
10'*Hz (Mohles, 1997), (Granato et al., 1964). Hence the waiting time for
activation is

1 AG
twait - o ekaBT (87)

with AG and its dependence on 7k, S, and dy defined by equation (86).
The dependence on Ty remains to be refined. In particular, close to the
top of the wall, i.e. for 7 — 1, the rectangular shape is not a good
approximation; however, for small obstacles like foreign atoms this is not so
critical.
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Solid solution strengthening In deformation experiments often a con-
stant shear rate ¥ is enforced. With a density of mobile dislocations py,
defined by the specimen’s deformation state this enforces a mean disloca-
tion velocity, as described by Orowan’s equation (13). When the mean free
running path A of dislocations is assumed to be constant, this means that
twait and hence AG is given (equations (81), (87), vp=const., T=const.).
Since 7ok, S and dyp are material parameters, this defines 7. (equation
(86)) and Text, (equation (80)), which here is called the solute strengthening
contribution 7y, here. Resolving for 7exy = 701 yields

2 8bd3 S
X with Tp = V/8bdSTo ,
1++/1+T2/T2 3kpln (Avobpm /%)

where T has no particular meaning as a special temperature; it is just an
abbreviation for the temperature scale. Altogether 74, depends on the so-
lute concentration cu, but this dependence only comes through 7ok (cat)-
Calculation of the latter dependence is an independent problem.

When reasonable values for solute atoms are inserted in equation (88)
(e.g. do = b, b=0.25nm, S = pb?/2, u=50GPa, 7ok =50MPa, In(A\vpbpm /5) =
20), Tyel comes out to be about 1/3 at room temperature: these small obsta-
cles are indeed overcome by thermal activation. On the other hand, small
particles with a diameter of only dy = 8b = 2nm yield 7y = 0.97. This
means that thermal pulses do not help (much) to overcome particles. As
noted above, the assumption of a rectangular wall shape is not a good one
for e1 — 1, so this result is not accurate. However, it can be shown with
a parabolic shape of Twan(y) (Mohles, 1997), which is more appropriate for
Trel — 1, that the statement remains valid that the strengthening contribu-
tion even of rather small particles (dy > 4nm) is independent of temperature
(no thermal activation).

Equation (88) shows that 7y, depends on the strain rate only weakly,
but that it decreases with increasing temperature considerably. However,
even at high temperatures the strengthening effect of solutes does not vanish
entirely. This is all in agreement with experimental findings (e.g. (Kocks,
1985)).

(88)

Tsol = T0

4 3-D aspects

When dislocations glide in their glide planes they will encounter other ones
in other glide planes. These dislocations interact mutually as described by
elasticity theory, but they are also subjected to a number of reactions and
effects that are intrinsically 3-dimensional. They lead to specific patterns of
dislocation arrangements. For instance in face centred cubic crystals during
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tensile or compression tests, the dislocations form cells with high dislocation
density in the cell walls and low density in the interiors. In contrast, fatigue
tests with thousands of loading and unloading cycles tend to lead to alter-
nating layers of high and low dislocation density. One aim of 3-dimensional
dislocation dynamics simulations is to investigate the corresponding pattern
formation and the associated work hardening effects. However, such inves-
tigations are still in their infancy due to the enormous computational effort
of dislocation dynamics simulations. Here some fundamental aspects of 3-D
dislocation motion are compiled, in particular those with implications on
the implementation of dislocation dynamics simulations.

4.1 Non-elastic 3-D effects

The elastic interaction between dislocations has already been described
in section 1.3 for straight dislocations and in section 2.2 for arbitrary config-
urations. The present section outlines additional effects which in particular
include irreversible dislocation reactions.

Intersecting dislocations When dislocations on different glide planes
cross each other they impose a shape change on each other. Several cases
are to be distinguished depending on the directions of the line and Burgers
vectors. In figure 41, four cases are plotted in which two initially straight
dislocations cross each other at right angles. In each of these cases and
in general, every dislocation acquires a piece of dislocation length (added
local line vector) of the magnitude and direction of the other dislocation’s
Burgers vector. This is simply a consequence of the Burgers vector being
a shift vector. In the cases (a) and (d), one of the two dislocations only
gains or loses length of the other dislocation’s Burgers vector, whereas in
the other cases both dislocations acquire a jog or kink.

In figure 41(b), each edge dislocation gets a short piece of screw dislo-
cation lying in the same glide plane. Such local character changes in the
same glide plane are called kinks; they can accompany the dislocations’
glide without resistance (planar Peierls stresses are disregarded here). The
edge dislocation in figure 41(d) has also acquired a kink, and the screw
dislocation in 41(c) also has a kink: the line vector of this kink lies in the
screw dislocation’s glide plane, which in the present case is defined by the
line vector and the direction of motion (see section 1.1).

The upper dislocation in figure 41(a) and the edge dislocation in 41(c)
have acquired a jog, i.e. a segment with a line vector s normal to its glide
plane (see 41(a)). With their own line vectors but unchanged Burgers vec-

tors, these jogs define their own glide planes n;,,. The glide directions of
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(a) (b)

Figure 41. Straight dislocations after intersecting with another one normal
to it; (a) two edges with normal Burgers vectors, (b) two edges with parallel
Burgers vectors, (c) edge and screw with normal Burgers vectors, (d) edge
and screw with parallel Burgers vectors.

the dislocations containing these jogs lies in the respective jog’s glide planes
Njog- This means that these jogs can, in principle, glide along with their par-
ent dislocation’s motion. If the glide plane n;,, is as "smooth” (section 1.4)
as the dislocations’ glide planes, the jogs will glide without additional resis-
tance. However, this is not necessarily the case; additional Peierls stresses
may apply for the jogs.

In figure 42 the intersection of two screw dislocations is considered;
their line vectors (and consequently the Burgers vectors) are normal to each
other. Both screws acquire jogs during the intersection. Unlike in the pre-
vious cases of figure 41, the jogs cannot glide with the rest of the dislocation
because the direction of this motion does not lie in the glide plane of the
jogs, as can be seen in figure 42(b). There the jogs may wait for approaching
vacancies in order to climb in the indicated direction. This allows only for
slow overall motion because the vacancy density is usually very low. On the
other hand, at high stresses driving the dislocation forwards, the jogs may
be dragged along, thereby emitting interstitial atoms. This can happen at



132 V. Mohles

(a) (b)

Figure 42. Straight screw dislocations after intersecting each other; (a)
both screws acquire jogs; (b) the jogs must climb in order to follow the dis-
location’s motion by emitting or attracting interstitial atoms or vacancies.
When the distance between the grey planes equals several atom layers, the
jogs between them are called superjogs.

higher rates because the number of interstitials that can be generated and
diffuse away is virtually unlimited. For motion in the opposite direction,
or for jogs of opposite sign, the roles of vacancies and interstitials are ex-
changed; however, the energetics for vacancy and interstitial creation and
mobility differ.

According to section 1.3 the critical stress 7jog required for the disloca-
tion to drag the jogs is Tjog = Fjog/ (bdjog), Where djo4 is the average distance
between them (figure 42(b)) and Fjog is the force to drag one jog. The lat-
ter is related to the energy FE. / to create a vacancy/interstitial, which is
expended while the jog climbs by the distance dpiane ~ b to the next plane.
Assuming that the climb force is homogeneously distributed over the length
dplane such that By /; = dplaneFjog yields

Tijog = Ev/i/ (bdplancdjog) (89)

For aluminium, for instance, the energy E, to create a vacancy is about
0.67¢V (Gottstein, 2004); the energy F; of interstitial atoms is about two to
four times higher. Even higher energies can occur when a screw dislocation
is intersected by several other screws in the same glide plane. In that case,
the length of the jog amounts to several times the Burgers vector. Such
larger jogs are called superjogs; in order to move them with the gliding
screw dislocation, several interstitials or vacancies must be created at once
for every step of motion. Accordingly, the respective energy and the force
of the superjog are larger.

In figure 42(b) it can be seen that the screw dislocation bows out between
the jogs, like between all obstacles. The curvature of bending is limited by
the obstacle force in relation to the line tension (see section 2.1), or by
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the normalized obstacle strength k = Fjo./(25) of equation (74). With
S ~ pub?/2 and the values p = 27GPa, b = 0.286nm and E, = 0.67eV
for aluminium, & for vacancy creating jogs is found to be about 0.17; this
means that the bending is weaker than in figure 31(a). Interstitials creating
jogs or superjogs will cause stronger bending. In case of superjogs with
k > 1 the dislocation will bend forwards like in the case of the Orowan pro-
cess, but annihilation like in figure 18 will not occur (immediately) in the
present case because the dislocation bows involved lie in parallel but differ-
ent planes. Further details on jogs and superjogs can be found in (Hull and
Bacon, 1992).

A possibly important effect of climbing jogs on plasticity is that this
motion is thermally activated. This can introduce a strain rate and temper-
ature dependence of plasticity in a similar way as solutes do (section 3.4).
But the activation events are different and involve different activation ener-
gies; moreover the vacancy density and the jog density play important roles.
Since these densities inevitably increase with continued plastic deformation
as dislocations intersect each other and move on, work hardening can be
affected in particular.

Dislocation reactions Dislocations can be subjected to exothermal re-
actions with other dislocations. A trivial example for this is when two
dislocations with opposite sign meet in the same glide plane: they will an-
nihilate each other irreversibly, like in the case of the Orowan process. Even
when they are not in the same glide plane but come very close (neighbouring
parallel planes, for instance), they can annihilate spontaneously and thereby
release a row of vacancies or interstitial atoms. These reactions lower the
free energy of the system and have a softening effect because the dislocation
density is lowered.

A dislocation reaction can also occur when two dislocations in different
non-parallel glide planes meet and partially annihilate, thereby lowering
their combined energy. A prominent example for this is the formation of
a Lomer-Cottrell lock, in which two partial dislocations lying in different
glide planes react, as outlined in figure 43: The reacting partials P2 and P3
have the Burgers vectors a/6[121] and a/6 [112], respectively. They have
the same magnitude b, = b/3'/2 and, for the most part, point in opposite di-
rections. The resulting dislocation after the reaction has the Burgers vector
a/6[011] with the length b,c = b/3. The energy of this dislocation is much
lower than the combined energy of the reacting partials (E* ~ b2, equations
(6) and (8)), therefore, this reaction is favourable and almost irreversible. In
a realistic network of curved dislocations the reaction will only occur over a
finite length, as indicated in figure 43. High stresses on the partials P2 and
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Figure 43. A Lomer-Cottrell-Lock formed locally by two Shockley partial
dislocations from different planes. The length of the combined Burgers
vector a/6 [011] is particularly small.

P3 may unzip this lock, but this is unlikely to happen because usually, the
initial dissociated dislocations have been driven by an external stress such
that they form the lock; hence essentially, a stress inversion is required to
unzip this lock. The Burgers vector of the combined lock dislocation does
not lie in either of the two initial glide planes. Therefore, this dislocation
cannot glide with the original dislocations and hence locks them.

Another possible dislocation reaction can occur when dislocations inter-
sect, like in figure 41(b). By the indicated motion of the two dislocations in
this figure, a cube of material will be transformed into the shape of figure
44(a). Two alternatives to create the latter shape are indicated in figures
44(b) and (c). In figure 44(b), two straight edge dislocations with parallel
Burgers vectors and normal line vectors move in the same direction; in 44(c)
two angular dislocations move. The particular feature to be noticed here is
that when the angular dislocations meet in their angles, this arrangement
is indistinguishable from the case when the straight dislocations of figure
44(b) intersect. In this moment the configuration may switch from (b) to
(¢) or vice versa; this switch is called a collinear reaction. This reaction
can be favourable for instance under certain stress conditions, or driven by
dislocation length reductions which are possible in real cases where disloca-
tions are actually curved.

A collinear reaction may also happen to the dislocations sketched in
figure 41(b), which move in opposite directions and are therefore certain to
intersect. The dislocations are driven in the indicated directions by given
stresses, the origin of which plays no role. After the reaction occurs, the
result is that of figure 44(d): for each of the angular dislocations created,
the driving stresses on the two arms are opposing each other. At least in
part this impedes further glide of the angular dislocations. Moreover, their
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Figure 44. The shape in (a) is created from a cube by the dislocation
motion in figure 41(b), or by the combined motion of the straight or angular
dislocations in (b) or (c¢). A switch between the configurations (b) and (c¢) is
possible when the two dislocations intersect. Likewise, (d) can be the result
of a switch when the dislocations of figure 41(b) intersect. The resulting
angular dislocations are essentially immobile.

glide can no longer lead to the shape of figure 44(a). Similar to the case
of dislocation dipoles (section 1.3), angular dislocations are immobile or at
least less mobile, so that new mobile dislocations must be created for con-
tinued plasticity. From this, a rise in material strength is to be expected,
increasingly so with the number of dislocation intersections. These, in turn,
increase with plastic strain. Dislocation dynamics simulations (Devincre
et al., 2005) have approved that the collinear reaction in fact makes a sig-
nificant contribution to work hardening.

Non-planar dislocations The angular dislocations of the previous sec-
tion generated during dislocation intersections are one example of non-
planar dislocations: each dislocation arm is curved in its own glide plane,
and two planes are involved. Another case of a non-planar dislocation is
given when a dislocation leaves its primary glide plane over a certain length.
Here, like in section 1.3, a distinction between climb and cross-slip must be
made: a piece of dislocation with screw character may glide into another
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Figure 45. (a) Double cross slip of a piece of screw dislocation, arrows
indicate glide directions; (b) a dislocation overcoming a particle by a com-
bination of cross slip (big arrows) and climb (smaller arrows); (¢) when a
particle is overcome by cross slip alone, two prismatic dislocation loops of
opposite signs are left behind, which may vanish later on by diffusion along
the particle interface.

glide plane; however, a piece of edge dislocation can only climb. The latter
involves material transport (diffusion) and is, therefore, slow.

In figure 45(a) a case of double cross slip is sketched: a piece of dislo-
cation changes its glide plane twice. Changing the glide plane involves an
angle to be created on the dislocation, which is energetically unfavourable.
Hence there must a driving force, like from an external stress, for cross
slip to occur. In contrast, climb may occur when there is an abundance of
vacancies: they are attracted by edge dislocations, thereby making them
climb.

Since dislocations are curved and have mixed character in general, cross
slip and climb will have to occur concurrently. This means for instance that
a driving force for cross slip will at the same time act as a driving force
for the generation or absorption of vacancies or interstitials: the line ten-
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Figure 46. Cross slip of a dissociated screw dislocation. The grey area
indicates the stacking fault.

sion will pull on the edge parts of the dislocation. In figure 45(b) a case is
sketched where a particle is about to be overcome by a dislocation. This
particle cannot be sheared. Hence it may be overcome by the Orowan pro-
cess (section 2.1), or by a combination of cross slip and climb (large/smaller
arrows in figure 45(b)). When cross slip and climb can take place at equal
velocities, the dislocation can locally leave its primary glide plane near the
particle and move back to this plane beyond it. On the other hand, when
the edge components of the dislocation are unable to climb (for instance due
to low temperature), the dislocation may overcome the particle by creating
two prismatic dislocation loops, as sketched in figure 45(c). The prismatic
loops can vanish later on by diffusing vacancies or interstitials, while the
dislocation moves on in its primary glide plane. The details of what actu-
ally happens depends on a number of parameters like all stress components
and the energetics and densities of vacancies and possibly interstitial atoms.
Here the term ”energetics” summarizes all activation energies for the cre-
ation and migration of vacancies and interstitials.

A dissociated screw dislocation cannot cross slip directly. One model for
cross slip in this case is that the corresponding partial dislocations recom-
bine to form a perfect dislocation over a certain length L before this piece of
dislocation glides into the secondary plane. There it may dissociate again,
as indicated in figure 46. The recombination of the two partials is a ther-
mally activated event similar to that described in section 3.4 for overcoming
obstacle walls. This explains the fact that cross slip is observed especially
at high temperatures. In materials with a high stacking fault energy, like
aluminium, the distance between the partials is very low (equation (23)).
This means that the corresponding activation enthalpy in these materials
is low, and that cross slip is very frequent even at low temperatures. This
is in fact observed in aluminium alloys. However, it should also be noted
that molecular dynamics simulations in literature have demonstrated the
possibillity that a dissociated screw dislocation can cross slip without the
recombination of the partials. In that case, cross slip must be accompanied
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Figure 47. Operation of a Frank-Read dislocation source. The points indi-
cate where the dislocation enters from another plane. In (b), two dislocation
parts with edge character and opposite sign are about to annihilate each
other; in (¢) an expanding loop has been generated, and the new source is
reestablished. The dashed line in (a) indicates a potential surface of the
material.

by climb of the edge components of the partials.

Dislocation sources A very important aspect of cross slip is that it gen-
erates a Frank-Read dislocation source that can generate a virtually infinite
number of new dislocations. Figure 47 represents the upper plane of figure
45(a), where double cross slip had just occurred. Under a given stress the
dislocation segment bows out forwards between the points in which it enters
this plane. When a critical stress is reached, the dislocation can move on
to form the configuration of figure 47(b). Then, two dislocation parts with
edge character and opposite sign annihilate each other (two half planes of
atoms combine to form a full plane). The result is that of figure 47(c): an
expanding dislocation loop enabling plastic deformation and a new segment,
which can act as a dislocation source again.

The aforementioned critical stress is similar to that for the Orowan pro-
cess: it depends on the distance between the fixed points, like Torowan Of
equation (26) depends on the free space L. — 2R between obstacles. How-
ever, this is only an approximation because the dislocation parts outside the
plane of figure 47 also cause significant stresses. Moreover, once the source
has created a loop or several ones, these loops shield the external stress to
some degree: the upper half of the loop in figure 47(c) repels the segment in
its centre, pushing it downwards, and the lower part of the loop attracts the
segment, also pulling it downwards. This means that only a finite number
of loops can be generated at a given external stress, before the source ”dries
up”. In dislocation dynamics simulations (as of yet, unpublished) it has
been shown that this shielding effect is essentially independent of the size
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of the (expanding) loops. For continued plastic deformation, the external
stress must be increased further. Obviously this shielding effect contributes
to work hardening.

When a dislocation changes its glide plane in a single point and ends
on a free surface, this point can act as a spiral dislocation source. This
is indicated in figure 47(a) by the dashed line: if this line describes a free
surface and only the right half, for instance, of the figure is actually present,
then the remaining dislocation arm can spiral around the fixed point and
create half dislocation loops extending to the right into the material, just
as if a mirrored counterpart were present on the left side (see section 1.3).
The single fixed point may stem from half a double cross slip event (for
instance, only the right half of figure 45(a)) or it may be one ending point
of a superjog (see figure 42(b)).

4.2 Computational Aspects for 3-D Simulations

Some aspects of 2-D dislocation dynamics simulations, like segmentation,
have been covered in section 3.1. They remain valid for 3-D simulations, but
additional considerations are necessary in 3-D. For instance, decisions must
be made on which glide planes are active, how cross slip is activated, and if or
how climb is enabled. Generally speaking, the local direction of motion must
be chosen. The subsequent considerations originate from the present author.
However, there are a number of other successful approaches in literature, all
with specific characteristics, see e.g. (Zbib et al., 2004), (Zbib et al., 2000a),
(Zbib et al., 2000b), (Schwarz, 1999), (Devincre et al., 2001), (Devincre and
Condat, 1992), (von Blanckenhagen et al., 2004), (von Blanckenhagen and
Gumbsch, 2004), (Hartmaier and Gumbsch, 2004) (Ghoniem, 2000).

Direction of motion The direction of motion is unequivocal in 2-D (nor-
mal to the line vector, figure 28), but in 3-D, the glide plane must be chosen.
This can be done by using predefined glide planes, depending on the crystal
structure, and switching between these planes randomly with certain prob-
abilities. These probabilities depend on temperature and on the resolved
shear stresses in the glide planes of choice. But they also depend on the
local dislocation configuration: a certain length of screw dislocation is re-
quired for cross-slip. But since dislocations are curved in general, it remains
difficult to define such a critical length. In case of dissociated dislocations,
the partial dislocations need to be merged into a perfect one over a certain
length L in order or cross slip, as indicated in figure 46. This is known to
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occur in a thermally activated manner, similar to the case of a dislocation
overcoming an obstacle wall in figure 39. The merged length L may be used
as a parameter to formulate the cross slip probability. But as seen later on,
the merged length is not well-defined either.

An alternative to the approach above with predefined glide planes is to
allow the simulated dislocations to move in any direction normal to its line,
in principle, and to confine the motion to the preferred directions by other
means. For instance, Xiang and Srolovitz (Xiang and Srolovitz, 2006) have
applied the level-set method to simulate a dislocation overcoming a second
phase particle. The authors used a strongly reduced dislocation mobility (a
large drag factor B) for climb directions in order to account for the slowness
of climb relative to slip.

Another concept using dislocations allowed to move in any direction is
suggested subsequently. In this concept, a 3-D Peierls potential is used to
make the dislocations prefer certain directions. It involves the symmetry
and periodicity of the crystal structure under consideration. A dislocation
tends to remain in low energy states within this potential; minor devia-
tions cause stresses that drive the dislocation back. But larger deviations,
caused for instance by thermal pulses, can make the dislocation leave its
primary glide plane. In figure 48(a) this concept is sketched. In every point
equivalent to that indicated by 707, the dislocation is free to move into the
directions indicated by A, B, or C, and it will do so with the probabilities
P4 > Pg > P when the arrow in figure 48 indicates the Peach-Koehler
force of equation (18).

In general, a dislocation would be curved in its glide plane, and it may
even have kinks as indicated in figure 48(b). There, a piece of the dis-
location (grey) has left its primary glide plane and moved into a parallel
one. This motion involved double cross slip and, at the same time, climb.
This means that a number of vacancies (or possibly interstitial atoms) have
been created or consumed. In the concept of the 3-D Peierls potential, this
means that also the energy for vacancy formation and consumption is to be
considered for every geometrically necessary vacancy. The strength of the
Peierls potential defines the degree of confinement.

Dislocation merging An important difference between 2-D and 3-D dis-
location dynamics simulations is that there are non-trivial dislocation reac-
tions possible in 3-D. Examples are the lock formation in figure 43 and the
switch between the configurations of figures 44(b) and (c). In such reactions,
dislocations can touch or intersect each other, which implicates numerical
problems due to the stress singularity in the dislocations’ cores. In order
to avoid such singularities, all stress components defined by stress formulas
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Figure 48. Concept of a 3-D Peierls potential to confine a dislocation
capable of moving in any direction to glide planes. Darker shades of grey
indicate a higher potential energy. (a) Straight screw dislocation along the
y-axis; (b) a curved dislocation (with kinks), a piece of which (grey) has
moved into a parallel glide plane.

like (49) or (58) can be multiplied by a function feore(r) like

72

2 2
e+ TCore

feore(r) = (90)
which accounts for the atomistic nature of the dislocation. Here, r is the
distance from the dislocation and r¢.e ~ b is an adjustable parameter for
the core radius. Equation (90) ensures that all stress components vanish
in the dislocation core. Applying this function is essentially equivalent to
using Peierls’ dislocation model (Peierls, 1940) instead of Volterra’s purely
elastic approach (Volterra, 1907), on which all previous functions are based.

Besides avoiding the stress singularity in the code, a decision must be
made for dislocation dynamics simulations on how to handle the joined dis-
location part, like the Lomer-Cottrell lock (figure 43). One possibility is
to ignore the joining, such that the dislocations coincide as indicated in
figure 49(a). As a result of feore ~ 12 for r < reore, and 7 ~ 771 for all
elastic stresses, actually a linearly increasing interaction stress proportional
to r would act inside the cores, which keeps attracting dislocations close
together in a numerically stable way. This approach allows the simulations
to automatically decompose the lock back into the two partial dislocations,
provided that strong stresses on the side arms P2 and P3 in figure 43 tear
them apart. This approach is convenient and useful if the dislocations that
have merged are distinguishable in general. In the case of the Lomer-Cottrell
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(a)

(b)

Figure 49. Merging of two dislocations (a), possibly in different glide
planes, by the introduction of triple junctions (b). For the reverse effect
from (b) to (a), the triple junctions may move towards each other until a
quadruple junction is formed. If the Burgers vectors b; and b, differ, the
respective dislocations are separated.

lock the distinction can always be made because the Burgers vectors of the
respective partials differ.

On the other hand, dislocation reactions may also occur between dislo-
cations with equal Burgers vectors, like in the case discussed in section 4.1
with regard to figures 44(b) and (c). There may even exist yet unidentified
kinds of dislocation reactions. In such cases, ignoring the ambiguity of the
dislocation configurations after intersections or after merging can lead to
possibly severe errors in continued simulated plasticity. Therefore, in gen-
eral, any possible cross-linking of dislocations should be considered. This
can be done for instance by allowing dislocations to fully merge in one or
several calculation nodes, i.e. in dislocation pieces with combined Burgers
vector, as indicated in figure 49(b). Merging may start in a single node
when two nodes from different dislocations come very close. This works for
attracting as well as for repelling dislocations which are driven towards each
other by external stresses. Starting from the first merged node (quadruple
junction), its neighbour nodes will (or will not) attract each other and ex-
tend the merging to a piece of dislocation with two triple junctions at its
ends. The reverse effect will be accomplished by the triple junctions mov-
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ing towards each other until a quadruple junction is formed. When this
happens, the junction can be resolved, and the four adjacent dislocation
segments can be rejoined to two full dislocations as the Burgers vectors
allow. In the case that all four Burgers vectors are equal (b; = b,) in fig-
ure 4.9(b)), a decision is required on which dislocation segments are to be
joined, depending on the local stresses.

Calculation effort In dislocation dynamics simulations (2-D or 3-D),
the largest numerical effort lies in the calculation of the elastic interaction
stresses between dislocation segments. Roughly spoken, every segment in-
teracts with every other segment, which leads to an effort proportional to
N2. In simulations, the number of interaction partners must be reduced to
those within a certain cut-off distance d..; in order to keep the effort low.
However, d.,;+ must be pretty large because the dislocation stress decreases
only as 1/dcy. For N segments with M interaction partners each, this leads
to a calculation effort per integration step proportional to N - M, where N
and M can easily exceed 10000. Assuming that one segment-segment inter-
action of a single time step takes one microsecond to compute, it becomes
obvious that the simulations are slow, given that at least tens of thousands
of time steps are required for a meaningful simulation. Therefore, when
aiming for dislocation dynamics simulations, measures to reduce the nu-
merical effort need to be planned from the start.

Three measures used by Mohles (Mohles, 2001c) have proved to be quite
successful. Firstly, it should be kept on mind that the calculations will im-
plicate several small error contributions. Examples are the error which is
introduced by a finite cut-off radius d.,t, or the errors involved with the
spatial resolution As; and with the finite stress increments A7 as discussed
in section 3.1. All error contributions have to be negligible. Reducing the
error limits involved with one special respect often means dramatically in-
creased calculation times. The overall error may still remain large as a
result of other error influences. Hence calculation time would be wasted; it
is, therefore, extremely useful to have equal error limits for all error influ-
ences involved.

Another measure to reduce the calculation effort is to introduce the pos-
sibility of local equilibria. Often, only parts of the dislocations move fast
while the rest is hardly moving. This latter part can be put to sleep until
something happens that might destroy the local equilibrium. The sleeping
parts still act as interaction partners, but they do no stress evaluations on
their own. When the external stress is increased, or when the stresses from
other dislocation parts in the vicinity changes due to motion, the sleeping
parts should be "awakened” to newly evaluate whether the state of local
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equilibrium is still valid. If so, these parts can be put back to sleep, and
otherwise they start moving. The definition of such local equilibria intro-
duces another error contribution, the amount of which should again be kept
as small or large as the other ones.

Thirdly, it can be exploited that the interaction stress of distant disloca-
tion segments is low. Like in molecular dynamics simulations, the numerical
effort can be reduced to N+ M (dcyt) where M (deys) is the number of interac-
tion partners within a cut-off distance dcy¢, beyond which, all contributions
from interaction partners can be neglected. To find the relevant interaction
partners fast, the cell method can be applied. This consists of two steps
both the efforts of which scale with N': Firstly all N objects (dislocation
segments or atoms in the case of molecular dynamics) tell ”the space” where
they are located; this space memorizes these locations in a discrete way, for
instance by means of a 2-D or 3-D array of pointers or indices represent-
ing subspaces (cells). The array covers the whole simulated space, and the
pointers or indices point to the corresponding objects. Secondly, all objects
can ask "the space” which other objects are close (d < dcyt) by examining
the neighbouring subspaces. Hence the neighbour objects are found quickly
with an effort that scales optimally with N*.

In the case of molecular dynamics, M (dcy < N), so that the numerical
effort is lowered strongly. But in the case of dislocation segments, the condi-
tion M < N it is not quite sufficient because the interaction is long-ranged:
T ~ d~'. This means that d.,, must be chosen pretty large so that the
number M (dcyt) also gets large, M ~ N. Hence the efficiency gain from
the cell method alone is limited.

However, the cell method can be refined by taking basic physical prin-
ciples into account. For instance, the interaction between very distant seg-
ments can change only slowly in time, depending on their velocities. Hence
the interaction stress of the more distant segments needs to be calculated
less often. This principle can be utilized most efficiently by introducing mul-
tiple shells of interaction distances around segments. Each segment should
remember the interaction stresses of all segments which are located in cer-
tain shells (distance intervals) around it, separately for each shell. Hence,
every segment can re-use the stress values it remembers instead of recal-
culating them. Since the outer, larger shells containing many interaction
partners collects only very distant partners, the high calculation effort for
this shell is required only infrequently.

With all the above measures to reduce the numerical effort combined,
discrete dislocation dynamics simulations are speeded up by several orders
of magnitude, increasingly so for larger simulated volumes.
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1 Introduction

Ideal brittle fracture dominates the failure of ceramics and semi-conductors at low
and medium temperatures. The only irreversible process, in this case, is the break-
ing of atomic bonds.

During the fracture of metals, even in the most brittle ones, a certain amount
of plasticity is involved. This plasticity is responsible for the broad variations in
the fracture resistance of these types of materials. The discrete nature of plasticity,
i.e. the dislocations, their movement and arrangement, plays a key role for many
phenomena in this field. For example: the cleavage fracture of single crystals and
polycrystals, the failure of interfaces and grain boundaries, the plasticity induced
fracture of brittle particles, the formation of nano- and micro-cracks, the initiation
of pores, the fatigue crack propagation, etc. These phenomena can be usually
separated into two sub-problems — the evolution of the local stress field on the
nanometer scale, where the fracture processes take place and the intrinsic fracture
process itself, which causes the separation of the material. The local stresses on the
nanometer scale are determined by the external loading and the internal sources,
for example, the stresses induced by the thermal mismatch or the stresses induced
by dislocations.

Hence, the main components for solving these problems are the stress fields of
a crack and the stress field of dislocations in the presence of a crack. Real cracks
can have a complex three-dimensional (3D) shape and a complex 3D dislocation
arrangement. For this case the tools are available, however the calculation is very
cumbersome and usually difficult to interpret. However, for the explanation of
many phenomena the much simpler 2D solution is sufficient or can be used to
estimate what may happen in the more complex 3D case.

In the following, a short introduction to and a discussion of the stress fields of
a crack and the dislocations in the vicinity of the crack is presented. The second
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part of this chapter is devoted to the deformation processes at the crack tip un-
der cyclic loading, under moderate loading and their consequences to the fatigue
crack propagation behaviour of metals. In fracture mechanics textbooks or text
books dealing with fatigue and fracture, the phenomena are described by classi-
cal elasto-plastic continuum mechanics. Such description of the deformation in
front of a crack is suitable, if the plastic deformed region is large compared to
the characteristic dimensions of the dislocation substructure and when the consid-
ered volume elements are also larger than this characteristic dimensions. However,
when the size of the plastic zone and the fracture controlling volume elements are
smaller than this size the discrete nature of the dislocation has to be taken into
account. In semi-brittle metals and alloys the size of the plastic zone, when the
crack starts to propagate, is often smaller than these characteristic dimensions and
the fracture process is often controlled by the stress fields at even smaller scales.
Therefore the knowledge of the stress field of a crack as well as the stress field
of the dislocation in the vicinity of the crack and the evolution of the dislocation
structure are essential for the understanding of these processes.

For very low crack growth rates, the situation is very similar in all materials
under fatigue, the size of the cyclically plastic deformed zone and the size of the
dislocation substructure becomes smaller than the characteristic dimension of the
microstructure . Furthermore the zone where the separation of the material occurs
is even smaller, it is in the order of atomic spacing. Hence the stress field induced
by the applied load and the dislocations in the imidiate vicinity of the crack tip are
essential.

2 Stress field of a crack in a linear elastic material

There are many different possibilities to derive the stress field of a crack in a linear
elastic body, for details see, for example (1-3). In this subsection, only the solution
will be shortly discussed. The different types of loading a crack can be described
by three basic modes. Those are tension perpendicular to the crack plane, shear
in the crack plane perpendicular to the crack front and shear in the crack plane
parallel to the crack front, they are schematically illustrated in Fig.1 and called
mode I, mode II and mode III loading, respectively. Any arbitrary loading of a
crack can then be ascribed by a combination of these basic loading modes. First,
let us consider the complete stress fields for the three types of loading for a crack
in an infinite plate, where the crack is located at the x; axis in the x3-x; plane
with the crack front parallel to the 3 axis. In the coordinate system given in Fig.2,
with the subscript L referring to the left hand crack tip, R to the right hand crack
tip and C to the center of the crack, the stress field of a mode I crack in a linear
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Mode | Mode I Mode I

Figure 1: Schematic illustration of the three modes of loading a crack. In mode I, the

opening mode, the loading is normal to the crack plane. In mode II, in-plane shear, the

shear loading is in the plane of the crack normal to the crack front. In mode III, antiplane
shear, the shear loading is in the plane of the crack along the crack front.

\9[{
- X

Figure 2: Coordinates for the description of the general stress field of a crack with length
2a.

elastic isotropic solid is

011 = —0A+o0a ;i [2 cos(©* — O¢) + 2sin O¢ sin OF
~ sinOgpsin(0©* + Op — O¢)} —sin Oy sin(O* + Of, — @C)}
oy = o4 ;C {2 cos(0* — O¢) — 25in O sin O* (1)
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All other stresses are equal to zero, except
o33 = V(011 + 022 — 0A). ()

The applied stress o 4 is the tensile stress oo9 at large distances, where

022 — 0A,033,011,012 — 0 (3)
asr — oo.
For the mode II loading
rc . %
o111 = —022 — 20’A « sm(@ - @C)
r
0o = o4 ;i {sin@R cos(@* +Or — O¢)
r
+ sin©Oypcos(0F + O — O¢) — 2sin O¢ cos 6*} %)
Ol = 04 ;i {2 cos(0@* — O¢) + 2sin O¢ sin OF
r

— sinOgsin(O@* 4+ O — O¢) —sinO sin(O* + O, — @c)]

and all other stress components are equal to zero except the stress in the z3 direc-
tion

o33 = v (011 + 022) . (5)

At large distances from the crack 019 = 04 and 011 and o925 — 0.
For mode III loading the stress field is

o5 = —oa,sin(©" - 60) ©6)
023 = o0a ;i cos(©@* — O¢).

Ineq. (2), (5) and (7)
re = \/z?+a3 @)
L = \/(961 +a)? + 22

rR = \/(xl—a)2+a:§

r* = \J/rLrr
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O¢c = arctan <$2> ®)
Ty

x
O, = arctan( 2 )
r1+a

T
Or = arctan( 2 )
1 —a

1
0r = 2(@L +Ogr)
and
-7 S {9076143 (—)Ra 9*} S . (9)

These complete analytic expressions of the general stress fields are usually not
given in textbooks related to fracture mechanics. They are presented in this com-
prehensive form in “Dislocation based fracture mechanics” (3). For the under-
standing of the effect which the size of the crack has on the crack affected region,
these general expressions are very helpful.

The contour plots of the normalized maximum shear stress

T 2 1 2
= — 10
o \/012 + , (11— o) (10)
for the mode I, mode II and mode III crack are shown in Figs.3, 4, and 5, respec-
tively. The plots are presented using two different scales, the first one gives an
overview and the second one presents the stress field in the near crack tip region.
In Fig.6 the contour plot of the normalized “pressure” term of the stress field

9 (011 + 022) (11)
0A

is plotted for the mode I and mode II loading in order to give an impression of the
difference in values of tension to shear stress components of the stress field. For
the mode III loading this term is zero. As mentioned the applied stress o 4 is equal
to the 099, 012 and o093 at large distances from the crack for the mode I, mode
II and mode III loading, respectively.  From the contour plots it is evident that
stresses at distances in front of the crack larger than the length are not significantly
affected by the presence of the crack. The maximum increase of the stress at a
distance equal to the crack length is about 10% of the applied stress. Only at
distances smaller than about 1/3 of the crack length the increase in the maximum
stresses is larger than 20 4. Near the crack tip the stress field can be expressed in a
much simpler form, which one can expect from the contour plots in Figs.3-5. For
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the mode I loading

Kr G) . O . 30
o1l = cos 1 —sin _ sin

V2o 2 2 2

Ky © O 30

— 1+ si i 12

0929 2 cos 9 < + sin 9 sin 9 ) (12)

Ky O © 30
o120 = CcOs _ COS

sin
Vomr 2 2 2

for mode II loading

Kir . © €] 30
o011 = _\/27rr sin 9 <2+cos 9 CcoS 9 >
Kir . © C) 30
099 = . sin 9 cos 9 cos 9 (13)
Ky © .6 30
o123 = 2y cos 9 (1 — sin 9 sin 9 >
and for the mode III loading
o3 = 7\1/(2,7:” sin(;) (14)
o293 = Kirr cos@
V2rr 2

where r = rr and © = Op in Fig.2. The terms K, K;; and K7 are given
by oa+/ma, where the applied stress o4 is the far field 092, 012 and o23 for the
mode I, mode IT and mode III loading, respectively. The stress field near the tip is
therefore characterized by a single loading parameter, /', which is called the stress
intensity factor, a radius (1/v/277) and an angular dependent term. A numerical
comparison of the near tip expression with the general stress fields eq.(2, 5) and
eq.(7) as well as a closer look to the contour plots show that the eqs.(13, 14) and
(15) are a very good approximation for the crack tip stress fields at » < 0.1a.
These equations for the near tip stress field are not only valid for a crack in an
infinite sheet, they describe the near crack tip stress field in any elastic material,
only K becomes geometry dependent. Usually K can be calculated by

K =oaymaY (a/W) (15)

where Y (a/W) is a dimensionless geometry parameter, which is expressed as a
function of ratio, crack length devided by a characteristic size parameter of the
considered geometry.
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Figure 7: Schematic illustration of dislocation arrangement to realize a mode I (a), mode
II (b) and mode IIT deformation of the crack tip (c)

From the scaling point of view for the consideration of cracks in a material it
is important to repeat that the size of the K-dominated region in front of a crack
scales with crack lenght, i.e., if the crack length is 1um the K-dominated region
is 100 nm or 200 nm, depending on the accuracy, if the crack length is 1 m, the
K -dominated region is about 100 mm.

3 Dislocation crack tip interaction

Due to the very high stresses in the vicinity of a crack tip one expects a plastic
relaxation even at relatively small loads. Such plastic deformations have to be re-
alized by the generation and the movement of dislocations. The generation of dis-
locations is governed by the local stresses and the available sources. When the den-
sity of activiable sources are scare, the crack tip can also act as dislocation source.
The movement of the dislocations is controlled by the Peach-Koehler force, which
is determined by the character of the dislocation and the local stresses. Hence, the
local elastic stresses play a central role in the plastic deformation. They are given
by the superposition of the stresses induced by the applied loading and the stresses
induced by the other dislocations. The stress fields caused by the applied loading
in the presence of a crack are introduced in the previous section. Since the crack
flanks are traction free, the stress field of dislocations in the vicinity of a crack
differs from the stress field of a dislocation in an infinite body. Similar as in the
case of the stress fields of a crack, we limit our consideration to the 2D-problem
solely. In such 2D considerations the plastic deformation of the crack tip under
mode I and mode II loading are realized by edge dislocations, whereas the mode
IIT crack tip deformation are realized by screw dislocations as illustrated in Fig.7.
In the following, this derivation for the stress field of an edge dislocation near a
crack tip will be shortly introduced. For more details and more general solutions
(not only the near crack tip expression) the reader is referred to the excellent book
(3) and overview articles (2) and (6).
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3.1 Linear elastic analysis of the stresses and deformations induced by an
edge dislocation near a crack tip

Let us assume an isotropic, linear elastic, and unbounded body. The defor-
mations u and stresses o are desribed by two complex potentials ¢(z) and w(z)
according to Kolosov as follows:

o ton = 2(¢'(2)+¢(2)
o920 —io12 = ¢'(2)+w(2)+ (2 —2)¢"(2) (16)
. 1 N
u=utiug = Qu(w(z)—(Z—ZW (2) —w(2)) -

Here i = \/—1, 2 = &, + i 22 is an arbitrary point in the complex plane. A prime
denotes a differentiation with respect to z and a bar lables the complex conjugate
function. The elastic constants are the shear modulus, p, and x = 3 — 4 v for plane
strain conditions, where v denotes the Poisson ratio.

The complex potentials of an edge dislocation with the Burgers vector b =
(bs,,bs,) in its complex form b = b, + i by, at the point zg = x1, + i x1, are
given by Eq. 17.

2A
/ —
Po(z) = z— 2
2121 2(2’() — Z(])
‘ = — A. 17
wy(2) . (2 — 20)2 (17
The constant A = 27”;‘;’ 1) characterizes the strength of the dislocation. If now a

crack is introduced along the negative 1 -axis image stresses develop. This image
stress field can be calculated according to Muskhelishvili (8) with Eq. 18.

1 0 \/t
/ _
h(z) = 2min/z J_ oot — AP

wiz) = ¢'(2), (18)

(t) dt

where p(t) are the tractions at the negative x -axis before the crack was introduced.
The function y/z which appears in Eq. 18 is a multi-valued function. In the analysis
one chooses the branch cut, that is purely imaginary at the negative x-axis.

The total stress field in the body is now simply the sum of the original stress
field defined by Eq. 17 and the image fields. The result, which is obtained by
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Vo]

applying Cauchy’s integral theorem, is:
zZ— 20
+ 20 *Zo [\/ \/ ]
Z — Zo
’ Z0 A 20
= 1 -1
S = wh(E) i) = _[\/+}+_[\/ ]
(20 = 70) {\/ \/ +2] . (19)
Z — Zo

The same equations were derived by Lin and Thomson (9). A simple integration
with respect to z gives the final solution. Choosing the integration constant, so that
the crack tip is in the origin of the coordinate system, one obtains:

o) = s@ra@= L[]+

2o — 2| — 20— 20 vz
= + =2ALo + A . —
$=dotén g [ 20 20 \/ZJr\/Zo

(V2 + v20) (V2 + V20)]

24 Lo (20)
g \/Z()'Z()
w:wo—&—wl:Q;lLog{ZOZ + QAZ.(Zoizo)_
20 | 20+ (2 — 20)
A(ZO*ZO) Vz _ 924Log (Vz+V20)(Vz + /20)

20 \/Z+\/Zo \/Zo-ZO

As the branch cut of the logarithm the negative z;-axis has to be used. Eq. 21
in conjunction with Eq. 17 describe the stresses and deformations induced by dis-
locations near cracks. Fig.8 shows the contour plot of the o925 stress for an edge
dislocation in front of a crack. In the vicinity of the dislocation, the stress field
shows the typical shape and concentration of the stress field of a dislocation. How-
ever, also in the vicinity of the crack tip, a stress concentration is visible, which is
typical for a combined mode I and II loading. This dislocation induced stress con-
centration is called dislocation shielding or anti-shielding depending on the sign
of the stresses. In order to visualize the effect of a crack on a stress field of a dis-
location a screw dislocation is located at the = axis at a distance xll ahead of the
crack tip. The stress caused by the dislocation o£} in the plane which is co-planar
to the crack is given as

b (2\7 1

D MO Ty

= , ) 21
723 z1,22=0 27 <x1> Ty — o1 (D
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Figure 8: Contour plot of the o22 stresses for an edge dislocation in front of a crack, (a)
shows the asymmetric stress field, caused by a single dislocation, and (b) then symmetric
stress field of a symmetric arrangement of two dislocations

For z; << x; eq.21 can be written as

1 b
D
oD = — . / (22)
# V2 /2]

Since the first term in eq.22 is equal to the radius dependent term of the near tip
stress field (Eq.15), the stress field near the crack tip caused by the dislocation can
be characterized by a stress intensity factor, which is termed the shielding stress
intensity factor, kp. A screw dislocation parallel to the crack front induces always
a local mode III stress intensity factor, which is given by

krp = lim {V2rz105} (23)
Phosar
for the considered case where the dislocation is located at ai/l and x/z =0

b
kip=— 1 L. (24)
\/27rx1

The 015 stress of an edge dislocation on z; axis at x; with a Burgers vector parallel
to the 2 axis differs only by a factor 1/(1+ v) from Eq.(21). The shielding in this
case is a pure mode II shielding and is given by

b
k = — . 25
e V2ra! (14 v) (23)
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Figure 9: Comparison of the shear stress on the x1 axis for a screw dislocation, which is

located at :Jc,l = 30000b with the shear stress caused by external mode III loading with a
stress intensity equal to the shielding stress intensity caused by the dislocation.

It is evident from this figure 10 and Eq.(21) that in the vicinity of the dislocation
and in the vicinity of the crack tip the stress field is characterized by an expres-
sion typical for dislocation and typical for crack tips, respectively. The size of
the region in front of the crack, where the shielding or antishielding stress inten-
sity factor characterizes the stress field induced by the dislocation, is about 1/10
of distance between the crack tip and the dislocation. Since in our linear elastic
consideration the stresses can be superimposed, the stress field very near the crack
tip can be always described by a local stress intensity factor

k=K +kp, (26)

where K is the applied stress intensity factor and kp is the stress intensity factor
induced by dislocations, called shielding, when its value is negative and antishield-
ing, when its value is positive. When plastic deformation takes place at a crack tip,
one has to distinguish between different regions. Very near to the crack tip there
is a zone, which can be characterized by a local stress intenisty factor or a com-
bination of local stress intensity factors from the different types of loading. Then
there are the zones, where the dislocations are, which are called plasic zones. In
this region the applied stress and dislocation stress fields control the local stress
field. If this plastic zone is small compared to the K dominated zone, one call
this type of loading small scale yielding, i.e. the dislocations are in a K domi-
nated stress field. The description is then easier because the near tip expressions
of the crack tip stress fields are sufficient to describe the plastic deformation, the
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Figure 10: Schematic illustration of the zones, which are controlled by the local stress in-
tenisty factor k and the applied stress intensity factor in the presence by a of a arrangement
of dislocation in the vicinity of the crack tip.

generation and movement of dislocation. If the plastic zone is larger than the K
dominated zone, the far field stress has to be also taken into account. This type of
loading is called large scale yielding. Independent of large or small scale yielding,
the local stress intensity is the applied stress intensity plus the sum of shielding or
antishielding contributions from the dislocations. Eqs.(24) and (25) give only the
shielding stress intensity for a dislocation located at the x; axis. For a somewhat
more general case, where dislocations are located at a slip plane through the crack
tip, for edge dislocations (6).

kip=— Sibe sin © cos © 27)
2(1 + v)v/2nr 2
pbe e . . @>
k = — 2cos©cos ~ —sinOsin 28
e 2(1 4 v)V/ 271’ ( 2 2 (28)

and for screw dislocations :

1be C)

kirip = — \/2er’ cos 9 29)

r’ is the distance from the crack tip to the dislocation and © is the angle between
the crack plane (z; axis) and the slip plane. For more general cases, where the slip
plane does not intersect the crack tip or where 7 is in the order or longer than the
crack length, i.e. the case of large scale yielding or often also called short crack
case - the reader is referred to (2) or (3).
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Figure 11: Fatigue crack propagation rate da/dN as a function of the stress intensity
factor range AK at a stress ratio R = 0.1 and 0.8 in an austenitic steel A220 (12).

3.2 Moderate cyclic loading of a crack

Paris (10) recognized that fatigue crack propagation is controlled by the applied
stress intensity range AK = Kax — K, Where Kiax and Ky, are the maximum
and the minimum of the stress intensity factor in a loading cycle. This opened the
way for the analyses of fatigue in terms of fracture mechanics. Elber (11) realized
that only a certain portion of the applied loading applitude is actually transferred
to the crack tip, i.e. the crack flanks come into contact during the unloading se-
quence, even under cyclic tension loading, which leads to a reduction of the active
stress intensity range at the crack tip. This contact of the crack flanks — which are
usually termed crack closure — is mainly responsible for the mean stress or stress
ratio (R = Kuin/Kmax) effect on fatigue crack propagation in ductile metals at
low and medium crack growth rates. Fig. 11 shows the fatigue crack propagation
rate da/dN as a function of the stress intensity range at a stress ratio, R = 0.1 and
0.8 for an austenitic steel, A220 (delivered from Bohler Edelstahl, it is a modified
316L steel). The presented da/dN vs AK curves are typical for a ductile material.
At medium AK values the crack propagation rate is proportional to AK™, this
part of the crack propagation curve is called Paris regime. At smaller AK values
the crack propagation rate decreases progressively untill about 1A/cycle. Then the
propagation rate drops very fast to zero or far below 1A/cycle. The value, where
AK drops to zero, is called the threshold of stress intensity range, or short the
threshold. The difference in the crack propagation rate in the present example is
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mainly caused by crack closure. At low R-ratio and low AK the crack is closed
over a relatively large part of the load amplitude. With increasing AK the per-
centage of the load amplitude, where the crack is closed, decreases. Hence, the
effect of stress ratio is not as pronounced as near the threshold. At higher R-ratios
the crack tip is open over nearly the full amplitude of AK and the crack growth
rate becomes independent of R. The change of the fatigue crack propagation rate
versus the stress intensity range is called fatigue crack propagation curve and char-
acterizes the resistance against fatigue crack propagation. In the discussion of the
fatigue crack propagation resistance one has to distinguish between the effect in-
duced by crack closure and processes, which takes place at the crack tip and causes
crack propagation during the load amplitude, where the crack is open. There are
different mechanisms causing crack closure, they can be classified into groups.
The most important are the plasticity induced crack closure, roughness induced
crack closure and the oxide induced crack closure. The crack closure reduces the
cyclic deformation at the crack tip and can therefore affect the crack propagation
rate significantly as mentioned above. Ritchie (13) introduced the term extrinsic
resistance for the contribution of crack closure to the fatigue crack propagation
resistance. The process at the crack tip controlling the real extension of the crack
during fatigue loading is denoted as an intrinsic mechanism, and it is responsible
for the intrinsic resistance. Hence, the real resistance can be expressed as a sum of
the extrinsic (contribution of crack closure) and intrinsic resistance against fatigue
crack propagation.

The fatigue crack propagation of materials has been experimentally investi-
gated very intensively within the last 4 decades. The differences between the
different materials have been discussed mainly in respect to the different extrin-
sic mechanisms. The “intrinsic data” are usually obtained from the total fatigue
crack propagation resistance of a material reduced by the extrinsic contribution
obtained via crack closure measurements. Uncertainties and imprecisions during
crack closure measurements therefore reflected themselves in the intrinsic fatigue
crack growth curve. This is one of the main reasons, why the intrinsic fatigue
resistance is not as well analysed as the extrinsic one.

The simulation of the fatigue crack propagation processes require also a sep-
aration of the simulation of the extrinsic processes as well as of the intrinsic
phenomena. Despite the increase of computer power and the large number of
new approaches with methods ranging from Finite Element simulations (14-16),
mesoscale methods (17-19) and discrete dislocation modelling (20-36) down to
molecular dynamic simulations (38), we are far away from a complete simulation
of all phenomena influencing the fatigue crack propagation resistance of materials.

In the next a summary of improvements in the understanding of near threshold
fatigue crack propagation behaviour by the means of discrete dislocation simula-
tions will be presented. Before this we discuss why the diffeent simulation tech-
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nuques are needed to understand the different aspects of fatigue crack propagation.

3.3 The involved length scales

To understand why we need different simulation techniques to model fatigue
crack propagation and why discrete dislocation models are appropriate for the de-
scription of the near threshold regime, we first consider the crack growth curve in
Fig. 11 at R = 0.8 of the austenitic steel. At this large R-ratio the effect of crack
closure can be neglected, hence, this curve can be considered as the intrinsic (or ef-
fective) fatigue crack growth curve. The effective threshold is about 2.5 MPa/m
The growth rate shows a sharp increase after the threshold and reaches a moderate
slope with an exponent of about 2 in the log-log plot in the upper part of the crack
propagation curve. At large stress intensity ranges the quasi-static fracture limit
is approached, however this part of the curve is not plotted in the Figure 11. A
simple estimation of the size of the cyclic plastic zone Aw based on elasto-plastic
continuum mechanics (Aw ~ 0.1AK? / 405, where o, is the yield stress) shows
that Aw is about 3 orders of magnitude larger than the crack propagation rate. A
comparison of the characteristic lengths, the grain size of material which is be-
tween few pum to few 100 pm, the lattice spacing, the crack propagation rate and
the cyclic plastic zone size indicates clearly:

e At moderate stress intensity ranges the cyclic plastic zone size Aw is smaller
than or in the same order as the grain size. Aw becomes larger than mi-
crostructural features only for very large stress intensity ranges.

e The crack growth increment per loading cycle shrinks to lattice dimensions
in the near threshold regime.

All length scales from atomistic to macroscopic are met along a crack growth
curve, which indicates, that different simulation methods are needed to describe
the fatigue crack propagation processes. The physical length scale of the near
threshold regime is the Burgers vector of the dislocations, therefore discrete dis-
location models must be used to describe the near threshold plasticity. The finite
element methods with classical elastoplastic continuum mechanics can be used to
describe the macroscopic plastic deformation in the upper Paris regime, mesoscale
methods are appropriate for the lower Paris regime and the molecular dynamic
simulations are useful to answer the question, where the plasticity comes from,
i.e., where and when dislocations are generated. Furthermore molecular dynamic
simulations are usually required to describe the atomistic separation processes. In
the following it will be shown that in the case of fatigue the irreversible generation
of new surfaces by dislocation generation or annihilation at the crack tip are suffi-
cient to cause a crack propagation. This process should give a lower limit for the
intrinsic fatigue resistance. Additional atomistic fracture processes may increase
the crack propagation rate, for such processes a molecular dynamic simulation
would be necessary.



166 R. Pippan, H. Weinhandl and H.G.M. Kreuzer

The dislocation model used by our group to describe the plastic deformation
at cracks under near threshold conditions will be briefly introduced in the next
section.

4 Modelling of plasticity, crack propagation and fracture
surface contact

In order to illustrate the different phenomena occurring during fatigue loading a
mode I crack under cyclic loading will be considered. Discrete dislocation mod-
elling is in principle a linear elastic description of stress and strain fields, where
the nonlinearity is taking into account by the motion of discrete dislocations on
pre-defined slip planes. Our computer algorithm for the simulation of plastic de-
formation induced by cyclic loading consists of

1. an incremental increase in applied load (or decrease during unloading),

2. inspection of dislocation generation,

3. inspection of fracture surface contact and determination of contact stresses,

and

4. seeking the equilibrium positions of the dislocations (in the present simula-

tion the static equilibrium configuration are determined).
A two-dimensional mode I crack is used that means the dislocations are parallel to
the crack front.

The crack propagation mechanism is schematically depicted in figure 12. The
crack tip is assumed to be the dislocation source. Dislocations are generated, when
the stress intensity is larger than a critical value k.. A symmetric emission of
dislocations is assumed. The first two generated dislocations (one in the upper
half-space and one in the lower half-space) form a V-shaped notch. The next two
dislocations are generated at the tip of the notch; hence, the spacing between the
slip planes of the first- and the second-generated dislocation is equal to the lattice
spacing. This opening of the V-shaped notch continues until the maximum load
is reached. During unloading, the last-generated dislocations return to the tip of
the V-shaped notch. It is assumed that the resharpened crack does not reweld.
About the same number of dislocations, which returned to the crack tip are gen-
erated at the new crack tip and again form a V-shaped notch. During unloading,
most of these dislocations return and the crack grows by this blunting and resharp-
ening process over a distance that is proportional to the cyclic crack-tip-opening
displacement (ACT'OD). Contact of the fracture surface at positive stress ratios
R is only possible on the newly created fracture surfaces. In the first few cycles
this zone is very small; hence, this contact does not affect the cyclic plastic defor-
mation. With an increasing number of cycles this contact zone increases and the
contact stresses have to be taken into account. A procedure, which enables us to
calculate the contact stresses and their influence on the dislocation motion has been
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Figure 12: Schematic representation of the crack propagation mechanism by blunting and
resharpening of the crack tip

described in detail by Riemelmoser and Pippan (20). The computer algorithm is
based on a collocation method. It starts with calculation of the crack contour and
inspection of overlapping regions, which is divided into small subdomains. The
contact stress in a subdomain j displaces the midpoint of the element j, the so-
called collocation point, and also the collocation points of all the other elements ¢
by an amount g;;. This g;; was derived by Tada et al. (40). The collocation point
7 1is displaced not only by the stress in the element j but also by the stresses in
the other elements. Now a stress distribution is sought such that the displacement
of each collocation point is zero, in other words the displacements at the colloca-
tion points produced by the contact stresses must be equal to the displacement in
the overlapping state. The solution of the linear algebraic equation system pro-
vides a first approximation. Physically, contact stresses must be compressive. The
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Figure 13: Arrangement of dislocations at Kmax = 1.4ke (a). Since the repul-

sion force between dislocations are too small, the dislocations during the unloading to
Kmin = 0.14ke do not return to the crack tip. The indicated plastic opening of the crack
tip (b) does not change during further cycling.

described method, however, provides tension stresses in a few elements. These
elements are cancelled in the second iteration. The iteration is continued until
the stress in each element is compressive. The next step is the evaluation of the
force on a dislocation caused by the contact stresses. This is given by the Eshelby
integral (41), which has been transferred in the complex potential notation by Bu-
diansky and Rice (42). The total force on the dislocation due to the contact stresses
then is simply the linear sum over all elements.

4.1 The cyclic plastic deformation as a function of load amplitude and num-
ber of cycles

In the present simulations the stress ratio R = Kpin/ Kmax = 0.1. The material
parameters used are the shear modulus » = 80000M Pa, Poisson’s ratio v = 0.3,
a lattice friction stress of £/1000, a critical stress intensity to generate a disloca-
tion at the crack tip k. = 0.4u+/b and an angle a between the crack propagation
direction and the slip plane of 70.3°. At the beginning of our simulation we start
with a crack in a perfect single crystal without dislocations. If Ky, is smaller
than k., no dislocations will be generated at the crack tip. During cyclic loading
at such small load amplitude a pure elastic loading and unloading and therefore
no crack extension will take place. Since no dislocations are generated, the local
stress field at the crack tip is determined by the applied stress intensity factor K,
solely or in other words the local stress intensity is k = K. If K, is larger than
ke during the first loading, a dislocation will be generated at k.. It will move away
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from the crack tip till it reaches its equilibrium position, for details see (21; 29).
These dislocations — due to our symmetric arrangement we have two dislocations
in front of the crack — reduce the stress field at the crack tip. They shield the crack
tip. In order to generate further dislocations, one has to increase the applied stress
intensity furthermore. When the local stress intensity overcomes again the criti-
cal value to generate a dislocation, the next dislocations are emitted. They push
the existing dislocations away untill they reach their equilibrium positions. This
process continues untill Kp.y. If the applied AK is only somewhat larger than
the critical stress intensity to generate a dislocation at or near the crack tip, the
repulsive forces between the dislocations are not sufficiently large to push a few of
the dislocations back to the crack tip during unloading.
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Figure 14: Arrangement of dislocations at Kmax = 2.5ke (a) and K, = 0.25ke (b) in
the fourth load cycle. The shape of the crack tip in the Ist, 2nd, 3rd and 4th cycle at Kmyax
and K, are represent in (c)-(j).
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For such loading case the dislocation arrangement is shown in Fig. 13. At
the applied Ky,x = 1.4k the dislocations forming the plastic zone of about few
microns, and the crack tip opening displacement is about 4.5 nm. In the imme-
diate vicinity of the crack tip there are no dislocations. This region is called the
dislocation free zone, which is a consequence of the assumed dislocation source —
the crack tip. During further loading between 1.4k, and 0.14k. the dislocations re-
main more or less at their equilibrium position, which they take up at the maximum
load in the first cycle. In the further loading cycles with the same load amplitude
a linear elastic loading occurs, in the vicinity of the crack tip the stress field can
be described by a local k, which varies in this case, linear with the applied K,
k = ke — (Kap — Kmax). For a propagation of a crack one needs a cyclic plastic
deformation at the crack tip, i.e. one needs a cyclic generation of surface. Hence a
somewhat larger load amplitude is required. The arrangement of the dislocations
and the shape of the crack tip are shown in Fig. 14 at K ,x and K ;. The applied
Kinax = 2.5ke. In the first cycle during loading a large number of dislocations is
generated and one forms a plastic zone of about 10 ym and a relatively large crack
tip opening displacement of about 20 nm. During unloading, the former generated
dislocations return to the crack tip and reshapen the blunted crack tip as schemat-
ically depicted in Fig. 12. In the next loading cycle about the same number of
dislocations — which returned before — are generated during loading and return
again during unloading. This blunting and resharpening causes the crack propaga-
tion. The process is depicted in Fig. 14 for the fourth cycle. The new generated
fracture surface came into contact at K ,;,. This contact does not effect the cyclic
plastic deformation of the crack tip at such small crack extension. However, after
greater crack extension the crack flank contact at a stress intensity factor signifi-
cantly larger than Ky, this reduces the cyclic plastic deformation. At small AK
values this contact can induce a disappearance of the cyclic plastic deformation
and which causes therefore, a stopping of the crack propagation. In Fig. 15 the
dislocation arrangement and the shape of the crack flanks are shown for the same
load amplitude as in Fig. 14. The crack is grown over about 20 pm, and the cyclic
plastic deformation is reduced. Only one dislocation is generated during loading
and it returns to the crack tip during unloading. This reduction of the cyclic plastic
deformation is caused mainly by crack closure as mentioned above. At AK the
crack is closed over a distance of about few pm behind the crack tip. After further
small crack extension at this load amplitude the crack stops propagating.

At larger load amplitudes the decrease of the crack propagation rate occurs
similarly, however a stopping of the crack does not take place. The cyclic plastic
deformation and as a consequence, the fatigue crack growth rate approaches a
nearly constant value. The dislocation arrangement and the crack flank contour
for such a “steady state” growing fatigue crack is shown in Fig. 16. In Fig. 17
the calculated ACT'OD values as a function of the crack extension are plotted for
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Figure 15: Arrangement of dislocations at Kmax = 2.5ke (a) and Kpin = 0.25ke (b)
in the 10000th cycle. The correspinding shape of the crack flanks at Kmax and Ky, are
dipicted in (c) and (d).

different AK values; the stress ratio is always 0.1. In this diagram the mentioned
decay and the final vanish of cyclic CT'OD at small AK is evident. At lower AK
values, the disappearance of AC'T'OD takes place at crack extensions in the order
of micrometers.

The last time crack propagation stops at a crack extension of few 10 gm, which
is in the order of magnitude of the plastic zone size, as can be seen in Fig. 15.
At AK values larger than a certain critical value the cyclic CT'OD reaches a
nearly constant value at a crack extension somewhat larger than the size of the
plastic zone. In Fig.17 CTOD in the first cycle at maximum load, the initial cyclic
CTOD, ACTOD,; ; and the steady state cyclic CTOD, ACTO Dy are plotted as
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Figure 16: Arrangement of dislocations at Kmax = 3.5ke (a) and K, = 0.35ke (b)
in the 16000th cycle. The correspinding shape of the crack flanks at Kmax and K, are
shown in (c) and (d).

a function of AK. Since the fatigue crack propagation rate should be proportional
to ACTOD, the ACTOD; vs AK and the ACTOD; vs AK can be interpreted
as fatigue crack growth curves. As already mentioned, Ritchie (44) introduced the
term intrinsic and extrinsic crack propagation resistance. The intrinsic mechanism
responsible for the propagation of the crack in ductile metals is the cyclic plastic
deformation at the crack tip, similar as presented in Fig. 12. The extrinsic mecha-
nisms reduce or increase the local crack driving force, in our idealized case it is the
reduction of cyclic plastic deformation caused by the contact of the crack flanks.
By using the terminology of Ritchie and taking the described crack propagation
mechanism, ACTOD; vs AK and ACTODg vs AK can be interpreted as the
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Figure 17: Determined cyclic plastic crack tip opening dispolacement ACT'O D for dif-
ferent A K values as a function of crack extension, Aa, from the performed discrete dis-
location simulation (43).

intrinsic crack growth curve and the long crack growth curve, which is given by
the sum of the extrinsic and intrinsic resistances, respectively.

Different mechanisms can be responsible for crack closure. The three most
important are: plasticity induced crack closure, roughness induced crack closure
and oxide debris induced crack closure. In our considered idealized case only
the plasticity induced crack closure is considered, because a plane crack exten-
sion without oxidation is considered in the simulations. From the continuum me-
chanics point of view under constant — amplitude loading and steady state condi-
tion, the ratio of closure stress intensity factor to maximum stress intensity factor,
K1/ Kmax, is independent of AK and it is a function only of the stress ratio R.
The value K/ Kmax is a measure of the relative contribution of the effect of crack
closure. This is clearly evident from the plane-stress analysis made by Budiansky
and Hutchinson (48) and Fiihring and Seeger (49). In the Paris regime — the higher
AK regime in Fig. 18 — it seems that the contribution of crack closure reaches
a constant value, as expected from continuum plasticity. However, in the near-
threshold regime the discrete nature of plasticity causes an increase in the effect
of crack closure. It is surprising that in the near threshold, when the plasticity is
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Figure 18: Crack tip opening displacement at Kmax in the first cycle, CT'O D, the cyclic

crack tip opening displacement in the first cycle, ACT'OD and the steady state cyclic

crack tip opening displacement in the first cycle as a function of the applied stress intensity
range AK.

constrained, the plasticity-induced crack closure increases. A closer look from the
dislocation point of view can explain this phenomenon. Crack closure is caused
under plane-strain conditions — which is considered here — by wake dislocations.
The number of dislocations in the wake of a growing fatigue crack is given by the
number of dislocations generated during loading minus the number of dislocations
returned to the crack tip or annihilated. Near the threshold of stress intensity range,
the number of dislocations returning to the crack tip goes to zero; therefore nearly
all generated dislocations during propagation can contribute to closure. This effect
is visible, when we compare CT'OD and ACTOD in Fig. 18, which character-
izes the number of dislocations generated and the number of dislocations returned
to the crack tip, respectively. In other words, due to the decrease of A K the reduc-
tion in the monotonic deformation, which generates shielding dislocations, is not
as pronounced as the reduction of the number of the returning dislocations.

More important than this effect of the discrete nature of plasticity on the in-
creased crack closure effect near the threshold is its impact on the intrinsic fa-
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tigue crack growth behaviour or the ACTOD vs AK curve. ACTOD as well
as CTOD in terms of continuums plasticity should be proportional to AK? and
K2, respectively, as long as small scale yielding is fulfilled. Fig. 18 indicates
that for larger K" and AK values or for CTOD and ACTOD larger than 100 b
the discrete dislocation simulation agrees well with the continuum plasticity (1).
From the physical point of view both plasticity models are equivalent in the limit of
large plastic deformation. For smaller A K -values or when CTOD or ACTOD
shrinks to some 10 Burgers vectors, the plasticity is constrained by its discrete na-
ture. Such phenomena are naturally lost by the smoothing procedure of continuum
plasticity. This constrain leads to a sharp decrease in plastic deformation at small
K and small AK, near the threshold of stress intensity range. Near the threshold
the difference between the discrete plastic deformation and continuum plasticity is
roughly one or two order of magnitudes (23; 24; 27; 28).

So far our discussion has focused on the effect of the discrete nature of plas-
ticity on the cyclic plastic deformation and the development of crack closure. An-
other interesting point is the developed dislocation structure. At small loading
amplitudes the wake disloctions arrange in slip bands as can be seen in Fig. 15-17.
The formation of these slip bands can be explained as follows:

In the first loading sequence many dislocations are generated on the
two inclined slip bands. During unloading few dislocations return
to the crack tip, where they annihilate. About the same number of
dislocations, which returned during the first cycle are generated and
returned at the crack tip during the second and many further loading
cycles. By this blunting and “resharpening” process the crack prop-
agates over a short distance and leaves the two slip bands formed in
the first cycle behind the crack tip. As the crack tip moves away from
the first two slip bands, their repulsive force on the newly generated
dislocations decreases. After a certain crack extension, the interaction
force between the pre-existing slip bands and the new generated dis-
locations is small enough to let pass the two pre-existing slip bands.
A second pair of slip bands is formed. Similar processes in the later
cycles lead to the dislocation arrangement depicted in Figs. 15 to
17. The distance between the slip bands is about few 1000 Burgers
vectors, but the crack growth rate is only few Burgers vectors per cy-
cle. Smaller distances between the slip bands do not occur because
the elastic interaction stresses of the dislocations in the last band and
the new generated dislocations are too large. The distance between
the slip bands does not depend significantly on the crack growth in-
crement per load cycle. Each slip band leaves a step on the fracture
surface parallel to the crack front with a characteristic distance in the
order of some tenths of a micron. In (51) it was noted that this distance
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Figure 19: Schematic representation of a 2D mode II crack to simulate the effect of grain
boundaries on cyclic plastic deformation near the threshold of crack propagation.

agrees with the striation spacings observed in metals.

A symmetric dislocation arrangement as shown in Fig. 14-17 is likely to occur
at intermediate stress ranges. At small stress intensity ranges asymmetric crack
tip plasticity should occur more often like in the models proposed by Neumann
(45) and Pelloux (46). It is, however, obvious that the dislocation arrangement of
the asymmetric crack is also governed by the dislocation-dislocation interaction
forces, which should lead also to the typical distance between two large slip bands
of the order of some tenths of a micron. Following this argument, the striations
observed at small stress intensity ranges are traces of slip bands on the fracture
surfaces.

4.2 The effect of boundaries

The analyses of monotonic or cyclic deformation of a mode II and mode III
crack by means of discrete dislocations with a slip plane in the ; — x3 plane with
the crack along the negative x;-axis and the slip plane along the positive x;-axis
are much simpler to simulate than the previous considered mode I cracks. The
general features in the cyclic plastic deformation, however, remain the same, ex-
cept crack closure does not occur at such idealized mode II and mode III cracks
because no dislocations remain in the wake of the crack tip. For the consideration
of the effect of microstructure on the cyclic plastic deformation we will analyse the
periodical arrangement of grain boundaries ahead of a mode II crack, as schemat-
ically depicted in Fig.19. A fine grained material with a grain size d = 30000 (20)
and a coarse grained material with d = 10.000b have been studied. In the case of
the fine grained material the grain size is comparable to the size of the dislocation



178 R. Pippan, H. Weinhandl and H.G.M. Kreuzer

10° T T T 10 T - -
5 0 —— L/dg, = 0.2 Fine Grain 5 0 —— L/dga, = 0.06 Coarse Grain
0 — L/dy,;, =05 gy, =3000 b T 10— L/dyy, =0.15 y2in=10000 b
210 —— L/dy, = 0.8 R=0 2 10— L/dy, = 0.24 R=0
10° f = 100 F ]
= = s
=, ,
A 10F Macro A 10F Macro 4
8 5 BCS Mechanics g 5 BCS Mechanics
g O
: . < 2 Micro
L Mechanics i 1k Mechanics E
5 F Dislocation 5
Threshold Mechanics Threshold!' Dislocation
? A . . . 21 B . Me(:hnnit‘,s .
Y 1 2 5 10 1 2 5
AK k] AK (k]

Figure 20: Cyclic crack tip opening displacement of a mode II crack as a function of AK

for different distances to the first grain boundary. In (a) and (b) ACTOD vs AK for a

fine and coarse grained material is shown, respectivel in both figures the distance between

the crack tip and the nearest grain boundary is equal. Material data: Tgiction = 0.002p,
Tharrier = D Tfriction» Ke = 0-2U\/b7 v=0.3 R=0.

free zone, whereas in the coarse grained case d is significantly larger than the dis-
location free zone. It is instructive to consider first AK values larger than 5k.. In
this regime the cyclic plastic deformation is insensitive to the actual location of the
crack tip with respect to the grain boundaries. The curves for the three simulations
in both materials collapse. The cyclic plastic deformation in this regime is in good
agreement with calculated values by the BCS model (Bilby, Cottrell and Swinden
model (52)) with the assumption of a homogeneous macroscopic yield stress. This
BCS model describes plasticity by distribution of infinitesimal small Burgers vec-
tors. Plasticity is smeared out along the shear plane. Such type of description
corresponds to the continuum mechanics model. Hence, the cyclic plastic defor-
mation for the different positions of the crack in the grain is in this loading regime
well predicted by continuum mechanics. The microstructure is reflected only in
the different macroscopic yield stress. Following the Hall-Petch model the macro-
scopic yield stress is 250 and 190 MPa for the fine and coarse grained materials,
respectively.

At intermediate stress intensity ranges the cyclic plastic deformation is signif-
icantly affected by the microstructure, i.e., the distance between the crack tip and
the grain boundary as well as the size of the grains. At the threshold the various
curves approach each other again. This example indicates that one can distinguish
between three regimes: the macro mechanics, the micromechanics and the dislo-
cation mechanics. In the macro mechanics regime the cyclic plastic deformation
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Figure 21: The crack tip opening displacement as a function of A K. Comparison of two

different critical shear stresses. ke = 0.241/b.

at the crack tip is almost independent from the distance between the crack tip and
the next grain boundary. This is different in the micromechanic regime at inter-
mediate stress intensity ranges, when the cyclic plastic zone is in the order of the
distance between the crack tip and the grain boundary. In this regime the grain
boundary acts as barrier for the cyclic plastic deformation, and reduces ACTOD.
Such effects has been observed also by analyses based on distributed dislocations
(53). In this micromechanical regime continuum mechanics analyses are still use-
ful, however, the local variation of the yield stress has to be taken into account
explicitly.

Finally, close to the threshold of stress intensity range a different behavior is
observed. For certain cases ACT'OD even increases for smaller distances between
the crack tip and the next grain boundary. This behavior as well as the occurance
of a threshold is a consequence of the discrete nature of plasticity and can not
be explained by continuum plasticity. In summary this example has shown that at
large stress intensity ranges the grain size determines the cyclic plastic deformation
at the crack tip. At smaller stress intensity ranges, ACT'OD is controlled by the
distance between the crack tip and the next grain boundary and near the threshold
the activation of the dislocation source is the dominant effect. This is a very general
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behavior, which one can obtain for many different loading cases of a fatigue crack,
see for details (54), however, one can observe such phenomena in many other
localized deformation processes, for example in the case of nanoindentation (55).

4.3 The threshold of cyclic plastic deformation and the effective threshold of
stress intensity range

Fig.21 shows the calculated cyclic crack tip opening for an ideal mode II crack
in a single crystal with a slip plane in the ;23 plane for different friction stresses.
This Figure shows again the strong effect of the discrete nature in the near thresh-
old regime and the continuous approach to the continuum mechanic BCS predic-

tion at larger AK where ACTOD = Aﬁ;f(i_”). Atlarge AK values ACTOD
follows the BCS model, ACTOD is therfofleczmi"nversly proportional to the friction
stress, however the onset of cyclic plasticity is independent of the assumed friction
stress. This behavior has been also observed in the studies of the effect of grain
size, the effect of obstancle distance and obstacle strength (29; 50) and analysis of
a lamellar structure. All these analyses indicate that the threshold stress intensity
range to generate a cyclic plastic deformation is mainly controlled by the source
stress or more accurately the stress intensity to generate a dislocation at the crack
tip or in the immediate vicinity of the crack tip. Assuming the fatigue crack propa-
gation mechanism by blunting and re-sharpening as depicted in Fig.12 this thresh-
old value to generate a cyclic plastic deformation should be the effective threshold
of stress intensity range, A K . The simulations have shown that A K g is
about 1.3k.. The Rice-Thompson model (1; 2) for dislocation generation at the
crack tip leads to an estimate of k. and hence, to an effective threshold equal to
AKeim = f(O) - Vb, where O is the angle between the slip planes for the dis-
location emission and the crack plane, and f(©) is about 1 or somewhat smaller
for reasonable © values. The absolute values are compared in Table 1. The exper-
imental results are from Ref.(53) and the estimated values are from Refs.(55; 56).
It has to be noted that same experimentally determined A K.,  in the literature
are significantly larger. In the author’s opinion this deviation is mainly caused by
uncertainties in the mesurements of crack closure or for the cases, where the effec-
tive value of AKy, is determined from experiments at large R values, this cracks
may not be completely crack closure free. The measured threshold values are sys-
tematically somewhat larger than the values predicted by the discrete dislocation
model. Reasons for this deviation might be :

e cven these presented experimental values may be not closure free,

o the crack deflection and crack branching can reduce the local stress intensity
range in real cracks,

e the oxide layer may change the resistance against dislocation generation,

e the assumed dislocation generation criterion is somewhat too simple.
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Table 1: Comparison of measured and predicted threshold stress intensity ranges

Alloy | measured effective | Hertzberg’s | Threshold from
system treshold estimation | dislocation model
AKeti, i EVb AKeti, i
in M Pay/m M Pa/m in M Pay/m
Fe 25-29 33 1.6
Al 0.8-1.0 1.2 0.6
Cu 1.5-25 1.9 0.9

Taking into account the mentioned uncertainties, the agreement between the pre-
diction and the measured effective A K is relatively good. The relative insensitivity
of A K.t 1 in respect of the microstructure has been reported by different groups.
Herztberg (55; 56) proposed an empirical relation, based on the experimental find-
ings, with AKe g = E+/b. This value is also listed in Table 1. This relation
reflects the outcome from the discrete dislocation analyses well.

4.4 Other discrete dislocation simulations of fatigue crack propagation

Also other groups have performed similar discrete dislocation simulations of
cyclically loaded cracks under small scale yielding conditions. The results are
in good agreement with the above mentioned behaviour, see, for example (30).
Beside those, two somewhat different types of simulations should be mentioned
here shortly (32-36). Despande, Needleman and van der Giessen (35) and (36)
analysed a cyclically loaded mode I crack under small scale yielding condition by
using discrete dislocation dynamics. At each stage of loading, the stress field of the
dislocations and the solution of boundary condition obtained in these simulations
by finite element solution are superimposed. The dislocation motion, dislocation
nucleation (the sources are statistically distributed), dislocation interaction with
obstacles and annihilation are taken into account in a similar way as in the previous
described simulations. The essential difference in their simulation is the assumed
crack propagation mechanism based on a cohesive zone model. It is surprising that
the behavior regarding the onset of fatigue crack propagation is relatively similar,
despite the different growth process. However, the growth rate is very sensitive to
cohesive energy, source and obstacle density. In the author’s opinion such prop-
agation mechanisms should govern the fatigue crack growth in intermetallics and
other semibrittle materials whereas in ductile crystalline materials only the defor-
mation controlled growth mechanism by blunting and re-sharpening is dominant.
More details regarding this type of simulations are presented in one of the follow-
ing chapters (see the contribution of Van der Giessen).

Finally, a series of discrete dislocation simulations is mentioned, which were
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performed by the group of Melin (32-34; 57). In the previously discussed sim-
ulation long cracks are considered, i.e., the crack length was large in relation to
the size of the plastic zone and the microstructural features. The group of Melin
analysed the crack propagation of short cracks, where the size of the plastic zone
and the microstructural features are in the order of the size of the crack length.
The geometry of the boundary and the crack is described using dislocation dipole
elements, whereas the plasticity is described by the movement of discrete disloca-
tions. Crack angle, crack shape, distance to the grain boundary can be taken into in
such simulation. This type of simulations show clearly that relatively small plastic
deformation of a crack can be simulated in a relatively complex microstructure,
which helps to prove the physical ideas behind the phenomena in the early stage
of fatigue crack propagation.

In summary, the described important consequences of the discrete dislocation
mechanics for fatigue crack propagation can be obtained despite the simplification
due to the assumption. This should be the case also for the other phenomena,
especially for fracture, however one has to analyse when the 3D-effect might be
important.
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Discrete Dislocation Plasticity Analysis of Cracks
and Fracture
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The Netherlands

1 Introduction

Fracture in plastically deforming crystals involves several length scales, as illus-
trated in Fig. 1 for cleavage-like crack growth. The relevant length scales range
from that of the macroscale object to the atomic scale, including the various mi-
crostructural length scales in between that are associated with, for example, parti-
cles, grains, and defect structures.

At the large length scale of the macroscopic world, Fig. 1a, plastic deforma-
tion is conveniently described by a phenomenological continuum theory. The
stress field near the tip of a mathematically sharp crack tip then is singular at
the tip, Fig. 1b. At the scale where the polycrystalline nature is revealed, Fig. lc,
plastic deformation is a physical process that is inherently inhomogeneous and
anisotropic. This is caused by the fact that each grain is anisotropic with a finite
number of slip systems on which glide can take place. When zooming in fur-
ther, one will see that plastic deformation within each grain involves the collective
motion of many dislocations, Fig. 1d. Finally, the finest scale shown in Fig. le
governs where atomic bonds are broken upon crack propagation.

The challenge in understanding fracture lies in the fact that all scales are con-
nected and all may contribute to the total fracture energy. It is worth emphasizing
that although the atomistics of the separation of surfaces may only contribute a
small fraction of the total energy release rate, it can still be controlling. This is
because dissipative mechanisms can only operate if fracture is delayed sufficiently
to allow them to come into play. Indeed, as pointed out by Rice and Wang [28],
the surface energy can play a valve-like role. Surface energies are typically of the
order of 1 J/m?, while fracture energies for ductile crystalline metals are often an
order of magnitude higher. The difference between the fracture energy and the
surface energy is the plastic dissipation in the vicinity of the crack tip. Many de-
tails are left out in the above discussion, but it emphasizes that fracture, i.e. the
creation of new surface, is highly localized at the atomic scale, but is driven by
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the macroscopic applied load communicated to the atomic scale via stress fields
on smaller and smaller length scales. It is the precise communication down these
scales which determines whether or not crack growth occurs and how much energy
is dissipated.

Much is known about the near crack-tip fields at the continuum scale. At the
polycrystalline scale, and if the average response is isotropic, the smooth HRR
plastic fields developed by Hutchinson [18] and by Rice and Rosengren [26] are
dominant, while the fields change to a completely different nature, characterized
by piece-wise uniform sectors [27, 29, 30], when the crack tip is contained in a
single crystal. At the latter scale of observation, i.e. in between Fig. 1c and d, the
theories predict near-tip stresses that are a few times the yield strength. This is
far below the atomic bond strength, thus raising the ‘paradox’ that crack growth

continuum
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crystalplasticity
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Figure 1. The various relevant scales that may determine the response of a crack
in a macroscopic component. (a) The component scale. (b) The plastic zone gov-
erned by macroscopic continuum plastic flow. (c) The grain scale in a polycrys-
talline metal. (d) The scale of discrete slip planes and of individual dislocations.
(e) The atomic scale.
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could not occur in plastically deforming materials. Experience proves us wrong.
This chapter intends to present insight in resolving this, principally by describing
plastic deformation by the generation and motion of discrete dislocations, i.e. the
size scale of Fig. 1d. An introduction to discrete dislocation plasticity may be
found in [5]; a short summary is included in the first two sections.

2 FElastic Models of Dislocations
2.1 General Idea

A dislocation is a line defect in an atomic lattice ([17, 16]). It is a line on an
atomic plane that separates those regions of the plane that are intact from regions
where the lattice has undergone slip. The relative shift of atomic planes is in
the direction denoted by the Burgers vector b and is essentially uniform in the
region enclosed by the dislocation. The dislocated material can be constructed
in a thought experiment from a perfect crystal by a cut-displace by b-and-reweld
procedure. Because of conservation of mass, a dislocation is a closed loop.

The geometry of a dislocation is governed by a number of variables:

e the slip plane, denoted with its unit normal vector m;

e the dislocation line as a parameterized line on this plane and with a local

tangent vector t;

e the Burgers vector b.

There are a few special parts of a generic loop, namely

edge: b-t=0; (D
screw: b-t =4b, 2)

b being the length of b: b = |b|. Edge and screw dislocations are the central notions
in two-dimensional studies, see Fig. 2. As the crack problems studied later on in
this chapter are concerned with mode I, plane strain conditions, attention will be
focused on edge dislocations.

Although a dislocation is a lattice defect, it has proved very useful to describe it
in the framework of continuum theory in which the atomic positions are averaged
out. This reduces the total number of degrees of freedom enormously: from all
atom positions to a mathematical, functional form of the geometric variables m, t
and b. In a continuum framework the definition of the Burgers vector becomes

u
b— j[c e 3)

where C is a closed circuit around the dislocation, traversed by local coordinate
¢ and u is the displacement field away from the perfect crystal. The real key to
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(a) (b)

Figure 2. Definitions of (a) screw and (b) edge dislocation configurations dis-
cussed in the text.

dislocations in a continuum description is that it involves a displacement disconti-
nuity inside the dislocation loop. It is the expansion of dislocation loops that cre-
ates what we observe on a larger scale as permanent, that is, plastic deformation.
Apart from the dislocation motion, the distortion of the lattice is entirely elastic.
Thus, the picture of plasticity emerges of dislocation loops sweeping through an
otherwise elastic continuum.

The current continuum theory of discrete dislocations employs linear elasticity.
Clearly, it will break down inside the core region, where the strains will be too
large for the linear approximation to hold. Away from the core by about 5 to
6b, comparison with atomistics has shown that the linear elastic solution is very
accurate. Hence, discrete dislocation plasticity holds the view that the fields in a
dislocated body can be described by linear elasticity, excluding the core regions.
The use of linear elasticity has the enormous advantage that many solutions for the
governing equations are known and that one can use superposition. The latter will
be exploited in full power in Sec. 3.

For completeness, we recall that the governing equations for linear elasticity
are

equilibrium : Gijﬁj =0 (4)
elasticity  : 6;; = Liju€u &)

1
strains  : &= _(ui;j+uj;) (6)

2

with £;jy the elastic moduli. Since the crystals we shall consider here are cubic,
we should be using the cubic elastic moduli expressed in terms of the usual Cjy,
C1> and Cy4. However, for simplicity, we will assume isotropic elasticity, with the
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moduli expressed either in terms of Young’s modulus E and Poisson’s ratio v,

E 1 v
Lijy = I (8581 + 8ud k) + 1 _2V5ij5k1 @)
or as 5
Lijig = p (8381 + 8y8j) + (k— 3#)5ij5k1 . (8)

in terms of the shear modulus = E /2(1 +Vv) and the bulk (or compression) mod-
ulus k = E/3(1 —2v).

2.2 Edge Dislocations

An edge dislocation poses a plane strain problem. If the dislocation line is
arranged with its line direction perpendicular to the x;—x; plane of consideration,
i.e. t = e3, the Burgers vector lies in the x;—x, plane, Fig. 2b. Specifically, we shall
assume again that the x;—x3 plane is the slip plane and that b points in the positive
x1 direction, see Fig. 2b. This problem is then conveniently solved by application
of the Airy stress function approach in a manner that is similar to that leading to
the asymptotic singular field near a sharp crack tip. Leaving the details to [16], the
solution reads

ub x2(3x12+x22)

__ 9

O = T or(1—v) (ri24x2)2 ®)
ub  x(x1% —x?)

_ 10

0% 271:(1 *V) (x12+x22)2 (10)
2 2

o=, M xEi-w) (1

- 271:(1 *V) (x12+x22)2

for the in-plane stress components, while 633 = V(G11 + 622). As for a screw dis-
location, the stress field is singular at the dislocation and decays with the distance
ras 1/r. The displacement field is given by

b 1 xix X1
= —(1— t 12
uy 2x(1 ) {2)612—&-)622 (1—v)arc an<x2>] (12)
b 1 sz 1 X]2+.X22
= — (1—=2v)1 13
12 2n(1—v) |:2x12+xz2 4( )In b2 (13)

The u; field, i.e. parallel to the slip plane, is shown in Fig. 3.

Note that the solution for the edge dislocation field assumes the body to be in-
finitely large — no boundary conditions have been incorporated. Since the solution
is singular, as the solution for a screw dislocation, it is to be expected that a correc-
tion due to boundary conditions has no significant effect close to the dislocation,
but it will do so at larger distances.
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1
Figure 3. Displacement field u; (x;,x2), normalized by b/2n(1 —v), of an edge
dislocation with b = be; at (x1,x2) = (0,0).

3 Boundary Value Problems

Even for straight two-dimensional dislocations, as discussed in the previous sec-
tion, known closed-form solutions do not incorporate any boundaries of the crystal.
The solutions are, strictly speaking, for dislocations in infinite space. Interactions
with the boundaries of course do exist, and their are commonly [16] referred to
as image effects. Rather clever image constructions have been developed but they
remain limited to particular configurations.

Several years ago, Van der Giessen and Needleman [33] proposed a versatile
approach based on superposition. The idea is to make use of the known solutions
in infinite space and to superpose an ‘image’ solution to correct for the boundary
conditions. To this end, the displacement, strain and stress fields are decomposed
as

u=n+u, e=€+€& 0©6=6+6. (14)

The () fields are the superposition of the singular fields of the individual disloca-
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Figure 4. Decomposition of the problem for the dislocated body into the problem
of interacting dislocations in an infinite solid (* fields) and the complementary
problem for the body without dislocations (" fields).

tions, as discussed above, in infinite space. Identifying the fields for dislocation /
by a superscript (1), the (7) stress field, for example, is obtained as

=Y o
1

The (°) fields will in general not meet the boundary conditions in terms of tractions
on part Sy of the boundary nor the prescribed displacements on part S,. Instead
they will give rise to displacements i on S, and tractions T = & -n on S r (with
normal n). The actual boundary conditions, #° on S, and T° on S r, are imposed
through the (") fields, in such a way that the sum of the () and the (") fields in (14)
gives the solution that satisfies all boundary conditions. Since the (7) fields satisfy
the governing equations (4)—(6), the (%) fields also have to satisfy the elasticity
equations, i.e.

equilibrium: divé =0
elasticity: 6=L:&

1
strains: =, [gradit + (grad@t)”|

supplemented with the boundary conditions

T:TOfTonSf ﬁ:uofﬁonSu
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It is important to note that the solution of the (*) problem does not involve any
dislocations. Therefore, the (*) fields (often called ‘image’ fields) are smooth and
the boundary value problem for them can conveniently be solved using a finite
element method.

A crucial concept for the evolution of dislocations, to be discussed in the next
section, is the Peach—Koehler force. It is defined as the configurational force as-
sociated to motion of the dislocations: the work of these forces as the dislocations
move is the change in potential energy I, i.e.

_ 1) . 5D
S = leyfwf ds\Ddi.

It is seen that f () has the dimension of force per unit (dislocation line) length
and that it generally changes along the loop. The Peach—Koehle force can be
made more explicit, in this superposition approach, by calculating the potential
energy [33]. The final result is that the component of the Peach—Koehler force
in the glide plane and in the direction t") x m) normal to the dislocation can be
expressed as

FO =m0 <6+ZG(1)> AUN (15)
JZ

4 Dislocation Dynamics

So far, we have discussed the state of the material in the presence of dislocations,
but they have to move in order to produce plastic deformation. In this section,
we give a brief summary of various physical phenomena that govern the motion
of dislocations, focusing on those aspects that are connected to dislocation glide
of straight edge dislocations. Climb, i.e. motion perpendicular to the plane, also
occurs under certain circumstances but will not be treated, nor will cross slip (dis-
location motion out of the original glide plane).

The driving force for glide is the Peach—Koehler force component given by
(15). During glide, however, the dislocation may be subjected to various sources
of resistance against motion. Denoting their collective force by fr(els)ist and ignoring
inertia of dislocations, the motion of dislocation / is be governed by the force
balance

I
FO=ra. (16)

The two main contributions to the resistance of edge dislocations are:

o Peierls—Nabarro stress. As a dislocation moves, existing atomic bonds have
to be broken and new ones formed. Because of the periodic nature of the
lattice, the energy landscape that the dislocation moves across is periodic.
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This acts as a friction stress, referred to as the Peierls—Nabarro stress, against
the initiation of dislocation motion, corresponding to a resistance force of
b7 in the direction opposing the dislocation velocity v(). The value of T
depends sensitively on the crystal structure. At 0 K, the values for FCC
and BCC crystals typically are 10~%u and 1073y, respectively, while for
intermetallics its value can be as large as 0.1u.

e Drag. As a dislocation glides, it experiences drag originating from: (i)
phonon drag; (ii) electron drag; (iii) impurity effects. Of these, phonon drag
is dominating in many materials and gives a net, viscous force By Tt is
possible to make estimates of each of the contributions to phonon drag, but
in practice B is measured experimentally or from molecular dynamics sim-
ulations. Values of B show quite some scatter; a typical value for aluminum
is on the order of B = 10~*Pas. When drag is the only source of resistance,
the balance (16) states

f(U — gD

so that the velocity, for a given Peach-Koehler force, can be calculated from
v = ¢/ (17)

A linear relationship between velocity and driving force has been con-
firmed experimentally. Data for various materials over various temperatures
and stress levels suggest a relation of the type

v oc (fD)yme=E/ksT
but for relatively low stress levels, the exponent m is close to unity.

4.1 Annihilation

Attraction of opposite-signed dislocations can lead to annihilation. This is
easily seen for straight edge or screw dislocations of opposite sign coming close
together: the defect is eliminated by coalescence of the dislocations once they are
sufficiently close together. The critical annihilation distance is typically taken to
be 6b.

4.2 Frank-Read sources

One possible mechanism for the generation of new dislocations is through the
so-called Frank—Read mechanism illustrated in Fig. 5a. The source of this mecha-
nism is a dislocation segment that is being pinned between two hard points. This
segment bows out under the influence of a Peach-Koehler force, where the self-
interaction helps to create a closed loop surrounding the initial pinned segment that
finally closes onto itself. Ultimately, a smooth new dislocation loop has emerged
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as well as a copy of the initial segment. This copy can operate as a source again,
etc., so as to generate more dislocations.

initialpinnedsegment

generatedloop

(a)
source T
—b \ | b
1 1 (b)
QL nuc EL nuc

Figure 5. (a) Frank—Read mechanism of generating a new loop from an initial
pinned segment. (b) Two-dimensional simplification (from [33]) as a mechanism
for nucleation of edge dislocations.

Figure 5 shows a two-dimensional version of this mechanism, which one can
imagine as a cross-section of a three-dimensional source and subsequent projec-
tion onto the plane of observation normal to the slip plane. The pinned segment
now appears as a point, and the Frank-Read mechanism has been translated into
two dimensions by [33] as follows. When the shear stress on the source is suffi-
ciently high for a sufficiently long time, an edge dipole is generated. The strength
of the source Ty, is, in principle, determined by the three-dimensional dislocation
configuration (initial segment length, Burgers vector, etc.); in the two-dimensional
model it becomes a parameter. The same holds for the nucleation time #y,c. The
polarity of the dipole is determined by the direction of the shear stress. The width
of the dipole, Ly, is the two-dimensional cross-section of the loop at the moment
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that the initial pinned segment has been re-formed and the source is ready to op-
erate again. The value of L,,., again, can be determined from three-dimensional
simulations. However, a different and practical criterion has been proposed by
[33] based on the observation that the dislocations in a dipole feel strong attrac-
tive forces that are inversely proportional to their distance. If this interactive force
is larger than Ty,b, the dislocations will move towards each other and annihilate
so that effectively no dislocation has been generated. Hence, there is a minimum
distance which is given by [33]

ub

Ly = .
21— V) Thue

5 Methodology for Crack Problems

The analysis of cracks and fracture within the framework of discrete dislocation
plasticity employs the generic mode I problem sketched in Fig. 6. The calculations
are carried out for small-scale yielding, with plasticity being confined to a window
around the initial crack tip. Single-crystal studies (Secs. 6, 7) are performed by
defining a set of two or three slip systems inside this window at an angle of ¢<°‘>
with respect to the crack plane. Two slip systems are necessary to allow for any
mode of plastic deformation, while three slip systems mimic the excess of available
slip systems in a real three-dimensional FCC crystal. The process window is filled
with a number of grains for the study of polycrystals in Sec. 8

Because of the assumed symmetry, there is a mirror dislocation for each dislo-
cation in the region analyzed numerically. This mirror dislocation does not need
to be accounted for explicitly when superimposing the fields of all dislocations,
for example as in the sum in (15). Rather, its presence is accounted for through
the symmetry boundary conditions. What does need to be accounted for in the
dislocation analysis is that when a dislocation crosses the closed crack plane, it
leaves the region analyzed; but, due to symmetry, a mirror dislocation enters into
the system along the mirror slip plane.

The crack is initially sharp and a cohesive surface is laid out in front of it. At
the scale of interest here, the cohesive surface is taken to mimic atomic debond-
ing. Therefore, the constitutive response of the cohesive surface is taken from the
universal binding law Rose ef al. [31] and is specified by the following relation
between the traction normal to the cohesive surface, 7,,, and the separation A,:

Ay Ay
Tn(An) = Omax S, exp <1 - 8n> ) (18)

As the cohesive surface separates, the magnitude of the traction increases, reaches
a maximum and then approaches zero to represent the formation of a traction-free
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Figure 6. Small-scale yielding analysis under mode I conditions with discrete dis-
locations moving inside a process window. Because of symmetry, only half the
problem needs to be analyzed. The cohesive surface ahead of the initial crack is
used to describe crack growth.

crack, see Fig. 7. The strength Gyax and the corresponding separation J, charac-
terize the fracture process, implying a work of separation ¢, = exp(1)Gmaxy. It is
essential to note that the use of a cohesive surface eliminates the need of a fracture
criterion: whether or not crack growth occurs is an outcome of the solution of the
problem.

When studying a stationary crack, we take the value of Gn,x to be very large
so as to avoid significant opening (yet, the purely elastic stress singularity of a
mathematically sharp crack is always removed). Studies of crack growth by a
cleavage mechanism are carried out by taking values Gy = 0.6 GPa and &, = 4b,
giving a work of separation ¢, = 1.63J/m?. This value of the cohesive strength is
about a factor of four smaller than the expected theoretical strength of aluminum
and is used for numerical reasons because: (i) the length scale over which large
gradients occur is inversely proportional to the cohesive strength, so that a finer
mesh is required for higher values of the cohesive strength; and (ii) the number of
dislocations increases with increasing cohesive strength, so that more dislocation
interactions have to be computed and a larger process window is needed.
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Omax

Figure 7. Traction—separation law corresponding to the universal binding law, ac-
cording to (18).

The boundary conditions for the problem sketched in Fig. 6 are: (i) the crack
faces remain traction free, 7; = 0; (ii) the displacements on the remote bound-
ary are specified according to the well-known elastic singular field; and (iii) for
the symmetric mode I loading cases discussed here (18) is satisfied together with
T; = 0 on the crack plane ahead of the initial crack tip. The load level is thus
characterized by the remote stress intensity factor K;. In the absence of dislocation
motion, the critical energy release rate is equal to ¢,, from which we define the

reference intensity factor Ky by
EQ,
Ky = .
0 \/1 —v2

Because of the cohesive law (18), the problem sketched in Fig. 6 is nonlinear,
and is solved in an incremental manner by phrasing the governing equations in
rate form. Assuming that at time ¢ the stress field and the current positions of all
dislocations are known, the incremental (denoted by a superposed dot) (*)—fields
are governed by the virtual work statement

N 1 - ~ 2
/ ('?,'jSE,'j dv + / ky (AS,t+A[) + AS:)) AOA,dS =
14 2 Scoh

U 6966 av - ! R0+ | R0)
At{/vcij&e,,]dv 2/scohT"(A" +4{)) 8A,ds (19)
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as shown by Cleveringa er al. [8]. Here, the instantaneous cohesive stiffness,
ky, = —0T,/dA,, and the instantaneous normal traction are evaluated at the fic-
titious opening AS,HAI) + AS,’). The factor 1/2 in (19) stems from the fact that, by
virtue of symmetry, only half of the work in the cohesive surface contributes to the
work in the region analyzed. The second integral in the left-hand side provides a
contribution to the overall finite-element stiffness matrix that changes every time
step; but computational costs can be reduced by factorizing the matrix except the

part pertaining to the degrees of freedom connected to the cohesive elements.

6 Cracks in Single Crystals

A set of two or three slip systems is defined inside the window at an angle of
0@ with respect to the crack plane. Two orientations are considered, which are
an approximation of the projections of three-dimensional orientations of FCC and
BCC crystals respectively that lead to plane-strain plastic deformations [27]:

e FCC: ¢(12) = +£60° (or, more exactly +54.6°), and ¢() = 0 when consid-
ering three slip systems;

e BCC: ¢(1%) = +30° (or, more exactly £35.3°), and ¢() = 90° when con-

sidering three slip systems;

The calculations to be presented in subsequent sections do not aim at model-
ing a specific material, but properties representative of aluminum are used. The
elastic properties are taken to be isotropic, with Young’s modulus E = 70 GPa and
Poisson ratio v = 0.33. A representative value for the drag coefficient in (17) is
B =10"*Pas[19]. Unless otherwise noted, the strength of the dislocation sources
is randomly chosen from a Gaussian distribution with mean strength T,,c = 50 MPa
and standard deviation 0.2T,,.. The nucleation time for all sources is taken as
fnue = 10 ns. All obstacles are taken to have the same strength Tops = 150 MPa.
Attention is focused on metal crystals with a relatively high density of initial de-
fects, which are modeled by a random distribution of point sources and obstacles
in the process window; there are no initial dislocations on the active slip systems
in the simulations. Also, there is no special nucleation of dislocations from the
crack tip.

6.1 Stationary Crack-Tip Fields

Figure 8 shows the stress distribution for an FCC crystal with three slip sys-
tems, and with such a high cohesive strength that the crack does not propagate.
All three stress distributions exhibit large fluctuations, which are due to the singu-
larities of the individual dislocations. In fact, the fluctuations shown are damped
because of the way the contours are plotted on the finite element mesh that was
used for the computation (80 by 80 elements in the process window).
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Figure 8. Stress distributions, normalized by the nucleation strength Ty, in an
FCC crystal with three slip systems as indicted in the inset at K; = 0.6MPay/m.
From [34].

It is remarkable, however, that three sectors appear around the crack tip in
which the stresses, on average, look different from one another. This stress distri-
bution is reminiscent of the analytical near-tip stress field obtained by Rice [27]
on the basis of a continuum plasticity theory for non-hardening crystals. When his
analysis for the true FCC crystal geometry is modified to account for the set of slip
systems used, four uniform stress sectors are obtained. The boundaries between
these sectors are predicted to be 60°, 90° and 120°, the first and last of which are
consistent with the fields in Fig. 8. Van der Giessen et al. [34] carried out a quan-
titative comparison by actually averaging the stresses inside the four mentioned
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Figure 9. Dislocation distribution in the same crystal and at the same load level as
in Fig. 8. From [34].

sectors, and it was found that these average stresses agreed quite well with Rice’s
continuum solution.

However, the discrete dislocation solution did not appear to agree with another
element of Rice’s [27] solution, namely that slip activity on the 0°-slip planes
would concentrate in a kink band at 90°. The discrete dislocation results showed
no evidence of this, as illustrated by the dislocation distribution shown in Fig. 9.
The explanation for the absence of kink bands is that they would require an abun-
dance of sources. Subsequently, Drugan [30] carried out an analysis similar to
Rice’s [27], but without requiring a kink band. He found several solution families,
including a family of solutions which involve only a slip band at 8 = 60°; consis-
tent with our discrete dislocation simulations. The solution that is closest to the
discrete dislocation results is one where there are three sectors with boundaries at
60° and 105°. This solution is illustrated in Fig. 10. Even though the 105° sec-
tor boundary is not obvious from Fig. 8, averaging of the stress fields over these
sectors showed very good agreement with this continuum prediction. Small differ-
ences in the exact average stress values are attributed to the fact that the continuum
solution assumes no hardening, whereas some degree of hardening may occur in
the discrete dislocation results.

6.2 Crack Propagation under Monotonic Loading

When averaging the discrete dislocation results over sectors to compare with
the continuum plasticity predictions [34], the very near tip region with a radius of
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Figure 10. Opening stress states (G2 normalized by the critical resolved shear
stress T) in the three sectors of Drugan’s [30] continuum solution.

0.5um was excluded. The reason is that the stresses in this region are much higher
than the sector averages, see Fig. 8. In fact, the results of Cleveringa ef al. [8]
suggest that the stresses in this region can become high enough for crack advance
by cleavage (although, for numerical reasons, the cohesive strengths in the calcu-
lations are smaller than representative of actual metal cohesive strengths). This is
illustrated in Fig. 11 for a case with two slip systems (+60°) and with a cohesive
surface characterized by the values Gyax = 0.6 GPa and §,, = 4b. For these param-
eter values, the stationary crack tip blunts because of dislocation activity, Fig. 11a.
The sector-average stresses at this instant are quite low, but the opening stress 627
in a small region ahead of the crack reaches the cohesive strength. The crack then
propagates until the crack tip arrives at a location where the near-tip opening stress
is below the cohesive strength. Then, more dislocations are generated near the cur-
rent tip, until the opening stress again reaches the strength, Fig. 11b, and the crack
jumps forward again. This process of blunting and crack jumping continues as the
load increases, giving rise to a distinct R-curve behavior.

It is worth emphasizing that in the calculations by Cleveringa et al. [8] there
is no emission of dislocations from the crack tip. This is in contrast to simula-
tions, e.g. by Hirsch and Roberts [13] and by Nitzsche and Hsia [14], where it is
assumed that dislocations can be emitted only by the crack tip. The same assump-
tion has been made in the analyses of mode III cracks by Zacharopoulos et al.
[15]. This class of calculations aim at initially dislocation-free materials, such as
silicon, where crack-tip emission is the key parameter in the transition from brittle
fracture (no dislocations) to ductile fracture accompanied by dislocation motion,
see also [12]. However, the model considered here is intended to mimic a metal in
which there is an initial distribution of dislocations that act as Frank-Read sources
or as forest dislocation obstacles.
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(b)

(d)

Figure 11. Distribution of dislocations and the opening stress G2, in the im-
mediate neighborhood (2um x 2um) of the crack tip for the FCC crystal with
Pruc = 49/um? and pops = 98/um? at four different stages of loading. The cor-
responding crack opening profiles (displacements magnified by a factor of 10) are
plotted below the x;-axis. From [8].

The main conclusion from the studies of Cleveringa et al. [8] is that disloca-
tions play a dual role in fracture. On the one hand, dislocations are the vehicle for
plastic deformation, and this reduces, on average, the stresses near the crack and
provides a way to dissipate the energy flowing to the crack. On the other hand,
dislocations can arrange themselves in structures, which lead to locally enhanced
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Figure 12. (a) Irreversible cohesive law used for fatigue calculations. (b)
Schematic of the applied stress intensity factor as a function of time. From [10].

stress levels that can trigger crack growth. This stress enhancement is not modeled
by conventional continuum plasticity.

7 Fatigue Crack Growth

Deshpande et al. [10] have extended the computations reported in the previous
section to cyclic loading, specified by a remote stress intensity factor that zig-zags
between Kpax and Ky, Fig. 12b. The only change in the model is that the cohesive
law is extended to be irreversible, as indicated in Fig. 12a, and which models the
effect of complete oxidation of newly formed surface. This is a second source
of irreversibility, next to the discrete dislocation plasticity, which is necessary for
fatigue to occur.
Figure 13 summarizes the salient findings by Deshpande et al. [9, 10]:

1. The maximum stress intensity factor Kp,x needs to be high enough, i.e.
above a critical value K}, in order to provide a minimum of dissipation.
For Kmax > K}« interactions within the now dense dislocation structure act
to retard dislocation motion. Accordingly, a minimum cyclic stress intensity
factor range AK; is needed to induce dislocation motion during unloading
and reloading. Thus, in this regime, AK; below a critical fatigue threshold

value AK}, precludes crack growth.
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Figure 13. The cyclic crack growth rate da/dN versus AK; /Ky and AK$! /K for
the mode I cyclic loading of a single crystal (R = Kpin/Kmax = 0.3). The slopes
of the curves marked correspond to the Paris law exponents for the curves fitted
through the numerical results. From [10].

2. The curves of crack advance per cycle, da/dN, as a function of AK;, Fig. 13,
show two distinct regimes of behavior: a steeply rising log(da/dN) versus
log(AK;/Kyp) curve in the threshold regime followed by a more gradual slope
in the so-called Paris regime. The exponent m in the Paris relation

da

o< (AK;)"
dN(I)

for this case is ~ 4.4. When the same data is expressed in terms of the
effective stress intensity range

AKET — Kimax — Kop for Kiin < Kop
AK; for Kinin > Kop,

where Ko, is the stress intensity at which the crack faces first separate [9],
the Paris exponent is only around 2.8.

A fit da/dN versus AKFT /Ky curve for an interface crack is also plotted in
Fig. 13. The effect of the mode mixity at the interface is to increase the fatigue
threshold of the interface crack but to reduce its resistance to cyclic crack growth
at higher values of applied AK;. This behavior is expected to be dependent on
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the degree of mode mixity and hence affected by the cohesive properties and the
applied loading.

Based on the experimental work of Laird and Smith [20] and Neumann [21],
fatigue crack growth in ductile metals is often presumed to occur by an alter-
nating slip mechanism which is a deformation-controlled phenomenon that does
not require high stresses. On the basis of this, Pippan and co-workers [23, 24]
and Wilkinson er al. [25] developed discrete dislocation models to represent this
deformation-controlled fatigue crack growth mechanism. These models incorpo-
rate the crack growth mechanism as an ingredient of the model rather than have
it emerge as a prediction of the analysis. By contrast, in the framework presented
here [9, 10] fracture is both a deformation and stress-governed phenomenon and
takes place by a mechanism that is possible under both monotonic and cyclic load-
ing conditions. Striations are also predicted by the model, as shown in Fig. 14.

0.000 0.003 0.005 0.008

0.5

Z")
R\ ‘~“='l’a(.“.- 5
\"ﬂVA"_-

\v

1.5

Figure 14. Contours of total slip showing the localized deformation pattern in the
crack tip vicinity. All distances are in um. The crack opening profile (displace-
ments magnified by a factor of 20) is plotted below the xj-axis. From [10].



206 E. Van der Giessen

8 Cracks in Polycrystals

Finally, we look at the crack tips fields in polycrystals, cf. Fig. 1c. For this purpose,
the problem in Fig. 15b is analyzed, where the process window now contains a
number of square grains. A mixture of FCC and BCC grains are considered,
arranged in a checker-board pattern, Fig. 16; results will be presented here mainly
for the case where the crack tip is in an FCC grain, Fig. 16a. All grains have the
same density of sources, ppuc = 20um~2 with average strength T,,c = 46 MPa and
standard deviation 9.2 MPa; pps = 40 um~2 in all grains. The grain size d is taken
to vary between 0.2um and d = 5.0 um.

In a continuum view, and assuming overall isotropic behaviour, the HRR solu-
tion for the opening stress is of the type

1 lerl
G2 o< (r) (20)

where s is the strain hardening exponent in a shear stress T versus shear strain 'y
relation of the form 7y o< t°. The overall stress—strain behaviour of the polycrystals
is extracted from pure shear computations on the grains inside the process window,
as illustrated in Fig. 15a. The results in Fig. 17 show that the response is strongly
dependent on the grain size. The shear stress between Y= 0.15% and 0.25%, 7, as
a measure of yield stress, can be fit to the Hall-Petch type relation

—q
fm—B(jo) : @1

with an exponent ¢ = 0.415 when using Tp = 20 MPa, the flow strength of a single
crystal, and taking the reference grain size dyp = 1um. The Hall-Petch effect in
these computations arises from the fact that grain boundaries act to stop the motion
of dislocations.

The differences in deformation fields in polycrystalline aggregates with differ-
ent grain size are represented in Fig. 18 in terms of the total slip

: (@, (o)
F=Y W9, y%=s5Y%;m®.
o=1

While the total density of sources and obstacles is independent of grain size and the
same as for the single crystal, Fig. 18a, the slip distribution becomes smoother as
the grain size decreases (note that the process window has the same dimensions).
To show two extreme cases, Fig. 19 gives the stress distributions in a single crystal
and in a polycrystal with small grains, d = 0.6 um. In contrast to the single crystal
response (as dicussed previously), the stress distribution inside the polycrystal is
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Figure 15. Sketch of (a) the pure shear problem with doubly-periodic boundary
conditions and (b) the small scale yielding crack problem with imposed mode I
loading. From [3].

seen to more closely resemble the isotropic HRR predictions. Thus, both the stress
and strain fields around the crack tips in our polycrystal analyses indicate that
the grain boundaries successfully block the formation of slip bands and tend to
diffuse plastic deformation which results in more isotropic distributions of stress
and strain.
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Figure 16. Two polycrystalline grain arrangements used in the mode I crack sim-
ulations. The arrangements are illustrated for a 3x 3 array of grains with the crack
plane indicated by the dark line. From [3].

80 50
L ¢ alternating e
I columns (rows) «
60 10+
I d=02um d=0.6um
d=1Tum
t(MPa) 40 T (MPa)
L d=3um 30 .
I i T = To+B(d/d,)?
or ingl | °
L single crysta
d=5um
" To=20 MPa do=1um
. . | p=15.346 MPa q=0.415
0 OOO OOO 0003 20— 0I2 n T ‘016‘”""””"” 3 3
Y d (um)

Figure 17. (a) Applied shear stress T versus shear strain 7y response of the poly-
crystalline and single crystal materials analyzed in this study. (b) Average shear
stress T between Y = 0.15% and 0.25% for both grain arrangements as a function
of grain size d. The Hall-Petch type relation eq. (21) is fit to the data. From [3].

The distribution of the opening stress ahead of the crack tip, Fig. 20, reveals
three distinct regimes. Sufficiently far from the tip, 627 o< 1/4/r according to the
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Figure 18. Distributions of total slip I" around the stationary crack tip of poly-
crystals at an applied K; /Ko = 1.75: (a) pertains to the FCC single crystal and (b)
through (f) are for the d = Sum to d = 0.2 um polycrystals, in descending order.

(All distances are in ym.) From [3].

elastic K-field, while very close to the tip the discreteness of the dislocations gov-
erns the field. In between there is a regime which has been fitted to a power-law

congsistent with the HRR field (20).
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Figure 19. Distributions of normalized stress, G22/Tnuc, around the stationary
crack tip at K;/Ko = 1.75: (a) the FCC single crystal (b) the polycrystal with
d = 0.6 um. The crack-tip profile with displacement magnified by a factor of 50 is
included in both cases. (All distances are in ym.) From [3].
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Statistical physical approach to describe the
collective properties of dislocations
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1 Introduction

The concept of dislocation was introduced by Polanyi, Orovan and Taylor
in 1934 to explain the almost three orders of magnitude difference between
the measured and theoretically estimated flow stress of crystalline materials.
During the next 20-30 years, thanks to the contribution of a vast number of
scientists, the theory of dislocations was successfully applied to explain sev-
eral properties of the plastic deformation observed experimentally. Among
other things the basic phenomena leading to work and precipitation hard-
ening were understood [1, 2, 3].

On the other hand TEM investigations revealed that dislocations formed
during plastic deformation tend to form different dislocation patterns, like
the cell structure (see Figure 1.) developing at unidirectional load [4], or the
so called ladder structure (see Figure 2.) developing under cyclic loading [5].

In spite of several attempts (Kuhlmann-Wilsdorf et.al. [6, 7, 8], Holt [9],
Walgraef and Aifantis[10, 11, 12], Kratochvil et.al. [13, 14, 15]) proposed to
model the pattern formation, we are far from the complete understanding of
this typically self organizing phenomena. One of the most striking features
of the dislocation patterning, which is a great challenge to model, is the large
variety of the patterns observed. The variety manifests itself not just in the
”geometry” of the dense dislocation regions but also in several statistical
properties of the different dislocation ensembles. It is known for example
that cyclic loading can lead to periodic structures with well defined self
selected length scale [5], while unidirectional loading often results in fractal
like structures which do not have any length scales (Hahner et.al. [16, 17]).
Another interesting feature of the patterning process observed recently by
X-ray diffraction (Székely et.al.[18, 19]) is that in case of unidirectional
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Figure 1. Dislocation cell structure obtained on Cu single crystal oriented
for multiple slip [4].

Figure 2. Ladder structure obtained on Cu single crystal deformed cycli-
cally [5].
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loading the relative dislocation density fluctuation o2 defined as
o=V pr(F)dBT.
[f p(P)dor]*

where p(7) is the dislocation density and V is the crystal volumes, under-
goes a sharp maximum as deformation proceeds (see Figure 3). The result

(1)

— s 200

O L L L L L L
20 25 30 35 40 45 50 55
T(MPa)
Figure 3. Relative dislocation density fluctuation versus applied stress,
obtained on Cu single crystal oriented for multiple slip. The two curves

correspond to relative dislocation density fluctuations determined from the
broadening of (200) and (220) Bragg peaks [18, 19].

indicates that during plastic deformation the dislocation system tends to
become more and more inhomogeneous, but after a certain deformation
level (depending on the crystal orientation and temperature ) this separa-
tion process cannot continue any longer and the system becomes more and
more homogeneous.

Another challenging problem intensively studied nowadays ( Flack et.al.[20],
McElhaney et.al. [21]) is that resent experimental investigations revealed
(see Figures 4 and 5), if the characteristic size of a specimen is less than
about 10um the plastic response of crystalline materials depend on the size.
The phenomenon is commonly called "size effect”. One can easily explain
this size dependence by assuming that the crystalline materials have an
internal degree of freedom which "feel” the sample surface. This immedi-
ately indicates that a theory able to account for the size effects has to be
non-local, since the sample surface is ”"seen” from the bulk. The simplest
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Figure 4. Normalised torque versus shear deformation obtained on torsion-
ally deformed wires with different diameters a. The curves indicates, if a
is smaller than 50um, the hardening of the wires increase with decreasing

diameter [20].
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Figure 5. Microhardness versus indentation depth obtained on cold rolled
Cu. It can be seen, if the indentation depth is less than 1um the micro-
hardness increases with decreasing indentation depth [21].
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possible way to introduce nonlocality is to add gradient terms to the ”local”
ones. There are several different phenomenological ways to do this. As a
possibility one may introduce an effective shear stress 7.5 as

Teff = T(77 /3/7 ) + ,Uzl2A’}/7 (2)

where 7(,7%, ...) is the ”classical” local stress-strain relation, v is the shear
deformation, p is the shear modulus and [ is a parameter with length dimen-
sion. It is important to stress that [ has to be introduced for the appropriate
dimension of the second term. Since size effects appears at micron scale,
the value of [ needs to be in the order of pum.

During the past 10 years several non-local plasticity theories based on
similar arguments explained above have been proposed (Aifantis [22, 23, 24],
Flack and Hutchinson [25], Gurtin [26], Svendsen [27]) and successfully
applied to explain experimental results. However, these phenomenological
non-local theories suffer from the common drawback, namely, the physical
origin of the gradient terms are not clear. This is especially pronounced
if one tries to explain the origin of a material parameter (1) with a value
around pm.

On the other hand, we know that in crystalline materials plastic defor-
mation is carried out by dislocations. They definitely act as internal degrees
of freedom. Due to the long range stress field of dislocations they ”feel” the
sample surface. This indicates that size effect is the result of the collec-
tive motion of dislocations. The results of discrete dislocation dynamics
simulations clearly demonstrate this (see Nicola et.al. [28]).

The aim of the present paper is to explain how the collective behaviour
of dislocations can be treated within a statistical physics framework. Since,
however, the dislocations form a strongly dissipative system, the classical
theory of statistical physics developed for Hamiltonian systems cannot be
directly applied. In the first part of the paper the field theory of dislocations
developed by Kroner and Kosevich is summarised [29, 30, 31, 32]. Although,
the Kroner and Kosevich theory is not able to capture all the statistical
features of dislocation systems, it plays an important role in our further
considerations.

In the second part of the paper it is shown that for a simple 2D dislo-
cation configuration a continuum theory of dislocations can be rigorously
derived. According to numerical investigations it is able to account for cer-
tain type of size effects. At the end of this chapter, attempts to generalise
the results for 3D are shortly explained.

Finally, in the last part the properties of the internal stress distribution
generated by dislocations are discussed.
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2 Kroner-Kosevich field theory of dislocations

2.1 Nye’s dislocation density tensor

Shortly after the concept of dislocation was introduced, the elastic field
generated by dislocation loops was determined (see for example [1]). In the
early 1950s Kroner and Kosevich reconsidered the problem and proposed an
extremely elegant formalism to describe the elastic properties of dislocated
crystals. In this section the dislocation field theory they have developed is
shortly summarised. For more details the reader is refereed to [29, 30, 31,
32].

Let us consider a body subject to shape change. Its deformation is
uniquely described by the displacement field @(7). In the small deformation
limit the change of atomic distances is measured by the total deformation

tensor
~ di
t =
(6 M m> | )

(For better understanding expressions are given both with component and
tensor notations. Tensors are denoted by hats.)

In the common theory of elasticity it is assumed that the stress tensor
6 is a unique function of the deformation tensor €. In linear elasticity
considered in this paper

045 = Lijklefk ((3' = IA/ : @t) (4)

t 1 {(’ml + auj:|

Eij a 2 a’l“j 8ri

where L is the tensor of elastic moduli.

Deformation of a body, however, does not necessarily leads to the devel-
opment of internal stress. If we cut a body into two pieces along a plane,
slide the two parts with respect to each other and glue them together, the
deformation is obviously nonzero along the plane, but the final stage is stress
free. This means, the deformation can have a part which generates stress
and another one which does not. According to this, the starting point of the
plasticity theory explained below is that the gradient of the displacement
field commonly referred as total distortion is the sum of two terms, the so
called plastic (37) and elastic (3) distortion i.e.

ou

or dr

; di 5 4

! =B+ B ( =ﬁ+ﬁp)- (5)
1

It needs to be mentioned, that the above expression is valid only in small
deformation limit. For large deformations, as a constitutive rule, it is com-

monly assumed that the final deformation stage of the body is reached by
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two successive steps, a plastic and an elastic deformation. For small de-
formations this is equivalent with Eq. (5 ). For the sake of simplicity we
consider only this case.

Splitting the total distortion into two terms is rather formal so far. The
plastic and elastic distortions need to be defined. It has to be mentioned
at this point that, as it is explained in details below, the separation is not
unique.

As it is indicated by its name the elastic distortion is that part of the
total one, which is related to the stress developed in the body due to the
deformation. In linear elasticity

0ij = Lijua Bk (6 =L: B) . (6)

However, due to the symmetric properties of ﬁ, ¢ determines only the sym-
metric part of S. With other words, the stress determines only the elastic
deformation ¢ defined as

1 L
€ij = 2(51‘;‘ + Bji) <€ = [5} ) . (7)
sym
From Egs. (6,7) the elastic deformation reads as
;=L (=130
€ij = Lo = 20, (8)

where L~1 denotes the inverse of the tensor of elastic moduli.
The next step is to define the plastic distortion. Since, by definition, the
total distortion is the gradient of the displacement field, it is curl free, i.e.

Cikl 8“ 87‘1‘ =0 <V X dr = O) N (9)

where e;i; is the antisymmetric tensor. The plastic distortion, however, is
not necessarily curl free. After Nye [33] the curl of the plastic distortion
is called dislocation density tensor &:

0

Ny (a —V x BP) (10)

Qij = €ikl
(In the literature & is often refereed to Nye’s dislocation density tensor.)
From Egs. (5,9,10) one easily obtains that

Qij = —€ikl

81 By (a = -V x B) . (11)
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In order to see the physical meaning of & introduced above, let us consider
its integral for an arbitrary surface A

A

From the (11) expression of &, with the help of the Stockes’ theorem, one
can find that

0
bj = —/ eikla ﬁljdAi = — ]{ﬁi]‘dsi = — %duf (13)
A Tk

Equation

b; = — f dug (14)

obtained is the one Burgers originally used [34] to define a dislocation as
a singularity of the elastic displacement field #¢. Therefore, & defined by
Eq. (10) is the net Burgers vector of line singularities crossing a unit area.
From Eq. (12) one can easily find that for a single straight dislocation

ai; = 1ib s (€) (a =lobs® (5)) : (15)

where [ is the tangential vector of the dislocation line and ¢ is the distance
from the line.

Before we proceed further, it should be mentioned that the dislocation
density tensor does not define uniquely the plastic distortion. Knowing &
leaves 37 uncertain up to a gradient of an arbitrary vector field. However,
as it is explained below, this does not affect the stress field created by the
dislocation system.

2.2 Internal stress generated by the dislocation system

In order to derive the field equations, let us consider the symmetric part
of the total distortion. According to Eq. (5)

1 a’U,j 5‘uz P du A ~p
=€ + € = , 1
9 <8’["i + 87‘]) €ij +Ez] <|:df,:| o €+ € ( 6)

where € and €P are the symmetric parts of the elastic and plastic distortions,
respectively. Using the curl grad = 0 identity one can find that

0 0 (0Ou; Ouy di
—CikmC€jin = 5 = (1
Cikm il ory Oy (87"1' * 87“]'> 0 (V 8 |:d7":| sym v 0) ( 7)
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It is useful to introduce the tensor operator inc (”incompatibility”) defined
as

. 0 0
inc = —eikmejin O Oy’ (18)
With this definition Eq. (17) reads as
du
i =0. 19
inc [dfl . (19)

For further considerations it is useful to introduce the symmetric tensor
field

0 0

Mij = —€ikm€jin Oy Or, €Emn (incée=n). (20)

After a long but straightforward calculation one can obtain from Egs. (10,
16, 19, 20) that

1 0 0 A
ij = 4 (ejln o, Qim, + €iln o, ajm> (77 = [a x V}Sym> . (21)

By substituting Eq. (8) into (20) we arrive at the equation that the stress
created by the dislocation has to fulfill:

o 0 __ . A .
Nij = —C€ikm€jin Ory O, Lmiwpaop ( inc (L 10) = 77) . (22)
Since, for an arbitrary vector field f

inc df
dr
sym

Eq. (22) itself does not determine 6 completely. However, supplementing it
with the equilibrium condition

0. (23)

0 o
ors o5 =0 (dive =0) (24)

we already have enough equations to determine the stress field generated
by the dislocations.
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2.3 Second order stress function tensor

Like in electrodynamics it is useful to reformulate Egs. (22,24) into a
potential theory. Let us introduce a second order stress function tensor y
defined with the relation

o 0 o
0ij = —€ikmEjin Oy O Xmn (6 = inc X). (25)
Due to the identity
div inc=0 (26)

the (22) form of 6 guarantees that the equilibrium condition (24) is fulfilled.
With the stress function tensor introduced above Eq. (21) reads as

L 0 9 0 0

Nij =  CikmCjinCoquCpuwls Xvw
J J =P mmnop 87’k C{)Tl C{)Tq 87’u

(h = inc (i—l inc x)) (27)

For an anisotropic medium the above equation is rather difficult to solve,
but for isotropic materials, with shear modulus p and Poisson’s ratio v, a
general solution can be obtained. It is expedient to introduce another tensor
potential X’ defined as

1 1%
U i — 5ii 2
X’LJ 2//1/ (XJ 1+2Vka J> ( 8)
v
Xij = 21 (Xéj t_ VXZk%) : (29)

By inserting Eq. (29) into Eq. (27) one can find, if ¥’ fulfills the gauge
condition

0

67"~ng =0 (div ¥’ =0) (30)

Eq. (25) simplifies to the biharmonic equation
VX = mij (VX' =1). (31)

A remarkable feature of this equation is that the different components of ¥’
obey separate equations making the problem much easier to solve. For an
infinite medium the general solution of Eq. (31) is

X” = 871-///|T_T|n” Yav’ (32)
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2.4 2D problems

In the next section the statistical properties of an ensemble of parallel
edge dislocations are discussed. In this case the stress and the strain do not
vary along the dislocation line direction [ Taking I parallel to the z axis
(with I'= (0,0, —1) in the above expressions the derivatives with respect to
z vanish (0/90z = 0). One can find that Eq. (25) simplifies to [30]:

2 2 2
0’11:—8><7 Jzzz—ax, g12 — aX, XEX?)S (33)
dy? 0x2 0xdy
09 _0¢ _ Oxe3 | Oxm
IBT g TBT g ¢ = or oy (34)

Furthermore, from Eqs. (21,27) one obtains that the two scalar fields x and
¢ introduced above obey the equations

i 2p o 0 -
Vix=,_ (b oy b2y (Pa+ — pa-) (35)
V29 = pbs(par — pa-); (36)

where by, by and by are the z, y, and z directional components of the Burgers
vector, respectively. The notations pgy and pg— stand for the dislocation
densities with positive and negative signs, respectively, They are the sum of
0(7—7;) Dirac delta functions, were 7; denotes the position of a dislocation.
For the sake of simplicity we assumed that all dislocations belong to the
same slip system (single slip), but the expressions can be easily generalised
for multiple slip.
For an infinite medium the solutions of Eqgs. (35,36) read as

xm:%j“)/(%g—mijmmm—m<mm%mfﬁwn
and

mmz—wfﬂWAH—Wmewaff (38)
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2.5 Time evolution of the dislocation density tensor

As it is explained above, if we know the dislocation density tensor (i.e.
we know the dislocation line geometry) the internal stress field can be de-
termined from Eq. (27). This is however, only a ”static” description. In
order to be able to describe the response of the dislocation system to exter-
nal signals, the governing equations of the time evolution of the dislocation
density tensor should be determined.

If we take the partial time derivative (denoted by ” -” ) of Eq. (10), we
find that

. 0 . : 5
Qij + € ark]lj =0 (a +Vxj= O) (39)
where

j=—p (40)

is called dislocation current density [31]. The above equation is the ”conser-
vation law of the Burgers vector” in differential form. Indeed, if we integrate
both sides of Eq. (39) for an arbitrary area contoured by the closed curve
L, according to Eq. (12), we obtain that

db; .
_ iids; 41
dt jij jds (41)

It is obvious from this relation that j is the Burgers vector carried by the
dislocations crossing a unit length part of the contour line L per unit time.
For an individual dislocation one can find that

jie = eitmlivmbrd® (€) (j = x®)ob 5<2>(g)) , (42)

where v is the velocity of the dislocation line at a given point. It is impor-
tant to note that if we added the gradient of an arbitrary vector field to J
given above, this would also satisfy the conservation law (39). The problem
is obviously related to the non-uniqueness of the plastic distortion discussed
earlier. However, expression (42) is the only one which is physically mean-
ingful. One expects that there is no plastic current anywhere else but at the
dislocation line. Nevertheless, strictly speaking we have to postulate this.
The above results clearly show that j has to be considered as an inde-
pendent quantity. In order to be able to describe the time evolution of the
dislocation system we have to set up a constitutive relation which gives how
7 depends on the dislocation density tensor and the external stress. Due
to the long range nature of the dislocation-dislocation interaction, the con-
stitutive relation is obviously non-local in &. Beside this, the constitutive
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relation has to be able to account for several different "local” phenomena
(self loop interaction, junction formation, annihilation etc.) making even
more difficult to determine its form.

One possible approach to handle this problem is to set up the constitutive
relation from phenomenological considerations. During the past years sev-
eral phenomenological expressions were proposed and successfully applied
for modelling certain phenomena [26] but the problem is far not completely
solved.

Another widely used approach to study the time evolution of dislocation
systems is discrete dislocation dynamics (DDD) simulation in which the dis-
location loops are considered individually. After setting up velocity laws for
the dislocation segments the dislocation loop geometry is updated numeri-
cally. Describing the actual numerical techniques used in DDD simulations
is out of the scope of this paper. The reader can find the details e.g. in
(35, 36, 37, 38, 39, 40, 42, 43, 44, 45]. Although DDD simulations are ex-
tremely important for the better understanding of the collective properties
of dislocations, due to their high computational demand their applicability
in engineering practice is limited.

2.6 Time evolution of the displacement field

In the previous part we have discussed how the stress field generated by
the dislocations can be determined and what can be said in general about
the time evolution of the dislocation density tensor. However, in many
applications it is important to determine the displacement field u(7), too.

Let us go back to our starting equation (5), multiply it with the tensor
of elastic moduli I:, and take the div of the equation. Using Egs. (6,24)
one obtains that

0 ouyp,

9 .. di P
8T,Lijk'l or 8r‘Lijkl6£l (le L~ = div Lﬁp) . (43)

dr

This is formally equivalent with the common equilibrium equation of elas-
ticity with body force density

fi= _ai Lisa By (7= aw L) )

Since, as it is explained earlier, the dislocation density tensor does not
determine the plastic distortion uniquely, the above equation is not enough
to determine the displacement field. Taking, however, the time derivative
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of Eq. (43), with the (40) definition of J, one finds that

9 du, 0 , adi e
87"1' Lijkl 87“1 = aTi Lijkl]kl (le Ldf = div L]) . (45)

As it is discussed above, based on physical arguments, J can be uniquely
defined, so the deformation velocity field @ can already be determined if
j is known. Integrating it with respect to time gives the change of the
displacement field which is the quantity one can really measure.

2.7 Problems related to coarse graining

The dislocation density tensor introduced above is a highly singular
quantity. It is infinite along the dislocation lines and vanishes elsewhere.
More precisely, it is proportional to a delta function along the dislocation
lines. The same holds for the dislocation current density. The conserva-
tion law (39) guarantees that during the evolution of the dislocation system
this delta function does not ”spread out”, only the shape of the loops can
change. This is certainly what we expect physically. This means, however,
if we want to follow the evolution of the system we have to follow the track
of each dislocation loop as it is done in DDD simulations.

We may hope, like for many other physical systems, to predict the macro-
scopic response of the dislocation system, we do not need this detailed
knowledge of the evolution of the dislocation configuration. Omne should
try to operate with locally averaged quantities. This means, the different
quantities, like dislocation density tensor, stress, dislocation current density,
etc., are convolved with a window function. In the physics literature the
procedure is commonly called as ”coarse graining”, while in the engineering
community the term “homogenisation” is more frequently used. One can
immediately raise the question what is the appropriate function we should
use for the shape of the window function, and what determines its half
width. One cannot have a general recipe how to resolve these problems.
Nevertheless, we can hope that within certain limits the result obtained by
the coarse graining is not sensitive to the actual window function shape and
its width. If this is not the case, this clearly indicates that all the microscop-
ical details are important. So, the coarse graining procedure always requires
extra care. Beside this, it is important to stress that, before the equations
obtained by coarse graining are applied, for predicting the response of the
material in a given situation, one always has to study the relevance of the
homogenisation.

In order to indicate the difficulties, as a simple example, let us consider
a set of parallel edge dislocations with +b Burgers vectors parallel to the x
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axis. For this case Eq. (35) simplifies to

2 P
Vix= _Hy (bay) i (46)

where kg = pq+ — pd— is the signed dislocation density that is a sum of delta
functions. If we take the convolution of Eq. (46) with a window function
w(7) we obtain that

2
/w(t VA () = H /w(F— ) <b 0 ) ka(F)d.  (47)
After partial integrations we get that
v /w(F— it = 2 (52 /w(F— Mra(P)d. (48)
1—v \ 9y ¢ ’
As it can be seen, the coarse grained fields denoted by
<x>= /w(?— P )x (7 )dri’ <K >= /w(F— Pka(F)d (49)
are related to each other as
1-v

Vi<ys>=_H (b;y)<n> (50)

that is formally equivalent with Eq. (46). With a similar argument, from
Eq. (33) one can find that

P 0% < x>
o = — ,
11 0y
0% < x>
<o> = — , 51
0 >99 92 (51)
P 0% < x>
g
12 0xdy

This means, the coarse grained fields are related to each other as the ”dis-
crete” ones.

However, important information is lost during coarse graining. If we
consider two dislocation configurations indicated in Figure 6 and coarse
grain them for the same square areas indicated by the boxes, we get the
same signed dislocation density value. On the other hand, it is obvious that
the response of the two configurations are strongly different, if one applies
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. 1
T

Figure 6. Two strongly different dislocation configurations giving the same
k if they are coarse grained for the areas indicated by the boxes.

an external shear. So, in a continuum theory of dislocations, in which we
operate with smooth fields, the coarse grained dislocation density tensor is
not enough to characterise the state of the system. In the next section we
discuss how a continuum theory can be derived from the equation of motion
of straight parallel dislocations and what relevant quantities are needed to
have an appropriate description of this simple dislocation system on the
mesoscopic scale.

3 Linking micro- to mesoscale for a 2D dislocation
system

3.1 Discrete dislocation dynamics simulations in 2D

In the early 90s due to the fast increase of the available computer power
it became possible to investigate the collective properties of dislocations by
computer simulations. In DDD simulations the equations of motion of the
dislocations (dislocation segments) are integrated numerically. During the
past 15 years a vast amount of DDD simulations were performed both in 2D
[46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] and 3D [35, 36, 37, 38, 39, 40, 42, 43,
44, 45]. The detailed descriptions of the numerical methods applied and the
results obtained are out of the scope of the paper, but to demonstrate the
potentials and the limitations of the numerical simulations we will shortly
review simulation results obtained by the author [50, 51] on the same system
that is studied below in the statistical physics considerations.

In the simulations, the evolution of a system of parallel edge dislocations
was studied in a square area with periodic boundary conditions. (This
means, the originally 3D problem was simplified to 2D.) The system was
subject of unidirectional deformation with a constant external deformation
rate é. The stress required to keep é constant was calculated. Dislocation
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motion was allowed in two slip systems (denoted by dotted lines in Figures 7)
with 60° between the two slip directions. The system was oriented for single
slip, i.e. in one of the two slip systems the shear stress generated by the
external load was much larger than in the other one.

In the simulations reported here only dislocation glide was allowed (i.e.
the velocity of the dislocations were parallel to their Burgers vectors). In the
equation of motion of the dislocations, the inertia term (ma) was neglected
beside the friction force ﬁf accounting for the energy dissipation during
dislocation motion. This is called overdamped dynamics. For simplicity, we
assumed that F' 'y was proportional to the dislocation velocity, F 't = —B7,
where the coefficient B is called as dislocation mobility.

Beside the friction force, if the stress is nonzero at the dislocation, the
Peach-Koehler force [1]

-

Frix =1 x (6b) (52)

also acts on a dislocation, where ¢ is the sum of the stress created by the
dislocations and the external stress. With these, the equation of motion of
the ¢th dislocation is

— 7, b;) + 67 | by (53)

_,
Z

<
|
i Mz

where §; and m; are unite vectors parallel and perpendicular to the slip
direction of the ith dislocation, respectively, d¢,+ is the external stress, and
G (7 — 7, b) is the stress field created by the ith dislocation (with Burgers
vector b). According to Egs. (33,35), 6""¢ needs to be determined from the
equations

- 2 0 0
4 ind 1 — —
= b —b or—r; 4
vt = P () <t )07 (54)
aQXind ) aQXind ) aQXind
ind __ wnd __ ind __
O11 - oyt Og2 = — oz2 012 = oy (55)

For periodic boundary conditions used in the simulations "¢ does not
depend on the absolute position of the dislocation position. "¢ can be
determined numerically either by the Fourier transformation of the above
equation or by adding the 61"¢ stress of the appropriate periodic mirror

dislocations, where de is the stress in an infinite medium. It has to be
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mentioned here that for other boundary conditions Needleman and cowork-
ers developed an efficient method in which the stress is the sum of the stress
the dislocation would create in an infinite medium plus a ”compensating”
component ¢°°"P needed to fulfill the boundary conditions. Since 5P
is nonsingular at the dislocations it can be calculated with finite element
methods.

During the system evolution dislocation multiplication was allowed with
a global and a local conditions. The global condition was set up to reflect
the experimental fact that a certain amount of external work is stored in
the self-energy of dislocations. To mimic this, if the external work increased
a certain amount, a new dislocation dipole was added. Since the new dis-
locations are generated by the stress as a "local” rule, the new dipole was
placed to a random position chosen with a probability proportional to the
local stress. For the sake of simplicity dislocation annihilation was not taken
into account.

A typical simulation result can be seen in Figure 7. As the stress-time
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Figure 7. The time variation of stress, dislocation density and elastic en-
ergy together with the ”final” dislocation configuration obtained on a dis-
location system subject of a constant external deformation rate.

relation obtained indicates, the system has a finite flow stress (the initial
part of the curve is linear and reversible). This is the consequence of the
relatively narrow random dipole initial configuration used. While the exter-
nal stress is less than the debounding stress of the dipoles there is no ”free”
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dislocation motion, so there is no plastic deformation. The deformation is
elastic. After this, the stress-strain curve is practically horizontal with a
few dislocations moving in the primary slip system. This stage shows sev-
eral similarities with the easy glide stage of plastic deformation of single
crystals. This stage is followed by a much steeper part of the stress-strain
curve. The transition is coupled with a quite sudden rearrangement of the
dislocations. A cell like structure starts to form.This stage is similar the to
stage II. deformation regime.
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Figure 8. Hardening obtained on the 2D dislocation system.

We have investigated if the stress increment needed to keep the deforma-
tion rate constant results the enhancement of the flow stress. In stage II at
a certain stress level the direction of the deformation was reversed and the
system was unloaded. After this the system was reloaded again with the
same rate applied earlier. As it can be seen in Figure 8 during unloading
after a short relaxation period the plastic deformation rate dropped to zero
(left bottom curve) and the system continued to deform elastically. During
the reloading period macroscopic plastic deformation did not occur until the
stress reached the level at which the system was unloaded. This means, that
this simple model system shows hardening. Similar results were observed
by several other authors ([54, 57]).

The above results demonstrate that already a strongly oversimplified 2D
dislocation system is able to reproduce several properties of plastic defor-
mation. Due to the huge computational demand needed for the numerical
integration of the equations of motion of the dislocations, one can afford only
a couple of thousand dislocations in the simulations. The problem is even
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more complex in 3D. At the moment about 10'?2m~2 dislocation density can
be reached in a 10x10x10 pm box [45] applying the world largest supercom-
puters. Although, these numerical investigations are extremely important,
at the moment their applicability is very limited in the engineering practice.

3.2 Continuum theories developed for other systems, analogies
and differences

At the end of the 19th century Boltzmann developed the statistical the-
ory of fluids and gases. The key quantity he introduced is the density
function f(t,7,p) giving the probability density of finding an atom at the
(7, p) point of the phase space. From the conservation of the phase space
volume (Liouville theorem) he obtained that the evolution of f(¢,7,p) is
described by the relation

9 P f

o B0+ D D p( )+ F@ 5 - (56)

where m is the mass of the atoms, ﬁ(F) is the external force and J f../dt is the
so called collision term accounting for the momentum change occurring at
the collision of two atoms. Its actual form is difficult to determine. Since,
however, the interaction between atoms is short ranged the collision is a
local short event. This means that the collision time 7. is much shorter
than the mean collision free travelling time. As a consequence of this the
collision term can be well approximated with a relaxation term leading to
the equation

SRR+ D R+ FE) ) SR == (- f) (5T)

where f. is the equilibrium Boltzmann distribution. An outstanding fea-
ture of Eq. (57) is that the Navier-Stokes equation of fluid dynamics can be
derived from Eq. (57).

On the other hand it is obvious that Eq. (57) cannot be used for systems
where the interaction between the particles is long ranged. Plasma is a
typical example for this. The Coulomb interaction between the charged
particles is long ranged. The same holds for dislocations. The interaction
between straight dislocations is proportional to 1/7.

For plasma, Vlasov obtained that the collision term 0 f./dt is the sum of
two terms

0 fe

N, . o
5t = el pf (657 + S(), (58)
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where ﬁsc(f') is the so called self-consistent field generated by the charge
density p.(7) and the electric current density j.(7). The relations between
pe(7), jc(f"), and ﬁSC(F) determined by the Maxwell equations, are strongly
non-local. However, due to the Debye screening appearing in charged sys-
tems, the second term denoted by S(7) is already local. According to these,
for plasma the Boltzmann equation (56) reads as

0 oL o 0
AR

P ol B+ [F0) + Eul@)] 105 =S, ()

As it is explained below, a similar equation can be derived for straight
dislocations. Certainly, the special properties of the dislocation-dislocation
interaction and the dissipative nature of dislocation motion have to be taken
into account.

3.3 Hierarchy of the different order density functions

Let us consider N straight parallel edge dislocations. As a first step let
us assume that each dislocation has the same Burgers vector b parallel to
the x axis. This simplification is needed only to have shorter equations.
The results obtained can be easily generalised. In order to get results that
are physically relevant some generalisation is definitely needed.

For this case the equation of motion of the dislocations given by the
general form (53) simplifies to

N
61' - Bilg ZTind(Fi - F]) + Teaxt | (60)
J#i

where 7., is the external shear and 7;,4(7) is the shear stress created by a
dislocation. In an infinite isotropic medium

b w(@® —y?)

2r(1 —v) (22 +y2)?’ (61

Tind (F) =

As it is well known from statistical physics, instead of giving the time de-
pendence of the coordinates of the N particles one can describe the state and
the evolution of the system with the N particle probability density function
fn varying in the 6N dimensional phase space. Although, the dislocations
form a nonconservative system, some of the results of statistical mechanics
can be applied. Since the equations of motion of dislocations are only first
order differential equations (assuming overdamped motion) for the problem
considered, fy is a 2N dimensional function of the dislocation coordinates.
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By definition fy(t, 71, 7s...Fn )d*7F1d%7, ..d*Fy is the probability of finding
the N dislocations in the d?7 d?7..d*#y vicinity of the 7, 7...¥y points at
time ¢.

If we assume that the number of dislocations is conserved (later this
restriction will be lifted), fn has to fulfill the conservation law [58]

fN(t, 1,7, ey FN)d2F1d2F2, ey dZFN =
In(t+ AL+ TLAL 7 + To AL Py + TnAL) (62)
xd? (7 + U1 At)d* (7 + o At)...d* (P + TN AL).

The above relation reflects the simple fact that the probability of finding a
dislocation at a certain point can change only if the dislocation moves from
one point to another one. It is interesting to mention that in contrast with
the conservative systems

fn(t, 7,7, ., TN) #
Pt + AL+ 51 AL Ty + BoAL, . iy + T AL, (63)

This is the consequence of that the diydrs...dry volume is not conserved
during the evolution of the system.

After some simple algebraic manipulations Eq. (62) can be rewritten into
a partial differentiation equation

afN+zN: O (7P = 0 (64)
ot - 87_'; N\, T1,72, -5 TN )Uq .
By substituting the left hand side of Eq. (60) into #; we get that

N =0 [, .
o +;aﬁ {IWF@E-7)} = 0 (65)

where F(7) = bryna(7). (B is dropped out from Eq. (65). With the appro-
priate selection of the time unit one can always take B = 1.) For the sake
of simplicity in the above equation the external shear was not taken into
account. It is important to note that Eq. (65) is mathematically equivalent
with the original equations of motion of the dislocations (60). To find a
solution of the two equations are equally difficult.

For many applications, however, we do not need that detailed description
represented by the N particle probability density function. A less detailed
description of the system is the k-th order probability density function de-
fined as

fk(Fl,FQ,..,Fk)://../fN(t,Fl,Fg...FN)dZFkHd2fk+2...d2FN. (66)
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After integrating Eq. (65) with respect to the variables 711, P42, ..7n, from
the above definition of fi (66) we obtain that

ot

i=1j=1j#i

of Qg )
Y / o {IVE (s = 75) | i dFiga. dFn(6)

The double sum at the right hand side of the equation can be split into
three parts

N N 9 )
Z Z / or; {fNF(ﬁF; - FJ)} d2Fk+1d2Fk+2...d2FN =

i=1 j=1,j#i
LS 9, -
> X g AnFE -] (68)
i=1j=1,j#i
k N 8 B
+Z Z /8F~ {fNF(Fz - ﬁ)}d2fk+1d2fk+2...d2f}v
i=1 j=k+1 4

N N 8 -
+ Z Z /87—.{ {fNF(Fz _ﬁ)}d2fk+1d2f’k+2...d2f}v.

i=k+1j=1,j#i

The last term is the integral of a div, so it can be transformed into a contour
integral along the border of the system. Assuming that the distribution
functions tend to zero fast enough at infinity, this term vanishes. Taking
into account that fxy needs to be invariant with respects to swapping the
coordinates of two dislocations we get that

fr < o= D _
ot T2 X o (PG -] (69)
+(N — k)/ 82; {fk+1ﬁ(ﬂ —Fk+1)}d2Fk+1 =0.

As it can be seen the equation for the k-th order probability distribution
function depends on the k + 1-th order one. So, the reduction procedure
applied results a hierarchy of the equations. In fluid dynamics and plasma
physics this is called as BBGKY hierarchy.

For our further consideration the equations for f; and fy play an impor-
tant role, so we give their explicit forms [58]:

Ip1(71,) 9 N T [ S
6t +/8F1 {pg(’l‘l,’r‘g,t)F(’/’l—’/‘Q)}d T2 = 0 (70)
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and

0 F7F7t 0 0 Lo o .
p2(1 2 >+< o7, 8T2>p2(7‘1,7‘2,t)F(7‘1—7”2)

8 /Ps , T2, 73,1 F(Tl—Tg)d2T3+1<—>2—0 (71)

where the notations py = N f1,p2 = N(N — 1) fa, p3 = N(N — 1)(N — 2) f3
were introduced. The advantage of using these quantities is that, in contrast
with the probability densities f1, fo and f3 normalised to 1, they are system
size independent. They are commonly referred to as one, two and three
particle density functions, respectively.

It is useful to show that Eq. (70) can be derived with another method,
too [59]. This can help to have a deeper understanding of the physical
meaning of the equation obtained. As a first step let us multiply (60) with
0(7 — 1) and take its derivative with respect to 7

d {dr; d | [
df,{dté(r—ri)} = ZF(Ti—Tj) (F—7i)p. (72)

J#

It is useful to introduce the "discrete” dislocation density

N
> o8 —7) (73)
i=1

that is the same as pg4 defined in subsection 2.4, but since in the present
analysis only one type of dislocation was considered, the subscript + was
dropped. With this, the left hand side of Eq. (72) can be rewritten into a
weighted integral. Furthermore, taking into account that

d (dii . .\ dind . .. d__. .

df'{ it o7 — n)} =gt dr (rF—17) = dté(r i), (74)
from Eq. (72) we get that

- 06 =) (75)

= e ([ FE=0at) = o= 7 ) - 0}

(where (7 —7") beside pq(7) is needed to avoid self dislocation interaction.)
By summing up with respect to ¢ we conclude

@ = oA ([ FE= ) = 6= 15 ) o} (70
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which is a nonlinear strongly non-local equation for the ”discrete” disloca-
tion density pq(7). Like it was done with the field equation (46), to get rid of
the singular character of py(7) we can coarse grain Eq. (76). By introducing
the coarse grained quantities

P1 (F) =< pdisc(m > (77)

p2(71,72) =< pdisc(T1)pdisc(T2) — pdisc(T1)0(F1 — T2 >, (78)

we get back Eq. (70) derived earlier. The procedure applied above clearly
shows that the form of Eq. (70) does not depend on the actual form of
the window function applied for the coarse graining. However, p;(7) and
p2(71,72) can depend on w(7) chosen. Certainly, this is not a problem until
we do not assume some relation between p1 () and po (71, 7). We can say
that Eq. (70) is exact but it is not enough to describe the time evolution of
the dislocation density.

Before we discuss how a closed theory can be obtained, the above results
have to be generalised for the case where Burgers vector of the dislocations
are not the same. The simplest generalisation is if we allow that the Burgers
vectors of the dislocations can differ in sign. This is still a strong simplifica-
tion of a real dislocation ensemble but an important step forward. Without
going into the details with a similar procedure explained above one can find
that

3p+ (Fl ’ t) - 0 —
ot + ba,,;ol [p"r (7’1 ’ t>7—€iﬂt (79)

4 [ oot = pr- (1T O} a7 — ra)d@] ~0

0

ory

t
+/{P——(F17F2at) — p—4 (71,72, 8) } Tina (71 — 772)d772} =0

(9,0_ (’Fh t)

9 +b

[_p— (Flat)Tezt (80)

where b is the Burgers vector of the positive signed dislocations. The sub-
scripts 747 and ”-” indicate the sign of the Burgers vector the different
density functions are corresponding to. We mention here that the negative
signs in front of p;_ and p_1 in Egs. (79) and (80) come from the sim-
ple fact that the interaction force acting between dislocations with opposite
signs is — Fipq.
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By adding and substituting the two equations we obtain:

op(r1,t) -0 . Lo Lo
p(r, ) +b, [k, t)Teat +/{p++(7"1,?"2,t)+p——(7"177”2at)
ot (97“1
—pi— (71, T2, t) — p—y (71,72, t) }Tina(T1 — 72)dia] = 0, (81)

Ok(i,t) -0

ot + baF1 [p(frﬁlvt)TE’It + /{p++(7?177?25t) - p**(FlvaQat)

—p4— (71,72, t) + p— 4. (71,7, 1) }Tina (71 — 72)dr2] = 0 (82)

where p(7,t) = po (7, t)+p_ (7, t) is the total and (7, t) = p4 (7, t) — p— (7, 1)
is the signed dislocation density. (k is the same as < k > introduced in Eq.
(49) but to have shorter equations the brackets < .. > were omitted .)

3.4 Evolution of the plastic shear

Before we discuss how a closed theory can be obtained for the evolution
of p and k it is useful to analyse the evolution of plastic shear. For the
dislocation geometry considered the only non-vanishing component of the
dislocation density tensor is

3] = bk. (83)

According to the definition of & given by Eq. (10) for the plane problem
considered the only component of the plastic distortion contributing to as;
is A%, and
8%
be=— %" 84
K 9 (84)
With the notation v = %, commonly used, the above equation can be
rewritten as .
b dy
=— , 85
SN (85)
i.e. k is proportional to the gradient of the plastic shear. With other words,
this means, to get spatially varying plastic shear one has to introduce dis-
locations. This is why « is often called geometrically necessary dislocation
(GND) density.
Taking the time derivative of Eq. (85) we get that

ok b dy

ot b2 di (86)
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By comparing this with Eq. (82) we obtain an explicit expression for the
plastic shear rate *:

5 = Vo, ) reae + / (pis (P, 1) (87)

p——(T1, o, t) — py— (71, T2, t) + p— i (71, T, t) }Tina (F1 — 72)dPs].

3.5 Self-consistent field approximation

In order to have a closed continuum theory describing the evolution of
the dislocation system, the (69) hierarchy of equations has to be cut at some
order. In order to do this, from some considerations independent from the
Eq. (69) we have to give how the density functions with order higher than
a given one can be built from the lower order ones. The simplest possible
assumption is that the two particle density functions are the products of
the one particle density functions [59], i.e.

pss/(FhF%t) = ps(Fl)ps’(FZ)a 578/ S {+7 _}' (88)

This means, that the short range correlations are neglected. As it is ex-
plained below this leads to a self-consistent field theory. Similar approxi-
mation is often used in plasma physics.

By substituting Eq. (88) into Egs. (81,82) we arrive at

op(Ft) -0

o T EE D {Te(Ft) + reat}] = 0, (89)
8%((97:, t) + gaa??[p(ﬁ t) {Tsc(Fv t) + Tewt}] = 0, (90)

where
Tse(7) = /H(th)ﬂ'nd(F— ™ )dry (91)

is a field (with stress dimension) created by the coarse grained signed dis-
location density. 7. is often called as self-consistent stress field. However,
Tse 18 not a "new” quantity. From Eq. (61) one can see that 7. fulfill the
field equations

20 O 0?

A2 = sc —
X (1-v) 6yli(r)’ " Bx(?yx

(92)
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If we compare Eq. (92) with Egs. (50, 52) we can see that 7. is nothing but
the coarse grained shear stress < o >1s.

It is important to note that dislocation multiplication and annihilation
can also be taken into account by adding an f(p, Text + Tse, -..) SOUrce term
to the right hand side of Eq. (89):

dp(Ft) -0 }
”g; )+b8F[m(r,t){Tsc(r,t)+Tewt}] = F(pyTewt + Tser ). (93)

Determining the actual form of the source term is a difficult issue. We
will come back to this problem later on, but it has to be stressed at this
point that Eq. (90) has to remain unchanged because it expresses that the
total net Burgers vector of the dislocation system cannot change during
deformation.

3.6 Stability analysis

Since dislocation multiplication is a ”local” event, it is plausible to as-
sume that in a given point the source term f(p, Text + Tse, ...) depends on
only the local values of the dislocation density and the total shear stress
T = Teat + Tse [09]. It is easy to see that in this case Egs. (90, 93) have
a trivial solution that is x(7",t) = 0,and p(7,t) = po(t) where po(t) is the
solution of equation

dpo

dt = f(pOaTe;L't)- (94)

Since, however, the equations are strongly nonlinear it is important to
analyse the stability of this homogeneous solution [59]. For this, let us
linearise Eqgs. (89,90,92) around the trivial solution

d / 0 / o af / af /
a” T on {bTems’}y = dp p:pop s r:rmT’ (95)
d / 3} / / o
dtﬁ + P {b(Textp” + pot)} = 0, (96)
2
AZX/ _ 2[),u (3' / / a / (97)

A-wvyay™ T T gzoy*

where k', p’ = p — pp, and 7’ are small perturbations. The solution of the
linearised equations can be found in the form (assuming that pg(t) varies
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slowly in time)

T/ (7, ) T/

K/ (7, 1) K .

o (7, t) = o exp{ At +i(qz v + qyy)}- (98)
X' (7)) X

Substituting this form into the Eqgs. (95-96) one can find that A and the
wave vector (¢, qy) have to fulfill the characteristic equation

A 9f QDT T(®) of
. or P=po WaPTect 1 G Ol r =0, (99)
1G:DTent A+ poT (D)
where
2 2 2 2 2
@)= BH Gl TR Gang), (100)

Q=v) (g +q)* 20-v)

in which @ is the angle between the z axis and the wave vector.

The homogeneous solution is stable only if the real part of A is non-
positive for any wave vector (¢, ¢y). This guarantees that there is no grow-
ing perturbation.

As a first step let us analyse the stability of the homogeneous solution if
the total number of dislocations is conserved, i.e. if the source term f(p, 7)
is zero. In this case the solution of the characteristic equation (99) reads as

~T(®)p0 £ v/T(®)208 — A(breee)?a?
g .

Since, T'(®) is non-negative the real part of both A; and Ay are non-positive,
so in the absence of source term the homogeneous solution is stable. How-
ever, an important feature of the linearised equations is that if the wave
vector is parallel either to the z or the y axes the real parts of \; and
Ao vanish. This means, periodic perturbations which are either parallel or
perpendicular to the Burgers vector neither growth nor die out, they are
marginally stable.

To see the influence of the source term f(p,7) it is enough to study the
sum of the two roots A; and Ay. From Eq. (99) we get that

of
dp

Al2 (101)

A+ Ay = —T(®)pg + (102)
P=Po

Since T'(®) vanishes for ® = 0 and ® = 90, if 3f/0p is positive, there is
a wave vector domain where at least one of the two \-s is positive. This
means, if 9f/0p > 0 the homogeneous solution is not stable any more.
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3.7 Numerical studies

Since the self-consistent field equations (90,93) are complicated nonlin-
ear equations, studying the properties of their solutions requires numerical
investigations. The numerical results presented in this paper [59] were ob-
tained on a 128x128 grid defined in a square simulation area with periodic
boundary conditions. The time integration of Egs. (90,93) was carried out
by the Newton method. The internal stress was determined from Eq. (92)
by fast Fourier transformation. In each calculation a constant dislocation
density and a random « distribution was used as initial configuration. For
the source term the form

f(p,7) = C(H1 — 0.096* 1% p?) = C(p7? — 0.096*u* p?) (103)

was used. In expression (103) the first, dislocation creation term mimics the
experimental observation that a certain amount of plastic work is stored
as the self energy of dislocations. The second, annihilation term simply
expresses that annihilation requires to have two dislocations close to each
other. The constants are determined according to the Taylor relation

Text = 03bﬂ\/PO» (104)

which we expect to hold at steady state.

Since, apart from C, the size of the simulation area and the material
parameters can be scaled out from the equations the input parameters (p(t =
0,7), k(t = 0,7), Text, C') and the results of the numerical calculations are
given in arbitrary units.

A typical snapshot obtained at periodic external stress can be seen in
Figure 9. Both the dislocation density map (left box) and its autocorrelation
function (right box) indicate that the dislocations tend to form a more or less
periodic arrangement of dense regions. The dislocation pattern developed
is very similar to the so called "matrix” structure experimentally observed
on fatigued fcc single crystals [60] (see Figure 10).

It should be mentioned, that if the gradients in the dislocation pat-
tern developing during the deformation become large the numerical solution
blows up indicating that the self-consistent field theory can become unsta-
ble. In order to resolve this problem the influence of dislocation-dislocation
correlation has to be analysed.

3.8 The role of dislocation-dislocation correlation

The self-consistent field theory explained above was obtained by assum-
ing that the two particle density functions are the product of the correspond-
ing one particle densities. Without restricting generality, the two particle
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Figure 9. Dislocation density map (left box) and its autocorrelation func-
tion A(F) = [ p(F — 7)p(7)di (right box) obtained at periodic external

load. (The glide direction is horizontal.)

Figure 10. Dislocation ”matrix” structure obtained on fatigued Cu single

crystal oriented for single slip [60].
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density functions can be given in the form:
pss’(FlaF%t) :ps(Fl)ps'(FQ)(l+dss’(F1aF2)) 575/ € {+7_} (105)

where d, is called dislocation-dislocation correlation function. In order to
be able to say something about the correlation function as a first step it is
useful to analyse the properties of dislocation-dislocation correlations in an
originally homogeneous relaxed dislocation system [61, 62]. Although the
BBGKY hierarchy explained earlier gives the possibility to investigate the
properties of dgs analytically (assuming something about the three particle
density functions), but due to the complicated nonlinear character of the
equations, apart from some simple general statements, it is rather difficult
to say anything about dgs .

For initially homogeneous, relaxed dislocation systems dss can be deter-
mined by DDD simulations. For this we do not have to study large systems
(a few 100 dislocations is already enough), but we need several (around
1000) relaxed configurations to have the necessary statistics. Knowing the
relaxed positions of dislocations dss can be determined by simply counting
the number of dislocation pairs at different relative positions.

Figure 11 shows the correlation function d = dyy +d__ +dy_ +d_4
obtained numerically. In the simulations parallel straight edge dislocations

Figure 11. The total d = dy4+ +d__ +dy_ + d_ dislocation-dislocation
correlation function determined numerically at single slip geometry [61].

were considered at single slip geometry (5 is parallel to the x axis). The
number of dislocations was kept constant. Initially the dislocations were
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randomly distributed. By the numerical integration of Eq. (60) the relaxed
dislocation configuration was determined at zero external stress.

The two most important properties of the correlation function are that
next to the origin it is inversely proportional to the distance from the origin
(analytical investigations revealed the same), and it decays to zero expo-
nentially within a couple of average dislocation spacing. So, for originally
random relaxed dislocation configurations the dislocation-dislocation corre-
lation is short-ranged. With other words, if the distance of two dislocations
is larger than a couple of times the average dislocation spacing the correla-
tion between them is negligible [61, 62]. We have to keep in mind, however,
that this is valid only if the relaxed configuration is obtained from an initially
random dislocation distribution. One can obviously set up initial configu-
ration that relaxes to a strongly correlated state like for example a Taylor
lattice. The problem is related to the constrained motion of dislocations.
Since in the simulations only dislocation glide is allowed and dislocation
multiplication is excluded, the number of dislocations in any narrow strip
parallel to the Burgers vector cannot change during the relaxation of the
system. It is determined by the initial configuration. The system does not
"forget” fully the initial configuration. In reality, of course, the number of
dislocations in a strip is determined by the dislocation multiplication. Since,
however in 2D there is no "natural” law for dislocation multiplication one
should investigate the correlation properties in 3D. Investigations are under
their way, but at the moment we do not have conclusive results. Based on
the results of 2D simulations in the following we assume that the correlation
function is short range.

According to the results explained above it is plausible to assume that
the correlation functions dgg (71, 7%) defined by the Eq. (105) can be ap-
proximated with the correlation function corresponding to a homogeneous
system with dislocation density p(7). It follows that dss (71, 72) practically
depends only on (77 — %), the direct 71 or 7 dependence is weak, it appears
only through the spatial variation of the dislocation density, i.e.

psst (71,72, 1) = ps (1) psr (72) (1 + dssr (71 — 72)) s,s' € {+,-} (106)

Similar approximation is used successfully for many other systems like for
example in first principle quantum mechanics calculations to estimate the
exchange energy. It is called "local density approximation”.
By substituting Eq. (106) into Eqs. (81,82) after a long, but straightfor-
ward calculation we arrive at
op(ryt) -0

o +b8F[ﬁ(m){TSC(F)+Tm—Tf(F>+Tb(F)}] = 0, (107)
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D L8 D 1005 0) (e + 7w — 70 + 7MY = 0, (108)
where
77) = [ P = a7 7 (109)
() = / #(F)d(F — ™) Tina (F — 71)dr7, (110)
in which the notations
AR = A ) A ) de () (P (1)
) = 12 () d () (12)

are introduced. Due to the following obvious symmetry properties of the
correlation functions

(M) =dr(=7),  dq(F) =dyy (=7),  d——(F) =d__(-7) (113)

d(7) is an even, while d*(7) is an odd function of . Furthermore, since the
correlation functions correspond to a homogeneous system there is no other
internal length scale but the average dislocation spacing 1/,/p. It is obvious
from simple dimensional analysis that the correlation functions depend only
on the dimensionless quantity '\/p, i.e. d(,/pr) and d®(y/pr).

Taking into account that the corelation functions decay to zero within a
few dislocation spacing the fields «(7) and p(7 ) appearing in Eqgs. (109,110)
can be approximated by their Taylor expansion around the point 7. Keeping
only the first nonvanishing terms we get that [61, 62]

() = P17 / 4 (F)Tima (7 (114)

Ir (1)
o

—\

T(7) = — FAd(F) Tina (F)dF. (115)

(To obtain expressions (114,115) one has to take into account the symmetry
properties of d(7) and d*(7) explained above, and the relation 7;,4(7) =

TnLd( 4) )

With the variable substitution 77 = |/pr, 7¢(7) reads as

70 = VO [ @i (116)

!
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where we took into account that 7;,,¢ is proportional to 1/|7]. By substitut-
ing the actual form of 7,4 given by Eq. (61) into Eq. (116) we get that

75 (7) = AQCb\/p(F), (117)

where A = p/[27(1 — v)] and

Nz 77
C = / * d'“ N, My AN dn) 118)
R e i, (

in which the prime in d'*(n,, n,) indicates that 77 has to be measured in unit
of average dislocation spacing. In order to see the physical meaning of the
above expression, the external stress dependence of the parameter C has to
be analysed. The correlation function d;_ obviously varies with external
stress (the equilibrium configuration of dislocation dipoles varies if stress is
applied). Let us assume that the change of d;_ resulted by the external
stress increases C. Since the change in d_, is the opposite of the change
of dy_ this causes also the increase of C' because of the minus sign in front
of d_4 in the definition of d*. As we see, the parameter C' depends on the
external stress. Beside this, 7; scales with ,/p. These support association of
7 with the flow stress. Certainly, we have to be careful with this statement.
In real dislocation systems hardening is caused by the forest dislocations
which are not included into our model in any sense. Nevertheless, a stress
like term showing similar properties as the flow stress appears naturally in
the theory. The actual form of the stress dependence of C' is difficult to
determine, but one can speculate that 77 acts as static friction. It prevents
dislocation motion, but it has a maximum scaling with /p.

After this let us analyse 7, in more details. With the same variable
substitution applied above we get that

Ok(7) 1

) = — 7d’ (7) Tina (7)d> 7. 11
) =00 e | T (119)
i.e.
. ADbOx(7)
where
2 (02 2
= d' (Ng, My )dngd 121
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is a dimensionless constant. In contrast with C'; D has only a weak external
stress dependence because d(7) contains the sum of the two correlation
functions d4_ and d_ changing oppositely. The actual value of D can only
be determined numerically. According to the numerical studies explained
below it is in the order of magnitude of 1.

With the results obtained above the evolution equations (107,108) read

Op(in1) | 0 ln(F,t){T(F,t)TfAD ! ‘9“(5;;”)”1‘(%7%

as

ot or p(7t)
122
or(Ft) -0 | . . boook() ||
ot + b(?F [p(r,t) {T(T,t) Tf AD,O(F, n o oF =0 (123)

where 7 = T4 + Tezr is the total macroscopic stress.
From Eq. (87) the constitutive equation of the plastic shear rate can also
be given as

o L b Ok(7t)
'y—bp(r,t){T(T,t) Tf ADp(F,t) P . (124)

With Eq. (85)

1 S0\?
G120 N - ) 1
¥ =b"p(7,t) {T(T,t) Tr ADpr(F, " (bﬁf) 'y(T,t)} (125)
If we introduce the effective stress
7= -ap " (52 o (126)
Torr(F) = 7(7) — . . 7
s b2p(7) \ OrF v

it looks similar to the effective stress (2) suggested by E. Aifantis from
phenomenological considerations. An important difference, however, is that
in Eq. (126) the length scale [ = 1/,/p appearing in front of the gradient
term is a natural one, it is not a material parameter suggested in the phe-
nomenological non-local continuum theories. The length scale 1//p obeys
an evolution equation (Eq. (refgroma.rhof).

3.9 Deformation of a constrained channel

To illustrate some implications of the evolution equations derived in the
previous subsection we study a very simple example, namely a constrained
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Figure 12. Geometry of a constrained channel

channel deforming in simple shear as shown in Figure 12 [62]. A channel
of width L in the x direction and infinite extension in the y direction is
bounded by walls that are impenetrable for dislocations (i.e., the plastic
deformation in the walls is zero). The slip direction corresponds to the x
direction, and the layer is sheared by a constant shear stress 7.,:. The whole
assembly is embedded in an infinite crystal.

The system envisaged is particularly simple because it is homogeneous in
the y direction (the dislocation densities depend on the coordinate = in the
slip direction only). It follows from Eq. (92) that in this case the long-range
self-consistent stress field is zero for an arbitrary function s(x), i.e., any
dislocation interactions in the system are of short-range nature and hence
described by the flow stress 77 and the gradient-dependent stress 7.

Before investigating the behaviour resulting from Eqgs. (122) and (123)
and comparing it with the results obtained from discrete simulations, it is
instructive to have a look at the results we get from the mean-field model
defined by Eqs. (89) and (90). Since the self-consistent stress is zero, the
mean-field model becomes trivial: Whatever the initial conditions, for an
arbitrarily small, positive value of the external stress all positive dislocations
‘condense’ at the right wall and all negative dislocations at the left one.
For an initially homogeneous dislocation distribution with density pg, the
strain achieved by this condensation is 7., = pobL/2. Hence, the system
exhibits a trivial size effect (the achievable strain is proportional to the size
of the system, which determines the mean dislocation path). However, as
demonstrated in the following, the prediction that this strain is achieved at
arbitrarily small external stress is grossly unrealistic.

We now revert to the gradient-dependent model derived in the previous
subsection. We assume an initially homogeneous dislocation distribution
of density pg. To facilitate comparison with discrete simulations, it is con-
venient to introduce scaled stress, space and dislocation density variables
through 7 = Ab\/po7T, x = DZ/\/p, p = pop, and k = pok. In scaled
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variables and after corresponding re-scaling of time, Eqgs. (122) and (123)
read

Oup(,t) = =0 [R(Z, ) {7 — [1/p(Z, 1)]0zF(Z, 1)}], (127)

QR (E, 1) = —05 [3(2, ) {7 — [1/5(F, ))0:R(F, 1)}]. (128)

To formulate the boundary conditions at the walls located at & = +L/2, we
note that no dislocations can enter the system through the walls. Hence, the
density of positive dislocations (moving to the right) at the left wall and the
density of negative dislocations at the right wall are zero, i.e. &(—L/2) =
—p(—=L/2), &(L/2) = p(L/2). Furthermore, the dislocation fluxes at the
walls must be zero, which requires that [p7 — 9;%] = 0 at & = +L/2.

The initial conditions are p(z,0) = 1 and £(Z,0) = 0 everywhere ex-
cept directly at the walls where we assume non-zero values of x in a narrow
boundary layer to satisfy the boundary conditions. We make the simplifying
assumption that the effective stress can be represented as the external stress
diminished by the (spatially homogeneous) flow stress of an infinite system,
and perform a ’'deformation experiment’ as follows: we increase the effective
stress from zero in an adiabatically slow manner, i.e., after each small stress
increment the system is allowed to relax until it reaches a stationary config-
uration. After this relaxation, the scaled strain is calculated as ¥ = — [ &dZ
(see Eq. (85)), then the stress is increased again, etc. The resulting stress-
strain curves for different values of L are compiled in Figure 13 [62]. It

25

2.0

Effective stress [ubp01/2/(2n(1 -w)]

051 /

00 —
"o 2 4 6 s 10
Strain[bp, D]

Figure 13. Stress-strain curves obtained at different channel size L.

can be seen that the behaviour is very different from the prediction of the
mean-field model: the strain increases gradually with stress and reaches the
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Figure 14. Signed dislocation density and strain profiles for a system of
width L = 4/,/po at scaled stress 7 = 2; x(z) from discrete simulation
(data points), x(x) from continuum model (full line), strain profile from
continuum model (dashed line).

limit strain 7o (3o = L/2 in scaled units) only asymptotically. In phys-
ical terms this behaviour stems from the fact that there is a short-range
repulsion between individual dislocations of the same sign as they pile up
against the walls (see Figure 14). To increase the strain towards the asymp-
totic strain, this repulsion must be overcome, which requires an increasing
stress that diverges as v — Voo.

Looking at the distribution of dislocation densities and strains within
the channel, we find that at high stresses two boundary layers emerge near
the walls (Figure 14). Its properties can be analysed by the equilibrium
condition

Teat — AD =0 (129)

required to hold at steady state. (Since, for the geometry considered the
self-consistent field is zero, 7 = Tep). Near the boundaries most of the
dislocations have the same sign, p ~ |k|. According to this, near the left
boundary Eq. (129) reads as

Textlh = _ADbdZ;x) (130)
with solution
Te:c
k(z) = Koexp {_ADtbx} . (131)
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(A similar expression obviously holds near the right side, too.) As it is seen,
the width of the boundary layers decreases with increasing external stress.

It is interesting to compare this result with the prediction of the phe-
nomenological gradient approach. According to Eq. (2) for the problem
considered the equilibrium condition is

i) (132)

Text — l2 d.’E
with solution

l2
H(CC) = Ko + MTextm (133)

In the centre part of the channel, where p is nearly constant, the linear
relation predicted by the phenomenological gradient approach describes well
the observed variation of x, but it is not able to account for the boundary
layers.

Effective stress [ubp, “/(2x(1-v))]

00
Sc

¢ h n
o <) o <)
o L L L L

Figure 15. Comparison of stress-strain graphs; full line continuum model;
data points: discrete simulation. Parameters are the same as in Figure 14.

The results obtained are compared with DDD simulations performed
on the same system. To get reliable statistics, stress-strain graphs and
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the corresponding dislocation density profiles were averaged over a huge
ensemble (typically several thousands of simulations). An example of a
dislocation density profile obtained from this procedure is illustrated in
Figure 14 which shows a &(Z) profile averaged over 2000 simulations of
systems with length L = 4/,/po and (periodically repeated) height 16/,/po.
The profile shown in the figure has been taken at a scaled effective stress
7 = 2. It is seen that indeed two boundary layers emerge. From the
width of these boundary layers we can directly determine the constant D
for the present type of simulation, which turns out to be D = 0.8. Using
the continuum model with this value of D yields the full line in Figure 14,
which shows that the density profile obtained from the continuum model
matches well the discrete simulation except in the immediate vicinity of the
walls.

As seen from Figure 15, also the stress-strain curves for the discrete
and continuum models exhibit almost perfect agreement. By varying the
system size and initial dislocation density, we find that, for sufficiently high
stresses the width of the boundary layers at fixed stress 7.,; is within the
error margins indeed independent on the system size and the dislocation
density. If the applied stress is increased, the boundary layer width is found
to decrease. Again all these findings are in line with the predictions of the
continuum model.

3.10 Application to metal-matrix composite

In order to demonstrate the capability of the continuum theory of dis-
locations explained above we shortly summarise the simulation results ob-
tained on a 2D model system of a metal-matrix composite [54, 63]. Tt
contains rigid rectangular particles arranged in a hexagonal packing, as il-
lustrated in Figure 16. The cell is subjected to plane strain, simple shear,
which is prescribed through the boundary conditions

uy = +hl' | wup =0 along xo = +h, (134)

where T' is the applied shear. Periodic boundary conditions are imposed
along the lateral sides © = +w. The slip plane normal 7 is in the y-direction
and the Burgers vector is parallel to the z-direction. Two reinforcement
morphologies were analysed having the same area fraction of 20% but dif-
ferent geometric arrangements of the reinforcing phase. In one morphology,
material (i), the particles are square and are separated by unreinforced
veins of matrix material while in the other, material (iii), the particles are
rectangular and do not leave any unreinforced veins of matrix material.
The problem was studied in details by Cleveringa et al. [54, 63] with
DDD simulation. Here we compare their DDD simulation results with the
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2h

2w = 2,3h

Figure 16. Unit cell in a doubly-periodic array of elastic particles, sub-
jected to simple shear. The slip planes are taken to be parallel to the shear
direction (z).

results obtained by solving Eqs. (122,123) with a finite element method (for
the details of the numerical technique used see [64, 65]). For the dislocation
density field equations, boundary conditions need to be specified at the
boundary of the cell as well as along the interface with the elastic particles.
Along the cell sides x = 4w, periodic boundary conditions are applied,
while along y = +h we have the natural condition that there is no flux
of dislocations across these boundaries. Similar conditions apply along the
top and bottom interfaces with the particles. Along the vertical sides of the
particles, we impose that the slip rate vanishes.

As it is seen in Figure 17 the stress-strain curves obtained by DDD
simulation and from the continuum theory match extremely well for both
reinforcement morphologies investigated [64, 65]). Figure 18 shows the p
and k maps obtained for the (iii) morphology. It can be seen that, like at
the shear of the channel discussed above, a boundary layer of geometrically
necessary dislocations develops at the vertical unpenetrable surface of the
composite particles.

In conclusion it can be stated that for single slip the continuum theory
developed predicts the same behaviour as the DDD simulations. How to
generalise the continuum model to multiple slip is being studied intensively
[66, 67]. At the moment the theory is far from being fully developed. It
is even more difficult to extend the statistical approach to 3D. In order to
show the possible approaches, in the next part we shortly summarise two
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Figure 17. Stress-stain curves obtained by DDD simulations (dashed lines)
and by solving the continuum Egs. (122,123) (full line).

3D continuum models proposed recently.

3.11 Boltzmann theory of dislocations

To describe the evolution of dislocation loops El-Azab has recently pro-
posed a new theoretical framework [68], which is the generalisation of the
Boltzmann equation for line type objects. In his model only planar loops
are considered, i.e. dislocation climb is excluded.

In contrast with point like particles (considered in Boltzmann’s original
theory), beside its position a dislocation segment has another degree of
freedom, its line direction . Ina plane the line direction ['can be represented
with a scalar parameter © which is the angle between [and a given direction
in the plane. According to this, the probability density function f is the
function of 7, ¥ and ©. (To avoid the problems related to define the mass of
a dislocation, instead of the moment the velocity of the dislocation segment
is used to give the state of the segment.) Since, as it is explained earlier,
the probability density function is system size dependent (f is normalised
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Figure 18. p (top box) and s (bottom box) maps at 1$ deformation for
the (iii) morphology.

to 1) it is more convenient to operate with dislocation line length density ¢.
Hence, ¢ (7,7, ©,t) can be given the definition: ¢ (7,7, ©,t)d*7d>vdO is
the dislocation line length with Burgers vector b; (i = 1..N) in the d*7d35d©
phase space at time ¢. It has to be noted that since v is perpendicular to l_:
O is not an ”independent” variable, that is why it does not appear among
the arguments of ¢(®).

The conventional field variables are now derived from ¢ . The disloca-
tion line density is defined as follows:

p(Ft) =Y pl (1) (135)
where

pi0 = [ [o0 50,050 (136)
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According to Eq. (15) the dislocation density tensor & is given by

Qi (T 1) Za (137)

where

/ / L (00D ¢ (7, 5,0, t)d>5de, (138)

while from Eq. (42) the dislocation current density ; reads as

Jman (7 ) Z] (139)

where
/ / Enmplm (©)v,b 6D (7, 5,0, 1)d>5dO. (140)

Taking into account that the velocity of a dislocation segment is perpen-
dicular to the line direction, we can conclude that the evolution equation of
¢ has the form (for the details of the derivation see [68]):

0 0 ) . ,
, Y (A6 (i) (7 — (77 P
<8t + v Dz —|—U](a,a,..)avj> o\ (F0,0,t) ="V (FU,0), i=1,..,N
(141)

where s() (7, %, ©) represents all the possible source terms, and 0;(&,6,..)
stands for the acceleration of the dislocation. which is a function of the
different fields like & and 6. A remarkable feature of the above equation is
that the derivative with respect to © does not appear in the left hand side.

If we multiply the above equation with lm(@)bgf ) and integrate it with
respect to the velocity and O, after long but straightforward algebraic ma-
nipulations we conclude:

5
i + e o i =80 (142)

where

) — / / 1,(©)0) s (7, 7, ©)d*TdO. (143)
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By summing up Eq. (142) over all Burgers vectors and comparing the result
with Eq. (39) we obtain an important condition the source terms have to
fulfill

N
> sh =o. (144)
=1

To get a closed equation for the evolution of ¢(*) (7,7,0,t), the actual
forms of s (7,#,0) and 0j(&,4,..) should be given. At the present stage
of the theory these are not well established.

We mention that it has been proposed recently by Hochrainer and Zaiser
[69] that beside © the curvature of the dislocation line should also be consid-
ered as an independent variable. This may help setting up the constitutive
relations.

3.12 Hydrodynamics approach proposed
by Kratochvil and Sedlacek

In hydrodynamics the state of the material is described by the density
p(7,t) and the velocity @(7, t) fields. They are the appropriate mean values
of the probability density function f(7,p,t). One may operate with the same
quantities in dislocation theory. However, to account for the line direction
degree of freedom an additional field denoted by B(7, ¢) has to be introduced.
The three fields can be formally defined as

p(rt) = //d)(f’,@',@,t)dﬁd@ (145)

. - 1 IO S

u(r,t) = p(ﬁt)//vqﬁ(r,v,@,t)dvd@ (146)
S - 1 S S

B(r,t) = p(ﬁt)//Gqﬁ(r,v,@,t)dvd@, (147)

where for the sake of simplicity we assumed that all dislocation loops have
the same Burgers vector (the superscript (7) is dropped out) and their slip
planes are parallel.

Taking the z axis perpendicular to the slip plane of the loops, the two
nonvanishing components of the dislocation density tensor are

a1 = bpcos(f), ag1 = bpsin(f). (148)

Since the dislocation density tensor is the curl of the plastic distortion, it
has to be div free:

30[1-3-

87‘i 0 ( 9)
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One can find from Eqs(148,149) that p and /8 have to satisfy the conservation
law

dp cos(B) n Opsin(f)

o By 0 (150)

On the other hand, from the general expression of the evolution of the dis-
location density tensor given by Eq. (39),the following evolution equations
can be deduced for a and f fields(for details see [70])

: 0 0
pl = cos(8) 5"+ sin(B)"y
0 0
pr=sin(8) 5" = cos() 7 (151)

where v = |7].

To have a closed theory a constitutive relation is needed between the
three fields p(7,t), (7, t) and v(7, t). Kratochvil and Sedlacek [70] suggested
the following constitutive relation for the velocity field :

bo1s + Cks —brg — b7 if bois+ Crks > b1y + b1
Bv = 0 if |b0‘13 + CI<J5| < bry + bt (152)
bo1s + Cks +brg + b7 if boiz+ Crs < —brg — b1

where boi3 is the Peach-Koehler force due to the local shear stress, Cky
is the self-force, bry is the friction force, and b7 represents the interaction
between the gliding dislocations an the dislocation loops.

The self-force C'ky is considered in the line tension approximation, where
ks is the dislocation line tension. The curvature of a dislocation segment

C(7, B,t) = — divri, where 7 is the unit normal to the dislocation segment.

As it is explained in details in [70] C' can be approximated by the expression
0 0

C = cos(pB) ai + sin(p) 85 (153)

The most difficult problem is to set up an appropriate expression for br.
For this Kratochvil and Sedldcek [70] suggested that

br = Fet/3 (154)

were c is the loop density, and F' is a constant.

According to detailed analytical and numerical investigations [70] the
model explained above is able to predict both dislocation patterning and
size effect. Nevertheless, the justification of the assumptions used requires
further investigation.
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4 Internal stress distribution generated by the
dislocations

In order to describe the statistical properties of a dislocation ensemble, a key
quantity is the internal stress distribution. In this section the general form
of the probability distribution of the internal shear stress P(7) is determined
for a system of parallel edge dislocations. As it is discussed later the results
can be generalised to 3D systems.

4.1 General considerations

Like in the previous section, let us consider a system of N parallel
straight edge dislocations positioned at the points 7;, ¢ = 1, N in the zy
plane perpendicular to the dislocation lines. For the sake of simplicity, we
assume that each dislocation has the same Burgers vector b. As it is shown
later, the generalisation of the results for systems consisting of dislocations
with different Burgers vectors is straightforward [71].

The internal shear stress at the point 7 is the sum of the stress fields of
the individual dislocations

N
T(7) =Y Tina(F — 7). (155)
i=1

In the first part of our analysis we assume that there is no dislocation at the
point 7. Later on, the stress distribution at the dislocations is discussed,
too.

The precise definition of the problem addressed in this section is to de-
termine the P(79)dro probability of occurrence of 7 in the range

dTg
2

dT()

9 <7(r) <10+

TO — (156)

where 7y is a preassigned value for 7. P(7y) can be obtained as a direct
application of Markoff’s method [72] applied for several problems, like the
problem of random flights, or for the determination of the distribution of
forces in gravitationally interacting random systems. In contrast with the
two problem mentioned, for dislocations the N particle distribution func-
tion cannot be built up from the one particle distribution functions since
as it will be shown later it would lead to system size dependent internal
stress distribution function P(7). To avoid this, dislocation-dislocation

correlation must be taken into account.
Denoting the N particle dislocation density function by fx (71,72, ..., 7N )
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the internal stress distribution can be expressed as

P(T() dT() —/ /fN Tl,TQ,...,FN)dFldFQ...dFN, (157)

where the integration is effected only over that part of configuration space
for which the inequalities (156) are satisfied. By the introduction of the
factor

(158)

INGR: ) = 1 whenever To—dTO <T<To+dT°
o "1 0 otherwise.

the integral in Eq. (157) can be extended over 2N dimensional space R2V:

7'0 d’l‘o / / A FN)fN(Fl,...,’I_"N)df'ld...df']\]. (159)

For the determination on the structure of expression (159) one has to con-
sider the integral

5= 1 [ eiingag (160)

™

which is the well-known discontinuous integral of the Dirichlet function with
the properties

| 1 whenever —a<vy<a
0= { 0 otherwise. (161)
By taking
0 nd Z (162)
a= Tin — T
9 Y= a7 0

from Eq. (158) one gets that A = §. With the substitution of the (160)
form of § into Eq. (159), we obtain that

1 . . o .
P()dry = 7T/ dq/ Nd’l’ld’l’g...d’I’NfN(’I’l,’I’Q,...,TN)
R R2

y Sin(zda()q { lz Tima(F = 73)q — 7'0(]‘| } (163)

It can be seen from the structure of the above expression that the Fourier
transform of the internal stress distribution

An(7,q) = P(70) (164)
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has the form
N
AN(F,q):/fN(Fl,...,FN)Hexp{iqT(F—Fj)}dzﬁdz...fﬁv. (165)
j=1

If we introduce the function
B(7,q) = 1 — exp{iTina(7)q} (166)
expression (165) can be rewritten into a power series of B(7, q)

N

Ax(ig) = /dmd@...difN(a,FQ,..., = B(F—7,q)
Jj=1
= 1- /Pl(fl)B(f— 1, q)d*m
1
T o5 /02(771’772)3(77— 1, q)B(F — %, q)d*7 d*F + ... (167)
where pi (71,72, . .., 7% ) is the k-th order dislocation-density function defined

by Eq. (66). Eq. (167) can be transformed into an exponential form

An(Foq) = exp{E(q,7)} (168)
where
Ban) = - [ m()BE-fodn
+ /D2 7,7 B(F — 71, q)B(F — o, q)d* % + .. (169)
in which
Do(F1,72) = pa(F1,72) — p1(71)pa(72)
= p1(f1)p1(72) (1 + d(7, 72)) (170)

is the dislocation-dislocation correlation function.
Eq. (169) is straightforward to generalise for the case where dislocations
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with Burgers vectors +b are allowed. One can find that

Eg,i) = —/‘ LB — 1) + p_(7)B* (7 — 71, )| P

l

+ /D++ 1, 7%)B(F — 71, q) B(F — 7, q)d* d*F

+ 2/D+_(F1,F2)B(77—

1
+ /D__(f’l,?:’g)B*(F—Fl,q)B*(F—FQ,q)d2F1d2772

1,q)B*(F—F2,q)d2F1d2F2 (171)

=

+ /D (71, 7) B* (7 — 71, q) B(F — 7, q)d*F d*7 + . ..

99 %9

where denotes complex conjugate.

4.2 Stress distribution at the dislocations

In the previous subsection we assumed that there is no dislocation at
point 77 at which the probability of the internal stress is determined. One can
also ask the probability distribution of the shear stress at the dislocations
Pe(r).

Let assume that the dislocation at which we ask the probability distri-
bution is at the point ;. The stress at the dislocation is obviously

N
M) =3 Tina(Fy — 7). (172)
i—2

The derivation procedure explained above can be repeated for this case,
but fn (71,72, ...,7n) needs to be replaced with the conditional probability
density fC(FQ, ey FN|771)

fe(ra, ..., Pn|7)diadis..diy s the the probability of finding the 2nd, 3th,
. Nth dislocation in the draydrs..dry vicinity of points 75, 73..7y assuming
there is a dislocation at point 7. One gets that the Fourier transform of
P¢(7) reads as

/d2f2d2F3 S GRS L))

N
[[0 - B@ —7.9) (173)
j=2
The conditional probability f¢(7%,..., x| ) can be given as
Fo(Fon il = YL T2 T (174)

J1(7m1)
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Substituting this into Eq. (173) and rewriting it into a power series of B(7, ¢)
we obtain

Ag) = 1- | {m:(%)z)B(n = 70)
P, r2)B*(F1 — 7, q)| P + ... (175)
p+(71)

where we assumed that the dislocation at point 7} has positive Burgers
vector. (A similar expression holds for dislocations with negative Burgers
vector.)

4.3 The mean values of distributions P(7) and P¢(7)

Since dislocations form strongly inhomogeneous distributions the explicit
form of P(7) and P¢(7) cannot be determined analytically. Nevertheless,
analytical results can be obtained for some of their properties [71, 73].

An important characteristic value of a distribution function P(z) is its
mean value < z >= [xP(x)dz. As it is well known the mean value can be
determined from the A(q) Fourier transform of the distribution function by
the relation

i dA(qg)

A(0)  dg (176)

<r> =

q=0

Applying the above expression for Eqgs. (172,175) we find that the mean
value of the internal stress at a point where there is no dislocations is

_ _, dB .
—i / lpm) i ]dﬁ
q=0

/ () Tima(F — 7). (177)

dB*
dq

—

< 7(7) > + p—(7)

q=0

If we compare this with expression (91) we can see that < 7(7) > is the
self-consistent field introduced earlier.

On the other hand, from Eq. (175) the mean value of shear stress at a
dislocation is

. [ | py4(71,72) dB
<T14(r1)> = —1 R
) /l pr(7)  dg

py— (71, 72) dB*
)

1,
+ -,
=0 p+ (7 dq

dry
q=0
1

= /[P++(F17F2) — po—(71,72)] Tina (7' — 71)dra (178)
p(71)
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(The subscript ”+” in < 74 () > indicates that it corresponds to a dislo-
cation with positive sign.)

If we compare the above expression with the third terms in Egs. (79,80)
we can see that Eqs. (79,80) can be rewritten as

8p+(F17t) > 0

PV bam {0471, V) [Teawt+ < T4.(71) >]} =0 (179)
8p—(7_"17t) T 8 — — o
o = Ao (D reat < 7 (71) >]} =0 (180)

giving a new physical interpretation of the form of the dislocation evolution
equations obtained.

4.4 Asymptotic properties of the stress distribution function

According to the investigations of Groma and Baké [71] for small enough
Fourier parameter ¢ the Fourier transform of P(7) reads as (for the deriva-
tion see [71]):

AN (7, q) = exp {z < 7(F) > ¢+ Cap(F)g* In Rq +.. } , (181)
eff
where Ry is an effective correlation length determined by the correlation
functions dy 4, d__, dy_, d_,, and

b2 27
Ca=ty [ rralro)de. (152)
0

For edge dislocations in isotropic medium

_ (Nb)2 /QW 2 2 _
Cq = 8r2(1 - )2 |, cos? (i) cos®(2¢)dp =

(ub)?

167(1 — v)2’ (183)

It has to be mentioned that if the dislocation system consists of more than
one type of dislocations, Eq. (181) remains valid. The only difference is that
in this case R.rs and Cy are the appropriate weighted average of the R £f

and C values corresponding to the dislocations with Burgers vector b
One can obtain (see [71]) that Eq. (181) follows that the tail of proba-
bility distribution function decays as

P(r) = Cap®) |,

(184)
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A remarkable feature of the above expression is that it is independent from
the dislocation- dislocation correlations. In other words it does not depend
on the microscopic arrangement of the dislocations. Certainly the stress
value from which the distribution function follows the above asymptotic
expression depends on dislocation-dislocation correlation. To demonstrate
this, the internal stress distribution was numerically determined on a system
of 1000 randomly distributed dislocation dipoles (seen Figure 19). As it can

0.1

0.001 -

le-05

le-07

0 500 1000 1500
T (arbitrary units)

Figure 19. P(7) obtained numerically on a randomly distributed dipole
system (full line) with the asymptotic curve given by Eq. (184) (dotted
line).

be seen the asymptotic curve describes extremely well the tail part of the
internal stress distribution obtained numerically. It has to be mentioned
that the asymptotic curve is not fitted, Cy is determined according to Eq.
(183).

Recent investigations revealed [73] that for a dipole system the centre
part of the distribution is Lorentzian:

de 1

P(r) = 7 124 (Dp)?

(185)

where the actual value of D can only be determined numerically. For edge
dislocation dipoles with 45° between the polarisation and the Burgers vec-
tors

by

Da= 27(1 —v)

3.55|p] (186)

As it can be seen in Figure 20 the centre part of P(7) is well described by
the Lorentzian given by Eq. (185).
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Figure 20. P(7) obtained numerically on a randomly distributed dipole
system (full line) with the Lorentzian given by Eq. (185) (dotted line).
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Basic ingredients,

development of phenomenological models
and practical use of crystal plasticity

Georges Cailletaud

MINES ParisTech
Centre des Matériaux, CNRS UMR 7633

Abstract This part is an introduction to phenomenological crystal
plasticity models, to their properties and their use either in compo-
nent calculations or in microstructure modelling. Time dependent
or time independent versions of the models are presented. The ap-
plications deal with single crystal or polycrystalline materials. In
this last case, the aggregate is modelled either by a finite element
mesh, in order to represent the local microstructure, or by using so
called uniform fields models, which allow to introduce the average
effect of each crystalline phase in the global behaviour.

1 Introduction

The theoretical framework needed to develop single crystal models has been
built in the seventies (Mandel, 1971; Hill, 1966; Hill and Rice, 1972; Rice,
1970, 1971; Asaro and Rice, 1977), and the first practical applications a few
years later (Asaro, 1983a,b). The history of crystal plasticity is then well
known, and can be reviewed in classical books (Havner, 1992; Teodosiu,
1997). The purpose of this section is then not to add a new description of
rather classical approaches, but to enter the topic according to an alternative
route, namely the framework of thermodynamics of irreversible processes,
and to present a mechanical approach, seen as a multipotential theory, and
to illustrate its capabilities by a series of examples.

The interest of this thermodynamical approach is to provide natural
schemes for the choice of the evolution equations and the type of the hard-
ening variables. The deformation mechanisms are restricted to slip, on given
planes and along given directions. This class of model can be applied to
single crystal or polycrystal description. Single crystal slip is illustrated in
Fig.1, which shows the development of plasticity on a Ni-base superalloy
specimen, after 1, 2 and 11 cycles: a first plane is activated after the initial
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tension; more and more slip activity can be observed after 2 and 11 cycles.
The crystal was oriented for single slip, so that only one line can be seen.
Multiple slip can also be found, depending on the orientation of the speci-
men. In polycrystals, various grain orientations are present, so that single
and multiple slips are both present in the deformation process. Figure 2
shows the case of a FCC polycrystal (Fig.2a) and the case of a HCP poly-
crystal (Fig.2b). For the second one, the number of slip planes is reduced, if
compared to FCC material, so that other mechanisms may become active,
like twinning, or intergranular damage.

Volume element as well as finite element simulations will be shown. A
series of models have been built in the last twenty years, coming from two
communities of research: the literature shows either “purely phenomeno-
logical” models, or “dislocation based” models. Due to the reduced space,
it has been decided to promote the ”operational” aspect of the models, so
that the presentation will be focused on the phenomenological models. Nev-
ertheless, a link will be made between the two approaches. The outline of
the part is as follows:

e to be complete, a short introduction to thermodynamical approach
is first given, and followed by the presentation of a class of crystal
plasticity models;

e some applications of these models in finite element computations are
then shown: this will concern first material identification and finite
element computations of components or specimens, then some “mi-
crostructure computations”, where single crystal models are used to
represent individual grains in polycrystals;

e the last part is devoted to the applications of these models in uniform
fields approaches, that may offer sometimes an interesting compromise
between the macroscopic models and the full microstructure compu-
tations.
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N = 34 de cycle S mm N = 2 cycles 5mm N = 11 cycles

Figure 1. Slip system activity on a single crystalline specimen (Hanriot,
1993)

(b)
Figure 2. Slip system activity in polycrystalline specimens:

paloy (Clavel, 1980), (b) zircaloy, with intergranular damage (Kubo et al.,
1985)

(a) was-
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2 A thermodynamical approach to single crystal
plasticity

The thermodynamical framework Coleman (1964); Halphen and Nguyen
(1975); Germain et al. (1983) is recalled for the general case of inelastic
constitutive equations. The presentation is restricted to the case of small

strains, since this is the typical deformation range used in the present doc-
ument.

2.1 General framework

First and second principle. The first principle is the expression of the
conservation of the energy. On a domain D, the internal energy FE, that
is obtained by integrating the specific internal energy, e, is the sum of the
power of the external forces and of the heat exchanges:

dFE de .
= —plo) 1
" /Dpdth PO 40 (1)

with the following definitions:
e Power of external forces:

Pl = / a:edV (2)
D

e Heat exchanged, using the rate of captured heat, q, and n, outside
normal to the surface 9D, and r, volumetric heat:

Q= /D rdV — o q.ndS = /D (r — divg) dV (3)

This provides the following expression for the first principle:

de

pdt:gzg—i—r—divq (4)

The second principle provides an upper bound of the heat rate received

by the volume D at a temperature T, and can be expressed as a function of
the entropy S or of the specific entropy s :

ds r q.n
> —
dt = /D Tdv /81) T ® ©)

ds r Y
: - >
then /D (p P + div (T)) av =0 (6)
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Using Helmoltz free energy ¥, such as e = U + T's, one get the so called
Clausius-Duhem inequality:

dv .1
g:&—p , —psT~ qgradT)>0 (7)

The method of local state assumes that the whole history of the material
can be represented by the temperature T and by a set of state variables o,
that are involved in W, and which will be used in the classical Coleman—Noll
argument. One successively get:

v ov. oV

dt 8TT + Oay; i (8)
oV
T Tor ©)
. ov . 1
Uijeij —p Ba-ai — T q grad(T) 2 0 (4) (10)

The intrinsic dissipation ®; and the thermal dissipation ®5 are considered:

ov

. 1
=P 5y, G Oy =—_q.grad(T) (11)

T

(1)1 = Uijéij

One assumes then that both of them must be positive. This is directly
given by the Fourier’s law, which provides the heat equation in presence of
mechanical strain

q = —k(T, ;) grad(T) (12)
) . ) ov 0% )
div (kgrad(T)) = pC.T — 1 — 035 + p (3% B T@T@Oéi) “ )

(13)
(with C; = T'0s/0T, specific heat at a constant strain) The shape of the
mechanical part may take various forms, according to the type of material.

Thermoelasticity. The only internal variable is the elastic strain. Since
elasticity is a non dissipative process, ®; remains equal to zero. This pro-
vides a definition for the stress tensor:

ov
Bi=gigopl E=0 (14)

These constitutive equations involve then two state variables, 7" and €°, and
two conjugated variables, the entropy s and the stress tensor g. ¥ can be
seen as a thermodynamic potential which characterises reversible processes.
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Dissipative processes. A series of hardening variables is now related to
the list of the state variables o, so that the model is formulated according
to the following scheme:

State variables Conjugated variables
ov
temperature T §=— gg entropy
elastic strain € g =p Dee stress

state variables oy Ar=p hardening variables

6a1

The intrinsic dissipation can be rewritten:
Oy =0:&"—Arar =177 (15)

with: Z ={g,4;} ; z={e?,—as}
A model is standard (Halphen and Nguyen, 1975) if one can find a po-
tential Q = Q(Z) such as:
o0
) = 16
T oz (16)
If Q is a convex function of Z which includes the origin, the dissipation
is then automatically positive, since:

¢ =17 (17)

07
One can also define (through the Legendre-Fenchel transform) a companion
potential in terms of 7:

O (3) = max (27 — Q7)) (18)

As a consequence, either Q*(7) or Q(Z) can be introduced to characterize
the dissipative processes. A dissipative model can then be fully characterised
by the definition of two potentials ¥ and 2. The relation between state
variables and hardening variables will then be derived from W, and the
nature of the hardening variables and their evolution rules from €. As
an example, isotropic and nonlinear kinematic hardenings come from the
following choice for the sets (Ay, ay) is:

Type of hardening  State variable Conjugated variable
Isotropic hardening T R
Kinematic hardening a X
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o0 o0 o0
p_ S — 1
€9 TTTor 97 Tox (19)
Assuming that .J is a von Mises norm, such as J(z) = ((3/2)z : z)'/?, a

viscoplastic model is simply obtained by means of a potential €2, according
to the following steps:

e Definition of a viscoplastic yield:
fle, X,R)=J(g—-X)—-R (20)

e Definition of a potential, function of f:

AN (21)
n+1 \K
e Viscoplastic flow:
p_ 00 _0Q0f (22)
g Of 0o
e Intensity of the flow (here, Norton with internal stress):
a0 [ F\"
= = 2
=7 = (1) )
e Flow direction (normal to the yield surface):
of
"= g (24)
e Hardening:
o0 o0
S — 9
T=Tor 2T Tox (25)

One can switch from a viscoplastic to a time independent plastic model
by replacing the viscoplastic potential by a plastic pseudo-potential, as
shown in Fig.3, where Ind(f) jumps from 0 (for f < 0) to infinity (for
f = 0). The strain rate is then no longer given by the partial derivative
of Q with respect to f, but by the consistency condition. The direction of
the flow is recovered by introduction of Hill’s principle, which assumes that
the real stress field provides a maximum of the intrinsic dissipated power
®; = g™ : €7 of any admissible stress field, when there is no hardening:

Vg* admissible (g —g™)é’ > 0 (26)
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A Ind(f)

(a) (b)
Figure 3. Tllustration of (a) the viscoplastic potential, (b) the plastic
pseudo-potential

For the case of a material with hardening, the preceding equation has to be
reformulated as:

by =g &l —Ajar=g:e’-V,=77  maximum (27)
where Z includes stress and the hardening variables A;, and z includes
plastic strain and the state variables (-ay):

(Z —7%)% >0 (28)

The maximization of ®; under the constraint f < 0 can be seen as an
extension of Hill’s principle. Let us define F(Z) =Zz — X f and search for
the zero of OF/JZ

. Of

. COf . of
2=y

then: gf = A dg =An ar = — A, (29)

A (at first unknown) plays in plasticity the role of the equivalent strain rate
in viscoplasticity.
This type of approach offers the opportunity to introduce two types of
coupling;:
e State coupling, in the free energy (note the symmetry of the interac-
tions):

1 1 1
U(ag, ) = 201104% + 2022063 + o C1201 02 (30)
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a1 et Q9
04 _ 04y _ % (31)
8042 8041 80418042

e Dissipative coupling, when € is the sum of several potential functions,
QK:
00k
[ = 32

More information about the development of specific models can be found
in (Germain et al., 1983; Lemaitre and Chaboche, 1990; Besson et al.,
1998).

2.2 Derivation of single crystal models

General framework The single crystal is seen as a collection of N slip
systems, defined by their slip planes n® and slip direction I°. The orientation
tensor is:

1 : :
m’ = 2(ns®lb+lb®ns) (33)

In small perturbation, the resolved shear stress is computed as

P=0g:m’ (34)

and the strain partition involves an elastic and an inelastic strain
E=gcrer (35)

The elasticity is characterized as usual, meanwhile dissipative behaviour
must be expressed for each slip system. As a consequence, isotropic and
kinematic variables have to be defined on each slip system. The resulting
set of variables is then as follows:

Phenomenon State variable Associated variable
Elasticity €° log
Isotropic hardening p’,s=1.N r®, s =1.N
Kinematic hardening «*, s=1..N %, s =1..N

The relation between state and associated variables comes from free en-
ergy, where the elastic and the inelastic part are assumed to be disconnected:

pY(e®, p°s ) = pY©(e®) + pyP (p°, @) (36)
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The elasticity (non—dissipative process) is fully defined by

1
pYe= et Al (37)

The state variables a® and p° are present in the free energy, and the
hardening variables x° and r° are defined as their partial derivatives:

= e (@4 L QS e (39)
i =ca” ;5 r=0bQ Zhrsps (39)

Note the interaction matriz, whose components h,, characterize self—
hardening (if r = s) and cross-hardening (if » # s). The multi-mechanism
effect has been studied in detail in the past (Koiter, 1960; Mandel, 1965)
from a theoritical point of view. Experimental aspects will be discussed
later.

Viscoplasticity needs the definition of a viscoplastic potential, plasticity
needs the definition of a plastic pseudopotential. They are built using the
expression of the yield criterion on each slip system

fP=rt =2t —r* =1 (40)

Viscoplastic formulation A viscoplastic potential is introduced. As an
example, a power function of the yield is chosen here, but any other increas-
ing function would be a good candidate:

K fr n+1
Q= Q.(f") = 41
o= (k) (a1)
The viscoplastic flow can then be derived as

. o0 o0, oQ,. Of" . .
y 2R — — — Toy T’ — T T
&= g =2 og Zafr oo van va (42)

In the preceding equation, " stand for sign(7" — z"); the scalar part of the
expression characterises the viscoplastic shear rate:

o Jfr
afr  \K
and the tensorial part the flow direction, given by the normality rule:

afr_aqmr:q*xq*rr*ﬁ))_ T

> =" AT =0"sign(t" —a") =0"n" (43)
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For a standard model, the variables attached to isotropic and kinematic
hardenings are imposed:
e Kinematic hardening on system s is driven by the actual slip on this
system, v*

o 00O OOF
T ows T Zeows T op e T

e Isotropic hardening on system s is driven by the accumulated slip on
this system, v*:

.09 o0, 09, of
S —— e — = S 4
P "oy Z ors — ofs ors " (46)

Non standard models can also be defined:

a® = (n® —da®)v* (47)
5 = (1 bp")i (48)

Since g gp =0 st,ys — Zq :ms,ys — ZTS;YS _ ZTsnsi}s the
s s s s

intrinsic dissipation writes:

=gl — szds — ZTSp'S (49)
= Z (T°n°0® — 2 (n°® — da®)0® — r®(1 — bp®)0®) (50)
=St L @) ) G1)

The following contributions are then exhibited:
e Viscous dissipation : Z ffo®

S
e Friction dissipation : 7 g 0°

d ,
e Dissipation due to nonlinear hardening;: ( (acs)2 + br5p§> v°
c

Plastic formulation. Figure 4 illustrates the difference between vis-
coplastic and plastic formulation. Like for the classical case (Fig.3), the
current state in the stress space must stay on the yield surface instead of
being on an equipotential. The plastic strain rate for each slip system is no
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(a)

Figure 4. Illustration of (a) the viscoplastic flow, (b) the plastic flow

longer defined by the distance to the relevant yield, but must be deduced
from the consistency condition. The regularisation provided by the viscous
effect is no longer present, and the direction of the flow has to be defined by
additional rules when the current point is on a corner of the domain, that is
in situation of multiple slip. The crucial point is then to determine the set
of active slip systems. One plastic multiplyier is determined for each slip
system. The non zero plastic multiplyiers are solutions of the linear system
formed by the consistency conditions on the active slip systems, fs = 0.
Several sets of slip systems can produce the same viscoplastic strain rate
tensor. An additional condition must be used to select the relevant set of
slips, as discussed in section (2.5).

N ofs N
n \ S _ \S, S
D DL pE 2)
s=1 ~ s=1
A rather simple computation allows to obtain the relevant system, start-

ing from:
e the strain partition

g=A: (s -> mv) (53)

e the consistency condition applied to active slip systems:
ff=m*:o—2°|—r*=7=0 0=m’:0—2°—n°r° (54)

using the notation n°* = sign(r° — x*)
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The following step consists in computing m® : g in equation (54), intro-
ducing H,, as specified below, and keeping the notation ©° for the plastic
shear strain rate on system r:

m’ g =i ' = Hyid" (55)

In the next step, one replaces ¢ by its expression in equation (53):
miAE—Y mt A im0 =) Hy" (56)
r T

Under prescribed strain rate, N equations are then defined (N = number
of active slip systems) to compute the plastic multiplyiers:

Z(mssé:mquHST)i;T:ms:é:g (57)

T

e The set of possible slip systems able to respect these equations is not
unique. Several combinations of slip can provide the same macroscopic
strain rate. This point will be examined later in section (2.5).

e Note that, in the present model, the matrix formed by the coefficients
Hg, is non symmetric:

2% = y® — da®v® = (en® — da®)v® = Z(cnr —dz") 050" (58)

P =Q bhe exp(—bv")i" (59)

Hy = (en” — da")dsr + Qbhg, exp(—bv") (60)

Nevertheless, it becomes symmetric with no kinematic hardening and
linear isotropic hardening, r° = Z herv"

Hgr = hgy (61)

e The following double dot products may be useful in the computations:

m®: I =mj;0;; = trace(m®) = mj; = njl; =0 (62)
1 1
m®:m® =mims; = 4(nflj +End)(nil +1inj) = 9 (63)
1
m®:m” =mjm; = 4(nfl; +1ny) (il +1inj) (64)
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Table 1. The components of the 12 orientation tensors for octahedral slip
systems

num syst 1 2 3 4 5 6 7T 8 9 10 11 12
Vémi, -1 0 -1 10 1 0 -1 -1 11
Véme 0 -1 1 0 -1 -1 11 0 1
V6mss 1 1 0 1 1 0 1 0 1 0o -1 -1

2V/6mi2 -1 -1 0 1 1 0 1 0 1 0o 1 1

2/6mses 1 0 1 -1 0 1 0 1 1 101

2v6ms; 0 1 -1 0o 1 1 -1 1 0 1 0 1

e For the case of isotropic elasticity, the system (57) can be simplified,

since
ANijir = X030 + p1(0irdj1 + 031051 (65)
Ajjramiy = pmg; (66)
m®: A:m” = pmgms; (67)
(68)

2.3 Yield surfaces

Yield surfaces provide a synthetic information on the behaviour of the
materials. This is illustrated here for the simple case of FCC materials,
where slip occurs on the four octahedral planes {111}, in the directions
(110). The case of Ni-Base superalloys, where cubic planes {001} may also
be involved, with the same slip directions (110), will be also mentioned.

The yield surfaces can be seen as a collection of hyperplans which equa-
tions are:

|7°| = 7.=0 or ¢:m*—71.=0 (69)

Plastic deformation of FCC materials classically involves the 12 octahedral
slip systems only. The components of the 12 orientation tensors are shown
in Table 1.
The shape of the yield loci can be illustrated on planes like biaxial or
tension—shear loading;:
e If the only non zero terms of the stress tensor are o1; and o099, the
criterion writes:
|orimir + o22mas| — 7. =0 (70)
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Table 2. Values of 7° for the 12 slip systems of a FCC single crystal

(a) case of a biazial tension loading o11-022

num syst 1 2 3 4 5 6
T —011 + 022 022 —011 —011 + 022 022 o11

num syst 7 8 9 10 11 12
T 022 —011 —011 + 022 —0o11 011 — 022 —022

(b) case of a tension—shear loading 011012

num syst 1 2 3 4 5 6
T° —011 — 012 —012 —011 —011 + 012 012 o11
num syst 7 8 9 10 11 12
T° 012 —011 —0o11 + 012 —011 o1 +012 012

The resulting equations for the 12 slip systems are shown in Table 2a.
e If the only non zero terms of the stress tensor are o171, 012 and o091,
the criterion writes:

lorimar + 2019ma2| — 7. =0 (71)

The resulting equations for the 12 slip systems are shown in Table 2b.

As a result, for biaxial tension loading, the domain is then defined by
three types of systems :

e systems 1, 4, 9 and 11 : |01y — 093] = 7.V/6

e systems 3, 6, 8, 10 : |o11| = 7.\/6

e systems 2, 5, 7, 13 : |o9a| = 7.\/6

meanwhile two types of systems are present for tension—shear loading,
as illustrated in Fig.5:

e systems 1 and 11 give : |o1; + 012 = 7.V/6

e systems 4 and 9 give : |o11 — o12| = 7.6

Figure 5 illustrates also the influence of the hardening matrix. It is as-
sumed that the current loading point is at the corner located located on the
012 axis, for a positive value of the resolved shear stress. A stress increment
is applied, with an angle # with the horizontal at this point. Numbers in
Fig.5a indicate the number of active slip systems if the interaction matrix
is diagonal. On the other hand, if cross hardening (the terms outside of the
diagonal) is high, slip on systems like 1 or 11 may dramatically increase the
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Figure 5. Graphical illustration of the slip system activation: (a) number
of potentially active slip systems for various load directions, (b) high la-
tent hardening, a few active systems, (c) low latent hardening, many active
systems

resolved shear stress on systems like 2, 5,... so that they will not become
active, even if the stress increment is in the sector indicated (6), as demon-
strated by Fig.5b. An intermediate solution is recovered for intermediate
values of the cross hardening terms (Fig.5c¢).

Multiple slip is often present in single crystal. This might be due to the
rotation of the slip planes during the deformation process. On the other
hand, this is also a character which is related to the balance between elastic
and plastic flow direction. For instance, in Fig.6a, two loading paths under
prescribed strain are considered: for the upper path, the ratio £74** /ei*
is equal to 0.525, for the lower path, the same ratio is equal to 0.475. Since
the ratio {5 " /el7""" remains always equal to 0.5, there is a continuous
deviation for the stress rate which explains the shape of the stress path.
The same argument is valid for explaining the stress path in Fig.6b. Note
that in Fig.6a, systems like 2, 5, 7, 12 start being active due to the loading
deviation for the upper path, and systems 3, 6, 8, 10 for the lower path.
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Figure 6. Initial and subsequent yield surfaces: (a) for tension—shear stress
states, (b) for biaxial stress states

2.4 Identification under tension and tension—shear loadings

For a given crystal orientation, the present model can be compared
with a macroscopic model. Its identification can then be made either by
curve fitting using tensile curves, or by a direct use of the material param-
eters of a macroscopic model. Examples of such an approach can be found
in (Méric et al., 1991; Hanriot et al., 1991) for superalloy single crystals.
For the case of multiple slip, with N equivalent slip systems, and a Schmid
factor m, one can transform the general expression giving &”:

é’p _ Z’IILS’L'}S :st <|7’S _ 1],:| —rs >n (72)

—Nm <m(a —kx) -r >" (73)

which can be compared to a macroscopic model

- X)-R\" ko1 Un
éP:<(” K) >withK:mmN X:Z R:; (74)

The relations between the macroscopic material parameters and the param-
eters of the crystalline models are given in Table 3 for the case of octahedral
slip and cube slip.

Two examples are given, in order to illustrate the various types of me-
chanical response of the mode. Figure 7 simply shows the tensile curves
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Table 3. Relation between the material parameters of macroscopic models
and of crystal plassticity models for octahedral slip and cube slip.

Coefficient | Value for multiple Value for Value for
slip (m,M) 001 tension 111 tension
N=8m=1/V6| N=6m=+2/3
K k V6k 3k
m(Mm)l/n (8/\/6)1/" 2(n+1)/2n
3
RO o \/67“0 "o
5 %
V6
Q : Q 9
b b V/6b b
mM 8 g 2
C c 3c c
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Figure 7. Simulation of the tensile behaviour for various crystallographic

orientations

obtained with a negative value of the material parameter @ for isotropic
hardening. Figure 8 is the result of the identification of the model on
an experimental data base obtained on AMI1 for various crystal orienta-

tions (Hanriot et al., 1991).
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Figure 8. Simulation of the cyclic behaviour for various crystallographic
orientations on AM1 specimens (Hanriot et al., 1991)
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2.5 Slip system selection

As previously pointed out (section 2.2), there is no unique set of slip
systems that provides a given plastic strain rate tensor. The condition to
fullfil for each set of slip systems to be admissible can be precised by means
of the variational approach, using either internal or external power.

The first problem is to select a set of admissible shear rates ©v° for a
prescribed plastic strain rate €¥ (assuming € = €P). This has to be done by
minimising the internal power of the material element (Taylor, 1938):

Pi=» T’ (75)
S
the shear strain rates being submitted to the constraint:

g(i*) =& => mo'n" =0 (76)

Let us define the lagrangian F;, and search for the saddle point

Fi(0°,A) =Pi+A:g (77)
afi_,p S5 a]:z_ s . 5,8 __

The tensor A is nothing but the stress tensor. To find the set of shear
strain rates, which minimizes internal power, it is then necessary to find a
stress tensor which obeys the yield conditions, id est which allows to build
resolved shear stresses that reach 77 on the active slip systems and that are
smaller than 77 on the inactive ones.

The problem can also be posed in terms of unknown stress, and
rephrased as “find the stress state which maximise the external power”
(Bishop and Hill, 1951), written as

Po=g:¢ (79)

under the constraint
9°(g)=1—-g:m’ >0 (80)

Felg,ji*) =Pe+ Y _ ji°g* (81)

oF. . OF,
F:gpfzmspszo f:rsfg:mS:O (82)
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The multiplyiers ° are nothing but plastic strain rates. To find a stress
tensor, one has to find a set of plastic shear strain rates which are zero on
the inactive slip systems, and positive on the active slip systems.

The two approaches can be summarised by the double inequality

g P < g el =) Tty T (83)
S S

This discussion can be found in (Chin and Mammel, 1969). It means that:

e between all the admissible stress states conjugated to the real plastic

strain rate, the real stress tensor maximises the plastic power. For

regular points of the yield surface, this ensures that the plastic strain

rate is normal to the yield surface. Nevertheless, this does not provide

the full information for a corner of the yield surface, in conditions of
multislip;

e between all the possible set of viscoplastic shear strain rates, the real
one minimizes the internal power.
The dissipation computed in the thermodynamical approach for such a
simple model has two terms only:

Oy =g’ =) r’ (84)

where the variables 7°, defined in equation (59), denote the increase of
critical resolved shear stress. According to equation (40) (with 2® = 0, since
there is no kinematic hardening here), if all the systems are equivalent, the
equation can be reduced:

Oy =) ot =1y i (85)

2.6 Other crystal plasticity models

The model which has been considered up to now represents the branch of
the phenomenological single crystal models, inspired from the macroscopic
formulations, like also for instance (Jordan and Walker, 1985). An other
class of models is represented by the so called dislocation based models,
like for instance (Busso and McClintock, 1996). On the other hand, crystal
plasticity is a versatile solution to express various phenomena acting on
the level of the crystal network, like twinning. These two topics are shown
in the present section. Additional capabilities will be shown later, namely
developments needed to represent volume changes and damage.
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Phenomenological and dislocation based models. We refer to the
first denomination when the hardening variables are plastic slip, and to
the second one when the dislocation mechanisms are explicitely introduced.
One has to get back to Taylor (Taylor, 1938) to read the expression of
the first phenomenological model, which assumes that the critical resolved
shear stress on the slip systems linearly depend on the slips on all the
systems, by means of the interaction matrix. The so called Taylor inter-
action is obtained when all the terms of the matrix are equal to 1: self-
hardening and cross-hardening are exactly equivalent. Experimental mea-
surement of cross hardening have then allowed to reach better estimations
of the hardening matrix (Kocks and Brown, 1966; Kocks, 1970; Franciosi,
1985a,b). This matrix is now estimated by means of Dislocation Dynamics
computations (Devincre et al., 2006). The most widely used phenomenolog-
ical model is written in a viscoplastic framework without threshold (Asaro,
1983b), so that all the systems are allways active. A multiplicative isotropic
hardening is introduced; it depends on accumulated slip:

5 1/m
. .
T

c

N

= hay" (87)
r=1

(88)

The phenomenological models previously presented in this paper and the
dislocations based models have the same nature: their variables globally
represent averages of the local dislocation densities. To fully illustrate this
point, one can take (equations 89-91) the example of a dislocation based
model (Tabourot et al., 1997), where b is the Burgers vector, and p® the
dislocation density on slip system s:

.\ 1/m
s . (T
¥ =0 ( ) (89)

S
Tu

N 1/2
7_5 = aub (Z hsrpr> (90)
r=1
/
(B e)”

— _2,8 S 1
= I yer® | & (91)
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After choosing r* = bzps and y. = bk., the last two equations can be
rewritten:

N 1/2
P (Z h) (52)
r=1

(EN asrrr) Ve
r=1
2k
K

-

o |y (93)

The variable r® which is defined here plays exactly the role of p® in equa-
tions (38) and (48).

Twinning and phase transformation Twinning and martensitic trans-
formation can be represented in a local frame n*, t* u* by a transformation
gradient F*

F=1+tkonk (94)

1
The stress-free transformation tensor is then 5 (F TFP—1 ) in large strain,

1
or 9 (FT + F) — I in a small perturbation framework. In this last case, the

transformation of the crystal lattice produced by the variant k£ can be seen
as a parametric strain

Etp -

= (95)

~

o2 ™
o o2
=N N

Various theories are available to determine vectors n and t, depending on
the material crystallography (for instance Wechsler-Lieberman-Read theory,
24 variants)

3 Finite element computations of single crystalline
components

The purpose of this section is to illustrate the behaviour of single crystal
laboratory specimens and of industrial components. After a quick look to
the algorithmic expression of the model, one shows the case of cylindrical
tension specimens, then tubular specimens. A few elements are given to
figure the type of calculations that can be made on turbine blades.
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3.1 Algorithm for the numerical integration

The integration of these equations in a finite element code can be
made either by an explicit or an implicit method. If compared with clas-
sical inelastic equations, single crystal models must solve the additional
problem of choosing the active slip systems. This is why, after classical
viscoplastic solutions where all the slip systems are active (Pierce et al.,
1985; Asaro and Needleman, 1985), many authors have proposed their
original solutions (Méric and Cailletaud, 1991; Cuitino and Ortiz, 1992;
Anand and Kothari, 1996; Schroder and Miehe, 1997; Simo and Hughes,
1997; McGinty and McDowell, 2006). The interest of the implicit approach
is that it provides the jacobian matrix needed for computing the consistent
tangent matrix. Classically, the system of ordinary differential equations
is solved by a Newton technique, which is applied to the incremental form
coming from the application of a #—method. For the sake of simplicity, the
present model is restricted to small strain, and linear isotropic hardening.
In such a case, the integration variables are the increment of elastic strain
Ae® and the increments of (visco)plastic shear strain, Ap®, which are pos-
itive for all the slip systems. For the case of time independent plasticity,
these two variables will be deduced from two types of equations:

e The strain partition:

Ag =N+ m'Ap’ (96)

e The expression of the criteria for the active slip systems:
Fr=pel-r =0 (97)
with 7° =m® : A : g° r® = Z hsrp"labeleq : hardx — (98)

As a result, the system to solve is formed of equations (99) and (100):

Fe=—Ac+ Ae® + Z m’Ap” (99)

Fp=m*: A (" + Agf)

p

—To — Z hs7'(pr + Apr) (100)

If the model is viscoplastic instead of being plastic, equations (100) must
be replaced by (101), the equation coming from the strain partition being
unchanged:

ApS 1/n
Fp=|m’:A: (ge—l—Age)’—TO—ZhS,.(pT—i—ApT)—K< Apt > (101)
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This algorithm is implemented in the Zmat library of the Zé&BuLoN
code (Foerch et al., 1997) which has been used for all the simulations of
this chapter.

3.2 Laboratory specimens

It is well known that the stress and strain state is not homogeneous in
“tensile” specimens which are not oriented along high symmetry directions
like {001} or {111}. If the rotations are blocked, the strain heterogene-
ity can even be very high, as illustrated in Fig.9a (Méric and Cailletaud,
1991). Other cases are still more remarkable: torsions of a thin wall tube.
According to the orientation of the tube axis, the number of “soft” zones
around the circumference will change. This can be easily understood by
computing the resolved shear stress along the circumference. For the case
of a {001} oriented specimen, there is four soft zones (Fig.9b), and for a
{111} oriented specimen, six soft zones (Fig.9¢). Note that a series of crite-
ria proposed in the literature for single crystal modelling, which are based
on Hill’s quadratic criterion do not capture this effect, since all the points
of the circumference have the same shear stress. Experiments have been
made to confirm the prediction given by the model. This is illustrated by
Fig.10, which shows the location of the jauges (Fig.10a), meanwhile Fig.10b
and c respectively show the loops measured by the jauges, respectively in
the < 110 > and in the < 100 > areas: the strain measured by the jauge is
on the horizontal axis, and the torsion couple is on the vertical axis. The
Schmid factor is rather small in the second case, thus the behaviour is not far
from purely elastic. On the contrary, < 110 > is a soft zone, with a large hys-
teresis loop. The reader is invited to go back to (Nouailhas and Cailletaud,
1995) for a more detailed view on the tests available. Yield surfaces have
been determined in tension—torsion. It is worth noting that, according to
the ratio between tensile and shear loadings, the softer zones can be either
< 110 > or < 100 > !

Other specimens have also be considered in the past, for instance bicrys-
talline specimens (Méric et al., 1994).

3.3 Turbine blades

Single crystals are used in industry, specially in the hotest sections of the
turbines (for planes or power plants), where they accept higher temperatures
than classical alloys (Cailletaud et al., 2001; Busso et al., 2003). Figure 11
shows a typical computation result performed in cooperation with Snecma
(Safran group): after stress—strain computations, specific post-processing
are used to estimate the creep—fatigue life of the component. The most re-
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Figure 9. Various loading cases producing strain heterogeneties on labo-
ratory specimens: (a) {123} oriented specimen loaded in tension; (b) {001}
oriented specimen loaded in torsion; {111} oriented specimen loaded in tor-
sion;

© ()

(b) ()

Figure 10. (a) Location of the jauges on the tube; (b) soft response of
the jauge located in < 110 > area; (¢) allmost elastic response of the jauge
located in < 100 > area
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Figure 11. (a) Life prediction on a turbine blade submitted to a thermo-
mechanical loading

cent advances in blade design are related to more and more complex shapes,
in relation with aerodynamics which make 3D computations mandatory, and
also with more and more clever cooling systems. Modern blades are hollow,
with a complex network of holes to have cool gas coming from inside the
blade and form a protective film against the combustion gases. This is the
reason why the critical zones are no longer predictable by inspired guessing
from the shape of the blade.

On the other hand, this complex geometry introduces sometime so many
details that they cannot be meshed with a reasonable precision. This is
illustrated in Fig.12a, where a series of 1 mm diameter holes are present
on the leading edge of the blade. The computation with the full geometry
can be made for a reference computation, but the relevant mesh to capture
all the details (several millions of nodes) cannot be used for parametric
studies. In such a case, the weak zone can be globally modelled by means of
homogenised models taking into account the holes. Drilling a hole in a single
crystal will produce a material that does not possess the cubic symmetry.
The axis of the hole is a preferential axis: along this axis, the material
behaviour is unchanged, except that a correction of effective surface has to
be made. For a tension or a compression along the two perpendicular axes,
the behaviour becomes pressure sensitive. The resulting model must then
be an orthotropic pressure sensitive single crystal. An homogenized model
can be calibrated by means of cell calculations, like in Fig.12b and Fig.12c.
The cells are loaded with periodic boundary conditions.

Assuming that the axis of the hole is ey, a pressure effect is created for
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(b)

Figure 12. Development of a model to account for hole distribu-
tion (Cardona, 2000): (a) industrial component; (b) cell with a hole in
tension; (c¢) cell with a hole in shear

the other two directions, e; and e3 by introducing two new mechanisms in
addition to the normal slip: this is an opening/closure of the hole, driven
by the normal stress in the relevant direction, namely:

e two normal stresses are computed, o1 = ej.g.e; and 03 = e3.g.e3

e two variables ' and §° are associated to these normal stresses:

. o —ri\"
51: v

e 6! and 6% have their own contribution to the strain rate tensor, eval-
uated by means of n! = e; ® ¢; and n® = e5 ® e; through the terms:

§lnt + §nd

The holes in the blades generate stress concentrations which lead to crack
initiation. It is then useful to study cracks in single crystals. Due to the
specificity of the yield criterion, the plastic zones ahead of the crack tip have
a particular aspect. This was predicted by early studies made by Rice (Rice,
1987). Experimental veerifications and the related numerical simulations
have been recently made(Flouriot et al., 2003). Figure 13, taken from this
last paper, shows for instance that there is no plasticity in the direction of
the crack ahead of the crack tip in an angle of about +30°, for the case of
a {001} oriented specimen of FCC material.
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(a) (b)

Figure 13. View of the plastic activity ahead of a crack tip. (a) Experi-
mental result; (b) Numerical simulation

4 Finite Element Crystal Plasticity

In the litterature, internal stresses in materials are classified into level I, 11
and III. Level III is the microscopic level, where intragranular stress present
fluctuations inside each grain, with different values in the core of the grain
and near grain boundaries, for instance. Level II denotes the result obtained
at the grain level, after averaging the intragranular stresses. This can be
made grain by grain; In this case, the resulting tensor is defined in each
in individual grain, and takes into account the real neighborhood. Most of
the time, measurements are rather able to capture stress on a given set of
grains having the same crystallographic nature. This leads to an alternative
definintion for level II, that is now obtained after an additional averaging
operation. Level I refers to macroscopical stress, the stress tensor resulting
from the averaging on a representative material element, large enough to
include all the significant phases and grains.

Numerical models are attached to each of these scales. Macroscopic
models naturally relates to level 1. Uniform field models represent level II.
The finite element method with embedded crystal plasticity models (Finite
Element Crystal Plasticity, FECP) can be used to capture stress and strain
fields on level III. It has been applied to calibrate the other levels too. This
is illustrated in the present section.
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(a) (b)
Figure 14. Use of regular meshes for studying large deformations of poly-

crystals and the related texture evolution: (a) 2D (Kalidindi et al., 1992),
(b) 3D (Miehe et al., 1999)

Polycrystal, simplified microstructures In the past, finite element
models have been used either to evaluate the homogenized behaviour of an
aggregate with a predefined microstructure, or to make comparisons with
local measurements in specimens with large grains.

Attempts to derive the global behaviour of an aggregate from the prop-
erties of its elementary constituents by means of 3D finite element com-
putations can be found in the seventies (Engel, 1978). The material was
represented by tetrahedric grains assembled in a cube, with a new crys-
tal orientation for each finite element. The severe limitation at that time
was the power of the computer, so that researchers had to wait for new
generation of machines. Figure 14 shows further typical studies, made on
2D meshes ((Kalidindi et al., 1992)) or 3D meshes ((Miehe et al., 1999)).
In these cases, authors wanted to check the global behaviour of the aggre-
gates, and predict the texture evolution in large deformation. The aggregate
has nothing to do with a realistic microstructure, since each finite element
has its own crystallographic orientation (one element-one grain), figuring
a set of cubic grains with regularly distributed neighbours. The model is
rather seen as an evolution of Taylor’s model, where the kinematic condi-
tions (uniform plastic strain) is known to be too restrictive. In fact, the
results obtained with such crude meshes are not far from Taylor solution:
this is not surprinsing, since there is not enough degrees of freedom to repro-
duce the high heterogeneity present in real aggregates. On the other hand,
the prediction of the texture evolution is often satisfactory. It remains that
the main reliable information that can be taken from these computations
are the so called first order stress and strain fields, that is the homogenized
fields.

Some more complex meshes have then been used, to represent more
precisely the local behaviour. A series of computations are illustrated in
Fig.15. Figure 15a shows the finite element model used to compute the av-
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Figure 15. Examples of meshes used in the literature to represent various
microstructures: (a) two phase material (Bugat et al., 1999), (b) attempt to
capture a realistic grain microstructure (Mika and Dawson, 1999), (c) grain
boundaries on a 3D cubic mesh (Evers et al., 2002), (d) grain boundaries
on 2D hexagonal grains (Kim et al., 2002)

erage stress tensors in a two phase material (Bugat et al., 1999). The first
phase (left) is represented by 20 elementary cubes, the second by 7 elemen-
tary cubes. Introducing symmetries, each phase forms a coninuous periodic
network. The respective volume fraction can be controlled by the size of the
internal cubes. The purpose of the computation is to evaluate a stress level
in each phase, to be used as an input in brittle failure models, that is level
IT stress. The next example in figure (15b) is between level IT and 11, since
a more realistic shape is introduced (Mika and Dawson, 1999). The last
two examples (Fig.15¢ and d) try to separate the interior of the grain and
a grain boundary area. Again, more realistic meshes would provide more
reliable computation of the rspective influence of each zone (Evers et al.,
2002; Kim et al., 2002).

Multicrystal, real microstructures The other traditional type of study
consists in computing real specimens with a relatively low number of grains.
Contrary to the previous case, there is a large number of elements in each
grain, so that the intragranular gradients can be obtained. This allows
authors to illustrate multislip effect (Delaire et al., 2000) inside the grain or
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Figure 16. Examples of experiments and simulation using multicrystalline
specimens: (a) experimental results on a copper specimen (Delaire et al.,
2000), (b) illustration of the perturbation due to grain boundaries on Taylor
factor (Raabe et al., 1981)

at the grain boundaries (Raabe et al., 1981). The state of the art for such
a class of calculations if as follows:
e there is a good agreement between experiments and numerical simu-
lations, specially for large grains;
e grain boundaries are still not well characterised; secondary slip might
be present in rather large zones;
e the behavior of a grain in its environment differs from the behaviour
of the corresponding single crystal;
e the unknown grains under the surface do affect the behaviour of the
surface grains.

Polycrystal, realistic microstructures An other trend in FECP is the
modeling of polycrystalline aggregates, involving a large number of grains
(several hundreds) to capture the polycrystal effect, using realistic synthetic
microstructures to capture the effects of the local morphology and of the
neighborhood, and involving a reasonnable number of elements in order
not to introduce artefacts due to the poor discretization. The interested
reader will consult papers like (Barbe et al., 2001a,b; Diard et al., 2002;
Cailletaud et al., 2004). The most popular solution to generate the numer-
ical model starts from a Voronoi tesselation. As shown in Fig.17a and b,
this construction provides domains around points that are initially dropped
in the material element. The distribution can be random. Alternatively,
a repulsion distance can be introduced, anisotropic distributions can be
considered... Other types of distributions are also in development: they
consider ellipsoids growing at various rates, or other types of assumptions
based on models for grain growth. Having a microstructure in hand, the
next step of a microstructure computation is to generate the finite element
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(a) (b) () (d)
Figure 17. Mesh generation using Voronoi tesselation: (a) Distance func-
tion of a set of point sources, (b) Tesselation result after construction and
labelling, (c¢) multiphase element technique, (d) 3D mesh respecting grain
boundaries

mesh. In the past, authors have used either multiphase element technique
(Fig.17¢) or free mesh generation (Fig.17d). According to the first solu-
tion, material properties are affected to the Gauss points according to their
position in a cube which defines the material element. This is a quite flexi-
ble approach, nevertheless, grain boundaries are cumbersome, so that it is
not applicable for a good characterization of the grain boundaries. On the
other hand, free mesh generation do respect grain boundaries, and is a good
starting point to look for real intragranular fields (level IIT).

Figure 18 presents a typical result on a regular 28 x28x28 mesh. Mul-
tiphase element technique has been used. The general behaviour or the
strain fields is to form strain localization lines, as shown in Fig.18b. This
has nothing to do with instabilities, since the material presents hardening
everywhere, on a local and a global scale. This is just the fact that deforma-
tion propagates from one grain to the other, sometime without consideration
of the local orientation. On the other hand, stress levels do respect grain
boundaries. The von Mises equivalent stress field shown in Fig.18¢ is clearly
sensitive to the crystallographic morphology.

Convergence studies have been performed in (Barbe et al., 2001a,b).
The most remarkable points are the following:

e For moderate strains (a few percent), quadratic meshes with full inte-
gration provide more precise results than linear meshes, for the same
number of nodes. Nevertheless, an oscillation due to the spherical part
of the stress tensor may appear when classical element are used. Mixed
elements introducing the trace (and eventually the volume change) as
a degree of freedom provide more stable results. Alternatively, a post-
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Figure 18. Typical results on a polycrystalline aggregate: (a) a 28x28x28
mesh with 200 grains, (b) local field of total axial strain, (c¢) local field of
von Mises stress

treatment of the result can be made, to replace the trace on each
Gauss point by the trace of the element.

Reaching a stable curve for level I stress (macroscopic level) is rather
easy. This can even be achieved with a one element—one grain mesh !
The variations observed on a tensile curve reaches only a few percent
with two hundred grains for various mesh size.

Level III stresses and strains are much more difficult to capture. For
coarse meshes, the localization areas are not well defined, they are too
large, but the maximum values are too small: the finer the mesh, the
higher the maximum stress (or strain), the lower the minimum stress
(or strain). This is illustrated in Fig.19, on a slice made in several 3D
meshes, with an increasing number of elements.

Fully constraint boundary conditions (imposed strain) provide the
most homogeneous fields, and the highest resulting stress (at level I).
Figure 20 shows the resulting axial strain—axial stress curves for each
of the 200 grains of a polycrystalline aggregate (level II). In Fig.20a,
the stress—strain state of the grains follows the Berveiller—Zaoui ap-
proach, which will be explained later (section 5.2): for a given time
step, they are along a line whose slope decreases with strain. Ac-
cording to this uniform field model, each grain is surrounded by all
the other grains. This is not the case in the finite element method,
so that the distribution is not so smooth. Tension under strain con-
trol (Fig.20b) produces m ore scatter in stress (low scatter on strain),
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range: 0.012 — 0.058 range: 0.007 — 0.077
Geom 10 x 10 x 10 10 x 10 x 10 elts 18 x 18 x 18 elts

A

range: 0.003 — 0.083 range: 0.003 — 0.089
Geom 32 x 32 x 32 28 x 28 x 28 elts 32 x 32 x 32 elts

Figure 19. Evolution of the local strain field (von Mises equivalent) for
various mesh sizes, for an axial tension (0.2% in the vertical direction, 200
grains) on a quadratic mesh

meanwhile tension under stress control (Fig.20c) produces more scat-
ter in strain. The graphs in Fig.20d, e, f show the results for the
lateral stresses, whose average is equal to zero. This plot shows that
the stress state is triaxial inside the aggregate, even for a tensile strain.

e As far as level I1I is concerned, free faces promote scatter: for a given
mesh, the computation performed with a free face will produce lower
values and smaller values than the computation made under prescribed
strain. The same observation is made inside the grains. Grain bound-
aries promote also scatter: in its vicinity, maximum stress or strain
increase, minimum stress or strain decrease (see Fig.21).
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Recent developments

In the preceding examples, Finite Element Crystal Plasticity has been used
either directly to compute specimens or components made of a single crystal,
or in representative material elements. For this last case, the output can be
the macroscopic stress and strain fields, the stress and strain fields in the
grains or the local intragranular fields (level I, II, III respectively). Results
at level I and II are devoted to a calibration of macroscopic or uniform field
models. Level IIT is more and more interesting, since the meshes are now
large enough to capture details near critical zones like grain boundaries.
On the other hand, this is the relevant scale to open dialogs with other
scales and other types of plasticity models, like the dynamic dislocation
simulations. Level IT or III can be the relevant scale to introduce failure
prediction models, like cleavage or integranular damage. Some example of
recent trends are now mentioned in this section.

Figure 22 shows the modeling of a test on a OFHC copper specimen.
Serial cuts were done to get the microstructure geometry below the surface,
so that the grain shape is known on a parallelipipedic box whose depth
is 100 pm, and the surface 200 pmx150 pm. Crystal orientations were
characterized by OIM. The material is modelled by the constitutive equa-
tions shown in section (2.2). The material parameters are fitted on the
macroscopic tension curve. Simulated results (strain and rotation fields)
are in good agreement with the measurements made by image comparison
technique (Musienko et al., 2007).

As stated previously, grain boundaries are the place where specific phe-
nomena may arise. This is the case when SCC mechanisms are active, for
instance in fuel assemblies of PWR. The expansion of the uranium dioxide
pellets may produce an interaction with Zy4 (a zirconium alloy) cladding,
producing the so called Pellet—Cladding Interaction, that generates inter-
granular cracks, whose propagation is promoted by iodine due to the nu-
clear reaction, then cleavage and failure of the tube. The mechanical effect
is related to an indentation of the tube by pellets: as a consequence, the
affected zone is very small, and important gradients can be observed on the
first few grains under the surface. An appropriate model has then to take
into account the crystallographic character. The numerical model devel-
oped (Cailletaud et al., 2004) introduces a coupled FE calculation: iodine
adsorption at the grain boundaries is represented by a diffusion calculation
(where the diffusivity strongly depend on damage of the grain boundary,
so that the high concentration profile follows the crack propagation) and a
mechanical calculation (where grain boundary affected zones are represented
by specific constitutive equations). A catastrophic process is produced by
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Figure 22. FE computation of a copper specimen. (a) OIM analysis on
serial cuts in the specimen, (b) associated mesh, (c¢) contour of equivalent
plastic strain for a macroscopic strain of 5% (range for local strain is 0-
0.214)



Crystal Plasticity 309

SO VEANAY SaY4VAY, TAVAVa
AN Vo, S, %Aé,\v 4

VAVaYa W%
STAVAYA
VLS AWy ORI RO
R
Pavey S, S
VAXIA
Ay, %

£
o AN v
N WA V(B

SN /\/\
RS

AT
Y
X

SROK]
S
i
k#

.
A A
TAVAY
2
’V
N
Be e

.

%
A
Al

(BN
A v{%‘
AN
2

"AVAVAYAY
B

N
QO

SO
0%
i

=

KN

X

&

Figure 23. Example of mesh generation with grain boundaries : (a) 2D,
(b) 3D

the fact that iodine concentration promotes damage, and damage promotes
iodine advance in the grain boundaries. 2D and 3D meshes are available
(Fig.23).

The model introduces an affected zone in each grain, so that the grain
boundary is made of two elements. In these area, the model collects first
the slip systems of the grain it belongs to: basal, (predominant) prismatic
and pyramidal slip planes are present, since the material has a HCP mi-
crostructure. Three other scalar variables are present, to represent Damage,
Opening and Sliding of the grain boundary (DOS model). Grain boundary
opening mechanisms is built with the tensorial product of the normal vector
n to the grain boundary by itself, meanwhile grain boundary sliding is built
with the tensorial product of n by the tangent vector in the grain boundary
plane, t. Damage is introduced in the model to increase the rate of opening
and sliding. Its evolution depends on a critical variable which account for
the normal and the shear stresses on the grain boundary. The resulting
equations are given below:

e Elasticity and plastic flow
="+ ¢ (102)

-

Strain decomposition:
Elastic law with isotropic damage: c=(1-D)L:e° (103)

Opening and sliding: e =bnon+inet
(104)
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e Flow rules for opening and sliding

. 1-D)—R,\™
Opening: o= << o> /( ) > (105)
1—-D)—R\™
Sliding: 4 = <T/ (1-D) t> sign(r) (106)
K
e Damage evolution
Critical variable: op = /o2 + B2 (107)

. —Rp\"
Damage evolution: D= <0D A D> (1-D)~* (108)

Figure 24 illustrates typical results obtained with the 2D aggregate of
Fig.23. Maps (a-c) illustrate the intergranular crack propagation which is
obtained by solving the mechanical problem only. In this case, cracks initiate
everywhere in the material element, and the propagation is a mixture of
crack growth and coalescence. For maps (d-f), iodine is introduced at the
left edge of the mesh, so that the grain boundaries are more critical at this
point. One main crack propagates. It is worth noting that crack branching
can be seen for each triple point. The crack propagation rate is in good
agreement with the experimental results. 3D simulations are still necessary,
in order to capture the real aspect of the cracks in space and avoid the
artefacts related to 2D computations (a crack is too critical, since it crosses
the whole mesh in the third direction !).

Fatigue—fretting is an other case where the description of the material by
a crystal plasticity model can be very helpful. Figure 25 shows the numerical
model developed to simulate a disk—plan test, both of them being made of
a titanium alloy. Grain size is around 50 pm, so that the stress gradient
under the surface corresponds to a few grains in depth (Dick and Cailletaud,
2006).

A typical effect related to the use of crystal plasticity instead of a tradi-
tional Jo model is shown in Fig.26: after some fretting cycles, local hetero-
geneities propagate much more in crystal plasticity than with a von Mises
material; eventually, local ratchetting can be observed, so that, starting
from the analytical value of the stress profile computed in elasticity (Hertz
solution), von Mises model leads to a smoothly modified curve, but crys-
tal plasticity produces a highly heterogeneous field, in which the maximum
stress can locally increase. This may have important consequence for the re-
sponse of subsequent damage models, trying to predict either wear of crack
initiation.
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Figure 24. Crack propagation predicted by intergranular damage evolu-
tion : (a,b,c) non-coupled case; (d,e,f) coupled case

5 Uniform field models

Developing models at level IT can be considered as an interesting alternative,
that allows the user to represent the constitutive equations of each phase,
and avoids unjustified mixture rules. The resulting models are more complex
than the models on the macroscale, but they are still manageable, either in
drivers of constitutive equations or even in finite element codes.

5.1 Yield surfaces

This section illustrates the transition from a single crystal surface, as
shown in Fig.6, that results from a collection of hyperplanes in the stress
space, to surfaces for directionnally solidified (DS) or polycrystalline ma-
terials. An uniform elasticity is assumed for each grain, so that the local
stresses are equal to the macroscopic stress in the elastic regime. In DS
material, grains are supposed to have the same (001) axis, and random ori-



312 G. Cailletaud
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Figure 25. Geometry of the mesh used for the numerical simulation and
grain morphology
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Figure 27. Yield surface for a DS material: (a) geometry of the aggregate,
(b) yield surface in the o11—012 plane, (c) yield surface in the o33—031 plane

entation in the plane perpendicular to (001). The loading axes (x1,x2,23)
coincide with the crystallographic axes. The resulting model for such an ag-
gregate still presents crystal characteristics in the plane o33—03; (Fig.27c),
due to the reduced number of slip systems available for shear. On the
other hand, the shape of the criterion in o11-012 plane (Fig.27b) looks like
a macroscopic isotropic model. The present figure was plotted with only
three orientations, whose axis (100) makes an angle of 0°, 30°, 60° with ;.
The references to Tresca and von Mises are built by supposing that the criti-
cal shear stress for Schmid’s law in each single crystal is taken as the critical
shear for Tresca (the difference between the two extreme eignestresses), and
as the octahedral shear for von Mises (the square root of the half of the
sum of the squares of the three differences between the eigenstresses). A
full characterization of the elasto-plastic behaviour of this material can be
found elsewhere (Sai et al., 2006).

On the other hand, if the construction is made for a polycrystal with
random orientations (Fig.28), the resulting criterion is isotropic, and reaches
exactly Tresca criterion (the present plot uses 1000 grains).

5.2 Scale transition rules

As observed previously in FE computations, plastic or viscoplastic flows
are heterogeneous in the aggregates. The plots of Fig.20 demonstrate that
neither stresses nor strains are uniform from one grain to the other. The role
of the scale transition rule is to provide an estimation of the stress tensor in
each grain. The purpose of this section is to make a quick overview of the
various rules and of their physical meaning. The following notations will be
used:

e Stress in phase g, macroscopic stress: g¥, g = Zg f9g9
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Figure 28. Yield surface for an isotropic polycrystalline material: (a) ge-
ometry of the aggregate, (b) yield surface in the o11-012 plane, (c) yield
surface in the o33—03; plane

e Strain in phase g, macroscopic strain: €9, € = Zg fe9
e For an uniform local elasticity, the macroscopic plastic strain is also
the average of the local plastic strains: e? = > f9eP9
More detailed comments are given elsewhere Besson et al. (2001). The
most popular models correspond to the following assumptions:
e Static, uniform stress, o9 =g
e From Taylor to Kroner
— Taylor (Taylor, 1938), uniform plastic strain, eP9 = P
— Lin—Taylor (Lin, 1957), uniform total strain, €9 = g
— Kroner (Kroner, 1971), elastic accommodation

g/=g+A:(L-9)("—£")

~ ~

where A is the elastic tensor and .S the Eshelby tensor (Mura,
1987).

— Kroner for an isotropic material (elastic and plastic) and pressure
insensitive plasticity

2 —
g’ =g+ po(el — ) with a= 1é7(1 _53

e Tangent and secant approximations (self-consistent framework)
— Hill (Hill, 1965), elastoplastic accommodation

g?=¢+L":(g—¢%

where L* is a tangent accommodation tensor.
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Figure 29. An illustration of polycrystal modelling: (a) actual aggregate,
(b) collection of auxiliary problems

— Berveiller-Zaoui (Berveiller and Zaoui, 1979) estimation, with «
varying typically between 1 and 0.001 (valid for the particu-
lar case of isotropic elasticity, pressure insensitive plasticity and
spherical inclusions), as shown later in equation (113)

g’ =g+ pae” —g") with o=

e Viscous and viscoplastic scheme
— Budianski, Hutchinson, Molinari. . . (Hutchinson, 1966; Molinari et al.,
1987)

— Translated fields (Sabar et al., 2002),

g - - SN 4 ug
g? =g +2u(l ﬂ)(3n+2ng§ e")
e Parametric scale transition rule
— Cailletaud, Pilvin, 8-model , that will be developed below.

The way the models are obtained in the self-consistent framework is
illustrated in Fig.29, which shows that all the realizations of a given grain
orientation in the aggregate are put together into a single sphere, that is
embedded in the homogeneous medium. The solution of the problem is
then obtained as a collection of auxiliary problems, leading to an implicit
scheme, since the behaviour of the homogeneous medium is not known. The
calculation result will have the shape:

g=%+L":(E-¢ (109)
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with L*, accommodation tensor:

L =g (g7 -

QN

) (110)

The value of Lef f is obtained by solving the following implicit equation
(Hill, 1965):

LY =< L@+ L) @ 4 ) > (111)

For the classical case of uniform elasticity, incompressible plastic flow,
radial loading path, a simplified expression can be written, with u’, actual
shear modulus, and ' = 2(4 — 5/)/15(1 — /)

/’L/(l - /6/) 2P _ 2pg
Bu+(1—p)w (=€) (112)

For pure tension, assuming v = 1/2 and introducing the secant modulus
H = o /eP, the model can be simplified:

67 =6 +2u

wH

P _ P9 113
fe 2, & =) (113)

0g =0+

At the onset of plastic flow, H tends to infinity, so that Kroner’s rule is
recovered. The accommodation factor C' = (09 — )/(e? — €P9) decreases
when plastic strain increases. This expression is easy to manage, neverthe-
less its domain of application is limited. This is why the —rule has been pro-
posed (Cailletaud, 1987; Pilvin and Cailletaud, 1990; Cailletaud and Pilvin,
1994).

The goal of this model is to represent the plastic accommodation, like
Hill’s approach, but in an explicit formulation. Instead of having a non
linear multiplicative term and a linear dependency from the difference be-
tween local and global plastic strain, like in Berveiller—Zaoui’s approach, it
was decided to keep the linear multiplicative term (like in Kroner’s formu-
lation), and to introduce a new phenomenological variable instead of plastic
strain to account for non linear accommodation.

The local stress decreases when the grain becomes more plastic than the
matrix, so that a typical shape of the model is:

g =g+C(8-4) (114)

with
B=> f,8 (115)
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[ is the volume fraction of phase g, 87 characterizes the state of redistri-
bution. b

The new interphase accommodation variables 37 follow a kinematic evo-
lution rule. Two evolution laws have been tested in the past.

- rule 1: 37=¢ — D4, 37 (116)
- rule 2: B'=¢9 — Dg (B9 — 5¢Y) (117)

In the two rules, the equivalent strain rate in the fading memory term can be
replaced by the sum of the slip rates on all the slip systems. Rule 2 is nothing
but a combination of a linear an a non linear term; a quick manipulation
shows that the expression can be recovered by assuming @ = 6@1 +(1- 6)@2

and:
.1

s
The parameters C, D and § are not free material coefficients, but scale
transition parameters. Kroner’s model can be found as a particular case by
assuming that D = § = 0 and C' = p. This is consistent with the fact that,
at the onset of plasticity, the matrix behaviour deviates only a little from
elastic behaviour, and an elastic accommodation is the proper response of
the material. On the other hand, the rest of the parameters can be cali-
brated by means of more complex approaches, namely finite elements. For
this purpose, a series of realistic aggregates (in terms of morphology and
crystal orientations) must be selected. A large number of aggregates must
be computed, to have a chance to place each grain orientation in an envi-
ronment which is representative of all the grains (this is not the case for one
unique computation, since, statistically, each real grain has between 15 and
25 neighbours only). A post-processing allows then to compute the macro-
scopic stress—strain curve, and the average values in each crystallographic
phase. The identification of the coefficients can then be made by solving an
inverse problem. The goal is to fit, not only the macroscopic curve, but also
the local stresses and strains with the S-model. Note that this information
is rather rich, so that it may be difficult to reproduce the local stresses (even
if is it rather easy to get the global behaviour).

. 22 . .
& and §'=¢" - DB,

5.3 Complex paths

When coupled with a crystal plasticity model in each grain, the (-rule
has been found able to provide interesting effects, which were observed in
the litterature, but that cannot be modelled by macroscopic approaches,
except by adding specific variables. Two classical examples are shown here:
figure 30 illustrates the example of the so called memory effect, that is
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Figure 30. Illustration of the strain memory effect coming from the slip
system activation

present for instance in austenitic stainless steels (Chaboche et al., 1979).
Three successive loading levels are applied to a tension—compression speci-
men, the first amplitude is 0.5%, the second one is 1.5%, and the third one
0.5% again. The maximum stress at the third level is much bigger than
the stress at the first one, even if the range is the same. The model repro-
duces correctly this effect due to a more intense slip system activation at
the second level.

An extra slip system activation is also present for non proportional load-
ing. This type of load (sinusoidal imposed tension and shear with a phase
lag of 90°) is know to produce maximum stresses on each components much
larger than the corresponding load type for a proportional loading. Fig-
ure 31 shows the response in the tension—shear stress plane, and the history
of the von Mises stress as a function of time. The illustration of the slip
system activity for the same test is shown in Fig.32, by comparison with
the result of a tensile test. The material has a FCC microstructure, and the
slip systems are represented on unfolded Thomson tetrahedra (four planes
represented by triangles, with three subtriangles in each of them figuring
the slip systems). The number of active slip system is 2.17 in average for
a tension at 1.5%, meanwhile the number is 3.25 for the non proportional
loading at the same equivalent strain. All these effects are discussed else-
where Cailletaud (1992).
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Figure 31. Extra-hardening due to non-proportional loading: (a) response
in the stress plane, (b) evolution of the equivalent stress

(a) Average number per grain: 2.17 (b) Average number per grain: 3.25

Figure 32. Illustration of the local behaviour of a FCC aggregate: active
systems are in white (a) case of a proportional loading, (b) case of a non
proportional loading
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6 Conclusion and perspectives

Classical crystal plasticity is now a mature theory. The material parameters
have been identified for many materials, so that the models can be used for
a large number of academic or industrial applications. The goal of the
present section was then to summarize a few possibilities of the models,
with a special view toward the operational aspect, that is their practical
use. A series of related subjects are not considered here, but would be of
interest for continuing the discussion.

One of the main extension of the classical framework is proposed
by the theory of generalized continua. There is an profuse litterature
on the subject. The reader can check for instance a recent synthesis
in (Papenfuss and Forest, 2006). These extended theories have already been
applied to single crystal (see for instance Forest et al. (2000, 2002)). This
new type of approach allows the user to take into account size effect, that
is specially meaningfull for materials that present small grains or specific
heterogeneous microstructures (like v—y').

The second type of connection is to be made with other classes of ap-
proaches. For collecting information at the scale of the grain, or, generally
speaking, on submicronic sizes, the relevant theories do not refer to con-
tinuous, but to discrete modeling frameworks. This is the case of discrete
dynamics of dislocations (DDD), and of molecular dynamics (MD), which
have both their own space and time scales. In the future, the progress of
these approaches will allow to provide inputs for the higher scales: one will
bridge the lenghtscales by taking information for DDD from MD, and for
crystal plasticity from DDD (see the rest of the present course).

Finally, a previously unattained chance of progress is now given to the
theories devoted to material modeling by the advance of experimental tools
and methods. Field measurements are now possible, with a very good defi-
nition (Musienko et al., 2007; Kempf et al., 2007). Using powerfull beams,
experimentalists will be able to provide data like 3D-microstructure shape
and crack population inside the material. Having in hand local data and
local material modeling, one will be able to develop new classes of damage
models, based on real mechanisms at the microstructure level.
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Abstract This part of the CISM course addresses basics and ad-
vanced topics on the computational homogenization of the mechan-
ics of highly non-linear solids with (possibly evolving) microstruc-
ture under complex non-linear loading conditions. The key com-
ponents of the computational homogenization scheme, i.e. the for-
mulation of the microstructural boundary value problem and the
coupling between the micro and macrolevel based on the averag-
ing theorems, are addressed. The numerical implementation of the
framework, particularly the computation of the macroscopic stress
tensor and extraction of the macroscopic consistent tangent opera-
tor based on the total microstructural stiffness, are treated in de-
tail. The application of the method is illustrated by the simulation
of pure bending of porous aluminum. The classical notion of a rep-
resentative volume element is introduced and the influence of the
spatial distribution of heterogeneities on the overall macroscopic
behaviour is investigated by comparing the results of multi-scale
modelling for regular and random structures. Finally, an extension
of the classical computational homogenization scheme to a frame-
work suitable for multi-scale modelling of macroscopic localization
and size effects is briefly discussed.

1 Introduction

The past years have been marked by a significant interest in the various
length scales that govern the mechanics of materials. The main issue con-
sists in identifying the relationships that bridge those various scales, i.e.
multi-scale mechanics. The multi-scale methodology aims to predict, de-
scribe, quantify or qualify the 'macroscopic’ behaviour of engineering ma-
terials through the consistent modelling of the mechanics and physics of
the heterogeneous, multi-phase, anisotropic, discrete microstructure. Var-
ious techniques have been proposed to contribute to this challenging task.
Among them, a large class of homogenization techniques exists, also called
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coarse graining in the physics community (Ridderbos, 2002; Nguyen and
Ortiz, 2002).

Homogenization techniques were first developed within the framework of
elasticity, as an excellent tool to predict the effective or apparent linear elas-
tic properties of heterogeneous materials. Several closed-form homogeniza-
tion techniques have been proposed in this context, e.g. the Voigt-Reuss-
Hill bounds, the Hashin-Shtrikman variational principle, the self-consistent
method, etc., see (Nemat-Nasser and Hori, 1993) for an overview. Asymp-
totic or mathematical homogenization schemes have been used frequently to
assess effective properties of elastic heterogeneous materials (Chung et al.,
2001; Fish and Chen, 2001). Extensions towards higher-order and non-
local constitutive equations have been considered as well, e.g. develop-
ments including Cosserat media (Forest et al., 2001), couple stress the-
ory (Smyshlyaev and Fleck, 1994), nonlocal effective continua (Drugan and
Willis, 1996) or higher-order gradient homogenized elastic materials (Tri-
antafyllidis and Bardenhagen, 1996; Smyshlyaev and Cherednichenko, 2000;
Peerlings and Fleck, 2001).

Other interesting approaches towards the analysis of random (phys-
ically nonlinear) microstructures (Ponte Castaneda, 1992; Suquet, 1993;
Ponte Castanieda, 2002) are the Taylor-Bishop-Hill estimates, several gener-
alizations of self-consistent schemes and asymptotic procedures (Fish et al.,
1997). Homogenization of solids in a geometrically and physically nonlinear
regime is clearly more cumbersome. Several analyses have been performed
on unit cells, from which the parameters in a priori assumed macroscopic
constitutive equations can be assessed. Some of them also include higher-
order continuum formulations, e.g. Cosserat (van der Sluis et al., 1999) and
couple stress media (M. Ostoja-Starzewski, 1999). The added value of these
multi-scale methods depends on the accuracy (geometrical, physical, me-
chanical) with which the microstructure is modelled, as well as the technique
that is used to perform the homogenization towards the macroscopic level.
Closed-form homogenization towards constitutive material frameworks or
effective (or rather apparent) material properties of composites turns out
to be really cumbersome if one wishes to take into account more complex
physics, geometrical nonlinearities or damage and localization.

Another class of hierarchical techniques are generally known as varia-
tional multi-scale methods (Hughes et al., 1998; Garikipati and Hughes,
2000). In here, the weak form of the governing equations is the point of
departure, which can be separated in a coarse and a fine scale part on
the basis of suitable assumptions on the fine scale field. The key issue re-
sides in the elimination of the fine scale from the obtained formulation.
Though promising, the method relies strongly on the assumptions made on
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the fine scale and the restrictions that apply to enable the elimination in
practice. Well-known fine scale patterns, e.g. displacement discontinuities
modelled by Heaviside functions, can be easily implemented. The obtained
method then shows considerable similarities with the extended finite ele-
ment method (Sukumar et al., 2000; Moés and Belytschko, 2002).

Since a few years, substantial progress has been made in the two-scale
computational homogenization of complex multi-phase solids. This tech-
nique is essentially based on the solution of nested boundary value problems,
one for each scale. If attention is focused on the nonlinear characteristics
of the material behaviour, this technique proves to be a valuable tool in
retrieving the constitutive response. First-order (i.e. including first-order
gradients of the macroscopic displacement field only) computational homog-
enization schemes fit entirely in a standard continuum mechanics framework
(principle of local action) and are now readily available in literature (Su-
quet, 1985; Ghosh et al., 1996; Smit et al., 1998; Miehe et al., 1999b,a; Feyel
and Chaboche, 2000; Terada et al., 2000; Ghosh et al., 2001; Kouznetsova
et al., 2001; Terada and Kikuchi, 2001; Miehe and Koch, 2002). Main char-
acteristics of this solution strategy are

e The constitutive response at the macro scale is a priori undetermined.
No explicit assumptions are required at that level, since the macro-
scopic constitutive behaviour ensues from the solution of the micro
scale boundary value problem.

e The method deals with large displacements (large strains and rota-
tions) in a trivial way under the condition that the microstructural
constituents are modelled adequately.

e The different phases in the microstructure can be modelled with ar-
bitrary nonlinear and time-dependent constitutive models.

e The influence of the evolution of the microstructure (as described on
the micro-scale) can be assessed directly on the macro-scale.

e The micro scale problem is a classical boundary value problem, for
which any appropriate solution strategy can be used, e.g. Finite El-
ement Method (Smit et al., 1998; Feyel and Chaboche, 2000; Ter-
ada et al., 2000; Kouznetsova et al., 2001), the Voronoi cell method
(Ghosh et al., 1995, 1996), a crystal plasticity framework (Miehe
et al., 1999b,a) or numerical methods based on Fast Fourier Trans-
forms (Michel et al., 1999; Moulinec and Suquet, 1998). Galerkin,
etce.

e Macroscopic constitutive tangent operators can be obtained from the
microscopic overall stiffness tensor through static condensation. Con-
sistency is preserved through this scale transition.

In spite of the huge computational cost of a nested two-scale solution

problem, efficiency can be achieved by solving the problem through parallel



330 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

computations (Feyel and Chaboche (2000); Kouznetsova (2002)). Another
option is selective usage, where non-critical regions are modelled by con-
tinuum closed-form homogenized constitutive relations or by the constitu-
tive tangents obtained from the microstructural analysis but kept constant
in the elastic domain, while in the critical regions the multi-scale analy-
sis of the microstructure is fully performed (Ghosh et al. (2001)). Despite
the required computational efforts the computational homogenization tech-
nique has proven to be a valuable tool to establish non-linear micro-macro
structure-property relations, especially in the cases where the complexity of
the mechanical and geometrical microstructural properties and the evolving
character prohibit the use of other homogenization methods.

Cartesian tensors and associated tensor products will be used throughout
this chapter, making use of a Cartesian vector basis {€, €3, €3}. Using the
Einstein summation rule for repeated indices, the following conventions are
used in the notations of well-known tensor products

—
—

C =ab = aibjé;-é'j

C = AB = A;;Bj1é @&,

C = 4A :B = Aijlelk eﬂ é}'
C

4p T4 -
= "A:"B = Ajim B € €

2 Underlying principles and assumptions

2.1 Scale separation

At the macro-scale, the material is considered as a homogeneous con-
tinuum, whereas at the micro level it is generally heterogeneous (the mor-
phology consists of distinguishable components or phases, i.e. inclusions,
grains, interfaces, cavities, etc.). This is schematically illustrated in figure 1.
The microscopic length scale is much larger than the molecular dimensions

é‘ll

Iy,

~

Figure 1. Macroscopic continuum point representation (M) in relation to
its underlying heterogeneous microstructure.
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Lyiscrete, SO that a continuum approach is justified for every constituent.
At the same time, in the context of the principle of separation of scales,
the microscopic length scale £,,;cr is assumed to be much smaller than the
characteristic length £,,,4¢r0 Over which the size of the macroscopic loading
varies in space, i.e.

ediscrete K Emicro K emacro (1)

Note that it is not the size of the macroscopic domain which is important,
but rather the spatial variation of the kinematic fields and stress fields within
that domain.

2.2 Local periodicity

Most of the homogenization approaches rely on the assumption of global
periodicity of the microstructure, implying that the whole macroscopic do-
main consists of spatially repeated unit cells. In a computational homoge-
nization approach, a more realistic assumption is made, which is commonly
denoted by local periodicity. According to this assumption, the microstruc-
ture can have different morphologies corresponding to different macroscopic
points, whereas it repeats itself only in a small vicinity of each individ-
ual macroscopic point. The concepts of local and global periodicity are
schematically illustrated in figure 2. The assumption of local periodicity
adopted in the computational homogenization allows to incorporate a non-
uniform distribution of the microstructure at the macroscopic level (e.g. in
functionally graded materials). Note that the local periodicity assumption
is directly linked to the principle of separation of scales.

(a) local periodicity (b) global periodicity

Figure 2. Local periodicity (a) versus global periodicity (b).
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2.3 Homogenization principles

The basic principles of computational homogenization have gradually
evolved from the concepts employed in other homogenization methods and
well fit into the four-step homogenization scheme established by Suquet
Suquet (1985):

1. definition of a microstructural representative volume element (RVE),
of which the constitutive behaviour of individual constituents is as-
sumed to be known;

2. formulation of the microscopic boundary conditions from the macro-
scopic input variables and their application on the RVE (macro-to-
micro transition);

3. calculation of the macroscopic output variables from the analysis of
the deformed microstructural RVE (micro-to-macro transition);

4. obtaining the (numerical) relation between the macroscopic input and
output variables.

The main ideas of the first-order computational homogenization have been
established in Suquet (1985); Guedes and Kikuchi. (1990); Terada and
Kikuchi (1995); Ghosh et al. (1995, 1996) and further developed and im-
proved in more recent works Smit et al. (1998); Miehe et al. (1999b); Miehe
and Koch (2002); Michel et al. (1999); Feyel and Chaboche (2000); Ter-
ada and Kikuchi (2001); Ghosh et al. (2001); Kouznetsova et al. (2001);
Kouznetsova (2002).

2.4 Computational homogenization scheme

A computational homogenization generally departs from the computa-
tion of a macroscopic deformation (gradient) tensor Fyy, which is calculated
for every material point of the macrostructure (e.g. the integration points
within a macroscopic finite element domain). Here and in the following
the subscript “M” refers to a macroscopic quantity, while the subscript
“m” will denote a microscopic quantity. The deformation tensor Fy; for a
macroscopic point is next used to formulate the boundary conditions to be
imposed on the RVE that is assigned to this point. Upon the solution of
the boundary value problem for the RVE, the macroscopic stress tensor Py
is obtained by averaging the resulting RVE stress field over the volume of
the RVE. As a result, the (numerical) stress-deformation relationship at the
macroscopic point is readily available. Additionally, the local macroscopic
consistent tangent is extracted from the microstructural stiffness. The entire
framework is schematically illustrated in figure 3. The computational ho-
mogenization technique defined in this sense, is entirely consistent with the
principle of local action in continuum mechanics. Therefore, the response at
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Figure 3. Computational homogenization scheme.

a (macroscopic) material point depends only on the first gradient of the dis-
placement field. This macroscopically local computational homogenization
framework may therefore be categorized as a “first-order” approach.

2.5 Kinematically driven multi-scale scheme

The multi-scale procedure outlined in this chapter is “deformation driven”.
The point of departure is thereby the macroscopic deformation gradient
tensor Fy;, which is used to determine the stress Py and the constitu-
tive tangent, based on the response of the underlying microstructure. A
“stress driven” procedure (given a local macroscopic stress, obtain the de-
formation) is also possible. However, such a procedure does not directly
fit into a standard displacement-based finite element framework, which will
be here employed to solve the macroscopic boundary value problem. More-
over, in case of large deformations the macroscopic rotational effects have
to be added to the stress tensor in order to uniquely determine the defor-
mation gradient tensor, thus complicating the implementation. Therefore,
the “stress driven” approach, which is often used in the analysis of single
unit cells, is generally not adopted in coupled multi-scale computational
homogenization strategies of the type described here.

3 The micro-scale problem

3.1 The representative volume element

The physical and geometrical properties of the microstructure are iden-
tified by a representative volume element (RVE) (Hill, 1963; Drugan and
Willis, 1996). An example of a typical two-dimensional RVE is depicted in
figure 4. The actual choice of the RVE is a rather delicate task. The RVE
should be large enough to represent the microstructure, without introducing
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non-existing properties (e.g. undesired anisotropy) and at the same time it
should be small enough to allow efficient computational modelling. Some
issues related to the concept of a representative cell are discussed furtheron,
in section 7. Here it is supposed that an appropriate RVE has been al-
ready selected. Then the problem on the RVE level can be formulated as a
standard problem in quasi-static continuum solid mechanics.

Figure 4. Schematic picture of a typical two-dimensional representative
volume element (RVE).

3.2 Micro-scale characterization & equilibrium

The RVE deformation field in a point with the initial position vector X
(in the reference domain V;)) and the actual position vector Z (in the current
domain V') is described by the microstructural deformation gradient tensor
Fm = (ﬁo,mf)c, where the gradient operator 6O,rn is taken with respect
to the reference microstructural configuration; the superscript “c” indicates
conjugation.

The RVE is in a state of equilibrium. This is mathematically expressed
through the standard equilibrium equation in terms of the Cauchy stress
tensor o, or, alternatively, in terms of the first Piola-Kirchhoff stress tensor
P, = det(Fy)om-(FS) ™! according to (in the absence of body forces)

-

ViOm=0 in V, or ﬁQm-PC =0 in V, (2)

m

where V, is the the gradient operator with respect to the current configu-
ration at the micro-scale.

The mechanical characterization of the microstructural components are
described by their constitutive laws, specifying a time and history dependent
stress-deformation relationship for every microstructural constituent

oD (t) = FOUF (1), 7€ (0,4}, or PO (t) = FHFD (r), 7€ (0,4},
(3)
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where ¢ denotes the current time; o = 1, N, with N the number of mi-
crostructural constituents to be distinguished (e.g. matrix, inclusions, etc.).
Note that the knowledge of the separate constitutive laws for each of the
individual phases is essential.

3.3 The macro-micro scale transition

The macro-micro scale transition requires a method to impose the macro-
scopic deformation gradient tensor Fy; or stress tensor Pp; on the mi-
crostructural RVE. Classical simplified methods to do this are:

e by imposing that all the microstructural constituents undergo a con-
stant deformation identical to the macroscopic one (the Taylor or
Voigt assumption).

e by imposing an identical constant stress (and additionally identical
rotation) to all the components (the Sachs or Reuss) assumption).

e by intermediate procedures, where the Taylor and Sachs assumptions
are applied only to certain components of the deformation and stress
tensors.

These simplified procedures do not satisfy all local static equilibrium and
compatibility conditions and generally provide only rough estimates of the
overall material properties. They are therefore not well-suited in complex
non-linear deformation regimes. The Taylor assumption usually overesti-
mates the overall stiffness, while the Sachs assumption leads to an under-
estimation of the stiffness. A computational homogenization scheme does
enforce local equilibrium and compatibility between phases, and therefore
necessitates a different macro-micro scale transition method.

The first-order scheme naturally departs from the classical linearization
of the macroscopic nonlinear deformation map, ¥ = (b(X ), applied to a finite
material vector AZ in the deformed state:

A7 = Fy\pAX + 0 (AX2> , (4)

with # and X associated position vectors in the deformed and reference
state, respectively, and in which Fy; = (607M£’)T is the macroscopic defor-
mation gradient tensor. Considering an undeformed volume Vj of material
with its centre positioned at XC, permits to write the deformed position
of any point of this volume (with respect to the centre of that volume) as
the sum of a macroscopic (or coarse scale) and a microscopic (or fine scale)
contribution: L

T—7T, = Fy (X — X,) + @ (5)
The fine scale contribution is here represented by the microfluctuation field
w. The vector X, is the actual position of the reference RVE center X..
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Obviously, rigid body displacements have to be eliminated to uniquely de-
termine Z. An arbitrary boundary point may be fixed to this purpose, e.g.
for a point with label 1 (see figure 4) by imposing #; = X,. Substituting
this in (5) leads to

T =+ Fu(X — Xe) + (@ — ) (6)

where ; is the microfluctuation in point 1 and where vector ¢is determined
from X7, being independent of the fine scale field

7= X, —Fy (X - X)) (7)

The deformed position Z. of the reference centre X, is then (using the trivial
relation W, = 6) given by
Z. = C—h (8)
Note that this deformed position is unknown and implicitly depends on
the fine scale field. The scale transition between the kinematics at the fine
and the coarse scale typically involves the volume average F, of the fine
scale deformations tensors, i.e.

_ 1
F. = F..d
" / Vo ()
Vo

This volume integral can be rewritten to the boundary I'g of the RVE by
making use of the divergence theorem

_ 1 1 . 2\ ¢
Fm VO/Fdeb = VO/(VO,m(I‘r)) dVE)

Vo VO
1 = . c
B vo/(N'(Ix)) o (10)
o
1 -
= N dl’
Vo /m 0
o

where I represents the second-order unit tensor, I'g the external boundary of
the undeformed RVE Vj and N the outward unit normal on that boundary.

Computing the fine scale deformation gradient tensor Fy, by taking the
fine scale spatial gradient of the position vector given in equation (6) results
in

Frn = (60,mf)c = FM + (607111@3 - U_jl))c = FM + (60,Illw)c (11)
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Alternatively, making use of the micro-fluctuation field, F,, can be expanded
to

_ 1 - X 1 = e
FIn — FM + /[Vom ('LU — U_jl)](’d‘/o = FM + /[VO,Inw]Cd‘/O
Vo v Vo v
1 L (12)
= Fu+ /(’LU — wl)NdFO = Fu+ /’LUNdFO
FO FO
Fo FO

In the case where Fy is known and displacements at the RVE boundary
are to be prescribed are constrained, use is made of a scale transition relation
that enforces the macroscopic deformation gradient Fy to equal the volume
average of its microscopic counterparts Fm,

Fuv = Fu (13)

Enforcing the scale transition relation (13) clearly leads to a constraint in
the form of a boundary integral

/(w—wl)ﬁdro =0 = /wﬁdro (14)
Fg FO

The boundary integral (14) is the necessary condition that enforces the aver-
aging theorem (13), which will be used in the scale transition, see also (Miehe
et al., 2002). Stronger conditions are obtained by making specific choices
for w that enforce this boundary integral to vanish. A few possible choices
for these boundary conditions are discussed further on.

The following remarks can be made with respect to the macro-micro

scale transition:

e Irom equation (6) and (14) it appears that the microfluctuation field
only enters the kinematics relative to w in point 1, i.e. through w—;.
Taking the microfluctuation field in this point w; equal to zero will not
influence the obtained solution, since the averaging theorem remains
valid. The only difference resides in the resulting vector Z., which is
entirely determined from the coarse scale, i.e. Z, = ¢see equation (8).
Clearly, . no longer represents the deformed position of the original
RVE centre )ZC, since it is translated with respect to this position. The
choice w; = 0 is often made in practical implementations of the first-
order homogenization scheme, since it leads to the correct solution in
a practical way.

e For the first-order case, any base point could have been taken to ex-
pand Z according to (4) into the RVE, leading to the same solution as
the specific choice made here (the RVE center X.).
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e Logically, the solution does not depend on the point that was fixed at
the boundary. A point inside the volume V[ can be taken as well to
eliminate rigid body displacements in (6). Again the deformed shape
of the RVE and the stress state extracted from it, remain the same.

3.4 Micro-scale RVE boundary conditions

As emphasized in the previous section, possible RVE boundary condi-
tions naturally result from the constraint (14) imposed by the scale transi-
tion. Among the various choices possible, only three particular cases will be
considered hereafter in more detail. Note that the Taylor assumption triv-
ially satisfies (14) since the microfluctuation field is then zero in the entire
volume Vj and hence also at its boundary I'y.

Displacement boundary conditions The first case considered is de-
fined by constraining each point at the RVE boundary through the macro-
scopic deformation by

f=Fy-X with X on I\, (15)

This simply implies that the micro-fluctuation field  is zero at the bound-
ary [, which trivially satisfies (14). The position of all points at the bound-
ary are determined through the macroscopic deformation only, leading to a
linear mapping of the RVE boundary. The boundary will therefore repro-
duce typical stretch (tension/compression) and shear modes only.

Traction boundary conditions This case departs from the assumption
that Py is to be prescribed to the RVE. The boundary conditions are then
defined by constraining all tractions at the RVE boundary to the macro-
scopic stress tensor by

t=moym on T, or ﬁzN'Pﬁ/I on I, (16)

with 7 the normal to the current (I') RVE boundary. Note that the trac-
tion boundary conditions (16) do not completely define the microstructural
boundary value problem, since rotations are yet undetermined. As em-
phasized earlier, these boundary conditions are a priori not appropriate in
a deformation driven procedure as pursued in the present computational
homogenization scheme. The interested reader is referred to the work of
Miehe (2002, 2003), where it is shown that the traction boundary condition
is the weakest condition to enforce (14). From a practical point of view,
these boundary conditions generally yield unsatisfactory results. Therefore,
the RVE traction boundary conditions will not be explored further in this
chapter.
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Periodic boundary conditions Making use of the earlier introduced
concept of local periodicity, periodic boundary conditions are next intro-
duced. The periodicity conditions for the microstructural RVE are written
in a general format as

Pt -1 =Fy (Xt - X"), (17)
or formulated in terms of the micro-fluctuation fields
W =W (18)

Deformations are periodic since micro-fluctuations on opposite sides are
identical. Here the (opposite) parts of the RVE boundary I'y and F(T are
defined such that N~ = —N* at corresponding points on I'; and F(J{, see
figure 4. The periodicity condition (17), being prescribed on an initially
periodic RVE, preserves the periodicity of the RVE in the deformed state.

The periodic boundary conditions (17) clearly satisfy the constraint (14).
This is easily observed by splitting the RVE boundary into the parts I‘(J)r
and I'y

/ WNdly = / @t NtArg + / @ N—dl'y

To ry Iy
- /w+1\7+dr0+ - /w+1\7+drg (19)
ry ry
=0

Note that as a result of microstructural equilibrium, tractions will be
anti-periodic on opposite sides:

pt=-p, (20)
Note that, as has been observed by several authors (e.g. van der Sluis et al.
(2000); Terada et al. (2000)), periodic boundary conditions provide a better
estimation of the overall properties, than the prescribed displacement or
prescribed traction boundary conditions.

4 The macro-scale problem

4.1 The micro-macro scale transition

Once the micro-scale problem has been solved, macroscopic quantities
have to be extracted from the obtained results. Whereas deformation aver-
aging was the key assumption for the macro-micro transition, energy aver-
aging constitutes the key assumption for the reverse transition. This energy
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averaging theorem, known in the literature as the Hill-Mandel condition or
macro-homogeneity condition Hill (1963); Suquet (1985), requires that the
macroscopic volume average of the variation of work performed on the RVE
is equal to the local variation of the work on the macro-scale, i.e.

Wonr = 0Wor, (21)

Formulated in terms of a work conjugated set, i.e. the deformation gradient
tensor and the first Piola-Kirchhoff stress tensor, the Hill-Mandel condition
reads

1
Py : 0FS, = / P, : 6F,dV; (22)
N~~~ 7 Vo
SWonm N Vo _
~
6W0m

The averaged microstructural work in the right-hand side of (22) may
be expressed in terms of RVE boundary quantities

1 1
Woy = P, : 0F¢ dVy = p-0x dly, 2
Om Vvo/ m“4Yo Vo /p T 0 ( 3)
Vo Ty

where the relation (with account for microstructural equilibrium)

Pt V0% = Vo, (Pg0%) — (Vo Py )07 = Vi, (P, -07),

m

and the divergence theorem have been used.

As will be shown next, an important result of postulating the Hill-Mandel
condition for an RVE with kinematic boundary conditions (fully prescribed
or periodically tied), is the fact that the macroscopic stress tensor Py equals
the volume average P, of the microscopic stress tensors. To this purpose,
it is convenient to establish the boundary relation for the mean RVE stress
P, ie.

P ! P.,dV
m — ‘/0 / m 0
Vo

1 = —
= Vo (P, X)dV,
b [ TP Xt
- (24)
= N-(P¢, X)dr
v [ N Ryary
To
1 o
= /ﬁXdFO

Vo
To
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Displacement boundary conditions In case of fully prescribed bound-
ary displacements (15), substitution of the variation of the boundary posi-
tion vectors 0% = 5FM-X into the expression for the averaged microwork
(23) with incorporation of (33) gives

1 - 1 - _
Wom = /ﬁ((SFMX) dl'y = /ﬁX dly | : 0Fg; = Py, @ 6FY
Vo Vo
To

o
(25)
Enforcing the Hill-Mandel condition (22) thus implies that
Py = Py, (26)

Traction boundary conditions Substitution of the traction boundary
condition (16) into (23), with account for the variation of the average of the
microscopic deformation gradient tensor obtained by varying relation (9),
leads to

1 = 1 = =
Vo Vo
To

o
(27)
In this case, the Hill-Mandel condition (22) enforces the resulting macro-
scopic deformation gradient to be taken as the volume average of the mi-
croscopic deformation gradients, i.e..

This implies that the traction boundary conditions, complemented by the
Hill-Mandel conditions, constitute the weakest kinematic constraint for the
boundary displacements, i.e. equation (14). Computing the volume average
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of the micro-scale RVE stresses from equation (24) now yields

_ 1 .
P, = 5 X AT
Vo/p 0
To
_ ! /(NPC))?dF
= e 0
To

1 oo
= Pwu- NXdI’
M ‘/E)/ 0
To

1

:P-
w |y

VoI]

:PM

Again, the macroscopic stress equals the volume average of the microscopic
stress, but this time this conclusion does not result from the Hill-Mandel
condition.

Periodic boundary conditions For the periodic boundary conditions
(17) and the resulting anti-periodic tractions (20)

Wom = ‘i {/75”“-6:5”“ dl“0+/]5’_-5f_ dFO}
0

e Iy
1
= /ﬁ*-(df*—éf’)dl“ar
Vo
Iy
1 -
= VO/ﬁ*(X+ XT)drf| : 0F§ = V/ﬁXdFO OF§,
ry To
:széFf\/I
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4.2 Macroscopic stress tensors

Since the scale transition implies stress averaging for all considered bound-
ary conditions, the macroscopic stress tensor is given by

1
Py = P..dV; 32
M Vo/ ’ (32)
Vo
= 1/*Xdr (33)
= Vo p 0
To

The volume average of the microscopic Cauchy stress tensor o, over the
current RVE volume V' can be elaborated similarly to (33)

1 1 -
al*vlzv/ade:V/tde‘. (34)
% r

Just as it is the case for kinematic quantities, the usual pull-back push-
forward relations between stress measures (e.g. the Cauchy and the first
Piola-Kirchhoff stress tensors) are, in general, not valid for the volume av-
erages of the microstructural counterparts oy; # Pa-F§;/ det(Fa). If the
averaging is based on Py, the Cauchy stress tensor on the macrolevel should
be defined as

1

= det(Fy) M T (35)

oM

Clearly, there is some arbitrariness in the choice of the governing de-
formation and stress tensors, whose macroscopic measures are equal to the
volume average of their microscopic counterparts (through the imposed scale
transition relations). Macroscopic measures defined on another configura-
tion are then expressed in terms of the governing averaged quantities using
the standard pull-back push-forward relations. The specific selection made
here is mainly based on its ease of implementation. The actual choice of
the “primary” averaging measures used here, i.e. the deformation gradient
tensor F' and the first Piola-Kirchhoff stress tensor P (and their rates), has
been advocated in Miehe et al. (1999b); Hill (1984); Nemat-Nasser (1999)
(in the last two references the nominal stress Sy = det(F)F~ 1.0 = P¢ has
been used). This particular choice is motivated by the fact that these two
measures are work conjugated, combined with the observation that their
volume averages can exclusively be defined in terms of the microstructural
quantities of the undeformed RVE boundary.
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5 Two-scale numerical solution strategy

Once the boundary conditions have been properly defined through one of
the methods outline above and once all phases in the microstructure have
been characterized, a standard boundary value problem (BVP) has been
obtained. The solution of this BVP follows standard procedures. In the
present computational homogenization method, it will be assumed that the
finite element method has been used to this purpose. The solution of this
BVP problem automatically leads to the proper determination of all position
vectors in the RVE and all tractions along its boundary. The analysis is
further restricted to kinematic RVE boundary conditions only.

5.1 RVE boundary value problem

The RVE problem to be solved is a standard non-linear quasi-static
boundary value problem with kinematic boundary conditions. Following
the standard finite element procedure for the microlevel RVE, after dis-
cretization, the weak form of equilibrium (2) with account for the constitu-
tive relations (3) leads to a system of non-linear algebraic equations in the
unknown nodal displacements u

fint(y):fewt» (36)

expressing the balance of internal and external nodal forces. This system
has to be completed by the governing boundary conditions. To this purpose,
the earlier introduced kinematic boundary conditions (15) or (17) will be
elaborated in more detail.

Fully prescribed boundary displacements In the case of the fully
prescribed displacement boundary conditions (15), the displacements of all
nodes on the boundary is simply given by

iy, = (Fy —1)-X,, p=1,N, (37)

where N, is the number of prescribed nodes, which in this case simply equals
to the number of boundary nodes. The boundary conditions (37) are simply
added to the system (36) in a standard manner by static condensation,
Lagrange multipliers or penalty functions.

Periodic boundary conditions Prior to the incorporation of the peri-
odic boundary conditions (17), they have to be rewritten into a format that
is more suitable for a finite element framework. Consider a two-dimensional
periodic RVE schematically depicted in figure 4. The boundary of this RVE
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can be split into four parts, here denoted as “T” top, “B” bottom, “R”
right and “L” left. To ease application of the periodicity constraint, a finite
element discretization is next considered which has a periodic distribution
of nodes on opposite edges. Exploiting the initial periodicity of the RVE
(in its reference configuration) allows to write for every respective pair of
nodes on the top-bottom and right-left boundaries:

X1 — Xp=X4— Xy,
Xp— XL = X5 — Xy, (38)
where )?p, p = 1,2,4 are the position vectors of the corner nodes 1, 2 and

4 in the undeformed state. Considering pairs of periodic nodes on opposite
boundaries, allows to express (17) as

i — g = Fy (X4 — X)),
iR — 7L = Fu-(Xo — X1). (39)

Applying these relations to the four corner nodes, permits to conclude that
the position vectors of the corner nodes in the deformed state are in fact
prescribed according to

i, =Fu-X, p=124 (40)

The periodic boundary conditions may finally be rewritten as

R = T + Ty — 7. (41)

Since these conditions are trivially satisfied in the undeformed configuration,
they may be formulated in terms of displacements

Ut = up + Ug — Uz,
R = UL, + Ug — U1, (42)

1

whereby .
U, = (Fm —I)-X), p=1,2,4 (43)

In a discretized format the relations (42) lead to a set of homogeneous
constraints of the type
Cata =0, (44)

with C, a matrix containing coefficients in the constraint relations and u, a
column with the degrees of freedom involved in the constraints. Procedures
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for imposing constraints (44) include the direct elimination of the depen-
dent degrees of freedom from the system of equations, or the use of Lagrange
multipliers or penalty functions. In the following, constraints (44) are en-
forced by elimination of the dependent degrees of freedom. Although such
a procedure may be found in many textbooks on finite elements (e.g. Cook
et al. (1989)), it is here summarized for the sake of clarity and completeness,
since it will be applied in section 5.3 for the derivation of the macroscopic
tangent stiffness.

To this purpose, the homogeneous constraint relations (44) are parti-
tioned according to

Ui | _
ccl| B -0 (15)
where u; are the independent degrees of freedom (to be retained in the
system) and u, are the dependent degrees of freedom (to be eliminated
from the system). Because there are as many dependent degrees of freedom
uq as there are independent constraint equations in (45), matrix Cy is square

and non-singular. Solution for u, yields

ug = Cgiu,  with Cg = —C;'C;. (46)
This relation may be further rewritten as
Yl =y ith 7= ! (47)
wg |~ v | Cai |’

where I is a unit matrix of size [N; x N;|, with N; the number of the
independent degrees of freedom.

With the transformation matrix T defined such that d = T d', the
common transformations ' = T7r and K’ = TT KT can be applied to a
linear system of equations of the form K d = r, leading to a new system
K'd =1

The standard linearization of the non-linear system of equations (36)
leads to a linear system in the iterative corrections du to the current estimate
u. This system may be partitioned as

Kii Kiq ou; || ory
|:Kdi Kdd][éyd]_[(sfd]’ (48)
with the residual nodal forces at the right-hand side. Noting that all the
constraint equations considered above are linear, and thus their linearization

is straightforward, application of the transformation (47) to the system (48)
gives

[Kii + KiaCuai + C5 K g; + CL K 4aCai] 6u; = [o1; + Clidra) - (49)
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Note that the boundary conditions (43) prescribing displacements of the
corner nodes have not yet been applied. The column of “independent”
degrees of freedom u; includes the prescribed corner nodes u, among other
nodes. The boundary conditions (43) should be applied to the system (49)
is a standard manner.

The condition of antiperiodic tractions (20) will be addressed in sec-
tion 5.2.

5.2 Extraction of the macroscopic stress

After the analysis of a microstructural RVE is completed, the RVE av-
eraged stress have to be extracted. Of course, the macroscopic stress tensor
can be calculated by numerically evaluating the volume integral (32). How-
ever it is computationally more efficient to compute the boundary integral
(33), which can be further simplified for the case of the periodic boundary
conditions.

Fully prescribed boundary displacements For the case of prescribed
displacement boundary conditions the boundary integral (33) simply leads
to

1 <& » =
PM: VO ;prpv (50)

3

where f}; are the resulting external forces at the boundary nodes and X p the
position vectors of these nodes in the undeformed state; IV, is the number
of the nodes on the boundary.

Periodic boundary conditions In order to simplify the boundary inte-
gral (33) for the case of periodic boundary conditions, consider all the forces
acting on the RVE boundary subjected to the boundary conditions accord-
ing to (42)—(43). At the three prescribed corner nodes the resulting external
forces ﬁ‘j, p = 1,2,4 act. Additionally, there are forces involved in every
constraint (tying) relation (42). For example, for each constraint relation
between pairs of the nodes on the bottom-top boundaries there is a tying
force at the node on the bottom boundary pl, a tying force at the node
on the top boundary pf. and tying forces at the corner nodes 1 and 4, g s
and 72, respectively. Similarly there are forces p PR T 'Loand 7 EL cor-
responding to the left-right constraints. All these forces are schematically
shown in figure 5.
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Figure 5. Tractions acting on the boundary of a two-dimensional RVE
subjected to periodic boundary conditions.

Each constraint relation satisfies the condition of zero virtual work, i.e.
PR-0Tp + Ph-0Fr + Pi°-0F) + P08, = 0,
Py OT + ph-0FR + P07 + Pl = 0. (51)
Substitution of the variation of the constraints (41) into (51) gives
(P + Pr)-0ds + (B — Pip)-0%1 + (P + P3P)-0%s = 0,
(FL + PR)-OTL + (B — PR)-0T1 + (P + Pa")-0d2 = 0. (52)

These relations should hold for any 6Zg, 021, 021, 0&2, 74, therefore

Pp=—Pr =P =0,
PL=—Pr= D" =05 (53)

Equation (53) reflects the antiperiodicity of tying forces on the opposite
boundaries, which has been introduced previously in equation (20).

With account for all forces acting on the RVE boundary, the boundary
integral (33) is written as

]. - =2 - = - = = — N —
Pu= o (ffX1+f§X2+fffX4+ /pEXB dl'o + /p%XT dlo+
0
Fop Tor
/ piXL dlo + / FrXr dlo + ( / Fi dlo) X+

oL Tor Top

( / i Do) X, + ( / i dTo) K + ( / Y dl“o))_fg). (54)

Tor, Tom Tor
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Making use of the relation between tying forces (53) gives

1 - = N — —
Py= ( SRR+ /ptB(XB—XT) dTo+
0 \p=1,24 -
[P - Sy ara ([ 5 arg) %o ([ 7 dro) K
Top Fos Tor,
(/ 5 dlo) Xs + (/ piL dFO)X) (55)
0B Toy,

Inserting the conditions of the initial periodicity of the RVE (38) results in

1 o e o
Py= < > X+ /(pEerjtlB)Xl dlo + /(p£+p§L)X1 dlo+

p=1,2,4 Top Tow
/(ﬁZB — )Xy dlo + /(*tL — 1) X> dFO) (56)
Top Tor

which after substitution of the remaining relations between tying forces (53)

gives
> X (57)

0 =124

Therefore, when the periodic boundary conditions are used, all the terms
with forces involved into the periodicity constraints cancel out from the
boundary integral (33) and the only contribution left is by the external
forces at the three prescribed corner nodes.

5.3 Extraction of the macroscopic tangent operator

When the micro-macro approach is implemented within the framework of
a non-linear finite element code, the stiffness matrix at every macroscopic
integration point is required. Because in the computational homogeniza-
tion approach there is no explicit form of the constitutive behaviour on the
macrolevel assumed a priori, the stiffness matrix has to be determined nu-
merically from the relation between variations of the macroscopic stress and
variations of the macroscopic deformation at such a point. This may be real-
ized by numerical differentiation of the numerical macroscopic stress-strain
relation, for example using a forward difference approximation as has been
suggested in Miehe (1996). Another approach is to condense the microstruc-
tural stiffness to the local macroscopic stiffness. This is achieved by reducing
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the total RVE system of equations to the relation between the forces acting
on the RVE boundary and the associated boundary displacements. Such a
procedure in combination with the Lagrange multiplier method to impose
boundary constraints has been elaborated in Miehe and Koch (2002). Here
an alternative scheme, which employs the direct condensation of the con-
strained degrees of freedom, as has been presented in Kouznetsova et al.
(2001); Kouznetsova (2002) will be considered. After the condensed mi-
croscopic stiffness relating the prescribed displacement and force variations
is obtained, it needs to be transformed to arrive at an expression relating
variations of the macroscopic stress and deformation tensors, typically used
in the finite element codes. These two steps are elaborated in the following.

Condensation of the microscopic stiffness matrix:
fully prescribed boundary displacements First the total microstruc-
tural system of equations (in its linearized form) is partitioned as

K K 5yp - 6fp
e =) &

where du, and §f, are the columns with iterative displacements and ex-
ternal forces of the boundary nodes, respectively, and duy the column with
the iterative displacements of the remaining (interior) nodes; K ,p, Ky,
Ky, and K f; are the corresponding partitions of the total RVE stiffness
matrix. The stiffness matrix in the formulation (58) is taken at the end of a
microstructural increment, where a converged state is reached. Elimination
of duy from (58) leads to the reduced stiffness matrix Ky relating boundary
displacement variations to boundary force variations

KMéyp = 6fpv with Ku = Ky — Kpf(Kff)ilep. (59)

Condensation of the microscopic stiffness matrix:

periodic boundary conditions In the case of the periodic boundary
conditions the point of departure is the microscopic system of equations
(49) from which the dependent degrees of freedom have been eliminated (as
described in section 5.1)

K*du; = or*, (60)
with K" = Ky + KiaCai + Chi Kai + CiiKaaClai,
5% = 61y + L bra.

Next, system (60) is further split, similarly to (58), into the parts corre-
sponding to the variations of the prescribed degrees of freedom du, (which
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in this case are the varied positions of the three corner nodes prescribed ac-
cording to (43)), variations of the external forces at these prescribed nodes
denoted by ¢f5, and the remaining (free) displacement variations du;:

5 gl
o Kip ] L 0w 0

Then the reduced stiffness matrix K7}, in case of periodic boundary condi-
tions is obtained as

Kybup, =0f5,  with Ky =Ky, — K5 (K5) 7' Kf,. (62)
Note that K} is [6 x 6] matrix only (in the two-dimensional case).

Final macroscopic tangent Finally, the resulting relation between dis-
placement and force variations (relation (59) if prescribed displacement
boundary conditions are used, or relation (62) if periodicity conditions are
employed) needs to be transformed to arrive at an expression relating vari-
ations of the macroscopic stress and deformation tensors

Py = ICY; : OFg,, (63)

where the fourth order tensor 401}\)/[ represents the required consistent tangent
stiffness at the macroscopic integration point level.

In order to obtain this constitutive tangent from the reduced stiffness
matrix Ky (or K3;), first relations (59) and (62) are rewritten in a specific
vector /tensor format

> K\ -5ii ) = 6f1, (64)
J

where indices i and j take the values ¢, j = 1, N, for prescribed displacement
boundary conditions (NN, is the number of boundary nodes) and i,j = 1,2,4
for the periodic boundary conditions. In (64) the components of the tensors
Kl(\ﬁ[j ) are simply found in the tangent matrix Ky (for displacement bound-
ary conditions) or in the matrix K3, (for periodic boundary conditions) at
the rows and columns of the degrees of freedom in the nodes i and j. For
example, for the case of the periodic boundary conditions the total matrix
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K3 has the format

r 11 11) i 12 12) i 14 14) T 7
s s s B s
L K5 K, | L K3 K, ] L K3 K, |
[ (21) (21) T i (22) (22) i (24) (24) 1
K= | | oty oo || b || et i | |
L Ky Ky, | L Ky Ky ] L Ky Ky, |
41 41 42 42) ] 44 44
s s B s O
L | K5 Ky Ky K Ky Ky, |

(65)
where the superscripts in round brackets refer to the nodes and the sub-
scripts to the degrees of freedom at those nodes. Then each submatrix in
(65) may be considered as the representation of a second-order tensor K(” )

Next, the expression for the variation of the nodal forces (64) is substl—

tuted into the relation for the variation of the macroscopic stress following
from (50) or (57)

SPur = ZZ K7 -5ii ) X - (66)
Substitution of the equation §i ;) = X(j)-(SF]C\/I into (66) gives
1 L = .
= SN (XK X )k - 6FSy, (67)

where the superscript LC' denotes left conjugation, which for a fourth-order
tensor “T is defined as Tlgﬁ = Tjiry. Finally, by comparing (67) with (63)
the consistent constitutive tangent is identified as

1 L
Cu= SN (XK X))k (68)
)

If the macroscopic finite element scheme requires the constitutive tangent
relating the variation of the macroscopic Cauchy stress to the variation of
the macroscopic deformation gradient tensor according to

Som = ‘C§; : 0FY, (69)

this tangent may be obtained by varying the definition equation of the
macroscopic Cauchy stress tensor (35), followed by substitution of (50) (or
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(57)) and (67). This gives

) 1 g v —c c
Son = l: ZZ K( J) ))LC + v Zf(i)IX(i) —ouFy | : 0FYy

(70)
where the expression in square brackets is identified as the required tangent
stiffness tensor %C¢;. In the derivation of (70) it has been used that in
case of prescribed displacements of the RVE boundary (15) or of periodic
boundary conditions (17), the initial and current volumes of an RVE are
related according to Jy = det(Fy) = V/ V.

5.4 Nested solution strategy

Based on the above developments the actual implementation of the com-
putational homogenization strategy may be described by the following sub-
sequent steps.

The macroscopic structure to be analyzed is discretized by finite el-
ements. The external load is applied by an incremental procedure. In-
crements can be associated with discrete time steps. The solution of the
macroscopic non-linear system of equations is performed in a standard it-
erative manner. To each macroscopic integration point a discretized RVE
is assigned. The geometry of the RVE is based on the microstructural mor-
phology of the material under consideration.

For each macroscopic integration point the local macroscopic deforma-
tion gradient tensor Fy; is computed from the iterative macroscopic nodal
displacements (during the initialization step, zero deformation is assumed
throughout the macroscopic structure, i.e. Fy = I, which allows to obtain
the initial macroscopic constitutive tangent). The macroscopic deformation
gradient tensor is used to formulate the boundary conditions according to
(37) or (42)—(43) to be applied on the corresponding representative cell.

The solution of the RVE boundary value problem employing a fine scale
finite element procedure, provides the resulting stress and strain distribu-
tions in the microstructural cell. Using the resulting forces at the prescribed
nodes, the RVE averaged first Piola-Kirchhoff stress tensor Py is computed
according to (50) or (57) and returned to the macroscopic integration point
as a local macroscopic stress. From the global RVE stiffness matrix the
local macroscopic consistent tangent “CY; is obtained according to (68).

When the analysis of all microstructural RVEs is finished, the stress
tensor is available at every macroscopic integration point. Thus, the in-
ternal macroscopic forces can be calculated. If these forces are in balance
with the external load, incremental convergence has been achieved and the
next time increment can be evaluated. If there is no convergence, the pro-
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cedure is continued to achieve an updated estimation of the macroscopic
nodal displacements. The macroscopic stiffness matrix is assembled using
the constitutive tangents available at every macroscopic integration point
from the RVE analysis. The solution of the macroscopic system of equa-
tions leads to an updated estimation of the macroscopic displacement field.
The solution scheme is summarized in Table 1. It is remarked that the
two-level scheme outlined above can be used selectively depending on the
macroscopic deformation, e.g. in the elastic domain the macroscopic con-
stitutive tangents do not have to be updated at every macroscopic loading
step.

Table 1. Incremental-iterative nested multi-scale solution scheme for the
computational homogenization.

MACRO MICRO

1. Initialization
> initialize the macroscopic model
> assign an RVE to every integration

Foint . X .
> loop over all integration points

Initialization RVE analysis
set Fy =1 Fu

- > prescribe boundary conditions
> assemble the RVE stiffness
> calculate the tangent ‘C},
store the tangent M 8 M

> end integration point loop

2. Next increment
> apply increment of the macro load

3. Next iteration
> assemble the macroscopic tangent stiff-

ness
> solve the macroscopic system

> loop over all integration points RVE analysis

calculate Fyy Fu
prescribe boundary conditions

assemble the RVE stiffness
solve the RVE problem

v v Vv

calculate Pyt

]
2
v

store Py

calculate the tangent ‘Chy

v

store the tangent tangent
> end integration point loop
> assemble the macroscopic internal
forces
4. Check for convergence
> if not converged = step 3
> else = step 2
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6 Example: two-scale coupled analysis in bending

As an example, the computational homogenization approach is applied to
pure bending of a rectangular strip under plane strain conditions. Both
the length and the height of the sample equal 0.2 m, the thickness is taken
1m. The macromesh is composed of 5 quadrilateral 8 node plane strain
reduced integration elements. The undeformed and deformed geometries of
the macromesh are schematically depicted in figure 6. At the left side the
strip is fixed in axial (horizontal) direction, the displacement in transverse
(vertical) direction is left free. At the right side the rotation of the cross
section is prescribed. As pure bending is considered the behaviour of the
strip is uniform in axial direction and, therefore, a single layer of elements
on the macrolevel suffices to simulate the situation.

|
|

Figure 6. Schematic representation of the undeformed (a) and deformed
(b) configurations of the macroscopically bended specimen.

0 000 00000000,

In this example two heterogeneous microstructures consisting of a ho-
mogeneous matrix material with initially 12% and 30% volume fractions
of voids are studied. To generate a random distribution of cavities in the
matrix with a prescribed volume fraction, maximum diameter of holes and
minimum distance between two neighbouring holes, for a two-dimensional
RVE, the procedure from Hall (1991) and Smit (1998) has been adopted.
The microstructural cells used in the calculations are presented in figure 7.
It is worth mentioning that the absolute size of the microstructure is ir-
relevant for the first-order computational homogenization analysis (see also
discussion in section 8).

The matrix material behaviour has been described by a modified elasto-
visco-plastic Bodner-Partom model van der Aa et al. (2000). This choice is
motivated by the intention to demonstrate that the method is well-suited
for complex microstructural material behaviour, e.g. non-linear history and
strain rate dependent at large strains. The material parameters for annealed
aluminum AA 1050 determined in van der Aa et al. (2000) have been used;
elastic parameters: shear modulus G' = 2.6 x 10* MPa, bulk modulus K =



356 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

L7

S
NS
q:.;:."
TS
i

Figure 7. Microstructural cells used in the calculations with 12% voids (a)
and 30% voids (b).

7.8 x 10* MPa and viscosity parameters: I'g = 108572, m = 13.8, n = 3.4,
Zy = 81.4 MPa, Z; = 170 MPa.

Micro-macro calculations for the heterogeneous structure, represented by
the RVEs shown in figure 7 have been carried out, simulating pure bending
at a prescribed moment rate equal to 5 x 10° Nms~!. Figure 8 shows the
distribution plots of the effective plastic strain for the case of the RVE with
12% volume fraction voids at an applied moment equal to 6.8 x10° Nm in the
deformed macrostructure and in three deformed, initially identical RVEs at
different locations in the macrostructure. Each hole acts as a plastic strain
concentrator and causes higher strains in the RVE than those occurring in
the homogenized macrostructure. In the present calculations the maximum
effective plastic strain in the macrostructure is about 25%, whereas at RVE
level this strain reaches 50%. It is obvious from the deformed geometry of
the holes in figure 8 that the RVE in the upper part of the bended strip is
subjected to tension and the RVE in the lower part to compression, while
the RVE in the vicinity of the neutral axis is loaded considerably milder than
the other RVEs. This confirms the conclusion that the method realistically
describes the deformation modes of the microstructure.

In figure 9 the moment-curvature (curvature defined for the bottom edge
of the specimen) diagram resulting from the computational homogeniza-
tion approach is presented. To give an impression of the influence of the
holes also the response of a homogeneous configuration (without cavities)
is shown. It can be concluded that even the presence of 12% voids induces
a reduction of the bending moment (at a certain curvature) of more than
25% in the plastic regime. This significant reduction in the bending moment
may be attributed to the formation of microstructural shear bands, which
are clearly observed in figure 8. This indicates that in order to capture such
an effect a detailed microstructural analysis is required. A straightforward
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Figure 8. Distribution of the effective plastic strain in the deformed
macrostructure and in three deformed RVEs, corresponding to different
points of the macrostructure.
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Figure 9. Moment-curvature diagram resulting from the first-order com-
putational homogenization analysis.

application of, for example, the rule of mixtures would lead to erroneous
results.



358 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

7 The RVE in first-order computational
homogenization

7.1 General concept of an RVE

The computational homogenization approach, as well as most of other
homogenization techniques, are based on the concept of a representative vol-
ume element (RVE). An RVE is a model of a material microstructure to be
used to obtain the response of the corresponding homogenized macroscopic
continuum in a macroscopic material point. Thus, the proper choice of the
RVE largely determines the accuracy of the modelling of a heterogeneous
material.

There appear to be two significantly different ways to define a representa-
tive volume element Drugan and Willis (1996). The first definition requires
an RVE to be a statistically representative sample of the microstructure,
i.e. to include virtually a sampling of all possible microstructural configu-
rations that occur in the composite. Clearly, in the case of a non-regular
and non-uniform microstructure such a definition leads to a considerably
large RVE. Therefore, RVEs that rigorously satisfy this definition are rarely
used in actual homogenization analyses. This concept is usually employed
when a computer model of the microstructure is being constructed based on
experimentally obtained statistical information (see e.g. Shan and Gokhale
(2002)).

Another definition characterizes an RVE as the smallest microstructural
volume that sufficiently accurately represents the overall macroscopic prop-
erties of interest. This usually leads to much smaller RVE sizes than the
statistical definition described above. However, in this case the minimum
required RVE size also depends on the type of material behaviour (e.g. for
elastic behaviour usually much smaller RVEs suffice than for plastic be-
haviour), macroscopic loading path and difference of properties between
heterogeneities. Moreover, the minimum RVE size, that results in a good
approximation of the overall material properties, does not always lead to
adequate distributions of the microfields within the RVE. This may be im-
portant if, for example, microstructural damage initiation or evolving mi-
crostructures are of interest.

The latter definition of an RVE is closely related to the one established
by Hill Hill (1963), who argued that an RVE is well-defined if it reflects the
material microstructure and if the responses under uniform displacement
and traction boundary conditions coincide. If a microstructural cell does
not contain sufficient microstructural information, its overall responses un-
der uniform displacement and traction boundary conditions will differ. The
homogenized properties determined in this way are called “apparent”, a no-
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tion introduced by Huet Huet (1990). The apparent properties obtained by
application of uniform displacement boundary conditions on a microstruc-
tural cell usually overestimate the real effective properties, while the uniform
traction boundary conditions lead to underestimation. As has been verified
by a number of authors van der Sluis et al. (2000); Terada et al. (2000), for
a given microstructural cell size, the periodic boundary conditions provide
a better estimation of the overall properties, than the uniform displacement
and uniform traction boundary conditions. This conclusion also holds if
the microstructure does not really possess geometrical periodicity Terada
et al. (2000). Increasing the size of the microstructural cell leads to a bet-
ter estimation of the overall properties, and, finally, to a “convergence” of
the results obtained with the different boundary conditions to the real ef-
fective properties of the composite material, as schematically illustrated in
figure 10. The convergence of the apparent properties towards the effective
ones at increasing size of the microstructural cell has been investigated in
Huet (1990, 1999); Ostoja-Starzewski (1998, 1999); Pecullan et al. (1999);
Terada et al. (2000).

apparent property

microstructural cell size
(a) (b)
Figure 10. (a) Several microstructural cells of different sizes. (b) Con-

vergence of the apparent properties to the effective values with increasing
microstructural cell size for different types of boundary conditions.

7.2 Unit cells versus RVEs

In practice, instead of a representative volume element, a unit cell is often
used as a microstructural model, since it requires substantially less compu-
tational effort. This section examines the possible error, which is made in
the obtained overall response of a multi-phase material, if the analysis is
performed on a unit cell instead of an RVE.

As the simplest unit cell, a piece (for example a square or cube) of the
matrix material containing a single heterogeneity (e.g. inclusion or void)
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could be suggested. The use of such a unit cell implicitly assumes a reg-
ular arrangement of the heterogeneities in the matrix, which contradicts
the observations that almost all materials have a non-periodic or even spa-
tially random microstructural composition. Examples are precipitates in
metal alloys arranged randomly by their nature and artificial fiber rein-
forced composites, possessing a non-regular distribution of the fibers due to
the production process. At the same time, several experimental evidences
exist showing that the spatial variability in the microstructure significantly
influences the overall behaviour and particularly the fracture characteristics
of composites, as reported in Mackay (1990); Barsoum et al. (1992).

Different authors, e.g. Brockenbrough et al. (1991); Nakamura and
Suresh (1993); Ghosh et al. (1996); Moulinec and Suquet (1998), have per-
formed a comparison of the overall composite responses resulting from the
modelling of regular and random structures. They have found a significant
response difference in the plastic regime, while there is almost no deviation
in elastic regime. Also it has been shown Smit et al. (1999), that softening
behaviour of a regularly composed structure may change to hardening in
the case of a random composition. Most of these considerations, except for
the latter, have been performed for small deformations, very simple elasto-
plastic behaviour and relatively stiff inclusions (fibers). In this section the
overall behaviour of regular and random structures is compared at large
deformations, non-linear history dependent material behaviour, for voided
material (an appropriate approximation for material with soft inclusions).
Apart from the calculations on the microstructural cell (tensile configura-
tion), also a full multi-scale analysis (pure bending) of both regular and
random structures is presented.

A material with a 12% volume fraction of voids is considered. The
regularly stacked structure is modelled by a square unit cell containing a
single hole (figure 11a). For the modelling of a random structure 10 different
unit cells with non-regular arrangements of voids with a distribution of void
sizes have been generated (figure 11b). The averaged behaviour of these 10
unit cells is expected to be representative for the real random structure with
a given volume fraction of heterogeneities. Using several small non-regular
unit cells instead of one larger RVE also allows to estimate the amount of
deviation of the apparent properties obtained by the unit cell modelling,
from the effective values for different types of material models and loading
histories.

In the subsequent sections a comparison is performed for three differ-
ent constitutive models of the matrix material: hyper-elastic, elasto-visco-
plastic with hardening and elasto-visco-plastic with intrinsic softening. First
uniaxial extension (under plane strain conditions) of a macroscopic sample
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(b)

Figure 11. Unit cell with one hole (a), representing a regular structure,
and 10 randomly composed unit cells (b).

is considered. Because in this case the macroscopic deformation field is ho-
mogeneous a full micro-macro modelling is not necessary and an analysis of
an isolated unit cell with adequate boundary conditions (periodic) suffices.
In the last section the results of a micro-macro simulation of bending using
random and regular microstructures are compared.

Elastic behaviour, tension First, a comparison of the overall behaviour
of regular and random structures is carried out for the case of hyper-
elastic behaviour of the matrix material, modelled as a compressible Neo-
Hookean material. The material parameters used in the calculations are
K = 2667 MPa, G = 889 MPa.

Figure 12 shows the stress-strain curves for the unit cells with regu-
lar and random void stacking. For small deformations there is almost no
difference in the responses originating from the regular and random void
distributions. This result is in agreement with the experiences reported in
the literature for small deformations, see, e.g. Brockenbrough et al. (1991);
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Nakamura and Suresh (1993); Moulinec and Suquet (1998). For large de-
formations the stiffer behaviour of the regular structure becomes a little bit
more pronounced, however, the deviations remain small. The difference be-
tween the response of the regular structure and the response averaged over
the random unit cells does not exceed 2%. This small deviation is explained
by figure 13, presenting the distribution of the equivalent von Mises stress
in the regular unit cell and in a random unit cell for 20% macroscopic strain.
The stress field around any hole of the random structure is almost the same
as around the hole of the regular structure, which indicates little interac-
tion between voids. If only the averaged elastic constants are of interest, it
is concluded that calculations performed on the simplest regular unit cell
usually provide an answer within an acceptable tolerance.

40

Axial stress, MP:
a
g

—— unit cell with one hole
501 random void stack
--- averaged for random void stack

10 15 20
Linear axial strain, %

Figure 12. Tensile stress-strain responses (unit cell averages) of the regular
and random structures in a voided hyper-elastic matrix material.

Figure 13. Distribution of the equivalent von Mises stress (MPa) in the
deformed regular (a) and random (b) structures in a voided hyper-elastic
matrix material.
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Elasto-visco-plastic behaviour with hardening, tension The influ-
ence of the randomness of the microstructure on the macroscopic response
becomes more significant when plastic yielding of one or more constituents
occurs. This section investigates the responses of the regular and random
unit cells under tensile loading when the matrix material exhibits elasto-
visco-plastic behaviour with hardening. The constitutive description is
given by the Bodner-Partom model van der Aa et al. (2000). The ma-
terial parameters are the same as those used in section 6. The unit cells are
subjected to uniaxial tension at a constant strain rate of 0.5s7 .

In figure 14 the stress-strain curves are presented. In this case the differ-
ence between the overall response of the regular structure and the averaged
response of the random structures reaches 10%. The rather large scattering
in the responses of different random cells is due to the small number of voids
included. As has been demonstrated in Smit (1998), the scattering is signif-
icantly reduced if microstructural cells contain more heterogeneities. The
averaged response is, however, hardly affected, provided that a sufficient
number of random realizations has been considered.

Axial stress, MPa

20 —— unit cell with one hole
random void stack
10 ---  averaged for random void stack

5 10
Linear axial strain, %

Figure 14. Tensile stress-strain responses (unit cell averages) of the regu-
lar and random structures for an elasto-visco-plastic matrix material with
hardening.

The fundamental mechanism that governs the difference between the
response of the regular structure and the averaged response of the random
structures is illustrated in figure 15, where the distribution of the effective
plastic strain in the deformed regular and random unit cells at 15% applied
macroscopic strain is presented. In the regular unit cell the ligaments yield
simultaneously rather than sequentially with increasing macroscopic strain,
which is the case for the random unit cell. As a result, at the same value of
the macroscopic strain the regular unit cell is deformed relatively smoothly,



364 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

while some ligaments in the random unit cell have already accumulated a
significant amount of plastic strain. Consequently, the regular unit cell (in
fact a structure with a periodic stacking of heterogeneities) has a larger
overall stiffness than a random configuration.

-
(@) (b)
B
0 20 40 60 80 100

Figure 15. Distribution of the effective plastic strain in the deformed regu-
lar (a) and random (b) structures for an elasto-visco-plastic matrix material
with hardening.

Elasto-visco-plastic behaviour with softening, tension The differ-
ence in yielding mechanisms for regular and random microstructures out-
lined in the previous section causes not only a quantitative deviation in
the responses of these structures (as illustrated by figure 14), but in some
cases also the qualitative character changes, as has been shown in Smit
et al. (1999). For example, such a phenomenon can be observed when the
matrix material is described by a generalized compressible Leonov model
with intrinsic softening and subsequent hardening. The model is designed
for the plastic deformation of polymers and incorporates a stress dependent
Eyring viscosity extended by pressure dependence and intrinsic softening
effects. Details of this model can be found in Baaijens (1991); Tervoort
(1996); Govaert et al. (2000).

The resulting stress-strain curves for uniaxial tension of polycarbonate
at a constant strain rate of 0.01s™! are given in figure 16. The overall
behaviour of the regular structure in the plastic regime exhibits some initial
softening followed by hardening. The response of the regular structure is, in
fact, similar to the response of one single ligament, that softens according
to the intrinsic material behaviour. A completely different response can
be observed for the random configurations. Although some of the random
unit cells also demonstrate some softening behaviour, originating from the
relatively simple composition of the unit cells used in the calculations, the
average response of the random unit cells does not show any softening but
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exhibits continuous hardening. This is caused by the sequential appearance
of elastic, softening and hardening zones within the random microstructure.

Axial stress, MPa

10 —— unit cell with one hole
random void stack
---  averaged for random void stack

5 10
Linear axial strain, %

Figure 16. Tensile stress-strain responses (RVE averages) of the regular
and random structures for an elasto-visco-plastic matrix material with in-
trinsic softening and subsequent hardening.

This example illustrates that the overall response of heterogeneous ma-
terials, when detersi3joda!mined from a modelling by a regular structure,
should be interpreted with great care, particularly in the case of complex
material behaviour (e.g. in case of softening followed by hardening or vice
versa).

Elasto-visco-plastic behaviour with hardening, bending The com-
parison of the overall behaviour of the regular and random microstructures
performed above has been based on the averaged behaviour of a single unit
cell subjected to a particular loading history (uniaxial tension). The ques-
tion remains how the randomness of the microstructure does influence the
overall behaviour when a macroscopic sample is deformed heterogeneously,
so that potentially every material point of the sample is subjected to a dif-
ferent loading history. In order to investigate this item the computational
homogenization approach is a helpful tool.

As an example the influence of the spatial composition of the microstruc-
ture on the overall moment-curvature response of the voided material un-
der pure bending is studied. The behaviour of the matrix material is de-
scribed by the Bodner-Partom elasto-visco-plastic model with hardening.
The macrogeometry and the material parameters are the same as these
used in section 6.

Figure 17 shows the moment-curvature diagram resulting from the full
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micro-macro analysis of pure bending of the material using the regular and
the random microstructures. Again, the regular structure exhibits a stiffer
response than the averaged random result, while the maximum deviation
is only about 5%, which is considerably less than for the tensile test with
the same material behaviour (figure 14). This smaller deviation originates
from the fact that in case of bending all the unit cells assigned to the various
macroscopic points over the height of the bended strip are loaded differently,
see figure 8. The unit cell at the top of the bended strip experiences tension,
so that the observations dealt with in the previous examples apply. At the
same time, there are also unit cells that are stretched less or still are in
elastic regime, like for example the one in the vicinity of the neutral line, so
that in average for the whole bending process the influence of randomness
can be expected to be smaller than for uniaxial extension.

Moment, N m
e

(%)

—— unit cell with one hole
1 random void stack 1
---  averaged for random void stack

0.4 0.6 0.‘8 1
Curvature,1/m
Figure 17. Moment-curvature responses of the regular and random struc-
tures for an elasto-visco-plastic matrix material with hardening.

8 Second-order computational homogenization

In spite of the attractive characteristics listed above, there are a few impor-
tant limitations of the first-order framework, which can be summarized as
follows
e The principle of separation of scales must be respected. Hence, the
characteristic length that characterizes the spatial variations of the
macroscopic loading must be very large with respect to the size of the
microstructure. As a consequence, only simple first-order deformation
modes (tension, compression, shear or combinations thereof) of the
microstructure can be retrieved. The case shown in figure 8, which is



Computational Homogenization 367

a typical bending mode, which from a physical point of view should
appear for small, but finite, microstructural cells, cannot be found.

e The framework is completely insensitive to the absolute size of the mi-
crostructural constituents (scale independent). Size effects emanating
from the absolute size at the micro scale cannot be dealt with properly.

e Macroscopic gradients must remain very small with respect to the
micro scale. Localization problems, where non-uniform macroscopic
deformations arise, cannot be solved properly.

Whenever strong gradients appear at the macro-level (localization, size ef-
fects) care must be taken in using a first-order scheme. In all other cases,
one should continue using it and not jump to a second-order scheme for
which an additional price in complexity and computational costs is to be
paid.

In order to overcome these shortcomings, the computational homog-
enization methodology has been extended recently to higher-order con-
tinua (Geers et al., 2001; Kouznetsova et al., 2002; Kouznetsova, 2002; Geers
et al., 2003; Kouznetsova et al., 2004b,a). In this course, the methodology
and the essential parts of the multi-scale kinematics and statics will be out-
lined briefly, whereas more details can be found in the cited references. The
method is next applied to heterogeneous multi-phase microstructures, as
typically the case in most metals, polymer blends and composites. Some
comments on the parallel implementation of the multi-scale technique are
given and an illustrative example is used to scrutinize the added value of the
second-order framework in relation to the more standard first-order scheme.

8.1 Principles

The second-order case, which may be considered as a generalization of
the classical first-order scheme, departs from a Taylor series expansion of the
classical nonlinear deformation map, & = ¢(}Z ), applied to a finite material
vector AZ in the deformed state:

AT = FyrAX 4 JAX Gy AX +0 (AX9) (71)

Using this Taylor series expansion, the macroscopic (coarse scale) kinemat-
ics is determined through the deformation gradient tensor Fy; and its La-
grangian gradient Gy = ﬁoyMFM. The key point in the second-order
two-scale framework, resides in applying relation (71) to a representative
part of the microstructure, such that a classical boundary value problem is
obtained at the micro scale (or fine scale). The scale bridging is then real-
ized through the application of averaging theorems. This is schematically
depicted in figure 18. Note that the tensor 3Gy has a minor symmetry,
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Figure 18. Second-order computational homogenization

3Gu = 3G (or Guriji = Guggi in index notation), which is used through-
out this chapter.

8.2 Two-scale higher-order kinematics

In order to apply equation (71) to the fine scale, all higher-order terms
(represented by O(AX3)) are condensed into an unknown microfluctua-
tion field @, which represents the fine scale contribution in the kinematics.
Hence,

AT = FyAX + LAX Gy AX + (72)
Applying this to an undeformed volume V; (the RVE) with a geometrical
center X, that is located in 7, after deformation gives (notice the similarity
and differences with the elaboration in the previous section, equation (5)).

F—T. = Fu(X — X))+ L(X - X)) %G (X - Xo)+@ (73)

Eliminating rigid body displacements like for the first-order case (e.g. by
fixing a boundary point 1) then leads to

7 =C+Fu(X —Xo)+ J(X - X) %G (X — Xo) + (@ — ) (74)
with

¢ =X +Fu-(X1 — X)) + LX) - Xo)%Gw (X - X.) (75)

T =C— W (76)

The microscopic deformation gradient tensor F,, is easily reconstructed as

Fro = (Vou)T

I - (77)
= FM + (X - Xc)'gGM + (VO,m(u_j - u_jl))T
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Applying the earlier introduced scale transition relation (13) with respect
to equation (77) then leads to two kinematical constraints (to be imposed
on the RVE)

1

Ve /(X’—X'c)dvo =0 (78)
Vo
1 [ . o L[
(Vo,m(w —wl)) dVQ = ( —wl)N dFo =0 (79)
Vo Vo
Vo To

where the divergence theorem was used to derive the latter relation. Equa-
tion (78) is clearly satisfied here, since the Taylor series has been expanded
with respect to the geometrical centre X, in equation (73). This appears
to be a necessary condition in the second-order case, which deviates from
the first-order scheme where any point to develop (4) around (instead of
X.) gives the same result. The second constraint (79) applies to the un-
known fluctuation field. Logically, the integral involves (& — w4 ), which im-
plies a constraint on the boundary position vectors Z through (74). There
are various ways to make this boundary integral zero, e.g. by constrain-
ing (@ — w;) = 0 for all points of the RVE (Taylor/Voigt), or by con-
straining (@ — ) = 0 at the boundary of the RVE only (displacement
or kinematic boundary condition), or through the application of periodic
boundary conditions on the microfluctuation field (the macroscopic field is
generally not periodic in the second-order case!). The latter conditions are
used here, leading to the following microperiodicity equations valid between
the left(L)-right(R) and bottom(B)-top(T) boundaries of a two-dimensional
rectangular RVE as shown in figure 19.

U_}'L = u_)'R u_)'B = _)T (80)

Note that again all equations involve the microfluctuation field with respect
to wh. Any choice for w; will then lead to the same solution (except for Z.).
This is also obvious from the constraint relation (79), which can be easily
elaborated to a format in which the contribution of w; vanishes, i.e.

/(w—wl)ﬁ iry = /wﬁ iry = 0 (81)

FO 1_‘O

It is easy to show that the micro scale problem defined by the equa-
tions (72), (78), (80), applied to the rectangular 2D RVE depicted in fig-
ure 19 with periodic microfluctuations, fully determines the kinematics of
the four corner points (Geers et al., 2001; Kouznetsova et al., 2002). This
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Figure 19. Lagrangian undeformed 2D reference RVE

set of equations imposes 8 macroscopic degrees-of-freedom to the 2D mi-
crostructure, whereas the full macroscopic kinematics consists of 12 degrees-
of-freedom (2 rigid body displacement, 4 degrees-of-freedom in Fy; and
6 degrees-of-freedom in the minor-symmetric 3Gy). The missing kine-
matical quantities appear to be the stretch gradients (Geers et al., 2001;
Kouznetsova et al., 2002), i.e. so far an RVE with 8 macroscopic degrees-
of-freedom has been established, where the displacements are prescribed
through the four corner nodes. This is a typical example of couple stress
homogenization.

In order to incorporate the entire gradient field, the set of averaging re-
lations needs to be completed in order to account for the missing stretch
gradient degrees-of-freedom of 3Gy;. On the basis of the Taylor series
expansion (72), it is easy to show that the following averaging theorem
can be derived (by means of some manipulations of the equations given
in Kouznetsova et al. (2002)), relating 3Gy to the position vectors Z (im-
plicitly incorporating the fine scale contribution through (74)) of all material
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points in the the square RVE with initial size W and volume Vj:

W2

1y |G+ L (i)™ + 19T -

1 =3 o — oo
[ (Fom@) + Fom@) ave (2
2Vo
Vo
In here, I is the second-order unit tensor, and 7 stands for the right trans-
pose, i.e. Tl}fg = Tji; in index notation. The third term in the left-hand

side of this equation is present to account for the deformed position Z. of
the center of the undeformed RVE, which is generally no longer the center
of the deformed RVE. Computing the integral in the right-hand side of the
latter equation through substitution of equation (74), reveals

1 /(ﬁo,m(f X) + [Vom(Z )]T) vy =

2Vo
Vo
w2, w? RT\ BT RT
1o GMF o, (I1: %Gy )" + 1™ +
1 b 2PN N — =, = —
2V0/<X(w—w1)N+N(w—w1)X) Ty (83)
To

Enforcing the averaging relation (82) requires that the last integral in (83)
should vanish, which leads to a new constraint on the microfluctuation field.

/ (X (@ )N + N(@ )X dry =0 (84)

T'o

This boundary integral clearly incorporates (w — ), which constrains the
position vectors Z of the boundary points through (74). The microfluctu-
ation @y (in the fixed boundary point) cannot be eliminated in general as
done in the previously introduced boundary integral (81). If constraint (84)
is enforced, it is easy to rewrite the averaging equation (82) as a boundary
integral

Gyt ) (I 9GEN) Ty 12 e = O

e = Jow / (XaN + N#xX) dry (s5)

1)
Equation (85) typically illustrates that 3Gy is imposed on the RVE bound-

ary, which is necessary to construct a classical boundary value problem at
the micro scale.
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For an initially square RVE (H = W in figure 19), on which the mi-
croperiodicity equations (80) for the microfluctuation field hold, the con-
straint (84) can be simplified to

/ (@, — ,)dly = 0

Tor

/ (g — 1 )dly = 0

Top

Clearly, these two conditions enforce the shape of a part of the boundary to
be equal in average to the shape ensuing from the macroscopic field. Pre-
scribing (86) at the boundaries can be done by generalized displacement con-
straints (non-homogeneous tying relations), see (Kouznetsova et al., 2002;
Kouznetsova, 2002) for more details on this topic. Again, it is obvious that
imposing w; = 0 does not influence the solution for the two-scale homoge-
nization.

Note that the macroscopic Gy is not the volume average of the mi-
croscopic 3G, = ﬁo}mFm. This not possible if one wants to construct a
classical boundary value problem at the micro scale. The scale transition
is here driven by boundary integrals involving displacements of boundary
points of the RVE only. Enforcing *Gy to be the volume average of 3G,
would lead to higher-order boundary conditions on the microstructural fluc-
tuation field, which would make the fine scale problem second-order as well.

8.3 Extracting stress tensors

The macroscopic stress quantities are next extracted from the analysis of
the deformed RVE by equating the macroscopic work per unit of volume to
the average work performed on the RVE (Hill-Mandel or macrohomogeneity
condition). For the second-order case, this condition reads

1

v / P OFLdVy =Py : 0F +°Qu © %Gy (87)
0

Vo

In here, Py is the macroscopic first Piola-Kirchhoff stress tensor, Py, its
microstructural counterpart and Qu the higher-order stress tensor which
is work-conjugated to 3Gy;. Note that equation (87) in fact defines the two
macroscopic stress tensors Py and *Quy.

The microstructural work (per unit of volume in the reference state) can
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be written as

1
SWon = / P, : 6F¢dV, =

1
0-0 AT dI’ 88
b V/p # dTo, (8)

0
V() FD

where use has been made of the divergence theorem and the static equilib-
rium equation in the microstructure (2). Taking the variation of the position
vector 0AZ according to (72) leads to

SAT = 6F\- X + L X -6°Gn-X + 0AW, (89)

which after substitution in equation (88) yields

1 . 1 - . 1
Won = v /ﬁX dry : 6F1‘§4+2V0 /XﬁX dry : 53GM+V0 /ﬁ.mw dry,.
T'o

To o

(90)
Since the boundary constraints (80) do not contribute to the total work and
accounting for (86), the last term in (90) can be proven to disappear

/ﬁ.mw dTy = 0, (91)

To

manifesting the fact that the microstructural fluctuation field does not affect
the average variation of the microscopic work.

Elaboration of this equation leads to two boundary integrals that permit
to compute the stress tensors Py and 2Qur:

1 .
Py = / X dly (92)
Vo
To
Qu = ! /X”Xdl“ (93)
M = W p 0
To

Both stress tensors can be easily computed once the boundary value problem
on the micro scale has been solved.

The above formulas relate the macroscopic stress tensor and the macro-
scopic higher-order stress tensor to microstructural variables defined on the
RVE boundary. The relations (92) and (93) can also be transformed into
volume integrals, allowing the macroscopic stress measures to be expressed
in terms of volume averages of microstructural quantities. The macroscopic
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stress tensor Py again equals the volume average of the microscopic stress

tensor P,
1

Py = / P..dVy (94)
Vo
Vo

The proof of this equation is identical to that for the first-order framework
(for the derivation see (32)-(33)).

The derivation for the higher-order stress tensor Qs follows the same
procedure. Applying the divergence theorem to transform the boundary
integral in (93) to a volume integral gives

1 > o 1 - Lo
Qu = XpXdly = /N.PC XX)kedr
Qui= gy, [ X¥dro = 1 [ (NP XX)Car,
L e (%)
= Vom: (P, XX dV,
vy [ (Vo (PLET))FCat;

Vo
where the superscript LC' denotes left conjugation, T5F = Tjix. Finally

using the equality
Vo (PLXX) = (Vou Pi) XX + Pu (Vo X)X + (XP (Vo X)) M
=P, X + (XP,)C,
(96)

where equilibrium has been exploited, the relation between the macroscopic
higher-order stress tensor and microstructural quantities is obtained

Qu= !

o / (PLX + XP.) avo (97)

Vo
Note that the macroscopic higher-order stress tensor Quy does not equal the
volume average of its microscopic counterpart ﬁO,um' Like for 3Gy this
is due to the fact that the micro scale problem is formulated as a classical
boundary value problem. It is clear from (97) that Qy can be interpreted

as the first moment (with respect to the RVE center) of the microscopic
first Piola-Kirchhoff stress tensor P, over the initial RVE volume Vj.

8.4 Two-scale computational solution strategy

The boundary constraints (86) can be explicitly written in terms of the
displacement vectors of the boundary points in the form

/aL dlg = @ip-(Fu, °Gum), /aB dly = ip-(Fyp, °Gy)  (98)
ToL Tos
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where up+ and up~ solely depend on the given F); and 3Gy and RVE
geometry as apparent from their definitions

e —(Far — 1) / (X — X)) dly + 9GLC . / (XL X0 — X1 %) dy

Top Tor,
5 —(Fy — 1) / (Xp — %) dTp + 1GLC . / (Xp Xy — X1 %) dT
Tog Fop

(99)

Once the BVP associated to the microstructural RVE problem is de-
fined (boundary conditions, constitutive equations) the micro-problem can
be solved with a standard finite element method. On the basis of the result-
ing boundary tractions, the RVE averaged stress tensors are extracted (see
equations (94), (97))) and transported to the corresponding macroscopic
material point.

For the finite element solution of the macroscopic problem a stiffness
matrix at every macroscopic integration point is required. As emphasized
earlier, in computational homogenization schemes there is no explicit form of
the macroscopic constitutive behaviour assumed a priori. Like for the first-
order case, the tangent operator is determined numerically by condensation
of the microscopic stiffness matrix. For this, first the elaborated constraint
relations between boundary nodes (equations (80), (86)) are applied to the
total assembled stiffness matrix of the RVE following a similar procedure
as presented for the first-order case. Details for the second-order case are
given in Kouznetsova (2002); Kouznetsova et al. (2004b,a). This results
in the elimination of the dependent degrees of freedom from the system of
equations. The next step is to partition the remaining system of equations

as
K K 5yp - 5fp
HaAlrANEd (10)

where the subscript p refers to “prescribed” degrees of freedom (degrees of
freedom through which the macroscopic tensors Fy; and Gy are imposed
on the RVE). In the present framework these are the degrees of freedom
corresponding to the four corner nodes of the RVE (u@;,7 = 1,4) and to
the degrees of freedom entering the RVE system of equations through the
boundary constraints (98). The subscript f in (100) refers to all remaining
“free” nodes. Elimination of dus from the system (100) then leads to the
reduced stiffness matrix Ky; that relates the variations of the prescribed
degrees of freedom to the variations of the associated forces

Knbup =6fp,  with Ky = Kpp — Kpp(Kpp) ' Ky (101)
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The linearized constitutive relations for the second gradient continuum can
be written as

Py = ‘e :oFg +°c | SGEC (102)
#Qu = ¢ oF +cld o sGRC (103)

where the fourth-order tensor 4C§}[), the fifth-order tensors E‘Cﬁ) and 501(\2)

and the sixth-order tensor GC&L) are the macroscopic consistent tangents.
Using the RVE reduced stiffness matrix K y; rewritten in a tensor format
such that

ST ody = ofw,  i,j=1,2,34,L"B" (104)
J
permits to extract the macroscopic consistent tangents in the following for-
mat (see Kouznetsova et al. (2004&) for the derivation)

M _ KU
Cur = ZZX< X

2 _ s peliDys |LO
i = oy ZZ(Xu)KM Yi)

i g

O =y, 30 VR Ky

w = gy 22 2 (YK XG)
Ol =y, 2 VY (105)

with the superscript Cas mdlcatlng conjugation on the second and third
indices and

X — X for i=1,2,34,
% ) J (Xp—Xq))dro, for i=L" (106)
(1) = YToy,
f (XB - X(l)) dro, for ¢= B*
Top
XX - XX, for ©=1,2,3,4,
Y*, = f (XLXL - X(l)X(l)) dro, for i= L*, (107)
(%) Tor,

f(XBXB—X(l)X(l))dro, for i= B*

Top
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In the second-order computational homogenization framework the macro-
scopic problem represents a full second gradient continuum (Mindlin, 1964;
Toupin, 1964; Fleck and Hutchinson, 1997). For such a second gradient con-
tinuum the local equilibrium equation (in the absence of body forces and
body moments) is written as

Vou: (P§ — (Vou-"Qu)) =0 (108)

The natural boundary conditions associated with this system of partial dif-
ferential equations are expressed in (i) the surface traction ty

M = Nu (P — (Vo Qu)°) + (VSM'NM)NM'(NM'g(;zM)C
— Vin (M) (109)

where the surface gradient operator is defined as V§,; = (I— NuNu)-Vou

with NM the unit outward normal on the surface of the macroscopic body
in the undeformed configuration and (ii) the double stress traction 7y

v = N Q- Nu (110)

In the case of a non-smooth surface of the body (with edges) also an addi-
tional line load appears. The kinematic boundary conditions for the second
gradient continuum include prescribed displacements @y and normal gra-
dients of displacements Doyjun with Doy = NM'VQM.

The constitutive equations relating the macroscopic first Piola-Kirchhoff
stress tensor Py and the higher-order stress tensor *Quy to the history of the
macroscopic deformation tensor Fy; and its gradient 3Gy are thus obtained
numerically, whereas their variations are obtained in the linearized form
(102)—(103) with the macroscopic consistent tangents calculated from the
condensed microscopic stiffness matrix according to (105).

8.5 Parallel solution of the multi-scale nested boundary value
problems

In spite of the large computational effort required by a computational
homogenization scheme, it is well possible to make an efficient analysis if
optimal use is made of the inherent parallel nature of this multi-scale frame-
work. Whenever microstructural constitutive information is needed in a
macroscopic (integration) point, a separate subroutine can be started on
the RVE-level that solves the requested boundary value problem. This can
be done in parallel in as many integration points as available processors. Us-
ing PVM (Parallel Virtual Machine) or MPI (Message Passing Interface), it
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is relatively easy to construct such a parallel implementation for this type of
problems, as schematically depicted in figure 20. Evidently, this procedure
drastically reduces the total calculation time.

MACRO
FE analysis of the second gradient
continuum

{P‘j,{‘“: QLN tangents1--N] { El-N, 5Gl-N J

master program

»
R Qi

micro T micro
RVE 1 L Q%
tangents® RVE'N
micro micro

Figure 20. Schematic overview of the parallel solution of the multi-scale
nested BVPs

9 Higher-order issues

9.1 First-order versus second-order

The first example concerns the comparison of the mechanical and kine-
matical response of a heterogeneous microstructure for the first-order and
the second-order scale transition. To this purpose, an RVE is considered,
which is depicted in its undeformed state in figure 21. The material consid-

Figure 21. Undeformed two-dimensional RVE of a voided metal

ered is a metal with very weak inclusions, which have a negligible mechanical
contribution (e.g. voids). The matrix material is elasto-viscoplastic, consti-
tutively prescribed by a Bodner-Partom viscosity function. Following the
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conventional multiplicative split of F, the elastic response is modelled by
a classical (isotropic) Neo-Hookean relationship, where the Kirchhoff stress
tensor is given by

T = K(J—-1)I+Gb? (111)

In here, J is the volume change ratio, K is the bulk modulus, G is the shear
modulus, b? is the deviatoric part of the isochoric elastic left Cauchy-Green
deformation tensor. The plastic part is determined through the plastic
deformation rate tensor D,

D, = (112)

where the viscosity 7 is related to the von Mises equivalent stress o, and
the effective plastic strain €, by

= jan, O (é [ff") (113)

J = 71+ (ZO — Zl)e_mep

with T'g, n, Zp, Z1 and m material constants. In the present analysis, an
aluminum matrix (AA 1050) has been considered for which the material
parameters are given by G = 2.6-10* MPa, K = 7.8-10* MPa, 'y = 10852,
m = 13.8, n = 3.4, Zy = 81.4 MPa, Z; = 170 MPa.

The comparison between the first and second-order formulation is next
made for a microstructure with a second phase (12% volume fraction of
voids in this case) with an average size of about 6.6 um. The macroscopic
deformation history of a specific material point representing bending with
superimposed tension is extracted. This history is imposed to the RVE, after
which the micro scale BVP can be solved. The deformed microstructures
shown in figure 22 are then obtained for the considered point (with the
same macroscopic deformation history!). The deformation modes obtained
and the small scale strain fields are obviously different, which reflects the
kinematical enrichment of the second-order approximation. Note that the
RVE is clearly bending in the second-order case, which is the result of the
presence of the higher-order deformation modes that properly account for
the size of the microstructure. The periodicity of the microfluctuation field
can also be noticed. The macro field however, is no longer periodic for the
second-order case.

9.2 Full gradient versus couple stress

Considerable attention has been devoted in the literature to the use
of a couple stress theory (Toupin, 1962; Koiter, 1964), in which only the
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Figure 22. Deformed RVEs for the second-order (a) and first-order (b)
RVE with their micro fields of the effective plastic strain

rotational gradient field is taken into account (the curl of Fyr). In order to
illustrate the contribution of the stretch gradients, the deformation history
of a material point in the vicinity of the notch of a notched tensile specimen
has been considered. This deformation history is used to construct the
full gradient micro scale RVE and the couple stress micro scale RVE, the
latter involving the antisymmetric part :’Gl‘\“/I of 3Gy only (i.e. switching to
index notation, 36}1‘\‘}I = gGMijk — é(GMjki + Grkij), which is a third-order
representation of the second-order curvature tensor that is normally used in
couple stress theories). The analysis has been performed on the RVE shown
in figure 21, with an average void size of 0.13 um. The comparison between
the full gradient RVE and the couple stress RVE is shown in figure 23. This

Figure 23. Full gradient, full 3Gy (left) deformed RVE versus the cou-
ple stress, antisymmetric part of 3Gy deformed RVE (right) in the same
macroscopic point in the vicinity of the notch of a notched tensile specimen.
Equivalent plastic strain fields are depicted inside the RVEs

example illustrates the difference between the full gradient and couple stress
case and particularly emphasizes the relevance of the stretch gradients in
the scale transition.
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9.3 Geometrical size effects

The intrinsic role of the size of the microstructure becomes obvious
through the complexity of the deformed RVE obtained and the constitu-
tive response at the microscale which is triggered through the macroscopic
deformation. Clearly, large microstructures will show a more pronounced
gradient effect (e.g. the bending mode). Performing such a microstructural
size analysis in a single macroscopic material point for a given constant
loading history but with different underlying microstructures is straightfor-
ward. The extracted stress tensors are characteristic for the size effect that
has been obtained. The scalar norm of the macroscopic first Piola-Kirchhoff
stress tensor Py (i.e. defined as (PMi]-PMij)l/Q) and the higher-order ten-
sor *Qu (i.e. by taking (Qnrijk QMijk)l/Q) are good measures to illustrate
this, see figure 24. Deviations from the first-order theory are increasingly
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Figure 24. Scalar stress norms of the macroscopic first Piola-Kirchhoff
stress tensor (top) and the higher-order stress tensor (bottom) as a function
of the microstructural size in a given macroscopic material point

important for larger microstructures. In the limit of an infinitesimal RVE,
the first-order solution is always recovered.

9.4 Large macroscopic gradients

For a given microstructure with fixed intrinsic sizes, the second-order
framework turns out to be relevant again if local macroscopic deforma-
tions tend to be highly non-uniform, i.e. if the gradient Gy becomes non-
negligible with respect to the microstructural size. This is typically the case
upon localization of the deformation at the macro scale, where deformations
vary strongly in narrow zones. Localization leads to increasing values of
3G, which strongly interacts with the constitutive behaviour of the under-
lying microstructure. This is shown for the heterogeneous two-phase mate-
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rial considered with an average size of the weak phase of 13 um. The gradient

3Gy is increased proportionally from G54 = (Gyr @ °Gy)'/? = Omm™!
to 0.19mm~', 0.39mm ™!, 0.78 mm~" and 0.98 mm~"'. The deformed RVEs
with their effective plastic strain fields are shown in figure 25. The most left
RVE has a zero macroscopic gradient, which reflects a first-order loading
mode. For larger gradients, the deformed shape of the RVE becomes clearly
more complex (and more representative compared to a first-order result for
the real physical geometry of the microstructure).

n ng g dnt of th m o dfemten

0% 20% 40% 60% 80% 100%

Figure 25. Higher-order RVE response as the result of an increasing macro-
scopic gradient in a material point with a given microstructure. Equivalent
plastic strain fields are depicted inside the RVEs

9.5 Macroscopic localization

In order to scrutinize the added value of the second-order method on
the macro scale, an academic benchmark problem was set up in which large
macroscopic gradients appear and in which the material softens moderately
on the global RVE-scale. The example consists in a periodic micro-voided
plate, made of a commercial steel (T67CA), for which the matrix material
can be modelled with a (hypo)elasto-perfectly plastic constitutive model
(E = 210 GPa, v = 0.3, 0,0 = 507 MPa). The voids in the plate have a
diameter of 4 microns, whereas the periodic cell itself measures d = 10um,
see figure 26. An imperfection (i.c. a reduction) of 20 % is applied to the
yield stress in the left bottom cell, in order to trigger the appearance of
macroscopic gradients, that may lead to localization of deformations. The
second-order equilibrium scheme used requires higher-order boundary con-
ditions that have to be prescribed at the edges of domain. In this case, the
bottom and left edge in figure 26 are symmetry axes where normal displace-
ments and tangential stress tractions are taken zero. The top edge undergoes
a uniform vertical displacement, whereas the right edge is free. The nor-
mal derivatives of the tangential displacement components at the bottom,
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Figure 26. Benchmark problem for computational homogenization analysis
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left and top edge are constrained as well. Double stress vectors (Fleck and
Hutchinson, 1997) N3QM]\7 are zero at all edges.

Strong shear bands occur inside the unit cells, which leads to moderate
(geometrical) softening on the global RVE-level, see figure 27. The inade-
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Figure 27. Single unit cell under uniaxial tension. (a) Deformed geometry
and distribution of the equivalent Green-Lagrange strain within the unit
cell. (b) Stress-strain response.

quacy of the first-order scheme to deal with this type of behaviour becomes
apparent in figure 28, where the prescribed macroscopic displacement mea-
sures 0.9um. In here, the solution for two different mesh sizes is depicted,
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Figure 28. Localized (equivalent) Green-Lagrange strain field for two mesh
sizes on the basis of the first-order scheme

where the solution fully localizes according to the size of the elements used.
It is not surprising, that this homogenization method suffers from exactly
the same shortcomings as classical (local) constitutive softening models as
extensively investigated by many authors in the past decade (Schreyer and
Chen, 1986; Bazant and Pijaudier-Cabot, 1988; Aifantis, 1992; de Borst and
Miihlhaus, 1992; de Borst and Pamin, 1996; Peerlings et al., 1996; Svedberg
and Runesson, 1997; Geers et al., 1998; Engelen et al., 2003). This prop-
erty is inherently linked to the principle of local action, which associates for
each macroscopic point a volume with infinitesimal size at the RVE level.
Upon further refinement of the macroscopic mesh, the energy dissipated in
the softening RVE on the micro-scale is in fact dissipated in a shrinking
volume at the macroscopic scale, which is one of the main manifestations
of the ill-posedness of the boundary value problem (at the macro scale) to
be solved.

The second-order computational homogenization method leads to a higher-
order boundary value problem, for which the regularizing effects are known
to exist. The size of the microstructural volume element implicitly sets the
length scale in the macro scale analysis, which makes the numerical solu-
tion independent of the mesh size (the localization band converges to a finite
width), see figure 29.

A two-scale overview of the deformed state of the perforated plate is
shown in figure 30. Note that the behaviour ensuing from a regularized con-
tinuum theory for failure at the micro scale or a well-posed discrete failure
model at the micro scale cannot be upscaled with a first-order homogeniza-
tion method. In fact, the well-posedness at the micro scale basically implies
that the corresponding constitutive response at the macro scale does not
depend on the discretization at the micro scale. This is of course a neces-
sary condition, though not sufficient. The volume in which the energy was
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Figure 29. Localized (equivalent) Green-Lagrange strain field for two mesh
sizes on the basis of the second-order scheme
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Figure 30. Deformed unit cell patterns and their equivalent Green-

Lagrange strain fields embedded in the corresponding macroscopic solution
field

dissipated at the micro scale has to be transported correctly to the macro
scale to prevent loss of well-posedness at the macro scale. This is impossi-
ble within the standard local continuum mechanics framework (first-order
scheme), which again underlines the need for higher-order homogenization
methods for the upscaling of failure processes accompanied by macroscopic
softening.
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9.6 The higher-order RVE

It has already been emphasized that the requirement of statistical rep-
resentativeness constituted an important aspect in the definition of an RVE
for a classical first-order homogenization approach. As a result, there was no
restriction on the (maximum) size of a representative cell (on the contrary,
taking the first-order RVE as large as possible, allows to represent given
statistical characteristics more accurately). This is related to the fact that
the first-order computational homogenization scheme (as well as most other
conventional homogenization methods) deals with an ordinary local contin-
uum on the macroscopic level. Such a continuum does not possess a material
length scale and accordingly the size of a microstructural cell does not play
a role. For the second-order case, size does play a role and the definition
of an RVE is therefore not trivial. A detailed analysis on this subject has
been performed in Kouznetsova et al. (2004b). In here, it has been shown
that the size of the microstructural RVE used in a second-order compu-
tational homogenization scheme is intrinsically related to the length scale
of the resulting macroscopic homogenized higher-order continuum. Fur-
thermore, material and geometrical non-linearities significantly contribute
to the relation between the RVE size and the obtained macroscopic re-
sponse. In a second-order computational homogenization two conflicting
requirements on the microstructural representative volume element have to
be accommodated. On the one hand, the accurate determination of the
overall behaviour of a multi-phase material requires a large representative
cell with many (interacting) heterogeneities. On the other hand, the size of
a representative cell used in the second-order computational homogeniza-
tion scheme implicitly sets the length scale of the macroscopic homogenized
higher-order continuum.

In most cases, it is possible to give a reasonable estimate of the required
size of the representative cell based on the qualitative assessment of the
basic mechanisms of the underlying microstructural evolution, interaction
and the statistics of the considered microstructure. The lower limit for
the size of the RVE should be selected as the minimum size that contains
enough microstructural features to allow the development of the governing
microstructural physical mechanisms that are relevant for the problem un-
der consideration. The upper limit for the RVE size directly results from
the underlying assumption that the macroscopic deformations vary linearly
over the microstructural cell. If this assumption does not apply (i.e. if the
macroscopic deformations vary too strongly on the scale of the microstruc-
tural constituents) a computational homogenization scheme can never pro-
vide accurate results, since a separation of scales is not applicable. In such
cases the analysis should be performed by detailed microstructural mod-
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elling. This, in fact, sets an upper limit on the RVE size, which may be
used for the second-order homogenization analysis.

10 Conclusions

This contribution presented an overview of two computational homogeniza-
tion techniques for the multi-scale analysis of the mechanical behaviour of
(physically and geometrically) complex microstructures. It has been shown
that length scales can be bridged more accurately by transferring more in-
formation between the two scales considered. Rigourous scale transitions
have been established by making use of averaging theorems and the Hill-
Mandel energy condition. The first-order computational homogenization
strategy fully complies with the principle of local action and the principle
of separation of scales. The kinematics are essentially based on the lineariza-
tion of the macroscopic nonlinear deformation map. The second-order case
was based on the proper incorporation of the macroscopic gradient of the
deformation tensor into the kinematical micro-macro framework. Work-
conjugated stress and higher-order stress tensors are naturally retrieved
and a full gradient continuum is obtained on the macro scale. The main
advantage of the performed scale transition resides in the fact that the con-
stitutive response (either first- or second-order) is obtained directly from
the collective behaviour of all constituent phases at the micro scale. No
assumptions need to be made on the format of the macroscopic constitu-
tive relationship, which makes the proposed scale transition a versatile tool
to assess macroscopic constitutive relations. Furthermore, the methodol-
ogy can be fully implemented in a hierarchical solution scheme, where two
nested boundary value problems have to be solved. Consistency of the tan-
gent operator is preserved by the scale transition. The presented two-scale
framework is parallel in its nature, which makes the implementation of the
numerical solution method on a multi-processor cluster clearly beneficial.
Whether or not a second-order model should be used has to be de-
cided considering the governing scales, loading and the presence of fail-
ure/softening. Whenever the principle of separation of scales continues to
hold, macroscopic gradients remain small and failure does not occur, it is
certainly recommended to use the first-order computational homogeniza-
tion method. However, if damage and failure are of interest and need to be
linked to microstructural events, it is obvious that a higher-order technique
will be necessary. Even if a well-posed regularized solution strategy (either
continuum or discrete) is used on the micro level, a second-order scheme
will remain necessary. The length scale, which may be well defined on the
microstructural scale is not preserved through a first-order scale transition.
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Evidently, this becomes most apparent for failure analyses with softening.

Likewise, geometrical size effects, for which the size of the microstructure
is not negligible with respect to the geometry of the macro-specimen, have
to be captured by such a technique as well. Note that microstructural size
effects, which emerge from size-dependent small scale deformation mecha-
nisms (e.g. dislocation plasticity leading to the Hall-Petch effect, the Friedel
effect, etc.) can still be upscaled appropriately with a first-order scheme.
In here, the microstructural size effect becomes apparent in the constitu-
tive response of the microstructural phases. Most important property of
a second-order method is the fact that it implicitly incorporates a length
scale, which depends on the size of the microstructure. This size becomes
apparent on the macro-scale as the length scale that sets the width of local-
ization zones, or that governs geometrical size effects. The role of the RVE
size in a second-order scheme is crucial and has been discussed extensively
in Kouznetsova et al. (2004b).

Computational homogenization seems to make constitutive modelling
considerably easier. The first-order or second-order constitutive response
(which is difficult to capture in a closed format with its constitutive tensors),
is retrieved directly from the microstructure. This is particularly useful
to assess the homogenized ’continuum’ response of microstructural discrete
systems, in which e.g. atomistics, molecular dynamics or discrete dislocation
dynamics are used to obtain the fine scale response. Undoubtedly, many
issues are still to be explored: assessing higher-order boundary conditions
from the microstructure, upscaling various failure mechanisms within the
microstructure that lead to macroscopic degradation, the appearance of
geometrical size effects in miniaturization, etc.

Bibliography

E. C. Aifantis. On the role of gradients in the localization of deformation
and fracture. International Journal of Engineering Science, 30:1279—
1299, 1992.

F. P. T. Baaijens. Calculation of residual stresses in injection-molded prod-
ucts. Rheol. Acta, 30:284-299, 1991.

M. W. Barsoum, P. Kangutkar, and A. S. D. Wang. Matrix crack initia-
tion in ceramic matrix composites. Part I: Experiments and test results.
Composites Science and Technology, 44:257-269, 1992.

Z. P. Bazant and G. Pijaudier-Cabot. Nonlocal continuum damage, local-
ization instability and convergence. Journal of Applied Mechanics, 55:
287-293, 1988.

J. R. Brockenbrough, S. Suresh, and H. A. Wienecke. Deformation of metal-



Computational Homogenization 389

P.

R.

R.

matrix composites with continuous fibers: geometrical effect of fiber dis-
tribution and shape. Acta Metall. Mater., 39(5):735-752, 1991.

W. Chung, K. K. Tamma, and R. R. Namburu. Asymptotic expansion
homogenization for heterogeneous media: computational issues and ap-
plications. Composites Part A: Applied Science and Manufacturing, 32
(9):1291-1301, 2001.

D. Cook, D. S. Malkus, and M. E. Plesha. Concepts and applications of
finite element analysis. Wiley, Chichester, 1989.

de Borst and H. B. Miihlhaus. Gradient-dependent plasticity: Formula-
tion and algorithmic aspects. International Journal for Numerical Meth-
ods in Engineering, 35:521-539, 1992.

. de Borst and J. Pamin. Some novel developments in finite elemet proce-

dures for gradient-dependent plasticity and finite elements. International
Journal for Numerical Methods in Engineering, 39:2477-2505, 1996.

W. J. Drugan and J. R. Willis. A micromechanics-based nonlocal consti-

tutive equation and estimates of representative volume element size for
elastic composites. Journal of the Mechanics and Physics of Solids, 44
(4):497-524, 1996.

. A. B. Engelen, M. G. D. Geers, and F. P. T. Baaijens. Nonlocal im-

plicit gradient-enhanced softening plasticity. International Journal of
Plasticity, 2003. In press.

. Feyel and J. L. Chaboche. FE? multiscale approach for modelling the

elasto-viscoplastic behaviour of long fibre SiC/Ti composite materials.
Computer Methods in Applied Mechanics and Engineering., 183:309-330,
2000.

. Fish and W. Chen. Higher-order homogenization of initial/boundary-

value problem. Journal of Engineering Mechanics, 127(12):1223-1230,
2001.

. Fish, Kamlun Shek, Muralidharan Pandheeradi, and Mark S. Shephard.

Computational plasticity for composite structures based on mathemati-
cal homogenization: Theory and practice. Computer Methods in Applied
Mechanics and Engineering, 148(1-2):53-73, 1997.

. A. Fleck and J. W. Hutchinson. Strain gradient plasticity. Advances in

Applied Mechanics, 33:295-361, 1997.

. Forest, F. Pradel, and K. Sab. Asymptotic analysis of heterogeneous

Cosserat media. International Journal of Solids and Structures, 38:4585—
4608, 2001.

. Garikipati and T. J. R. Hughes. A variational multiscale approach to

strain localization - formulation for multidimensional problems. Com-
puter Methods in Applied Mechanics and Engineering, 188(1-3):39-60,
2000.



390 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

M. G. D. Geers, R. de Borst, W. A. M. Brekelmans, and R. H. J. Peerlings.

Strain-based transient-gradient damage model for failure analyses. Com-
puter Methods in Applied Mechanics and Engineering, 160(1-2):133-154,
1998.

M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans. Gradient-

enhanced computational homogenization for the micro-macro scale tran-
sition. Journal de Physique 1V, 11(5):5145-5152, 2001.

M.G.D. Geers, V.G. Kouznetsova, and W.A.M. Brekelmans. Multi-scale

o 0 @

second-order computational homogenization of microstructures towards
continua. International Journal for Multiscale Computational Engineer-
ing, 1(4):371-386, 2003.

. Ghosh, K. Lee, and S. Moorthy. Multiple scale analysis of heterogeneous

elastic structures using homogenisation theory and Voronoi cell finite
element method. International Journal of Solids and Structures, 32(1):
27-62, 1995.

. Ghosh, K. Lee, and S. Moorthy. Two scale analysis of heterogeneous

elastic-plastic materials with asymptotic homogenization and Voronoi
cell finite element model. Computer Methods in Applied Mechanics and
Engineering, 132:63-116, 1996.

. Ghosh, K. Lee, and P. Raghavan. A multi-level computational model for

multi-scale damage analysis in composite and porous materials. Inter-
national Journal of Solids and Structures, 38(14):2335-2385, 2001.

. E. Govaert, P. H. M. Timmermans, and W. A. M. Brekelmans. The

influence of intrinsic strain softening on strain localization in polycar-
bonate: modeling and experimental validation. J. Engrg. Mat. Technol.,
122:177-185, 2000.

. M. Guedes and N. Kikuchi. Preprocessing and postprocessing for mate-

rials based on the homogenization method with adaptive finite element
methods. Computer Methods in Applied Mechanics and Engineering, 83:
143-198, 1990.

A. Hall. Computer modelling of rubber-toughened plastics: random
placement of monosized core-shell particles in a polymer matrix and
interparticle distance calculations. J. Mater. Sci., 26:5631-5636, 1991.

. Hill. Elastic properties of reinforced solids: some theoretical principles.

JJournal of the Mechanics and Physics of Solids, 11:357-372, 1963.
Hill. On macroscopic effects of heterogeneity in elastoplastic media at
finite strain. Math. Proc. Camb. Phil. Soc., 95:481-494, 1984.

. Huet. Application of variational concepts to size effects in elastic hetero-

geneous bodies. J. Mech. Phys. Solids, 38(6):813-841, 1990.

Huet. Coupled size and boundary-condition effects in viscoelastic het-
erogeneous and composite bodies. Mechanics of Materials, 31:787-829,
1999.



Computational Homogenization 391

T. J. R. Hughes, G. R. Feijéo, L. Mazzei, and J. Quincy. The variational
multiscale method - a paradigm for computational mechanics. Computer
Methods in Applied Mechanics and Engineering, 166:3—24, 1998.

W. T. Koiter. Couple-stresses in the theory of elasticity. In Proceedings
of the Koninklijke Nederlandse Akademie van Wetenschappen. Series B,
volume 67, pages 1744, 1964.

V. G. Kouznetsova. Computational homogenization for the multi-scale anal-
ysis of multi-phase materials. PhD thesis, Eindhoven University of Tech-
nology, Mechanical Engineering Department, December 2002.

V. G. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens. An
approach to micro-macro modeling of heterogeneous materials. Compu-
tational Mechanics, 27:37-48, 2001.

V. G. Kouznetsova, M. G. D. Geers, and W. A. M. Brekelmans. Ad-
vanced constitutive modeling of heterogeneous materials with a gradient-
enhanced computational homogenization scheme. International Journal
for Numerical Methods in Engineering, 54:1235-1260, 2002.

V.G. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale
second-order computational homogenization of multi-phase materials: a
nested finite element solution strategy. Computer Methods in Applied
Mechanics and Engineering, 193:5525-5550, 2004a.

V.G. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Size of a rep-
resentative volume element in a second-order computational homoge-
nization framework. International Journal for Multiscale Computational
Engineering, 2(4):575-598, 2004b.

I. Jasiuk M. Ostoja-Starzewski, S. D. Boccara. Couple-stress moduli and
characteristic length of a two-phase composite. Mechanics Research
Communications, 26(4):387-396, 1999.

R. A. Mackay. Effect of fiber spacing on interfacial damage in a metal matrix
composite. Scripta Metall. Mater., 24:167-172, 1990.

J. C. Michel, H. Moulinec, and P. Suquet. Effective properties of compos-
ite materials with periodic microstructure: a computational approach.
Computer Methods in Applied Mechanics and Engineering, 172:109-143,
1999.

C. Miehe. Numerical computation of algorithmic (consistent) tangent mod-
uli in large-strain computational inelasticity. Comput. Methods Appl.
Mech. Engrg., 134:223-240, 1996.

C. Miehe. Strain-driven homogenization of inelastic microstructures and
composites based on an incremental variational formulation. Interna-
tional Journal for Numerical Methods in Engineering, 55:1285-1322,
2002.



392 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

C. Miehe. Computational micro-to-macro transitions for discretized micro-
structures of heterogeneous materials at finite strains based on the min-
imization of averaged incremental energy. Computer Methods in Applied
Mechanics and Engineering, 192:559-591, 2003.

C. Miehe and A. Koch. Computational micro-to-macro transition of dis-
cretized microstructures undergoing small strain. Archives in Applied
Mechanics, 72:300-317, 2002.

C. Miehe, J. Schotte, and M. Lambrecht. Homogenization of inelastic solid
materials at finite strains based on incremental minimization principles.
application to the texture analysis of polycrystals. Journal of the Me-
chanics and Physics of Solids, 50(10):2123-2167, 2002.

C. Miehe, J. Schotte, and J. Schroder. Computational micro-macro transi-
tions and overall moduli in the analysis of polycrystals at large strains.
Computational Materials Science, 16(1-4):372-382, 1999a.

C. Miehe, J. Schréder, and J. Schotte. Computational homogenization anal-
ysis in finite plasticity. Simulation of texture development in polycrys-
talline materials. Computer Methods in Applied Mechanics and Engi-
neering, 171:387-418, 1999b.

R. D. Mindlin. Microstructure in linear elasticity. Arch. Ration. Mech.
Anal., 16:51-78, 1964.

N. Moés and T. Belytschko. Extended finite element method for cohesive
crack growth. Engineering Fracture Mechanics, 69(7):813-833, 2002.

H. Moulinec and P. Suquet. A numerical method for computing the overall
response of non-linear composites with complex microstructure. Com-
puter Methods in Applied Mechanics and Engineering, 157:69-94, 1998.

T. Nakamura and S. Suresh. Effect of thermal residual stress and fiber
packing on deformation of metal-matrix composites. Acta Metall. Mater.,
41(6):1665-1681, 1993.

S. Nemat-Nasser. Averaging theorems in finite deformation plasticity. Me-
chanics of Materials, 31:493-523, 1999.

S. Nemat-Nasser and M. Hori. Micromechanics: overall properties of het-
erogeneous materials. Flsevier, Amsterdam, 1993.

O. Nguyen and M. Ortiz. Coarse-graining and renormalization of atomistic
binding relations and universal macroscopic cohesive behavior. Journal
of the Mechanics and Physics of Solids, 2002. In Press, Available online.

M. Ostoja-Starzewski. Random field models of heterogeneous materials.
Int. J. Solids Structures, 35(19):2429-2455, 1998.

M. Ostoja-Starzewski. Scale effects in materials with random distributions
of needles and cracks. Mechanics of Materials, 31:883-893, 1999.

S. Pecullan, L. V. Gibiansky, and S. Torquato. Scale effects on the elastic
behavior of periodic and hierarchical two-dimentional composites. J.
Mech. Phys. Solids, 47:1509-1542, 1999.



Computational Homogenization 393

R.

R.

P.

H. J. Peerlings, R. de Borst, W. A. M. Brekelmans, and J. H. P. de Vree.
Gradient-enhanced damage for quasi-brittle materials. International
Journal for Numerical Methods in Engineering, 39:3391-3403, 1996.

H. J. Peerlings and N. A. Fleck. Numerical analysis of strain gradient
effects in periodic media. Journal de Physique IV, 11:153-160, 2001.
Ponte Castaneda. New variational principles in plasticity and their ap-
plication to composite materials. Journal of the Mechanics and Physics
of Solids, 40:1757-1788, 1992.

. Ponte Castaneda. Second-order homogenization estimates for nonlinear

composites incorporating field fluctuations: I theory. Journal of the
Mechanics and Physics of Solids, 50(4):737-757, 2002.

. Ridderbos. The coarse-graining approach to statistical mechanics: how

blissful is our ignorance? Studies In History and Philosophy of Science
Part B: Studies In History and Philosophy of Modern Physics, 33(1):
65-67, 2002.

. L. Schreyer and Z. Chen. One-dimensional softening with localization.

Journal of Applied Mechanics, 53:791-979, 1986.

. Shan and A. M. Gokhale. Representative volume element for non-uniform

micro-structure. Comp. Mat. Sci., 24:361-379, 2002.

. J. M. Smit. Toughness of heterogeneous polymeric systems. PhD thesis,

Eindhoven University of Technology, Eindhoven, The Netherlands, 1998.

. J. M. Smit, W. A. M. Brekelmans, and H. E. H. Meijer. Prediction of the

mechanical behaviour of non-linear systems by multi-level finite element
modeling. Computer Methods in Applied Mechanics and Engineering,
155:181-192, 1998.

. J. M. Smit, W. A. M. Brekelmans, and H. E. H. Meijer. Prediction of the

large-strain mechanical response of heterogeneous polymer systems: local
and global deformation behaviour of a representative volume element of
voided polycarbonate. J. Mech. Phys. Solids, 47:201-221, 1999.

. P. Smyshlyaev and K. D. Cherednichenko. On rigorous derivation of

strain gradient effects in the overall behaviour of periodic heterogeneous
media. Journal of the Mechanics and Physics of Solids, 48:1325-1357,
2000.

. P. Smyshlyaev and N. A. Fleck. Bounds and estimates for linear compos-

ites with strain gradient effects. Journal of the Mechanics and Physics
of Solids, 42(12):1851-1882, 1994.

. Sukumar, N. Moés, Moran, and T. Belytschko. Extended finite element

method for three-dimensional crack modelling. International Journal for
Numerical Methods in Engineering, 48(11):1549-1570, 2000.

. M. Suquet. Plasticity today: modelling, methods and applications, chapter

Local and global aspects in the mathematical theory of plasticity, pages
279-310. Elsevier Applied Science Publishers, London, 1985.



394 M.G.D. Geers, V.G. Kouznetsova and W.A.M. Brekelmans

P. M. Suquet. Overall potentials and extremal surfaces of power law or
ideally plastic composites. Journal of the Mechanics and Physics of
Solids, 41:981-1002, 1993.

T. Svedberg and K. Runesson. A thermodynamically consistent theory of
gradient-regularized plasticity coupled to damage. International Journal
of Plasticity, 13(6-7):669-696, 1997.

K. Terada, M. Hori, T. Kyoya, and N. Kikuchi. Simulation of the multi-scale
convergence in computational homogenization approaches. International
Journal of Solids and Structures, 37(16):2285-2311, 2000.

K. Terada and N. Kikuchi. Nonlinear homogenization method for practical
applications. In S. Ghosh and M. Ostaja-Starzewski, editors, Compu-
tational Methods in Micromechanics, volume AMD-Vol.212, MD-Vol.62,
pages 1-16. ASME, 1995.

K. Terada and N. Kikuchi. A class of general algorithms for multi-scale anal-
yses of heterogeneous media. Computer Methods in Applied Mechanics
and Engineering, 190(40-41):5247-5464, 2001.

T. Tervoort. Constitutive modelling of polymer glasses: finite, nonlinear
viscoelastic behaviour of polycarbonate. PhD thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands, 1996.

R. A. Toupin. Elastic materials with couple-stress. Archive for Rational
Mechanics and Analysis, 11:385—-414, 1962.

R. A. Toupin. Theories of elasticity with couple-stress. Arch. Ration. Mech.
Anal., 17:85-112, 1964.

N. Triantafyllidis and S. Bardenhagen. The influence of scale size on the
stability of periodic solids and the role of associated higher order gradient
continuum models. Journal of the Mechanics and Physics of Solids, 44
(11):1891-1928, 1996.

H. C. E. van der Aa, M. A. H. van der Aa, P. J. G. Schreurs, F. P. T.
Baaijens, and W. J. van Veenen. An experimental and numerical study
of the wall ironing process of polymer coated sheet metal. Mechanics of
Materials, 32:423-443, 2000.

O. van der Sluis, P. J. G. Schreurs, W. A. M. Brekelmans, and H. E. H.
Meijer. Overall behaviour of heterogeneous elastoviscoplastic materials:
effect of microstructural modelling. Mechanics of Materials, 32:449-462,
2000.

O. van der Sluis, P. H. J. Vosbeek, P. J. G. Schreurs, and H. E. H. Meijer.
Homogenization of heterogeneous polymers. International Journal of
Solids and Structures, 36:3193-3214, 1999.



	Title Page

	Copyright Page

	Preface

	Table of Contents

	Atomistic Simulation Methods and their Application on Fracture

	1 Introduction

	2 Description of Interatomic Bonds

	2.1 Quantum Mechanics Based Descriptions of the Atomic Bound- ing

	2.2 Atomic Interaction Models, Potentials


	3 The Molecular Dynamics Method

	3.1 Force Calculation

	3.2 Integrating the Equations of Motion

	3.3 Relaxation Algorithms

	3.4 Boundary and initial conditions

	3.5 Stable Defects under Load

	3.6 Visualisation and Analysis of Defects


	4 Comcurrent Multiscale Methods

	4.1 Introduction and Classification of Multiscale Methods

	4.2 The Finite Element Atomistic (FEAt) Method

	4.3 The Quasicontinuum-Method Based on the Cauchy Born Rule

	4.4 The Fully Nonlocal Cluster-Based Quasicontinuum-Method

	4.5 Other Concurrent Multiscale Methods

	4.6 'Learn-On-The-Fly' - LOTF


	5 Atomistic Aspects of Fracture

	5.1 Lattice Trapping and the Directional Cleavage Anisotropy

	5.2 Metastable Fracture Surfaces


	6 Dynamics of Brittle Crack Propagation

	7 Summary

	Biblliography


	Fundamental dislocation theory and 3D dislocation mechanics

	1 Basic Dislocation Theory

	1.1 Heuristic Dislocation Creation

	1.2 Basic Dislocation Types

	1.3 Moving Dislocations

	1.4 Dislocations In Real Crystals


	2 Curved Dislocations

	2.1 Line Tension Model

	2.2 Dislocation Self-Interaction


	3 2-D Applications

	3.1 Simulation Technique

	3.2 Static Simulations Using the Line Tension Model

	3.3 Simulation Using Dislocation Self Interaction: Particle Strengthening

	3.4 Simulations of Thermally Activated Dislocation Glide


	4 3-D aspects

	4.1 Non-elastic 3-D effects

	4.2 Computational Aspects for 3-D Simulations


	Bibliography


	Plasticity of moderately loaded cracks and the consequence of the discrete nature of plasticity to fatigue and fracture 
	1 Introduction

	2 Stress field of a crack in a linear elastic material

	3 Dislocation crack tip interaction

	3.1 Linear elastic analysis of the stresses and deformations induced by an edge dislocation near a crack tip

	3.2 Moderate cyclic loading of a crack

	3.3 The involved length scales


	4 Modelling of plasticity, crack propagation and fracture surface contact

	4.1 The cyclic plastic deformation as a function of load amplitude and ber of cycles

	4.2 The effect of boundaries

	4.3 The threshold of cyclic plastic deformation and the effective threshold of stress intensity range

	4.4 Other discrete discrete dislocation simulations of fatigue crack propagation


	Bibliography


	Discrete Dislocation Plasticity Analysis of Cracks and Fracture

	1 Introducton

	2 Elastic Models of Dislocations

	2.1 General Idea

	2.2 Edge Dislocations


	3 Boundary Value Problems

	4 Dislocation Dynamics

	4.1 Annihilation

	4.2 Frank-Read sources


	5 Methodology for Crack Problems

	6 Cracks in Single Crystals

	6.1 Stationary Crack - Tip Fields

	6.2 Crack Propagation under Monotonic Loading


	7 Fatigue Crack Growth

	8 Cracks in Polycrystals

	Bibliography


	Statistical physical approach to describe the collective properties of dislocations

	1 Introduction

	2 Kroner-Kosevich field theory of dislocations

	2.1 Nye's dislocation density tensor

	2.2 Internal stress generated by the dislocation system

	2.3 Second order stress function tensor

	2.4 2D problems

	2.5 Time evolution of the dislocation density tensor

	2.6 Time evolution of the displacement field

	2.7 Problems related to coarse graining


	3 Linking micro- to mesoscale for a 2D dislocation system

	3.1 Discrete dislocation dynamics simulations in 2D

	3.2 Continuum theories developed for other systems, analogies and differences

	3.3 Hierarchy of the different oder density ffunctions

	3.4 Evolution of the plastic shear

	3.5 Self-consistent field approximation

	3.6 Stability ananlysis

	3.7 Numerical studies

	3.8 The role of dislocation-dislocation correlation

	3.9 Deformation of a constrained channel

	3.10 Application to metal-matrix composite

	3.11 Boltzmann thery of dislocation

	3.12 Hydrodynamics approach proposed by Kratochvil and Sedlacek


	4 Internal stress distribution generated by the dislocations

	4.1 General considerations

	4.2 Stress distribution at the dislocations

	4.3 The mean values of distributions P(r) and Po(r)

	4.4 Asymptomic properties of the stress distribution function


	Bibliography


	Basic ingredients, development of phenomenological models and practical use of crystal plasticity

	1 Introduction

	2 A thermodynamical approach to single crytal plasticity

	2.1 General fframework

	2.2 Derivation of single crystal models

	2.3 Yield surfaces

	2.4 Identification under tension and tension-shear loaadings

	2.5 Slip system selection

	2.6 Other crystal plasticity models 


	3 Finite element computations of single crystalline components

	3.1 Algorithm for the numerical integration

	3.2 Laboratory specimens

	3.3 Turbine Blades


	4 Finite Element Crystal Plasticity

	5 Uniform field models 

	5.1 Yield surfaces

	5.2 Scale transition rules

	5.3 Complex paths


	6 Conclusion and perspecives

	Bibliography


	Computational homogenization

	1 Introduction

	2 Underlying principles and assumptions

	2.1 Scale separation

	2.2 Local periodicity

	2.3 Homogenization principles 
	2.4 Computational homogenization scheme

	2.5 Kinematically driven multi-scale scheme


	3 The micro-scale problem

	3.1 The representative volume element

	3.2 Micro-scale characterization & equilibrium

	3.3 The macro-micro scale transition

	3.4 Micro-scale RVE boundary comditions


	4 The macro-scale problem

	4.1 The micro-macro scale transition

	4.2 Macroscopec stress tensors


	5 Two-scale numerical solution strategy

	5.1 RYE Boundary value problem

	5.2 Extraction of the macroscopic stress

	5.3 Extraction of the macroscopic tangent operator

	5.4 Nested solution strategy


	6 Example: two-scale coupled analysis in bending

	7 The RVE in first-order computational homogenization

	7.1 General concept of an RVE

	7.2 Unit cells versus RVEs


	8 Second-order computational homogenization

	8.1 Principles

	8.2 Two-scale higher-order kinematics

	8.3 Extracting stress tensors

	8.4 Two-scale computational solution strategy

	8.5 Parallel solution of the multi-scale nested boundary value problens


	9 Higher-order issues

	9.1 First-order versus second-order

	9.2 Full gradient versus couple stress

	9.3 Geometrical size effects

	9.4 Large macroscopic gradients

	9.5 Macroscopic localization

	9.6 The higher-order RVE


	10 Conclusions

	Bibliography




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




