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Abstract. Theoretical investigations concerning the motion of a
straight chain of mass points interconnected with kinematical con-
straints are considered. The ground contact can be described by dry
(discontinuous) friction. The controls are assumed in the form of
periodic functions with zero average, shifted in phase to each other.
There arises a spreading wave along the chain of mass points. In
the case of small friction we derive a condition for the locomotion
of the center of mass by means of an average method. Motion of
the system can be generated both in case of isotropic and non-
isotropic friction using specified controls, moreover the movement
in the latter case in direction of the larger friction force. The ob-
tained theoretical results give hints for the development of mobile
robots applying the described principles of the motion.

1 Introduction

The rectilinear motion on a rough plane of bodies (mass points) connected
by elastic elements is considered in a series papers. The system is moved
by forces that changed harmonically and acting between the bodies (Miller,
1988). The force of normal pressure is not changed and the asymmetry of
the friction force, required for a motion in a given direction, is provided by
the dependence of the friction coefficient on the sign of the velocity of the
bodies which make up the system (Blekhman, 2000). This effect can be
achieved if the contact surfaces of the bodies are equipped with a special
form of scales (needle-shaped plate with a required orientation of scales).
In the book, Zimmermann, Zeidis and Behn (2009), the dynamics of a
system of two bodies moving along a rough plane joined by an elastic el-
ement are considered. The motion is excited by a harmonic force acting
between the bodies. In the article, Zimmermann et al. (2004), a magne-
tizable polymer was employed as an elastic element and the motion was
excited by a magnetic field. In the case of small friction, the analytical
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expression for the average velocity of steady motion of the whole system
was found and it is shown, that the motion with this velocity is stable. A
similar investigation for a system of two bodies joined by a spring with a
nonlinear (cubic) characteristic was shown in the article, Zimmermann et
al. (2007). Algebraic equations were obtained for average velocities of the
steady motion. It was shown that there exist up to three different motion
modes, one or two of them are stable. Steigenberger (1999) presented a
numerical solution of the motion equations of a chain of bodies joined by
viscoelastic elements for the case, when each body can move only in one
direction. In the article Bolotnik et al. (2006), the rectilinear motion of a
vibration-driven system on a horizontal rough plane consisting of a carrying
body, which interacts with the plane directly, and of internal masses that
perform harmonic oscillations relative to the carrying body, is considered.
The vertical and horizontal oscillations of the internal masses have the same
frequency, but they are shifted in phase. It is shown, that by controlling
the phase shift of the horizontal and vertical oscillations, it is possible to
change the velocity of the steady motion of the carrying body, and it is not
necessary to use scales in order to provide friction asymmetry.

Zimmermann et al. (2009) considered the motion of two mass points
connected by a linear spring, when the coefficient of friction does not de-
pend on the direction of motion. Due to the change of the normal force in
dependence on time asymmetry of friction is present. The change of normal
force is realized by the rotation of two unbalanced rotors with various an-
gular velocities. Chernousko (2005) investigated the rectilinear motion of a
body with a movable internal mass moving along a straight line parallel to
the line of the body motion on a rough plane. A periodic control mode was
constructed for the relative motion of the internal mass for which the main
body moves with a periodically changing velocity passing the same distance
in a given direction. It is supposed that, at the beginning and the end of
each period, the velocity of the main body is zero. The internal mass can
move within fixed limits. The control modes relative to the velocity and
acceleration of the internal mass were considered. The optimal parameters
of both modes which lead to a maximum of the average velocity of motion
of the main body for a period were found.

In the present paper!' we consider the motion of a straight chain of three
equal mass points interconnected with kinematical constraints. The ground
contact can be described by dry (discontinuous) friction. The controls are
assumed in the form of periodic functions with zero average, shifted on a

' This study was partly supported by the German Research Society (DFG) (projects
Zi 540-12/1 and the SFB 622).



An Approach to the Dynamics and Kinematical Control... 459

phase one concerning each other. Thus, there is a travelling wave along
the chain of mass points. It is shown that, using special control algorithms
motion is also possible by isotropic friction and by constant normal force. In
the case of non-isotropic friction the motion is possible even in the direction
of the greater friction.

2 Equations of Motion

‘We consider the motion of a system of three mass points with the coordinates
x; (i =1,2,3) and with the masses m, connected by kinematical constraints
along an axis Ox (see Figure 1). The motion of the system is excited by the
kinematical constraints setting the distances [1(t) and l5(t) between mass
points.
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Figure 1. The schematic of the system of three mass points.

ll(t) =g+ al(t), lg(t) =ly+ az(t)7 al(O) = a2(0> =0. (1)

Let us consider the functions l;(t) and l2(t) (hence as well a;(t) and
as(t)) that are periodic in time ¢ with period T'. The kind of functions a4 (¢)
and ag(t) will be discussed below.

There is the force of friction F(V;) acting on each mass point from the
surface, directed against motion and depending on the velocity V; = x;
(i=1,2,3).

The velocity of the center of mass of system can be represented as V =
(&1 4 @2 + @3). The equation of the motion of the center of mass is:

3mV = F(i1) + F(ig) + F(3). (2)
Using xo(t) —x1(t) = 11(t), x3(t) —x2(t) = l2(t) and substituting expres-
sions (1) in (2) the equation of the motion (2) takes the form

. 2 1 1 1 1 2
_plv_24 1, P 1.1 7 1..2. )
3mV (V 30 3a2)+ <V+3a1 3a2>+ <V+3a1+3a2> (3)

We assume, that in the initial moment ¢t = 0 the velocity of the center of
mass V(0) = 0.
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Let us introduce dimensionless variables in according to the following
formulas (the asterisk * is a symbol of dimensionless variables):

xf:fxi (i=1,2,3), V*:Vz, t*zi,

L L T (4)
. QG b N 7F(V)7F(V*~L/T)
a; 7f7 ll 73 (17172)7 F (V )7 FS - Fs .

Here L is a characteristic linear dimension (for example the greatest value
a1(t) or as(t) in period T), Fy is a characteristic value of the friction force.
Hereafter, we use dimensionless variables. Introducing the dimensionless
variables in equation (4) and denoting wui(t) = a1(t), uz(t) = as(t), we
rewrite equation (3) in dimensionless variables (the old symbols are hold)

dV e 2 1 1 1 1 2
(v -2 Flvezu—= Flvezt w42
7 3|: ( 3u1 31@)4— (+3U1 3“2)4— (+3U1+3’ILQ>}, (5)

where ¢ = F,T?/mL.

Let us notice, that since a;(t) and aq(t) are periodic functions with pe-
riod T, therefore uy (t) = a1 (t) and also us(t) = as(t) are periodic functions
with period T and have zero average.

Further we assume everywhere, that € < 1. The smallness of the param-
eter ¢ shows that the value of the friction force F§ is small compared to the
amplitude of the “driving” force mL/T?. The equation (5) has a so called
“standard” form (Bogolyubov and Mitropolslki, 1961). Averaging the right
side of the equation (5) relative to the variable ¢ in the period 1, we obtain

dVv e

L =G, (6)

1
2 1 11 L2
G(V) = / [F(V—Sul—3U2>+F<V+3U1—3U2>+F<V+3U1+3u2>:|dt'
0

Now it is necessary to define the functions u (t), us(t) and the law of friction.

3 Smooth Control

Let us consider the functions a4 (t) and as(t), composed from the parabo-
las. These functions have continuous derivatives wi(t) and us(t), shown
in Figure 2 accordingly marked as a solid and as a dotted line and have
the form:
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Figure 2. The function u; () (sol. line), us(t) (dott. line).

They are equal to zero on an interval of length 1/3 and are shifted on time
for this magnitude one relatively to another.

4 Dry (Discontinuous) Friction

We assume that Coulomb dry friction acts on the mass points. The dimen-
sion force of dry friction F(V') satisfies the Coulomb law

F_=k.N, ifV<0,
F(V) = —Fy, ifV =0
—F, =—k,N, ifV>0.

Here N is the force of normal pressure (in this case N = mg, where g is
the free fall acceleration), k_ and k. are the coefficients of dry friction at
the motion in a negative and in a positive direction respectively, F < F,
(k— < k), the value Fy € [-F_, F4].
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The expression for dimensionless friction force takes the form (i = 1,2, 3):

1, z7<0,
Fr(@7) =< —po, =0, (8)
-, &7 >0.

Here, the value Fy in formulas (4) is Fy = F_ (F_ is the magnitude of the
friction force at the motion in a negative direction), p = F} /F_ = k4 /k_ >0,
Ho € [_1 7:“’]'

Let us prove this, assuming that ;(¢) is a piecewise continuous function
of time. This assumption is quite sufficient for simulating feasible motion.
The second condition (8) is connected with sticking (“stick-slip” motions).
This effect is characteristic for systems with dry friction. Let us notice, that
for the given control the velocity of each mass point could not be equal to
zero on a finite time interval. Hence, the “stick-slip” effect is absent.

After substituting expressions (7) and (8) into equation (6), we receive

3, V<-2/3,

dv e | 2—p—-3V1+u/2, -2/3<V <0, (©)
dt 3] 2—p—-6V(1+p), 0<V<1/3,

—3u, V>1/3.

We consider the solution of equation (9) with the initial condition V' (0) =0.
If ;o = 2 (friction in the positive direction is double the friction in the neg-
ative direction), the system remains in rest.

If < 2 the chain of mass points moves to the right with the velocity

_2=n [1 o2 (1) t}
6(1+p)

2—p

————. In the case of isotropic
6 (14 ) P

and tends to stationary value Vy; =

friction, we find Vi = 1/12.

Thus, under this control algorithms, motion is possible in the case of
isotropic friction as well as in the direction of the greater friction in the
case of non-isotropic friction. If 1 > 2 the chain moves to the left with the
velocity

V= 2(2—p) [1 — e % (1+p,)t}
3(1+p)

2
and tends to stationary value Vy = 3
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In Figure 3 the results of the numerical integration of the exact and aver-
aged equations in the case of symmetric friction (x = 1) and for parameter
€ = 0.3 are shown.
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Figure 3. Solutions of the exact and the averaged equations for dry friction.

5 Conclusions

It is shown that, using periodical control algorithms, the motion of a chain
of mass points is possible in the case of isotropic friction and in the case of
non-isotropic friction in the direction of the greater friction. The locomotion
is impossible without a shift of the phases in the control law.

In the case of small friction we derived a condition for the locomotion of
the center of the mass with the help of an average method. In the case of
smooth control we received explicit expressions for the average velocity of
the motion of the center of mass. A prototype of this system was created
(see Figure 4). Experiments with this system coincide with the qualitative
predictions of the theory.

Figure 4. A first prototype of the motion system, Keil (2009).
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