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14.1 Introduction

The Earth is a cold planet. About 85% of the biosphere

is exposed to temperatures below 5�C throughout

the year. Cold habitats span from the Arctic to the

Antarctic, from high mountain range environments

to the deep ocean. The major fraction of this low-

temperature environment is represented by the deep

sea (nearly 75% of the Earth is covered by oceans and

90% of the ocean volume is below 5�C), followed by

snow (35% of land surface), permafrost (24% of

land surface), sea ice (13% of the Earth’s surface)

and glaciers (10% of land surface). Psychrophilic

microorganisms, including bacteria, archaea, yeasts,

filamentous fungi and algae, have successfully

colonized these cold environments, because they

evolved special mechanisms to overcome the life-

endangering influence of low temperature. This chap-

ter describes mechanisms of microbial cold adaptation

and aspects of microbial activity and biodiversity in

cold alpine soils.

14.2 Mechanisms of Microbial
Adaptation to Cold

A change in temperature has an immediate effect on

all cellular processes of microorganisms since they are

too small to insulate themselves or to use avoidance

strategies by moving away from thermal extremes

(Russell 2008). To survive and grow successfully in

cold environments, psychrophilic microorganisms

have evolved a complex range of adaptations of all

their cellular constituents, which enable them to com-

pensate for the negative effects of low temperatures on

biochemical reactions. These adaptation mechanisms

are summarized below. Survival strategies of algae in

ice and snow have been described by Remias (see

chapter in this book).

14.2.1 Growth Characteristics

14.2.1.1 Arrhenius Law and Growth
When the environmental temperature of a population

of microorganisms drops, the growth rate decreases

until a point is reached when one or more critical

functions proceed so slowly that they are insufficient

to support cellular requirements, and cell growth

ceases. The effect of temperature on microbial growth

is described by the Arrhenius law relating the expo-

nential rise of the reaction rate to the temperature

increase:

K ¼ A e�Ea=RT

where A is a constant (relating to steric factors and

molecular collision frequency), Ea is the activation

energy, R is the gas constant, and T is the absolute

temperature.

According to this equation, any decrease in temper-

ature causes an exponential decrease of the reaction

rate, the magnitude of which depends on the value of
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the activation energy. The linear range of the

Arrhenius plot (the logarithmic value of the growth

rate is plotted as the reaction rate constant versus the

reciprocal of the absolute temperature) corresponds to

a physically “normal” temperature for growth,

whereas the plot derives from linearity at temperatures

near the upper or lower growth limits. Temperatures

outside the linear range are stress-inducing

temperatures, as shown by decreased microbial activ-

ity (e.g., enzyme production, degradation activities),

protein synthesis, membrane permeability, and

increased cellular stress (Feller and Gerday 2003;

Jaouen et al. 2004; Margesin et al. 2005; D’Amico

et al. 2006; Feller 2007). For psychrophiles, Arrhenius

plots remain linear down to 0�C, while plots for

mesophiles deviate from linearity at about 20�C
(Gounot and Russell 1999).

At low temperatures, growth rates of psychrophiles

are higher than those of mesophiles. While growth and

enzyme production of mesophilic microorganisms is

stopped in a refrigerator, psychrophiles actively divide

and secrete enzymes under such conditions (see below,

Fig. 14.1). Some wild-type psychrophilic bacteria dis-

play doubling times at 4�C comparable to that of fast-

growing E. coli laboratory strains grown at 37�C. The
latter fail to grow exponentially below 8�C, whereas
psychrophilic bacteria maintain doubling times as low

as 2–3 h at 4�C (Margesin and Feller 2010). Both for

psychrophiles and mesophiles, the temperature for

maximum biomass formation is well below the maxi-

mum temperature for growth. Psychrophilic bacteria

and yeasts produced the highest amounts of cells per

dry mass at 1�C, while cell numbers of mesophiles

were highest at 20�C (Margesin 2009).

14.2.1.2 Upper and Lower Temperature
Limits for Growth

The slope of a microbial growth curve is usually

greater at the high temperature compared to the low

temperature end of the scale. The reason lies in the

different mechanisms that are responsible for setting

the upper and lower limits of growth, particularly for

psychrophilic microorganisms.

The upper temperature limit for growth results from

heat denaturation of cellular proteins. Psychrophiles

have lower upper growth temperature limits than

mesophiles because of the particular thermolability of

one or more of their proteins (e.g. enzymes such as

aminoacyl-tRNA synthetases) which are essential for

growth/survival of the microorganisms. Other factors

that are responsible for the comparatively low upper

temperature limit for growth of psychrophiles include

the inability to synthesize RNA at superoptimum

temperatures, a reduced capacity of ribosomes to

bind tRNA, a lower precision of translation, as well

as alteration of the cell morphology and inhibition of

cell division (Margesin and Schinner 1994).
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Fig. 14.1 Effect of temperature on enzyme production (top),
on activity (middle) and on stability (bottom; residual activity
after 15 min of incubation at 25�C) of the cold-active pectate

lyase produced by the alpine Mrakia frigida strain A15 (●) and

its mesophilic counterpart produced by Bacillus subtilis (□).

Modified from Margesin et al. (2005)
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The lower temperature limit for growth of

psychrophiles is usually below 0�C, and its determina-

tion in practice is very difficult because of very slow

growth rates and the need to include antifreeze in the

culture medium which may further reduce the growth

rate. The theoretical minimum for psychrophiles may

be as low as �26.5�C (Nichols et al. 1997). This

estimation assumes that there has been no phase

change in the system. However, there are a number

of potential phase changes which make such calcu-

lated lower temperature limits an overestimate of the

true biological value (Margesin et al. 2002). Cold

denaturation of proteins generally occurs at a temper-

ature below �15�C (Franks 1995). The lower growth

temperature limit is fixed by the physical properties of

aqueous solvent systems inside and outside the cell.

The major growth-limiting factor at subzero

temperatures appears to be the availability of liquid

water. Below -10 to -15�C, the cell water begins to

freeze and intracellular salt concentrations increase

due to the progressive removal of water into ice

crystals. The resulting ionic imbalances, lowered

water activity, and desiccation have a toxic effect on

cells (Ingraham and Stokes 1959; Russell 1990). How-

ever, liquid water has been shown to exist at grain

contacts as low as -20�C (Jakosky et al. 2003).

Currently the functional low-temperature limits of

psychrophiles are -12�C for reproduction and -20�C for

metabolism (Bakermans 2008). Psychromonas

ingrahamii grows exponentially at -12�C with a dou-

bling time of 240 h (Riley et al. 2008). Microbial

activity at temperatures ranging from -9�C to -20�C
and even below has been convincingly demonstrated

by several laboratories and different techniques. Such

activities include DNA/protein synthesis at -15�C
(Christner 2002) and protein synthesis at -20�C (Junge

et al. 2006) by laboratory cultures, as well as CH4

production at -16.5�C (Rivkina et al. 2002) or glucose

oxidation at -20�C (Panikov et al. 2006) in permafrost

soil. Permafrost isolates have even been shown to grow

and to be active at temperatures as low as -35�C
(Panikov et al. 2006; Panikov and Sizova 2007).

14.2.2 Cold Sensing, Lipids and Membrane
Fluidity

The ability to adapt to low temperatures depends on

the ability to sense changes in temperature. One of the

primary cold sensors is the cell membrane that acts as

an interface between external and internal

environments (Rowbury 2003). At cold temperatures,

the membrane becomes more rigid, which activates a

membrane-associated sensor. The sensor transduces

the signal to a response regulator, which induces up-

regulation of genes involved in membrane fluidity

modulation, and ultimately results in up-regulation of

a number of genes involved in cold adaptation of

bacteria, such as genes for fatty acid desaturases,

genes that serve as RNA chaperones similar to cold-

shock proteins, genes involved in replication, tran-

scription and translation, and genes that encode a

number of enzymes (Shivaji and Prakash 2010).

The membranes of microorganisms, like other

organisms, contain a lipid bilayer that is essential for

many of the major cellular functions, including pas-

sive and active permeability, nutrient uptake and elec-

tron transport, environmental sensing, photosynthesis

and recognition processes. All of these functions

demand the maintenance of membrane stability.

Lipid fluidity is most influenced by the fatty acyl

moieties, whereas lipid phase depends more on the

nature of the head-group of the membrane lipids.

Both the gel to liquid-crystalline transition as well as

the bilayer (lamellar) to non-bilayer phase transition

are influenced by growth temperature. However,

changes in microbial culture temperature usually lead

to greater modifications in the fatty-acyl composition

than the head-group composition of membrane lipids,

and so the focus of attention has been on fluidity

effects (Margesin et al. 2002).

To increase membrane fluidity, microorganisms

apply various strategies. When growth temperature is

lowered, the most frequently observed change in fatty

acid composition is in the extent of unsaturation;

increased fatty acid unsaturation has been observed

with bacteria, archaea, fungi, and algae. Other

bacterial strategies include an increased content in

methyl-branched fatty acids, changes in fatty acid

isomerization, and an increase in the ratio of

anteiso/iso-branched fatty acids. A decrease in the

average chain length of fatty acids (only possible in

growing cells) as well as in the ratio of sterol/

phospholipids has been detected with bacteria, fungi

and algae (Robinson 2001; Russell 2008). A further

mode of modulation of membrane fluidity includes

changes in the composition of carotenoids; polar

carotenoids stabilize the membrane to a greater extent
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than non-polar ones (Chintalapati et al. 2004; Russell

2008; Shivaji and Prakash 2010). Snow algae also

produce large amounts of carotenoids in response to

environmental conditions (see chapter by Remias).

Among fatty acid changes in response to tempera-

ture, two categories can be distinguished: (1) Alter-

ation of the existing membrane (“modification

synthesis”; resulting in fatty acid unsaturation by

desaturases) is a more rapid process, especially in

response to sudden temperature decrease. (2) Some

fatty acid changes (“addition synthesis”, such as

methyl branching, altered chain length, ratio of sterol/

phospholipids) require de novo biosynthesis. In

general, after a temperature decrease, modification

synthesis takes place to restore membrane fluidity,

and later addition synthesis takes over (Russell 2008).

14.2.3 Cold-Active Enzymes

Psychrophiles produce cold-active enzymes. These

enzymes can be up to ten times more active at low

and moderate temperatures than their mesophilic

homologues (D’Amico et al. 2006). Furthermore, psy-

chrophilic enzymes are heat-labile and are frequently

inactivated at temperatures that are not detrimental to

their mesophilic counterparts (see below, Fig. 14.1).

The conformation and 3D structures of psychro-

philic proteins are not markedly different from their

mesophilic homologues, and, furthermore, all amino

acid side chains that are essential for the catalytic

mechanism are strictly identical. It was found, how-

ever, that cold-active enzymes maintain the appropri-

ate flexibility and dynamics of the active site at

temperatures at which their mesophilic and thermo-

philic counterparts have severely restricted molecular

motions (Feller and Gerday 2003; D’Amico et al.

2006). Thus, cold-active enzymes have a higher struc-

tural flexibility in order to compensate for the freezing

effect of their cold habitats (Feller 2007). This is

achieved by the disappearance of discrete stabilizing

interactions either in the whole molecule or at least in

structures adjacent to the active site. Amongst these

destabilizing factors, the most relevant include a

reduced number of proline residues and of electro-

static interactions (ion pairs, H-bonds, aromatic

interactions), a weakening of the hydrophobic effect,

the strategic location of glycine residues, an improved

interaction of surface side chains with the solvent or an

improved charge-induced interaction with substrates

and cofactors (Siddiqui and Cavicchioli 2006). This

adaptive destabilization of psychrophilic enzymes has

been demonstrated to be responsible for both cold-

activity and low thermal stability (D’Amico et al.

2003; Feller 2007).

14.2.4 Cold-Shock Proteins
and Cold-Acclimation Proteins

As a response to sudden temperature changes,

representatives of all thermal classes of bacteria

(psychro-, meso- and thermophilic) display cold-

shock responses. Mesophilic bacteria react with a

transient overexpression of cold-shock proteins

(CSPs) that are involved in a number of cellular pro-

cesses, e.g., transcription, translation, protein folding,

regulation of membrane fluidity, general metabolism,

and chemotaxis (Phadtare 2004; Phadtare and Inoue

2008). The basic principles of cold-shock response are

similar in psychrophiles and mesophiles. However, the

cold-shock response in psychrophiles differs from that

in mesophiles or thermophiles bacteria in two major

aspects: cold shock does not repress the synthesis of

housekeeping proteins, and the number of CSPs is

higher and increases with the severity of the cold

shock. In addition, psychrophiles permanently pro-

duce one set of proteins (cold-acclimation proteins,

CAPs) during growth at low temperature and increase

the steady-state level of CAPs when the temperature is

lowered. These CAPs are mostly constitutively (rather

than transiently) expressed at low temperatures and

may be fundamental to life in the cold and ensure

improved protein synthesis at low temperature

(Gounot and Russell 1999; Margesin et al. 2002;

Phadtare and Inoue 2008).

14.2.5 Cryoprotectants and Ice-Binding
Proteins

In frozen environments, bacteria are exposed to

conditions that require the partial removal of water

from the intracellular space to maintain the structure

and function of the cell. Since water is essential for the

functioning of macromolecular structures, any signifi-

cant deviation in the accessibility of water, such as the

physical state (alteration from the aqueous phase to an
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ice crystal), poses a severe threat to the survival

of organisms (Beall 1983). Psychrophilic micro-

organisms produce various compounds to protect

themselves or the extracellular environment against

intracellular freezing or to minimize the deleterious

effects of ice crystal formation (Kawahara 2002).

14.2.5.1 Low-Molecular Mass
Cryoprotectants

Freezing results in an osmotic shock. Osmoprotection

of bacterial and fungal cells is achieved by the accu-

mulation of compatible solutes (low molecular mass

compounds) after cold shock in bacteria and fungi

(Gounot and Russell 1999; Robinson 2001; Kawahara

2008; Shivaji and Prakash 2010). These compounds

include polyamines, sugars (e.g., glucose, fructose,

sucrose, trehalose, ribose), polyols (a class of alcohols

derived from sugar; e.g., glycerol, sorbitol, mannitol),

and amino acids (e.g., alanine, proline).

Ribose-1-phosphate acts as cryoprotectant of

enzymes (observed with Pantoea agglomerans),

while the accumulation of glucose results in the

depression of freezing points (observed with Pantoea

ananatis) (Kawahara 2008). Trehalose accumulation

in bacteria plays a role in preventing protein denatur-

ation and aggregation (Phadtare 2004). This sugar is

also accumulated in alpine mycorrhizal roots and in

fungal hyphae in response to low temperatures

(Niederer et al. 1992; Weinstein et al. 2000). For

example, trehalose accumulation in Mortierella
elongata at 5�C increased by 75% compared to the

accumulation at 15�C. Polyols (e.g. glycerol, manni-

tol) act as cryoprotectants in fungi (Robinson 2001).

Glycine betaine aids to maintain optimum mem-

brane fluidity at low temperatures by preventing cold-

induced aggregation of proteins; this compound has

been shown to enhance growth of Listeria

monocytogenes at low temperatures (Chattopadhyay

2002). Colwellia psychrerythraea (Methé et al. 2005)

and Psychromonas ingrahmii (Riley et al. 2008) have

genes for the production of compatible solutes, such as

glycine betaine and betaine cholin, which may balance

the osmotic pressure under freezing conditions.

14.2.5.2 Ice-Nucleation Proteins
Some bacteria (at least six Gram-negative and epi-

phytic species of the genera Pseudomonas, Pantoea

and Xanthomonas) and fungi (e.g., Fusarium and

related genera) produce proteins that can induce

ice-nucleation at temperatures higher than -3�C. Ice-
nucleating agents serve as templates for ice crystalli-

zation and provide resistance to desiccation. The

induction of frost damage in plants by bacteria that

produce ice-nucleating agents can be an adaptive

advantage to get access to nutrients from plants

(Lundheim 2002).

According to the sequences of genes conferring ice-

nucleating activity in six bacterial strains, all strains

encode ice-nucleating proteins with a molecular

mass of 120–150 kDa and similar primary structures.

The ice-nucleating proteins contain three domains:

the N-domain is responsible for the binding of lipids,

polysaccharides and ice-nucleating proteins; the

R-domain acts as a template for ice formation, and

their length (ca. 800–1,300 amino acids) is correlated

with the amplitude of ice nucleation activity; the

C-terminal domain is required for ice-nucleation

activity as demonstrated with mutants (Kawahara

2008).

14.2.5.3 Antifreeze Proteins
Antifreeze proteins (AFPs) are ice-binding proteins

that have the ability to modify the ice crystal structure

and inhibit the growth of ice in two ways. (1) Prior to

freezing, they lower the freezing point of water with-

out altering the melting point (thermal hysteresis

activity). (2) In the frozen state, AFPs show ice recrys-

tallization inhibition activity, whereby the proteins

inhibit the growth of large crystals at the expense of

small crystals at subzero temperatures (Gilbert et al.

2004).

AFPs have been detected in bacteria, fungi, plants

and animals (Margesin et al. 2007). Bacterial and plant

AFPs generally show substantially lower thermal hys-

teresis compared to AFPs from animals. Insects and

fish have up to 2�C and 5�C of thermal hysteresis,

respectively, while bacterial and fungal

representatives show values of �0.1�C (Gilbert et al.

2005; Hoshino et al. 2009). Bacteria that produce

AFPs with a low thermal hysteresis activity, however,

use the recrystallization inhibition activity of the AFPs

(Xu et al. 1998; Yamashita et al. 2002; Gilbert et al.

2005). As an exception, the AFP produced by the

Antarctic lake-ice bacterium Marimonas primoryensis

has a thermal hysteresis activity (lowers the freezing

point of water) of more than 2�C, which is higher than

the maximum activity of most fish AFPs. The protein

is Ca2+-dependent and located in the periplasmic
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space, while bacterial and fungal AFPs are generally

secreted extracellularly (Gilbert et al. 2004; Gilbert

et al. 2005).

Thus, bacteria may apply different strategies:

freeze tolerance can be obtained with low levels of

thermal hysteresis activity but high recrystallization

inhibition activity, a strategy similar to the one

employed by some plants (rye grass, carrot, winter

rye) (Griffith et al. 1992; Worrall et al. 1998;

Sidebottom et al. 2000). On the other hand, freeze

avoidance by high thermal hysteresis activity can

inhibit the growth of ice crystals before they propagate

into the bacterium (Gilbert et al. 2005).

Among AFP-producing bacteria from Antarctic

lakes, members of the Gammaproteobacteria
dominated (Gilbert et al. 2004). The AFP produced

by an Arctic plant growth promoting rhizobacterium

(Pseudomonas putida) is an extracellular

glycolipoprotein that also has ice-nucleating activity

(Xu et al. 1998).

In fungi, extracellular AFPs are assumed not only

to prevent hyphae from freezing, but also to ensure

substrate availability by preventing nutrients from

freezing at subzero temperatures (Robinson 2001).

AFPs have been detected in psychrophilic

phythopathogenic fungi causing snow molds. These

fungi belong to various taxa (Oomycetes, Ascomycetes
and Basidiomycetes), grow at temperatures as low as

< -7�C, and can grow and attack dormant plants

(crops, winter cereals and conifer seedlings) at low

temperatures under snow cover (Hoshino et al.

2009). Basidiomycetous snow molds produce extra-

cellular AFPs to keep the extracellular environment

unfrozen, which, however, does not support mycelial

growth. In contrast, the ascomycete Sclerotia borealis

does not produce extracellular AFPs but grows at

subzero temperatures due to osmotic stress tolerance;

its mycelial growth is even higher under frozen

conditions compared to unfrozen conditions (Hoshino

et al. 2009).

14.2.5.4 Exopolymers
Exopolymeric substances (EPS) are complex organic

materials composed primarily of high-molecular mass

exopolysaccharides. Exopolysaccharides contain

major amounts of hexose and pentose. Contrary to

intracellular adjustments to cold stress, EPS are

secreted as mucous slime by many aquatic

microorganisms. Key functions of EPS include the

mediation of adhesion to wet surfaces and the forma-

tion of the biofilm matrix, which traps nutrients,

protects the cell against unfavorable environmental

conditions and mediates biochemical interaction

(Mancuso Nichols et al. 2005). EPS production is

high in bacteria living in aquatic environments; high

EPS abundance has been found in Antarctic and Arctic

sea ice (Krembs et al. 2002; Mancuso Nichols et al.

2005).

14.2.6 Antioxidant Defense

Protection against reactive oxygen species (ROS) is

important for survival at low temperatures where

the solubility of gases is increased. ROS can result in

significant damage to cell structures. Bacterial

strategies for the detoxification of ROS include the

production of high amounts of antioxidant enzymes

(catalase, superoxide dismutases, dioxygen-consuming

lipid desaturases) or the absence of ROS-producing

pathways. Pseudoalteromonas haloplanktis employs

both strategies; it entirely lacks the ROS-producing

molybdopterin metabolism. In addition, the bacterium

produces dioxygen-consuming lipid desaturases in

order to obtain protection against oxygen and to main-

tain membrane fluidity at the same time. By contrast,

Colwellia psychrerythraea achieves an enhanced anti-

oxidant capacity through the presence of catalase and

superoxide dismutases (Medigue et al. 2005; Methé

et al. 2005).

14.2.7 Genomic and Proteomic Insights
into Microbial Cold Adaptation

Microbial adaptation to low temperatures requires a

vast array of metabolic and structural adjustments at

nearly all organization levels of the cell, which are

gradually being understood thanks to the availability

of genome sequences and proteomic studies of a num-

ber of psychrophilic bacteria. A survey of these data

shows that the main up-regulated functions for growth

at low temperatures are protein synthesis (transcrip-

tion, translation), RNA and protein folding (adaptation

of the molecular structure of proteins to ensure

increased flexibility at low temperatures), mainte-

nance of membrane fluidity, production and uptake

of compounds for cryoprotection (extracellular

192 R. Margesin



polysaccharides, compatible solutes), antioxidant

activities and regulation of specific metabolic

pathways. However, only few features are commonly

shared by all psychrophilic genomes and proteomes,

which suggests that cold adaptation superimposes on

pre-existing cellular organization and, accordingly,

the strategies to cope with cold environments may

differ among psychrophiles (Medigue et al. 2005;

Methé et al. 2005; Kurihara and Esaki 2008; Riley

et al. 2008; Bakermans et al. 2009; Qiu et al. 2009).

14.3 Microbial Activity and Biodiversity
in Alpine Soils

Compared to the Arctic, the European Alpine region is

characterized by higher maximum temperatures, lower

minimum temperatures, large and frequent (diurnal)

temperature fluctuations and freeze-thaw events,

higher precipitation (up to 2,000–3,000 mm per year)

and air humidity, lower atmospheric pressure, and

higher intensity of solar radiation.

Alpine microorganisms are equally well-adapted to

low temperatures as polar microorganisms. The com-

parison of cold-active enzymes (pectate lyase) from

alpine and Siberian psychrophilic yeasts (Mrakia
frigida) clearly showed that the enzymes produced

by these strains had an almost identical activity and

stability pattern (Fig. 14.1). Both enzymes were ther-

molabile, but resistant to repeated freezing and

thawing (Margesin et al. 2005). The two strains had

almost identical growth characteristics (high cell

densities at 1–15�C, no growth above 20�C), yet

their enzyme production patterns were completely dif-

ferent. The Siberian strain produced pectate lyase over

the entire growth temperature range, with a maximum

at 1�C, whereas enzyme production by the alpine

strain was highest at 5�C, very low at 15�C and absent

at 20�C. Enzyme production patterns may be related to

the natural environmental conditions of the strains.

14.3.1 Soil Microbial Activity at Low
Temperatures

Soil microorganisms play an essential role in soil

organic matter turnover and biogeochemical cycling.

Soil microbial activity and community composition

are influenced by a number of biotic and abiotic

factors, such as vegetation type, soil type, and

a range of environmental conditions including temper-

ature. Low temperature is not a limiting factor for

microbial activity in cold soils. There is evidence

of a wide range of metabolic activities in all cold

ecosystems; microbial activity in soil has been

reported to occur at subzero temperatures down

to -20�C (Lipson and Schmidt 2004; Panikov and

Sizova 2007) and substantial carbon mineralization

has been described to occur in cold soils during winter

months (Clein and Schimel 1995).

A change in temperature affects soil microbial

communities and nutrient cycling (Uchida et al. 2000;

Hart 2006). Microbial activities in cold soils respond

quickly to seasonal changes (Lipson 2007; Edwards and

Jefferies 2010). In seasonally frozen soils from some

alpine and arctic sites, microorganisms metabolize

slowly at subzero temperatures, presumably in contact

with unfrozen water. However, microbial biomass

declines in late winter (at the winter-spring transition),

before the soil temperature rises above 0�C. This

decline in biomass has been attributed to low levels of

available nutrients, rupture of cell membranes due to

repeated freeze-thaw cycles, and the loss of compatible

solutes from viable cells due to an abrupt change in

osmotic potential (Jefferies et al. 2010).

Like polar microorganisms, psychrophilic alpine

microorganisms, able to grow and to be active at

low temperatures, play a key ecological role in

their natural habitats. Measurement of microbial

activities in the Austrian Central Alps at altitudes of

2,300–2,500 m a.s.l. included litter decomposition,

CO2-release and enzyme activities (phosphatase,

urease, xylanase, cellulase). Soil activities were

generally lower on wind-exposed sites and were low

in poorly drained soils of the snowbed, which

was explained by a deficiency of substrates and fre-

quent drought stress during the vegetation period.

Irrespectively of the site, soil microbial activities

increased immediately after the frozen topsoils thawed,

when bacterial and fungal populations increased

(Schinner 1982a, 1983). Another factor influencing

soil microbial respiration and enzyme activities is soil

depth; activities were considerably higher in surface

layers of alpine soils and sharply decreased with

depth. Soil microbial activities are further influenced

by vegetation. For example, activities in soils with
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alpine dwarf shrubs (Loiseleuria procumbens) were

higher by a factor of five compared to activities in

Carex curvula grassland soils (Schinner 1982a).

The degradation of xylan, the major polysaccharide

in plant cell walls, occurs mainly by microbial

xylanases. Recently it has been shown that xylanase

activities in cold alpine tundra soil are very diverse

and widely distributed among soil bacteria; they could

be clustered into six groups and were related to

xylanases from Actinobacteria, Proteobacteria,

Verrucomicrobia, Bacteroidetes, Firmicutes and

Acidobacteria (Wang et al. 2010).

Soil microbial respiration is a critical component of

the global carbon cycle. In subalpine coniferous forest

soil, microbial communities isolated from under-snow

soil were characterized by high biomass-specific res-

piration rates, i.e. higher growth rates and lower

growth yields. Bacteria may contribute to soil hetero-

trophic respiration to a greater extent, as demonstrated

by higher bacterial growth rates and lower growth

yields compared to those from fungi. In winter, psy-

chrophilic bacteria of the genus Janthinobacterium

dominated (Lipson et al. 2009).

Litter decomposition is an important factor in nutri-

ent cycling. Microorganisms decomposing plant litter

belong to phylogenetically diverse taxa. In cold Arctic

and Antarctic ecosystems, wood decomposition

appears to proceed via “soft rot” by anamorphous

ascomycetes, rather than by “white rot” or “brown

rot” basidiomycetes (Ludley and Robinson 2008).

Cold periods during the growing season can signif-

icantly limit the symbiotic association of legumes with

rhizobia. Cold-adapted rhizobia, isolated from alpine

or arctic legumes, are useful to improve the symbiosis

under cold stress. Arctic rhizobia increased the pro-

duction of legumes by 30% through improved nitrogen

fixation (Prevost et al. 2003).

14.3.2 Microbial Activity and Biodiversity
Related to Altitude

The change of temperature and other environmental

conditions with altitude in mid-latitude mountains has

often been compared to their change with latitude: a

1,000 m higher altitude in the Alps may roughly be

equivalent to a 1,000 km move northward (Kuhn

2008). Thus, temperature gradients in mountains

can be similar to those relating to latitude; the

altitude-controlled vegetation belts on mountain

slopes represent an analogue to the different latitudi-

nally controlled climatic zones. The annual average

temperature decreases with increasing latitude; in

mountain areas the temperature decreases with

increasing altitude. While climate changes (e.g. tem-

perature decrease) are spread over thousands of

kilometres along latitude gradients, they occur on

a comparatively small scale along altitude gradients,

which makes mountain regions useful for climate

change studies (Diaz et al. 2003).

Altitudinally defined climatic conditions, soil

properties, and vegetation regulate microbial commu-

nity structures and metabolic rates in mountain soils

(Whittaker 1975; Schinner and Gstraunthaler 1981).

An increase in altitude, and thus in environmental

harshness (lower annual temperature, lower soil nutri-

ent contents), generally results in a decrease in micro-

bial abundance and activity (respiration rate, microbial

biomass, litter degradation, enzyme activities), as well

as in shifts in microbial (bacterial and fungal) commu-

nity composition (Schinner and Gstraunthaler 1981;

Schinner 1982b; V€are et al. 1997; Ma et al. 2004; Giri

et al. 2007; Lipson 2007; Niklinska and Klimek 2007).

With increasing altitude, and thus colder climate

conditions (lower air and soil temperatures, more ice

and frost days, higher precipitation) over a gradient

ranging from 1,500 to 2,530 m in the Austrian Central

Alps, a number of significant changes were observed:

an increase in altitude resulted in a significant decrease

of bacterial and fungal biomass, on one hand, and in a

significant increase in the relative amounts of psychro-

philic heterotrophic bacteria and fungal populations,

on the other hand. Gram-negative bacteria detected by

FISH (fluorescence in situ hybridization) increased

with altitude. Since FISH is based on the detection of

rRNA, and the rRNA content is associated with the

metabolic state of microbial cells, FISH-detected cells

represent the active, ecologically relevant part of the

microbial community (Wagner et al. 2003).

Proteobacteria dominated at high altitudes, while the

amount of members of the Cytophaga-
Flavobacterium-Bacteroides group decreased with

altitude (Margesin et al. 2009).

With increasing altitude, and thus colder climate

conditions, microorganisms are better adapted to the

cold. Microbial activity (soil dehydrogenase)

decreased with altitude, yet relative activities at low

temperatures were significantly higher in alpine than
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in subalpine soils (Fig. 14.2), which means that

enzymes from soils from higher altitudes are better

adapted to the prevailing cold climate conditions. This

can be attributed partly to the influence of altitude on

physicochemical properties; e.g., lower contents of

clay, humus and nitrogen due to unfavorable

conditions for soil formation with increasing altitude;

slower nutrient cycling at high altitudes due to cold

temperatures could possibly affect organic matter

structure and quality (Margesin et al. 2009).

Similarly to European alpine soils, the diversity of

the psychrophilic bacterial community in high altitude

cold soils of the Himalayan mountains decreased

with increasing altitude. The culture-independent

approach revealed a dominance of Preoteobacteria.

However, viable bacteria consisted of almost equal

amounts of Gram-negative bacteria (with a dominance

of Gammaproteobacteria and a low amount of

Bacteroidetes) and Gram-positive bacteria (with a

dominance of Firmicutes). Isolates produced a number

of hydrolytic enzymes; the most frequently observed

enzyme was lipase (Gangwar et al. 2009). The abun-

dance of ammonia-oxidizing bacteria and archaea in

high-altitude soils (4,000–6,500 m) of Mt. Everest

was also influenced by altitude. Archaeal ammonia

oxidizers were more abundant than bacterial ones at

altitudes below 5,400 m, while the situation was

reversed at higher altitudes (Zhang et al. 2009).

Soils at high altitudes (3,000–5,400 m) in Annapurna

Mountains, Nepal, are characterized by low water

activity due to dry climate, and consequently these

soils contained psychrophilic fungi with xerophilic

characteristics; the most extreme xerophiles belonged

to the ascomycetous genera Eurotium and Aspergillus

(Petrovic et al. 2000). Chytridiomycota dominated

fungal diversity in periglacial soils at high altitudes

in the Himalayans and Rockies, which can be

attributed to the high abundance of carbon sources

that support chytrid growth (eolian deposited pollen

and microbial phototrophs) as well to the saturation of

soils with water under snow (Freeman et al. 2009).

Conclusions

A change in temperature has an immediate effect

on all cellular processes of microorganisms, since

they are too small to insulate themselves from the

cold or to use avoidance strategies such as moving

away from thermal extremes. Therefore, they alter

their cellular composition. To survive and grow

successfully in cold environments, psychrophilic

microorganisms have therefore evolved a complex

range of adaptations of all their cellular

constituents, which enable them to compensate for

the negative effects of low temperatures on bio-

chemical reactions. The main up-regulated

functions for growth at low temperatures

are protein synthesis (transcription, translation),

RNA and protein folding, maintenance of mem-

brane fluidity, production and uptake of compounds

for cryoprotection (extracellular polysaccharides,

compatible solutes), antioxidant activities and reg-

ulation of specific metabolic pathways. The

emerging fields of genome and proteome analyses

will give further new insights into the psychrophilic

lifestyle.
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Fig. 14.2 Effect of temperature on soil dehydrogenase activity

(top) and on the relative enzyme activity (bottom; maximum

activity as determined in the figure on top ¼ 100%) in subalpine

(1,500–1,900 m) and alpine (2,100–2,530 m, above the forest

line) soils (Margesin et al. 2009). INTF ¼ iodonitrotetrazoium

formazan
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Microorganisms in cold soils play an essential

role in organic matter turnover and biogeochemical

cycling. Like polar microorganisms, psychrophilic

alpine microorganisms, able to grow and to be

active at low temperatures, play a key ecological

role in their natural habitats. An increase in envi-

ronmental harshness (e.g. lower air and soil

temperatures, more frost and ice days, higher pre-

cipitation at higher altitudes) generally results in a

decrease in microbial abundance and activity, as

well as in shifts in microbial community composi-

tion. On the other hand, microorganisms living in

colder climate conditions are better adapted to the

cold, as shown by higher relative amounts of psy-

chrophilic bacterial and fungal populations and

higher relative enzyme activities.
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Methé BA, Nelson KE, Deming JW, Momen B, Melamud E,

Zhang X, Moult J, Madupa R, Nelson WC, Dodson RJ,

Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT,

Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M,

Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H,

Utterback TR, Feldblyum TV, Fraser CM (2005) The psy-

chrophilic lifestyle as revealed by the genome sequence of

Colwellia psychrerythraea 34 H through genomic and

proteomic analyses. Proc Natl Acad Sci USA 102(31):

10913–10918

Nichols DS, Nichols PD, Russell NJ, Davies NW,

McMeekin TA (1997) Polyunsaturated fatty acids in

the psychrophilic bacterium Shewanelle gelidimarina
ACAM456T: molecular species analysis of major

phospholipids and biosynthesis of eicosapentaenoic acid.

Biochim Biophys Acta 1347:164–176

Niederer M, Pankow W, Wiemken A (1992) Seasonal changes

of soluble carbohydrates in mycorrhizas of Norway spruce

and changes induced by exposure to frost desiccation. Eur

J For Pathol 22:291–299

Niklinska M, Klimek B (2007) Effect of temperature on the

respiration rate of forest soil organic layer along an elevation

gradient in the Polish Carpathians. Biol Fertil Soil 43:511–518

Panikov NS, Sizova MV (2007) Growth kinetics of

microorganisms isolated from Alaskan soil and permafrost

in solid media frozen down to -35�C. FEMS Microbiol Ecol

59:500–512

Panikov NS, Flanaganb PW, Oechelc WC, Mastepanovd MA,

Christensend TR (2006) Microbial activity in soils frozen to

below -39�C. Soil Biol Biochem 38:785–794

Petrovic U, Gunde-Cimerman N, Zalar P (2000) Xerotolerant

mycobiota from high altitude Anapurna soils, Nepal. FEMS

Microbiol Lett 182:339–342

Phadtare S (2004) Recent developments in bacterial cold-shock

response. Curr Issues Mol Biol 6:125–136

Phadtare S, Inoue M (2008) Cold-shock proteins. In:

Margesin R, Schinner F, Marx JC, Gerday C (eds)

Psychrophiles: from biodiversity to biotechnology. Springer,

Berlin, pp 191–209

Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J,

Levesque G (2003) Cold-adapted rhizobia for nitrogen fixa-

tion in temperate regions. Can J Bot Rev Can Bot

81:1153–1161

Qiu Y, Vishnivetskaya A, Lubman DM (2009) Proteomic

insights: cryoadaptation of permafrost bacteria. In: Margesin

R (ed) Permafrost soils, vol 16, Soil biology. Springer,

Berlin, pp 169–181

Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ,

Land ML, Thompson LS (2008) Genomics of an extreme

psychrophile Psychromonas ingrahamii. BMC Genom 9:210

Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova

VA (2002) Methane generation in permafrost sediments.

Dokl Biol Sci V383:179–181

Robinson CH (2001) Cold adaptation in Arctic and Antarctic

fungi. New Phytol 151:341–353

14 Psychrophilic Microorganisms in Alpine Soils 197



Rowbury RJ (2003) Temperature effects on biological systems:

introduction. Sci Prog 86:1–8

Russell NJ (1990) Cold adaptation of microorganisms. Phil

Trans R Soc Lond B 329:595–611

Russell NJ (2008) Membrane components and cold sensing.

In: Margesin R, Schinner F, Marx JC, Gerday C (eds)

Psychrophiles: from biodiversity to biotechnology. Springer,

Berlin, pp 177–190

Schinner F (1982a) CO2-Freisetzung, Enzymaktivit€aten und

Bakteriendichte von B€oden unter Spalierstr€auchern und

Polsterpflanzen in der alpinen Stufe. Ecol Plant 3:49–58

Schinner F (1982b) Soil microbial activities and litter decompo-

sition related to altitude. Plant Soil 65:87–94

Schinner F (1983) Litter decomposition, CO2-release and

enzyme activities in a snowbed and on a windswept ridge

in an alpine environment. Oecologia 59:288–291

Schinner F, Gstraunthaler G (1981) Adaptation of microbial

communities to the environmental conditions in alpine

soils. Oecologia 50:113–116

Shivaji S, Prakash JSS (2010) How do bacteria sense and

respond to low temperatures? Arch Microbiol 192:85–95

Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Ann

Rev Biochem 75:403–433

Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C,

Holt C, Telford J, McArthur A, Worrall D, Hubbard R,

Lillford P (2000) Heat-stable antifreeze protein from grass.

Nature 406:256

Uchida M, Nakatsubo T, Kasai Y, Nakane K, Horikoshi T

(2000) Altitudinal differences in organic matter mass loss

and fungal biomass in a subalpine coniferous forest, Mt.

Fuji, Japan. Arct Antarct Alp Res 32:262–269

V€are H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and

microbial activity along an oroarctic altitudinal gradient in

Northern Fennoscandia. Arct Alp Res 29:93–104

Wagner M, Horn M, Daims H (2003) Fluorescence in situ

hybridisation for the identification and characterisation of

prokaryotes. Curr Opin Microbiol 6:302–309

Wang GZ, Wang YR, Yang PL, Luo HY, Huang HQ, Shi PJ,

Meng K, Yao B (2010) Molecular detection and diversity of

xylanase genes in alpine tundra soil. Appl Microbiol

Biotechnol 87:1383–1393

Weinstein RN, Montiel PO, Johnstone K (2000) Influence

of growth temperature on lipid and soluble carbohydrate

synthesis by fungi isolated from fellfield soil in the maritime

Antarctic. Mycologia 92:222–229

Whittaker RH (1975) Communities and ecosystems, 2nd edn.

Mac Millan, New York

Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C,

Lillford P, Telford J, Holt C, Bowles D (1998) A carrot

leucine-rich-repeat protein that inhibits ice recrystallization.

Science 282:115–117

Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and

characterization of an antifreeze protein with ice nucleation

activity from the plant growth promoting rhizobacterium

Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

Yamashita Y, Kawahara H, Obata H (2002) Identification of

a novel anti-ice-nucleating polysaccharide from Bacillus
thuringiensis YY529. Biosci Biotechnol Biochem 66:

948–954

Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009)

Altitude ammonia-oxidizing bacteria and archaea in soils

of Mount Everest. FEMS Microbiol Ecol 70:208–217

198 R. Margesin


	14 Psychrophilic Microorganisms in Alpine Soils
	14.1 Introduction
	14.2 Mechanisms of Microbial Adaptation to Cold
	14.2.1 Growth Characteristics
	14.2.1.1 Arrhenius Law and Growth
	14.2.1.2 Upper and Lower Temperature Limits for Growth

	14.2.2 Cold Sensing, Lipids and Membrane Fluidity
	14.2.3 Cold-Active Enzymes
	14.2.4 Cold-Shock Proteins and Cold-Acclimation Proteins
	14.2.5 Cryoprotectants and Ice-Binding Proteins
	14.2.5.1 Low-Molecular Mass Cryoprotectants
	14.2.5.2 Ice-Nucleation Proteins
	14.2.5.3 Antifreeze Proteins
	14.2.5.4 Exopolymers

	14.2.6 Antioxidant Defense
	14.2.7 Genomic and Proteomic Insights into Microbial Cold Adaptation

	14.3 Microbial Activity and Biodiversity in Alpine Soils
	14.3.1 Soil Microbial Activity at Low Temperatures
	14.3.2 Microbial Activity and Biodiversity Related to Altitude
	Conclusions

	References


