
A Guide to the Tucker Tensor
Decomposition for Data Mining:
Exploratory Analysis, Clustering

and Classification

Annabelle Gillet1(B), Éric Leclercq1, and Lucile Sautot2

1 LIB Univ. Bourgogne Franche Comté EA7534, Dijon, France
{annabelle.gillet,eric.leclercq}@u-bourgogne.fr
2 UMR TETIS, AgroParisTech, Montpellier, France

lucile.sautot@agroparistech.fr

Abstract. Tensors are powerful multi-dimensional mathematical
objects, that easily embed various data models such as relational, graph
or time series. Furthermore, tensor decomposition operators are of great
utility to reveal hidden patterns and complex relationships in data.
Among these decompositions, the Tucker decomposition allows to fac-
torize a tensor into a smaller core tensor and a set of factor matrices. In
this article, we propose to study the capabilities of the Tucker decom-
position when it is used in data mining techniques such as exploratory
analysis, clustering and classification of data. We apply these different
techniques on practical examples using several datasets having a ground
truth. It is a preliminary work to add the Tucker decomposition to the
Tensor Data Model, a model aiming at making tensors data-centric, and
at optimizing operators in order to enable the manipulation of large ten-
sors.

Keywords: Data mining · Tensor decomposition · Tucker
decomposition

1 Introduction

When facing the volume and the variety of data, data mining techniques are often
used to extract value. These techniques are rather diverse, and can consist in, for
example, finding patterns in data, clustering similar elements, or training a model
in order to classify new data [32]. However, depending on the technique used, data
often have to be transformed in order to fit the data model required by the algo-
rithm. When doing so, if the data model used is too restrictive to fully represent
the data, the result obtained can be of a lesser quality than one obtained with a
data model that allows to fully represent the characteristics of data.

In this context, tensors are a valuable solution [7]. Indeed, their multi-dimen-
sional nature allows to easily embed different data models. For example, a tensor
c© Springer-Verlag GmbH Germany, part of Springer Nature 2023
A. Hameurlain et al. (Eds.): TLDKS LIV, LNCS 14160, pp. 56–88, 2023.
https://doi.org/10.1007/978-3-662-68014-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-68014-8_3&domain=pdf
https://doi.org/10.1007/978-3-662-68014-8_3

A Guide to the Tucker Tensor Decomposition for Data Mining 57

can naturally contains the adjacency matrix of a graph, but also more complex
representation of graphs such as the labelled one [3]. Time series can also be repre-
sented along with their context, thus allowing to give more insights regarding data.
Furthermore, tensors have powerful analytical operators, the tensor decomposi-
tions, that are used for various purposes such as dimensionality reduction, noise
elimination, identification of latent factors, pattern discovery, ranking, recommen-
dation or data completion. They are applied in a wide range of applications, includ-
ing genomics [18], analysis of health records [46], graph mining [44] and identifi-
cation and evolution of communities in social networks [3,34]. Papalexakis et al.
in [35] review major usages of tensor decompositions in data mining applications.

One of the decompositions is the Tucker decomposition, that factorizes a ten-
sor with N dimensions into a smaller core tensor and a set of N factor matrices,
i.e., one for each dimension. The columns of the factor matrices can be seen as
the features for the concerned dimension, and the lines as the signature of a spe-
cific element of the dimension over the features. The core tensor is also of major
importance, as it represents the relationships of the features among dimensions.
However, these different elements make the results of the Tucker decompositon
tricky to interpret, especially compared to more straightforward decompositions,
such as the CANDECOMP/PARAFAC [41] that does not produce a core tensor.

In this article, we study how different data mining techniques can be applied
with the Tucker decomposition. These techniques include the exploratory analysis,
that aims at finding patterns in data without having particular knowledge regard-
ing the specificities of the data, the clustering, that gathers similar elements with-
out supervision, and the classification, that gives a class to a new element depend-
ing on a model trained on known data. Several datasets covering different domains
have been used to illustrate these techniques. It is a preliminary work aiming at
integrating the Tucker decomposition into the Tensor Data Model [15,28]. TDM
adds the notion of schema and data manipulation operators to tensors, in order to
make them data-centric and to avoid technical and functional errors brought by
the manipulation of dimensions and elements of dimensions solely through integer
indexes [39]. It also uses optimization techniques to allow the execution of opera-
tors, including the decompositions, on large-scale data [13].

The remaining of this article is organized as follows: Sect. 2 gives an overview of
tensors and of some main operators, Sect. 3 details how main data models can be
embedded into tensors, Sect. 4 presents the Tucker decomposition and two major
algorithms to compute it, Sect. 5 relates of data mining techniques available with
the Tucker decomposition that have been experimented on datasets, Sect. 6 eval-
uates the robustness of the Tucker decomposition regarding missing values, and
finally Sect. 7 concludes the article and presents perspectives of future works.

2 Background of Tensors

Tensors are general abstract mathematical objects which can be considered
according to various points of view, such as a multi-linear application or as
the generalization of matrices to multiple dimensions. We will use the definition

58 A. Gillet et al.

of a tensor as an element of the set of the functions from the product of N sets
Ij , j = 1, . . . , N to R : X ∈ R

I1×I2×···×IN , where N is the number of dimen-
sions of the tensor or its order or its mode (see Fig. 1). Table 1 summarizes the
notations used in this article. We adopt the same notation as Cichocki in [7].

Fig. 1. Tensors of different orders

Tensor operators, by analogy with operations on matrices and vectors, are
multiplications, transpositions, matricizations (or unfolding) and decompositions
(also named factorizations). We only highlight the most significant operators on
tensors and matrices which are used in Tucker decomposition algorithms. The
reader can consult [7,27] for an overview of the major operators.

Table 1. Symbols and operators used

Symbol Definition

X A tensor
X(n) Matricization of a tensor X on mode-n
a A scalar
v A column vector
M A matrix
◦ Outer product
⊗ Kronecker product
A⊗−n A(N) ⊗ · · · ⊗ A(n+1) ⊗ A(n−1) · · · ⊗ A(1)

[M]+ Replace negative elements by 0 or small positive value
×n Mode-n product
X ×−n {A} X ×1 A(1) · · · ×n−1 A(n−1) ×n+1 A(n+1) · · · ×N A(N)

‖X‖F Frobenius norm

A fiber noted Yi1,...,in−1,:,in+1,...,iN consists in extracting a vector v ∈ R
In

from the dimension n of a tensor Y ∈ R
I1×I2×···×In×···×IN . To do so, all the

A Guide to the Tucker Tensor Decomposition for Data Mining 59

dimensions except the one to extract are fixed on a specific index, and the values
of the vector are obtained with:

vin = yi1,i2...,in−1,in,in+1,...,iN

Slices are close to fibers, and aim at extracting a matrix M ∈ R
In1×In2 from

the dimensions n1 and n2 of a tensor Y ∈ R
I1×I2×···×In1×···×In2×···×IN . All the

dimensions except two are fixed on a specific index, and the values are obtained
with:

min1 ,in2
= yi1,i2,...,in1−1,in1 ,in1+1,...,in2−1,in2 ,in2+1,...,iN

The concept of fibers and slices can be extended to extract a n-order sub-tensor
from a N -order tensor with n < N , by fixing all the dimensions on a specific
index except for n dimensions.

The outer product between a tensor Y ∈ R
I1×I2×···×IN and another

tensor X ∈ R
J1×J2×···×JM noted Y ◦ X produces a tensor Z ∈

R
I1×I2×···×IN×J1×J2×···×JM in which the elements are equal to:

zi1,i2,...,iN ,j1,j2,...,jM = yi1,i2,...,iNxj1,j2,...,jM

It allows to combine all the values from both tensors, by having as many dimen-
sions as the sum of the order of the input tensors. For example, when applying
the outer product on two vectors (1-order tensors), it will produce a matrix (2-
order tensor), in which an element ei,j corresponds to the ith element of the first
vector multiplied by the jth element of the second vector.

The mode-n product allows to multiply a tensor by a matrix or a vector.
For a tensor X ∈ R

J1×J2×···×Jn×···×JN and a matrix M ∈ R
In×Jn , the result of

the mode-n product noted X ×n M is a new tensor Y ∈ R
J1×J2×···×In×···×JN

where:

yj1,...,jn−1,in,jn+1,...,jN =
Jn∑

jn=1

xj1,...,jn−1,jn,jn+1,...,jNmin,jn

It modifies the size of the dimension n from Jn to In. It can be compared to a
standard matrix multiplication: for all the indexes of the dimension n, a fiber
v1 ∈ R

Jn is obtained, and the multiplication M × v1 is performed, resulting in
a vector v2 ∈ R

In that replaces the fiber extracted from the tensor.
The mode-n product between a N -order tensor X ∈

R
I1×···×In−1×In×In+1×···×IN and a vector v ∈ R

In noted X ×n v produces a
(N − 1)-order tensor Y ∈ R

I1×···×In−1×In+1×···×IN where:

yi1,...,in−1,in+1,...,iN =
In∑

in=1

xi1,...,in−1,in,in+1,...,iN vin

The behavior of the mode-n product between a tensor and a vector is the same
as the one between a tensor and a matrix, except that the product is a dot
product between v and v1 ∈ R

In , that yields a scalar. Thus, the resulting size
of the dimension n is 1, and it can be removed from the tensor.

60 A. Gillet et al.

The mode-n matricization of a tensor X ∈ R
I1×I2×···×IN noted X(n)

produces a matrix M ∈ R
In×Πj �=nIj , where:

min,j = xi1,...,in,...,iN with j = 1 +
N∑

k=1
k �=n

(ik − 1)
k−1∏

m=1
m �=n

Im

The matricization is a useful operator, that allows to convert a tensor into a
matrix without losing information, in order to apply matrix operators such as
the Hadammard product, the Kronecker product or the Khatri-Rao product [7].

The Kronecker product between two matrices A ∈ R
I×J and B ∈ R

K×L

noted A ⊗ B produces a matrix C ∈ R
(IK)×(JL), in which every elements of A

are multiplied by the matrix B:

cm,n = ai,jbk,l where m = k + (i − 1)K and n = l + (j − 1)L

The Frobenius norm of a tensor X ∈ R
I1×I2×···×IN noted ‖X‖F is com-

puted with:

‖X‖F =

√√√√
I1∑

i1=1

· · ·
IN∑

iN=1

|xi1,...,iN |2

It is often used on the difference between two tensors in order to estimate their
similarity.

3 From Data Models to Tensors

By means of their multi-dimensional nature, tensors can represent various data
models. This section highlights how common data models can be embedded into
a tensor.

3.1 Key-Value Model

The key-value model stores data as (key, value) pairs [4]. Thus, 1-order tensors
KV ∈ R

|key| can be used to represent this model, with the dimension storing
the keys, and the values of the tensor being the value of the pairs. With tensors,
the key-value model can be extended to a multi-keys model, in which a value is
indexed by several keys. To do so, the tensor must have as many dimensions as
the number of keys in a pair, i.e., for K keys the tensor will have K dimensions
MKV ∈ R

|key1|×···×|keyK |.

3.2 Relational and Column Models

A relation R (or table) [24] is a set of tuples (v1, v2, . . . , vN), where each element
vi is a member of a domain Domi, so the set-theoretic relation R is a subset of
the cartesian product of the domain Dom1 × · · · ×DomN . With this definition,

A Guide to the Tucker Tensor Decomposition for Data Mining 61

any relation can be represented with a N -order tensor R ∈ R
|Dom1|×···×|DomN | in

which the values are the number of occurrences of this combination of elements.
OLAP data cubes [16], that are obtained from GROUP BY queries, are natu-

rally embedded into tensors because they already represent a multi-dimensional
array (see Fig. 2). By formally defining a data cube with f : (A1, . . . , AN) → v,
we can use a N -order tensor DC ∈ R

|DomA1 |×···×|DomAN
| populated with the v

values.

Fig. 2. Building a tensor from a GROUP BY query

This representation can also model a relation in which the association of
N − 1 elements guarantees a unique combination (e.g., a primary key), and a
last element that carries a specific value. For example, for tuples that represent
a user, its city and its age, the users and the cities can each be embedded into
a dimension, and the age can be the value of the tensor.

The column model, which we consider as a semi-structured model with a
fixed schema (i.e., that has a fixed number of columns), includes CSV files and
dataframes [36]. This type of model is close to the relational one, thus the same
mechanisms of modelling can be used.

3.3 Graph Models

A simple graph G = (V,E), where V is the set of the vertices (or nodes) and E ⊆
V ×V the set of the edges (or links), can be represented by its adjacency matrix,
and thus by a 2-order tensor G ∈ R

|V |×|V | that can take into consideration the
direction and the weight of the edges.

However, this is a basic representation, and embedding a graph into a tensor
can be even more useful. In a lot of real world graphs, the edges are labelled. An
edge labelled graph has its edges defined by E ⊆ V ×Lab×V , where Lab is a set
of labels [2]. For example, in a social network the interactions among users are
represented by edges that can carry more information, such as the time of the
interaction or important words (or hashtags) used in the message. Tensors, as
opposed to classical graph representations, can naturally put each type of label
into a dimension and have a more complete representation of the data, i.e., for a
graph with L different labels and |Labi| the number of distinct values taken by

62 A. Gillet et al.

the label Labi, we have LG ∈ R
|V |×|V |×|Lab1|×···×|LabL| (see Fig. 3). The previous

example can be modeled as a 4-order tensor, with one dimension for the source
user, one for the destination user, one for the hashtag and one for the time.

Fig. 3. Building a tensor from a labelled graph

Multi-layer networks [26] are also of high interest. A multi-layer network
M = (VM , EM , V,L) with D layers has a set of vertices V and a set of layers
L = {L1, . . . , LD}. A vertex can be present in multiple layers, so VM ⊆ V ×L1 ×
· · ·×LD. Thus, the edges link a vertex within a layer to another vertex within a
layer, that is EM ⊆ VM × VM . Each layer represents a category of vertices. This
type of graph can be embedded into a 4-order tensor, i.e., M ∈ R

|V |×|V |×|L|×|L|,
with one dimension for the source vertex, one for the destination vertex, one for
the source layer and one for the destination layer. On top of that, by adding
dimensions to this representation, tensors can represent easily labelled multi-
layer networks.

3.4 Time Series

A time series Y = (Yt : t ∈ T) follows the evolution of a metrics for a given
element during time [17]. A 1-order tensor Y ∈ R

|T | can represent a standard
time series by storing the time in the dimension. However, tensors can shine as
model for time series, as they allow to integrate much more parameters of the
creation of the time series (e.g., the sensor, the location), each parameter being
represented as a dimension (see Fig. 4). By doing so, time series are viewed in
their global context, and therefore it adds more precision and information to the
analyses performed on them.

A Guide to the Tucker Tensor Decomposition for Data Mining 63

Fig. 4. Building a tensor from time series

3.5 Images and Videos

A gray scale image of size x × y is a matrix GI ∈ R
x×y, thus a 2-order tensor

GI ∈ R
x×y. More complex images that use multiple color channels (e.g., RGB,

YUV, CYMK) can be embedded in a 3-order tensor CI ∈ R
x×y×c, where c is the

number of channels. Videos can be considered as a succession of images, called
frames. In this configuration, a video is a 4-order tensor V ∈ R

x×y×c×f where f
is the number of frames.

4 Tucker Decomposition

The Tucker decomposition [45] factorizes a N -order tensor X ∈ R
I1×···×IN into

a core tensor G ∈ R
R1×···×RN and N factor matrices A(n) ∈ R

In×Rn . The
Fig. 5 shows a representation of the Tucker decomposition applied on a 3-order
tensor. The ranks R1, . . . , RN are input parameters that determine the number
of column vectors (that can be seen as the different features) for each factor
matrix. For each rank Ri, we have Ri ≤ Ii, and most of the time Ri 	 Ii. The
input tensor can be approximated from the result of the decomposition with:

X
 G ×1 A(1) · · · ×N A(N)

64 A. Gillet et al.

Fig. 5. The Tucker decomposition, with X ∈ R
I1×I2×I3 the input tensor, G ∈

R
R1×R2×R3 the core tensor, and A(1) ∈ R

I1×R1 , A(2) ∈ R
I2×R2 and A(3) ∈ R

I3×R3

the factor matrices

The order of the elements of the dimensions of the input tensor does not
impact the result of the decomposition. Indeed, changing it would only reorder
the line vectors of the factor matrices, as each line vector stores the result of the
decomposition for a given element on the dimension corresponding to the factor
matrix.

To compute the Tucker decomposition, several algorithms have been pro-
posed. Each has some advantages, as for example imposing more easily the
orthogonality constraint (that allows a good clustering of elements) or the non-
negativity constraint (that provides more interpretable results). Two major algo-
rithms are presented in this section: the Higher-Order Orthogonal Iteration
(HOOI) and the Hierarchical Alternating Least Squares Non-negative Tucker
Decomposition (HALS-NTD).

4.1 Higher-Order Orthogonal Iteration Algorithm

The HOOI algorithm [8] is the most famous one to compute the Tucker decompo-
sition (Algorithm 1). It depends primarily on the Singular Value Decomposition
(SVD), that it extends to cope with multiple dimensions.

The HOOI starts by initializing the factor matrices, by matricizing the orig-
inal tensor on each dimension in order to apply the SVD and to use the Rn

left singular vectors (matrix U of the result of the SVD truncated at the Rn
th

column) as factor matrices. During the iterative phase (lines 2 to 7), each factor
matrix is improved. To do so, a partial core tensor Y ∈ R

R1×···×In×···×RN is
computed by performing the mode-n product on the original tensor and all the
factor matrices except the one being improved. This partial core tensor is then
matricized on the mode corresponding to the concerned dimension, and the SVD
is executed on it. As for the initialization step, the Rn left singular vectors are
used as the new factor matrix. The iterative phase allows to refine the result,

A Guide to the Tucker Tensor Decomposition for Data Mining 65

as the partial core tensor takes into consideration the other factor matrices. So,
each factor matrix is improved depending on the other factor matrices, thus rein-
forcing the discovering of relationships among elements of dimensions. When a
convergence criteria is met, the final core tensor is computed from the original
core tensor and all the factor matrices (line 8).

Algorithm 1. Higher-Order Orthogonal Iteration (HOOI)
Require: Tensor X ∈ R

I1×I2×···×IN and target ranks R1, . . . , RN

Ensure: Core tensor G ∈ R
R1×R2×···×RN and factor matrices U(1), . . . ,U(N) with

U(n) ∈ R
In×Rn

1: Initialize U(1), . . . ,U(N), with U(n) ∈ R
In×Rn , U(n) ← SV D(X(n)).U(:, 1 : Rn)

2: repeat
3: for n = 1, . . . , N do
4: Y ← X ×N U(N)T ×n+1 U(n+1)T ×n−1 U(n−1)T · · · ×1 U(1)T

5: U(n) ← SV D(Y(n)).U(:, 1 : Rn)
6: end for
7: until < convergence >
8: G ← X ×N U(N)T · · · ×1 U(1)T

A simpler version of the HOOI algorithm exists, the Higher-Order Singular
Value Decomposition (HOSVD), that removes the iterative part of the HOOI
algorithm (lines 2 to 7). It is less precise, as the iterative part of the HOOI allows
to refine the result until a convergence criterion is met.

The HOOI algorithm inherits from the orthogonality constraint of the SVD
for the computation of the factor matrices. Thus, it works pretty well to clus-
ter elements of a dimension depending on their behavior on the other dimen-
sions. However, as the SVD produces matrices with positive and negative values,
the HOOI is not well suited to impose the non-negativity constraint on factor
matrices, as some negative values will be found (and must be removed) at each
iteration.

An advantage of this algorithm is that it can easily be implemented on large
tensors. The most costly operation is the computation of the SVD, that is found
at the initialization (line 1) and during the iterative phase (line 5). During the
iterations, as the SVD is executed on the mode-n matricized partial core tensor,
that is relatively small compared to the matricized original tensor, the time and
space complexity is reduced. At the initialization of the algorithm, it can be
replaced with a random initialization to avoid the computation of the SVD on
a too large matrix.

4.2 Hierarchical Alternating Least Squares Algorithm

The HALS-NTD algorithm [7] uses a different approach than the HOOI algo-
rithm (Algorithm 2), even if the initialization step (line 1) can be done by using
the HOSVD. An alternative version of the HALS-NTD was later proposed [37].

66 A. Gillet et al.

Algorithm 2. Hierarchical Alternating Least Squares (HALS-NTD)
Require: Tensor X ∈ R

I1×I2×···×IN and target ranks R1, . . . , RN

Ensure: Core tensor G ∈ R
R1×R2×···×RN and factor matrices A(1), . . . ,A(N) with

A(n) ∈ R
In×Rn

1: Initialize A(1), . . . ,A(N) with non-negativity constraint
2: E ← X − G ×1 A(1) · · · ×N A(N)

3: repeat
4: for n = 1, . . . , N do
5: for r = 1, . . . , Rn do
6: X(r)

(n) = E(n) + a
(n)
r

[
G(n)

]
r
A⊗−nT

7: a
(n)
r ←

[
X(r)

(n)

[
(G ×−n {A})(n)

]T
r

]

+

8: a
(n)
r ← a

(n)
r /

∥
∥
∥a(n)

r

∥
∥
∥
2

9: E(n) ← X(r)

(n) − a
(n)
r

[
G(n)

]
r
A⊗−nT

10: end for
11: end for
12: for r1 = 1, . . . , R1, . . . , rN = 1, . . . , RN do
13: gr1,...,rN ← gr1,...,rN + E ×1 a

(1)
r1 · · · ×N a

(N)
rN

14: E ← E + Δgr1,...,rN
a
(1)
r1 ◦ · · · ◦ a

(N)
rN

15: end for
16: until < convergence >

The HALS-NTD starts also by initializing the factor matrices (line 1), but
adds a non-negativity constraint to manipulate only positive values in the
remaining of the algorithm. An error tensor E ∈ R

I1×···×IN (noted E(n) when
it is matricized on dimension n), that stores the difference between the original
tensor and the reconstructed tensor from the core tensor and the factor matrices,
is computed (line 2). The iterative phase (lines 3 to 16) is more complex than
the one of the HOOI algorithm. Rather than improving a whole factor matrix
at a time, it improves a vector of a factor matrix at a time. To do so, at the
line 6, the current vector (the one being improved) is put in relation with all the
other factor matrices associated with the part of the core tensor representing
the strength of the relationships of the current vector regarding the vectors of
the other factor matrices. This result is added to the error tensor, and stored in
X(r)

(n), that can be seen as a matricized tensor representing the contribution of
the current vector to the global result combined to the error tensor. At line 7,
the current vector is improved by multiplying X(r)

(n) with the part of the recon-
structed tensor corresponding to the current vector. The current vector is then
normalized with a L2 norm (line 8), and the error tensor is updated (line 9).
Once all the vectors of the factor matrices have been improved, the core tensor
is updated from the previous core tensor, the error tensor and the new vectors of
the factor matrices (line 13), and finally the error tensor is updated to integrate
the changes in the core tensor (line 14).

The major advantage of the HALS-NTD is that it enforces the non-negativity
constraint by imposing it during the initialization step, and then by improving

A Guide to the Tucker Tensor Decomposition for Data Mining 67

the result without obtaining (and without having to eliminate) negative values
during the iterative part (line 3 to 12). Thus, it eases the direct interpretation
of the factor matrices as well as the core tensor.

However, as this algorithm computes the decomposition column vector by
column vector for each factor matrices, it is computationally demanding, and
harder to optimize than the HOOI one. Furthermore, there is almost no imple-
mentation of the HALS-NTD alogrithm. To the best of our knowledge, only
Cichocki and Phan have provided a Matlab implementation in [7].

4.3 Related Work

The Tucker decomposition has been used in several kind of applications on spe-
cific data such as in social and collaboration network analysis, in web mining,
in topic modelling, in recommendation systems, in urban computing, in vision,
image or speech processing. While the number of works on the CANDECOM-
P/PARAFAC decomposition algorithm is significant, much less work has been
done to study the Tucker decomposition algorithms. Some of these works focus
on specific issues of algorithms to compute the Tucker decomposition.

In [22] the authors proposed the D-Tucker decomposition, as a fast and
memory-efficient method for Tucker decomposition on large dense tensors using
3 phases: the approximation, the initialization, and the iterative phases. The
main ideas is to compress an input tensor by computing randomized SVD of
matrices sliced from the input tensor, and to obtain orthogonal factor matrices
and a core tensor by using SVD results.

In [23] the authors proposed Tucker decomposition methods for large dense
static tensors and online streaming data. They decomposed large dense tensors
by using the randomized SVD, avoiding the reconstruction from SVD results,
and carefully determining the order of operations.

Chachlakis et al. in [6] explored the use of L1-norm for reformulation of
the Tucker decomposition to overcome the effect of outliers. They also adapted
two algorithms: the L1-norm Higher-Order Singular Value Decomposition (L1-
HOSVD) and the L1-norm Higher-Order Orthogonal Iterations (L1-HOOI).

In [29], the authors defined a scalable GPU-based Tucker decomposition,
which partitions large-scale tensors into subtensors to process them. They
showed that their decomposition reduced the overhead on a single machine.

Most of the Tucker decomposition implementations make use of explicit
matricizations and could introduce extra costs in terms of data conversion and
memory usage. In [10] the authors proposed A-Tucker, a framework for input-
adaptive and matricization-free Tucker decomposition of dense tensors. Their
decomposition algorithm enables the switch of different solvers for the factor
matrices and core tensor, and a machine-learning adaptive algorithm is applied
to automatically cope with the variations of both the input data and the hard-
ware. They showed that A-Tucker improves existing algorithm on GPUs.

Several applications of the Tucker decomposition can be found in the litera-
ture.

68 A. Gillet et al.

Fernandes et al. [12] presented an overview of tensor decompositions for
analyzing time-evolving social networks and showed that while most of the
approaches use the CANDECOMP/PARAFAC decomposition, Tucker is most
appropriate for studying time evolving networks. Sun et al. [43] used Tucker
on social network data in order to find clusters. They applied it on the Enron
dataset. They also proposed visualization techniques based on graphs to display
the result of the decomposition. Al-Sharoa et al. in [1] proposed an approach to
determine sub-spaces across time which relies on Tucker decomposition.

Shao et al. in [40] developed a model for temporal knowledge graphs com-
pletion based on a specific tensor decomposition model for temporal knowledge
graphs completion inspired by the Tucker decomposition, but only for 4-order
tensors. For handling missing data, [30] introduced a Tucker decomposition with
L2 regularization and applied it on urban IoT data.

Romeo et al. [38] used the Tucker decomposition to cluster documents.
Thanks to this decomposition, they were able to process documents in several
languages in the same tensor, in order to find similarities in the whole dataset.

Huang et al. [20] compared the Tucker decomposition to the PCA and SVD
associated to k-means. They ran experiments on three datasets of images to
show the similarities among these algorithms. Zhou et al. [47] took a different
approach and used the Tucker decomposition as a supervised learning algorithm.
They obtained promising results to cluster images.

Cichocki in his book [7] showed several applications of various decomposi-
tions on small tensors, mainly for image and brain data signal analysis. In [19],
the authors approximated both spectral and spatial information, and proposed
a novel 3-order Tucker decomposition and a reconstruction detector for hyper-
spectral change detection. They designed a singular value energy accumulation
method to determine the number of principal components in different factor
matrices.

Brandoni et al. in [5] defined a method which can handle three or more order
tensors in the Tensor-Train model and they proposed to tackle the memory
consumption with a truncation strategy. For 3-order tensors, the Tensor-Train
decomposition corresponds to the classical Tucker decomposition. They applied
their method for image classification.

In [33] the authors used Tucker decomposition as the core of a deep neu-
ral network method for speech emotion recognition. 2D, 3D Spectrogram and
Temporal Modulation Spectrogram are explored to investigate tensor factoriza-
tion based architectures to capture salient information corresponding to emo-
tion. Hidden layers are extracted from Tucker decomposition. The core tensor
produced in each hidden layer is the feature associated with that factorization
layer.

Due to the lack of implementation for the HALS-NTD algorithm, articles are
mainly related to the HOOI algorithm. Thus, they only benefit from a part of
the Tucker decomposition capabilities. They aim at clustering data, and do not
rely on the direct interpretability of the factor matrices and the core tensor even
if it brings valuable insights.

A Guide to the Tucker Tensor Decomposition for Data Mining 69

5 Data Mining Techniques

This section presents the datasets used for the experiments, as well as the differ-
ent data mining techniques that can be applied with the Tucker decomposition.
In [14], we observed that the HALS-NTD algorithm with its non-negativity con-
straint is best suited for producing interpretable results, while the HOOI algo-
rithm with its orthogonality constraint is best suited for clustering tasks. So, in
this article we focus only on the different data mining techniques without analyz-
ing the impact of each algorithm on the techniques. The code of the experiments
is available online1 as well as the links to datasets in order to make the experi-
ments reproducible.

5.1 Datasets Overview

To illustrate the different data mining techniques, we rely on several well-known
datasets. They are rather diverse and concern different domain applications, such
as image recognition, temporal graph or machine learning reference dataset.

Iris 2

The Iris dataset contains characteristics of 150 flowers, namely the sepal
width, the sepal length, the petal width and the petal length. There are 3 species
of Iris flowers in this dataset, each being represented by 50 samples. This dataset
is known for having one species that are linearly separable from the two others,
and two species that are not linearly separable.

COIL-20 [31]

Fig. 6. The 20 objects of the COIL-20 dataset

1 https://github.com/AnnabelleGillet/Tucker-experiments.
2 https://archive.ics.uci.edu/ml/datasets/iris.

https://github.com/AnnabelleGillet/Tucker-experiments
https://archive.ics.uci.edu/ml/datasets/iris

70 A. Gillet et al.

The COIL-20 dataset gathers 20 different objects (see Fig. 6). For each object,
there are 72 pictures that represent the object in a specific position (a difference
of 5◦ in the orientation of the object). The pictures have 128 × 128 pixels.

MNIST [9].

Fig. 7. An extract of the MNIST dataset

The MNIST dataset is composed of 70 000 images representing a hand-written
digit, of 28 × 28 pixels (see Fig. 7). It is often used to evaluate algorithms of
image classification, as the hand-written nature of the images induces a different
complexity to deal with than a static object.

Primary School [42]

Fig. 8. Network overview of the primary school dataset

A Guide to the Tucker Tensor Decomposition for Data Mining 71

The primary school dataset represents the interactions among 232 students
and 10 teachers in a French primary school, that contains 10 classes (see Fig. 8).
The participants wore RFID devices, that recorded an interaction if it had lasted
at least 20 seconds. The experiment was carried on during 2 days. The records
are of the form (person1, person2, timestamp), and the class of each student is
the ground truth of this dataset.

5.2 Exploratory Analysis

The Tucker decomposition can be used to highlight patterns of multi-dimensional
data. Indeed, as each factor matrix gives information regarding elements of a
dimension depending on their behavior on other dimensions, it helps to find
structures or patterns in data. Furthermore, the core tensor allows to link this
kind of information among all the dimensions, and thus to contextualise each
insight.

To illustrate this use of the Tucker decomposition, we rely on the primary
school dataset. We build a 3-order tensor of size 242 × 242 × 208, with two
symmetric dimensions used to represent the persons, and the third dimension to
represent the time with a granularity of 5min. If a person has been in contact
with another person at a time t, then the value in the tensor indexed by the
corresponding dimension values is 1.

This kind of use of the Tucker decomposition is best interpreted when the
non-negativity constraint is enforced during the decomposition algorithm exe-
cution. So, in the experiment of this section, we use the HALS-NTD algorithm.
We run the Tucker decomposition with ranks 13 (for the first person dimension),
13 (for the second person dimension) and 4 (for the time dimension). To choose
these ranks, we ran the SVD for each dimension on the tensor matricized on
the corresponding dimension, and we select as rank the number of significant
singular values.

The factor matrix for the first dimension is shown in Fig. 9. Each line rep-
resents a rank, and the columns are the persons. The students are ordered by
their class: the first columns are the students of the class 1A, then 1B, and so
on until 5B, and the 10 teachers are the last 10 columns. We can distinguish 10
ranks in which each class appears distinctly, and three heterogeneous ranks.

Figure 10 shows the factor matrix for the time dimension. There are four
distinct periods. The first period indicates an activity during class hours and the
morning and afternoon breaks, the second period concerns the breaks, including
the lunch one, the third period also covers the class hours with more activity
at the end of the days, and the last one shows activity during morning and
afternoon breaks and just before and after the lunch time.

For exploratory analysis, the role of the core tensor is also important: it
gives insights regarding the strength of the relationships of the ranks among
dimensions. For example, the g1,1,1 value indicates if the vectors a(1)

1 , a(2)
1 and

a(3)
1 are strongly related or not.

72 A. Gillet et al.

Fig. 9. Factor matrix for the dimension representing the persons in the primary school
experiment

To illustrate the usefulness of the core tensor, we can focus on a particular
rank of the first dimension and see how it is related to the ranks of the other
dimensions. The Fig. 11 represents this mechanism when fixing the rank of the
first dimension to the one corresponding to the class 1A.

This figure shows some interesting results. The first strongest value of the core
tensor indicates that the class 1A has strong ties with itself, mainly at the break
times and before and after the lunch break (Fig. 11a). It makes sense because at
the breaks the students move from their classroom and go outside, so it creates
more interactions among students. The second strongest value of the core tensor
shows again a relationship of the class 1A with itself, but this time during the
class hours (Fig. 11b). The third strongest value indicates a relationship between
the class 1A and 1B during the breaks, including the lunch one (Fig. 11c). As the
students of these two classes are of the same age, it is logical that they have more
ties. Finally, the fourth value of the core tensor shows a relationship between
the class 1A and a heterogeneous cluster that gathers students from grades 1, 2
and 3, during the breaks (Fig. 11d).

The Fig. 12 indicates the number of contacts that have occurred among
classes, and it confirms the observations made from the result of the Tucker
decomposition. In each class, most of the contacts are made with students of the
same class, or with students with a close age.

To summarize, the advantages of using the Tucker decomposition for
exploratory analysis are twofold: 1) the vectors of the factor matrices give insights
regarding the elements that contribute to the rank; and 2) the core tensor allows
to link the ranks of one factor matrix to the ranks of the other factor matrices,
and thus it gives more context to the result, as for example in Fig. 11 where we
have the temporal activity of the different communities.

A Guide to the Tucker Tensor Decomposition for Data Mining 73

Fig. 10. Factor matrix for the dimension representing the time in the primary school
experiment. The morning and afternoon breaks are approximate, as all the classes do
not have the breaks at the same time

74 A. Gillet et al.

Fig. 11. Ranks from each factor matrix that are strongly related to each other when
fixing the rank of the first dimension to the one representing the class 1A

Fig. 12. Number of contacts among classes (from [42])

5.3 Clustering

The Tucker decomposition produces factor matrices that represent the proximity
of the elements of a dimension depending on their behavior on all the other
dimensions. Therefore, classic clustering techniques can be applied on a selected
factor matrix to cluster its elements.

To apply this technique, the tensor must be built with a dimension repre-
senting the samples to cluster. Enforcing the orthogonality constraint on factor
matrices is of great help to separate more clearly the different clusters, so it is
better to use the HOOI algorithm. The number of ranks can be chosen identically
to the exploratory analysis technique.

A Guide to the Tucker Tensor Decomposition for Data Mining 75

From the result of the Tucker decomposition, it is possible to execute cluster-
ing algorithms on the factor matrix of the dimension of the elements to cluster,
in order to gather similar elements. To illustrate this technique, we apply it on
all the datasets presented in Sect. 5.1.

Table 2. Modeling of the tensors for the clustering experiment (the dimension on
which we apply the clustering algorithm is in bold)

Dataset Dimensions Size of dimensions

Iris Characteristics, Samples 4 × 150

MNIST Pixels, Pixels, Samples 28 × 28 × 10 000

COIL-20 (with position) Pixels, Pixels, Position, Samples 128 × 128 × 72 × 1 440

COIL-20 (without position) Pixels, Pixels, Samples 128 × 128 × 1 440

Primary school Students, Students, Time 242 × 242 × 208

The Table 2 summarizes the tensors built for the experiment for each dataset.
The Iris dataset is embedded into a 2-order tensor, in which each sample has
a vector of characteristics, namely the sepal length, the sepal width, the petal
length and the petal width. For the MNIST dataset, a 3-order tensor stores the
image corresponding to each sample. To reduce the size of the tensor, only 10 000
samples are kept, with 1 000 samples for each digit. For the COIL-20 dataset, we
have tried two different modeling: one that includes the position of the object in
a dimension, and another that uses the same representation as for the MNIST
dataset, without modeling the position. Finally for the primary school dataset,
we use the same modelling as for the exploratory analysis experiment.

Table 3. Result of the clustering experiment on each dataset

Dataset Ranks used Precision Adjusted Rand Index

Iris 3, 3 80% 0.5623

MNIST 10, 10, 100 12.83% 0.015

COIL-20 (with position) 31, 18, 72, 20 5.63% −0.0046

COIL-20 (without position) 31, 18, 20 42.43% 0.337

Primary school 13, 13, 4 91.38% 0.8189

From these tensors, we run the Tucker decomposition with the HOOI algo-
rithm, and we apply the k-medoids algorithm [25] on the factor matrix corre-
sponding to the dimension to cluster, with k being the number of classes of the
dataset. The Table 3 shows the ranks used for each dataset, the precision of
the clustering and the Adjusted Rand Index [21] (ARI). In this experiment, the
precision is computed as follows:

precision =
number of elements correctly clustered

total number of elements

76 A. Gillet et al.

The cluster gathering the most elements of a given class is considered as the
cluster for this class. The ARI is computed as follows:

ARI =

∑Nc

i=1

∑Nc

j=1

(
ni,j

2

) −
∑Nc

i=1 (
ni,.
2)∑Nc

j=1 (
n.,j
2)

(N2)
1
2 (

∑Nc

i=1

(
ni,.

2

)
+

∑Nc

j=1

(
n.,j

2

)
) −

∑Nc
i=1 (

ni,.
2)∑Nc

j=1 (
n.,j
2)

(N2)

with N the number of elements to cluster, Nc the number of classes and ni,j

the value at line i and column j of the confusion matrix. n.,j is the sum of the
column j and ni,. is the sum of the line i.

The clustering provides good results for the Iris (80% precision and 0.5623
ARI) and the primary school (91.38% precision and 0.8189 ARI) datasets. The
confusion matrix for the Iris dataset is given in Fig. 13. As expected, the species
that are not linearly separable concentrate most of the clustering errors. For the
primary school dataset, we cluster only students and not the teachers, as we do
not know which teacher is affected to which class.

Fig. 13. Confusion matrix for the clustering of the Iris dataset

The results for the MNIST and the COIL-20 datasets are less satisfying.
Indeed, for the MNIST dataset, the decomposition does not seems to be able to
naturally find a pattern for each digit, and a precision of only 12.83% is obtained
with an ARI of 0.015. For the COIL-20 dataset, when modeling the position into
the tensor, the result is far worse (5.63% precision and -0.0046 ARI) than when
the position is not represented in the tensor (42.43% precision and 0.337 ARI).
Our hypothesis for this result is that the position is not a characteristics of the
objects, thus the same object is never found twice with the same value on the
position dimension, and the decomposition has more difficulties to find patterns

A Guide to the Tucker Tensor Decomposition for Data Mining 77

in these conditions. Similarly, when the position is not represented as a dimension
of the tensor, the clusters are not well defined because each sample concerns an
object and a position, and the decomposition finds patterns for both at the same
time.

To conclude on this technique, the experiments showed that the modeling of
the tensor impacts the result, but also that the quality of the result is better if
the elements of the dimension to cluster share a similar behavior on the other
dimensions.

5.4 Classification

With the Tucker decomposition, it is possible to classify new elements by first
building a model from elements with known class, and then by sending the new
element into the same space as the model to be able to compare it with existing
classes and to choose the most fitting one.

In this use case, the Tucker decomposition is used to build a model from
training data. To do so, the modeling of the data into a tensor must have a
dimension to represent the existing classes, that is used to indicate at which
class each sub-tensor belongs. For example, for the MNIST dataset, a 4-order
training tensor MNIST train ∈ R

p1×p2×s×c can be built, with two dimensions
to represent the pixels (p1 and p2), one dimension to represent the samples (s),
and a last one for the digits written on images (c). The values of the tensor are
the values of the corresponding pixels.

Once the training tensor is built, the Tucker decomposition can be applied
to produce the model. In this use case, it is better to use an algorithm enforcing
the orthogonality constraint such as the HOOI one. With our MNIST example,
we obtain the following model:

MNIST train
 G ×1 P1 ×2 P2 ×3 S ×4 C

with G ∈ R
Rp1×Rp2×Rs×Rc the core tensor, P1 ∈ R

p1×Rp1 and P2 ∈ R
p2×Rp2

the factor matrices for the two pixel dimensions, S ∈ R
s×Rs the factor matrix for

the sample dimension, and C ∈ R
c×Rc the factor matrix for the class dimension.

The goal of a classification task is to deduce the class of a new element. To
continue with the MNIST example, it consists in deducing the digit written on
a new image. We consider a new image as a matrix I ∈ R

p1×p2. To classify this
image according to the model, both must be in a comparable space. To do so,
we rely on the relation among the input tensor, the core tensor and the factor
matrices, that implies that the core tensor can be obtained from the input tensor
by applying successive mode-n products on the input tensor and each factor
matrix transposed. More formally, this relation can be summarized as follows:

G
 MNIST train ×4 CT ×3 ST ×2 P2T ×1 P1T

78 A. Gillet et al.

By exploiting this relation, the matrix I can be partially sent into the same
space as the model, by applying the mode-n product on known dimensions,
namely the first and the second that represent the pixels. To be closer to the
model, the matrix I can be considered as a 4-order tensor I ∈ R

p1×p2×1×1, by
adding two dimensions of size 1:

Gpartial = I ×2 P2T ×1 P1T

With this representation, it is not possible to fully send the element to classify
in the same space as the model. Indeed, the size of the dimensions s and c does
not match the size of the dimensions 3 and 4 of I. In order to solve this problem
on the third dimension, rather than only simulating a dimension of size 1, we
duplicate the matrix I s times to obtain the 4-order tensor I ∈ R

p1×p2×s×1 and
to be able to use one more factor matrix to send the element in the same space
as the model3:

Gpartial = I ×3 ST ×2 P2T ×1 P1T

To finally classify the element, we compare Gpartial ∈ R
Rp1×Rp2×Rs×1 with

G ∈ R
Rp1×Rp2×Rs×Rc by keeping only one class at a time in G. To do so, for each

class i we use the product mode-4 on the core tensor G and the column vector i
of factor matrix C to produce a class specific core tensor Gi ∈ R

Rp1×Rp2×Rs×1:

Gi = G ×4 ci

As Gi and Gpartial are now of the same size and in the same space, they
can be compared with the Frobenius norm applied on the difference of the two
tensors. The class for which the Frobenius norm is the lowest (i.e., for which the
two tensors are the closest) can be considered as the class of the element. The
classification process is summarized in Algorithm 3 for a N -order training tensor
and a M -order element to classify.

3 Most of the works presenting the classification technique do not perform a dupli-
cation, and directly compare the partial core tensor against each sample and each
class [5,11]. It is less efficient as it implies at most s× c comparisons, while duplicat-
ing the element reduce the number of comparisons to c. During our experiments, we
find it more efficient to duplicate the element, as it allows to compare a unified pat-
tern of a class with the sample without focusing on an outlier that could negatively
impact the result.

A Guide to the Tucker Tensor Decomposition for Data Mining 79

Algorithm 3. Classification process
Require: Training tensor Xtrain ∈ R

I1×I2×···×IN and the element to classify E ∈
R

I1×I2×···×IM with M ≤ (N − 1) and IN the number of classes
Ensure: Class c, the best matching class for E
1: Initialize G ∈ R

R1×R2×···×RN ,U(1), . . . ,U(N) ← HOOI(Xtrain, R1, . . . , RN)
2: for n = M + 1, . . . , N − 1 do
3: E(:, . . . , 1 : In) ← repeat E In times
4: end for
5: Gpartial ← E
6: for n = 1, . . . , N − 1 do
7: Gpartial ← Gpartial ×n U(n)T

8: end for
9: best_result ← max(Double)

10: for n = 1, . . . , IN do
11: Gi ← G ×N u

(N)
i

12: result ← ‖Gi − Gpartial‖F

13: if result < best_result then
14: best_result ← result
15: c ← n
16: end if
17: end for

Table 4. Modeling of the tensors for the classification experiment (the dimension that
holds information about classes is in bold)

Dataset Dimensions Size of dimensions

Iris Characteristics, Samples, Species 4 × 50 × 3

MNIST Pixels, Pixels, Samples, Digit 28 × 28 × 8 000 × 10

COIL-20 Pixels, Pixels, Positions, Objects 128 × 128 × 72 × 20

Primary school Students (s1), Students, Time, Class (s1) 242 × 242 × 208 × 10

To apply the classification technique on the dataset of Sect. 5.1, we build
tensors as specified in Table 4. The MNIST tensor has 8 000 samples rather
than 7 000 because the digits are not evenly distributed and some digits are
represented in more than 7 000 images. The classes of the primary school dataset
concern the students of the first dimension. To experiment the technique, we use
the cross validation method and perform the training and the classification task
5 times. The data used for the training step are modified at each iteration to
avoid overfitting bias.

The results obtained are summarized in Table 5, and the detailed metrics for
each class are given in Table 6. Most of the samples are correctly classified for all
the datasets. For the MNIST dataset, there is a great improvement compared to
the clustering technique: the global precision is almost 8 times better. It indicates

80 A. Gillet et al.

Table 5. Result of the classification experiment on each dataset. For the COIL-20
dataset, “without position” indicates that images were classified only regarding objects
and “with position” indicates that the images were classified regarding positions and
objects

Dataset Training samples per class Ranks used Precision

Iris 20 2, 3, 3 88.22%
MNIST 2 000 9, 8, 1, 10 81.02%
COIL-20 (with position) 20 20, 20, 72, 20 100%
COIL-20 (without position) 40 20, 20, 72, 20 61.75%
Primary school 10 10, 10, 4, 10 94.81%

Table 6. Detailed metrics for each class of each dataset for the classification technique

Class Precision Recall F1-score
Iris dataset

Setosa 94.29% 100% 96.67%
Versicolor 79.53% 92.67% 85.28%
Virginica 95.56% 72% 82.08%

MNIST dataset
0 91.4% 86.83% 89.05%
1 74.41% 96.28% 83.92%
2 87.07% 75.68% 80.97%
3 76.1% 77.62% 76.83%
4 79.87% 81.18% 80.51%
5 72.73% 67.65% 70.06%
6 87.84% 87.08% 87.45%
7 90.43% 84.08% 87.13%
8 79.62% 72.33% 75.8%
9 74.62% 77.85% 76.2%

Primary school dataset
1A 100% 95.38% 97.53%
1B 100% 100% 100%
2A 100% 88.77% 94.01%
2B 100% 93.33% 96.42%
3A 100% 96.92% 98.84%
3B 100% 90% 94.62%
4A 100% 100% 100%
4B 68.15% 100% 80.31%
5A 100% 93.33% 96.44%
5B 100% 90.65% 94.98%

Class Precision Recall F1-score
COIL-20 dataset (with position)
1 100% 100% 100%
2 100% 100% 100%
3 100% 100% 100%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%
7 100% 100% 100%
8 100% 100% 100%
9 100% 100% 100%
10 100% 100% 100%
11 100% 100% 100%
12 100% 100% 100%
13 100% 100% 100%
14 100% 100% 100%
15 100% 100% 100%
16 100% 100% 100%
17 100% 100% 100%
18 100% 100% 100%
19 100% 100% 100%
20 100% 100% 100%

that, when integrating more contextual information into the tensor (in this case,
the digit written), the Tucker decomposition can find patterns more easily.

With the COIL-20 dataset, it is possible to illustrate a useful mechanism of
the classification performed from a model obtained with the Tucker decomposi-
tion. Indeed, it can be used to classify an element according to several different
class dimensions rather than just one. In the COIL-20 dataset, each image rep-
resents an object, but also a specific position. To illustrate this behavior, we

A Guide to the Tucker Tensor Decomposition for Data Mining 81

classify the test images according to the object that they represent but also to
their position. The Fig. 14 shows the confusion matrices obtained for this exper-
iment. The objects are better recognized, and the position is found for 94.81%
of the test images with a precision of ± 5◦.

Fig. 14. The confusion matrices obtained when classifying elements of the COIL-20
dataset according to the object that they represent and their position

82 A. Gillet et al.

The Tucker decomposition shows promising results when using it in classifi-
cation tasks. It can be used to classify a new element depending on one or several
parameters, only by using the model produced by the decomposition algorithm.

6 Robustness of the Tucker Decomposition

It is important to evaluate the robustness of an algorithm, as it gives information
about the perturbations that can occur in data without significantly impacting
the result. We study the robustness of the Tucker decomposition when it is used
for clustering or for classifying tasks with missing values, and show that it has
a fairly good robustness.

6.1 Clustering

For testing the robustness of the Tucker decomposition when performing clus-
tering tasks with missing data, the primary school dataset is used as it presents
the best results for the clustering task with all the data. 5 students are selected
from each class, and 10% of data are randomly removed at each iteration only
for those students, for 9 iterations. Thus, the clustering is performed with 90%
of the students’ data for the first execution and with 10% of the data for the
last execution. Table 7 gives the precision and the ARI for the whole data and
for the selected students, and Fig. 15 shows the confusion matrices of the result
of the experiment. Confusion matrices on the left are for the whole dataset and
confusion matrices on the right are for the selected students only.

Table 7. Result of the clustering experiment on the primary school dataset with miss-
ing data for selected students

% of missing data Global
precision

Global
Adjusted
Rand Index

Precision for
selected
students

Adjusted
Rand Index
for selected
students

10% 84.48% 0.7782 86% 0.7915
20% 80.17% 0.6781 82% 0.6247
30% 88.79% 0.7577 84% 0.5947
40% 89.66% 0.7806 84% 0.5947
50% 86.21% 0.6641 62% 0.1534
60% 86.21% 0.6502 48% 0.0891
70% 72.84% 0.3701 10% 0
80% 65.52% 0.3335 10% 0
90% 73.28% 0.3638 10% 0

A Guide to the Tucker Tensor Decomposition for Data Mining 83

Fig. 15. Confusion matrices for the clustering of the primary school dataset with miss-
ing data for selected students

84 A. Gillet et al.

This experiment shows that the clustering is almost not affected when remov-
ing up to 40% of the data of the selected students. However, the quality of the
clustering drops significantly when removing 50% and 60% of the data. For 70%
or more missing data, all the selected students are gathered into a single cluster:
the algorithm is unable to differentiate them due to the strong degradation of
the data.

6.2 Classification

The robustness of the Tucker decomposition for performing classification tasks
have been experimented on the primary school and the COIL-20 datasets. Com-
pared to Sect. 5.4, the step for building the model is identical and is performed
with the whole data. The data are removed in the test set evenly for all elements
to classify. As for the clustering experiment, data are randomly removed 10% by
10% until reaching 90% of missing data. Table 8 shows the precision results for
this experiment.

Table 8. Global precision of the classification experiment on the primary school and
the COIL-20 datasets with missing data

% of missing data Primary school
precision

COIL-20 precision
(with position)

COIL-20 precision
(without position)

10% 96.63% 100% 59.12%
20% 95.98% 99.81% 56.19%
30% 94.63% 97.84% 41.16%
40% 90.96% 48.06% 25.09%
50% 83.87% 9.78% 5%
60% 68.81% 0.34% 5%
70% 45.94% 4.18% 5%
80% 23.87% 7.22% 5%
90% 12.89% 7.06% 5%

For the primary school and the COIL-20 datasets, the quality of the classifi-
cation with 10% to 30% missing data is close to the classification with no missing
data. Starting from 50% of missing data, the precision of the classification of the
primary school dataset declines steadily at each 10% removal of data. However,
for the COIL-20 dataset, the decline is more abrupt: the precision is cut in half
with 40% of missing data and is inferior to 10% when removing 50% of data or
more.

6.3 Summary

The study of the robustness of the Tucker decomposition shows that it is fairly
resistant to missing data. Indeed, the quality of the result is not significantly

A Guide to the Tucker Tensor Decomposition for Data Mining 85

reduced when removing up to 30% of data. Furthermore, when comparing results
obtained from the primary school dataset and from the COIL-20 dataset, the
lowering of quality is less abrupt with the primary school dataset, thus indicating
that it is a well suited data mining technique when working with sparse data
that present imperfections of the real world (e.g., students of a same class do
not act identically).

7 Conclusion

To conclude, the Tucker decomposition is a useful data mining algorithm, robust
to missing data. Indeed, it can be used to perform exploratory analysis on data,
in order to retrieve patterns that give insights regarding elements of a given
dimension, and regarding relationship of elements among dimensions. It can
also be used to cluster elements of a dimension when they behave similarly on
all the other dimensions, or to produce a model allowing to classify new data
according to one or several characteristics.

Both the HOOI and the HALS-NTD algorithms are useful for these tech-
niques, as the non-negativity constraint of the HALS-NTD greatly helps when
interpreting results of exploratory analysis, while the orthogonality constraint of
the HOOI algorithm is efficient to cluster or classify data. However, the HALS-
NTD algorithm is less known than the HOOI one, and in consequence it has
almost never been implemented. We plan to integrate these Tucker algorithms
to the Tensor Data Model, and to optimize them in order to allow their execu-
tion on large tensors, as we did for the CANDECOMP/PARAFAC decomposi-
tion [13]. Indeed, real data can create such tensors, that emphasis the need for
optimized algorithms regarding the space and the execution time.

We also plan to improve data mining techniques based on the experiments
made on this article, for example to consider a proximity among elements of a
dimension (e.g., two consecutive time slices on a temporal dimension are closer
than non-consecutive time slices), or to perform a coupled decomposition, i.e., a
decomposition with two tensors that share at least one dimension.

References

1. Al-Sharoa, E., Al-Khassaweneh, M., Aviyente, S.: A tensor based framework for
community detection in dynamic networks. In: 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2312–2316. IEEE (2017)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations
of modern query languages for graph databases. ACM Comput. Surv. (CSUR)
50(5), 1–40 (2017)

3. Araujo, M., et al.: Com2: fast automatic discovery of temporal (‘Comet’) com-
munities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.)
PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 271–283. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06605-9_23

https://doi.org/10.1007/978-3-319-06605-9_23

86 A. Gillet et al.

4. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. In: ACM SIGMETRICS Performance Evaluation
Review, vol. 40, pp. 53–64. ACM (2012)

5. Brandoni, D., Simoncini, V.: Tensor-train decomposition for image recognition.
Calcolo 57, 1–24 (2020)

6. Chachlakis, D.G., Prater-Bennette, A., Markopoulos, P.P.: L1-norm tucker tensor
decomposition. IEEE Access 7, 178454–178465 (2019)

7. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, Chichester (2009)

8. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decom-
position. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

9. Deng, L.: The MNIST database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

10. Duan, L., Xiao, C., Li, M., Ding, M., Yang, C.: a-tucker: fast input-adaptive and
matricization-free tucker decomposition of higher-order tensors on GPUs. CCF
Trans. High Perform. Comput. 5(1), 12–25 (2023)

11. Eldén, L.: Matrix methods in data mining and pattern recognition. In: SIAM (2007)
12. Fernandes, S., Fanaee-T, H., Gama, J.: Tensor decomposition for analysing time-

evolving social networks: an overview. Artif. Intell. Rev. 54, 2891–2916 (2021)
13. Gillet, A., Leclercq, É., Cullot, N.: MuLOT: multi-level optimization of the canon-

ical polyadic tensor decomposition at large-scale. In: Bellatreche, L., Dumas, M.,
Karras, P., Matulevičius, R. (eds.) ADBIS 2021. LNCS, vol. 12843, pp. 198–212.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82472-3_15

14. Gillet, A., Leclercq, E., Sautot, L.: The tucker tensor decomposition for data anal-
ysis: capabilities and advantages. In: 38ème Conférence sur la Gestion de Données
(BDA) (2022)

15. Gillet, A., Leclercq, É., Savonnet, M., Cullot, N.: Empowering big data analytics
with polystore and strongly typed functional queries. In: Symposium on Interna-
tional Database Engineering & Applications, pp. 1–10 (2020)

16. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Min. Knowl. Disc. 1(1), 29–53 (1997)

17. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (2020)
18. Hore, V., et al.: Tensor decomposition for multiple-tissue gene expression experi-

ments. Nat. Genet. 48(9), 1094–1100 (2016)
19. Hou, Z., Li, W., Tao, R., Du, Q.: Three-order tucker decomposition and recon-

struction detector for unsupervised hyperspectral change detection. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 14, 6194–6205 (2021)

20. Huang, H., Ding, C., Luo, D., Li, T.: Simultaneous tensor subspace selection and
clustering: the equivalence of high order SVD and k-means clustering. In: Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 327–335 (2008)

21. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
22. Jang, J.G., Kang, U.: D-tucker: fast and memory-efficient tucker decomposition for

dense tensors. In: 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pp. 1850–1853. IEEE (2020)

23. Jang, J.G., Kang, U.: Static and streaming tucker decomposition for dense tensors.
ACM Trans. Knowl. Discov. Data 17(5), 1–34 (2023)

24. Kanellakis, P.C.: Elements of relational database theory. In: Formal Models and
Semantics, pp. 1073–1156. Elsevier (1990)

https://doi.org/10.1007/978-3-030-82472-3_15

A Guide to the Tucker Tensor Decomposition for Data Mining 87

25. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, Hoboken (2009)

26. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

27. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

28. Leclercq, É., Gillet, A., Grison, T., Savonnet, M.: Polystore and tensor data model
for logical data independence and impedance mismatch in big data analytics.
In: Hameurlain, A., Wagner, R. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems XLII. LNCS, vol. 11860, pp. 51–90. Springer, Hei-
delberg (2019). https://doi.org/10.1007/978-3-662-60531-8_3

29. Lee, J., Chon, K.W., Kim, M.S.: A GPU-based tensor decomposition method for
large-scale tensors. In: 2023 IEEE International Conference on Big Data and Smart
Computing (BigComp), pp. 77–80. IEEE (2023)

30. Li, L., Lin, X., Liu, H., Lu, W., Zhou, B., Zhu, J.: Displacement data imputa-
tion in urban internet of things system based on tucker decomposition with l2
regularization. IEEE Internet Things J. 9(15), 13315–13326 (2022)

31. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20)
(1996)

32. Osman, A.S.: Data mining techniques. Int. J. Data Sci. Res. 2 (2019)
33. Pandey, S.K., Shekhawat, H.S., Prasanna, S.: Attention gated tensor neural net-

work architectures for speech emotion recognition. Biomed. Signal Process. Control
71, 103173 (2022)

34. Papalexakis, E.E., Akoglu, L., Ience, D.: Do more views of a graph help? Com-
munity detection and clustering in multi-graphs. In: International Conference on
Information Fusion, pp. 899–905. IEEE (2013)

35. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and
data fusion: models, applications, and scalable algorithms. Trans. Intell. Syst. Tech-
nol. (TIST) 8(2), 16 (2016)

36. Petersohn, D., et al.: Towards scalable dataframe systems. arXiv preprint
arXiv:2001.00888 (2020)

37. Phan, A.H., Cichocki, A.: Extended HALS algorithm for nonnegative tucker decom-
position and its applications for multiway analysis and classification. Neurocom-
puting 74(11), 1956–1969 (2011)

38. Romeo, S., Tagarelli, A., Ienco, D.: Semantic-based multilingual document clus-
tering via tensor modeling. In: EMNLP: Empirical Methods in Natural Language
Processing, pp. 600–609 (2014)

39. Rush, A.: Tensor Considered Harmful. Technical report, Harvard NLP (2010).
http://nlp.seas.harvard.edu/NamedTensor

40. Shao, P., Zhang, D., Yang, G., Tao, J., Che, F., Liu, T.: Tucker decomposition-
based temporal knowledge graph completion. Knowl.-Based Syst. 238, 107841
(2022)

41. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Falout-
sos, C.: Tensor decomposition for signal processing and machine learning. Trans.
Signal Process 65(13), 3551–3582 (2017)

42. Stehlé, J., et al.: High-resolution measurements of face-to-face contact patterns in
a primary school. PLoS ONE 6(8), e23176 (2011)

43. Sun, J., Papadimitriou, S., Lin, C.Y., Cao, N., Liu, S., Qian, W.: Multivis: content-
based social network exploration through multi-way visual analysis. In: Proceedings
of the 2009 SIAM International Conference on Data Mining, pp. 1064–1075. SIAM
(2009)

https://doi.org/10.1007/978-3-662-60531-8_3
http://arxiv.org/abs/2001.00888
http://nlp.seas.harvard.edu/NamedTensor

88 A. Gillet et al.

44. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analy-
sis. In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 374–383. ACM (2006)

45. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)

46. Yang, K., et al.: Tagited: predictive task guided tensor decomposition for represen-
tation learning from electronic health records. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (2017)

47. Zhou, G., Cichocki, A., Zhao, Q., Xie, S.: Efficient nonnegative tucker decomposi-
tions: algorithms and uniqueness. IEEE Trans. Image Process. 24(12), 4990–5003
(2015)

	A Guide to the Tucker Tensor Decomposition for Data Mining: Exploratory Analysis, Clustering and Classification
	1 Introduction
	2 Background of Tensors
	3 From Data Models to Tensors
	3.1 Key-Value Model
	3.2 Relational and Column Models
	3.3 Graph Models
	3.4 Time Series
	3.5 Images and Videos

	4 Tucker Decomposition
	4.1 Higher-Order Orthogonal Iteration Algorithm
	4.2 Hierarchical Alternating Least Squares Algorithm
	4.3 Related Work

	5 Data Mining Techniques
	5.1 Datasets Overview
	5.2 Exploratory Analysis
	5.3 Clustering
	5.4 Classification

	6 Robustness of the Tucker Decomposition
	6.1 Clustering
	6.2 Classification
	6.3 Summary

	7 Conclusion
	References

