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Preface

This volume features a selection of five papers from the 38th Conference on Data
Management – Principles, Technologies, and Applications (BDA 2022).

Within this special issue, we selected three articles covering noteworthy research
areas, including temporal graph management systems, time series prediction models
and exploratory analysis, and data clustering and classification. Authors of the selected
papers were invited to prepare and submit journal versions of their contributions, which
underwent a thorough re-review by the editorial board of this issue.

Furthermore, we are pleased to present two additional extended papers from invited
talks at BDA2022. These papers address significant topics such as explanations for query
answers in databases and the key challenges encountered in healthcare data analytics
over knowledge graphs. Including these papers adds depth and relevance to the special
issue, addressing critical topics within the field.

We sincerely thank the authors and reviewers who dedicated their time and expertise
to making this special issue successful. Their hard work and valuable insights signif-
icantly shaped the content of this volume. We would also like to thank the Editors-
in-Chief, Abdelkader Hameurlain and A Min Tjoa, for their guidance and support
throughout this endeavor.

As part of the TLDKS journal series, this special issue aims to contribute to advanc-
ing data management research and its practical applications. We hope that the papers
presented here inspire further exploration, spark new ideas, and ultimately contribute to
the growth and development of the field.

July 2023 Omar Boucelma
Farouk Toumani
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Clock-G: Temporal Graph Management
System

Maria Massri1,2(B), Zoltan Miklos1, Philippe Raipin2, and Pierre Meye2

1 Univ Rennes CNRS IRISA, Rennes, France
{maria.massri,zoltan.miklos}@irisa.fr

2 Orange Labs, Cesson Sévigné, France
{maria.massri,philippe.raipin}@orange.com, meye_pierre@yahoo.fr

Abstract. Graphs are a ubiquitous data model for capturing entities
and their relationships. Since most graphs that model real-world net-
works evolve over time, efficiently managing temporal graphs is an impor-
tant problem from both a theoretical and practical perspective. Query-
ing the history of temporal graphs can lead to new applications such
as object tracking, anomaly detection, and predicting future behavior.
However, existing commercial graph databases lack native temporal sup-
port, hindering their usefulness in these use cases.

This paper introduces Clock-G, a temporal graph management sys-
tem designed to handle the history temporal graphs. What differentiates
Clock-G from other temporal graph management systems is its compre-
hensive approach, covering query language, query processing, and phys-
ical storage. We define T-Cypher, a temporal extension of Cypher query
language, enabling user-friendly and concise querying of the graph’s his-
tory. Additionally, we propose a query processor that utilizes tempo-
ral statistics collected from underlying temporal graphs to offer a good
evaluation plan for T-Cypher queries. We also propose a novel storage
technique that balances space usage and query evaluation time.

Keywords: Temporal Graph management · Storage · Query
language · Query processing

1 Introduction

Graphs are frequently used to model real-world interactions as a collection
of vertices and relationships providing generally a fertile ground to analyze
relationship-centered domains. Despite the wealth of studies on managing static
graphs, a time version support is seldom provided.

This work is motivated by the industrial use case of Thing’in1, an Orange-
initiated platform that manages a graph of connected (machines, traffic lights,
cameras, etc.) and non-connected (doors, roads, shelves, etc.) objects with struc-
tural and semantic environment descriptions. Clients include companies and
1 https://www.thinginthefuture.com/.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2023
A. Hameurlain et al. (Eds.): TLDKS LIV, LNCS 14160, pp. 1–40, 2023.
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public administrations developing smart city services and private object own-
ers building analytical IoT applications. The graph is maintained by a commer-
cial database lacking temporal support. However, there has been an extensive
and recent demand by the clients of Thign’in for preserving the past states and
connections of the graph for the interest of tracking objects, anomaly detection
and forecasting the future behaviour. Concrete use cases include Mo.Di.Flu2, a
project tracking product positions in a manufacturing pipeline to detect delays
or losses. To address these requirements, we designed the temporal graph man-
agement system Clock-G. Although initially designed for the particular use case
of Thing’in, Clock-G is a general purpose system that can be used in other
application domains requiring temporal graph management.

Storing and querying temporal graphs are possible by exploiting a commer-
cial graph database with temporal metadata [5,7]. However, these systems do
not natively offer time-version support which might lead to unpredictable per-
formances. Hence, we argue that time should be considered as a first-class citizen
rather than a simple add-on.

Existing temporal graph management systems often lack comprehensive cov-
erage of the different layers that should be addressed to account for the temporal
dimension, as they may not provide a native temporal query language or an effi-
cient query processor for temporal queries. Many existing systems [24,32,46]
prioritize storage techniques and only offer simple, general-purpose temporal
graph queries that cannot meet the requirements of specific applications such
as the Thing’in use case. To address this issue, our paper takes a comprehen-
sive approach to managing temporal graphs by addressing the different layers of
query language, query processing, and physical storage.

This paper is an extension of our previous work [31]. A major improvement of
this version compared to our previous work is the inclusion of a query language
that supports complex temporal queries into Clock-G, including graph pattern
matching and navigational queries with temporal predicates. Additionally, we
have developed a query processor capable of evaluating temporal graph queries.
Unlike the previous version, which focused primarily on storage techniques, this
version addresses the challenges of query languages and processing, making our
system more comprehensive.

Various temporal graph querying solutions have been proposed in the lit-
erature, extending OLAP and OLTP queries with time. OLAP queries include
finding most durable connected components [42], temporal shortest paths [21],
and temporal centrality [35], while OLTP queries include temporal graph pattern
matching [33,40] and temporal navigational queries [2,37]. In this paper, we focus
on extending OLTP queries with the temporal dimension. Hence, we propose T-
Cypher, a temporal extension of the well-known graph query language Cypher
[10] designed to enhance graph pattern matching and navigational queries with
the temporal dimension.

Example 1.1 Figure 1 illustrates a graph pattern and its corresponding Cypher
query, as well as a temporal graph pattern and its corresponding T-Cypher query.
2 https://www.pole-emc2.fr/projet/mo-di-flu/.

https://www.pole-emc2.fr/projet/mo-di-flu/


Clock-G: Temporal Graph Management System 3

Fig. 1. Example showing a T-Cypher query with temporal constructs compared to a
non-temporal Cypher query

In this example, the non-temporal pattern retrieves machines (m1 and m2) that
indicate the same alert (a) and are situated in the same room (r). To enhance
machine maintenance efficacy, one might want to identify machines that are
affected by malfunctions in other machines. In such a scenario, the order in
which alerts were triggered becomes significant since it allows for the retrieval
of machines that indicated an alert after another machine signaling the same
alert, thus implying machine-to-machine influence. This is translated in the T-
Cypher query by the inclusion of the temporal constraints (s2@T AFTER s1@T
AND i2@T DURING i1@T). Besides we trim the search space to a time interval
[t1, t2) of interest instead of searching the full history which is translated in the
T-Cypher query by RANGE_SLICE [t1, t2) clause at the beginning of the query.

We propose a query processor to evaluate T-Cypher queries. Our process-
ing pipeline involves an algebra, cost model, and plan selection algorithm. We
introduce a temporal graph algebra that extends the graph algebra proposed
by Hölsch et al. [22] for Cypher queries with temporal operators. The evalua-
tion plan composed of algebraic operators is chosen based on a cost model that
relies on changing cardinalities provided by the backend store. Unlike traditional
query processors, we consider the optimal plan to vary within the requested time
interval due to changes in cardinalities, and thus preserve the history of cardinal-
ities in temporal histograms. We implemented this query processor in Clock-G
and evaluated it by executing various queries on synthetic datasets, comparing
its performance with an alternative solution that is based on extending a non-
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temporal graph database (Neo4j3) with the temporal dimension. The results
demonstrate the efficiency of our cost model and query processor.

Besides proposing a query language and a query processing pipeline, we pro-
pose and implement into Clock-G a storage technique for temporal graphs. Var-
ious storage approaches have been proposed in literature for managing temporal
graphs, including the Log and the Copy+Log methods. The former involves pre-
serving all graph updates as timestamped logs, while the latter stores the updates
in time windows, along with snapshots (i.e. states of the graph) at the end of
each window. However, the space usage of the Copy+Log method, especially for
growth-mostly graphs, can be space-consuming due to redundant graph entities
shared between snapshots. On the other hand, the impact of the Log approach
on query evaluation time can be detrimental. To address these limitations, we
propose the δ-Copy+Log method, which stores only the difference between suc-
cessive snapshots, called deltas. Snapshots are stored every M time windows and
used as starting points for query evaluation. Specifically, half of the time win-
dows and their corresponding deltas are stored in a forward fashion, while the
other half are stored in a backward fashion. During query evaluation, the choice
between forward or backward construction of the result is determined based on
the requested time instant. This approach results in a significant reduction in
the maximum execution time of queries by up to 50%. We also conducted experi-
ments to evaluate the performance of Clock-G. A comparison between traditional
methods and the δ-Copy+Log validates that our technique offers a good com-
promise between the performances of the Log and Copy+Log methods. Besides,
we showcase how the parameters of Clock-G can be calibrated in order to tune
the overall performance with an adequate configuration that adheres most with
the acceptable threshold of query latency and available storage resources.

The main contributions of this work reduce to the following:

– Proposing a user-friendly extension of the Cypher query language that enables
to express a large fraction of temporal queries.

– Proposing a temporal graph algebra and query processor for T-Cypher
queries.

– Proposing δ-Copy+Log as a space-efficient variant of the traditional
Copy+Log method.

– Taking a holistic approach into managing temporal graphs by addressing the
different layers of storage, query language, and processing.

Outline. Section 2 provides an overview of related work. Section 3 introduces
key definitions for our proposed approaches. Section 4 introduces our proposed
temporal graph query language. Section 5 describes the query processor used
to evaluate our temporal graph queries. Section 6 presents our proposed stor-
age approach. Section 7 presents the architecture and overall design features of
Clock-G. Section 8 presents the results of our experiments conducted on real
and synthetic datasets. Finally, Sect. 9 concludes the paper and gives a future
perspective.
3 https://neo4j.com.

https://neo4j.com
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2 Related Work

This paper proposes a comprehensive approach to managing temporal graphs
with versioning support, which includes addressing challenges related to storage
techniques, query languages, and query evaluation. We discuss the related work
on these challenges in subsequent sections.

2.1 Query Language

In the field of graph querying, subgraph pattern matching or navigational queries
are the core concepts. Many proposals to extend these queries with the temporal
dimension have been posited.

Some extensions focus only on extending navigational queries with the tem-
poral dimension. Temporal reachability queries where extended with the tempo-
ral dimension [41,45]. Granite [37] is a query engine that implements temporal
navigational queries by adding temporal predicates and temporal ordering con-
straints, as well as temporal aggregations. A temporal extension of regular path
queries (TRPQ) was proposed in [2] by introducing structural and temporal
navigational operators. The T-GQL [7] query language is a temporal extension
of the standard query language for graph databases GQL [8]. The proposed
extension allows the expression of different types of temporal paths. However,
these solutions focus on navigational queries rather than graph pattern matching
queries.

Other proposals present temporal extensions of graph pattern matching
queries. For instance, non-decreasing time flow pattern are defined as each path
between two nodes follows a non-decreasing time flow [35,38,47]. It is useful
for studying the spread of a disease or the flow of rumors in a social network.
Most Durable Graph Pattern (MDGP) returns the most durable matches of a
given non-temporal pattern, which is useful for analyzing the tightness of con-
nectivity between nodes [42]. Despite the usefulness of these proposals in some
applications, they cannot express more general temporal predicates between the
elements of a pattern.

The Temporal Graph Algebra (TGA) [33] is a temporal generalization based
on temporal relational algebra for some graph operators. These operators can
filter the search to a time instant or interval or returns subgraphs that are iso-
morphic to a given pattern during a given time instant or interval. GRALA
[40] is a temporal analytical language that offers temporal operators to deter-
mine graph snapshots, the difference between two snapshots, and the subgraphs
satisfying a given time-dependent graph pattern. Despite the novelty of these
extensions, they do not support navigational queries.

T-SPARQL [13] is a temporal graph query language for RDF that embeds the
features of TSQL2 [43]. To express temporal predicates over timestamp variables,
the authors propose using a subset of Allen’s temporal operators [1]. SPARQLT

is another query language for temporal RDF stores. Although this language
does not offer dedicated temporal operators to express temporal relations, it is
possible to use temporal functions that extract the starting and ending time
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instants of a tuple to express any of Allen’s temporal relations and temporal
slicing. In this paper, temporal predicates and slicing are used on the property
graph model, extended to include temporal navigation functionalities.

This paper presents a novel method for querying temporal graphs that builds
upon graph pattern matching and navigational queries by incorporating the tem-
poral dimension. Our primary objective is to propose a concise and user-friendly
syntax that is easy to learn and facilitates intuitive reasoning and query con-
struction for temporal graphs. Motivated by this goal, we proposed T-Cypher
(Sect. 4), a temporal graph query language that extends the popular Cypher
query language [10]. The rationale behind this choice is that the syntax of Cypher
is graph-like (i.e., graph patterns are expressed using “ASCII art”) and user-
friendly, making it a popular choice amongst graph query languages. Many fea-
tures extracted from Cypher will be echoed in the standardization of upcoming
standrad graph query language GQL [8]. Besides, Cypher is expressive, declar-
ative, normalized, and open source.

2.2 Query Processing

A query processor uses an algebra to convert a query into a set of algebraic
operators. In the context of temporal graph management, a Temporal Graph
Algebra (TGA) was proposed in [33], which includes graph operators that are
extended with the temporal dimension. In this work, we define a temporal graph
algebra that extends the graph algebra defined by Hölsch et al. for Cypher queries
in [22]. Our choice of extending this algebra, rather than other alternative graph
algebras (such as GraphQL [19] and GRAD [12]), is based on its compatibility
with our proposed query language, which extends Cypher.

Evaluating a query implies choosing a good evaluation plan that ideally min-
imizes the cardinality of sub-results, reducing thus the overall execution time.
The plan selection technique is usually coupled with a cost model that defines
a cost function for each algebraic operator which allows to approximate the
resulting cardinality of an operator before evaluation. This evaluation pipeline
was followed in [14] for processing Cypher queries in a graph database. However,
our goal in this paper is to extend this pipeline for the temporal graph model.

A query processor for temporal navigational queries can be found in Gran-
ite [37]. This plan selection approach splits the query path into sub-path seg-
ments to reduce cardinality, and uses a cost model based on temporal histograms
to estimate plan cost. However, this approach is limited to path queries and can-
not handle temporal graph pattern matching, which requires a more complex
plan selection approach. To address this problem, we present a query processor
that evaluates temporal graph pattern matching queries (Sect. 5).

2.3 Storage

Available temporal graph storage techniques can be categorized as follows: Log ,
Copy , Copy-On-Write and Copy+Log . These methods are mainly moti-
vated by concepts of logging and checkpointing which reflects on lessons learned
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from classical techniques of database state recovery. The Log storage approach
used in [11,16] stores graph updates as timestamped logs, allowing recovery
of any graph state by loading logs with a timestamp lower than or equal to
the requested one. In contrast, the Copy approach materializes and persists
graph snapshots. These methods represent two extremes in storing temporal
graphs, favoring either space optimization or query computation time optimiza-
tion. Copy-On-Write [4,20,28,30] involves copying a single graph entity when-
ever it gets updated, while Copy+Log [17,18,24–26,32,46] stores graph updates
in temporally disjoint partitions (called time windows), along with snapshots rep-
resenting valid states of the graph. The advantage of the Copy+Log approach is
that the state of the graph at a given time instant can be recovered by reading
a single snapshot and all graph updates recorded in a time window.

In this work, we address a critical limitation of the Copy+Log storage app-
roach which relates to the high space consumption of full graph snapshots. To
mitigate this issue, we propose the δ-Copy+Log (Sect. 6) approach which con-
siders the difference between snapshots instead of materializing full snapshots.
We preserve a number of snapshots to serve as starting points for query eval-
uation and after a fixed number of delta, a full snapshot is materialized. This
approach differs from traditional methods such as RMAN in that it replaces full
backups with deltas that contain only the difference between two snapshots.

3 Formal Definitions

3.1 Time Domain

In this section, we present a definition of the time domain, which is essential in
the development of data management systems that incorporate temporal ontolo-
gies. The time domain definition is particularly important in assigning temporal
validity information to data items [34]. Our approach to modeling time involves
selecting a discrete temporal flow, which is achieved by quantifying a time axis
with time granules [6]. Time granules, also known as chronons, are the small-
est indivisible units of time defined by a specific temporal granularity (such as
a second or a millisecond). We define the time domain, denoted as ΩT , as a
totally ordered set of instants that includes a sequence of discrete time granules:
ΩT =

{
ti|i ∈ N

} ⋃ {Now,∞}. The duration between consecutive instants in the
sequence is equal to a chronon. In addition, we assume that the system assigns
a transactional time to each graph update.

3.2 Temporal Graph Relation

A T-Cypher query produces a temporal graph relation as output. Each relation
is represented as a bag of tuples, where a tuple u is a partial function that maps
names to values. The named fields of a tuple are defined as u = (a1 : v1, . . . , an :
vn), where (a1, . . . , an) are distinct names, and each element in (v1, . . . , vn) can
be a value, node or relationship state, set of node or relationship states, or paths.
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Fig. 2. Toy graphs illustrating the traversal of products through machines, the main-
tenance of these machines (Toy graph A), the transfer of products between machines,
and the closeness between self driving vehicles (Toy graph B)

These states correspond to nodes or relationships within a specific time interval
during which their property values remained constant. We consider V , k , ID , L,
and T to denote the set of values, property keys, node identifiers, node labels,
and relationship types, respectively.

A node state in n is a tuple (idn, l, k, τ) such that:

– idn ∈ ID is the node identifier.
– l ∈ 2L is the set of node labels.
– k = {k1 : v1, . . . , km : vm} is a map of property names and values such that

ki ∈ k and vi ∈ V,∀1 ≤ i ≤ m.
– τ ∈ ΩT × ΩT is the validity time interval during which the node state was

valid.

A relationship state in r is a tuple (idns
, idnt

, t, k, τ) such that:

– idns
∈ ID is the source node identifier.
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– idnt
∈ ID is the target node identifier.

– t ∈ 2T is the set of relationship types.
– k = {k1 : v1, . . . , km : vm} is a map of property names and values such that

ki ∈ k and vi ∈ V,∀1 ≤ i ≤ m.
– τ ∈ ΩT × ΩT is the validity time interval during which the relationship state

was valid.

Example 3.1 To clarify the previous definitions, we present a concrete example
of a temporal property graph inspired by the use case of smart factories. Fig-
ures 2(a) and 2(b) show two toy graphs (A and B) inspired by this use-case. In
these graphs, nodes {n0, ..., n12} model products, machines, self-driving vehicles
(S.D. vehicles), and employees. Whereas, relationships {r0, ..., r11} represent the
connections between nodes. Properties {p0, . . . , p3} are attached to nodes and
relationships to describe these graph entities.

In the manufacturing process, a product may traverse through various
machines, which is denoted by the isIn relationship between them. This rela-
tionship captures the progression of the product through the different stages of
the manufacturing process. The machines are regularly maintained by employ-
ees through the maintains relationship. Additionally, products are transported
from one machine to another through an S.D. vehicle using the transfers rela-
tionship. To indicate the proximity between S.D. vehicles, a temporary rela-
tionship isCloseTo is established if the distance between them is lower than a
predetermined threshold. The properties p0 and p1 of a machine can indicate its
temperature or position whereas the property p2 of an employee can its skills.
The tools used during maintenance can be represented by p3 of the maintains
relationship. Each node and relationship in the temporal graph contains sev-
eral states that map property names to values during specific time intervals.
Querying this temporal graph allows for analyzing the causes of system failures
by tracking the trajectory of products and monitoring the evolution of machine
states. We present in Tables 1(a) and 1(b) the node and relationship states of
N = {n0, . . . , n12} and R = {r0, . . . , r11} of the temporal property graphs (A
and B) presented in Fig. 2.

Let us now discuss the creation of node states {n0
1, n

1
1, n

2
1, n

3
1} in the Toy

graph A (Fig. 2(a)). For instance, the first node state n0
1 is bound with values

(8, x) for property keys (p0, p1). This state is valid during [t1, t6) since an update
of the property p1 occurred at time instant t6 which results in a new node state
n1
1. Both node states have the same value for the unmodified property (p1) and

different values for the updated property (p0). Similarly, the node state n2
1 is

created after the update of the properties p0 and p1 at time instants t8. Finally,
the last modification of the node is an update of the property p0 at time instant
t16 which results in a new node state n3

1 valid in [t16,∞).



10 M. Massri et al.

Table 1. A fraction of the relationships and their states of the graph in Figs. 2(a) and
2(b)

(a) Node states
Nodes States

n0 n0
0 = (idn0 , Employee, {p2 : a}, [t0, ∞))

n1

n0
1 = (idn1 , Machine, {p0 : 8, p1 : x}, [t1, t6))

n1
1 = (idn1 , Machine, {p0 : 5, p1 : x}, [t6, t8))

n2
1 = (idn1 , Machine, {p0 : 7, p1 : y}, [t8, t16))

n3
1 = (idn1 , Machine, {p0 : 8, p1 : y}, [t16, ∞))

n2 n0
2 = (idn2 , Machine, {p1 : y}, [t0, ∞))

(b) Relationship states
Relationships States

r0 r00 = (idn0 , idn1 , Maintains, {p3 : c}, [t6, t8))

r1 r01 = (idn3 , idn1 , IsIn, {}, [t1, t2))

r2 r02 = (idn3 , idn2 , IsIn, {}, [t7, t8))

4 Temporal Graph Query Language

This section presents our temporal graph query language T-Cypher that extends
Cypher with temporal constructs. Throughout this section, we provide clear
query examples and their results to clarify the semantics of our temporal con-
structs. A more detailed description of the syntax and semantics of T-Cypher is
given the online documentation4. Our proposed extension, T-Cypher, is designed
to incorporate temporal constructs without requiring modifications to the exist-
ing grammar rules. This approach ensures a straightforward transition for prac-
titioners who are already familiar with Cypher, while reducing query verbosity.

With T-Cypher, graph variables such as nodes, relationships, and properties,
as well as temporal variables referring to time validity intervals, can be expressed.
This enables the application of temporal constraints to the temporal variables
of the query. Furthermore, T-Cypher introduces the trim statement, which can
be used at the beginning of a query to prune the search space to single or
multiple time intervals. This guarantees that all variables defined in the query
are valid during at least one of these intervals. Temporal functions and operators,
can also be used in T-Cypher to define constraints and predicates on temporal
variables of the query. Another key feature of T-Cypher is the ability to express
different types of temporal paths. We define these key temporal constructs in
the following.

Temporal Slicing Clause. We propose a temporal slicing clause to prune the
search space of a query to a single time instant or time interval. Hence, the tem-

4 https://project.inria.fr/tcypher/.

https://project.inria.fr/tcypher/
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poral selection will be applied to all the variables of a temporal query such that
the returned states of graph entities should be valid at the requested time instant
or during the requested time interval. We use different time slicing techniques
using the tokens SNAPSHOT, RANGE_SLICE, LEFT_SLICE and RIGHT_SLICE.

A query starting with the SNAPSHOT token searches for graph entities that
are valid at a single requested time instant. On the other hand, a query starting
with a time-slicing token, such as RANGE_SLICE, LEFT_SLICE, or RIGHT_SLICE,
searches for graph entities whose time intervals intersect with the requested time
interval, starts before, or ends after the requested time instant, respectively. If a
query does not start with a time-slicing token, it is applied to the latest version
of the graph.

Figure 3 shows two queries applied to the Toy graph A (Fig. 2(a)), with their
results. The first query returns the machine states valid at t3, while the second
query returns machine states with time intervals intersects with [t1, t8).

Fig. 3. Example of temporal slicing

Temporal Functions and Operators. We define a set of temporal functions
that can be applied to the temporal variables of a pattern to define temporal
predicates. For space limitations, we present some of these functions in Table 2,
whereas a more comprehensive description is given in the online documentation
of T-Cypher. Besides, we use Allen’s operators [1] (e.g., before, after, during) to
define temporal relations between the temporal variables of a pattern.

Figure 4 provides an example of a T-Cypher query using temporal functions
and operators and its result when applied to the Toy graph A (Fig. 2(a)). This
query returns the elapsed time5 between the maintenance of a machine and its
failure. The failure of a machine can be detected if the value of property p0
(e.g., temperature) is higher than a threshold. The expression (n@T AFTER e@T)
5 The elapsed time between two time intervals i and i′ is equal to the difference between

the starting time instant of i′ and the ending time instant of i.
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Table 2. Description of some temporal functions used in T-Cypher

Function Description Return type

ELAPSED_TIME(i, i′) Returns the elapsed time between i and i′ Duration

DURATION(i) Returns the duration of i Duration

INTERSECTION(i0, . . . , in) Returns the intersection between {i0, . . . , in} interval

Fig. 4. Example of temporal functions and operators

indicates that the system failure must have occurred after the maintenance. We
notice that the machine state n2

1 is returned since it has a value of p0 higher
than the threshold and it occurred after the maintenance of the machine.

Temporal Paths. The relationships in a temporal graph are valid during cer-
tain time intervals. Hence, the connectivity between two nodes can be subject
to temporal conditions defined over the relationships of a path which results in
diverse types of temporal paths. In T-Cypher, we include three temporal types
that can cover a large subset of queries: Continuous, Sequential, and Pairwise-
continuous (Fig. 5), which we describe in the following.

Temporal Path. A temporal path is defined as a tuple (ns
1, rs

1, . . . , rs
k, ns

k+1, τp)
containing a sequence of k relationship states (rs

i , ∀ 1 < i < k) and k + 1 node
states (ns

i , ∀ 1 < i < k + 1) and a time interval during which the path is valid.
Each relationship state (rs

i , ∀ 1 < i < k) is a tuple (idni
, idni+1 , trs

i
, krs

i
, τrs

i
)

connecting two node states of the path ns
i = (idni

, lns
i
, kns

i
, τns

i
) and ns

i+1 =
(idni+1 , lns

i+1
, kns

i+1
, τns

i+1
). The time interval of the path τp is derived from the

time intervals of the path relationships and depends on the type of the temporal
path.

Continuous Path [39]. A continuous path is a temporal path where the inter-
section between the time intervals (τrk

i
, ∀ 1 < i < k) of the relationship states

(rk
i ) of the path is not null and τp is equal to the intersection between time

intervals {τrs
1
, . . . , τrk

k
}.
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Fig. 5. Different types of temporal relationship patterns: Continuous, Pairwise Con-
tinuous and Sequential (τrs1 , τrs2 and τrs3 refer to time validity intervals of relationships
rs1, r2 and rs3)

Figure 6 presents a T-Cypher query with a continuous path and its result
when applied to Toy graph B (Fig. 2(b)). This query returns the path between
self-driving vehicles that were 3-Hop close to each other during the time inter-
val [t1, t16). Hence, the self-driving vehicles of the path were close during the
intersection of the time intervals of the path relationships. Notice that three
continuous paths of length 3 exist between the self-driving vehicles n7 and n12.
The time interval [t3, t7) of the first path is equal to the intersection between
the time intervals of its relationship states ([t3, t7), [t3, t8) and [t3, t9)).

Fig. 6. Example of a continuous path

Sequential Path [23,38,47]. A sequential path is a temporal path where each
relationship state rs

i+1 should occur after the relationship state rs
i (∀ 1 ≤ i < k).

Hence, the ending time instant of τrs
i

should be lower than the starting time
instant of τrs

i+1
. The time interval of the path is the range of time covered by

the time intervals of the path.
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To illustrate, Fig. 7 presents a T-Cypher query with a sequential path and its
result when applied to the Toy graph B (Fig. 2(b)). It returns a product’s transfer
path of length 4 between two machines, implying that a self-driving vehicle or
a machine transfers a product after receiving it. Note that a sequential path of
length 4 exists between the node states n3 and n9. This path is valid during
the time interval [t2, t13) that represents the range of the time intervals of its
relationship states ([t2, t4), [t5, t7), [t8, t10) and [t11, t13)).

Fig. 7. Example of a sequential path

Pairwise-Continuous Path [7]. A pairwise-continuous path is a temporal
path where the time interval of each relationship state rs

i should overlap with
that of the outgoing relationship state rs

i+1 (∀ 1 ≤ i < k). Therefore, τrs
i

starts
within the time boundaries of τrs

i−1
and ends within the time boundaries of τrs

i+1
.

Let us now consider that a vehicle a transfers a product to a close vehicle b.
Now, b also looks for a close vehicle, c, and transfers the product to it. Similarly,
the vehicle c transfers a product to a close vehicle d. The path between the
vehicles is pairwise continuous since the time intervals of each pair of consecutive
relationships are overlapping. To illustrate, Fig. 8 presents a T-Cypher query
with a pairwise-continuous path and its result when applied to the Toy graph B
(Fig. 2(b)). Notice that a single row is returned, corresponding to the pairwise-
continuous path between node states n7 and n12. The time interval of the path
[t11, t16) is equal to the range of the time intervals of its relationship states
([t11, t14), [t12, t15) and [t13, t16)).

5 Temporal Graph Query Processor

In this section, we give an overview of the query processing pipeline presented
in Fig. 9.



Clock-G: Temporal Graph Management System 15

Fig. 8. Example of pairwise-continuous path

The query parser checks the syntax of a T-Cypher query according to defined
grammar rules and generates an Abstract Syntax Tree (AST). The parser then
uses the AST to create a parsed query object that is understandable by the
query planner. Using a cost-based model, the query planner generates an alge-
braic plan with cardinalities of subqueries based on temporal histograms. The
query evaluator executes each query operator by communicating with the stor-
age engine using δ-Copy+Log technique presented in Sect. 6. In the following,
we will introduce our temporal graph algebra, cost model, and plan selection
algorithm.

Fig. 9. The query processing pipeline implemented in Clock-G

5.1 Temporal Graph Algebra

We extend the graph algebra proposed by Hölsch et al. [22] by adding time-
based operators to translate T-Cypher queries into algebraic representations.
Our extension relies on temporal graph relations defined in Sect. 3.2. These rela-
tions are bags of tuples that map names to various entities, including node or
relationship states, sets of states, or temporal paths.
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Operators. Let E denote an algebraic expression, μ(E) denote the set of vari-
ables defined in the expression. For example, if E corresponds to matching a
relationship between two node variables (a and c) such as (a − [b]− > c), then
μ(E) is the set of variables {a, b, c}.

We illustrate the utilization of our operators to convert a T-Cypher query
into an algebraic expression. Specifically, we demonstrate the process using a
sample query Q that is applied to toy graph A. The objective of this query
is to retrieve the state of a machine and a product that was present in the
machine before it underwent maintenance by an employee during a specified
time period. We present in Fig. 10 a possible evaluation plan with the results of
the different algebraic expressions ({E0, . . . , E5}) composing the plan. Note that
these expressions are given in the following description of the operators.

Query Q

RANGE_SLICE [t1; t8)
MATCH (m: Machine) <-[r: Maintains]- (e: Employee),
(m) <- [i: IsIn] - (p:Product)
WHERE m.p_0 > 2 AND m@T BEFORE r@T
AND i@T BEFORE r@T AND p@T DURING i@T
RETURN m, r, e, i, p;

Fig. 10. Example showing the result of evaluating the algebraic operators (E0, . . . , E5)
on the toy graph in Fig. 2(a)
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GetNodes Operator. The GetNodes operator returns a temporal graph rela-
tion containing node states from the underlying graph G. We use ©τ,a,ρa

to
denote this operator, where

– τ : is a time interval such that the returned node states should have time
intervals that overlap with it.

– a: is the name of the node variable.
– ρa: is the label of the node variable.

Every node state in the underlying graph having a label ρa and its time interval
overlaps with τ will be returned by this operator. To illustrate this operator, we
consider the following expression returning the machine states valid in [t1, t8).

E0 = ©[t1,t8),m,Machine

The result of this operator is given in Fig. 10.

Select Operator. The select operator, denoted as στ,θ(E), filters input tables
based on property values of node or relationship states. It uses a Boolean expres-
sion θ defined over validity intervals and property values of variables from μ(E).
This operator filters tuples from input graph relations that satisfy θ during the
time interval τ . To illustrate this operator, consider the following expression:

E1 = σ[t1,t8),m.p0>2(E0)

This operator filters the input relation resulting from applying E1 such that the
value of the property p0 of m is lower than 2. The result of this operator is
illustrated in Fig. 10.

Expand Operator. The expand operator creates a new relation by expanding
input relation tuples with direct relationships and target nodes. It is denoted as
↑τ,a,b,ab,ρb,ρab

(E), and ensures that added relationship states are valid within a
specified time interval, where

– τ : is a time interval such that the returned relationship states should have
time intervals that overlap with it.

– a: is the name of the node in the input relation.
– b: is the name of the added target node.
– ab: is the name of the added relationship.
– ρb: is the label of the added target node b.
– ρab: is the type of the added relationship ab.

To denote an expansion with an incoming direction, we write ↓τ,a,b,ab,ρb,ρab
(E).

The expand operator can express joins between the input relation and under-
lying graph when a node in the input relation reaches another node in the graph
through a relationship. However, expressing paths through a recursion of join
operators leads to a limited relational model. The expansion operator is more
general and convenient, as it does not restrict the data model. To illustrate this
operator, consider the following operator:

E2 =↓[t1,t8),m,e,r,Employee,Maintains (E1)
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Consider that this operator’s input is the previous expression E1 resulting from
the select operator. Notice that the node states (n0

1 and n1
1) are each expanded

with (r00 and n0
0) and the node state n0

4 is expanded with (r04 and n0
5). Let us filter

the returned result to keep the machine states valid before the maintenance, as
follows:

E3 = σ[t1,t8),m@T BEFORE r@T(E2)

The result of this operator is given in Fig. 10.

Join Operator. The Join operator joins two expressions based on a Boolean
expression. We use E ��θ E′ to denote this operator where θ is a Boolean expres-
sion. To illustrate this operator, consider joining the previously described expres-
sion E3 with the expression E4 given below. This expression returns the product
states valid when the product was in a machine in [t1, t8).

E4 = σ[t1,t8),p@T DURING i@T(↓[t1,t8),m,i,p (©[t1,t8),m))

The following operator joins E3 and E4 with a temporal condition. We refer
to a junction with a temporal condition as a temporal join. The result of this
operator is illustrated in Fig. 10.

E5 = E3 ��i@T BEFORE r@T E4

It should be mentioned that more complex operators can be defined including
the aggregation operator that we keep for later work.

5.2 Cost Model

This section defines the cost model used by the query planner, which estimates
the cost of an evaluation plan. The cost of each operator is equal to the esti-
mated cardinality of its output relation. Our model differs from classical query
processing models commonly used in relational databases because it considers
the cost of a query to change over time, meaning an optimal plan for one time
interval may not be optimal for another due to changing cardinalities. Our query
planner accounts for this by computing the cardinality of each algebraic operator
based on the requested time interval. We use card(E) to denote the estimated
cardinality of an algebraic expression E.

We use temporal histograms to estimate the cardinalities of algebraic opera-
tors for a given requested time. We create a temporal histogram for the evolu-
tion of each of the following:

– Number of node states with a given label.
– Number of relationship states with a given type and labels for the source and

target nodes.
– Number of node states with a given label and a value for a property name.
– Number of relationship states with a given type and a value for a property

name.
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GetNodes Operator. The cost of the getNodes operator is equal to the esti-
mated cardinality of the node states with a given label ρa valid during a given
time interval τ , as given in the equation below.

card (©τ,a,ρa
) = C(τ,ρa)

Expand Operator. The cost of the expand operator is equal to the average
cardinality of the relationship states given the label of the source and target
node states (ρa, ρb), type of the relationship state (ρab), requested time interval
(τ) multiplied by the cost of the previous expression E (card(E)), as given in
the equation below.

card (↑τ,a,b,ab,ρb,ρab
(E)) =

C(τ,ρa,ρb,ρab)

C(τ,ρa)
∗ card(E)

Select Operator. The cardinality of the select operator applied on an expression
E is equal to the selectivity of the graph entity states selθ(E) satisfying the given
condition θ multiplied by the cardinality of E, as given in the equation below.

card(στ,a.p=v(E)) = sel(τ, ρa, p, v) ∗ card(E)

The selectivity of graph entities is computed as follows:

sel(τ, ρa, p, v) =
C(τ,ρa,p,v)

C(τ,ρa)

Note that, we define the cost of the selection operator in which we only consider
filtering on the values of the node and relationship properties defined in the
input expression. The selectivity of a condition θ is equal to the cardinality of
all the graph entities satisfying it a.p = v divided by the cardinality of all graph
entities with a label or type ρa that existed during the time interval τ .

Join Operator. The cost of the join operator applied on expressions E, and E′

is equal to the product of the cardinalities of these expressions, as given in the
equation below.

card(E �� E′) = card(E) ∗ card(E′)

5.3 Greedy Plan Selection Algorithm

This section describes an algorithm that greedily generates an evaluation plan
for a T-Cypher query (Algorithm 1). The main idea is to iteratively compute
the optimal plan such that an optimal decision is chosen at each iteration by
selecting the less costly algebraic operator and adding it to the final plan.

The input is a query object Q, whereas the output is the algebraic plan pfinal.
The first step is to compute all the GetNodes operators representing the leaves of
the logical plan tree and add them to the set of sub-plans P . In each iteration, a
candidate set Pcand is initialized, which will then contain the possible operators
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Fig. 11. Example illustrating a graph pattern and two possible logical plans, each
corresponding to a time interval

that can be applied to the set of sub-plans P to cover all the nodes defined in
the query. Then, the possibility of joining two sub-plans is first checked, and
every possible join operator is added to the candidate plans Pcand. The method
joinExists(p, p′) returns the following:

joinExists(p, p′) =

{
True, if μ(Ep) ∩ μ(Ep′) �= {}
False, Otherwise

Consider μ(Ex) to denote the set of variables of the expression of the plan x,
then the method returns true if the variables of the plan p intersect with the
set of variables of the plan p′ and false otherwise. After including the possible
joins in Pcand, each candidate plan is extended with an Expand operator such
that the added node variable does not exist in the original plan. Every extended
plan will be added to Pcand. Now, if no candidate operators are available, the
final plan, which encloses all the node variables of the query Q is found, and
the iterations stop. Otherwise, the most optimal plan popt is chosen between
the set of candidate plans Pcand such that the cost of each plan corresponds
to the requested time interval τ . Note that the computations of the costs of
each operator are described in Sect. 5.2. After adding popt to P , the other plans
contained in P and enclosed by popt are removed from P . The method enclose
returns the following:

p.enclose(p′) =

{
True, if μ(Ep) ⊇ μ(Ep′) �= {}
False, Otherwise

This implies that a plan p is considered to enclose another plan p′ if the set of
variables of p contains all the variables of p′. Finally, the iterations stop when no
candidate sub-plans are added to the Pcand and the final plan pfinal contained
in P is returned.
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Algorithm 1: Greedy selection of a logical plan for a T-Cypher query
Input: Query object Q, τ
Output: Logical plan pfinal

1 P ← InitPlans() N ← ExtractNodes(Q) ;
2 τ ← ExtractTimeInterval(Q) ;
3 for n ← N do
4 p ← getNodes(n) ;
5 P .insert(p) ;

6 DoPcand.size ≥ 1 Pcand ← initPlans() ;
7 for p ∈ P do
8 for p′ ∈ P do
9 if joinExists(p, p′) then

10 p′′ ← join(p, p′) ;
11 Pcand.insert(p′′) ;

12 for p ∈ P do
13 p′ ← expand(p) ;
14 Pcand.insert(p′) ;

15 if Pcand.size ≥ 1 then
16 popt ← chooseOptimal(Pcand, τ) ;
17 P .insert(popt) ;
18 for p ∈ P do
19 if popt.enclose(p) then
20 P .remove(p) ;

21 pfinal ← P .get(0)

We show how an optimal plan for the graph pattern presented in Fig. 11(a)
is computed by applying Algorithm 1. In this example, we present three node
variables {a, b, c} labelled with {L0, L1, L2} and the relationship variables
{ab, cb, ac} having types {T0, T1, T2}. We show in Fig. 11(b) two of the many pos-
sible execution plans for this graph pattern. We assume that the cardinalities of
the graph entities change over time which conduces to a change of the (greedily)
optimal plan. Hence, we consider that the plans presented in Fig. 11(b) corre-
spond to time intervals [t, t′) and [t′, t′′), respectively. Figures 12(a) and 12(b)
present the selection of operators in each iteration of Algorithm 1, yielding to
plans p and p′ presented in Fig. 11(b). Note that we omit some parameters from
the notations of operators when they can be derived from the context.

Extracting cardinalities from temporal histograms implies fetching the total
number of graph entity states with given constraints (node label or relationship
type) that were valid during the requested time interval (i.e., their time intervals
overlap with the requested time interval). A possible way of handling this is to
keep all the cardinalities in an array such that querying it for a given time
interval implies reading all the records until reaching the end time instant of the
requested time interval. Despite its compact space usage, an array data structure
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Fig. 12. Greedy selection of logical plans in for different time intervals

implies at most searching all the elements of the array to retrieve the cardinality
for a single time interval. To mitigate this complexity, we propose the use of
segment trees [3].

A segment tree is a data structure that keeps information related to intervals
as a full binary tree to allow an efficient response to range queries. For example,
querying a segment tree allows finding an aggregated value (e.g., sum, maximum,
average) of consecutive array elements in a range. For our query planner, we use
segment trees to compute the maximum cardinality recorded in a time range to
estimate the overall cost of a query plan. We choose the maximum cardinality
since it can result in worst-case cost estimation.

6 Temporal Graph Storage

The δ-Copy+Log is a variant of the Copy+Log storage approach that we pro-
pose to mitigate the space cost induced by storing full snapshots. Recall that
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the Copy+Log consists of storing snapshots that are valid between the bound-
aries of a time window s.t. each time window contains a fixed number of graph
operations. Now, the δ-Copy+Log follows a similar mechanism with the main
difference that consists of storing deltas instead of snapshots. A critical point is
that a delta differs from a time window. That is, a time window contains every
graph operation that exists between two snapshots whereas a delta contains the
only the minimum number of graph operations that transform a snapshot into
another one. Indeed, an addition of an element in cancelled by a deletion of the
same element, hence, both operations are stored in time window but omitted
from the delta. We store a snapshot after a number of time windows in order to
serve as a starting point for query evaluation. Having this, we store graph oper-
ations in consecutive time buckets containing each a number M of time windows
such that the first M − 1 time windows end with a delta, whereas the final time
window ends with a snapshot. A critical optimization is the forward and back-
ward data storage and retrieval. That is, half of the deltas and time windows in a
bucket is constructed in a forward fashion whereas the other half is constructed
in a backward fashion. The rationale behind this choice is the acceleration of
the query execution time. That is, we choose the closest snapshot from which
to start the retrieval then compute the result in a forward or backward fashion
whether the time instant of that snapshot is lower or greater than the requested
one.

Figure 13 illustrates the storage internals of the δ-Copy+Log and Copy+Log
methods. It shows that the Copy+Log method stores time windows and snap-
shots. Whereas, the δ-Copy+Log stores time windows, deltas and snapshots. In
this example, we consider a set of time buckets B where M = 6 which implies
that the bucket contains 3 forward time windows {ω1

⇒, ω2
⇒, ω3

⇒} and 3 backward
time windows {ω4

⇐, ω5
⇐, ω6

⇐}. At the highest time instant of a forward time win-
dow, a delta is materialized resulting in 2 forward deltas {δ1⇒, δ2⇒}. Whereas, a
delta is materialized at the lowest time instant of every backward time window
except the last time window where a snapshot is materialized resulting in 2 back-
wards deltas {δ4⇐, δ5⇐} and snapshot {S6}. Note that, the subtractive relation 

operating on two snapshots S and S′ s.t. S 
S′ results in the minimum number
of graph updates that permits the transformation of S in to S′. Half of the time
windows is stored in forward fashion whereas the othe’r half is stored in a back-
ward fashion. Suppose a query with a requested time instant t. If t falls within
the time interval of time window ω2

⇒, we start the search in a forward fashion by
fetching ω1

⇒, then fetching ω2
⇒ whose timestamp is lower than t. Whereas, if t

falls within the time interval of the time window ω5
⇐, we construct the result in a

backward fashion. That is, we start by fetching S6 then δ5⇐ and finally ω5
⇐. Note

that, in the Copy+Log method all the time windows are considered as forward.
In the following, we describe the key components of the δ-Copy+Log app-

roach.

Time Buckets: We store the history of the graph in a sequence of temporally
disjoint time buckets s.t. each time bucket is a logical container of M time
windows and their corresponding checkpoints. That is, a checkpoint can be either
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a delta or a snapshot. Now, we store a snapshot that is valid at the highest time
instant of the last time window of a each bucket, whereas we store a delta
at the ending time instant of other time windows. Besides, the first M/2 time
windows are constructed in a forward fashion and ends each with a forward delta.
Whereas, the rest of the time windows are constructed in a backward fashion
and ends each with a backward delta.

Fig. 13. The internals of the Copy+Log and δ-Copy+Log showing a time bucket (b0)
with M = 6, forward and backwards time windows (ωi

⇒, ωi
⇐) , deltas (δi⇒, δi⇐) and

snapshot Si

Time Windows: We use time windows as physical containers for sets of N graph
operations each. There are two types of time windows: forward and backward.
A forward time window ωi

⇒ has graph operations sorted in ascending order of
their timestamps, while a backward time window ωi

⇐ has operations sorted in
decreasing order of their timestamps after they have been reversed.

Snapshots: A snapshot represents a valid state at the end of the last time win-
dow within a bucket. For node or relationship labels, the snapshot includes all
existing nodes and relationships at the snapshot time. For dynamic properties,
the snapshot includes all nodes and relationships with that property and their
latest value before or at the snapshot time.

Deltas: A delta is defined as the minimum number of graph updates required to
transform snapshot S into snapshot S′. In other words, if a graph entity is both
added and subsequently deleted, these operations will cancel each other out and
will not be included in the delta.
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Bloom Filter: Bloom filters are assigned to each delta to mitigate the execution
time overhead of queries induced by the storage of deltas instead of snapshots.
For each graph operation in a delta, we add the identifier of the corresponding
node to the Bloom filter. Having this, queries are accelerated by skipping the
retrieval of graph operations related to the requested node if the identifier of the
latter is not found in the Bloom filter.

6.1 Space and Time Complexity Analysis

This section analyzes the space and time complexities of δ-Copy+Log , Log , and
Copy+Log methods, taking into account system and graph parameters such as
γ, N , M , c1, c2, r1, r2, and pd. These parameters respectively correspond to the
set of all graph operations, the number of graph operations in a time window,
the number of time windows in a bucket, the size of a single graph operation or
element, the time taken to read a graph operation or element, and the probability
of deleting a graph element. Note that due to space limitations, this section
presents some formulas without detailed explanations of their derivation. A more
comprehensive complexity analysis is present in our previous paper [31].

The space usage of the δ-Copy+Log is the sum of the space occupied by
graph operations, deltas and snapshots. The total space usage of the δ-Copy+Log
method (χδ−CL) can be formulated as follows:

χδ−CL =
(
1 + (1 − 2pd)

(M − 2)
M

)
c1|γ| + (1 − 2pd)

2NM
c2|γ|2

The space usage of the Log approach (χLog) is equal to the space occupied by
all graph operations (χo) which implies the following:

χLog = c1|γ|

The space usage of the Copy+Log method (χCL) is equal to the space occupied
by graph operations and snapshots (χo + χs) where M = 1. Having this, we
derive the following:

χCL = c1|γ| + (1 − 2pd)
2N

c2|γ|2

From the obtained equations for χLog, χδ−CL and χCL, we can derive the fol-
lowing:

χLog ≤ χδ−CL ≤ χCL

We analyze the time complexity of a simplified version of the expand operator
for point-based queries. Note that point-based queries are those addressing a sin-
gle graph snapshot. The expand operator (↑τ (v)) retrieves all the relationships
of a node v whose validity intervals contain the time instant τ .
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Execution time of the expand operator: In our analysis, we consider the
worst-case execution time of the operator, which involves reading from the snap-
shot whose timestamp is closest to τ . This, in turn, requires reading all opera-
tions in the deltas of the selected time bucket whose time interval is before τ ,
resulting in the reading of ((M

2 − 1)N) graph operations where M and N refer
to the number of time windows between snapshots and the number of graph
operations in each time window, respectively. Finally, we need to read all the
graph operations in the time window that follows the last selected delta. Based
on this, we derive the following:

Tδ−CL (↑τ (v)) =
(

r2 +
(

M

2
− 1

)
Nr1 + Nr1

)

The expansion of a node using the Log method might incur loading all graph
operations in γ. Having this, we derive the following:

TLog (↑τ (v)) = |γ|r1
Finally, the expansion of a node using the Copy+Log method incur a single
snapshot read which implies the following:

TCopy+Log (↑τ (v)) = r2

Consider |γ| � (NM
2 ) and |γ| � r2

r1
, then we can derive the following:

TCopy+Log (↑τ (v)) ≤ Tδ−CL (↑τ ) (v) ≤ TLog (↑τ ) (v)

This analysis validates that δ-Copy+Log presents a compromise between the Log
and Copy+Log methods. We specifically emphasize analyzing the time complex-
ity of the expand operator as the basis for comparing the time complexity of the
δ-Copy+Log approach with traditional methods such as Log and Copy+Log .

7 Overview

This section provides the details of the integration of our temporal graph
query language, query processor, and storage technique into Clock-G. Hence,
we present in the following the different components composing the architecture
of Clock-G (Fig. 14).

Request Handler. The request handler is responsible for managing the read and
write requests. As presented in Fig. 14, the request handler comprises two func-
tional components: Reader and Writer.

Our proposed language, T-Cypher, requires the reader to process temporal
graph queries using three components: query extractor, planner, and evaluator.
The query extractor converts T-Cypher queries into a system-recognized query
object using our proposed T-Cypher grammar. The query planner uses our plan
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Fig. 14. Overview of the system architecture of Clock-G

selection algorithm to convert the query object into an execution plan that min-
imizes estimated cardinality of sub-results. Cardinality estimation is based on
a cost model and temporal histograms. The query evaluator executes operators
using a pool of atomic executors that share intermediate results.

The writer is responsible for inserting graph updates, which involves inform-
ing the storage manager which holds the meta data of the δ-Copy+Log technique
of the insertion. Then, the writer sends an insertion request to the backend con-
nector, which translates the request into atomic write operations for the backend
store.

Backend Store. The backend store is responsible for storing the temporal graphs
following our proposed storage technique the δ-Copy+Log . We rely on the
column-oriented database Apache Cassandra [29] for robustness, engineering
maturity, and scalability. Besides, Cassandra sorts blocks of data according to a
given column or combination of columns. We utilize this feature to sort graph
updates according to their chronological order, accelerating their sequential read.

For instance, the storage is separated based on the graph entity type, result-
ing in node, relationship, and dynamic property stores. For each node/relation-
ship label or dynamic property, we partition the storage based on a Hash par-
titioning strategy. Each of these partitions corresponds to a storage unit and is
stored following the δ-Copy+Log method (denoted δ-CL in Fig. 14 for simplic-
ity).

Storage Manager. The storage manager is responsible for applying the rules of
the δ-Copy+Log method to the storage. Besides, it maintains metadata that
helps direct read or write operations to the corresponding storage entities.



28 M. Massri et al.

Backend Connector. The backend connector connects to and executes requests
against the backend store. Hence, it receives read or write requests from the
request handler and converts them into Cassandra queries before executing them
against the backend store.

Auxiliary Data Structures. To reduce the prohibitive cost of accessing the sec-
ondary storage, we use auxiliary data structures maintained in memory and
queried when needed. These auxiliary data structures include Temporal his-
tograms and Bloom filters. The temporal histograms represent the evolution of
the cardinality of graph elements through time.

Client API. Clock-G offers a client API enabling a client to connect, ingest
graph updates, or query the stored graphs. Users can insert graph operations
individually or in batches into the system. In both cases, graph operations are
attached to a transactional time based on the system’s internal clock. Besides,
users can query the temporal graph using the temporal graph query language
T-Cypher.

8 Evaluation

This section evaluates the performance of Clock-G, aiming to demonstrate that
δ-Copy+Log provides a balance between the traditional methods Copy+Log and
Log in terms of space usage and evaluation time. It also shows that Clock-G can
be tuned to account for acceptable query latency and storage resources. This
section also confirms the cost-effectiveness of our query optimizer for T-Cypher
queries.

8.1 Experimental Setup

Machine Configuration. The experiments were conducted on a single machine
equipped with 32 Intel(R) Xeon(R) E5-2630L v3 1.80GHz CPUs, 264 GB mem-
ory, 1 TB SSD, running 64-bit Ubuntu 18.04.4 LTS with 5.0.0-23-generic Linux
kernel. We use OpenJDK 11.0.9, Go 1.14.4, DSE 6.8.4, CQL spec 3.4.5 and
Neo4j6 4.4.

Datasets. We evaluated our proposed methods on synthetic and real tem-
poral graphs to validate their performance. Synthetic datasets were generated
with varying probabilities of addition, resulting in three datasets, DSpa

, with
pa values of 0.9, 0.75, and 0.6. These datasets allowed us to analyze the space
reduction achieved by δ-Copy+Log through the elimination of redundant graph
elements across snapshots.

We also used different real-world datasets such as DBLP dataset (DSDBLP

[27], Stack overflow dataset (DSstack) and Wiki talk dataset (DSwiki) [44]. To
evaluate the sequential paths (presented in Sect. 4), we used the CitiBike dataset7

6 https://neo4j.com.
7 https://ride.citibikenyc.com/system-data.

https://neo4j.com
https://ride.citibikenyc.com/system-data
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(DSciti) which includes information of bike trips between stations in New York
city.

We present some of the characteristics of the generated datasets in Table 3
where |V | refers to the total number of vertices, |E| refers to the total number
of graph operations.

Table 3. Characteristics of the generated graphs

Dataset |V | |E| Space usage (GB)

DSpa 500 K 10 M 0.315
DSstack 2.6 M 63.4 M 1.7
DSDBLP 1.8 M 29.5 M 0.831
DSwiki 1.1 M 7.8 M 0.173
DSciti 1 K 2.5 M 0.066
LDBC0 4.2 K 12 K 0.003
LDBC1 406.3 K 1.9 M 0.1
LDBC2 1.1 M 3.9 M 0.3

The storage technique was evaluated using previously described datasets, but
a dataset with different relationship and node labels, and time-evolving proper-
ties that change over time was required to evaluate complex T-Cypher queries
using our query processor. To perform these evaluations, we used the LDBC
dataset [9], which represents a temporal social graph where people know each
other or like each other’s posts and comments. However, the original LDBC
schema did not account for dynamic properties, which were necessary for our
testing requirements. Thus, we modified the schema by transforming some out-
going relationship types and target nodes into dynamic properties attached to
the incident nodes. The modified schema includes nodes for people, posts, and
comments, with relationships of type likes or knows. Each node and relation-
ship has a starting and ending time instant that defines the boundaries of the
validity time interval of each graph entity, as well as a set of dynamic and static
properties that characterize it. For example, the property university of a person
node was originally a relationship connected to that node and another university
node, which we have converted into a dynamic property. Similarly, we converted
the relationships connecting a person to a company and a post or comment to
a tag into dynamic properties. We present the characteristics of the generated
LDBC graphs (LDBC0, LDBC1, and LDBC2) in Table 3.

8.2 Space Usage and Query Evaluation Time of Basic Temporal
Queries

We evaluate disk space usage and query execution time with different system
parameter configurations using basic temporal queries such as local, global,
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Fig. 15. Comparison with state-of-the-art techniques

Fig. 16. Evaluation of 8 Hop queries with f-δ-CL, b-δ-CL and δ-CL methods on dataset
DS0,6 with N set to 10K

point, and range queries. It should be noted that local and global queries
request the local neighborhood of a single query and the state of the entire graph,
respectively. Point and range queries retrieve a point or global state that was
valid at a single time instant and during a time range, respectively. These queries
can be easily written using the T-Cypher’s syntax. In this experiment, local
queries start from 1k randomly selected vertices, while global queries retrieve
snapshots of the graph at uniformly chosen time instants within the time span
of the datasets. This evaluation focuses solely on storage technique performance,
without using a query processor. More complex T-Cypher queries are evaluated
in Sect. 8.3.

Comparison with State-of-the-Art Methods. We compare the results of the
proposed method δ-Copy+Log with those of the traditional methods Copy+Log
and Log . Now, the implementation of Copy+Log in Clock-G is fairly straight-
forward since it consists of setting parameter M to 1, while implementing Log
involves creating unbounded time windows.

Figures 15(a), 15(b) and 15(c) display the space usage, the execution time of
5-Hops and global queries on datasets DS0,6, DS0,75 and DS0,9. Note that, we
set the system parameters N and M to 10k and 12, respectively.

The results clearly demonstrate that the proposed δ-Copy+Log method pro-
vides a balance between the Log and Copy+Log approaches. It reduces space
usage by a factor of 12 compared to Copy+Log , and query execution time by a
factor of 340 compared to Log for DS0.75.

Validating the Use of Bloom Filters. In this evaluation test, we compare
the execution time using 3 methods namely: f-δ-CL, b-δ-CL and δ-CL. The f-
δ-CL method follows the same approach as the δ-Copy+Log with the difference
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Fig. 17. Evaluation of the disk space usage and execution time of queries while varying
the system’s configuration parameter N . The evaluation is conducted on the synthetic
dataset DS0,6

Fig. 18. Evaluation of the disk space usage and execution time of queries with N =
10K. The evaluation is conducted on synthetic datasets DS0,6, DS0,75 and DS0,9

having each a different value of parameter pa

of storing only forward time windows and deltas and omitting the use of Bloom
filters. The b-δ-CL, standing for bloomed-δ-Copy+Log , consists of adding Bloom
filters to the f-δ-CL. Finally, the δ-CL refers the δ-Copy+Log method, hence,
consists of adding forward and backward time windows and deltas to the b-δ-
CL. Comparing these methods emphasizes the gain of adding Bloom filters and
that of storing backward time windows and deltas, separately. Figure 16 shows
the execution time of traversal queries with fixed depth 8 on dataset DS0,6 while
increasing the system parameter M from 1 to 12. The f-δ-CL method significantly
increases the execution time with increasing M , but adding Bloom filters to the
b-δ-CL reduces the execution time, with a speedup of 52% for M = 12. Adding
forward and backward time windows and deltas to the δ-CL speeds up traversals
by 23% compared to the b-δ-CL. The f-δ-CL method has an overhead of 206%
when M is increased from 1 to 12, which is reduced to 12.5% when using the
δ-CL.

Variation of N and M . In this evaluation test, we study the effect of system
parameters N and M on disk space usage and query execution time. Figure 17(a)
shows that increasing M while fixing N significantly reduces space usage com-
pared to the Copy+Log method. Smaller values of N result in higher space usage
of checkpoints. Increasing M induces more significant disk space gain for smaller
values of N . The execution time of 5-Hop and global queries is also evaluated for
different configurations of N and M , with results shown in Figs. 17(b) and 17(c).
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Fig. 19. Evaluation of the disk space usage and execution time of queries with N =
250K. The evaluation is conducted on real datasets DSstackO, DSDBLP and DSwiki

A higher value of N results in higher execution time because fewer checkpoints
are created.

Variation of pa and M . In this evaluation test, we study the effect of varying
the linkage probability of datasets DSpa

and the system parameter M on the
space usage and query execution time. We display in Fig. 18(a) the space occu-
pied by checkpoints for datasets DS0,6, DS0,75, and DS0,9 for different system
configurations where M ranges from 1 to 12. Our results indicate that increas-
ing M leads to a decrease in space usage, and graphs with higher probability of
additions provide better space gains. This is because snapshots of such graphs
consume more space, making the replacement with deltas more significant in
terms of space gain. We also analyze the impact of varying pa and M on the
execution time of 5-Hop and global queries, as shown in Figs. 18(b) and 18(c).
We find that increasing pa leads to an increase in query execution time, as higher
node degrees result in more computations to evaluate query results.

Evaluation on Real Datasets. We assess the space efficiency of ingesting real-
world datasets using the δ-Copy+Log method, with results shown in Fig. 19(a).
The space usage of checkpoints created by ingesting datasets DSstack, DSDBLP ,
and DSwiki into Clock-G reduces significantly when increasing the value of M
from 1 to 12. Furthermore, we evaluate 5-Hop traversal and global queries on
these real-world datasets, and the results in Figs. 19(b) and 19(c) demonstrate
that our solution significantly reduces space usage while adding only a slight
query execution time overhead, as compared to the Copy+Log method.

Comparison with a Non-temporal Graph Database. In this study, we
compare the performance of Clock-G with a commercial graph database Neo4j.
To enable the storage and evaluation of temporal graphs in Neo4j, we created a
temporal layer by adding validity intervals to each node and relationship occur-
rence. We tested two implementations: Neo4j without indexes and Neo4ji with
indexes where we add indexes to the starting and ending time instants (tStart
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Fig. 20. Evaluation of the space usage and query execution time of Clock-G, Neo4j
and Neo4ji

and tEnd) of nodes, relationships, and properties8. We ingested dataset DSciti

in all three systems and evaluated a time increasing path query for each node
and for depths 1 to 8 and time ranges 1 hour to 8 hours.

Figure 20(a) compares the space usage of Clock-G with those of Neo4j and
Neo4ji. It is evident from the figures that Clock-G consumes less space than
Neo4j and Neo4ji.

The Figs. 20(b) and 20(c) show the performance of time increasing path
queries with varying depth and time range, comparing the execution time of
Clock-G with that of Neo4j and Neo4ji. Results show that Clock-G performs
better than the alternative solutions, especially with increasing depth and time
range. Clock-G uses parallelism to compute query results and trims the search
space to the requested time interval, which is not possible with Neo4j and Neo4ji.

The experiment results emphasize the importance of developing v a graph
management system that natively supports temporal data, rather than relying
on a non-temporal commercial system.

8.3 Query Execution Time of Complex Temporal Queries

In this section, we evaluate the performance of our query processor by presenting
the execution time of T-Cypher queries with the best, random, and worst plan
selection. The best execution plan is selected using a greedy algorithm presented
in Algorithm 1. For the worst execution plan, a modified version of this algorithm
is used where the most expensive algebraic operator is selected at each iteration.
Similarly, a random plan is computed using the same algorithm, but the algebraic
operator is chosen randomly at each iteration.

Queries. We ran these tests with several T-Cypher queries listed below. Note
that all these queries apply to a time interval covering the full history of the
LDBC datasets.

8 We use the built-in Neo4j’s indexing utility to include indexes on the properties
tStart and tEnd.
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Query Q0
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k1:knows]-> (p2:person)
RETURN p1, p2

Query Q1
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k:knows*2]-> (p2:person)
RETURN p1, k, p2

Query Q2
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k:knows*3]-> (p2:person)
RETURN p1, k, p2

Query Q3
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k1:knows]-> (p2:person)
-[k2:knows]-> (p3:person)
WHERE p1.university=x AND p1@T STARTS k1@T AND p1@T STARTS k2@T
RETURN p1, p2, p3

Query Q4
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k1:knows]-> (p2:person) -[k2:knows]->
(p3:person), (p2:person) -[l:likes]-> (p:post)
RETURN p1, p2, p3, p

Query Q5
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k:knows]-> (p2:person) -[l1:likes]->
(p:post), (p1:person) -[l2:likes]-> (p:post)
RETURN p1, p2, p

Q0 returns the pairs of persons who knew each other in the time interval. Q1

returns the person’s 2-hop friendship paths. Q2 returns the person’s 3-hop friend-
ship paths. Q3 returns the friends of friends of a person who went to the univer-
sity x such that the friendship started when the person studied in that university.
Q4 returns all friends of friends of each person such that the intermediate per-
son likes a post. Q5 returns the friends who like the same post. Some of these
queries include graph entities with varying levels of granularity. For example,
the knows relationships are more selective than the likes relationships. In such
cases, it is reasonable for the query processor to prioritize loading the "knows"
relationships prior to the "likes" relationships during evaluation in queries Q4
and Q5.

Plan Selection. This section shows the best, random, and worst execution
plans of Query Q3 due to space constraints. Notably, the dataset exhibits a
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lower cardinality for the person label compared to the post label, and a higher
cardinality for the like relationship than the know type.

Fig. 21. Best, random, and worst evaluation plan of Query Q3

We present the evaluation plans for Query Q3 in Fig. 21. The optimal plan
begins by retrieving nodes p1 and selecting those who attended the specified
university. It then expands nodes p1 with relationship k1, selects those who
began at the university, expands again with relationship k2, and selects those
who began with p1. As predicted, the worst plan postpones selections until the
end. The depicted random plan computes two subparts of the query and joins
the results. The first subpart retrieves nodes p1 and their direct neighbors p2
connected via relationship k1, selecting only those who studied at the given
university. The second subpart retrieves nodes p3 and their direct neighbors p′

2

connected via relationship k2. The two subparts are then joined based on the
condition that p2 should equal p′

2 and the temporal condition that k2 should be
started by p1.

Figure 22 displays the average execution time resulting from the best, ran-
dom, and worst plan selection strategies for computing queries {Q0, . . . , Q5} on
datasets LDBC0, LDBC1, and LDBC2. Note that these results correspond to
the average computation time of 10 repetitions.

The execution time of queries Q0, Q1, and Q2 increases with the number
of traversed hops for all evaluated datasets, but the best, random, and worst
evaluation plans show negligible differences. This difference is expected, as all
node and relationship variables in these queries share the same label and type,
resulting in the same cardinality. In contrast, the execution time for queries Q3,
Q4, and Q5 differs significantly between the best and worst evaluation plans
since these queries present graph entities of different granularity.

The worst plan selection strategy delays the selection process until the end
and begins with the nodes having the highest cardinalities. This negatively
impacts the cost of query evaluation. On the other hand, selecting plans ran-
domly provides a balance between the best and worst plan selection strategies
in terms of query execution time. This is because there are several alternative
query plans that fall between the best and worst plan selections. Therefore,
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Fig. 22. Comparison between the execution time of T-Cypher queries with worst, ran-
dom, and best execution plans

these results demonstrate the effectiveness of our plan selection algorithm and
cost model.

Comparison with Neo4j. We compared Clock-G with a non-temporal graph
system by introducing a temporal layer on top of Neo4j. This layer handles the
temporal dimension by storing time instants for graph updates and converting
T-Cypher queries into Cypher queries.

We compared the performance of Neo4j and Clock-G in executing queries
{Q0, . . . , Q5} using Algorithm 1 and present the results in Fig. 23. Clock-G out-
performs Neo4j by up to 80% due to its ability to prune the search space and
directly search within selected time windows, snapshots, and deltas.

Fig. 23. Comparison between the execution time of T-Cypher queries with Neo4j and
Clock-G on LDBC2

9 Conclusion

In this paper, we presented Clock-G, a temporal graph management system
with a holistic approach to covering query language, processing, and storage. T-
Cypher is our user-friendly query language that allows for temporal constraints
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on graph pattern matching and navigational queries. Our query processor eval-
uates T-Cypher queries and targets the minimization of the processing cost.
To address this, our processor uses a graph algebra that defines the algebraic
operators of a plan, cost model that defines the cost of each operator, and tem-
poral histograms that preserve the cardinality’s evolution. Our storage tech-
nique, δ-Copy+Log , targets the reduction of the space usage of the traditional
Copy+Log technique by storing deltas instead of full graph snapshots. Tests
on synthetic and real-world graphs show that δ-Copy+Log significantly reduces
space usage and execution time compared to traditional methods and validates
the efficiency of our query processor.

A promising direction for future work is the incorporation of the spatial
dimension into Clock-G, as it has been the subject of research in the area of
spatio-temporal databases [15,36]. To further enhance the capabilities of the
Thing’in platform, we can explore spatio-temporal queries, such as expressing
a geographic region in which objects should be located during a specified time
interval.
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Abstract. Prediction is one of the most important activities while work-
ing with time series. There are many alternative ways to model the time
series. Finding the right one is challenging to model them. Most data-
centric models (either statistical or machine learning) have hyperparam-
eters to tune. Setting them right is mandatory for good predictions. It
is even more complex since time series prediction also demands choosing
a data preprocessing that complies with the chosen model. Many time
series frameworks, such as Scikit Learning, have features to build models
and tune their hyperparameters. However, only some works address tun-
ing data preprocessing hyperparameters and model building. TSPredIT
addresses this issue in this scope by providing a framework that seam-
lessly integrates data preprocessing activities with models’ hyperparam-
eters. TSPredIT is made available as an R-package, which provides func-
tions for defining and conducting time series prediction, including data
pre(post)processing, decomposition, hyperparameter optimization, mod-
eling, prediction, and accuracy assessment. Besides, TSPredIT is also
extensible, which significantly expands the framework’s applicability,
especially with other languages such as Python.

Keywords: time series · prediction · data preprocessing · machine
learning · hyperparameter optimization

1 Introduction

The prediction of time series has gained more attention in the last decades.
Many time series prediction methods have been developed and can be found
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in the literature [4]. An adequate prediction method is mandatory for build-
ing the right model [31], especially for data-driven models. They are generally
organized between statistical and machine learning [20]. These types of methods
usually have to set hyperparameters. In this sense, hyperparameter optimization
is a fundamental step since it can influence the predictive performance of the
resulting models [16,19].

Additionally, these models might be improved by adequate data prepro-
cessing activities. Most of these methods tend to be optimistic regarding their
assumptions over the time series and are not ready to handle nonstationarity
[4,30]. They also suffer from the presence of concept drift [21] or lack of data
[33]. These two cases are related. When concept drift occurs, generally, there
are few samples to support model building. Usually, nonstationarity demands
transformation methods to address this issue [30]. Besides, while working with
small samples, data augmentation techniques are also needed [23,33,35].

For the algorithm to make predictions with greater accuracy, optimizing the
hyperparameters is necessary [34]. Hyperparameters are values that make up
the initial configuration of the learning algorithm [9]. Hyperparameters are also
present in data preprocessing methods. Several factors influence the predictive
performance of time series models, mainly choosing and tuning the right methods
for data preprocessing and hyperparameters.

Regarding statistical learning, some methods seamlessly integrate hyperpa-
rameters optimization of data processing techniques. It includes the autoregressive
integratedmoving average (ARIMA) algorithm that optimize parameters (p, d, q) for
ARIMA [12]. The d parameter represents the Integrated part of ARIMA and per-
forms the differentiation of observations internally as a preprocessing step for the
series to be stationary. The p parameter corresponds to the AR part of ARIMA, the
number of autoregressive terms. The MA model works with the size of the moving
average window and is represented by the q parameter. This method tunes alto-
gether differentiation, autoregressive, and moving average models [3]. Conversely,
there are many frameworks for machine learning, such as Scikit learn [11,26], which
provides (i) a broad range of prediction methods, (ii) an extensive set of prepro-
cessing methods, (iii) hyperparameter optimization features for machine learning.
However, directly optimizing data processing and machine learning is left for users
to program according to their needs.

In this context, this paper presents TSPredIT, an evolved version of TSPred
[31] that seamlessly integrates the tuning of data preprocessing and time series
prediction models for univariate time series. It only concerns regression models
and is specialized integrating data transformation methods and data augmen-
tation to aid in building machine learning methods (MLM) prediction models.
TSPredIT is made available as an R-package. It is the first tool to seamlessly
integrate a broad range of data transformation and preprocessing methods and
state-of-the-art statistical and machine learning prediction methods for address-
ing nonstationary time series. The package automates the time series prediction
process and parameterization while enabling user-defined prediction methods
and data transformations, including code built in other languages like Python.
Due to that, the features provided by TSPredIT are shown to be competitive
regarding time series prediction accuracy.
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Besides this introduction, the paper is organized into five more sections.
Section 2 presents the background, while Sect. 3 presents the related work.
Section 4 presents the TSPredIT, which evolves from the previous version of
TSPred [31]. Section 5 provides a clear example of using TSPredIT’s main fea-
tures. Conversely, Sect. 6 characterizes the effect of choosing data preprocessing
and different MLM during prediction. Finally, Sect. 7 concludes the work.

2 Background

Time series prediction is commonly associated with the scenario of regression.
For simplicity, the paper may refer to prediction and regression interchange-
ably. Relevant models adopted for time series prediction generally fall into the
categories of statistical or machine learning models [29]. The accuracy of the
predictions depends on the quality of the historical data, the appropriateness of
the model, and the assumptions made about the underlying processes driving
the time series [10,14].

Figure 1 presents a general time series prediction process. It encompasses five
main activities. It provides a general framework for predicting a time series based
on a particular setup of preprocessing methods and prediction models. They are
briefly described here, and some parts are detailed in the following sections.

Fig. 1. Time series prediction process [29]

Activity 1, depicted in Fig. 1 in purple, refers to acquiring the time series
and performing data preprocessing. It is generally associated with data clean-
ing, normalization, and transformation but might include other techniques, such
as data augmentation. The transformations commonly change the time series
domain values, and their parameters must be stored to support later detrans-
formation to the original domain. For time series prediction, splitting the time
series into a training and test set is also important during data preprocessing.
All data preprocessing parameters should be computed during training and reap-
plied from the tune-values of training during the test. The model is built using
the training slice and evaluated using the unseen test set, always ahead. How-
ever, when the goal is to adjust a model for the time series, the model does not
need to be partitioned into a training and test set.

Activity 2, in blue, addresses model training. The prediction methods very
often require hyperparameter optimization. In such a case, the training slice is
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again split into a novel training and validation set. Alternative models exploring
hyperparameters values are built using the novel training and evaluated using
the validation set. Once hyperparameters are fixed, a single model is built using
the entire training dataset. From this moment, the model is available for use.

Activity 3, also in blue, refers to the model prediction. It is worth mentioning
that the predicted values are not in the time series domain. In this sense, they can
not be directly evaluated. Data postprocessing is needed in this case. Activity
4, also in purple, corresponds to the postprocessing of predictions, reversing
transformations applied to the time series data in Activity 1. In a macro view,
the data is normalized (scaled) and given as input to an algorithm. After the
forecast, a denormalization process maps back the predicted values into the
original scale of the time series. An example of postprocessing can be seen in
previous work [24], where the data is denormalized to measure the error in the
same scale for comparison purposes.

Finally, Activity 5, in pink, is the evaluation of prediction errors yielded by
the model, as well as model fitness metrics. If the results are inadequate, this
process can be revised and repeated to refine models. This process iteratively
improves the quality of predictions (for time series prediction) or model adjust-
ment (for time series modeling). The prediction can be evaluated in several ways,
mostly measuring the errors between prediction and actual observation, such as
Mean Square Error (MSE) and symmetric MAPE (sMAPE) in a test set. Alterna-
tively, they can be measured by the level of model adjustment, such as Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) [31].

This process provides a systematic way of predicting a time series based on
particular preprocessing and prediction methods. It also focuses on prediction
and model evaluation, that is, evaluating the accuracy of prediction and the
fitness of a model. Such evaluation may indicate a demand for refining and per-
fecting the preprocessing-modeling setup and its parameters to obtain a more
accurate model. This process may be repeated if the evaluated time series pre-
diction model does not reach the desired accuracy. This process enables bench-
marking different preprocessing-modeling setups.

3 Related Work

Several authors focused on the task of exploring different models. Ramey [27] and
Lessmann et al. [18] developed frameworks for evaluating classification models
and algorithms. Moreover, Bischl et al. [2] and Eugster and Leisch [8] devel-
oped the R-packages mlr and benchmark, respectively, which provide tools for
executing automated experiments when benchmarking a set of models for data
mining tasks such as classification and regression. These packages are designed
to support tabular data and focus on benchmarking based on plot visualization.

Hyndman and Khandakar [12] and Hyndman et al. [13] present frameworks
for automatic forecasting using mainly statistical models such as ARIMA and
exponential smoothing state space model (ETS). Hyndman and Khandakar [12]
produced the well-known R-package named forecast, which can be used for
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automatic time series prediction. The R-package of Moreno, Rivas, and Godoy
[22] also facilitates time series prediction using simple differencing (diff) and
Box-Cox transform (BCT). Furthermore, we observed three works worth men-
tioning. Diebold and Mariano [7] propose various tests to compare the predictive
accuracy of two different prediction models. Diebold and Lopez [6] propose an
ensemble approach using different prediction models. Kumar et al. [17] propose
a class of analytics systems to manage model selection using key ideas from data
management research.

Besides, hyperparameters optimization is also a deeply studied subject [1,15,
16]. The studies may focus on exploring the hyperparameter search space using
a certain heuristic. Conversely, some approaches target the right establishing
of the hyperparameters to explore using either grid search or a more advanced
search strategy. The Grid Search approach is commonly adopted to explore a
broad range of hyperparameter settings. It consists of repeatedly training the
learning algorithm with different possible hyperparameter settings combinations.
At the end of the process, the hyperparameter setting that resulted in the lowest
prediction errors (measured in a separate validation set) is chosen [34]. Such
optimized hyperparameter settings can then be used to fit the learning model
[28]. All these approaches try to lower global prediction error in machine learning
but are resilient to the problem of data overfitting. Such an issue occurs when
the fitted model is too dependent on the training dataset. One consequence is
the fitted model’s inability to generalize to unseen data observations [32].

All in all, several works present frameworks and tools for MLM performance
assessment. Nonetheless, to our knowledge, no work proposes and implements a
framework for the seamless integration of hyperparameter optimization of data
preprocessing and time series prediction methods.

4 TSPredIT

The main modules of the TSPredIT framework are depicted in Fig. 2 as a UML
class diagram. TSPredIT has five main functionality modules: Preprocessing (in
purple), Modeling (in blue), Sampling (in yellow), Evaluating (in pink), and
Tuning (in green). Together, they are used to support the time series prediction
process. The colors of the classes are associated with their participation in the
time series prediction process as depicted in Fig. 1.

All classes are inherited from TSBase. It provides a basic fit method and
some attributes for introspection (to support provenance). It also includes a
fit analysis of the data to adjust basic parameter values. A TSData class also
provides a uniform perspective for time series data and its transformation to
sliding windows. These two types are a specialization of TSData.

The first module is responsible for preprocessing (transform) and postpro-
cessing (inverse transform) a time series. The model groups two main features.
The first is related to data transformation. Especially it includes the implemen-
tation of the main nonstationary time series transformation methods [30], being
either mapping-based, namely the logarithmic transform (LT), BCT, percentage
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change transform (PCT), moving average smoother (MAS), and diff, or splitting-
based, such as empirical mode decomposition (EMD) and wavelet transform (WT).
All these methods are implemented as a specialization of the Transformation
class. The basic implements fit, transform, and inverse transform to provide the
desired behavior.

Furthermore, it also groups a set of methods related to data augmentation.
All methods include warping, flipping, and jittering [23,33]. These methods are
used during tuning, which is explained later.

The second module is related to Sampling. It is responsible for converting
a time series to sliding windows. It is also responsible for separating the data
(TSData) into training and testing. The test size uses only recent observations
to avoid introducing new data during training. Like augmentation, sampling is
used during tuning.

Other relevant preprocessing methods for time series prediction are special-
ized from Preprocessing class, in purple. It includes support for handling missing
values and data normalization such as Sliding Windows min-max normaliza-
tion (swminmax), Min-max normalization (gminmax), diff, and Adaptive nor-
malization (an) methods [24].

Fig. 2. TSPred-IT functionality modules and pre-implemented algorithms (Color figure
online)

The Modeling module, in blue, is responsible for modeling (fit) and predict-
ing (predict) a time series based on a particular time series prediction method.
These tasks are specialized for either statistical or machine learning models. For
the latter, the framework is prepared to perform any necessary machine learning
life-cycle tasks during the training and prediction steps, including coercing data
into sliding windows, normalizing and transforming the input data. This module
includes the implementation of the statistical models: ARIMA, Holt-Winter’s expo-
nential smoothing (HW), theta forecasting (TF), and ETS. MLM models include
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multilayer perceptron network (MLP), random forest regression (RFR), support
vector machine (SVM), MLP, and extreme learning machines network (ELM). Fur-
thermore, the module provides deep learning models available in the PyTorch
library, namely convolutional neural network (Conv1D) and long short-term mem-
ory neural network (LSTM). Models are associated with zero or one data prepro-
cessing transformation and data augmentation technique. However, it might be
set up with multiple candidate options chosen during tuning.

The Tuning module is designed to provide hyperparameter optimization. It is
invoked during the fitting of a model. Hyperparameter optimization occurs when-
ever the modeling of time series or preprocessing transformations has a degree of
freedom to adjust. The default Tuning applies time series cross-validation using
the training set [14]. Data augmentation might be applied in each partition, and
the model is trained after applying the data transformation. The fittest model
and data preprocessing method were discovered using a grid-search, i.e., the
one that leads to better prediction during cross-validation, is chosen for training
using the entire training set. Since this is not the only way of conducting Hyper-
parameter optimization, the default Tuning class can be specialized to provide
other ways of enhancing this feature.

Finally, the Evaluating module, in pink, is responsible for assessing the model
fitness and quality of predictions. These tasks are specialized for computing
either prediction accuracy (error) measures or model fitting criteria. The avail-
able prediction accuracy measures include MSE, sMAPE, and maximal error. It
also includes model fitness criteria such as AIC, BIC, and log-likelihood [5].

TSPredIT can integrate the described modules in a workflow, connecting the
five modules described. The package provides the means to perform the bench-
marking of several prediction models. It is important to remark that although
providing several pre-implemented options, TSPredIT design enables the user to
define and apply customized time series prediction methods.

Moreover, the package provides several automatized features for any time
series prediction application. Among them, some of the main features are (i)
seamless recursive combination of two or more transformation methods; (ii)
seamless integration of transformation methods to the prediction process [30],
which demands the combination of predictions for each component resulting from
data decomposition (first package to include this approach); (iii) transformation
and model parameter selection; (iv) multistep-ahead or one-step-ahead predic-
tions; (v) rolling origin evaluation [14] for both statistical and machine learn-
ing models, and (vi) machine-learning life-cycle tasks performed during training
and prediction steps. Data normalization and sliding window transformation are
seamlessly conducted during machine learning model training.

The framework is implemented in R using the S3 class system [36]. TSPredIT
is currently available on GitHub1. It is an ongoing evolution of TSPred [31], built
on top of the DAL Toolbox2.

1 https://github.com/cefet-rj-dal/tspredit.
2 https://cran.r-project.org/web/packages/daltoolbox/index.html.

https://github.com/cefet-rj-dal/tspredit
https://cran.r-project.org/web/packages/daltoolbox/index.html
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5 Usage of TSPredIT

This section gives examples of TSPredIT usage. The first example corresponds to
a time series prediction using a wrapper for the MLP model using sliding windows
min-max normalization. The hyperparameter tuning applies a grid search using
time series cross-validation.

The Listing 1.1 the TSPredIT R-package processes a time series. The lines
(1–3) of code target and load the installation of TSPredIT. The components
for the time series process can be defined separately to enable reuse. Besides,
the dataset used is made available in the R-package. It is loaded using the data
function (line 6).

The time series is converted into sliding windows (line 8). All sliding windows
are shifted with overlap with step 1 by default. In the example, the size of the
sliding windows is 8. Besides, the last 4 windows are reserved for testing (line
10), and the complement is used for testing in order to control more precisely
which observations is being considered, as a fine tuning. Finally, the training
data is separated into input and output (line 12).

The hyperparameter setup is established in lines 15–17. It indicates the data
preprocessing option of min-max sliding windows. The input size for model build-
ing varies between 3 and 7. The base model is related to MLP. No data augmen-
tation method is used in this example: ts augment(). Also, some specific param-
eters for MLP are indicated in lines 18–19. It provides ranges for the number of
neurons in the hidden layer, the rate of decay during training, and the maximum
number of iterations (fixed). In lines 20–21, the actual tuning is executed using
the training set. Internally, it splits the data using time series cross-validation.
The build model hyperparameters that work better during cross-validation are
used to build the final model using the entire training set. In this example, 500
configurations were explored, each one ten times due to the default ten-fold
cross-validation.

Lines 23–26 present the level of adjustment for the time series in the training
set. This aspect is important since the error level in training is commonly higher
during testing. It provides an expected entry error. Lines 28–31 present the
prediction for testing. It applies a rolling origin with one step-ahead prediction,
leading to four predictions from previously known observations. The sMAPE is
presented in line 33.

To clarify how extensible is TSPredIT in providing alternative MLM, Listing
1.2 changes four lines of code to switch the MLP to ELM, with different ranges of
hyperparameters to explore. This feature is possible due to the wrapper classes
provided by TSPredIT that integrate state-of-the-art methods. Additionally,
novel methods can be wrapped. Writing the fit and predict methods is needed
to incorporate a novel method at TSPredIT.

6 Features Evaluation

TSPredIT was experimentally evaluated to expose the main features of the
framework. For that, it was derived a time series dataset from public data avail-
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Listing 1.1. Example of time series prediction process in TSPredIT

1 > l i b r a r y ( d a l t o o l b o x )
2 #ht t p s : // c e f e t−r j −da l . g i t hub . i o / t s p r e d i t /
3 > l i b r a r y ( t s p r e d i t )
4
5 # Loading f e r t i l i z e r s d a t a s e t
6 > data ( f e r t i l i z e r s )
7 # Conve r t i ng to s l i d i n g windows
8 > t s <− t s data ( f e r t i l i z e r s $ b r a z i l n , sw = 8)
9 # Pa r t i t i o n i n g i n t o t r a i n i n g and t e s t i n g

10 > samp <− t s sample ( ts , t e s t s i z e = 4)
11 # Sepa r e t i n g i n pu t and output f o r t r a i n i n g
12 > i o t r a i n <− t s p r o j e c t i o n ( samp$ t r a i n )
13
14 # Hyperpa ra ramete r
15 > tune <− t s maintune ( p r e p r o c e s s = l i s t (
16 t s norm swminmax ( ) ) , i n pu t s i z e = c ( 3 : 7 ) ,
17 base model = t s mlp ( ) , augment = l i s t ( t s aug none ( ) ) )
18 > r ange s <− l i s t ( s i z e = 1 :10 , decay = seq (0 , 1 , 1 / 9) ,
19 maxit = 10000)
20 > model <− f i t ( tune , x = i o t r a i n $ i nput ,
21 y = i o t r a i n $output , r ange s )
22
23 # Measur ing the l e v e l o f ad jus tment
24 > a d j u s t <− p red i c t (model , i o t r a i n $ i n pu t )
25 > ev a d j u s t <− e v a l u a t i o n . t s r e g ( i o t r a i n $output , a d j u s t )
26 > p r i n t ( ev a d j u s t $me t r i c s $sMAPE)
27
28 # Obta in i ng the p r e d i c t i o n
29 > i o t e s t <− t s p r o j e c t i o n ( samp$ t e s t )
30 > p r e d i c t i o n <− p red i c t (model , x = i o t e s t $ i nput ,
31 s t e p s ahead = 1)
32 > ev t e s t <− e v a l u a t i o n . t s r e g ( i o t e s t $output , p r e d i c t i o n )
33 > p r i n t ( ev t e s t $me t r i c s $sMAPE)

Listing 1.2. R example present the simplicity to explore different setups

1 # Hyperpa ra ramete r

2 > tune <− t s maintune ( p r e p r o c e s s = l i s t ( t s norm swminmax ( ) ) ,

3 i n pu t s i z e = c ( 3 : 7 ) , base model = t s elm ( ) ,

4 augment = l i s t ( t s aug none ( ) ) )

5 > r ange s <− l i s t ( nh id = 1 :20 ,

6 a c t f un=c ( ’ s i g ’ , ’ r adbas ’ , ’ t r i b a s ’ , ’ r e l u ’ , ’ p u r e l i n ’ ) )

7 > model <− f i t ( tune , x = i o t r a i n $ i nput ,

8 y = i o t r a i n $output , r ange s )
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able at the International Fertilizer Association (IFA)3 as a proof of concept of
the present framework. This dataset of fertilizers was explored in deep in pre-
vious work [25]. It contains data on the annual consumption of three fertilizers
(K2O, N , P2O5) among the top ten main consumer countries. Each time series
contains 60 observations from 1961 to 2020. Observations from 1961–2016 are
used for training, and observations from 2017–2020 are used for testing. For the
evaluation, we selected Brazil, the third major fertilizer consumer. All coding
for the experimental evaluation is available4.

The goal of this paper is to explore multiple facets of TSPredIT. The first
experiment evaluated the effect of data transformation (swminmax, diff, an,
gminmax) during prediction using MLP as MLM. Figure 3 compares these methods
during testing for the three fertilizers K2O, N , and P2O5 in Brazil. It presents
the sMAPE error during testing. The swminmax outperformed other methods for
K2O and N . However, in P2O5, an was better followed close by swminmax.

Fig. 3. Comparison of data transformations applied (swminmax, diff, an, gminmax)

A second evaluation explored the adoption of data augmentation techniques
while fixing both MLP as MLM and swminmax as a data preprocessing technique.
Figure 4 compares the performance of not applying data augmentation (none),
using jittering (jitter) and warping stretching (stretch). As it can be observed,
none was better both in K2O and P2O5. However, for N , both jitter and stretch
were worth value. The prediction performance increased by more than 1%. The
data augmentation technique was seamlessly applied during time series cross-
validation for training during hyperparameter optimization.

3 http://www.fertilizer.org.
4 https://eic.cefet-rj.br/∼dal/tspredit/.

http://www.fertilizer.org
https://eic.cefet-rj.br/~dal/tspredit/
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Fig. 4. Comparison of data augmentation applied (none, jitter, stretch)

Finally, the third evaluation studied the adoption of different MLM for predict-
ing P2O5 using an. Figure 5 presents the evaluation of using Conv1D, ELM, MLP,
RFR, SVM, LSTM for this scenario. Table 1 presents the hyperparameters explored.

Fig. 5. Comparison of evaluation of using different MLM for predicting P2O5 using an

All these methods, except for Conv1D and LSTM, explored a similar amount
of hyperparameter combinations (about 250 options each). The methods mostly
could not improve the performance of the MLP. The exception was LSTM, which
improved prediction by more than 1%.
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Table 1. Used hyperparameters for each MLM

MLM Hyperparameters

Conv1D input size ∈ {3, . . . , 7}
ELM input size ∈ {3, . . . , 7}, nhid ∈ {1, . . . , 20},

actfun ∈ {“sig”, “radbas”, “tribas”, “relu”, “purelin”}
LSTM input size ∈ {3, . . . , 7}
MLP input size ∈ {3, . . . , 7}, size ∈ {1, . . . , 10},

decay ∈ seq(0, 1, 1/9)

RFR input size ∈ {3, . . . , 7}, nodesize ∈ {5, . . . , 10},
ntree ∈ {1, . . . , 10}

SVM input size ∈ {3, . . . , 7}, kernel =“radial”,
epsilon = seq(0, 1, 0.1), cost = seq(20, 100, 20)

As a proof of concept, these results can explore the capability of TSPredIT
in combing a broad range of data preprocessing techniques and state-of-the-art
MLM. Besides, the framework can provide hyperparameter optimization exploring
both features, aiding the selection choice for these methods.

7 Conclusions

This paper presented TSPredIT, which extends features presented in TSPred
[31]. It automates the entire time series prediction process by supporting
hyperparameter optimization that combines time series data preprocessing and
machine learning tuning. The architecture of TSPredIT provides five main mod-
ules. It includes data preprocessing, modeling support, prediction evaluation,
and model tuning. Together, they are used to support the time series prediction
process. It is made available as an extended version of DAL Toolbox Package at
GitHub5.

The combination of time series transformation methods in prediction with
decomposed time series, transformation and model parameter selection, multi-
step or one-step-ahead prediction, rolling origin evaluation, and the management
of sliding windows is a key differentiation for TSPredIT. Several benchmark
datasets from time series prediction competitions come bundled with TSPredIT.
This new version enables users to practice data transformation and prediction
methods, gaining confidence in the developed prediction models. Besides, the
framework was designed to enable users to implement their customized meth-
ods. For example, both LSTM and Conv1D were added to TSPredIT as customized
methods implemented in Python. Future updates will expand the range of imple-
mented preprocessing methods, MLM, and evaluation metrics, especially empow-
ering the hyperparameter selection targeting choosing combinations of data pre-
processing and MLM that led to more stable models. This work leaves room for

5 https://cefet-rj-dal.github.io/tspredit/.

https://cefet-rj-dal.github.io/tspredit/
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future implementation including multivariate time series, cost of computation
time, and short and long term prediction in classical problems.

Acknowledgements. The authors thank CNPq, CAPES (finance code 001), and
FAPERJ for partially sponsoring this research.
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Abstract. Tensors are powerful multi-dimensional mathematical
objects, that easily embed various data models such as relational, graph
or time series. Furthermore, tensor decomposition operators are of great
utility to reveal hidden patterns and complex relationships in data.
Among these decompositions, the Tucker decomposition allows to fac-
torize a tensor into a smaller core tensor and a set of factor matrices. In
this article, we propose to study the capabilities of the Tucker decom-
position when it is used in data mining techniques such as exploratory
analysis, clustering and classification of data. We apply these different
techniques on practical examples using several datasets having a ground
truth. It is a preliminary work to add the Tucker decomposition to the
Tensor Data Model, a model aiming at making tensors data-centric, and
at optimizing operators in order to enable the manipulation of large ten-
sors.

Keywords: Data mining · Tensor decomposition · Tucker
decomposition

1 Introduction

When facing the volume and the variety of data, data mining techniques are often
used to extract value. These techniques are rather diverse, and can consist in, for
example, finding patterns in data, clustering similar elements, or training a model
in order to classify new data [32]. However, depending on the technique used, data
often have to be transformed in order to fit the data model required by the algo-
rithm. When doing so, if the data model used is too restrictive to fully represent
the data, the result obtained can be of a lesser quality than one obtained with a
data model that allows to fully represent the characteristics of data.

In this context, tensors are a valuable solution [7]. Indeed, their multi-dimen-
sional nature allows to easily embed different data models. For example, a tensor
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can naturally contains the adjacency matrix of a graph, but also more complex
representation of graphs such as the labelled one [3]. Time series can also be repre-
sented along with their context, thus allowing to give more insights regarding data.
Furthermore, tensors have powerful analytical operators, the tensor decomposi-
tions, that are used for various purposes such as dimensionality reduction, noise
elimination, identification of latent factors, pattern discovery, ranking, recommen-
dation or data completion. They are applied in a wide range of applications, includ-
ing genomics [18], analysis of health records [46], graph mining [44] and identifi-
cation and evolution of communities in social networks [3,34]. Papalexakis et al.
in [35] review major usages of tensor decompositions in data mining applications.

One of the decompositions is the Tucker decomposition, that factorizes a ten-
sor with N dimensions into a smaller core tensor and a set of N factor matrices,
i.e., one for each dimension. The columns of the factor matrices can be seen as
the features for the concerned dimension, and the lines as the signature of a spe-
cific element of the dimension over the features. The core tensor is also of major
importance, as it represents the relationships of the features among dimensions.
However, these different elements make the results of the Tucker decompositon
tricky to interpret, especially compared to more straightforward decompositions,
such as the CANDECOMP/PARAFAC [41] that does not produce a core tensor.

In this article, we study how different data mining techniques can be applied
with the Tucker decomposition. These techniques include the exploratory analysis,
that aims at finding patterns in data without having particular knowledge regard-
ing the specificities of the data, the clustering, that gathers similar elements with-
out supervision, and the classification, that gives a class to a new element depend-
ing on a model trained on known data. Several datasets covering different domains
have been used to illustrate these techniques. It is a preliminary work aiming at
integrating the Tucker decomposition into the Tensor Data Model [15,28]. TDM
adds the notion of schema and data manipulation operators to tensors, in order to
make them data-centric and to avoid technical and functional errors brought by
the manipulation of dimensions and elements of dimensions solely through integer
indexes [39]. It also uses optimization techniques to allow the execution of opera-
tors, including the decompositions, on large-scale data [13].

The remaining of this article is organized as follows: Sect. 2 gives an overview of
tensors and of some main operators, Sect. 3 details how main data models can be
embedded into tensors, Sect. 4 presents the Tucker decomposition and two major
algorithms to compute it, Sect. 5 relates of data mining techniques available with
the Tucker decomposition that have been experimented on datasets, Sect. 6 eval-
uates the robustness of the Tucker decomposition regarding missing values, and
finally Sect. 7 concludes the article and presents perspectives of future works.

2 Background of Tensors

Tensors are general abstract mathematical objects which can be considered
according to various points of view, such as a multi-linear application or as
the generalization of matrices to multiple dimensions. We will use the definition
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of a tensor as an element of the set of the functions from the product of N sets
Ij , j = 1, . . . , N to R : X ∈ R

I1×I2×···×IN , where N is the number of dimen-
sions of the tensor or its order or its mode (see Fig. 1). Table 1 summarizes the
notations used in this article. We adopt the same notation as Cichocki in [7].

Fig. 1. Tensors of different orders

Tensor operators, by analogy with operations on matrices and vectors, are
multiplications, transpositions, matricizations (or unfolding) and decompositions
(also named factorizations). We only highlight the most significant operators on
tensors and matrices which are used in Tucker decomposition algorithms. The
reader can consult [7,27] for an overview of the major operators.

Table 1. Symbols and operators used

Symbol Definition

X A tensor
X(n) Matricization of a tensor X on mode-n
a A scalar
v A column vector
M A matrix
◦ Outer product
⊗ Kronecker product
A⊗−n A(N) ⊗ · · · ⊗ A(n+1) ⊗ A(n−1) · · · ⊗ A(1)

[M]+ Replace negative elements by 0 or small positive value
×n Mode-n product
X ×−n {A} X ×1 A(1) · · · ×n−1 A(n−1) ×n+1 A(n+1) · · · ×N A(N)

‖X‖F Frobenius norm

A fiber noted Yi1,...,in−1,:,in+1,...,iN consists in extracting a vector v ∈ R
In

from the dimension n of a tensor Y ∈ R
I1×I2×···×In×···×IN . To do so, all the
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dimensions except the one to extract are fixed on a specific index, and the values
of the vector are obtained with:

vin = yi1,i2...,in−1,in,in+1,...,iN

Slices are close to fibers, and aim at extracting a matrix M ∈ R
In1×In2 from

the dimensions n1 and n2 of a tensor Y ∈ R
I1×I2×···×In1×···×In2×···×IN . All the

dimensions except two are fixed on a specific index, and the values are obtained
with:

min1 ,in2
= yi1,i2,...,in1−1,in1 ,in1+1,...,in2−1,in2 ,in2+1,...,iN

The concept of fibers and slices can be extended to extract a n-order sub-tensor
from a N -order tensor with n < N , by fixing all the dimensions on a specific
index except for n dimensions.

The outer product between a tensor Y ∈ R
I1×I2×···×IN and another

tensor X ∈ R
J1×J2×···×JM noted Y ◦ X produces a tensor Z ∈

R
I1×I2×···×IN×J1×J2×···×JM in which the elements are equal to:

zi1,i2,...,iN ,j1,j2,...,jM = yi1,i2,...,iNxj1,j2,...,jM

It allows to combine all the values from both tensors, by having as many dimen-
sions as the sum of the order of the input tensors. For example, when applying
the outer product on two vectors (1-order tensors), it will produce a matrix (2-
order tensor), in which an element ei,j corresponds to the ith element of the first
vector multiplied by the jth element of the second vector.

The mode-n product allows to multiply a tensor by a matrix or a vector.
For a tensor X ∈ R

J1×J2×···×Jn×···×JN and a matrix M ∈ R
In×Jn , the result of

the mode-n product noted X ×n M is a new tensor Y ∈ R
J1×J2×···×In×···×JN

where:

yj1,...,jn−1,in,jn+1,...,jN =
Jn∑

jn=1

xj1,...,jn−1,jn,jn+1,...,jNmin,jn

It modifies the size of the dimension n from Jn to In. It can be compared to a
standard matrix multiplication: for all the indexes of the dimension n, a fiber
v1 ∈ R

Jn is obtained, and the multiplication M × v1 is performed, resulting in
a vector v2 ∈ R

In that replaces the fiber extracted from the tensor.
The mode-n product between a N -order tensor X ∈

R
I1×···×In−1×In×In+1×···×IN and a vector v ∈ R

In noted X ×n v produces a
(N − 1)-order tensor Y ∈ R

I1×···×In−1×In+1×···×IN where:

yi1,...,in−1,in+1,...,iN =
In∑

in=1

xi1,...,in−1,in,in+1,...,iN vin

The behavior of the mode-n product between a tensor and a vector is the same
as the one between a tensor and a matrix, except that the product is a dot
product between v and v1 ∈ R

In , that yields a scalar. Thus, the resulting size
of the dimension n is 1, and it can be removed from the tensor.
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The mode-n matricization of a tensor X ∈ R
I1×I2×···×IN noted X(n)

produces a matrix M ∈ R
In×Πj �=nIj , where:

min,j = xi1,...,in,...,iN with j = 1 +
N∑

k=1
k �=n

(ik − 1)
k−1∏

m=1
m �=n

Im

The matricization is a useful operator, that allows to convert a tensor into a
matrix without losing information, in order to apply matrix operators such as
the Hadammard product, the Kronecker product or the Khatri-Rao product [7].

The Kronecker product between two matrices A ∈ R
I×J and B ∈ R

K×L

noted A ⊗ B produces a matrix C ∈ R
(IK)×(JL), in which every elements of A

are multiplied by the matrix B:

cm,n = ai,jbk,l where m = k + (i − 1)K and n = l + (j − 1)L

The Frobenius norm of a tensor X ∈ R
I1×I2×···×IN noted ‖X‖F is com-

puted with:

‖X‖F =

√√√√
I1∑

i1=1

· · ·
IN∑

iN=1

|xi1,...,iN |2

It is often used on the difference between two tensors in order to estimate their
similarity.

3 From Data Models to Tensors

By means of their multi-dimensional nature, tensors can represent various data
models. This section highlights how common data models can be embedded into
a tensor.

3.1 Key-Value Model

The key-value model stores data as (key, value) pairs [4]. Thus, 1-order tensors
KV ∈ R

|key| can be used to represent this model, with the dimension storing
the keys, and the values of the tensor being the value of the pairs. With tensors,
the key-value model can be extended to a multi-keys model, in which a value is
indexed by several keys. To do so, the tensor must have as many dimensions as
the number of keys in a pair, i.e., for K keys the tensor will have K dimensions
MKV ∈ R

|key1|×···×|keyK |.

3.2 Relational and Column Models

A relation R (or table) [24] is a set of tuples (v1, v2, . . . , vN ), where each element
vi is a member of a domain Domi, so the set-theoretic relation R is a subset of
the cartesian product of the domain Dom1 × · · · ×DomN . With this definition,



A Guide to the Tucker Tensor Decomposition for Data Mining 61

any relation can be represented with a N -order tensor R ∈ R
|Dom1|×···×|DomN | in

which the values are the number of occurrences of this combination of elements.
OLAP data cubes [16], that are obtained from GROUP BY queries, are natu-

rally embedded into tensors because they already represent a multi-dimensional
array (see Fig. 2). By formally defining a data cube with f : (A1, . . . , AN ) → v,
we can use a N -order tensor DC ∈ R

|DomA1 |×···×|DomAN
| populated with the v

values.

Fig. 2. Building a tensor from a GROUP BY query

This representation can also model a relation in which the association of
N − 1 elements guarantees a unique combination (e.g., a primary key), and a
last element that carries a specific value. For example, for tuples that represent
a user, its city and its age, the users and the cities can each be embedded into
a dimension, and the age can be the value of the tensor.

The column model, which we consider as a semi-structured model with a
fixed schema (i.e., that has a fixed number of columns), includes CSV files and
dataframes [36]. This type of model is close to the relational one, thus the same
mechanisms of modelling can be used.

3.3 Graph Models

A simple graph G = (V,E), where V is the set of the vertices (or nodes) and E ⊆
V ×V the set of the edges (or links), can be represented by its adjacency matrix,
and thus by a 2-order tensor G ∈ R

|V |×|V | that can take into consideration the
direction and the weight of the edges.

However, this is a basic representation, and embedding a graph into a tensor
can be even more useful. In a lot of real world graphs, the edges are labelled. An
edge labelled graph has its edges defined by E ⊆ V ×Lab×V , where Lab is a set
of labels [2]. For example, in a social network the interactions among users are
represented by edges that can carry more information, such as the time of the
interaction or important words (or hashtags) used in the message. Tensors, as
opposed to classical graph representations, can naturally put each type of label
into a dimension and have a more complete representation of the data, i.e., for a
graph with L different labels and |Labi| the number of distinct values taken by
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the label Labi, we have LG ∈ R
|V |×|V |×|Lab1|×···×|LabL| (see Fig. 3). The previous

example can be modeled as a 4-order tensor, with one dimension for the source
user, one for the destination user, one for the hashtag and one for the time.

Fig. 3. Building a tensor from a labelled graph

Multi-layer networks [26] are also of high interest. A multi-layer network
M = (VM , EM , V,L) with D layers has a set of vertices V and a set of layers
L = {L1, . . . , LD}. A vertex can be present in multiple layers, so VM ⊆ V ×L1 ×
· · ·×LD. Thus, the edges link a vertex within a layer to another vertex within a
layer, that is EM ⊆ VM × VM . Each layer represents a category of vertices. This
type of graph can be embedded into a 4-order tensor, i.e., M ∈ R

|V |×|V |×|L|×|L|,
with one dimension for the source vertex, one for the destination vertex, one for
the source layer and one for the destination layer. On top of that, by adding
dimensions to this representation, tensors can represent easily labelled multi-
layer networks.

3.4 Time Series

A time series Y = (Yt : t ∈ T ) follows the evolution of a metrics for a given
element during time [17]. A 1-order tensor Y ∈ R

|T | can represent a standard
time series by storing the time in the dimension. However, tensors can shine as
model for time series, as they allow to integrate much more parameters of the
creation of the time series (e.g., the sensor, the location), each parameter being
represented as a dimension (see Fig. 4). By doing so, time series are viewed in
their global context, and therefore it adds more precision and information to the
analyses performed on them.
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Fig. 4. Building a tensor from time series

3.5 Images and Videos

A gray scale image of size x × y is a matrix GI ∈ R
x×y, thus a 2-order tensor

GI ∈ R
x×y. More complex images that use multiple color channels (e.g., RGB,

YUV, CYMK) can be embedded in a 3-order tensor CI ∈ R
x×y×c, where c is the

number of channels. Videos can be considered as a succession of images, called
frames. In this configuration, a video is a 4-order tensor V ∈ R

x×y×c×f where f
is the number of frames.

4 Tucker Decomposition

The Tucker decomposition [45] factorizes a N -order tensor X ∈ R
I1×···×IN into

a core tensor G ∈ R
R1×···×RN and N factor matrices A(n) ∈ R

In×Rn . The
Fig. 5 shows a representation of the Tucker decomposition applied on a 3-order
tensor. The ranks R1, . . . , RN are input parameters that determine the number
of column vectors (that can be seen as the different features) for each factor
matrix. For each rank Ri, we have Ri ≤ Ii, and most of the time Ri 	 Ii. The
input tensor can be approximated from the result of the decomposition with:

X 
 G ×1 A(1) · · · ×N A(N)
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Fig. 5. The Tucker decomposition, with X ∈ R
I1×I2×I3 the input tensor, G ∈

R
R1×R2×R3 the core tensor, and A(1) ∈ R

I1×R1 , A(2) ∈ R
I2×R2 and A(3) ∈ R

I3×R3

the factor matrices

The order of the elements of the dimensions of the input tensor does not
impact the result of the decomposition. Indeed, changing it would only reorder
the line vectors of the factor matrices, as each line vector stores the result of the
decomposition for a given element on the dimension corresponding to the factor
matrix.

To compute the Tucker decomposition, several algorithms have been pro-
posed. Each has some advantages, as for example imposing more easily the
orthogonality constraint (that allows a good clustering of elements) or the non-
negativity constraint (that provides more interpretable results). Two major algo-
rithms are presented in this section: the Higher-Order Orthogonal Iteration
(HOOI) and the Hierarchical Alternating Least Squares Non-negative Tucker
Decomposition (HALS-NTD).

4.1 Higher-Order Orthogonal Iteration Algorithm

The HOOI algorithm [8] is the most famous one to compute the Tucker decompo-
sition (Algorithm 1). It depends primarily on the Singular Value Decomposition
(SVD), that it extends to cope with multiple dimensions.

The HOOI starts by initializing the factor matrices, by matricizing the orig-
inal tensor on each dimension in order to apply the SVD and to use the Rn

left singular vectors (matrix U of the result of the SVD truncated at the Rn
th

column) as factor matrices. During the iterative phase (lines 2 to 7), each factor
matrix is improved. To do so, a partial core tensor Y ∈ R

R1×···×In×···×RN is
computed by performing the mode-n product on the original tensor and all the
factor matrices except the one being improved. This partial core tensor is then
matricized on the mode corresponding to the concerned dimension, and the SVD
is executed on it. As for the initialization step, the Rn left singular vectors are
used as the new factor matrix. The iterative phase allows to refine the result,
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as the partial core tensor takes into consideration the other factor matrices. So,
each factor matrix is improved depending on the other factor matrices, thus rein-
forcing the discovering of relationships among elements of dimensions. When a
convergence criteria is met, the final core tensor is computed from the original
core tensor and all the factor matrices (line 8).

Algorithm 1. Higher-Order Orthogonal Iteration (HOOI)
Require: Tensor X ∈ R

I1×I2×···×IN and target ranks R1, . . . , RN

Ensure: Core tensor G ∈ R
R1×R2×···×RN and factor matrices U(1), . . . ,U(N) with

U(n) ∈ R
In×Rn

1: Initialize U(1), . . . ,U(N), with U(n) ∈ R
In×Rn , U(n) ← SV D(X(n)).U(:, 1 : Rn)

2: repeat
3: for n = 1, . . . , N do
4: Y ← X ×N U(N)T ×n+1 U(n+1)T ×n−1 U(n−1)T · · · ×1 U(1)T

5: U(n) ← SV D(Y(n)).U(:, 1 : Rn)
6: end for
7: until < convergence >
8: G ← X ×N U(N)T · · · ×1 U(1)T

A simpler version of the HOOI algorithm exists, the Higher-Order Singular
Value Decomposition (HOSVD), that removes the iterative part of the HOOI
algorithm (lines 2 to 7). It is less precise, as the iterative part of the HOOI allows
to refine the result until a convergence criterion is met.

The HOOI algorithm inherits from the orthogonality constraint of the SVD
for the computation of the factor matrices. Thus, it works pretty well to clus-
ter elements of a dimension depending on their behavior on the other dimen-
sions. However, as the SVD produces matrices with positive and negative values,
the HOOI is not well suited to impose the non-negativity constraint on factor
matrices, as some negative values will be found (and must be removed) at each
iteration.

An advantage of this algorithm is that it can easily be implemented on large
tensors. The most costly operation is the computation of the SVD, that is found
at the initialization (line 1) and during the iterative phase (line 5). During the
iterations, as the SVD is executed on the mode-n matricized partial core tensor,
that is relatively small compared to the matricized original tensor, the time and
space complexity is reduced. At the initialization of the algorithm, it can be
replaced with a random initialization to avoid the computation of the SVD on
a too large matrix.

4.2 Hierarchical Alternating Least Squares Algorithm

The HALS-NTD algorithm [7] uses a different approach than the HOOI algo-
rithm (Algorithm 2), even if the initialization step (line 1) can be done by using
the HOSVD. An alternative version of the HALS-NTD was later proposed [37].
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Algorithm 2. Hierarchical Alternating Least Squares (HALS-NTD)
Require: Tensor X ∈ R

I1×I2×···×IN and target ranks R1, . . . , RN

Ensure: Core tensor G ∈ R
R1×R2×···×RN and factor matrices A(1), . . . ,A(N) with

A(n) ∈ R
In×Rn

1: Initialize A(1), . . . ,A(N) with non-negativity constraint
2: E ← X − G ×1 A(1) · · · ×N A(N)

3: repeat
4: for n = 1, . . . , N do
5: for r = 1, . . . , Rn do
6: X(r)

(n) = E(n) + a
(n)
r

[
G(n)

]
r
A⊗−nT

7: a
(n)
r ←

[
X(r)

(n)

[
(G ×−n {A})(n)

]T
r

]

+

8: a
(n)
r ← a

(n)
r /

∥
∥
∥a(n)

r

∥
∥
∥
2

9: E(n) ← X(r)

(n) − a
(n)
r

[
G(n)

]
r
A⊗−nT

10: end for
11: end for
12: for r1 = 1, . . . , R1, . . . , rN = 1, . . . , RN do
13: gr1,...,rN ← gr1,...,rN + E ×1 a

(1)
r1 · · · ×N a

(N)
rN

14: E ← E + Δgr1,...,rN
a
(1)
r1 ◦ · · · ◦ a

(N)
rN

15: end for
16: until < convergence >

The HALS-NTD starts also by initializing the factor matrices (line 1), but
adds a non-negativity constraint to manipulate only positive values in the
remaining of the algorithm. An error tensor E ∈ R

I1×···×IN (noted E(n) when
it is matricized on dimension n), that stores the difference between the original
tensor and the reconstructed tensor from the core tensor and the factor matrices,
is computed (line 2). The iterative phase (lines 3 to 16) is more complex than
the one of the HOOI algorithm. Rather than improving a whole factor matrix
at a time, it improves a vector of a factor matrix at a time. To do so, at the
line 6, the current vector (the one being improved) is put in relation with all the
other factor matrices associated with the part of the core tensor representing
the strength of the relationships of the current vector regarding the vectors of
the other factor matrices. This result is added to the error tensor, and stored in
X(r)

(n), that can be seen as a matricized tensor representing the contribution of
the current vector to the global result combined to the error tensor. At line 7,
the current vector is improved by multiplying X(r)

(n) with the part of the recon-
structed tensor corresponding to the current vector. The current vector is then
normalized with a L2 norm (line 8), and the error tensor is updated (line 9).
Once all the vectors of the factor matrices have been improved, the core tensor
is updated from the previous core tensor, the error tensor and the new vectors of
the factor matrices (line 13), and finally the error tensor is updated to integrate
the changes in the core tensor (line 14).

The major advantage of the HALS-NTD is that it enforces the non-negativity
constraint by imposing it during the initialization step, and then by improving
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the result without obtaining (and without having to eliminate) negative values
during the iterative part (line 3 to 12). Thus, it eases the direct interpretation
of the factor matrices as well as the core tensor.

However, as this algorithm computes the decomposition column vector by
column vector for each factor matrices, it is computationally demanding, and
harder to optimize than the HOOI one. Furthermore, there is almost no imple-
mentation of the HALS-NTD alogrithm. To the best of our knowledge, only
Cichocki and Phan have provided a Matlab implementation in [7].

4.3 Related Work

The Tucker decomposition has been used in several kind of applications on spe-
cific data such as in social and collaboration network analysis, in web mining,
in topic modelling, in recommendation systems, in urban computing, in vision,
image or speech processing. While the number of works on the CANDECOM-
P/PARAFAC decomposition algorithm is significant, much less work has been
done to study the Tucker decomposition algorithms. Some of these works focus
on specific issues of algorithms to compute the Tucker decomposition.

In [22] the authors proposed the D-Tucker decomposition, as a fast and
memory-efficient method for Tucker decomposition on large dense tensors using
3 phases: the approximation, the initialization, and the iterative phases. The
main ideas is to compress an input tensor by computing randomized SVD of
matrices sliced from the input tensor, and to obtain orthogonal factor matrices
and a core tensor by using SVD results.

In [23] the authors proposed Tucker decomposition methods for large dense
static tensors and online streaming data. They decomposed large dense tensors
by using the randomized SVD, avoiding the reconstruction from SVD results,
and carefully determining the order of operations.

Chachlakis et al. in [6] explored the use of L1-norm for reformulation of
the Tucker decomposition to overcome the effect of outliers. They also adapted
two algorithms: the L1-norm Higher-Order Singular Value Decomposition (L1-
HOSVD) and the L1-norm Higher-Order Orthogonal Iterations (L1-HOOI).

In [29], the authors defined a scalable GPU-based Tucker decomposition,
which partitions large-scale tensors into subtensors to process them. They
showed that their decomposition reduced the overhead on a single machine.

Most of the Tucker decomposition implementations make use of explicit
matricizations and could introduce extra costs in terms of data conversion and
memory usage. In [10] the authors proposed A-Tucker, a framework for input-
adaptive and matricization-free Tucker decomposition of dense tensors. Their
decomposition algorithm enables the switch of different solvers for the factor
matrices and core tensor, and a machine-learning adaptive algorithm is applied
to automatically cope with the variations of both the input data and the hard-
ware. They showed that A-Tucker improves existing algorithm on GPUs.

Several applications of the Tucker decomposition can be found in the litera-
ture.
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Fernandes et al. [12] presented an overview of tensor decompositions for
analyzing time-evolving social networks and showed that while most of the
approaches use the CANDECOMP/PARAFAC decomposition, Tucker is most
appropriate for studying time evolving networks. Sun et al. [43] used Tucker
on social network data in order to find clusters. They applied it on the Enron
dataset. They also proposed visualization techniques based on graphs to display
the result of the decomposition. Al-Sharoa et al. in [1] proposed an approach to
determine sub-spaces across time which relies on Tucker decomposition.

Shao et al. in [40] developed a model for temporal knowledge graphs com-
pletion based on a specific tensor decomposition model for temporal knowledge
graphs completion inspired by the Tucker decomposition, but only for 4-order
tensors. For handling missing data, [30] introduced a Tucker decomposition with
L2 regularization and applied it on urban IoT data.

Romeo et al. [38] used the Tucker decomposition to cluster documents.
Thanks to this decomposition, they were able to process documents in several
languages in the same tensor, in order to find similarities in the whole dataset.

Huang et al. [20] compared the Tucker decomposition to the PCA and SVD
associated to k-means. They ran experiments on three datasets of images to
show the similarities among these algorithms. Zhou et al. [47] took a different
approach and used the Tucker decomposition as a supervised learning algorithm.
They obtained promising results to cluster images.

Cichocki in his book [7] showed several applications of various decomposi-
tions on small tensors, mainly for image and brain data signal analysis. In [19],
the authors approximated both spectral and spatial information, and proposed
a novel 3-order Tucker decomposition and a reconstruction detector for hyper-
spectral change detection. They designed a singular value energy accumulation
method to determine the number of principal components in different factor
matrices.

Brandoni et al. in [5] defined a method which can handle three or more order
tensors in the Tensor-Train model and they proposed to tackle the memory
consumption with a truncation strategy. For 3-order tensors, the Tensor-Train
decomposition corresponds to the classical Tucker decomposition. They applied
their method for image classification.

In [33] the authors used Tucker decomposition as the core of a deep neu-
ral network method for speech emotion recognition. 2D, 3D Spectrogram and
Temporal Modulation Spectrogram are explored to investigate tensor factoriza-
tion based architectures to capture salient information corresponding to emo-
tion. Hidden layers are extracted from Tucker decomposition. The core tensor
produced in each hidden layer is the feature associated with that factorization
layer.

Due to the lack of implementation for the HALS-NTD algorithm, articles are
mainly related to the HOOI algorithm. Thus, they only benefit from a part of
the Tucker decomposition capabilities. They aim at clustering data, and do not
rely on the direct interpretability of the factor matrices and the core tensor even
if it brings valuable insights.
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5 Data Mining Techniques

This section presents the datasets used for the experiments, as well as the differ-
ent data mining techniques that can be applied with the Tucker decomposition.
In [14], we observed that the HALS-NTD algorithm with its non-negativity con-
straint is best suited for producing interpretable results, while the HOOI algo-
rithm with its orthogonality constraint is best suited for clustering tasks. So, in
this article we focus only on the different data mining techniques without analyz-
ing the impact of each algorithm on the techniques. The code of the experiments
is available online1 as well as the links to datasets in order to make the experi-
ments reproducible.

5.1 Datasets Overview

To illustrate the different data mining techniques, we rely on several well-known
datasets. They are rather diverse and concern different domain applications, such
as image recognition, temporal graph or machine learning reference dataset.

Iris 2

The Iris dataset contains characteristics of 150 flowers, namely the sepal
width, the sepal length, the petal width and the petal length. There are 3 species
of Iris flowers in this dataset, each being represented by 50 samples. This dataset
is known for having one species that are linearly separable from the two others,
and two species that are not linearly separable.

COIL-20 [31]

Fig. 6. The 20 objects of the COIL-20 dataset

1 https://github.com/AnnabelleGillet/Tucker-experiments.
2 https://archive.ics.uci.edu/ml/datasets/iris.

https://github.com/AnnabelleGillet/Tucker-experiments
https://archive.ics.uci.edu/ml/datasets/iris
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The COIL-20 dataset gathers 20 different objects (see Fig. 6). For each object,
there are 72 pictures that represent the object in a specific position (a difference
of 5◦ in the orientation of the object). The pictures have 128 × 128 pixels.

MNIST [9].

Fig. 7. An extract of the MNIST dataset

The MNIST dataset is composed of 70 000 images representing a hand-written
digit, of 28 × 28 pixels (see Fig. 7). It is often used to evaluate algorithms of
image classification, as the hand-written nature of the images induces a different
complexity to deal with than a static object.

Primary School [42]

Fig. 8. Network overview of the primary school dataset



A Guide to the Tucker Tensor Decomposition for Data Mining 71

The primary school dataset represents the interactions among 232 students
and 10 teachers in a French primary school, that contains 10 classes (see Fig. 8).
The participants wore RFID devices, that recorded an interaction if it had lasted
at least 20 seconds. The experiment was carried on during 2 days. The records
are of the form (person1, person2, timestamp), and the class of each student is
the ground truth of this dataset.

5.2 Exploratory Analysis

The Tucker decomposition can be used to highlight patterns of multi-dimensional
data. Indeed, as each factor matrix gives information regarding elements of a
dimension depending on their behavior on other dimensions, it helps to find
structures or patterns in data. Furthermore, the core tensor allows to link this
kind of information among all the dimensions, and thus to contextualise each
insight.

To illustrate this use of the Tucker decomposition, we rely on the primary
school dataset. We build a 3-order tensor of size 242 × 242 × 208, with two
symmetric dimensions used to represent the persons, and the third dimension to
represent the time with a granularity of 5min. If a person has been in contact
with another person at a time t, then the value in the tensor indexed by the
corresponding dimension values is 1.

This kind of use of the Tucker decomposition is best interpreted when the
non-negativity constraint is enforced during the decomposition algorithm exe-
cution. So, in the experiment of this section, we use the HALS-NTD algorithm.
We run the Tucker decomposition with ranks 13 (for the first person dimension),
13 (for the second person dimension) and 4 (for the time dimension). To choose
these ranks, we ran the SVD for each dimension on the tensor matricized on
the corresponding dimension, and we select as rank the number of significant
singular values.

The factor matrix for the first dimension is shown in Fig. 9. Each line rep-
resents a rank, and the columns are the persons. The students are ordered by
their class: the first columns are the students of the class 1A, then 1B, and so
on until 5B, and the 10 teachers are the last 10 columns. We can distinguish 10
ranks in which each class appears distinctly, and three heterogeneous ranks.

Figure 10 shows the factor matrix for the time dimension. There are four
distinct periods. The first period indicates an activity during class hours and the
morning and afternoon breaks, the second period concerns the breaks, including
the lunch one, the third period also covers the class hours with more activity
at the end of the days, and the last one shows activity during morning and
afternoon breaks and just before and after the lunch time.

For exploratory analysis, the role of the core tensor is also important: it
gives insights regarding the strength of the relationships of the ranks among
dimensions. For example, the g1,1,1 value indicates if the vectors a(1)

1 , a(2)
1 and

a(3)
1 are strongly related or not.
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Fig. 9. Factor matrix for the dimension representing the persons in the primary school
experiment

To illustrate the usefulness of the core tensor, we can focus on a particular
rank of the first dimension and see how it is related to the ranks of the other
dimensions. The Fig. 11 represents this mechanism when fixing the rank of the
first dimension to the one corresponding to the class 1A.

This figure shows some interesting results. The first strongest value of the core
tensor indicates that the class 1A has strong ties with itself, mainly at the break
times and before and after the lunch break (Fig. 11a). It makes sense because at
the breaks the students move from their classroom and go outside, so it creates
more interactions among students. The second strongest value of the core tensor
shows again a relationship of the class 1A with itself, but this time during the
class hours (Fig. 11b). The third strongest value indicates a relationship between
the class 1A and 1B during the breaks, including the lunch one (Fig. 11c). As the
students of these two classes are of the same age, it is logical that they have more
ties. Finally, the fourth value of the core tensor shows a relationship between
the class 1A and a heterogeneous cluster that gathers students from grades 1, 2
and 3, during the breaks (Fig. 11d).

The Fig. 12 indicates the number of contacts that have occurred among
classes, and it confirms the observations made from the result of the Tucker
decomposition. In each class, most of the contacts are made with students of the
same class, or with students with a close age.

To summarize, the advantages of using the Tucker decomposition for
exploratory analysis are twofold: 1) the vectors of the factor matrices give insights
regarding the elements that contribute to the rank; and 2) the core tensor allows
to link the ranks of one factor matrix to the ranks of the other factor matrices,
and thus it gives more context to the result, as for example in Fig. 11 where we
have the temporal activity of the different communities.
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Fig. 10. Factor matrix for the dimension representing the time in the primary school
experiment. The morning and afternoon breaks are approximate, as all the classes do
not have the breaks at the same time
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Fig. 11. Ranks from each factor matrix that are strongly related to each other when
fixing the rank of the first dimension to the one representing the class 1A

Fig. 12. Number of contacts among classes (from [42])

5.3 Clustering

The Tucker decomposition produces factor matrices that represent the proximity
of the elements of a dimension depending on their behavior on all the other
dimensions. Therefore, classic clustering techniques can be applied on a selected
factor matrix to cluster its elements.

To apply this technique, the tensor must be built with a dimension repre-
senting the samples to cluster. Enforcing the orthogonality constraint on factor
matrices is of great help to separate more clearly the different clusters, so it is
better to use the HOOI algorithm. The number of ranks can be chosen identically
to the exploratory analysis technique.
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From the result of the Tucker decomposition, it is possible to execute cluster-
ing algorithms on the factor matrix of the dimension of the elements to cluster,
in order to gather similar elements. To illustrate this technique, we apply it on
all the datasets presented in Sect. 5.1.

Table 2. Modeling of the tensors for the clustering experiment (the dimension on
which we apply the clustering algorithm is in bold)

Dataset Dimensions Size of dimensions

Iris Characteristics, Samples 4 × 150

MNIST Pixels, Pixels, Samples 28 × 28 × 10 000

COIL-20 (with position) Pixels, Pixels, Position, Samples 128 × 128 × 72 × 1 440

COIL-20 (without position) Pixels, Pixels, Samples 128 × 128 × 1 440

Primary school Students, Students, Time 242 × 242 × 208

The Table 2 summarizes the tensors built for the experiment for each dataset.
The Iris dataset is embedded into a 2-order tensor, in which each sample has
a vector of characteristics, namely the sepal length, the sepal width, the petal
length and the petal width. For the MNIST dataset, a 3-order tensor stores the
image corresponding to each sample. To reduce the size of the tensor, only 10 000
samples are kept, with 1 000 samples for each digit. For the COIL-20 dataset, we
have tried two different modeling: one that includes the position of the object in
a dimension, and another that uses the same representation as for the MNIST
dataset, without modeling the position. Finally for the primary school dataset,
we use the same modelling as for the exploratory analysis experiment.

Table 3. Result of the clustering experiment on each dataset

Dataset Ranks used Precision Adjusted Rand Index

Iris 3, 3 80% 0.5623

MNIST 10, 10, 100 12.83% 0.015

COIL-20 (with position) 31, 18, 72, 20 5.63% −0.0046

COIL-20 (without position) 31, 18, 20 42.43% 0.337

Primary school 13, 13, 4 91.38% 0.8189

From these tensors, we run the Tucker decomposition with the HOOI algo-
rithm, and we apply the k-medoids algorithm [25] on the factor matrix corre-
sponding to the dimension to cluster, with k being the number of classes of the
dataset. The Table 3 shows the ranks used for each dataset, the precision of
the clustering and the Adjusted Rand Index [21] (ARI). In this experiment, the
precision is computed as follows:

precision =
number of elements correctly clustered

total number of elements
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The cluster gathering the most elements of a given class is considered as the
cluster for this class. The ARI is computed as follows:

ARI =
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with N the number of elements to cluster, Nc the number of classes and ni,j

the value at line i and column j of the confusion matrix. n.,j is the sum of the
column j and ni,. is the sum of the line i.

The clustering provides good results for the Iris (80% precision and 0.5623
ARI) and the primary school (91.38% precision and 0.8189 ARI) datasets. The
confusion matrix for the Iris dataset is given in Fig. 13. As expected, the species
that are not linearly separable concentrate most of the clustering errors. For the
primary school dataset, we cluster only students and not the teachers, as we do
not know which teacher is affected to which class.

Fig. 13. Confusion matrix for the clustering of the Iris dataset

The results for the MNIST and the COIL-20 datasets are less satisfying.
Indeed, for the MNIST dataset, the decomposition does not seems to be able to
naturally find a pattern for each digit, and a precision of only 12.83% is obtained
with an ARI of 0.015. For the COIL-20 dataset, when modeling the position into
the tensor, the result is far worse (5.63% precision and -0.0046 ARI) than when
the position is not represented in the tensor (42.43% precision and 0.337 ARI).
Our hypothesis for this result is that the position is not a characteristics of the
objects, thus the same object is never found twice with the same value on the
position dimension, and the decomposition has more difficulties to find patterns
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in these conditions. Similarly, when the position is not represented as a dimension
of the tensor, the clusters are not well defined because each sample concerns an
object and a position, and the decomposition finds patterns for both at the same
time.

To conclude on this technique, the experiments showed that the modeling of
the tensor impacts the result, but also that the quality of the result is better if
the elements of the dimension to cluster share a similar behavior on the other
dimensions.

5.4 Classification

With the Tucker decomposition, it is possible to classify new elements by first
building a model from elements with known class, and then by sending the new
element into the same space as the model to be able to compare it with existing
classes and to choose the most fitting one.

In this use case, the Tucker decomposition is used to build a model from
training data. To do so, the modeling of the data into a tensor must have a
dimension to represent the existing classes, that is used to indicate at which
class each sub-tensor belongs. For example, for the MNIST dataset, a 4-order
training tensor MNIST train ∈ R

p1×p2×s×c can be built, with two dimensions
to represent the pixels (p1 and p2), one dimension to represent the samples (s),
and a last one for the digits written on images (c). The values of the tensor are
the values of the corresponding pixels.

Once the training tensor is built, the Tucker decomposition can be applied
to produce the model. In this use case, it is better to use an algorithm enforcing
the orthogonality constraint such as the HOOI one. With our MNIST example,
we obtain the following model:

MNIST train 
 G ×1 P1 ×2 P2 ×3 S ×4 C

with G ∈ R
Rp1×Rp2×Rs×Rc the core tensor, P1 ∈ R

p1×Rp1 and P2 ∈ R
p2×Rp2

the factor matrices for the two pixel dimensions, S ∈ R
s×Rs the factor matrix for

the sample dimension, and C ∈ R
c×Rc the factor matrix for the class dimension.

The goal of a classification task is to deduce the class of a new element. To
continue with the MNIST example, it consists in deducing the digit written on
a new image. We consider a new image as a matrix I ∈ R

p1×p2. To classify this
image according to the model, both must be in a comparable space. To do so,
we rely on the relation among the input tensor, the core tensor and the factor
matrices, that implies that the core tensor can be obtained from the input tensor
by applying successive mode-n products on the input tensor and each factor
matrix transposed. More formally, this relation can be summarized as follows:

G 
 MNIST train ×4 CT ×3 ST ×2 P2T ×1 P1T
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By exploiting this relation, the matrix I can be partially sent into the same
space as the model, by applying the mode-n product on known dimensions,
namely the first and the second that represent the pixels. To be closer to the
model, the matrix I can be considered as a 4-order tensor I ∈ R

p1×p2×1×1, by
adding two dimensions of size 1:

Gpartial = I ×2 P2T ×1 P1T

With this representation, it is not possible to fully send the element to classify
in the same space as the model. Indeed, the size of the dimensions s and c does
not match the size of the dimensions 3 and 4 of I. In order to solve this problem
on the third dimension, rather than only simulating a dimension of size 1, we
duplicate the matrix I s times to obtain the 4-order tensor I ∈ R

p1×p2×s×1 and
to be able to use one more factor matrix to send the element in the same space
as the model3:

Gpartial = I ×3 ST ×2 P2T ×1 P1T

To finally classify the element, we compare Gpartial ∈ R
Rp1×Rp2×Rs×1 with

G ∈ R
Rp1×Rp2×Rs×Rc by keeping only one class at a time in G. To do so, for each

class i we use the product mode-4 on the core tensor G and the column vector i
of factor matrix C to produce a class specific core tensor Gi ∈ R

Rp1×Rp2×Rs×1:

Gi = G ×4 ci

As Gi and Gpartial are now of the same size and in the same space, they
can be compared with the Frobenius norm applied on the difference of the two
tensors. The class for which the Frobenius norm is the lowest (i.e., for which the
two tensors are the closest) can be considered as the class of the element. The
classification process is summarized in Algorithm 3 for a N -order training tensor
and a M -order element to classify.

3 Most of the works presenting the classification technique do not perform a dupli-
cation, and directly compare the partial core tensor against each sample and each
class [5,11]. It is less efficient as it implies at most s× c comparisons, while duplicat-
ing the element reduce the number of comparisons to c. During our experiments, we
find it more efficient to duplicate the element, as it allows to compare a unified pat-
tern of a class with the sample without focusing on an outlier that could negatively
impact the result.
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Algorithm 3. Classification process
Require: Training tensor Xtrain ∈ R

I1×I2×···×IN and the element to classify E ∈
R

I1×I2×···×IM with M ≤ (N − 1) and IN the number of classes
Ensure: Class c, the best matching class for E
1: Initialize G ∈ R

R1×R2×···×RN ,U(1), . . . ,U(N) ← HOOI(Xtrain, R1, . . . , RN )
2: for n = M + 1, . . . , N − 1 do
3: E(:, . . . , 1 : In) ← repeat E In times
4: end for
5: Gpartial ← E
6: for n = 1, . . . , N − 1 do
7: Gpartial ← Gpartial ×n U(n)T

8: end for
9: best_result ← max(Double)

10: for n = 1, . . . , IN do
11: Gi ← G ×N u

(N)
i

12: result ← ‖Gi − Gpartial‖F

13: if result < best_result then
14: best_result ← result
15: c ← n
16: end if
17: end for

Table 4. Modeling of the tensors for the classification experiment (the dimension that
holds information about classes is in bold)

Dataset Dimensions Size of dimensions

Iris Characteristics, Samples, Species 4 × 50 × 3

MNIST Pixels, Pixels, Samples, Digit 28 × 28 × 8 000 × 10

COIL-20 Pixels, Pixels, Positions, Objects 128 × 128 × 72 × 20

Primary school Students (s1), Students, Time, Class (s1) 242 × 242 × 208 × 10

To apply the classification technique on the dataset of Sect. 5.1, we build
tensors as specified in Table 4. The MNIST tensor has 8 000 samples rather
than 7 000 because the digits are not evenly distributed and some digits are
represented in more than 7 000 images. The classes of the primary school dataset
concern the students of the first dimension. To experiment the technique, we use
the cross validation method and perform the training and the classification task
5 times. The data used for the training step are modified at each iteration to
avoid overfitting bias.

The results obtained are summarized in Table 5, and the detailed metrics for
each class are given in Table 6. Most of the samples are correctly classified for all
the datasets. For the MNIST dataset, there is a great improvement compared to
the clustering technique: the global precision is almost 8 times better. It indicates
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Table 5. Result of the classification experiment on each dataset. For the COIL-20
dataset, “without position” indicates that images were classified only regarding objects
and “with position” indicates that the images were classified regarding positions and
objects

Dataset Training samples per class Ranks used Precision

Iris 20 2, 3, 3 88.22%
MNIST 2 000 9, 8, 1, 10 81.02%
COIL-20 (with position) 20 20, 20, 72, 20 100%
COIL-20 (without position) 40 20, 20, 72, 20 61.75%
Primary school 10 10, 10, 4, 10 94.81%

Table 6. Detailed metrics for each class of each dataset for the classification technique

Class Precision Recall F1-score
Iris dataset

Setosa 94.29% 100% 96.67%
Versicolor 79.53% 92.67% 85.28%
Virginica 95.56% 72% 82.08%

MNIST dataset
0 91.4% 86.83% 89.05%
1 74.41% 96.28% 83.92%
2 87.07% 75.68% 80.97%
3 76.1% 77.62% 76.83%
4 79.87% 81.18% 80.51%
5 72.73% 67.65% 70.06%
6 87.84% 87.08% 87.45%
7 90.43% 84.08% 87.13%
8 79.62% 72.33% 75.8%
9 74.62% 77.85% 76.2%

Primary school dataset
1A 100% 95.38% 97.53%
1B 100% 100% 100%
2A 100% 88.77% 94.01%
2B 100% 93.33% 96.42%
3A 100% 96.92% 98.84%
3B 100% 90% 94.62%
4A 100% 100% 100%
4B 68.15% 100% 80.31%
5A 100% 93.33% 96.44%
5B 100% 90.65% 94.98%

Class Precision Recall F1-score
COIL-20 dataset (with position)
1 100% 100% 100%
2 100% 100% 100%
3 100% 100% 100%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%
7 100% 100% 100%
8 100% 100% 100%
9 100% 100% 100%
10 100% 100% 100%
11 100% 100% 100%
12 100% 100% 100%
13 100% 100% 100%
14 100% 100% 100%
15 100% 100% 100%
16 100% 100% 100%
17 100% 100% 100%
18 100% 100% 100%
19 100% 100% 100%
20 100% 100% 100%

that, when integrating more contextual information into the tensor (in this case,
the digit written), the Tucker decomposition can find patterns more easily.

With the COIL-20 dataset, it is possible to illustrate a useful mechanism of
the classification performed from a model obtained with the Tucker decomposi-
tion. Indeed, it can be used to classify an element according to several different
class dimensions rather than just one. In the COIL-20 dataset, each image rep-
resents an object, but also a specific position. To illustrate this behavior, we
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classify the test images according to the object that they represent but also to
their position. The Fig. 14 shows the confusion matrices obtained for this exper-
iment. The objects are better recognized, and the position is found for 94.81%
of the test images with a precision of ± 5◦.

Fig. 14. The confusion matrices obtained when classifying elements of the COIL-20
dataset according to the object that they represent and their position
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The Tucker decomposition shows promising results when using it in classifi-
cation tasks. It can be used to classify a new element depending on one or several
parameters, only by using the model produced by the decomposition algorithm.

6 Robustness of the Tucker Decomposition

It is important to evaluate the robustness of an algorithm, as it gives information
about the perturbations that can occur in data without significantly impacting
the result. We study the robustness of the Tucker decomposition when it is used
for clustering or for classifying tasks with missing values, and show that it has
a fairly good robustness.

6.1 Clustering

For testing the robustness of the Tucker decomposition when performing clus-
tering tasks with missing data, the primary school dataset is used as it presents
the best results for the clustering task with all the data. 5 students are selected
from each class, and 10% of data are randomly removed at each iteration only
for those students, for 9 iterations. Thus, the clustering is performed with 90%
of the students’ data for the first execution and with 10% of the data for the
last execution. Table 7 gives the precision and the ARI for the whole data and
for the selected students, and Fig. 15 shows the confusion matrices of the result
of the experiment. Confusion matrices on the left are for the whole dataset and
confusion matrices on the right are for the selected students only.

Table 7. Result of the clustering experiment on the primary school dataset with miss-
ing data for selected students

% of missing data Global
precision

Global
Adjusted
Rand Index

Precision for
selected
students

Adjusted
Rand Index
for selected
students

10% 84.48% 0.7782 86% 0.7915
20% 80.17% 0.6781 82% 0.6247
30% 88.79% 0.7577 84% 0.5947
40% 89.66% 0.7806 84% 0.5947
50% 86.21% 0.6641 62% 0.1534
60% 86.21% 0.6502 48% 0.0891
70% 72.84% 0.3701 10% 0
80% 65.52% 0.3335 10% 0
90% 73.28% 0.3638 10% 0
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Fig. 15. Confusion matrices for the clustering of the primary school dataset with miss-
ing data for selected students



84 A. Gillet et al.

This experiment shows that the clustering is almost not affected when remov-
ing up to 40% of the data of the selected students. However, the quality of the
clustering drops significantly when removing 50% and 60% of the data. For 70%
or more missing data, all the selected students are gathered into a single cluster:
the algorithm is unable to differentiate them due to the strong degradation of
the data.

6.2 Classification

The robustness of the Tucker decomposition for performing classification tasks
have been experimented on the primary school and the COIL-20 datasets. Com-
pared to Sect. 5.4, the step for building the model is identical and is performed
with the whole data. The data are removed in the test set evenly for all elements
to classify. As for the clustering experiment, data are randomly removed 10% by
10% until reaching 90% of missing data. Table 8 shows the precision results for
this experiment.

Table 8. Global precision of the classification experiment on the primary school and
the COIL-20 datasets with missing data

% of missing data Primary school
precision

COIL-20 precision
(with position)

COIL-20 precision
(without position)

10% 96.63% 100% 59.12%
20% 95.98% 99.81% 56.19%
30% 94.63% 97.84% 41.16%
40% 90.96% 48.06% 25.09%
50% 83.87% 9.78% 5%
60% 68.81% 0.34% 5%
70% 45.94% 4.18% 5%
80% 23.87% 7.22% 5%
90% 12.89% 7.06% 5%

For the primary school and the COIL-20 datasets, the quality of the classifi-
cation with 10% to 30% missing data is close to the classification with no missing
data. Starting from 50% of missing data, the precision of the classification of the
primary school dataset declines steadily at each 10% removal of data. However,
for the COIL-20 dataset, the decline is more abrupt: the precision is cut in half
with 40% of missing data and is inferior to 10% when removing 50% of data or
more.

6.3 Summary

The study of the robustness of the Tucker decomposition shows that it is fairly
resistant to missing data. Indeed, the quality of the result is not significantly
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reduced when removing up to 30% of data. Furthermore, when comparing results
obtained from the primary school dataset and from the COIL-20 dataset, the
lowering of quality is less abrupt with the primary school dataset, thus indicating
that it is a well suited data mining technique when working with sparse data
that present imperfections of the real world (e.g., students of a same class do
not act identically).

7 Conclusion

To conclude, the Tucker decomposition is a useful data mining algorithm, robust
to missing data. Indeed, it can be used to perform exploratory analysis on data,
in order to retrieve patterns that give insights regarding elements of a given
dimension, and regarding relationship of elements among dimensions. It can
also be used to cluster elements of a dimension when they behave similarly on
all the other dimensions, or to produce a model allowing to classify new data
according to one or several characteristics.

Both the HOOI and the HALS-NTD algorithms are useful for these tech-
niques, as the non-negativity constraint of the HALS-NTD greatly helps when
interpreting results of exploratory analysis, while the orthogonality constraint of
the HOOI algorithm is efficient to cluster or classify data. However, the HALS-
NTD algorithm is less known than the HOOI one, and in consequence it has
almost never been implemented. We plan to integrate these Tucker algorithms
to the Tensor Data Model, and to optimize them in order to allow their execu-
tion on large tensors, as we did for the CANDECOMP/PARAFAC decomposi-
tion [13]. Indeed, real data can create such tensors, that emphasis the need for
optimized algorithms regarding the space and the execution time.

We also plan to improve data mining techniques based on the experiments
made on this article, for example to consider a proximity among elements of a
dimension (e.g., two consecutive time slices on a temporal dimension are closer
than non-consecutive time slices), or to perform a coupled decomposition, i.e., a
decomposition with two tensors that share at least one dimension.
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Abstract. Over the past decade, the volume of data has experienced a
significant increase, and this growth is projected to accelerate in the com-
ing years. Within the healthcare sector, various methods (such as liquid
biopsies, medical images, and genome sequencing) generate substantial
amounts of data, which can lead to the discovery of new biomarkers.
Analyzing big data in healthcare holds the potential to advance pre-
cise diagnostics and effective treatments. However, healthcare data faces
several complexity challenges, including volume, variety, and veracity,
which necessitate innovative techniques for data management and knowl-
edge discovery to ensure accurate insights and informed decision-making.
This paper summarizes the results presented in the invited talk at BDA
2022 and addresses these challenges by proposing a knowledge-driven
framework able to handle complexity issues associated with big data and
their impact on analytics. In particular, we propose the use of Knowl-
edge Graphs (KGs) as data structures that enable the integration of
diverse healthcare data and facilitate the merging of data with ontolo-
gies that describe their meaning. We show the benefits of leveraging KGs
to uncover patterns and associations among entities. Specifically, we illus-
trate the application of rule mining tasks that enhance the understanding
of the role of biomarkers and previous cancers in lung cancer.

Keywords: Healthcare Data Analytics · Knowledge Graphs ·
Semantic Data Integration

1 Introduction

The healthcare sector currently faces challenges due to data silos, where large
amounts of heterogeneous data are stored in fragmented structured or semi-
structured formats. This fragmentation hinders the combination, analysis, and
re-use of data, preventing the generation of valuable insights for decision-making
in healthcare. The data silos exist for various reasons, including the volume
and variety of data, restrictive data access schemes imposed by providers, data
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sovereignty, privacy and security concerns, as well as trust, legal, ethical compli-
ance (e.g., GDPR), missing data harmonization, low interoperability, and techni-
cal limitations. All of these factors pose significant challenges to data integration
and analysis, limiting the discovery of breakthrough knowledge and the develop-
ment of new technologies. Consequently, data silos restrict healthcare providers’
ability to make data-driven decisions, thereby impacting civil society.

Knowledge graphs (KGs) have emerged as effective data structures for repre-
senting the convergence of data and knowledge from diverse sources [34]. KGs can
be defined as data integration systems (DISs) [45], comprising a unified schema,
data sources, and mapping rules that define the concepts within the schema and
link them to the data sources. Declarative definitions of KGs promote modularity
and reusability, allowing users to trace the KG creation process, thereby enhanc-
ing transparency and maintenance. KGs provide expressive data structures to
model integrated data and metadata, and their declarative specifications can be
explored, validated, and traced using existing queries, e.g., SPARQL or SQL.

The scientific community has dedicated considerable attention to the problem
of data integration [32,33] and to the development of frameworks for data inte-
gration [12,13,75], data ecosystems [27], as well as to the formalization of data
integration systems [45,52], and the definition of standards to define mapping
rules (e.g., R2RML [14] and RML [17]). Existing formalisms allow for declara-
tively defining pipelines to create KGs in real-world applications (e.g., biomed-
ical area [3,7,41,62,66,70] and energy [38]); they have allowed for establishing
transparent, maintainable, and traceable processes for KG creation, as well as for
providing the basis for analytical frameworks developed on top of KGs [10,59,62].

Research Goal: This paper addresses the problem of semantic data integra-
tion in healthcare and presents a knowledge-driven pipeline capable of merging
data into a federation of KGs. Data integration involves the task of determin-
ing whether two entities from a collection of data sources (both structured and
unstructured) refer to the same real-world entity or not, and their alignment.
This process requires the identification and resolution of interoperability conflicts
that arise when integrating different data sets. By recognizing and resolving these
conflicts, data integration enables the harmonization of disparate data sources,
facilitating a unified view of the underlying real-world entities.

In the healthcare domain, decisions are made based on evidences and the
clinical experts’ experience. Thus, following a classical research methodology, a
hypothesis, once generated, must be tested, validated, or refuted. Data-driven
analysis provides the basis for providing evidences and novel questions, empow-
ering thus, the power of traditional experimental methods [35]. However, data-
driven approaches resort to healthcare data which is usually scattered across
heterogeneous data sources and whose meaning is fragmented in heterogeneous
vocabularies. KGs have gained attention as expressive data structures that
enable data integration, as well as the harmonization of fragmented knowledge
[11].

Proposed Solution - A Knowledge Graph-based Approach: Integrat-
ing data in a Knowledge Graph (KG) facilitates the provision of comprehensive
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Fig. 1. A portion of a Knowledge Graph for Lung Cancer (KG4C)

descriptions for integrated entities and promotes a shared understanding of their
meaning. Additionally, by leveraging KGs, inductive learning methods can be
developed to unveil patterns that elucidate associations among entities. In this
paper, we explain a knowledge-driven pipeline where data is collected from het-
erogeneous data sources, and an integrated schema is utilized to populate a KG.
This pipeline has been followed by Aisopos et al. [3], Sakor et al. [62], Torrente et
al. [68], and Vidal et al. [70] to provide unified views of heterogeneous biomedical
data sources and pave the way for the development of discovery methods for data
analysis. To illustrate the power of KGs, we employ the symbolic learning meth-
ods proposed by Lajus et al. [42] and show how the discovered rules shed light
on the significance of cancer history and biomarkers in lung cancer patients. We
discuss the expressive power of the extracted patterns, as well as the validity of
the results with respect to outcomes reported in the literature. Finally, we close
the paper with an outlook to the future discussing grand challenges required to
be addressed to provide frameworks for analytical methods.

2 Preliminaries

Knowledge Graph: A Knowledge Graph G is defined over a set Con of count-
able infinite constants; it corresponds to a directed edge-labeled graph tuple
G = 〈V,E,L〉, where: a) V ⊆ Con is a set of nodes; b) L ⊆ Con is a set of
edge labels; and c) E ⊆ V × L × V is a set of edges. Figure 1 shows a portion
of a KG for Cancer (KG4C), where nodes represent cancer patients and edges
their properties. The figure depicts nodes in different colors representing meta-
data, cancer patients, values of properties and attributes, CUIs or terms from
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UMLS1, semantic types, data values, deduced relations, and entities from DBpe-
dia and Wikidata. KGs represent factual statements using a graph data model,
and metadata and data can be empowered with inference to deduce new facts.
Inferred links are depicted in Fig. 1 with dashed red arrows. These new state-
ments are deduced based on the entailment regimes of ontological formalisms
utilized to describe the ontology of the KG. In case of KG4C, the entailment
regimes are defined on the axioms that define the semantics of RDFS; they
define subclass, subproperties, domain and range, and typing [34]. Additionally,
the property sameAs, from the Web Ontology Language (OWL), is utilized to
represent the logical equivalence between two entities. The entailment regime
of the property sameAs is defined based on the Leibniz Inference Rule [29]; it
enables to deduce that two entities related with the property sameAs have the
same properties. For example, Fig. 2 presents a portion of KG4C where the enti-
ties Vinorelbine, dbpedia:Vinorelbine, and wikidata:Q420532 represent the
chemotherapy drug Vinorelbine; they are related via the sameAs predicate. As
depicted, applying the entailment regime of sameAs, it is deduced that the three
entities participate– in the subject and object position– in the same triples.

Knowledge Graph Specification: A KG G can be defined as a data integra-
tion system DISG = 〈O,S,M〉. Here, O represents a unified ontology consisting
of classes and properties, S denotes a set of data sources, and M corresponds to
mapping rules or assertions formulated as conjunctive queries over the sources
in S. By executing these mapping rules M over the data sources in S, instances
are generated in G. The rules in M (Namici et al. [52]) can be represented as
Horn clauses, such as body(X) : −head(Y ), following the Global As View (GAV)
approach [45]. The entities that correspond to instances of classes in O are the
nodes in V , while the edges in E represent properties of these entities.

Knowledge Graph Creation: A pipeline for creating a KG corresponds to a
partial order of the mapping rules in M that represents an execution plan for
the mappings. Iglesias et al. [37] propose an approach to generate logical bushy-
plans of the mapping rules which can be translated into bash commands of an
operating system and allow the efficient execution of a KG creation pipeline.

Federation of Knowledge Graphs: A federation is a set of KGs that shared
common entities but probably represent different perspectives of the shared enti-
ties. For example, Fig. 2 depicts a portion of the KGs that compose a federation
for Cancer. Each KGs is autonomous and accessible via a SPARQL endpoint.
A federated query engine is a system that enables the execution of queries over
a group of KGs that are federated and distributed. These engines are usually
empowered with query processing methods to decompose an input query into
sub-queries executable by at least one of the KGs in the federation and select
the KGs more suitable for executing each sub-query. They are also responsible
for finding and managing efficient plans that minimize the cost of merging data
collected from the selected KGs.
1 Unified Medical Language System https://www.nlm.nih.gov/research/umls/index.

html.
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Fig. 2. A portion of the Federation of the Knowledge Graphs for Cancer. The federation
is composed of DBpedia [44], Wikidata [71], and the Cancer KG [3].

3 A Pipeline for Data Integration and Knowledge Graphs

The integration of diverse data sources into a federation of Knowledge Graphs
(KGs) is made possible through the declarative definition of data integration
systems, which specify the KGs within the federation. In Fig. 3, we present a
pipeline that incorporates multiple computational frameworks, enabling the res-
olution of interoperability issues found in the heterogeneous data sources. These
issues are addressed by incorporating factual statements from the data sources
into the KGs of the federation. After the data is ingested, Named Entity Recog-
nition (NER) and Entity Linking (EL) tasks are performed to identify align-
ments across different entities that correspond to the same real-world entity.
These alignments establish links between the entity “Vinorelbine” and their cor-
responding entities in DBpedia, Wikidata, and UMLS. Furthermore, mapping
rules are defined to specify the correspondences between concepts (e.g., classes
and properties) of a KG ontology and the data sources. In the pipeline described
in this paper, the mapping rules are expressed using the RDF Mapping Language
(RML) [15]. The KG creation engine executes these mapping rules to generate
the KG. The links between the KGs are represented using the “sameAs” prop-
erty. To ensure KG correctness, integrity constraints are expressed as shapes
using the SHACL language2. Shapes allow for the representation of constraints
over the properties of a class or between properties that connect two classes [34].
A federated query engine is responsible for executing queries by exploring the
KGs in the federation. Lastly, symbolic learning mines patterns in the form of
Horn clauses that model meaningful properties within a KG [25].

Data Ingestion: Data sources are ingested in various formats (e.g., tabular,
semi-structured, or unstructured sources); they can also be modeled using dif-
ferent data models (e.g., relational, graph, or hierarchical data models). Data
sources are stored in a research data management repository and their metadata
described using controlled vocabularies (e.g., DCAT3). To respect data access
regulations and privacy policies, the clinical data sources are only accessible by
2 https://www.w3.org/TR/shacl/.
3 https://www.w3.org/TR/vocab-dcat-3/.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/vocab-dcat-3/
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Fig. 3. Pipeline to Create a Federation of KGs for Cancer.

authorized users, while open data sources are publicly accessible. An instance of
the Leibniz Data Manager (LDM) [9] is the repository of KG4C data sources.

Healthcare data is heterogeneous and usually scattered across many different
sources. Moreover, biomedical knowledge is fragmented in various vocabularies
[11]. This pipeline is domain- and application-agnostic; however, for the creation
of KG4C, the following data sources are considered: i) Clinical records: are pre-
sented in one universal table comprising more than 1,500 attributes describ-
ing cancer patients [3] shared in the context of the EU H2020 funded project
CLARIFY4; some attributes include short textual notes that encode meaningful
information about a patient. ii) Publications: data sources with data referring
to scientific publications. In KG4C, publications are ingested from SemMedDB
[40], which includes scholarly metadata of PubMed publications, as well as fine-
grained description of their abstracts based on terms and relationships from
UMLS. iii) Drugs: data sources including drugs, side effects, toxicities, and inter-
actions between drugs. In KG4C, NER and EL methods are employed to extract
from DrugBank5 drug-drug interactions and provide a fine-grained description
of the pair of drugs that interact, and the effect and impact of the interaction.
Similarly, interactions between drugs and foods are extracted, as well as absorp-
tion routes and mechanisms of action of each drugs. iv) Familial Cancer History:
this is a tabular data source that includes, for each patient, the history of pre-
vious cancers and cancers suffered by the patient’s relatives. In total, 8,493,076
records are collected from all these data sources.

Entity Alignment - Based on Named Entity Recognition (NER) and
Entity Linking (EL): NER corresponds to the task of recognizing entities
within a short text T, while LE links the recognized entities to equivalent enti-
ties in other knowledge bases. FALCON [63,64] implements the tasks of NER and
EL, and aligns entities recognized in the attributes of the previously described
data sources, to terms in UMLS, DBpedia, and Wikidata. FALCON resorts to
background knowledge built on top of the UMLS, DBpedia, and Wikidata. This
4 https://www.clarify2020.eu/.
5 https://go.drugbank.com/.

https://www.clarify2020.eu/
https://go.drugbank.com/
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Table 1. Named Entity Recognition and Linking (Accuracy). Comparison of
FALCON with existing approaches. FALCON symbolic system is competitive in the
tasks of named entity recognition and linking to UMLS.

MedMentions [48] BC5CDR [46]

SciSpacy [53] 38.8 53.9

N-GRAM TF-IDF [57] 50.9 86.9

FALCON [63,64] 65.3 80.4

background knowledge comprises resources in these KGs together with their
definitions and types; it is composed of more than 50M entities. FALCON also
relies on a rule-based system used to extract mentions of entities in a text and
perform EL. The rule-based system is guided by a catalog of linguistic and do-
main-specific rules. Linguistic rules state the criteria to recognize entities in a
sentence of a particular language. Domain-specific rules define what is an entity
in a particular domain. FALCON rules are based on the assumption that entities
have labels, definitions, and semantic types. Since the used KGs (e.g., UMLS,
DBpedia, and Wikidata) can be community-maintained, the same resource may
have several values of the same property (e.g., various labels or definitions).
Additionally, a resource may have equivalent entities in other KGs, and infer-
ence processes enable the computation of the transitive closure over the logical
equivalence that exists among equivalent entities.

FALCON is evaluated on MedMentions [48] and BC5CDR [46]. MedMen-
tions is a corpus of 4,392 scientific papers (Titles and Abstracts) from PubMed,
annotated with mentions of UMLS entities. BC5CDR comprises the abstracts of
1,500 PubMed articles annotated with the MeSH6 vocabulary. We utilized align-
ments between the UMLS and MeSH vocabularies to annotate the BC5CDR
dataset with entities from UMLS. FALCON is compared with a) TF-idf : is
the widely used candidate retrieval model [4,57]. b) SciSpacy: is based on the
Spacy library for biomedical text progressing [53]. The results are reported in
Table 1. As observed, FALCON outperforms SciSpacy in the two benchmarks,
while it is competitive with N-GRAM TF-IDF. The presented results support
the choice of FALCON for performing NER and EL, and providing the basis for
entity alignment based on UMLS annotations. Moreover, FALCON aligns enti-
ties recognized in the data sources with their corresponding entities in DBpedia
and Wikidata. Figure 3 reports on the number of links between the KGs of the
federation. In the KG4C federation from KG4C, there are 12,961; 8,172; and
11,679 links to DBpedia, Wikidata, and UMLS respectively. FALCON was also
used to align UMLS with DBpedia and Wikidata. As a result, there are 3,739,487
links from UMLS to DBpedia, and 3,499,580 to Wikidata.

Semantic Data Integration: Entity alignments identified during NER and EL
provide the basis for the semantic data integration of the data sources. Addi-
tionally, the correspondences between the data sources and the KG ontology
are specified in terms of RML mapping rules. In particular, KG4C is defined in
6 https://www.ncbi.nlm.nih.gov/mesh/.

https://www.ncbi.nlm.nih.gov/mesh/
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terms of 1,749 mapping rules which have been designed by two knowledge engi-
neers and reviewed by one senior researcher. These mapping rules solve various
heterogeneity conflicts [70] (e.g., structuredness, schematic, domain, and repre-
sentation); they are accessible via a SPARQL endpoint7. Thus, the definition of
classes and properties can be retrieved by simply executing SPARQL queries.

Knowledge Graph Creation: A pipeline for data integration and KG creation
is followed to transform the data sources in a data integration system into a KG
and its links to other KGs that composed the created federation. In the case of
KG4C, an ontology composed of 177 classes, 143 object properties, and 64 data
type properties, provide a unified view of the concepts represented in the data
sources to be integrated. Additionally, the 1,749 RML mapping rules specify the
correspondences between the 179 data sources and these concepts. This pipeline
is executed using the SDM-RDFizer [36] RML engine. Additionally, the mapping
rule planner proposed by Iglesias et al. [37] identifies an execution plan of these
1,749 mapping rules.

An empirical evaluation was set up to understand the impact of the planner
in the KG creation process; a more exhaustive empirical evaluation is reported
by Iglesias et al. [37]. The experiment consists of two testbeds: TB1) The set
of mapping rules are included in one group. TB2) The set of mapping rules are
partitioned into eight groups; each group includes the mapping rules that define
a set of related concepts, e.g., annotations, drugs, clinical records, publications,
genomics data, and wearable patient profiles. These groups were created by the
knowledge engineers that defined the mapping rules.

The planner identified an execution plan– in the form of busy tree– for the
mappings in TB1 and eight execution plans for the mapping rules in TB2. These
plans were executed in an Intel(R) Xeon(R) equipped with a CPU E5-2603 v3 @
1.60GHz 20 cores, 64GB memory and with the O.S. Ubuntu 16.04LTS. Execution
time was measured as the elapsed time spent to evaluate each bushy tree and
store the result in secondary memory. The execution time is measured using the
Python library time. The experiments were executed five times and the average
is reported; a timeout of five hours was set up. In addition to SDM-RDFizer,
Morph-KGC [6] and RMLMapper [16] are included in the study.
Table 2 reports on the results of execution time (in secs.). The process of KG
creation benefits significantly from executing the mapping rules in groups. This
approach has been observed to reduce execution time in all the cases. Notably,
the most substantial time savings are achieved when the planning process is
applied to the groups already created by the experts, resulting in a reduction
of up to 68.56%. These results underscore the importance of combining experts’
knowledge with optimization techniques to devise plans aimed at minimizing the
cost of executing complex processes.

Knowledge Graph Validation: Constraints that define the properties of
classes can be categorized as intra-class and inter-class constraints. Intra-class
constraints encompass aspects such as data types, cardinalities, functional

7 https://labs.tib.eu/sdm/clarify_mappings_and_ontology/sparql.
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Table 2. Performance of the KG Creation and the effect of planning mapping
rules. A comparison was conducted to evaluate the effects of planning the execution
of mapping rules during the process of Knowledge Graph (KG) creation. Two testbeds
were used: TB1, which included all the mapping rules in a single group, and TB2,
where the mapping rules were divided into eight groups based on expert knowledge.
The partitioning of mapping rules into groups in TB2 resulted in a positive impact
on the execution time of KG creation. Furthermore, the planner was able to find plans
that were less costly in terms of execution time (measured in seconds) across all the
engines studied. The highest savings were achieved when the mapping rules were ini-
tially partitioned by the experts, followed by executing the planner for each group of
the partition.

RML Engine TB1 TB2 Savings %

SDM-RDFizer 4,885.09 (s) 2,657.23 (s) 45.61%

SDM-RDFizer+Planner 2,931.054 (s) 1,535.9 (s) 47.60%

Morph-KGC 1,017.72 (s) 848.6 (s) 16.62%

Morph-KGC+Planner 781.5 (s) 592.4 (s) 24.2%

RMLMapper Timed out (Five hours) Timed out (Five hours) 19.37%

0% of Results 19.37% of Results

RMLMapper+Planner Timed out (Five hours) Timed out (Five hours) 19.15%

38.34% of Results 57.49% of Results

dependencies, and formats. Inter-class constraints, on the other hand, involve ref-
erential integrity, cardinality and connectivity, as well as mandatory and optional
relationships among classes in the KG ontology. These constraints are specified
using the W3C SHACL language and validated using Trav-SHACL [22]. Trav-
SHACL is a SHACL engine capable of optimizing the validation process through
the reordering of shapes in a shape schema and rewriting target and constraint
queries. By validating these shapes, we are able to curate KG4C and address
any existing ambiguities in collaboration with clinical data providers.

Federated Query Processing: DeTrusty [60] is a federated query engine able
to execute queries against a federation of data sources accessible via SPARQL
endpoints. First, DeTrusty maintains the description of KGs in a federation in
terms of RDF Molecule Templates (RDF-MTs) or RDF classes and their prop-
erties existing in the KGs. DeTrusty receives a SPARQL query Q and generates
the answers by combining data collected from several KGs. First, DeTrusty con-
duces the task of Source Selection and Query Decomposition to identify a query
decomposition of a query Q. DeTrusty resorts to metadata encoded in RDF-MTs
to find a solution to the problem of query decomposition and source selection,
i.e., a decomposition of the initial query into the KGs. These selected KGs and
the sub-queries are utilized to generate an execution plan. The Query Opti-
mizer employs various optimization strategies to identify an efficient query plan,
i.e., a plan of Q over the relevant KGs that produces all the answers but in
the minimal time. DeTrusty also implements different physical operators (e.g.,
agjoin and adjoin [1]) and merges the data in a continuous fashion. DeTrusty
is evaluated on nine queries defined over the KG4C federation. They comprise
between 14 and 22 triple patterns and up to 21 joins. These queries retrieve up
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Fig. 4. Explanation of Result Plots.

to 41 results but produce a large number of intermediate results; the queries are
in Appendix A. DeTrusty is compared with GraphDB8 and FedEx (RDF4J)9.
GraphDB is a commercial SPARQL engine able to evaluate federated queries,
while FedEx (RDF4J) is a federated query engine which extends the work of
Schwarte et al. [65]. We report the following metrics: a) Execution Time (ET):
Elapsed time between the submission of a query to a query engine and the gen-
eration of the answers. Time corresponds to absolute wall-clock system time as
reported by the Python time.time() function. b) Completeness (Comp): Query
result percentage with respect to the query answer cardinality. c) T : Through-
put quantifies the rate at which a query engine generates the query answers. d)
TFFT : Time for the first tuple. e) dief@t : A measurement for the continuous
efficiency of an engine in the first t time units of its execution [2]; it computes
AUC (area-under-the-curve) of the answer distribution until time t; a higher
value means the query engine has a steadier answer production. The average
execution time and standard deviation over 10 runs are reported in Appendix B.
KG4C is accessible via a SPARQL endpoint implemented in Virtuoso 7.20.3229
configured to use up to 64GiB. The experiments are executed on an Ubuntu
18.04.6 LTS 64 bit machine with an Intel R© Xeon R© W-2133 CPU (six physical
cores, twelve threads), and 64GiB DDR4 RAM. A timeout of 10min is con-
sidered, and all the caches are flushed between the execution of two queries to
ensure reproducibility. The block or “paginating” is configured to 10,000 answers.
The continuous behavior of DeTrusty is reported in radar plots. These plots
encode the results of the inverse times for the first answer (TFFT ) and the
total execution time ET. Additionally, Comp and T represent the percentage
of completeness of the produced query answer and throughput. Lastly, dief@t
measures an engine’s steady generation of a query answer.

Figure 4 compares the traces of the generation of query answers (figure left-
side) and how these traces are utilized to create the radar plots (figure right-side).
As observed, these plots enable the characterization of the continuous behavior
of these engines. The comparison of the behavior of the three studied engines is
presented in Fig. 5. All three engines yield the same number of results for the

8 https://www.ontotext.com/products/graphdb/.
9 https://rdf4j.org/documentation/programming/federation/.

https://www.ontotext.com/products/graphdb/
https://rdf4j.org/documentation/programming/federation/
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nine queries. However, GraphDB timed out in Q6, while DeTrusty outperforms
GraphDB in all metrics. On the other hand, FedEx (RDF4J) performs better
than GraphDB and is competitive to DeTrusty in queries Q5 and Q8. The reason
behind this is that these two queries are both selective and generate a relatively
small number of results: 492 for Q5 and 1,124 for Q8. However, the remaining
queries produce a larger number of intermediate results (e.g., 5,989 for Q4 and
16,811 for Q9), require access to three KGs, or involve more than two instances of
the general predicate owl:sameAs. Notably, the predicate owl:sameAs is present
in all the KGs, and FedEx (RDF4J) lacks the capability to decide where the
triple patterns of this predicate should be evaluated. As a result, FedEx (RDF4J)
poses the execution of these triple patterns to all the KGs. In contrast, DeTrusty
utilizes source descriptions and can identify that these triple patterns need to
be evaluated solely against KG4C. Another significant advantage of DeTrusty
lies in its physical operators, which can incrementally generate query answers.
Consequently, the DeTrusty query decomposition and planning methods not only
select the minimal number of KGs required to produce the answer for each sub-
query but also produce results as soon as they are computed. These combined
factors enable DeTrusty to outperform these two engines.

Symbolic Learning: KGs represent knowledge about entities and their prop-
erties and relations in the form of factual statements. Inductive learning mod-
els resort to machine learning techniques to uncover rules that describe pat-
terns among the represented entities and potential predictions. Specifically, the
method proposed by Galarraga et al. [25] extracts Horn clauses of the form:

hasBio(?a, ALK) ⇐ ageCategory(?a,young), sex(?a,female)

This rule is extracted from the portion of the KG4C that includes only lung can-
cer patients; it indicates that “Lung cancer patients represented by the variable
?a who are young and females are also likely ALK translocated.” Each mined
rule is associated with the metrics of Support, Head Coverage, Partial Complete-
ness Assumption (PCA), and F-score (F-PCA-HC). a) Support : a rule r counts
the number of instantiations of the Body that are also true in the Head. The
support of the rule in the example is 46, which corresponds to the number of
instantiations from the KG– illustrated in Fig. 1– which make the Body and Head
of the rule true. b) Head Coverage: corresponds to fraction of the instantiation
of the Head that are true in the Body. In the running example, there are 318
instantiations of the Head and only 46 are true in the Body and Head, i.e., Head
Coverage (HC) is equal to 46

318 = 0.14. c) PCA: corresponds to the fraction of
the possible instantiations of the Head out of the true instantiations of the Body.
In the running example, 52 out of the 206 lung cancer patients who are young
and females are also ALK translocated, i.e., PCA = 52

206 = 0.25. d) F-PCA-
HC : represents the harmonic mean of Head Coverage and PCA, i.e., 0.17 is the
F-PCA-HC of the running example rule.

AMIE, the algorithm proposed by Galarraga et al. [25], was used to mine
rules from a portion of KG4C that includes 17,000 lung cancer patients, their
demographic characteristics (e.g., age, sex, smoking habits), previous cancer his-
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Fig. 5. Continuous Behavior. DeTrusty compared with state-of-the-art federated
query engines: FedEx (RDF4J) and GraphDB in terms of: (TFFF )−1 - inverse time
for the first answer produced, (ET )−1 - inverse query execution time, Comp - number
of answers, T - throughput, and dief@t - continuous efficiency at time t. DeTrusty pro-
duces the first query answer ahead of the other engines and finalizes before. DeTrusty
continuously produces the answers.

tory, biomarkers (e.g., EGFR, ALK, PDL1), cancer stages, and familial cancer
antecedents. AMIE was configured to mine Horn rules with maximum three
predicates, and with minimum HC of 0.01 and minimum PCA confidence of 0.1.
AMIE was executed on an Ubuntu 18.04.6 LTS 64 bit machine with an Intel R©
Xeon R© W-2133 CPU (six physical cores, twelve threads), and 64GiB DDR4
RAM. In total, 17,767 Horn rules were mined in 1 h and 45min. The PCA val-
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ues range from 0.1 to 1.0, while the HC took values in the range of 0.01 to 1.0.
We will discuss some rules in the next section.

4 Data Analytics Over Knowledge Graphs

The Horn rules extracted by AMIE over KG4C are used to support oncologists
in the screening and identification of people with high risk of developing lung
cancer. Mined rules are analyzed in terms of biomarkers and previous cancer,
and ranked based on PCA, HC, and F-PCA-HC. The rules were discussed with
two oncologists; the most relevant ones are reported in Table 3. The extracted
rules reveal the following patterns:

Biomarkers

– PDL1 positive lung cancer patients are smokers and males. These patients
are in advanced cancer stages (i.e., IIIC or IVB). Similar results are observed
in the population studied in the analysis reported in [23,76].

– ALK translocation and EGFR, smoking habits (i.e., never-smokers) and sex
(i.e., females) seem to be relevant features of the lung cancer patients who
are positive for these two biomarkers. Sweis et al. [67] report that alterations
of these genes were observed in with higher percentages in light- or never-
smokers, while Ha et al. [31] present results that support that lung cancer in
non-smoker Asian females is most often in EGFR patients.

– KRAS patients are likely to be smokers, either current or former; this obser-
vation is consistent with the statement that KRAS mutations are more com-
monly present in Western lung cancer patients who are smokers [58].

History of Previous Cancers

– Based on the mined rules, lung cancer patients who previously suffered breast
cancer are commonly females, diagnosed in advanced stages, PDL1 positive,
and never-smokers. These statements are supported by Nobel et al. [54] and
Wennstig et al. [73] which report that lung cancer is the most common cancer
in breast cancer survivors. Additionally, Gatalica et al. [26] indicate that a
significant portion of metastatic tumors (e.g., breast cancer) to the lungs are
PDL1 expression. Lasty, Wang et al. [72] report the results of second primary
lung cancer of female breast cancer patients, who are the majority diagnosed
in advanced stages (stage II or more).

– According to the mined rules: lung cancer patients who previously, suffered
prostate cancer or head and neck, are mostly males and smokers. Pagedar
et al. [55] report that lung cancer is the most commonly identified second
primary malignancy in head and neck cancer, with a male predominance and
current or former smokers. Zhang et al. [77] report cumulative incidence of
lung as a second cancer of prostate cancer patients.
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Table 3. Mined Horn Rules. Exemplary mined and statements Reported in the
Literature and their Relationship with the Analysis Outcomes.

Statement Exemplary Mined Horn Rules

PDL1 positive lung cancer patients are likely
smokers and males [23,76]. These patients are in
advanced cancer stages (i.e., IIIC or IVB) [78].

hasBio(?a, PDL1) ⇐
hasStage(?a,IIIC), sex(?a,male)

ALK translocation and EGFR, smoking habits (i.e.,
never-smokers) and sex (i.e., females) seem to be
relevant features of the lung cancer patients who are
positive for these two biomarkers [31].

hasBio(?a, EGFR) ⇐
hasStage(?a,IV), smoker(?a,nonSmoker)

KRAS patients are likely to be males, old, and
smokers, either current or former [58].

hasBio(?a, KRAS) ⇐
age(?a,old), smoker(?a,heavySmoker)

Lung cancer patients who previously suffered breast
cancer according to he mined patterns, these
patients are females, diagnosed in advanced stages,
with familial cancer history, PDL1 positive, and
never-smokers [54,73].

hasPreviousCancer(?a,breast) ⇐
sex(?a,female), stage(?a,IV)

5 Related Work

The literature extensively addresses the problem of devising data integration
frameworks [32]. The mediator and wrapper architecture proposed by Wieder-
hold [74] and the data integration system approach presented by Lenzerini [45]
represent seminal works. The database and semantic web communities have
extensively contributed to the problem and defined a large number of frameworks
and formalisms [18,28,32,33,50,51]. Despite the large piece of work, semantically
integrating data collected from multimodal and heterogeneous data sources still
represents a challenge. In this work, we aim to present a pipeline that integrates
data based on the declarative specification of a data integration system, and
generates, as a result, a knowledge graph.

The problem of defining mapping languages that enable to specify correspon-
dences across heterogeneous data sources has also received considerable attention
[14,17,37,43,56]. The scientific community has also extensively treated the prob-
lem of federated query processing [1,19–21,30,49,61,65,69]. This paper provides
evidence of the importance of planning and query optimization to ensure efficient
executions of KG creation pipelines and query processing.

Knowledge graphs have been accepted as data structures to represent data
and knowledge using a graph data model [34]. Several approaches have been
proposed for transforming textual and unstructured data into KGs [8,39,63,64].
Additionally, a large piece of work has been devoted to frameworks for KG
creation [5,6,17,36]. Lastly, several computational frameworks have been defined
to perform symbolic learning over KGs [24,25,42,47]. This paper illustrates how
KGs can be used in the context of healthcare to uncover patterns that contribute
to a better understanding of a disease, e.g., lung cancer.
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6 Conclusions and Future Directions

We tackle the problem of healthcare data analysis and position KGs as expressive
data structures that enable the integration of data collected from heterogeneous
data sources, and data integration systems as frameworks for declaratively defin-
ing KGs. We present various data management techniques to transform hetero-
geneous data sources into a unified KG. Moreover, the use of KGs is illustrated
in the context of lung cancer, where symbolic learning methods enable to mine
patterns– in the form of Horn clauses– the represent reported statements from
the literature. Thus, we aim to extend the repertoire of techniques that can be
utilized to support data analytics on the healthcare area, as well as encourage
the community to empower existing approaches for semantic data integration
and query processing to efficiently create, manage, and explore KGs.

Despite years of research, there are still several challenges that still require
attention. They include: i) Approaches for multimodal data integration (e.g.,
images, unstructured and omics data); ii) Explainable and interpretable meth-
ods for KG creation, curation, management, and exploration; iii) Methods to
ensure privacy and sovereignty; iv) Techniques to mine patterns of causation
over KGs; and v) Hybrid approaches that allow for the integration of human
and machine intelligence towards more effective and efficient knowledge man-
agement and discovery. These grand challenges are part of our future research
agenda.
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A Federated SPARQL Queries

PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?o1 ?do1 ?externaldo1
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:ALK .
?patient KG4CV:hasSmokingHabit KG4CE:NonSmoker .
?patient KG4CV:sex KG4CE:Female .
?patient KG4CV:age ?age .
FILTER (?age < 51)
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?do1.
?do1 rdf:type KG4CV:Annotation .
?do1 owl:sameAs ?externaldo1.

}

Listing 1: Query 1. Drugs that are part of at least one chemotherapy schema
for female non-smoker lung cancer patients, and their external identifiers. The
patients should be who are ALK translocated. Number of Triple Patterns: 14.
Number of Sources: 1. Number of Results: 30.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?o5 ?excretion ?metabolism ?routes
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:ALK .
?patient KG4CV:hasSmokingHabit KG4CE:NonSmoker .
?patient KG4CV:sex KG4CE:Female .
?patient KG4CV:age ?age .
FILTER (?age < 51)
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o5 dbp:excretion ?excretion .
?o5 dbp:metabolism ?metabolism .
?o5 dbp:routesOfAdministration ?routes

}

Listing 2: Query 2. Excretion, metabolism, and routes of administration of
drugs that are part of at least one chemotherapy schema for female non-smoker
lung cancer patients who are ALK translocated. Number of Triple Patterns: 18.
Number of Sources: 2. Number of Results: 7.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?o1 ?o4 ?o5 ?idDrug ?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:EGFR .
?patient KG4CV:hasSmokingHabit KG4CE:NonSmoker .
?patient KG4CV:sex KG4CE:Female .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 3: Query 3. ChEMBL ID, active ingredients, and mass of drugs that
are part of at least one chemotherapy schema for female non-smoker lung cancer
patients who are EGFR positive. Number of Triple Patterns: 16. Number of
Sources: 2. Number of Results: 30.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?o1 ?o4 ?o5 ?idDrug ?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:PDL1 .
?patient KG4CV:sex KG4CE:Male .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 4: Query 4. ChEMBL ID, active ingredients, and mass of drugs that are
part of at least one chemotherapy schema for male lung cancer patients who are
PDL1 positive. Number of Triple Patterns: 15. Number of Sources: 2. Number
of Results: 41.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT DISTINCT ?o1 ?o4 ?o5 ?idDrug ?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:EGFR .
?patient KG4CV:hasSmokingHabit KG4CE:NonSmoker .
?patient KG4CV:sex KG4CE:Male .
?patient KG4CV:age ?age.
FILTER (?age > 51) .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 5: Query 5. ChEMBL ID, active ingredients, and mass of drugs that
are part of at least one chemotherapy schema for male non-smoker lung cancer
patients who are EGFR positive. Number of Triple Patterns: 17. Number of
Sources: 2. Number of Results: 22.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT DISTINCT ?o1 ?o4 ?o5 ?excretion ?metabolism ?routes ?o6 ?idDrug

?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:EGFR .
?patient KG4CV:hasSmokingHabit KG4CE:NonSmoker .
?patient KG4CV:sex KG4CE:Male .
?patient KG4CV:age ?age .
FILTER (?age > 51) .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o6 .
?o6 dbp:excretion ?excretion .
?o6 dbp:metabolism ?metabolism .
?o6 dbp:routesOfAdministration ?routes .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 6: Query 6. ChEMBL ID, active ingredients, mass, excretion,
metabolism, and routes of administration of drugs that are part of at least
one chemotherapy schema for male non-smoker lung cancer patients who are
EGFR positive. Number of Triple Patterns: 22. Number of Sources: 3. Number
of Results: 19.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT DISTINCT ?o1 ?o4 ?o5 ?excretion ?metabolism ?routes ?o6 ?idDrug

?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:EGFR .
?patient KG4CV:hasSmokingHabit KG4CE:NonSmoker .
?patient KG4CV:sex KG4CE:Female .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch KG4CV:hasDrugSchema ?schema .
?hasSch rdf:type KG4CV:Chemotherapy .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o4 owl:sameAs ?o6 .
?o6 dbp:excretion ?excretion .
?o6 dbp:metabolism ?metabolism .
?o6 dbp:routesOfAdministration ?routes .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 7: Query 7. ChEMBL ID, active ingredients, mass, excretion,
metabolism, and routes of administration of drugs that are part of at least
one chemotherapy schema for female non-smoker lung cancer patients who are
EGFR positive. Number of Triple Patterns: 20. Number of Sources: 3. Number
of Results: 24.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT DISTINCT ?o1 ?o4 ?o5 ?excretion ?metabolism ?routes ?o6 ?idDrug

?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:ALK .
?patient KG4CV:sex KG4CE:Male .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o4 owl:sameAs ?o6 .
?o6 dbp:excretion ?excretation .
?o6 dbp:metabolism ?metabolism .
?o6 dbp:routesOfAdministration ?routes .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 8: Query 8. ChEMBL ID, active ingredients, mass, excretion,
metabolism, and routes of administration of drugs that are part of at least one
chemotherapy schema for male non-smoker lung cancer patients who are ALK
translocated. Number of Triple Patterns: 19. Number of Sources: 3. Number of
Results: 19.
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PREFIX KG4CE: <http://research.tib.eu/clarify2020/entity/>
PREFIX KG4CV: <http://research.tib.eu/clarify2020/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT DISTINCT ?o1 ?o4 ?o5 ?excretion ?metabolism ?routes ?o6 ?idDrug

?activeIngredient ?mass
WHERE {

?patient rdf:type KG4CV:LCPatient .
?patient KG4CV:hasBio KG4CE:PDL1 .
?patient KG4CV:hasTreatmentEpisode ?o .
?o rdf:type KG4CV:TreatmentEpisode .
?o KG4CV:hasTreatmentType ?hasSch .
?hasSch rdf:type KG4CV:Chemotherapy .
?hasSch KG4CV:hasDrugSchema ?schema .
?schema KG4CV:hasDrug1 ?o1 .
?o1 KG4CV:hasCUIAnnotation ?o4 .
?o4 rdf:type KG4CV:Annotation .
?o4 owl:sameAs ?o5 .
?o4 owl:sameAs ?o6 .
?o6 dbp:excretion ?excretion .
?o6 dbp:metabolism ?metabolism .
?o6 dbp:routesOfAdministration ?routes .
?o5 wdt:P592 ?idDrug .
?o5 wdt:P3780 ?activeIngredient .
?o5 wdt:P2067 ?mass .

}

Listing 9: Query 9. ChEMBL ID, active ingredients, mass, excretion,
metabolism, and routes of administration of drugs that are part of at least one
chemotherapy schema for lung cancer patients who are PDL1 positive. Number
of Triple Patterns: 18. Number of Sources: 3. Number of Results: 39.
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B Results Federated Query Engines

See Table 4.

Table 4. Execution Times of Federated Query Engines. avg is the average
execution time of the query over 10 runs. stdev reports the standard deviation observed
across the 10 runs. FedX (RDF4J) outperforms GraphDB in all queries. GraphDB times
out for query Q6. DeTrusty has the best performance of all three engines in all nine
queries. Additionally, the query execution time of DeTrusty is the most stable one as
can be seen by the low standard deviation.

Query DeTrusty FedX (RDF4J) GraphDB
avg stdev avg stdev avg stdev

Q1 0.16081 0.00785 0.21581 0.02132 0.40062 0.04567
Q2 0.27681 0.01681 0.82318 0.03297 55.79853 1.29189
Q3 0.58540 0.04146 1.90763 0.20965 8.90954 0.43137
Q4 1.06983 0.07654 4.85232 0.08124 24.07908 0.08725
Q5 0.45300 0.08519 0.66207 0.03722 96.81955 2.64521
Q6 0.81906 0.08835 3.89900 0.09721 timed out
Q7 2.47035 0.02817 17.63632 0.44751 86.98863 0.59556
Q8 2.33876 0.01786 4.34825 0.34618 28.66448 0.57074
Q9 2.53045 0.03086 56.85676 0.20893 326.44522 2.48396
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Abstract. We describe some recent approaches to score-based explanations for
query answers in databases. The focus is on work done by the author and collabo-
rators. Special emphasis is placed on the use of counterfactual reasoning for score
specification and computation. Several examples that illustrate the flexibility of
these methods are shown.

1 Introduction

In data management one wants explanations for certain results. For example, for query
results from databases. Explanations, that may come in different forms, have been the
subject of philosophical enquires for a long time, but, closer to our discipline, they
appear under different forms in model-based diagnosis and in causality as developed in
artificial intelligence.

In the last few years, explanations that are based on numerical scores assigned to
elements of a model that may contribute to an outcome have become popular. These
scores attempt to capture the degree of contribution of those components to an outcome,
e.g. answering questions like these: What is the contribution of this tuple to the answer
to this query?

Different scores have been proposed in the literature, and some that have a relatively
older history have been applied. Among the latter we find the general responsibility
score as found in actual causality [11,14]. For a particular kind of application, one has
to define the right causality setting, and then apply the responsibility measure to the
participating variables (see [15] for an updated treatment of causal responsibility).

In data management, responsibility has been used to quantify the strength of a tuple
as a cause for a query result [4,23] (see Sect. 3.1). The responsibility score, Resp, is
based on the notions of counterfactual intervention as appearing in actual causality.
More specifically, (potential) executions of counterfactual interventions on a structural
logico-probabilistic model [14] are investigated, with the purpose of answering hypo-
thetical questions of the form: What would happen if we change ...?.

Database repairs are commonly used to define and obtain semantically correct query
answers from a database that may fail to satisfy a given set of integrity constraints (ICs)
[3]. A connection between repairs and actual causality in DBs has been used to obtain
complexity results and algorithms for the latter [4] (see Sect. 5).
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The Causal Effect score is also based on causality, mainly for observational studies
[16,26,29]. It has been applied in data management in [30] (see Sect. 3.2).

The Shapley value, as found in coalition game theory [31], has been used for the
same purpose [18,19]. Defining the right game function, the Shapley value assigned
to a player reflects its contribution to the wealth function. The Shapley value, which
is firmly established in game theory, and is also used in several other areas [28,31].
The main idea is that several tuples together, much like players in a coalition game,
are necessary to produce a query result. Some may contribute more than others to the
wealth distribution function (or simply, game function), which in this case becomes
the query result, namely 1 or 0 if the query is Boolean, or a number if we have an
aggregation query. This use of Shapley value was developed in [18,19] (see Sect. 6).

In this article we survey some of the recent advances on the use and computation of
the above mentioned score-based explanations for query answering in databases. This
is not intended to be an exhaustive survey of the area. Instead, it is heavily influenced
by our latest research. To introduce the concepts and techniques we will use mostly
examples, trying to convey the main intuitions and issues.

This paper is structured as follows. In Sect. 2, we provide some preliminaries on
databases. In Sect. 3, we introduce causality in databases and the responsibility score,
and also the causal effect score. In Sect. 4, we show the connection between causality
in databases and database repairs. In Sect. 5, we show how integrate ICs in the causality
setting. In Sect. 6, we show how to use the Shapley value to provide explanation scores
to database tuples in relation to a query result. In Sect. 7, we make some general remarks
on relevant open problems.

2 Background

A relational schemaR contains a domain of constants, C, and a set of predicates of finite
arities,P . R gives rise to a languageL(R) of first-order (FO) predicate logic with built-
in equality,=. Variables are usually denoted with x, y, z, ...; and finite sequences thereof
with x̄, ...; and constants with a, b, c, ..., etc. An atom is of the form P (t1, . . . , tn), with
n-ary P ∈ P and t1, . . . , tn terms, i.e. constants, or variables. An atom is ground
(a.k.a. a tuple) if it contains no variables. A database (instance), D, for R is a finite set
of ground atoms; and it serves as an interpretation structure for L(R).

A conjunctive query (CQ) is a FO formula, Q(x̄), of the form ∃ȳ (P1(x̄1) ∧ · · · ∧
Pm(x̄m)), with Pi ∈ P , and (distinct) free variables x̄ := (

⋃
x̄i) � ȳ. If Q has n (free)

variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄] is true in D when
the variables in x̄ are componentwise replaced by the values in c̄. Q(D) denotes the set
of answers to Q from D. Q is a Boolean conjunctive query (BCQ) when x̄ is empty;
and when true in D, Q(D) := {true}. Otherwise, it is false, and Q(D) := ∅. We will
consider only conjunctive queries or disjunctions thereof.

We consider as integrity constraints (ICs), i.e. sentences of L(R): (a) denial con-
straints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), where Pi ∈
P , and x̄ =

⋃
x̄i; and (b) inclusion dependencies (INDs), which are of the form

∀x̄∃ȳ(P1(x̄) → P2(x̄′, ȳ)), where P1, P2 ∈ P , and x̄′ ⊆ x̄. If an instance D does
not satisfy the set Σ of ICs associated to the schema, we say that D is inconsistent,
denoted with D 	|= Σ.
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3 Causal Explanations in Databases

In data management we need to understand and compute why certain results are
obtained or not, e.g. query answers, violations of semantic conditions, etc.; and we
expect a database system to provide explanations.

3.1 Causal Responsibility

Here, we will consider causality-based explanations [23,24], which we will illustrate
by means of an example.

Example 1. Consider the database D, and the Boolean conjunctive query (BCQ)

R A B
a b
c d
b b

S C
a
c
b

Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), for
which D |= Q holds, i.e. the query is true
in D. We ask about the causes for Q to be
true.

A tuple τ ∈ D is counterfactual cause for Q (being true in D) if D |= Q and
D � {τ} 	|= Q. In this example, S(b) is a counterfactual cause for Q: If S(b) is
removed from D, Q is no longer true.

Removing a single tuple may not be enough to invalidate the query. Accordingly,
a tuple τ ∈ D is an actual cause for Q if there is a contingency set Γ ⊆ D, such
that τ is a counterfactual cause for Q in D � Γ . In this example, R(a, b) is not a
counterfactual cause for Q, but it is an actual cause with contingency set {R(b, b)}: If
R(b, b) is removed from D, Q is still true, but further removing R(a, b) makes Q false.
�

Notice that every counterfactual cause is also an actual cause, with empty contingent
set. Actual causes that are not counterfactual causes need company to invalidate a query
result. Now we ask how strong are tuples as actual causes. To answer this question, we
appeal to the responsibility of an actual cause τ for Q [23], defined by:

RespQ
D
(τ) :=

1
|Γ | + 1

,

where |Γ | is the size of a smallest contingency set, Γ , for τ , and 0, otherwise.

Example 2. (ex. 1 cont.) The responsibility ofR(a, b) is 1
2 = 1

1+1 (its several smallest
contingency sets have all size 1). R(b, b) and S(a) are also actual causes with respon-
sibility 1

2 ; and S(b) is actual (counterfactual) cause with responsibility 1 = 1
1+0 . �

High responsibility tuples provide more interesting explanations. Causes in this case
are tuples that come with their responsibilities as “scores”. All tuples can be seen as
actual causes, but only those with non-zero responsibility score matter. Causality and
responsibility in databases can be extended to the attribute-value level [4,6].

There are connections between database causality and consistency-based diagnosis
and abductive diagnosis, that are two forms ofmodel-based diagnosis [8,32]. There are
also connections with database repairs [2,3]. These connections have led to complexity
and algorithmic results for causality and responsibility [4,5] (see Sect. 4).
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3.2 The Causal-Effect Score

Sometimes, as we will see right here below, responsibility does not provide intuitive or
expected results, which led to the consideration of an alternative score, the causal-effect
score. We show the issues and the score by means of an example.

Example 3. Consider the database E that represents the graph below, and the Boolean
query Q that is true in E if there is a path from a to b. Here, E |= Q. Tuples have global
tuple identifiers (tids) in the left-most column, which is not essential, but convenient.

All tuples are actual causes since every tuple appears in a path from a to b. Also,
all the tuples have the same causal responsibility, 1

3 , which may be counterintuitive,
considering that t1 provides a direct path from a to b. �

In [30], the notion causal effect was introduced. It is based on three main ideas,
namely, the transformation, for auxiliary purposes, of the database into a probabilistic
database, the expected value of a query, and interventions on the lineage of the query
[10,33]. The lineage of a query represents, by means of a propositional formula, all
the ways in which the query can be true in terms of the potential database tuples, and
their combinations. Here, “potential” refers to tuples that can be built with the database
predicates and the database (finite) domain. These tuples may belong to the database
at hand or not. For a given database, D, some of those atoms become true, and others
false, which leads to the instantiation of the lineage (formula) o D.

Example 4. Consider the database D below, and a BCQ.

R A B
a b
a c
c b

S C
b
c

Q : ∃x∃y(R(x, y) ∧ S(y)), which is true
in D.

For the database D in our example, the lineage of the query instantiated on D is
given by the propositional formula:

ΦQ(D) = (XR(a,b) ∧ XS(b)) ∨ (XR(a,c) ∧ XS(c)) ∨ (XR(c,b) ∧ XS(b)), (1)

where Xτ is a propositional variable that is true iff τ ∈ D. Here, ΦQ(D) takes value
1 in D.

Now, for illustration, we want to quantify the contribution of tuple S(b) to the query
answer. For this purpose, we assign, uniformly and independently, probabilities to the
tuples in D, obtaining a probabilistic database Dp [33]. Potential tuples outside D get
probability 0.
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Rp A B prob
a b 1

2

a c 1
2

c b 1
2

Sp C prob
b 1

2

c 1
2

The Xτ ’s become independent, identically distributed Boolean random variables;
and Q becomes a Boolean random variable. Accordingly, we can ask about the proba-
bility that Q takes the truth value 1 (or 0) when an intervention is performed on D.

Interventions are of the form do(X = x), meaning making X take value x, with
x ∈ {0, 1}, in the structural model, in this case, the lineage. That is, we ask, for
{y, x} ⊆ {0, 1}, about the conditional probability P (Q = y | do(Xτ = x)), i.e. con-
ditioned to making Xτ false or true.

For example, with do(XS(b) = 0) and do(XS(b) = 1), the lineage in (1) becomes,
resp., and abusing the notation a bit:

ΦQ(D|do(XS(b) = 0) := (XR(a,c) ∧ XS(c)).
ΦQ(D|do(XS(b) = 1) := XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b).

On the basis of these lineages and Dp, when XS(b) is made false, the probability
that the instantiated lineage becomes true in Dp is:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1) × P (XS(c) = 1) =
1
4
.

When XS(b) is made true, the probability of the lineage being true in Dp is:

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b) = 1)=
13
16

.

The causal effect of a tuple τ is defined by:

CED,Q(τ) := E(Q | do(Xτ = 1)) − E(Q | do(Xτ = 0)).

In particular, using the probabilities computed so far:

E(Q | do(XS(b) = 0)) = P (Q = 1 | do(XS(b) = 0)) =
1
4
,

E(Q | do(XS(b) = 1)) = P (Q = 1 | do(XS(b) = 1)) =
13
16

.

Then, the causal effect for the tuple S(b) is: CED,Q(S(b)) = 13
16 − 1

4 = 9
16 > 0,

showing that the tuple is relevant for the query result, with a relevance score provided
by the causal effect, of 9

16 . �

Let us now retake the initial example of this section.
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Example 5. (ex. 3 cont.) The query has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧ Xt3) ∨ (Xt4 ∧ Xt5 ∧ Xt6).

It holds:

CED,Q(t1) = 0.65625,

CED,Q(t2) = CED,Q(t3) = 0.21875,

CED,Q(t4) = CED,Q(t5) = CED,Q(t6) = 0.09375.

The causal effects are different for different tuples, and the scores are much more
intuitive than the responsibility scores. �

4 The Database Repair Connection

In this section we will first establish a useful connection between database repairs and
causes as tuples in a database [2,3]. The notion of repair of a relational database was
introduced in order to formalize the notion of consistent query answering (CQA), as
shown in Fig. 1: If a database D is inconsistent in the sense that is does not satisfy
a given set of integrity constraints, ICs , and a query Q is posed to D (left-hand side
of Fig. 1), what are the meaningful, or consistent, answers to Q from D? They are
sanctioned as those that hold (are returned as answers) from all the repairs of D. The
repairs of D are consistent instances D′ (over the same schema of D), i.e. D′ |= ICs ,
and minimally depart from D (right-hand side of Fig. 1).

Notice that: (a) We have now a possible-world semantics for (consistent) query
answering; and (b) we may use in principle any reasonable notion of distance between
database instances, with each choice defining a particular repair semantics. In the rest
of this section we will illustrate two classes of repairs, which have been used and inves-
tigated the most in the literature. Actually, repairs in general have got a life of their own,
beyond consistent query answering.

Fig. 1. Database repairs and consistent query answers

Example 6. Let us consider the following set of denial constraints (DCs) and a database
D, whose relations (tables) are shown right here below. D is inconsistent, because it
violates the DCs: it satisfies the joins that are prohibited by the DCs.
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¬∃x∃y(P (x) ∧ Q(x, y))
¬∃x∃y(P (x) ∧ R(x, y))

P A
a
e

Q A B
a b

R A C
a c

We want to repair the original instance by deleting tuples from relations. Notice
that, for DCs, insertions of new tuple will not restore consistency. We could change
(update) attribute values though, a possibility that has been investigated in [6].

Here we have two subset repairs, a.k.a. S-repairs. They are subset-maximal consis-
tent subinstances of D: D1 = {P (e), Q(a, b), R(a, c)} and D2 = {P (e), P (a)}.
They are consistent, subinstances of D, and any proper superset of them (still contained
in D) is inconsistent. (In general, we will represent database relations as set of tuples.)

We also have cardinality repairs, a.k.a. C-repairs. They are consistent subinstances
of D that minimize the number of tuples by which they differ from D. That is, they
are maximum-cardinality consistent subinstances. In this case, only D1 is a C-repair.
Every C-repair is an S-repair, but not necessarily the other way around. �

Let us now consider a BCQ

Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), (2)

which we assume is true in a database D. It turns out that we can obtain the causes for
Q to be true D, and their contingency sets from database repairs. In order to do this,
notice that ¬Q becomes a DC

κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)); (3)

and that Q holds in D iff D is inconsistent w.r.t. κ(Q).
It holds that S-repairs are associated to causes with minimal contingency sets, while

C-repairs are associated to causes for Q with minimum contingency sets, and maximum
responsibilities [4]. In fact, for a database tuple τ ∈ D:

(a) τ is actual cause for Q with subset-minimal contingency set Γ iff D� (Γ ∪{τ})
is an S-repair (w.r.t. κ(Q)), in which case, its responsibility is 1

1+|Γ | .
(b) τ is actual cause with minimum-cardinality contingency set Γ iff D � (Γ ∪{τ})

is C-repair, in which case, τ is a maximum-responsibility actual cause.

Conversely, repairs can be obtained from causes and their contingency sets [4]. These
results can be extended to unions of BCQs (UBCQs), or equivalently, to sets of denial
constraints.

One can exploit the connection between causes and repairs to understand the com-
putational complexity of the former by leveraging existing results for the latter. Beyond
the fact that computing or deciding actual causes can be done in polynomial time in data
for CQs and UCQs [4,23], one can show that most computational problems related to
responsibility are hard, because they are also hard for repairs, in particular, for C-repairs
(all this in data complexity) [20]. In particular, one can prove [4]: (a) The responsibility
problem, about deciding if a tuple has responsibility above a certain threshold, is NP -
complete for UCQs. (b) Computing RespQ

D
(τ) is FPNP(log(n))-complete for BCQs.
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This the functional, non-decision, version of the responsibility problem. The complex-
ity class involved is that of computational problems that use polynomial time with a
logarithmic number of calls to an oracle in NP. (c) Deciding if a tuple τ is a most
responsible cause is PNP(log(n))-complete for BCQs. The complexity class is as the
previous one, but for decision problems [1].

5 Causes Under Integrity Constraints

In this section we consider tuples as causes for query answering in the more general
setting where databases are subject to integrity constraints (ICs). In this scenario, and in
comparison with Sect. 3.1, not every intervention on the database is admissible, because
the ICs have to be satisfied. As a consequence, the definitions of cause and responsibility
have to be modified accordingly. We illustrate the issues by means of an example. More
details can be found in [5,6].

We start assuming that a database D satisfies a set of ICs, Σ, i.e. D |= Σ. If we
concentrate on BCQs, or more, generally on monotone queries, and consider causes at
the tuple level, only instances obtained from D by interventions that are tuple deletions
have to be considered; and they should satisfy the ICs. More precisely, for τ to be
actual cause for Q, with a contingency set Γ , it must hold [5]:

(a) D � Γ |= Σ, and D � Γ |= Q.
(b) D � (Γ ∪ {τ}) |= Σ, and D � (Γ ∪ {τ}) 	|= Q.

The responsibility of τ , denoted RespQ
D,Σ

(τ), is defined as in Sect. 3.1, through
minimum-size contingency sets.

Example 7. Consider the database instance D below, initially without additional ICs.

Dep DName TStaff
t1 Computing John
t2 Philosophy Patrick
t3 Math Kevin

Course CName TStaff DName
t4 COM08 John Computing
t5 Math01 Kevin Math
t6 HIST02 Patrick Philosophy
t7 Math08 Eli Math
t8 COM01 John Computing

Let us first consider the following open query:1

Q(x) : ∃y∃z(Dep(y, x) ∧ Course(z , x , y)). (4)

In this case, we get answers other that yes or no. Actually, 〈John〉 ∈ Q(D), the set
of answers to Q, and we look for causes for this particular answer. It holds: (a) t1
is a counterfactual cause; (b) t4 is actual cause with single minimal contingency set
Γ1 = {t8}; (c) t8 is actual cause with single minimal contingency set Γ2 = {t4}.

Let us now impose on D the inclusion dependency (IND):

1 The fact that it is open is not particularly relevant, because we can instantiate the query with
the answer, obtaining a Boolean query.
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ψ : ∀x∀y (Dep(x, y) → ∃u Course(u, y, x)), (5)

which is satisfied by D. Now, t4 t8 are not actual causes anymore; and t1 is still a
counterfactual cause.

Let us now consider the query: Q1(x) : ∃y Dep(y, x). Now, 〈John〉 ∈ Q1(D),
and under the IND (5), we obtain the same causes as for Q, which is not surprising
considering that Q ≡ψ Q1, i.e. the two queries are logically equivalent under (5).

And now, consider the query: Q2(x) : ∃y∃zCourse(z, x, y), for which
〈John〉 ∈ Q2(D). For this query we consider the two scenarios, with and without
imposing the IND. Without imposing (5), t4 and t8 are the only actual causes, with
contingency sets Γ1 = {t8} and Γ2 = {t4}, resp.

However, imposing (5), t4 and t8 are still actual causes, but we lose their smallest
contingency sets Γ1 and Γ2 we had before: D � (Γ1 ∪ {t4}) 	|= ψ, D � (Γ2 ∪
{t8}) 	|= ψ. Actually, the smallest contingency set for t4 is Γ3 = {t8, t1}; and for
t8, Γ4 = {t4, t1}. We can see that under the IND, the responsibilities of t4 and t8
decrease:

RespQ2(John)
D

(t4) =
1
2
, and RespQ2(John)

D,ψ
(t4) =

1
3
.

Tuple t1 is not an actual cause, but it affects the responsibility of actual causes., �

Some results about causality under ICs can be obtained [5]: (a) Causes are pre-
served under logical equivalence of queries under ICs, (b) Without ICs, deciding
causality for BCQs is tractable, but their presence may make complexity grow. More
precisely, there are a BCQ and an inclusion dependency for which deciding if a tuple is
an actual cause is NP -complete in data.

6 The Shapley Value in Databases

The Shapley value was proposed in game theory by Lloyd Shapley in 1953 [31], to
quantify the contribution of a player to a coalition game where players share a wealth
function.2 It has been applied in many disciplines. In particular, it has been investigated
in computer science under algorithmic game theory [25], and it has been applied to
many and different computational problems. The computation of the Shapley value
is, in general, intractable. In many scenarios where it is applied its computation turns
out to be #P -hard [12,13]. Here, the class #P contains the problems of counting the
solutions for problems inNP . A typical problem in the class, actually, hard for the class,
is #SAT , about counting the number of satisfying assignments for a propositional
formula. Clearly, this problem cannot be easier than SAT , because a solution for#SAT
immediately gives a solution for SAT [1].

2 The original paper and related ones on the Shapley value can be found in the book edited by
Alvin Roth [28]. Shapley and Roth shared the Nobel Prize in Economic Sciences 2012.
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Consider a set of players D, and a game function, G : P(D) → R, where P(D) the
power set of D. The Shapley value of player p in D es defined by:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p}) − G(S)). (6)

Notice that here, |S|!(|D| − |S| − 1)! is the number of permutations of D with all play-
ers in S coming first, then p, and then all the others. That is, this quantity is the expected
contribution of player p under all possible additions of p to a partial random sequence
of players followed by a random sequence of the rests of the players. Notice the coun-
terfactual flavor, in that there is a comparison between what happens having p vs. not
having it. The Shapley value is the only function that satisfies certain natural properties
in relation to games. So, it is a result of a categorical set of axioms or conditions [28].

The Shapley value has been used in knowledge representation, to measure the
degree of inconsistency of a propositional knowledge base [17]; in machine learning to
provide explanations for the outcomes of classification models on the basis of numeri-
cal scores assigned to the participating feature values [21,22]. It has also been applied
in data management to measure the contribution of a tuple to a query answer [18,19],
which we briefly review in this section.

In databases, the players are tuples in a database D. We also have a Boolean query
Q, which becomes a game function, as follows: For S ⊆ D, i.e. a subinstance,

Q(S) =
{

1 if S |= Q,
0 if S 	|= Q.

With these elements we can define the Shapley value of a tuple τ ∈ D:

Shapley(D,Q, τ) :=
∑

S⊆D\{τ}

|S|!(|D| − |S| − 1)!
|D|! (Q(S ∪ {τ}) − Q(S)).

If the query is monotone, i.e. its set of answers never shrinks when new tuples are
added to the database, which is the case of conjunctive queries (CQs), among others, the
difference Q(S ∪ {τ}) − Q(S) is always 1 or 0, and the average in the definition of the
Shapley value returns a value between 0 and 1. This value quantifies the contribution
of tuple τ to the query result. It was introduced and investigated in [18,19], for BCQs
and some aggregate queries defined over CQs. We report on some of the findings in the
rest of this section. The analysis has been extended to queries with negated atoms in
CQs [27].

A main result obtained in [18,19] is about the complexity of computing this Shapley
score. The following Dichotomy Theorem holds: For Q a BCQ without self-joins, if Q
is hierarchical, then Shapley(D,Q, τ) can be computed in polynomial-time (in the size
of D); otherwise, the problem is #P -complete.

Here, Q is hierarchical if for every two existential variables x and y, it holds: (a)
Atoms(x) ⊆ Atoms(y), or Atoms(y) ⊆ Atoms(x), or Atoms(x) ∩ Atoms(y) = ∅.
For example, Q : ∃x∃y∃z(R(x, y) ∧ S(x, z)), for which Atoms(x) = {R(x, y),
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S(x, z)}, Atoms(y) = {R(x, y)}, Atoms(z) = {S(x, z)}, is hierarchical. How-
ever, Qnh : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y)), for which Atoms(x) = {R(x), S(x, y)},
Atoms(y) = {S(x, y), T (y)}, is not hierarchical.

These are the same criteria for (in)tractability that apply to evaluation of BCQs
over probabilistic databases [33]. However, the same proofs do not apply, at least not
straightforwardly. The intractability result uses query Qnh above, and a reduction from
counting independent sets in a bipartite graph.

The dichotomy results can be extended to summation over CQs, with the same
conditions and cases. This is because the Shapley value, as an expectation, is linear.
Hardness extends to aggregates max, min, and avg over non-hierarchical queries.

For the hard cases, there is, as established in [18,19], an approximation result: For
every fixed BCQQ (or summation over a CQ), there is amultiplicative fully-polynomial
randomized approximation scheme (FPRAS) [1], A, with, for given ε and δ:

P (τ ∈ D | Shapley(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Shapley(D,Q, τ)}) ≥ 1 − δ.

A related and popular score, in coalition games and other areas, is the Banzhaf
Power Index, which is similar to the Shapley value, but the order of players is ignored,
by considering subsets of players rather than permutations thereof. It is defined by:

Banzhaf (D,Q, τ) :=
1

2|D|−1
·

∑

S⊆(D\{τ})
(Q(S ∪ {τ}) − Q(S)).

The Banzhaf-index is also difficult to compute; provably #P-hard in general. The
results in [18,19] carry over to this index when applied to query answering. In [18] it
was proved that the causal-effect score of Sect. 3.2 coincides with the Banzhaf-index,
which gives to the former an additional justification.

In [9], additional applications of the Shapley value in databases are described.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas of
research. The relevance of explanations can only grow, as observed from- and due to the
legislation and regulations that are being produced and enforced in relation to explain-
ability, transparency and fairness of data management and AI/ML systems.

There are different approaches and methodologies in relation to explanations, with
causality, counterfactuals and scores being prominent approaches that have a relevant
role to play. Much research is still needed on the use of contextual, semantic and domain
knowledge. Some approaches may be more appropriate in this direction, and we argue
that declarative, logic-based specifications can be successfully exploited [7].

Still fundamental research is needed in relation to the notions of explanation and
interpretation. An always present question is:What is a good explanation?. This is not
a new question, and in AI (and other areas and disciplines) it has been investigated. In
particular in AI, areas such as diagnosis and causality have much to contribute.
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Now, in relation to explanations scores, there is still a question to be answered:
What are the desired properties of an explanation score?. The question makes a lot of
sense, and may not be beyond an answer. After all, the general Shapley value emerged
from a list of desiderata in relation to coalition games, as the only measure that satisfies
certain explicit properties [28,31]. Although the Shapley value is being used in XAI, in
particular in its Shap incarnation, there could be a different and specific set of desired
properties of explanation scores that could lead to a still undiscovered explanation score.
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