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Abstract Advances in technology during the past few years have enabled us
to profile various types of genomic features at single-cell resolution. Different
types of genomic features capture different aspects of the cells, and together they
more accurately depict the biology of the cells. This emerging research area will
significantly advance our understanding of complex biological systems and human
diseases. Here we review computational methods for analysis and integration of
single-cell data across different molecular modalities, and we will emphasize on the
statistical aspects of these methods.

The advances in technology in the past few years have enabled us to profile
various types of genome-widemolecular features at single-cell resolution, including
DNA, gene expression, protein-binding, histone modifications, and chromatin
accessibility. Previously, such genomic approaches could only be applied to bulk
tissue samples comprised of an ensemble of many cells, providing average genomic
measures, but masking the cellular difference [1]. Different types of genomic
features capture complementary information and together they provide a more
complete biological picture.

The high technical variation and high level of noise present in single-cell datasets,
especially in single-cell epigenomic datasets, pose challenges for the extraction
of biological variation. The large-scale of single-cell datasets also necessitates
efficient algorithms to analyze the datasets. In this review, we focus on computa-
tional methods developed for single-cell multi-omics data. Depending on the data
structure, the computational methods fall into two broad categories: methods that
integrate data from multiple molecular modalities profiled in different cells but
similar biological tissue, and methods that integrate data from multiple molecular
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modalities profiled simultaneously in the same cells. In this review, we use “scRNA-
Seq data” to represent single-cell gene expression data, and “scATAC-Seq data” to
represent single-cell chromatin accessibility data, acknowledging the fact that there
are multiple platforms with different names that can profile gene expression and
chromatin accessibility at single-cell resolution.

Methods that integrates multiple scRNA-Seq datasets have also been developed
[2–6], and they will not be discussed in detail in this review. Methods that integrate
multi-omics data obtained from bulk tissues have also been developed. These
methods have been summarized and reviewed in [7].

1 Multi-Omics Data Profiled on Different Cells

Cells are sacrificed in single-cell experiments, and it is experimentally more
challenging to obtain multiple types of genomic data from the same cell, compared
with the relative ease of obtaining such genomic data from the same sample in bulk
genomic experiments. Computational methods are developed for the setting where
multiple types of genomic data are obtained from different subsets of cells from
similar cell population (i.e., tissue).

Based on the goal, the methods can be classified in the following categories: (a)
methods that learn low-dimensional embeddings where different types of genomic
features are aligned to the same latent space. After cells from different modalities
are aligned, cell type identification can be achieved by a separate clustering step
using the low-dimension representation of the cells. The methods that fall into this
category include coupled NMF [8], DC3 [9], Seurat V3 [10], LIGER [11], online
iNMF [12], UINMF [13], and MAESTRO [14]; (b) Methods that directly perform
joint clustering on the original data space, where the shared and unshared cell types
across data modalities are identified through joint clustering. The methods that fall
into this category include scACE [15] and scAMACE [16]; (c) Transfer learning-
based methods where one dataset (typically scRNA-Seq data) facilitates the analysis
of another noisier dataset (typically single-cell epigenomic data). The methods that
fall into this category include coupleCoC [17], coupleCoC+ [18], and scJoint [19].

Because different types of genomic features are profiled in different cells, these
methods require that at least a subset of features are connected across the multi-
omics data: To connect scATAC-Seq data with scRNA-Seq data, gene activity
score[20] that summarizes the peak accessibility near the gene body was used in
online iNMF [12], UINMF[21], MAESTRO [14], scAMACE[16], coupleCoC [17],
coupleCoC+ [18], and scJoint [19], promoter accessibility was used in scACE
[15], prediction model trained from reference data was used in coupled NMF [8],
and external chromatin conformation data that links regulatory regions to genes
was used in DC3 [9]; To connect single-cell methylation data with scRNA-Seq
data, gene body mCH methylation was used in LIGER [11], online iNMF [12],
scAMACE [16], coupleCoC [17], and coupleCoC+ [18], promoter methylation was
also used in scAMACE[16].



Integrative Analyses of Single-Cell Multi-Omics Data: A Review from a. . . 55

coupled NMF [8] was designed for integrative analysis of scRNA-Seq and
scATAC-Seq data obtained from different set of cells. Let O be a p1 by n1 data
matrix for scATAC-Seq data, where p1 is the number of regions and n1 is the
number of cells. Let E be a p2 by n2 data matrix for scRNA-Seq data, where p2
is the number of genes and n2 is the number of cells. The following optimization
problem was proposed in coupled NMF:

argmin
W1,H1,W2,H2≥0

1

2
‖O − W1H1‖2F + λ1

2
‖E−W2H2‖2F − λ2tr(WT

2 AW1) + μ(‖W1‖2F + ‖W2‖2F ),

(1)

whereW1 is the p1 × K region-factor matrix for scATAC-Seq data,W2 is the p2 ×
K gene-factor matrix for scRNA-Seq data, H1 and H2 are matrices of dimensions
K × n1 and K × n2, representing the low-dimensional embeddings for the cells
in scATAC-Seq and scRNA-Seq data, respectively. coupled NMF is based on non-
negative matrix factorization [22], and the entries in W1, W2, H1, and H2 are non-
negative. In coupled NMF, the regions in scATAC-Seq data and the genes in scRNA-
Seq data are connected through the term tr(WT

2 AW1), where A is a known p1 × p2
matrix obtained from training non-negative least squares regression models on bulk
gene expression and chromatin accessibility datasets. The matrix A is set to the
regression coefficients, where bulk gene expression data was used as the outcome,
and bulk chromatin accessibility data was used as the predictor. The term ‖W1‖2F +
‖W2‖2F penalizes the scales ofW1 andW2. λ1, λ2, and μ are tuning parameters.

DC3 [9] is a follow-up work based on the general framework of coupled NMF.
Instead of a pre-trained regression model, DC3 connects the regions in scATAC-
Seq data and genes in scRNA-Seq data through bulk HiChIP data obtained from
similar tissues as that in scRNA-Seq and scATAC-Seq data. Simultaneous to
clustering, DC3 also performs deconvolution of bulk HiChIP data to different cell
subpopulations. The following is the objective function proposed in DC3:

min
W1,H1,W2,H2,α,�≥0

μ1

2
‖O − W1H1‖2F + μ2

2
‖E − W2H2‖2F + 1

2
‖C − αD � (W2�WT

1 )‖2F

subject to
K∑

k=1

h1,kj = 1 for j = 1, 2, · · · , n1;
K∑

k=1

h2,kj = 1, for j = 1, 2, · · · , n2;
K∑

k=1

λk = 1,

(2)

whereO, E,W1,H1,W2,H2 are the same as the correspondingmatrices in coupled
NMF; h1,kj and h2,kj are the kj th entry in H1 and H2, respectively; C is a p1 × p2
bulk HiChIP data matrix, representing the enhancer-promoter interaction strength.
The bulk HiChIP data is obtained from similar tissues as that in scRNA-Seq and
scATAC-Seq data, and it is considered as a mixture of different cell subpopulations.
The term ‖C − αD � (W2�WT

1 )‖2F is the key for deconvolution of bulk HiChIP
to cell subpopulation-specific enhancer-promoter interaction, and for linking genes
(promoters) in scRNA-Seq data and regions (enhancers) in scATAC-Seq data. α is
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a scaling factor and D is a masking matrix that extracts the entries in C that are
larger than 1: dij = 1 if cij ≥ 1 and dij = 0 if cij < 1. � = diag(λ1, · · · , λK)

is a diagonal matrix.W2�WT
1 = ∑K

k=1 λkw2,·kwT
1,·k, where w1,·k and w2,·k denote

the kth columns in W1 and W2, respectively. w2,·kwT
1,·k can be interpreted as the

enhancer-promoter interaction strength in the kth cell subpopulation (represented
by the kth factor in NMF), which provides deconvolution for C, and λk can be
interpreted as the proportion of cells that belong to the kth cell subpopulation.

Seurat V3 [10] integrates multiple single-cell datasets. Examples were demon-
strated which integratemultiple scRNA-Seq datasets, scRNA-Seq with scATAC-Seq
data, and in situ gene expression and scRNA-Seq datasets. The features are assumed
to be the same across datasets: gene activity score was used for scATAC-Seq data.
Seurat V3 implements the following four steps to integrate two datasets, Y and X.
The correction procedure in Seurat V3 can also be extended to multiple datasets.

Step 1: Data preprocessing and feature selection with highly variable genes.
Step 2: Dimension reduction and identify “anchor” correspondences between

datasets. X is a p × nX single-cell dataset, and Y is a p × nY single-cell dataset,
where p is the number of features (i.e., genes), nX and nY are the number of
cells. Seurat V3 performs canonical correlation analysis (CCA) for dimension
reduction of X and Y. The first pair of canonical vectors u ∈ R

nX and v ∈ R
nY

are obtained by solving the following problem:

max
u,v

uT XT Yv,

subject to ‖u‖22 ≤ 1, ‖v‖22 ≤ 1.
(3)

Note that the implementation of CCA in 3 is different from its usual implemen-
tation in statistics, where the projection vectors are implemented in the feature
spaces. Seurat V3 obtains the first k pairs of canonical vectors, and then normal-
izes the canonical vectors so the �2-norm of the vector for each cell equals to 1.
The normalized canonical vectors are used as the low-dimensional representation
of the cells. Mutual nearest neighbors (MNN; pairs of cells, with one from
each dataset, that are contained within each other’s neighborhoods) are obtained
from the low-dimensional representations. These pairwise correspondences are
referred as “anchors.”

Step 3: Filtering, scoring, and weighting of anchor correspondences. The initial
anchor pairs obtained in step 2 are filtered, so they are also supported by the
original high-dimensional space. The anchors are then scored based on their
strength using an approach that is similar to the shared nearest neighbor graphs.
Suppose the matrix X is used to correct the matrix Y. W is a weight matrix for
the cells in Y, and it has dimension nY × number of anchor cells. wij represents
the weighted similarity between cell i in Y and anchor cell j in Y, which not
only considers the distance between cells i and j but also considers the anchor
score of cell j : if cell j has higher anchor score, wij will tend to be larger.
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Step 4: Data matrix correction. Let aX and aY denote the sets of anchor cell pairs
in X and Y. Seurat V3 first computes the differences between the pairs of anchor
cells in the two data matrices:

B = Y[, aY ] − X[, aX]. (4)

The corrected data matrix Ŷ is obtained as the following:

Ŷ = Y − BWT . (5)

LIGER [11] employs integrative non-negative matrix factorization (iNMF) [23].
LIGER uses gene as the feature to connect different datasets. It uses one minus non-
CpG (mCH) gene body methylation for single-cell methylation data, because non-
CpG gene body methylation is generally negatively correlated with gene expression
in neurons. Though the integrative analysis of scRNA-Seq and scATAC-Seq was
not presented in [11], scATAC-Seq data can be incorporated in principle using gene
activity score. The objective function in LIGER is as the following:

argmin
W,Hi ,Vi≥0

∑

i

‖Ei − (W + Vi )Hi‖2F + λ
∑

i

‖ViHi‖2F , (6)

where Ei denotes dataset i, which is of dimension ni × m, where ni denotes
the number of cells in dataset i, and m denotes the number of genes. W is of
dimension K × m, and it is the shared factor loadings across datasets. Vi is of
dimension K × m, and it is the factor loading that is unique to dataset i. Hi is
of dimension ni × K , and it denotes the low-dimensional embedding for the cells
in dataset i. In the objective function 6, Ei is approximated by WHi + ViHi ,
where WHi represents the shared variation across datasets, and ViHi denotes the
dataset-specific effect. The regularization term λ

∑
i ‖ViHi‖2F controls the strength

of the dataset-specific variation, and λ is a tuning parameter. After obtaining the
low-dimensional embedding H for the cells across datasets, LIGER further builds
a shared factor neighborhood graph in which cells are connected based on their
similarity in the low-dimensional embeddings, and joint clusters are identified by
performing community detection on this graph.

Other than integrative analysis of single-cell multi-omics data, examples that
integrate multiple scRNA-Seq datasets from different individuals, time points,
species, and spatial gene expression data were also presented in LIGER. Methods
have been developed based on extensions of LIGER, including online iNMF [12]
and UINMF [21].

Online iNMF [12] has the same objective function as formula 6 in LIGER. The
major advantage of online iNMF is its computational efficiency and fixed memory
usage for large datasets. It enables integration of large, multi-modal datasets by
cycling through the data multiple times in small mini-batches and integration
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of continually arriving datasets, where the entire dataset is not available at any
point during training. Online iNMF builds upon the online non-negative matrix
factorization approach in [24].

UINMF [21]. One limitation of LIGER is that the features that are not linked
across datasets are not utilized. For example, peaks in the intergenic regions in
scATAC-Seq data are not directly linked to the genes in scRNA-Seq data, so
the peaks were not included in the objective function of LIGER. To address this
limitation, UINMF was developed to include these unlinked features. The objective
function of UINMF is as the following:

argmin
W,Hi ,Ui ,Vi≥0

∑

i

{
‖Ei − (W + Vi )Hi‖2F + ‖Pi − UiHi )‖2F

}
+ λi

∑

i

{
‖ViHi‖2F + ‖UiHi‖2F

}
.

(7)

In formula 7, the terms Ei , Hi , Vi , andW are the same as those in formula 6. Pi

is a matrix of dimension ni ×zi , where ni is the number of cells and zi is the number
of unlinked features in the ith dataset. The matrices for the linked featuresEi and the
unlinked features Pi share the same Hi , which is the low-dimensional embedding
for the cells. Note that the tuning parameter λi is different across datasets, and the
variation of the unlinked features UiHi is included in the penalization term.

MAESTRO [14] provides a comprehensive open-source computational work-
flow for the integrative analyses of scRNA-Seq and scATAC-Seq data from multiple
platforms.MAESTRO provides functions for preprocessing, alignment, quality con-
trol, expression and chromatin accessibility quantification, clustering, differential
analysis, and annotation. Most other methods in this review start from the processed
datasets, while MAESTRO supports input from fastq files for a wide variety of
single-cell sequencing-based platforms. To integrate the cells from scRNA-Seq and
scATAC-Seq, MAESTRO first calculates the regulatory potential for each gene in
each cell, which measures the scATAC-Seq reads near the gene weighted by an
exponential decay of the read distance to the transcriptional start site of the gene.
Note that regulatory potential is computed similarly as the gene activity score.
MAESTRO then performs a canonical correlation analysis between gene expression
from scRNA-Seq and regulatory potential from scATAC-Seq. A pair of cells, one
from scRNA-Seq and the other from scATAC-Seq, can be anchored using mutual
nearest neighbors after dimension reduction. Then, MAESTRO transfers the cell
type labels from scRNA-Seq (cell type labels in scRNA-Seq data are obtained from
clustering by Seurat) to scATAC-Seq using the anchored cell pairs.

After integrating scRNA-Seq and scATAC-Seq cells, MAESTRO combines the
transcriptional regulators predicted from scRNA-Seq data using LISA [25] and
scATAC-Seq data using GIGGLE [26], and uses the rank product to combine
the two. The final candidate regulators are further filtered based on the regulator
expression from scRNA-Seq.

scACE [15] and scAMACE [16] are clustering methods built upon Bayesian
hierarchical models. scACE integrates scRNA-Seq and scATAC-Seq data profiled
on different set of single cells. scAMACE builds upon scACE and extends it to
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model scRNA-Seq, scATAC-Seq, and sc-methylation data. The goal in scACE and
scAMACE is to cluster similar cell types within and across different molecular
modalities. The followings are details for the model in scAMACE. The model for
scRNA-Seq data:

ωrna·g
zl·−→ ulg −→ vlg −→ ylg

zl ∼ Categorical(ψrna),

ulg | zlk = 1 ∼ Bernoulli(ωrna
kg ),

vlg | ulg = 1 ∼ Bernoulli(πl1); vlg | ulg = 0 ∼ Bernoulli(πl0),

p(ylg | vlg) = vlgg1(ylg) + (1 − vlg)g0(ylg).

Assume that there are K cell clusters in total, the random variable zlk denotes
whether cell l belongs to cluster k ∈ {1, . . . ,K}, and zl· follows categorical
distribution with probability ψrna

k for cluster k. ωrna
kg denotes the probability that

gene g is active in cluster k. ulg is a binary latent variable representing whether
gene g is active in cell l and ulg = 1 represents that it is active. vlg denotes whether
gene g is expressed in cell l and vlg = 1 represents that it is expressed.When gene g

is active in cell l (ulg = 1), the probability that gene g is expressed in cell l (vlg = 1)
is πl1, while the probability that gene g is expressed is πl0 if the gene is not active
(ulg = 0). Since genes are more likely to be expressed when they are active, it was
assumed that πl1 ≥ πl0. ylg denotes the observed gene expression for gene g in
cell l (after normalization to account for sequencing depth and gene length), and it
was assumed that ylg | vlg follows a mixture distribution, where g1(.) and g0(.) are
density functions of the expression level conditional on vlg .

The model for scATAC-Seq data:

ωacc·g
zi·−→ uig −→ oig −→ xig

zi· ∼ Categorical(ψacc),

uig | zik = 1 ∼ Bernoulli(ωacc
kg ),

oig | uig = 1 ∼ Bernoulli(πi1); oig | uig = 0 ∼ Bernoulli(πi0),

p(xig | oig) = oigf1(xig) + (1 − oig)f0(xig).

The random variables ωacc
kg , zik , ψacc

k , and uig have similar interpretations to
their corresponding variables in the model for scRNA-Seq data. The cells in the
scATAC-Seq data are different from the cells in the scRNA-Seq data, as indicated
by the different notation i which represent the cells. xig denotes the observed gene
activity score for gene g in cell i. It was modeled by a mixture distribution with
density functions f1(.), f0(.), and binary latent variable oig. oig = 1, and 0 represent
the mixture components with high (f1) and low (f0) gene scores, respectively.
Accessibility tends to be positively associated with activity of the gene. This positive
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relationship was modeled by the distribution oig | uig . When gene g is active in cell
i (uig = 1), the probability that it has high gene score (oig = 1) is πi1; When gene
g is inactive in cell i (uig = 0), the probability that it has high gene score (oig = 1)
is πi0. πi1 was assumed to be larger than πi0 to represent the positive relationship.

The model for sc-methylation data:

ωmet·g
zd·−→ udg −→ mdg −→ tdg

zd · ∼ Categorical(ψmet ),

udg | zdk = 1 ∼ Bernoulli(ωmet
kg ),

mdg | udg = 1 ∼ Bernoulli(πd1); mdg | udg = 0 ∼ Bernoulli(πd0),

p(tdg | mdg) = mdgh1(tdg) + (1 − mdg)h0(tdg).

The random variables ωmet
kg , zdk, ψmet

k and udg have similar interpretations to
their corresponding variables in the model for scRNA-Seq data. The cells in the sc-
methylation data are different from the cells in the scRNA-Seq data, as indicated
by the different notation d which represents the cells. The binary random variable
mdg denotes whether gene g is methylated in cell d , and mdg = 1 represents
that it is methylated. Methylation of a gene (promoter methylation/gene body
methylation) tends to be negatively associated with activity of the gene, and this
negative relationship is modeled with mdg | udg: when the gene g is active in cell d
(udg = 1), it is less likely to be methylated (mdg = 1), as πd1 ≤ πd0. tdg denotes the
observedmethylation level for gene g in cell d , and tdg | mdg was assumed to follow
a mixture distribution, where h1(.) and h0(.) are density functions conditional on
mdg.

The model that connects the three molecular modalities: For scATAC-Seq data,
ωacc

kg was assumed to follow beta distribution with mean μacc
kg and precision φacc.

The variable μacc
kg is connected with ωrna

kg in scRNA-Seq data through the logit

function: logit (μacc
kg ) = η + γωrna

kg + τ (ωrna
kg )2. For sc-methylation data, the mean

of ωmet
kg , μmet

kg , is connected with ωrna
kg through the logit function: logit (μmet

kg ) =
δ + θωrna

kg . Methylation and chromatin accessibility regulate gene expression
biologically. The model was specified in the reverse order, so gene expression plays
a central role. This is because scRNA-Seq data is usually less noisy compared with
single-cell epigenomic data, the model specified this way will improve the clustering
performance of single-cell epigenomic data, without sacrificing much the clustering
performance of scRNA-Seq data.

scJoint [19] is a transfer learning method that integrates atlas-scale, heteroge-
neous collections of scRNA-Seq and scATAC-Seq data. It is a semi-supervised
approach where the cell type labels for scRNA-Seq data are assumed to be known.
The goal of scJoint is to transfer knowledge from massive scRNA-Seq data to
scATAC-Seq through joint embedding in a low-dimensional space, and it also
transfers the cell type labels from scRNA-Seq to scATAC-Seq data. scJoint uses
gene activity score for scATAC-Seq data.
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The neural network in scJoint consists of one input layer and two fully connected
layers. Linear activation functionswere used. Let {x(s)

i }Ns

i=1 be the expression profiles

for the cells in batch s in scRNA-Seq data, and y(s)
i ∈ {1, · · · ,K} is the cell type

label for cell i. Let {x(t)
i }Nt

i=1 denote the gene activity scores for the cells in batch

t in scATAC-Seq data. f
(s)
θ,i = f (x(s)

i ; θ) and f
(t)
θ,i = f (x(t)

i ; θ) ∈ R
D , D = 64,

are the outputs of the joint embedding layer for scRNA-Seq and scATAC-Seq data,
where θ denotes the parameters in the neural network and it is shared in the two
datasets. Note that although the same notation i is used to represent cells in scRNA-
Seq and scATAC-Seq data, the two types of data are obtained on different sets of
cells. h(f (x(s)

i ; θ)) and h(f (x(t)
i ; θ)) are the outputs from the prediction layer for

scRNA-Seq and scATAC-Seq data, respectively. g(s)
θ,i = softmax(h(f (x(s)

i ; θ))) and

g
(t)
θ,i = softmax(h(f (x(t)

i ; θ))) are vectors of lengthK , representing the probabilities
of the assignment of cells to the K cell types.

There are three steps in scJoint. The first step is to train the neural network with
the following loss function:

L1(B0, θ) =
S∑

s=1

(LNNDR(B(s), θ) + Lentropy(B(s), θ)
) +

T∑

t=1

(LNNDR(B(t), θ) + LCOS(B(t),BR, θ)
)
,

(8)

where B(s) denotes the data for batch s in scRNA-Seq data, B(t) denotes the data for
batch t in scATAC-Seq data, and B0 = {B(s)}Ss=1 ∪ {B(t)}Tt=1. In a spirit similar
to PCA, the NNDR loss LNNDR(·) aims to capture low-dimensional orthogonal
features in the joint embedding layer represented by the function f (·). The cosine
similarity loss LCOS(·) aims to align a subset of scRNA-Seq and scATAC-Seq
cells in the joint embedding space. The cross entropy loss Lentropy(·) represents the
supervised component, where it penalizes the disagreement between the predicted
cell type probabilities given by the function g(·) and the known cell types labels in
scRNA-Seq data. The second step in scJoint transfers cell type labels from scRNA-
Seq data to scATAC-Seq through k-nearest neighbor in the joint embedding space.
The third step in scJoint refines the joint embedding space and improves mixing
of cells from the same cell type in scRNA-Seq and scATAC-Seq data. The neural
network is trained with the following loss function:

LscJoint(B0, θ) = L1(B0, θ) + Lentropy(B(t), θ) + Lcenter(B0, θ), (9)

where L1(B0, θ) is the same as the loss in step 1; Lentropy(B(t), θ) is the cross
entropy loss using the transferred cell type labels for scATAC-Seq data, which are
obtained in step 2; The term Lcenter(B0, θ) encourages cells with the same cell type
label to form clusters in the joint embedding space (determined by the function
f (·)), and it is similar to the loss function in k-means clustering, which encourages
cells with the same cell type label to be close to the center of the cell type.
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coupleCoC [17] and coupleCoC+ [18] are based on the information-theoretic
co-clustering [42] transfer learning framework, where the features and observations
are clustered simultaneously and the co-clustering result achieves minimal loss in
mutual information.

The goal of coupleCoC+ is to utilize one dataset, the source data (S), to facilitate
the analysis of another dataset, the target data. Depending on whether the features
are linked with the source data, the target data can be partitioned into two parts,
data T that contains the linked features, and data U that contains the unlinked
features. As an example, consider the setting where scRNA-Seq and scATAC-Seq
are profiled on similar cell subpopulations but different cells. It is desirable to
utilize the information in scRNA-Seq data to help cluster scATAC-Seq data, which
is typically sparser and noisier. So scRNA-Seq data can be used as the source data S,
and scATAC-Seq data can be used as the target data. In scATAC-Seq data, the data
matrix of gene activity score are directly linked with gene expression in scRNA-Seq
data, so it can be regarded as data T; the data matrix of peak accessibility can be
regarded as data U, because the peaks that are distal to the genes are not directly
linked with gene expression.

In coupleCoC+, both the genomic features and the cells are clustered. CY , CX,
CZ , CU denote the clustering functions for the cells in target data, the cells in source
data, the linked features in the two datasets, and the unlined features that are unique
in the target data. The following objective function was proposed in coupleCoC+:

argmin
CY ,CX,CZ,CU
hT,Nsub,hS,Nsub

�T(CY ,CZ) + λ�S(CX,CZ) + β�U(CY ,CU)

+γDKL(p̂T(ỸhT,Nsub, Z̃T)‖p̂S(X̃hS,Nsub, Z̃S)).

(10)

The first two terms �T(CY ,CZ) and �S(CX,CZ) are the losses in mutual
information for co-clustering the cells and the shared features in the target data and
source data, respectively. The shared featuresZ have the same clusterCZ in both the
target data and the source data. CZ can be viewed as a bridge to transfer knowledge
between the source data and the target data. The dimension of the feature space
shared by the source data S and the data T is reduced by clustering and aggregating
similar features. Aggregating similar features guided by the source data S enables
knowledge transfer between the source data S and the data T, which reduces the
noise in the single-cell data and can generally improve the clustering performance
of the cells in target data. The term �U(CY ,CU ) corresponds to the loss in mutual
information for co-clustering the cells and the features that are unique in the target
data. The clustering of the cells in target data, CY , is the same in terms �U(CY ,CU )

and �T(CY ,CZ). The term DKL(p̂T(ỸhT,Nsub
, Z̃T)‖p̂S(X̃hS,Nsub

, Z̃S)) aims to match
a subset of the cell clusters in the two datasets. λ, β, and γ are tuning parameters.

The objective function in coupleCoC is similar to coupleCoC+. Its differences
from coupleCoC+ include that coupleCoC does not consider the unlinked features
across datasets, and the matching of cell types across datasets is implemented
in a separate step, instead of being integrated in the objective function. Apart
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from the integrative analysis of scRNA-Seq and scATAC-Seq data, coupleCoC
and coupleCoC+ were utilized for the integrative analysis of sc-methylation and
scRNA-Seq data, and scRNA-Seq data from mouse and human.

2 Multi-Omics Data Profiled on the Same Single Cells

Technologies that can profile multiple types of genomic features simultaneously
in the same cells are beginning to emerge, and have the potential to reveal causal
regulatory relations [27–33]. Methods have been developed for integrative analysis
of these datasets, where one major goal is to integrate multiple molecular modalities
profiled on the same cells to obtain better dimension reduction and clustering results
compared with using single modalities alone [34–39]. These methods do not require
the features to be linked across different molecular modalities.

MOFA+ [34] was designed to capture a common latent space, which integrates
multi-omics data obtained from the same set of cells. It also considers sample
structure (batches, donors, etc.) in the factor analysis model. Let M denote the
number of data modalities, MOFA+ assumes the following factor analysis model
for the mth data modality:

Ygm = ZgWT
m + εgm. (11)

Ygm is aNg ×Dm matrix, whereNg is the number of cells in group/batch g, and Dm

is the number of features in modalitym; Zg is aNg ×K matrix, which represents the
matrix of K factors in group g;Wm is a Dm ×K matrix, which is the weight matrix
for the mth modality. εgm is the residual noise matrix. In MOFA+, the factor matrix
Zg is shared across different modalities within group g, and the weight matrix Wm

is shared for the same modality across different groups. Element-wise spike-and-
slab prior was assumed for the entries in Zg and Wm for regularization. MOFA+
also extends model 11 and supports non-Gaussian likelihoods, including a Poisson
model for count data and a Bernoulli model for binary data. Inference of the models
was achieved using stochastic variational inference, which can scale up to large
datasets.

WNN (Seurat V4) [35] was primarily designed for the analysis of CITE-
Seq data (RNA + surface protein abundance), and it was also applied to paired
measurement of RNA and chromatin accessibility for the same cells. The key is
to construct a weighted nearest neighbor (WNN) graph, defined as a K-nearest
neighbor (KNN) graph constructed using a weighted similarity metric, which
combines the information in the two modalities. The WNN graph can then be used
for downstream analysis, including data visualization, clustering, and trajectory
analysis. The weighted similarity between cell i and cell j is defined as

θweighted(i, j) = wrna(i)θrna(ri , rj ) + wprotein(i)θprotein(pi ,pj ), (12)
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where r represents the observed RNA profile for a cell, p represents the observed
surface protein level for a cell. wrna(i) and wprotein(i) are the weights for RNA and
protein profiles, respectively, and the weights depend on the cell label i. θrna(ri , rj )

and θprotein(pi ,pj ) denotes the affinities between cell i and cell j computed from
RNA levels and protein levels, respectively, and they are defined as the following:

θrna(ri , rj ) = exp(
−max(d(ri , rj ) − d(ri , rknnr,i,1 ), 0)

σr,i − d(ri , rknnr,i,1 )
),

θprotein(pi ,pj ) = exp(
−max(d(pi ,pj ) − d(pi ,pknnp,i,1 ), 0)

σp,i − d(pi ,pknnp,i,1 )
),

(13)

where rknnr,i,1 denotes the RNA profile for the cell that is closest to cell i, using
RNA data to calculate the distance; pknnp,i,1 denotes the protein profile for the cell
that is closest to cell i, using protein data to calculate the distance. So the affinities
θrna(ri , rj ) and θprotein(pi ,pj ) represent the similarities between cells i and j

using RNA and protein profiles, while considering the distance between cell i and
its nearest neighbor.

The weights wrna(i) and wprotein(i) are chosen as the following:

srna(i) = θrna(ri , r̂i,knnr )

θrna(ri , r̂i,knnp ) + ε
, sprotein(i) = θprotein(pi , p̂i,knnp )

θprotein(pi , p̂i,knnr ) + ε
,

wrna(i) = esrna(i)

esrna(i) + esprotein(i)
, wprotein(i) = esprotein(i)

esrna(i) + esprotein(i)
,

(14)

where r̂i,knnr and r̂i,knnp are the average RNA profiles among the neighbors of cell
i: in r̂i,knnr , the neighborhood is obtained by the closest distances in RNA profiles;
While in r̂i,knnp , the neighborhood is obtained by the closest distances in protein
profiles. p̂i,knnp and p̂i,knnr are the average protein profiles among the neighbors
of cell i, where the neighborhoods are obtained by the closest distances in protein
profiles and RNA profiles, respectively. The intuition for choosing the weight is that
when the neighborhood obtained fromRNA profiles better predicts the RNA profiles
and protein profiles for cell i, compared with the neighborhood obtained from the
protein profiles, the weight wrna(i) will tend to be larger.

TotalVI [36] was developed for CITE-Seq data and it is based on variational
autoencoder [40]. Suppose that there are B batches. sn is a vector of length B,
which represents the known one-hot batch index for cell n. The batch index sn is the
same for RNA data and protein data. TotalVI learns a shared latent representation
for RNA and protein data. zn is the latent representation for cell n, the prior on zn is
specified as

zn ∼ LogisticNormal(μ = 0,� = I ). (15)
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The following hierarchical model was assumed for the RNA levels in CITE-Seq
data.

Similar to the specification in scVI [41], the size factor for RNA data for cell n,
represented as �n ∈ R+, was assumed to be latent and it depends on the batch index
sn:

�n | sn ∼ LogNormal(μ = �T
μsn, σ

2 = �T
σ 2sn), (16)

where �μ and �σ 2 are vectors of length B, and their entries are set to the empirical
mean and variance of the log(RNA library size) calculated from the cells within
individual batches. Let xng denote the observed RNA count for gene g in cell n, and
it was modeled as the following:

xng | ln,ρn, θg ∼ NB(mean = lnρng, dispersion = 1/θg),

ρn = fρ(zn, sn),
(17)

where NB stands for negative binomial distribution. The function fρ(zn, sn) is a
neural network: its inputs are zn and sn, and the output is a vector ρn, which
represents the abundance of the genes in cell n. The model specification for RNA
data is very similar to that in scVI, and the major difference is that zero inflation
was not considered in TotalVI.

The following hierarchical model was assumed for the protein levels in CITE-
Seq data.

Let ynt denote the observed count for protein t in cell n. It was assumed to follow
a negative binomial mixture distribution:

ynt | vnt , βnt , αnt ∼ vntNB(mean = βnt , dispersion = 1/φt ) +
(1 − vnt )NB(mean = βntαnt , dispersion = 1/φt), (18)

where vnt is a binary latent variable representing the mixture component. βnt

represents the background intensity, and αnt > 1 represents the fold change in
mean for the mixture component with the larger mean. So vnt = 0 represents the
mixture component with a larger mean. The distribution for vnt was specified as the
following:

vnt | πn ∼ Bernoulli(πnt ),

πn = hπ (zn, sn),
(19)

where hπ (zn, sn) is a neural network: its inputs are zn, sn, and its output is a vector
of probabilities πn for cell n.

The distribution of βnt is specified as

βnt | sn ∼ LogNormal(μ = cT
t sn, σ

2 = dT
t sn), (20)
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where ct and d t are parameters to be estimated from the data. The variable αnt is
specified as αn = gα(zn, sn), where gα(zn, sn) is a neural network. Inference of
TotalVI was performed under the variational autoencoder framework.

scAI [37] was developed for the integrative analysis of single-cell transcriptome
and epigenome profiled in the same single cells, and it is based on non-negative
matrix factorization. The following optimization problem was proposed in scAI:

argmin
W1,W2,H,Z≥0

α‖X1 − W1H‖2F + ‖X2(Z ◦ R) − W2H‖2F + λ‖Z − HT H‖2F + γ
∑

j

‖H·j‖21.

(21)

X1 is the normalized p × n (p genes in n cells) data matrix for single-cell
transcriptomic data, and X2 is the normalized q × n (q regions in n cells) data
matrix for single-cell epigenomic data.W1 andW2 are the gene loading and region
loading matrices with dimensions p × K and q × K , respectively. H is the K × n

cell loading matrix shared by the transcriptomic and epigenomic data. Z is the n×n

cell-cell similarity matrix. R is a binary matrix generated by a binomial distribution
with probability s. The symbol ◦ represents element-wise multiplication. The term
X2(Z ◦ R) has a smoothing effect on the single-cell epigenomic data matrix, where
the epigenomic profiles from similar cells are being aggregated based on the cell-
cell similarity matrix Z, and this term is helpful to deal with the sparsity and high
level of noise in single-cell epigenomic data.

JSNMF [38] was also developed for the integrative analysis of single-cell
transcriptome and epigenome profiled in the same single cells. The following
optimization problem was proposed in JSNMF:

min
Wi ,Hi ,Z,λi

2∑

i=1

‖Xi − WiHi‖2F + α

2

2∑

i=1

‖Z − HT
i Hi‖2F +

2∑

i=1

ϕi

2
‖HiHT

i

− I‖2F + η‖1T Z − 1T ‖2F + γ

2∑

i=1

λ2i tr(HiLiHT
i )

s.t. Wi ,Hi ,Z, λi ≥ 0, for i ∈ {1, 2};
2∑

i=1

λ2i = 1.

(22)

Similar to scAI, JSNMF is also based on non-negative matrix factorization. X1,
X2, W1, and W2 have similar interpretation as those in scAI. One key difference
between JSNMF and scAI is that JSNMF assumes different cell loading matrices
H1 and H2 for the two data modalities and integrate the information in H1 and H2
through consensus graph fusion,

∑2
i=1 ‖Z−HT

i Hi‖2F . This integration strategy was
shown to be beneficial when the data from different types of genomic features have
different levels of noise. The term

∑2
i=1

ϕi

2 ‖HiHT
i − I‖2F improves interpretability

of the factors. ‖1T Z − 1T ‖2F is a normalization term that encourages the columns
in Z to have summations close to 1. Li ∈ Rn×n is the Laplacian graph for
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the ith data modality, and it captures the high-dimensional geometrical structure
in the original data space. The term

∑2
i=1 λ2i tr(HiLiHT

i ) encourages the low-
dimensional embeddingsHi to preserve the high-dimensional geometrical structure.
In JSNMF, formula 22 was also extended to the integration of more than two
molecular modalities profiled on the same cells and the integration of multiple
single-cell multi-omics experiments. JSNMF also includes a module that infers cell
type-specific region-gene associations.

3 Challenges and Future Perspectives

Different molecular modalities capture different aspects of the cell. Most methods in
this review focus on exploratory analysis, including dimension reduction and clus-
tering. The natural next step is methodology development for downstream analysis,
including estimating the transcriptional regulatory network, data integrationwith the
summary statistics in genome-wide association analysis to unravel the mechanism
of human diseases, and relating single-cell multi-omics with the clinical outcome of
the patients.

Multi-omics data obtained from the same single cells tend to be noisier compared
with single-omic data. It will be interesting to integrate these data with other
existing reference data, especially atlas-scale data, to help deal with the high
noise level. Computational burden will be another challenge following technology
developments that increase the throughput of cells. Single-cell epigenomic data tend
to have much more features compared with scRNA-Seq data, and the analysis of
these datasets will be more demanding computationally.
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