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Abstract

Machine Learning plays a crucial role for many innovations for Cyber-Physical Systems
such as production systems. On the one hand, this is due to the availability of more and
more data in ever better quality. On the other hand, the demands on the systems are also
increasing: Production systems have to support more and more product variants, saving
resources is increasingly in focus and international competition is forcing companies to
innovate faster. Machine Learning leverages data to solve these issues. The goal is to
have self-learning systems which improve over time. There are various algorithms and
methods for this, for which an overview is given here. Furthermore, this article discusses
special requirements of Cyber-Physical Systems for Machine Learning processes.
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1 Introduction

Cyber-Physical Systems (CPS) are becoming a major field for Machine Learning (ML).
Challenges go far beyond a mere application of existing algorithms.What is needed are spe-
cialized algorithms which meet domain requirements such as reliability, real-time capability
and maintainability. This paper gives an introduction to the opportunities and challenges of
ML for CPS.

For this, potential CPS application scenarios for ML are described in Sect. 6. Sect. 3
outlines the state of the art for ML and maps features of algorithms to the uses cases from
Sect. 6. From this, Sect. 4 derives specific requirements of CPS to ML. The next sections
describe these requirements and the corresponding solution approaches in detail. Sect. 9
summarizes the paper content.

2 Application Scenarios

Currently ML is applied to several industrial use cases:

2.1 ConditionMonitoring and Predictive Maintenance

For every plant operator, it is desirable that certain components are replaced at exactly the
right time, not too early out of caution, but also not so late that the risk of failure becomes
significant. Themethod of choice is predictivemaintenance. It is made possible by condition
monitoring, i.e. the continuous monitoring of the system. Nowadays, condition monitoring
is based on data and observations [77, 83].

The basic idea is that various component data, such as vibration, speed and energy
consumption, are continuously collected and evaluated [95]. In many cases, such data are
already available anyway, but remain unused. It is only necessary in exceptional cases to
install new sensors in order to generate additional data.

For condition monitoring, ML is mainly used to learn a model of the normal system
behavior, including thresholds to non-normal behavior. Once this threshold is crossed, a
warning is given. Predictive maintenance requires that these models can be extrapolated in
time, e.g. these models predict when a threshold will be crossed.
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2.2 Resource Optimization

The consumption of resources in production is becoming more and more important for
companies. At the same time, attention is increasingly being paid to saving wastewater and
emissions. On the one hand, these goals have financial reasons, on the other hand, increasing
environmental awareness and corresponding legislation are also having an effect.

There are two variants for implementing resource optimization [99, 126]: The simple
one is limited to the fact that software stores and analyzes the consumption data in detail.
The employees can derive change options from this and implement them. The much more
complex variant: The software not only makes the consumption data available, but also
independently optimizes the control of the systems.

Here a prediction model of the resource consumption is learned. In the end, these mod-
els must have a sufficient quality to be integrated into closed-loop control loops—a very
demanding requirement.

2.3 Quality Assurance of Products

ML can be used to monitor the quality of a product during manufacturing and to detect
irregularities at an early stage [131].

ML systems can generate and maintain a Digital Twin [94], i.e. a virtual image of the
real products and intermediate products. These Digital Twins collect all information from
the engineering phase and can be used to improve the learning process by providing a-
priori information [116]. Digital Twins are then enriched during the operation phase by
evaluating sensor data using Artificial Intelligence (AI) and ML methods, combined with
information about raw materials and production processes. This Digital Twin allows the
prediction of product properties that are difficult or impossible to determine in reality. Thus,
virtual measurements that are difficult to implement in reality can be carried out on a Digital
Twin. Although these predictions are often less certain than real measurements, they allow
an early warning in the event of quality problems.

Such Digital Twins can be used in many areas in which complex end-of-line tests or
laboratory tests are currently commonly used, for example after the end of production to
analyze the properties of food.

2.4 Diagnosis

AI or ML can help to identify the causes of errors in a system [15, 31, 83]. If many sensors
are built into a system, as it is increasingly common today, problems are detected early on by
conditionmonitoring and anomaly detection systems and reported as an alarm. However, the
connection between a symptom and the cause of the error is often difficult to determine—this
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is due to the increasing complexity of modern (production) systems: The systems are getting
bigger and bigger, consist of many sub-modules and are characterized by an increasingly
high degree of networking and automation. An error often causes subsequent errors early
in the production process and only leads to symptoms and alarms much later—a cause of
error can propagate through the entire system and lead to symptoms in a wide variety of
places, sometimes with a significant delay. The more complex and networked the system,
the longer it takes to manually identify the cause. This means that it can take a long time
before repairs can be carried out. Today this is seen as an important cost driver.

An AI/ML-based diagnostic system determines the most likely causes of failure based
on the symptoms and does so within a short period of time. The user then no longer only
sees the symptoms in the form of alarms and warnings—rather, possible causes of errors
are displayed immediately, and repair instructions are often supplied directly.

In this use case,mainly two kinds ofmodels are used: First amodel of the normal behavior
is learned and used to compute symptoms, i.e. warnings. Then a model comprising system
causalities is used to identify root causes [96]. The latter is only partially learned.

3 Machine Learning

The number of ML algorithms is legion—and so are the taxonomies used to describe them
[10]. Here, we will introduce two dimensions of algorithms’ feature to describe algorithm:
First, we will use recurrency, i.e. the ability of algorithms to handle dynamic, time-variant
data. Second, wewill use supervision, i.e. the degree of supervision needed by the algorithm.

Normally, ML algorithms compute a model. Just like manually created models, models
can be used to predict specific system features. We start with describing the dimension
“recurrency”.

Static Analysis For tasks such as condition-monitoring or anomaly detection, only the
signal values xt ∈ Rn at some point in time t are used. This is shown in Fig. 1 on the left
hand side. In other words, for the analysis a static feature vector [35] is taken into account.
Thereby, the assumption is that no information is coded in the sequence of values and all
necessary information is contained in the current signal values. This assumption is true for
many CPS, even for systems which have a dynamic nature. For a new data point x ∈ Rn ,
its probability p(x|X) given some historical data X is (at least approximately) computed. If
the data is improbable, an anomaly has been identified.

Dynamic Analysis A totally different situation arises when important information is coded
in the sequence of signal values over time: For a time window of data X = {xt−k, . . . , xt },
its probability is computed. This is shown in Fig. 1 in the center. Again, if the time window
is improbable, an anomaly has been identified.
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Fig. 1 Comparison of static ML (a), dynamic ML (b) and the special case of (c) ML by means of
prediction. Signal values x are depicted over time

Often, especially for dynamic analyses, prediction is used to analyze the data: Let X be
again a time window of data, then a prediction for the next value x̂t+1 is computed. Once a
real measurement for xt+1 is available, it can be compared to the prediction x̂t+1—if they
are significantly different, an anomalous situation has occurred. This is shown in Fig. 1 on
the right hand side.

Next, the dimension supervision is described.

Supervised Machine Learning Supervised ML algorithms work on labeled data, this is
shown in Fig. 2: Each data point x comes with a label y. The ML algorithm will learn a
model which is able to compute suitable labels for a given input x. If y is nominal, e.g. its
values are discrete classes such as “OK” or “KO”, this task is called classification. If y is
cardinal, e.g. its values are numerical values such as temperatures, this task is also called
regression.

Often, theseMLmodels are trained by using a feedback or residual signal. The algorithms
start with an initial, suboptimal model and compute a prediction of ŷ. Thematching or fitting
between the estimation ŷ and the real, wanted label y is assessed and provides a feedback
which is used to improve the model—often the difference between ŷ and y is used, i.e. a
residual.

UnsupervisedMachine Learning Unsupervised ML uses unlabeled data (see also Fig. 3).
Since again a feedback or residual signal is needed to learn a model, a generic, external
criterion is used to assess the quality of a model prediction e.g. for clustering, i.e. the
identification of clusters of similar data such as plant phases (“ramp-up”, “normal operation”,
etc.). A good clustering has a high similarity between datawithin clusters and a low similarity
between clusters.
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Fig. 2 Principle idea of
supervised ML
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If the external criterion is given dynamically from an environment, e.g. a camera signal
for an autonomous vehicle, we speak of reinforcement learning.

We can now use these two dimensions (recurrency, supervision) to describe some com-
mon ML algorithms and describe their suitability for the use cases from Sect. 6. This is also
visualized in Fig. 4.

Static, Supervised Machine Learning (bottom left quadrant in Figure 4)

Feedforward Neural Networks: Neural networks [91] approximate complex functions by
parameterizing a network of simple, generic functions. The architecture of the network, i.e.
the so-called topology, and the chosen generic functions, i.e. the so-called neurons, decide
about the class of functions which can be approximated. The connections between neurons
comprise parameters, i.e. the so-called weights, which are used to fit the neural network to
a given data set—normally by means of optimization algorithms.

In most cases the topology of feedforward networks comprises a number of layers where
only neighboring layers are connected. The most bottom layer is fed with the input xi where
the top most layer models the labels yi . The network then learns the mapping from typical
inputs to corresponding labels.
Decision Trees and Random Forrests: Decision trees [105] learn a tree of decision rules
to map from a data vector xi to labels yi . Each decision rule splits the set of data by an
inequality on the elements in the vector xi .

Random forests [12] extend this idea by learning a set of decision trees, decisions are
made by a majority vote.



Machine Learning for Cyber-Physical Systems 421

recurrency

su
pe

rv
is

io
n

static dynamic

unsupervised

supervised

recurrency

su
pe

rv
is

io
n

static dynamic

unsupervised

supervised

ML Algorithms ML Applications

clustering

autoencoder

recurrent 
autoencoder

GP

recurrent NNs

NNs

Decision
Trees

anomaly
detection

predictive
maintenance

diagnosis optimization

quality
assurance

time series

EM/VI Markov

RF

Fig. 4 Mapping of ML features to algorithms and applications

Static, Unsupervised Machine Learning (top left quadrant in Figure 4)

Clustering: Clustering groups given observations xi ∈ X in clusters X1, . . . , X p, p ∈ N
with

⋃
i Xi = X . The similarity between elements within clusters is maximized while

the similarity between elements in different clusters is minimized. Algorithms range from
simple shaped clusters (with a given number of clusters p) such as k-means clustering [92]
to approaches which are able to identify complex shapes and also identify p, e.g. DBSCAN
[107]. The similarity criterion is defined externally. Clusteringmethods often suffer from the
problem that different cluster shapes require different algorithmsor algorithmconfigurations.
Autoencoder: Autoencoders [40] are neural networks which remember learned data vectors
xi . The key idea is that instead of mapping from xi to yi , autoencoders map from xi to xi .
Thus, autoencoders remember already observed situations and can check how similar new
observations are to this memory. By checking whether a new data vector is remembered, e.g.
an anomaly detectionmethod can be implemented. A variational autoencoder (VAE) extends
the idea of the classical autoencoder (AE) with concepts from probabilistic modeling and
was originally introduced in [64].
Expectation Maximization (EM) / Variational Inference (VI): EM [91] and VI [114] are
algorithms which learn probability distributions from data. For this, the structure of the
probability distributions must be given. The learned distribution can be used to compute the
probability for new data. This solution of course requires that the underlying distribution is
already known.

Dynamic, Supervised Machine Learning (bottom right quadrant in Figure 4)

Time Series: In statistics, time series analysis [91] is a well-established field. Typical solu-
tions such as ARMA [91] learn a given autoregressive function which expresses xi as a
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linear functions of x j , j < i and of stochastic terms. The drawback is the simplicity of the
used functions.
Gaussian Processes: Gaussian processes [125] model a time series as a stochastic process.
The underlying probability function for a range of time steps is a multivariate normal distri-
bution. Gaussian processes are well-suited to capture uncertainties about the learned model
but often suffer from runtime challenges.
Recurrent Neural Networks, Gated Networks, Attention-based Networks: Neural networks
can also be used to learn a model of time series. The simplest solution is the use of computed
values of neurons at time step t as an input for the next time step t+1, i.e. so-called recurrent
neural networks [100]. Since such networks have problems using values from several time
steps in the past, gated networks such as Long Short Term Memory (LSTM) have been
used [54]. Such networks try to generate a memory of important CPS information. Gated
networks must learn when to update the memory which leads to corresponding demands
on the data quantity and quality. Attention-based networks [122] simplify things by only
learning which past data element is relevant.

Dynamic, Unsupervised Machine Learning (top right quadrant in Figure 4)

Recurrent Autoencoder: Recurrent neural networks can also be used in an unsupervised
fashion, i.e. as autoencoders [129].
Markov Models: Markov models [51] capture the time series xi , i = 1, . . . , n as a path
through a given graph. The graph comprises a set of predefined states where transitions
model the probabilistic movement from one state to another state. Hidden Markov models
[91] assume that the current state is not directly observable.

4 Challenges toML for Cyber-Physical Systems

ML methods are currently a central component of many research and business activities.
Despitemany advances, these processes are currentlymainly used in non-technical areas and
are usually difficult to transfer to technical applications such as production or vehicles [120].
The reason: AI and ML methods were often developed for completely different data, such
as economic data. Current ML challenges at the interface between AI / ML and engineering
focus on special requirements by technical systems [95, 97].

The results of non-technicalMLapplications such as business data are usually interpreted,
checked and used by a human [117]. The use ofML in a CPS, on the other hand, often means
the application in a closed control loop: the results are interpreted by software and then
automatically used for optimization. A person is usually no longer involved. This different
usage scenario creates challenges [8–10, 83] which distinguish CPS from non-technical ML
applications such as business data and image processing—and therefore require adaptedML
solutions.
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Challenge 1: Time and State: The main characteristic of all physical systems is that their
behavior must be considered over time, not just at a specific point in time—therefore, for
example, all ML results must also predict system behavior over time. E.g. the behavior of
a chemical plant can only be understood if the history of the last hours is known or many
problems of transport system arise from incorrect accelerations. The behavior over time
thus includes current states, aggregating changes from the past, and information about state
changes. Basic requirements for this are common, uniform timemodels both for the physical
and software parts of a production system [74].

Challenge 2: Uncertainty and Noise: In order to use ML procedures and learned models
in CPS, it is imperative to evaluate the uncertainty of the predictions of the ML systems
[90]. If, for example, an ML system predicts a system failure, the degree of certainty of this
forecast is decisive for the correct procedure. Uncertainties mostly arise from noise on the
sensor data or from values that cannot be observed.

Challenge 3: Usage of A-Priori Knowledge: There is a lot of prior knowledge for CPS
from the design phase, based on physical laws and engineering knowledge. This individual
knowledge should be used to improve AI and ML practices. For ML solutions in particular,
prior knowledge can alleviate the need for big amounts of data.

Challenge 4: Representations and Concepts: ML results and generated models must
be explained to human operators: Why is a maintenance action necessary? Why are new
parameters better than old ones? What happens if repairs are not done? For this, symbolic
concepts must be learned from the (numerical) models, e.g. the concept “ramp-up phase”
for some activations of a neural network. Based on these concepts, explanations and reasons
are generated.

In general, it can be said that ML is in principle an interdisciplinary topic between
engineering and computer science and must be approached using appropriately adapted
methods. In the following, the points from above are discussed in detail.

5 Challenge 1:Time and State

In engineering ormore generally speaking physicalmodeling, time is an essential concept, as
systems change their behavior dynamically. Looking at a single point in time is insufficient, as
key information about the context would be lost. A common way to encode these temporal
dependencies is to introduce the latent state z(t) ∈ Rm , which describes the system at a
given time t . The state evolves over time depending on new observations and can thus store
information about the system,which can then be used for tasks like forecasting, classification
or anomaly detection. Examples are automatons,where z(t) ∈ {m0, . . . ,mi }models discrete
modes which are switched by events e, or ODEs, where the state z changes continuously
over time, e.g. according to ż(t) = f (z, t).
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5.1 Approaches

A time series consists of observations over multiple time steps. In practice, there is no
obvious beginning. Rather than working with all observations that are available, often a
rolling window of k time steps is applied. Let xt ∈ Rn denote a sample at t . Then, a window
consists of the data X = {xt−k, . . . , xt }.

A general approach to describe the state of a system is the state space model [91]:

zt = g (ut , zt−1, εt )

xt = h (zt , ut , δt )

where ut ∈ Rl is an optional input or control signal, g is the transition model, h is the
observation model and εt ∈ Rp and δt ∈ Rq describe noise, which is modeled as a random
variable. Popular examples include ARIMA models [11, 34] and exponential smoothing
[59]. For simple time series, these models work well, are interpretable and data efficient and
thus widely used. Unfortunately, state space models often fail to detect complex patterns in
time series and have to be tuned to every system seperately, which makes applying them
labor-intensive [102].

ML methods are suited to tackle these issues. They can detect complex patterns across
multiple time series and require very little engineering by hand [7, 72]. However, they lack
interpretability and generally require a lot of data to work well. A model architecture that is
built around that idea of learning the state of a time series is the Recurrent Neural Network
(RNN). In contrast to state-space models, it does not rely on stochastic variables, but tries
to model the sample distribution directly. One of the simplest forms of an RNN can be
expressed as Delay Differential Equation (DDE) ([110] gives a detailed introduction). For
i ∈ {t − k, . . . , t}, with a randomly initialized zt−k−1 ∈ Rm , a DDE can be expressed as

zi = Wzzi−1 + Wrri−1 + Wxxi + θz, (1)

ri = G(zi ), (2)

where G(·) is a nonlinear function (e.g. tanh) and the matrices Wz,Wr ∈ Rm×m, Wx ∈
Rm×n and the bias θz ∈ Rm are trainable parameters of the network. If this RNN is applied
to time series data X by shifting it from t − k to t for fixed Δt between observations, the
first two terms of Eq. (1) allow the network to propagate information from the past to the
current time step t .

5.2 State of the Art

Gating Standard RNNs are hard to train, especially for long time series. RNNs suffer from
the vanishing gradient problem [55]: The error gradient, which is needed to train neural
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Fig.5 Representation of an LSTMNetwork unfolded in time. In addition to the cell state ct , a hidden
state vector ht is also formed and propagated along the time axis. The information flow along the
time axis is controlled by the forget gate f , the input gate i and the output gate o. The matrices W , U
and V of the respective gates are the learnable parameters of the LSTM cell that is shifted iteratively
from t − k to t . The LSTM is initialized with h0 and c0

networks, often vanishes when flowing back along the time axis for too long. This leads to
a short term behavior, as information from the past is forgotten. To overcome this problem,
the Long Short-TermMemory (LSTM) [54] uses a gating mechanism as shown in Fig. 5. Its
gates can decide to take new information into account or to neglect it. The gating concept
is also used as a basis for further improvements of the LSTM, e.g. Gated-Recurrent Units
(GRU) [25]. LSTMs are broadly used in applications like anomaly detection in CPS [47],
optimizing productivity perfomance [23], smart grids [2] as well as for artificial generated
sensor data [135].

Attention & Transformer Although the introduction of gates has limited the vanishing
gradient problem, some core problems remain.When processing long sequences, even gated
RNNs often fail to capture information from the start of the sequence properly, as all the
information is crammed into one or two hidden vectors of limited size.

To mitigate this issue, the concept of attention has been introduced and modified to self-
attention [4, 79]. The main idea of self-attention is to save all of the hidden states in a matrix
Z = (zt−k, . . . , zt ) ∈ Rn×(k+1) and to calculate a weighted average context vector z̃ ∈ Rn

to work with. The original self-attention mechansim learns on what hidden states to focus
on:

a = softmax
(
wT tanh (WZ)

)
,

where W ∈ Rl×n and w ∈ Rl are learnable weights with adjustable dimension l. The
attention vector determines how much a hidden state contributes to the context vector

z̃ = ZaT .
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More recently, the hidden state vector has been divided into dedicated parts in order to
dynamically identify where to pay attention with key-value attention [28] or multi-head
self-attention [122].

The Transformer [122], which gets rid of the recurrent structure of RNNs altogether
while solely focusing on attention, has shown spectacular results in many domains [14, 30,
32]. Transformers do not require to process samples time step by time step, as RNNs do,
which accelerates training. However, this parallelized structure comes with a drawback: the
attention mechanism cannot differentiate between time steps, which has to be taught to the
Transformer seperately. Furthermore, the original Transformer has a quadratic runtime with
respect to the input length, which makes it infeasible for long sequences. There have been
various attempts to tackle these issues and to design amore efficient Transformer architecture
for time series [78, 134]. While the Transformer has not seen wide adaption to CPS yet,
research on the application to multivariate time series in general has been promising [80,
130].

Neural ODEs Another shortcoming of RNNs is rooted in their origin in a DDE. Standard
RNNs are not suited for irregularly sampled time series, as z is updated once an observation
x occurs. Defining the evolution of zt continuously in form of an Ordinary Differential
Equation (ODE) ż(t) = f (z, t), where f is realized as a neural net, enables to output values
for zwhenever an observation xt occurs. [20] presents an approach to efficiently learnNeural
ODEs and demonstrates the advantages over RNNs on toy examples. [104] combines the
idea of a continuously defined state z that is updated at the observation times by combining
Neural ODEs and RNN, which shows impressive extrapolation capabilities. Often, physical
systems show discontinuous behavior (e.g. a moving ball bouncing at the ground), therefore
[18] introduces Neural Event Functions for ODEs, which are able to learn ODEs together
with points in time where z(t) suddenly changes.

Neural ODEs have not seen wide adaption to CPS data yet, as current research focuses
on architectures [33], fundamentals [86] and general properties (e.g. robustness) [3, 128].

5.3 Conclusion

Time is a fundamental concept for CPS data, yet until now there is no ideal solution that
incorporates its characteristics. While RNNs and DDEs seem to be a natural fit, in practice
the approach fails to produce good results. Gates, attention and the Transformer architecture
try to mitigate issues of RNNs, but they introduce new challenges, as training an LSTM
can be hard and Transformers are ill-suited for long sequences. Neural ODEs are another
promising approach, but research is still in its early stages. Teaching models to handle time
will be crucial in developing models that can work with CPS data effectively. How to do
this is still largely unresolved.
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6 Challenge 2:Uncertainty and Noise

Often a model is an approximation rather than a comprehensive description of every effect
that takes place in the underlying system. This raises the question of how certain a prediction
can be. In the literature, uncertainty is subdivided into epistemic uncertainty (model uncer-
tainty), as well as aleatory uncertainty (data uncertainty). While epistemic uncertainty in
MLmodels is caused by insufficiencies in model structure or training of the model, aleatory
uncertainty is caused by the loss of information during the data collection of a real world
system, e.g. due to noise within the path of measurement or faulty label information. Epis-
temic uncertainty can be reduced by improving the model or the training process, but it
cannot be completely eliminated in practice. Removing aleatory uncertainty from the data
is only possible to a very limited extent without further knowledge of the real world system
[44, 67].

6.1 Approaches

Methods that allow an estimation of uncertainty for their predictions can be grouped into
three categories: (i) statistical methods, (ii) ML approaches based on reconstruction error,
and (iii) energy-based ML approaches [90].

(i) Given a set of data points X , statistical information like their distribution can be
interfered. Statistical moments of e.g. first (expected value) or second order (variance) can
be calculated (in case of their existence) as high level properties that describe the distribution.
In case the data can be represented by a Gaussian distribution, the mean μ expresses the
average value of all observed data points and the spatial distribution can be described by the
standard deviation σ . By knowing the probability distribution, it is possible to conclude an
uncertainty measure of predicted data points based on the comparison of mean and standard
deviation to the training dataset.

However, capturing the probability distribution of technical systems, due to the under-
lying physical properties and complex interdependencies, is a difficult task. By observing
the system, it is possible to estimate the likelihood, i.e. the measure how well the a-priori
defined statistical model (the prior) fits the observation. This however requires extensive
knowledge of the system’s behavior. For tasks with simple probability distributions where
an accurate prior can be found, likelihood estimation is near to the actual probability dis-
tribution, a reliable measure of confidence can be expected with uncertainty analyses (UA)
and sensitivity analyses (SA) [62, 121].

However, the limitation of the described statistical methods is bound to the complexity
of the data’s distribution [81]. For non-trivial likelihood functions finding accurate priors is
challenging: Amodel’s complexity, i.e. the number of degrees of freedom of amodel to build
a function, has tomatch the data representation of the problem. For real-world problemswith
complex data distributions, this means that the epistemic uncertainty is rising as “simple"
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priors like Gaussian models cannot represent the data. To accomplish this, models with
higher complexity, i.e. with a higher degree of freedom, e.g. neural networks, are needed.

Without knowing priors, frequentist approaches like sampling-based techniques, i.e. the
selection of representative data points, can help to make statistical inference about the whole
model. They are often computationally expensive, but can also be applied to NNs.

(ii) Reconstruction-basedMLmethods like autoencoders (see Sect. 3) measure the uncer-
tainty by calculating the distance e.g. Mean-Squared-Error MSE = ‖x − x̂‖2 between
ground truth x and the reconstructed output x̂ [85]. Through learning a latent representa-
tion z, consisting of fewer dimensions than the input sample, they are forced to learn the
key features of the training data. Therefore, samples coming from a similar distribution to
the learned representation will result in a smaller distance, i.e. smaller reconstruction error,
whereas data far from the learned distribution would result in a higher reconstruction error.

But using reconstruction error as a measure of uncertainty is difficult as it cannot be
clearly interpreted like σ of (i) . Therefore, the distance between the reconstruction and the
grounded truth can act as an indicator for uncertainty, but not as a clear measurement of
uncertainty. As it measures similarity of the training and predicted data set’s distributions,
it can be poorly understood as estimate for data uncertainty (e.g. noise). As the similarity of
two data distributions are well suited to distinguish normal from anomalous data sets, this
method is often used in anomaly detection. Here, a large reconstruction error indicates that
an incoming sample is anomalous [44, 75].

(iii) Energy-basedML approaches use likelihood estimation instead of the reconstruction
error, i.e. in addition to the distance to the mean, the variance of the data is considered for
uncertainty estimation. In comparison to the statistical methods depicted in (i) , where a
suitable statistical model has to be defined a-priori (e.g. Gaussian distribution), energy-
based methods learn to fit the corresponding likelihood function to the probability of the
data’s occurrence. The objective is to train the model to maximize said likelihood function.
Logically concluded, the more data exists to train the model, the more accurately the fitted
likelihood represents the system.

6.2 State of the Art

As distributions of data sets are usually high dimensional and complex, the applicability of
(i) statistical methods for modeling data is limited. While (ii) reconstruction based methods
measure similarity to the training data set, (iii) energy based methods are considered as state
of the art for estimation of uncertainty for predictions. In the following, specific techniques
for the individual high-level approaches are presented.

Loss function based While some methods incorporate statistical values by default, some
methods use the idea of [98]: They try an energy-based approach to learn statistical concepts
by adding σ as a second output to the architecture and by modifying the loss function. For
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dynamical analysis a loss function that includes a measure of uncertainty is derived in [36]
usingmaximum likelihood approach considering three underling assumptions for an LSTM:

(1) All relevant hidden states h can be learned from the data.
(2) Gaussian distribution for covariance of the error x̂t+1 − xt+1 (e.g. white noise).
(3) Knowing the hidden states ht , the remaining noise on each sensor xit is independent (e.g.

white noise).

With these assumptions, the conditional probability for xt+1 is given by the multivariate
Gaussian distribution in Eq. (3).

pθ (xt+1|ht , xt ) =
n∏

i∈N

1√
2πσ i

t+1

exp

⎡

⎣−1

2

(
xit+1 − x̂ it+1

σ i
t+1

)2
⎤

⎦ (3)

With regard to the maximum likelihood, Eq. (3) can be formulated as maximum-
likelihood-error loss function (Eq. (4)) which can be used for training of neural nets that
compute xit+1 and σ i

t+1.

Lt+1 =
n∑
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⎡
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σ i
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)2

+ 2 log σ i
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Equation (4) can be interpreted as an extension of theMSE loss function that further reduces
the distance

∥
∥x − x̂

∥
∥
2 through σt+1 with respect to the log term as a penalty.

Sampling based While energy based methods explicitly learn uncertainty, frequentist
approaches like sampling allow us to gather information about uncertainty. A universal
approach for many applications and network types is introduced in [43]. E.g. dropout (ran-
domly switching off neurons during the training on a NN), which is usually used to avoid
overfitting, can also be used to observe uncertainty during the prediction phase. By perform-
ing predictions with dropout, the mean and standard deviation can be evaluated empirically.
Another approach is training an ensemble of models [70] to estimate σ . Here several models
are initialized differently and the samples of the training data that are presented during a
training epoch are shuffled. During training, adversarial samples (samples that are slightly
different from the original samples) are generated. Furthermore, a loss function similar to
Eq. (4) is used to estimate the overall uncertainty.

Bayesian Networks Restricted BoltzmannMachines (RBM) are a type of Bayesian neural
networks which is considered as energy based method. It consists of a visible layer of
neurons vi and a hidden layer of neurons h j . These two layers are used to learn probability
distributions of an unknown data distribution by taking binary states [41, 112]. Each layer
uses a bias (ai for the input layer and b j for the hidden layer). The neurons are connected
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via their weights wi j . The bias as well as the weights are first set randomly and then learned
in accordance to the data the system is trained on. The value associated with each state of
the network is referred to as the energy E of the network (Equation (5)).

E(v, h) = −
∑

i∈visible

aivi −
∑

j∈hidden
b j h j −

∑

i, j

vi h jwi j (5)

Equation (6) estimates the probability of a configuration v by the exponential energy
term of the observed state divided by the sum of the exponential energy terms of all possible
observations v∗. Thus, samples going outside of the learned distribution result in a higher
energy level.

P(v) = e−E(v)
∑

v∗ e−E(v∗) (6)

For a given set of parameters and data, θ andD respectively, the likelihood is theweighted
sum of the log-probability of observed states v.

L(θ,D) = 1

N

∑

v(i)∈D
log P(vi ) (7)

The loss function L, i.e. the optimization function, being the negative log-likelihood as
shown in Eq. (8), is minimized through learning, and thus the likelihood is maximized.

L(θ,D) = −L(θ,D) (8)

6.3 Conclusion

Sources of uncertainty are of various types.While epistemic uncertainty can often be reduced
by more data or a more detailed model, the occurrence of aleatory uncertainty implies an
estimation of uncertainty when predictions are made with NNs. As (i) statistical methods
are limited to non complex data distributions (ii) reconstruction-based methods can act as an
indicator for uncertainty but do not quantify it. (iii) Energy-based methods such as RBMs
or the modification of the loss function allow to learn a measure of uncertainty and are
thus able to quantify uncertainty also for complex datasets. Furthermore, sampling based
methods offer an empirical opportunity to quantify uncertainty for predictions.

7 Challenge 3:Usage of A-Priori Knowledge

The performance of a trained neural network is measured based on the expected perfor-
mance on new data samples drawn from an underlying, normally unknown, distribution.
While classic signal processing is typically done in up to three dimensions, the situation for
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high-dimensional problems dealt with in ML is substantially different. Interpolation cannot
be done by techniques allowing for accurate estimation of errors. Instead, neural networks
are prone to over- or underfitting and therefore limited regarding their capability to gener-
alize to data unseen during training. A function (trained neural network) should be locally
smooth with slight differences of the input resulting in similar outputs. However, if this was
to be ensured solely through a sufficient amount of samples, the required amount increases
exponentially as the dimensionality of the input increases. Therefore, effective priors that
capture the expected regularities and complexities of the high-dimensional real-world pre-
diction tasks need to be found and the amount and quality of training samples need to be
maximized.

7.1 Approaches

Structure of the respective domain presents a source of regularity which can be utilized
by making use of the corresponding symmetries, i.e. transformations leaving certain prop-
erties unchanged or invariant. Symmetries of the underlying data impose structure and are
powerful priors improving learning efficiency by reducing the space of possible functions
to be learned [13]. Arguably, the most illustrative examples can be found in Convolutional
Neural Networks (CNNs)[73] applied to images. Convolutional filters with shared weights
shifted across a grid combined with pooling layers are characteristic for the CNN net-
work topologies exploiting translational symmetry [48]. In image classification, the image
class is unchanged by shifts of the object within the image. Similarly, in time series often
encountered in CPS, an anomaly is to be detected as such regardless of the point in time, so
shifts are also symmetries in the problem of anomaly detection in CPS. However, whereas
flipped images are often considered as equally valid samples, in the case of time series only
orientation-preserving transformations may be appropriate choices. Since RNNs introduced
in Sect. 5 make use of network topologies allowing to dynamically aggregate information in
a way that respects the temporal progression of inputs while also allowing for online arrival
of novel data-points, they are a natural choice when dealing with sequential, temporal data.
One reason why shifted versions of the sequence can be treated equally is that the RNN
input vectors can be seen as points on a temporal grid—a very useful prior.

Whereas in the case of images and sequences data is already recorded with inherent
structure in the form of 1D or 2D grids in Euclidean space, no such structure is provided for
static analysis of single time steps of multivariate CPS sensor data (see Fig. 6(a)). Typically
heterogeneous sensors provide information about numerous subsystems in a non-Euclidean
space. Therefore, inputs x (a... f )

t from sensors a through to f are typically concatenated in
some arbitrary but fixed order to generate a feature vector xt (see Fig. 6(b)) serving as the
input for a neural network. However, domain experts such as engineers designing or main-
taining such systems are aware of the underlying system structure, namely relationships and
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Fig. 6 Sensor inputs x(a... f )
t represented as a) an unstructured set, b) an input vector xt and c) a

graph Gt with verticals V and edges E adding information in the form of relations between inputs

interdependencies between information from different sensors. This source of knowledge
remains to be unlocked by representing the data on a connected graph as shown in Fig. 6(c).
Such graph structure can improve learning efficiency by providing additional information
that limits the space of functions to be learned and enables the use of modern deep learn-
ing techniques able to operate directly on graph-structured data: Graph Neural Networks
(GNNs).

Labels created by domain experts represent the most common and direct way of making
use a-priori knowledge. However, with labeling being a time-consuming process resulting in
quite limited amounts of training samples, supervisedMLhas recently been outperformed by
self-supervised learning algorithms [21, 61], a subclass of unsupervised learning introduced
in Sect. 3). Such techniques employ knowledge about the problem to increase the amount
of training samples by obtaining labels from the unlabeled data itself. This is done by
reconstructing hidden parts of the input from unhidden parts of the input or using data
augmentation to learn better representations. Suitable self-supervised ML pipelines cannot
be designed without a-priori knowledge allowing for appropriate choices of architecture as
well as masking or augmentation techniques.

Simulations of production systems are created during the design phase to model and opti-
mize their expected behaviour. The advantage of such models is twofold: they are inter-
pretable by the domain expert and can be used to transfer knowledge from the expert to the
learning algorithm by generating additional training samples. In contrast to real-world train-
ing samples typically covering normal system states, simulations can extend this subspace
by sampling from the entire distribution of possible system states. This mitigates the issue
of deep learning models often not being able to extrapolate to data unseen during training.
However, real-world and simulation distributions cannot be expected to be identical without
adaptation.
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7.2 State of the Art

Compared to Challenges 1 and 2, usage of a-priori knowledge encompasses a set of open and
heterogeneous research directions in the context of CPS. Therefore, rather than presenting
specific ones in detail, an overview of highly promising methods to be explored by the
community is given.

Graph Neural Networks is a collective term for deep learning approaches operating on
inputs given in the formof a node featurematrix X , an adjacencymatrix A and (optionally) an
edge feature matrix Xe. GNNs unlock the potential of deep learning for non-Euclidian data
without discarding relational information. Network layers are designed to be permutation
equivariant since no canonical ordering of graph nodes is assumed [13]. Modern GNN
architectures can be categorized as convolutional [65], attentional [124] or message-passing
[5, 45] and are capable of operating on graphs directly processing information in the form of
node features as well as edge features. Such models achieve state-of-the-art results for node,
link or graph prediction tasks on protein biology [46] or detection of misinformation [89].
Notably, research on GNNs has largely been driven by the increasing availability of graph-
structured data [58, 103, 108]. In the field of CPS such structure remains to be leveraged by
adding it based on prior knowledge or by learning structure applying latent graph learning
approaches [27, 109, 123].

Self-supervised learning has been employed to unlock the potential of the vast amounts
of data available today by removing the need for human labeled data. This has led to great
success in advancing the field of natural language processing, particularly when combined
with transformer architectures [26, 30, 122]. These algorithmsmake use of knowledge about
the language domain by discretizing the feature space to most common words or characters
and use the inherent structure of text samples to learn about relations of characters, words
or sentences by masking different parts of the input. Other approaches—some of which
have already been extended to the graph domain [118]—make use of augmentations [21] or
two joint slightly different architectures [50]. Successfully designing suitable self-supervised
learning pipelines for CPSwill require a-priori knowledge to come up with suitable masking
or augmentation techniques.

Simulations model the expected behaviour of CPS even before the system is built. These
simulations can be used to uniformly generate high amounts of synthetic samples covering
both normal and abnormal system states [17]. Since the synthetic domain is not expected to
exactly match the real-world domain of system behaviour, it is necessary to combine both
by removing synthetic samples in overlap regions [16] or domain adaptation [29, 119].
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7.3 Conclusion

Interdisciplinary cooperation will be a key factor for successfully incorporating a-priori
knowledge. Significant parts of the store of knowledge of engineers remain to be utilized
and incorporated intoMLpipelines. Opportunities range from enhancing inputs by including
system structure as graph-structured inputs to enable the use ofGNNs, throughbuildingCPS-
specific self-supervised learning techniques, to making use of often preexisting simulations.
Interdisciplinary cooperation will be a key factor for successfully incorporating a-priori
knowledge.

8 Challenge 4: Representations and Concepts

Recent years have shown exceptional progress in ML research, particularly deep learning
[72]. Thismethod’s impact ismainly due to its successes in solving rather specific tasks, such
as playing games [111], detecting diseases on medical images [38], or identifying anomalies
inCPS sensor data [76].However, little progress has beenmade towards generalAI. Teaching
machines to learn (physical) concepts from observations (e.g. sensor data) is considered a
major step in this journey [69]. The emerging research field called Representation Learning
(RepL) is dedicated to this objective. Clear, simple and meaningful representations of high-
dimensional and complex data can enable the explainability of AI algorithms and thereby
also simplify their evaluation. This is particularly relevant in the context of CPS.

8.1 Approaches

In more technical terms, the core motivation of RepL is to build models which are capable
of encoding noisy real world observations of (physical) processes, into meaningful repre-
sentations [6]. These representations are typically vectors of reals numbers, but might also
emerge in form of other data formats such as (automate) graphs [57, 101]. Since most RepL
models can be trained with unlabeled data, their most common use case is to utilize the
typically lower-dimensional representations as input for downstream supervised learning
tasks. Based on these representations, less complex ML models with little labeled training
data can achieve satisfying performance in many cases [71]. According to [48] a good rep-
resentation is one that makes it easier to solve subsequent learning tasks, as illustrated in
Fig. 7. Among the frequently applied examples are the Word2Vec [88] algorithm for natural
language processing and ResNet [21] for computer vision. In its most extreme form, the
procedure of simplifying or enabling downstream ML-tasks with representations leads to
one-shot [39] and zero-shot learning [113], where only one or even zero training examples
are required respectively.
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Fig. 7 Principle idea of RepL. RepL models typically encode data points from a high-dimensional
space Rn into a lower-dimensional space Rm . Ideally the representations also encode meaning. In
this case objects of the same type are close to each other in the latent space and are clearly separated
from objects of another type. Thus, the object types can be separated linearly in the latent space, while
a more complex model would be needed in the original data space. This illustrates how downstream
ML-tasks can be simplified using RepL models

With regards to CPS, these methods are promising for two main reasons: First, (i) good
representation of CPS data (in most cases multivariate time series) are an important step to
explainable AI. Especially among engineers who are used to working with causal system
models, e.g. based on ODEs (see Sect. 5) deep learning methods are often considered as
black box solutions which cannot be understood and hence also not trusted. In this context,
meaningful and simple representations of the often high-dimensional data are helpful in
understanding how AI algorithms work and how corresponding decisions are made. Once
a RepL model is trained, downstream ML tasks can be implemented using simpler models
such as linear regression with very few and interpretable parameters. This process represents
the transition from sub-symbolic to symbolic AI. Engineers and humans in general think
in symbols and explain causal relationships, processes and logic in symbols rather than in
high-dimensional data spaces. Thus, e.g.mappings from the observation spaces (sensor data)
into contexts that are understandable from an engineering point of view, such as automated
graphs [57] and potentially even existing ontology models, can be very useful. Second,
(ii) especially in regard to predictive maintenance use cases such as anomaly detection or
failure predictions, the amount of labeled data is usually very limited. Thus, learning good
representations from the large amounts of unlabeled data can be highly beneficial for diverse
downstream analysis tasks.

However, only little research has been done on RepL for CPS. Apart from a few use cases
such as computer vision methods for optical quality control, the majority of CPS related
ML use cases rely on sensor data. Thus, in most cases, the training and input data are in the
form of Multivariate Time Series (MTS). For this reason, in the following subsection, we
will summarize the current state of research related to learning representations with a focus
on MTS.
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8.2 State of the Art

In line with our approach in Chap.7, the following section provides an overview of the
approaches toChallenge 4 currently discussed in the literature, rather than discussing specific
solutions in detail. A very well known and comprehensive (yet slightly outdated) literature
review on the field of RepL is given in [6]. According to the authors a good representation
captures the underlying factors that generated the data. This definition shows that good rep-
resentations are anything but unique. In order to disentangle the underlying factors, modern
RepL algorithms use so-called clues or priors. In most cases, these clues are implemented
in terms of the model architecture or the loss function and aim at enforcing the disentan-
glement of the learned representations. In a way these clues might also be interpreted as
a-priori knowledge (see Sect. 7.1). A list of such clues for unsupervised RepL is provided
in [6] and [48].

Time series, unlike images or other typical ML inputs, do not represent explicit features
[127]. Thus, mappingMTS to meaningful representations requires particularly strong clues.
Some examples of such clues that we consider to be the most important for our context are
described below.

Dimensionality reduction and manifolds Learning representations, i.e. interesting and
meaningful features, from MTS has a long history. A stream of research that is very closely
related to RepL (and might also be considered as such) is dimensionality reduction. Well
known and still frequently applied techniques for dimensionality reduction such as PCA
[56] and MDS [68] have been developed decades ago. More recently, methods based on
manifold learning such as Stochastic Neighbor Embedding [53], t-SNE [82], and UMAP
[87] have gained popularity. A very powerful family of algorithms exploiting this clue are
AEs (see Sect. 3), which can also be applied to MTS. Different model architectures utilizing
RNNs and CNNs in the encoder and decoder network allow the implementation of so-called
sequence to sequence models, that encodeMTS into lower-dimensional representations [24,
84, 132]. In many cases the behaviour of CPS, which are observed with a large number of
sensors, can be described with only a few latent variables. This concept is exploited, for
example, in the artificial generation of CPS data [135].

Natural clustering The basic concept of clustering algorithms is described above in Sect. 3.
The mapping of objects described in high-dimensional spaces to clusters (some cluster iden-
tifier, mostly an integer value) is a kind of representation in the sense of the definition given
above. This “clue” mainly assumes, that MTS generated by similar underlying processes
(factors) also have similar shapes and patterns according to some distance measure suitable
for time series data such as Dynamic TimeWarping (DTW) [37]. However, clustering MTS
data is not a trivial problem due to the potentially high dimensionality of MTS and the
challenge of defining a distance or similarity measure. A review of time series clustering
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methods is provided in [1]. Some examples of applications of time series clustering for CPS
can be found in [42], [106], and [66].

Simple and sparse dependencies between factors The essence of this clue is to assume
very simple dependencies between the underlying explanatory factors that created the data.
The relationships are assumed to be so simple and general that they can be integrated into
the model architecture or the loss functions. This is motivated by the fact that many physical
laws can also be described in terms of simple relationships of a few quantities [6]. This
“clue” is very popular because it is often used in conjunction with deep generative models,
which have achieved very good results in recent years. In the context of RepL, generative
models approximate the joint probability p(x, z), where x ∈ Rn are the observation and
z ∈ Rm the latent space variables. A very basic assumption for these simple dependencies
is the marginal independence of the latent space variables, such that

P(z) =
m∏

i=1

P(zi ). (9)

This assumption lies at the core of many famous unsupervised RepL algorithms such
as Generative Adversarial Networks (GANs) [49] and Variational Autoencoders (VAEs)
[64]. Many extensions or versions of VAEs and GANs have been introduced in recent
years, some of which introduce other clues in addition to the marginal independence, e.g.
mutual information criteria. Examples are the β-VAE [52], FactorVAE [63], β-TCVAE
[19], InfoGAN [22] or the InfoVEA [133] just to name a few. Note that the dimensionality
reduction and manifold assumption is also explicitly exploited in all of these algorithms.

Others assume simple causal dependencies between the latent variables and the data [115]
or even between the individual univariate time series in the MTS [101].

Communicating agents A very new and still experimental approach is to train several
small neural networks. These networks act as agents that perform different subtasks. The
subtasks are chosen in such a way that different subsets of the underlying explanatory
factors are needed to answer them. Together with a loss function that minimizes the amount
of information exchanged between agents, meaningful variables can be disentangled in the
latent space. These ideas are described in [93] and [60]. The main motivation is to identify
physical concepts. The application of this clue in CPS use cases has not been studied yet.

8.3 Conclusion

RepL is the core area of today’s deep learning and AI research. For its key challenge, the
disentanglement of meaningful latent space variables, many methods have been developed.
RepL is particularly relevant for CPS applications because it represents an important step
towards explainable AI and because unlabeled sensor data can be used and exploited.
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9 Conclusion

This paper explains the role of ML for CPS, provides an overview of the state of the art and
discusses challenges that accompany the application of ML algorithms to CPS data.

To highlight the relevance ofML for CPS, Sect. 6 describes several application scenarios.
ML algorithms can automatically analyze large amounts of data and can thus be used for
tasks like predictive maintenance, resource optimization, the creation of Digital Twins or
automated diagnosis.

An overview of ML in general is provided in Sect. 3. The ML algorithms are categorized
based on two properties: how they handle dynamic, time-dependent data and how much
supervision they need.

Section4 explains why CPS require specific ML algorithms and gives an overview of
the four main challenges identified in this paper: time, uncertainty, a-priori knowledge and
meaningful representations.

Section5 outlines the CPS’ main characteristic: time. In order to describe a dynamically
changing system, a latent state is introduced. Since traditional approaches often fail to detect
complex patterns in the data, the recent surge in computational capacity has motivated an
increasing interest in ML algorithms.

Uncertainty, as another important characteristic forCPS, is discussed in Sect. 6. Tradition-
ally, uncertainty can be expressed with statistical methods. However, for high-dimensional
and complexCPSdata, their applicability is limited.MLalgorithms canmodelmore complex
distributions and learn uncertainty directly. Furthermore, the usage of sampling approaches
allows estimating uncertainty empirically.

How to use existing engineering and physical know-how to improve ML is the topic
of Sect. 7. The main challenges include encoding the relationship of the CPS components,
minimizing the dependence on labels set by domain experts and leveraging simulated data.

Section8 discusses how to derive meaningful representations of high-dimensional data.
Such representations are key to build explainabeMLmodels and to transfer knowledge from
models built on different datasets.

ML has led to breakthroughs in many domains, such as computer vision, natural lan-
guage processing or computational biology. The amount of data available rises rapidly, as
does the computational capacity that fuelsMLmodels. By applyingmore and better sensors,
a CPS can generate large amounts of data as well. However, there has not been a compa-
rable disruption for CPS yet. Incorporating successful approaches from other domains is
a promising start. Yet many application problems arguably exist due to the very nature of
CPS data, which are highly interwined with physical processes and have unique challenges
that first have to be solved. This paper highlights these challenges and gives an outlook of
possible research directions.

In the future, specialized ML algorithms are needed which work on a level of accuracy,
reliability and maintainability required in the field of engineering. For this, a corresponding
research field of “ML for Engineering” has to be established. The visions areML algorithms
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which are fed by engineering knowledge, compute interpretable engineeringmodels and can
be deployed in closed-loop control loops and in autonomous systems.
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