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Abstract

Process-orientation has gained significant momentum in manufacturing as enabler for
the integration of machines, sensors, systems, and human workers across all levels of the
automation pyramid. With process orientation comes the opportunity to collect manufac-
turing data in a contextualized and integrated way in the form of process event logs (no
data silos) and with that data, in turn, the opportunity to exploit the full range of process
mining techniques. Process mining techniques serve three tasks, i.e., (i) the discovery of
process models based on process event logs, (ii) checking the conformance between a
process model and process event logs, and (iii) enhancing process models. Recent studies
show that particularly, (ii) and (iii) have become increasingly important. Conformance
checking during run-time can help to detect deviations and errors in manufacturing pro-
cesses and related data (e.g., sensor data) when they actually happen. This facilitates an
instant reaction to these deviations and errors, e.g., by adapting the processes accordingly
(process enhancement), and can be taken as input for predicting deviations and errors
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for future process executions. This chapter discusses process mining in the context of
manufacturing processes along the phases of an analysis project, i.e., preparation and
analysis of manufacturing data during design and run-time and the visualization and
interpretation of process mining results. In particular, this chapter features recommenda-
tions on how to employ which process mining technique for different analysis goals in
manufacturing.

Keywords

Manufacturing Processes • Process Discovery • Conformance Checking • Process
Enhancement

1 Introduction

“Recent trends in automation and knowledge of the underlying processes / interactions
are key to digital transformation” [14]. In manufacturing, process technology has already
proven itself as a driver for digital transformation. Manufacturing processes—aka man-
ufacturing orchestrations—integrate the manufacturing tasks conducted by human actors,
sensors, machines, and information systems in a process-orientedway [19]. This integration,
in turn, enables the contextualized collection of process-related data and hence facilitates
getting full transparency on what is going on using process mining [24].

Figure1a1) depicts an example manufacturing process realizing the production of a piece
for a gas turbine (i.e. lowerhousing) (cmp. [9]). The manufacturing process is modeled using
Business Process Modeling and Notation (BPMN).1

The BPMNmodel starts off with the sub process Turn1 represented by a complex task,
followed by another turning and two milling sub processes. Afterwards a quality control
(QC) task takes place at the shopfloor. If the quality is not OK the process is completed,
otherwise a QC task at the customer side takes place. This decision is reflected by an
alternative branching.

The BPMNmodel reflects the control flow of the manufacturing process, i.e., it abstracts
from aspects such as data flow, resources, and time. The BPMNmodel can then be imported
into a process execution engine such as the Cloud Process Execution Engine (CPEE)2 where
it is transformed into an executable model by specifying, for example, endpoints and data
(the CPEE model is shown in Fig. 1a3). For the given manufacturing process, for example,
each manufacturing process instance reflects one work piece to be produced.

Information on the execution of the manufacturing process instances is collected during
run-time by the process engine and stored in process event logs (cf. Fig. 1a4). Note that also
other information systems such as ERP systems collect (process) event logs and process
event logs reflect event-based data. The latter means that for each manufacturing process

1 bpmn.org
2 cpee.org

http://bpmn.org
http://cpee.org
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Fig. 1 Manufacturing Scenario & Structure of Chapter

task (e.g., QC Shopfloor in Fig. 1a1 and a3) at least one event reflecting its execution
is stored, together with a time stamp, and information on the process instance the process
task was executed for. This is the minimum information required for conducting process
mining. Several extensions might be stored and analyzed such as events on start/completion
of tasks, data and resources. In general, the more and better3 data is available, the better
the analysis results might turn out. The standard format for process event log is eXtensible

3 “Better” here refers to the quality of the collected data. For a discussion on quality levels of process
event logs see Sect. 2.



366 S. Rinderle-Ma et al.

Event Stream (XES) [1]. In addition to process event logs, the following data sources might
provide insights to the manufacturing process (cf. Fig. 1b): (i) sensor and machine data that
is collected during the process execution, stored as time series; (ii) engineering drawings,
stored as images, and (iii) regulations such as ISO standards, stored as text. A deeper insight
into the different data sources and how to prepare them will be provided in Sect. 2.

Process event logs are the basic input for the application of process mining. Process min-
ing is particularly promising for manufacturing processes as “transparency is a prerequisite
for digital transformation” and “process mining allows full transparency based on event
logs” as stated in [24]. Consequently, process mining seems highly promising for gaining
a deeper understanding of manufacturing processes and for promoting the digitalization in
the manufacturing domain. The three tasks of process mining are process discovery, confor-
mance checking, and process enhancement [2, 6] (cf. Fig. 1d). In short, process discovery
refers to detecting process models from process event logs, conformance checking to the
assessment of conformance/deviations between process models and event logs, and process
enhancement to the adaptation and improvement of process models based on process mining
results.

Typically, process mining is conducted ex post, i.e., after process instances have been
completed and the associated process event logs have been collected (cf. Fig. 1c). Recently,
process mining during the run-time of process instances has gained momentum as it enables
to react to analysis results, e.g., deviations, more quickly [35]. Note that for run-time pro-
cess mining, literature also refers to process event streams instead of process event logs
in order emphasize the run-time/online character of the analysis and hence to streaming
process mining [5]. There is a fluent transition from run-time/streaming process mining to
predictions. The latter has been addressed by the area of predictive process monitoring [36,
37]. These approaches focus on predicting (i) the next activity to be executed and (ii) the
remaining execution time of processes. In manufacturing, predictive maintenance, see for
example [22], has been a hot topic since several years.

Due to the integration of processes, sensors, machines, human workers, and information
systems, manufacturing processes can collect data from all these sources in an integrated
and contextualized way, i.e., process event logs/streams as event-based data, sensor and
machine data as time series data, technical/engineering drawings as images, and regulations
as text as depicted in Fig. 1a2 and b). In the light of this abundance of data sources and the
opportunities that come with them, in the following we will examine the question of how to
analyze manufacturing processes through process mining along the phases of a data analysis
project as depicted in Fig. 1e): data preparation in Sect. 2, analysis model building in Sect. 3,
analysis techniques in Sect. 4, as well as visualization and interpretation in Sect. 5. Finally,
Sect. 6 provides a short summary of the state of the art and discusses future questions.
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2 Data Preparation

The input data for process mining are process event logs [2]. They consist of a set of process
traces that reflect sequences of events related to the execution of process activities. More
precisely, for each process instance that was created, instantiated, and executed, a process
trace reflects the event sequence produced by executing the activities of this process instance.

This section addresses the preparation of process events logs as input for process mining
in the manufacturing domain. In Sect. 2.1, we comment on data quality. Section2.2 explains
which data sources are available and how they can be exploited for process mining.

2.1 Data Quality in Manufacturing

As stated for business intelligence projects in general [10] and process mining projects in
particular [7], the collection and preparation of data is often the most complex and tedious
task. This also holds true for the manufacturing domain where—without explicit process
orientation and data collection—the data accrues over several systems and system layers
along the automation pyramid as depicted in Fig. 2 (middle). The right side of Fig. 2 assigns
the systems at the different layers of the automation pyramid to the quality classes of the
L∗ data quality model as established in the Process Mining Manifesto [7]. The L∗ model
features five quality levels from * (lowest) to ***** (highest) based on criteria such as event
orientation, trustworthiness, and systematic collection.

Enterprise resource planning (ERP) data (***) is event-oriented and can be assumed as
trustworthy. ERP data is collected in a systematic way, but provides only a specific view
on the data, e.g., on the production orders. The data of lower layers of the automation
pyramid is assessed as ** data meaning that event data is collected “as a by-product of
some information system” [7]. As a consequence the information systemmight be bypassed
resulting inmissing and/or incorrect data. The lower the layer, themore unclear is the quality
level (at most **). Moreover, the data collection mostly happens in a separated manner, i.e.,
the data is not collected across the layer in a contextualized ways. This leads to data silos.
If, by contrast, the data is collected in a process-oriented way as shown on the left side of
Fig. 2, the data is at least of quality level ****, i.e., event-oriented, collected in a systematic
way, and trustworthy. If the data is in addition semantically annotated, it can be classified
as of highest quality (*****).

Figure3a depicts a process event log provided as eXtensible Event Stream (XES)
(xes-standard.org). The log contains a trace for process instance 423. It is crucial that
traces have unique ids such that the information on the activity executions can be distin-
guished for different instances, e.g., activity Turn1 was executed for instance 423 and not
for instance 424. Further on, the trace carries information on the process engine the process
instance was executed with, i.e., the CPEE 2, together with a UUID. The trace contains two

http://xes-standard.org
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Fig.2 Data collection along automation pyramid and in a process-oriented manner with data quality
level according to L∗ model [7]

Fig. 3 Manufacturing process event logs in a XES-XML and b XES-YAML formats

events that refer to the execution of process activity with label Machining. Note that for
more complex scenarios, traces may contain several thousands or more events.

The two events referring to the execution of Machining distinguish between thestart
and the completion of Machining, i.e., refer to two activity life cycle states [34].
Often, process event logs only store one event per activity execution, mostly for their com-



Process Mining—Discovery, Conformance, and Enhancement… 369

pletion. However, if life cycle states can be distinguished in the logs, more precise analysis
results can be achieved, for example, on the duration of activities. In addition to start and
completion of process activities life cycle states such as interrupted exist. This can
be also seen in the more fine-granule CPEE life cycle states such as activity/calling.
Finally, the events are equipped with a timestamp which is vital in order to reason about
the activity orders, e.g., in a discovered process model.

However, as said before, more information can be stored, leading to more options during
the analysis. The start event of activityMachining in Fig. 3a, for example, holds additional
information on its end point, i.e., the service that is called for executing the activity.
Further information typically stored in process event logs are resource/originator,
i.e., the actor or machine that has performed the task.

There are several ways to represent a serialization of the XES format. XML is usually
used, since it is human readable, provides a schema and can be easily processed. The example
in Fig. 3a features an XML representation of an process event log. Figure3b presents another
approach to serialize the XES format in YAML. YAML is as human readable as XML [27]
and offers advantages over XML for directly logging events in the XES format since the
computational effort is lower because new events, instead of parsing an XML tree for the
correct position, can be easily appended to a file, an operation which in many operating
systems is optimized.

2.2 Data Sources and Process Mining

Table1 summarizes existing process mining approaches along the analysis time they are
applied at, i.e., Ex post, Run-Time, and Predict&Adapt, (cf. Fig. 1c), as well as along the
available data sources, i.e., process event logs containing different amount of information.
For the latter, we start from the minimum necessary information to be able to apply process
mining, and step-by-step add information (indicated by a + in Table1).

The different analysis methods and techniques shown in Table1 will be explained in
Sect. 4. In this section, we focus on the data preparation. The rows above the one highlighted
in light blue in Table1 refer to data sources that can be entirely captured within a process
event logs. On top of the minimum necessary information, in the log we distinguish between
start and end of an event or other life cycle transitions. With start and end events it becomes
possible to reason about the duration of activities (e.g., [31]). Moreover, process event
logs can also contain information on resources, see the organizational extension in XES.4

This enables to analyze organizational structures connected with the process, for example,
underlying work or social networks [28] as well as authorization rules (who is allowed to
perform which process activity) [18]. If the process event log also stores values of process
data such as temperature that are associated with process activities, these values can be
exploited for finding decision rules at alternative branchings (decision discovery [16]). One

4 xes.standard.org

http://xes.standard.org
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Table 1 Data input and existing approaches

Analysis phase
Trace contains Ex post Run�me Predict&Adapt

Minimum informa�on: trace id, event 
name, 1 life cycle state, �me stamp Control flow discovery, conformance checking Next ac�vity,

remaining �me
+ start/end event Ac�vity dura�ons, temporal profiles [31]

+ resource/originator Organiza�onal mining [28], mining of actor assignments [18]

+ (internal) process data Decision discovery [16]
Data dri� detec�on [33], 

mul� perspec�ve 
conformance checking [20]

+ (external) sensor and machining data Decision discovery [8] Explaining and predic�ng concept dri� [35]

+ mul�media data (text, image, video) Decision discovery [16]

example would be: if the temperature is below 30 ◦C the machine works in normal mode,
otherwise a cooling agent has to be used. We refer to this process data and the associated
values as internal data. During run-time, process data can also be exploited for detecting
drifts in the process data [33] and for multi-perspective conformance checking [20].

It is crucial to be able to establish links between process activities and the sen-
sor/machining data. This leads to the question how to deal with sensor and machining
data. This data can be used as internal data, i.e., be necessary for executing the process,
but—because this is continuous or time series data—it cannot be directly stored in the pro-
cess event log. This leads to the question on how to store such “internal/external” data,
so it can be used for process mining. Sensors are creating data points continuously even
without an active process, i.e., like the temperature in the previous example. There are at
least three options available to use this data in process mining (cf. [8, 35]). The first option
aims at adapting the process mining techniques to take a log containing time series data
points as an additional input, so that with the temporal information of the process event log,
the related data points to an event can be extracted. The other option would be to adapt the
process model, to add a task, which fetches data points from a sensor. As a third option,
to achieve results during run-time, this fetching task can also be inserted in a parallel loop
to the process, so that the data points are inserted into the log while the process is being
executed.

Manufacturing processes can be also subject to multimedia data sources (see last row
in Table1), including texts such as regulatory documents, standards, and norms, (ii) image
data such as technical or engineering drawings as input or for quality control, and video
data such as instructions. So far, existing approaches have provided means for exploiting
data values of primitive data types, i.e., numbers and strings for determining decision rules
in an ex post manner [16]. Support for more complex data types or other multimedia data is
currently missing (see future work in Sect. 6).
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As discussed in the Process Mining Manifesto [7], in practice, process data is often not
available in an event-based format. This also holds true for the manufacturing domain where
the data is often scattered over several information systems (e.g., ERP) and the machines.
Process-orientation offers the opportunity to integrate these “data silos” resulting in an
contextualized collection of process event logs [19].

3 Analysis Model Building

According to [10] “[f]inding answers for analytical goals is based on models”. Hence,
modeling is an essential task in a manufacturing analysis project. Further on, [10] states that
model building can be understood “as amapping of some part of the domain semantics of the
business process into the model structure. This happens in such way that the available data
enable formal analysis of questions about the process”. Here, the domain is manufacturing,
the processes are the manufacturing processes, and the available data consists of process
event logs plus potentially additional data as outlined in Table1.

For processmining, the central analysismodel is a graphwhich represents the control flow
of the discovered process models. The graph is typically described using existing process
meta models such as BPMN in Fig. 1a1 and a3) as well as Petri Nets and Heuristic Nets
in Fig. 4a and b. Note that other analysis models for discovered manufacturing processes
are conceivable such as patterns [10] for, e.g., mining declarative process models (for an
overview on declarative process mining approaches see [17]). Graph-based structures can
be also used as analysis models beyond the control flow of processes, for example, social
networks as model for organizational structures underlying a manufacturing process (cf.
Fig. 4c). This underpins that depending on the data available in the process event log (cf.
Table1) and the analysis question different analysis models might become viable.

In particular for the manufacturing domain, the analysis of process event logs in com-
bination with additional (external) data such as sensor or machining data is vital [35]. The
question is which analysis model can be used as basis for the combined analysis. Sensor
and machining data is available in the form of time series data. As discussed in [10], time
series data is produced by collecting the states of one or several variables over time and can
be analyzed based on statistical models (cf. Fig. 4d).

4 Analysis Methods

The analysis tasks of process mining are process discovery, conformance checking, and pro-
cess enhancement [2]. These analysis tasks together with existing techniques are discussed
in the following in the context of manufacturing processes.
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Discovery of manufacturing processes: Basically, the control flow of manufacturing pro-
cesses can be discovered using existing algorithms such as the α miner [21], the Heuristic
miner [38], or the Inductive miner [15].

Consider the Spawn GV12 Production process execution log5 which consists of
81 traces. An excerpt is shown in Fig. 3b. Figure5 depicts the Heuristic net that is discovered
when applying the Heuristic miner (using PM4PY 2.2.46) based on this log. The Heuristic
miner considers order relations between pairs of activities a and b that can be observed
in the log and calculates their relative frequency, i.e., how often does b directly follow a
minus the how often the opposite happens (i.e., a directly follows b) divided by the sum of b
follows a and a follows b. This leads to a number between 0 and 1. The higher the number,
the more likely it is that b actually follows a. This formula is exemplary calculated for the
relation betweenGV12 Turn9 (start) andGV12 Turn9 (complete). The result
suggests the actual order GV12 Turn9 (start) ⇒ GV12 Turn9 (complete).

Figure5 shows interesting results. There are splits in the discovered Heuristic net,
i.e., the order of Manually Measure9 (start) and Signal Machining End9
(complete) is often times mixed up. The same phenomenon can be witnessed with
Manually Measure9 (complete) and Measure with MicroVu9
(start). This is a clear indication to dig deeper into these cases, i.e., traces, and empha-
sizes the capabilities of process discovery as screening tool (this observation has been already
made in the context of medical treatment processes [3]).

Figure6 shows the Petri net resulting from applying the Inductive miner infrequent
(using PM4PY) on the Spawn GV12 Production process event log. The discovered
Petri net confirms that with this log, Manually Measure9 (start) and Signal
Machining End9 (complete) appear to be executed in parallel . Based on this visual
inspection of both discovered models, we can go back to the traces and dig deeper into the
reason for the observation on Measure with MicroVu. Using, for example, the log fil-
tering capabilities of PM4PY, we can see that only nanoseconds are separating these events.
Therefore a faulty behavior in the log system is likely the origin of these errors.

Conformance of manufacturing processes: Conformance checking [6] takes as input a
process model and a process event log and calculates the conformance between the log
and the model or—vice versa—the difference between them. More precisely, the goal is to
measure to which degree the behavior expressed by the process model (i.e., all producable
traces on the model) and the behavior stored in the log (i.e., all traces in the log) match.
If we understand the process model as the expression of the intended behavior and the log
as collection of the actual behavior, conformance assesses how much reality is reflected by
the intended/prescribed behavior in the model. Note that there might be real-world behavior
that is neither reflected by the process model nor (already) stored in the log.

Inmanufacturing, conformance checking can be used formonitoring the process behavior
over time [9], i.e.,monitoringwhether andhowactual process execution conformsor deviates

5 http://gruppe.wst.univie.ac.at/data/timesequence.zip
6 https://pm4py.fit.fraunhofer.de/

http://gruppe.wst.univie.ac.at/data/timesequence.zip
https://pm4py.fit.fraunhofer.de/
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Fig. 5 Spawn GV12 Production log using Heuristic Miner yielding Heuristic net
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from the originally specifiedmodel. If themanufacturing processes are already implemented
and executed through a process engine, deviations from the process model, i.e., at the control
flow level, can only occur due to adaptations of either single process instances (ad hoc
adaptations) or due to an evolution of the entire process model [23]. Deviations in process
behavior that might happen for various reasons are also referred to as concept drift [4, 32].
Being able to analyze, explain, and predict concept drifts is of utmost interest in general and
specifically in the manufacturing domain [35].

One “component” of quantifying conformance between a process event log and a process
model is fitness [26]. Fitnessmeasures howmuch of the behavior stored in the log is reflected
by the process model. This value can be calculated by virtually replaying the behavior
expressed by the traces of the process event log on the given process model. For this the
process model is represented as a Petri net and the replay of the traces is carried out by
replaying tokens on the Petri net. Then it is counted howoften the replay requires extra tokens
for continuing the execution or creates missing ones. Figure7 shows the Spawn GV12
Production example. As input we take the original process execution log containing
81 traces (for an excerpt see Fig. 3b). As discussed in the previous paragraph on process
discovery, this log contains traces for which some tasks appear in the wrong order due to an
inaccuracy of the logging system. The created Petri Net (cf. Fig. 6) only features frequent
transitions and therefore does not guarantee perfect fitness. Hence the log does feature traces,
which are not fitting the model. A small excerpt showing the results is shown in Fig. 7b. As
can be seen, batch5_55 yields a fitness less than 1 and therefore is not fit.

Another measure to capture conformance is precision which states how much of the
behavior expressed by the process model is also reflected in the log, i.e., the model should
not allow additional event sequences which are not reflected in the process event log [2]. The
difference between the process event log and the processmodel can be alsomeasured in terms
of adaptation operations that would be necessary to transform the log to the model or vice
versa. As can be seen from Fig. 7c the Petri net (also called flower model) can produce any
trace on the 4 contained transitions reflecting manufacturing tasks.7 A selection of example
traces is also depicted in Fig. 7c. Obviously, the fitness of, for example, the original log
Spawn GV12 Production (cf. Fig. 3b) would be 1. However, the log does not reflect
all traces that can be generated in the flower model. This fact can be reflected by measuring
precision.

Aside other limitations as discussed in [6], fitness and precision only measure “one side
of the coin”, i.e., either how much behavior of the log is also reflected by the model or vice
versa. In addition, in particular for themanufacturing domain, it would bemore interesting to
present conformance results in a more expressive way than providing a value between 0 and
1. Take, for example, a fitness value of 0.85. It means that the behavior of the log is reflected
by the model in a “pretty high” manner, but it does neither allow any conclusions where
deviations between model and log occur nor any assessment how severe these deviations
are.

7 As a simplification we only included the tasks without differentiation into start/complete tasks.



Process Mining—Discovery, Conformance, and Enhancement… 377

Fig.7 Spawn GV12 Production: conformance checking on process model without infrequent
transistions (transformed to Petri net model using Inductive miner, PM4PY) and original Spawn
GV12 Production process event logs (using Conformance Checking, PM4PY)

Alignmnents [6] promise to overcome these limitations. At first, alignments can be used
to capture deviations between log and model. More precisely, an alignment states which
adaptation steps/operations are necessary to “correct” a deviation between an execution
trace from the log and a possible execution sequence on the model. Taking all alignments
together reflects a sequence of adaptations to transform the log and the model such that they
perfectly match/conform. Moreover, the alignments can be equipped with costs.

As an example take the following execution trace t from a manufacturing log and the
execution sequence s of a manufacturing process model:

t=<Turn1, Turn2, Mill1, Mill2, QC> and
s=<Turn1, Turn2, Mill1, Mill2, MicroVu>

An alignment between t and s is defined as amatrix that captures t and s and an operator>>.
This operator indicates an adaptation that is necessary to correct a deviation. The result for
t and s is shown in Table2. We can see 4 synchronous moves for events in t and s referring
to the same activity, e.g., Turn1. The operator >> is present twice in order to balance the
presence of task QC in t and task MicroVu in s.

Typically, an alignment is not unique, i.e., it is possible to transform an execution trace
and an execution sequence such that they match using different alignments. Obviously, it is
desirable to find a minimum alignment, i.e., an alignment with minimum number of moves.



378 S. Rinderle-Ma et al.

Table 2 Alignment between process execution trace and execution sequence on manufacturing
process model (example)

t Turn1 Turn2 Mill1 Mill2 QC »

s Turn1 Turn2 Mill1 Mill2 » MicroVu

This is also sufficient as moves can be assigned costs in order to assess an alignment in
a quantitative way. In other words, the costs express how “expensive” it is to align the
execution trace and sequence. Here, the costs for the minimum alignments are meaningful,
i.e., the minimum costs for not being conformant.

A straightforward way is to assign a cost of 1 to each move. The cost of the alignment
shown in Table2 then turns out as 2. More sophisticated cost functions are conceivable,
considering, for example, the influence of moves on data elements and vice versa. In [29],
we presented an advanced cost function based which costs for moves indicating missing
events can be reduced if the data elements still possess valid values. Such a situation might
hint to a logging error where a task was actually executed and has hence manipulated the
values of associated data elements, but the corresponding event has not been logged. The
real-world production case in [29] underpins that control flow deviations, e.g., swapped
executions of tasks, can be tolerated in case the values of relevant parameters, i.e., the final
positioning of the produced parts on a tray, are in an acceptable range.

As indicated in Table1, conformance checking can take place at either design time, i.e.,
ex post based on process event logs, or at run-time, i.e., online based on event streams. Expe-
rience in themanufacturing domain shows that online conformance checking is promising in
order to support the continuousmonitoring of the production, i.e., themanufacturing process
instances. Moreover, it can be observed that control flow deviations happen due to ad-hoc
adaptations of single process instances (e.g., in order to cope with exceptional situations)
or due to evolution of the manufacturing process model, e.g., if errors or problem with the
process occur frequently. On top of control flow deviations, shifts in sensor and machining
data [35] as well as temporal deviations [31] yield valuable insights into possible deviations
during run-time

Enhancement of manufacturing processes refers to (constantly) adapt and optimize the
manufacturing process models and their instances. Process enhancement has gained the
highest momentum recently according to the Gartner study in [14] when compared to the
other process mining tasks discovery and conformance checking. However, relatively lit-
tle attention has been spent on process enhancement in literature. In prior work [35], we
combined results from online conformance checking in sensor data with explaining and
predicting concept drifts (cf. Table1) where the predicted concept drifts are realized by
process evolutions. In detail, the measurements of the part (reflected by sensor data) showed
significant drifts which could be explained by the occurrence of chips as by-product of the
machining task. This led to the identification of several process enhancements, for example,
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the insertion of a dedicated Remove Chips task in the manufacturing process. A recent
study [30] in the manufacturing domain found that conformance checking combined with
the analysis of sensor data (data-aware conformance checking) supports the detection and
explanation of problems with the quality of the workpiece whereas conformance checking
focusing on time deviations (time-aware conformance checking) points to problems with
work organization.

In general, deviations can be detected in a relatively easy and systematic manner. The
main challenges are to explain/understand the deviations (i.e., to find and communicate the
root cause) and to derive suitable enhancement actions. For the latter, the body of work
from process change and evolution (cf. [23] for an overview) can be utilized. Approaches
that aim at explaining change and supporting users in defining change operations comprise
the augmentation of change operations with reasons [25] as well as the mining of change
processes [11] and change tress [12] from change logs.

5 Visual Analytics and Interpretation

Visual analytics is used throughout all phases of the manufacturing analysis project (cf.
Fig. 1e) including explorative analysis of the (raw) data, understanding and discussing anal-
ysis results, and presenting the final results to the domain experts and other stakeholders.
According to [13], basically, “in the Engineering domain, Visual Analytics can contribute
to speed-up development time for products, materials, tools and production methods [...]
One key goal [...] in the engineering domain will be the analysis of the complexity of the
production systems in correlation with the achieved output, for an efficient and effective
improvement of the production environments.”. This general assessment of visual analytics
in the engineering domain can be directly transferred to visual process analytics in manu-
facturing.

According to [10], one can look at the data from different perspectives, i.e., form the
customer, organization, and production perspective. These perspectives are connected with
different views on the data (i.e., cross-sectional, state, and event view) and subsequently dif-
ferent analysis techniques (i.e., data mining, processes mining, social network analysis, etc.)
based on different analysis models such as graphs. Table3 displays the different perspectives
together with the visualization options.

For the customer perspective, different types of data can be distinguished, together with
different visualization options. All of these visualization options might be relevant for the
manufacturing domain, particularly for visualizing parameter values. Sensor data, for exam-
ple, can be visualized as time series plot, i.e., displaying the sensor values over time.

For the production perspective that corresponds to possible results of process mining
in terms of process models, basically, we distinguish between design time and run-time
visualization. Where design time requires the visualization of process model as graphs
following some process meta model (e.g., BPMN), during run-time, the information about
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Table 3 Overview on visualization options along the different analysis perspectives

Perspective Visualizations

Customer Qualitative Data Bar Charts, Pie Charts, Mosaic
Plots, ...

Quantitative Data Contour Plots, Boxplots, ...

Relationships Scatter Plots, Correlation, ...

Temporal Data Time series Plots, Survival
Plots, ...

Organization Graph visualizations

Production Design Time Visualizations of Petri Nets,
BPMN

Runtime Equipping process models with
runtime information,
displaying log information
additionally to process model

the execution progress/state of the different instances is depicted, as well. Here, basically,
there are two options: process models can be equipped by run-time information such as
colored tokens on Petri Nets or the process model is displayed alongside with process event
logs.

6 Conclusion and Open Research Questions

The following recommendations for conducting a process mining project in the manufac-
turing domain conclude this chapter:

• Use process discovery as screening tool
• Use conformance checking for detecting deviations
• Use data-aware conformance checking (i.e., combined with the analysis of sensor data)

for
– detecting and explaining workpiece quality problems
– explaining and predicting concept drift
– predictive maintenance

• Use time-aware conformance checking for detecting temporal deviations and problems
with work organization

• Explain and discuss detected deviations with domain experts in order to define remedy
actions (⇒ process enhancement)
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Nonetheless, several research and application-oriented questions are still open and seem
promising for future work, not only for manufacturing, but for any process. Table1 depicts
research directions in light pink color. These research directions mainly refer to the analysis
phase of Predict&Adapt for input log data beyond control flow, i.e., including information on
resources and internal/external data and to the exploitation of external data. First approaches
on exploiting sensor data in addition to log data have been presented (e.g., [35]). The obser-
vation here is that this also results in a combination of process and data mining/machine
learning techniques (e.g., conformance checking in combination with dynamic time warp-
ing). The exploitation of data sources such as text or images in combination with process
mining has not been explored yet, although these data sources play an important role in
manufacturing (i.e., ISO standards and engineering drawings) and other domains (standard
operating procedures and images in medicine).
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