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Abstract

The fourth industrial revolution promises a new quality of automation with smart man-
ufacturing devices sharing enormous amounts of data. A crucial step in fulfilling this
promise is developing advanced data integration methods that are able to consolidate and
combine heterogeneous data from multiple sources. We outline the use of knowledge
graphs for data integration and provide an overview of proposed approaches to create
and update such knowledge graphs, in particular for schema and ontology matching, data
lifting and especially for entity resolution. Furthermore, we present data integration use
cases for Industry 4.0 and discuss open problems.
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1 Introduction and Related Work

The success of Industry 4.0 is based on the transforming technologies of the last decade: the
Internet of Things and Big Data [37]. The Internet of Things enables communication and
exchange of data between physical objects (e.g., sensors) to implement certain services and
reach autonomous decisions. In the medical domain, for example, the Internet of Things can
improve services such as monitoring, diagnostics, and treatment by utilizing interconnected
devices that observe the vitality of persons [72]. The idea of Industry 4.0 is similarly based
on the close interaction of decentralized systems such as production systems and products,
to achieve self-controlled and self-optimizing processes. Big Data comes into play due to
the enormous amount of different kinds of data that are continuously generated, exchanged,
and to be processed. This data has to be standardized to enable their interpretation and
autonomous decisions. Moreover, the different kinds of data can be collected, transformed,
and integrated to support a holistic analysis and optimization of the different production
processes, production lines, etc. [22].

The challenges of Big Data are usually characterized by the “V” properties of Volume,
Velocity, Variety and Veracity. These challenges are all relevant for Industry 4.0. In partic-
ular, disconnected sources in manufacturing processes generate a massive amount of data
(Volume) at a high rate (Velocity) for further processing [22]. Variety refers to the need to
process different kinds of heterogeneous data, in particular structured data (such as events
or database records), semi-structured data (documents, log files, error reports), and unstruc-
tured data (e.g., images, audio files, and videos). Veracity finally asks for providing a high
data quality to enable valid analysis results.

Data integration is the task to combine and enrich data from multiple sources for data
analysis. Big Data Integration is data integration for Big Data that has to address the V chal-
lenges, in particular, Variety to deal with heterogeneous data of different kinds and Veracity
to achieve high data quality. Additionally, the requirements Volume and Velocity lead to
high-performance demand to deal with the massive amount of continuously produced data.
The high data quality and performance requirements are best met with so-called physical
data integration approaches that bring the data from different sources into a dedicated repos-
itory such as a data warehouse or knowledge graph. Such repositories can be maintained and
used on a distributed cluster platform with many processors to achieve fast data processing
and analysis. Furthermore, such approaches can apply comprehensive data preprocessing to
improve data quality, in particular by extracting information from semi- and unstructured
sources and for performing transformation and cleaning approaches for data consolidation
[32,75]. Physical data integration such as the creation and continuous update of a data ware-
house or a knowledge graph also entails several steps, including the task of entity resolution
to identify (match) and fuse different representations of the same real-world entity such as
for a product part or customer.

While there is a huge amount of previous research and commercial activities in the area
of data integration [13, 74], there is only little work focusing specifically on data integration
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for Industry 4.0. Some work has been done on the use of dedicated process knowledge repos-
itories for workflow analysis [61], and for the enrichment and maintenance of unstructured
documents such as failure and performance reports [52]. Most repositories focus on certain
data types, applications or certain phases in the value chain of products. Process knowledge
data consists of structured rules, information about data mining models and results as struc-
tured data. On the other hand, documents such as failure reports and unstructured data are
essential as well. Groeger et al. [23] propose a repository for maintaining these types of
data for each manufacturing step.

In the remainder of this chapter, we focus on (Big) data integration with knowledge
graphs that can semantically integrate and interrelate many entities of different types for
data analysis. Knowledge graphs are more flexible than data warehouses that are built on
relational databases with a rather static, predefined schema that prevents the easy addition
of new kinds of heterogeneous entities and their relationships. We begin by motivating the
topic by outlining selected industrial use cases for data integration in Sect.2. In Sect. 3, we
introduce knowledge graphs and give an overview of the methods for constructing them.
The important task of entity resolution is the topic of Sect.4 that explains the main steps
and how its performance can be improved to deal with Big Data. We close with a summary
and outlook to open problems.

2 Data Integration Use Cases

Knowledge Graphs (KG) and other semantic technologies have become a viable option
for companies to organize complex information in a meaningful manner. The semantic
representation of data can improve understandability of complex data making development
of new technologies more efficient [18], and improve quality control in manufacturing
processes [97]. Not only software giants like Facebook, Google and Microsoft, but also
production companies like Siemens [78] or news conglomerates like Thomas-Reuters [91]
turn towards semantic representations of their data. Aibel, a service company in the energy
sector, has reportedly saved more than 100 million Euros through better representation of
their products using ontologies [90].

In the following we will look at some examples, where companies integrated heteroge-
neous data sources into semantic repositories.

In a Bosch factory[38] Surface Mount Technology is used to mount electrical components
directly on circuit boards. Different machines are needed in this process, e.g., to place
the electronic parts or inspect the solder joints. To detect failures in the manufacturing
process, the integration of several data sources coming from machines of different vendors
isnecessary. This data integration relies on adomain ontology. An ontology is a semantic data
structure, which contains known concepts and relationships and can be used to ensure the
consistency in the data integration process. The machine components in the manufacturing
pipeline produce log data in the form of JSON files. These are extracted and stored in a
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PostgreSQL database which is then manually mapped to the ontology. Through the use of
the Ontop' framework a Virtual Knowledge Graph is created from the ontology and the
mappings to the original data sources. The manufacturing process data can then be analyzed
by sending SPARQL (a semantic querying language) queries which are translated to SQL
queries to the original data sources. In an evaluation this approach returned results in tens of
seconds, which the researchers deemed a reasonable amount of time for their use case. What
is still missing is a more comprehensive data analysis that goes beyond the use of queries,
e.g., the use of machine learning to identify erroneous processing steps.

Siemens relies on a similar approach to unify multiple data sources in their smart manufac-
turing process [78]. A common ontology is used and the heterogeneous sources are mapped
to this ontology. The resulting KG is used as a basis to integrate dynamically occurring
events in their factory into the KG. The researchers present an approach for event-enhanced
KG completion using a machine learning approach to jointly learn KG embeddings as well
as event sequence data embeddings. In their evaluation they show, that their approach leads
to good quality KG completion and can aid in the synchronisation of the physical and digital
representations of a smart factory.

Jirkovsky et al. [35] investigate the use of semi-automatic ontology matching to integrate
an Excel File containing Ford spare part records and the Ford supply chain ontology. They
utilize extensive preprocessing to enrich the Excel records with implicit information con-
tained in part numbers and abbreviations. Multiple similarity measures are used for element
pairs which are fed into a self-organizing map, which is a type of artificial neural network
that can be trained in an unsupervised fashion. The trained model can classify entity pairs
and present the user with examples, where it is least confident about its classification.

3 Knowledge Graphs

In this section we first present the foundations of semantic technologies for knowledge
graphs. We then present the necessary steps to semantically integrate heterogeneous data
sources for creating and evolving such knowledge graphs.

3.1 Knowledge Graph Foundations

InFig. 1 we can see an example snippet of a KG. We will use this illustration to subsequently
introduce RDF, ontologies and finally what a KG is.

RDF The standard that is used to create KGs with their entities and relationships is called
RDF (Resource Description Framework), which is a recommendation? of the W3C (World

1 https://ontop-vkg.org
2 https://www.w3.org/TR/rdf-primer/
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Wide Web Consortium). An RDF graph is a set of triples. Using such triples we can make
statements about entities and their relations. An example of a triple we can see in Fig. 1 is

Partl23 manufacturedIn ProcessingStepl23

An RDF Graph can have three different kinds of nodes: IRIs (Internationalized Resource
identifiers), literals or blank nodes. IRIs are generalizations of URIs and give each resource
aunique identifier. To express values such as strings, dates or numbers literals are used. RDF
enables the user to also state the datatype and if the literal is a string a language tag can be
provided. Blank nodes are anonymous resources, that enable more complex structures.

Ontologies An ontology is a formal description of knowledge using machine-processable
specifications. These specifications have well defined meanings and contain known concepts
and relationships [30]. For example, in Fig. 1 we express that the entity Part123 belongs
to the class Screw with the triple

Partl23 rdf:type Screw .

Ontologies build on description logic, which enables reasoning engines to check logical
consistency and correctness. Such reasoning possibilities are advantageous in the Industry

Entity

A

rdf:type
- rdf:type
| ManufacturingResult |
A
rdf:type ManufacturingSt
anufacturingSte
Screw Y 9==p
A
) rdf:type
rdf:type Ontology Level
Entity Level

manufacturedin
Part123 > ProcessingStep123

hasName

"Hex Headed
Machine Screw"

Fig.1 Example snippet of a KG



252 D.Obraczka et al.

4.0 setting to make implicit information explicit. For example, [49] use reasoning as data
enrichment step to infer compatibility of parts.

Furthermore, ontologies provide a so-called vocabulary, which is a set if IRIs, that can
be used in RDF graphs.? In Fig.1 for example we use the RDF vocabulary, by utilizing
rdf : type to express that an entity is an instance of a class. Incorporating vocabularies is a
common technique to rely on already existing ontologies and makes integration of different
semantic systems easier. For the Industry 4.0 context there already exist ontologies like e.g.
CORA (Core Ontology for Robotics and Automation) [71] that can be a useful starting point
for companies. An overview over other ontologies for Industry 4.0 can be found here [86].

Knowledge Graph The terms ontology and KG are sometimes erroneously used as syn-
onyms. KGs often integrate multiple sources into a single ontology and are able to derive
new knowledge through reasoning [16]. While ontologies often focus on the conceptual
modeling, knowledge graphs include a large number of entities and relations as instances
of concepts and relationships, which introduces the need of instance-level data integration
such as entity resolution. In the industry 4.0 context often the more specific term industrial
knowledge graph (e.g. at Siemens [31]) is used. A notable example of an open-source KG is
the Industry 4.0 Knowledge Graph [3]. This KG contains information about standards used
in smart manufacturing and relations between standards.

3.2 Knowledge Graph Construction

The construction of a KG entails the integration of (heterogeneous) data sources and enrich-
ing the data with semantic information. The integration process generally necessitates the
following steps:

1. Creation of the KG ontology

2. Mapping of data sources to the KG ontology which requires schema or ontology matching

3. Preprocessing of data sources to extract, and clean entities and transform them into the
RDF format which is also known as data lifting

4. Categorization of entities to assign them to the ontology concepts, e.g. for entities
extracted from documents. This task can be addressed with machine learning by uti-
lizing already assigned entities as training data [79]

5. Entity Resolution to identify duplicate entities and fuse them together in the knowledge
graph.

Bear in mind, that some of these tasks can happen in different order (e.g., integrate the data
sources first and then perform data lifting or vice versa) or even overlap (e.g., classification
of entities can happen in the data lifting step). Moreover, the knowledge graph has to be

3 https://www.w3.org/TR/rdf11-concepts/#vocabularies
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continuously updated to incorporate new data and even new data sources. This asks for
incremental methods to evolve the KG ontology and to add entities incrementally.

In the following we will start by presenting schema and ontology matching, followed by
the data lifting task. Entity Resolution will be discussed separately in Sect. 4.

Schema and Ontology Matching Smart factories produce a plethora of different data
formats from a vast number of sensors, databases, spreadsheets etc. To tackle this variety
aspect of Big Data, companies have to unify these data collections under a common schema,
a task that is referred to as schema matching. Schema matching aims to determine semantic
correspondences between metadata, database schemata or in the special case of ontology
matching between ontology elements. The high degree of semantic heterogeneity between
sources makes this a difficult task, especially since not only one-to-one matches have to be
found, but also more complex relationships like e.g., generalizations or part-of relations.

A central element of schema matching systems are matchers, which determine the simi-
larity between concepts/attributes of the given schemata. Different types of matchers exist,
namely instance- and metadata-based matchers. Instance-based matchers rely on already
known instance matches between data sources and mostly rely on the instance overlap among
concepts to determine how similar concepts are. Matchers that rely on metadata can further
be divided into element-level and structure-level matchers, where the former use similarity
between concept names sometimes utilizing dictionaries and the latter exploit structural
information in ontologies e.g., the children or parents of concepts. Matching frameworks
typically rely on a combination of different types of matchers to achieve a high quality
result [24]. Matchers can be executed sequentially, in parallel or a mixture of both.

To illustrate this let us look at an example from the smart product lifecycle, where
products from different vendors generate data, that we need to integrate [88]. Table 1
lists six sample products from five different provider sources such as www.ebay.com and
www.buzzilions.com. The descriptions represent six cameras from two manufacturers Canon
and Nikon. As shown, entity I and entity 2 as well as entity 4, entity 5, and entity 6 represent
the same real-world camera. We can see that schemata between data sources vary immensely.
This is not only apparent by the different number of properties for the same entities, but
also in the very different representation of the same attributes. For example, entity I has an
attribute effective megapixel count with a value 10.1, as well as an attribute pixel count
with the value 10 Megapixel, while the matching entity 2 has an attribute megapixels
with the value 10.1 MP. All three attributes would have to be determined to be the same.
Data preprocessing can alleviate some heterogeneity e.g., replacing common abbreviations
like MP for Megapixel. A schema matching approach will first have to classify entities
from the given sources. In the example, the entities are all of the type camera, but the data
sources might contain e.g., camera cases, which have to be separated from camera entities.
Secondly, classification of properties helps to reduce the search space e.g., the property
compatible with macintosh in entity I should be treated as a Boolean variable rather than a
string, and therefore not compared with other string attributes.
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Table 1 Example raw data

property value

”source” ”www.buzzillions.com”

”page title” ”Canon EOS 40D Digital SLR Camera”
”compatible with macintosh” ”Yes”

”depth inches” 72.9”

7 digital slr” [ ?”Body Only”, ”Body With Lens” |
7 effective megapixel count” 710.1”

”height inches” 74,27

”lcd display size inches” KO

"led viewer” 73 Inch”

”manufacturers warranty hardware”|”1 Year”

”megapixels” ”10.0”

”optical zoom” 74X

”pixel count” 710 Megapixel”

"shutter speed” ”1/8000-30 second”

”skuprice” 71299.9900”

”still image resolution max” 73888 x 25927

”usb port” ”(1) Mini-B”

”weight pounds” 71.63”

”width inches” 75.7"

”source” ”www.ebay.com”

”brand” ”Canon”

”megapixels” 710.1 MP”

”model” 740D”

”mpn” "EOS 40D”

”screen size” 3

"type” ”Digital SLR”

”source” ”www.priceme.co.nz”

”page title” ”?Canon EOS 400D New Zealand Prices - PriceMe”
”focus adjustment” ” Automatic focus, Manual focus”
”image stabilizer” ”Without Image Stabilizer”

”light sensitivity” ”ISO 100, ISO 1600, ISO 200, ISO 400, ISO 800, Auto”
”optical sensor” ”CMOS”

”source” ”www.gosale.com”

"page title” ”Nikon D3100 14.2MP Digital SLR on sale for $461.20”
”camera type” ”SLR”

7eanl3” ”0018208097982”

”manufacturer” ”Nikon”

”megapixels” 714.2 MP”

?product number mpn” ”D3100 18-55 5”

retail price” ”$949.00”

”upc” (0182080979827

?source” ”www.ebay.com”

”page title” ”Nikon D3100

”mpn” 7338587

”screen size” » 37

”upc” ”(018208254866”

”source” ”www.walmart.com”

”page title” ”Nikon 14.2MP DSLR Camera with VR Lens, 3L.CD”
”model no” ”Nikon D3100 Kit”

”shipping weight in pounds” 73.6”

?walmart no” ”000609532”
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Reduction of search space is a general problem in schema matching. Given two schemata,
the comparison of every element of one schema with every element of the other schema
has quadratic complexity. This large search space has not only detrimental effects with
regards to scalability but can also negatively impact match quality given the higher number
of error possibilities. The main strategies to narrow the search space are early pruning of
dissimilar elements and partitioning of the ontologies [73]. Early pruning means discarding
element pairs with low similarity early in the matching process. Especially, in sequential
matching workflows this enables early matchers to alleviate the burden of unnecessary
comparisons for subsequent matchers. For example, after determining the attribute name
similarity of usb port in entity 1 and brand in entity 2 is low, the comparison of these
attributes can be omitted in further steps. Peukert et al. [70] employ filters to discard element
pairs beneath a certain similarity threshold. The threshold can be predefined or dynamically
set depending on already calculated comparisons and mapping results. Partitioning-based
approaches divide the ontologies in smaller parts so that only partitions have to be compared.
This not only reduces the number of necessary comparisons, but makes these match tasks
easily parallelizable.

Several different aspects of the data will have to be considered in order to create a high
quality match result. A schema matching workflow will have to incorporate the similarity of
attribute names and attribute values. The use of pre-trained word embeddings or synonym
dictionaries can be beneficial to match attributes, that are dissimilar on character level,
while being close semantically like brand and manufacturer. LeapME [2] relies on
word embeddings and meta-information of property names and property values as input for
a dense neural network. The classifier is trained on labeled property pairs and the corre-
sponding feature vectors. The trained model can then be used to obtain matching decisions
between unlabeled property pairs and their similarity scores. To integrate data about smart
energy grids, Santodomingo and colleagues [87] use background knowledge from a database
of electrical terminology. This background knowledge is used to find words with similar
meanings to extend the strings of entities in the given ontologies. The authors utilize several
matcher components, such as a linguistic module, which reduces words to their root form
and filters out stop words, that are uninformative in the matching process (e.g., “the”), as
well as threshold-based similarity components to derive matching decisions.

While binary matching approaches, unifying two sources, are most common, schema
matching in the industry 4.0 context usually requires more holistic approaches that are
able to consolidate multiple sources as shown in the example. Although it is possible to
perform this task by sequentially matching two sources until all sources are integrated,
specific approaches have been developed that cluster elements of multiple sources directly.
Gruetze et al. [26] align large ontologies by clustering concepts by topic. Topical grouping
is done by using Wikipedia pages related to concepts which result in category forests, that
are a set of Wikipedia category trees. Utilizing the tree overlap alignments are generated.
Megdiche et al. [54] model the holistic ontology matching task as maximum-weighted graph
matching problem, which they solve within a linear program. Their approach is extensible
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with different linear constraints, that are used to reduce incoherence in resulting alignments.
Roussille et al. [81] extend existing pairwise alignments of multiple sources by creating a
graph with entities from ontologies as nodes, and correspondences as edges. They determine
graph-cliques to detect the holistic alignment.

For a more general overview over ontology matching we refer the interested reader to this
survey [63] and for a more detailed discussion of large-scale ontology and schema matching
to [73].

Data Lifting The data in organizations usually has to be semantified, since it resides in
formats which contain no machine-readable semantics such as relational databases or spread-
sheets or even unstructured formats such as plain text. The necessary conversion process is
called data lifting, since the data is not only transformed, but also “lifted” to a higher data
level which contains semantic information [92].

While schema matching and data lifting both are concerned with mappings between
different aspects of data sources, they have a different focus. Schema matching aims to
consolidate heterogeneity between data sources and any enrichment of the data consists
of implicit information that was scattered among different data sources. Data lifting seeks
to transform data into RDF. While the mapping of e.g., a relational database to an existing
ontology can be seen as a form of schema/ontology matching, data lifting is mainly concerned
with transformation of the data into a different format.

The transformation process can be done manually by using specific mapping languages.
The simplest is the direct mapping,* which performs a quick conversion of a relational
database to RDF. The relational database should have well-defined primary and foreign
keys and meaningful table and column names. While being simple, the direct mapping
approach has the drawback of not being able to reuse existing popular vocabularies. For a
more sophisticated conversion the mapping language R2RML> can be used. It enables the
user to have more control over the mapping process. The use of manually created mappings
is frequently mentioned in the industry 4.0 context. The German industrial control and
automation company Festo describes their struggles with their previous monolithic Java
application for data transformation in this paper [49]. They have since moved to use custom
R2RML mappings to transform relational data into entities of their KG. Similarly, Kotis and
Katasonov [46] propose rule-based mappings in their semantic smart gateway for the Web
of Things.

While mapping languages enable powerful transformations, they require domain experts
to go through a laborious process of writing many mapping rules, even with tool support.
To address this problem learning-based transformation approaches have been devised in a
research field called onfology learning. In the following we will present some examples
from the field. For a more thorough overview over the field of ontology learning we refer
the reader to this recent survey [50].

4 http://www.w3.org/TR/rdb-direct-mapping/
3 https://www.w3.org/TR/r2rml/
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Maedche and Staab [51] first conceptualize ontology learning to address the need of
simplifying the ontology engineering process by enabling the semi-automatic integration of a
wide range of sources including web documents, XML files as well as databases and existing
ontologies. They rely on dictionaries to extract concepts and use hierarchical clustering
to build a taxonomical structure in their ontology. Using association rule mining with a
class hierarchy as background they derive possible relationships that are presented to the
user. Modoni et al. [56] present a rule-based approach to automatically transform relational
databases to ontologies. Their ontology integration approach uses the mediator pattern,
which does not physically integrate the ontologies but rather provides a common interface
to distributed data sources. The mediation is done through custom mapping rules. The authors
illustrate their approach with a case study of a mould production company, which is faced
with integrating their various data sources.

4 Entity Resolution

In the smart product lifecycle and Industry 4.0. in general, a deluge of data from numerous
sources is generated [88] requiring Big Data techniques for the collection, integration and
analysis of heterogeneous data. Entity Resolution (ER) or data matching is a main step for
data integration and the creation/evolution of knowledge graphs. It is the task of identifying
entities within or across sources that refer to the same real-world entity. ER for Industry 4.0
requires fast and scalable solutions (Volume) as well as advanced methods to incrementally
add new data or even new data sources either in a real-time or evolutionary way (Velocity)
[21].

ER is typically implemented by a multistep workflow, as shown in Fig. 2. The input is data
from multiple sources that may differ enormously in size and quality, and the output is a set of
clusters, each of which contains all matching entities referring to the same real-world entity.
The shown preprocessing step has already been discussed and entails data cleaning actions
such as handling missing values, smoothing noisy values, and identifying and correcting
inconsistent values [9]. Furthermore, schema matching can be applied to identify matching
properties that can be used for determining the similarity of entities for ER. To match the
cameras shown in Table 1, preprocessing may include transforming values into the same
unit, lower casing strings, applying canonical abbreviations to harmonize property values,
and assigning the same name to matching properties to facilitate similarity computations.

The blocking step prevents comparing irrelevant entities with each other. For instance, in
our running camera example (Table 1), cameras with different manufacturers will be placed
in different blocks in order to avoid comparing Nikon cameras with Canon cameras. Then in
the pair-wise matching step, the similarity of candidate pairs are computed by applying a set
of similarity methods on the property values of the entities. Finally, the clustering step uses
computed similarities to group the same entities in the same cluster. Clustering facilitates
fusion of the same entities into one unique representative entity.
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Data Sources Sets of Clusters
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Fig.2 Entity Resolution Workflow

The main ER steps of blocking, matching and clustering will be discussed in the following
subsections, emphasizing on techniques related to Big Data. We will also outline incremental
ER solutions to deal with the incremental addition of new entities and even new sources to
a knowledge graph. Finally, we briefly discuss some ER prototypes for Big Data.

4.1 Blocking

Blocking aims at improving performance and scalability by avoiding that every entity has
to be compared with every other entity for determining matching entity pairs, leading to a
quadratic complexity. Therefore, blocking methods intend to restrict the comparisons only to
those pairs that are likely to match. Standard Blocking (SB) [19] and Sorted Neighborhood
(SN) [28] are two popular blocking methods that both utilize a so-called blocking key to
group entities. The key is mostly specified by an expert and is the result of a function
on one or several property values, e.g. the initial five letters of the manufacturer name or
page title property for the camera example (Table 1). Since real data is noisy, generating
one blocking key per entity may not allow finding all matches. Hence, it can be necessary
to generate multiple blocking keys per entity, leading to multi-pass blocking [29, 44] that
can find more matches and thus improve recall over the use of single blocking key. Since
determining suitable blocking keys can be a tedious and difficult task, approaches based on
both supervised [6, 20] and unsupervised [39] Machine Learning (ML) have been proposed
to learn blocking keys. [67] gives a comprehensive overview of blocking techniques.

To further improve runtime and scalability, the blocking methods can be parallelized to
utilize multiple machines in a cluster. This is relatively easy to achieve on partitioned input
data by utilizing the MapReduce [12] framework or newer frameworks such as Apache
Spark [95] that build on MapReduce. Moreover, since the sizes of the output blocks can
be skewed, achieving good load balancing is the major challenge for parallel blocking and
ER. Kolb et al. propose the load-balanced SB [43] and SN [42] based on the MapReduce
framework.
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For semi-structured, textual data or in absence of an aligned schema across sources,
schema-agnostic token-based blocking approaches have been proposed. The basic Token
Blocking (TB) [65] generates a candidate match based on the common tokens of property
values of a pair. Like with traditional blocking methods, scalability can be improved by a
MapReduce-based implementation [67] and ensuring load balancing [11]. Since the basic
TB may create too many candidate pairs, newer schema-agnostic approaches reduce them
by pairing tokens from synthetically similar properties, considering only selected properties,
or comparing only the entities of the same type [67]. Furthermore, block post-processing
approaches such as meta-blocking [66, 89] can largely reduce the number of candidate
matches. A very different approach is [62] that totally ignores property values but determines
candidate matches based on relations between entities.

4.2 Pair-wise Matching

The decision on whether a pair of entities is a likely match is based on the similarity of the two
entities, which is determined by one or multiple similarity functions. These functions mostly
determine the similarity of property values depending on the data type (string, numerical,
date, geographical coordinates etc.). Typically, several such similarity values need to be
combined to derive a match or non-match decision. Traditional approaches such as threshold-
based or rule-based methods classify the matching status for each pair independently. In
threshold-based classification, a specified threshold considers all pairs with similarity above
a certain value as matches. On the other hand, in rule-based classification, a rule specifies a
match predicate consisting of property-specific similarity conditions that are combined with
logical operations [9]. For the camera example (Table 1), the match decision may be based
on the similarity of the properties “page title” and “megapixels” although the latter property
is not present for all entities shown.

Another line of research called collective ER [5] uses both property value similarity and
relational information for determining the similarity of two entities. Here, the ER process
is mostly iterative because changes in similarity or matching status of one pair affects the
similarity value of the neighbouring pairs. Such approaches are more difficult to scale than
with the standard approaches, where candidate pairs are compared independently. To better
scale collective ER, Rastogi et al. [77] propose a generic approach that executes multiple
instances of the matching task and constructs the global solution by message passing.

Manually determining the properties to match, similarity functions and similarity thresh-
olds is acomplex task, especially for heterogeneous and noisy data. Hence, a better alternative
is often to apply supervised ML approaches to find optimal match configurations to deter-
mine matching entity pairs. These approaches can utilize traditional ML techniques such as
SVM, logistic regression or random forests [40] but also newer approaches based on deep
learning. Barlaug et al. [4] provides an overview about ER proposals utilizing deep neural
networks including the approaches DeepER [14], DeepMatcher [57] and Hi-EM [96]. These
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approaches typically utilize embeddings for textual property values by transforming either
words or their characters to numerical representations that preserve the semantic similarity
between property values. Word embeddings are able to convert a long sequence to a short
one, but they can not necessarily cover all possible words for specialized domains. The
generation of embeddings can make use of pretrained models such as word2vec [55], GloVe
[69] or fastText [7] that are derived from large corpora such as Wikipedia [4].

4.3 Clustering

The matches determined by the pair-wise similarity calculations are often contradicting and
therefore only match candidates. The final matches are determined by applying a clustering
approach on the set of candidate match pairs that form a similarity graph where matching
entities are linked with each other. The baseline approach for entity clustering is to determine
the transitive closure or connected components over the match links. Note, that general
clustering algorithms like K-means that need a predefined number of clusters are not suitable
for ER.

The Connected components algorithm does not consider the strength or similarity of
candidate matches, and can thus cluster even weakly similar entities. There is a large spec-
trum of alternatives some of which, e.g. Stable Marriage [53] and Hungarian algorithm [47]
are suited when the input consists of two duplicate-free sources. For deduplicating a single
source, Hassanzadeh et al. [27] comparatively analyzed several clustering algorithms. For
some of them, such as Correlation Clustering, parallel implementations based on iterative
processing and message passing have been proposed [8, 64]. Saeedi et al. [§3] comparatively
evaluate the effectiveness and scalability of parallel implementations of several clustering
schemes from [27] for the case of multiple data sources. Recently, Yan et al. [94] proposed
a novel hierarchical clustering approach that avoids so-called hard conflicts inside clusters
where the weakest similarity in a cluster is below a critical threshold. This is achieved by
not merging candidate cluster pairs if this would lead to such a hard conflict. The approach
is used within an industrial ER framework that is applied on billions of customer records on
a daily basis.

Another line of research focuses on designing methods and algorithms for clustering
entities from multiple duplicate-free sources [59, 84] or clustering entities from combined
duplicate-free and dirty (duplicate-containing) data sources [48]. The proposed approaches
outperform more general approaches such as correlation clustering.

4.4 Incremental ER

Incremental ER approaches are needed to address the “Velocity” characteristic of Big Data
to deal with dynamic or evolving data such as new incoming entities or even new data
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sources. Incremental approaches generally fall into two categories: 1) real-time approaches
that are mostly applied in query processing and deal with individual new entities and 2)
evolutionary approaches that deal with the addition of several entities of even a complete
new data source in order to update an already existing knowledge graph without repeating
the ER process for all data.

1) Real-time approaches leverage dynamic blocking and indexing techniques [76] as well
as dynamic pair-wise matching methods [1, 33, 93] that support the fast matching of
entities at query time.

2) Evolutionary approaches focus on updating the knowledge graph. Gruenheid et al. pro-
pose a generic greedy approach for such an incremental ER and clustering [25]. This
method is extended in [58] to avoid computations on already integrated portions of the
data that are unlikely to be affected by the new data. Scalable approaches for incremental
entity clustering that also support the addition of new data sources are investigated in [60,
85]. In particular, [60] proposes an incremental entity clustering based on a Max-Both
strategy that adds a new entity to the maximally similar cluster only if there is no other
new entity of the same input source with a higher similarity. [85] proposes a method
called n-depth reclustering for incremental linking and clustering that is even
able to repair existing clusters for improved quality and a reduced dependency on the
insert order of new entities.

4.5 ER Prototypes

There are several ER prototypes suitable for Big Data that are surveyed in [10] including
Dedoop [41], Magellan [45], FAMER [82], Silk [34], MinoanER [15], and JedAI [68]. Each
of them implements the whole ER pipeline in a parallel way and includes novel Big-Data-
specific approaches for at least one step of the pipeline. Dedoop is one of the early systems
and based on MapReduce [12]; it implements the load balancing techniques discussed in
the subsection on blocking. Silk, MinoanER, JedAI and a non-public version of Magellan
are implemented on top of Apache Spark® while FAMER uses Apache Flink.” FAMER
additionally supports the incremental addition of new entities and new data sources [85]
and can deal with entities from multiple sources (>2), while MinoanER supports schema-
agnostic ER methods to deal with heterogeneous and noisy web entities.

6 https://spark.apache.org/
7 https://flink.apache.org/
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5 Conclusion & Open Problems

We presented an overview over the Big Data challenges for data integration posed by the
fourth industrial revolution. We advocated the use of knowledge graphs for the integrated
and semantically consolidated representation of heterogeneous data as a basis for data anal-
ysis and production optimization. Creating and continuously updating knowledge graphs
is challenging and we presented approaches for the tasks of schema/ontology matching,
data lifting/semantification and especially for entity resolution. We also discussed some
published data integration use cases for Industry 4.0.

The current state for Big Data integration using knowledge graphs in Industry 4.0 is
still in an early stage and requires too much manual effort. The common use of manual
mapping rules for data lifting and/or schema matching can be justifiable for horizontal
integration cases with already well structured high quality data. However, more efforts are
needed to bridge the gap between the (semi-)automatic data integration tools developed in
academia and manual matching efforts that are prevalent in the industry to establish robust
methods for integrating the complex data of industrial applications. Especially the increasing
interconnection of different domains (e.g. IoT, Smart Factories and Smart Grids) calls for
more automated integration concepts, that could enable “plug & play” capabilities of smart
machinery [17]. Solving these challenges is not reasonably possible without incremental
ER solutions that keep knowledge graphs in sync with the physical realities present in
smart factories, within a reasonable time frame. The possibility of integrating increasingly
larger data sources asks for scalable solutions. The triple stores used in Semantic Web
applications can become a bottleneck, which necessitates alternative solutions [36]. The use
of frameworks that rely on property graph models (e.g. Neo4j® or Gradoop [80]) can be a
viable alternative to triple stores in some use cases.

The interdiscplinary nature of Industry 4.0 necessitates a close cooperation between
domain experts of the respective manufacturing domain, ontology engineers and data sci-
entists [38]. We believe, that this is not only true for individual projects in this domain, but
for the research in this direction as a whole.
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