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Abstract. A milestone in the mathematical modeling of complex sys-
tems is the analysis of the significance of the system components. When
examining the reliability, Birnbaum (1968) proposed measures of ele-
ment significance. This direction of research into mathematical models
of systems has led to many alternative analyzes. The aim of the arti-
cle is to further expand the diagnostic capabilities of systems through
a specialized analysis of their mathematical models. We propose, using
the methods of game theory and stochastic processes, functionals that
measure the structural reliability of the system and the operational per-
formance related to maintenance. This allows for the construction of a
new measure of significance, using knowledge of system design, reliabil-
ity, and wear to optimize repair and maintenance. The considerations of
this work are aimed at showing the ways of applying this approach to
multi-state systems.
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1 Introduction

1.1 Preliminaries

A system1, i.e. a complex structure with specific functionality is under inves-
tigation. The mathematical model of the system is based on the set theory as
the family of subsets of a given set (set of elements) C = {c1, . . . , cn} having
1 System (in Ancient Greek: – romanized: systema – a complex thing) – a

set of interrelated elements realizing the assumed goals as a whole.
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some properties. An example is technical devices whose design is dictated by the
need to perform specific functions. The constructed system should function in
a planned and predictable manner. This property is a requirement that should
also be considered in the design and construction (fabrication) process. The goal
is therefore to reduce the risk (v. B.1) of a break in the planned operation of the
system. So we have to model randomness2. For this purpose, we establish that
all random phenomena are modeled using the probabilistic space (Ω,F ,P) (v.
A).

Contemporary systems are characterized by their structural complexity. Its
design is purposeful, which means that its purpose is to ensure the implementa-
tion of specific tasks. Due to the complexity of tasks and their multi-threading,
the evaluation of functionality should be carried out on many levels. In short,
the working complex system is able to be in many states. The first mathematical
models of systems focused on component and structure reliability. This allowed a
limitation to two-level assessments, the system (element) is operational or dam-
aged (working or not working)3. Already such an approach made it possible to
methodologically support a designer with mathematical models, the analysis of
which resulted in guidelines allowing for rational solutions in terms of the com-
plexity of the structure and effective selection of elements so as to guarantee
the reliability of the structure (system readiness) at the appropriate level for
a sufficient time. Graph theory and the structures constructed in this theory
are an excellent tool for modeling binary systems. The random graph is a good
model of the binary system4. To put it simply, a coherent graph is a standby
system model, and lack of consistency means no readiness. Turning off nodes
and arcs in a connected graph leads to its decomposition, and thus destruction.
Each operation of the system, the model of which is a random graph, leads to
the moment in which the next disabled element of the structure leads to failure
(lack of readiness). By analyzing the lifetime of the elements, it is possible to
determine the order in which the elements are switched off and determine how
often the failure of the tested element is the cause of the failure of the entire
system. The more often an element is crucial, the greater its importance for
the system. This line of reasoning led to the definition of Birnbaum’s [8] impor-
tance measure. There are known alternative results on the evaluation of the
weight of components on the reliability of the system. The introduced measures
of significance of elements on reliability will be the basis for the introduction of
diagnostic algorithms about the possibility of which they wrote at the end of his
seminal paper (cf. Birnbaum [8,9] (v. Barlow et al. [7]). The indication of these
algorithms is the subject of the authors’ study (v. Szajowski and Srednicka [37]).

2 The foundation of stochastic methods in the reliability theory can be found in the
monograph by Barlow and Proschan [5].

3 The definition of state “working” is defined as ready to perform some list of tasks.
4 The idea of random graphs has started by Erdős and Rényi [14] and Gilbert [18]. Its

application to modeling of complex systems, also to analyze their reliability, is well
known.
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The concept of significance measures (v. B.2) is essentially based on estab-
lishing a criterion against which we measure the significance of an element. [8]
investigated the importance of the position of an element in a structure, valu-
ing the elements whose failure less frequently decomposes the system. In order
to determine the importance of the reliability (failure rate) of individual sys-
tem components for the reliability of the entire system, measures sensitive to
changes in the system and changes in component reliability are constructed. It
also allows for the rationalization of the design and maintenance planning. The
issues are complex due to the need to take into account both the effective reli-
ability of the constructed system and the costs of maintaining it in readiness
for a given period. Profitability analysis is of great importance. It is natural to
formulate the problem by defining the overarching goal of minimizing costs while
guaranteeing the expected level of reliability. In the whole process of analysis,
the point of reference are two states (of the system and elements): functional or
damaged. There are measures that are sensitive to a change of state, measure the
importance of an element in relation to other elements, and the susceptibility of
a system to a change of state from operation to failure. Thanks to this approach,
it is possible to define weights for the cost of individual elements in a given time
horizon, while ensuring a specific level of security or readiness. This approach
can be found in the article by Wu and Coolen [39]. At the same time, other key
goals and parameters of system analysis should not be forgotten. Their inclusion
in the balanced model is possible with the use of natural methods of analysis
when formulating many criteria based on elements of game theory.

We try to present the issue comprehensively, although there is currently no
consistent approach to the method of determining the importance of elements
in the system (v. B.3). This is one of the reasons why the loss of functionality
of an element often does not significantly affect the system’s ability to perform
most tasks. This aspect is emphasized by numerous examples presented in the
literature, which show the significant impact of the state of the environment in
which the systems are operated (time of day, weather conditions, environmental
pollution). We write more about these issues in an earlier work (v. Szajowski and
Średnicka [37]). From the analytical point of view, by introducing well-defined
states of the system, referring, for example, to its function, one can investigate
the meaning of structure elements in connection with the adopted description of
its states.

As in binary systems, the rank of an element is determined by the availability
of the system to scheduled tasks, so when evaluating elements of multi-state
systems, the rank of an element in terms of state is determined by the availability
of the system in this state.

The presented aspects relate to being in a fixed state, excluding the need for
maintenance and repairs, including the costs of these activities (cost of parts,
repair and maintenance time, penalties for unavailability). In system mainte-
nance tasks, issues such as detecting failed components while the system is in
that state are important in determining the importance of components to the
steady state of the system. The element that should be checked first (because
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it is most suspected of a failure) can be treated as important for the efficient
conduct of maintenance or repair (v. e.g. Ping [28]).

1.2 Investigation of Element Role in a Given State

If the system cannot be in the tested state, it is often important to determine
the sequence of actions to restore the system to that state. To facilitate such
analyzes, the weights (measures of significance regarding repair) of the elements
should be determined. Otherwise, in these considerations, the measure of the
importance of a component (group of components) in a given system is based on
the quantification of the “role” of that component (group of components) and of
the unavailability of the examined state of the system. Examples of such analyzes
can be found in Fussell and Vesely [17], Barlow and Proschan [4], El-Neweihi et
al. [13], El-Neweihi and Sethuraman [12] and Abouammoh et al. [1]. Defined
measures (indicators) with significance allow to identify components (groups)
that are probably responsible for “causing” the inability to use the analyzed
state. In turn, the determination of these indicators leads to an effective control
and maintenance principle, as well as to the optimization of spare parts storage
and the optimal allocation of repairs to appropriate maintenance technicians of
the relevant system components.

When examining the significance of the elements of binary systems, a few
years after the publication of the results of Birnbaum and Proschan, it was
noticed that similar solutions in the form of significance measures are used in
parallel in the analysis of multi-person project management, voting analysis and
other issues related to cooperative games (v. Ramamurthy [30]). As in the theory
of cooperative games, the purpose of such research is to propose new importance
measures for degrading components (v. Cao et al. [10]). The motivation is based
on Shapley values, which can provide answers about how important players
are to the whole cooperative game and what payoff each player can reasonably
expect. The proposed importance measure characterizes how a specific degrading
component contributes to the degradation of system reliability by using Shapley
value. Degradation models are also introduced to assess the reliability of degrad-
ing components. The reliability of the system consisting independent degrading
components is obtained by using structure functions, while the reliability of
system comprising correlated degrading components is evaluated with a mul-
tivariate distribution. The ranking of degrading components according to this
importance measure depends on the degradation parameters of components, sys-
tem structure, and parameters characterizing the association of components. A
reliability degradation of engineering systems and equipment are often attributed
to the degradation of a particular component or set of components that are char-
acterized by degrading features. This approach reflects the responsibility of each
degrading component for the deterioration of system reliability. The results are
also able to give timely feedback of the expected contribution of each degrading
component to system reliability degradation.
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1.3 Organization of the Paper

The rest of the paper is structured as follows. Section 2 provides the details of
analysis of multistate systems. We start out, in Sect. 2.1, by showing how the
coherency of multi-state systems is modeled. The remaining considerations are
carried out on the assumption that the system is coherent. In the Sect. 2.3, we
show what guidelines are to be provided by the constructed measures in the
case of non-repairable systems (modules), and for whom these indicators are of
interest. Other issues are interesting in the case of repairable systems and this is
what the next Sect. 2.4 is about. The Sect. 3 describes the main problem of the
paper, namely, the construction of a significance (importance) measure for an
element or module of a system in the face of maintaining system consistency and
activity. We recognize that the difficulty in maintaining the system is equal to the
difficulty in maintaining its individual modules. These in turn are all the more
important the more difficult it is to reconstruct them at the time of failure.
The final Sect. 4 contains conclusions and suggestions for further research on
diagnostics and maintenance of complex, multi-state systems. At the end of the
work, and before the extensive bibliography, we have included a list of symbols,
terms, and abbreviations. We chose them based on the belief that they may differ
from those to which the reader is used to. In the next part, we have included
end-notes to which we refer the reader when the main narrative requires them.

2 Multistate Systems

2.1 Coherent Multistate Systems

In the Sect. B.3 we mentioned coherent structures for binary system, while in
this section we adapt the concept of coherence to the multistate systems. Many
assumptions with given formulas regarding binary systems have natural continu-
ation and analogous behavior in a multistate system, however are more complex
Barlow and Wu [6].

Suppose we have specified the following objects (cf. [23,26]):

a) the set C consisting of n ordered elements C = {1, 2, ..., n} (elements col-
lection, elements space )–it will be the space of elements;

b) for every element i ∈ C there is defined set of states Ci which is a completely
ordered and finite5, i.e., {(Ci,≺i)}i∈C and |Ci| = wi ∈ N;

c) let −→x A be an element of the set CA =
�

i∈A Ci;
d) if a subset A ⊂ C, then C\A ≡ A′ ≡ {j ∈ C|j �∈ A};
e) if B ⊂ A ⊂ C, then PB is a surjection PB : CA → CB

6;
f) if Γ ⊂ CA and B ⊂ A ⊂ C, then PCB

Γ = {PB
−→x ∈ CB |−→x ∈ Γ}, i.e., it is a

subset of states indexed by B
g) the partition of A ⊂ C expressed as a family B = {Bj}m

j=1, such that

5 An ordered set for which any two elements(i.e. states) can be compared–in this
context every two states should be compared.

6 The operator PB is sometimes denoted PCB
.
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1. A =
m⋃

j

Bj ⊂ C, Bi ∩ Bj = ∅, for 1 ≤ i, j ≤ m, i �= j;

2. for every −→x j ∈�i∈B j
Ci, 1 ≤ j ≤ m, we have −→x = (−→x 1, . . . ,

−→x m) ∈ CA

is such that PB j

−→x = −→x j ;
3. for every −→x ∈ A ⊂ C, −→x = (−→x B 1 , . . . ,−→x Bm), where −→x B j = PB j (

−→x ) =−→x j , j = 1, . . . ,m
h) for A ⊂ C, i ∈ A, the state vector (ki,

−→x −i) ∈ CA is such that ki ∈ Ci and−→x −i ∈�j∈A\{i} Cj .

Let there be a fixed space of elements C = {1, 2, ..., n}, the spaces of their states
with an order established in them CC =

�
i∈C Ci, and the set of possible states

of the system S.

Definition 1. The general system of n components is a triplet (CC ,S, φ) where

1. the mapping φ : CC → S is surjection;
2. an inverse image of state set S has following property. If s �= t, t, s ∈ S, then

Vs(φ) ∩ Vt(φ) = ∅,

where for any L ⊂ S, VL(φ) is given by

VL(φ) = {−→x ∈ CC : φ(−→x ) = l, for l ∈ L}.

For subset L = {l} we write Vl(φ).

We define the natural classes of system by specifying the φ mapping properties.
We also specify the unique properties of the system.

α A system (CC ,S, φ) is increasing if and only if for every −→x , �y ∈ CC , −→x �CC
�y

we have φ(−→x ) �S φ(�y).
β Component i is essential (relevant) for a system φ if and only if

∧

ρ,s∈S
ρ�=s

∨

k,l∈Ci

−→x C\{i} ∈
�

j �=i

Cj , (k,−→x −i) ∈ Vρ, (l,−→x −i) ∈ Vs

i.e., any changing the system state is possible by changing the state of the
i-th element.

γ The system is called relevant if and only if every element is relevant to the
system.

Definition 2. The system is called a coherent if and only if the mapping φ is
increasing and relevant.

Example 1. Various description of there same structure. Consider the layout of
the elements connected according to the scheme in the Fig. 1. The set of all
items is C = {c1 . . . , c5}. The set of A = {c1, c2} elements is a series system
with model ({0, 1}A ,A, ϕA ), where ϕA (x1, x2) =

∏
j∈A xj ∈ A = {t0, t1}. The
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Fig. 1. Series and parallel structure – as binary and multistate system.

rest of the elements– B = {c3, c4, c5}, forms another subsytem – which can take
four states: B = {s0, s1, s2, s3}. For example, a combined car lamp with frosted
glass gives different light intensity in different states. The user does not know
which elements are functional and which are damaged – so the original model

ϕB (x3, x4, x5) = x3 ∨ x4 ∨ x5 ∈ A

is useless in this case because the system has more than two states. We can
propose for part B the model: ({0, 1}B ,B, ψB ), where

ψB (x3, x4, x5) =
5∑

j=3

xj ∈ B

and the model of hole system ({0, 1}C ,B, φ) with the structure function

φ(−→x ) = ϕA (x1, x2) ∗ ψB (x3, x4, x5) ∈ B.

2.2 Introductory Characteristic for the Importance Measure

There are at least two major reasons why we should investigate a measure of
importance of components in a system. First of them is a need to specify the
elements of the system that contribute to its destruction to a greater extent and
directly lower system reliability, which is why they should be subjected to more
attentive observation, so one can focus on development while saving costs. The
second reason is the ability to choose the most effective way to recognize system
damage by creating a repair checklist helpful in further analysis. However, it
must be emphasized that there is no universal measure that can be used anytime
regardless of the circumstances. Such measures for the binary system based on
the binary elements are presented in [37] (v. [30, Chap. 3]). In this chapter,
following [24, Chap. 6] and paper cited therein, some extension of importance
analysis of the elements based on the idea of multistate system is considered.
The research aims attention on components’ importance measures that could be
versatile, focusing on items that can be repaired at the specific period of time.

In practice, we can deal with systems in which the possible sets of the states
of individual elements can be different and the states of the system are not of
the same type as the states we assign to the elements of the system. However, in
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this analysis we can disregard the meaning of individual states. The important
thing is that the number of states of individual elements is finite and there is an
established order in the set of states. Where there may be ambiguities, we will
label the states of the system with German Fracture letters with indexes and
states of the elements by the Latin letters. To comply with the notations adopted
in the former studies (v. [23]), the states are indexed from 0 to M , so if |S| = s
(i.e. S = {s0, ..., ss−1}), then M = s. We assume that low indices correspond to
worse states, and higher ones to better ones. When switching from a multistate
to a binary system, we can assume that the number of states has been reduced:
{s0, ss} ⊂ S. For given states −→x ∈ CC we have the state of the system s = φ(−→x ).
A reduction to the binary system is determined by indication of the critical state
s� which by the order structure of S define maximal index of worse states j�

is such that sj� = s�. Let s�
j ∈ S be such state. This choice of critical element

reduce the state space as follows: s′ = s0I{s0,...,sj−1}(s) + sMI{sj ,...,sM }(s).
Following Natvig [23, p. 525], let us introduce notations: Si· = Ci×S, Si A =

Ci × SA , where SA = {sj : j ∈ A}. Define F = {sj : sj  s�
j} and AF = {j <

j�}.

Definition 3. A multistate monotone system with the space of elements C is
called

a) the multistate serial system if φMSs(−→x ) = min
1≤i≤n

xi;

b) the multistate parallel system φMPs(−→x ) = max
1≤i≤n

xi.

Definition 4. A multistate monotone system with the space of elements C and
the structure function φ is called strongly coherent if

φMSs(−→x )  φ(−→x )  φMPs(−→x )

and for every j ∈ M \ {0}, i ∈ N we have

sj  φ(k, �x−i) for every (k, �x−i) ∈ S1
i,j

sj � φ(l, �x−i) for every (l, �x−i) ∈ S0
i,j

where S0
i,j = SiAF

and S1
i,j = SiAF′.

Remark 1. Furthermore, let us assume that for i ∈ C, |C| = n the i-th compo-
nent has the random state Xi(t) ∈ Ci at time t. With the corresponding vector of
independent random processes

−→
X (t) = (X1(t), ...,Xn(t)) ∈ CC we have descrip-

tion of the states of all elements of the system, and the corresponding state of the
system is given by φ(

−→
X (t)) ∈ S. Without losing generality, we can use indexes

of system components and state indexes, both for elements and for the entire
system, instead of state names. In the following part we will denote the set of
elements as N (instead of C, |N | = n, and the sets of states C· and M. If this
does not lead to an ambiguity, it will be Ci = M = {0, . . . , M}. To emphasize
the different sizes of state sets, where it is important, we will mark it by indexing
state sets (e.g. Mr).
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2.3 Nonrepairable Coherent Multistate Systems

First, we will focus on multistate systems, where repair of the components is not
permitted. Let assume that

a) Ci = C, where i ∈ N
b) Xi(t), for t ≥ 0 and i ∈ N , is a Markov process on the probability space

(Ω,F ,P) with continuous time and the state space Mi.
c) Xi(0) = Mi, which means that all components are in the properly functioning

state Mi, i ∈ N , at time t = 0.

Furthermore, let present some notation

−→r (t) = (r11(t), ..., r
M
1 (t), r12(t), ..., r

M
2 (t), ..., r1n(t), ..., rM

n (t))

P (Xi(t) ≥ j) = pj
i (t) =

M∑

k=j

rs
i (t), j ∈ M

P (Xi(t) = j) = rj
i (t), j ∈ M

p
(k,l)
i (t, t + u) = P [Xi(t + u) = l|Xi(t) = k], 0 ≤ l < k ≤ M

P [φ(
−→
X (t)) � sj ] = P [1(φ(

−→
X (t)) � sj) = 1] = pj

φ(−→r (t))

λ
(k,l)
i (t) = lim

h→0

p
(k,l)
i (t, t + h)

h
, 0 ≤ l < k ≤ M

where at time t: reliability of the i-th component to the level j is given by
pj

i (t) while pj
φ(r(t)) is the reliability of the i-th component to the system [23].

To simplify, let us accept that for 0 ≤ l < k ≤ M we have λ
(k,l)
i (t) = 0.

Moreover, let us assume that for each component i, time spent in state k before
change to state k − 1, has a continuous distribution F k

i (t) with density fk
i (t).

It is assumed that the times spent in particular states are independent random
variables. Besides that, let us introduce row vector with dimension M + 1, such
as {

ek = (1k, 0) for k = 1, ..., n

e0 = 0

2.3.1 The Birnbaum’s Importance Measure
In [37] we discussed Birnbaum’s importance measure for the binary system,
while in this Sect. 2.3.1 we propose a measure for a non-repairable and multi-
state system - generalized weighted and not weighted Birnbaum’s measure. These
measures help in judgment which components of the system are the most valu-
able and important for the faultless functioning and higher reliability of the
system. Nevertheless, they measure importance only at fixed points of the time.
Furthermore, they are not dependent on the i-th component, what means that
the importance of the system is dependent on the operation of all components.
Generalized Birnabaum’s measure I

(i,k,j)
B (t) is the probability at time t that the
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system is in such state, in which its functioning of i-th component in state k is
decisive for the system to be in {j, ...,M} states [23]. It is formulated as

I
(i,k,j)
B (t) = P

[
I
(
φ(k,X(t)) ≥ j

) − I
(
φ(k − 1,X(t)) ≥ j

)
= 1

]

= pj
φ

(
(ek)i, r(t)

) − pj
φ

(
(ek−1)i, r(t)

)
,

where i ∈ N , and j, k ∈ M\{0}. Since
∑M

k=0 rk
i (t) = 1 for i = 1, ..., n, pk

i (t) = 1,
for k < 1, and pk

i (t) = 0, for k > M , then

pj
φ(r(t)) =

M∑

k=0

rk
i (t)pj

φ

(
(ek)i, r(t)

)

=
M∑

k=1

pk
i (t)

[
pj

φ

(
(ek)i, r(t)

) − pj
φ

(
(ek−1)i, r(t)

)]
+ pj

φ

(
(e0)i, r(t)

)
.

When i ∈ N and j, k ∈ M\{0}, we obtain

∂pj
φ(r(t))

∂rk
i (t)

= pj
φ((ek)i, r(t)) − pj

φ((e0)i, r(t))

∂pj
φ(r(t))

∂pk
i (t)

= pj
φ((ek)i, r(t)) − pj

φ((ek−1)i, r(t)) = I
(i,k,j)
B (t).

For case of M = 1 we have a corresponding Birnbaum’s importance measure (v.
[37]).

In some cases, it is better to use the weighted Birnbaum’s measure for the
multistate system. Hence, for critical state j ∈ M\{0} an utility w′ of being in
particular states is assigned in such a way that w′(s) = wjI{s�sj}(s)+wc

jIs≺sj
(s)

where wj ≥ wc
j , {wj}M

j=1 and {wc
j}M

j=1 are nonincreasing. We have for the system
leaving the set of states {j, ...,M} a utility loss cj = wj −wc

j ≥ 0. Without losing
generality, we can additionally impose a condition

∑M
j=1 cj = 1 on these losses.

The generalized weighted Birnbaum’s measure takes the form

Î
(i)
B (t) =

M∑

j=1

cj · I
(i,j)
B (t), where 0 ≤ Î

(i)
B (t) ≤ 1, (1)

while generalized Birnbaum measure is expressed by

I
(i,j)
B (t) =

∑M
k=1 I

(i,k,j)
B (t)

∑n
r=1

∑M
k=1 I

(r,k,j)
B (t)

where 0 ≤ I
(i,j)
B (t) ≤ 1. (2)

We have
∑n

i=1 Î
(i)
B (t) =

∑n
i=1 I

(i,j)
B (t) = 1.
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2.3.2 The Barlow-Proschan Importance Measure
The Barlow-Proschan measure also helps in deciding, which components of the
system are the most valuable for the proper functioning of the system and achiev-
ing its greater reliability. Moreover, the system failure reason can be identified
via repair checklist generation. The Barlow and Proschan importance measure
I
(i)
B−P of the i-th component is the probability that leaving the states {1, ...,M}

by the system converges in time with the jump down of the i-th component and
is denoted as

I
(i,j)
B−P =

∫ ∞

0

M∑

k=1

I
(i,k,j)
B (t) · rk

i (t) · λ
(k,k−1)
i (t)dt

=
∫ ∞

0

M∑

k=1

λ
(k,k−1)
i (t) · rk

i (t) ·
[
pj

φ

(
(ek)i, r(t)

) − pj
φ

(
(ek−1)i, r(t)

)]
dt,

where j ∈ {0, ...,M}, i = 1, ..., n and
∑n

i=1 I
(i,j)
B−P = 1. For a binary case when

M = 1, there is a following relationship

I
(i,1)
B−P = I

(i)
B−P

The Barlow-Proschan measure also occurs in generalized weighted form Îi
B−P

and the importance of the i-th component is denoted as

Îi
B−P =

M∑

j=1

cj · I
(i,j)
B−P , where 0 ≤ Î

(i)
B−P ≤ 1 and

n∑

i=1

Î
(i)
B−P = 1.

Weighted and nonweighted generalized Barlow-Proschan measure are in fact
generalized Birnbaum measure’s weighted averages. These measures indicates
that when component’s importance increases, the chance of this component to
be the direct reason of the system worsening also increases.

2.3.3 The Natvig Importance Measure
The Natvig measure concentrates on how component’s transition between states
influence performance of the system regarding the given system state.

For k ∈ {0, ...,M − 1} and i = 1, ..., n let introduce Ti,k which stands for
the i-th component’s time of the jump into state k and T ′

i,k is an assumed time
of the i-th component’s jump into state k after it was believed to undergo a
minimal repair at Ti,k. Next, for j ∈ {1, ...,m}, k ∈ {1, ...,M}, i = 1, ..., n
and interval [Ti,k−1, T

′
i,k−1] we have Y 1

i,k,j which is the system time in {j, ...,M}
states right away the i-th component changed it state from k to k − 1 and
then instantly is a subject of the fictive minimal repair. Furthermore, Y 0

i,k,j has
the same definition as Y 1

i,k,j , however, at the end the i-th component does not
undergo repair immediately, it stays in the state k − 1 for the whole interval
[Ti,k−1, T

′
i,k−1], such that
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Zi,k,j = Y 1
i,k,j − Y 0

i,k,j

Z̄i,k,j =
Zi,k,j∑n

r=1

∑M
k=1 EZr,k,j

. (3)

Hence, for j ∈ {1, ...,M}, k ∈ {1, ...,M}, i = 1, ..., n and applying the expecta-
tion with assumption EZi,k,j < ∞ , we obtain from (3), the generalized Natvig
importance measure of the i-th component I

(i,j)
N and its weighted version Î

(i,j)
N ,

given by

I
(i,j)
N =

M∑

k=1

EZ̄i,k,j

=
∑M

k=1 EZi,k,j∑n
r=1

∑M
k=1 EZr,k,j

, where 0 ≤ I
(i,j)
N ≤ 1 and

n∑

i=1

I
(i,j)
N = 1,

Î
(i,j)
N =

M∑

j=1

cj · I
(i,j)
N , where 0 ≤ Î

(i)
N ≤ 1 and

n∑

i=1

Î
(i)
N = 1.

Thus, the weighted Natvig measure may be interpreted as the extended, more
sophisticated Barlow-Proschan’s weighted measure.

2.4 Repairable Coherent Multistate Systems

In this section we analyze importance measures of multistate systems, where
components can be repaired after their failure. We assume that components
are in state M at time t = 0, that is all of them are functioning properly. To
simplify, we set the assumption of complete degradation from fully functioning
state to the absolute failure state. Furthermore, in the repairable system for
each component i, time spent in the state k before its transition to the state
k − 1, has a fully continuous distribution F k

i (t) with density fk
i (t) and mean

μk
i . Moreover, we accept that repair time of the i-th element has a density gi(t),

fully continuous distribution Gi(t) and mean μ0
i with independent times spent

in particular states.
Let present the notation for such system

P
[
Xi(t) = j] = ai

i(t), j = 0, ...,M

a(t) =
(
a1
1(t), ..., a

M
1 (t), a1

2(t), ..., a
M
2 (t), ..., a1

n(t), ..., aM
n (t)

)

pj
φ(a(t)) = P

[
I
(
φ(X(t) ≥ j

)
= 1

]
= P

[
φ(X(t) ≥ j)

]
,

where aj
i (t) at time t is the i-th component availability at level j and pj

φ(a(t))
at time t is the system availability to level j. For j ∈ M and i ∈ N there are
corresponding availabilities

aj
i = lim

t→∞ aj
i (t) =

μj
i∑M

l=0 μl
i

= μ̄j
i .

To simplify, let denote a(t) ≡ a.
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2.4.1 The Birnbaum Importance Measure
The generalized Birnbaum importance measure in the multistate repairable sys-
tem is given by

I
(i,k,j)
B (t) = pj

φ

(
(ek)i, a(t)

) − pj
φ

(
(ek−1)i, a(t)

)
, (4)

where i = 1, ..., n, j, k ∈ {1, ...,M}. From (1), (2) and (4) we may propose
stationary measures for the same i, j, k, expressed as

I
(i,k,j)
B = lim

t→∞ I
(i,k,j)
B (t) = pj

φ

(
(ek)i, a

) − pj
φ

(
(ek−1)i, a

)

I
(i,j)
B =

∑M
k=1 I

(i,k,j)
B∑n

r=1

∑M
k=1 I

(r,k,j)
B

, where 0 ≤ I
(i,j)
B ≤ 1 and

n∑

i=1

I
(i,j)
B = 1

Î
(i)
B =

M∑

j=1

cj · I
(i,j)
B , where 0 ≤ Î

(i)
B ≤ 1 and

n∑

i=1

Î
(i)
B = 1. (5)

2.4.2 Universal Generating Function
Let us consider a multistate system in steady state with a constant demand w,
(v. [20]), then we are able to extend the Birnbaum measure of the component
importance

I
(ij)
A (w) =

∂A(w)
∂pij

,

where pij stands for the probability of i-th component being in the specific state
j with a rate of performance gij and A(w) is a multistate system’s steady-state
availability with a constant demand w, given by

A(w) =
M∑

i=1

pi1(F (gi, w) ≥ 0),

where j ∈ M\{0}, pi is a steady-state probability that the system’s performance
is equal gi and F (gi, w) is a function of acceptability.

Let introduce a universal generating function (UGF) u(z), for the i-th compo-
nent with mi number of states gij and corresponding probabilities pij , Lisnianski
[20], Qin et al. [29], we have

ui(z) =
mi∑

j=1

pij · zgij .

Therefrom, we have a u-function U(z), expressed by

U(z) = Cf

(
u1(z), u2(z), ..., un(z)

) ≡ ⊗(
u1(z), u2(z), ..., un(z)

)

Demand can be a variable and then it may be described with two vectors:
w = {w1, ..., wM}, where wi is a possible level of demand, and q = {q1, ..., qM},
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where qi is a matching steady-state probability. Then, the extended Birnbaum’s
importance for any j-th component is given by

I
(ij)
A (w, q) =

M∑

m=1

qm · I
(ij)
A (wm)

These importance measures depend on the i-th component’s system position, its
performance level and system demand. The UGF method, due to the simpler
calculations and not necesarlly using Markov approach, is an excellent choice of
computing importance.

2.4.3 The Barlow-Proschan Importance Measure
For j, k ∈ {1, ...,M} and i = 1, ..., n let introduce the number of jumps N

(k)
i (t)

from state k to k − 1 of the i-th component in the time interval [0, t], Ñ
(k,j)
i (t)

which is the number of times in [0, t], when system leaves states {j, ...,M} as a
result of the i-th component jump from state k to k−1 and EN

(k)
i (t) ≡ M

(k)
i (t).

From [4] for j, k ∈ {1, ...,M} and i = 1, ..., n, we have

EÑ
(k,j)
i (t) =

∫ t

0

I
(i,k,j)
B (s)dM

(k)
i (s)

with I
(i,k,j)
B (t) defined as (4). Thus, time dependent generalized Barlow and

Proschan importance measure I
(i,j)
B−P (t) of the i-th component in the interval [0, t]

in the multistate repairable system and the corresponding weighted importance
measure Î

(i)
B−P (t) is given by

I
(i,j)
B−P (t) =

∑M
k=1 EÑ

(k,j)
i (t)

∑n
r=1

∑M
k=1 EÑ

(k,j)
r (t)

,

where 0 ≤ I
(i,j)
B−P (t) ≤ 1 and

∑n
i=1 I

(i,j)
B−P (t) = 1,

Î
(i)
B−P (t) =

M∑

j=1

cj · I
(i,j)
B−P (t),

where 0 ≤ Î
(i)
B−P (t) ≤ 1 and

∑n
i=1 Î

(i)
B−P (t) = 1.

Denote μi =
∑M

l=0 μl
i and Ī

(i,j)
B =

∑M
k=1 I

(i,k,j)
B · μ−1

i . From Barlow and
Proschan [4] we introduce analogous stationary measures

I
(i,j)
B−P = lim

t→∞ I
(i,j)
B−P (t) =

Ī
(i,j)
B∑n

i=1 Ī
(i,j)
B

, (6)

Î
(i)
B−P =

M∑

j=1

cj · I
(i,j)
B−P , (7)
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where Î
(i,j)
B−P is the weighted average of I

(i,j)
B−P , which is exactly the probability of

component i downward jump being the reason that the system leaves {j, ...,M}
states.

Theorem 1. For the multistate repairable system in series, where φ(x) =
min

1≤i≤n
xi, i = 1, ..., n and j ∈ {1, ...,M}, we have

I
(i,j)
B−P =

1∑M
k=j μk

i∑n
r=1

1∑M
k=j μk

r

.

Proof. From (6) and (5) we have

I
(i,j)
B−P =

(
I
(i,j,j)
B∑M
l=0 ul

i

) (
n∑

r=1

I
(r,j,j)
B∑M
l=0 ul

r

)−1

=

⎛

⎜⎜⎜⎜⎜⎝

∏

m �=i

∑M
k=j μk

m
∑M

l=0 μl
m

∑M
l=0 μl

i

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

n∑

r=1

∏

m �=r

∑M
k=j μk

m
∑M

l=0 μl
m

∑M
l=0 μl

r

⎞

⎟⎟⎟⎟⎟⎠

−1

=

∏
m �=i

∑M
k=j μk

m
∑n

r=1

∏
m �=r

∑M
k=j μk

m

=

1∑M
k=j μk

i∑n
r=1

1∑M
k=j μk

r

.

Theorem 2. For the multistate repairable parallel system, where φ(x) =
max
1≤i≤n

xi, i = 1, ..., n and j ∈ {1, ...,M}, we obtain

I
(i,j)
B−P =

1
∑j−1

k=0 μk
i∑n

r=1
1

∑j−1
k=0 μk

r

.

For the multistate system in series the stationary Barlow and Proschan impor-
tance measure of the component i decreases in μk

i for k = j, ...,M , the weaker
the more important, and unsatisfactory is not dependent on component’s mean
time to repair.

Proof. The proof for the parallel system is analogous to the proof of the theorem
1

I
(i,j)
B−P =

I
(i,j,j)
B∑M
l=0 ul

i

∑n
r=1

I
(r,j,j)
B∑M
l=0 ul

r

=

⎛

⎜⎜⎜⎜⎝

∏

m �=i

∑j−1
k=0 μk

m∑M
l=0 μl

m
∑M

l=0 μl
i

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

n∑

r=1

∏

m �=r

∑j−1
k=0 μk

m∑M
l=0 μl

m
∑M

l=0 μl
r

⎞

⎟⎟⎟⎟⎠

−1

=

∏
m �=i

∑j−1
k=0 μk

m∑n
r=1

∏
m �=r

∑j−1
k=0 μk

m

=
1

∑j−1
k=0 μk

i∑n
r=1

1
∑j−1

k=0 μk
r

.
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For the multistate system in parallel the stationary Barlow and Proschan impor-
tance measure of the component i also decreases in μk

i for k = 1, ..., j − 1 and
in the μ0

i , hence the better the more significant. Nonetheless, in this case the
measure depends on mean times to repair of the component and also on mean
times to jumps downward.

Theorem 3. Let the component i be serial (φ(x) = min(xi, φ(Mi, x))) or par-
allel (φ(x) = max(xi, φ(0i, x))) to the system. For j ∈ {1, ...,M} and k �= i

let
∑M

l=j μl
i ≤ μM

k in series case and
∑j−1

l=0 μl
i ≤ μ0

k in the parallel case, then

I
(i,j)
B−P ≥ I

(k,j)
B−P . In addition, the numerator has corresponding properties. Hence,

∑M
r=1 I

(i,r,j)
B∑M

l=0 μl
i

≥
∑M

r=1 I
(k,r,j)
B∑M

l=0 μl
k

+
pj

φ

(
(e0)k, a

)

∑M
l=j μl

i

=
∑M

r=1 I
(k,r,j)
B∑M

l=0 μl
k

+
1 − pj

φ

(
(eM )k, a

)
∑j−1

l=0 μl
i

.

2.4.4 The Natvig Importance Measure
The Natvig measure for the multistate repairable systems is a natural extension
of the one for nonrepairable system 2.3.3. For m = 1, 2, ..., k ∈ {0, ...,M} and
i = 1, ..., n we introduce the i-th component’s time of the m-th jump into state
k given by Ti,k,m and the i-th component’s length of the m-th time of repair
Di,m, such that

Ti,M,m = Ti,0,m + Di,m, where Ti,M,0 = 0.

For the same i and m and k ∈ {0, ...,M − 1} we introduce a T ′
i,k,m, which

is a fictive time of the i-th component’s m-th jump into state k after it was
believed to undergo a fictive minimal repair at Ti,k,m. Now, for the same i, m
and j, k ∈ {1, ...,M} we define Y 1

i,k,j,m as the time of the system in {j, ...,M}
states in the period [min(Ti,k−1,m,t, t),min(T ′

i,k−1,m,t, t)] immediately after the
i-th component changes the state from k to k − 1 and then its prompt fictive
minimal repair. Y 0

i,k,j,m is defined the same as Y 1
i,k,j,m, however it is assumed that

the i-th component stays in its state and does not undergo any repair. Hence,
we have

Zi,k,j,m = Y 1
i,k,j,m − Y 0

i,k,j,m.

To examine the effect of the fictitious minimal repairs, we need to sum up their
contribution. Thus, for j ∈ {1, ...,M}, k ∈ {1, ...,M − 1}, i = 1, ..., n, and
applying the expectation we obtain

E
[ ∞∑

m=1

Zi,k,j,m · I
(
Ti,k,m ≤ t

)] d= EYi,k,j(t)

E
[ ∞∑

m=1

Zi,M,j,m · I
(
Ti,M,m−1 ≤ t

)] d= EYi,M,j(t).
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Hence, for j, k ∈ M \ {0}, i ∈ N and assumption EYi,k,j(t) < ∞ , we obtain the
generalized Natvig importance measure of the i-th component in the period of
time [0, t] expressed by I

(i,j)
N (t) and its weighted version Î

(i,j)
N (t), given by

I
(i,j)
N (t) =

∑M
k=1 EYi,k,j(t)∑n

r=1

∑M
k=1 EYr,k,j(t)

,

where 0 ≤ I
(i,j)
N (t) ≤ 1 and

∑n
i=1 I

(i,j)
N (t) = 1,

Î
(i)
N (t) =

M∑

j=1

cj · I
(i,j)
N (t),

where 0 ≤ Î
(i)
N (t) ≤ 1 and

∑n
i=1 Î

(i)
N (t) = 1.

Theorem 4. For k ∈ {1, ...,M − 1}

EYi,k,j(t) =
∫ t

0

∫ t

u

I
(i,k,j)
B (w) · F̄ k

i (w − u) · ( − ln F̂ k
i (w − u)

)
dwdM

(k+1)
i (u)

EYi,M,j(t) =
∫ t

0

I
(i,M,j)
B (w) · F̄M

i (w) · ( − ln F̂M
i (w)

)
dw

+
∫ t

0

∫ t

u

I
(i,M,j)
B (w) · F̄M

i (w − u) · ( − ln F̂M
i (w − u)

)
dwdRi(u)

The proof of the theorem can be found in Natvig [23]. Expressions in theorem
4 can be transformed into corresponding stationary importance measures by
dividing by t and applying limit with respect to t → ∞ and renewal theory
argument presented by Barlow and Proschan [4]:

I
(i,j)
N = lim

t→∞ I
(i,j)
N (t) =

μ
k(p)
i ·

∑M
k=1 I

(i,k,j)
B∑M

l=0 μl
i

∑n
r=1

(
μ

k(p)
r ·

∑M
k=1 I

(r,k,j)
B∑M

l=0 μl
r

)

Î
(i)
N =

M∑

j=1

cj · I
(i,j)
N , (8)

where

μ
k(p)
i

d= E[T ′
i,k−1,m − Ti,k−1,m] =

∫ ∞

0

F̄ k
i (t) · (− ln F̄ k

i (t))dt

Theorem 5. For the multistate repairable series system, where j ∈ {1, ...,M}
and i = 1, ..., n, we have

I
(i,j)
N =

μ
j(p)
i∑M

k=j μk
i

(
n∑

r=1

μ
j(p)
r∑M

k=j μk
r

)−1
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and for parallel case we obtain

I
(i,j)
N =

μ
j(p)
i∑j−1

k=0 μk
i

(
n∑

r=1

μ
j(p)
r∑j−1

k=0 μk
r

)−1

Thus, the stationary measures (8) for the multistate system in series give unsatis-
factory results due to not being dependent on components’ mean time to repair.
Unlike the series case, the stationary measure for the parallel system depend on
mean time to repair as well as on the distribution of the downward transitions
of components’ states.

2.4.5 The Natvig Measure - Dual Extension
Since the Natvig measure does not give satisfactory results for all multistate
systems, we introduce its dual extension. Now, for m = 1, 2, ... and i = 1, ..., n,
T ′

i,M,m is a fictive time of the i-th component’s m-th jump into state M following
a fictive minimal total failure at Ti,M,m. For the same i, m and j ∈ {1, ...,M}
we define Y 1

i,0,j,m as the time of the system in {0, ..., j − 1} states in the period
[min(Ti,M,m,t, t),min(T ′

i,M,m,t, t)] immediately after the i-th component state
transition from 0 to M and its prompt fictive minimal total failure. Y 0

i,0,j,m is
defined the same as Y 1

i,k,j,m, however it is assumed that the i-th component stays
in its state for the whole period. Hence, we have

Zi,0,j,m = Y 1
i,0,j,m − Y 0

i,0,j,m

Yi,0,j(t)
d=

[ ∞∑

m=1

Zi,0,j,m · I
(
Ti,0,m ≤ t

)]
. (9)

To examine the effect, we need to sum up repair contributions at Ti,M,m.
Thus, for i = 1, ..., n, j ∈ {1, ...,M}, m = 1, 2, ..., and applying the expectation,
we obtain

Theorem 6. For j ∈ {1, ...,M} and i = 1, ..., n

EYi,0,j(t) =
∫ t

0

∫ t

u

M∑

k=1

I
(i,k,j)
B (w) · F̄i(w − u) · (− ln F̄i(w − u))dwdM1

i (u).

Hence, from (9) and Theorem 6, for j ∈ {1, ...,M}, i = 1, ..., n, k ∈ {0, ...,M},
and assumption of EYi,k,j(t) < ∞, we obtain the dual generalized non-weighted
and weighted Natvig measure, I

(i,j)
D,N (t) and Î

(i)
D,N (t) respectively, given by

I
(i,j)
D,N (t) =

EYi,0,j(t)∑n
r=1 EYr,0,j(t)

, (10a)

where 0 ≤ I
(i,j)
D,N (t) ≤ 1 and

∑n
i=1 I

(i,j)
D,N (t) = 1

Î
(i)
D,N (t) =

M∑

j=1

cj · I
(i)
D,N (t), (10b)
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where 0 ≤ Î
(i)
D,N (t) ≤ 1 and

∑n
i=1 Î

(i)
D,N (t) = 1. Moreover, for the same i, k, j,

and assumption of EYi,k,j(t) < ∞, we may introduce extended versions of (10a)
- I

∗(i,j)
N (t) and (10b) - Î

∗(i)
N (t), denoted as

I
∗(i,j)
N (t) = EYi,0,j(t)

(
n∑

r=1

EYr,0,j(t)

)−1

,

where 0 ≤ I
∗(i,j)
N (t) ≤ 1,

∑n
i=1 I

∗(i,j)
N (t) = 1. We have Î

∗(i)
N (t) =

∑M
j=1 cj ·

I
∗(i,j)
N (t), where 0 ≤ Î

∗(i)
N (t) ≤ 1 and

∑n
i=1 Î

∗(i)
N (t) = 1. Furthermore, corre-

sponding stationary measures for (10) are

I
(i,j)
D,N = lim

t→∞ I
(i,j)
D,N (t) =

μ
0(p)
i ·

∑M
k=1 I

(i,k,j)
B∑M

l=0 μl
i

∑n
r=1

(
μ
0(p)
r ·

∑M
k=1 I

(r,k,j)
B∑M

l=0 μl
r

)

I
∗(i,j)
N = lim

t→∞ I
∗(i,j)
N (t) =

(μk(p)
i + μ

0(p)
i ) ·

∑M
k=1 I

(i,k,j)
B∑M

l=0 μl
i

∑n
r=1

(
(μk(p)

r + μ
0(p)
r ) ·

∑M
k=1 I

(r,k,j)
B∑M

l=0 μl
r

)

Î
(i)
D,N =

M∑

j=1

cj · I
(i,j)
D,N , and Î

∗(i)
N =

M∑

j=1

cj · I
∗(i,j)
N ,

where

μ
0(p)
i

d= E[T ′
i,M,m − Ti,M,m] =

∫ ∞

0

Ḡi(t) · (− ln Ḡi(t))dt

Theorem 7. For the multistate repairable series system, where j ∈ {1, ...,M}
and i = 1, ..., n, we have

I
∗(i,j)
N =

μ
j(p)
i + μ

0(p)
i∑M

k=j μk
i

(
n∑

r=1

μ
j(p)
r + μ

0(p)
r∑M

k=j μk
r

)−1

and for parallel case we obtain

I
∗(i,j)
N =

μ
j(p)
i + μ

0(p)
i∑j−1

k=0 μk
i

(
n∑

r=1

μ
j(p)
r + μ

0(p)
r∑j−1

k=0 μk
r

)−1

Thus, for both parallel and series repairable multistate system, the extended
generalized Natvig measures depend on the repair times distribution and on the
component’s distribution of time to downward jumps, what gives a desirable
results.
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3 State Dependent Importance Measure

As in the case of binary systems and semi-coherent structures (v. [37]), also in
multistate systems, we ask about the role (importance) of the structure element
in maintaining it in the analyzed state. We focus on the element and its state
cij . The responsibility for that is the place of the element in the structure and
an inner properties of it emanated by its state. These are the basis for assessing
its meaning. The set of elements of the system should be described their states:
C = E × S = {(

−→
C1,

−→
C2, . . . ,

−→
Cs) : cij ∈ E × S}, where vector components are

the elements state. Let us imagine that each element has its administrator. If
we treat the administrator of element in the system a player in a cooperative
game, then in multi-state systems the tendency to remain in the examined state
requires identifying the sets of elements (coalitions) responsible for that: the
element and its state. The system may be in one of the numbered states j ∈
S = {1, 2, . . . ,K}. Let Pij be a family of sets of states such that if A ∈ Pi,
cij ∈ A, then A\{cij} /∈ Pij . Let P̄ij be a family of sets created from sets of
the Pij family by removing critical elements. We will take such a family as the
basis for the aggregation of structure elements and, similarly to the multiplayer
model with stopping moments as strategies (v. Szajowski and Yasuda [35]), the
signal to stop will be the agreement of the elements from the set belonging to
this family P̄ij (the coalitions between elements are formed taking into account
thier states).

Multi-player decision problems assume that each game participant has a pref-
erence function based on a scalar function defined on the states of a certain pro-
cess. If the elements of the structure are assigned to conservators (hypothetical
players) who take care of the condition of these elements so that they fulfill their
functions properly, the mentioned function can estimate profits and losses result-
ing from the state of the element. In principle, this condition should be form the
set S. However, in reality, it is the diagnostician who decides when to perform
maintenance or replacement (and bear the cost of it). An element in a system
usually lowers its efficiency (e.g., mating components in a driveline may need
lubrication to reduce friction, which results in increased energy expenditure and
lower system efficiency), but the maintenance downtime is wasted and cannot
always be managed. The operating conditions of the system make it possible to
determine the correct payment function (cost) for each maintenance technician.
Each of the n (which are less or equal the number of the elements in the struc-
ture) conservators, observing the states on which its payment depends, decides
whether to order a maintenance break or to carry out uninterrupted operation.
For safety reasons and the structure of the system, it is clear whether such a
decision of a single observer is effective - it can start work when the system
is stopped, and the stoppage requires the consensus of conservators from some
critical path.

To analyze the effects of action, we will use the model of the following antag-
onistic game with elements of cooperation defined by the Pij , which are defined
by the functionality of the structure and the state of the element i. Further con-
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sideration in this section assume that the conditionality structure is determined
by Pij .

Following the results of the author and Yasuda [35] the multilateral stopping
of a Markov chain problem can be described in the terms of the notation used in
the non-cooperative game theory (see [21,22,27]). To this end the process and
utilities of its states should be specified.

Definition 5. (ISS-Individual Stopping Strategies). Let (
−→
Xn,Fn,Px),

n = 0, 1, 2, . . . , N , be a homogeneous Markov chain with the state space (E,B).

– The players are able to observe the Markov chain sequentially. The horizon
can be finite or infinite: N ∈ N ∪ {∞}.

– Each player has their utility function fi : E → Re, i = 1, 2, . . . , p, such that
Ex|fi(

−→
X 1)| < ∞ and the cost function ci : E → Re, i = 1, 2, . . . , p.

– If the process is not stopped at moment n, then each player, based on Fn, can
declare independently their willingness to stop the observation of the process.

Definition 6. (see [40]). An individual stopping strategy of the player i (ISS)
is the sequence of random variables {σi

n}N
n=1, where σi

n : Ω → {0, 1}, such that
σi

n is Fn-measurable.

The interpretation of the strategy is following. If σi
n = 1, then player i

declares that they would like to stop the process and accept the realization
of Xn.

Definition 7. (SS–Stopping Strategy (the aggregate function).). Denote

σi = (σi
1, σ

i
2, . . . , σ

i
N )

and let S i be the set of ISSs of player i, i = 1, 2, . . . , p. Define S = S 1 ×S 2 ×
. . . × S p. The element σ = (σ1, σ2, . . . , σp)T ∈ S will be called the stopping
strategy (SS).

The stopping strategy σ ∈ S is a random matrix. The rows of the matrix are the
ISSs. The columns are the decisions of the players at successive moments. The
factual stopping of the observation process, and the players realization of the
payoffs is defined by the stopping strategy exploiting p-variate logical function.

Let δ : {0, 1}p → {0, 1} be the aggregation function. In this stopping game
model the stopping strategy is the list of declarations of the individual players.
The aggregate function δ converts the declarations to an effective stopping time.

Definition 8. (An aggregated SS). A stopping time τδ(σ) generated by the
SS σ ∈ S and the aggregate function δ is defined by

τδ(σ) = inf{1 ≤ n ≤ N : δ(σ1
n, σ2

n, . . . , σp
n) = 1}

(inf(∅) = ∞). Since δ is fixed during the analysis we skip index δ and write
τ(σ) = τδ(σ).
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Definition 9. (Process and utilities of its states).

– {ω ∈ Ω : τδ(σ) = n} =
⋂n−1

k=1{ω ∈ Ω : δ(σ1
k, σ2

k, . . . , σp
k) = 0} ∩ {ω ∈ Ω :

δ(σ1
n, σ2

n, . . . , σp
n) = 1} ∈ Fn;

– τδ(σ) is a stopping time with respect to {Fn}N
n=1.

– For any stopping time τδ(σ) and i ∈ {1, 2, . . . , p} the payoff of player i is
defined as follows (cf. [33]):

fi(Xτδ(σ)) = fi(Xn)I{τδ(σ)=n} + lim sup
n→∞

fi(Xn)I{τδ(σ)=∞}.

Definition 10. (An equilibrium strategy (cf. [35])). Let the aggregate rule
δ be fixed. The strategy ∗σ = (∗σ1, ∗σ2, . . . , ∗σp)T ∈ S is an equilibrium strategy
with respect to δ if for each i ∈ {1, 2, . . . , p} and any σi ∈ S i we have

vi(−→x ) = Ex[fi(
−→
X τδ(∗σ))+

τδ(
∗σ)∑

k=1

ci(
−→
Xk−1)] ≤ Ex[fi(

−→
X τδ(∗σ(i)))+

τδ(
∗σ(i))∑

k=1

ci(
−→
Xk−1)].

Definition 11. (Voting Game Importance). Let the aggregate rule δ = h
be fixed and the strategy ∗σ = (∗σ1, ∗σ2, . . . , ∗σp)T ∈ S be an equilibrium strategy
with respect to δ. The voting game importance of the elements is the component
of

VGI =
E−→

Q0
−→v (

−→
X )

E < −→v (
−→
X ),

−→
Q0 >

.

The measure of significance of a structure element introduced in this way
takes into account its role in the structure by the aggregation function h, it is
normalized in the sense that the measures of all elements sum up to 1. It takes
into account the external loads of elements, the cost of maintenance and repairs.
Its use requires in-depth knowledge of the system and its components, which is a
significant obstacle in its introduction into diagnostic practice. The hardest part
is figuring out the payout functions (cost, risk, profit). The simplified version of
the method may include in the payout functions only the operating risk with
components in a condition requiring maintenance or repair, which is usually
associated with less safety.

4 Concluding Remarks

4.1 Summary

Ensuring the reliability and secure performance of the simple as well as complex
systems has an indisputable significance in system analysis. Therefore, the aim
of the research was to answer the question how to recognize the most influen-
tial elements of the system to improve its reliability. This paper has demon-
strated several approaches to the concept of importance measure depending on
the parameters and assumptions characterizing the system.
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This analysis showed that the importance measures first introduced by Birn-
baum in 1968 became the foundation for further search of more convenient and
versatile definitions of the importance of components in system reliability and
the stable exploration of the multistate systems. Since then, the research has
expanded in different directions but until nowadays the importance evaluation
of highly complex structures such as networks may cause many computational
problems. Besides, restrictions regarding coherence may exclude examination of
certain systems. Therefore, this subject is under constant exploration.

4.2 Important Direction of Further Investigations

Wu and Coolen [39], when interpreting component importance, concluded that
the importance of a component should depend on the following factors:

1. The location of the component in the system.
2. The reliability of the component.
3. The uncertainty in the estimate of the component reliability and related cost.
4. The costs of maintaining this component in a given time interval (0, t) and

the state.

(v. also Rausand et al. [31]). The factor (3) highly depends on the statisti-
cal method implemented in the analyzes of exploratory data analyzes. Due to
source of the data, the role of structure of the system to the reliability of it,
the importance measure should take these elements into accounts. We are not
observing the hidden state of the system directly and the information taken
from the sensors should by interpreted and evaluated to infer on the hidden
state of the elements and the system. The details of the construction needed,
based on the results by Szajowski [36], are subject of a paper under editorial
process. The works known to us show that betweenness centrality measure (v.
Freeman [16]) is closely related to the Shapley value and Banzhaf value (v. Grof-
man and Owen [19]), and thus to importance measure in the reliability theory.
While authors find it more convenient to use the terminology of reliability theory,
the reader may as well transition to the terminology introduced by Freedman in
community science. It would be at least potentially usable to discuss the various
discoveries in general classification of the network elements by the game theory
methods (v. e.g. Skibski et al. [34]).
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A List of Symbols

Abbreviations
The following abbreviations are used in this manuscript:

∅-An empty set(p. 68) A,B,C– The sets of elements

and its subsets (p. 48)

Ωi,S– the sets of states (p. 48) |A|– the number of elements in A (p. 48)
�

i∈A Ωi = Ω1 × . . . × Ω|A|–the Cartesian A′ = C \ A–A′ is the complement

product of sets (p. 48) of A to the space of elements C (p. 48)
−→x = (x1, x2, . . . , xn)
−→x −j = (x1, . . . , xj−1, xj+1, . . . , xn) (a, −→x −j) = (x1, . . . , xj−1, a, xj+1, . . . , xn)

�1 = (1, 1, . . . , 1) �0 = (0, 0, . . . , 0)

B|J| =
�

j∈J Bj , where Bj = B, J ⊂ N −→x J = (xi1 , xi2 , . . . , xi|J|) ∈ B|J|,J ⊂ N
−→x J = −→x −(N\J) ∈ B|J|, where J ⊂ N 〈−→x , −→y 〉– the inner product in Ren

(a, −→x −j) = (−→x −j , a) = (x1, . . . , xj−1, a, xj+1, . . . , xn)−→
F (t) = (F1(t), F2(t), . . . , Fn(t))

∏n
i=1 pi = p1 · p2 · . . . · pn (p. 58)

� The partial ordering (p. 69)

BS Binary system (p. 67) MSS Multi-state system (p. 67)

PRAs Probabilistic Risk Assessments

B Endnotes

B.1 Risk

It is difficult to define risk in general. In short, when we think about risk, we mean
the possibility of an unexpected loss caused by an unpredictable event or harmful
behavior (human, machine, animal, nature). One can think about the possibility
of loss or injury. From the other side, the risk is the chance or probability that a
person (a system) will be harmed or experience an adverse health (functioning)
effect if exposed to a hazard. It may also apply to situations with property
or equipment loss, or harmful effects on the environment. Therefore, we are
talking about reducing ownership and loss as a result of a random event. Risk
reduction means minimizing the chance of a loss occurring or limiting its size.
To better understand the risk and the possibilities of risk management, the task
of measuring risk has been set. The task is not formulated so that its solution is
universal. This allowed to determine the desired properties of such measures [3].

B.2 General Idea of Importance Measure

The systems can be split into two categories: (i) binary systems (BS) and (ii)
multistate systems (MSS).

There are four main classes of importance measures (v. Birnbaum [9],
Amrutkar and Kamalja [2])
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(I) Reliability importance measure
(II) Structural importance measure

(III) Lifetime importance measure
(IV) Failure and its recovery costs importance measure

The cost of failure (leaving the given state) and its recovery importance measure
(IV) depends on the lifetime distribution of the component, its position in the
system, and the loss related to the nonavailability of the system in the given state,
diagnosis and repair. It is a new look at the importance of the components of a
complex system. The analysis and significance measure proposed in this paper
is based on the possibility of observing the components and a rational system
maintenance policy, which consists in stopping the system for maintenance and
repair at a time when it pays off to a sufficient number of components. The
details are based on a cooperative analysis of costs and losses in the operation
of such a system (v. Sect. 3, Szajowski and Yasuda [35]).

B.3 Review of Importance Measure Concepts

Since Birnbaum [8,9] the importance measures were investigated and extended in
various directions (v. Amrutkar and Kamalja [2]). The basis for the construction
of significance measures is the observation that the binary system is well modeled
by random graphs. The basis is the concept of structure.

Definition 12 (The structure). For a non-empty and finite set N7, we
denote by P the family of subsets N having the following properties

(1) ∅ ∈ P
(2) N ∈ P;
(3) S ⊆ T ⊆ N and S ∈ P imply T ∈ P.

The family P is called structure.

This basic structure has been studied in many areas under a variety of names.
Monograph by Ramamurthy [30] unified the definitions and concepts in two
main fields of application, that is cooperative game theory (simple games)
(v. Tijs [38, Chapt. 10]) and reliability theory (semi-coherent and coherent struc-
tures, v. Esary and Proschan [15], Barlow and Wu [6], Ohi [26]).

The relationships with cooperative games can be helpful in determining the
importance of elements for the reliability of the system and at the same time a
role in the possibility of efficient diagnosis in the event of a failure, as well as in
determining the rules of the procedure for removing a failure. Removing the fail-
ure causes that the features of the element and the repaired module are restored.
However, it should be remembered that the method of repair and the quality
of the elements used reproduce the original features to varying degrees (v. e.g.

7 The list of symbols and abbreviations used in the work has been collected in the
section abbreviation on page 25.
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Navarro et al. [25]). This has an impact on further operation, diagnosis and main-
tenance (uplift). Rules are easier to set when they are associated with objective
measures of the features of components, modules, and the system. Analysis of
significance measures in the context of repair helps to understand such relation-
ships. Let us therefore establish these relationships (v. Do and Bérenguer [11]).

In game theory, consider the set C = {1, 2, . . . , n} of players and the power
set 2C of coalitions. A function λ : 2C → {0, 1} is called a simple game on C in
characteristic function form if

(1) λ(∅) = 0;
(2) λ(C) = 1;
(3) S ⊆ T ⊆ C implies λ(S) ≤ λ(T ).

A coalition S ⊂ C is called winning if λ(S) = 1 and it is called blocking if
λ(C\S) = 0. Indeed, the collection of winning (or blocking) coalitions in a
simple game satisfies the three properties of the basic structure mentioned at
the beginning.

In reliability theory, consider the set C = {1, 2, . . . , n} of components with
which a system g has been built. The state of the system as well as any compo-
nent can either be 0 (a failed state) or 1 (a functioning state). The knowledge
of the system is represented by the knowledge of the structure function of the
system, which is defined as a switching function (Boolean) g : {0, 1}n → {0, 1}
of n variables (or n dimensional vector �x)8. The structure function g (simply
the structure g) is called semicoherent if (1) g is monotone, i.e. −→x  −→y implies
g(−→x ) ≤ g(−→y ), and (2) g(�0) = 0 and g(�1) = 1.

The semicoherent structure can be called coherent when all its elements are
significant. A subset A ⊂ C is called a path set of g, if g(�1A ,�0C\A ) = 1, i.e. the
system is working if the items forming the set A [resp. C \A] are working [resp.
failed]. Similarly, A ⊂ C is called a cut set of g, if g(�0A ,�1C\A ) = 0. Clearly,
the assemblage of path [cut] sets of a semicoherent structure g satisfies the three
properties of the basic structure mentioned at the beginning.

B.4 Cooperative Games vs. Semicoherent Systems

[30, Sect. 2] indicates the correspondence between the terminology of cooperative
game theory and reliability by means of a list of equivalent notions: players
or components; simple game or semicoherent structure; characteristic function
or structure function; winning [blocking] coalition or path [cut] set; minimal
winning [blocking] coalition or minimal path [cut] set. The review of the various
types of simple games and semicoherent structures encountered in the literature
are mentioned there. The most interesting is [30, Chap. 3], where a detailed
study of the problem of assessing the importance [power] of components [players]
comprising the system [game] is described. The emphasis is on the probabilistic
approach to the quantification of relative importance.
8 With the same symbol, we denote the system and the analytical description of the

system using the structure function wherever it does not lead to misunderstandings.
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37. Szajowski, K.J., Średnicka, M.: Operation comfort vs. the importance measure of
system components. Math. Appl. 48(2), 191–226 (2020). ISSN 1730-2668. https://
doi.org/10.14708/ma.v48i2.7058. MR 4243105

38. Tijs, S.: Introduction to Game Theory. Texts and Readings in Mathematics, vol.
23. Hindustan Book Agency, New Delhi (2003). ISBN 81-85931-37-2

39. Wu, S., Coolen, F.P.: A cost-based importance measure for system components: An
extension of the Birnbaum importance. European J. Oper. Res. 225(1), 189–195
(2013). https://doi.org/10.1016/j.ejor.2012.09.034. ISSN 0377-2217

40. Yasuda, M., Nakagami, J., Kurano, M.: Multivariate stopping problems with a
monotone rule. J. Oper. Res. Soc. Jpn. 25(4), 334–350 (1982). ISSN 0453-4514.
https://doi.org/10.15807/jorsj.25.334. MR 692543

https://doi.org/10.1007/978-3-642-59105-1_6
https://doi.org/10.1007/978-3-642-59105-1_6
https://doi.org/10.1007/s00362-020-01168-2
https://doi.org/10.1007/s00362-020-01168-2
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1448.91017&format=complete
https://doi.org/10.14708/ma.v48i2.7058
https://doi.org/10.14708/ma.v48i2.7058
http://www.ams.org/mathscinet-getitem?mr=4243105&return=pdf
https://doi.org/10.1016/j.ejor.2012.09.034
https://doi.org/10.15807/jorsj.25.334
https://mathscinet.ams.org/mathscinet-getitem?mr=692543&return=pdf

	Operation Comfort of Multistate System vs. The Importance of Its Components
	1 Introduction
	1.1 Preliminaries
	1.2 Investigation of Element Role in a Given State
	1.3 Organization of the Paper

	2 Multistate Systems
	2.1 Coherent Multistate Systems
	2.2 Introductory Characteristic for the Importance Measure
	2.3 Nonrepairable Coherent Multistate Systems
	2.4 Repairable Coherent Multistate Systems

	3 State Dependent Importance Measure
	4 Concluding Remarks
	4.1 Summary
	4.2 Important Direction of Further Investigations

	A  List of Symbols
	B  Endnotes
	B.1  Risk
	B.2  General Idea of Importance Measure
	B.3  Review of Importance Measure Concepts
	B.4  Cooperative Games vs. Semicoherent Systems

	References




