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Abstract. The security of blockchain based decentralized ledgers relies
on consensus protocols executed between mutually distrustful parties.
Such protocols incur delays which severely limit the throughput of such
ledgers. Payment and state channels enable execution of offchain pro-
tocols that allow interaction between parties without involving the con-
sensus protocol. Protocols such as Hashed Timelock Contracts (HTLC)
and Sprites (FC’19) connect channels into Payment Channel Networks
(PCN) allowing payments across a path of payment channels. Such a
payment requires each party to lock away funds for an amount of time.
The product of funds and locktime is the collateral of the party, i.e.,
their cost of opportunity to forward a payment. In the case of HTLC,
the locktime is linear to the length of the path, making the total collateral
invested across the path quadratic in size of its length. Sprites improved
on this by reducing the locktime to a constant by utilizing smart con-
tracts. Atomic Multi-Channel Updates (AMCU), published at CCS’19,
introduced constant collateral payments without smart contracts. In this
work we present the Channel Closure attack on AMCU that allows a
malicious adversary to make honest parties lose funds. Furthermore, we
propose the Payment Trees protocol that allows payments across a PCN
with linear total collateral without the aid of smart contracts; a compet-
itive performance similar to Sprites, and yet compatible to Bitcoin.
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1 Introduction

Blockchain based decentralized ledgers as introduced by Nakamoto [12] have
enjoyed popularity and received interest from the research community and prac-
titioners. Consensus protocols allow these ledgers to be operated by mutually
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distrustful parties at the cost of limited throughput. For example, Visa as a
centralized system can process orders of magnitude more transactions within a
given time frame than the most prominent blockchains as Bitcoin and Ethereum.

The main motivation for the development of offchain protocols is to close the
gap in transaction throughput. The idea is to allow parties to interact with each
other without interacting with the ledger, while still being able to use it to resolve
disputes. Offchain protocols operate on channels that are created between two
parties. Channels hold a state which can be enforced on the ledger. Payment
channels [4,13,15] store the number of coins the two parties have locked inside
that channel. Offchain protocols provide a means to alter this state arbitrarily
often and thus improving the transaction throughput in the overall system.

Individual channels can be extended to channel networks, e.g. PCNs Light-
ning [15] and Raiden [1]. This is done using techniques, such as HTLC [2,15],
that allow for payments of b ∈ N coins across a path of payment channels of
length n ∈ N. This is performed by executing the same payment on each chan-
nel within the payment path atomically. All parties on the payment path have
to lock the payment amount for a duration of up to locktime. The opportunity
cost a party has to invest is the collateral [10] which equals the payment amount
b multiplied by the locktime. In turn, parties can impose fees to invest collateral.
In the case of HTLC, a party’s collateral equals O(nbΔ) in the worst-case where
Δ is a parameter of the underlying ledger and is the upper limit of the time it
takes for a transaction to be included in the ledger.

High collateral investments can be exploited by malicious adversaries to per-
form grieving and denial-of-service attacks [11,14]. For example, an attacker
might operate a channel to collect fees by forwarding payments. However, pay-
ments might be routed through competing channels instead. To sabotage the
competitor, the attacker can route a payment through these channels without
the intent of executing it, locking the competing channel’s coins for the entirety
of the locktime. These channels experience a denial-of-service scenario by being
unable to forward any other payments, losing fees that the attacker can collect
through their own channel. Performing this attack on a large scale can result in
denial-of-service for the whole PCN. On a lower scale, a griever might force par-
ties to lock away their funds for as long as possible by delaying their cooperation
until the last moment. An alternative form of this attack involves routing multi-
ple low value payments through a competing channel, up until a point where the
channel cannot add any further HTLCs even though it contains enough coins.
In the case of the Lightning network, these types of denial-of-service attacks can
lock all of a channel’s coins for up to around 2 weeks [11].1

For HTLC the total collateral locked over a whole payment path is O(n2bΔ)
and therefore quadratic in the payment paths length. Sprites [10] reduce the col-
lateral of each party to O(b(n + Δ)) and the total collateral to O(bn(n + Δ)) by
utilizing a smart contract. This is considered to be constant and linear respec-
tively, since n << Δ such that n + Δ < 2Δ. Sprites mitigate the damage done
by a possible attacker but its implementation is limited to ledgers with smart

1 https://cointelegraph.com/news/developer-reveals-biggest-unsolvable-lightning-
attack-vector.
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contract capability. The Atomic Multi-Channel Updates (AMCU) protocol [7]
is an attempt to close this gap and enable payments with constant collateral
on ledgers without smart contract capabilities. However, even though AMCU is
formalized as a functionality within Canetti’s UC Framework [3], the very last,
but crucial step, of the updateState function does not seem to be presented in the
description of the AMCU protocol, and neither addressed by the simulator [7].
This gap results in a vulnerability that can be exploited by a malicious adversary
to steal funds from honest parties.

Related Work. Payment channels [4,13,15] themselves allow only for offchain
payments between two parties. Offchain protocols such as HTLCs [2,15] and
Sprites [10] allow to perform payments across paths of channels allowing for
the implementation of PCNs. Prominent examples are the Lightning Network
[15] and Raiden [1]. Although offchain protocols exist that create new virtual
channels out of two existing channels as Perun [5,6] and Lightweight Virtual
Payment Channels [8], this work focuses on performing individual payments
across a PCN. In the following we consider a payment of b ∈ N coins across a
path of n ∈ N channels involving parties P0, . . . ,Pn.

The most prominent technique is based on HTLCs [2,15], which are scripts
that perform conditional payments within a channel: The payer locks funds into
the contract that are paid out if the payee can present a secret x such that
y = H(x) where H is a cryptographic hash function. Otherwise, after time
locktime the payment times-out and the payer can reclaim their funds. This
contract is replicated along all channels within a payment path. The payment
is performed as soon as Pn reveals x to their predecessor who then learns the
value of x allowing them to claim the payment from their predecessor in turn. An
attacker Pi, 0 < i ≤ n might attempt to delay revelation of x to their predecessor
until briefly before expiration of the locktime. To allow Pi−1 to forward x in time,
their locktime needs to be increased by at least Δ. This results in a locktime in
O(nΔ) and a total locktime in Θ(n2Δ).

Sprites [10] aim to reduce the locktime of a party up to a constant O(n+Δ)
where n << Δ. This is done by setting up a smart contract entity called Preim-
ageManager, s.t. submitting x to the PreimageManager allows to broadcast it
to all nodes within a payment path in at most n communication rounds. The
protocol requires creation of a smart contract, making it unavailable to script
based ledgers as Bitcoin. AMCU [7] attempts to close this gap, i.e. compatibil-
ity with Bitcoin, by introducing an approach for constant locktime payments
without the need of smart contracts. AMCU sets up payments on each chan-
nel within a payment path that are performed on the condition that an Enable
transaction is created, upon which all payments are performed atomically. How-
ever, this Enable transactions results in several issues. For one, its size grows
linearly in the payment path’s length, making its implementation prohibitive for
ledgers which have an upper limit for block size and transaction size. Moreover,
no party has control over all of the Enable transaction’s inputs. A malicious
adversary can make two parties collaborate to double spend one of the Enable
transaction’s inputs, such that no party is able to enforce the payment on the
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ledger. If the double-spending is timed appropriately, this can lead to an attacker
stealing funds from honest parties.

Jourenko et al. [8] proposed an offchain protocol that takes two channels γA

and γB as input, one between PA and PI and one between PI and PB and creates
a new channel γv between PA and PB . As this approach is not optimized for
individual payments, using it for this purpose would result in excessive collateral
as parties would need to lock away more coins for a longer duration as in existing
approaches. However, we re-use techniques from the lightweight virtual payment
channel construction for the Payment Tree protocol.

Our Contributions. Our contributions are threefold. 1) We present an attack
on AMCU performed by a malicious adversary. 2) We present Payment Trees
that allow for payments across paths within a PCN without the need of smart
contracts, requiring only logarithmic individual collateral O(bΔ log n) while
requiring only linear total collateral O(nbΔ) such that its performance is com-
parable to Sprites. 3) We provide efficiency and security analysis of Payment
Trees, proving the properties Balance Security and Liveness.

Structure. In the remainder of this work, first, we provide background to this
work in Sect. 2. We give an outline of the Channel Closure attack in Sect. 3.
Next, we give an informal overview of the Payment Tree protocol in Sect. 4.
Afterwards, we introduce the types of transactions used for our construction in
Sect. 5 before introducing Payment Trees in Sect. 6 followed by efficiency and
security analysis in Sect. 7. We conclude in Sect. 8.

2 Background

Notation. Throughout this work we make use of tuples and use short-hand
notations as follows. Let (a1, a2, . . . , an) be a definition of a tuple of type A and
let α be an instantiation of A. Then α.ai equals the i-th entry of α.

The UTXO Paradigm. A UTXO is a tuple of the form (b, π) where b ∈ N is an
amount of coins and π ∈ {0, 1}∗ is a script. The b coins of the UTXO are claimed
by providing a witness w ∈ {0, 1}∗ s.t. π(w) = True. The state of the ledger is
represented by a set of UTXO Sutxo, which can be changed by a transaction of
the form (Uin, Uout, t) where t ∈ N is the (absolute) timelock represented as a
point in time, Uout is the list of unique UTXO for the outputs of the transaction,
and Uin is the set of transaction inputs of the form (ref(u), wu) where ref(u) is
the pointer to the UTXO u, and wu is the witness.

A transaction (Uin, Uout, t) needs to fulfill the following conditions. (1) The
locktime has passed, i.e. t ≤ τ where τ is the current time, (2) all witnesses
are valid, i.e. ∀(ref(u), w) ∈ Uin : u.π(w) = True (3) the coins within the
newly created UTXO are less or equal to those in the transaction’s inputs, i.e.
Σ(ref(u),w)∈Uin

u.b ≥ Σu∈Uout
u.b, (4) all UTXOs in the transaction’s inputs exist

and have not yet been spent, i.e. ∀(ref(u), w) ∈ Uin : u ∈ Sutxo. The transac-
tion has the following effect on the ledger. All UTXOs referenced within Uin
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are removed from Sutxo and all UTXOs defined in Uout are added to Sutxo. A
transaction T is included in the ledger within a duration Δ ∈ N. Condition (4)
implies that no UTXO can be claimed by two different transactions. After send-
ing T to the ledger, if within time Δ another transaction T ′ claiming a subset of
the same UTXOs as T is sent to the ledger, it would result in a race condition,
in which it is non-deterministic whether T or T ′ will change the ledger’s state.
We note that while we use Δ as a ledger parameter in practice this value has
to be estimated for real-world implementations. Special care has to be taken
when selecting a value. A value that is too low breaks our assumptions and the
protocol’s security. A value too high increases the collateral and therefore the
impact of attacks such as congestion and lockdown [11,14].

Transaction Graph. All transactions included in the ledger form a directed and
acyclic graph. The set of all transactions form its vertices. An edge (T0, T1) from
transaction T0 to transaction T1 exists, if T1’s inputs contain a pointer to one of
T0’s outputs, i.e. ∃u : u ∈ T0.Uout ∧ (ref(u), w) ∈ T1.Uin. Note that a transaction
can only be included in a ledger if all of its ancestors have been included in the
ledger before. In the remainder of this work we reference sets of transactions
that are connected to form a sub-tree as transaction trees.

Scripting. Scripts in this work specify a UTXOs owner by requiring a signature
of the transaction that spends the UTXO with the recipient’s verification key.
This is extended to 2-out-of-2 multisignatures that require verification keys of
two parties P and P ′ effectively creating a shared wallet between both parties
that can only be spent with consent of both parties. In the remainder of this
work UTXOs requiring 2-out-of-2 multisignatures are termed Funding UTXO.
Throughout this work we simplify scripts by only stating the set of parties which
need to provide their signatures to spend the respective UTXO.

Channels. A channel γ between two parties consists of sub-protocols setup, clo-
sure and dispute. In setup both parties create a transaction Trf containing a
Funding UTXO between each other which locks their funds into the channel.
They create a transaction tree with the Funding UTXO as its ancestor that rep-
resents the channel which we reference in the remainder of this work as channel-
tree. Only after the channel-tree is created and either party holds signatures of
its transactions, both parties sign and commit Trf to the ledger while holding off
commitment of transactions within the channel-tree. Both parties can perform
closure of the channel by committing a transaction to the ledger that spends
the Funding UTXO unlocking the channel’s funds according to its most recent
state. In case of a dispute, the dispute sub-protocol enforces the channel’s state
by committing the channel-tree’s transactions onto the ledger.

Offchain Protocols perform a state transition of a channel by transforming its
channel-tree. Any honest party must be able to enforce the new channel’s state
which might require an explicit invalidation step that disables commitment of
an older version of the channel-tree or allows for punishment of a party that
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does so. An efficiency requirement of offchain protocols is that performing them
n ∈ N times grows the channel-tree by at most O(1) transactions.

Invalidation by Timelock. Timelocks can be used to define at which point a
transaction can be committed to the ledger. Assume there are two transactions
that spend the same UTXO, but which have timelocks that are 1) in the future
and 2) have a difference of at least Δ. In this case parties can enforce commitment
of the transaction with the lower timelock to the ledger. The transaction with
the lower timelock invalidates the transaction with the higher timelock.

Hashed Timelock Contracts. Let P0,P1, . . . ,Pn, n ∈ N be parties where par-
ties Pi−1 and Pi, i ∈ {1, . . . , n} control channel γi. HTLCs are used to perform
payments of b ∈ N coins from P0 to Pn by replicating the payment on each
channel γi within a payment path γ1, . . . , γn from P0 to Pn. (1) On a chan-
nel γj , j ∈ {1, . . . , n} the payment is performed by extending the channel-tree
with a conditional payment: If the payee Pj can show the pre-image x ∈ N of
a hashed value y = H(x), where H is a cryptographic hash function, they will
receive b coins from the payer Pj−1. However, after expiration of a locktime tj
the payment expires and the payer Pj−1 will have their coins refunded instead.
(2) Only after the conditional payments are set up on all channels, the payment
is executed atomically by having Pn show the pre-image x to Pn−1, proving that
they have the capability to claim the coins on the ledger through the conditional
payment. In turn, Pn−1 learns the pre-image x s.t. they can show it to party
Pn−2 reclaiming the coins they forwarded to Pn. The information on x propa-
gates through the whole payment path in this manner. (3) Lastly, to keep the
payment offchain, the parties need to consolidate the payment on each channel
respectively. This is done by updating the channel-tree. The conditional-payment
is removed and the b coins that were locked into the channel are credited to the
payee. At this point the channel-tree has the same form as before the payment,
but with updated balance distribution to account for the payment. This ensures
that the channel-tree does not grow in size with each payment, thus fulfilling the
efficiency requirements of an offchain protocol. Note that, if the payer Pj−1 does
not cooperate with consolidation, payee Pi can reclaim their coins by resolving
the conditional payment on the ledger instead. Due to this the timelock tj has
to be chosen s.t. Pi has enough time to do so before the conditional payment
expires, even if they learn the pre-image from Pi+1 at the last moment just
shortly before expiration of timelock tj+1. Thus the relation ti ≥ ti+1 +Δ has to
hold, making the locktime grow linearly with the payment path’s length. This
results in a collateral cost of bti ∈ O(bn2Δ) which is quadratic in the path’s
length.

The Wormhole Attack. The HTLC protocol is vulnerable to the wormhole attack
[9]. An adversary controlling two parties Pi, Pj , 1 ≤ i ≤ j + 2 ≤ n − 1 within
a payment path can prevent intermediaries k, i < k < j to participate at the
payment and receive their fees by having Pi forward pre-image x to Pi−1 after
Pj learns it from Pj+1 and without forwarding it to party Pj−1.
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Brief Description of AMCU. A payment within the AMCU protocol is per-
formed by replicating the payment on each channel using Consume transactions.
All Consume transactions share a common ancestor within the protocol’s trans-
action tree which is the Enable transaction. The Enable transaction has UTXOs
from each individual channel as input and thus requires signatures of all parties
within the payment path. As soon as the parties exchange signatures for the
Enable transaction, all Consume transaction could be committed on the ledger,
thus performing the payment. If any party refuses to collaborate in the creation
of the Enable transaction, all parties have their coins refunded using Lock trans-
actions after the expiration of the specified locktime period. As we show in the
next section, in contrast to HTLCs, AMCU cannot ensure that all parties have
the capability to claim their coins on the ledger after the payment. In fact it
takes only one pair of parties controlling a channel to spend one of the Enable
transaction’s inputs with a different transaction s.t. the Enable transaction and
transitively the Consume transactions cannot be committed to the ledger. This
could be remedied by performing a consolidation step on all channels atomically.
Although the functionality PCN+, that models AMCU, correctly performs this
consolidation step, the AMCU protocol itself does not.

3 The Channel Closure Attack on AMCU

In the following we present the Channel Closure attack informally. A more
detailed description of AMCU and a formal treatment of the attack are sup-
plemented in the full version of the paper.

The Vulnerability. While the Enable transaction is the core of the AMCU con-
struction, it also seems to be its vulnerability. While the Enable transaction
receives inputs from each channel, no party has control over all channels within
the payment path. At any time, two parties sharing a channel can maliciously
spend a UTXO that is provided as input of the transaction, or as input to any
of its ancestors within the transaction tree. When this happens, the Enable
transaction cannot be committed to the ledger and all parties have their coins
refunded through Lock transactions. Effectively, no party can enforce payment
after execution of the AMCU protocol. On top of that, an adversary can take
this further, performing a Channel Closure attack to steal funds from honest
parties. We remark that PCN payments require a consolidation step in which
a payment is included within the parties’ individual channels. While the func-
tionality PCN+ modeling AMCU performs a consolidation step atomically on
all channels, this step is omitted by the AMCU protocol. Second, performing
the consolidation step atomically on all channels is highly non-trivial as atomic
operations on multiple channels is exactly the problem statement that protocols
such as HTLCs, Sprites and AMCU themselves attempt to solve.
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The Channel Closure Attack is performed by abusing exactly these two obser-
vations. First, the adversary corrupts two parties within a payment path Pi

and Pi+1. These parties cooperate in execution of the AMCU protocol right up
until the consolidation step. Then, Pi performs the consolidation step with Pi−1

on channel γi−1 while Pi+1 does not cooperate with Pi+2 to consolidate the
payment on channel γi+1. Next, Pi and Pi+1 close their channel γi such that
the Enable transaction cannot be committed to the ledger. This allows Pi+1

to reclaim coins from Pi+2 using their shared Lock transaction. Effectively, Pi

received the payment amount from Pi−1 on γi through consolidation, while Pi+1

did not forward the payment.

4 Protocol Overview

In the following, we define communication and adversarial models, before giving
an overview of the protocol. Lastly we define the properties of our construction.

Communication Model. Communication between parties occurs in rounds. Any
message sent within one round is available to the recipient at the beginning of
the next round. The duration of any round has an upper limit.

Adversarial Model. We define an Adversary A consistent with related work
[7,8,10]: At the beginning of protocol execution, the adversary can statically
corrupt up to n of n + 1 parties, receiving their internal state and having all
communication to and from these parties be routed through the adversary. The
adversary is malicious and can make any corrupted party deviate from the pro-
tocol. Moreover, within each communication round, the adversary can delay and
re-order all messages sent.

We illustrate the life-cycle of the Payment Tree protocol for a payment of 2
coins from Alice to Charlie across two channels using Figs. 1 and 2. The proto-
col’s approach is to take two channels, one between parties Alice and Bob, one
between parties Bob and Charlie and construct a transaction tree that effectively
creates a virtual channel [8] optimized for a one-time payment between Alice and
Charlie. Our construction utilizes two approaches to perform updates to trans-
action trees atomically. On the one hand, we use these techniques to empower
the intermediary Bob to ensure correctness of the protocol, while on the other
hand, we incentivise Bob to actually do so by means of punishment. Our con-
struction consists of multiple transaction tree updates. Updates are done using
the invalidation by timelock technique, but for simplicity we leave the details to
Sect. 6.

Constructing Transaction Trees Atomically. We observe that committing a
transaction to the ledger requires that all of its ancestors are committed to
the ledger beforehand. For a transaction to be able to be committed to the
ledger it needs to contain all required witnesses, i.e. signatures. Therefore, (1)
we can atomically create a transaction tree rooted in a transaction trroot that is
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Fig. 1. Stepwise construction of a Payment Tree across two channels. Boxes with
straight corners represent channel trees displaying their state. Boxes with round corners
represent transactions displaying output UTXOs. Edges indicate which transactions
spend the UTXO at their origin.

common ancestor to all other transactions. First, we add signatures to all trans-
actions except trroot. Afterwards, adding signatures to trroot makes the whole
transaction tree committable to the ledger at the same moment. (2) We assume
two transactions, tr0 and tr1, that require signatures of Alice and Bob, as well
as Bob and Charlie respectively. Bob can enforce that both transactions are cre-
ated atomically by only providing his signature after he received signatures from
Alice and Charlie. We note that techniques (1) and (2) can be used in tandem.

Payment Tree Construction. Figure 1 depicts construction of a Payment Tree
between Alice, Bob and Charlie. Construction consists of three atomic trans-
action tree updates. We note that the balance distribution between the parties
remains unchanged between the updates and no payment is executed. Alice and
Bob as well as Bob and Charlie share a channel as depicted in Fig. 1a. (1) Then,
as shown in Fig. 1b we update both trees by introducing a Split transaction that
spends the channels’ Funding UTXOs and creates two new Funding UTXOs each.
One UTXO contains the payment amount and is funded by coins from Alice,
who is payer, and Bob, who is intermediary, respectively. The other UTXO con-
tains the remaining coins and is used as Funding UTXO to reopen both channels
which can be used for further payments within the channels or further Payment
Tree constructions. (2) Next as shown in Fig. 1c both separate transaction trees
are combined using a Merge transaction. This transaction creates two UTXOs.
One UTXO requires Bob’s signature to be spent and contains his collateral. The
other UTXO is a Funding UTXO requiring the signatures of Alice and Charlie
and it contains Alice’s payment to Charlie. At this point, the coins are given to
Alice. (3) Lastly, as shown in Fig. 1d, before we can proceed with a payment,
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Fig. 2. Payment and Consolidation using Payment Trees. Figure 2a modifies the Pay-
ment Tree to forward the funds in the Merge transaction’s Funding UTXO to the payee.
Figure 2b splits up the Payment Tree and distributes funds according to the Payment
Tree’s state in Fig. 2a.

the funds within the Merge transaction’s Funding UTXOs need to be secured
in case two parties, for example Bob and Charlie, collude to spend their Merge
transaction’s or Split transaction’s input with a different transaction. This attack
is similar to the Channel Closure attack described in Sect. 3 and would disable
commitment of the Merge transaction. However, we observe that all UTXOs
that can be spent for this attack require Bob’s signature. Respectively, in this
scenario we can uniquely identify Bob as malicious. In order to punish Bob and
secure the funds of Alice and Charlie respectively we create Punish transactions.
These transactions spend the same Funding UTXOs as the Merge transaction
but have a timelock that is higher than that of the Merge transaction by at
least Δ. Due to this, Bob can always avoid commitment of a Punish transac-
tion by committing the Merge transaction to the ledger. However, in case Bob
acted maliciously such that the Merge transaction cannot be committed to the
ledger, Alice and Charlie can reclaim their coins from Bob through the Punish
transactions.

Payment and Consolidation. Figure 2 depicts payment and consolidation using a
Payment Tree. Assuming a fully constructed Payment Tree as shown in Fig. 1d a
payment is executed by giving the coins within the Merge transaction’s Funding
UTXO to Charlie instead of Alice. As shown in Fig. 2a this changes the balance
distribution represented by the transaction tree, reducing Alice’s coins by 2 and
adding those to Charlie’s balance. A consolidation requires one atomic transac-
tion tree update as shown in Fig. 2b. This update spends the UTXOs within the
Merge transaction’s inputs and gives the coins to Bob and Charlie respectively.
Note that this step does not change the balance distribution between the parties.
Bob needs to make sure that this update is done atomically s.t. he avoids com-
mitment of a Punish transaction. At this point the transaction trees are separate
and in control of each channels’ members respectively. Both pair of parties can
now perform a last transaction tree update that replaces the respective trans-
action tree with a channel as shown in Fig. 1a but that now represents the new
balance distribution instead.
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System Goals. In the following we define the desired properties of our protocol.

Theorem 1 (Balance Security). Outside of performing the intended pay-
ment, the sum of a honest party’s coins is not reduced by participation in the
Payment Tree protocol.

Theorem 2 (Liveness). Eventually any honest party receives access to their
coins through UTXOs spendable with a witness consisting of a signature corre-
sponding to their verification key.

5 Transactions

We use three types of transactions. Split transactions are used to split off coins
from one channel, making them available to our construction in form of a Funding
UTXO. Payout transactions take a Funding UTXO as input and pay the money
to one of the two parties involved in it. Lastly, the Merge transaction is used to
combine the Funding UTXOs that were split off two channels by taking them
as input, paying out the intermediary’s coins out as collateral and creating a
Funding UTXO between the two remaining non-intermediary parties.

Split Transactions are of form Trsplit = (Uin, Uout, t) where Uin = {ref(fγ)}
consist of one Funding UTXO provided by the channel-tree of γ, Uout =
{fchange, fpay} consists of two Funding UTXOs. It holds that fchange.b+fpay.b = fγ

and fpay.b = b. Moreover, fγ .π = fchange.π = fpay.π, i.e. all Funding UTXOs are
shared between the same parties. The function call SPLIT(γ, b, t) creates a Split
transaction as described above and returns fpay. A function call to UNSPLIT(γ)
consolidates the transaction into the channel by updating the channel’s balance
distribution with the split off balance. Additionally it sets up a channel between
both parties by constructing a channel-tree with Funding UTXO fchange as root.
Split transactions are used to take off b coins from each channel to be used for
our construction. They are used to avoid that the existing channels are affected
in case a corrupted intermediary misbehaves. Although we represent this by
using a Split transactions as done with Virtual Channels and AMCU, it could
be included similarly as conditional payments from HTLCs by placing a Funding
UTXO instead of a HTLC contract.

Merge Transactions are of form Trmerge = (Uin, Uout, t) where Uin =
{fpay,0, fpay,1} and Uout = {fpay, ucollateral}. The two Funding UTXOs that are
provided as input fpay,0 and fpay,1 are shared between parties PA and PB as well
as between parties PB and PC respectively. The newly created Funding UTXOs
fpay in the output is shared between parties PA and PC . The other UTXO within
the outputs is ucollateral which pays out funds to PB . Lastly it holds that the
coins in all UTXOs are equal, i.e. fpay,0.b = fpay,1.b = fpay.b = ucollateral.b = b.
The function call MERGE(fpay,0, fpay,1, t) is a short-hand notation to construct
a Merge transaction. We extend helper function OUT UTXO to accept a Merge
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transaction as input as well. In this case it returns UTXO fpay. The helper func-
tion IN UTXO takes a Merge transaction as input and outputs the UTXOs that
are used within its inputs, i.e. fpay,0, fpay,1. Merge transactions are used to com-
bine transaction trees into one, essentially opening up a virtual channel between
Alice and Charlie that can be used for a one-time payment.

Payout Transactions are of form Trpayout = (Uin, Uout, t) where Uin = {f} is a
Funding UTXO and Uout = {upayout}. It holds that upayout pays out funds to
a party P and f.b = upayout.b. The function call PAYOUT(f,P, t) constructs a
Payout transaction as described above. We extend helper function IN UTXO to
take a Payout transaction as input in which case it outputs the UTXO f . Payout
transactions are used at several points within our construction to serve differ-
ent roles as shown in Fig. 3. Refund transactions are used whenever Funding
UTXOs are created. They are used to ensure that no funds are locked away
within Funding UTXOs indefinitely even when any other party stops collabora-
tion, which is essential to ensure the liveness property. Punish transactions are
used to incentivise an intermediary to collaborate and ensure Merge transactions
can be committed to the ledger. Without those, in case a Merge transaction is
not committed to the ledger it could result in the loss of coins for Charlie in case
the Refund transaction between Bob and Charlie is committed to the ledger
instead and after the payment between Alice and Charlie has been performed.
The Payment transaction is used to perform a change of the state, i.e. bal-
ance distribution, represented by the transaction tree, effectively performing a
payment. Lastly, Consolidation transactions are used to deconstruct the transac-
tion tree by applying the payment on both original transaction trees atomically.
Without these, we cannot enforce the payment outside of committing the trans-
action tree to the ledger itself because of which the protocol would not fulfill
the efficiency requirements for offchain protocols and thus not being classified as
such. We note that the Refund and Punish transactions between Alice and Bob
represent the same state s.t. the Punish transaction is redundant. However, for
simplicity we opted to include both transactions making the construction sym-
metric. Whereas similarly the Consolidation and Punish transactions between
Bob and Charlie do represent the same state in Fig. 3, it is not possible to remove
any of the transactions in the case where fees are paid to Bob which would be
included within the Consolidation but not the Punish transactions.

6 Our Payment Tree Construction

We describe the construction of a payment tree in respect to our running
example. Let P0,P1, . . . ,Pn, n ∈ N, be parties where parties Pi−1 and Pi, i ∈
{1, . . . , n} control channel γi. The protocol performs a payment of b ∈ N coins
from P0 to Pn. The value τ ∈ N represents the current time, whereas Δ ∈ N is
the maximum time it takes for a transactions to be included in the ledger after
committing it. We illustrate our approach in Fig. 3 for a two-hop payment, i.e.
for the case of n = 2. It is designed such that it can be extended to payment
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Alice  
& Bob

1) Channel Alice & Bob

Alice : bA − b

Bob  
& Charlie

Bob : bB

Bob : b′ B − b
Charlie : bC

Alice  & Bob : 
(bA + bB) − b

1) Split

Alice  & Bob : 
b

Bob & Charlie: 
(b′ B + bC) − b

1) Split

Bob & Charlie: 
b

2Δ
2) Merge

Alice & Charlie : b
Bob : b

1) Channel Bob & Charlie

Channel Tree

Channel Tree

2Δ+4Δ

Alice: b

4Δ
1) Refund

Alice: b

3Δ
3) Punish

Alice: b
Δ

5) Consolidation

Bob: b
2) Refund

4Δ
1) Refund

Bob: b

3Δ
3) Punish

Charlie: b

Δ
5) Consolidation

Charlie: b

2Δ+Δ
4) Payment / Consolidation

Charlie: b

Fig. 3. Transaction tree of a payment of b coins across 2 hops. Beforehand, the respec-
tive balances are bA and bB for Alice and Bob, b′

B and bC for Bob in Charlie within
their channels. Transactions are boxes with round corners containing the UTXOs they
create, whereas referenced UTXOs in inputs are indicated implicitly by arrows origi-
nating from the UTXO that is spent. Red numbers indicate timelocks. Numbers atop
the transaction indicate order of construction whereas transactions with same numbers
are constructed atomically. Channel trees are boxes with straight edges forming a black
box. (Color figure online)

paths of arbitrary lengths. The construction is based on the overview given in
Sect. 4. Numbers indicate the order in which transactions are created, whereas
transactions with the same numbers are created atomically (Fig. 4).

The Payment Tree Protocol. The protocol for constructing a Payment Tree
across a path of n channels is depicted in Algorithm 4. It makes use of Algorithm
1 that allows an intermediary to atomically create two transactions, Algorithm
2 that performs a construction step of the Payment Tree, and Algorithm 3 that
performs a consolidation step of the Payment Tree.

Helper Functions. Function SIGN(Tr, PS , PR) is used to sign and exchange sig-
natures of transactions. It takes a transaction Tr and two sets of parties PS

and PR as input. Each party in PS signs Tr and sends the signature to each
party in PR. This includes verification of signatures by the recipients. Func-
tion PARTIES takes a Funding UTXO as input and outputs a set containing
the two parties of which a signature is required to spend the UTXO. Func-
tion INTERMEDIARY(f0, f1) takes two Funding UTXOs f0, f1 as input, if an
intermediary exists, i.e. |PARTIES(f0) ∩ PARTIES(f1)| = 1, then it returns the
intermediary P ∈ PARTIES(f0) ∩ PARTIES(f1). Otherwise it returns ⊥. Func-
tion COUNTERPARY(f,P) takes a Funding UTXO and a party as input, if
P ∈ PARTIES(f), then it returns its counterparty PC ∈ (PARTIES(f)) \ {P}.
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Fig. 4. Algorithm that takes two Payout transactions as input and allows the interme-
diary party to enforce that either both or no transactions are fully signed.

Atomic Signatures. We assume a setting with two channels between three par-
ties. Protocol ATOMIC SIGN is shown in Algorithm 1. It enables the interme-
diary party to enforce that two transactions – one on each channel – are created
atomically. This is done by having the intermediary party provide signatures to
both transactions only after they received all signatures from its counterparties
(Fig. 5).

Merging Channels. Protocol MERGE as shown in Algorithm 2 takes two Fund-
ing UTXOs f0, f1, an amount of coins b and a time t as input where f0 is shared
between parties PA and PI , f1 is shared between parties PI and PB and it holds
that f0.b = f1.b = b. It creates a Merge transactions with timelock tm = t + 2Δ
spending both Funding UTXOs, paying out b coins to PI and containing a Fund-
ing UTXO holding b coins, which are paid out to PA after time tm+4Δ by means
of a Payout transaction. This transaction tree is created atomically as its root,
which is the Merge transaction, is signed last. Only after each party holds a fully
signed instance of the Merge transaction, two Punish transactions spending f0
and f1 and paying out b coins to PA and PB respectively are created atomically
using ATOMIC SIGN. These have timelocks equal to t+3Δ. Note that the cre-
ation of the Merge transaction must not re-distribute funds, i.e. the funds in f0
are paid by PA and the funds in f1 are paid by PI . The Punish transactions are
used to secure the funds within the Merge transaction by paying out funds to PA

and PB , if the Merge transaction cannot be committed to the ledger. Timelocks
are selected to perform transformations on the existing transaction through the
invalidation by timelock technique and also to allow the construction to be per-
formed iteratively. Timelock tm is selected s.t. a Consolidation transaction can be
placed with timelock t+Δ during the protocol’s consolidation phase. Timelocks
of the Punish transactions are selected s.t. they are invalidated by the Merge
transaction conditionally, i.e. only if the Merge transaction can be committed to
the ledger, the Punish transactions are invalid. The Payout transaction acts as
a Refund transaction for the new Merge transaction. Respectively we assign it
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Fig. 5. Creation of a Funding UTXO between two counterparties. The intermediary
can enforce atomic construction while Punish transactions provide incentive.

a timelock of tm + 4Δ such that Consolidation, Merge and Punish transactions
can be placed with timelocks tm + Δ, tm + 2Δ and tm + 3Δ respectively. Note
that if the Merge transaction is on top of the Payment Tree s.t. it is not used
for further channel merges, the Refund transaction’s timelock can be reduced to
tm + 2Δ. Lastly, if a transaction spends another transaction, its timelock needs
to be larger by at least Δ to ensure that all transactions can be committed to
the ledger as soon as their timelocks expire (Fig. 6).

Consolidation. Algorithm 3 takes a Merge transaction as input, invalidates it by
creating two Payout transactions atomically using the ATOMIC SIGN protocol
that spend the Merge transaction’s inputs. Both consolidation transactions per-
form a payment by giving the funds to the payee. Note that the protocol can be
adjusted to cancel a payment by refunding the funds to the payer instead (Fig. 7).

Payment Trees. Algorithm 4 performs a payment from P0 to Pn by iteratively
merging Funding UTXOs, s.t. the Merge transactions form the nodes of a bal-
anced binary tree as illustrated in Fig. 8. The algorithm takes the following
inputs: (1) The payment path γ1, . . . , γn, (2) the payment amount b, and (3)
time tmin. The value tmin is negotiated by the parties and represents the max-
imum amount of time the parties have to execute the protocol. The dispute
protocol starts if the protocol is not concluded until tmin. Note that even exist-
ing methods as HTLCs have to account for tmin.

In the following we refer to a certain depth within this binary tree as level,
beginning with Split transactions on level 0. The algorithm maintains lists of
Funding UTXOs F UTXOi for each level i ≥ 0 of the binary tree, as well as
lists of Merge transactions MRGj for each level j ≥ 1 of the binary tree. The
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Fig. 6. Invalidating a Merge transactions and atomically updating the state on the two
original Funding UTXOs.

algorithm proceeds as follows. Add a Funding UTXO from each Split transaction
to F UTXO0 in order (4–7) and create the Payment Tree by iterative use of
the MERGE protocol level-by-level (8–18). The Merge transactions and Funding
UTXOs created on level j are added to lists MRGj and F UTXOj respectively
and in order (12–13). Note that if there is an uneven amount of Funding UTXOs
within a level, we leave the odd one to be used in the level above instead (15–17).
The payment is executed after construction is concluded (19). Afterwards the
payment tree is deconstructed in reverse order by executing the CONSOLIDATE
protocol on each Merge transaction (20–24). Lastly the Split transactions are
removed and consolidation within all original channels concludes (25–27).

Dispute. This protocol is executed at time tmin if the payment tree protocol has
not come to conclusion in an orderly manner. Every honest party submits their
transactions to the ledger as soon as their respective timelocks expire. This will
result in commitment of the payment tree onto the ledger where transactions are
committed in order of their priority. If a Merge transaction cannot be committed
to the ledger, refunds and payments are done via Punish transactions.

Fees. Fees can be paid by the payer P0 and payee Pn or either of them alone to
the intermediaries to compensate for their invested collateral. Our approach to
handling fees is similar to the approach used for HTLCs, however, adapted to the
binary tree structure of Payment Trees. Any party acting as intermediary when
creating a Merge transaction receives cumulative fees from the other two parties
participating in the Merge transaction’s construction. The cumulative fee paid
to the intermediary is composed of two parts. For one, it contains the fees paid
to the intermediary themselves, and for another, it contains coins the party has
to forward to the parties who act as intermediaries of Merge transactions on the
lower levels of the Payment Tree. For simplicity, in the following we assume that
the path’s length is a power of 2, i.e. n = 2i, i ∈ N, the paid fees f are equal for
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Fig. 7. The full Payment Tree protocol from construction to consolidation.

each intermediary and all fees are shared between payer P0 and payee Pn equally.
Then, a party that acts as intermediary of level i of the Payment Tree receives
fi = f + 2 fi−1

2 = f + fi−1 coins, where f1 = f . The fee fi is paid equally by
the other two parties involved in the Merge transaction’s construction. Payment
of fees happens within Merge transactions by adding a fee to the collateral the
intermediary receives. However, this raises the challenge that we have to ensure
that all transactions receive sufficient funding: The coins within a transaction’s
inputs have to cover all coins within their outputs. Moreover, to ensure that the
consolidation step can be performed, the collateral of the intermediary within
a Merge transaction has to be at least as high as the coins within the Merge
transaction’s Funding UTXO [8]. Therefore, when performing the merge step
on level i every party has to have an additional balance of fi,cum =

∑h
j=i fj ,

whereas the collateral of a Merge transaction’s intermediary equals b+fi,cum+fi

where fi is paid equally from balances brought by the other two parties.
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Fig. 8. Payment tree in the shape of a balanced binary tree.

7 Collateral Efficiency and Security Analysis

In this section we discuss properties of the Payment Tree construction.

Efficiency. Figure 9 depicts the efficiency properties of Payment Trees, compar-
ing it to existing approaches. We compare two metrics: (1) The collateral, and
(2) the number of transactions that have to be committed to the ledger in case
of dispute. We do this for individual parties, as well as for the whole payment.

Commitment of each Merge transaction unlocks the collateral of one party.
To commit a Merge transaction located on level i of the payment tree it needs to
commit i transactions beforehand, i.e. i − 1 Merge transaction as well as a Split
transaction. This will happen at time 2Δi. As the height of the Payment tree is
limited by 
log n� it follows that any party invests b2Δi ∈ O(bΔ log n) collateral
and has to commit i+1 ∈ O(log n) transactions. Regarding the total payment, we
observe that there are n

2i Merge transactions on level i of the payment tree. It fol-
lows that the total collateral equals the sum

∑�log n�
i=1 b2Δi n

2i = b2Δn
∑�log n�

i=1
i
2i .

As
∑∞

i=1
i
2i = 2 and each part of the sum is positive, it follows that the total

collateral b2Δn
∑�log n�

i=1
i
2i < 4bΔn ∈ O(bΔn) is linear in the length of the pay-

ment path n. The number of transactions can be computed in a similar fashion,
however, an intuitive approach is to recall that the transactions form a balanced
binary tree of height 1+
log n� which has at most 21+�log n� ≤ 2n ∈ O(n) nodes.
Although the collateral any individual party has to invest is logarithmic, there-
fore higher than Sprites but lower than HTLCs, the total collateral incurred
over the whole payment is linear in the path’s length. This is comparable to the
performance of Sprites and is by a factor of n lower than the total collateral of
HTLCs. A trade-off of Payment Trees is that an individual party might have
to commit up to O(log n) many transactions. Nevertheless the total number of
transactions over the whole payment is comparable to both, HTLCs and Sprites.
Payment Trees provide a performance comparable to Sprites without requiring
a ledger with smart contract capability.
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Method pp Collateral pp Tr. Total Collateral Total Tr. Smart Contracts
HTLC [15,2] O(bΔn) O(1) O(bΔn2) O(n) No
Sprites [10] O(b(n + Δ)) O(1) O(b(n + Δ)n) O(n) Yes

Payment Tree O(bΔ log n) O(logn) O(bΔn) O(n) No

Fig. 9. Comparison of the performance of Payment Trees across the whole payment
(Total) and individually per party (pp).

Denial of Service Attacks. The Payment Tree protocol mitigates existing attacks
such as the congestion and lockdown attacks [11,14] on HTLCs that aim to
lock a channel’s coins within unfulfilled HTLCs. This is done by reducing the
total and individual collateral of payments. While a large scale DoS attack on
multiple channels is difficult as the total collateral of Payment Trees is linear
in the payment path’s length, a specific intermediary can be targeted to act
a intermediary on the highest level of the Payment Tree to pay a logarithmic
collateral. Another aspect of the Lockdown attack is that a channel is blocked
by saturating the number of HTLCs applicable to a channel which is limited by
the maximum size of a transaction. The Payment Trees protocol mitigates this
by using Split transactions. Each pending payment requires the construction of
a Split transaction. This prevents that there is any transaction that increases in
size depending on the number of pending transactions. However, a tradeoff to
using Payment Trees is the increased number of transactions that would need to
be committed to the ledger in case of a dispute.

Wormhole Attacks. The Payment Tree protocol pays coins to intermediaries of
a Merge transaction and they include fees for all intermediaries on lower levels of
respective sub-trees. An attack similar to the wormhole attack can be performed
by a corrupted intermediary when creating a Merge transaction by replacing the
Merge transaction’s inputs with UTXOs they control. Doing this they could take
all fees that were intended to be forwarded to other parties while preventing them
to participate in the protocol. In contrast to the wormhole attack on HTLCs a
wormhole-like attack on the Payment Trees protocol requires making changes to
the transaction tree which in-turn can be detected and prevented. We assume
that either P0 and Pn are honest. Otherwise, if both are corrupted the attack
would only redistribute coins between corrupted parties resulting in no net gain
to the adversary. During creation of the Payment Tree all intermediaries send
their view of the protocol to P0 and Pn, i.e. the Merge transactions they are
involved in. Having this information P0 and Pn can verify correctness of the
construction and abort the payment in the negative case.

Security Proofs. We provide proof of Theorems 1 and 2 in the full version of the
paper.
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8 Conclusion

Payment Trees provide competitive performance to state-of-the-art approaches
as Sprites, while having fewer restrictions to its employability by not requiring
smart contract capability. Thus providing the first secure alternative to HTLCs
for the Lightning Network.
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