
Nikita Borisov
Claudia Diaz (Eds.)

LN
CS

 1
26

75

25th International Conference, FC 2021
Virtual Event, March 1–5, 2021
Revised Selected Papers, Part II

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 12675

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Nikita Borisov · Claudia Diaz (Eds.)

Financial Cryptography
and Data Security
25th International Conference, FC 2021
Virtual Event, March 1–5, 2021
Revised Selected Papers, Part II

Editors
Nikita Borisov
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Claudia Diaz
KU Leuven
Leuven, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-64330-3 ISBN 978-3-662-64331-0 (eBook)
https://doi.org/10.1007/978-3-662-64331-0

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-64331-0

Preface

FC 2021, the 25th International Conference on Financial Cryptography and Data
Security, was held online during March 1–5, 2021.

We received an all-time record of 223 submissions, of which 6 were desk rejected
due to non-compliance with page limits and 217 were considered for review. Of these,
54 were included in the program, 47 as regular papers, four as short papers, and three
as Systematization of Knowledge (SoK) papers; a 25% acceptance rate. Revised papers
appear in these proceedings.

The review process was double-blind and carried out entirely online via the HotCRP
review platform. The review period lasted about 10 weeks, taking place between the
end of September and the beginning of December 2020. Papers received four reviews
on average. The review period was followed by an online discussion, which was at
times extensive—two papers received 27 comments and the median discussion had
five comments. After discussion, papers were either accepted, rejected, or conditionally
accepted,with a ProgramCommittee (PC)member assigned in the latter case to shepherd
the paper and ensure that specific improvements were made. One of the conditionally
accepted papers could not be included in the program due to a technical flaw discovered
during the shepherding process.

We are grateful to the 127 Program Committee members and 94 external reviewers
who reviewed all the submissions and provided thoughtful and constructive feedback,
which considerably strengthened the quality of the final program. Two reviewers stood
out in terms of the quality of their reviews and were named “Distinguished Review-
ers”: Zeta Avarikioti and Dionysis Zindros. Additionally, we would like to recognize
reviewers whose contributions went above and beyond the expectations of a regular
PC member: Joseph Bonneau, Christian Cachin, Jeremy Clark, Juan Garay, Arthur
Gervais, Katharina Kohls, Johannes Krupp, Wouter Lueks, Sarah Meiklejohn, Pedro
Moreno-Sanchez, Bart Preneel,MarkoVukolić, RiadWahby, andRenZhang. Finally,we
would like to recognize three external reviewers for their outstanding service: Christian
Badertscher, Ankit Gangwal, and Henning Seidler.

FC 2021 no longer distinguished between two “tracks”, one on traditional financial
cryptography and another on blockchain research, and instead had a single track
with a wide variety of topics including blockchain-related papers. When classify-
ing papers into these two broad categories, we found that 72% of submitted papers
were on topics related to blockchain research, while only 55% of accepted papers
fell in that category. The accepted papers were organized according to their topic
into 12 sessions: Smart Contracts, Anonymity and Privacy in Cryptocurrencies, Secure
Multi-party Computation, System and Application Security, Zero-knowledge Proofs,
Blockchain Protocols, Payment Channels, Mining, Scaling Blockchains, Authentication
and Usability, Measurement, and Cryptography.

Due to the COVID-19 global pandemic, a physical meeting was impossible; instead
FC 2021 was held as a four-day online event. Papers were presented in 12 sessions, with
a short live presentation followed by a question-and-answer session with the audience.

vi Preface

Authors also recorded a longer paper presentation of 20–30 minutes that is available
online, linked from the conference website. In addition to the 12 regular paper sessions,
the program included a Rump session, a keynote talk on “Signature and Commitment”
by Whitfield Diffie, a keynote Fireside Chat with SEC Commissioner Hester Peirce, a
General Assembly, and a social hour at the end of each day. We are grateful to all the
session chairs for their service. Andwewould like to offer special thanks toKayMcKelly
and Kevin McCurley for providing and managing the online conference platform. We
would also like to thank Sergi Delgado Segura and Rafael Hirschfeld for their service
as conference general chairs, and the IFCA directors and Steering Committee for their
help organizing the conference during this particularly challenging year.

Finally, we would like to thank the sponsors of the conference for their generous
support: our Platinum sponsor Novi; our Gold sponsors Chainalysis and IBM; and our
Silver sponsors NTT Research and Protocol Labs.

August 2021 Nikita Borisov
Claudia Diaz

Organization

General Chairs

Sergi Delgado Segura Talaia Labs, UK
Rafael Hirshfeld Unipay Technologies, The Netherlands

Program Committee Chairs

Nikita Borisov University of Illinois at Urbana-Champaign, USA
Claudia Diaz KU Leuven, Belgium

Steering Committee

Joseph Bonneau New York University, USA
Rafael Hirshfeld Unipay Technologies, The Netherlands
Andrew Miller University of Illinois at Urbana-Champaign, USA
Monica Quaintance Kadena, USA
Burton Rosenberg University of Miami, USA

Program Committee

Ittai Abraham VMware Research, Israel
Gunes Acar KU Leuven, Belgium
Shashank Agrawal Western Digital Research, USA
Ross Anderson University of Cambridge, UK
Elli Androulaki IBM Research—Zurich, Switzerland
Diego F. Aranha Aarhus University, Denmark
Man Ho Au The University of Hong Kong, China
Zeta Avarikioti ETH Zurich, Switzerland
Erman Ayday Case Western Reserve University, USA,

and Bilkent University, Turkey
Foteini Baldimtsi George Mason University, USA
Shehar Bano Novi and Facebook, UK
Iddo Bentov Cornell Tech, USA
Bobby Bhattacharjee University of Maryland, USA
Alex Biryukov University of Luxembourg, Luxembourg
Dan Boneh Stanford University, USA
Joseph Bonneau New York University, USA
Karima Boudaoud Université Côte d’Azur, France
Ioana Boureanu University of Surrey, UK

viii Organization

Xavier Boyen Queensland University of Technology, Australia
Rainer Böhme University of Innsbruck, Austria
Jeffrey Burdges Web 3 Foundation, Switzerland
Benedikt Bünz Stanford University, USA
Christian Cachin University of Bern, Switzerland
L. Jean Camp Indiana University, USA
Srdjan Capkun ETH Zurich, Switzerland
Pern Hui Chia Google, USA
Tom Chothia University of Birmingham, UK
Jeremy Clark Concordia University, Canada
Shaanan Cohney University of Pennsylvania, USA,

and University of Melbourne, Australia
George Danezis University College London and Novi, UK
Sanchari Das University of Denver, USA
Vensa Daza Pompeu Fabra University, Spain
Jean Paul Degabriele TU Darmstadt, Germany
Matteo Dell’Amico EURECOM, France
Sven Dietrich City University of New York, USA
Benjamin Edwards Cyentia Institute, USA
Tariq Elahi University of Edinburgh, UK
Kaoutar Elkhiyaoui IBM Research, Switzerland
William Enck North Carolina State University, USA
Zekeriya Erkin Delft University of Technology, The Netherlands
Ittay Eyal Technion, Israel
Antonio Faonio EURECOM, France
Dario Fiore IMDEA Software Institute, Spain
Ben Fisch Stanford University, USA
Simone Fischer-Hübner Karlstad University, Sweden
Juan Garay Texas A&M University, USA
Christina Garman Purdue University, USA
Arthur Gervais Imperial College London, UK
Esha Ghosh Microsoft Research, USA
Thomas Gross Newcastle University, UK
Jens Grossklags Technical University of Munich, Germany
Feng Hao University of Warwick, UK
Ethan Heilman Boston University, USA
Urs Hengartner University of Waterloo, Canada
Ryan Henry University of Calgary, Canada
Jori Herrera-Joancomartí Universitat Autònoma de Barcelona, Spain
Jaap-Henk Hoepman Radboud University and University of Groeningen,

The Netherlands
Nicholas Hopper University of Minnesota, USA
Kévin Huguenin University of Lausanne, Switzerland
Stephanie Hurder Prysm Group, USA
Alice Hutchings University of Cambridge, UK
Marc Juarez University of Southern California, USA

Organization ix

Sreeram Kannan University of Washington, USA
Gabriel Kaptchuk Boston University, USA
Ghassan Karame NEC Laboratories Europe, Germany
Aniket Kate Purdue University, USA
Stefan Katzenbeisser University of Passau, Germany
Aggelos Kiayias University of Edinburgh and IOHK, UK
Katharina Kohls Ruhr University Bochum, Germany
Markulf Kohlweiss University of Edinburgh and IOHK, UK
Johannes Krupp CISPA Helmholtz Center for Information Security,

Germany
Albert Kwon Badge Biometrics, USA
Aron Laszka University of Houston, USA
Kirill Levchenko University of Illinois at Urbana-Champaign, USA
Jiasun Li George Mason University, USA
Benjamit Livshits Brave Software and Imperial College London, USA
Wouter Lueks EPFL, Switzerland
Xiapu Luo The Hong Kong Polytechnic University, China
Loi Luu Kyber Network, Singapore
Travis Mayberry US Naval Academy, USA
Patrick McCorry anydot, UK
Catherine Meadows US Naval Research Laboratory, USA
Sarah Meiklejohn University College London, UK
Andrew Miller University of Illinois at Urbana-Champaign, USA
Pedro Moreno-Sanchez IMDEA Software Institute, Spain
Steven Murdoch University College London, UK
Neha Narula MIT Media Lab, USA
Kartik Nayak Duke University, USA
Russell O’Connor Blockstream, Canada
Satoshi Obana Hosei University, Japan
Simon Oya University of Waterloo, Canada
Giorgos Panagiotakos University of Athens, Greece
Olivier Preira UC Louvain, Belgium
Andrew Poelstra Blockstream, USA
Bart Preneel KU Leuven, Belgium
Cristina Pérez-Solà Universitat Oberta de Catalunya, Spain
Elizabeth A. Quaglia Royal Holloway, University of London, UK
Joel Reardon University of Calgary, Canada
Ling Ren University of Illinois at Urbana-Champaign, USA
Alfredo Rial University of Luxembourg, Luxembourg
Stefanie Roos TU Delft, The Netherlands
Burton Rosenberg University of Miami, USA
Ahmad-Reza Sadeghi TU Darmstadt, Germany
Reihaneh Safavi-Naini University of Calgary, Canada
Alessandra Scafuro North Carolina State University, USA
Nolen Scaife University of Colorado Boulder, USA
Jean-Pierre Seifert TU Berlin, Germany

x Organization

Abhi Shelat Northeastern University, USA
Jared M. Smith Oak Ridge National Laboratory, USA
Yonatan Sompolinsky The Hebrew University of Jerusalem, Israel
Kyle Soska Carnegie Mellon University, USA
Douglas Stebila University of Waterloo, Canada
Vanessa Teague University of Melbourne, Australia
Alin Tomescu VMware Research, USA
Luke Valenta Cloudflare Research, USA
Aad van Moorsel Newcastle University, UK
Marie Vasek University College London, UK
Pramod Viswanath University of Illinois at Urbana-Champaign, USA
Artemij Voskobojnikov University of British Columbia, Canada
Marko Vukolić IBM Research, Switzerland
Riad S. Wahby Stanford University, USA
Nick Weaver International Computer Science Institute, USA
Edgar Wieppl University of Vienna and SBA Research, Austria
Phillipp Winter The Tor Project, USA
Jiangshan Yu Monash University, Australia
Fan Zhang Chainlink and Duke University, USA
Ren Zhang Nervos, China
Dionysis Zindros University of Athens, Greece
Aviv Zohar The Hebrew University of Jerusalem, Israel

Additional Reviewers

Abramova, Svetlana
Akand, Mamun
Alupotha, Jayamine
Avizheh, Sepideh
Badertscher, Christian
Bag, Samiran
Bagaria, Vivek
Beck, Gabrielle
Bentov, Iddo
Bissias, George
Buhren, Robert
Cascudo, Ignacio
Chatzigiannis, Panagiotis
Choi, Kevin
Das, Sourav
Daveas, Stelios
Diamond, Parker
Elichai, Turkel
Ersoy, Oguzhan
Escudero, Daniel

Farhang, Sadegh
Feher, Daniel
Fietkau, Julian
Fischer, Felix
Fletcher, Christopher
Fröwis, Michael
Gangwal, Ankit
Govinden, Jérôme
Guimarães, Antônio Carlos
Gupta, Abhinav
Haffey, Preston
Haque, Abida
Harishankar, Madhumitha
Humbert, Mathias
Islami, Lejla
Jao, David
Ji, Yan
Karadzic, Vukasin
Karakostas, Dimitris
Karantaidou, Ioanna

Organization xi

Kasper, Daniel
Keller, Patrik
Knapp, Jodie
Kolonelos, Dimitris
Lagorio, Giovanni
Leonardos, Nikos
Li, Tianyu
Linvill, Kirby
Litos, Orfeas
Lorenzo, Martinico
Madhusudan, Akash
Maier, Dominik
Marmolejo Cossío, Francisco
Martinico, Lorenzo
Mazorra, Bruno
McMenamin, Conor
Medley, Liam
Nabi, Mahmudun
Nadahalli, Tejaswi
Navarro-Arribas, Guillermo
Polydouri, Andrianna
Posa, Tibor
Prabhu Kumble, Satwik
Raghuraman, Srinivasan
Ribaudo, Marina
Rovira, Sergi
Sarenche, Roozbeh

Seidler, Henning
Sharifian, Setareh
Shrestha, Nibesh
Silde, Tjerand
Simkin, Mark
Sliwinski, Jakub
Sutton, Michael
Syrmoudis, Emmanuel
Tairi, Erkan
Takahasi, Akira
Terner, Benjamin
Tikhomirov, Sergei
Vadaraj, Srikar
Vitto, Giuseppe
Volkhov, Mikhail
Weber, Brian
Wilsiol, Nils
Wyborski, Shai
Xiang, Zhuolun
Xue, Haiyang
Yang, Rupeng
Zacharakis, Alexandros
Zacharias, Thomas
Zamyatin, Alexei
Zapico, Arantxa
Zhang, Xinyuan

Contents – Part II

Blockchain Protocols

SoK: Communication Across Distributed Ledgers . 3
Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros,
Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias,
and William J. Knottenbelt

Reparo: Publicly Verifiable Layer to Repair Blockchains 37
Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Bernardo Magri,
Daniel Tschudi, and Aniket Kate

Short Paper: Debt Representation in UTXO Blockchains . 57
Michael Chiu and Uroš Kalabić

Instant Block Confirmation in the Sleepy Model . 65
Vipul Goyal, Hanjun Li, and Justin Raizes

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 84
Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan,
and Pramod Viswanath

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 104
Soubhik Deb, Sreeram Kannan, and David Tse

Payment Channels

Post-Quantum Adaptor Signature for Privacy-Preserving Off-Chain
Payments . 131

Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 151
Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Congestion Attacks in Payment Channel Networks . 170
Ayelet Mizrahi and Aviv Zohar

Payment Trees: Low Collateral Payments for Payment Channel Networks 189
Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka

xiv Contents – Part II

Brick: Asynchronous Incentive-Compatible Payment Channels 209
Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer,
and Dionysis Zindros

Mining

Ignore the Extra Zeroes: Variance-Optimal Mining Pools . 233
Tim Roughgarden and Clara Shikhelman

HaPPY-Mine: Designing a Mining Reward Function . 250
Lucianna Kiffer and Rajmohan Rajaraman

Selfish Mining Attacks Exacerbated by Elastic Hash Supply 269
Yoko Shibuya, Go Yamamoto, Fuhito Kojima, Elaine Shi,
Shin’ichiro Matsuo, and Aron Laszka

Scaling Blockchains

Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light
Clients . 279

Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

ACeD: Scalable Data Availability Oracle . 299
Peiyao Sheng, Bowen Xue, Sreeram Kannan, and Pramod Viswanath

Efficient State Management in Distributed Ledgers . 319
Dimitris Karakostas, Nikos Karayannidis, and Aggelos Kiayias

Fast Isomorphic State Channels . 339
Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gaži,
Philipp Kant, Aggelos Kiayias, and Alexander Russell

Authentication and Usability

What’s in Score for Website Users: A Data-Driven Long-Term Study
on Risk-Based Authentication Characteristics . 361

Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono

DAHash: Distribution Aware Tuning of Password Hashing Costs 382
Wenjie Bai and Jeremiah Blocki

Short Paper: Organizational Security: Implementing
a Risk-Reduction-Based Incentivization Model for MFA Adoption 406

Sanchari Das, Andrew Kim, and L. Jean Camp

Contents – Part II xv

Measurement

Lost in Transmission: Investigating Filtering of COVID-19 Websites 417
Anjali Vyas, Ram Sundara Raman, Nick Ceccio, Philipp M. Lutscher,
and Roya Ensafi

Under the Hood of the Ethereum Gossip Protocol . 437
Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove,
and Cristina Nita-Rotaru

Liquidations: DeFi on a Knife-Edge . 457
Daniel Perez, Sam M. Werner, Jiahua Xu, and Benjamin Livshits

Cryptography

High-Threshold AVSS with Optimal Communication Complexity 479
Nicolas AlHaddad, Mayank Varia, and Haibin Zhang

Fine-Grained Forward Secrecy: Allow-List/Deny-List Encryption
and Applications . 499

David Derler, Sebastian Ramacher, Daniel Slamanig,
and Christoph Striecks

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 520
Pedro Geraldo M. R. Alves, Jheyne N. Ortiz, and Diego F. Aranha

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 541
Aydin Abadi and Aggelos Kiayias

Practical Post-quantum Few-Time Verifiable Random Function
with Applications to Algorand . 560

Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld,
Zhenfei Zhang, Shifeng Sun, and Shumo Chu

Practical Witness-Key-Agreement for Blockchain-Based Dark Pools
Financial Trading . 579

Chan Nam Ngo, Fabio Massacci, Florian Kerschbaum, and Julian Williams

Author Index . 599

Contents – Part I

Smart Contracts

Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit 3
Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais

The Eye of Horus: Spotting and Analyzing Attacks on Ethereum Smart
Contracts . 33

Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais,
and Radu State

Timelocked Bribing . 53
Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer

Shielded Computations in Smart Contracts Overcoming Forks 73
Vincenzo Botta, Daniele Friolo, Daniele Venturi, and Ivan Visconti

A Formal Model of Algorand Smart Contracts . 93
Massimo Bartoletti, Andrea Bracciali, Cristian Lepore, Alceste Scalas,
and Roberto Zunino

Anonymity and Privacy in Cryptocurrencies

Everything You Ever Wanted to Know About Bitcoin Mixers (But Were
Afraid to Ask) . 117

Jaswant Pakki, Yan Shoshitaishvili, Ruoyu Wang, Tiffany Bao,
and Adam Doupé

Perimeter: A Network-Layer Attack on the Anonymity
of Cryptocurrencies . 147

Maria Apostolaki, Cedric Maire, and Laurent Vanbever

An Empirical Analysis of Privacy in the Lightning Network 167
George Kappos, Haaroon Yousaf, Ania Piotrowska, Sanket Kanjalkar,
Sergi Delgado-Segura, Andrew Miller, and Sarah Meiklejohn

Cross-Layer Deanonymization Methods in the Lightning Protocol 187
Matteo Romiti, Friedhelm Victor, Pedro Moreno-Sanchez,
Peter Sebastian Nordholt, Bernhard Haslhofer, and Matteo Maffei

xviii Contents – Part I

The Complex Shape of Anonymity in Cryptocurrencies: Case Studies
from a Systematic Approach . 205

Niluka Amarasinghe, Xavier Boyen, and Matthew McKague

Secure Multi-party Computation

Improving the Efficiency of AES Protocols in Multi-Party Computation 229
F. Betül Durak and Jorge Guajardo

Rabbit: Efficient Comparison for Secure Multi-Party Computation 249
Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh

Efficient Noise Generation to Achieve Differential Privacy
with Applications to Secure Multiparty Computation . 271

Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida

System and Application Security

Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 293
Martin Schwarzl, Claudio Canella, Daniel Gruss, and Michael Schwarz

Speculative Dereferencing: Reviving Foreshadow . 311
Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss

Sigforgery: Breaking and Fixing Data Authenticity in Sigfox 331
Loïc Ferreira

Short Paper: Terrorist Fraud in Distance Bounding: Getting Around
the Models . 351

David Gerault

SoK: Securing Email—A Stakeholder-Based Analysis . 360
Jeremy Clark, P. C. van Oorschot, Scott Ruoti, Kent Seamons,
and Daniel Zappala

Zero-Knowledge Proofs

Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular 393
Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan,
and Dimitris Kolonelos

Generic Plaintext Equality and Inequality Proofs . 415
Olivier Blazy, Xavier Bultel, Pascal Lafourcade,
and Octavio Perez Kempner

Contents – Part I xix

Somewhere Statistically Binding Commitment Schemes with Applications 436
Prastudy Fauzi, Helger Lipmaa, Zaira Pindado, and Janno Siim

Another Look at Extraction and Randomization of Groth’s zk-SNARK 457
Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov

BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean
Circuits . 476

Yaron Gvili, Sarah Scheffler, and Mayank Varia

Mining for Privacy: How to Bootstrap a Snarky Blockchain 497
Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss

Author Index . 515

Blockchain Protocols

SoK: Communication Across Distributed
Ledgers

Alexei Zamyatin1,2(B), Mustafa Al-Bassam3, Dionysis Zindros4,
Eleftherios Kokoris-Kogias5,9, Pedro Moreno-Sanchez6, Aggelos Kiayias7,8,

and William J. Knottenbelt1

1 Imperial College London, London, UK
2 Interlay, Hartlebury, UK

alexei@interlay.io
3 University College London, London, UK

4 University of Athens, Athens, Greece
5 IST Austria, Klosterneuburg, Austria

6 Novi Research, Tampere, Finland
7 IMDEA Software Institute, Madrid, Spain

8 IOHK, Hong kong, China
9 University of Edinburgh, Edinburgh, UK

Abstract. Since the inception of Bitcoin, a plethora of distributed led-
gers differing in design and purpose has been created. While by design,
blockchains provide no means to securely communicate with external sys-
tems, numerous attempts towards trustless cross-chain communication
have been proposed over the years. Today, cross-chain communication
(CCC) plays a fundamental role in cryptocurrency exchanges, scalability
efforts via sharding, extension of existing systems through sidechains, and
bootstrapping of new blockchains. Unfortunately, existing proposals are
designed ad-hoc for specific use-cases, making it hard to gain confidence in
their correctness and composability. We provide the first systematic expo-
sition of cross-chain communication protocols.

We formalize the underlying research problem and show that CCC is
impossible without a trusted third party, contrary to common beliefs in the
blockchain community. With this result in mind, we develop a framework
to design new and evaluate existing CCC protocols, focusing on the inher-
ent trust assumptions thereof, and derive a classification covering the field
of cross-chain communication to date. We conclude by discussing open
challenges for CCC research and the implications of interoperability on
the security and privacy of blockchains.

1 Introduction

Since the introduction of Bitcoin [131] as the first decentralized ledger currency
in 2008, the topic of blockchains (or distributed ledgers) has evolved into a well-
studied field both in industry and academia. Nevertheless, developments are still
largely driven by community effort, resulting in a plethora of blockchain-based
digital currencies being created. Taking into account the heterogeneous nature of
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 3–36, 2021.
https://doi.org/10.1007/978-3-662-64331-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_1&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_1

4 A. Zamyatin et al.

these systems in terms of design and purpose, it is unlikely there shall emerge a
“coin to rule them all”, yielding interoperability an important research problem.

Today, cross-chain communication is found not only in research on cryptocur-
rency transfers and exchanges [12,13,90,91,165], but is a critical component of
scalabilty solutions such as sharding [24,25,27,111,163], feature extensions via
sidechains [38,80,107,117], as well as bootstrapping of new systems [99,101,147].
In practice, over $1bn worth of Bitcoin has been moved to other blockchains [18],
and numerous competing interoperability projects, attempting to unite inde-
pendent systems, have been deployed to practice [14,93,114,145,154,156,158],
creating a multi-million dollar industry.

However, in spite of the vast number of use cases and solution attempts,
the underlying problem of cross-chain communication has neither been clearly
defined, nor have the associated challenges been studied or related to existing
research. Early attempts to overview this field offer iterative summaries of mostly
community-lead efforts [57,96,143], or focus on a subset of this space, such as
atomic swaps [42,129], and support our study. Belchior et al. [39] provide another,
more recent, iterative overview of cross-chain projects, yet without clear taxonomy
or classification.

This Work. This Systematization of Knowledge (SoK) offers a comprehensive
guide for designing protocols bridging the numerous distributed ledgers available
today, aiming to facilitate clearer communication between academia, community,
and industry. The contributions of this work are thereby twofold:

– We formalize the underlying problem of Correct Cross-Chain Communica-
tion (CCC) (Sect. 2), relating CCC to existing research and outlining a generic
CCC protocol encompassing existing solutions. We then relate CCC to the Fair
Exchange problem and show that contrary to common beliefs in the blockchain
community, CCC is impossible without a trusted third party (Sect. 3).

– With the impossibility result in mind, we present a framework to design
new and evaluate existing CCC protocols, focusing on the inherent trust
assumptions thereof (Sects. 4). We apply this framework to classify the field of
CCC protocols to date (Sect. 5), highlighting similarities and key differences.
Finally, we outline general observations on current developments, provide an
outlook on the challenges of CCC research, and discuss the implications of
interoperability on the security and privacy of blockchains (Sect. 6).

2 The Cross-Chain Communication Problem

In this section, we relate cross-chain communication to existing research, intro-
duce the model for interconnected distributed ledgers, provide a formal definition
of the Correct Cross-Chain Communication (CCC) problem, and sketch the main
phases of a generic CCC protocol.

2.1 Historical Background: Distributed Databases

The need for communication among distributed processes is fundamental to any
distributed computing algorithm. In databases, to ensure the atomicity of a

SoK: Communication Across Distributed Ledgers 5

distributed transaction, an agreement problem must be solved among the set of
participating processes. Referred to as the Atomic Commit problem (AC) [46], it
requires the processes to agree on a common outcome for the transaction: commit
or abort. If there is a strong requirement that every correct process should eventu-
ally reach an outcome despite the failure of other processes, the problem is called
Non-Blocking Atomic Commit (NB-AC) [37]. Solving this problem enables correct
processes to relinquish locks without waiting for crashed processes to recover. As
such, we can relate the core ideas of communication across distributed ledgers to
NB-AC. The key difference hereby lies within the security model of the intercon-
nected systems. While in classic distributed databases all processes are expected
to adhere to protocol rules and, in the worst case, may crash, distributed ledgers,
where consensus is maintained by a committee, must also consider and handle
Byzantine failures.

2.2 Distributed Ledger Model

We use the terms blockchain and distributed ledger as synonyms and introduce
some notation, based on [80] with minor alterations.

Ledgers and State Evolution. When speaking of CCC, we consider the inter-
action between two distributed systems X and Y , which can have distinct con-
sensus participants and may employ different agreement protocols. Thereby, it
is assumed the majority1 of consensus participants in both X and Y are honest,
namely, that they follow the designated protocol. The data structures underly-
ing X and Y are blockchains (or chains), i.e., append-only sequences of blocks,
where each block contains a reference to its predecessor(s). We denote a ledger
as L (Lx and Ly respectively) and define its state as the dynamically evolving
sequence of included transactions 〈tx1, ...,txn〉. We assume that the evolution
of the ledger state progresses in discrete rounds indexed by natural numbers
r ∈ N. At each round r, a new set of transactions (included in a newly generated
block) is written to the ledger L. We use LP [r] to denote the state of ledger L
at round r, i.e., after applying all transactions written to the ledger since round
r − 1, according to the view of some party P . A transaction can be written to L
only if it is consistent with the system’s consensus rules, given the current ledger
state LP [r]. This consistency is left for the particular system to define, and we
describe it as a free predicate valid(·) and we write valid(tx, LPx [r]) to denote
that tx is valid under the consensus rules of Lx at round r according to the view
of party P . To denote that a transaction tx has been included in / successfully
written to a ledger L as position r we write tx ∈ LP [r]. While the ordering of
transactions in a block is crucial for their validity, for simplicity, we omit the
position of transactions in blocks and assume correct ordering implicitly.

Notion of Time. The state evolution of two distinct ledgers Lx and Ly may
progress at different time intervals: In the time that Lx progresses one round, Ly
may, for example, progress forty rounds (e.g., as in the case of Bitcoin [131] and

1 In case of Proof-of-Work or Proof-of-Stake blockchains, the majority pertains to
computational power [131] or stake [105] respectively.

6 A. Zamyatin et al.

Ethereum [56]). To correctly capture the ordering of transactions across Lx and
Ly, we define a clock function τ which maps a given round on any ledger to the
time on a global, synchronized clock τ : r → t. We assume that the two chains
are nevertheless synchronized and that there is no clock drift between them. We
use this conversion implicitly in the rest of this paper. For conciseness, we will
use the notation LP [t] to mean the ledger state in the view of party P at the
round r = τ−1(t) which corresponds to time t, namely LP [τ−1(t)].

Persistence and Liveness. Each participant P adopts and maintains a local
ledger state LP [t] at time t, i.e., her current view of the ledger. The views of two
distinct participants P and Q on the same ledger L may differ at time t (e.g., due
to network delay): LP [t] �= LQ[t]. However, eventually, all honest parties in the
ledger will have the same view. This is captured by the persistence and liveness
properties of distributed ledgers [77]:

Definition 1 (Persistence). Consider two honest parties P,Q of a ledger L
and a persistence (or “depth”) parameter k ∈ N. If a transaction tx appears in
the ledger of party P at time t, then it will eventually appear in the ledger of
party Q at a time t′ > t (“stable” transaction). Concretely, for all honest parties
P and Q, we have that ∀t ∈ N : ∀t′ ≥ t + k : LP [t] � LQ[t′], where LP [t] � LQ[t′]
denotes that LP at time t is a (not necessarily proper) prefix of LQ[t′] at time t′.

As parties will eventually come to agreement about the blocks in their ledgers,
we use the notation L[t] to refer to the ledger state at time t shared by all parties;
similarly, we use the notation L[r] for the shared view of all parties at round r.
This notation is valid when t is at least k time units in the past.

Definition 2 (Liveness). Consider an honest party P of a ledger L and a live-
ness delay parameter u. If P attempts to write a transaction tx to its ledger
at time t ∈ N, then tx will appear in its ledger at time t′, i.e., ∃t′ ∈ N : t′ ≥
t ∧ tx ∈ LP [t′]. The interval t′ − t is upper bound by u.

Transaction Model. A transaction tx, when included, alters the state of a
ledger L by defining operations to be executed and agreed upon by consensus
participants P1, ..., Pn. The expressiveness of operations is thereby left for the
particular system to define, and can range from simple payments to execution of
complex programs [159]. For generality, we do not differentiate between specifics
transactions models (e.g. UTXO [131] or account-based models [159]).

2.3 Cross-Chain Communication System Model

Consider two independent distributed systems X and Y with underlying ledgers
Lx and Ly, as defined in Sect. 2.2. We assume a closed system model as in [116]
with a process P running on X and a process Q running on Y . A process can
influence the state evolution of the underlying system by (i) writing a transaction
tx to the underlying ledger L (commit), or (ii) by stopping to interact with the
system (abort). We assume that P possesses transaction txP , which can be
written to Lx, and Q possesses txQ, which can be written to Ly. A function

SoK: Communication Across Distributed Ledgers 7

desc maps a transaction to some “description” which can be compared to an
expected description value, e.g., specifying the transaction value and recipient
(the description differs from the transaction itself in that it may not, for example,
contain any signature). P possesses a description dQ which characterizes the
transaction txQ, while Q possesses dP which characterizes txP . Informally, P
wants txQ to be written to Ly and Q wants txP to be written to Lx. Thereby,
dP = desc(txP) implies txP is valid in X (at time of CCC execution), as it
cannot be written to Lx otherwise (analogous for dQ).

For the network, we assume no bounds on message delay or deviations
between local clocks, unless the individual blockchain protocols require this. We
treat failure to communicate as adversarial behavior. We note that, in the anony-
mous blockchain setting, more synchrony requirements are imposed than in the
byzantine setting. Our construction does not impose any additional synchrony
requirements than the individual ledger protocols. Hence, if P or Q become
malicious, we indicate this using boolean “error variables” [78] mP and mQ.
We assume P and Q know each other’s identity and no (trusted) third party is
involved in the communication between the two processes.

2.4 Formalization of Correct Cross-Chain Communication

The goal of cross-chain communication can be described as the synchronization
of processes P and Q such that Q writes txQ to Ly if and only if P has written
txP to Lx. Thereby, it must hold that desc(txP) = dQ ∧ desc(txQ) = dP . The
intuition is that txP and txQ are two transactions which must either both, or
neither, be included in Lx and Ly, respectively. For example, they can constitute
an exchange of assets which must be completed atomically.

To this end, P must convince Q that it created a transaction txP which was
included in Lx. Specifically, process Q must verify that at given time t the ledger
state Lx[t] contains txP . A cross-chain communication protocol which achieves
this goal, i.e., is correct, must hence exhibit the following properties:

Definition 3 (Effectiveness). If both P and Q behave correctly and txP and
txQ match the expected descriptions (and are valid), then txP will be included
in Lx and txQ will be included in Ly. If either of the transactions are not as
expected, then both parties abort.

(desc(txP) = dQ ∧ desc(txQ) = dP ∧ mP = mQ = ⊥ =⇒ txP ∈ Lx ∧ txQ ∈ Ly)

∧ (desc(txP) �= dQ ∨ desc(txQ) �= dP =⇒ txP /∈ Lx ∧ txQ /∈ Ly)

Definition 4 (Atomicity). There are no outcomes in which P writes txP to
Lx at time t but Q does not write txQ before t′, or Q writes txQ to Ly at t′ but
P did not write txP to Lx before t.

¬((txP ∈ Lx ∧ txQ /∈ Ly) ∨ (txP /∈ Lx ∧ txQ ∈ Ly))

Definition 5 (Timeliness). Eventually, a process P that behaves correctly will
write a valid transaction txP , to its ledger L.

8 A. Zamyatin et al.

From Persistence and Liveness of L, it follows that eventually P writes txP to
Lx and Q becomes aware of and verifies txP .

Definition 6 (Correct Cross-Chain Communication (CCC)). Consider
two systems X and Y with ledgers Lx and Ly, each of which has Persistence and
Liveness. Consider two processes, P on X and Q on Y , with to-be-synchronized
transactions txP and txQ. Then a correct cross-chain communication proto-
col is a protocol which achieves txP ∈ Lx ∧ txQ ∈ Ly and has Effectiveness,
Atomicity, and Timeliness.

Summarizing, Effectiveness and Atomicity are safety properties. Effectiveness
determines the outcome if transactions are not as expected or both transaction
match descriptions and both processes are behaving correctly. Atomicity globally
restricts the outcome to exclude behaviors which place a disadvantage on either
process. Timeliness guarantees eventual termination of the protocol, i.e., is a
liveness property.

2.5 The Generic CCC Protocol

We now describe the main phases of a Generic CCC Protocol, which can repre-
sent the transfer of good, assets or objects, between any two blockchain-based
distributed systems X and Y . A visual representation is provided in Fig. 1.
1) Setup. A CCC protocol is parameterized by the involved distributed systems
X and Y and the corresponding ledgers Lx and Ly, the involved parties P and
Q, the transactions txP and txQ as well as their descriptions dP and dQ. The
latter ensure the validity of txP and txQ and determine the application-level
specification of a CCC protocol. For example, in the case of an exchange of digital
assets, dP and dQ define the asset types, transferred value, time constraints and
any additional conditions agreed by parties P and Q. Typically, the setup occurs
out-of-band between the involved parties and we hence omit this step hereby.
2) (Pre-)Commit on X. Upon successful setup, a publicly verifiable commit-
ment to execute the CCC protocol is published on X: P writes2 transaction txP

to its local ledger LPX at time t in round r. Due to Persistence and Liveness of Lx,
all honest parties of X will report txP as stable (txP ∈ Lx) in round r+ux+kx.
3) Verify. The correctness of the commitment on X by P is verified by Q
checking (or receiving a proof from P) that (i) dP = desc(txP) and (ii) txP ∈ Lx
hold. From Persistence and Liveness of X we know the latter check will succeed
at time t′ which corresponds to round r +ux + kx on X, if P executed correctly.
4a) Commit on Y . Upon successful verification, a publicly verifiable commit-
ment is published on Y : Q writes transaction txQ to its local ledger LQY at time
t′ in round r′ on Y . Due to Persistence and Liveness of Ly, all honest parties of
Y will report txQ as stable (txQ ∈ Ly) in round r′ + uy + ky, where uy is the
liveness delay and ky is the “depth” parameter of Y .

2 In off-chain protocols [85], the commitment can be done by exchanging pre-signed
transactions or channel states, which will be written to the ledger at a later point.

SoK: Communication Across Distributed Ledgers 9

Fig. 1. CCC between X and Y . Process Q writes txQ only if P has written txP . We
set exemplary persistence delays for X and Y as kX = 4 and kY = 3, and liveness
delays as ux = uy = 0. We omit the optional the abort phase.

4b) Abort. If the verification fails and / or Q fails to execute the commitment
on Y , a CCC protocol can exhibit an abort step on X, i.e., “reverting” the
modifications txP made to the state of Lx. As blockchains are append-only data
structures, reverting requires broadcasting an additional transaction txP ′ which
resets X to the state before the commitment of txP .

It is worth noting that some CCC protocols, specifically those facilitating
exchange of assets, follow a two-phase commit design. In this case, steps 2 and
4a are executed in parallel, followed by the verification and (optional) abort
steps on both X and Y . A further observation is that a CCC protocol necessarily
requires a conditional state transition to occur on Y , given a state transition
on X. As such, we do not consider (oracle) protocols which merely relay data
across distributed ledgers [3,52,54,57,153], as CCC protocols by themselves.

3 Impossibility of CCC Without a Trusted Third Party

In this section we show that, in the asynchronous setting, CCC is impossible with-
out a trusted third party by reducing it to the Fair Exchange problem [29,133].

Fair Exchange. On a high level, an exchange between two (or more) parties is
considered fair if either both parties receive the item they expect, or neither do [31].
Fair exchange can be considered a sub-problem of fair secure computation [44], and
is known to be impossible without a trusted third party [72,73,133,160]. We recall
the definition of Fair Exchange the full paper version3.

3.1 What Is a Trusted Third Party?

Numerous recent works use a single distributed ledger such as Bitcoin and
Ethereum to construct (optimistic) fair exchange protocols [28,44,70,106,110,
3 The full version of this paper is available at https://eprint.iacr.org/2019/1128.pdf.

https://eprint.iacr.org/2019/1128.pdf

10 A. Zamyatin et al.

112]. They leverage smart contracts (i.e., programs or scripts), the result of which
is agreed upon and enforced by consensus participants, to ensure the correctness
of the exchange. These protocols thus use the consensus of the distributed ledgers
as an abstraction for a trusted third party. If the majority of consensus partici-
pants are honest, correct behavior of processes/participants of the fair exchange
is enforced – typically, the correct release of aQ to P if Q received aP .

A CCC protocol aims to achieve synchronization between two such distributed
ledgers, both of which are inherently trusted to operate correctly. As we show
below, a (possibly additional) TTP can be used to (i) confirm to the consensus
participants of Y that txP was included in Lx, who in turn enforce the inclusion
of txQ in Ly; or (ii) directly enforce correct behavior of Q, such that txQ ∈ Ly.

Similar to the abstraction of TTPs used in fair exchange protocols, in CCC
it does not matter how exactly the TTP is implemented, as long as it enforces
correct behavior of the participants. Strictly speaking, from the perspective of
CCC there is little difference between a TTP consisting of a single individual and
a committee where N out of M members must agree to take action (even though
a committee is, without question, more resilient against failures) – contrary to
the common assumptions made by the blockchain community.

3.2 Relating CCC to Fair Exchange

We proceed to show that Correct Cross-Chain Communication is impossible
in the asynchronous setting without a trusted third party (TTP), under the
deterministic system model of distributed ledgers, by reducing CCC to Fair
Exchange [29,31,133]. We recall, a fair exchange protocol must fulfill three prop-
erties: Effectiveness, (Strong) Fairness and Timeliness [29,133]

Lemma 1. Let M be a system model. Let C be a protocol which solves CCC in
M . Then there exists a protocol S which solves Fair Exchange in M .

Proof (sketch). Consider that the two processes P and Q are parties in a fair
exchange. Specifically, P owns an item (or asset) aP and wishes to exchange it
against an item (or asset) aQ owned by Q. Assume txP assigns ownership of aP

to Q and txQ transfers ownership of aQ to P (specified in the “descriptions”
dP of txP and dQ of txQ). Then, txP must be included in Lx and txQ must
be included in Ly to correctly execute the exchange. In other words, if txQ ∈ Ly
and txP ∈ Lx, then P receives desired aQ and Q receives desired aP , i.e., P and
Q fairly exchange aP and aQ.

We observe the definition of Timeliness in CCC is equivalent to the definition
of Timeliness in fair exchange protocols, as defined in [133]. Effectiveness in fair
exchange states that if P and Q behave correctly and do not want to abandon
the exchange (i.e., mP = mQ = ⊥), and items aP and aQ are as expected by Q
and P , then at the end of the protocol, P will own the desired aQ and Q will own
the desired aP [133]. It is easy to see Effectiveness in CCC achieves exactly this
property: if P and Q behave correctly and desc(txP) = dP and desc(txQ) = dQ,
i.e., txP transfers aP to Q and txQ transfers aQ to P , then P will write txP

SoK: Communication Across Distributed Ledgers 11

to Ly at time t and Q will write txQ to Lx before time t′. From Persistence and
Liveness of Lx and Ly we know both transactions will eventually be written to
the local ledgers of P and Q, consequently all other honest participants of X will
report txP ∈ LX and honest participants of Y will report txQ ∈ LY . From our
model we know that honest participants constitute majorities in both X and Y .
Hence, P will receive aQ and Q will receive aP .

Strong Fairness in fair exchange states that there is no outcome of the pro-
tocol, where P receives aQ but Q does not receive aP , or, vice-versa, Q receives
aP but P does not receive aQ [133]. In our setting, such an outcome is only
possible if txP ∈ Lx ∧ txQ /∈ Ly or txP /∈ Lx ∧ txQ ∈ Ly, which contradicts the
Atomicity property of CCC. �
We construct a protocol for Fair Exchange using CCC in Appendix A. It is
now left to show that CCC is defined under the same model as Fair Exchange.
The distributed ledger model [77] used in CCC assumes the same asynchronous
(explicitly) and deterministic (implicitly) system model (cf. Sect. 2.3) as [76,
133]. Since P and Q by definition can stop participating in the CCC protocol at
any time, CCC exhibits the same crash failure model as Fair Exchange [30,133]
(and in turn Consensus [76]). Hence, we conclude:

Theorem 1. There exists no asynchronous CCC protocol tolerant against mis-
behaving nodes without a trusted third party.

Proof. Assume there exists an asynchronous protocol C which solves CCC. Then,
due to Lemma 1 there exists a protocol which solves strong fair exchange. As
this is a contradiction, there cannot exist such a protocol C. �
Our result currently holds for the closed model, as in [76,133]. In the open model,
P and Q can be forced to make a decision by the system (or environment), i.e.,
transactions can be written on their behalf if they crash [111]. In the case of
CCC, this means that distributed system Y , or more precisely, the consensus of
Y , can write txQ to Ly on behalf of Q (if P wrote txP to Lx). We observe
that the consensus of Y becomes the TTP in this scenario: both P and Q must
agree that the consensus of Y enforce correct execution of CCC. In practice, this
can be achieved by leveraging smart contracts, similar to blockchain-based fair
exchange protocols, e.g. [70]. As such, we can construct a smart contract, the
execution of which is enforced by consensus of Y , that will write txQ to Ly if P
includes txP in Lx, i.e., Q is allowed to crash.

However, it remains the question how the consensus participants of Y become
aware that txP ∈ Lx. In practice, a smart contract, can only perform actions
based on some input. As such, before writing txQ the contract / consensus of Y
must observe and verify that txP was included in Lx. A protocol achieving CCC
must hence make one of the following assumptions. Either, there exists a TTP
that will ensure correct execution of CCC; or the protocol assumes P , or Q, or
some other honest, online party (this can again be consensus of Y) will always
deliver a proof for txP ∈ Lx to Y within a known, upper bounded delay, i.e.,
the protocol introduces some form of synchrony assumption. As argued in [133],

12 A. Zamyatin et al.

we observe that introducing a TTP and relying on a synchrony assumption are
equivalent :

Remark 1. When designing a CCC protocol, a choice must be made between
introducing a trusted third party, or, equivalently, assuming some synchrony on
the network.

The intuition behind this result is as follows. If we assume that process P does
not crash and hence submits the necessary proof to the smart contract on Y , and
that this message is delivered to the smart contract within a know upper bound,
then we can be sure thatCCCwill occur correctly. Thereby, P intuitively represents
its own trusted third party. However, if we cannot make assumptions on when the
message will be delivered to the smart contract, as is the case in the asynchronous
model, a trusted third party is necessary to determine the outcome of the CCC: the
TTP observes txP ∈ Lx and informs the smart contract or directly enforces the
inclusion of txQ in Ly. This illustrates how a TTP can be leveraged to enforce syn-
chrony, i.e., timely delivery of messages, in CCC protocols. While the two models
yield equivalent results, the choice between a TTP and network synchrony impacts
the implementation details of a CCC protocol.

3.3 Incentives and Rational CCC

Several workarounds to the fair exchange problem, including gradual release
mechanisms, optimistic models, and partially fair secure computation [31,44,60,
113], have been suggested in the literature. These workarounds suffer, among
others, from a common drawback: they require some form of trusted party that
does not collude with the adversary. Further, in case of a adversary-caused abort,
honest parties must spend extra efforts to restore fairness, e.g., in the optimistic
model the trusted server must be contacted each time fairness is breached.

First suggested in the context of rational exchange protocols [149], the eco-
nomic dimension of blockchains enabled a shift in this paradigm: Rather than
forcing an honest user to invest time and money to achieve fairness, the mali-
cious user is economically punished when breaching fairness and the victim is
reimbursed. This has paved the way to design economically trustless CCC pro-
tocols that follow a game theoretic model under the assumption that actors
behave rationally [165]. We remark that malicious/altruistic actors can never-
theless breach CCC properties: even if there is no economic damage to parties P
or Q, the correct execution of the communication protocol itself still fails.

4 The CCC Design Framework

With the impossibility result 3 and CCC model (Sect. 2.2) in mind, we now intro-
duce a new framework for creating and evaluating CCC protocols. A generic CCC
protocol consists of three main phases: commit (on X), verify (and commit on Y),
and an optional abort. The main challenge of designing a CCC protocol is hence
to determine the necessary trust model for each phase, from one of the following:

SoK: Communication Across Distributed Ledgers 13

(i) relying outright on a TTP, (ii) relying on an explicit synchrony assumption, or
(iii) a hybrid approach, where a TTP is only involved if synchrony is breached. The
framework introduced below is structured as follows: for each CCC phase (subsec-
tion), we systematize the three possible trust models (TTP, synchrony, hybrid),
outlining possible implementations and reasoning about practical consideration.
This enables systematic evaluation of existing protocols and, at the same time, acts
as a step-by-step guide for creating new CCC schemes.

4.1 (Pre-)Commit Phase

The commit phase(s) of a CCC protocol typically involves the locking and unlock-
ing of assets on chains X and Y , determined by the outcome of the protocol.

Model 1: Trusted Third Party (Coordinators). A coordinator is a TTP
that is tasked with ensuring correct execution of a CCC protocol. We classify
coordinator implementations attending to two criteria: custody of assets and
involvement in blockchain consensus. A coordinator (committee) can thereby be
static (pre-defined) or dynamic (any user can join). And, finally, a CCC proto-
col can utilize collateral to incentivize correct behavior. We first introduce the
classification criteria and then detail possible implementations of coordinators.

– Custody of Assets. Custody determines with whom the control over assets
of (honest) participants resides. We differentiate between custodians and
escrows. Custodians receive unconditional control over the participant’s funds
and are thus trusted to release them as instructed by the protocol rules.
Escrows receive control over the participant’s funds conditional to certain
prearranged constraints being fulfilled. Contrary to custodians, escrows can
fail to take action, e.g. freeze assets, but cannot commit theft.

– Involvement in Consensus. Coordinators can optionally also take part in the
blockchain consensus protocol. Consensus-level coordinators refer to TTPs
that are additionally consensus participants in the underlying chain. This
is the case, for example, if the commit step is performed on chain X and
enforced directly by the consensus participants of X, e.g. through a smart
contract or directly a multi-/threshold signature. External coordinators, on
the other hand, refer to TTPs which are not represented by the consensus
participants of the underlying blockchain. This is the case if (i) the coordi-
nators are external to the chain X, e.g., the consensus participants of chain
Y or other parties, or (ii) less than the majority of consensus participants of
chain X are involved.

– Election. An important distinction to make is between static, i.e., unchanged
over time (usually permissioned), and dynamic coordinator sets. A dynamic
coordinator can be chosen by CCC participants for each individual execution,
or can be sampled by a pre-defined mechanism, as e.g. studied in [65,108,109,
134] for Proof-of-Work and in [45,64,105,128] for Proof-of-Stake blockchains.
We consider CCC protocols where any user can become a coordinator as
unrestricted, while protocols that require coordinators to be approved by some
third party are referred to as restricted.

14 A. Zamyatin et al.

– Incentives and Collateralization. Instead of following a prohibitive approach,
i.e., technically preventing or limiting coordinators from deviating from pro-
tocol rules, a CCC protocol can follow a punishable approach. That is, ensure
misbehavior can be proven and penalized retrospectively. In the latter case,
a coordinator will typically be required to lock collateral that can be slashed
and allocated to (financially) damaged CCC participants.

Coordinator Implementations. We now detail the different coordinator types acc-
ording to the aforementioned criteria and how they are implemented in practice.

– External Custodians (Committees). Instead of relying on the availability and
honest behavior of a single external coordinator, trust assumptions can be
distributed among a set of N committee members. Decisions require the
acknowledgment (e.g. digital signature) of at least M ≤ N members, whereby
consensus can be achieved via Byzantine Fault Tolerant (BFT) agreement
protocols such as PBFT [61,108]. External custodians can be both static
or dynamic, and collateralization can be added on involved blockchains to
incentivize honest behavior.

– Consensus-level Custodians (Consensus Committee) are identical to external
custodians, except that they are also responsible for agreeing on the state of the
underlying ledger. This model is typically used in blockchain sharding [25,111],
where the blockchain X on which the commit step is executed runs a BFT con-
sensus protocol, i.e., there already exists a static committee of consensus partic-
ipants that much be trusted for correctness of CCC (Persistence and Liveness
of X). Collateralization of Consensus Custodians is best handled on another
blockchain, i.e., where the coordinators have no influence on consensus.

– External Escrows (Multisignature Contracts). External Escrows are a spe-
cial case of External Custodians, where the coordinator is transformed from
Custodian to Escrow by means of a multisignature contract. Multisignature
contracts require signatures of a subset (or majority) of committee members
and the participant P (e.g., the asset owner), i.e., P + M,M ≤ N . The com-
mittee can thus only execute actions pre-authorized by the participant: it can
at most freeze assets, but not commit theft.

Model 2: Synchrony Assumptions (Lock Contracts). An alternative to
coordinators consists in relying on synchronous communication between par-
ticipants and leveraging locking mechanisms which harvest security from cryp-
tographic hardness assumptions. Such protocols are often referred to as non-
custodial, as they avoid transferring custody over assets to a TTP – failures, in
the worst case, result in a permanent lockup of funds without explicit (finan-
cial) benefits to a third party. We differentiate between symmetric contracts,
where identical locks are created on both chains and released atomically, and
asymmetric contracts where the main protocol logic is hosted on a single chain.

– Hash Locks (symmetric). A protocol based on hash locks relies on the preim-
age resistance property of hash functions: participants P and Q transfer assets
to each other by means of transactions that must be complemented with the
preimage of a hash h := H(r) for a value r chosen by P – the initiator of the
protocol – typically uniformly at random [12,13,90,121].

SoK: Communication Across Distributed Ledgers 15

– Signature-based Locks (symmetric). P and Q can transfer assets to each other
by means of transactions that require to solve the discrete logarithm problem
of a value Y := gy for a value y, chosen uniformly at random by P (i.e.,
the initiator of the protocol). The functionality of embedding the discrete
logarithm problem in the creation of a digital signature was put forward by
the community under the term adaptor signatures [135] and formally defined
in [32]. In practice, it has been shown that it is possible to implement adaptor
signatures leveraging virtually any digital signature scheme [155], including
ECDSA and Schnorr which are used for authorization in most blockchains
today [48,50,71,122,130,135,150].

– Timelock Puzzles and Verifiable Delay Functions (symmetric). An alternative
approach is to construct (cryptographic) challenges, the solution of which will
be made public at a predictable time in the future. Thus, P and Q can commit
to the cross-chain transfer conditioned on solving one of the aforementioned
challenges. Concrete constructions include timelock puzzles and verifiable delay
functions. Timelock puzzles [138] build upon inherently sequential functions
where the result is only revealed after a predefined number of operations are
performed. Verifiable delay functions [48] improve upon timelock puzzles on
that the correctness of the result for the challenge is publicly verifiable. This
functionality can also be simulated by releasing parts of the preimage of a hash
lock interactively bit by bit, until it can be brute forced [43].

– Smart Contracts (asymmetric) are programs stored in a ledger which are exe-
cuted and their result agreed upon by consensus participants [56,59]. As such,
trusting in the correct behavior of a smart contract is essentially trusting in the
secure operation of the underlying chain, making this a useful construction for
(Consensus-level) Escrows. Contrary to Consensus-level Custodians, who must
actively follow the CCC protocol and potentially run additional software, with
smart contracts, consensus participants are not directly involved in the CCC
protocol: an interaction with the CCC smart contract is, by default, treated like
any other state transition and no additional software/action is required.

Model 3: Hybrid (Watchtowers). Instead of fully relying on coordinators
being available or synchrony assumptions among participants holding, it is pos-
sible to employ so called watchtowers, i.e., service providers which act as a fall-
back if CCC participants experience crash failures. We observe strong similarities
with optimistic fair exchange protocols [30,31,60]. Specifically, watchtowers take
action to enforce the commitment, if one of the parties crashes or synchrony
assumptions do not hold, i.e., after a pre-defined timeout [34,36,102,123]. This
construction was first introduced and applied to off-chain payment channels [85].

4.2 Verification Phase

The verification phase, during which the commitment on X is verified on Y (or
vice-versa), can similarly be executed under different trust models, as detailed
in the following. An important distinction concerns the type of verification per-
formed: while most CCC protocols verify the inclusion of a transaction executing
the commitment on X, full validation of correctness under X’s protocol rules is

16 A. Zamyatin et al.

typically avoided due to the incurred computational overhead. A detailed analy-
sis and taxonomy of different verification techniques is provided in the full paper
version (See footnote 3).

Model 1: Trusted Third Party (Coordinators). The simplest approach to
cross-chain verification is to rely on a trusted third party (also referred to as
validators [158]) to handle the verification of the state changes on interlinked
chains during CCC execution.

– External Validators. A simple approach is to outsource the verification step
to a (trusted) third party, external to the verifying ledger (in our case Y), as
in [11,154]. The TTP can then be the same as in the commit/abort steps.

– Consensus Committee / Smart Contracts. Alternatively, the verification can
be handled by the consensus participants of the verifying chain [68,111,118],
leveraging the assumption that misbehavior of consensus participants indi-
cates a failure of the chain itself.

Model 2: Synchrony Assumption. Instead of explicitly relying on a TTP,
the verification phase can be implemented using:

– Direct Observation. Similar to the commit phase of CCC, one can require all
participants of a CCC protocol to execute the verification phase individually:
i.e., to run (fully validating) nodes in all involved chains. This is often the
case in exchange protocols, such as atomic swaps using symmetric locks such
as HTLCs [13,90], but also in parent-child settings where one chain by design
verifies or validates the other [38,80,117]. This relies on a synchrony assump-
tion, i.e., requires CCC participants to observe commitments and act within
a certain time, in order to complete the CCC.

– Chain Relay Smart Contracts. The verification process can be encoded in so
called chain relays [3,57,165] – smart contracts deployed onY capable of verify-
ing the of state and hence the commitments executed on X. Chain relays resem-
ble cryptocurrency light (or SPV) clients, i.e., store only the bare minimum
data to verify the inclusion of transactions in the respective blockchain [103,
120,131]. Accordingly, chain relays can only verify that a commitment was exe-
cuted on X– yet not if it was valid under X’s consensus rules. Instead, the “SPV
assumption” is applied: if X has Persistence and Liveness, then a commitment
(transaction) written to X must be valid [120,131]. To fully validate the correct-
ness of a commitment, one must either (i) download the entire state of chain X
(infeasible for CCC), or (ii) encode the state of X in succinct proofs of knowl-
edge [40,47,53] (c.f. the full paper version (See footnote 3)).

Model 3: Hybrid. Verificaiton via TTPs and synchrony can be combined:

– Watchtowers. Just like in the commit phase, synchrony and TTP assumptions
can be combined in the verification phase, such that a CCC protocol initially
relies on a synchrony assumption, but can fall back to a TTP (watchtowers,
c.f Sect. 4.1) to ensure correct termination if messages are not delivered within
a per-defined period.

SoK: Communication Across Distributed Ledgers 17

– Verification Games. Inversely, verification games by default rely on TTPs
for verification (mostly for performance improvements) and implement dis-
pute resolution mechanisms as fall-back: users can provide (reactive) fraud
proofs [26] or accuse coordinators of misbehavior requiring them to prove
correct operation [87,100,151].

4.3 Abort Phase

The abort of a CCC protocol is optional and is encountered typically in exchange
protocols. Most other CCC protocols assume that once a commit is executed on
X, no abort will be necessary.

Model 1: Trusted Third Party (Coordinators). Similarly to the commit
phase, an abort can be handled by a trusted third party and the possible imple-
mentations are the same as in Sect. 4.1. If a TTP was introduced in the commit
phase, the abort phase will be typically handled by the exact same TTP.

Model 2: Synchrony Assumptions (Timelocks). Alternatively, it is pos-
sible to enforce synchrony by introducing timelocks, after the expiry of which
the protocol is aborted. Specifically, to ensure that assets are not locked up
indefinitely in case of a crash failure of a participant or misbehavior of a TTP
entrusted with the commit step, all commit techniques can be complimented
with timelocks: after expiry of the timelock, assets are returned to their original
owner. We differentiate between two types of timelocks. Absolute timelocks yield
a transaction valid only after a certain point in time, defined in by a timestamp
or a block (ledger at index i, L[i]) located in the future. Relative timelocks, on the
other hand, condition tx2 on the existence of another transaction tx1: tx2 only
becomes valid and can be written to the underlying ledger if tx1 has already
been included and a certain number of blocks (confirmations [5]) have passed.

Model 3: Hybrid (Watchtowers). As an additional measure of security, TTPs
can be introduced as a fallback to timelocks in case CCC participants expe-
rience crash failures, e.g. in form of a watchtower [34,36,102,123] that recov-
ers otherwise potentially lost assets. This is specifically useful in the case of
atomic swaps using Hased Timelock Contracts (HTLCs) [2,13,90,136], when
either party crashes after the hashlock’s secret has been revealed.

5 Classification of Existing CCC Protocols

We now apply the CCC Design Framework introduced in Sect. 4 to classify exist-
ing CCC protocols. All CCC protocols observed in practice follow the Generic
CCC Protocol model (cf. Sect. 2.5). For each protocol, we hence study and reason
about the trust model (TTP, synchrony, hybrid) selected for each phase of the
CCC process, and summarize our classification in Table 1. Our analysis thereby
focuses on well-documented or deployed protocols - which in turn have seen
numerous implementations that are not individually referenced in this paper.

18 A. Zamyatin et al.

T
a
b
le

1
.

C
la

ss
ifi

ca
ti

o
n

o
f

ex
is

ti
n
g

o
f

C
ro

ss
-C

h
a
in

C
o
m

m
u
n
ic

a
ti

o
n

p
ro

to
co

ls
,

in
co

n
si

d
er

a
ti

o
n

o
f

th
e

se
le

ct
ed

T
T

P
m

o
d
el

(c
f.

S
ec

t.
4
)

a
t

ea
ch

p
ro

to
co

l
st

ep
(c

o
m

m
it

,
v
er

if
y,

a
b
o
rt

).
N

o
ta

ti
o
n

fo
r

n
o
n
-b

in
a
ry

T
T

P
va

lu
es

:
�u

se
s

a
T

T
P
,

�f
u
ll
y

re
li
es

o
n

sy
n
ch

ro
n
y

a
n
d

av
a
il
a
b
il
it
y

o
f
p
a
rt

ic
ip

a
n
ts

,
��h

y
b
ri

d
.
W

e
a
ls

o
h
ig

h
li
g
h
t

if
th

e
T

T
P

(c
o
m

m
it

te
e)

is
st

a
ti

c
o
r

ch
a
n
g
es

d
y
n
a
m

ic
a
ll
y,

a
n
d

w
h
et

h
er

co
ll
a
te

ra
l

is
u
ti

lz
ed

to
in

ce
n
ti

v
iz

e
co

rr
ec

t
b
eh

av
io

r
o
f

T
T

P
s.

W
e

u
se

th
e

fo
ll
ow

in
g

a
b
b
re

v
ia

ti
o
n
s:

E
C

fo
r

E
x
te

rn
a
l
C

u
st

o
d
ia

n
,
C
C

fo
r

C
o
n
se

n
su

s
C

u
st

o
d
ia

n
,
E
E

fo
r

E
x
te

rn
a
l
E

sc
ro

w
,
S
C

fo
r

S
m

a
rt

C
o
n
tr

a
ct

,
E
V

fo
r

E
x
te

rn
a
l
V

a
li
d
a
to

r,
C
M

fo
r

C
o
n
se

n
su

s
C

o
m

m
it

te
e,

a
n
d
D
O

fo
r

D
ir

ec
t

O
b
se

rv
a
ti

o
n
.

P
ro

to
co

l

T
ru

st
M

o
d
el

at
ea

ch
C
C
C

P
ro

to
co

l
P
h
as

e

C
om

m
it

on
ch

ai
n

X
V
er

if
y

&
C
om

m
it

on
ch

ai
n

Y
A
b
or

t
on

ch
ai
n

X
(o

p
ti
n
al
)

T
T
P

D
y
n
am

ic
?
C
ol
la
te

ra
l?

T
y
p
e

T
T
P

T
y
p
e

T
T
P

T
y
p
e

ExchangeProtocols

(AtomicSwaps)

T
ra

d
it
io
n
al

C
u
st
o
d
ia
l
E
x
ch

an
ge

s
(e

.g
.,

[1
,4

3]
)

E
C

(s
in
gl
e,

re
st
ri
ct
ed

)
E
V

E
C

(s
in
gl
e,

re
st
ri
ct
ed

)

A
2L

[1
50

]
E
E

(m
ul
ti
si
g
+

si
gn

at
ur
e
L
oc
k)

D
O

E
E

+
T
im

el
oc
k

A
rw

en
[8
9]

E
E

(m
ul
ti
si
g
+

H
as
h
L
oc
k)

D
O

E
E

+
T
im

el
oc
k

N
ot

ar
iz
ed

H
T
L
C

A
to

m
ic

S
w
ap

s
[1
54

]
-

-
H
as
h
L
oc
k

E
V

E
E

+
T
im

el
oc
k

H
T
L
C

A
to

m
ic

S
w
ap

s
[1
3,

90
,1

2,
15

4]
-

-
H
as
h
L
oc
k

D
O

T
im

el
oc
k

E
C
D
S
A
/D

L
S
A
G

A
to

m
ic

S
w
ap

s
[1
22

,1
30

]
-

-
Si
gn

at
ur
e
L
oc
k

D
O

T
im

el
oc
k

S
P
V

A
to

m
ic

S
w
ap

s
[6
,1

07
,1

65
,9

1]
-

-
St
an

da
rd

pa
ym

en
t

SC
(c
ha

in
re
la
y)

T
im

el
oc
k

MigrationProtocols

Cryptocurrency-

backedAssets

(B
id
ir
ec

ti
on

al
)
C
h
ai
n

R
el
ay

s
[1
07

,8
0]

-
-

SC
SC

(c
ha

in
re
la
y)

-
-

X
C
L
A
IM

[1
65

],
D
og

et
h
er

eu
m

[1
52

]
E
C

(s
in
gl
e,

un
re
st
ri
ct
ed

)
SC

(c
ha

in
re
la
y)

-�
-

tB
T
C

[8
]

E
C

(c
om

m
it
te
e,

re
st
ri
ct
ed

)
SC

(c
ha

in
re
la
y)

-�
-

C
u
st
o
d
ia
l
W

ra
p
p
ed

A
ss
et

s
(e

.g
.,

[1
1,

21
,2

0]
)

E
C

(s
in
gl
e,

re
st
ri
ct
ed

)
E
V

E
C

(s
in
gl
e,

re
st
ri
ct
ed

)

Side-

chains

F
ed

er
at

ed
S
id
ec

h
ai
n
s/

P
eg

s
[3
8,

68
,8

0]
E
C

(c
on

se
ns
us

of
Y
)

C
M

-�
-

R
S
K

[1
18

,1
17

]
E
C

(c
on

se
ns
us

of
Y
)

C
M

-�
-

Sharding

A
T
O
M

IX
[1
11

],
S
B
A
C
[2
5]
,
F
ab

ri
c
C
h
an

n
el
s[
27

]
C
C

(s
ha

rd
X
)

C
M

C
C

(s
ha

rd
X
)

R
ap

id
ch

ai
n

[1
63

]
C
C

(s
ha

rd
X
)

C
M

-�
-

X
C
M

P
[5
5]

E
C

(p
ar
en

t
co
ns
en

su
s)

C
M

-�
-

Boot-

strapping

P
ro

of
-o
f-
B
u
rn

(F
ed

er
at

ed
)

[1
47

,1
01

]
-

-
SC

/
B
ur
n
ad

dr
es
s

C
M

-
-

P
ro

of
-o
f-
B
u
rn

(S
P
V
)
[1
01

]
-

-
SC

/
B
ur
n
ad

dr
es
s

SC
(c
ha

in
re
la
y)

-
-

M
er

ge
d

M
in
in
g/

S
ta

k
in
g
[9
9,

80
]

C
C

(c
on

se
ns
us

of
X
)

C
M

-
-

�
W

hi
le

no
t
ex
pl
ic
it
ly

co
ns
id
er
ed

by
th
e
pr
ot
oc
ol
,
th
e
T
T
P

us
ed

fo
r
th
e
co
m
m
it
m
en

t
on

X
ca
n,

at
it
s
di
sc
re
ti
on

,
ab

or
t
th
e
C
C
C
pr
ot
oc
ol

m
an

ua
lly

/o
ut
-o
f-
ba

nd
in

ca
se

of
fa
ilu

re
on

Y
.

SoK: Communication Across Distributed Ledgers 19

In addition to applying the CCC Design Framework, we split existing propos-
als into two protocol families, based on their design rationale and use case, which
have direct implications on the design choices: (i) exchange protocols, which syn-
chronize the exchange of assets across two ledgers (Sect. 5.1), and (ii) migration
protocols, which allow to move an asset or object to a different ledger (Sect. 5.2).

5.1 Exchange Protocols

Exchange protocols synchronize an atomic exchange of digital goods: x on chain
X against y on Y . In practice, such protocols implement a two-phase commit
mechanism, where parties first pre-commit to the exchange and can explicitly
abort the protocol in case of disagreement or failure during the commit step.

(Pre-)Commit. Trivially, the commit phase can be handled by External Custo-
dians: traditional, centralized exchanges require to deposit (commit) assets with
a TTP before trading.

The longest-standing alternative to centralized solutions are atomic swaps via
symmetric locks which rely on synchrony and cryptographic hardness assump-
tions. Counterparties P and Q lock (pre-commit) assets in on-chain contracts
with identical release conditions on X and Y : spending from one lock releases
the other, ensuring Atomicity of CCC. The first and most adopted implementa-
tion of symmetric locks are hashed timelock contracts (HTLCs) [12,13,90,154],
where the same secret (selected by P) is used as pre-image to identical Hash
Locks on X and Y . To improve cross-platform compatibility, Hash Locks, which
require both chains to support (the same) hash functions, can be replaced with
Signature Locks e.g., using ECDSA [122] or group/ring signature schemes [130].

On blockchains which support (near) Turing complete programming lan-
guages (e.g., Ethereum [56]) the commitment on X can exhibit more complex
locking conditions via smart contracts. In SPV atomic swaps [6,91,107,165],
assets of a party P are locked in a smart contract on X which is capable of
verifying the state of chain Y (chain relay, cf. Sect. 4.2) - and unlocked only if
counterparty Q submits a correct proof for the expected payment (commitment)
on Y . The smart contract can be further extended to support collateralization
and penalties for misbehaving counterparties (e.g., to mitigate optionally and
improve fairness [86,165]).

Both symmetric and SPV atomic swaps suffer from usability challenges
impeding adoption: they require users to be online and execute commitments
in a timely manner to avoid financial damage (built-in abort mechanisms dis-
cussed later). Hybrid protocols seek to combine symmetric locks with TTP mod-
els to mitigate usability issues while avoiding full trust in a central provider. In
Arwen [89], parties P and Q commit to-be-exchanged assets into on-chain mul-
tisignature contracts on X and Y , establishing shared custody with an External
Escrow (EE). Trades are executed similar to HTLC swaps, yet utilize the escrow
to ensure correct and timely execution. A2L [150] follows a similar multisigna-
ture setup but utilizes adaptor signatures [32] to ensure Atomicity of trades:
the escrow only forwards P ’s assets to Q if Q solves a cryptographic challenge,
for which Q needs the help of P . Both Arwen and A2L require a complex on-
chain setup process (similar to payment channels [136]) and rely on pre-paid

20 A. Zamyatin et al.

fees (Arwen) or collateral (A2L) to protect the escrow from griefing attacks [62]
- yielding them inefficient for one-time exchanges.

Verify. Contrary to traditional exchanges, where the custodial (operator) is
also responsible for the verification phase, symmetric atomic swap protocols
(including Arwen and A2L) require users to directly observe all chains involved
in the CCC to verify correct execution of the (pre-)commit phase. Notarized
atomic swaps (e.g., as in InterLedger [154]) remove the online requirement for
users by entrusting an External Validator (EV) e.g., a set of notaries, with the
verification of (and timely reaction to) the commitment on X- at the risk of the
EV colluding with the a counterparty to commit theft. A more robust approach,
implemented in SPV atomic swaps, is the use of chain relays: the verification of
the commit on X and the correct finalization of the CCC protocol (commit on
Y) is executed by a smart contract on Y , enforced by the consensus of Y .

Abort. Exchange CCC protocols typically add timelocks to the release condi-
tions of the commitments of X and Y to ensure an automatic abort of the CCC
protocol after a pre-defined delay. This is to prevent indefinite lock-up of assets,
should a party crash or misbehave. However, CCC protocols implementing time-
locks impose strict online requirements on participants and expose them to race
conditions. The initiator P of e.g., a HTLC swap can defraud counterparty Q
by recovering assets on X if they remain unclaimed upon expiry of the time-
lock (e.g., if Q crashed). Some protocols, including A2L and Arwen, partially
outsource this responsibility to TTPs [89,150].

5.2 Migration Protocols

Migration protocols temporarily or permanently move digital goods from one
blockchain to another. Typically, this is achieved by obtaining a “write lock”
on an asset x on chain X, preventing any further updates to x on chain X,
and consequently creating a representation y(x) on Y . The state of x can only
be updated by modifying its “wrapped” version y(x) on Y – comparable to the
concept of mutual exclusion in concurrency control [67]. The state changes of y(x)
will typically be reflected back to chain X by locking or destroying (“burning”)
y(x) and applying the updates to x when it is unlocked.

Migration protocols only require to execute CCC synchronization across X
and Y twice: creating and destroying y(x). The “wrapped” representation y(x)
typically exhibits the same properties as “native” assets y, allowing seamless
integration with applications on Y . For comparison, Exchange protocols require
to setup and execute CCC for each trade. The main drawback of Migration
protocols is the requirement of giving up custody over x, in the majority of
cases to a TTP (cf. Table 1).

In practice, we identify four main use cases for Migration protocols: (i)
cryptocurrency-backed assets used for transfers across heterogeneous blockchains
(e.g., “wrapped” Bitcoin on Ethereum), (ii) communication across homogeneous
chains (shards) in sharded blockchains, (iii) sidechains where a child chain is
“pegged” to a parent for feature extensions, and (iv) bootstrapping of new block-
chains using existing systems.

SoK: Communication Across Distributed Ledgers 21

(Pre-)Commit. The simplest implementation of a Migration protocol (e.g.,
for cryptocurrency-backed assets) relies on a single, static TTP which receives
unrestricted custody over the to-be-migrated assets during the commit phase
(External Custodian) – for example, implemented by wBTC [11], a custodial
platform for migrating Bitcoin to Ethereum.

Instead of relying on a single TTP, most CCC rely on a TTP commit-
tee to improve robustness against failures. Protocols connecting heterogeneous
blockchains via cryptocurrency-backed assets, notably tBTC [8], utilize a set of
External Custodians (EC). In the tBTC protocol, currently deployed between
Bitcoin and Ethereum, ECs construct a jointly controlled deposit public key on
X via (ECDSA) threshold signatures [81], to which users send (commit) to-be-
migrated assets. The ECs must thereby lock up collateral on Y which is used to
reimburse users in case the EC committee commits theft or crashes. At the time
of writing, the implemented threshold signature scheme does not support fault
attribution, i.e., it impossible to distinguish between honest and malicious com-
mittee members when slashing collateral, requiring the EC set to be static and
restricted. RenVM [21] aims to replace threshold signatures with distributed key
generation via secure multi-party computation [83] but implements a centralized
approach at the time of writing.

Sidechains [38,68,80] establish a parent-child relationship between X and
Y : the consensus committee of X (Consensus Custodian, CC) or Y (External
Custodian, EC) is responsible for handling the correct deposit (commit) of x on
X. In practice, implementations follow a similar approach to the heterogeneous
setting: users deposit assets x to a public key with shared control among com-
mittee members, implemented e.g., via threshold / multisignature [94] schemes.
Liquid [38,68], which coined the “sidechain” terminology, maintains an 11-of-15
multisignature, controlled by its consensus participants, to migrate (lock/unlock)
Bitcoin to and from the Liquid blockchain. RSK [117,118], a merge-mined [99]
Bitcoin sidechain, currently follows the same approach as Liquid but envisions
a Bitcoin protocol upgrade enabling miners to vote on migrating assets to RSK.

Similarly, sharded blockchains, which consist of a set of homogeneous shard-
chains with a homogeneous, shared security model, utilize the consensus com-
mittee(s) available within the system for securing cross-shard migrations. While
often considered as a separate topic in research, sharded blockchains exhibit
built-in CCC protocols [35]: Migrated assets x are locked with the consensus of
X (Consensus Custodian, CC) during the commit phase. A novelty compared
to heterogeneous systems is the explicit consideration of n-to-m CCC protocols,
such as ATOMIX [111], SBAC [25], and Fabric Channels [27], which require an
explicit abort step as part of the two-phase commit design.

Recently, a new family of protocols following a permissionless design, was intro-
duced. XCLAIM [165] and Dogethereum [152] allow anyone to become a TTP and
accept deposits (commits) of x on X, establishing a dynamic and unrestricted set
of coordinators (External Custodians, ECs). The only requirement for registering
as an EC is to lock collateral y on Y – the amount of y locked thereby determines the
amount of x deposits (and hence minted y(x)) an EC can accept. While Dogeth-
ereum assumes a constant exchange rate between migrated x (equiv. y(x)) and
collateral asset y, XCLAIM utilizes a multi-stage over-collateralization scheme to

22 A. Zamyatin et al.

re-balance the economic value of committed x and locked collateral y. To enable
ECs to join and leave the system at any point in time, XCLAIM implements a
replacement/auction mechanism via cross-chain SPV atomic swaps, where collat-
eral y can be exchanged for committed x held in custody.

In cases where X and Y support smart contracts, specifically chain relays,
bidirectional chain relays [80,107] can be utilized, enabling non-custodial com-
mitments on X and Y : locking of x and unlocking/minting of y(x) is handled
exclusively by smart contracts under the assumption of synchrony.

Proof-of-Burn [101,147] resembles follows a similar design, yet implements
a unidirectional protocol: instead of being locked, x is provably destroyed
(“burned”), and newly minted as y(x) on Y . As such, Proof-of-Burn is mostly used
for bootstrapping of new blockchains. Merged mining [99] was the first CCC pro-
tocol deployed in practice (2011 in Namecoin) and is used explicitly for bootstrap-
ping purposes. Miners (stakers) of X can reuse PoW solutions (stake) to progress
consensus on Y by including a commitment to Y ’s state in the ledger of X.

Verify. Migration protocols - with the exception of centralized, custodial ser-
vices - rely the on consensus of chain Y to correctly verify the commitment on X.
We observe two main implementation techniques: (i) under synchrony assump-
tions by using chain relay smart contracts, which cryptographically verify the
correctness of the commitment on X, or (ii) by requesting the consensus com-
mittee of Y to explicitly sign off on the CCC execution. XCMP [55], a cross-shard
protocol, adds an additional verification step: cross-shard transfers are verified
by and included in a hierarchically “superior” parent chain – which in turn is
verified by the target shard Y before commitment.

Abort. We observe that Migration protocols generally do not implement an
explicit abort phase. Instead, they assume that if the commitment on X is
executed correctly it will eventually be verified by chain Y , which in turn will
result in a correct commitment on Y . An exception hereof are n-to-m transfers
in sharded blockchains (e.g., ATOMIX [111] and SBAC [25]) which require an
explicit abort phase. Such transfers follow a two-phase-commit protocol: assets
on all source shards X1, ...,Xn are pre-committed and verified on all target shards
Y1, ..., Yn, which in turn execute a pre-commitment. If a single target shard
fails to reply with a pre-commitment (within some period), the CCC protocol is
aborted on all other source and target shards.

5.3 Insights and General Observations

An interesting, yet expected insight is that performance and usability outweigh
security considerations from a user’s perspective. Decentralized and non-custodial
CCC solution have been proposed as early as 2013 (symmetric swaps [12]) and
2015 (SPV swaps [6]), yet centralized providers remain the dominant cross-chain
asset exchange facilitator. The recent rise of decentralized exchanges, which mostly
operate within a single chain [9], has boosted the adoption of cryptocurrency-
backed assets, although predominantly via custodial approaches: at the time of

SoK: Communication Across Distributed Ledgers 23

writing, 99% of “wrapped” Bitcoin on Ethereum has been issued through trusted,
custodial services [17].

Decentralized CCC protocols still suffer from practical drawbacks hindering
adoption. Symmetric atomic swaps impose strict online requirements on users.
SPV atomic swaps, and similarly migration protocols such as XCLAIM and
tBTC, make use of chain relays which are only feasible if Y supports smart
contracts and the cryptographic primitives used in X. Orthogonal, collateral-
ization, which allows to protect users from financial damage (cf. Sect. 3), incurs
high capital requirements and opportunity cost – leading most users to resort to
trusted, centralized solutions.

An interesting observation hereby is that sharded systems and sidechains do
not necessarily benefit from decentralized CCC protocols. In fact, due to the
homogeneous nature of the security models of X and Y in this setting, the use
of the consensus committee(s) of X or Y as TTP for CCC does not introduce
any additional (external) trust assumptions to the underlying systems.

6 CCC Challenges and Outlook

In this section, we provide an outlook on the (open) problems faced by CCC
protocols and possible avenues for future work.

6.1 Heterogeneous Models and Parameters Across Chains

Problems. Different blockchains leverage different system models and parame-
terizations, which, if not handled correctly by CCC protocols, can lead to protocol
failures. For instance, the absence of a global clock across chains requires CCC
participants to either agree on a trusted third party as means of synchronization,
or to rely on a chain-dependent time definition (e.g., block generation rates [77])
which are often non-deterministic and hence unsafe for strictly time-bound proto-
cols [77,165]. A practical example hereof are race-condition attacks on symmetric
exchange protocols such as HTLC atomic swaps, discussed in Sect. 5.

Another consideration are the security models of interconnected chains: while
X and Y may exhibit well defined security models, these are typically indepen-
dent and not easily comparable (with the exception of sharding) – especially
when combined within a CCC protocol. For instance, X may rely on PoW and
thus assume that adversarial hash rate is bound by α ≤ 33% [74,82,141]. On
the other hand, Y may utilize PoS for consensus and similarly assume that
the adversary’s stake in the system is bound by β ≤ 33%. While similar at first
glance, the cost of accumulating stake [75,79] may be lower than that of accumu-
lating computational power, or vice-versa [51]. Since permissionless ledgers are
not Sybil resistant [69], i.e., provide weak identities at best, quantifying adver-
sary strength is challenging even within a single ledger [33]. This task becomes
nearly impossible in the cross-chain setting: not only can consensus participants
(i) “hop” between different chains [115,127], destabilizing involved systems, but
also (ii) be susceptible to bribing attacks executed cross-chain, against which
there currently exist no countermeasures [98,125].

24 A. Zamyatin et al.

Following from different security models, the lack of homogeneous finality
guarantees [146] across blockchains poses another challenge for CCC. Consider
the following: X accepts a transaction as valid when confirmed by k subsequent
blocks e.g., as in PoW blockchains [77]; instead, Y deems transactions valid as
soon as they are written to the ledger (k = 1, e.g. [22]). A CCC protocol triggers
a state transition on Y conditioned on a transaction included in X, however,
later an (accidental) fork occurs on X. While the state of X is reverted, this
may not be possible on Y according to consensus rules – likely resulting in an
inconsistent state on Y and financial damage to users.

Outlook. Considering the plethora of blockchain designs in practice, it is safe to
assume a heterogeneous ecosystem for at least the near future. Protocol designers
must hence carefully evaluate and consider the specifics of each interlinked chain
when implementing CCC schemes: introduction of conservative lower bounds
on transaction (commit) finality (hours / days rather than minutes), analysis
of computation and communication capabilities of consensus participants, and
accounting for peer-to-peer network delays when utilizing a trusted third party
as global clock

6.2 Heterogeneous Cryptographic Primitives Across Chains

Problems. Interconnected chains X and Y may rely on different cryptographic
schemes, or different instances of the same scheme. CCC protocols, however,
often require compatible cryptographic primitives: a CCC protocol between a
system X using ECDSA [95] as its digital signature scheme and a system Y
using Schnorr [142] is only seamlessly possible if both schemes are instantiated
over the same elliptic curve [122]. This is, for example, the reason Ethereum uses
the same secp256k1 curve as Bitcoin [10].

Similarly, CCC protocols using Hash Locks, e.g. HTLC swaps, require that
the domain of the hash function has the same size in both X and Y – otherwise
the protocol is prone to oversize preimage attacks [97], i.e., an attack where a
transaction cannot be accepted by a chain because the representation of the
preimage requires more bits than those previously allocated to store it.

Outlook. A design challenge in CCC protocols is thus the interoperability of
chains in terms of (cryptographic) primitives as required in CCC protocols. In
cases where interlinked chains implement different elliptic curves, zero-knowledge
proofs may provide a workaround, yet at the cost of increased protocol complex-
ity, as well as computation and communication costs [132]. Our observations
suggest that this is one of the main reasons for lack of interoperability across
current blockchain networks.

6.3 Collateralization and Exchange Rates

Problems. In recent works [8,107,152,165], we observe a trend towards collater-
alizing coordinators to prevent financial damage to users and incentivize correct
behavior of TTPs. Thereby, it is crucial to ensure that the provided collateral has

SoK: Communication Across Distributed Ledgers 25

sufficient value to outweigh potential gains from misbehavior. However, in the
cross-chain setting, where insured asset and collateral are typically different, col-
lateralized CCC protocols are forced to (i) implement measures against exchange
rate fluctuations such as over-collateralization incurring capital inefficiencies for
participants, and (ii) rely on (typically centralized) price oracles.

Outlook. Current CCC protocols, if at all, only provide minimal protection
against exchange rate fluctuations, such as over-collateralization. An interest-
ing avenue for future research is hence the design of dynamic collateralization
e.g., based on the volatility of the locked/collateral assets. Decentralized price
oracles already are an active field of research [4,23,137,153,166], yet as of this
writing oracles remain single points of failure in collateralized CCC protocols.
Cryptocurrency-backed assets traded on decentralized exchanges, where trading
data is available on-chain, may thereby provide a valuable source of information
for cross-verification with centralized providers [165].

6.4 Lack of Formal Security Analysis

Problems. While numerous CCC protocols have been deployed and used in
practice, handling value transfers worth millions, most lack formal and rigor-
ous security analysis. This lack of formal security guarantees opens the door
to possible security threats. For instance, replay attacks on state verification,
i.e., where proofs are re-submitted multiple times or on multiple chains, can
result in failures such as double spending [124] or counterfeited cryptocurrency-
backed assets [165]. Another security issue arises with data availability. Proto-
cols employing cross-chain verification via chain relays typically rely on timely
arrival of proofs and metadata (block headers, transactions, ...). However, if an
adversary can withhold this data from the verifying chain [26], such protocols
not only become less efficient but potentially vulnerable to double spending and
counterfeiting.

Outlook. This state of affairs calls for a rigorous and formal security analysis
of existing CCC protocol – least those deployed in practice. In the meantime,
ad-hoc solutions to the aforementioned security threats have been discussed in
the community. For instance, protections against replay attacks involving the use
of sequence numbers, or chains keeping track of previously processed proofs [58,
124,144]. Similarly, first attempts to mitigate the data availability problem via
erasure coding have been suggested in [24,26,162] – yet at the cost of protocol
complexity and communication overhead

6.5 Lack of Formal Privacy Analysis

Problems. Privacy is a crucial property of financial transactions and hence
applies to CCC protocols. Ideally it should not be possible for an observer
to determine which two events have been synchronized across chains (e.g.,
which assets have been exchanged and by whom). Unfortunately, CCC proto-
cols deployed in practice lack formal privacy analysis and numerous privacy

26 A. Zamyatin et al.

issues have already been detected. For instance, recent works [84,121] leverage
the fact that the same hash value is used on both chains involved in symmetric
HTLC atomic swaps to trivially link exchanged assets and accounts. Other de-
anonymization techniques enabled by CCC protocols include miner address clus-
tering via blocks merge-mined across different cryptocurrencies [99], cross-linking
of miner and user accounts cross-chain by analyzing of blockchain forks [92,148],
and using public exchange datasets to trace cross-ledger trades [161].

Outlook. The academic community has developed formal frameworks that
permit rigorous analysis of the privacy properties in the context of exchange
protocols [84,88,121,122,150]. First techniques towards privacy-preserving CCC
Exchange protocols via asymmetric and unlinkable locking techniques have been
studied in [66,121,122,140], yet, at the time of writing, we are not aware of
privacy enhancements for the more-widely adopted Migration protocols – an
interesting avenue for future research.

6.6 Upcoming Industrial and Research CCC Trends

Interoperability Blockchains. are specialized sharded distributed ledgers
which aim to serve as communication layer between other blockchains [14,93,
114,139,145,156,158] and exhibit implementations of existing CCC protocols.
Individual shards, which are coordinated via a parent chain running a BFT
agreement protocol, connect to and import assets from existing blockchains via
Migration CCC protocols, most commonly cryptocurrency-backed assets [7]. A
formal treatment of this design, also considering distributed computations, is
presented in [119]. Cosmos [114] and Polkadot [158] also implement new stan-
dards for (internal) cross-shard communication (IBC [16] and XCMP [55] respec-
tively). As of this writing, the aforementioned systems are under active develop-
ment, making it difficult to argue about their security, feasibility, and long-term
adoption - leaving room for future analysis.

Efficient Light Clients. Cross-chain state verification via chain relays is a
fundamental part of robust CCC protocols. While current light/SPV clients suf-
fice for e.g., mobile devices, they often remain infeasible for deployment on top
of blockchains for CCC protocols, where storage and bandwidth are priced by
the byte. Recent works on sub-linear light clients have achieved first significant
theoretical [103,104,120] and practical performance improvements [63,157,164].
In parallel, recent developments in the field of zero-knowledge cryptogra-
phy [40,47,53] pave the way towards (near)constant verification times and costs
for chain relays. First schemes for blockchains with built-in support for such
proof systems are put forth in [41,49,126].

Off-Chain Protocols. One of the most actively developed fields in blockchain
research are off-chain (“L2”) communication networks [85], which aim to improve
scalability (and privacy) of distributed ledgers: most transactions are executed
off-chain and only channel opening and closure are written to the ledger. The
influx of L2 solutions is thereby creating a new field for CCC research: (i) com-
munication across off-chain channels [88,121,122,150], and (ii) communication

SoK: Communication Across Distributed Ledgers 27

between off-chain and on-chain networks [15,19]. While similar to conventional
CCC protocols, the “off-chain” nature of L2 solutions requires more complex tech-
niques for the verification phase of CCC: intermediate states in off-chain protocols
cannot be verified by existing chain relays, which only support verification of on-
chain commitments, and must hence resort to cryptographic techniques such as
adaptor signatures [32] or succinct proofs of knowledge [40,47,53].

7 Concluding Remarks

Our systematic analysis of cross-chain communication as a new problem in the
era of distributed ledgers allows us to relate (mostly) community driven efforts
to established academic research in database and distributed systems research.
We formalize the cross-chain communication problem and show it cannot be
solved without a trusted third party – contrary to the assumptions often made
in the blockchain community. Following this result, we introduce a framework
for evaluating existing and designing new cross-chain communication protocols,
based on the inherent trust assumptions thereof. We then provide a classification
and comparative evaluation, taking into account both academic research and the
vast number of online resources, allowing us to better understand the similarities
and differences between existing cross-chain communication approaches. Finally,
by discussing implications and open challenges faced by cross-chain communica-
tion protocols, as well as the implications of interoperability on the security and
privacy of blockchains, we offer a comprehensive guide for designing protocols,
bridging multiple distributed ledgers.

Acknowledgements. We would like express our gratitude to Georgia Avarikioti,
Daniel Perez and Dominik Harz for helpful comments and feedback on earlier ver-
sions of this manuscript. We also thank Nicholas Stifter, Aljosha Judmayer, Philipp
Schindler, Edgar Weippl, and Alistair Stewart for insightful discussions during the
early stages of this research. We also wish to thank the anonymous reviewers for their
valuable comments that helped improve the presentation of our results.

This research was funded by Bridge 1 858561 SESC; Bridge 1 864738 PR4DLT
(all FFG); the Christian Doppler Laboratory for Security and Quality Improvement in
the Production System Lifecycle (CDL-SQI); the competence center SBA-K1 funded
by COMET; Chaincode Labs through the project SLN: Scalability for the Lightning
Network; and by the Austrian Science Fund (FWF) through the Meitner program
(project M-2608).

Mustafa Al-Bassam is funded by a scholarship from the Alan Turing Institute.
Alexei Zamyatin conducted the early stages of this work during his time at SBA
Research, and was supported by a Binance Research Fellowship.

A Fair Exchange Using CCC

We provide the intuition of how to construct a Fair Exchange protocol using a
generic CCC protocol in Algorithm 1. Specifically, P and Q exchange assets aP

and aQ, if transaction txP is written to Lx and transaction txQ is written to
Ly (cf. Sect. 3.2).

28 A. Zamyatin et al.

Algorithm 1: Fair Exchange using a generic CCC protocol
Result: txP ∈ Lx ∧ txQ ∈ Ly (i.e.,P has aP , Q has aQ) or

txP /∈ Lx ∧ txQ /∈ Ly (i.e., no exchange)
setup(Lx,Ly,txP , txQ, dP , dQ);
if mP = false then

commit(txP , Lx); // P transfers aP to Q
end
if (verify(txP , Lx, dP) = true) ∧ mQ = false then

commit(txQ, Ly); // Q transfers aQ to P

else
abort(txQ, Ly); // Q does not transfer aQ to P

end
if verify(txQ, Ly, dQ) = false then

abort(txP , Lx); // P recovers aP

end

Algorithm 2: Commit(tx, L)

if valid(tx, L) then
Write tx to L;

end

Algorithm 3: Verify(tx, L, d)

if tx ∈ L ∧ desc(tx) = d then
return true;

end
return false;

Algorithm 4: Abort(tx, L)

if tx ∈ L then
Revert tx; // e.g. using a new transaction

end

References

1. Binance exchange. Online. https://www.binance.com/en. Accessed 19 Sep 2020
2. Bitcoin Wiki: Hashed Time-Lock Contracts. https://en.bitcoin.it/wiki/Hashed

Timelock Contracts. Accessed 02 Apr 2021
3. Btcrelay. https://github.com/ethereum/btcrelay. Accessed 02 Apr 2021
4. Chainlink: A decentralized oracle network. Online. https://link.smartcontract.

com/whitepaper. Accessed 19 Sep 2020
5. Confirmations. https://en.bitcoin.it/wiki/Confirmation. Accessed 02 Apr 2021
6. Ethereum contract allowing ether to be obtained with bitcoin. https://github.

com/ethers/EthereumBitcoinSwap. Accessed 02 Apr 2021
7. Polkabtc: Trustless bitcoin on polkadot. Online. https://github.com/interlay/

BTC-Parachain. Accessed 19 Sep 2020

https://www.binance.com/en
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://github.com/ethereum/btcrelay
https://link.smartcontract.com/whitepaper
https://link.smartcontract.com/whitepaper
https://en.bitcoin.it/wiki/Confirmation
https://github.com/ethers/EthereumBitcoinSwap
https://github.com/ethers/EthereumBitcoinSwap
https://github.com/interlay/BTC-Parachain
https://github.com/interlay/BTC-Parachain

SoK: Communication Across Distributed Ledgers 29

8. tbtc: A decentralized redeemable btc-backed erc-20 token. http://docs.keep.
network/tbtc/index.pdf. Accessed 02 Apr 2021

9. Top cryptocurrency decentralized exchanges. Online. https://coinmarketcap.
com/rankings/exchanges/dex/. Accessed 02 Apr 2021

10. Why does ethereum use secp256k1?
11. Wrapped bitcoin. https://www.wbtc.network/assets/wrapped-tokens-

whitepaper.pdf. Accessed 02 Apr 2021
12. Alt chains and atomic transfers. bitcointalk.org (2013). https://bitcointalk.org/

index.php?topic=193281.msg2003765#msg2003765. Accessed 02 Apr 2021
13. Atomic swap. Bitcoin Wiki (2013). https://en.bitcoin.it/wiki/Atomic swap.

Accessed 02 Apr 2021
14. Wanchain whitepaper (2017). https://www.wanchain.org/files/Wanchain-

Whitepaper-EN-version.pdf. Accessed 02 Apr 2021
15. Submarine swaps service. Online (2018). https://github.com/submarineswaps/

swaps-service. Accessed 02 Apr 2021
16. Inter-blockchain communication protocol (ibc) specification. Online (2019).

https://github.com/cosmos/ics/tree/master/ibc. Accessed 02 Apr 2021
17. Bitcoin on ethereum. Online (2020). https://defipulse.com/btc
18. Bitcoin supply on ethereum tops $1b. Coindesk, September 2020. https://www.

coindesk.com/bitcoin-supply-on-ethereum-tops-1b
19. Lightning loop. Online (2020). https://github.com/lightninglabs/loop. Accessed

02 Apr 2021
20. Ptokens: How it works. Online (2020). https://ptokens.io/how-it-works. Accessed

19 Sep 2020
21. Renvm. Online (2020). https://renproject.io/renvm. Accessed 19 Sep 2020
22. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-

message bft devil (2018). arXiv:1803.05069
23. Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania, A.: Astraea:

a decentralized blockchain oracle. In: 2018 IEEE International Conference on
Internet Of Things (IThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp. 1145–1152. IEEE (2018)

24. Al-Bassam, M.: Lazyledger: A distributed data availability ledger with client-side
smart contracts. arXiv preprint arXiv:1905.09274 (2019)

25. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace:
A sharded smart contracts platform. In: 2018 Network and Distributed System
Security Symposium (NDSS) (2018)

26. Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud proofs: Maximising light
client security and scaling blockchains with dishonest majorities. arXiv preprint
arXiv:1809.09044, vol. 160, (2018)

27. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: horizontal
scaling and confidentiality on permissioned blockchains. In: Lopez, J., Zhou, J.,
Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 111–131. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99073-6 6

28. Andrychowicz, M.: Multiparty computation protocols based on cryptocurrencies
(2015). https://depotuw.ceon.pl/bitstream/handle/item/1327/dis.pdf. Accessed
02 Apr 2021

29. Asokan, N.: Fairness in electronic commerce (1998)
30. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair

exchange. In: Proceedings 1998 IEEE Symposium on Security and Privacy (Cat.
No. 98CB36186), pp. 86–99. IEEE (1998)

http://docs.keep.network/tbtc/index.pdf
http://docs.keep.network/tbtc/index.pdf
https://coinmarketcap.com/rankings/exchanges/dex/
https://coinmarketcap.com/rankings/exchanges/dex/
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765
https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765
https://en.bitcoin.it/wiki/Atomic_swap
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://github.com/submarineswaps/swaps-service
https://github.com/submarineswaps/swaps-service
https://github.com/cosmos/ics/tree/master/ibc
https://defipulse.com/btc
https://www.coindesk.com/bitcoin-supply-on-ethereum-tops-1b
https://www.coindesk.com/bitcoin-supply-on-ethereum-tops-1b
https://github.com/lightninglabs/loop
https://ptokens.io/how-it-works
https://renproject.io/renvm
http://arxiv.org/abs/1803.05069
http://arxiv.org/abs/1905.09274
http://arxiv.org/abs/1809.09044
https://doi.org/10.1007/978-3-319-99073-6_6
https://depotuw.ceon.pl/bitstream/handle/item/1327/dis.pdf

30 A. Zamyatin et al.

31. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signa-
tures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054156

32. Aumayr, L., et al.: Generalized bitcoin-compatible channels. IACR Cryptolology
ePrint Arch. 2020, vol. 476 (2020)

33. Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security under
temporary dishonest majority. In: 23rd Financial Cryptography and Data Security
(FC) (2019)

34. Avarikioti, G., Kogias, E.K., Wattenhofer, R.: Brick: Asynchronous state chan-
nels. arXiv preprint arXiv:1905.11360 (2019)

35. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formal-
ization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434
(2019)

36. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

37. Babaoglu, O., Toueg, S.: Understanding non-blocking atomic commitment. Dis-
tributed Systems, pp. 147–168 (1993)

38. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014)
39. Belchior, R., Vasconcelos, A., Guerreiro, S., Correia, M.: A survey on blockchain

interoperability: past, present, and future trends. arXiv preprint arXiv:2005.14282
(2020)

40. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptology ePrint Archive
2018, vol. 46 (2018)

41. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

42. Bennink, P., Gijtenbeek, L.V., Deventer, O.V., Everts, M.: An analysis of atomic
swaps on and between ethereum blockchains using smart contracts. Technical
report (2018). https://work.delaat.net/rp/2017-2018/p42/report.pdf

43. Bentov, I., et al.: Tesseract: Real-time cryptocurrency exchange using trusted
hardware. Cryptology ePrint Archive, Report 2017/1153 (2017). Accessed 04 Dec
2017

44. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

45. Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake (2016).
Accessed 08 Nov 2016

46. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery
in database systems, vol. 370. Addison-wesley, New York (1987)

47. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pp. 326–349. ACM (2012)

48. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
CRYPTO (2018)

49. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

https://doi.org/10.1007/BFb0054156
http://arxiv.org/abs/1905.11360
http://arxiv.org/abs/1910.10434
http://arxiv.org/abs/1811.12740
http://arxiv.org/abs/2005.14282
https://doi.org/10.1007/978-3-662-53644-5_2
https://work.delaat.net/rp/2017-2018/p42/report.pdf
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20

SoK: Communication Across Distributed Ledgers 31

50. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

51. Bonneau, J.: Why buy when you can rent? bribery attacks on bitcoin consensus.
In: BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain
Research, February 2016

52. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source
(2015). Accessed 25 Act 2015

53. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Efficient range proofs for confidential transactions (2017). Accessed 10
Nov 2017

54. Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and randomness beacons in
ethereum (2017)

55. Burdges, J., et al.: Overview of polkadot and its design considerations. arXiv
preprint arXiv:2005.13456 (2020)

56. Buterin, V.: Ethereum: A next-generation smart contract and decentralized appli-
cation platform (2014). Accessed 22 Aug 2016

57. Buterin, V.: Chain interoperability. Technical report (2016). Accessed 25 Mar
2017

58. Buterin, V.: Cross-shard contract yanking. https://ethresear.ch/t/cross-shard-
contract-yanking/1450 (2018)

59. Cachin, C.: Architecture of the hyperledger blockchain fabric (2016). Accessed 10
Aug 2016

60. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 6

61. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OSDI 99, 173–
186 (1999)

62. Chesney, T., Coyne, I., Logan, B., Madden, N.: Griefing in virtual worlds: causes,
casualties and coping strategies. Inform. Syst. J. 19(6), 525–548 (2009)

63. Daveas, S., Karantias, K., Kiayias, A., Zindros, D.: A gas-efficient superlight
bitcoin client in solidity. In: Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, pp. 132–144 (2020)

64. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

65. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 18

66. Deshpande, A., Herlihy, M.: Privacy-preserving cross-chain atomic swaps. In:
Bernhard, M., Bracciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B.,
Sala, M. (eds.) FC 2020. LNCS, vol. 12063, pp. 540–549. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-54455-3 38

67. Dijkstra, E.W.: Solution of a problem in concurrent programming control. In:
Pioneers and Their Contributions to Software Engineering, pp. 289–294. Springer
(2001). https://doi.org/10.1007/978-3-642-48354-7 10

68. Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.:
Strong federations: An interoperable blockchain solution to centralized third party
risks. arXiv preprint arXiv:1612.05491 (2016)

https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
http://arxiv.org/abs/2005.13456
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-11212-1_18
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.1007/978-3-642-48354-7_10
http://arxiv.org/abs/1612.05491

32 A. Zamyatin et al.

69. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45748-8 24

70. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: how to fairly exchange digital
goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 967–984. ACM (2018)

71. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with
constant collateral in bitcoin-compatible payment-channel networks. In: CCS
(2019)

72. Even, S.: A protocol for signing contracts. Technical report, Computer Science
Department, Technion. Presented at CRYPTO’81 (1982)

73. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
report, Computer Science Department, Technion (1980)

74. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography and Data Security, pp. 436–454. Springer (2014)

75. Fanti, G., Kogan, L., Oh, S., Ruan, K., Viswanath, P., Wang, G.: Compounding of
wealth in proof-of-stake cryptocurrencies. arXiv preprint arXiv:1809.07468 (2018)

76. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process, vol. 32, pp. 374–382. ACM (1985)

77. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with
chains of variable difficulty (2016). Accessed 06 Feb 2017

78. Gärtner, F.C.: Specifications for fault tolerance: A comedy of failures (1998)
79. Gaži, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake

blockchains. Cryptology ePrint Archive, Report 2018/248 (2018). Accessed 12
Mar 2018

80. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. IEEE Security and
Privacy, IEEE (2019)

81. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

82. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC, pp. 3–16. ACM (2016)

83. Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version,
vol. 78 (1998)

84. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized cur-
rencies. Cryptology ePrint Archive, Report 2016/701 (2016). Accessed 07 Aug
2017

85. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Off the
chain transactions. Cryptology ePrint Archive, Report 2019/360 (2019). https://
eprint.iacr.org/2019/360

86. Han, R., Lin, H., Yu, J.: On the optionality and fairness of atomic swaps. Cryp-
tology ePrint Archive, Report 2019/896 (2019). https://eprint.iacr.org/2019/896

87. Harz, D., Boman, M.: The scalability of trustless trust. arXiv:1801.09535 (2018).
Accessed 31 Jan 2018

88. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit:
An untrusted bitcoin-compatible anonymous payment hub (2016). Accessed 29
Sep 2017

89. Heilman, E., Lipmann, S., Goldberg, S.: The arwen trading protocols. Whitepa-
per. https://www.arwen.io/whitepaper.pdf

https://doi.org/10.1007/3-540-45748-8_24
http://arxiv.org/abs/1809.07468
https://doi.org/10.1007/978-3-319-39555-5_9
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/896
http://arxiv.org/abs/1801.09535
https://www.arwen.io/whitepaper.pdf

SoK: Communication Across Distributed Ledgers 33

90. Herlihy, M.: Atomic cross-chain swaps. arXiv:1801.09515 (2018). Accessed 31 Jan
2018

91. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain deals and adversarial commerce.
arXiv preprint arXiv:1905.09743 (2019)

92. Hinteregger, A., Haslhofer, B.: An empirical analysis of monero cross-chain trace-
ability. arXiv preprint arXiv:1812.02808 (2018)

93. Hosp, D., Hoenisch, T., Kittiwongsunthorn, P., et al.: Comit-cryptographically-
secure off-chain multi-asset instant transaction network. arXiv preprint
arXiv:1810.02174 (2018)

94. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

95. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). Int. J. Inform. Secur. 1(1), 36–63 (2001)

96. Johnson, S., Robinson, P., Brainard, J.: Sidechains and interoperability. arXiv
preprint arXiv:1903.04077 (2019)

97. Jones, J.: abitmore. Optional htlc preimage length and hash160 addition. BSIP
64, blog post. https://github.com/bitshares/bsips/issues/163

98. Judmayer, A., et al.: Pay-to-win: Incentive attacks on proof-of-work cryptocur-
rencies. Cryptology ePrint Archive, Report 2019/775 (2019). https://eprint.iacr.
org/2019/775

99. Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged
mining: Curse or cure? In: CBT’17: Proceedings of the International Workshop
on Cryptocurrencies and Blockchain Technology, September 2017

100. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
Scalable, private smart contracts. In: Proceedings of the 27th USENIX Conference
on Security Symposium, pp. 1353–1370. USENIX Association (2018)

101. Karantias, K., Kiayias, A., Zindros, D.: Proof-of-burn. In: Bonneau, J., Heninger,
N. (eds.) FC 2020. LNCS, vol. 12059, pp. 523–540. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51280-4 28

102. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: A responsive
lightweight watchtower (2019)

103. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. Cryp-
tology ePrint Archive, Report 2017/963 (2017). Accessed 03 Act 2017

104. Kiayias, A., Polydouri, A., Zindros, D.: The Velvet Path to Superlight Blockchain
Clients (2020)

105. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-7 12

106. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

107. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: International Conference
on Financial Cryptography and Data Security. Springer (2018)

108. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th USENIX Security Symposium (USENIX Security 16), Austin, TX, Auguest
2016. USENIX Association

109. Kokoris-Kogias, E.: Robust and scalable consensus for sharded distributed ledgers.
Technical report, Cryptology ePrint Archive, Report 2019/676 (2019)

http://arxiv.org/abs/1801.09515
http://arxiv.org/abs/1905.09743
http://arxiv.org/abs/1812.02808
http://arxiv.org/abs/1810.02174
http://arxiv.org/abs/1903.04077
https://github.com/bitshares/bsips/issues/163
https://eprint.iacr.org/2019/775
https://eprint.iacr.org/2019/775
https://doi.org/10.1007/978-3-030-51280-4_28
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25

34 A. Zamyatin et al.

110. Kokoris-Kogias, E., et al.: Calypso: Auditable sharing of private data over
blockchains. Technical report, Cryptology ePrint Archive, Report 2018/209 (2018)

111. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
Omniledger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

112. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 418–429. ACM (2016)

113. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Comput. Netw.
56(1), 50–63 (2012)

114. Kwon, J., Buchman, E.: Cosmos: A network of distributed ledgers. https://github.
com/cosmos/cosmos/blob/master/WHITEPAPER.md (2015)

115. Kwon, Y., Kim, H., Shin, J., Kim, Y.: Bitcoin vs. bitcoin cash: Coexistence or
downfall of bitcoin cash? arXiv:1902.11064 (2019)

116. Lamport, L.: A simple approach to specifying concurrent systems. Commun. ACM
32(1), 32–45 (1989)

117. Lerner, S.: Drivechains, sidechains and hybrid 2-way peg designs. Technical report,
Tech. Rep. [Online] (2018)

118. Lerner, S.D.: Rootstock: Bitcoin powered smart contracts. https://docs.rsk.co/
RSK White Paper-Overview.pdf (2015)

119. Liu, Z., et al.: Hyperservice: Interoperability and programmability across hetero-
geneous blockchains. arXiv preprint arXiv:1908.09343 (2019)

120. Luu, L., Buenz, B., Zamani, M.: Flyclient super light client for cryptocurrencies.
Accessed 17 Apr 2018

121. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: CCS, pp. 455–471 (2017)

122. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.:
Anonymous multi-hop locks for blockchain scalability and interoperability. In:
NDSS (2019)

123. McCorry, P., Bakshi, S., Bentov, I., Miller, A., Meiklejohn, S.: Pisa: Arbitration
outsourcing for state channels. IACR Cryptology ePrint Archive 2018, vol. 582
(2018)

124. McCorry, P., Heilman, E., Miller, A.: Atomically trading with roger: Gambling on
the success of a hardfork. In: CBT’17: Proceedings of the International Workshop
on Cryptocurrencies and Blockchain Technology, September 2017

125. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security 18 (FC). Springer (2018)

126. Meckler, I., Shapiro, E.: Coda: Decentralized cryptocurrency at scale. https://
cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf (2018)

127. Meshkov, D., Chepurnoy, A., Jansen, M.: Revisiting difficulty control for
blockchain systems. Cryptology ePrint Archive, Report 2017/731 (2017). Accessed
03 Aug 2017

128. Micali, S.: Algorand: The efficient and democratic ledger (2016). Accessed 09 Feb
2017

129. Miraz, M., Donald, D.C.: Atomic cross-chain swaps: Development, trajectory and
potential of non-monetary digital token swap facilities. Annals of Emerging Tech-
nologies in Computing (AETiC), vol. 3 (2019)

https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
http://arxiv.org/abs/1902.11064
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
http://arxiv.org/abs/1908.09343
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf

SoK: Communication Across Distributed Ledgers 35

130. Moreno-Sanchez, P., Randomrun, D.V.L., Noether, S., Goodell, B., Kate, A.:
Dlsag: Non-interactive refund transactions for interoperable payment channels in
monero. Cryptology ePrint Archive, Report 2019/595 (2019). https://eprint.iacr.
org/2019/595

131. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, December 2008.
Accessed 01 Jul 2015

132. Noether, S.: Discrete logarithm equality across groups. Online (2020). https://
www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf

133. Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted
third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt Uni-
versity of Technology (1999)

134. Pass, R., Shi, E.: Hybrid consensus: Scalable permissionless consensus, September
2016. Accessed 17 Act 2016

135. Poelstra, A.: Scriptless scripts. Presentation slides. https://download.wpsoftware.
net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf

136. Poon, J., Dryja, T.: The bitcoin lightning network (2016). Accessed 07 Jul 2016
137. Ritzdorf, H., Wüst, K., Gervais, A., Felley, G., et al.: Tls-n: Non-repudiation

over tls enabling ubiquitous content signing. In: Network and Distributed System
Security Symposium (NDSS) (2018)

138. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

139. Rocket, T.: Snowflake to avalanche: A novel metastable consensus protocol family
for cryptocurrencies (2018). Accessed 4 Dec 2018

140. Rubin, J., Naik, M., Subramanian, N.: Merkelized abstract syntax trees. http://
www.mit.edu/jlrubin/public/pdfs/858report.pdf (2014)

141. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin (2015). Accessed 22 Aug 2016

142. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

143. Siris, V.A., Dimopoulos, D., Fotiou, N., Voulgaris, S., Polyzos, G.C.: Interledger
smart contracts for decentralized authorization to constrained things (2019)

144. Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and defenses
against cross-shard consensus in sharded distributed ledgers. arXiv preprint
arXiv:1901.11218 (2019)

145. Spoke, M., Nuco Engineering Team. Aion: The third-generation blockchain
network. https://aion.network/media/2018/03/aion.network technical-
introduction en.pdf. Accessed 17 Apr 2018

146. Stewart, A., Kokoris-Kogia, E.: Grandpa: a byzantine finality gadget. arXiv
preprint arXiv:2007.01560 (2020)

147. Stewart, I.: Proof of burn (2012). Accessed 10 May 2017
148. Stifter, N., Schindler, P., Judmayer, A., Zamyatin, A., Kern, A., Weippl, E.:

Echoes of the past: Recovering blockchain metrics from merged mining. In: Pro-
ceedings of the 23nd International Conference on Financial Cryptography and
Data Security (FC). Springer (2019)

149. Syverson, P.: Weakly secret bit commitment: applications to lotteries and fair
exchange. In: Proceedings 11th IEEE Computer Security Foundations Workshop
(Cat. No. 98TB100238), pp. 2–13. IEEE (1998)

150. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2l: anonymous atomic locks for scal-
ability and interoperability in payment channel hubs. Cryptology ePrint Archive,
Report 2019/589 (2019). https://eprint.iacr.org/2019/589

https://eprint.iacr.org/2019/595
https://eprint.iacr.org/2019/595
https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
http://www.mit.edu/jlrubin/public/pdfs/858report.pdf
http://www.mit.edu/jlrubin/public/pdfs/858report.pdf
https://doi.org/10.1007/BF00196725
http://arxiv.org/abs/1901.11218
https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf
https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf
http://arxiv.org/abs/2007.01560
https://eprint.iacr.org/2019/589

36 A. Zamyatin et al.

151. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains,
March 2017. Accessed 06 Act 2017

152. Teutsch, J., Straka, M., Boneh, D.: Retrofitting a two-way peg between
blockchains. Technical report (2018)

153. Teutsch, J.: TrueBit Establishment. On decentralized oracles for data availability
(2017)

154. Thomas, S., Schwartz, E.: A protocol for interledger payments. https://
interledger.org/interledger.pdf (2015)

155. Thyagarajan, S.A.K., Malavolta, G.: Lockable signatures for blockchains: Script-
less scripts for all signatures. Cryptology ePrint Archive, Report 2020/1613
(2020). https://eprint.iacr.org/2020/1613

156. Verdian, G., Tasca, P., Paterson, C., Mondelli, G.: Quant overledger whitepaper.
https://www.quant.network/ (2018)

157. Westerkamp, M., Eberhardt, J.: zkrelay: facilitating sidechains using zksnark-
based chain-relays. Contract 1(2), 3 (2020)

158. Wood, G.: Polkadot: Vision for a heterogeneous multi-chain framework. White
Paper (2015)

159. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger eip-
150 revision (759dccd - 2017–08-07) (2017). Accessed 03 Jan 2018

160. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

161. Yousaf, H., Kappos, G., Meiklejohn, S.: Tracing transactions across cryptocur-
rency ledgers. In: 28th {USENIX} Security Symposium ({USENIX} Security 19),
pp. 837–850 (2019)

162. Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded
merkle tree: Solving data availability attacks in blockchains. arXiv preprint
arXiv:1910.01247 (2019)

163. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: A fast blockchain protocol
via full sharding. Cryptology ePrint Archive, Report 2018/460 (2018)

164. Zamyatin, A., Avarikioti, Z., Perez, D., Knottenbelt, W.J.: Txchain: Efficient
cryptocurrency light clients via contingent transaction aggregation, September
2020

165. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.:
Xclaim: Trustless, interoperable, cryptocurrency-backed assets. IEEE Security
and Privacy, IEEE (2019)

166. Zhang, F., Maram, S.K.D., Malvai, S., Goldfeder, H., Juels, A.: Deco: Liberat-
ing web data using decentralized oracles for tls. arXiv preprint arXiv:1909.00938
(2019)

https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://eprint.iacr.org/2020/1613
https://www.quant.network/
http://arxiv.org/abs/1910.01247
http://arxiv.org/abs/1909.00938

Reparo: Publicly Verifiable Layer
to Repair Blockchains

Sri Aravinda Krishnan Thyagarajan1, Adithya Bhat2(B), Bernardo Magri3,4,
Daniel Tschudi5, and Aniket Kate2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
2 Purdue University, West Lafayette, USA

bhat24@purdue.edu
3 Concordium Blockchain Research Center, Aarhus, Denmark

4 Aarhus University, Aarhus, Denmark
5 Concordium, Zurich, Switzerland

Abstract. Although blockchains aim for immutability as their core fea-
ture, several instances have exposed the harms with perfect immutabil-
ity. The permanence of illicit content inserted in Bitcoin poses a chal-
lenge to law enforcement agencies like Interpol, and millions of dollars
were lost in buggy smart contracts in Ethereum. A line of research then
spawned on redactable blockchains with the aim of solving the problem
of redacting illicit contents from both permissioned and permissionless
blockchains. However, all the existing proposals follow the build-new-
chain approach for redactions, and cannot be integrated with existing
running blockchains, such as Bitcoin and Ethereum.

This work demonstrates that the traditional build-new-chain approach
for blockchain redactions is not necessary. We present Reparo (In the
Harry Potter universe, ‘Reparo’ is a spell that repairs objects), a pub-
licly verifiable layer on top of any blockchain to perform repairs, ranging
from fixing buggy contracts to removing illicit contents from the chain.
We present an efficient instantiation of Reparo over Ethereum (with proof
of work based consensus) for repairing smart contract bugs. In this proto-
col, any Ethereum user may propose a repair and a deliberation process
ensues resulting in a decision that complies with the repair policy of the
chain and is publicly verifiable. A repair operation (for instance, fixing
a bug in a contract) is then performed according to the repair proposal
and the state of Ethereum is updated accordingly. Reparo’s advantages
are multi-fold: (i) Since Reparo follows a layer design, it helps facili-
tate additional functionalities for Ethereum while maintaining the same
provable security guarantees; (ii) Reparo can be easily tailored to differ-
ent consensus requirements (like proof of stake), does not require heavy
cryptographic machinery, and thus, can be integrated with other existing
blockchains (such as Bitcoin, Cardano) as well. We evaluate Reparo with
Ethereum mainnet and show that the cost of fixing several prominent
smart contract bugs is almost negligible. For instance, the cost of repair-
ing the prominent Parity Multisig wallet bug with Reparo is as low as
0.00005% of the Ethers that can be retrieved after the fix.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 37–56, 2021.
https://doi.org/10.1007/978-3-662-64331-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_2&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_2

38 S. A. K. Thyagarajan et al.

1 Introduction

Blockchain as the underlying technology of cryptocurrencies, such as Bitcoin [26]
and Ethereum [33] is an append-only, decentralized ledger equipped with public
verifiability and immutability. While immutability in blockchains was always
considered attractive, it does come with several issues. Immutability in monetary
aspects is quite unforgiving; e.g., the infamous DAO attack [11] exploited a
re-entrancy bug in a smart contract resulting in the loss of 3.6 million ETH.
In Ethereum alone, other than the DAO bug1 more than 750K ETH worth
more than $150 million [24] (at the time of writing) have been either locked,
lost or stolen by malicious attackers or bugs in smart contracts [2,7,17]. In a
cryptocurrency with a fixed supply of tokens, stolen or locked tokens pose a huge
problem of deflation [13], and even worse, could adversely affect the consensus
process on systems based on Proof of Stake (PoS), which Ethereum 2.0 plans to
adopt [8,10]. Moreover, writing bug-free software, and therefore smart contracts,
seems to be a long-standing hard problem and the situation only worsens when
many such buggy contracts are uploaded onto the chain resulting in the loss of
hundreds of millions of dollars.

Even much-restricted systems such as Bitcoin suffers from the problem of
arbitrary data being inserted in the chain through special transactions,2 where
all miners are required to store and broadcast the data for validation purposes.
Several academic and law enforcement groups have studied the problem of illicit
content insertion in Bitcoin [20,25,31]. A malicious user can pay a small fee
to post illegal and/or harmful content onto the blockchain via these special
transactions. Interpol [20] reported the existence of such arbitrary content in the
form of illicit materials like child pornography, copyrighted material, sensitive
information, etc. on the Bitcoin blockchain. While screening the contents of
a transaction before adding it to the blockchain seems to be a straightforward
solution, Matzutt et al. [25] showed the infeasibility of this approach while giving
a quantitative analysis of already existing contents in the Bitcoin blockchain. Law
enforcement agencies [31] are finding it challenging to deal with this problem.

The new General Data Protection Regulation (GDPR) in the European
states has thrown the spotlight on the immutability of personal information like
addresses, transaction values, and timestamps [19]. These issues could adversely
affect the adaptability of existing blockchain-based applications, especially for
cryptocurrencies if they want to be a credible alternative for fiat currencies.

1.1 Existing Solutions and Their Limitations

Redactable Blockchains. The seminal work of Ateniese et al. [4] was the first
to consider the mutability of blockchains. Their redactable Blockchain protocol
1 The DAO bug was fixed in July 16’ by introducing an ad-hoc fix that runs DAO

transactions differently; resulting in a hard fork, that gave birth to Ethereum Classic.
2 Arbitrary information is permitted in Bitcoin through OP RETURN code, that can

store up to 80 bytes of arbitrary data on the blockchain.

Reparo: Publicly Verifiable Layer to Repair Blockchains 39

aims to redact illicit contents from a blockchain using chameleon hash links [21].
However, their protocol requires the miners to run a Multi-Party Computation
(MPC) protocol which can be quite prohibitive in large permissionless systems
like Bitcoin. Moreover, their protocol requires modifications to the block struc-
ture, making it not useful to remove already existing illicit content in the chain
of Bitcoin or release frozen Ethers in Ethereum. We refer to this property as
Repairability of Existing Contents (REC). Puddu, Dmitrienko and Capkun [28]’s
proposal suffers from the same problems, and also, presents the control to modify
a transaction to the transaction creator, which is not useful if the creator does
not allow the desired modifications. Derler et al. [12] solve the above problem
by using attribute-based encryption where the transaction creator lets anyone
with the right policy modify the transaction. While they do not require any
large-scale MPC among the miners, their protocol lacks public verifiability and
requires modifications on how the Merkle roots are computed in the blocks, hence
does not guarantee REC for Bitcoin or Ethereum. The recent work of Deuber,
Magri and Thyagarajan [14] leverages on-chain voting techniques to reach an
agreement on the redaction of contents, thereby adding public verifiability to
the redactions. However, their protocol also requires modifications to the block
header and therefore does not guarantee REC for current systems. Tezos [18]
proposed a PoS protocol that can instantiate any blockchain but does not guar-
antee REC. While lacking formal security guarantees, it also lacks efficiency for
multiple updates. Given that all the aforementioned proposals are build-new-
chain solutions (no REC) and suffer from other issues as discussed, none of
them are integrable into existing mainstream permissionless blockchain systems
guaranteeing REC3. Table 1 summarizes the above discussed limitations. For
an extended technical discussion and comparison, we refer the readers to the
extended version [30].

Hard Forks. Performing a repair by forking away from a faulty point in the
blockchain can lead to a loss of blocks. A hard fork requires miners to update
their client software and corresponding mining hardware. Every hard fork brings
with it an additional consensus rule in order to validate the whole chain. These
additional rules demand additional storage and computational capabilities from
clients. Hard forks are also ad-hoc: in Ethereum, DAO was deemed to be a big
enough bug to fork the chain, whereas Parity Multisig Wallet was not [17].

Pruning. For repair operations such as redactions or removing old content,
there are pruning solutions that locally redact contents [9]. However, the primary
purpose of this method is space optimization and there is no consensus on what
can be removed or redacted. Therefore, a newly joining full node is still expected
to receive all the information on the chain for thorough validation (Fig. 1).

1.2 Our Contributions

In this paper, we contribute in the following ways:
3 In case of permissioned setting, Ateniese et al. [4]’s proposal has been commercially

adopted by a large consultancy company [3,22].

40 S. A. K. Thyagarajan et al.

Table 1. Comparison of our work with that of the existing redaction solutions. A cross
for Repairability of Existing Contents (REC) means the proposal is not useful to redact
or modify already inserted contents in blockchain.

Proposals Stateful
repairs

System-scale MPC REC Public
verifiability

Ateniese et al. [4] × Required × ×
Puddu et al. [28] × Required × ×
Derler et al. [12] × Not required × ×
Deuber et al. [14] × Not required × �
Tezos [18] � Not required × �
This work - Reparo � Not required � �

1. We demonstrate that the conventional build-new-chain approach in the lit-
erature for redacting contents in a blockchain is unnecessary. We present
Reparo, which is a layered protocol (in the style of the finality layer for
blockchains [23]) that can be integrated on top of Ethereum, and one can
perform repair operations on its already existing contents (satisfies REC
requirement). Specifically, using Reparo one can fix buggy smart contracts,
redact illicit data, etc., in Ethereum without requiring a hard fork for every
repair performed.
In the extended version [30], we also generalize our protocol, and give the
first generic Reparo protocol that is provably secure and acts as a layer and
can easily be integrated on top of any existing secure blockchain. Our generic
protocol can be adapted to any flavor of consensus (including permissioned
systems) without any overhead.

2. We implement our Reparo protocol integrated into Ethereum. As we show
in Sect. 4, when importing the latest 26, 000 block sub-chain from the
Ethereum main network, our baseline implementation has an overhead of just
0.009% when compared to its vanilla counterpart. The choice of Ethereum
is motivated by the wide-spread adoption and generality of the Ethereum’s
functionalities.
With respect to [14], our instantiation with Reparo has comparable efficiency
in terms of time and is significantly better in terms of space efficiency:
unlike [14], Reparo does not require an additional values to be stored in every
(fresh or repaired) block header.

3. Practical Implications. Apart from illicit data redaction in Bitcoin, for
Ethereum, a repair involves re-running all the transactions that are affected,
thus demanding computation from the network. Therefore, a repair proposal
must pay (in gas) an amount proportional to the computation spent by the net-
work to perform the repair. We measure the repair costs of various existing bugs
affecting Ethereum today. For concreteness, we demonstrate that the Parity
Multi Sig Wallet Bug, which locked over 513K ETH, can be repaired today by
paying a little over 0.00094 ETH in gas.Reparo also gives a mechanism to resolve

Reparo: Publicly Verifiable Layer to Repair Blockchains 41

Deciders

2. Deliberate

User

2 3 4 5 61 7

Pool of Proposals

1. Propose

6. Mine new
block

5. Update state

4. Redact

3. Post decision

Fig. 1. Step by step description of Reparo in case of performing a redaction. The steps
are in gray boxes and highlighted with red color. Here, a block is partitioned into a
block header and block body and the block header stores a pointer to the previous
block’s header. State sti denotes the state of the chain after block i has been mined.

an issue where users submit a contract creation transaction with no code [15]
(due to user errors or buggy wallet code), releasing over 6.53K ETH. Ethereum
uses an ad-hoc fix for DAO as it hard-codes a different logic for DAO. Reparo
can be used to remove this ad-hoc fix by first repairing DAO code (while the fix
is still active) and later removing the ad-hoc fix. Reparo also helps in handling
zero-day vulnerabilities and thereby contain the damage. Such mechanism can
help a blockchain improve trust and adoption by the users.
Consider situations where users accidentally create contracts with no code in
it, it is safe for the user to create a repair transaction with Reparo that adds
code to this contract without forking. Users of Reparo enabled blockchains
can skip the expensive, cumbersome and often times arbitrary9 procedures
involving a hard fork. Currently, such users permanently lose their money.
Reparo can also be used to fix smart contract bugs such as zero-day vulnerabil-
ities like the one that was very recently discovered (worth 25K ETH or 9.6M
USD) and fixed in an ad-hoc manner [29]. In this sense, Reparo offers consis-
tency and uniformity from Ethereum protocol point of view by eliminating
the need for ad-hoc and potentially insecure bug fixes.

2 A Primer on Ethereum

Since we present Reparo as a repair layer on Ethereum, in this section we give
a brief background on the Ethereum blockchain protocol. For details about a
blockchain protocol in general that will be useful for our generic Reparo protocol,
we refer the reader to the extended version [30].

42 S. A. K. Thyagarajan et al.

On a high level, Ethereum [33] is a decentralized virtual machine (Ethereum
Virtual Machine or EVM), which runs user programs called smart contracts
upon user’s request. Roughly, a contract is a collection of functions and vari-
ables, where each function is defined by a sequence of bytecode instructions
that operate on some input and the variables associated with the contract. A
user interacts with a contract through transactions that calls functions in the
contract.

2.1 Ethereum Ledger

Accounts. State in Ethereum is maintained by a collection of account objects
(ACC). The objects are encoded using RLP (Recursive Length Prefix) format,
and a Merkle Patricia trie is built over all the objects. The root of this tree
is called the state root (Gst). An account consists of (1) an address: hash of
the public key, (2) balance (Acc.bal): amount of ETH currently owned by the
account, (3) nonce (Acc.nonce): an incrementing counter used to differentiate
states, (4) code hash (Acc.h): the hash of the code for this account possibly an
empty hash or EVM bytecode for smart contracts), and (5) storage root (Acc.sr):
the hash of an RLP encoding containing the state of the smart contract (such
as data structures owned by the contract).

Transaction. An Ethereum transaction Tx logically4 consists of (1) a from
(from) field which is the address that is invoking the transaction, (2) to (to)
field which is the recipient of the transaction (a smart contract or the recipient
of a transfer), (3) a value (value) field indicating the amount of ETH dedicated
to Tx, and (4) a data (data) field which contains encoded bytes used during the
execution of the transaction (these are inputs to the smart contracts).

Block. Similar to Bitcoin, Ethereum blocks consist of a header and a body. We
describe the relevant5 fields of the header in Table 2.

State. The Gst is updated with every block using a global state transition func-
tion δ : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ which models EVM execution of transactions.
It takes as input the state of the accounts in the previous block Gsti−1 and new
transactions included in the current block TXi and returns the current state
of the accounts Gsti in the chain. The output of this function can be thought
of as the changing of account objects to Gsti from their previous state Gsti−1

after applying the new incoming transactions TXi. These transactions are vali-
dated (signature, balance and nonce checks) according to Ethereum rules before
applying the state transition. Gsti is analogous to UTXO in Bitcoin and is always
derived from the blocks but does not exist as a part of the chain.

4 These are logical fields, derived from other fields. For example, to is derived from
v,r,s which are version and ECDSA signature elements respectively, value is derived
from gasprice ∗ gas and so on.

5 There are other fields like ommers hash, receipts root, extra data in the Ethereum
block header.

Reparo: Publicly Verifiable Layer to Repair Blockchains 43

Table 2. Contents of Ethereum block header.

Value Description

parent hash (pt) hasha of the previous block header

state root (Gst) hash of the root node of the state tree, after all
transactions are executed

tx root (Gtx) hash of the root node of the tree structure populated
with all the transactions TXin the block

difficulty (d) the difficulty of the proof-of-work

timestamp (t) the timestamp of the block

nonce (ctr) value used in proof-of-work
a Ethereum uses the 256-bit variant of Keccak/SHA3

Chain Links. Two blocks 〈s, x, ctr〉i−1 and 〈s, x, ctr〉i are connected by two
important links: the hash links pt and the state links Gst. The hash link connects
the headers by hash, which is embedded in block Bi. The state link is the state
root Gsti which is obtained from Gsti−1 after applying TXi. It is important to
understand this, as we will show later how these links are affected when we repair
the state.

3 Repairability in Ethereum

A näıve solution is to perform repairs by simply replacing the buggy contract
with a patched contract and recomputing the states until the head of the chain.
However, this is not feasible because of three reasons: (i) recomputing the states
break the state links as well as the transaction root Gtx held in the block header,
which now breaks the hash links too, (ii) it is not efficient for a large scale system
such as Ethereum where each block contains a lot of stateful computations to
perform multiple deep chain repairs, and (iii) light clients are not aware of the
state information and only check hash links in the headers, which forces the
repair information to be present in the header. This modifies the block structure
of the underlying blockchain which needs ad-hoc consensus rules or not allowing
repairs of existing contents (no REC).

We present Reparo integration in Ethereum in its current form (PoW based
consensus). A pictorial description is given in Fig. 2. Here the blockchain protocol
of Ethereum is denoted by Γ and the Reparo integrated protocol is denoted by
Γ ′. Reparo can handle all repair operations except redaction of content that
affects the state of the chain. Below we describe Reparo and how it solves the
above mentioned problems.

44 S. A. K. Thyagarajan et al.

Fig. 2. An overview illustration of how to fix a buggy contract C in block 1 using Reparo
in Ethereum. The Reparo layer steps are numbered inside gray boxes and highlighted
in red. The voting period lasts for � = 4 blocks. Proposal ID1 is approved at block 7.

3.1 Repairing Ethereum Using Reparo

Reparo Data Structures We introduce two new data structures in Ethereum:
repair layer Rdb database and approved repairs Adb database6. Every block is
associated with its own repair layer Rdb database entry that comes into play
when the block contents are repaired (directly or indirectly). For repairs that do
not statefully impact (removing illicit contents), Rdb of the block contains the
old version Tx of the transaction that was repaired to compute Gtx. These are
data whose changes do not affect the state of accounts, i.e., the new transaction
does not break Gst of the block. In this case, the hash of the old version of the
transaction H(Tx) is stored in the Rdb of the block. In the formal description
Fig. 3, we state that the entire set of old transactions and state of accounts is
stored in the repair layer. We emphasize that this covers the possibility of many
transactions in a block being repaired multiple times.

The approved repairs Adb database, stores the repair proposal that was
approved by the policy at that time and plays a crucial role during chain vali-
dation. The information stored in these data structures do not need any special
authentication, as they can be validated using simple hash equality checks: in
case of information stored in Rdb, the header of a block stores the corresponding
transaction root Gtx and state root Gst, and in case of Adb, the chain stores the
hash of the repair proposal (in the form of votes as explained later).

6 We use the term database because the Ethereum codebase refers to the blockchain
as db and the state as statedb.

Reparo: Publicly Verifiable Layer to Repair Blockchains 45

Fig. 3. Reparo protocol integration into Ethereum with PoW based consensus and
parameterized by policy P (Ethereum uses Greedy Heaviest Order Sub Tree (GHOST)
protocol to rank chains and this is slightly different from the longest chain rule used
in Bitcoin)

46 S. A. K. Thyagarajan et al.

Proposing Repairs. Any user in Ethereum can request to repair7 transaction
Tx using Γ ′.proposeRepair() (refer to the extended version [30]). The user first
broadcasts a candidate transaction Tx� to the network. Then, the user sends
a repair request transaction repairTx. The to address field contains a special
address REQ ADDR. REQ ADDR is a native contract for Reparo. Native contracts are
special addresses which are executed outside the EVM by the implementation
using normal OS code. The data field contains (H(Tx),H(Tx�)), where H(Tx) is
the hash of the old version (Tx) and H(Tx�) is the hash the new version (Tx�). For
smart contract bug fixes, Tx was the buggy-contract creation transaction, while
Tx� is a similar transaction with the bug fixed. The repairTx offers processing
fees to the miner to include the transaction into the block and also offer approval
fees to the voters of the repair after the policy approval.

Validating Repair Requests. Nodes validate a repair proposal by checking
if the proposed new Tx� is a well-formed transaction as per rules of Ethereum
(such as correct format, correct signatures, and others) and Tx is in the chain.
Proposals are rejected as redundant if they are already in the voting phase.

Repair Policy. A repair proposal is approved by the blockchain users in Reparo
with respect to a repair policy P, which is checked using Γ ′.chkApproval() (refer
to the extended version [30]). Below, we present a candidate repair policy P for
Ethereum:

– The proposal does not propose to modify the address fields or the value field
of a transaction.

– The proposal is unambiguously not a double spend attack attempt (needs
information from the real world (off-chain information) for confirmation).

– The proposal does not redact or modify votes in the chain.
– The proposal has received more than ρ fraction8 of votes (>50% of votes) in

� consecutive blocks (voting period, that can decided by the system) after the
corresponding repairTx is included in the chain.

Deliberation by Voting. In the deliberation process, the miners vote for a
repair proposal repairTx by generating a voting transaction voteTx and includ-
ing that in the block that they propose. This is done using Γ ′.Vt(). The to field
of voteTx is a special address VOTE ADDR of a native contract. The data field con-
tains the contents of data field of the repairTx. Validation consists of checking
whether the repairTx referred in the data field exists and checking that from
is the author of the block. As per the policy P, when ρ fraction of votes are
received in � blocks after repairTx, the repair is approved.

Performing Repairs. Upon approval with respect to the policy P, Reparo uses
Γ ′.repairChain() procedure, where the hash links in the headers are maintained
7 Contracts that have cascading effects such as the uniswap contract [1] cannot be

fixed unless an optimization such as state assertion is used.
8 The probability that a malicious repair proposal is accepted by Reparo is always

< �ρ
�
2
+1, where ρ < 1

2
is the fraction of byzantine miners. This is negligible for a

sufficiently large choice of �.

Reparo: Publicly Verifiable Layer to Repair Blockchains 47

and the state link at this point is broken. We choose this approach for Ethereum
because the light clients in Ethereum only download the headers and after the
head of the chain they download the latest state. Full nodes and miners possess
maintain the state and know how to build the new state root applying the repair.
The old version of the transaction is stored in the repair layer Rdb associated
with the block. The candidate transaction is replaced in the new version of the
block in the chain. The state of accounts (for this block and the following blocks)
is updated according to the repaired transactions.

When updating the state for each block, we ensure that the old blocks con-
taining the old state roots are stored in the corresponding repair layer Rdb. Once
the state updates reach the head of the chain, the miner proposes a new block
with a state root Gst reflecting the repaired state of accounts. The entire set
of original transactions and state are stored in the repair layer (allowing the
possibility of multiple repairs on the block).

Note that, since a repaired chain always contains the most recent repaired
state, performing multiple indirect state updates is efficient as we only apply the
transition function over the block’s latest contents the state updates.

Block Validation. We give a formal description of block validation algorithm
Γ ′.validateBlock() (refer to the extended version [30]) which is invoked during
the chain validation. The procedure checks if the transactions included in the
block are valid as done currently in Ethereum. It then checks if the hash links
connect the headers. In case no repair proposal has been approved in this block,
the only remaining checks are to see if the state of accounts in the block are
correct and if the miner has correct proof of work. If any repair proposals were
approved by the policy at this block, the procedure performs these approved
repairs on the chain while performing the required state updates for the affected
blocks. After all the approved repairs until the block under validation have been
applied, the procedure checks if the state of accounts in this block are consistent
with the updated states of the previous affected blocks.

Chain Validation for Full Nodes. On receiving a new chain, the chain valida-
tion procedure Γ ′.validateChain() formally described in the extended version [30]
starts validating the blocks from the genesis of the chain. It first switches the
block contents with the corresponding transactions and states stored in the
repair layer. This results in the chain (Corg) with all blocks in its originally
mined state. The procedure then validates each block as discussed above using
Γ ′.validateBlock. This results in performing the repairs (both redactions and
other repair operations) as they were performed in sequence. We then obtain a
chain in its updated current state and is checked if it is the one that was received.

Chain Validation for Light Clients. Light clients on receiving a chain of
headers check proof of work and if all the hash links hold. The client then
downloads the latest state Gst from the head of the chain from the peers. It then
uses the block validation algorithm to maintain the updated state and discards
all other blocks, headers and states.

48 S. A. K. Thyagarajan et al.

Optimizations. We mention some optimizations that can be applied to improve
the repair process.

– State Assertion: Instead of recomputing the state, a repairTx can propose a
state for the affected contract and accounts (in one shot). The protocol can
then inject this state if allowed by the policy. This method is inexpensive
on-chain as it is without any cascading computation and is useful for users
who accidentally locked their funds [15].

– Defer Deep Repairs: Since repairing deep blocks also entails recomputing a
lot of states, assuming the miners are willing to repair such deep blocks and
the contract owner is willing to pay for such costly repairs in gas, we can use
a deferred approval based on depth. For a repair at depth d, the state root
merges with the main chain after d/c blocks after on-chain approval. The
constant c can be chosen empirically based on resources set aside for repairs.

Security Outline. Since the hash function H is modeled as a random oracle
(RO), finding a collision on a vote (which is the hash of the ID of the old trans-
action and the ID of the candidate transaction) is highly improbable. Therefore,
when a miner votes for a repair proposal in his newly mined block, no adversary
can claim a different repair proposal for the same vote value. Same property of
the hash function H also ensures that no adversary can find a different block
that hashes to the same hash of an honestly mined block. Therefore an adversary
cannot break the integrity of the chain. Together, they imply the unforgeabil-
ity of votes, as if an adversary wishes to vote, he has to mine a block with his
vote himself. Assuming majority of the miners are honest in Ethereum, Reparo
integration with Ethereum satisfies editable common prefix and preserves chain
quality and chain growth with respect to repair policy P.

Generalization. Reparo can easily be generalized to perform redactions
(removal of illicit content, but does not affect Gst). In the extended version [30],
we formally describe Reparo for Ethereum but with Proof of Stake (PoS) based
consensus. We also give a consensus agnostic version of Reparo that uses inter-
faces from blockchains and converts it into a repairable blockchain. Reparo can
also be generalized into UTXO based blockchains such as Bitcoin and PoS based
blockchains such as Cardano.

3.2 Discussion

Notice that Reparo possesses public verifiability of proposals, deliberation and
repair operations: Reparo has accountability during and after a deliberation pro-
cess is over for any repair proposal, referred to as voting phase accountability and
victim and new user accountability [14]. In this section we argue about some crucial
features of Reparo that makes it stand apart from the rest of the proposals.

What if Users Decide to Retain Redacted Data? Similar to previous
proposals, Reparo does not enforce complete removal of redacted data from a
user’s local storage. Users can still locally keep redacted data, however, once

Reparo: Publicly Verifiable Layer to Repair Blockchains 49

repaired by Reparo the users are not required by the blockchain protocol to store
the redacted information. For instance, in the case of illicit content, this means
that the miners who locally keep and broadcast illicit (redacted) data can be
prosecuted individually if necessary and the system as a whole is not liable.

Can a Bad Set of Deciders Retroactively Censor Transactions? Similar to
censorship of transaction inclusion by miners, it is also possible to “censor” trans-
actions retroactively via the repair operations. However, this can be easily mit-
igated by requiring multiple decider sets across different deliberation phases to
approve a repair operation. Thus, a single bad set of deciders at a given time inter-
val cannot censor. Moreover, contrary to the censorship on transaction inclusion,
attempts to censor through repair operations are publicly verifiable as the trans-
action is already on chain and the network is aware of the deliberation process.

How is Reparo Different from the DAO fix in Ethereum? The hard fork
in Ethereum to fix the DAO bug was an ad hoc software patch in the Ethereum
client. On the other hand, Reparo is a layer on top of the underlying blockchain
system that can handle virtually any kind of repair operations subject to restric-
tions of the policy.

Using Reparo to Perform Monetary Changes in the State can Cause
Inconsistencies? Although Reparo here is described for Ethereum, in Bitcoin,
for example, the repair policy could restrict repair operations to be only redaction
of auxiliary data that does not affect user’s balances. For Ethereum, the policy
could allow contract bug fixes that indeed affects monetary balances of user
accounts.

4 Experiments in Ethereum

In this section, we report a proof-of-concept implementation of the Reparo pro-
tocol on top of Ethereum [32].

We implement two new types of transactions: repairTx, and voteTx, and mea-
sure their performance with respect to a baseline transaction in Ethereum. We also
measure the overhead of implementing these special transactions on the Ethereum
main network by measuring the time taken to import the latest 20 thousand blocks.
We measure the time taken to import the blockchain because these introduce over-
heads for syncing (fully/partially) with the network (see Table 3).

In Ethereum, computation is measured in terms of the gas it needs to run
the transaction in the Ethereum Virtual Machine (EVM). Hence, we take a
look at the gas costs to repair (by fixing) some popular bugs by computing the
transaction dependency graph for the contract creation transaction for these
bugs. We estimate the gas cost to re-run all the dependent transactions and
provide real-world numbers on the cost of such repairs in Table 4.

Setup and System Configurations. We modify the Go client for Ethereum
(geth) for our experiments. We use the version 1.9.0-unstable-2388e425 from
the official Github repository as the base version. We set the geth cache size to

50 S. A. K. Thyagarajan et al.

10, 000 MB and disable the P2P discovery (using the --nodiscover flag). The
import was done using an export file consisting of blocks from block number
10, 903, 208 to 10, 929, 312 (latest block as of Sep 25, 2020) created by the export
command from a fully synced node.

Our experiments employed the following hardware/software configuration:
CPU : 24 core, 64-bit, Intel R© Xeon R© Silver 4116 CPU clocked at 2.10 GHz;
RAM : 128 GB; OS : Ubuntu; Kernel : 4.15.0-47-generic.

System-Level Optimizations. We employ the following system-level opti-
mizations in our implementation.

1. Database choice for Reparo: geth implements three types of key-value
databases: Memory Databases which reside in the system memory, Cached
and Uncached Databases which reside on the disk. The repair layer only stores
active requests and the votes for these requests. Hence, a memory database
is ideal to implement repairTx and voteTx.

2. Native Contracts for repairTxand voteTx: Native contracts (also referred
to as Pre-compiled contracts) are client-side implementations of functionali-
ties that are too complex or expensive (in terms of gas) to be implemented
inside the EVM. For example, the Ethereum yellow paper [33] uses these
native contracts to perform SHA3 and ecrecover (a function that returns
the address from ECDSA signature values r, s). We use native contracts to
support Reparo.

3. Fast sync and light-client friendliness: Fast sync is a mode used by the
Ethereum clients. In this mode, the clients download the entire chain but
only retain the state entries for the recent blocks (pruning). In bandwidth,
our implementation only needs to download |C|+m from full nodes, where m
is the number of updates and the final space storage is still |C| as the nodes
can discard the repair layer after syncing.

4.1 Special Transactions: repairTx, voteTx

Our two special transactions repairTx, and voteTx, have special to addresses
REQ ADDR = 0x13 and VOTE ADDR = 0x14 respectively.

The transactions are always collected in the transaction pool. We modify the
transaction pool logic, specifically validateTx(). After ensuring well-formedness
of inputs, for repairTx we check that the data field is exactly 64 bytes long and
the first 32 bytes correspond to the transaction hash of an existing transaction
in the chain. For voteTx, we check that the data field contains exactly 32 bytes.

The input for repairTx consists of hash of the transaction H(Tx) which is to
be repaired and the hash of the proposed new transaction H(Tx�). The validation
logic ensures that Tx exists in the blockchain (repaired blockchain) by adding a
new function isTransactionTrue(). In the implementation of the native code for
this transaction, we add the request to the request memory database, indexed by
ID = H(H(Tx)||H(Tx�)) and initialize it with 0 votes. This database is created
on demand. The footprint of the database is small as we will need to process
about 16, 384 repair requests before occupying 1 MB. In contrast, the default

Reparo: Publicly Verifiable Layer to Repair Blockchains 51

Table 3. Comparison of operations between the modified client and the unmodified
client

Operation Type Client type

Unmodified Modified

repairTx Time (ms) – 76.09

voteTx Time (ms) – 71.89

Transfer Time (ms) 71.85 71.85

Import Time (Hours) 2.26 2.28

Import Speed (Mgas/s) 39.70 39.40

Table 4. Estimated repair costs (today) using state assertion in Reparo for Ethereum-
PoW. K and M stand for Kilo (103) and Mega (106) multipliers respectively.

Bug ETH Stuck Costs of repair

Gas ETH

DAO 3.60 M 3.81 M 0.53

QCX 67.32 K 4.7 M 0.65

Parity 517.34 K 1.95 M 0.27

REXmls 6.67 K 1.69 M 0.23

No Code 6.53 K 438.85 M 0.44

cache memory used by the client ranges from 512 to 4096 MB depending on the
client version and is therefore a safe assumption to make.

The input for voteTx is the ID described previously. The validation logic
ensures that the input is well-formed (of correct length). In the implementation
of the native code for this transaction, we check if the request exists in the
request memory database. If found, it increments the vote by one. Otherwise, it
throws an error and aborts the transaction.

To evaluate the performance overheads of the special transactions on the
client (and the network), we compare it with a baseline transfer transaction
involving a transfer of ETH between two accounts. The transfer function has
the lowest gas requirements (21, 000). repairTx (5.90% overhead) takes 76.09
ms and voteTx (0.055% overhead) takes 71.89 ms when compared to a trans-
fer transaction which takes 71.85 ms on an average over 100 iterations. (Refer
Table 3.)

4.2 Performing Repairs

In this series of experiments, we analyze the impact of supporting Reparo on
client software. For every block, supporting Reparo adds an overhead of checking
for approved repairs. If approvals are found, we repair the block body accordingly.
In this section, we analyze the read-write overheads to support the repair, the

52 S. A. K. Thyagarajan et al.

cost of building new states and applying transaction dependencies to repair some
real-world bugs (check the extended version [30] for details about these bugs).
We use an unedited (clean) chain for our experiments.

Read-Write Costs. In this experiment, we measure the time to update the
data of a block. This experiment helps to estimate the I/O overheads of trans-
action updates in the blockchain. A repair consists of finding a transaction in
the blockchain and replacing it with a new transaction. The transaction repair
overhead consists of the time taken by a node to read the transaction metadata
(block hash, block number and the transaction index in the block) and write
the new transaction data. We point the old hash to the new transaction data
so that when the hash of the old transaction is accessed, the repaired transac-
tion is furnished by the blockchain. We measure the read and write times for
10, 000 random transactions from random blocks in the chain. Random trans-
actions ensure that internal (database, software or operating system) caches do
not skew the measurements. The time taken to read the metadata is 649.81µs
and the write operation takes 2.32 ms on average over 100 runs for each of the
10, 000 transactions.

Import Costs. In this experiment, we evaluate the time it takes to import
the Ethereum chain subset using the modified and unmodified versions of the
client to measure the impact of Reparo in everyday performance. The geth client
imports blocks in batches. We log the amount of gas (in million gas) in such
batches and the time elapsed for the import (and thus compute the speed). We
perform 3 iterations on both the modified and unmodified clients. We plot these
speeds for the entire import process for the unmodified and modified clients in
Fig. 4. As evident from the graph, for most of the parts the modified client is
equal to or slightly slower than the unmodified client. This is reasonable in the
real world as the slight import delay per block can be accounted for by reducing
the gas limit of the block (and thus the computation performed on each block
allowing Reparo to utilize the remaining time).

On average, the unmodified client takes 8134.26 seconds to import 26, 104
blocks whereas our modified client takes 8213.64 seconds to import the same
blocks (Refer to Table 3). This is just 0.98% overhead for a full import of more
than 20 thousand blocks. It does not have any significant effect on the block
generation, block validation or block propagation as this can be tweaked by
reducing the difficulty and/or gas limit of the blocks.

The average amount of gas processed by the unmodified client is 39.70 million
gas per second whereas the modified client processes 39.40 million gas per second
(Table 3). This 0.76% overhead is due to the hard coding of rules for special
transactions whose conditions are checked for every transaction. This overhead
does not cause any problems as the average gas limit for an Ethereum block is
10, 000, 000 (which is under 39 Mgas/s) [5] and both the nodes perform optimally
to sync the latest blocks and propagate. Note that this affects the full sync nodes
only. Note that the light clients, such as Parity [27] for example, skip verification
of states and are thus unaffected.

Reparo: Publicly Verifiable Layer to Repair Blockchains 53

1.0905 1.0910 1.0915 1.0920 1.0925 1.0930
Block Number ×107

0

25

50

75

100

125

150

T
im

e
(i
n
m
in
)

Unmodified Client
Modified Client

Fig. 4. Batched speed comparison of the modified client and the unmodified client. The
modified client has a modified validateTx rule, a new function isTransactionTrue,
and modified structures with flags to detect a dirty (edited chain and blocks).

Repairs. We employ a policy which allows editing any contract call in order to
repair the chain. We qualify our previous pessimistic analysis by arguing that
most of the repairs have small transaction dependency graphs. This is due to the
localization of impact to a few accounts. We bound the number of transactions
that need to be re-run to transactions that interact with the contract. This cou-
pled with the fact that we are performing a repair ensures a small transaction
dependency graph which significantly reduces the repair costs. Table 4 we high-
light the impact of such localizations. We sum the gas in all such transactions to
estimate the gas cost of repairs and thus the ETH. Note that we always pay the
miners (and hence the network) for the extra computation. We use a gas price
of 138 GWei/gas (market price at the time of writing) for our conversions. We
refer the interested readers to Appendix A for more details about the bugs and
our solutions.

5 Conclusion and Future Work

This work presents Reparo, a secure, systematic way to make any blockchain
forget the “forgettable”. We present a generic protocol that is adaptable to con-
sensus requirements, and achieves public verifiability and secure chain repairs
guaranteeing REC for current mainstream blockchains. We then design and ana-
lyze an important application of the protocol in Ethereum to fix contract bugs,
and report the implications and feasibility of these repairs for popular contract
bugs such as DAO and Parity Multi Sig Wallet. We also provide optimizations
that can make the implementation more robust and realizable. We show that, in
Ethereum, vulnerabilities, if found, (and existing vulnerabilities) can be immedi-
ately isolated to reduce the transaction dependency and repaired efficiently and
securely.

54 S. A. K. Thyagarajan et al.

In the future, we aim to realize the Reparo protocol on permissioned systems
such as Hyperledger. We also intend to study the impact of Reparo on off-chain
protocols and whether it can be used to improve them. Among other repair
operations, Reparo also offers a means to propose, deliberate and incorporate new
features into Bitcoin and Ethereum given the respective communities currently
do this in an ad-hoc manner [6,16].

Acknowledgments. We would like to thank Andrew Miller for his valuable comments
and constructive feedback. We would also like to thank all the anonymous reviewers
for their insightful comments and suggestions to improve the draft.

The first author was supported by the German research foundation (DFG)
through the collaborative research center 1223, and by the state of Bavaria at the
Nuremberg Campus of Technology (NCT). NCT is a research cooperation between
the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Technische
Hochschule Nürnberg Georg Simon Ohm (THN). This work also has been partially
supported by the National Science Foundation under grant CNS-1846316.

A Prominent Bugs

DAO. This is a re-entrancy bug in the contract that allowed a maliciously crafted
call to drain the balance of the contract before it subtracted the balance from
the user. We propose to fix this contract by updating all DAO contract creation
contracts with the bug fixed code. This is different from the ad-hoc solution
employed by Ethereum today. Ethereum hard-coded the address for DAO and
executes the contract differently. This ensured that the blockchain should have
no transaction dependency because the blockchain already has the state with the
contract fixed. This in conjunction with the repair proposal allows an inexpensive
repair for DAO even though it has a lot of dependent transactions.

Parity Multisig Wallet Bug. The Parity Mutli Sig Wallet is a library contract
that had a bug which had a public constructor that allowed any user to take
control of the contract. A user took ownership of the contract and accidentally
killed it. We propose to repair this contract by undoing the transaction that
killed the contract. The transaction dependency is unaffected as it just resurrects
a dead contract. This enables all Parity Multisig Wallet holders to safely recover
their funds.

QuadrigaCX (QCX) and REXmls. These contracts have hardcoded wrong
addresses in the contract which sent the ICO ETH to an incorrect address (an
account that does not exist) thereby permanently locking the coins in those
contracts. We propose to repair this bug by proposing a repair transaction with
the same code but with the correct address, which can be used to recover and
return the lost funds.

No Code Contract. There are 2, 986 such contract creation transactions which
have money but no code in the creation call. The idea to solve the no code
contract problem, is to allow the user to add code to the contract. We give a
template of the code in the extended version [30]. The contract allows the user
who locked the money in a contract to retrieve the money.

Reparo: Publicly Verifiable Layer to Repair Blockchains 55

References

1. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core
(2021)

2. Altabba, M.: Hundreds of millions of dollars locked at ethereum 0x0 address
and smart contracts’ ..., June 2018. https://medium.com/@maltabba/hundreds-
of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-
addresses-how-4144dbe3458a. Accessed Mar 2021

3. Ateniese, G., Chiaramonte, M.T., Treat, D., Magri, B., Venturi, D.: Rewritable
blockchain, 8 May 2018. US Patent 9,967,096

4. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain-or-
rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 111–126. IEEE (2017)

5. Ethereum average gas limit chart. https://etherscan.io/chart/gaslimit. Accessed
28 July 2019

6. bitcoin/bips: Bitcoin improvement proposals. https://github.com/bitcoin/bips.
Accessed 31 July 2019

7. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the hydra: towards prin-
cipled bug bounties and exploit-resistant smart contracts. In: 27th {USENIX}
Security Symposium ({USENIX} Security 2018), pp. 1335–1352 (2018)

8. Buterin, V.: ethereum/wiki - proof of stake FAQ. https://github.com/ethereum/
wiki/wiki/Proof-of-Stake-FAQ

9. Buterin, V.: State tree pruning. https://blog.ethereum.org/2015/06/26/state-tree-
pruning/

10. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

11. Understanding the DAO attack. https://www.coindesk.com/understanding-dao-
hack-journalists

12. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled
rewriting in blockchains: chameleon-hashing gone attribute-based. In: ISOC Net-
work and Distributed System Security Symposium - NDSS 2019. The Internet
Society (2019)

13. Deuber, D., Döttling, N., Magri, B., Malavolta, G., Thyagarajan, S.A.K.: Mint-
ing mechanisms for blockchain - or - moving from cryptoassets to cryptocurren-
cies. Cryptology ePrint Archive, Report 2018/1110 (2018). https://eprint.iacr.org/
2018/1110

14. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permis-
sionless setting. In: Proceedings of 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, California, USA, 20–22 May 2019 (2019)

15. Reclaiming of ether in common classes of stuck accounts - issue 156 - ethereum/eips.
https://github.com/ethereum/EIPs/issues/156. Accessed 31 July 2019

16. ethereum/eips: The ethereum improvement proposal repository. https://github.
com/ethereum/EIPs. Accessed 31 July 2019

17. Major issues resulting in lost or stuck funds. https://github.com/ethereum/wiki/
wiki/Major-issues-resulting-in-lost-or-stuck-funds

18. Goodman, L.: Tezos–a self-amending crypto-ledger (2014). https://www.tezos.
com/static/papers/whitepaper.pdf

19. Ibáñez, L.D., O’Hara, K., Simperl, E.: On blockchains and the general data pro-
tection regulation. In: EU Blockchain Forum and Observatory, pp. 1–13 (2018)

https://medium.com/@maltabba/hundreds-of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-4144dbe3458a
https://medium.com/@maltabba/hundreds-of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-4144dbe3458a
https://medium.com/@maltabba/hundreds-of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-4144dbe3458a
https://etherscan.io/chart/gaslimit
https://github.com/bitcoin/bips
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://blog.ethereum.org/2015/06/26/state-tree-pruning/
https://blog.ethereum.org/2015/06/26/state-tree-pruning/
http://arxiv.org/abs/1710.09437
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://eprint.iacr.org/2018/1110
https://eprint.iacr.org/2018/1110
https://github.com/ethereum/EIPs/issues/156
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/wiki/wiki/Major-issues-resulting-in-lost-or-stuck-funds
https://github.com/ethereum/wiki/wiki/Major-issues-resulting-in-lost-or-stuck-funds
https://www.tezos.com/static/papers/whitepaper.pdf
https://www.tezos.com/static/papers/whitepaper.pdf

56 S. A. K. Thyagarajan et al.

20. Interpol cyber research identifies malware threat to virtual currencies (2015).
https://tinyurl.com/y9wfekr6

21. Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed
System Security Symposium - NDSS 2000. The Internet Society, February 2000

22. Lumb, R.: Downside of bitcoin: a ledger that can’t be corrected (2016). https://
tinyurl.com/ydxjlf9e

23. Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort - a semi-synchronous
finality layer for blockchains. Cryptology ePrint Archive, Report 2019/504 (2019).
https://eprint.iacr.org/2019/504

24. Coinmarketcap. https://coinmarketcap.com
25. Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary blockchain

content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 23

26. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
27. Getting synced. parity tech documentation. https://wiki.parity.io/Getting-Synced.

Accessed 28 July 2019
28. Puddu, I., Dmitrienko, A., Capkun, S.: μchain: how to forget without hard forks.

IACR Cryptology ePrint Archive 2017, 106 (2017)
29. Sun, S.: Escaping the dark forest, September 2020. https://samczsun.com/

escaping-the-dark-forest/
30. Thyagarajan, S.A.K., Bhat, A., Magri, B., Tschudi, D., Kate, A.: Reparo: publicly

verifiable layer to repairblockchains. https://fc21.ifca.ai/papers/119.pdf
31. Tziakouris, G.: Cryptocurrencies–a forensic challenge or opportunity for law

enforcement? An interpol perspective. IEEE Secur. Priv. 16(4), 92–94 (2018)
32. Ethereum whitepaper. https://github.com/ethereum/wiki/wiki/White-Paper
33. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151, 1–32 (2014)

https://tinyurl.com/y9wfekr6
https://tinyurl.com/ydxjlf9e
https://tinyurl.com/ydxjlf9e
https://eprint.iacr.org/2019/504
https://coinmarketcap.com
https://doi.org/10.1007/978-3-662-58387-6_23
https://doi.org/10.1007/978-3-662-58387-6_23
https://wiki.parity.io/Getting-Synced
https://samczsun.com/escaping-the-dark-forest/
https://samczsun.com/escaping-the-dark-forest/
https://fc21.ifca.ai/papers/119.pdf
https://github.com/ethereum/wiki/wiki/White-Paper

Short Paper: Debt Representation
in UTXO Blockchains

Michael Chiu1(B) and Uroš Kalabić2

1 Department of Computer Science, University of Toronto, Toronto M5S 2E4, Canada
chiu@cs.toronto.edu

2 Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
kalabic@merl.com

Abstract. We provide a UTXO model of blockchain transactions that
is able to represent both credit and debt on the same blockchain. Ordi-
narily, the UTXO model is solely used to represent credit and the rep-
resentation of credit and debit together is achieved using the account
model because of its support for balances. However, the UTXO model
provides superior privacy, safety, and scalability when compared to the
account model. In this work, we introduce a UTXO model that has the
flexibility of balances with the usual benefits of the UTXO model. This
model extends the conventional UTXO model, which represents cred-
its as unmatched outputs, by representing debts as unmatched inputs.
We apply our model to solving the problem of transparency in reverse
mortgage markets, in which some transparency is necessary for a healthy
market but complete transparency leads to adverse outcomes. Here the
pseudonymous properties of the UTXO model protect the privacy of loan
recipients while still allowing an aggregate view of the loan market. We
present a prototype of our implementation in Tendermint and discuss
the design and its benefits.

Keywords: Blockchain protocols · Blockchain applications · UTXO ·
Debt

1 Introduction

There are two main blockchain transaction models: the unspent transaction out-
put (UTXO) model and the account model. UTXOs were introduced in Bitcoin
[1] and are predominantly used to represent credits. The UTXO model is state-
less; UTXOs represent units of value that must be spent, so any state change
within the UTXO model results in old UTXOs being succeeded by new UTXOs.
The account model is state-dependent; it implements balances where transac-
tions change the state of the system by keeping a balance [2]. The UTXO model
has various advantages over the account model including superior privacy, safety,
and scalability, mainly due to the structure of transactions. However, one short-
coming is that it is unable to represent debt.

This work was supported by Mitsubishi Electric Research Laboratories.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 57–64, 2021.
https://doi.org/10.1007/978-3-662-64331-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_3&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_3

58 M. Chiu and U. Kalabić

Debt is an important part of a well-functioning financial system [3] but its
opacity within the financial system has been identified as a contributor to the
2008 financial crisis [4]. For this reason, regulatory agencies have recommended
increasing transparency in debt markets, such as mortgage markets, in order
to prevent build-up of excessive leverage [5]. Nevertheless, it is understood that
complete transparency also leads to adverse outcomes like increased price volatil-
ity [6].

This work presents a possible solution to the representation of debt on UTXO
blockchains. In our design, debt is represented analogously to the way in which
credit is represented; where UTXOs represent credit as unspent transaction out-
puts, we represent debt in something akin to unpaid transaction inputs, i.e., a
debt is a transaction that has not yet been funded. We implement our design
in Tendermint [7], a library for state machine replication (SMR), and show how
it can be applied to the representation of reverse mortgage transactions on the
blockchain. As a practical matter, we note that this work presents a protocol for
managing credits and debts in an efficient manner and does not prevent debt-
holders from abandoning their debt. We expect that this could be done through
existing legal frameworks, or through collateralization schemes being pioneered
in DeFi technology [8].

The literature has given some consideration to debt representation in the
blockchain. One existing approach is the implementation of a debt token and
logic to handle debt creation and destruction [9,10]. Another approach uses the
blockchain as a shared data layer to record loans [11]. There have been attempts
at the representation of debt in a multi-blockchain setting [12], in which debt is
represented implicitly by locking tokens on multiple blockchains and not within
a single blockchain. Other work has used smart contracts to represent debt [13],
but it does not improve the transparency of aggregate debt within the system.
Apart from work that represents debt in a blockchain, there is also at least one
effort that is moving the home equity loan process onto the blockchain [14], but
it does not put mortgage transactions themselves onto the blockchain. To our
knowledge, the existing literature has not considered representing debt as unpaid
transaction inputs.

The rest of the paper is structured as follows. Section 2 discusses transactions
in the UTXO model. Section 3 presents a novel way of representing debt in the
UTXO model. Section 4 presents our prototype for representing reverse mortgage
transactions on the blockchain. Section 5 is the conclusion.

2 Transactions in the UTXO Model

Transactions are the fundamental data structures in blockchains that represent
a state change. In the UTXO model, transactions are generally comprised of
transaction inputs, transaction outputs, locktime and other metadata [15].

Transaction outputs are data structures that contain an amount, a locking
script and possibly other metadata such as the size of the locking script. Trans-
action amounts indicate the quantity of value to be transferred. Locking scripts

Debt Representation in UTXO Blockchains 59

coinbase tx output tx ... tx utxo

Fig. 1. Relationship between transactions and UTXOs in the UTXO model

within a transaction output encode the conditions that must be satisfied in order
for the amount to be spent.

Transaction inputs contain a transaction hash, an output index, unlocking
script, and other metadata. The transaction hash is a hash of the transaction
containing the transaction output from where the value is to be drawn; transac-
tion outputs that are not matched to a transaction input therefore are unspent.
The output index indicates which of the UTXOs in the referenced transaction
is to be drawn from. The unlocking script contains the solution to the locking
script of the referenced UTXO.

The total amount of UTXOs represent the total amount of available credit
in the system. Every node in the blockchain network keeps track of the available
UTXOs in memory and this is known as a UTXO pool. When a UTXO is
matched with a transaction input, it is no longer considered unspent and is
removed from the UTXO pool.

In permissionless UTXO blockchains, the coinbase transaction is used to mint
new tokens in the system as rewards for miners. Coinbase transactions have the
same fields as regular transactions and are the only transactions in a traditional
UTXO model that are allowed to have unmatched transaction inputs. That is,
coinbase transactions do not point to an existing UTXO. An overview of how
transactions are related to each other in the UTXO model is provided in Fig. 1.

Although the UTXO model is well-suited to the representation of credit,
it is unable to represent debt without modification. It is possible to modify
a transaction output to hold negative values, but this would require preventing
participants with permission to issue debts from sending large, negative amounts
to creditors and destroying their equity. It is also possible to represent debt
using smart contracts, but such an implementation would be opaque and require
additional computation to query the amount of debt issued or owed by a debtor,
and it would not allow a straightforward lookup on the blockchain by parsing
transactions. Another possible change that could be made to the UTXO model
is to simply double the data fields of the transaction so that the duplicate set
of fields represent debt tokens. However, not only does this double the size of
transactions, it also allows users to send their debts away. We introduce what
we believe to be a more elegant solution, detailed in the following.

3 Debt-Enabling UTXO Blockchain

We present a design that enables the representation of debt in a UTXO-based
permissioned blockchain. In the design, we represent debts as transactions with
unmatched transaction inputs, conforming to the way in which credits are repre-
sented using unmatched outputs. To enable this representation, we introduce two
new types of transactions: debt transactions and outstanding debt transactions.

60 M. Chiu and U. Kalabić

debt tx utxo

outstanding debt txoutput

Fig. 2. Debt creation on the blockchain

3.1 Debt Transactions

The first type of transaction is a debt transaction. These transactions enable debt
to be issued from creditor to debtor. They are similar to coinbase transactions
in that they are transactions with unmatched transaction inputs and are only
constructed by a subset of network participants. These participants must be
given permission to issue debt, and the permissioning model itself can vary. For
example, it can be that every trusted participant is able to issue debt, such as in
a permissioned network of banks, or that only a subset of trusted participants
is able to do so, such as in the case of a single central bank. To this end, special
addresses known to the permissioned network protocol, and their corresponding
public and private keys, are used to confer the ability to issue debt.

Although similar to coinbase transactions, debt transactions are markedly
different in that the transaction input has an actual function. In a debt transac-
tion input, the erstwhile transaction hash field is re-purposed to act as a public
key field that records a public key belonging to the creditor; this enables parties
involved in the debt issuance to be recorded on the blockchain. The output index
is also repurposed and set to, for example, −2 in order to provide a simple flag
to check if the transaction is a debt transaction.

The rest is similar to a coinbase transaction in that the debt transaction
output is a normal transaction output. Since the transaction output of the debt
transaction is a standard UTXO, it is included into the UTXO pool like conven-
tional UTXOs after the debt transaction has been accepted by the network.

The UTXO nature of debt transactions protect the privacy of the debtor
since the debt issuance can be split across multiple address, i.e., transaction
outputs. The aggregate amount of issued debt remains public and is recorded
directly on the blockchain, increasing transparency into the health of the overall
system while protecting individual privacy.

3.2 Outstanding Debt Transactions and Debt Pools

Debt transactions are broadcast to the network for inclusion into the blockchain
and create UTXOs assigned to the debtor. Debt transactions act as mechanisms
to issue debt and are recorded on the blockchain. However, since one needs a
mechanism to keep track of outstanding debts and their repayment, we introduce
outstanding debt transactions, which are created simultaneously with debt trans-
actions, as shown in Fig. 2. Outstanding debt transactions are transactions with
unmatched inputs and a transaction output matched with the corresponding
debt transaction and the creditor’s public key.

Debt Representation in UTXO Blockchains 61

After an outstanding debt transaction is created and broadcast to all other
nodes, it is inserted into a debt pool, which is similar to a UTXO pool, but which
holds outstanding debt transactions instead of UTXOs. The debt pool is used
to handle debt repayments. An outstanding debt transaction is removed from
the debt pool when a debt owner repays the remainder of a debt, i.e., when
the outstanding debt transaction’s input is matched with a debtor’s UTXO con-
taining the funds. Once an outstanding debt transaction has a matched input,
it is no different from a normal transaction and is removed from the debt pool
and inserted into the transaction pool to be eventually accepted by the net-
work. In the case of partial repayments, we create two new transactions from
the original outstanding debt transaction: the first is a normal transaction that
records the transfer of value of the repayment amount from the debtor to the
creditor; the second is a new outstanding debt transaction with the remaining
debt amount, which is similar to the way change transactions are handled in
UTXO blockchains. The issuance of two new transactions in the case of repay-
ments ensures that funds allocated to repayment and outstanding debt balances
are finalized by the network and not held in debt pools, akin to splitting a
UTXO when a transfer of credit is made. Figure 3 illustrates the lifecycle of an
outstanding debt transaction.

4 Prototype

We implement a prototype of a UTXO-based blockchain capable of debt repre-
sentation and apply it to reverse mortgages.1 Reverse mortgages, also known as
home equity loans, allow home owners to use their primary residence as collat-
eral for a loan. The reverse mortgage market is an important source of wealth for
many households and borrowing against home equity is a significant percentage
of US household leverage [16]. As a significant contributor to the over-leveraging
of many households, reverse mortgages are potentially a large source of systemic
risk in the financial system and one of the contributing factors to the financial
crisis of 2008 [4]. For this reason, there have been many recommendations by reg-
ulatory bodies since 2008 that recommend increased transparency in mortgage
markets [5]. However, transparency in the current system is difficult because
these transactions are private and the relevant data is siloed [17].

A permissioned UTXO blockchain for mortgage transactions offers a solution
amenable to all participants since it enables transparency at a system level while
preserving individual privacy. Note that an account-based blockchain is unsuit-
able for this because, unlike UTXO-based transactions, balance-based transac-
tions are unable to provide transaction-level privacy protections for loan recipi-
ents. To protect privacy, a loan issuance implemented using a debt transaction
can have multiple UTXOs, obfuscating both the possible number of recipients
and the total amount issued per recipient. This is in contrast to the account
model, where balanced-based transactions reinforce the reuse of balances because
they are state-dependent.
1 For code listing, see https://github.com/chiumichael/debtchain.

https://github.com/chiumichael/debtchain

62 M. Chiu and U. Kalabić

Remove transaction

from debt pool

Generate new

outstanding debt

transaction with

remaining amount

Generate normal

transaction with

partial repayment amount

Outstanding Debt Transaction
in debt pool

Repayment

Input matched

Full

Partial

Insert new outstanding
debt transaction into debt pool

Fig. 3. Lifecycle of an outstanding debt transaction in the debt pool

4.1 System Architecture

Our blockchain prototype is built on top of Tendermint Core2 [7], an open-
source Byzantine fault tolerant (BFT) middleware library for SMR. Tendermint
Core provides a consensus mechanism for both permissioned and permissionless
BFT blockchains and includes the rotation of the leader after every round, using
gossip protocols to communicate with other nodes. Tendermint is comprised
of two main components: the Tendermint engine and the ABCI, which is the
Tendermint API. The engine handles the consensus and the dissemination of
information throughout the network and the ABCI provides an interface for
an application to interact with the consensus mechanism. The main benefit of
separation of consensus from the application logic is that it allows applications
to only consider the local state, not having to explicitly manage synchronization.
See Fig. 4 for a schematic.

The first component of our prototype is pkg/utxi, a modular library that
implements UTXO transactions, along with the debt and outstanding-debt
transactions introduced in this work.

The second component implements the blockchain functionality: UTXO and
debt pools, and block construction for network acceptance. The memory pools
are implemented as in-memory key-value stores using BadgerDB3 at the appli-
cation level; they are implemented on top of the ABCI since they rely on the
ABCI to receive instructions. Blocks are constructed implicitly; the Merkle root
of the hash of the transactions in a block is broadcast to the network for

2 https://github.com/tendermint/tendermint.
3 https://github.com/dgraph-io/badger.

https://github.com/tendermint/tendermint
https://github.com/dgraph-io/badger

Debt Representation in UTXO Blockchains 63

UTXO pool

Tendermint
Engine

node

Debt Pool

client

block hashes

abci

abci

block hashes

Fig. 4. System level diagram for the prototype, where the blue box contains the back-
end components and the red box contains the in-node components (Color figure online)

acceptance. Transactions, within blocks, are stored internally in BadgerDB on
top of the ABCI. Tendermint handles the propagation of state changes made by
transactions.

The final component is the application node and the client. The applica-
tion node contains the functionality necessary for a reverse mortgage blockchain
such as issuing debt, checking balances, checking the amount of existing debt,
among other things, and is implemented on top of the ABCI at the same level of
blockchain functionality. The client is a front-end for users to interact with the
network and contains user-related functionality such as private key management.
There can be many clients connected to a single node, which communicate with
the node through HTTP requests.

4.2 Implementation

Home equity loans are implemented as debt transactions. The input of the debt
transaction’s public key field is interpreted as the issuer and its data field indi-
cates the type of loan.

The backend (Fig. 4; blue box) receives commands from users, through the
client (Fig. 4; yellow circle) and the ABCI interface. The two main ABCI inter-
face functions that must be implemented are CheckTx and DeliverTx, which
are entry points into the Tendermint engine. Logic for checking the validity of
requests is implemented in CheckTx. Logic that changes the state of the appli-
cation is implemented within or called only from DeliverTx. Since Tendermint
handles consensus and the replication of state among nodes, it needs to be able
to invoke functions changing state.

When a request to issue debt is sent from a client, a debt transaction is
constructed and is broadcast to the network through the DeliverTx function.
Simultaneously, the local state of the node is updated and the UTXO pool is
updated with the UTXOs belonging to the debtor, while the debt pool is updated
with an outstanding debt transaction belonging to the creditor.

64 M. Chiu and U. Kalabić

5 Conclusion

In this short paper, we introduced a permissioned, UTXO-based blockchain
design that is able to represent credit and debt on the same blockchain. The main
idea behind the design is that debt can be represented as unmatched transaction
inputs in the same way that credits are represented as unmatched transaction
outputs. To handle this new construction, we introduced a debt pool, similar to
a UTXO pool, that keeps track of debts in the system. A benefit this provides is
the ability to keep track of aggregate debt while protecting individual privacy,
because one loan can be represented with multiple, pseudonymous UTXOs. We
presented a prototype of our design applied to the representation of reverse
mortgages.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. White Paper (2009)
2. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Implementing Digital Con-

tracts. O’Reilly, Sebastopol (2018)
3. Holmstrom, B.: Understanding the role of debt in the financial system. BIS Work-

ing Paper 479 (2015)
4. Greenlaw, D., et al.: Leveraged losses: lessons from the mortgage market meltdown.

In: Proceedings of US Monetary Policy Forum, pp. 8–59 (2008)
5. US Department of the Treasury: Opportunities and challenges in online market-

place lending. White Paper (2016)
6. Pavlov, A., Wachter, S., Zevelev, A.A.: Transparency in the mortgage market. J.

Financial Serv. Res. 49(2–3), 265–280 (2016)
7. Kwon, J.: Tendermint: consensus without mining. White Paper (2014)
8. Werner, S.M., et al.: SoK: Decentralized finance (DeFi). arXiv:2101.08778 (2021)
9. Moy, C., et al.: Systems and methods for distributed ledger-based peer-to-peer

lending, US Patent Application 16/040,696, appl. 24 January 2019
10. Wu, C.S., Yu, C.W.: Electronic transaction system and method using a blockchain

to store transaction records, US Patent Application 16/492,706, appl. 13 February
2020

11. Dowding, P.F.: Blockchain solutions for financial services and other transactions-
based industries, US Patent Application 15/551,065, appl. 6 September 2018

12. Black, M., Liu, T.W., Cai, T.: Atomic loans: cryptocurrency debt instruments.
arXiv:1901.05117 (2019)

13. Xie, Y., Holmes, J., Dagher, G.G.: ZeroLender: trustless peer-to-peer Bitcoin lend-
ing platform. In: Proceedings of ACMConference on Data and Application Security
and Privacy, pp. 247–258 (2020)

14. Provenance Blockchain: Provenance: Creating the future of finance. White Paper
(2019)

15. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies, 2nd
edn. O’Reilly, Sebastopol (2017)

16. Mian, A., Sufi, A.: House prices, home equity-based borrowing, and the US house-
hold leverage crisis. Am. Econ. Rev. 101(5), 2132–2156 (2011)

17. Alter, A., Dernaoui, Z.: Non-primary home buyers, shadow banking, and the US
housing market. IMF Working Paper 20/174 (2020)

http://arxiv.org/abs/2101.08778
http://arxiv.org/abs/1901.05117

Instant Block Confirmation in the Sleepy
Model

Vipul Goyal1,2, Hanjun Li1, and Justin Raizes1(B)

1 Carnegie Mellon University, Pittsburgh, PA, USA
vipul@cmu.edu, jraizes@andrew.cmu.edu

2 NTT Research, Palo Alto, USA

Abstract. Blockchain protocols suffer from an interesting conundrum:
owning stake in the Blockchain doesn’t necessarily mean that the party
is willing to participate in day to day operations. This leads to large
quantities of stake being owned by parties who do not actually participate
in the growth of the blockchain, reducing its security. Pass and Shi [23]
captured this concern in the sleepy model, and subsequent work by Pass
et al. [5] extended their results into a full Proof of Stake blockchain
protocol which can continue to securely progress even when the majority
of parties may be offline. However, their protocol requires 10 or more
blocks to be added after a transaction first appears in the ledger for it to
be confirmed. On the other hand, existing Byzantine Agreement based
blockchain protocols such as Algorand [6,7,14] confirm transactions as
soon as they appear in the ledger, but are unable to progress when users
are not online when mandated.

The main question we address is:
Do there exist blockchain protocols which can continue to securely
progress even when the majority of parties (resp. stake) may be
offline, and confirm transactions as soon as they appear in the
ledger?

Our main result shows the answer to this question to be “yes”. We present
a Proof of Stake blockchain protocol which continues to securely progress
so long as more than half of the online stake is controlled by honest par-
ties, and instantly confirms transactions upon appearance in the ledger.

1 Introduction

Blockchain protocols provide significant economic and cryptographic implica-
tions, by means of the creation and maintenance of a globally agreed-upon log in
an environment with low trust. The two most popular variants of blockchain pro-
tocols are Proof of Work (PoW) and Proof of Stake (PoS). Proof of Work unfor-
tunately carries expensive hardware requirements and wastes a large amount of
energy. Proof of Stake protocols bypass the wastefulness of Proof of Work by

The authors were supported in part by the NSF award 1916939, a gift from Ripple, a
DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services
innovation award, and a Cylab seed funding award.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 65–83, 2021.
https://doi.org/10.1007/978-3-662-64331-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_4&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_4

66 V. Goyal et al.

using the amount of stake a user owns in the system as a means for determining
whether the user can contribute to its progression.

However, this approach carries the downside of requiring users who own stake
in the system to be active in order for the system to securely progress. Since it
is more desirable to own stake in the system than it is to actively participate in
it (for instance, shareholders rarely want a say in the day-to-day operations of
a company), much of the stake present in the system may be owned by inactive
users. Current Proof of Stake protocols such as Algorand [6,7,14] are typically
unable to effectively deal with this problem, requiring over half of the stake
present in the system to be owned by users which are both active and honest.

Pass and Shi [23] were the first to address this problem, presenting a protocol
which could securely progress even when the majority of stake in the whole
system was owned by inactive users, so long as the majority of stake owned by
active users was owned by honest users (i.e. the “honest active stake” was over
half of the “active” stake). Their protocol was based on the follow-the-longest-
chain ideas of Nakamoto [21], which, although revolutionary, bring with them
the distinct downside of requiring a block to be “buried” beneath several others
before it is confirmed.

On the other hand, Byzantine Agreement-based blockchain protocols allow
blocks to be confirmed as soon as they are added to the chain. Unfortunately,
it is nontrivial to securely allow progression while the majority of stake may
be owned by inactive users and simultaneously scale to millions of users with
this style of protocol. Algorand [6,7,14] addresses the latter issue by securely
selecting a small committee to run a Byzantine Agreement protocol using a
Verifiable Random Function (VRF) [19]. As we will see later, it is difficult to
directly extend this committee approach to the heavily inactive setting, which
will pose our main challenge.

We present a new blockchain system, using Algorand as a starting point, which
allows transactions to be securely added to the ledger regardless of the amount of
stake owned by currently active users. In comparison, Algorand in its base state
cannot progress if even 40% of stake is owned by inactive users. Furthermore, bas-
ing the mechanism on Byzantine Agreement prevents forks, eliminating the major
weakness of Sleepy Consensus [23] and its extension Snow White [5]. While Sleepy
Consensus and Snow White require 10 or more blocks to be added after a transac-
tion first appears in the ledger for it to be confirmed, our approach allows trans-
actions to be confirmed immediately upon appearing in the ledger.

2 Technical Roadmap

2.1 Starting Point: Algorand

At a high level, in Algorand, a block is added to the chain by randomly selecting
a committee, which then runs a Byzantine Agreement protocol to decide on
the next block in a consistent manner. Since the probability of being in the
committee is proportional to the number of coins a user possesses (users may
appear multiple times in the committee if they own multiple coins), is unlikely
for a majority corrupt committee to be selected.

Instant Block Confirmation in the Sleepy Model 67

Concretely, each coin is associated with a Verifiable Random Function (VRF)
[19] for each round, and if its VRF is above some threshold, the owner is granted
the right to participate one additional time in the current committee. This
threshold is based on the number of coins (amount of stake) in the system,
and is set to ensure an average committee size. The larger the actual committee
size, the less likely it is to be majority-corrupt, which would allow the adversary
to break security. Therefore, Algorand does not allow a committee which is too
small to add blocks to the chain.

Unfortunately, in the sleepy model, parties do not know how much stake
is online (owned by online users) at any time, so it is not clear how to set the
threshold so as to frequently choose a committee large enough for secure progress.
Furthermore, since the adversary may control just under half of all online stake
and can selectively deliver corrupt messages to subsets of honest parties, it is
difficult to even estimate the amount of online stake by using messages from other
parties. Therefore, we will need a different approach for selecting a committee.

2.2 Selecting a Committee

To reliably choose a committee which is large enough to be majority honest with
high probability, we will build on the idea of using the n parties with the highest
VRFs seen as the committee. Though this approach ensures committee sizes
are always large enough to make them majority honest with high probability, is
obvious that not all parties are guaranteed to see the same committee.

In Algorand, players do not necessarily see the full committee, but all honest
parties will accept messages from any member of the committee, even if they
are received later. In contrast, using our committee selection procedure, the fact
that one party accepts a party i as a committee member does not imply that
another party who receives i’s message accepts i as a committee member. For
instance, if the adversary controlled 40% of the online stake, we would expect the
true list of the top n VRFs to be about 40% corrupt. If the first party receives
no corrupt VRFs, its committee will be completely honest. However, a second
party receiving all of the corrupt VRFs will replace the lower 40% of the top
n honest VRFs with corrupted VRFs. Furthermore, the second party cannot
simply extend its committee to include the first party’s committee, since it has
no way of determining that the first party is not corrupt, and corrupt parties
may pretend to see arbitrary committees.

As it is very difficult to entirely patch this flaw and guarantee that all parties
see the same committee, we will instead focus our efforts on ensuring that the
committees which are seen by various honest parties are “close enough”.

2.3 Consensus with Different Committees

Standard Byzantine Agreement protocols rely on all parties knowing the same
committee (even if they cannot directly communicate), and break down when
this is not the case.

68 V. Goyal et al.

Somewhat surprisingly, we show that the general design of Algorand’s binary
Byzantine Agreement protocol does work with our committee selection, despite
being designed for parties all using the same committee. However, this is not
immediately obvious, and there is an additional nuance to iron out: to ensure
that parties continue to do the same steps at the same times, parties should not
halt at different steps in the Byzantine Agreement protocol. With Algorand’s
committee selection, when a party halts during an execution of the Byzantine
Agreement protocol it is easy to produce a certificate which will convince the
other parties to halt. This certificate simply consists of all of the committee
messages received during the halting round, and since in Algorand, all parties
will always accept the same committee members, parties receiving this certificate
will also see a valid halt. However, as discussed previously, with our committee
selection, parties do not necessarily agree on the committee, and so may reject
some of the messages which caused the halting party to halt. To remedy this
problem, we will use a binary Byzantine Agreement algorithm from [20] (based on
the same design as Algorand’s BA), which also has the advantage of reducing our
requirements to only > 1

2 honest online stake (from Algorand’s > 2
3). However,

it is also not immediately obvious that the algorithm from [20] works with our
committee selection, and we will need to show this formally.

Byzantine Agreement is not the only building block of Algorand which
requires consistent views of the committee. Algorand uses a Graded Consen-
sus protocol, which requires consistent views of the committee, to transform
binary Byzantine Agreement into multivalued Byzantine Agreement protocol,
allowing for blocks to be consistently decided on. Informally, Graded Consensus
[6,7] allows players to output a value and a grade, indicating how confident they
are that all other players output the same value. In the multivalue Byzantine
Agreement construction, binary Byzantine Agreement is used to decide on a
default value (the empty block), or a variable value, and the non-default value
should only be output if some honest party knows that all other honest parties
are using the same value. Since we ultimately want to decide the next block
to add, not the next bit to add, we will also show that the Graded consensus
algorithm of [20] with only minor modifications surprisingly still works with our
notion of “close enough” committees, despite being designed for the scenario
where there is a single committee which all parties accept messages from.

2.4 Summary of Challenges and Theorem Statement

In summary, the challenges we must overcome are:

– Ensuring the committees seen by all honest players are “close enough”. The
concrete properties we achieve are described in Lemma 1.

– Showing that the binary Byzantine Agreement algorithm from [20] works
when parties use different committees which are “close enough”.

– Showing that the Graded Consensus protocol from [20] works with minor
modifications when parties use different committees which are “close enough”.

Instant Block Confirmation in the Sleepy Model 69

Theorem 1. (Informal) If less than half the online stake is adversarially owned,
there exists a blockchain protocol in the sleepy model which, with overwhelming
probability, does not fork and enters transactions into the ledger at a constant
rate on average.

3 Related Work

Sleepy Consensus. Pass and Shi [23] initiated the study of consensus in the sleepy
model, where parties may be either awake or asleep at any given point in time.
Upon waking, a previously sleeping user receives both all messages actually sent
during the time it was asleep, and some set of adversarially generated messages,
intermingled. They showed that it is possible to achieve consensus in this setting
if and only if the number of awake honest parties are strictly greater than the
number of adversarial parties (which are always awake). However, their protocol
requires many blocks to be added before a transaction can be confirmed with
high confidence. Snow White [5], a blockchain built using the sleepy consensus
protocol, requires 10 additional blocks to be added for 99% confidence when the
adversary controls only 16.5% of the online stake. If the adversary controls 30%,
the number of blocks required jump to 33, and the authors only note that Snow
White is theoretically capable of dealing with 49% corruption, without providing
a concrete number of blocks to wait. We aim to achieve immediate confirmation
as soon as a transaction appears in the chain, without waiting for additional
blocks to be added.

Blockchain Protocols. Both Snow White [5] and Ouroboros Genesis [3] can
securely progress in the sleepy model, but requires transaction to be buried
below many blocks before being confirmed. Algorand [7] enables immediate con-
firmation upon a transaction appearing in the chain, but is unable to deal with
large quantities of stake being offline. Algorand’s method of dealing with offline
parties is to allow parties to determine if they will be part of any committees for
the next, say, week’s worth of blocks. If the user will not be part of a committee
for the next week, they can go inactive with good conscience. We wish to treat
the more general case where parties cannot commit to being active at particular
points in time. This may be due to vacations, network interruptions, or sim-
ply the user not wanting to participate in the chain’s progression. Nevertheless,
Algorand forms a strong starting point for our protocol.

Other blockchain protocols include Ouroboros [17], Ouroboros Praos [8],
Ouroboros Genesis [3], and the well-known Bitcoin protocol [21]. These all fall
into one or more of the categories discussed previously (PoW, long confirmation
times, majority online). Thunderella [24] is able to give instant confirmation
during the optimistic case of the committee being over 3

4 honest, but slows down
significantly when this is not the case.

Accelerating Meta-solutions.1 Prism [4] and Parallel Chains [13] give meta-
solutions which can be applied to existing solutions to significantly improve
1 We were made aware of these works by helpful reviewers.

70 V. Goyal et al.

transaction throughput and/or confirmation times. In particular, the results of
Parallel Chains can be applied to sleepy PoS blockchains such as Snow White and
Ouroboros variants, enabling blockchains which progress quickly in the sleepy
model. This matches our target application. However, our work additionally con-
tributes to the understanding of how BFT protocols can be adapted to the sleepy
setting.

Prism, on the other hand, is specifically for PoW blockchains, and comes
with the associated energy waste.

Byzantine Agreement with Unknown Participants. Alchieri et al. [1,2] charac-
terize the possibility of solving Byzantine Agreement when participants do not
know all other participants. Their main theorem identifies necessary and suffi-
cient properties for the knowledge graph (defined by the set of parties and which
other parties each knows) under which there exists a Byzantine Agreement algo-
rithm robust against an adversary which can corrupt up to t parties.

Though Alchieri et al. provide protocols solving this problem, their results are
unfortunately insufficient for our setting. We will additionally require security
against an adversary which controls many more corrupt parties than the size of
any honest view - the whole set of corrupt players, not just the small fraction
of those selected to be committee members. This is in contrast to the adversary
considered by Alchieri et al., may only corrupt up to t parties total, where all
honest views are at least size 2t + 1.

3.1 Comparison of Confirmation Times and Communication
Complexity

Confirmation Times. The time for a transaction to be confirmed in the
blockchain depends on both the time to first enter the ledger and the time for it
to stabilize in the chain. Our solution entirely eliminates the latter, which can
be very large in longest-chain style protocols such as Snow White or Ouroboros.
Parallel Chains is able to eliminate that weakness in those protocols, at the cost
of increased computation in proportion to the speedup, since parties have to
track/participate in multiple blockchains.

Since Algorand is the most similar to our protocol and its performance is well
understood by the community, it will form our main comparison point. In both
our protocol and Algorand, transactions must be present at block proposal to be
included, so transaction confirmation time is at most twice the time for a block
to be added. The main contribution to Algorand’s block addition time is the
number of Byzantine Agreement rounds, the expectation of which is given by the
expected number of rounds until an honest leader is elected. In this, our protocol
matches Algorand, since we borrow Algorand’s leader election. However, due to
the complexities of adapting to the sleepy model, the constant time for each
Byzantine Agreement round is significantly higher for our protocol. In particular,
it takes 4 messages to receive each committee member’s message, as opposed
to just 1 in Algorand. This leads to our protocol’s block addition time being
roughly 4x Algorand’s. Algorand’s best case scenario is significantly faster than

Instant Block Confirmation in the Sleepy Model 71

our protocol’s, since it is able to terminate the Byzantine Agreement almost
immediately when the next block is proposed by an honest party.

Communication Complexity. One of the major strengths of current PoS
blockchain solutions is the subquadratic communication complexity. For a com-
mittee size of n and a total number of online users N , current solutions usually
achieve a communication complexity of O(nN), or O(n) in the broadcast channel
model. Our protocol unfortunately requires a higher communication complexity
of O(N2), or O(N) in the broadcast channel model.

However, future work may be able to mitigate this downside by integrat-
ing our protocol as a fallback option to base Algorand. When participation is
high, Algorand provides low communication complexity, and during periods of
highly sporadic participation, our protocol can be used to provide progress when
Algorand would otherwise stall. Using our protocol only when participation is
low will also help mitigate the communication complexity slightly, since a lower
number of online users incurs a lower communication cost. More work will be
required to integrate the two protocols without introducing security issues.

Additionally, the approach of following the highest n VRFs means that after
receiving only a few messages, many others become entirely obsolete. Future
work may be able to exploit this at the gossip network level by heuristically
forwarding only the top n messages seen.

4 Definitions

4.1 Blockchain Execution Model

To allow us to capture the ability of users to be inactive, we adopt the sleepy
execution model of Pass and Shi [23], as extended by Bentov et al. [5], with
one major difference: we consider a more powerful adversary who can instantly
corrupt any honest party. In the sleepy model, generally, parties may be either
awake or asleep (corrupt parties are assumed to always be awake). The two states
differ in that parties may only receive messages when they are awake.

(Weakly) Synchronized Clocks. We assume all player clocks differ by at most a
constant at all times. As noted by Pass and Shi [23], the clock offset can be gener-
ically transformed into a network delay. Therefore, without loss of generality, we
will consider players to have synchronized clocks.

Network Delivery. The adversary is responsible for delivering messages between
players. We assume that all messages sent by honest players are received by all
awake honest players within Δ time steps, but that the adversary may otherwise
delay or reorder messages arbitrarily. It must be emphasized that the adversary
can exactly control the precise time that an honest player receives a message.

Sleeping players do not receive messages until they wake, whereupon they
receive all messages they would have received had they not slept. Note that this
may include a polynomial number of adversarially inserted messages, and the
ordering of all messages received upon waking may be adversarially chosen.

72 V. Goyal et al.

Corruption Model. Corrupt parties may deviate arbitrarily from protocol (i.e.
exhibit Byzantine faults), and are controlled by a probabilistic polynomial time
adversary which can see the internal state of corrupt players. At any time, the
adversary may instantly corrupt an honest party or cause them to sleep until a
future time. However, the adversary is not capable of seeing a message, corrupt-
ing the sending party, then erasing the message from the network.

At any time, the adversary may spawn new corrupt users (distinct from
parties, which represent a unit of stake). This does not increase the amount of
adversarially owned stake in the system.

Secure Bootstrapping Assumption. As noted by Bentov, Pass, and Shi [5,23],
in this model it is impossible to achieve a secure blockchain protocol using only
common knowledge of the initial committee. Therefore we assume a trusted boot-
strapping procedure, as Sleepy Consensus [23] and Snow White [5] do. Future
work may be able to sidestep the impossibility result using a similar modification
to the execution model as Ouroboros Genesis [3].

4.2 Tools

Verifiable Random Functions. A Verifiable Random Function (VRF) [19] takes
in a secret key ski and a seed s, and returns a random number in the range along
with a proof. Anyone who knows the public key pki associated with ski can verify
that V RF (ski, s) was computed correctly, but cannot compute V RF (ski, s′)
themselves without knowing ski. Due to the complexity of instantiating VRFs
when players may choose their own seeds, we model them as random oracles,
and direct readers to [7] for a more in-depth treatment of the subject.

Byzantine Agreement. The standard definition of Byzantine Agreement [25] is
given below. We say a party is honest if they behave according to the protocol
specification throughout its entire execution.

Definition 1. A protocol P achieves Byzantine Agreement with soundness
s if, in an execution of P, every honest player j halts with probability 1 and the
following two properties both hold with probability ≥ s:

1. Agreement: All honest parties output the same value.
2. Consistency: If all honest players input the same value v, then all honest

players output v.

If parties input values in {0, 1}, we say it achieves binary Byzantine Agreement.

Player Replaceability. The idea of player replaceability was introduced by Chen
and Micali [6] as a means of preventing targeted attacks on committee members
from disrupting Algorand’s binary Byzantine Agreement protocol. Consider a
protocol executing over a very large set of players where a small subset of players
(the committee) is chosen to carry out the r’th round of a Byzantine Agreement
protocol. Informally, a Byzantine Agreement protocol is player replaceable if the

Instant Block Confirmation in the Sleepy Model 73

protocol still achieves agreement and consistency, despite the following condi-
tions: after each round the old committee may be immediately corrupted and a
new committee is selected to carry out round r + 1.

Graded Broadcast. Graded broadcast was introduced in [12], and informally
allows parties to receive a message from a dealer and express how confident they
are that all other parties received the same message.

Definition 2. A protocol achieves Graded Broadcast if, in an execution where
the dealer D holds value vD, every player i outputs (gi, vi) where gi ∈ {0, 1, 2}
such that:

1. If D is honest, then every honest player outputs (2, vD).
2. For any honest parties i and j, |gi − gj | ≤ 1.
3. For any honest parties i and j, if gi > 0 and gj > 0, then vi = vj.

We say a protocol achieves {0, 1}-graded broadcast [20] if gi takes values in
{0, 1}, property 3 holds (2 holds trivially), and if players output (1, vD) when D
is honest. For simplicity, in a {0, 1}-graded broadcast, we say a party accepts a
value if it has grade 1, and rejects a value if it has grade 0.

Graded Consensus. For the reduction of multivalued Byzantine Agreement to
binary Byzantine Agreement, we will additionally need the notion of Graded
Consensus [6,7], which is a relaxation of consensus, and extends the concept of
graded broadcast [12].

Definition 3. A protocol P achieves Graded Consensus if, in an execution
of P where every player i inputs v′

i, every player i outputs a grade gi and a value
vi such that:

1. For any honest players i and j, |gi − gj | ≤ 1
2. For any honest players i and j, if gi > 0 and gj > 0, then gi = gj
3. If there exists a value v such that v′

i = v for all honest players i, then vi = v
and gi = 2 for all honest players i.

4.3 Other Notation

Additionally, we will use the following pieces of notation which have not been
covered so far:

– H represents the set of all honest parties.
– Vi represents participant i’s current view of the committee
– N denotes the total amount of online stake at any time in a blockchain.

Proof of Stake Abstraction. In a proof of stake blockchain, users are granted
voting power proportional to how much currency they own in the blockchain.
Hence, we consider each unit of currency to be a party. Users owning multiple
units of currency act as multiple parties.

74 V. Goyal et al.

5 The Blockchain Protocol

We will make use of Algorand’s leader election (Algorithm 1) in several of our
protocols. The following claim is modified from [6,7] to reflect our treatment of
VRFs as random oracles and its usage in the sleepy model.

Proposition 1 [6,7,14]. At the end of Algorithm 1, if the adversary owns less
than 1

2 the online stake, then with probability > 1
2 , all honest parties output the

same message m, which was input by an honest party.

Proof. If an online honest party has the highest VRF for round r and inputs m,
all honest parties output m. Since we model VRFs as random oracles and the
adversary owns less than 1

2 of the online stake, this occurs with probability > 1
2 .

5.1 Committee Selection

The committee view formation algorithm needs to fulfill two different goals.
First, views must be majority honest, motivating a uniformly random selection
process with proportion to the amount of money (or stake) each user owns.
As in Algorand, users may be selected multiple times for the same committee
view, so long as they own enough stake. Second, the resulting committee views
must be similar enough that our binary Byzantine Agreement protocol will work.
Informally, for Byzantine Agreement to work, we need to ensure than any two
Vi, Vj overlap on more than half their respective views. The concrete properties
we achieve are actually stronger than this, and are described in Lemma 1.

Strawman: Committee Discovery. Starting with the base idea of forming a tem-
porary committee consisting of the n highest VRFs seen, a natural first approach
is to attempt to discover the temporary committee members which other honest
players have selected and take the most commonly selected parties as your final
committee, similar to the participant discovery idea from [1,2]. Intuitively, since
each honest temporary view is likely to be majority honest, parties selected by
many parties in your temporary view are likely to both be honest and appear
in many other honest views. Similarly, parties which are selected by only a few
parties in your temporary view are liable to either appear in very few honest
views globally, or to have been nominated by dishonest parties. Concretely:

1. All parties send their VRF for the round. Each party i takes the owners of
the highest n VRFs received to be its temporary committee V ∗

i .

Algorithm 1: Leader Election [6,7,14]
Input: message m′

i

1) Propagate V RF (i, r), sigi(m
′
i)

2) Set mi ← m′
j such that sigj(m

′
j) was received and V RF (j, r) was the

highest VRF seen
Output: mi

Instant Block Confirmation in the Sleepy Model 75

Algorithm 2: Committee Selection
Input: mi, committee size n, round r

1) Propagate V RF (i, r), sigi(mi, r)
2) Set V ∗

i = {j : V RF (j, r) was one of the highest n valid VRFs received during
step 1}.
Propagate V RF (j, r), sigj(mj , r) for each j ∈ V ∗

i

3) Let VU,i = {j : V RF (j, r) was one of the highest n valid VRFs received
during step 2.}
Set Vi = V ∗

i ∩ VU,i.
Set messages = {(j, mj , sigj(mj)) : j ∈ Vi and sigj(mj , r) was received}

Output: Vi, messages

2. All parties propagate their temporary committees. Each party i takes its final
committee to be Vi = {j : j ∈ V ∗

k for more than n
2 parties k ∈ V ∗

i }.

At the surface level, this seems quite promising - since temporary committees
were selected randomly, each temporary committee is highly likely to be over
half honest. Any party seen by the honest portion of your temporary committee
will end up in your final committee, and the adversary can’t add parties your
final view which were not seen by at least one honest party, since that would
require > n

2 corrupt parties to appear in your temporary committee.

Preventing Majority-Corrupt Committees. Unfortunately, this strategy is not
quite as successful at keeping corrupt parties out of your final committee as
it might seem. The core issue is that while no single honest party sees many
corrupted parties in its temporary committee, different honest parties may see
different corrupted parties, and the adversary may use corrupted votes to reach
the threshold for acceptance. See the full version for a concrete example of the
issue.

The key insight to ensuring honest parties end up with committees which are
very similar, but don’t include too many corrupted parties, is to only remove
parties from your temporary committee, rather than allowing them to be added
(in the example, adding parties resulted in a majority corrupt committee!).

Generally, we will assume that the committee size n is much smaller than
the amount of online stake N at any time.

Lemma 1. At the end of protocol 2, if the adversary controls ≤ 1
2 − ε fraction

of the online stake, then with probability ≈1 − (
1 − 4ε2

)n/2 the following holds:

1.
∣
∣
∣
∣

⋃

i∈H

Vi

∣
∣
∣
∣ ≤ n

2. ∃ set of honest parties HC such that |HC | ≥ n
2 and HC ⊆ Vi ∀i ∈ H.

Proof (Sketch). Property 1 relies on the fact that every honest player sees every
honest temporary committee V ∗

i . This means that every honest player will

76 V. Goyal et al.

remove at least every VRF in
⋃

i∈H V ∗
i beyond the first n. However, they never

add additional parties to their view.
For the second property, consider the list of all VRFs of online parties for

the round, regardless of what messages they send. Define HC to be the set of
honest parties whose VRF is among the highest n in this list. These will appear
in all honest temporary views, and cannot be removed, since there are simply
not enough higher VRFs among the online parties.

The size of this set then follows by upper bounding the number of corrupt
parties among the highest n VRFs in the complete list. Since there are many
more than n online parties, we can approximate this with Bin(n, 1

2 −ε). A bound
by Hoeffding [15] upper bounds the probability that this number is ≥ n

2 .

It is worth noting that the honest core HC is unknown, though it is guar-
anteed to exist. We do not know how to find it, but as we will show, it is not
necessary to know HC in order to use it; it is sufficient that it simply exists.

See the full version for a discussion of the committee size requirements using
our committee election process.

5.2 Binary Byzantine Agreement

In this section, we discuss the importance of completing the Byzantine agreement
protocol in the same step, as well as why that is difficult to achieve adaptively
in the sleepy model. Then, we show that both the binary Byzantine Agreement
protocol of Micali and Vaikuntanathan [20] and the {0, 1} Graded Broadcast
protocol used in it still work with our committee selection procedure, despite
being designed for the scenario where all honest parties agree on the committee.

Observe that if players were to complete the Byzantine agreement protocol
in different steps, then they would begin to do different steps of the overlying
blockchain protocol, with some parties operating “in the future”. Though we can
easily prevent messages sent for different steps of the protocol interfering with
each other, it is not so simple for a party lagging behind to “catch up”, nor is it
easy to convince a party speeding ahead to let the others catch up. Furthermore,
splitting the parties like this opens opportunities for the adversary, who may be
able to achieve majority online stake in the “future”, where only some honest
parties are currently operating, despite having minority online stake overall.

Algorand avoids this issue by relying on the fact that if one party accepts
a message from a committee member, all other players will also accept that
message (as being from a committee member) if they receive it. Thus, a player
who sees messages causing them to halt early can ensure that all other players
halt early as well by simply propagating those messages.

This strategy does not work under our committee selection, since it is not
the case that if i accepts k as a committee member, j will too after learning
about k. For instance, if k were corrupt, then during a Committee Selection
execution (Algorithm 2) it is easy for k to appear in V ∗

i but not V ∗
j by simply

not sending a message to j by the deadline, resulting in k never appearing in Vj .
Furthermore, it is extremely important to not expand Vj based on other party’s

Instant Block Confirmation in the Sleepy Model 77

views, since corrupt parties may claim an arbitrarily corrupt view. Thus, we will
use the strategy presented in [20], which ensures all parties exit the Byzantine
Agreement execution at the same time

To achieve resilience against slightly less than half of any committee view
being corrupted, we will need a protocol similar to Graded Broadcast. The only
difference in our requirements is in property 1: instead of each i ∈ H being
required to output (1,mD) when D is honest, i is only required to do so when
D ∈ HC . Algorithm 3 describes a parallel version of this, modified from [20].

Proposition 2. If at all times, |Vi| ≤ n for honest i and there exists a set of
honest players HC of size > n

2 common to all honest views, then Algorithm 3
achieves the following properties:

1. If D ∈ HC,1 and sends mD, then i accepts mD from D.
2. If honest parties i, j accept mD,m′

D, respectively, from D, then mD = m′
D.

Proof (Sketch). If D ∈ HC,1, then all members of HC,2 receive and forward
sigD(mD). Each honest player therefore receives this from > n

2 sources, and do
not ever receive sigD(m′

D) for mD 	= m′
D.

If i ∈ H accepts a message, then one of the sources they received it from
in step 2 was a member of HC,2, so all other parties also receive the message i
accepts. This means that no j ∈ H will accept a different message.

Proposition 3. If |Vi

⋃
Vj | ≤ n for all honest parties i, j during an execution

of Algorithm 4, then an honest party cannot follow substep (a) in the same step
an honest party follows substep (b).

Proof (Sketch). This would require i and j to see more unique votes combined
than exist in the union of their views.

Proposition 4. If Vi contains at least n
2 +1 honest parties and no more than n

parties total during an execution of Algorithm 4, then if at some step all honest
parties agree on a bit b, all honest parties continue to agree on the same bit b.

Proof. By Proposition 2 every honest party i accepts at least n
2 + 1 votes for b

from the honest parties in their view and no more than n − (n2 + 1) votes for
1 − b. Therefore i sets vi = b at the end of the step.

Algorithm 3: {0, 1} Graded Broadcast [20]
Input: v′

i, n, round r
1) Vi,1, ms1 ←Committee Selection(v′

i, n, r)
2) Vi,2, ms2 ←Committee Selection(ms1, n, r)
3) For each k ∈ Vi,1, accept mk if sigk(mk) was received from > n

2
members of

Vi,2 and no other sigk(m
′
k) was received.

Output: Accepted Messages, Vi,1

78 V. Goyal et al.

Algorithm 4: Byzantine Agreement [20]
Input: vi, n

for i ← 0 to k do
1) Set mc = Leader Election(b ←Uniform({0, 1}))
2) {0,1}-Graded Broadcast(vi)

a) if If #(0) accepted > n
2
then set vi = 0 b) else if If #(1)

accepted > n
2
then set vi = 1 c) else set vi = mc

Output: vi

Proposition 5. If |Vi

⋃
Vj | ≤ n for all honest parties i, j and Vi contains at

least n
2+1 honest parties during an execution of Algorithm 4, then with probability

at least 1
4 , at the end of step 2 all honest parties are in agreement.

Proof (Sketch). If an honest party sets vi = b, then all others either set b or set
mc, which matches b with probability 1

2 and is agreed upon with probability 1
2 .

Lemma 2 If the following properties hold, then Algorithm 4 achieves binary
Byzantine Agreement with soundness > 1 − 3

4

k.

1. |Vi

⋃
Vj | ≤ n for all honest parties i, j.

2. ∃ a set of honest players HC of size > n
2 such that HC ⊆ Vi ∀i ∈ H.

Proof. Consistency follows immediately from Proposition 4.
By Proposition 4, agreement will hold at the end of an execution of Algorithm

4 if it holds at the start of any step. By Proposition 5, the probability that this
does not occur during any of the k steps is < 3

4

k.

5.3 Block Proposal

In the binary Byzantine Agreement protocol, parties decide whether or not to
add a particular block to the chain. To extend this to deciding which block to
add to the chain, if any, parties will first attempt to decide a block to vote
on during the binary Byzantine Agreement execution. Intuitively, if one honest
party i believes the vote is about whether or not to add a block B to the chain,
and another honest party j believes the vote is about whether or not to add a
different block B′ to the chain, then the outcome of the vote should be that no
block is added - otherwise, i will add B and j will add B′!

To ensure a nonempty block is only added when all honest parties agree on it,
Algorand uses a Graded Consensus protocol before running the binary Byzantine
Agreement protocol. Roughly, this ensures that honest parties will decide to add
a nonempty block B as a result of the binary Byzantine Agreement execution
only if some honest party knows that all honest parties think the vote is about
whether or not to add B.

We will show that the graded consensus algorithm from [20] surprisingly still
works with the notion of “close enough” committees achieved by Algorithm 2

Instant Block Confirmation in the Sleepy Model 79

(laid out in Lemma 1). The only modification necessary is the threshold required
for a set of signatures to be consistent, since local views of the committee may be
different sizes. Algorithm 5 describes the modified graded consensus algorithm.

Algorithm 5: Graded Consensus
Input: v′

i, n
1) messages1, Vi,1 ← {0,1}-Graded Broadcast
2) mi,2 ← ⊥

if accepted > n
2

signatures for v′ in step 1 then
mi,2 ← sigi(v

′, 2)
messages2, Vi,2 ← {0,1}-Graded Broadcast(mi,2)

3) mi,3 ← ⊥
if > n

2
+ 1 signatures sigj(v

′′, 2), for j ∈ Vi2 then
mi,3 ← sigi({sigj(v

′′, 2) : sigj(v
′′, 2) was accepted from j ∈ Vi,2})

messages2, Vi,3 ← {0,1}-Graded Broadcast(mi,3)
4) A signature set is consistent if it contains > |Vi,2| − n

2
signatures from

members of Vi,2.
if > n

2
consistent signatures sets for (v′′′, 2) were accepted in step 3 then

Output (2, v′′′)
else if ≥ 1 consistent signature sets for (v′′′, 2) was accepted in step 3
then

Output (1, v′′′)
else

Output (0, ⊥)
Output: (gi, vi)

Proposition 6. If each view change satisfies |Vi

⋃
Vj | ≤ n and there exists a

set of honest parties HC such that |HC | > n
2 and HC ⊆ Vi for any honest players

i, j then Algorithm 5 achieves graded consensus.

Proof (Sketch). For the first property, if gi = 2 for an honest player i, then i
receives more consistent sets of signatures in step 3 than half its view. One of
these must have been from a member of HC,3, so all honest parties also receive a
set. Since two honest views cannot contain more than n unique parties in their
union, all honest parties consider this set consistent.

The second property starts with the observation that if no honest party signs
(v, 2) in step 2, then no honest party receives a consistent signature set for (v, 2)
in step 4, preventing them from outputting v with a non-zero grade. This follows
from honest views containing only |V2,i|−|HC | corrupted parties. Then, we show
that two different values will not be signed by honest parties in step 2, since this
would require two honest parties to accept more unique messages in step 1 than
exist in the union of their views.

The third property uses the fact that all honest parties accept all messages
from members of HC1 during the {0,1} graded broadcast, so each these messages

80 V. Goyal et al.

are signed by members of HC,2 in step 2. This causes every honest party to send
its own set, and honest signature sets are consistent for every honest party,
leading to an output grade of 2 for v.

To propose a block, every player will begin by creating a candidate block and
broadcasting it alongside a VRF and a short description of the block, such as its
hash. The block and its description will be propagated separately, so as to allow
fast propagation of the description, which is much shorter than the block itself.

After waiting for the network delay to complete, all players will begin Graded
Consensus (Algorithm 5) using the block description with the highest associated
VRF seen as their input. Finally, the block voted on during Byzantine Agreement
will be the value output from Algorithm 5. This is summarized in Algorithm 6.

5.4 Putting It All Together

In this section, we describe how our modifications fit into Algorand as a whole
and present our final result.

Our final protocol takes the following parameters, which must be common
to all honest players.

– n: the committee size
– k: the number of iterations for the binary Byzantine Agreement
– ΔN : the network delay

Note that a good parameter choice for n can be determined given a desired
safety parameter and an assumed maximum fraction of online stake controlled
by the adversary (12 − ε). For this reason, the safety parameter and ε may be
consider to be parameters in place of the committee size n.

It is also worth noting that the parameter n provides explicit bounds on the
committee size, independent of the amount of online stake2 and in contrast to
Algorand, where it is only an expected committee size. By Lemma 1, every honest
committee view will have size at least n

2 + 1, but no more than n, regardless of
the amount of online stake. In contrast, committee sizes in Algorand may vary
drastically if the amount of online stake is over or underestimated.

Theorem 2. If less than half of all online stake is adversarially owned and all
honest parties input the same parameters to an execution of Algorithm 6, the
following properties hold:

1. With overwhelming probability, all honest players output the same block B.
2. With probability > 1

2 , B is not empty (i.e. contains transactions).

Proof (Sketch). The first property holds when all honest players output 0 in the
Byzantine Agreement protocol, or if all honest players output 1 in the Byzantine
Agreement protocol and the same block in the Graded Consensus protocol. With

2 Ignoring the possibility of less than n units of stake being online at all, which we
consider to be an extreme corner case.

Instant Block Confirmation in the Sleepy Model 81

Algorithm 6: Next Block
Input: committee size n, Byzantine Agreement iterations k, network delay

ΔN , current log L
// During every subroutine, wait for ΔN time between steps

1) Wait for ΔN time to receive transactions.

Construct a block B
(3)
i from the transactions received.

2) B′′
i ← Leader Election(B

(3)
i)

3) (gi, B
′
i) ← Graded Consensus(B′′

i)
During the Graded Consensus execution, ignore invalid blocks.
if gi = 2 then v′

i ← 1 else v′
i ← 0

4) vi ← Byzantine Agreement(v′
i)

if vi = 1 then Bi ← B′
i else Bi ← empty block

Output: Bi

probability
(

3
4

k + 2k
(
1 − 4ε2

)n/2) and 6
(
1 − 4ε2

)n/2 respectively, these cases
do not occur, and we can apply a union bound.

Wheneveran honest leader is elected, they propose a non-empty block and
that block is unanimously chosen by honest parties. An honest leader is elected
with probability 1

2 .

References

1. Alchieri, E.A.P., Bessani, A., Greve, F., da Silva Fraga, J.: Knowledge connectivity
requirements for solving byzantine consensus with unknown participants. IEEE
Trans. Dependable Secure Comput. 15(2), 246–259 (2018)

2. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus
with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-92221-6 4

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros gene-
sis: composable proof-of-stake blockchains with dynamic availability. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 913–930. ACM (2018). https://doi.org/10.1145/
3243734.3243848

4. Bagaria, V.K., Kannan, S., Tse, D., Fanti, G.C., Viswanath, P.: Prism: Decon-
structing the blockchain to approach physical limits. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, 11–15 November
2019, pp. 585–602. ACM (2019). https://doi.org/10.1145/3319535.3363213

5. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR
Cryptol. ePrint Arch. 2016, 919 (2016). http://eprint.iacr.org/2016/919

6. Chen, J., Micali, S.: Algorand (2016)
7. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.

Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001

https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1007/978-3-540-92221-6_4
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3319535.3363213
http://eprint.iacr.org/2016/919
https://doi.org/10.1016/j.tcs.2019.02.001

82 V. Goyal et al.

8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

9. Dolev, D., et al.: The byzantine generals strike again. J. Algorithms 3(1), 14–30
(1982)

10. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

11. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)

12. Feldman, P., Micali, S.: An optimal probabilistic algorithm for synchronous Byzan-
tine agreement. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.)
ICALP 1989. LNCS, vol. 372, pp. 341–378. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0035770

13. Fitzi, M., Gazi, P., Kiayias, A., Russell, A.: Parallel chains: improving throughput
and latency of blockchain protocols via parallel composition. IACR Cryptol. ePrint
Arch. 2018, 1119 (2018). https://eprint.iacr.org/2018/1119

14. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

15. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

16. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 27

17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

18. Micali, S.: Very simple and efficient byzantine agreement. In: Papadimitriou,
C.H. (ed.) 8th Innovations in Theoretical Computer Science Conference, ITCS
2017, LIPIcs, Berkeley, CA, USA, 9–11 January 2017, vol. 67, pp. 6:1–6:1.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.ITCS.2017.6

19. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science (cat. No. 99CB37039), pp. 120–
130. IEEE (1999)

20. Micali, S., Vaikuntanathan, V.: Optimal and player-replaceable consensus with an
honest majority. Technical Reportt MIT-CSAIL-TR-2017-004 (2017). http://hdl.
handle.net/1721.1/107927

21. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
22. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.

In: Richa, A.W. (ed.) 31st International Symposium on Distributed Computing
(DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 91, pp.
39:1–39:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2017). https://doi.org/10.4230/LIPIcs.DISC.2017.39, http://drops.dagstuhl.de/
opus/volltexte/2017/8004

23. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/BFb0035770
https://doi.org/10.1007/BFb0035770
https://eprint.iacr.org/2018/1119
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
http://hdl.handle.net/1721.1/107927
http://hdl.handle.net/1721.1/107927
https://doi.org/10.4230/LIPIcs.DISC.2017.39
http://drops.dagstuhl.de/opus/volltexte/2017/8004
http://drops.dagstuhl.de/opus/volltexte/2017/8004
https://doi.org/10.1007/978-3-319-70697-9_14

Instant Block Confirmation in the Sleepy Model 83

24. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

25. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM (JACM) 27(2), 228–234 (1980)

26. Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued
byzantine agreement. Inf. Process. Lett. 18(2), 73–76 (1984)

https://doi.org/10.1007/978-3-319-78375-8_1

Blockchain CAP Theorem Allows
User-Dependent Adaptivity and Finality

Suryanarayana Sankagiri1(B), Xuechao Wang1, Sreeram Kannan2,
and Pramod Viswanath1

1 University of Illinois, Urbana-Champaign, IL 61801, USA
ss19@illinois.edu

2 University of Washington at Seattle, Seattle, WA, USA

Abstract. Longest-chain blockchain protocols, such as Bitcoin, guar-
antee liveness even when the number of actively participating users is
variable, i.e., they are adaptive. However, they are not safe under net-
work partitions, i.e., they do not guarantee finality. On the other hand,
classical blockchain protocols, like PBFT, achieve finality but not adap-
tivity. Indeed, the CAP theorem in the context of blockchains asserts
that no protocol can simultaneously offer both adaptivity and finality.
We propose a new blockchain protocol, called the checkpointed longest
chain, that offers individual users the choice between finality and adap-
tivity instead of imposing it at a system-wide level. This protocol’s salient
feature is that it supports two distinct confirmation rules: one that guar-
antees adaptivity and the other finality. The more optimistic adaptive
rule always confirms blocks that are marked as finalized by the more
conservative rule, and may possibly confirm more blocks during variable
participation levels. Clients (users) make a local choice between the con-
firmation rules as per their personal preference, while miners follow a
fixed block proposal rule that is consistent with both confirmation rules.
The proposed protocol has the additional benefit of intrinsic validity: the
finalized blocks always lie on a single blockchain, and therefore miners
can attest to the validity of transactions while proposing blocks. Our
protocol builds on the notion of a finality gadget, a popular technique
for adding finality to longest-chain protocols.

1 Introduction

The longest-chain protocol, introduced by Nakamoto in Bitcoin [18], is the pro-
totypical example of a blockchain protocol that operates in a permissionless
setting. Put differently, the longest-chain protocol is adaptive: it remain safe and
live irrespective of the number of active participants (nodes) in the system, as
long as the fraction of adversarial nodes among the active ones is less than a
half. Adaptivity (also known as dynamic availability) is a desirable property in
a highly decentralized system such as a cryptocurrency. The downside of this
protocol is that they are insecure during prolonged periods of network partition

S. Sankagiri and X. Wang—Equal contribution.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 84–103, 2021.
https://doi.org/10.1007/978-3-662-64331-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_5&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_5

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 85

(asynchrony). This is unavoidable; miners in disconnected portions of the net-
work keep extending their blockchains separately, unaware of the other chains.
When synchrony resumes, one of the chains wins, which implies that blocks on
the other chains get unconfirmed. These features are present not just in the
longest-chain protocol, but also in other protocols that are derived from it, e.g.,
Prism [1].

In stark contrast, committee-based consensus protocols like PBFT [4] and
Hotstuff [25] offer strong finality guarantees. These protocols remain safe even
during periods of asynchrony, and regain liveness when synchrony resumes. Final-
ity is also a desirable property for blockchains, as they may operate under con-
ditions where synchrony cannot be guaranteed at all times. However, all finality-
guaranteeing protocols come with a caveat: they are built for the permissioned
setting. These protocols make progress only when enough number of votes have
been accrued for each block. If a significant fraction of nodes become inactive (go
offline), the protocol stalls completely. This prevents them from being adaptive.

We posit that the two disparate class of protocols is a consequence of the
CAP theorem, a famous impossibility result in distributed systems. The theorem
states that in the presence of a network partition, a distributed system cannot
guarantee both consistency (safety) and availability (liveness) [13,14]. The the-
orem has led to a classification of system designs, on the basis of whether they
favor liveness or safety during network partitions. Blockchains, being distributed
systems, inherit the trade-offs implicated by the CAP theorem. In particular, we
see that the longest-chain class of protocols favor liveness while the committee-
based protocols favor safety.

Recently, Lewis-Pye and Roughgarden [16] prove a CAP theorem for
blockchains that highlights the adaptivity-finality trade-off explicitly. They show
that “a fundamental dichotomy holds between protocols (such as Bitcoin) that
are adaptive, in the sense that they can function given unpredictable levels of
participation, and protocols (such as Algorand) that have certain finality prop-
erties”. The essence of this impossibility result is the following: it is difficult to
distinguish network asynchrony from a reduced number of participants in the
blockchain system. Therefore, a protocol is bound to behave similarly under
both these conditions. In particular, adaptive protocols must continue to extend
blockchains during asynchrony (thereby compromising finality), while finality-
guaranteeing protocols must stall under reduced participation (which means they
cannot have adaptivity).

In this paper, we investigate whether the aforementioned trade-off between
adaptivity and finality can be resolved at a user level, rather than at a system-
wide level. In particular, we seek to build a blockchain system wherein all (hon-
est) nodes follow a common block proposing mechanism, but different nodes can
choose between two different confirmation rules. Under appropriate bounds on
adversarial participation, one rule must guarantee adaptivity, while the other
must guarantee finality. When the system is operating under desirable condi-
tions, i.e., a large enough fraction of nodes are active and the network is syn-
chronous, the blocks confirmed by both rules must coincide. Protocols with such

86 S. Sankagiri et al.

a dual-confirmation rule (aka dual-ledger) design are termed as “Ebb-and-flow”
protocols in [19]. Such a design would be of interest in blockchains for many rea-
sons. For example, for low-value transactions such as buying a coffee, a node may
prefer liveness over safety, whereas for high-value transactions, it is natural to
choose safety over liveness. Moreover, such a trade-off allows each node to make
their own assumptions about the state of the network and choose a confirmation
rule appropriately.

At a high level, we are inspired in our formulation from analogous designs to
adapt the CAP theorem in practical distributed system settings (Sect. 4 of [14]).
More concretely, dual-ledger designs do not fall under the purview of the CAP
theorem of [16]; the formulation assumes a single confirmation rule. A second
motivation is that a variety of finality gadgets (in combination with a blockchain
protocol) may also be viewed as providing a user-dependent dual ledger option.
We elaborate on some recent proposals in [10,15,24] in Sect. 2.

1.1 Our Contributions

Our main contribution is to propose a new protocol, called the checkpointed
longest chain protocol, which offers each node in the same blockchain system a
choice between two different confirmation rules that have different adaptivity-
finality trade-offs.

– Block Proposal. Just as in the longest chain protocol, honest miners build
new blocks by extending the chain that they currently hold. In addition,
some honest users participate in a separate checkpointing protocol, that marks
certain blocks as checkpoints at regular intervals. An honest user adopts the
longest chain that contains the latest checkpoint.

– Confirmation rules. The protocol’s adaptivity-guaranteeing confirmation
rule is simply the k-deep rule. An honest user confirms a block if it sees
k blocks below it, for an appropriate choice of k. The protocol’s finality-
guaranteeing rule is for honest users to treat all blocks in its chain up to the
last checkpointed block as confirmed.

The protocol is designed such that new blocks continue to be mined at increasing
heights even if the participation level is low, but new checkpoints appear only
if there is sufficient participation. This illustrates the adaptivity-guaranteeing
property of the k-deep rule. On the other hand, checkpoints are guaranteed to
be on a single chain irrespective of network conditions, while the longest chain
containing the latest checkpoint may keep alternating between divergent chains.
This implies the finality property of the checkpointing rule.

Below, we highlight the key design principles of our protocol, followed by the
security guarantees.

Validity of Blockchains. Our protocol keeps intact the intrinsic validity of
blockchains. Roughly, validity means that the set of blocks that are confirmed all
lie on a single, monotonically increasing chain. Thus, the validity of a transaction

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 87

can be inferred from just the blockchain leading up to the particular block. More
precisely, an honest user that is constructing the block has the assurance that if
the block is confirmed, all transactions in the block are confirmed, which means
it accrues all the transaction rewards. Moreover, a user can infer that a certain
transaction is confirmed simply by knowing that the transaction was included in
a particular block and that the block was confirmed (as per either rule), without
knowledge of the contents of other blocks. These properties are recognized to
be important for the blockchain to be incentive-compatible and to enable light
clients respectively. Further, validity of blockchains offers spam-resistance and
is compatible with existing sharding designs. Although validity of blockchains is
a common feature of a majority of protocols, recent high performance designs
crucially decouple validation from consensus [1,11]. The Snap-and-Chat design
of [19] for the same problem also does not have this feature.

Fig. 1. The checkpointed longest chain

Interaction Between Checkpointing and Longest Chain Protocol. In
our design, the longest chain rule (i.e., the block proposal rule) and the check-
pointing rule satisfy some constraints with respect to each other. The interlock-
ing structure of constraints between the checkpointing protocol and the longest
chain protocol is illustrated in Fig. 1 and detailed below.

– P1: Consistency with previous checkpoints. The sequence of check-
points must be on a chain. This places a self-consistency condition on the
checkpointing protocol.

– P2: Checkpointed longest chain rule. The longest chain protocol respect
the previous checkpoints. Honest users build adopt the longest chain that
contains the latest checkpoint and mine new blocks at the tip of this chain.

– P3: Checkpoints are deep enough. The checkpointing protocol should
only checkpoint blocks that are sufficiently deep in some honestly held chain.
Furthermore, such a chain should be made available along with the checkpoint
message.

88 S. Sankagiri et al.

All these three conditions are required to achieve our goals. Condition P1
is a requisite for a validity preserving protocol (in particular, a validity preserv-
ing, finality-guaranteeing confirmation rule). The condition P2 says that honest
nodes should adopt the longest checkpointed chain, rather than the longest chain.
Given P1, the condition P2 is required to ensure new checkpoints are produced
after a period of asynchrony. Without this condition P2, the block proposal rule
is simply the longest chain rule. During asynchrony, the longest chain may be
one that does not include some of the checkpoints, and there is no correction
mechanism to ever bring the longest chain downstream of the last checkpoint.
Condition P3 ensures that during synchrony, any block that is eventually check-
pointed would be a part of all honestly held chains. Thus, the dynamics of the
protocol would be as if nodes are simply following the longest chain rule, and
the known security guarantees would apply. If no such condition is placed, the
checkpointing protocol could checkpoint an arbitrary block that possibly forks
from the main chain by a large margin. The rule P2 would force honest nodes
to switch to this fork, thereby violating safety of the k-deep rule.

The Checkpointing Protocol. The checkpointing protocol in our design is
a BFT consensus protocol. It is a slight modification of Algorand BA, that
is presented in [6]. The protocol is extended from a single-iteration byzantine
agreement protocol to a multi-iteration checkpointing protocol. In each itera-
tion, nodes run the checkpointing protocol to checkpoint a new block, and P1
guarantees that the sequence of checkpoints lie on a single chain. Coupled with
the chain adoption rule (longest checkpointed chain), these checkpoints offer
deterministic finality and safety against network partitions.

We state the safety guarantee of the checkpointing protocol as a basic check-
pointing property (CP) as below:

– CP0: Safety. All honest users checkpoint the same block in one iteration of
the checkpointing protocol, even during network partition. This checkpoint
lies on the same chain as all previous checkpoints.

While one might consider different protocols for the checkpointing mecha-
nism, the protocol must further satisfy some key properties during periods of
synchrony.

– CP1: Recency condition. If a new block is checkpointed at some time, it
must have been in a chain held by an honest user at some point in the recent
past.

– CP2: Gap in checkpoints. The interval between successive checkpoints
must be large enough to allow CP1 to hold.

– CP3: Conditional liveness. If all honest nodes hold chains that have a
common prefix (all but the last few blocks are common), then a new check-
point will appear within a certain bounded time (i.e., there is an upper bound
on the interval between two successive checkpoints).

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 89

CP1 helps in bounding the extent to which an honest user may have to
drop honest blocks in its chain when it adopts a new checkpoint. Without this
condition, (i.e., if arbitrarily old checkpoints can be issued), honest users may
have to let go of many honestly mined blocks. This causes a loss in mining
power, which we refer to as bleeding. Our choice of Algorand BA was made
because it has this property. Other natural candidates such as PBFT [4] and
HotStuff [25], do not have this property. We discuss this in detail in Appendix
D of the full paper [23]. CP2 ensures that the loss in honest mining power
due to the above mechanism is limited. This condition can be incorporated by
design. CP3 is a liveness property of the checkpointing protocol. It ensures
new checkpoints appear at frequent intervals, leading to liveness of the finality-
guaranteeing confirmation rule.

Security Guarantees (Informal). We show the following guarantees for
proof-of-work longest chain along with Algorand BA (augmented with the appro-
priate validity condition).

1. The k-deep rule is safe and live if the network is synchronous from the begin-
ning and the fraction of adversaries among online users is less than a half.

2. The checkpointing protocol, which is safe by design, is also live soon after the
network partition is healed under the partially synchronous model.

3. The ledger from the checkpoint rule is a prefix of the ledger from the k-deep
rule from the point of view of any user.

Proof Technique. We prove these security guarantees using the following strat-
egy. First, we show that if all honest users hold chains that obey the k-common
prefix condition for an extended period of time, then new blocks get checkpointed
at regular intervals, and these blocks are part of the common prefix of the hon-
estly held chains. This tells us that under conditions in which the vanilla longest
chain rule is secure, the checkpointed longest chain rule has exactly the same
dynamics. It therefore inherits the same security properties of the longest chain
rule. Secondly, we show that once sufficient time has passed after a network
partition is healed, the chains held by the honest user under the checkpointed
longest chain rule are guaranteed to have the common prefix property. Coupled
with the first result, we infer that new checkpoints will eventually be confirmed
thereby proving liveness of the checkpoint-based confirmation rule under partial
synchrony.

Outline. We review related works in Sect. 2 and place our results in the context
of several recent works on the same topic as this paper. The similarities and
differences in the techniques in our work with closely related works is pictorially
illustrated in Fig. 2. We state our network and security models formally in Sect. 3.
In Sect. 4, we describe the checkpointed longest chain protocol, highlighting the
roles of the miners and precisely stating the two confirmation rules. For clarity,
we describe the checkpointing protocol as a black box with certain properties

90 S. Sankagiri et al.

here; we give the full protocol in Appendix A. We state our main theorem,
concerning the security guarantees of our protocol, in Sect. 5. In the rest of the
section, we give a proof sketch of the theorem. The formal proofs are given in
the full version of our paper [23] in Appendices B and C. We conclude the paper
with a discussion and pointers for future work in Sect. 6.

2 Related Work

CAP Theorem. The formal connection between the CAP theorem to
blockchains is recently made in [16], by providing an abstract framework in
which a wide class of blockchain protocols can be placed, including longest chain
protocols (both Proof-of-Work based [12] and PoS based, e.g., [8]) as well as
BFT-style protocols (e.g., [7]). The main result of [16] says that a protocol (con-
taining a block “encoding” procedure and a block confirmation rule) which is
adaptive (i.e., which remains live in an unsized setting) cannot offer finality
(i.e., deterministic safety, even under arbitrary network conditions) and vice-
versa. However, the same paper is mute on the topic of whether different block
confirmation rules could offer different guarantees, which is the entire focus of
this work. We are inspired in our formulation from analogous designs to adapt
the CAP theorem in practical distributed system settings (Section 4 of [14]).

User-Dependent Confirmation Rules. The idea of giving users the option
of choosing their own confirmation rule, based on their beliefs about the network
conditions and desired security level was pioneered by Nakamoto themself, via
choosing the value of k in the k-deep confirmation rule. A recent work [17] allows
users the option of choosing between partially synchronous confirmation rule and
a synchronous one. However, neither of the confirmation rules are adaptive, as
the block proposal rule itself is a committee-based one and cannot make progress
once the participation is below a required level. Therefore, they do not “break”
the CAP theorem as proposed in [16]. In contrast, our protocol offers users the
choice of an adaptive system.

Hybrid Consensus. Hybrid consensus [21] is a different technique of incorpo-
rating a BFT protocol into the longest-chain protocol. In a nutshell, the idea in
this design is to use the longest-chain protocol to randomly select a committee,
which then executes a BFT protocol to confirm blocks. The committee consists
of the miners of the blocks on the longest chain over a shifting interval of constant
size, and is thus re-elected periodically. Hybrid consensus addresses the problem
of building a responsive protocol (i.e., latency proportional to network delay) in
a PoW setting. It does not, however, address the adaptivity-finality dilemma. In
fact, as we illustrate here, the protocol offers neither adaptivity nor finality. Once
a miner is elected as a committee member, it is obliged to stay active until the
period of its committee is over, which compromises on the adaptivity property.
As for finality, although the blocks are confirmed by a finality-based protocol,
the committee election mechanism compromises the finality guarantee. During

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 91

Fig. 2. Four related works in our framework (counterclockwise): In Ebb-and-Flow [19],
previous checkpoints are not respected by either the longest chain protocol or the check-
pointing protocol. Hence checkpoints may not form a single chain and the final ledger is
constructed by sanitization, which makes it impossible to have validation before block
proposal. Afgjort [10] takes an off-the-shelf longest chain protocol and keeps check-
pointing blocks on it. Due to lack of interaction between the longest chain protocol
and the checkpointing protocol, the protocol may fail in a partially synchronous set-
ting when the security of the blockchain is broken. The Checkpointed Ledger [15] and
GRANDPA [24] are very similar to our design; the difference is that the checkpoints
don’t need to be buried deep enough in the longest chain. This minor change makes
their protocols become insecure under the variable participation setting.

asynchrony, nodes cannot achieve consensus on who belongs to the committee,
and thus the whole protocol loses safety.

Checkpointing is a protocol run on top of the longest chain protocol (run by
largely honest parties) that deterministically marks certain blocks as finalized;
a simple form of checkpointing was pioneered, and maintained until 2014, by
Satoshi Nakamoto (presumably honest). In the context of our work, checkpoint-
ing provides finality (essentially by fiat) while the longest chain rule ensures
adaptivity. We can interpret our paper as an attempt to provide appropriate
conditions on the interaction between the checkpointing and the longest chain
protocol, and also to show how to realize such checkpointing in a distributed
manner. We note that [15] is a recent work that studies the checkpointed ledger
when the longest-chain protocol has super-majority adversaries; this regime is
different from that studied in the present paper, where we assume that the
longest-chain protocol has majority honest and the checkpointing protocol has
2/3 honest users. For completeness, we have included the architecture of check-
pointed ledger in the comparison in Fig. 2.

Casper FFG and Gasper. Casper FFG (Casper: the Friendly Finality Gad-
get), presented in [2], pioneered the study of finality gadgets. Casper FFG also
introduced the notion of “economic security”. The finality gadget allows cryp-
tographic proofs of malicious behavior which can be used to disincentivize such
behavior. We do not explore this aspect of finality gadgets in our paper. Casper
FFG, as presented in [2], is not a completely specified protocol. A recent follow-
up paper called Gasper [3] provides a complete protocol. Gasper can be viewed

92 S. Sankagiri et al.

as a checkpointed longest chain protocol, with the longest chain rule replaced by
the Latest Message Driven Greediest Heaviest Observed Subtree (LMD GHOST)
rule and the checkpointing protocol being Casper FFG. Gasper does not provide
formal security guarantees; in fact, the work by Neu et al. [19] shows a liveness
attack on Gasper.

Afgjort. Afgjort [10] is a recent finality gadget proposed by Dinsdale et al.,
which formally describes the desirable properties that a finality gadget must
have, some of them are similar to the ones we require as well. Afgjort has a two-
layer design: it takes an off-the-shelf longest chain protocol and adds a finality
layer to it. Such a system can work as desired when the network is synchronous,
including when the participation levels are variable. However, it is destined to fail
in one of two ways in a partially synchronous setting: either the finality gadget
stops finalizing new blocks (i.e., violates liveness), or it finalizes “conflicting”
blocks, i.e., blocks in two different chains (i.e., violates validity). Thus Afgjort
does not provide the guarantees we seek in this work. More generally, any layer-
two finality gadget on top of an adaptive protocol would not meet the desired
objectives for the same reason; they would be missing rule P2 (see Fig. 2).

GRANDPA. GRANDPA [24] is another recent finality gadget, proposed by
Stewart et al. Just as in our protocol (and unlike Afgjort), GRANDPA alters
the underlying block production mechanism to respect blocks that has been
finalized by the finality gadget. GRANDPA’s security relies on the assumption
that the block-production mechanism (longest-chain rule/GHOST) provides a
type of “conditional eventual consensus”. I.e., If nodes keep building on the
last finalized block and don’t finalize any new blocks, then eventually they have
consensus on a longer chain. This argument, though presumably true, is not
a rigorous security analysis; in our work, we prove security for a completely
specified model and protocol.

More importantly, comparing Figs. 1 and 2, we see that GRANDPA does not
have property P3. This leads to a security vulnerability in the variable partic-
ipation setting. The issue arises due to the following subtlety: in the variable
participation setting, a particular block could be ‘locked’ onto by the check-
pointing protocol, but could be checkpointed much later (this does not happen
under full participation). A block at the tip of the longest chain could soon be
displaced from it by the adversary. If this block is locked while it is on the chain,
but checkpointed only when it is out of the chain, the safety of the k-deep rule
will be violated. A more detailed description of this attack is given in Appendix
D of the full version of our paper [23].

Snap-and-Chat Protocols. A concurrent work by Neu et al. [19] also solves
the adaptivity vs finality dilemma posed by the CAP theorem. (Their work
appeared online a few weeks prior to ours). They introduce a technique, called
Snap-and-Chat, to combine a longest chain protocol with any BFT-style one
to obtain a protocol that has the properties we desire. More specifically, their
protocol produces two different ledgers (ordered list of transactions), one that
offers adaptivity and the other that offers finality. A user can choose to pick

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 93

either one, depending on its belief about the network condition. These ledgers
are proven to be consistent with each other (the finality guaranteeing ledger is a
prefix of the adaptive one). While the outcomes of the design of [19] are analogous
to ours, the approach adopted and the resulting blockchain protocol are quite
different. A major advantage of the approach of [19] is its generality: unlike
other existing approaches, it offers a blackbox construction and proof which
can be used to combine a variety of adaptive and finality preserving protocols.
However, the design of [19] has an important caveat: the sequence of blocks that
are confirmed in their protocol do not necessarily form a single chain. Indeed,
in the partially synchronous setting, the finality-guaranteeing confirmation rule
can finalize blocks on two different forks one after the other. The design of [19]
overcomes this apparent issue by constructing a ledger after the blocks have been
finalized, and “sanitizing” it at a later step.

The sanitization step implies that not all transactions in a confirmed block
may be part of the ledger: for example, if it is a double spend relative to a
transaction occurring earlier in the ledger, such transaction will be removed.
Put differently, the validity of a particular transaction in a particular block is
decided only once the block is confirmed, and not when the block is proposed.
Most practical blockchain systems are designed with coupled validation, i.e., an
honest block proposer can ensure that blocks contain only valid transactions.
Our approach maintains coupled validity of blockchains and does not have this
shortcoming, as highlighted in Sect. 1.

3 Security Model

Environment. A blockchain protocol Π is directed by an environment Z(1κ),
where κ is the security parameter, i.e., the length of the hash function output.
This environment (i) initiates a set of participating nodes N ; (ii) manages a
public-key infrastructure (PKI) and assigns each node with a unique crypto-
graphic identity; (iii) manages nodes through an adversary A which corrupts a
subset of nodes before the protocol execution starts; (iv) manages all accesses of
each node from/to the environment including broadcasting and receiving mes-
sages.

Network Model. The nodes’ individual timers do not need to be synchronized
or almost synchronized. We only require they have the same speed. In our net-
work, we have a variety of messages, including blocks, votes, etc. The following
message delay bounds apply to all messages. Secondly, all messages sent by hon-
est nodes are broadcast messages. Thirdly, all honest nodes re-broadcast any
message they have heard. The adversary does not suffer any message delay. In
general, we assume that the adversary controls the order of delivery of messages,
but the end-to-end network delay between any two honest nodes is subject to
some further constraints that are specified below. We operate under either one
of the two settings specified below:

94 S. Sankagiri et al.

– M1 (Partial synchrony model): A global stabilization time, GST, is chosen
by the adversary, unknown to the honest nodes and also to the protocol
designer. Before GST, the adversary can delay messages arbitrarily. After
GST, all messages sent between honest nodes are delivered within Δ time.
Moreover, messages sent by honest nodes before GST are also delivered by
GST + Δ.

– M2 (Synchrony model): All messages sent from one honest node to another
are delivered within Δ time.

Participation Model. We introduce the notion of sized/unsized number of
nodes to capture the notion that node network activity (online or offline) varies
over time. It is important to note that we allow for adversarial nodes to go offline
as well. A node can come online and go offline at any time during the protocol.
An online honest node always executes the protocol faithfully. An offline node, be
it honest or adversarial, does not send any messages. Messages that are scheduled
to be delivered during the time when the node is offline are delivered immediately
after the node comes online again. We consider two different scenarios:

– U1 (Sized setting): All nodes stay online at all times.
– U2 (Unsized setting): Nodes can come online and offline at arbitrary times,

at the discretion of the adversary, provided a certain minimal number of nodes
stay online.

Abstract Protocol Model. We describe here our protocol in the abstract
framework that was developed in [16]. In this framework, a blockchain protocol
is specified as a tuple Π = (I,O,C), where I denotes the instruction set, O is
an oracle that abstracts out the leader election process, and C is a confirmation
rule (e.g., the k-deep confirmation rule). The bounds on adversarial ratios are
also specified through O. The rationale for adopting this framework is to point
out precisely how we circumvent the CAP theorem for blockchains, which is the
main result of [16].

The theorem states that no protocol Π = (I,O,C) can simultaneously offer
both finality (safety in the partially synchronous setting) and adaptivity (live-
ness in the unsized setting). Our checkpointed longest chain protocol is a 4-
tuple ΠCLC = (I,O,C1, C2), with two confirmation rules C1 and C2. This entire
protocol can be split at a node level into two protocols: Πfin = (I,O,C1) and
Πada = (I,O,C2). The protocol Πfin guarantees (deterministic) safety and (prob-
abilistic) liveness under network assumption M1 and participation level U1, just
as many BFT-type consensus protocols do. It therefore guarantees finality. Πada

guarantees safety and liveness under network assumption M2 and participation
level U2, just as longest chain protocols do. It thereby guarantees adaptivity.
Finally, both Πfin and Πada are safe and live under conditions M2 and U1;
moreover, the set of blocks confirmed by Πfin at any time is a subset of those
confirmed by Πada. A similar property is proven in [19].

Each node can choose one of the two confirmation rules according to their
demands and assumptions. We specify the exact specifications of I,O,C1 and
C2 and the associated security properties in the next section.

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 95

4 Protocol Description

Nodes in the Protocol. In our protocol, let N denote the set of all participat-
ing nodes. Among these, there are two subsets of participating nodes N1 and N2.
We call nodes in N1 miners, whose role is to propose new blocks. We call nodes
in N2 checkpointers, whose role is to vote for blocks on the blockchains they
currently hold and mark them as checkpoints. Note that we allow for any rela-
tion among these sets, including the possibility that all nodes play both roles
(N1 = N2 = N), or the two kinds of nodes are disjoint (N1 ∩ N2 = φ). The
instruction set I and the oracle O is different for miners and checkpointers, and
is specified below. Note that in the sized/unsized setting, both N1 and N2 are
sized/unsized.

Before we specify the protocol, we introduce some terminology pertaining to
checkpoints. A checkpoint certificate is a set of votes from at least 2/3 of the
checkpointers for a certain block, that certifies that the block is a checkpoint.
When an honest node receives both a checkpoint certificate and a chain that
contains the block being checkpointed, we say that the honest node has heard
of a checkpoint. We say that a checkpoint appears at time t if the t is the first
time that an honest node hears of it.

I for All Nodes. Every honest node holds a single blockchain at all times, which
may be updated upon receiving new messages. They all follow the checkpointed
longest chain rule, which states that a node selects the longest chain that extends
the last checkpointed block it has heard of so far. Ties are broken by the adversary.
To elaborate, a node keeps track of the last checkpoint it has heard of so far.
If a node receives a longer chain that includes the last checkpoint, it adopts
the received new chain. A node ignores all chains which do not contain the last
checkpoint block as per their knowledge.

I,O for Miners. An honest miner adopts the tip of its checkpointed longest
chain as the parent block. The miner forms a new block with a digest of the
parent block and all transactions in its buffer, and broadcasts it when it is
chosen as a leader by the oracle. The oracle O chooses miners as leaders at
random intervals, that can be modeled as a Poisson process with rate λ. This
joint leader election process can be further split into two independent Poisson
processes. Let the fraction of online adversarial miners be β < 1/2. The honest
blocks arrive as a Poisson process of rate (1 − β)λ, while the adversarial blocks
arrive as an independent Poisson process of rate βλ.

I,O for Checkpointers. The checkpointers run a multi-iteration Byzantine
Agreement (BA) protocol ΠBA to checkpoint blocks, with each iteration check-
pointing one block. Our protocol is a slight variant of the Algorand BA protocol
from [6]. The complete protocol is described in Appendix A with a minor mod-
ification from Algorand, which is highlighted in red. This modification is made
so as to enable a consistency check across iterations without losing liveness (i.e.,
to get a multi-iteration BA from a single iteration one).

96 S. Sankagiri et al.

Briefly, the protocol works as follows. Each iteration is split into periods.
Each period has a unique leader chosen by the oracle. Nominally, the values on
which consensus is to be achieved amongst all checkpointers are the blockchains
held by the checkpointers. In practice, the values may be the hashes of the
last block of the blockchain. A key difference from the Algorand protocol is
that we allow the checkpointers to change their values at the beginning of each
period. The checkpointers aim to achieve consensus amongst these values. The
final chain that has been agreed upon is broadcast to all honest nodes (not
just checkpointers) together with a certificate. The block that is exactly k-deep
in this chain is chosen as the checkpoint block in current iteration. Here, k is
a parameter of the protocol ΠCLC, and is chosen to be Θ(κ). We call it the
checkpoint depth parameter.

Confirmation Rules. We propose the following two confirmation rules for
ΠCLC, which have different security guarantees under different assumptions.
Either rule can be adopted by any node in the protocol

– C1: Confirm the chain up to the last known checkpoint.
– C2: Confirm all but the last k′ blocks in the checkpointed longest chain, i.e.,

in the chain that is currently held, where k′ = Θ(κ)

Note that every honest node may choose any value of k′ that they wish.

Intuition Behind the Checkpointing Protocol. The checkpointing proto-
col is designed such that under optimistic conditions, a checkpoint is achieved
within one period. These optimistic conditions are that the leader of a period is
honest, the network is synchronous, and all chains held by honest checkpointers
satisfy the common prefix property. The sequence of leaders for this protocol is
guaranteed to be chosen in an i.i.d. fashion amongst online checkpointers by the
oracle O. We assume that the fraction of adversarial checkpointers is β′ < 1/3.
Thus, the probability of selecting an adversarial leader at any round is < 1/3.

We now state some key properties of the checkpointing protocol. These prop-
erties, CP0, CP1, CP2, CP3 were introduced in Sect. 1 and are elaborated
upon below.

– CP0: Safety. All honest nodes checkpoint the same block in one iteration of
the checkpointing protocol, even during network partition. This checkpoint
lies on the same chain as all previous checkpoints. This is a safety property of
the checkpointing protocol, which will be essential in guaranteeing the safety
of Πfin.

– CP1: Recency condition. If a new block is checkpointed at some time t
by an honest node for the first time, it must have been in a chain held by an
honest node at some time t′ ≥ t − d. Here, d is the recency parameter of the
protocol, and is of the order O(

√
κΔ).

– CP2: Gap in checkpoints. If a new block is checkpointed at some time t by
an honest node for the first time, then the next iteration of the checkpointing

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 97

protocol (to decide the next checkpoint) will begin at time t + e. Here, e is
the inter-checkpoint interval and is chosen such that e � d.

– CP3: Conditional liveness. If all honest nodes hold chains that are self-
consistent (they satisfy k-common prefix property), during an iteration of
the checkpointing protocol, then the checkpointing protocol finishes within
O(Δ) time. Thus, in a period where all honest nodes hold chains that are
self-consistent, checkpoints appear within e + O(Δ) time of each other.

In Appendix B of the full version [23], we prove that the checkpointing pro-
tocol we use (modified Algorand BA) satisfies these properties. As such, any
protocol that satisfies CP0–CP3 can be used in our design.

5 Main Result

To state the main security result of our protocol, recall the notations set in
Sect. 3. The complete protocol is denoted by ΠCLC = (I,O,C1, C2) and its
two user-dependent variations are Πfin = (I,O,C1) and Πada = (I,O,C2). We
also recall the notation M1,M2 for the partially synchronous and synchronous
network model, and U1, U2 for the sized and unsized participation models.
Clearly, M1 is a more general setting than M2 and U2 is a more general setting
than U1. In Theorem 1, a result stated for a general setting also applies to the
more restricted setting, but not vice-versa. We first define the notion of safety
and liveness that we use for our protocols.

Definition 1 (Safety). A blockchain protocol Π is safe if the set of blocks con-
firmed during the execution is a non-decreasing set. Put differently, Π is safe if
a block once confirmed by the confirmation rule remains confirmed for all time
thereafter.

Definition 2 (Liveness). A blockchain protocol Π is live if there exists con-
stants c, c′ > 0 s.t. the number of new honest blocks confirmed in any interval
[r, s] is at least �c(s − r) − c′�.

We now state our main theorem, concerning the safety and liveness of Πfin

and Πada.

Theorem 1. Assume the fraction of adversarial mining power among total
honest mining power is bounded by β < 1/2. Further, assume the fraction of
adversarial checkpointers is always less than 1/3. Then, the protocol ΠCLC has
the following security guarantees for an execution that runs for a duration of
Tmax = O(poly(κ)) time, where κ is the security parameter, :

– Security of Πfin: The protocol Πfin is safe, and is live after O(GST+κ) time
in the setting (M1,U1), except with probability negligible in κ.

– Security of Πada: The protocol Πada is safe and live in the setting (M2,U2),
except with probability negligible in κ.

– Nested Protocols: At any time t, the set of blocks confirmed by Πada is a
superset of the set of blocks confirmed by Πfin in all settings.

We provide a proof sketch for Theorem 1 below. A detailed proof is relegated to
Appendices B and C of the full version of our paper [23].

98 S. Sankagiri et al.

Proof Sketch. Our proof for Theorem 1 can be split into two parts. First,
Appendix B of the full version [23], we show that our checkpointing protocol
ΠBA satisfies the four checkpointing properties given in Sect. 4, namely CP0,
CP1, CP2, CP3. Then, in Appendix C of the full version [23], we show that
our complete protocol ΠCLC satisfies the desired security properties if it uses
any sub-protocol for checkpointing that satisfies the above properties.

Fig. 3. Flowchart for proving the security property of Πfin under setting (M1, U1)

Fig. 4. Flowchart for proving the security property of Πada under setting (M2, U2)

We first highlight some aspects of Theorem 1 that are straightforward to
deduce, assuming that ΠBA does satisfy the aforementioned properties.

Firstly, the safety of Πfin under setting (M1,U1) can be deduced from two
facts: 1) (CP0) safety of ΠBA holds under setting (M1,U1), and 2) (P1) the
checkpointed longest chain rule respects all previous checkpoints (see Fig. 3).
Specially, CP0 of ΠBA ensure that all checkpoints are uniquely decided by
all honest nodes and they lie on a single chain by P1, while the checkpointed
longest chain protocol instructs honest nodes to always adopt the longest chain
with the last checkpoint block. Therefore, an honest node will always keep every
checkpoint block it has seen forever.

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 99

Fig. 5. Flowchart for proving the nesting property of Πfin and Πada

Secondly, the security of Πada under setting (M2,U2) are deduced by two
facts: 1) security of pure longest chain rule; 2) (P3) the checkpointing protocol
respects the k-deep rule (see Fig. 4). P3 ensures that every checkpoint must be
at least k-deep in the chain of some honest node when it is decided by ΠBA,
while a block that is k-deep should remain in the longest chain of all honest
nodes forever with high probability under synchrony [9,20,22]. Therefore, every
checkpoint will already be present in all honest nodes’ chains when it appears.
Thus, the chains held by the nodes of the protocol are indistinguishable from the
case where they are following the pure longest chain protocol. Given that the
confirmation rule is also the same for both protocols (k-deep rule), Πada inherits
the safety and liveness properties of the pure longest chain protocol.

Thirdly, the nesting property of the confirmed blocks also follow immediately
by design, given that any checkpointed block must have been already k-deep in
a node’s chain (P3) and the checkpointed longest chain is defined as the longest
chain that contains the latest checkpoint (P2), (see Fig. 5).

It remains to prove the liveness guarantee of Πfin under setting (M1,U1).
In Appendix B (see full version [23]), we evaluate the safety and liveness of our
checkpointing protocol ΠBA – a modified version of Algorand BA. We show that
it satisfies the desired checkpointing properties listed in Sect. 1. A distinguishing
property of ΠBA is the recency condition (CP1). This property states that ΠBA

only outputs checkpoints that are recently contained in some honest node’s chain.
Without this property, the adversary could make all honest nodes waste a long
time mining on a chain that will never be checkpointed.

In Appendix C (see full version [23]), we prove an important result of Πada

under partial synchronous model: the safety and liveness property will hold after
O(GST) time. This is essential to guarantee the liveness of Πfin as a block can
be only checkpointed when it lies in the k-common prefix of the checkpointed
longest chains of all honest nodes. Finally, combining all these results (see Fig. 3),
we show that Πfin is live after O(GST) time with high probability, Thereby
completing the proof of the main theorem.

100 S. Sankagiri et al.

6 Conclusion

In this paper, we presented the design of a new finality gadget, to be used with
Proof-of-Work blockchains. The proposed gadget provides each user a choice
between an adaptivity guaranteeing confirmation rule and a finality guarantee-
ing one. This paper underscores the fact that it is possible to circumvent the
impossibility result suggested by the CAP theorem by appropriately combining
the longest-chain protocol with a committee-based BFT protocol. However, this
paper is only a first step towards designing a viable protocol. Several interesting
directions of research remain open, which we highlight below.

In our protocol, we used Algorand BA as our checkpointing protocol since
it satisfies properties CP0–CP3. Other natural candidates, such as PBFT [4],
Hotstuff [25] and Streamlet [5] do not satisfy these properties. In particular, they
do not satisfy the recency condition CP1 (we elaborate on this in Appendix D
of the full version [23]). It would be interesting to see whether these conditions
are necessary, or merely required for the proof. In the latter case, many more
BFT protocols could be used for checkpointing.

We have shown that our protocol is essentially a finality gadget, just as
Afgjort [10], GRANDPA [24] and Gasper [3]. Through Fig. 2, it we have shown
how some of these protocols could be tweaked to enhance their functionality to
the level of the protocol we have designed. Formally analyzing the security of
GRANDPA, and tweaking Gasper to make it secure (with a formal proof) are
interesting open problems that could be tackled using the tools of this paper.

Finality gadgets/checkpointing could potentially offer many more properties.
For example, they could protect against a dishonest mining majority, as shown
in [15]. They could potentially also be used to have lower latency, and even
responsive confirmation of blocks. Designing a protocol that achieves these prop-
erties in addition to the ones we show is an exciting design problem. Designing
an incentive-compatible finality gadget also remains an open problem. Finally,
a system implementation of such protocols could lead to newer considerations,
such as communication complexity, latency, which would pave the way for future
research.

Acknowledgements. This research is supported in part by a gift from IOHK Inc., an
Army Research Office grant W911NF1810332 and by the National Science Foundation
under grants CCF 17-05007 and CCF 19-00636.

Appendix

A Algorand BA is a Checkpointing Protocol

We outline the full Algorand Byzantine Agreement (BA) protocol below for
completeness. A minor modification (marked in red), adding validation, is the
only addition to the original protocol. Honest checkpointers run a multi-iteration
BA to commit checkpoints. The goal of the i-th iteration is to achieve consensus

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 101

on the i-th checkpoint. Each iteration is divided into multiple periods and view
changes will happen across periods.

All checkpointers start period 1 of iteration 1 at the same time (time 0).
Checkpointer i starts period 1 of iteration n after it receives 2t + 1 cert-votes
for some value v for the same period p of iteration n − 1 and waits for another
fixed time e, and only if it has not yet started an iteration n′ > n. Checkpointer
i starts period p ≥ 2 of iteration n after it receives 2t + 1 next-votes for some
value v for period p− 1 of iteration n, and only if it has not yet started a period
p′ > p for the same iteration n, or some iteration n′ > n. For any iteration
n, checkpointer i sets its starting value for period p ≥ 2, stpi , to v (the value
for which 2t + 1 next-votes were received and based on which the new period
was started). For p = 1, st1i =⊥. The moment checkpointer i starts period p
of iteration n, he finishes all previous periods and iterations and resets a local
timer clocki to 0. At the beginning of every period, every honest checkpointer i
sets vi to be the checkpointed longest chain in its view at that time.

Each period has a unique leader known to all checkpointers. The leader is
assigned in an i.i.d. fashion by the permitter oracle O. Each checkpointer i keeps
a timer clocki which it resets to 0 every time it starts a new period. As long as
i remains in the same period, clocki keeps counting. Recall that we assume the
checkpointers’ individual timers have the same speed. In each period, an honest
checkpointer executes the following instructions step by step.

Step 1: [Value Proposal by leader]. The leader of the period does the fol-
lowing when clocki = 0; the rest do nothing. If (p = 1) OR ((p ≥ 2) AND (the
leader has received 2t + 1 next-votes for ⊥ for period p − 1 of iteration n)), then
it proposes its value vi. Else if ((p ≥ 2) AND (the leader has received 2t + 1
next-votes for some value v 	=⊥ for period p − 1 of iteration n)), then the leader
proposes v.

Step 2: [The Filtering Step]. Checkpointer i does the following when clocki =
2Δ. If(p = 1) OR ((p ≥ 2) AND (i has received 2t+1 next-votes for ⊥ for period
p − 1 of iteration n)), then i soft-votes the value v proposed by the leader of
current period if (it hears of it) AND (the value is VALID OR i has received
2t + 1 next-votes for v for period p − 1). Else if ((p ≥ 2) AND (i has received
2t + 1 next-votes for some value v 	=⊥ for period p − 1 of iteration n)), then i
soft-votes v.

Step 3: [The Certifying Step]. Checkpointer i does the following when
clocki ∈ (2Δ, 4Δ). If i sees 2t + 1 soft-votes for some value v 	=⊥, then i cert-
votes v.

Step 4: [The Period’s First Finishing Step]. Checkpointer i does the follow-
ing when clocki = 4Δ. If i has certified some value v for period p, he next-votes
v. Else if ((p ≥ 2) AND (i has seen 2t + 1 next-votes for ⊥ for period p − 1 of
iteration n)), he next-votes ⊥. Else he next-votes his starting value stpi .

Step 5: [The Period’s Second Finishing Step]. Checkpointer i does the
following when clocki ∈ (4Δ,∞) until he is able to finish period p. If i sees 2t+1

102 S. Sankagiri et al.

soft-votes for some value v 	=⊥ for period p, then i next-votes v. If ((p ≥ 2)
AND (i sees 2t + 1 next-votes for ⊥ for period p − 1) AND (i has not certified
in period p)), then i next-votes ⊥.

Halting condition: Checkpointer i HALTS current iteration if he sees 2t + 1
cert-votes for some value v for the same period p, and sets v to be his output.
Those cert-votes form a certificate for v. The block that is exactly k-deep in v
is chosen as the checkpoint in current iteration.

A proposed value v (with block B being exactly k-deep in it) from period p
of iteration n is VALID for checkpointer i (in the same period and iteration) if:

– Value v is proposed by the leader of that period;
– Block B is a descendant of all previously checkpointed blocks with smaller

iteration number;
– Block B is contained in the checkpointed longest chain that the checkpointer

i holds when entering period p.

The only modification to the protocol is in Step 2, in the first condition, where
the notion of validity is introduced. This is the only place where new proposals
are considered. The validity notion helps transform the Algorand BA protocol
into the multi-iteration checkpointing protocol that we desire. In Appendix B
(see full version [23]), we show that this protocol indeed satisfies properties
CP0–CP3, as mentioned in Sect. 4.

References

1. Bagaria, V., Kannan, S., Tse, D., Fanti, G., Viswanath, P.: Prism: deconstruct-
ing the blockchain to approach physical limits. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 585–602
(2019)

2. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

3. Buterin, V., et al.: Combining GHOST and Casper. arXiv preprint
arXiv:2003.03052 (2020)

4. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI 1999,
USA, pp. 173–186. USENIX Association (1999)

5. Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. IACR Cryptol.
ePrint Arch. 2020, 88 (2020)

6. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: super fast
and partition resilient byzantine agreement. IACR Cryptol. ePrint Arch. 2018,
377 (2018)

7. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2016)
8. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and

applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

9. Dembo, A., et al.: Everything is a race and Nakamoto always wins. arXiv preprint
arXiv:2005.10484 (2020). To appear in CCS 2020

http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/2003.03052
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
http://arxiv.org/abs/2005.10484

Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality 103

10. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: a
partially synchronous finality layer for blockchains. In: Security and Cryptography
for Networks (SCN) (2020)

11. Fitzi, M., Gazi, P., Kiayias, A., Russell, A.: Parallel chains: improving throughput
and latency of blockchain protocols via parallel composition. IACR Cryptol. ePrint
Arch. 2018, 1119 (2018)

12. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

13. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

14. Gilbert, S., Lynch, N.: Perspectives on the cap theorem. Computer 45(2), 30–36
(2012)

15. Karakostas, D., Kiayias, A.: Securing proof-of-work ledgers via checkpointing.
Cryptology ePrint Archive, Report 2020/173 (2020). https://eprint.iacr.org/2020/
173

16. Lewis-Pye, A., Roughgarden, T.: Resource pools and the cap theorem. arXiv
preprint arXiv:2006.10698 (2020)

17. Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1041–1053 (2019)

18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical Report
19. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: a resolution of the availability-

finality dilemma. arXiv preprint arXiv:2009.04987 (2020)
20. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

21. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: 31st International Symposium on Distributed Computing (DISC) (2017)

22. Ren, L.: Analysis of Nakamoto consensus. IACR Cryptol. ePrint Arch. (2019)
23. Sankagiri, S., Wang, X., Kannan, S., Viswanath, P.: Blockchain cap theorem allows

user-dependent adaptivity and finality. arXiv preprint arXiv:2010.13711 (2020)
24. Stewart, A., Kokoris-Kogias, E.: GRANDPA: a byzantine finality gadget. arXiv

preprint arXiv:2007.01560 (2020)
25. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-

sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347–356 (2019)

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://eprint.iacr.org/2020/173
https://eprint.iacr.org/2020/173
http://arxiv.org/abs/2006.10698
http://arxiv.org/abs/2009.04987
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
http://arxiv.org/abs/2010.13711
http://arxiv.org/abs/2007.01560

PoSAT: Proof-of-Work Availability and
Unpredictability, Without the Work

Soubhik Deb1(B), Sreeram Kannan1, and David Tse2

1 University of Washington, Seattle, USA
{soubhik,ksreeram}@uw.edu

2 Stanford University, Stanford, USA
dntse@stanford.edu

Abstract. An important feature of Proof-of-Work (PoW) blockchains
is full dynamic availability, allowing miners to go online and offline while
requiring only 50% of the online miners to be honest. Existing Proof-
of-stake (PoS), Proof-of-Space and related protocols are able to achieve
this property only partially, either requiring the additional assumption
that adversary nodes are online from the beginning and no new adver-
sary nodes come online afterwards, or use additional trust assumptions
for newly joining nodes. We propose a new PoS protocol PoSAT which
can provably achieve dynamic availability fully without any additional
assumptions. The protocol is based on the longest chain and uses a Ver-
ifiable Delay Function for the block proposal lottery to provide an arrow
of time. The security analysis of the protocol draws on the recently pro-
posed technique of Nakamoto blocks as well as the theory of branching
random walks. An additional feature of PoSAT is the complete unpre-
dictability of who will get to propose a block next, even by the winner
itself. This unpredictability is at the same level of PoW protocols, and
is stronger than that of existing PoS protocols using Verifiable Random
Functions.

1 Introduction

1.1 Dynamic Availability

Nakamoto’s invention of Bitcoin [26] in 2008 brought in the novel concept of a
permissionless Proof-of-Work (PoW) consensus protocol. Following the longest
chain protocol, a block can be proposed and appended to the tip of the blockchain
if the miner is successful in solving the hash puzzle. The Bitcoin protocol has
several interesting features as a consensus protocol. An important one is dynamic
availability. Bitcoin can handle an uncertain and dynamic varying level of con-
sensus participation in terms of mining power. Miners can join and leave as
desired without any registration requirement. This is in contrast to most classi-
cal Byzantine Fault Tolerant (BFT) consensus protocols, which assumes a fixed
and known number of consensus nodes. Indeed, Bitcoin has been continuously
available since the beginning, a period over which the hashrate has varied over
a range of 14 orders of magnitude. Bitcoin has been proven to be secure as long
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 104–128, 2021.
https://doi.org/10.1007/978-3-662-64331-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_6&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_6

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 105

as the attacker has less than 50% of the online hash power (the static power
case is considered in [18,26,27] and variable hashing power case is considered in
[19,20]).

Recently proof-of-stake (PoS) protocols have emerged as an energy-efficient
alternative to PoW. Instead of solving a difficult hash puzzle, nodes participate
in a lottery to win the right to append a block to the blockchain, with the
probability of winning proportional to a node’s stake in the total pool. This
replaces the resource intense mining process of PoW, while ensuring fair chances
to contribute and claim rewards.

There are broadly two classes of PoS protocols: those derived from classi-
cal BFT protocols and those inspired by Nakamoto’s longest chain protocol.
Attempts at blockchain design via the BFT approach include Algorand [9,21],
Tendermint [7] and Hotstuff [36]. Motivated and inspired by Nakamoto longest
chain protocol are the PoS designs of Snow White [4] and the Ouroboros family
of protocols [2,11,22]. One feature that distinguish the PoS longest chain pro-
tocols from the BFT protocols is that they inherit the dynamic availability of
Bitcoin: the chain always grows regardless of the number of nodes online. But do
these PoS longest chain protocols provide the same level of security guarantee
as PoW Bitcoin in the dynamic setting?

1.2 Static vs Dynamic Adversary

Two particular papers focus on the problem of dynamic availability in PoS pro-
tocols: the sleepy model of consensus [29] and Ouroboros Genesis [2]. In both
papers, it was proved that their protocols are secure if less than 50% of the
online nodes are adversary. This condition is the same as the security guarantee
in PoW Bitcoin, but there is an additional assumption: all adversary nodes are
always online starting from genesis and no new adversary nodes can join. While
this static adversary assumption seems reasonable (why would an adversary go
to sleep?), in reality this can be a very restrictive condition. In the context of
Bitcoin, this assumption would be analogous to the statement that the hash
power of the adversary is fixed in the past decade (while the total hashing power
increased 14 orders of magnitude!) More generally, in public blockchains, PoW
or PoS, no node is likely to be adversarial during the launch of a new blockchain
token - adversaries only begin to emerge later during the lifecycle.

The static adversary assumption underlying these PoS protocols is not super-
fluous but is in fact necessary for their security. Suppose for the 1st year of the
existence of the PoS-based blockchain, only 10% of the total stake is online. Out
of this, consider that all nodes are honest. Now, at the beginning of the 2nd year,
all 100% of the stake is online out of which 20% is held by adversary. At any
point of time, the fraction of online stake held by honest nodes is greater than
0.8. However, both Sleepy and Genesis are not secure since the adversary can
use its 20% stake to immediately participate in all past lotteries to win blocks all
the way back to the genesis and then grow a chain instantaneously from the gen-
esis to surpass the current longest chain (Fig. 1(a)). Thus, due to this “costless
simulation”, newly joined adversary nodes not only increase the current online

106 S. Deb et al.

adversary stake, but effectively increase past online adversary stake as well. See
Appendix A.3 in the full version [12] for further details on how costless simula-
tion renders both sleepy model of consensus and Ouroboros Genesis vulnerable
to attacks. In contrast, PoW does not suffer from the same issue because it
would take a long time to grow such a chain from the past and that chain will
always be behind the current longest chain. Thus, PoW provides an arrow of
time, meaning nodes cannot “go back in time” to mine blocks for the times at
which they were not online. This property is key in endowing PoW protocols
with the ability to tolerate fully dynamic adversaries wherein both honest nodes
and adversary can have varying participation (Fig. 1(b)).

Fig. 1. (a) Newly joined nodes in existing PoS protocols can grow a chain from genesis
instantaneously. (b) Newly joined miners in PoW protocol takes a long time to grow
such a chain and is always behind.

We point out that some protocols including Ouroboros Praos [11] and
Snowhite [4] require that nodes discard chains that fork off too much from the
present chain. This feature was introduced to handle nodes with expired stake
(or nodes that can perform key grinding) taking over the longest chain. While
they did not specifically consider the dynamic adversary issue we highlighted,
relying on previous checkpoints can potentially solve the aforementioned secu-
rity threat. However, as was eloquently argued in Ouroboros Genesis [2], these
checkpoints are unavailable to offline clients and newly joining nodes require
advice from a trusted party (or a group inside which a majority is trusted).
This trust assumption is too onerous to satisfy in practice and is not required in
PoW. Ouroboros Genesis was designed to require no trusted joining assumption
while being secure to long-range and key-grinding attacks. However, they are
not secure against dynamic participation by the adversary: they are vulnerable
to the aforementioned attack. This opens the following question:

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 107

Is there a fully dynamically available PoS protocol which has full PoW secu-
rity guarantee, without additional trust assumptions?

1.3 PoSAT Achieves PoW Dynamic Availability

We answer the aforementioned question in the affirmative. Given that arrow-
of-time is a central property of PoW protocols, we design a new PoS protocol,
PoS with Arrow-of-Time (PoSAT), also having this property using randomness
generated from Verifiable Delay Functions (VDF). VDFs are built on top of
iteratively sequential functions, i.e., functions that are only computable sequen-
tially: f �(x) = f ◦ f ◦ ... ◦ f(x), along with the ability to provide a short and
easily verifiable proof that the computed output is correct. Examples of such
functions include (repeated) squaring in a finite group of unknown order [8,32],
i.e., f(x) = 2x and (repeated) application of secure hash function (SHA-256)
[24], i.e., f(x) = Hash(x). While VDFs have been designed as a way for prov-
ing the passage of a certain amount of time (assuming a bounded CPU speed),
it has been recently shown that these functions can also be used to generate
an unpredictable randomness beacon [15]. Thus, running the iteration till the
random time L when RandVDF(x) = fL(x) < τ is within a certain threshold
will result in L being a geometric random variable. We will incorporate this
randomized VDF functionality to create an arrow-of-time in our protocol.

The basic idea of our protocol is to mimic the PoW lottery closely: instead
of using the solution of a Hash puzzle based on the parent block’s hash as
proof of work, we instead use the randomized VDF computed based on the
parent block randomness and the coin’s public key as the proof of stake lot-
tery. In a PoW system, we are required to find a string called “nonce” such
that Hash(block, nonce) < τ , a hash-threshold. Instead in our PoS system, we
require RandVDF(randSource, pk, slot) < τ , where randSource is the ran-
domness from the parent block, pk is the public key associated with the mining
coin and slot represents the number of iterations of the RandVDF since gene-
sis. There are four differences, the first three are common in existing PoS systems:
(1) we use “randSource” instead of “block” in order to prevent grinding attacks
on the content in the PoS system, (2) we use the public-key “pk” of staking coin
instead of PoW “nonce” to simulate a PoS lottery, (3) we use “slot” for ensur-
ing time-ordering, (4) instead of using a Hash, we use the RandVDF, which
requires sequential function evaluation thus creating an “arrow of time”.

The first two aspects are common to many PoS protocols and is most similar
to an earlier PoS protocol [16], however, crucially we use the RandVDF function
instead of a Verifiable random function (VRF) and a time parameter inside the
argument used in that protocol. This change allows for full dynamic availability:
if adversaries join late, they cannot produce a costless simulation of the time
that they were not online and build a chain from genesis instantaneously. It
will take the adversary time to grow this chain (due to the sequential nature
of the RandVDF), by which time, the honest chain would have grown and
the adversary will be unable to catch up. Thus, PoSAT behaves more like PoW
(Fig. 1(b)) rather than existing PoS based on VRF’s (Fig. 1(a)). We show that

108 S. Deb et al.

this protocol achieves full dynamic availability: if λh(t) denotes the honest stake
online at t, λa(t) denotes the online adversarial stake at time t, it is secure as
long as

λh(t) > eλa(t) for all t, (1)

where e is Euler’s number 2.7182. . ..
We observe that the security of this protocol requires a stronger condition

than PoW protocols. The reason for this is that an adversary can potentially do
parallel evaluation of VDF on all possible blocks. Since the randomness in each
of the blocks is independent from each other, the adversary has many random
chances to increase the chain growth rate to out-compete the honest tree. This
is a consequence of the nothing-at-stake phenomenon: the same stake can be
used to grind on the many blocks. The factor e is the resulting amplification
factor for the adversary growth rate. This is avoided in PoW protocols due to
the conservation of work inherent in PoW which requires the adversary to split
its total computational power among such blocks.

Fig. 2. Left: A node uses randomness from the first block of the epoch. Right: Since a
node already won a block in the period, it uses that block’s randomness.

We solve this problem in PoSAT by reducing the rate at which the block ran-
domness is updated and hence reducing the block randomness grinding opportu-
nities of the adversary. Instead of updating the block randomness at every level
of the blocktree, we only update it once every c levels (called an epoch). The
larger the value of the parameter c, the slower the block randomness is updated.
The common source of randomness used to run the VDF lottery remains the
same for c blocks starting from the genesis and is updated only when (a) the
current block to be generated is at a depth that is a multiple of c, or (b) the coin
used for the lottery is successful within the epoch of size c. The latter condition
is necessary to create further independent winning opportunities for the node
within the period c once a slot is obtained with that coin. This is illustrated in
Fig. 2. For c = 1, this corresponds to the protocol discussed earlier.

The following security theorem is proved about PoSAT for general c, giving
a condition for security (liveness and persistence) under all possible attacks.

Theorem 1 (Informal). PoSAT with parameter c is secure as long as

λc
h(t)

1 + λmaxΔ
> φcλa(t) for all t, (2)

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 109

where λc
h(t) is the honest stake this is online at time t and has been online since

at least t−Θ(c), Δ is the network delay between honest nodes, λmax is a constant
such that λc

h(t) ≤ λmax for all t > 0, φc is a constant, dependent on c. φ1 = e
and φc → 1 as c → ∞.

Table 1. Numerically computed values of the adversary amplification factor φc. The
ratio 1/(1 + φc) is the adversarial fraction of stake that can be tolerated by PoSAT
when Δ = 0.

c 1 2 3 4 5 6 7 8 9 10

φc e 2.22547 2.01030 1.88255 1.79545 1.73110 1.68103 1.64060 1.60705 1.57860
1

1+φc

1
1+e

0.31003 0.33219 0.34691 0.35772 0.36615 0.37299 0.37870 0.38358 0.38780

We remark that in our PoS protocol, we have a known upper bound on the
rate of mining blocks (by assuming that the entire stake is online). We can use
this information to set 1 + λmaxΔ as close to 1 as desired by simply setting
the mining threshold appropriately. Furthermore, by setting c large, φc ≈ 1
and thus PoSAT can achieve the same security threshold as PoW under full
dynamic availability. The constant φc is the amplification of the adversarial
chain growth rate due to nothing-at-stake, which we calculate using the theory
of branching random walks [33]. The right hand side of (2) can therefore be
interpreted as the growth rate of a private adversary tree with the adversary
mining on every block. Hence, condition (2) can be interpreted as the condition
that the private Nakamoto attack [26] does not succeed. However, Theorem
1 is a security theorem, i.e. it gives a condition under which the protocol is
secure under all possible attacks. Hence what Theorem 1 says is therefore that
among all possible attacks on PoSAT, the private attack is the worst attack. We
prove this by using the technique of blocktree partitioning and Nakamoto blocks,
introduced in [13], which reduce all attacks to a union of private attacks.

We note that large c is beneficial from the point of view of getting a tight
security threshold. However, we do require c to be finite (unlike other protocols
like Ouroboros that continue to work under c being infinite). This is because
the latency to confirm a transaction increases linearly in c (see Sect. 4). Further-
more, an honest node on coming online has to wait until encountering the next
epoch beginning before it can participate in proposing blocks and the worst-case
waiting time increases linearly with c. We note that the adversary cannot use the
stored blocks in the next epoch, thus having a bounded reserve of blocks. The
total number of blocks stored up by an adversary potentially increases linearly
in the epoch size, thus requiring the confirmation depth and thus latency to be
larger than Θ(c). By carefully bounding this enhanced power of the adversary,
for any finite c, we show that PoSAT is secure.

Assuming λmaxΔ to be small, the comparison of PoSAT with other protocols
is shown in following Table. Here we use Λa to be the largest adversary fraction
of the total stake online at any time during the execution (Λa = supt λa(t)).
Protocols whose security guarantee assumes all adversary nodes are online all the

110 S. Deb et al.

time effectively assumes that λh(t) > Λa. Thus existing protocols have limited
dynamic availability.

Ourboros Snow White/Praos Genesis/Sleepy Algorand PoSAT

Dynamic
availability

λh(t) > Λa λh(t) > Λa λh(t) > Λa No λc
h(t) > φcλa(t)

Predictability Global Local Local Local None

1.4 PoSAT Has PoW Unpredictability

Another key property of PoW protocols is their ability to be unpredictable:
no node (including itself) can know when a given node will be allowed to pro-
pose a block ahead of the proposal slot. We point out that PoSAT with any
parameter c remains unpredictable due to the unpredictability of the RandVDF
till the threshold is actually reached. We refer the reader to Fig. 2(a) where
if the randomness source is at the beginning of the epoch it is clear that the
unpredictability of the randomized VDF implies unpredictability in our proto-
col. However, in case the miner has already created a block within the epoch
(Fig. 2(b)), the randomness source is now her previous block. This can be thought
of as a continuation of the iterative sequential function from the beginning of
the epoch and hence it is also unpredictable as to when the function value will
fall below a threshold. Thus PoSAT achieves true unpredictability, matching the
PoW gold standard, where even an all-knowing adversary has no additional pre-
dictive power.

The first wave of PoS protocols such as Ouroboros [22] are fully predictable
as they rely on mechanisms for proposer election that provide global knowledge
of all proposers in an epoch ahead of time. The concept of Verifiable Random
Functions (VRF), developed in [14,25], was pioneered in the blockchain context
in Algorand [9,21], as well as applied in Ouroboros Praos [11] and Snow White
[4]. The use of a private leader election using VRF enables no one else other than
the proposer to know of the slots when it is allowed to propose blocks. However,
unlike Bitcoin, the proposer itself can predict. Thus, these protocols still allow
local predictability. The following vulnerability is caused by local predictability:
a rational node may then willingly sell out his slot to an adversary. In Ouroboros
Praos, such an all-knowing adversary needs to corrupt only 1 user at a time (the
proposer) adaptively in order to do a double-spend attack. He will first let the
chain build for some time to confirm a transaction, and then get the bribed
proposers one at a time to build a competing chain. Algorand is more resilient,
but even there, in each step of the BFT algorithm, a different committee of
nodes is selected using a VRF based sortition algorithm. These nodes are locally
predictable as soon as the previous block is confirmed by the BFT - and thus an
all-knowing adversary only needs to corrupt a third of a committee. Assuming
each committee is comprised of K nodes (K being a constant), the adversary

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 111

only needs to corrupt K
3N fraction of the nodes. Refer to Appendix A.4 in [12]

for further details.
We summarize the predictability of various protocols in Table 1.

1.5 Related Work

Our design is based on frequent updates of randomness to run the VDF lottery.
PoS protocols that update randomness at each iteration have been utilized in
practice as well as theoretically proposed [16] - they do not use VDF and have
neither dynamic availability nor unpredictability. Furthermore, they still face
nothing-at-stake attacks. In fact, the amplification factor of e we discussed earlier
has been first observed in a Nakamoto private attack analysis in [16]. This anal-
ysis was subsequently extended to a full security analysis against all attacks in
[13,34], where it was shown that the private attack is actually the worst attack.
In [34], the idea of c-correlation was introduced to reduce the rate of randomness
update and to reduce the severity of the nothing-at-stake attack; we borrowed
this idea from them in the design of our VDF-based protocol, PoSAT.

There have been attempts to integrate VDF into the proof-of-space paradigm
[10] as well as into the proof-of-stake paradigm [1,23], all using a VRF concate-
nated with a VDF. But, in [10], the VDF runs for a fixed duration depending
on the input and hence is predictable, and furthermore do not have security
proofs for dynamic availability. In [1], the randomness beacon is not secure till
the threshold of 1/2 as claimed by the authors since it has a randomness grinding
attack which can potentially expand the adverarial power by at least factor e.
There are three shortcomings in [23] as compared to our paper: (1) even under
static participation, they only focus on an attack where an adversary grows a pri-
vate chain, (2) there is no modeling of dynamic availability and a proof of security
and (3) since the protocol focuses only on c = 1, they can only achieve security
till threshold 1/1 + e, not till 1/2. We note that recent work [6] formalized that
a broad class of PoS protocols suffer from either of the two vulnerabilities: (a)
use recent randomness, thus being subject to nothing-at-stake attacks or (b) use
old randomness, thus being subject to prediction based attacks (even when only
locally predictable). We note that PoSAT with large c completely circumvents
both vulnerabilities using the additional VDF primitive since it is able to use
old randomness while still being fully unpredictable.

We want to point out that dynamic availability is distinct and complementary
to dynamic stake, which implies that the set of participants and their identities in
the mining is changing based on the state of the blockchain. We note that there
has been much existing work addressing issues on the dynamic stake setting -
for example, the s-longest chain rule in [2], whose adaptation to our setting we
leave for future work. We emphasize that the dynamic availability problem is
well posed even in the static stake setting (the total set of stakeholders is fixed
at genesis).

112 S. Deb et al.

1.6 Outline

The rest of the paper is structured as follows. Section 2 presents the VDF primi-
tive we are using and the overall protocol. Section 3 presents the model. Section 4
presents the details of the security analysis.

2 Protocol

2.1 Primitives

In this section, we give an overview of VDFs and refer the reader to detailed
definitions in Appendix B in the full version [12].

Definition 1 (from [5]). A VDF V = (Setup,Eval,Verify) is a triple of
algorithms as follows:

– Setup(λ, τ) → pp = (ek, vk) is a randomized algorithm that produces an
evaluation key ek and a verification key vk.

– Eval(ek, input, τ) → (O, proof) takes an input ∈ X , an evaluation key ek,
number of steps τ and produces an output O ∈ Y and a (possibly empty)
proof .

– Verify(vk, input,O, proof, τ) → Y es,No is a deterministic algorithm takes
an input, output, proof, τ and outputs Y es or No.

VDF.Eval is usually comprised of sequential evaluation: f �(x) = f ◦ f ◦ ... ◦
f(x) along with the ability to provide a short and easily verifiable proof. In
particular, there are three separate functions VDF.Start, VDF.Iterate and
VDF.Prove (the first function is used to initialize, the second one operates
for the number of steps and the third one furnishes a proof). This is illustrated
in Fig. 3a on the left. While VDFs have been designed as a way for proving
the passage of a certain amount of time, it has been recently shown that these
functions can also be used to generate an unpredictable randomness beacon
[15]. Thus, running the iteration till the random time L when RandVDF(x) =
fL(x) < τ generates the randomness beacon. This is our core transformation to
get a randomized VDF. This is shown in Fig. 3b on the right. Instead of running
for a fixed number of iterations, we run the VDF iterations till it reaches a certain
threshold. Our transformation is relatively general purpose and most VDFs can
be used with our construction. For example, a VDF (which is based on squaring
in a group of unknown order) is an ideal example for our construction [30,35]. In
the recent paper [15], for that sequential function, a new method for obtaining
a short proof whose complexity does not depend (significantly) on the number
of rounds is introduced - our protocol can utilize that VDF as well. They show
furthermore that they obtain a continuous VDF property which implies that
partial VDF computation can be continued by a different party - we do not
require this additional power in our protocol.

For the RandVDF in PoSAT, as illustrated in Fig. 3b, slot plays a similar
role as the timestamps in other PoS protocols like [29]. The slot basically men-
tions the number of times the RandVDF has iterated since the genesis and when

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 113

the speed of the iteration of RandVDF is constant, slot is an approximation
to the time elapsed since the beginning of the operation of the PoS system.

Normally, a VDF will satisfy correctness and soundness. And we require
RandVDF to also satisfy correctness and soundness as defined in Appendix B
in [12].

Fig. 3. VDF.Eval(input, ek, τ) requires the number of iterations that VDF.Iterate
should run. On the other hand, RandVDF.Eval(input, ek, s, slot) requires the
expected number of number of iterations RandVDF.Iterate (denoted by s) must
run.

A key feature of VDF is that if the VDF takes T steps, then the prover
should be able to complete the proof in time (nearly) proportional to T and the
verifier should be able to verify the proof in (poly)-logarithmic time. This makes
it feasible for any node that receives a block to quickly verify that the VDF in
the header is indeed correctly computed, without expending the same effort that
was expended by the prover. We refer the reader interested in a detailed analysis
of these complexities to Sect. 6.2 in [30] for the efficiency calculation or Sect. 2.3
in [15].

2.2 Protocol Description

The pseudocode for the PoSAT is given in Algorithm 1.

114 S. Deb et al.

Algorithm 1. PoSAT
1: procedure Initialize() � all variables are global
2: blkTree ← Sync() � syncing with peers
3: unCnfTx← φ � pool of unconfirmed txs
4: parentBlk ← blkTree.Tip() � tip of the longest chain in blkTree
5: randSource ← None � will be updated at next epoch beginning
6: slot ← None � will be updated at next epoch beginning
7: return False

8: procedure PosLeaderElection(coin)
9: (RandVDF.ek, RandVDF.vk),(Sign.vk, Sign.sk) ← coin.Keys()

10: stake ← coin.Stake(SearchChainUp(parentBlk)) � update the stake
11: s ← UpdateThreshold(stake) � update the threshold
12: input ← randSource
13: // Calling RandVDF.Eval

14: (input, output, proof, randIter, slot) ← RandVDF.Eval(input, ek, s, slot)
15: randSource ← output � update source of randomness
16: state ← Hash(parentBlk)
17: content ← 〈unCnfTx, coin, input, randSource, proof, randIter, state, slot〉
18: return 〈header, content,Sign(content,Sign.sk)〉
19: procedure ReceiveMessage(X) � receives messages from network
20: if X is a valid tx then
21: unCnfTx ← unCnfTx ∪ {X}
22: else if IsValidBlock(X) then
23: if parentBlk.Level() < X.Level() then
24: ChangeMainChain(X) � if the new chain is longer
25: parentBlk ← X � update the parent block to tip of the longest chain
26: if X.Level() % c == 0 then
27: randSource ← X.content.randSource
28: else
29: randSource ← randSource
30: if participate == True then
31: RandVDF.Reset() � reset the RandVDF

32: // Epoch beginning
33: if (X.Level() % c == 0) & (participate == False) then
34: slot ← X.content.slot
35: participate = True

36: procedure IsValidBlock(X) � returns true if a block is valid
37: if not IsUnspent(X.content.coin) then return False
38: if ParentBlk(X).content.slot ≥ X.content.slot then
39: return False � ensuring time ordering
40: s ← UpdateThreshold(ParentBlk(X))
41: if Hash(X.content.{randSource,slot}) > Threshold(s) then return False
42: // verifying the work
43: return
44: RandVDF.Verify(X.coin.vk, X.content.{input, randSource, proof, randIter})

45: procedure Main() � main function
46: participate = Initialize()
47: StartThread(ReceiveMessage) � parallel thread for receiving messages
48: while True do
49: if participate == True then
50: block = PosLeaderElection(coin)
51: SendMessage(block) � broadcast to the whole network

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 115

Initialization. An honest coin n on coming online, calls Initialize() where it
obtains the current state of the blockchain, blkTree, by synchronizing with the
peers via Sync() and initializes global variables. However, the coin n can start
participating in the leader election only after encountering the next epoch begin-
ning, that is, when the depth of the blkTree is a multiple of c. This is indicated
by setting participaten to False. Observe that if the coin n is immediately
allowed to participate in leader election, then, the coin n would have to initiate
RandVDF.Eval from the randSource contained in the block at the beginning
of the current epoch. Due to the sequential computation in RandVDF, the coin
n would never be able to participate in the leader elections for proposing blocks
at the tip of the blockchain. In parallel, the coin keeps receiving messages and
processes them in ReceiveMessage(). On receiving a valid block that indicates
epoch beginning, randSourcen, slotn and participaten are updated accord-
ingly (lines 27, 33, 34) for active participation in leader election.

Leader Election. The coin n records the tip of the longest chain of blkTree
in parentBlkn (line 25) and contests leader election for appending block to
it. RandVDF.Eval(inputn,RandVDF.ekn, sn) is used to compute an unpre-
dictable randomness beacon that imparts unpredictability to leader election.
The difficulty parameter sn is set proportional to the current staken of the
coin n using UpdateThreshold(staken) and randSourcen is taken as inputn.
RandVDF.Eval(inputn, ekn, sn, slotn) is an iterative function composed of:

– RandVDF.Start(inputn,RandVDF.ekn, IntStaten) initializes the itera-
tion by setting initial value of outputn to be inputn. Note that IntStaten

is the internal state of the RandVDF.
– RandVDF.Iterate(outputn,RandVDF.ekn, IntStaten) is the iterator

function that updates outputn in each iteration. At the end of each iteration,
it is checked whether Hash(outputn, slotn) is less than Threshold(sn),
which is set proportional to sn. If No, slotn is incremented by 1 and
current outputn is taken as input to the next iteration. If Yes, then it
means coin n has won the leader election and outputn is passed as input
to RandVDF.Prove(.). Observe that the number of iterations, randItern,
that would be required to pass this threshold is unpredictable which lends to
randomness beacon. Recall that slotn is a counter for number of iterations
since genesis. In a PoS protocol, it is normally ensured that the timestamps
contained in each block of a chain are ordered in ascending order. Here, in
PoSAT, instead we ensure that the slot in the blocks of a chain are ordered,
irrespective of who proposed it. This is referred to as time-ordering. The
reader can refer to Appendix A.5 and A.6 in [12] for further details on what
attacks can transpire if time-ordering is not ensured. The rationale behind
setting Threshold(sn) proportional to sn is that even if the stake sn is sybil
over multiple coins, the probability of winning leader election in at least one
coin remains the same. See Appendix A.2 in [12] for detailed discussion.

116 S. Deb et al.

– RandVDF.Prove(outputn,RandVDF.ekn, IntStaten) operates on
outputn using RandVDF.ekn and IntStaten to generate proofn that cer-
tifies the iterative computation done in the previous step.

The source of randomness randSourcen can be updated in two ways:

– a block, proposed by another coin, at epoch beginning is received (line 27)
– if coin n wins a leader election and proposes its own block (line 15).

While computing RandVDF.Eval(.), if a block is received that updates
parentBlkn, then, RandVDF.Reset() (line 31) pauses the ongoing computa-
tion, updates sn and continues the computation with updated Threshold(sn).
If randSourcen is also updated, then, RandVDF.Reset() stops the ongoing
computation of RandVDF.Eval(.) and calls PoSLeaderElection().

Content of the Block. Once a coin is elected as a leader, all unconfirmed
transactions in its buffer are added to the content. The content also includes
the identity coinn, inputn, randSourcen, proofn, randItern, slotn from
RandVDF.Eval(.). The state variable in the content contains the hash of
parent block, which ensures that the content of the parent block cannot be
altered. Finally, the header and the content is signed with the secure signature
SIGN.skn and the block is proposed. When the block is received by other coins,
they check that the time-ordering is maintained (line 38) and verify the work
done by the coin n using RandVDF.Verify(.) (line 44). Note that the leader
election is independent of the content of the block and content of previous blocks.
This follows a standard practice in existing PoS protocols such as [2] and [29] for
ensuring that a grinding attack based on enumerating the transactions won’t be
possible. The reader is referred to Appendix A.1 in [12] for further details. How-
ever, this allows the adversary to create multiple blocks with the same header
but different content. Such copies of a block with the same header but different
contents are known as a “forkable string” in [22]. We show in the Sect. 4 that
the PoSAT is secure against all such variations of attacks.

Confirmation Rule. A block is confirmed if the block is k−deep from the tip
of the longest chain. The value of k is determined by the security parameter.

3 Model

We will adopt a continuous-time model. Like the Δ-synchronous model in [27], we
assume there is a bounded communication delay Δ seconds between the honest
nodes (the particular value of latency of any transmission inside this bound is
chosen by the adversary).

The blockchain is run on a network of N honest nodes and a set of adver-
sary nodes. Each node holds a certain number of coins (proportional to their
stake). We allow nodes to join and leave the network, thus the amount of hon-
est/adversarial stake which is participating in the protocol varies as a function

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 117

of time. Recall that, as described in Sect. 2, a coin coming online can only par-
ticipate in the leader election after encountering the next epoch beginning. Let
λh(t) be defined as the stake of the honest coins that are online at time t and has
encountered at least one epoch beginning. Thus, λh(t) is the rate at which honest
nodes win leader elections. Let λa(t) be the stake controlled by the adversary.
We will assume there exist constants λmin, λmax > 0 such that

λmin ≤ λh(t) ≤ λmax ∀ t ≥ 0. (3)

The existence of λmax is obvious since we are in a proof-of-stake system, and
λmax denotes the rate at which the leader elections are being won if every single
stakeholder is online. We need to assume a minimum λh(t) in order to guarantee
that within a bounded time, a new block is created.

An honest node will construct and publicly reveal the block immediately
after it has won the corresponding leader election. However, an adversary can
choose to not do so. By “private block”, we refer to a block whose corresponding
computation of RandVDF.Eval was completed by the adversary earlier than
when the block was made public. Also, by “honest block proposed at time t”, we
mean that the computation of RandVDF.Eval was completed at time t and
then the associated honest block was instantaneously constructed and publicly
revealed.

The evolution of the blockchain can be modeled as a process
{(T (t), C(t), T (p)(t), C(p)(t)) : t ≥ 0, 1 ≤ p ≤ N}, N being the number of honest
nodes, where:

– T (t) is a tree, and is interpreted as the mother tree consisting of all the blocks
that are proposed by both the honest and the adversary nodes up until time
t (including private blocks at the adversary).

– T (p)(t) is an induced (public) sub-tree of the mother tree T (t) in the view of
the p-th honest node at time t.

– C(p)(t) is the longest chain in the tree T (p)(t), and is interpreted as the longest
chain in the local view of the p-th honest node.

– C(t) is the common prefix of all the local chains C(p)(t) for 1 ≤ p ≤ N .

The process evolution is as follows.

– M0: T (0) = T (p)(0) = C(p)(0), 1 ≤ p ≤ N is a single root block (genesis).
– M1: There is an independent leader election at every epoch beginning, i.e.,

at every block in the blocktree at level c, 2c, ..., �c, The leader elections are
won by the adversary according to independent Poisson processes of rate λa(t)
at time t, one for every block at the aforementioned levels. The adversary can
use the leader election won at a block at level �c at time t to propose a block
at every block in the next c − 1 levels �c, �c + 1, ..., �c + c − 1 that are present
in the tree T (t). We refer the reader to Fig. 4 for a visual representation.

– M2: Honest blocks are proposed at a total rate of λh(t) at time t across all
the honest nodes at the tip of the chain held by the mining node p, C(p)(t).

118 S. Deb et al.

– M3: The adversary can replace T (p)(t−) by another sub-tree T (p)(t) from
T (t) as long as the new sub-tree T (p)(t) is an induced sub-tree of the new
tree T (p)(t), and can update C(p)(t−) to a longest chain in T (p)(t).1

We highlight the capabilities of the adversary in this model:

– A1: Can choose to propose block on multiple blocks of the tree T (t) at any
time.

– A2: Can delay the communication of blocks between the honest nodes, but
no more than Δ time.

– A3: Can broadcast private blocks at times of its own choosing: when private
blocks are made public at time t to node p, then these blocks are added
to T (p)(t−) to obtain T (p)(t). Note that, under Δ-synchronous model, when
private blocks appear in the view of some honest node p, they will also appear
in the view of all other honest nodes by time t + Δ.

– A4: Can switch the chain where the p-th honest node is proposing block,
from one longest chain to another of equal length, even when its view of the
tree does not change, i.e., T (p)(t) = T (p)(t−) but C(p)(t)
= C(p)(t−).

It is to be noted that we don’t consider the adversary to be adaptive in the
sense that, although adversarial and honest nodes can join or leave the system
as they wish, an adversary can never turn honest nodes adversarial. In order
to defend against an adaptive adversary, key evolving signature schemes can
be used [11]. However, in order to keep the system simple, we don’t consider
adaptive adversary.

Fig. 4. There is a separate randomness generated for every block in the modulo c
position. Blocks generated from that randomness at time t can attach to any block
inside the next c − 1 blocks that are present in the tree T (t).

1 All jump processes are assumed to be right-continuous with left limits, so that
C(t), T (t) etc. include the new arrival if there is a new arrival at time t.

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 119

Proving the security (persistence and liveness) of the protocol boils down to
providing a guarantee that the chain C(t) converges fast as t → ∞ and that
honest blocks enter regularly into C(t) regardless of the adversary’s strategy.

4 Security Analysis

Our goal is to generate a transaction ledger that satisfies persistence and liveness
as defined in [18]. Together, persistence and liveness guarantee robust transaction
ledger; honest transactions will be adopted to the ledger and be immutable.

Definition 2 (from [18]). A protocol Π maintains a robust public transaction
ledger if it organizes the ledger as a blockchain of transactions and it satisfies
the following two properties:

– (Persistence) Parameterized by τ ∈ R, if at a certain time a transaction tx
appears in a block which is mined more than τ time away from the mining
time of the tip of the main chain of an honest node (such transaction will be
called confirmed), then tx will be confirmed by all honest nodes in the same
position in the ledger.

– (Liveness) Parameterized by u ∈ R, if a transaction tx is received by all honest
nodes for more than time u, then all honest nodes will contain tx in the same
place in the ledger forever.

4.1 Main Security Result

To state our main security result, we need to define some basic notations.
Recall that, as described in Sect. 2, a coin coming online can only participate

in the leader election after encountering the next epoch beginning. This incurs
a random waiting delay for the coin before it can actively participate in the evo-
lution of the blockchain. Hence, the honest mining rate λh(t), defined in Sect. 3
as the stake of the honest coins that are online at time t and has encountered at
least one epoch beginning, is a (random) process that depends on the dynamics
of the blockchain. Hence, we cannot state a security result based on conditions
on λh(t). Instead, let us define λc

h(t) as the stake of the honest coins that are
online at time t and has been online since at least time t − σ(c), where

σ(c) = (c − 1)
(

Δ +
1 + κ

λmin

)
. (4)

Here, κ is the security parameter. Intuitively, σ(c) is a high-probability worst-
case waiting delay, in seconds, of a coin for the next epoch beginning. Note
that λc

h(t) depends only on the stake arrival process and not on the blockchain
dynamics.

The theorem below shows that the the private attack threshold yields the
true security threshold:

120 S. Deb et al.

Theorem 1. If

λc
h(t)

1 + λmaxΔ
> φcλa(t) for all t > 0, (5)

then the PoSAT generate transaction ledgers such that each transaction tx satis-
fies persistence (parameterized by τ = ρ) and liveness (parameterized by u = ρ)
in Definition 2 with probability at least 1 − e−Ω(min{ρ1−ε,κ}), for any ε > 0. The
constant φc is dependent on c, with φ1 = e and φc → 1 as c → ∞.

In order to prove Theorem 1, we utilize the concept of blocktree partitioning
and Nakamoto blocks that were introduced in [13]. We provide a brief overview
of these concepts here.

Let τh
i and τa

i be the time when the i-th honest and adversary blocks are
proposed, respectively; τh

0 = 0 is the time when the genesis block is proposed,
which we consider as the 0-th honest block.

Definition 1. Blocktree partitioning. Given the mother tree T (t), define for
the i-th honest block bi, the adversary tree Ti(t) to be the sub-tree of the mother
tree T (t) rooted at bi and consists of all the adversary blocks that can be reached
from bi without going through another honest block. The mother tree T (t) is
partitioned into sub-trees T0(t), T1(t), . . . Tj(t), where the j-th honest block is
the last honest block that was proposed before time t.

The sub-tree Ti(t) is born at time τh
i as a single block bi and then grows each

time an adversary block is appended to a chain of adversary blocks from bi. Let
Di(t) denote the depth of Ti(t); Di(τh

i) = 0.

Definition 2 [31]. The j-th honest block proposed at time τh
j is called a loner if

there are no other honest blocks proposed in the time interval [τh
j − Δ, τh

j + Δ].

Definition 3. Given honest block proposal times τh
i ’s, define a honest fictitious

tree Th(t) as a tree which evolves as follows:

1. Th(0) is the genesis block.
2. The first honest block to be proposed and all honest blocks within Δ are all

appended to the genesis block at their respective proposal times to form the
first level.

3. The next honest block to be proposed and all honest blocks proposed within
time Δ of that are added to form the second level (which first level blocks
are parents to which new blocks is immaterial).

4. The process repeats.

Let Dh(t) be the depth of Th(t).

Definition 4 (Nakamoto block). Let us define:

Eij = event that Di(t) < Dh(t − Δ) − Dh(τh
i + Δ) for all t > τh

j + Δ. (6)

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 121

The j-th honest block is called a Nakamoto block if it is a loner and

Fj =
j−1⋂
i=0

Eij (7)

occurs.

See Fig. 5 in [13] for illustration of the concepts of blocktree partitioning and
Nakamoto blocks.

Lemma 1 (Theorem 3.2 in [13]) (Nakamoto blocks stabilize). If the j-th
honest block is a Nakamoto block, then it will be in the longest chain C(t) for all
t > τh

j + Δ.

Lemma 1 states that Nakamoto blocks remain in the longest chain forever.
The question is whether they exist and appear frequently regardless of the adver-
sary strategy. If they do, then the protocol has liveness and persistence: honest
transactions can enter the ledger frequently through the Nakamoto blocks, and
once they enter, they remain at a fixed location in the ledger. More formally, we
have the following result.

Lemma 2 (Lemma 4.4 in [13]). Define Bs,s+t as the event that there is no

Nakamoto blocks in the time interval [s, s + t] where t ∼ Ω

([
c−1

φc−1

]2)
. If

P (Bs,s+t) < qt < 1 (8)

for some qt independent of s and the adversary strategy, then the PoSAT gen-
erates transaction ledgers such that each transaction tx satisfies persistence
(parameterized by τ = ρ) and liveness (parameterized by u = ρ) in Definition 2
with probability at least 1 − qρ.

In order to prove Lemma 2, we proceed in six steps as illustrated in Fig. 5.

Fig. 5. Flowchart of the proof for Lemma 2.

122 S. Deb et al.

4.2 Step 1: Mining Lag of Newly Joined Nodes

From Sect. 3, recall that λh(t) is defined as the stake of the coins that are online at
time t but has encountered at least one epoch beginning. That implies, within an
epoch, λh(t) is the effective honest stake that can be used to contribute towards
the growth of the longest chain; it remains constant and gets updated only at
the epoch beginning. In order to analyze the effect of this lag in a honest node
to start mining, we simulate a new dynamic available system, dyn2, where, at
time t, an honest coin can contribute towards the growth of the longest chain if
it has been online in the original dynamic system since at least time t − σ(c),
where, σ(c) > 0. Recall that λc

h(t) be defined as the stake of the coins that are
online at time t in the original dynamic system and has been online since at least
t−σ(c). Clearly, λc

h(t) is the rate at which the honest nodes win leader election at
time t in dyn2. We have the following relationship between the original dynamic
available system and dyn2.

Lemma 3. For the dynamic available system dyn2 and for all s, t > 0, define
Bdyn2

s,s+t as the event that there are no Nakamoto blocks in the time interval [s, s+t].

Let κ0 be the solution for the equation ln
(

λmax
λmin

(1 + κ)
)

= κ. Then, for σ(c) =

(c − 1)
(
Δ + 1+κ

λmin

)
and κ >> κ0, we have

P (Bs,s+t) ≤ P (Bdyn2
s,s+t) + e−Ω(κ).

The proof is given in Appendix C in the full version [12].

4.3 Step 2: Simulating a Static System

Without loss of generality, we assume that the adversarial power is boosted
such that λa(t) satisfies (5) with equality for all t. Let us define η such that
λa(t) = (1−η)λh(t) for all t. Let λh be some positive constant. Taking dyn2 as the
base, we simulate a static system, ss0, where both honest nodes and adversary
win leader elections with constant rates λh and λa satisfying λa = (1 − η)λh.
This requires, for a local time t > 0 in dyn2, defining a new local time α(t) for
ss0 such that

λc
h(u)du = λhdα =⇒ α(t) =

∫ t

0

λc
h(u)
λh

du. (9)

Additionally, for every arrival of an honest or adversarial block in dyn2 at a
particular level at a tree, there is a corresponding arrival in ss0 at the same
level in the same tree. For a time t in the local clock of dyn2, let Δss0(t) be the
network delay of dyn2 measured with reference to the local clock of ss0. Using
(9), we have

λmin

λh
Δ ≤ Δss0(t) ≤ λmax

λh
Δ. (10)

We have the following relationship between dyn2 and ss0.

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 123

Lemma 4. Consider the time interval [s, s + t] in the local clock of dyn2. For
the static system ss0, define Bss0

α(s),α(s+t) as the event that there are no Nakamoto
blocks in the time interval [α(s), α(s + t)] in the local clock of ss0. Then,

P (Bdyn2
s,s+t) = P (Bss0

α(s),α(s+t)).

The proof for this lemma is given in Appendix D in the full version [12].

4.4 Step 3: Upgrading the Adversary

As the occurrence of Nakamoto blocks is a race between the fictitious honest
tree and the adversarial trees from the previous honest blocks, we next turn
to an analysis of the growth rate of an adversary tree. However, the growth
rate of an adversarial tree would now depend on the location of the root hon-
est block within an epoch which adds to the complexity of the analysis. To
get around this complexity, we simulate a new static system, ss1 in which the
adversary, on winning a leader election after evaluating RandVDF.Eval and
appending a block to an honest block (that is, growing a new adversarial tree),
is given a gift of chain of c − 1 extra blocks for which the adversary doesn’t
have to compute RandVDF.Eval. Thus, the adversary has to compute only
one RandVDF.Eval for the chain of first c blocks in the adversarial tree. At
this point, the adversary can assume a new epoch beginning and accordingly
update randSource. Hereafter, the evolution of randSource follows the rules in
ss0. Note that the local clock for both the static systems ss0 and ss1 are same.
Now, we have the following relationship between ss0 and ss1.

Lemma 5. Consider the time interval [s, s + t] in the local clock of dyn2. For
the static system ss1, define Bss1

α(s),α(s+t) as the event that there are no Nakamoto
blocks in the time interval [α(s), α(s + t)] in the local clock of ss1. Then,

P (Bss0
α(s),α(s+t)) ≤ P (Bss1

α(s),α(s+t)).

The proof for this lemma is given in Appendix E in the full version [12].
For analyzing P (Bss1

α(s),α(s+t)), we first consider an arbitrary static system
ss2 where both honest nodes and adversary win leader elections with constant
rates λh and λa, respectively, the honest nodes follows PoSAT, the adversary
has similar additional power of gift of chain of c − 1 blocks as in ss1 but the
network delay is a constant, say Δ′. For some s′, t′ > 0 in the local clock of the
static system ss2, we will determine an upper bound on P (Bss2

s′,s′+t′) in Sects. 4.5
and 4.6 and then use this result to obtain an upper bound on P (Bss1

α(s),α(s+t)) in
Sect. 4.7.

4.5 Step 4: Growth Rate of the Adversarial Tree

For time t′ > 0, let T̂i(t′) represents the adversarial tree in ss2 with ith honest
block as its root. The depth Di(t′) at time t′ in the local clock of ss2 is defined
as the maximum depth of the blocks of T̂i(t′) at time t′. In Lemma 6, we evaluate
the tail bound on Di(t′).

124 S. Deb et al.

Lemma 6. For x > 0 so that ηcλat′ + x is an integer,

P (Di(t′) ≥ φcλat′ + cx) ≤ e−θ∗
c t′

e(ηcλat′+x−1)Λc(θ
∗
c)g(t′). (11)

where φc = cηc, g(t′) =
∑

i1≥1

∫ t′

0
λi1

a ui1−1e−λau

Γ (i1)
eθ∗

c udu, Λc(θc
) =

log(−λac/θc
(λa−θc

)c−1) and θ∗
c is the solution for the equation Λc(θ) = θΛ̇c(θ)

Details on the analysis of T̂i(t′) and the proof of Lemma 6 are in Appendix F in
the full version [12].

4.6 Step 5: Existence of Nakamoto Blocks

With Lemma 6, we show below that in the static system ss2 in the regime
φcλa < λh

1+λhΔ′ , Nakamoto blocks has a non-zero probability of occurrence.

Lemma 7. If

φcλa <
λh

1 + λhΔ′ ,

then, in the static system ss2, there is a p > 0 such that the probability of the
j−th honest block being a Nakamoto block is greater than p for all j.

The proof of this result can be found in Appendix G.2 in the full version [12].
Having established the fact that Nakamoto blocks occurs with non-zero fre-

quency, we can bootstrap on Lemma 7 to get a bound on the probability that
in a time interval [s′, s′ + t′], there are no Nakamoto blocks, i.e. a bound on
P (Bs′,s′+t′).

Lemma 8. If

φcλa <
λh

1 + λhΔ′ ,

then for any ε > 0, there exist constants āε, Āε so that for all s′ ≥ 0 and t′ >

max
{(

2λh

1−η

)2 (
c−1

φc−1

)2

,
[
(c − 1)

(
Δ′ + 1

λmin

)]2}
, we have

P (Bss2
s′,s′+t′) ≤ Āε exp(−āεt

′1−ε) (12)

where āε is a function of Δ′.

The proof of this result can be found in Appendix G.3 in the full version [12].

4.7 Step 6: Putting Back All Together

In this section, we use the results from Sect. 4.6 to upper bound P (Bss1
α(s),α(s+t))

and hence, P (Bs,s+t).
Using Eq. 9, we have φcλa(t) <

λc
h(t)

1+λmaxΔ ⇐⇒ φcλa < λh

1+λmaxΔ . Then, we
have the following lemma:

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 125

Lemma 9. If

φcλa(t) <
λc

h(t)
1 + λmaxΔ

,

then for any ε > 0 there exist constants āε, Āε so that for all s ≥ 0 and t >

max
{(

2λh

1−η

)2 (
λh

λmin

) (
c−1

φc−1

)2

,
(

λh

λmin

) [
(c − 1)

(
Δ + 1

λmin

)]2}
, we have

P (Bs,s+t) ≤ Āε exp(−āεt
1−ε) + e−Ω(κ). (13)

The proof for this result is given in Appendix H in the full version [12]. Then,
combining Lemma 9 with Lemma 2 implies Theorem 1.

5 Discussion

In this section, we discuss some of the practical considerations in adopting
PoSAT.

A key question in PoSAT is what is the right choice of c? If c is low, say
10, then the security threshold is approximately 1.58. At c = 10, the protocol
is fully unpredictable and the confirmation latency is not too high. Also, any
newly joining honest node has to wait for around 10 inter-block arrivals before it
can participate in leader election. Thus, if there is a block arrival every second,
then, the node has to wait for 10 s. In any standard blockchain, there is always
a bootstrap period for the node to ensure that the state is synchronized with
the existing peers and 10 s is negligible as compared to the bootstrap period.

In PoSAT, a separate RandVDF needs to be run for each public-key. In a
purely decentralized implementation, all nodes may not have the same rate of
computing VDF. This may disadvantage nodes whose rate of doing sequential
computation is slower. One approach to solve this problem is to build open-
source hardware for VDF - this is already under way through the VDF Alliance.
Even under such a circumstance, it is to be expected that nodes that can operate
their hardware in idealized circumstances (for example, using specialized cooling
equipment) can gain an advantage. A desirable feature of our protocol is that
gains obtained by a slight advantage in the VDF computation rate are bounded.
For PoSAT, a combination of the VDF computation rate and the stake together
yields the net power wielded by a node, and as long as a majority of such power
is controlled by honest nodes, we can expect the protocol to be safe.

In our PoSAT specification, the difficulty parameter for the computation of
RandVDF.Eval was assumed to be fixed. This threshold was chosen based on
the entire stake being online - this was to ensure that forking even when all
nodes are present remains small, i.e., λmaxΔ remained small. In periods when
far fewer nodes are online, this leads to a slowdown in confirmation latency. A
natural way to mitigate this problem is to use a variable mining threshold based
on past history, similar to the adaptation inherent in Bitcoin. A formal analysis
of Bitcoin with variable difficulty was carried out in [19,20], we leave a similar
analysis of our protocol for future work.

126 S. Deb et al.

In our protocol statement, we have used the RandVDF directly on the
randomness prevRand and the public key. The RandVDF ensures that any
other node can only predict a given node’s leadership slot at the instant that it
actually wins the VDF lottery. However, this still enables an adversary to predict
the leadership slots of nodes that are offline and can potentially bribe them to
come online to favor the adversary. In order to eliminate this exposure, we can
replace the hash in the mining condition by using a verifiable random function
[14,25] (which is calculated using the node’s secret key but can be checked using
the public key). This ensures that an adversary which is aware of all the public
state as well as private state of all online nodes (including their VRF outputs)
still cannot predict the leadership slot of any node ahead of the time at which
they can mine the block. This is because, such an adversary does not have access
to the VRF output of the offline nodes.

There are two types of PoS protocols: one favoring liveness under dynamic
availability and other favoring safety under asynchrony. BFT protocols fall
into the latter class and lack dynamic availability. One shortcoming of the
longest chain protocol considered in the paper is the reduced throughput and
latency compared to the fundamental limits; this problem is inherited from the
Nakamoto consensus for PoW [26]. However, a recent set of papers address these
problems in PoW (refer Prism [3], OHIE [37] and Ledger Combiners [17]). Adap-
tations of these ideas to the PoSAT protocol is left for future work. Furthermore,
our protocol, like Nakamoto, does not achieve optimal chain quality. Adopting
ideas from PoW protocols with optimal chain quality, such as Fruitchains [28],
is also left for future work.

Finally, while we specified PoSAT in the context of proof-of-stake, the ideas
can apply to other mining modalities - the most natural example is proof-of-
space. We note that existing proof-of-space protocols like Chia [10], use a VDF
for a fixed time, thus making the proof-of-space challenge predictable. In proof-
of-space, if the predictability window is large, it is possible to use slow-storage
mechanisms such as magnetic disks (which are asymmetrically available with
large corporations) to answer the proof-of-space challenges. Our solution of using
a RandVDF can be naturally adapted to this setting, yielding unpredictability
as well as full dynamic availability.

Acknowledgements. DT wants to thank Ling Ren for earlier discussions on dynamic
availability of Proof-of-Stake protocols.

References

1. Azouvi, S., McCorry, P., Meiklejohn, S.: Betting on blockchain consensus with
fantomette. arXiv preprint arXiv:1805.06786 (2018)

2. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pp. 913–930. ACM (2018)

http://arxiv.org/abs/1805.06786

PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work 127

3. Bagaria, V., et al.: Proof-of-stake longest chain protocols: security vs predictability.
arXiv preprint arXiv:1910.02218 (2019)

4. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR
Cryptol. ePrint Arch. 2016, 919 (2016)

5. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

6. Brown-Cohen, J., Narayanan, A., Psomas, A., Weinberg, S.M.: Formal barriers to
longest-chain proof-of-stake protocols. In: Proceedings of the 2019 ACM Confer-
ence on Economics and Computation, pp. 459–473 (2019)

7. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus (2018)
8. Cai, J.-Y., Lipton, R.J., Sedgewick, R., Yao, A.-C.: Towards uncheatable bench-

marks. In: [1993] Proceedings of the Eigth Annual Structure in Complexity Theory
Conference, pp. 2–11. IEEE (1993)

9. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2016)
10. Cohen, B., Pietrzak, K.: The chia network blockchain (2019). https://www.chia.

net/assets/ChiaGreenPaper.pdf
11. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,

semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

12. Deb, S., Kannan, S., Tse, D.: PoSAT: proof-of-work availability and unpredictabil-
ity, without the work. arXiv preprint arXiv:2010.08154 (2020)

13. Dembo, A., et al.: Everything is a race and Nakamoto always wins. In: ACM CCS
(2020). See also arXiv preprint arXiv:2005.10484

14. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

15. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

16. Fan, L., Zhou, H.-S.A.: Scalable proof-of-stake blockchain in the open setting (or,
how to mimic Nakamoto’s design via proof-of-stake). Cryptology ePrint Archive,
Report 2017/656 (2018). Version 20180425:201821

17. Fitzi, M., Gaži, P., Kiayias, A., Russell, A.: Ledger combiners for fast settle-
ment. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 322–352.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 12

18. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

19. Garay, J., Kiayias, A., Leonardos, N.: Full analysis of Nakamoto consensus in
bounded-delay networks. Cryptology ePrint Archive, Report 2020/277 (2020).
https://eprint.iacr.org/2020/277

20. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. Cryptology ePrint Archive, Report 2016/1048 (2016). https://
eprint.iacr.org/2016/1048

21. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

http://arxiv.org/abs/1910.02218
https://doi.org/10.1007/978-3-319-96884-1_25
http://arxiv.org/abs/1607.01341
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
http://arxiv.org/abs/2010.08154
http://arxiv.org/abs/2005.10484
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-64375-1_12
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://eprint.iacr.org/2020/277
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2016/1048

128 S. Deb et al.

22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

23. Long, J., Wei, R.: Nakamoto consensus with verifiable delay puzzle. arXiv preprint
arXiv:1908.06394 (2019)

24. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential
work. In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science, pp. 373–388 (2013)

25. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039) (1999),
pp. 120–130. IEEE

26. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
27. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

28. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 315–324 (2017)

29. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

30. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

31. Ren, L.: Analysis of Nakamoto consensus. Technical Report. Cryptology ePrint
Archive, Report 2019/943. (2019). https://eprint.iacr.org

32. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

33. Shi, Z.: Branching Random Walks. LNM, vol. 2151. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25372-5

34. Wang, X., et al.: Proof-of-stake longest chain protocol revisited. arXiv preprint
arXiv:1910.02218v2 (2018)

35. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147
(2020). https://doi.org/10.1007/s00145-020-09364-x

36. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-
sensus in the lens of blockchain. arXiv preprint arXiv:1803.05069 (2018)

37. Yu, H., Nikolic, I., Hou, R., Saxena, P.: OHIE: blockchain scaling made simple.
arXiv preprint arXiv:1811.12628 (2018)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/1908.06394
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://eprint.iacr.org
https://doi.org/10.1007/978-3-319-25372-5
http://arxiv.org/abs/1910.02218v2
https://doi.org/10.1007/s00145-020-09364-x
http://arxiv.org/abs/1803.05069
http://arxiv.org/abs/1811.12628

Payment Channels

Post-Quantum Adaptor Signature for
Privacy-Preserving Off-Chain Payments

Erkan Tairi1(B), Pedro Moreno-Sanchez2, and Matteo Maffei1

1 TU Wien, Vienna, Austria
{erkan.tairi,matteo.maffei}@tuwien.ac.at
2 IMDEA Software Institute, Madrid, Spain

pedro.moreno@imdea.org

Abstract. Adaptor signatures (AS) are an extension of digital signa-
tures that enable the encoding of a cryptographic hard problem (e.g.,
discrete logarithm) within the signature itself. An AS scheme ensures
that (i) the signature can be created only by the user knowing the solu-
tion to the cryptographic problem; (ii) the signature reveals the solution
itself; (iii) the signature can be verified with the standard verification
algorithm. These properties have made AS a salient building block for
many blockchain applications, in particular, off-chain payment systems
such as payment-channel networks, payment-channel hubs, atomic swaps
or discrete log contracts. Current AS constructions, however, are not
secure against adversaries with access to a quantum computer.

In this work, we present IAS, a construction for adaptor signatures
that relies on standard cryptographic assumptions for isogenies, and
builds upon the isogeny-based signature scheme CSI-FiSh. We formally
prove the security of IAS against a quantum adversary. We have imple-
mented IAS and our evaluation shows that IAS can be incorporated into
current blockchains while requiring ∼1500 bytes of storage size on-chain
and ∼140 ms for digital signature verification. We also show how IAS
can be seamlessly leveraged to build post-quantum off-chain payment
applications without harming their security and privacy.

1 Introduction

Bitcoin and many other cryptocurrencies rely on the blockchain, a data structure
that logs every single transaction deemed valid by miners through a decentralized
consensus protocol. Each transaction is defined in terms of a scripting language
that encodes the rules that make a transaction valid. Some cryptocurrencies (e.g.,
Bitcoin) support just a few operations to encode simple coin transfers authorized
by digital signatures, whereas others (e.g., Ethereum) provide a Turing-complete
scripting language enabling clients to encode more complex transaction logics.

While logging each single transaction on the blockchain allows for public ver-
ifiability, it also introduces evident scalability problems. First, the permissionless
nature of the consensus protocol highly limits the transaction rate to few trans-
actions per second – about three orders of magnitude less than traditional credit

The full version of this paper is available at https://eprint.iacr.org/2020/1345.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 131–150, 2021.
https://doi.org/10.1007/978-3-662-64331-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_7&domain=pdf
https://eprint.iacr.org/2020/1345
https://doi.org/10.1007/978-3-662-64331-0_7

132 E. Tairi et al.

card-based systems [1] – which highly hinders a wider adoption of these cryp-
tocurrencies. Second, miners charge a transaction fee proportional to the size of
the scripts included in each transaction and to the computation required by the
miners for its validation, which can rapidly become a financial bottleneck.

A promising approach to reduce the transaction size is to manage some of the
transaction logic off-chain, that is, encoding the logic as a peer-to-peer protocol
between sender and receiver instead of directly in the transaction script. In this
setting, A. Polestra introduced the notion of scriptless scripts [24], which has
been later formalized as adaptor signatures [2,17].

Adaptor Signatures (AS). AS can be seen as an extended form of a standard
digital signature, where one can create a “pre-signature” that can converted into
a (full) signature with respect to an instance of a hard relation (e.g., the discrete
logarithm). The resulting signature can then be verified by the miners using the
standard verification algorithm from the digital signature scheme. AS provide
the following two intuitive properties: (i) only the user knowing the witness of
the hard relation can convert the pre-signature into a valid signature; and (ii)
anybody with access to the pre-signature and the corresponding signature can
extract the witness of the hard relation. This building block has been shown
highly useful in practice to build off-chain payment applications such as gener-
alized payment channels [2], payment-channel networks [21], payment-channel
hubs [27], and many others, being adopted in real-world blockchain protocols,
such as the Lightning Network, the COMIT Network, ZenGox and others.

Related Work and Limitations. Aumayr et al. [2] provides instances of AS
based on Schnorr and ECDSA digital signatures. Malavolta et al. [21] show an
instance of AS from any one-way homomorphic function and describe how to
construct payment-channel networks from AS. Moreno-Sanchez et al. [22] shows
an instance of AS based on the linkable ring signature supported in Monero.
Tairi et al. [27] leverage AS to build payment-channel hubs.

All these works do not provide security in the post-quantum setting where the
discrete logarithm assumption no longer holds against a post-quantum adversary.
Therefore, given the relevance in practice of AS, there is a need to design post-
quantum instances of them. For instance, there exist several efforts from NIST
to standardize quantum resistant algorithms. The blockchain community has
also shown interest in migrating towards post-quantum secure alternatives. For
example, Ethereum 2.0 Serenity upgrade [5] is planned to have an option for
a post-quantum signature and Zcash developers plan to update their protocol
with post-quantum alternatives when they are mature enough [16].

Esgin et al. [13] recently came up with a seminal contribution in this field,
proposing the first instance of a post-quantum AS, called LAS, which is based
on the standard lattice assumptions, such as Module-SIS and Module-LWE.
This construction, however, presents a few limitations with regards to correct-
ness, communication overhead, and privacy. From the correctness point of view,
LAS requires to use two hard relations, R and R′, where R is the base rela-
tion and R′ is the extended relation that defines the relation for extracted wit-
nesses. The reason for this is due to the inherent knowledge/soundness gap in

IAS: Post-Quantum Adaptor Signature 133

lattice-based zero-knowledge proofs [15]. Hence, as mentioned by the authors,
LAS only achieves weak pre-signature adaptability, which guarantees that only
the statement/witness pairs satisfying R are adaptable, and not those satisfying
R′. In practice, this implies that the applications that use LAS as a building
block require a zero-knowledge proof to guarantee that the extracted witness is
of sufficiently small norm and belongs to the relation R, which in turn guar-
antees that the pre-signature adaptability would work. However, the currently
most efficient variant of such a proof has size of 53 KB [14], which would incur
significant (off-chain) communication overhead to the applications using LAS.

From the privacy point of view, when LAS is used inside certain applications,
such as building payment-channel networks (PCNs), it can leak non-trivial infor-
mation that hinders the privacy of the overall construction. In a nutshell, the
reason for that is that the witness for adapting the pre-signature in LAS is a
vector whose infinity norm is 1. Privacy-preserving applications such as PCNs
require to encode a randomization factor at each hop, which in LAS is encoded
by adding a new vector whose infinity norm is 1 for each hop [13, Section 4.2].
However, this leads to a situation where a node at position k in the payment path
receives a vector with infinity norm k with high probability, learning at least how
many parties are before it on the path. Moreover, if an intermediary observes
that the norm is 1, then it knows that (with high probability) the party before
it is the sender. Encoding a vector of random but small norm (i.e., padding) for
each hop does not help either, as each sender-receiver pair would use a unique
norm, breaking thus relationship anonymity (see Sect. 6 for more details).

Finally, given the ongoing standardizations efforts of NIST, we find it inter-
esting to have several candidates of quantum-resistant AS building upon different
cryptographic assumptions to aid the related discussion (e.g., if one assumption
gets broken, we may still have standing post-quantum constructions). The cur-
rent state of affairs leads to the following question: Is it possible to design a
quantum resistant AS that preserves the security and privacy guarantees of the
off-chain applications built on top of the current non post-quantum alternatives?

Our Contributions. We affirmatively answer the previous question and pro-
pose IAS, the first construction for post-quantum AS that preserves the security
and privacy guarantees required by off-chain applications. In particular,

– We design IAS, a construction for AS that builds upon the post-quantum
signature scheme CSI-FiSh, and relies on hardness of standard cryptographic
assumptions from isogenies. We formally prove the security of IAS.

– We provide a parallelized implementation of IAS and evaluate its performance,
showing that it requires ∼1500 bytes of storage on-chain (with a parameter
set optimized for lower combined public key and signature size) and 140 ms
to verify a signature on average (i.e., the computation time for miners). We
compare with LAS and observe that the on-chain storage size is 3× smaller
than LAS while requiring higher computation time.

– We describe how to build payment-channel networks (PCNs) from IAS, and
show that IAS does not diminish the security or privacy guarantees of PCNs.

134 E. Tairi et al.

Thus, IAS seamlessly enables post-quantum off-chain applications as soon as
the underlying blockchains support the post-quantum signature scheme CSI-
FiSh.

2 Preliminaries

Notation. We denote by 1λ, for λ ∈ N, the security parameter. We assume
this is given as an implicit input to every function, and all our algorithms run in
polynomial time in λ. We denote by x ←$ X the uniform sampling of the variable
x from the set X . We write x ← A(y) to denote that a probabilistic polynomial
time (PPT) algorithm A on input y, outputs x. We use the same notation also for
the assignment of the computational results, for example, s ← s1 + s2. If A is a
deterministic polynomial time (DPT) algorithm, we use the notation x := A(y).
We use the same notation for the projection of tuples, e.g., we write σ := (σ1, σ2)
for a tuple σ composed of two elements σ1 and σ2. A function negl : N → R is
negligible in n if for every k ∈ N, there exists n0 ∈ N, such that for every n ≥ n0

it holds that negl(n) ≤ 1/nk. Throughout the paper we implicitly assume that
negligible functions are negligible in the security parameter (i.e., negl(λ)).

2.1 Adaptor Signatures (AS)

We first recall the definition of a hard relation, the notion of AS and informally
describe its security goals. We refer the reader to the full version of our paper
[28] for more details.

Definition 1 (Hard Relation). Let R be a relation with statement/witness
pairs (Y, y). Let us denote LR the associated language defined as LR := {Y |
∃y s.t. (Y, y) ∈ R}. We say that R is a hard relation if the following holds:

– There exists a PPT sampling algorithm GenR(1λ) that on input the security
parameter λ outputs a statement/witness pair (Y, y) ∈ R.

– The relation is poly-time decidable.
– For all PPT adversaries A there exists a negligible function negl, such that:

Pr
[
(Y, y∗) ∈ R

∣∣∣∣ (Y, y) ← GenR(1λ),
y∗ ← A(Y)

]
≤ negl(λ) ,

where the probability is taken over the randomness of GenR and A.

Definition 2 (Adaptor Signature Scheme). An adaptor signature scheme
w.r.t. a hard relation R and a signature scheme Σ = (KeyGen,Sig,Ver) consists
of four algorithms ΞR,Σ = (PreSig,Adapt,PreVer,Ext) defined as:

PreSig(sk,m, Y): is a PPT algorithm that on input a secret key sk, message
m ∈ {0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̂.

PreVer(pk,m, Y, σ̂): is a DPT algorithm that on input a public key pk, message
m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̂, outputs a bit b.

IAS: Post-Quantum Adaptor Signature 135

Adapt(σ̂, y): is a DPT algorithm that on input a pre-signature σ̂ and witness y,
outputs a signature σ.

Ext(σ, σ̂, Y): is a DPT algorithm that on input a signature σ, pre-signature σ̂
and statement Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.

Intuitively, an adaptor signature must achieve the following goals:

– Pre-signature correctness: An honestly generated pre-signature with respect
to a statement Y ∈ LR must be a valid pre-signature and can be adapted
into a valid signature from which a witness for Y can be extracted.

– Unforgeability for adaptor signatures: An adversary must not be able to pro-
duce a valid signature on a message m even when given a pre-signature on m
w.r.t. a random statement Y ∈ LR.

– Pre-signature adaptability: Any valid pre-signature w.r.t. Y can be adapted
into a valid signature using the witness y with (Y, y) ∈ R.

– Witness extractability: A valid signature/pre-signature pair (σ, σ̂) for a mes-
sage/statement pair (m,Y) can be used to extract the witness y of Y .

2.2 Elliptic Curves and Isogenies

Let E be an elliptic curve over a finite field Fp with p a large prime, and let
0E be the point at infinity on E. An elliptic curve is called supersingular iff
its number of rational points satisfies #E(Fp) = p + 1. Otherwise, an elliptic
curve is called ordinary.We note that in this work we are considering supersin-
gular curves. An isogeny between two elliptic curves E and E′ is a rational map
φ : E → E′, such that φ(0E) = 0E′ , and which is also a homomorphism with
respect to the natural group structure of E and E′. An isomorphism between two
ellliptic curves is an injective isogeny. The j-invariant of an elliptic curve, which
is a simple algebraic expression in the coefficients of the curve, is an algebraic
invariant under isomorphism (i.e., isomorphic curves have the same j-invariant).
As isogenies are group homomorphisms, any isogeny comes with a subgroup of
E, which is its kernel. Any subgroup S ⊂ E(Fpk) yields a unique (up to auto-
morphism) separable isogeny φ : E → E/S with ker φ = S. The equation for the
quotient E and the isogeny φ can be computed using Vélu’s formulae [29].

The ring of endomorphisms End(E) consists of all isogenies from E to itself,
and EndFp

(E) denotes the ring of endomorphisms defined over Fp. For an ordi-
nary curve E/Fp we have that End(E) = EndFp

(E), but for a supersingular
curve over Fp we have a strict inclusion EndFp

(E) � End(E). In particular, for
supersingular elliptic curves the ring End(E) is an order of a quarternion alge-
bra defined over Q, while EndFp

(E) is isomorphic to an order of the imaginary
quadratic field Q(

√−p). We will identify EndFp
(E) with the isomorphic order

which we will denote by O.
The ideal class group of O is the quotient of the group of fractional invertible

ideals in O by the principal fractional invertible ideals, and will be denoted
as Cl(O). There is a natural action of the class group on the class of elliptic
curves defined over Fp with order O. Given an ideal a ⊂ O, we can consider
the subgroup defined by the intersection of the kernels of the endomorphisms in

136 E. Tairi et al.

a, more precisely, Sa = ∩α∈a ker α. As this is a subgroup of E, we can divide
out by Sa and get the isogenous curve E/Sa, which we denote by a � E. This
isogeny is well-defined and unique up to Fp-isomorphism and the group Cl(O)
acts via the operator � on the set E of Fp-isomorphism classes of elliptic curves
with Fp-rational endomorphism ring O. One can show that Cl(O) acts freely
and transitively on E (i.e., E is a principal homogeneous space for Cl(O)).

Notation. Following [3], we see Cl(O) as a cyclic group with generator g, and
we write a = ga with a random in ZN for N = #Cl(O) the order of the class
group. We write [a] for ga and [a]E for ga �E. We note that under this notation
[a][b]E = [a + b]E.

2.3 Security Assumptions: GAIP and MT-GAIP

The main hardness assumption underlying group actions based on isogenies is
that it is hard to invert the group action.

Definition 3 (Group Action Inverse Problem (GAIP) [9]). Given two
elliptic curves E and E′ over the same finite field and with End(E) = End(E′) =
O, find an ideal a ⊂ O such that E′ = a � E.

The CSI-FiSh signature scheme (see Sect. 3) relies on the hardness of random
instance of a multi-target version of GAIP, called MT-GAIP. In [9] it is shown
that MT-GAIP reduces tightly to GAIP when the class group structure is known
(which is the case for CSI-FiSh).

Definition 4 (Multi-Target GAIP (MT-GAIP) [9]). Given k elliptic
curves E1, . . . , Ek over the same field, with End(E1) = · · · = End(Ek) = O,
find an ideal a ⊂ O s.t. Ei = a � Ej for some i, j ∈ {0 . . . , k} with i = j.

The best known classical algorithm to solve the GAIP (and in this case
also the MT-GAIP) has time complexity O(

√
N), where N = #Cl(O). On the

other hand, the best known quantum algorithm is Kuperberg’s algorithm for
the hidden shift problem [19,20]. It has a subexponential complexity with the
concrete security estimates still being an active area of research [4,23].

3 CSI-FiSh

Isogeny-based cryptography goes back to the works of Couveignes, Rostovtsev
and Stolbunov [7,25], with the first isogeny-based signature scheme being pro-
posed by Stolbunov in his thesis [26]. The signature scheme was a Fiat-Shamir
transform applied to a standard three-round isogeny-based identification scheme.
However, the problem with Stolbunov’s scheme is that it required an efficient
method to sample in the class group, and that each element of class group should
have an efficiently computable unique representation. The roadblock to both of
these problems is that the structure of the class group is unknown. Recently,
Buellens et al. [3] computed the class group of the quadratic imaginary field

IAS: Post-Quantum Adaptor Signature 137

Algorithm 1. CSI-FiSh Signature
1: Public parameters: base curve E0, class number N = #Cl(O), security parameters

λ, tS , S, hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS

2: procedure KeyGen(1λ)
3: for i ∈ {1, . . . , S − 1} do
4: ai ←$ZN

5: Ei ← [ai]E0

6: Set sk := [ai : i ∈ {1, . . . , S − 1}]
7: Set pk := [Ei : i ∈ {1, . . . , S − 1}]
8: return (sk, pk)

9: procedure Sig(sk, m)
10: Parse sk as (a1, . . . , aS−1)
11: a0 ← 0
12: for i ∈ {1, . . . , tS} do
13: bi ← ZN

14: E′
i ← [bi]E0

15: (c1, . . . , ctS) = H(E′
1‖ · · · ‖E′

tS‖m)
16: for i ∈ {1, . . . , tS} do

17: ri ← bi − sign(ci)a|ci| mod N

18: return σ := (r1, . . . , rtS , c1, . . . , ctS)

19: procedure Ver(pk, m, σ)
20: Parse pk as (E1, . . . , ES−1)
21: Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
22: Define E−i := Et

i for all i ∈ [1, S−1]
23: for i ∈ {1, . . . , tS} do
24: E′

i ← [ri]Eci

25: (c′
1, . . . , c

′
t) = H(E′

1‖ · · · ‖E′
tS‖m)

26: if (c1, . . . , ctS) == (c′
1, . . . , c

′
tS)

then
27: return 1
28: else
29: return 0

corresponding to the CSIDH-512 parameter set from [6], which allowed them to
construct a more efficient isogeny-based signature scheme, called CSI-FiSh.

Next, we briefly describe the CSI-FiSh signature scheme from [3]. CSI-FiSh
is a signature scheme obtained by applying Fiat-Shamir transform to an iden-
tification scheme. First, we recall the interactive zero-knowledge identification
scheme, where a prover wants to convince a verifier that it knows a secret ele-
ment a ∈ Cl(O) of its public key Ea = a � E0, for a = ga and a ∈ ZN , where E0

is a publicly known base curve. The scheme is as follows:

– Prover samples a random b = gb for b ∈ ZN and commits to Eb = [b]E0 (this
corresponds to Eb = b � E0 with our notation).

– Verifier samples a random challenge bit c ∈ {0, 1}.
– If c = 0, prover replies with r = b, otherwise it replies with r = b − a mod N

(reducing modulo N to avoid any leakage on a).
– If c = 0, verifier verifies that Eb = [r]E0, otherwise verifies that Eb = [r]Ea.

This scheme is clearly correct, and it has soundness 1/2. For the zero-
knowledge property, it is important that elements in Cl(O) can be sampled
uniformly, and that they have unique representation.

In order to improve soundness, the authors of [3] increased the size of the pub-
lic key. For a positive integer S, the secret key becomes the vector (a1, . . . , aS−1)
of dimension S − 1, and public key is set to (E0, E1 = [a1]E0, . . . , ES−1 =
[aS−1]E0). Then, the prover proves to the verifier that it knows an s ∈ ZN ,
such that [s]Ei = Ej for some pair of curves in the public key (with i = j).
In order to further increase the challenge space, one can exploit the fact that
given a curve E = [a]E0, its quadratic twist Et, which can be computed very

138 E. Tairi et al.

Algorithm 2. Non-interactive zero-knowledge proof for Lj

1: Public parameters: class number N = #Cl(O), hash function F : {0, 1}∗ → {0, 1}
2: procedure NIZK.P(x, s)
3: Parse x as (E1, E

′
1, . . . , Ej , E

′
j)

4: b ←$ZN

5: for i ∈ {1, . . . , j} do
6: Êi ← [b]Ei

7: c = F(E1‖E′
1‖Ê1‖ · · · ‖Ej‖E′

j‖Êj)
8: r ← b − c · s mod N
9: return π := ((Ê1, . . . , Êj), r)

10: procedure NIZK.V(x, π)
11: Parse x as (E1, E

′
1, . . . , Ej , E

′
j)

12: Parse π as ((Ê1, . . . , Êj), r)
13: c = F(E1‖E′

1‖Ê1‖ · · · ‖Ej‖E′
j‖Êj)

14: if c = 0 then
15: return

∧j
i=1([r]Ei = Êi)

16: else if c = 1 then
17: return

∧j
i=1([r]E

′
i = Êi)

efficiently, is Fp-isomorphic to [−a]E0. Therefore, one can almost double the set
of public key curves going from E0, E1, . . . , ES−1 to E−S+1, . . . , E0, . . . , ES−1,
where E−i = Et

i , without any increase in communication cost. Combining all
these the soundness error drops to 1

2S−1 . To achieve security level λ (i.e., 2−λ

soundness error), we need to repeat the protocol tS = λ/ log2(2S − 1) times.
The described identification scheme when combined with the Fiat-Shamir

heuristic, for a hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS , gives the
CSI-FiSh signature scheme shown in Algorithm 1, where sign denotes the sign
of the integer. In [3] it is shown that CSI-FiSh is SUF-CMA secure under the
MT-GAIP assumption, when H is modeled as a quantum random oracle, hence,
it is strongly unforgeable in the quantum random oracle model (QROM) [11].

3.1 Zero-Knowledge Proof for Group Actions

Cozzo and Smart [8] showed how to prove knowledge of a secret isogeny generi-
cally. In detail, they showed a zero-knowledge proof for the following relation:

Lj :=

{(
(E1, E

′
1, . . . , Ej , E

′
j), s

)
:

j∧
i=1

(
E′

i = [s]Ei

)}
.

Intuitively, the prover wants to prove in zero-knowledge that it knows a
unique witness s for j simultaneous instances of the GAIP. In [8] two variants of
such a proof are given, one when E1 = · · · = Ej = E0, called Special case with
soundness error 1/3, and another one when that condition does not hold, called
General case with soundness error 1/2. In our paper we only need the General
case for j = 2. Since the proof has soundness error of 1/2, we need to repeat it
tZK = λ times to achieve a security level of λ. Using a “slow” hash function F , as
in CSI-FiSh, which is 2k times slower than a normal hash function we can reduce
the number of repetitions to tZK = λ−k. For example, when setting λ = 128 and
k = 16, as in the fastest CSI-FiSh parameters, we get tZK = 112. In the random
oracle model the proof can be made non-interactive using a hash function F
with codomain {0, 1}tZK . For brevity, we only present the non-interactive single
iteration (i.e., tZK = 1) variant of the proof for Lj in Algorithm 2.

IAS: Post-Quantum Adaptor Signature 139

4 IAS: An Adaptor Signature from Isogenies

Despite the fact that CSI-FiSh is simply a signature scheme obtained by applying
Fiat-Shamir to multiple repetitions of Schnorr-type identification scheme from
isogenies, one cannot trivially construct a Schnorr-type AS as described in [2].

Strawman Approach. Let us consider a single iteration of the identification
scheme (i.e., tS = 1), and a hard relation R1

E0
⊆ E × Cl(O), for a set of elliptic

curves E , to be defined as R1
E0

:= {(EY , y) | EY = [y]E0}. A näıve approach
to construct an AS from a single-iteration CSI-FiSh, following the Schnorr AS
from [2], is to compute the randomness inside the pre-signature algorithm as
E′ ← [b]EY instead of doing E′ ← [b]E0 as in the original construction, and
leave the rest of the algorithm identical to the signing algorithm of CSI-FiSh.
However, later during the pre-verification, given the pre-signature σ̂ := (r̂, c), the
statement EY and c-th public key Ec, one cannot verify the correctness of the
pre-signature σ̂. More concretely, we have that r̂ = b − sign(c)a|c| mod N , Ec =
[sign(c)a|c|]E0 and EY = [y]E0. Now, using these values we can compute Ê′ =
[r̂]Ec = [b]E0, but then we cannot combine Ê′ with EY to obtain E′ = [b]EY ,
which we need for verification. Analogous problem happens if we first compute
the group action Ê′ = [r]EY , and then try to combine it with Ec to obtain the
desired E′. The reason behind this problem is that we have a limited algebraic
structure. More precisely, the group action is defined as � : Cl(O) × E → E , for
class group Cl(O) and set of elliptic curves E . This implies that we can pair
a class group element with an elliptic curve to map it to a new elliptic curve,
however, we do not have any meaningful operation over the set E that would
allow us to purely pair two elliptic curves and map to a third one.

4.1 Our Construction

On a high-level, we have to circumvent the limited algebraic structure of CSI-
FiSh, which prevents us from extracting the randomness. We solve this problem
by means of a zero-knowledge proof showing the validity of the pre-signature con-
struction. This might remind of the ECDSA-based AS construction by Aumayr
et al. [2], where a zero-knowledge proof is also used to prove the consistency of the
randomness, which would not be otherwise possible due to the lack of linearity of
ECDSA. Besides not being post-quantum secure, their cryptographic construc-
tion (i.e., the underlying signature scheme and thus the resulting zero-knowledge
proof) is, however, fundamentally different because the issue in CSI-FiSh is a
limited algebraic structure as opposed to a lack of linearity as in ECDSA.

More concretely, to compute the pre-signature for EY , the signer samples
a random b ←$ZN , computes Ê′ ← [b]E0 and E′ ← [b]EY . Then, the signer
uses E′ as input to the hash function to compute the challenge c, and also
includes E′ as part of the pre-signature. Lastly, to ensure that the same value
b is used in computation of both Ê′ and E′, a zero-knowledge proof π that
(E0, Ê

′, EY , E′) ∈ L2 is attached to the pre-signature (see Sect. 3.1 for such
a proof). So, the pre-signature looks like σ̂ := (r̂, c, π, E′). The pre-signature

140 E. Tairi et al.

verification of σ̂ then involves extracting Ê′ by computing the group actions
[r̂]Ec, using it to verify the proof π, and finally, checking that the hash of E′

produces the expected challenge c. The pre-signature adaptation is done by
adding the corresponding witness y to r̂ of the pre-signature to obtain the full
valid signature σ := (r, c). In an opposite manner, the extraction is done by
subtracting r of the valid signature from r̂ of the pre-signature.

Since CSI-FiSh involves multiple iterations (more concretely tS iterations),
we extend the hard relation R1

E0
to RtS

E0
⊆ EtS ×Cl(O)tS , to be defined as RtS

E0
:=

{(EY := (E1
Y , . . . , EtS

Y),y := (y1, . . . , ytS)) | Ei
Y = [yi]E0 for all i ∈ [1, tS]}, and

apply the above described method to every iteration with a different Ei
Y .

Although, the described scheme achieves correctness, one cannot prove its
security directly. As we would like to reduce both the unforgeability and witness
extractability of the scheme to the strong unforgeability of CSI-FiSh, inside the
reduction we need a way to answer the pre-signature queries by only relying on
the signing oracle of CSI-FiSh, and without access to the secret key sk or the
witness (y1, . . . , ytS). In order to overcome this issue, we use a modified hard rela-
tion. Let R∗

E0
consist of pairs IY := (EY , πY), where EY ∈ L

R
tS
E0

is as previously

defined, and πY is a non-interactive zero-knowledge proof that EY ∈ L
R

tS
E0

. For-

mally, we have that R∗
E0

:= {((EY , πY),y) | EY ∈ L
R

tS
E0

∧ NIZK.V(EY , πY) =

1}. Due to the soundness of the proof system, if RtS
E0

is a hard relation, then so
is R∗

E0
. Since we are in the random oracle model, the reduction then can use the

random oracle query table to extract a witness from the proof πY , and answer
the pre-signature oracle queries using this witness.

The resulting AS scheme, which we denote as ΞR∗
E0

,ΣCSI−FiSh
and call as IAS,

is depicted in Algorithm 3. The security of our construction is captured by the
following theorem, which we formally prove in the full version of our paper [28].

Theorem 1. Assuming that the CSI-FiSh signature scheme ΣCSI−FiSh is
SUF-CMA secure and R∗

E0
is a hard relation, the adaptor signature scheme

ΞR∗
E0

,ΣCSI−FiSh
, as defined in Algorithm 3, is secure in QROM.

Optimization. Our construction, as defined in Algorithm 3, makes sure that
all tS parts of the signature are adapted (i.e., each ri, for i ∈ {1, . . . , tS}, is
adapted). This is due to the fact that IAS is based on CSI-FiSh, which in turn
is constructed from multiple iterations of a Schnorr-type identification scheme
as described in Sect. 3. However, this also points to the fact that CSI-FiSh is
just a much less efficient version of Schnorr. Therefore, one can have a more
efficient variant of IAS by only adapting one of the iterations (e.g., the first
iteration). In this variant, during the pre-signature algorithm we compute π1 and
E′

1 using E1
Y as defined in Algorithm 3, and attach them to the pre-signature

σ̂ as before. But, for the rest of the iterations (i.e., for i ∈ {2, . . . , tS}), we do
not compute any zero-knowledge proof, and compute E′

i using E0 as done in the
signing algorithm of CSI-FiSh (see Sect. 1). This means that the pre-signature
σ̂ is only incomplete in the first component (i.e., only r̂1 needs to be adapted
to obtain a valid signature). Hence, the extraction and adaptation only depend

IAS: Post-Quantum Adaptor Signature 141

Algorithm 3. Adaptor Signature ΞR∗
E0

,ΣCSI−FiSh
(IAS)

1: Public parameters: base curve E0, class number N = #Cl(O), security parameters λ, tS , S,
hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS

2: procedure PreSig(sk, m, IY)
3: Parse sk as (a1, . . . , aS−1)

4: Parse IY as (EY , πY)
5: Parse EY as (E1

Y , . . . , E
tS
Y)

6: a0 ← 0
7: for i ∈ {1, . . . , tS} do

8: bi ← ZN

9: Ê′
i ← [bi]E0

10: E′
i ← [bi]E

i
Y

11: Set xi := (E0, Ê′
i, E

i
Y , E′

i)
12: πi ← NIZK.P(xi, bi)

13: (c1, . . . , ctS) = H(E′
1‖ · · · ‖E′

tS
‖m)

14: for i ∈ {1, . . . , tS} do

15: r̂i ← bi − sign(ci)a|ci| mod N

16: return σ̂ := (r̂1, . . . , r̂tS , c1, . . . ,

17: ctS , π1, . . . , πtS , E′
1, . . . , E′

tS
)

18: procedure PreVer(pk, m, IY , σ̂)
19: Parse pk as (E1, . . . , ES−1)

20: Parse IY as (EY , πY)

21: Parse EY as (E1
Y , . . . , E

tS
Y)

22: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
23: π1, . . . , πtS , E′

1, . . . , E′
tS

)

24: Set E−i = Et
i for all i ∈ [1, S − 1]

25: for i ∈ {1, . . . , tS} do

26: Ê′
i ← [r̂i]Eci

27: Set xi := (E0, Ê′
i, E

i
Y , E′

i)
28: if NIZK.V(xi, πi) �= 1 then

29: return 0
30: if (c1, . . . , ctS) == H(E′

1‖ · · · ‖E′
tS

‖m)
then

31: return 1

32: else

33: return 0

34: procedure Ext(σ, σ̂, IY)
35: Parse σ as (r1, . . . , rtS , c1, . . . , ctS)
36: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
37: π1, . . . , πtS , E′

1, . . . , E′
tS

)

38: for i ∈ {1, . . . , tS} do

39: y′
i ← ri − r̂i

40: Set y′ := [y′
i : i ∈ {1, . . . , tS}]

41: if (IY , y′) �∈ R∗
E0

then
42: return ⊥
43: return y′

44: procedure Adapt(σ̂, y)

45: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,

46: π1, . . . , πtS , E′
1, . . . , E′

tS
)

47: Parse y as (y1, . . . , ytS)
48: for i ∈ {1, . . . , tS} do

49: ri ← r̂i + yi mod N

50: return σ := (r1, . . . , rtS , c1, . . . , ctS)

on the first component of the pre-signature/signature pair. Using this approach
we revert back from the hard relation RtS

E0
to R1

E0
, and define a new modified

relation R†
E0

, which consists of pairs IY := (EY , πY), such that EY ∈ LR1
E0

and πY is a zero-knowledge proof that EY ∈ LR1
E0

. More formally, we have

that R†
E0

:= {((EY , πY), y) | EY ∈ LR1
E0

∧ NIZK.V(EY , πY) = 1}. Due to the

soundness of the proof system, if R1
E0

is a hard relation, then so is R†
E0

. We
call this optimized variant O−IAS, and capture its security with the following
theorem, which we formally proof in the full version of our paper [28].

Theorem 2. Assuming that the CSI-FiSh signature scheme ΣCSI−FiSh is
SUF-CMA secure and R†

E0
is a hard relation, the adaptor signature scheme

ΞR†
E0

,ΣCSI−FiSh
, is secure in QROM.

142 E. Tairi et al.

Remark 1. Although in this work we specifically focused on CSI-FiSh signature
scheme, we note that our techniques to construct an adpaptor signature scheme
can also be applied to other isogeny-based signatures that have similar algebraic
limitations, such as the recently proposed SQISign [10] signature scheme.

5 Performance Evaluation

In order to evaluate IAS we extended the commit 7a9d30a version of the proof-of-
concept implementation of CSI-FiSh (https://github.com/KULeuven-COSIC/
CSI-FiSh). The implementation depends on the eXtended Keccak Code Pack-
age (https://github.com/XKCP/XKCP) for the implementation of SHAKE256,
which is used as the underlying hash function and to expand the randomness. We
also use the GMP library [18] for high precision arithmetic. We implemented the
optimized variant O−IAS as explained in Sect. 4. Since O−IAS and CSI-FiSh are
composed of multiple independent iterations of a non-interactive identification
scheme, they are amenable to parallelization. Hence, we provided a parallelized
implementation using OpenMP. The source code is available at https://github.
com/etairi/Adaptor-CSI-FiSh.

Parameters. CSI-FiSh signature scheme is instantiated with the following
parameters: i) S, the number of public keys to use, ii) tS , the number of repeti-
tions to perform, and iii) k, the rate of the slow hash function (e.g., k = 16 means
that the used hash function is a factor 216 slower than a standard hash function,
such as SHA-3). In order to ensure λ bits of soundness security it suffices to take
the parameters such that S−tS ≤ 2−λ+k. As is described in [3], the parameter
S controls the trade-off between on the one hand small public key and fast key
generation (when S is small), and on the other hand small signature and fast
signing/verification (when S is large).

Testbed. All benchmarks were taken on a KVM-based VM with 2.0 GHz AMD
EPYC 7702 processor with 16 cores and 32 GB RAM, running Ubuntu 18.04
LTS, and the code was compiled with gcc 7.5.0.

5.1 Evaluation Results

In this section, we present our evaluation results and discuss the communication
size and computation time of O−IAS (i.e., sizes of objects and running times
of the algorithms). The results of our evaluation are summarized in Table 1. As
shown, playing with the parameters we can obtain different trade-offs, which we
explain next. We divide our discussion on: (i) on-chain analysis (i.e., overhead
imposed on the blockchain to support O−IAS) and (ii) off-chain analysis (i.e.,
overhead for peers at the application level).

On-Chain Analysis. In order to support O−IAS, the blockchain only needs to
verify that each transaction is accompanied by a signature that correctly verifies
under a given public key according to the logic of the verification algorithm of

https://github.com/KULeuven-COSIC/CSI-FiSh
https://github.com/KULeuven-COSIC/CSI-FiSh
https://github.com/XKCP/XKCP
https://github.com/etairi/Adaptor-CSI-FiSh
https://github.com/etairi/Adaptor-CSI-FiSh

IAS: Post-Quantum Adaptor Signature 143

CSI-FiSh. Thus, the storage size imposed by CSI-FiSh is dominated by the sig-
nature and public key sizes and the goal is thus to minimize these values.As was
already described above, the parameter S can be set to a small value to achieve
compact public keys. This, however, yields larger signatures. For instance, we
can observe from Table 1 that by setting S = 2 one can have public keys of only
128 bytes, but at the cost of signatures of size 1880 bytes.

Similarly, the computation time of IAS for the miners is represented by the run-
ning time of the verification algorithm of CSI-FiSh. In our evaluation, we observe
that increasing the value of S reduces the verification time of CSI-FiSh. However,
as was already noted, this increases the public key sizes. Nevertheless, the tech-
nique of using Merkle trees to obtain compact and constant size public keys (but
large secret keys) as described in [3] can also be applied to our construction. Using
that technique one can have public keys of size 32 bytes, signatures of size 1995
bytes and verification algorithm running time of 370 ms with no parallelization, as
shown in [3, Table 4], or 60 ms with our parallelized implementation.

Off-Chain Analysis. The operations of O−IAS defined in Algorithm 3 are
carried out off-chain, meaning that the creation and verification of pre-signatures
is done in a peer-to-peer manner and thus do not need to be stored in the
blockchain, nor to be verified by the miners. Yet, we discuss here the computation
time and communication size for this part as it illustrates the overhead for
applications building upon O−IAS.

In terms of communication size, a pre-signature σ̂ in IAS has size of ∼19 KB
on average. We can observe from Table 1 that the pre-signature size only varies
slightly the change in parameters. The reason for this is that the pre-signature
size is dominated by the expensive zero-knowledge proof for L2 (see Sect. 3.1)
that is required during pre-signature computation, which has size ∼18 KB and
it varies slightly with parameter k (bigger k implies smaller proof size). On the
other hand the running times of the pre-signature and pre-verification algorithms
decrease with the increased S value, meaning with the decreased number of iter-
ations tS . The reason for this is that during pre-signature and pre-verification
computation our implementation only parallelizes the computation of the

Table 1. Performance of O−IAS. Time is shown in seconds and size in bytes.

S tS k |sk| |pk| |σ̂| |σ| KeyGen Sig Ver PreSig PreVer Ext Adapt

21 56 16 16 128 19944 1880 0.05 0.24 0.23 3.59 3.55 0.005 0.005

22 38 14 16 256 19672 1286 0.06 0.16 0.16 2.75 2.68 0.005 0.005

23 28 16 16 512 19020 956 0.07 0.13 0.14 2.21 2.15 0.005 0.005

24 23 13 16 1024 19338 791 0.07 0.11 0.11 1.99 1.94 0.005 0.005

26 16 16 16 4096 18624 560 0.29 0.08 0.09 1.61 1.56 0.005 0.005

28 13 11 16 16384 19330 461 1.00 0.08 0.08 1.50 1.44 0.005 0.005

210 11 7 16 65536 19908 395 3.21 0.06 0.06 1.40 1.36 0.005 0.005

212 9 11 16 262144 19198 329 12.89 0.06 0.06 1.30 1.25 0.005 0.005

215 7 16 16 2097152 18327 263 102.02 0.06 0.06 1.16 1.11 0.005 0.005

144 E. Tairi et al.

zero-knowledge proof for L2, but all the tS iterations are computed by a single
thread. We opted for this approach as the zero-knowledge proof is the dominat-
ing cost in IAS, and it requires ∼750 ms to compute and verify. On the other
hand, extraction and adaptation are generally extremely fast operations for our
construction, however, we point out that the time for extraction in Table 1 does
not include the verification that the extracted witness y, which is a vector of
size 1 for O−IAS, satisfies (IY ,y) ∈ R∗

E0
(line 49 in Algorithm 3). We note that

in practice one can just extract the witness, adapt the pre-signature and then
check that the signature verifies, which is more efficient than actually checking
in R∗

E0
, which requires verifying an expensive zero-knowledge proof. Lastly, we

note that even though the communication size is a bit high these operations are
handled off-chain, and the pre-signatures are not stored in the blockchain.

5.2 Comparison with LAS

We compare our evaluation results with those of LAS [13], which is the only
other known post-quantum AS, regarding on-chain and off-chain overhead. The
authors of [13] did not provide any implementation, but they estimated the size of
their signature and pre-signature as 2701 and 3210 bytes, respectively. From this
we can observe that our signature sizes are 1.5–10× smaller depending on the
parameter choices, however, our pre-signature sizes are ∼6× larger. However,
due to the weak pre-signature adaptability property of LAS (as described in
Sect. 1), the applications that use LAS require an expensive zero-knowledge proof
to ensure that the extracted witness is of correct norm. In [14] it is shown
that such a proof has size of 53 KB, which signifies that our construction is
more efficient with respect to both on-chain and off-chain communication size.
Moreover, LAS has public key size of 1472 bytes (observed from [12, Table 2]),
which implies that using the Merkle tree technique we can have public key sizes
that are 42× times smaller. In terms of computation time, LAS is an AS scheme
based on Dilithium [12], and thus, it can perform more than hundred sign/verify
operations per second, as these operations take less than one millisecond for
Dilithium, thereby offering better computational performance than O−IAS.

In summary, our evaluation shows that it is feasible to adopt IAS to extend
current blockchains with post-quantum AS at the cost of ∼1500 bytes (for com-
bined public key and signature size using parameters S = 23, tS = 28, k = 16)
of communication size, which will be ∼3× smaller than LAS, and requiring only
∼100 ms of computation time (for signature verification using the same param-
eters). Analogous results and reduction in communication size also applies to
the off-chain setting, which greatly benefits the off-chain applications using AS
as building block, such as payment channels, payment-channel networks, atomic
swaps or payment-channel hubs, which are performed over a WAN network, and
thus, a reduction in communication is desirable.

IAS: Post-Quantum Adaptor Signature 145

6 Building Payment-Channel Networks from IAS

In this section we describe how to use adaptor signatures (AS) and IAS to build
post-quantum payment-channel networks (PCNs). In particular, we give the
background on PCNs, describe the atomic multi-hop locks (AMHLs) [21], show
the current implementation (i.e., one susceptible to post-quantum adversaries),
then we explain how to leverage IAS to build post-quantum resistant PCN that
achieves both security and privacy, and lastly discuss the privacy challenges of
LAS-based PCN from [13].

During our discussion, we assume that the verification algorithm in the under-
lying cryptocurrency is replaced by the verification algorithm of CSI-FiSh given
in Algorithm 1. We further assume that the scripting language supports other
application-dependent functionality such as timing conditions, which are avail-
able in virtually all cryptocurrencies today.

Background on PCN. Payment channels are a promising and practically
relevant approach to mitigate the low throughput provided by permissionless
cryptocurrencies such as Bitcoin. In a nuthsell, two users Alice and Bob create
a payment channel between them by means of a Bitcoin transaction where they
lock coins into a deposit Bitcoin address controlled by both of them. Afterwards,
Alice and Bob can pay each other by exchanging signed transactions that dis-
tribute the coins at the deposit address. These off-chain payments are exchanged
in a peer-to-peer manner and stored locally by the users. Only when Alice and
Bob decide to close the channel, they include the last transaction that they
have agreed on to the Bitcoin blockchain, therefore releasing the coins from the
deposit address.

A PCN naturally extends the notion of payment channel to route payments
between two users that do not have a payment channel directly between them.
Instead, these two users can pay each other by means of multi-hop payments
that leverage the payment channels available between intermediaries. A crucial
property required in a multi-hop payment is the synchronization of the channels
in the path, meaning that either all channels are successfully updated to process
the payment or no channel is updated.

The Lightning Network uses the hash-time lock contract (HTLC) for such
synchronization task. However, this mechanism presents security (i.e., it is prone
to the wormhole attack) and privacy issues (i.e., it leaks who pays to whom).
Recently, Malavolta et al. [21][21] have proposed Anonymous Multi-Hop Locks
(AMHL) as an alternative synchronization protocol for multi-hop payments that
overcomes the aforementioned security and privacy issues. The proposed con-
structions are, however, based on Schnorr and ECDSA digital signatures, both
based on the discrete logarithm problem, and thus, insecure against quantum
attackers. Our approach is thus to realize the functionality of AMHL leveraging
IAS instead.

Background on AMHL. A multi-hop payment from sender S to receiver R
through intermediaries {I}1...k, which is synchronized with AMHL is divided

146 E. Tairi et al.

in three steps: setup, commit and release. During the setup phase, S chooses
random strings l0, . . . , lk−1 and computes yj :=

∑j
i=0 li and Yj := f(yj) for

j := 0 . . . k − 1 where f is an additively homomorphic one-way function. The
setup ends when S sends the tuple (Yj−1, Yj , lj) to each intermediary Ij and
the tuple (Yk−1, yk−1) to the receiver R. At this point, each intermediary can
check the correctness of the tuple received from the sender by checking that
f(lj) ⊕ Yj−1 = Yj , where ⊕ denotes the operation in the range of f .

After the setup, the commit phase starts when S makes a conditional pay-
ment to I1 requiring that I1 provides the pre-image of Y0. Similarly, each inter-
mediary Ij makes a conditional payment to Ij+1 with the condition Yj after they
have received the corresponding payment from Ij−1. Finally, the release phase
is triggered by the receiver R that reveals yk−1 to Ik−1 to claim the coins in the
conditional payment previously set during the commit phase. Then, each inter-
mediary claims the coins from the previous neighbor in the path by computing
yj−1 := yj − lj . When the release phase is finished, all channels are updated and
the payment is finished.

Realizing AMHL with IAS. IAS allows for a smooth realization of AMHL in
a post-quantum setting. The random strings lj in our case are sampled from
ZN for N = #Cl(O) being the order of the class group. The pre-images of the
one-way function f in our case are computed as yj ← ∑j

i=0 li.
The function f becomes the group action computation, and hence, we com-

pute Yj ← [yj]E, for the public base curve E. Then, the setup phase continues
as described above. We note that analogous to other AMHL realizations [13,21],
S also needs to send a zero-knowledge proof πj+1 to each intermediary Ij+1, for
j ∈ {0, . . . , k−2}, which proves that S knows a witness yj for Yj . Although, this
corresponds to the L1 variant of the proof described in Sect. 3.1, one can just
run an instance of the underlying basic CSI-FiSh identification scheme to prove
this statement more efficiently, as it corresponds to a proof of a single secret
group action.

Once the setup phase is finalized, the parties proceed to the commit and
release phases, which we combine them here under a single phase called payment
for brevity. We denote by txi the transaction transferring coins from Ij to Ij+1.
During the payment phase S creates a pre-signature σ̂0 ← PreSig(sk0, tx0, Y0),
and shares it with I1. Then, for j ∈ {1, . . . , k−1}, each intermediary Ij creates its
own pre-signature σ̂j ← PreSig(skj , txj , Yj). Once all pre-signature are generated
and shared, R adapts the pre-signature σ̂k−1 into a valid full signature σk−1

using the witness yk−1 that it receives from S. Then, R shares σk−1 with Ik−1,
which extracts the witness y′

k−1 using σ̂k−1 and σk−1, computes y′′
k−2 ← y′

k−1 −
lk−1, and uses it to adapt its own pre-signature σ̂k−2. This process continues
backwards until S receives σ0.

This anonymous multi-hop payment construction is shown in Fig. 1.

Security and Privacy Discussion. In terms of security, Malavolta et al. [21]
showed that when AMHL is constructed using an AS, the security reduces to the
security of the underlying AS scheme. As proved in the full version of our paper

IAS: Post-Quantum Adaptor Signature 147

[28], IAS is a secure AS, hence, the security of our AMHL realization follows
consequently.

Regarding privacy, we observe that each witness yj (pre-image of f) is com-
puted as the sum of j +1 elements that are uniformly sampled from ZN . Hence,
the resulting value yj is also uniformly distributed in ZN . Therefore, when a
witness yj is revealed to an intermediary, it does not leak any information that
might be used to harm the privacy. As explained in Sect. 1, this is in contrast
with the AMHL construction of LAS [13], where the norm of yj increases (with
high probability) as j increases (i.e., as we move further along the path). This
in turn leaks non-trivial information regarding the path, which can be used to
break the privacy notions of interest for an AMHL that are described in [21].

Privacy Challenges With LAS in PCNs. Interestingly, Esgin et al. [13] also
describe how to realize a post-quantum PCN building on LAS. As the authors of
this work point out, LAS is a post-quantum adaptor signature scheme that relies
on hardness assumptions from lattices, a design choice that requires to carefully
handle challenge inherent to the lattice setting that makes the realization of
applications in a secure manner difficult. We refer to [13, Section 4.2] or more
details. We observe that the lattice setting (and thus LAS) also presents severe
challenges in terms of privacy.

In LAS-based PCN, the sender S during the setup samples k vectors rj with
infinity norm equal 1 [13, Fig. 2]. Then, S sets a vector sj :=

∑j
i=0 ri for each

intermediary Ij . Thus, each vector sj has an infinity norm equal j with high
probability. This pattern leaks information that allows an honest-but-curious
adversarial intermediary to deduce sensitive information. First, if the adversary
receives a vector sj with norm equal 1, then the adversary trivially learns that
the sender of the payment is the left neighbor in the path. Second, if an adversary
receives a vector with norm k∗, it learns that it is in the k∗-th position within
the payment path.

As a possible countermeasure, one could imagine that the sender, during the
setup, could set the norm of the vector s0 (i.e., the first vector in the series
sj) to a value other than 1 chosen at random. This näıve approach has two
disadvantages. First, increasing the norm of the vector sj decreases the effi-
ciency of the signature scheme. In fact, Esgin et al. suggest to keep this value
below 50 for practical purposes. Second, this approach also breaks relationship
anonymity [21], meaning that an adversarial intermediary can link who pays
to whom in a PCN. In particular, as required in the definition of relationship
anonymity, assume that two senders S0 and S1 simultaneously pay to receiver R0

and R1 correspondingly, through a path I1, I2, I3 where I1 and I3 are controlled
by the adversary. In this setting, when I1 receives the vector s0 from sender S0

with a certain norm x, the adversary can compare it with the norm of the vector
s2 that sends to R0. If the norm of s2 is x+2, the adversary knows that R0 is the
intended receiver of the payment from S0. Otherwise, the intended receiver is
R1. We leave the design of a modified version of LAS that preserves the privacy
properties of off-chain applications such as PCNs as an interesting future work.

148 E. Tairi et al.

Fig. 1. Anonymous multi-hop payments using IAS. We assume that (i) Tj ’s are trans-
mitted confidentially, (ii) pre-signature transmission from Ij to Ij+1 happens only if
that from Ij−1 to Ij already happened, and (iii) signature transmission from Ij+1 to
Ij happens only if that from Ij+2 to Ij+1 already happened.

7 Conclusion

Adaptor signatures (AS) are an extension of digital signatures that enable the
encoding of a cryptographic hard problem within the signature itself, a func-
tionality that has emerged as a key building block for off-chain applications.
However, virtually all current AS constructions are prone to attacks from an
adversary with a quantum computer. The recently proposed post-quantum AS
construction LAS constitutes a breakthrough in this sense, suffering however
from limitations when it comes to performance, communication overhead and,
most notably, privacy of the off-chain applications that use it as a building block.

IAS: Post-Quantum Adaptor Signature 149

In this work we designed IAS, the first construction for AS that is provably
secure in the post-quantum setting that additionally provides the security and
privacy notions of interest for off-chain applications built upon it. Our perfor-
mance evaluation showed that IAS can be incorporated into current blockchains
while requiring ∼1500 bytes of storage size on-chain and 140 ms for digital sig-
nature verification. When compared to LAS, IAS requires 3× small storage while
requiring higher computation time, thereby posing a different performance trade-
off. Finally, we showed how to build post-quantum PCN from IAS.

Acknowledgements. This work has been partially supported by the European
Research Council (ERC) under the European Unions Horizon 2020 research (grant
agreement No 771527-BROWSEC); by Netidee through the project EtherTrust (grant
agreement 2158) and PROFET (grant agreement P31621); by the Austrian Research
Promotion Agency through the Bridge-1 project PR4DLT (grant agreement 13808694);
by COMET K1 SBA, ABC; by Chaincode Labs through the project SLN: Scalability
for the Lightning Network; by the Austrian Science Fund (FWF) through the Meitner
program (project M-2608) and project W1255-N23.

References

1. Stress test prepares visanet for the most wonderful time of the year (2013). https://
tinyurl.com/ya35s3uo

2. Aumayr, L., et al.: Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476 (2020). https://eprint.iacr.org/2020/476

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

4. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

5. Buterin, V.: Understanding serenity, part I: Abstraction (2015). https://blog.
ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/

6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

7. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

8. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-FiSh secret keys to produce an
actively secure distributed signing protocol. In: PQCrypto (2020)

9. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

10. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

https://tinyurl.com/ya35s3uo
https://tinyurl.com/ya35s3uo
https://eprint.iacr.org/2020/476
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-45724-2_17
https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3

150 E. Tairi et al.

11. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

12. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS - dilithium: digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633 (2017). https://eprint.iacr.org/2017/633

13. Esgin, M.F., Ersoy, O., Erkin, Z.: Post-quantum adaptor signatures and payment
channel networks. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS
2020. LNCS, vol. 12309, pp. 378–397. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59013-0 19

14. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. Cryptology ePrint Archive, Report
2020/518 (2020). https://eprint.iacr.org/2020/518

15. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

16. Foundation, Z.: Frequently asked questions. https://z.cash/support/faq/#
quantum-computers

17. Fournier, L.: One-time verifiably encrypted signatures a.k.a. adaptor signatures
(2019). https://github.com/LLFourn/one-time-VES/blob/master/main.pdf

18. Granlund, T., The GMP Development Team: GNU MP: The GNU Multiple Pre-
cision Arithmetic Library, 6.1.2 edn. (2019)

19. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

20. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC 2013, pp. 20–34 (2013)

21. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: NDSS
(2019)

22. Moreno-Sanchez, P., Blue, A., Le, D.V., Noether, S., Goodell, B., Kate, A.:
DLSAG: non-interactive refund transactions for interoperable payment channels
in Monero. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
325–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 18

23. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

24. Poelstra, A.: Scriptless scripts. Presentation Slides (2017). https://download.
wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf

25. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

26. Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
27. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2l: anonymous atomic locks for scalabil-

ity in payment channel hubs. Cryptology ePrint Archive, Report 2019/589 (2019).
https://eprint.iacr.org/2019/589

28. Tairi, E., Moreno-Sanchez, P., Maffei, M.: Post-quantum adaptor signature
for privacy-preserving off-chain payments. Cryptology ePrint Archive, Report
2020/1345 (2020). https://eprint.iacr.org/2020/1345

29. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB
273(A238–A241), 5 (1971)

https://doi.org/10.1007/978-3-030-26951-7_13
https://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-030-59013-0_19
https://doi.org/10.1007/978-3-030-59013-0_19
https://eprint.iacr.org/2020/518
https://doi.org/10.1007/978-3-030-21568-2_4
https://z.cash/support/faq/#quantum-computers
https://z.cash/support/faq/#quantum-computers
https://github.com/LLFourn/one-time-VES/blob/master/main.pdf
https://doi.org/10.1007/978-3-030-51280-4_18
https://doi.org/10.1007/978-3-030-45724-2_16
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2019/589
https://eprint.iacr.org/2020/1345

FPPW: A Fair and Privacy Preserving
Watchtower for Bitcoin

Arash Mirzaei(B), Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Faculty of Information Technology, Monash University, Melbourne, Australia
{arash.mirzaei,amin.sakzad,jiangshan.yu,ron.steinfeld}@monash.edu

Abstract. In this paper, we introduce FPPW, a new payment channel
with watchtower scheme for Bitcoin. This new scheme provides fairness
w.r.t. all channel participants including both channel parties and the
watchtower. It means that the funds of any honest channel participant
are safe even assuming that other two channel participants are corrupted
and/or collude with each other. Furthermore, the watchtower in FPPW
learns no information about the off-chain transactions and hence FPPW
provides privacy against the watchtower. As a byproduct, we also define
the coverage of a watchtower scheme, that is the total capacity of chan-
nels that a watchtower can cover on a scale of 0 to 1, and show that
FPPW’s coverage is higher than those of PISA and Cerberus. The scheme
can be implemented without any update in Bitcoin script.

Keywords: Bitcoin · Security · Privacy · Payment channel ·
Lightning network · Generalized channel · Watchtower

1 Introduction

Scalability has always been an important limitation of Bitcoin. Payment chan-
nel is a promising technique to resolve this issue. It enables two parties to open
a channel by locking some funds in a 2-of-2 multi-signature output. Then par-
ties can update the channel state by exchanging off-chain transactions. Finally,
they record the last agreed state on-chain and each party receives its deserved
amount of funds accordingly. Since off-chain transactions are not recorded on
the blockchain, payment channels also provide some privacy guarantees.

Lightning [16] and generalized channels [1] are two important payment chan-
nels for Bitcoin. In a Lightning channel, commit transactions represent the chan-
nel states and each party has its own version of the transaction. However, in a
generalized channel, both parties hold the same version of the state and adap-
tor signature is effectively used to distinguish the broadcaster of the transaction
from its counter-party. Several schemes also exist on Turing complete blockchains
(e.g. Ethereum) [6,8,14].

Most payment channels work based on this idea that once a dishonest channel
party records an old state on-chain, its counter-party is supposed to provide
evidence of invalidity of the published state within a time interval. Otherwise,
the channel gets finalized with the recorded old state. Since duration of this time
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 151–169, 2021.
https://doi.org/10.1007/978-3-662-64331-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_8&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_8

152 A. Mirzaei et al.

interval is limited, such payment channels rely on the assumption that channel
parties check the blockchain frequently. However, since it is possible that channel
parties crash or go offline for a long time, they might delegate the monitoring task
to a third-party, called the watchtower. Monitor [5], DCWC [3], Outpust [10],
Cerberus [4], and Tee Guard [11] are the existing watchtower schemes for Bitcoin,
where Tee Guard follows a different direction as it relies on features of Trusted
Execution Environments. There are also some watchtower schemes for Turing
complete blockchains [2,12,13].

Monitor [5] is the first watchtower scheme for Lightning network which mainly
focuses on the privacy against the watchtower. However, Monitor has two main
issues, both of which related to fairness. Firstly, honest watchtowers might be
rewarded upon fraud (i.e. broadcast of an old state on-chain), which is unfair
with respect to (w.r.t.) the watchtower. Secondly, honest parties cannot penalize
the unresponsive watchtower, which is unfair towards an honest hiring party.

DCWC [3] proposes the usage of a network of watchtowers which must coop-
erate to maximize their interest. This reduces the probability that the channel
gets finalized with an old state. However, watchtowers might still crash or get
unresponsive without being penalized by the hiring party. Also, the reward mech-
anism is still unfair w.r.t. the watchtower. Outpost [10] solves the issue of fairness
towards the watchtower by paying her per channel update.

Cerberus [4] and PISA [13] elegantly provide fairness w.r.t. the hiring party.
However, PISA fails to be deployed in cryptocurrencies with limited script lan-
guages such as Bitcoin and Cerberus sacrifices the privacy against the watch-
tower. In particular, the Cerberus watchtower learns the distribution of funds
in the channel. Thus, the main motivation of this paper is designing a watch-
tower scheme for Bitcoin that achieves both: (1) fairness w.r.t. both the hired
watchtower and her hiring party and (2) privacy against the watchtower.

1.1 Our Contribution

The contribution of this paper is as follows:

– We present a new privacy-preserving payment channel with watchtower
scheme for Bitcoin called FPPW, which is fair w.r.t. all channel participants
and allows the channel parties to go offline for a long period of time (Sect. 4).
To be more precise, FPPW is an extension of a new variant of a generalized
channel.

– We are the first to define the concepts of fairness, privacy against the watch-
tower and coverage for a watchtower service (Sect. 3.3), where coverage is
a metric that represents the maximum total capacity of channels that the
watchtower can cover on a scale of 0 to 1. Furthermore, in Sect. 5, we prove
that our design achieves fairness w.r.t. all channel participants and unlike
Cerberus, it provides privacy against the watchtower. We also show that the
coverage of FPPW is better than that of Cerberus and PISA . Table 1 presents
a quick comparison between FPPW and other schemes.

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 153

Table 1. Comparison of FPPW with existing watchtower schemes.

Scheme Bitcoin support Privacy β-Coveragea Channel party
α-fairnessb

Watchtower
fairness

Monitor [5] Yes Yes β = 1 α = 0 No

DCWC [3] Yes Yes β = 1 α = 0 No

Outpost [10] Yes Yes β = 1 α = 0 Yes

PISA [13] No Yes β = 1/3 α = 1c Yes

Cerberus [4] Yes No β = 1/3 α = 1 Yes

FPPW (this work) Yes Yes β = 1/2 α = 1 Yes
a: β is a value between 0 and 1 where the higher β, the higher achievable total capacity
for the channels that are monitored by the watchtower.
b: α is a value between 0 and 1 and represents that the channel party might lose
(1 − α) portion of its balance if the watchtower is unresponsive.
c: PISA allows the watchtower to lock an agreed amount of collateral per customer
(i.e. 0 < α ≤ 1). PISA also provides β-coverage with β = 1/(1+2α). However, in this
table, to compare coverage of PISA with those of Cerberus and FPPW, we let PISA’s
collateral to be equal to the channel capacity (i.e. α = 1).

– We propose a fee handling mechanism that allows the channel participants
to determine the fee for different transactions at the time when fraud occurs.
Furthermore, a proof-of-concept implementation of FPPW channels on Bit-
coin is provided.1

2 Preliminaries and Notations

2.1 Preliminaries

In this section the underlying cryptographic primitives of FPPW are introduced.

Digital Signature. A digital signature scheme Π includes three algorithms as
following:

– Key Generation. (pk, sk) ← Gen(1κ) on input 1κ (κ is the security param-
eter), outputs the public/private key pair (pk, sk).

– Signing. σ ← Signsk(m) on inputs the private key sk and a message m ∈
{0, 1}∗ outputs the signature σ.

– Verification. b ← Vrfypk(m;σ) takes the public key pk, a message m and a
signature σ as input and outputs a bit b.

In this work, we assume that the utilized signature schemes are existentially
unforgeable under an adaptive chosen-message attack. It guarantees that the
probability that an adversary who has access to a signing oracle outputs a valid
signature on any new message is negligible. In this paper, we call such signature

1 Due to lack of space, this will be presented in the technical report [15].

154 A. Mirzaei et al.

schemes secure. ECDSA [9] is a secure signature scheme that is currently being
used in Bitcoin. Schnorr [17] is another important secure signature scheme that
has been proposed to be introduced in Bitcoin due to its key aggregation and
signature aggregation properties.

Hard Relation. A relation R with statement/witness pairs (Y ; y) is called a
hard relation if (i) There exists a polynomial time generating algorithm (Y ; y) ←
GenR(1κ) that on input 1κ outputs a statement/witness pair (Y ; y) ∈ R; (ii) The
relation between Y and y can be verified in polynomial time, and (iii) For any
polynomial-time adversary A , the probability that A on input Y outputs y
is negligible. We also let LR := {Y | ∃Y s.t. (Y, y) ∈ R}. Statement/witness
pairs of R can be public/private key of a signature scheme generated by Gen
algorithm.

Adaptor Signature. Adaptor signatures appeared first in [1]. Adaptor signa-
ture is used in generalized channels to tie together the authorization of a commit
transaction and the leakage of a secret value. In what follows, we recall how an
adaptor signature works. Given a hard relation R and a signature scheme Π, an
adaptor signature protocol Ξ includes four algorithms as follows:

– Pre-Signing. σ̃ ← pSignsk(m,Y) is a probabilistic polynomial time (PPT)
algorithm that on input a private key sk, message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̃.

– Pre-Verification. b ← pVrfypk(m,Y ; σ̃) is a deterministic polynomial time
(DPT) algorithm that on input a public key pk, message m ∈ {0, 1}∗, state-
ment Y ∈ LR and pre-signature σ̃, outputs a bit b.

– Adaptation. σ ← Adapt(σ̃, y) is a DPT algorithm that on input a pre-
signature σ̃ and witness y, outputs a signature σ.

– Extraction, Ext(σ, σ̃, Y) is a DPT algorithm that on input a signature σ,
pre-signature σ̃, and statement Y ∈ LR, outputs ⊥ or a witness y such that
(Y, y) ∈ R.

Correctness of an adaptor signature guarantees that for an honestly gener-
ated pre-signature σ̃ on the message m w.r.t. a statement Y ∈ LR, we have
pVrfypk(m,Y ; σ̃) = 1. Furthermore, when σ̃ is adapted to the signature σ, we
have Vrfypk(m;σ) = 1 and Ext(σ, σ̃, Y) outputs y such that (Y, y) ∈ R.

An adaptor signature scheme is secure if it is existentially unforgeable under
chosen message attack (aEUF − CMA security), pre-signature adaptable and wit-
ness extractable. The aEUF − CMA security guarantees that it is of negligible
probability that any PPT adversary who has access to signing and pre-signing
oracles outputs a valid signature for any arbitrary new message m even given
a valid pre-signature and its corresponding Y on m. Pre-signature adaptablity
guarantees that every pre-signature (possibly generated maliciously) w.r.t. Y
can adapt to a valid signature using the witness y with (Y, y) ∈ R. Witness
extractablity guarantees that it is of negligible probability that any PPT adver-
sary who has access to signing and pre-signing oracles outputs a valid signature

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 155

and a statement Y for any new message m such that the valid signature does
not reveal a witness for Y even given a valid pre-signature on m w.r.t. Y . The
ECDSA-based and Schnorr-based adaptor signature schemes were constructed
and analyzed in [1].

2.2 Notations

In this section, we present the notations for Bitcoin transactions. A Bitcoin
transaction Txi has some inputs and some outputs and is denoted by:

Txi = [I1i , I2i , . . .] → [O1
i , O2

i , . . .],

where Ij
i and Oj

i with j ≥ 0 denote the jth input and the jth output of Txi,
respectively. If Txi has one output, this output is denoted by Oi. Each Bitcoin
output O, denoted by (x | ϕ), consists of a monetary value x and some conditions
ϕ that must be met when one takes O as an input in another transaction. If
an output has several subconditions, they are separated by ∨ operation(s); To
spend the output, one of the subconditions must be met. Each transaction input
I has also two elements where the first one is actually the output of a previously
published transaction O and the second element is the witness γ that I uses to
meet the condition ϕ of O. The witness γ has also two elements, first of which
is denoted by S and determines the index of the subcondition that I meets. The
second element of γ, which is denoted by D, is actually the data that is required
to meet the subcondition. To simplify the notations, we denote I by (O‖S). If
a transaction Txi lacks some required data in witness part of at least one of its
inputs, it is denoted by [Txi].

The signature and pre-signature of party P on Txi for its jth input is denoted
by σP,j

i and σ̃P,j
i , respectively, where j can be removed if Txi has one input.

Since transaction flows might be difficult to follow, we also use charts to illustrate
them. For example, Txi = [(O3

j ‖2), (Ok‖1)] → [O1
i , O2

i , . . .] is illustrated in Fig. 1.
Transactions that are already published on-chain are illustrated by doubled edge
rectangles (e.g. Txj in Fig. 1). Transactions that are ready to be published are
illustrated by single edge rectangles (e.g. Txi). Dotted edge rectangles show
transactions that still lack the required witness for at least one input and hence
are unprepared to be propagated in the blockchain network (e.g. [Txk] in Fig. 1).

Fig. 1. Transaction flow of Txi = [(O3
j‖2), (Ok‖1)] → [O1

i , O
2
i , . . .].

156 A. Mirzaei et al.

For some transactions, the output that is taken as input to the transaction is
irrelevant to protocol design. Such inputs are notated by (x | #P) where x and
P denotes the value and owner of that taken output, respectively. For example,
the funding transaction of a payment channel between A and B is denoted by:

Txi = [(a | #A), (b | #B)] → [(a + b | pkA ∧ pkB)].

Table 2 summarizes the mentioned notations.

Table 2. Notations

Notation Description

Txi Transaction Txi = [I1i , I2i , . . .] → [O1
i , O2

i , . . .] with inputs I1i , I2i , etc.

and outputs O1
i , O2

i , etc.

Iji jth input of transaction Txi

Oj
i jth output of Txi. Index j can be removed if Txi has a single output

O = (x | ϕ) Output with monetary value x and condition ϕ

γj
i Witness of the input Iji

σP,j
i (or σ̃P,j

i) Signature (or pre-signature) of P on jth input of Txi. The index j can

be removed if Txi has a single input

I = (O||S) The input that meets Sth subcondition of the output O

[Txi] Transaction Txi with incomplete witness for at least one input

(x|#A) Any arbitrary output owned by A with monetary value of x

3 FPPW Overview

3.1 System Model

Cryptographic primitives that have been used in FPPW are cryptographically
secure. There is an authenticated and secure end-to-end communication channel
between channel parties. The watchtower and channel parties are rational and
might deviate from the protocol if it increases their profit. Also, each pair of
participants might collude with each other if it raises the total profit of colluding
participants. The watchtower is an always online service provider, but channel
parties can go offline for a long period (approximately T rounds). Furthermore,
the underlying blockchain contains a distributed ledger that achieves security [7].
When a valid transaction is propagated in the blockchain network, it is definitely
included in the blockchain ledger immediately (i.e. the confirmation delay τ is 1).

Remark 1. FPPW channels can work with any confirmation delay. However, we
assume that the confirmation delay is 1 to simplify the protocol and its analysis.

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 157

3.2 FPPW Overview

A payment channel contains a sequence of state updates between two parties
where only its first and last states are recorded on the blockchain. The two
channel parties process all the intermediate state updates off-chain. This elim-
inates the need to confirm every state update, i.e. every transaction, on the
blockchain. However, as one may submit an intermediate state (which is already
revoked by a later state) to the blockchain, the channel parties will need to get
online frequently to monitor and punish such misbehaviours. Such a requirement
may be impractical for some users. Thus, watchtower is introduced as a third
party to act on behalf of the channel parties.

FPPW is a fair and privacy preserving watchtower service for generalised
channels [1]. FPPW provides privacy against the watchtower and hence the
watchtower obtains no data on intermediate state updates. To provide fairness
towards the watchtower, the FPPW service rewards the watchtower for the chan-
nel establishment and per channel update. Furthermore, to achieve fairness w.r.t.
channel parties, the watchtower must lock some collateral, which is redeemed if
the watchtower is responsive upon fraudulent channel closures. If the watchtower
is dishonest and the channel is closed at an old state, protocol guarantees that
the cheated party can penalize the watchtower by taking its collateral. Watch-
tower can reclaim its collateral at any time. Then, the channel parties can update
the channel on-chain and hire a new watchtower or continue using the channel.
In the latter case, channel parties must get online frequently.

3.3 Watchtower Service Properties

In this section, some properties of a watchtower service are formally defined.

Definition 1 (Channel party α-Fairness). A payment channel with watch-
tower is α-party-fair, if the following holds for an honest channel party P:

– P can close the channel at any time and
– α is the largest real number such that regardless of the reward that P pays to

the watchtower, P loses at most (1 − α) · xP coins in the channel where xP
denotes balance of P in the latest channel state.

Note that 0 ≤ α ≤ 1, where α = 1 implies that the honest party P will not lose
any fund in the channel and α = 0 means that P might lose all of his funds.

Definition 2 (Watchtower Fairness). A payment channel with watchtower
is watchtower-fair, if the following holds for an honest watchtower W:

– W is rewarded with some non-zero amounts of coins and
– given that W has locked some collateral as part of the watching service, it

is of negligible probability that the honest watchtower cannot redeem all the
collateral once watching terminates according to the watching agreement.

158 A. Mirzaei et al.

Monitor [5] and DCWC [3] are called unfair w.r.t the watchtower because for
these schemes, it is possible that the watchtower is not rewarded.

Let xP,0 with P ∈ {A,B} denote the initial balance of party P in the channel
and the channel capacity be defined as X := xA,0 + xB,0. The privacy is defined
by the following privacy game.

Challenge. Let there exist two payment channels where the first one is
between honest channel parties A and B and the second one is between honest
channel parties A′ and B′ and both channels have the same number of chan-
nel updates n and the same channel setup, i.e. xA,0 = xA′,0, xB,0 = xB′,0,
xA,n = xA′,n and xB,n = xB′,n. Let xP,[i,j] show the sequence of balance values
of party P between ith to jth states of the payment channel that P is involved
in. Assume that A is any passive PPT adversarial watchtower excluding A, B,
A′ and B′ which watches these two channels. To challenge A , the challenger
selects a random bit b and gives the sequence (xP,[1,n−1],xP̄,[1,n−1]) to A where
P = A and P̄ = B if b = 0 and P = A′ and P̄ = B′ otherwise.

Output. The adversary A outputs a bit b′ to guess that the received sequence
belongs to the first or the second channel. The adversary wins the game if and
only if b = b′.

Remark 2. For any multihop payment routed via the channel between A and B
or the channel between A′ and B′, we assume that the passive adversary is not
involved as a channel party in routing such payments.

Definition 3 (Weak Privacy Against Watchtower). A payment channel
with watchtower provides weak privacy against the watchtower if according to
the privacy game | Pr[b = b′] − 1/2 | is negligible.2

Next, we define β-coverage, which basically measures the capability of a watch-
tower (on a scale between 0 to 1) in watching all the existing payment channels
on a fixed Blockchain.

Definition 4 (Coverage). For a blockchain B with N payment channels, a
watchtower W provides β-coverage with β := X

C+X , where C is the total collateral
required by W to watch all payment channels for both channel parties and X is
the total capacity of all channels.

The parameter β can take any value in the interval [0, 1]. For Cerberus and PISA
(with α = 1), β equals 1

3 because for these schemes, collateral of the watchtower
must be twice the channel capacity if the watchtower is going to be hired by
both channel parties. Although, PISA allows lower values of collateral, such
values cannot provide channel party α-fairness with α = 1 and hence cannot
guarantee that the honest party does not lose any funds.
2 If in the defined privacy game, the channel setup for two channels could be different

and the sequence (xP,[0,n],xP̄,[0,n]) is given to the passive PPT adversarial watch-
tower, then the privacy guarantee is stronger. While Monitor, DCWC, and Outpost
provide such stronger privacy guarantee, PISA provides weak privacy as defined in
Definition 3 and Cerberus does not achieve privacy against watchtower.

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 159

4 FPPW Channel

The lifetime of an FPPW channel can be divided into 4 phases including
establishment, update, closure and abort. We explain these phases through
the following sections. The cryptographic primitives, used in these phases, are
as following: A digital signature scheme Π = (Gen,Sign,Vrfy); a hard rela-
tion R with generating algorithm GenR = Gen; an adaptor signature scheme
ΞΠ,R = (pSign, pVrfy,Adapt,Ext). We assume that the watchtower is hired by
both channel parties. However, FPPW can be simply extended to situations
where only one party hires the watchtower. FPPW for such scenarios will be
provided in the technical report [15].

4.1 FPPW Channel Establishment

FPPW channel establishment phase includes a funding transaction, a commit
transaction and a split transaction. The funding transaction locks funds of the
channel parties in a 2-of-2 multisig output and can be claimed only if both
parties agree and cooperate with each other. The commit transaction is held by
both channel parties and sends all the channel funds to a joint account that can
be spent by the corresponding split transaction after t rounds. Split transaction
actually represents the channel state and distributes the channel funds between
the channel parties. The quantity t, which is called the revocation period, exists
to ensure that there is enough time for punishing the dishonest channel party
in case of fraud (i.e. if the published commit transaction corresponds with a
revoked state). Parties finally publish the funding transaction on the blockchain.
However, since its output can be spent if both parties cooperate, one party
might lock the funds by being unresponsive. To avoid such situations, before
signing the funding transaction, both channel parties must sign commit and
split transactions.

Additionally, two other transactions are created in this phase including the
collateral transaction and the reclaim transaction which are used for watchtower
services. Using the collateral transaction, the watchtower locks its collateral in
a 3-of-3 multisig output shared between channel parties and the watchtower.
Collateral is awarded to the cheated channel party if the watchtower does not
appropriately act upon fraud. The value of the collateral equals the channel
capacity. Using the reclaim transaction, the watchtower can start the process
of reclaiming its collateral. The watchtower can finally redeem its collateral by
claiming the output of the reclaim transaction after a large relative timelock of
T rounds with T � t which is called the penalty period. If channel parties get
online at least once every T −1 rounds, they will always have enough time to take
the dishonest watchtower’s collateral as compensation and prevent an unrespon-
sive watchtower from redeeming its collateral. However, if the honest watchtower
has published the reclaim transaction to withdraw its service, channel parties
will have two options. They can either update the channel on-chain with a new
watchtower or remain almost always online to prevent from fraudulent channel
closures. Collateral transaction is finally recorded on-chain. However, to avoid

160 A. Mirzaei et al.

any hostage situation, before publishing the collateral transaction, the watch-
tower must receive channel parties’ signatures on the reclaim transaction.

All the above-mentioned transactions are further explained hereinafter.

– Funding transaction: Using this transaction, channel parties A and B open
an FPPW channel. Funding transaction is defined as follows:

TxFU := [(a + ε/2 | #A), (b + ε/2 | #B)] → [(a + b + ε | (pkA ∧ pkB))], (1)

where ε is the minimum value supported by the Bitcoin blockchain and a and
b are the initial balance of A and B in the channel (regardless of the negligible
value ε/2). Output of TxFU is a 2-of-2 multisig output shared between A and
B. The public keys pkA and pkB of A and B are generated using the key
generation algorithm of the underlying digital signature Gen.

– Commit transaction: There exists one commit transaction TxCM,i per state
but only the first one (TxCM,i with i = 0) is created at the channel establish-
ment phase. TxCM,i is as follows:

TxCM,i := [(OFU‖1)] → [(a + b | ϕ1
CM,i), (ε | ϕ2

CM,i)], (2)

where ϕ1
CM,i := ϕ1

CM,i(1)∨ϕ1
CM,i(2) with ϕ1

CM,i(1) := pkA∧pkB∧Δt, ϕ1
CM,i(2) :=

pkA ∧pkB ∧pkW and ϕ2
CM,i := ϕ2

CM,i(1) ∨ϕ2
CM,i(2) ∨ϕ2

CM,i(3) with ϕ2
CM,i(1) :=

pkB ∧YA,i ∧Δt, ϕ2
CM,i(2) := pkA ∧ pkB ∧ pkW and ϕ2

CM,i(3) := pkA ∧YB,i ∧Δt

where YA,i and YB,i are statements of a hard relation R generated by A and
B for the ith state using the generating algorithm GenR and Δt shows relative
timelock of t rounds. O1

CM,i is the main output with value of a+b. Normally, if
parties act honestly and TxCM,i is published on-chain, the first subcondition
of its main output (pkA ∧ pkB ∧ Δt) is met by TxSP,i after t rounds. The
O2

CM,i with value of ε is the auxiliary output, which as will be explained in
Sect. 4.2, is only used for watchtower purposes.
The transaction TxCM,i requires signatures of both parties A and B to be
published. To generate σB

CM,i, party A generates a statement/witness pair
(YA,i, yA,i) and sends the statement YA,i to B. Then, party B uses the pre-
signing algorithm pSign of the adaptor signature and A’s statement YA,i to
generate a pre-signature σ̃B

CM,i on [TxCM,i] and sends the result to A. Thus,
whenever it is necessary, A is able to use the adaptation algorithm adapt of the
adaptor signature to transform the pre-signature to the signature σB

CM,i and
publish TxCM,i on-chain. This also enables B to use the extraction algorithm
Extract, the published signature and its corresponding pre-signature to extract
the witness value yA,i. The witness value, as will be seen in Sect. 4.2, might
be used to punish a dishonest channel party by claiming all the channel funds
or to penalize an unresponsive watchtower.

Remark 3. A has two public keys in O1
CM,i, which for simplicity, we denote them

both by pkA. However, in practice such public keys are selected dis-jointly. This
is also extended to other participants and other outputs.

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 161

– Split transaction: TxSP,i actually represents the ith channel state where
only the first one (TxSP,i with i = 0) is created in the channel establishment
phase. This transaction is as follows:

TxSP,i := [(O1
CM,i‖1)] → [(x1

SP,i | ϕ1
SP,i), (x

2
SP,i | ϕ2

SP,i), . . .]. (3)

The TxSP,i spends the main output of TxCM,i by meeting the subcondition
pkA ∧ pkB ∧ Δt.

– Collateral transaction: TxCL locks the collateral of the watchtower on-
chain and its output can be spent if A, B and W cooperate. Value of collateral
c equals a + b. The TxCL is defined as follows:

TxCL := [(c | #W)] → [(c | pkA ∧ pkB ∧ pkW)]. (4)

– Reclaim transaction: This transaction spends the output of TxCL and its
output can be spent by A, B and W if they cooperate or by W after a long
relative timelock period. The TxRC is defined as follows:

TxRC := [(OCL‖1)] → [(c | (pkA ∧ pkB ∧ pkW) ∨ (pkW ∧ ΔT))]. (5)

The second subcondition is used by the watchtower to redeem its collateral
after T rounds and withdraw its service. However, as will be mentioned in
following sections, the first subcondition is used to penalize the unresponsive
watchtower.

Figure 2 summarizes the channel establishment phase. The technical report
[15] provides details of the corresponding protocol.

4.2 FPPW Channel Update

Assume that an FPPW channel is in state i with i ≥ 0 and channel parties
decide to update it from state i to i+1. This is performed in two sub-phases. In
the first sub-phase, channel parties create a new commit transaction and a new
split transaction for the new state. However, to avoid any hostage situation, they
sign the split transaction before signing the commit transaction. In the second
sub-phase, channel parties revoke the previous state by signing one revocation
and two penalty transactions. At most one out of these three transactions might
be published on-chain upon fraud (i.e. upon broadcast of the revoked commit
transaction). While the revocation transaction might be used to penalize the
cheating channel party, penalty transactions might be utilized for punishing the
dishonest watchtower.

The revocation transaction is the only transaction that spends both out-
puts of the revoked commit transaction using their non-timelocked subconditions
pkA ∧ pkB ∧ pkW . Thus, once a dishonest channel party publishes the revoked
commit transaction, the watchtower or the counter-party can immediately pub-
lish the revocation transaction. It invalidates both penalty transactions because

162 A. Mirzaei et al.

Fig. 2. A summary of FPPW channel establishment.

they also spend the auxiliary output of the revoked commit transaction. The
single output of the revocation transaction is spendable by someone who knows
witness value y of both channel parties (i.e. party A can claim it if party B has
published the revoked commit transaction and vice versa).

Now assume that a dishonest channel party publishes the revoked commit
transaction but the watchtower does not react in time. Then the dishonest chan-
nel party might also publish the corresponding split transaction after t rounds.
This spends the main output of the revoked commit transaction and invalidates
the revocation transaction. However, since the honest channel party go offline
for at most T − 1 rounds, it gets online when the watchtower has not completed
reclaiming its collateral yet (i.e. the watchtower has not broadcast the reclaim
transaction or has not spent its output yet). Thus, the honest party can publish
one of two penalty transactions. Both penalty transactions spend the auxiliary
output of the revoked commit transaction as well as output of collateral and
reclaim transaction, respectively. Similar to the revocation transaction, only the
honest cheated party can claim output of the published penalty transaction.

The introduced transactions will be explained further bellow:

– Revocation transaction: When parties A and B want to revoke TxCM,i,
each channel participant (A, B and W) generates all the required signatures
for the revocation transaction TxRV,i and sends the signatures to other two
participants. TxRV,i is as follows:

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 163

TxRV,i := [(O1
CM,i‖2), (O2

CM,i‖2)] → [(a + b + ε | YA,i ∧ YB,i)]. (6)

The TxRV,i spends both outputs of TxCM,i using the non-timelocked sub-
condition pkA ∧ pkB ∧ pkW and sends all the channel funds to an output
with condition YA,i ∧ YB,i. When a dishonest party, let’s say A, publishes
the revoked TxCM,i, A must wait for t rounds before being able to publish
TxSP,i. However, W or B can immediately publish TxRV,i. Since TxCM,i has
been published by A, party B can obtain yA,i. Thus, only party B who knows
both yA,i and yB,i will own all the channel funds.

– Penalty transaction 1: There is one penalty transaction 1 TxPN1,i per
revoked state which is used to penalize W, given that a dishonest party pub-
lishes TxCM,i and spends its main output using TxSP,i. The TxPN1,i is defined
as follows:

TxPN1,i := [(O2
CM,i‖j), (OCL‖1)] → [(c + ε | YA,i ∧ YB,i)], (7)

where j := 1 given that broadcaster of TxCM,i is A or j := 3 otherwise. When
parties want to revoke TxCM,i, A and W (B and W) compute the required
signatures for the second input of TxPN1,i and send the signatures to B (A).
Now assume that one party, let’s say A, publishes the revoked TxCM,i and
spends its main output after t rounds. Then, B obtains yA,i and hence can add
the required signatures for the first input of TxPN1,i and publish it, given that
OCL is still unspent. TxPN1,i spends the second output of TxCM,i using the
timelocked subcondition pkB ∧YA,i ∧Δt as well as the output of the collateral
transaction. Only B can claim output of TxPN1,i. A similar scenario can occur
if B is the broadcaster of TxCM,i.

– Penalty transaction 2: There exists one penalty transaction 2 TxPN2,i

per state. It is exactly the same as TxPN1,i, with the only difference that
it spends ORC (rather that OCL) using the subcondition pkA ∧ pkB ∧ pkW .
Thus, it is useful for cases where the watchtower does not react upon fraud
but by publishing TxRC tries to reclaim its collateral. However, since the
honest party goes offline for at most T − 1 rounds, it gets online when ORC

is still unspent. Thus, the honest party can add the required signatures to
[TxPN2,i] and publish it. The TxPN2,i is defined as follows:

TxPN2,i := [(O2
CM,i‖j), (ORC‖1)] → [(c + ε | YA,i ∧ YB,i)], (8)

where j := 1 given that broadcaster of TxCM,i is party A or j := 3 otherwise.

Figure 3 summarizes the channel update phase. The technical report [15] provides
details of the corresponding protocol.

Remark 4. Watchtower is actively involved in steps 6 and 7 of the channel update
phase (See Fig. 3). Therefore, this phase fails to complete if the watchtower is
unavailable. The technical report [15] introduces an update protocol for such
scenarios.

164 A. Mirzaei et al.

Fig. 3. A summary of FPPW channel update.

4.3 FPPW Channel Closure

Assume that the channel parties A and B have updated their channel n times
and then A and/or B decide to close it. They can close the channel cooperatively.
To do so, A and B create a new transaction, called modified split transaction
TxSP, and publish it on-chain. The TxSP is defined as follows:

TxSP := [(OFU‖1)] → [(x1
SP

| ϕ1
SP

), (x2
SP

| ϕ2
SP

), . . .]. (9)

Outputs of this transaction might be similar to those for TxSP,n. Note that
the value of auxiliary output of TxCM,n (ε) can also be given to A and B (ε/2
each) through outputs of TxSP. If one of the channel parties gets unresponsive,
its counter-party can still close the channel non-collaboratively by publishing
TxCM,n and then TxSP,n on-chain.

It is always possible that a channel party publishes a revoked commit trans-
action TxCM,i on-chain. Then, the watchtower or the counter-party publishes
the corresponding revocation transaction within t − 1 rounds. Only the honest
counter-party can claim output of the revocation transaction. If the watchtower
is unresponsive and the honest party is offline, a malicious party can publish
a revoked commit transaction TxCM,i with i < n and its corresponding split
transaction TxSP,i on-chain. Then the honest party, who gets online once every
T − 1 rounds, can penalize the unresponsive watchtower by publishing either
TxPN1,i or TxPN2,i. Protocols for all the mentioned scenarios can be found in
the technical report [15]. Figure 4 depicts transaction flows of FPPW.

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 165

Fig. 4. An FPPW Bitcoin channel.

4.4 FPPW Watchtower Abort

In this phase, W decides to terminate its employment by A and B. To do this,
W publishes TxRC and spends its output after T rounds. Since A and B do not
go offline for more than T − 1 rounds, they get online during this T -round inter-
val and observes that TxRC is on the chain. Then parties can close the channel
and open a new one with a new watchtower. Parties can also continue using
this channel without any watchtower. To do so, channel parties must check the
blockchain at least once every t − 1 rounds to prevent from fraudulent chan-
nel closures. New channel updates can be performed according to generalized
channels [1] or its new variant introduced in the technical report [15].

5 Security Analysis

In this section, we analyze fairness, privacy against watchtower and coverage of
FPPW protocol through Theorems 1, 2, and 3, respectively. Lemmas 1 and 2
are used to prove Theorem 1. They show how FPPW guarantees that funds of
the honest channel party and the honest watchtower are safe in the channel.

Lemma 1. For an FPPW channel, assume that the honest channel party P ∈
{A,B} checks the blockchain at the end of the channel establishment phase and
then gets online periodically with period of at most T −1 rounds. The probability
that P loses any funds in the channel is negligible.

166 A. Mirzaei et al.

Although, proof of Lemma 1 will be presented in the technical report [15],
here we briefly discuss it. Without loss of generality let P = A. Cheating the
honest party A using any scenario other than broadcast of a revoked commit
transaction requires forging the signature of A and hence is of negligible proba-
bility. Channel establishment phase completes when TxCL is published on-chain.
If TxCL is published through the block BLj , the next time that A gets online,
BLj+k with k ≤ T − 1 is the latest block on the chain and four possible events
might have occurred regarding broadcast of a revoked TxCM,i or TxRC during
this interval:

– Case 1: When BLj+k is the last block on the blockchain, A observes that
only TxRC has been published on-chain. Consequently, A goes offline and
checks the blockchain frequently with period of at most t − 1 rounds. Now if
a revoked TxCM,i is published, it is of negligible probability that its outputs
can be spent within t − 1 rounds without A’s authorization and A grants
such an authorization only on TxRV,i. Also since A does not go offline for
more than t − 1 rounds, A will always have at least 1 round time to publish
TxRV,i, which is enough according to our assumption regarding the value of
the confirmation delay.

– Case 2: When BLj+k is the last block on chain, A observes that both the
revoked TxCM,i and TxRC are on the chain. If fewer than t − 1 blocks have
published since broadcast of TxCM,i, A publishes TxRV,i. Otherwise, A will
have at least 1 round time to publish TxPN2,i which is enough according to
our assumption regarding the value of the confirmation delay. The probability
of other scenarios is negligible.

– Case 3: When BLj+k is the last block on chain, A observes that TxCM,i is
on-chain but TxRC is unpublished. If fewer than t − 1 blocks have published
since broadcast of TxCM,i, party A can publish TxRV,i. Otherwise, A pub-
lishes TxPN1,i. If before publishing TxPN1,i, the transaction TxRC is recorded
on-chain, A publishes TxPN2,i. Other scenarios happen with negligible prob-
ability.

– Case 4: When BLj+k is the last block on chain, A observes that neither a
revoked TxCM,i nor TxRC are on-chain and goes offline for another T − 1
rounds.

As it is obvious, Cases 1, 2, and 3 result in publishing either of TxRV,i, TxPN1,i

or TxPN2,i on the chain. It is of negligible probability that broadcast of TxRV,i,
TxPN1,i or TxPN2,i causes the honest party A to lose any funds in the channel
because only A knows values of both yA,i and yB,i. If Case 4 occurs, the process
can repeat with all j being replaced with j + k.

Lemma 2. For an FPPW channel, assume that the honest watchtower W
checks the blockchain at the end of the channel establishment phase and then
remains online. The probability that W loses any funds in the channel is negli-
gible.

As will be seen in the proof of Lemma 2 in the technical report [15], an
honest watchtower W does not lose any funds with non-negligible probability

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 167

unless first a revoked commit transaction TxCM,i is recorded on the blockchain
and at least t rounds later, either TxPN1,i or TxPN2,i is also published on-chain.
However, if a revoked TxCM,i is published, it is of negligible probability that
O1

CM,i or O2
CM,i are spent within t − 1 rounds using any transaction other than

TxRV,i. Thus, once TxCM,i is published, W will have at least t − 1 rounds time
to publish TxRV,i and invalidate both TxPN1,i and TxPN2,i.

Theorem 1. FPPW provides channel party α-fairness with α = 1 and watch-
tower fairness as defined in Definition 1 and 2, respectively.

Proof. The honest channel party always have at least one non-revoked commit
transaction and its corresponding split transaction by broadcasting which she
can close the channel. This proves that FPPW meets the first requirement of
Definition 1. Furthermore, We know that based on FPPW protocol, the honest
channel party checks the chain at least once every T − 1 rounds and according
to the above discussion (see Lemma 1), the probability that the honest chan-
nel party loses any funds in the channel is negligible. This proves that FPPW
provides channel party α-fairness with α = 1.

The watchtower in FPPW is paid for channel establishment and each channel
update and hence her reward amount is non-zero. Also, we know that based on
FPPW protocol, the honest watchtower always remains online and according to
Lemma 2, the probability that such an honest watchtower loses any funds in the
channel is negligible. Additionally, the watchtower can publish TxRC at any time
and redeem her collateral after T rounds. Thus, FPPW meets both requirement
of Definition 2.

Theorem 2. FPPW provides weak privacy against watchtower based on Defi-
nition 3.

Proof. Assume that the conditions mentioned in the two-stage privacy game
(see Sect. 3.3) are satisfied. By observing different steps and transactions of the
protocol, one can see that only split transactions contain information on xA,i

and xB,i with i ∈ [1, n − 1]. However, these transactions are never published
on-chain or sent to the watchtower or any external entity. Other transactions in
the protocol contain no information regarding xA,i or xB,i with i ∈ [1, n − 1].
Note that monetary value of O1

CM,i, O2
CM,i, O1

RV,i, O1
PN1,i, O1

PN2,i, O1
CL, and

O1
RC of the first payment channels are the same as those for the second one.

Furthermore, TxFU, TxSP,n or TxSP contain no information regarding the ith

channel state with i ∈ [1, n − 1]. Thus, the view of any passive PPT adversarial
watchtower A on (xA,[1,n−1],xB,[1,n−1]) is indistinguishable from its view on
(xA′,[1,n−1],xB′,[1,n−1]).

Theorem 3. FPPW provides β-coverage with β = 1/2 based on Definition 4.

Proof. Assume that we have N payment channels, with channel capacities Xi =
ai + bi, i ∈ [1, N]. Thus, the total capacity of the channels is X =

∑N
i=1 Xi.

Since the ith channel collateral ci equals ai + bi, the total watchtower collateral
is C =

∑N
i=1 ci =

∑N
i=1 Xi = X . Thus, we have β = X

X+C = 1/2.

168 A. Mirzaei et al.

6 Fee Handling

Once a revoked commit transaction is recorded on the blockchain, watchtower
must record its corresponding revocation transaction within t − 1 rounds. Oth-
erwise the watchtower might be penalized. However, the time it takes for a
transaction to be recorded on the blockchain depends on its fee value and the
network congestion. Body of a revocation transaction is created during the chan-
nel update phase but it might be broadcast in the blockchain network later upon
fraud. Thus, the fee amount must be large enough to ensure the watchtower
that the revocation transaction will be accepted by miners within the revoca-
tion period. In other words, when channel participants are creating a revocation
transaction, they must assume that the blockchain network will be highly con-
gested at the time when fraud will occur.

An alternative approach is usage of SIGHASH of type 0 x 81 (SIGHASH ALL
| SIGHASH ANYONECANPAY) for channel parties’ signatures for both inputs of
revocation transactions. Thus, signature for each input applies to that input and
the output. Therefore, when due to network congestion the considered fee for
the revocation transaction is low, the watchtower can add some inputs to the
revocation transaction to increase the fee amount, sign all inputs using SIGHASH
of type 0x01 (SIGHASH ALL) and submit it to the network. If there exists enough
time, the watchtower might even repeat this process several times and raise this
extra fee each time until one of the revocation transactions is accepted by the
miners. This method can be used if revocation transactions are only held by the
watchtower (i.e. if channel parties do not receive signatures of the watchtower
on revocation transactions during the channel update phase).

A similar approach can also be used for penalty transactions. Channel parties
and the watchtower can use SIGHASH of type 0 x 02 (SIGHASH NONE) for the
second input of penalty transactions. Then, signatures apply only on all inputs
of penalty transactions. In this way, the watchtower can be certain that a penalty
transaction cannot be published unless its corresponding commit transaction is
on-chain. However, if a revoked TxCM,i is published by a channel party, let’s say
A, and its main output is spent by TxSP,i, party B has the opportunity to set
the output value of the penalty transaction according to the network congestion
and sign the corresponding penalty transaction (to meet the subcondition pkB ∧
YA,i ∧ ΔT) using SIGHASH of type 0 x 01 (SIGHASH ALL). In this way, B can
reduce the output value if the current fee is low and this difference value is used
as the extra fee amount. If there exists enough time, B can even repeat this
process multiple times, each time with a higher fee until one penalty transaction
is recorded on-chain.

Acknowledgements. This research was partially supported by the Australian Gov-
ernment through the Australian Research Council’s Discovery Projects funding scheme
(project DP180102199) and Discovery Early Career Award (project DE210100019).

FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin 169

References

1. Aumayr, L., et al.: Generalized Bitcoin-compatible channels. IACR Cryptol. ePrint
Arch. 2020, p. 476 (2020)

2. Avarikioti, G., Kogias, E.K., Wattenhofer, R.: Brick: Asynchronous state channels.
arXiv preprint arXiv:1905.11360 (2019)

3. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

4. Avarikioti, Z., Thyfronitis Litos, O.S., Wattenhofer, R.: Cerberus channels: incen-
tivizing watchtowers for Bitcoin. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 346–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 19

5. Dryja, T., Milano, S.B.: Unlinkable outsourced channel monitoring. Talk
transcript) https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-
outsourced-channel-monitoring (2016)

6. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs
over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 106–123. IEEE (2019)

7. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol with chains of
variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 10

8. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized cur-
rencies. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 473–489 (2017)

9. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

10. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: a responsive lightweight
watchtower. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 31–40 (2019)

11. Leinweber, M., Grundmann, M., Schönborn, L., Hartenstein, H.: TEE-based dis-
tributed watchtowers for fraud protection in the lightning network. In: Pérez-Solà,
C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J. (eds.) DPM/CBT -2019.
LNCS, vol. 11737, pp. 177–194. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31500-9 11

12. Liu, B., Szalachowski, P., Sun, S.: Fail-safe watchtowers and short-lived assertions
for payment channels. arXiv preprint arXiv:2003.06127 (2020)

13. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pp. 16–30 (2019)

14. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: Payment channels that
go faster than lightning. CoRR abs/1702.05812 306 (2017)

15. Mirzaei, A., Sakzad, A., Yu, J., Steinfeld, R.: FPPW: A fair and privacy preserv-
ing watchtower for Bitcoin. Cryptology ePrint Archive, Report 2021/117 (2021),
https://eprint.iacr.org/2021/117

16. Poon, J., Dryja, T.: The Bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

17. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

http://arxiv.org/abs/1905.11360
http://arxiv.org/abs/1811.12740
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-030-31500-9_11
https://doi.org/10.1007/978-3-030-31500-9_11
http://arxiv.org/abs/2003.06127
https://eprint.iacr.org/2021/117
https://doi.org/10.1007/BF00196725

Congestion Attacks in Payment Channel
Networks

Ayelet Mizrahi(B) and Aviv Zohar

The Hebrew University of Jerusalem, Jerusalem, Israel
{ayelem02,avivz}@cs.huji.ac.il

Abstract. Payment channel networks provide a fast and scalable solu-
tion to relay funds, acting as a second layer to slower and less scalable
blockchain protocols. In this paper, we present an accessible, low-cost
attack in which the attacker paralyzes multiple payment network chan-
nels for several days. The attack is based on overloading channels with
requests that are kept unresolved until their expiration time. Reaching
the maximum allowed unresolved requests (HTLCs) locks the channel for
new payments. The attack is in fact inherent to the way off-chain net-
works are constructed, since limits on the number of unresolved payments
are derived from limits on the blockchain. We consider three versions of
the attack: one in which the attacker attempts to block as many high liq-
uidity channels as possible, one in which it disconnects as many pairs of
nodes as it can, and one in which it tries to isolate individual nodes from
the network. We evaluate the costs of these attacks on Bitcoin’s Light-
ning Network and compare how changes in the network have affected the
cost of attack. Specifically, we consider how recent changes to default
parameters in each of the main Lightning implementations contribute to
the attacks. Finally, we suggest mitigation techniques that make these
attacks much harder to carry out.

Keywords: Lightning Network · Payment channel networks · Network
security · HTLC

1 Introduction

Payment channel networks such as the Lightning Network [27] are a second layer
off-chain solution to the scalability problems of blockchains. They require par-
ticipants to lock funds into channels, which then allows them to send payments
to others over several hops. Altogether, they allow both a higher number of
transactions as well as faster transaction resolution compared to the underlying
blockchain.

In this paper we describe and evaluate a novel attack that locks funds in
channels between honest participants that are potentially far away from the
attacker, giving the attacker the ability to disrupt the transfer of payments
throughout the network. In contrast to previously known attacks that locked
liquidity in channels [30], the method we present here requires lower costs as it
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 170–188, 2021.
https://doi.org/10.1007/978-3-662-64331-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_9&domain=pdf
http://orcid.org/0000-0003-4037-1028
http://orcid.org/0000-0001-8539-9222
https://doi.org/10.1007/978-3-662-64331-0_9

Congestion Attacks in Payment Channel Networks 171

requires the attacker to lock a smaller amount of liquidity. We evaluate these
costs in the Lightning Network, where we show that spending less than half a
bitcoin, the attacker can indefinitely lock up channels holding the majority of
the funds currently assigned to the network. To summarize, our contributions
are as follows:

– We leverage a known limitation of payment channels (their max HTLC limit)
to form two different attacks on the Lightning Network (a network wide DoS
attack and a more localized node isolation attack).

– We provide statistics on several aspects of the Lightning Network that are
relevant to the attack which may be of independent interest.

– We provide a thorough evaluation of the amount of resources needed to con-
duct each attack and of the level of harm an attacker can cause.

– We report on small proof of concept experiments using actual lightning nodes
(on a local test network) that confirm the feasibility of the attack.

– We propose and discuss several short-term mitigation approaches that make
the attack more difficult to carry out and reduce its efficiency.

Our attack is based on the inner workings of the main mechanism that makes
payment channel networks possible: Hashed Time-Locked Contracts (HTLC).
Essentially, as payments are set up to move along some path in the network,
all channels along the path reserve some funds for the transfer that is about
to take place. The number of simultaneously reserved and unresolved payments
per path is limited. Our attack thus simply opens many small payment requests
along extremely long paths and keeps them unresolved for as long as possible.
In this way, all channels along the path are unable to relay other transfers.

The vulnerability can be attributed to three fundamental properties of off-
chain payment networks.

1. Payments are executed in a trustless manner. Payments are executed
using conditional payment contracts (in the form of transactions with HTLCs)
that are exchanged between parties and are only sent to the blockchain if disputes
arise. These contracts grow in size as more conditional payments are pending,
and so the total number of pending payments is limited by transactions sizes
that can be placed on the blockchain. Bitcoin’s Lightning Network is limited to
at most 483 concurrent HTLCs [33], while Raiden [25], Ethereum’s network, is
limited to at most 160 due to gas costs [24].

2. Expiration times are long. To allow nodes to recover their funds if a
malicious partner closes a channel that is part of a pending payment, HTLC
expiration times have been set to allow nodes sufficient time to appeal such
closures. In Bitcoin’s Lightning Network things are even more severe: due to
lower expressiveness of its scripting language, HTLC expiration times accumulate
over the length of the path, reaching up to 2016 blocks – which typically take
the Bitcoin network two weeks to produce.

3. The Privacy of Payments. Payment Channel Networks utilize onion rout-
ing that does not allow intermediate nodes on the path to recognize where pay-
ments originate and where they are going, allowing the attacker to act with

172 A. Mizrahi and A. Zohar

impunity. Payment privacy essentially prevents us from attributing blame to
potential attackers and add mechanisms that effectively detect the attack.

A Description of the Attack. In order to paralyze channels, the attacker first
adds a new node to the payment network. It then identifies a route suitable to
attack, considering some restrictions on the path (maximum route length, lock-
time of intermediate nodes, remaining HTLC capacity) and maximizing the attack
benefit (to lock channels with a large amount of funds or high betweenness value).
It opens channels with the source and target of the route, and requests many
tiny payments through this path, exhausting the number of simultaneously open
HTLCs. Since the attacker is both the source and destination of this payment, it
can choose to delay the final execution of the payment which would remove all
pending HTLCs from the path. The path is then locked for long periods of time
(up to several days). Just before expiration, the attacker sends an update failure
message to the previous node, which cancels the payment and reverts the state,
avoiding a forced closure of the attacker’s channel. This allows the attacker to
re-run the attack once again and lock the same path for an additional period of
time.

To successfully carry out the attack, the attacker needs liquidity on its out-
going channel as well as liquidity on its incoming channel. While it is easy to
open a channel and invest liquidity, this liquidity is on the attacker’s side of the
channel initially which is suitable for the outgoing channel. The incoming chan-
nel’s liquidity needs to allow for payments toward the attacker. Liquidity can
be shifted in that direction by sending an outgoing payment from the attacker,
e.g., to deposit funds in some exchange or purchase goods.

We stress that simple mitigation attempts such as increasing the number
of HTLCs allowed per channel are not very effective. First, more allowed HTLCs
will imply larger settlement transactions in Lightning (larger than the current
block size). Second, the attacker can easily create enough payment requests to
lock many more HTLCs (each message locks an HTLC for days and requires little
effort).

In this paper we evaluate the attack specifically on the Lightning Network,
which is the most prominently used payment channel network. We evaluate three
main attack scenarios: First, we consider an attack on the entire network, which
attempts to lock as many channels as possible and focuses on channels holding
most of the funds in the network. This sort of disruption would severely hinder
the volume of payments that can be sent on the Lightning Network. The second
attack scenario we consider is one that disconnects as many pairs of nodes as
possible and breaks the network into separate components. The main complexity
in carrying out these attacks is picking routes in a way that respects limits on
the maximal delay incurred along the path, and still targets the channels with
the highest connectivity and liquidity. Finally, the third attack variant that we
evaluate targets single nodes and paralyzes all channels that connect them to
the network.

As far as we are aware, while exhaustion of the HTLCs of a channel is known
to paralyze the channel, the attack that we describe has never been evaluated

Congestion Attacks in Payment Channel Networks 173

for its effects on the network, or on individual nodes. In particular, there are no
available estimates of the cost to attackers from executing either version of the
attacks we propose.1

Due to ethical concerns, we did not attack the live network. Instead, we
worked with two main complementary approaches. In the first, we use the code
of actual lightning node implementations to set small local networks to test
the basic mechanics underlying the attacks. We validate the behavior of nodes
in a series of experiments reported in the full version of the paper [23]. In the
second, we perform the attacks on a simulation of the actual network based on
topology data we extracted from a live node. We provide the full description and
evaluation of the attacks in its different modes in Sects. 4 and 5. In Sect. 7 we
discuss prior work, including other DoS attacks on the Lightning Network. Our
attack differs in that it requires fewer resources, repeating it indefinitely does
not waste fees, and it does not require a direct connection to the victim node.

2 Background on the Lightning Network

The Lightning Network is the most widely used payment channel network to
date. As of October 2020, it has more than 14k nodes and 37k channels and
holds a total capacity of around 1100 BTC. We introduce some of the basic
properties of the Lightning Network.

Hashed Time Locked Contracts (HTLCs) - conditional payments which promise
an intermediate node on the channel that it can receive funds if it submits a
cryptographic proof (pre-image of a hash) within a given timeframe (specified as
a specific chain height). Each transaction that occurs in the Lightning Network
is first set up by adding an additional HTLC output to every channel on its path.
Once these are set up, the payment is executed by propagating the pre-image
from the payment’s recipient back along the path towards the sender. Once the
pre-image arrives at some intermediate node, it can essentially guarantee that
it can receive the funds (if it posts the transaction with the pre-image to the
blockchain). The conditional payment is then removed from the channel and is
replaced by a non-conditional reallocation of the funds.

The main problem with the approach above is that if several payments are
being set up, the number of HTLCs on a channel grows. This implies that the
transaction that will eventually be posted to the blockchain will be large – setting
a natural limit on the number of HTLCs that can be simultaneously open on a
channel.

HTLC Timeouts - Usually, channels are set up quickly and do not wait long
for the pre-image to propagate. An update failure message may sometime be
returned instead of the pre-image if one of the intermediate nodes cannot or will

1 We were able to find public record describing the basic idea of the attack, on a single
channel [8,31]. We note that no full translation of this vulnerability to the entire
network was previously considered. Due to the public nature of these posts, we did
not perform a disclosure of the vulnerability to the devs.

https://arxiv.org/pdf/2002.06564.pdf

174 A. Mizrahi and A. Zohar

not relay the payment. However, malicious nodes may withhold the pre-image
and not propagate it back (or alternatively not complete the channel set up
with HTLCs). In such cases, HTLCs are designed to expire. This is done using a
CheckLockTimeVerify (CLTV) instruction, which essentially does not allow the
HTLC to be redeemed after a certain block height. In order to ensure that inter-
mediate nodes do not lose funds, outgoing HTLCs must expire before incoming
HTLCs do. Each node specifies a parameter cltv expiry delta, which spec-
ifies the difference in timeouts it is willing to tolerate. The timeout of pay-
ments is therefore the accumulation of the cltv expiry deltas from the end
of the route towards its beginning (the last node’s timeout is limited by a
parameter named min final cltv expiry instead of cltv expiry delta). As
cltv expiry deltas are typically either 40 blocks or 144 blocks, the timeouts
of HTLCs can accumulate and often take days. Nodes impose a limit on the max-
imal timeout locktime max, which is set to 2016 blocks (equivalent to 2 weeks).
This high timeout makes the attack extremely potent.

Privacy - One of the goals of the Lightning protocol is to preserve the privacy
of users – a fact that eventually aids our attack. For example, routing payments
is done via Onion Routing which helps disguise the attacker. Additionally, the
expiration of HTLCs is also conveyed along payment paths and to preserve privacy,
senders are allowed to add arbitrary values to the initial delay. We exploit this
fact to add to the expiration delay of HTLCs (up to the allowed maximum of two
weeks).

3 Lightning Network Analysis

We begin our exploration of the current state of the Lightning Network by listing
the default values for various parameters in the main implementations of the
Lightning protocol. These are of interest since, as we show later below, most
nodes use the defaults, and thus these heavily influence the state of the Lightning
Network and its vulnerability to our attack.

3.1 Default Parameter Values

The BOLT (Basis of Lightning Technology) [33] specifications detail the protocol
of Lightning Networks. In our work, we focus on the main three implementations:
LND [18], C-Lightning [5], and Eclair [7]

Each of the implementations uses slightly different default values for param-
eters of interest. These are depicted in the table below, along with ranges or
values specified in the BOLT.2

2 We give the defaults used in mainnet. Testnet behavior differs slightly.

Congestion Attacks in Payment Channel Networks 175

LND C-lightning Eclair BOLT

cltv expiry delta 40 14 144 -

min final cltv expiry 40 10 9 9

locktime max 2016 2016 2016 <5 · 108

max concurrent htlcs 483 30 30 ≤483

dust limit satoshis 573 546 546 -

htlc minimum msat 1000 1000 1 -

fee base msat 1000 1000 1000 -

fee proportional millionths 1 10 100 -

Recent changes to the defaults have in fact made our attack easier to carry
out: LND changed their cltv expiry delta default from 144 to 40 blocks (on
Mar 12th, 2019) [28], which allows chaining more nodes in each path without
reaching the locktime max limit. Nodes running an old version may still hold
the 144 default that was used prior to that.

Additionally, a locktime max of 2016 was agreed upon by Lightning devel-
opers, in the 2018 Adelaide meeting to set the BOLT 1.1 specs [6]. This is an
increase of previous values used in some implementations. Again, this allows for
longer routes and longer expiration delays that make the attack more damaging
and easier to carry out.

3.2 Network Statistics

We introduce some statistics on the parameters announced by nodes in channels
on the Lightning Network.3 In order to perform the calculations, we took snap-
shots of the Lightning Network mainnet. The information was obtained from a
continuously running LND node. Our results correspond to a network snapshot
taken on September 21st, 2020. We include additional analysis with snapshots
taken over a period of 18 months for comparison.

Fig. 1. Statistics on parameters announced by nodes in channels on the Lightning
Network

3 We ignore disabled channels and channels with nodes that do not reveal their policies.

176 A. Mizrahi and A. Zohar

In Fig. 1, we present the most common values of four of the parameters
announced by nodes. It is clear that very few values are used. The remaining
values appeared less than 3% each (which we grouped together as “other”).

Figures 1A, B, C show the distribution of htlc minimum msat,
fee base msat and fee proportional millionths. These represent the min-
imal amounts nodes are willing to transfer, the flat fee for each transfer, and
the fee that grows with the transferred amount. These values are small relative
to the default configured dust limit, which sets a threshold below which HTLCs
would not be added by nodes. Therefore, these parameters have a lower impact
on the cost of the attack. We elaborate more on costs in Sect. 4.

Finally, we examine the distribution of cltv expiry delta - the minimum
difference in HTLC timeouts the forwarding node will accept. We recall from
the table in Sect. 3.1 that 144, 40, and 14 are the defaults that correspond to
the different implementations mentioned previously. In Fig. 1D, we see that the
defaults constitute 82.7% of the total.

How do values change over time? In our attack, the route length we can compose
is often limited by the values of cltv expiry delta. Figure 2 shows the changes
in cltv expiry delta over an 18 month period4. We show only the most com-
mon values. The choice of presented dates was according to available information
from our node and was slightly affected by downtime. Since channels are open
for a long period of time, the exact day chosen does not impact the topology.

Fig. 2. cltv expiry deltas in different snapshots

The main change over this period is the decreased use of the value 144 for
expiry time and the increase in the use of the value 40. We attribute this to
the fact that LND changed their default cltv expiry delta from 144 to 40 in
Mar 2019 [28]. In the full version of the paper [23], we show that LND nodes are
both the most common nodes (we estimate that they constitute 91.3% of the
network), and also the ones that hold most of the liquidity in the network.
4 The snapshot from Mar 9th, 2019 was taken from [29,30].

https://arxiv.org/pdf/2002.06564.pdf

Congestion Attacks in Payment Channel Networks 177

4 Attacking the Entire Network

In this section, we consider a malicious node that wishes to disrupt the entire net-
work’s operation. Initially, it connects to other nodes in the network by opening
channels with them, allowing it to learn the topology of the network and launch
the attack. Then, the attacker uses a greedy algorithm in order to pick routes
and paralyze as much liquidity or to disconnect as many pairs of nodes as possi-
ble. For each route, the attacker will initiate max concurrent htlcs payments,
and withhold the response, turning all channels along the path unavailable for
new requests. Just before expiration, the attacker will announce a failure to com-
plete the payment. This step is repeated for multiple disjoint routes making the
network less and less connected.

Examining several heuristics and path selection choices we found that a
greedy choice of routes which we fully paralyze one by one makes the most out
of every attacker’s outgoing channel and achieves approximately optimal results
for the attacker as we will present in the following evaluation. The main chal-
lenge faced by the attacker in this heuristic is to use routes composed of channels
with similar max concurrent htlcs so that we do not leave parts of the path
unlocked, and to fit as many high-liquidity channels within the limits of 20 hops
and locktime max total delay. Hence, we divide the network to subgraphs with
similar max concurrent htlcs, and use a greedy algorithm to select routes. The
algorithm that we utilized is parametrized by G (a subgraph of the network) and
a parameter τmin that denotes the minimal time (measured in blocks) that we
would like paths to be locked for. We assign two types of weights to the edges
(used in selecting the routes to attack) to support two different modes of attack.
The greedy algorithm selects routes one by one, constructing each by consecu-
tively picking high weighted edges. In the first mode we seek to freeze as much
liquidity as possible and use the channel capacity as the weight. In the second
mode, we seek to disconnect as many pairs of nodes and use the unweighted
betweenness centrality measurement of edges as the weight (taking inspiration
from the Girvan-Newman Algorithm [10]). A concise description of the algorithm
follows (a detailed description is available in the full version of the paper [23]):

1. Pick a channel of maximal weight (capacity/betweenness).
2. Extend it to a route by repeatedly choosing an adjacent channel of maximal

weight which meet the constraints of having similar max concurrent htlcs
value and maintaining route validity (maximum route length and desired
route locktime τmin).

3. Remove the route channels from the graph.
4. Repeat until all channels are exhausted.

The result is a partition of G’s channels into disjoint routes that can be
paralyzed for at least τmin blocks. Note that routes produced by the algorithm
are circular (from the attacker to itself) and require two attacker channels: to
begin and end each route.

For many channels in the network, the value set for cltv expiry delta is
different depending on the direction we traverse the channel (this is because

https://arxiv.org/pdf/2002.06564.pdf

178 A. Mizrahi and A. Zohar

nodes may have set different values for this parameter). Our greedy approach
excelled at picking directions with lower cltv expiry delta values naturally,
which allows it to form longer routes that paralyze more channels simultaneously.
Other approaches that we explored, such as iterating over a single channel back
and forth to form a long path, resulted in slightly worse performance.

The greedy algorithm does not optimize over the htlc minimum msat
values when picking routes (the detailed algorithm is available in the
full version of the paper [23]). The values set for this parameter are extremely
low and their impact on the total cost is minor.

4.1 Evaluation

We run the attack locking channels for at least 3 days (τmin = 432). We begin
by attempting to freeze up a large amount of liquidity (setting the weight in
the algorithm (available in the full version of the paper [23]) to the channel’s
capacity).

We infer for each node, which implementation of the protocol it runs (avail-
able in the full version of the paper [23]), and then partition the network into
two sub-graphs:

1. The network graph reduced to LND nodes. Which has max concurrent htlcs
defaults that are 483.

2. The complementary graph consisting of all channels with at least one Eclair
or C-Lightning node. These use a default max concurrent htlcs of 30.

In the implementation inference process we assume most users use the default
values for the max concurrent htlcs parameter. This assumption is reinforced
by Sect. 3.2, which presents distributions of other parameter values displaying
high correspondence to their default values.

We visualize the results in Fig. 3a, presenting the fraction of the network’s
capacity that the attacker succeeds in locking as a function of the resources it
invests (the number of channels it opened). We find for example that the attacker
can lock 20% of the network’s capacity using only 68 channels, and can lock
90% using 1030 channels. We notice that the greedy algorithm is almost optimal
on our graph. To do so we compare to an unachievable upper bound which is
calculated as follows: The maximum allowed route length is 20. The attacker
uses 2 channels to attack any route, hence it can attack at most 18 channels
per route. We sort the channels by their capacities and use the highest capacity
edges first, disregarding the constraint that paths are connected correctly.

We estimate the attack’s costs, by considering two types of costs:

1. The cost of opening channels. The attacker pays the fee required to place
channel funding transactions on the blockchain. We estimated the cost of
opening a channel to be 2.2 USD (the average transaction fees observed on
the date of the snapshot which the evaluation was performed on) [4].

2. The cost of provisioning channels with liquidity. Attackers must lock enough
liquidity for payments they will later request. Locked funds are not spent and
will return to the attacker once it completes the attack.

https://arxiv.org/pdf/2002.06564.pdf
https://arxiv.org/pdf/2002.06564.pdf
https://arxiv.org/pdf/2002.06564.pdf

Congestion Attacks in Payment Channel Networks 179

Fig. 3. Evaluation and cost of the attack

Figure 3b displays our evaluation of the costs. It clearly separates the two
types of costs mentioned above (non-refundable blockchain fees and locked liq-
uidity). Our results show that the attacker can paralyze most of the liquidity in
the Lightning Network for 3 days spending less than half a Bitcoin. We take into
account the dust limit configured in the main Lightning implementations which
sets a threshold on the payment size below which HTLCs would not be added by
nodes. The locked liquidity cost is mainly affected by the dust limit, the rest of
the parameters (min HTLC, base fee, minimal channel capacity) have less of an
impact because of their small values. The costs we estimate above can be further
lowered by opening multiple channels with a single on-chain transaction. Once
channels are established, the attack may be repeated again and again with no
additional cost to the attacker.

To be able to block a route there needs to be sufficient balance in each channel
to allow for a minimum payment (otherwise nodes along the path will reject the
payment request). The required balance relies mainly on the dust limit and the
max concurrent htlcs values configured along the route.

We show more details on the attack results in Fig. 4. The figure shows that the
attacker succeeds in attacking long routes (exploiting maximum route length),
and that most of the routes are locked for more than the 3 days that were set
as the minimal lock time.

In Fig. 5a, we run the attack changing the number of days that channels
remain locked for. The results indicate that the number of attacker channels
required to lock paths for different periods (from 1 to 6 days) differs only slightly.
This can be explained by the relation between the large locktime max (2016
blocks) value, the small cltv expiry deltas, and the 20-hop route length con-
straint. In other words, most of the liquidity of the network can be attacked
using routes that consist of small cltv expiry deltas, allowing the attacker to
high timeouts and withhold the payments for a long period.

Figure 5b explores how the attack would work on the Lightning Network
at different times. We use snapshots taken over several months. The results

180 A. Mizrahi and A. Zohar

Fig. 4. Histogram of route lengths (including attacker’s edges) and route lock times

(a) Fraction of attacked network capacity
for different lock periods

(b) Fraction of attacked network capacity
in different snapshots

Fig. 5. Evaluation of the attack

generally show that the attack gets easier as time passes (there is a slight
improvement from May 2020). This can be explained by the changes made to
default parameters – increasing locktime max to 2016 in all implementations
and decreasing cltv expiry delta from 144 to 40 in LND. Both changes make
it easier to construct long routes with high timeouts.

In Fig. 6, we show how the attack affects connectivity between nodes in
the network. We explored several algorithms to select the attacked routes and
present them in Fig. 6. The algorithms we explored are: Using a greedy algo-
rithm (available in the full version of the paper [23]) which picks channels with
high betweenness centrality. The second approach utilizes spectral clustering to
repeatedly cut the large connected component using an eigenvector correspond-
ing to the second smallest eigenvalue (Fiedler vector) of the Laplacian matrix
of the largest connected component. The sign of the coordinates partitions the
vertices of the graph into 2, defining a cut [9]. Finally, we used a simplified ver-
sion of Kernighan-Lin algorithm [15] that starts with an arbitrary partition that

https://arxiv.org/pdf/2002.06564.pdf

Congestion Attacks in Payment Channel Networks 181

Fig. 6. Fraction of connected pairs of nodes in the network

separates 1/4 of the nodes and greedily swaps nodes across the cut to minimize
the cut. This yielded the best results.

While before the attack almost all pairs of nodes (>97%) are connected,
using only 32 attacker channels we disconnect 23% of the pairs in the network,
while with 385 channels we disconnect 50% of the pairs. We stress that right
now different Lightning implementations try only a small handful of paths [36],
so even a large fraction of nodes that we noted as connected will not be able to
route payments between them.

5 Attacking Hubs - Attack on a Single Node

In this section we consider an attack aimed at disconnecting a single node from
the network for an extended period of time. Here, the adversary connects to the
victim and paralyzes its adjacent channels one by one using the following steps:

1. The adversary connects to the victim with a new channel.
2. It then initiates a payment to itself via a route that begins with its con-

nection to the victim, and then traverses a single target channel back and
forth multiple times, before returning to the attacker. Surprisingly, such
paths that traverse channels back and forth are indeed possible (see the
full version of the paper [23]).

3. The attacker makes multiple payment requests over this path until the tar-
get channel reaches max concurrent htlcs. In this case, the attacker’s own
channel is usually not maxed out, and can be used to attack again.

We note that the attack is still possible to carry out if the victim does not
accept direct connections (but at a somewhat lower efficiency). In this case, we
would connect to neighbors of the victim.

Once the target channel is paralyzed, we move to the next one and apply the
same method. We will need to open a new channel between the adversary and
the target node every time that the former reaches its max concurrent htlcs.

https://arxiv.org/pdf/2002.06564.pdf

182 A. Mizrahi and A. Zohar

Yet, at each payment we withhold only two HTLCs on the adversary’s channel
while it is possible to reach up to 18 HTLCs in the target channel at the same
time. In other words, in order to attack all of the victim’s channels, the adversary
needs to open a small number of channels relative to the victim’s degree.

5.1 Evaluation

We evaluate the attack on prominent nodes in the network. The following table
summarizes our results:

Alias % of Network liquidity Node’s degree Attacker channels

ACINQ 10.8% 774 151

Bitfinex [lnd1] 6.4% 169 19

OpenNode 4.2% 648 88

Bitrefill 3.8% 229 39

CoinGate 3.1% 609 68

LNBIG (25 nodes) 22.2% 3835 405

The names of nodes were taken from our snapshot data directly. The last
entry in the table relates to an attack on LNBIG [17], a single entity that controls
25 nodes which are extremely central to the network, holding a significant share
of the network’s capacity in multiple channels. We isolate all 25 nodes, without
paralyzing links between the nodes themselves. Paths were set so that all links
are paralyzed for at least 3 days in each iteration.

We evaluated the cost of attack on all nodes in the network using a snapshot
from September 21st, 2020, isolating each node for 3 days. Figure 7 presents a
histogram of the degree of nodes and shows the relation between the degree and
the number of channels attackers needed to perform the attack on each node.
Each node is represented by a point in the graph. The number of channels is not
directly determined by the degree, because different nodes have set up different
values of cltv expiry delta. We see that most nodes have a very low degree
and are extremely easy to isolate. Even nodes with high degree, require far fewer
channels than the degree to attack.

In an additional evaluation (available in the full version of the paper [23]),
we show that of the 3 main implementations of the Lightning Network, LND
(the most common implementation) nodes are the easiest to attack.

6 Mitigation Techniques

The attack and vulnerabilities described in our work continue to be relevant and
have been discussed by the Lightning community [1,3]. In this section we discuss
several proposed adjustments to payment channel network protocols that may
help mitigate the attack. Specifically, we discuss some ideas that were raised in
the Lightning-dev mailing list [8,31], as well as our own suggestions. We discuss
weaknesses and strengths of each such suggestion.

https://arxiv.org/pdf/2002.06564.pdf

Congestion Attacks in Payment Channel Networks 183

Fig. 7. Degree analysis

Enforcing fast HTLC resolution - This is our most drastic suggestion: While
HTLC expiration times allow nodes to remain secure and provide sufficient time to
publish transactions to the network, we propose the addition of another timeout
mechanism. Specifically, if HTLC secrets are not propagated fast enough from
one’s neighbor the channel with this neighbor should be closed.

Each node should announce to its successor in the path its own deadline
for resolving the HTLC. The node would then be able to communicate an earlier
deadline for HTLC resolution to its next hop. If the timeout arrives, and the HTLC
was not fulfilled or canceled, the node will wait for the HTLC to naturally expire
but will close the channel with its neighbor.

To avoid having all channels along the path closed due to a failure to complete
the HTLC in time, and specifically to avoid closing channels between compliant
nodes, the last node in the path will provide proof of the channel closure to its
predecessors (this can be done using a zero-knowledge proof for example).

We stress that this proposed mechanism does not replace the HTLC timeouts
that still ensure the safety with regards to the current payment. Our mechanism
is a way to disconnect misbehaving peers from the network in order to prevent
them from repeating the attack many times at no cost. We note that it is risky to
add behavior that automatically closes channels, and so this proposal warrants
further evaluation. We leave this to future work.

Reducing route length - We suggest lowering the maximum allowed route length
(currently 20 hops), as suggested in previous work [26]. The network graph is
a small world network [30] - it is highly connected, and a smaller number of
hops should still suffice. We point out that shortest paths between nodes in the
network have an average of less than 3 hops and that the network diameter is
∼ 6 [30,32], which are significantly lower than the 20 allowed hops. In Fig. 8, we
show the fraction of successfully attacked capacity (with respect to the attack

184 A. Mizrahi and A. Zohar

described in Sect. 4), assuming that different max route lengths are allowed. The
figure shows that attackers need many more channels to attack if they are forced
to use shorter route lengths.

Fig. 8. Fraction of capacity attacked for different max route lengths

Setting number of max concurrent payments based on trust level - Currently,
each node configures max concurrent htlcs to bound the maximum trans-
fers it is willing to hold concurrently. Most nodes use the default value con-
figured by the implementation they run. In all cases this value should not
exceed the number 483 which is derived from the blockchain’s limitations. We
suggest changing the way nodes configure this parameter, adjusting the value
according to the level of trust they have in particular peers. Setting a high
max concurrent htlcs for some peer effectively allows it to route many con-
current payments through your node and to do more damage if it is malicious.
Therefore, newly created channels with unknown and untrusted nodes should
default to a low max concurrent htlcs. A new pull request has been opened
recently (Aug 2020) promoting the basis of our proposal, allowing nodes to limit
their exposure to the maximum number of concurrent HTLCs [1].

Loop Avoidance - As our experiments show (available in the full version
of the paper [23]), it is possible to construct paths that visit the same node
several times, including traversals of the same channel back and forth. It is rel-
atively simple for nodes to disallow such paths. Since HTLCs that belong to the
same path use the same hash, they can be easily recognized and rejected. This
will make our specific technique to isolate individual nodes harder to carry out,
but may not solve the issue entirely.

https://arxiv.org/pdf/2002.06564.pdf
https://arxiv.org/pdf/2002.06564.pdf

Congestion Attacks in Payment Channel Networks 185

7 Related Work

A DDoS attack on the Lightning Network occurred in March of 2018. Many nodes
were flooded with traffic and around 200 Lightning nodes were taken offline [37].
Several studies explore sophisticated attacks on the Lightning Network. Some
focus on privacy issues [14,34], and others on isolating nodes [26,30] or disrupting
the network in other ways. Rohrer et al. [30] explored an attack that disrupts the
liquidity balance of channels. The attacker initiates payments that move all the
liquidity to one side, effectively blocking payments in that direction (payments
in the other direction are still possible). Our attack differs from this attack [30],
as they require direct connections to the victim node, as well as locked liquidity
in high amounts (up to the liquidity the victim has), in addition to the payment
of fees for large transactions.

A similar attack uses payment griefing but avoids paying the fees [26]. In this
variant of the attack, the attacker still sends a payment in one direction that
unbalances the channel in order to isolate a node. This time it withholds the HTLC
pre-image in order to lock the amount, and never really executes the payment.
Unlike our attack, this still requires amounts of locked funds that match the
amounts being locked in the victim channel, but does indeed avoid paying most
of the fees (channel establishment is still needed).

Tochner et al. [36] presents a denial-of-service attack based on route hijacking
within the Lightning Network. They show how connecting with few channels to
the network offering low fees draws most of the routes which yields a potent
attack. Our work does not rely on the routing strategy of nodes to attack the
network.

In a work parallel to ours, Tikhomirov et al. [35] quantify the effect of several
attacks on the Lightning Network. They additionally discuss the limitation on
the number of concurrent HTLCs and describe the attack vector and its effect on
the network’s scalability. We describe how to leverage the attack and provide
deeper analysis.

The privacy of payments in the Lightning Network is known to be relatively
weak. Discovering the current liquidity balance of a channel can be accomplished
using techniques from Herrera-Joancomarti et al. research [14]. Tang et al. [34]
explore the tradeoff between privacy and utility in PCNs, considering adding
noise to channels as well (which adds privacy, but lowers efficiency).

The structural properties of the Lightning Network and its topology in the
context of the network’s robustness have been studied in several studies [16,32].

A technique to lower the delay of HTLC expiration is described by Miller
et al. [22] and would make our attack less severe in this context. This sort of
technique is not applicable to the Bitcoin blockchain, due to its more limited
scripting language.

Several protocols improving upon privacy issues in off-chain payment chan-
nels are suggested in previous studies [11,13,19], as well as advances in payment
channel networks like the addition of watchtowers [2,20].

McCorry et al. [21] presents a technical overview of Bitcoin’s payment channel
networks. Additional work on off-chain protocols can be found in SoK survey [12].

186 A. Mizrahi and A. Zohar

8 Conclusions and Future Work

In this paper we discussed a fundamental vulnerability that arises in payment
channel networks as part of the construction of trust-less multi-hop payments.
We presented three types of attacks: the first aims to lock as many high liquidity
channels as possible for an extended period, the second disconnects as many
pairs of nodes as possible in the network, and the third isolates hubs from the
rest of the network. We evaluated these attacks over the Lightning Network. We
examined the network’s properties and different parameters set by the three main
implementations of the Lightning Network. We showed how recent changes in
default parameters agreed upon by Lightning Devs have made the attack easier
to carry out. Our results show that it is possible to disrupt the Lightning Network
at a relatively low cost.

Further work must be conducted in order to mitigate this type of attack. We
suggested several solutions to reduce the success rate of these attacks, but such
mitigation is generally harder due to the nature of the attack: it relies on several
fundamental properties of payment channel networks, and the blockchain.

Acknowledgments. We thank Itay Cohen, Nir Lavee and Zvi Yishai for providing
improvements in our network partitioning algorithms and analysis.

This research was supported by the Israel Science Foundation (grant 1504/17) and
by a grant from the HUJI Cyber Security Research Center in conjunction with the
Israel National Cyber Bureau.

References

1. Fundingmanager: configurable remote max HTLCs [lnd pull request #4527],
August 2020. https://github.com/lightningnetwork/lnd/pull/4527

2. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

3. Bastien Teinturier, A.R., Jager, J.: Spamming the lightning network, October 2020.
https://github.com/t-bast/lightning-docs/blob/master/spam-prevention.md

4. BitInfoCharts: Bitcoin avg. transaction fee historical chart (2020). https://
bitinfocharts.com/comparison/bitcoin-transactionfees.html#3m

5. C-Lightning: A lightning network implementation in c (2020). https://github.com/
ElementsProject/lightning

6. Dziemian, C.: Summary of the second lightning development summit (2018).
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/
001595.html. [Lightning-dev]

7. Eclair: A scala implementation of the lightning network (2020). https://github.
com/ACINQ/eclair

8. EmelyanenkoK: lightning-rfc issue #182: Payment channel congestion via spam-
attack, May 2017. https://github.com/lightningnetwork/lightning-rfc/issues/182

9. Fiedler, M.: Laplacian of graphs and algebraic connectivity. Banach Center Publ.
25(1), 57–70 (1989)

10. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

https://github.com/lightningnetwork/lnd/pull/4527
http://arxiv.org/abs/1811.12740
https://github.com/t-bast/lightning-docs/blob/master/spam-prevention.md
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3m
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3m
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001595.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001595.html
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://github.com/lightningnetwork/lightning-rfc/issues/182

Congestion Attacks in Payment Channel Networks 187

11. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized cur-
rencies. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 473–489. ACM, Dallas (2017)

12. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Off the
chain transactions. IACR Cryptology ePrint Archive 2019, p. 360 (2019)

13. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit:
an untrusted bitcoin-compatible anonymous payment hub. In: Network and Dis-
tributed System Security Symposium, NDSS (2017)

14. Herrera-Joancomarti, J., Navarro-Arribas, G., Pedrosa, A.R., Cristina, P.S.,
Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network chan-
nels. Ph.D. thesis, Dépt. Réseaux et Service de Télécom (Institut Mines-Télécom-
Télécom SudParis . . . (2019)

15. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

16. Lee, S., Kim, H.: On the robustness of lightning network in bitcoin. Pervasive Mob.
Comput. 61, 101108 (2020)

17. LNBIG: Lnbig lightning nodes (2018–2019). https://lnbig.com/#/our-nodes
18. LND: The lightning network daemon (2020). https://github.com/

lightningnetwork/lnd
19. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency

and privacy with payment-channel networks. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 455–471.
ACM, New York (2017)

20. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pp. 16–30. AFT, Zurich (2019)

21. McCorry, P., Möser, M., Shahandasti, S.F., Hao, F.: Towards Bitcoin payment
networks. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016, Part I. LNCS, vol. 9722,
pp. 57–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6 4

22. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7 30

23. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. arXiv
preprint arXiv:2002.06564 (2020)

24. Network, R.: Setting the number of pending transfers keeping the gas limit, July
2018. https://github.com/raiden-network/raiden/commit/107b3c3700a7d6cac3ea
e8634f945c1b6095f91c

25. Network, T.R.: An off-chain scaling solution (2020), https://github.com/raiden-
network/raiden

26. Pérez-Solà, C., Ranchal-Pedrosa, A., Herrera-Joancomart́ı, J., Navarro-Arribas, G.,
Garcia-Alfaro, J.: LockDown: balance availability attack against lightning network
channels. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
245–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 14

27. Poon, J., Dryja, T.: The Bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

28. (Roasbeef), O.O.: Git Commit: “lnd: lower default CLTV delta from 144
to 40”. https://github.com/lightningnetwork/lnd/commit/c302f1ea3a91ccfa382d5
6851d23f4c73656208c#diff-356ddb2e7efca712327c3b2d94d3afd3 (Mar 2019)

29. Rohrer, E.: Lightning network snapshots (2018–2019). https://gitlab.tu-berlin.de/
rohrer/discharged-pc-data/tree/master/snapshots

https://lnbig.com/#/our-nodes
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://doi.org/10.1007/978-3-319-40253-6_4
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
http://arxiv.org/abs/2002.06564
https://github.com/raiden-network/raiden/commit/107b3c3700a7d6cac3eae8634f945c1b6095f91c
https://github.com/raiden-network/raiden/commit/107b3c3700a7d6cac3eae8634f945c1b6095f91c
https://github.com/raiden-network/raiden
https://github.com/raiden-network/raiden
https://doi.org/10.1007/978-3-030-51280-4_14
https://github.com/lightningnetwork/lnd/commit/c302f1ea3a91ccfa382d56851d23f4c73656208c#diff-356ddb2e7efca712327c3b2d94d3afd3
https://github.com/lightningnetwork/lnd/commit/c302f1ea3a91ccfa382d56851d23f4c73656208c#diff-356ddb2e7efca712327c3b2d94d3afd3
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data/tree/master/snapshots
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data/tree/master/snapshots

188 A. Mizrahi and A. Zohar

30. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: Quantify-
ing the lightning network’s resilience to topology-based attacks. arXiv preprint
arXiv:1904.10253 (2019)

31. Russell, R.: Loop attack with onion routing, August 2015. https://
lists.linuxfoundation.org/pipermail/lightning-dev/2015-August/000135.html
[Lightning-dev]

32. Seres, I.A., Gulyás, L., Nagy, D.A., Burcsi, P.: Topological analysis of bitcoin’s
lightning network. arXiv preprint arXiv:1901.04972 (2019)

33. Specifications, L.N.: Basis of lightning technology (BOLTs) (2020). https://github.
com/lightningnetwork/lightning-rfc

34. Tang, W., Wang, W., Fanti, G., Oh, S.: Privacy-utility tradeoffs in routing
cryptocurrency over payment channel networks. arXiv preprint arXiv:1909.02717
(2019)

35. Tikhomirov, S., Moreno-Sanchez, P., Maffei, M.: A quantitative analysis of security,
anonymity and scalability for the lightning network. IACR Cryptol. ePrint Arch.
2020, p. 303 (2020)

36. Tochner, S., Schmid, S., Zohar, A.: Hijacking routes in payment channel networks:
A predictability tradeoff. arXiv preprint arXiv:1909.06890 (2019)

37. Trustnodes: Lightning network ddos sends 20% of nodes down (2018). https://
www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes

http://arxiv.org/abs/1904.10253
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-August/000135.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-August/000135.html
http://arxiv.org/abs/1901.04972
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
http://arxiv.org/abs/1909.02717
http://arxiv.org/abs/1909.06890
https://www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes
https://www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes

Payment Trees: Low Collateral Payments
for Payment Channel Networks

Maxim Jourenko1(B), Mario Larangeira1,2, and Keisuke Tanaka1

1 Department of Mathematical and Computing Sciences, School of Computing,
Tokyo Institute of Technology, Tokyo 152-8550, Japan

jourenko.m.ab@m.titech.ac.jp, mario@c.titech.ac.jp,

keisuke@is.titech.ac.jp
2 Input Output Hong Kong, Hong Kong, China

mario.larangeira@iohk.io

http://iohk.io

Abstract. The security of blockchain based decentralized ledgers relies
on consensus protocols executed between mutually distrustful parties.
Such protocols incur delays which severely limit the throughput of such
ledgers. Payment and state channels enable execution of offchain pro-
tocols that allow interaction between parties without involving the con-
sensus protocol. Protocols such as Hashed Timelock Contracts (HTLC)
and Sprites (FC’19) connect channels into Payment Channel Networks
(PCN) allowing payments across a path of payment channels. Such a
payment requires each party to lock away funds for an amount of time.
The product of funds and locktime is the collateral of the party, i.e.,
their cost of opportunity to forward a payment. In the case of HTLC,
the locktime is linear to the length of the path, making the total collateral
invested across the path quadratic in size of its length. Sprites improved
on this by reducing the locktime to a constant by utilizing smart con-
tracts. Atomic Multi-Channel Updates (AMCU), published at CCS’19,
introduced constant collateral payments without smart contracts. In this
work we present the Channel Closure attack on AMCU that allows a
malicious adversary to make honest parties lose funds. Furthermore, we
propose the Payment Trees protocol that allows payments across a PCN
with linear total collateral without the aid of smart contracts; a compet-
itive performance similar to Sprites, and yet compatible to Bitcoin.

Keywords: Blockchain · Payment channel · HTLC · Collateral

1 Introduction

Blockchain based decentralized ledgers as introduced by Nakamoto [12] have
enjoyed popularity and received interest from the research community and prac-
titioners. Consensus protocols allow these ledgers to be operated by mutually

This work was supported by the Input Output Cryptocurrency Collaborative Research
Chair funded by IOHK, JST CREST JPMJCR14D6, JST OPERA.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 189–208, 2021.
https://doi.org/10.1007/978-3-662-64331-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_10&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_10

190 M. Jourenko et al.

distrustful parties at the cost of limited throughput. For example, Visa as a
centralized system can process orders of magnitude more transactions within a
given time frame than the most prominent blockchains as Bitcoin and Ethereum.

The main motivation for the development of offchain protocols is to close the
gap in transaction throughput. The idea is to allow parties to interact with each
other without interacting with the ledger, while still being able to use it to resolve
disputes. Offchain protocols operate on channels that are created between two
parties. Channels hold a state which can be enforced on the ledger. Payment
channels [4,13,15] store the number of coins the two parties have locked inside
that channel. Offchain protocols provide a means to alter this state arbitrarily
often and thus improving the transaction throughput in the overall system.

Individual channels can be extended to channel networks, e.g. PCNs Light-
ning [15] and Raiden [1]. This is done using techniques, such as HTLC [2,15],
that allow for payments of b ∈ N coins across a path of payment channels of
length n ∈ N. This is performed by executing the same payment on each chan-
nel within the payment path atomically. All parties on the payment path have
to lock the payment amount for a duration of up to locktime. The opportunity
cost a party has to invest is the collateral [10] which equals the payment amount
b multiplied by the locktime. In turn, parties can impose fees to invest collateral.
In the case of HTLC, a party’s collateral equals O(nbΔ) in the worst-case where
Δ is a parameter of the underlying ledger and is the upper limit of the time it
takes for a transaction to be included in the ledger.

High collateral investments can be exploited by malicious adversaries to per-
form grieving and denial-of-service attacks [11,14]. For example, an attacker
might operate a channel to collect fees by forwarding payments. However, pay-
ments might be routed through competing channels instead. To sabotage the
competitor, the attacker can route a payment through these channels without
the intent of executing it, locking the competing channel’s coins for the entirety
of the locktime. These channels experience a denial-of-service scenario by being
unable to forward any other payments, losing fees that the attacker can collect
through their own channel. Performing this attack on a large scale can result in
denial-of-service for the whole PCN. On a lower scale, a griever might force par-
ties to lock away their funds for as long as possible by delaying their cooperation
until the last moment. An alternative form of this attack involves routing multi-
ple low value payments through a competing channel, up until a point where the
channel cannot add any further HTLCs even though it contains enough coins.
In the case of the Lightning network, these types of denial-of-service attacks can
lock all of a channel’s coins for up to around 2 weeks [11].1

For HTLC the total collateral locked over a whole payment path is O(n2bΔ)
and therefore quadratic in the payment paths length. Sprites [10] reduce the col-
lateral of each party to O(b(n + Δ)) and the total collateral to O(bn(n + Δ)) by
utilizing a smart contract. This is considered to be constant and linear respec-
tively, since n << Δ such that n + Δ < 2Δ. Sprites mitigate the damage done
by a possible attacker but its implementation is limited to ledgers with smart

1 https://cointelegraph.com/news/developer-reveals-biggest-unsolvable-lightning-
attack-vector.

https://cointelegraph.com/news/developer-reveals-biggest-unsolvable-lightning-attack-vector.
https://cointelegraph.com/news/developer-reveals-biggest-unsolvable-lightning-attack-vector.

Payment Trees: Low Collateral Payments for Payment Channel Networks 191

contract capability. The Atomic Multi-Channel Updates (AMCU) protocol [7]
is an attempt to close this gap and enable payments with constant collateral
on ledgers without smart contract capabilities. However, even though AMCU is
formalized as a functionality within Canetti’s UC Framework [3], the very last,
but crucial step, of the updateState function does not seem to be presented in the
description of the AMCU protocol, and neither addressed by the simulator [7].
This gap results in a vulnerability that can be exploited by a malicious adversary
to steal funds from honest parties.

Related Work. Payment channels [4,13,15] themselves allow only for offchain
payments between two parties. Offchain protocols such as HTLCs [2,15] and
Sprites [10] allow to perform payments across paths of channels allowing for
the implementation of PCNs. Prominent examples are the Lightning Network
[15] and Raiden [1]. Although offchain protocols exist that create new virtual
channels out of two existing channels as Perun [5,6] and Lightweight Virtual
Payment Channels [8], this work focuses on performing individual payments
across a PCN. In the following we consider a payment of b ∈ N coins across a
path of n ∈ N channels involving parties P0, . . . ,Pn.

The most prominent technique is based on HTLCs [2,15], which are scripts
that perform conditional payments within a channel: The payer locks funds into
the contract that are paid out if the payee can present a secret x such that
y = H(x) where H is a cryptographic hash function. Otherwise, after time
locktime the payment times-out and the payer can reclaim their funds. This
contract is replicated along all channels within a payment path. The payment
is performed as soon as Pn reveals x to their predecessor who then learns the
value of x allowing them to claim the payment from their predecessor in turn. An
attacker Pi, 0 < i ≤ n might attempt to delay revelation of x to their predecessor
until briefly before expiration of the locktime. To allow Pi−1 to forward x in time,
their locktime needs to be increased by at least Δ. This results in a locktime in
O(nΔ) and a total locktime in Θ(n2Δ).

Sprites [10] aim to reduce the locktime of a party up to a constant O(n+Δ)
where n << Δ. This is done by setting up a smart contract entity called Preim-
ageManager, s.t. submitting x to the PreimageManager allows to broadcast it
to all nodes within a payment path in at most n communication rounds. The
protocol requires creation of a smart contract, making it unavailable to script
based ledgers as Bitcoin. AMCU [7] attempts to close this gap, i.e. compatibil-
ity with Bitcoin, by introducing an approach for constant locktime payments
without the need of smart contracts. AMCU sets up payments on each chan-
nel within a payment path that are performed on the condition that an Enable
transaction is created, upon which all payments are performed atomically. How-
ever, this Enable transactions results in several issues. For one, its size grows
linearly in the payment path’s length, making its implementation prohibitive for
ledgers which have an upper limit for block size and transaction size. Moreover,
no party has control over all of the Enable transaction’s inputs. A malicious
adversary can make two parties collaborate to double spend one of the Enable
transaction’s inputs, such that no party is able to enforce the payment on the

192 M. Jourenko et al.

ledger. If the double-spending is timed appropriately, this can lead to an attacker
stealing funds from honest parties.

Jourenko et al. [8] proposed an offchain protocol that takes two channels γA

and γB as input, one between PA and PI and one between PI and PB and creates
a new channel γv between PA and PB . As this approach is not optimized for
individual payments, using it for this purpose would result in excessive collateral
as parties would need to lock away more coins for a longer duration as in existing
approaches. However, we re-use techniques from the lightweight virtual payment
channel construction for the Payment Tree protocol.

Our Contributions. Our contributions are threefold. 1) We present an attack
on AMCU performed by a malicious adversary. 2) We present Payment Trees
that allow for payments across paths within a PCN without the need of smart
contracts, requiring only logarithmic individual collateral O(bΔ log n) while
requiring only linear total collateral O(nbΔ) such that its performance is com-
parable to Sprites. 3) We provide efficiency and security analysis of Payment
Trees, proving the properties Balance Security and Liveness.

Structure. In the remainder of this work, first, we provide background to this
work in Sect. 2. We give an outline of the Channel Closure attack in Sect. 3.
Next, we give an informal overview of the Payment Tree protocol in Sect. 4.
Afterwards, we introduce the types of transactions used for our construction in
Sect. 5 before introducing Payment Trees in Sect. 6 followed by efficiency and
security analysis in Sect. 7. We conclude in Sect. 8.

2 Background

Notation. Throughout this work we make use of tuples and use short-hand
notations as follows. Let (a1, a2, . . . , an) be a definition of a tuple of type A and
let α be an instantiation of A. Then α.ai equals the i-th entry of α.

The UTXO Paradigm. A UTXO is a tuple of the form (b, π) where b ∈ N is an
amount of coins and π ∈ {0, 1}∗ is a script. The b coins of the UTXO are claimed
by providing a witness w ∈ {0, 1}∗ s.t. π(w) = True. The state of the ledger is
represented by a set of UTXO Sutxo, which can be changed by a transaction of
the form (Uin, Uout, t) where t ∈ N is the (absolute) timelock represented as a
point in time, Uout is the list of unique UTXO for the outputs of the transaction,
and Uin is the set of transaction inputs of the form (ref(u), wu) where ref(u) is
the pointer to the UTXO u, and wu is the witness.

A transaction (Uin, Uout, t) needs to fulfill the following conditions. (1) The
locktime has passed, i.e. t ≤ τ where τ is the current time, (2) all witnesses
are valid, i.e. ∀(ref(u), w) ∈ Uin : u.π(w) = True (3) the coins within the
newly created UTXO are less or equal to those in the transaction’s inputs, i.e.
Σ(ref(u),w)∈Uin

u.b ≥ Σu∈Uout
u.b, (4) all UTXOs in the transaction’s inputs exist

and have not yet been spent, i.e. ∀(ref(u), w) ∈ Uin : u ∈ Sutxo. The transac-
tion has the following effect on the ledger. All UTXOs referenced within Uin

Payment Trees: Low Collateral Payments for Payment Channel Networks 193

are removed from Sutxo and all UTXOs defined in Uout are added to Sutxo. A
transaction T is included in the ledger within a duration Δ ∈ N. Condition (4)
implies that no UTXO can be claimed by two different transactions. After send-
ing T to the ledger, if within time Δ another transaction T ′ claiming a subset of
the same UTXOs as T is sent to the ledger, it would result in a race condition,
in which it is non-deterministic whether T or T ′ will change the ledger’s state.
We note that while we use Δ as a ledger parameter in practice this value has
to be estimated for real-world implementations. Special care has to be taken
when selecting a value. A value that is too low breaks our assumptions and the
protocol’s security. A value too high increases the collateral and therefore the
impact of attacks such as congestion and lockdown [11,14].

Transaction Graph. All transactions included in the ledger form a directed and
acyclic graph. The set of all transactions form its vertices. An edge (T0, T1) from
transaction T0 to transaction T1 exists, if T1’s inputs contain a pointer to one of
T0’s outputs, i.e. ∃u : u ∈ T0.Uout ∧ (ref(u), w) ∈ T1.Uin. Note that a transaction
can only be included in a ledger if all of its ancestors have been included in the
ledger before. In the remainder of this work we reference sets of transactions
that are connected to form a sub-tree as transaction trees.

Scripting. Scripts in this work specify a UTXOs owner by requiring a signature
of the transaction that spends the UTXO with the recipient’s verification key.
This is extended to 2-out-of-2 multisignatures that require verification keys of
two parties P and P ′ effectively creating a shared wallet between both parties
that can only be spent with consent of both parties. In the remainder of this
work UTXOs requiring 2-out-of-2 multisignatures are termed Funding UTXO.
Throughout this work we simplify scripts by only stating the set of parties which
need to provide their signatures to spend the respective UTXO.

Channels. A channel γ between two parties consists of sub-protocols setup, clo-
sure and dispute. In setup both parties create a transaction Trf containing a
Funding UTXO between each other which locks their funds into the channel.
They create a transaction tree with the Funding UTXO as its ancestor that rep-
resents the channel which we reference in the remainder of this work as channel-
tree. Only after the channel-tree is created and either party holds signatures of
its transactions, both parties sign and commit Trf to the ledger while holding off
commitment of transactions within the channel-tree. Both parties can perform
closure of the channel by committing a transaction to the ledger that spends
the Funding UTXO unlocking the channel’s funds according to its most recent
state. In case of a dispute, the dispute sub-protocol enforces the channel’s state
by committing the channel-tree’s transactions onto the ledger.

Offchain Protocols perform a state transition of a channel by transforming its
channel-tree. Any honest party must be able to enforce the new channel’s state
which might require an explicit invalidation step that disables commitment of
an older version of the channel-tree or allows for punishment of a party that

194 M. Jourenko et al.

does so. An efficiency requirement of offchain protocols is that performing them
n ∈ N times grows the channel-tree by at most O(1) transactions.

Invalidation by Timelock. Timelocks can be used to define at which point a
transaction can be committed to the ledger. Assume there are two transactions
that spend the same UTXO, but which have timelocks that are 1) in the future
and 2) have a difference of at least Δ. In this case parties can enforce commitment
of the transaction with the lower timelock to the ledger. The transaction with
the lower timelock invalidates the transaction with the higher timelock.

Hashed Timelock Contracts. Let P0,P1, . . . ,Pn, n ∈ N be parties where par-
ties Pi−1 and Pi, i ∈ {1, . . . , n} control channel γi. HTLCs are used to perform
payments of b ∈ N coins from P0 to Pn by replicating the payment on each
channel γi within a payment path γ1, . . . , γn from P0 to Pn. (1) On a chan-
nel γj , j ∈ {1, . . . , n} the payment is performed by extending the channel-tree
with a conditional payment: If the payee Pj can show the pre-image x ∈ N of
a hashed value y = H(x), where H is a cryptographic hash function, they will
receive b coins from the payer Pj−1. However, after expiration of a locktime tj
the payment expires and the payer Pj−1 will have their coins refunded instead.
(2) Only after the conditional payments are set up on all channels, the payment
is executed atomically by having Pn show the pre-image x to Pn−1, proving that
they have the capability to claim the coins on the ledger through the conditional
payment. In turn, Pn−1 learns the pre-image x s.t. they can show it to party
Pn−2 reclaiming the coins they forwarded to Pn. The information on x propa-
gates through the whole payment path in this manner. (3) Lastly, to keep the
payment offchain, the parties need to consolidate the payment on each channel
respectively. This is done by updating the channel-tree. The conditional-payment
is removed and the b coins that were locked into the channel are credited to the
payee. At this point the channel-tree has the same form as before the payment,
but with updated balance distribution to account for the payment. This ensures
that the channel-tree does not grow in size with each payment, thus fulfilling the
efficiency requirements of an offchain protocol. Note that, if the payer Pj−1 does
not cooperate with consolidation, payee Pi can reclaim their coins by resolving
the conditional payment on the ledger instead. Due to this the timelock tj has
to be chosen s.t. Pi has enough time to do so before the conditional payment
expires, even if they learn the pre-image from Pi+1 at the last moment just
shortly before expiration of timelock tj+1. Thus the relation ti ≥ ti+1 +Δ has to
hold, making the locktime grow linearly with the payment path’s length. This
results in a collateral cost of bti ∈ O(bn2Δ) which is quadratic in the path’s
length.

The Wormhole Attack. The HTLC protocol is vulnerable to the wormhole attack
[9]. An adversary controlling two parties Pi, Pj , 1 ≤ i ≤ j + 2 ≤ n − 1 within
a payment path can prevent intermediaries k, i < k < j to participate at the
payment and receive their fees by having Pi forward pre-image x to Pi−1 after
Pj learns it from Pj+1 and without forwarding it to party Pj−1.

Payment Trees: Low Collateral Payments for Payment Channel Networks 195

Brief Description of AMCU. A payment within the AMCU protocol is per-
formed by replicating the payment on each channel using Consume transactions.
All Consume transactions share a common ancestor within the protocol’s trans-
action tree which is the Enable transaction. The Enable transaction has UTXOs
from each individual channel as input and thus requires signatures of all parties
within the payment path. As soon as the parties exchange signatures for the
Enable transaction, all Consume transaction could be committed on the ledger,
thus performing the payment. If any party refuses to collaborate in the creation
of the Enable transaction, all parties have their coins refunded using Lock trans-
actions after the expiration of the specified locktime period. As we show in the
next section, in contrast to HTLCs, AMCU cannot ensure that all parties have
the capability to claim their coins on the ledger after the payment. In fact it
takes only one pair of parties controlling a channel to spend one of the Enable
transaction’s inputs with a different transaction s.t. the Enable transaction and
transitively the Consume transactions cannot be committed to the ledger. This
could be remedied by performing a consolidation step on all channels atomically.
Although the functionality PCN+, that models AMCU, correctly performs this
consolidation step, the AMCU protocol itself does not.

3 The Channel Closure Attack on AMCU

In the following we present the Channel Closure attack informally. A more
detailed description of AMCU and a formal treatment of the attack are sup-
plemented in the full version of the paper.

The Vulnerability. While the Enable transaction is the core of the AMCU con-
struction, it also seems to be its vulnerability. While the Enable transaction
receives inputs from each channel, no party has control over all channels within
the payment path. At any time, two parties sharing a channel can maliciously
spend a UTXO that is provided as input of the transaction, or as input to any
of its ancestors within the transaction tree. When this happens, the Enable
transaction cannot be committed to the ledger and all parties have their coins
refunded through Lock transactions. Effectively, no party can enforce payment
after execution of the AMCU protocol. On top of that, an adversary can take
this further, performing a Channel Closure attack to steal funds from honest
parties. We remark that PCN payments require a consolidation step in which
a payment is included within the parties’ individual channels. While the func-
tionality PCN+ modeling AMCU performs a consolidation step atomically on
all channels, this step is omitted by the AMCU protocol. Second, performing
the consolidation step atomically on all channels is highly non-trivial as atomic
operations on multiple channels is exactly the problem statement that protocols
such as HTLCs, Sprites and AMCU themselves attempt to solve.

196 M. Jourenko et al.

The Channel Closure Attack is performed by abusing exactly these two obser-
vations. First, the adversary corrupts two parties within a payment path Pi

and Pi+1. These parties cooperate in execution of the AMCU protocol right up
until the consolidation step. Then, Pi performs the consolidation step with Pi−1

on channel γi−1 while Pi+1 does not cooperate with Pi+2 to consolidate the
payment on channel γi+1. Next, Pi and Pi+1 close their channel γi such that
the Enable transaction cannot be committed to the ledger. This allows Pi+1

to reclaim coins from Pi+2 using their shared Lock transaction. Effectively, Pi

received the payment amount from Pi−1 on γi through consolidation, while Pi+1

did not forward the payment.

4 Protocol Overview

In the following, we define communication and adversarial models, before giving
an overview of the protocol. Lastly we define the properties of our construction.

Communication Model. Communication between parties occurs in rounds. Any
message sent within one round is available to the recipient at the beginning of
the next round. The duration of any round has an upper limit.

Adversarial Model. We define an Adversary A consistent with related work
[7,8,10]: At the beginning of protocol execution, the adversary can statically
corrupt up to n of n + 1 parties, receiving their internal state and having all
communication to and from these parties be routed through the adversary. The
adversary is malicious and can make any corrupted party deviate from the pro-
tocol. Moreover, within each communication round, the adversary can delay and
re-order all messages sent.

We illustrate the life-cycle of the Payment Tree protocol for a payment of 2
coins from Alice to Charlie across two channels using Figs. 1 and 2. The proto-
col’s approach is to take two channels, one between parties Alice and Bob, one
between parties Bob and Charlie and construct a transaction tree that effectively
creates a virtual channel [8] optimized for a one-time payment between Alice and
Charlie. Our construction utilizes two approaches to perform updates to trans-
action trees atomically. On the one hand, we use these techniques to empower
the intermediary Bob to ensure correctness of the protocol, while on the other
hand, we incentivise Bob to actually do so by means of punishment. Our con-
struction consists of multiple transaction tree updates. Updates are done using
the invalidation by timelock technique, but for simplicity we leave the details to
Sect. 6.

Constructing Transaction Trees Atomically. We observe that committing a
transaction to the ledger requires that all of its ancestors are committed to
the ledger beforehand. For a transaction to be able to be committed to the
ledger it needs to contain all required witnesses, i.e. signatures. Therefore, (1)
we can atomically create a transaction tree rooted in a transaction trroot that is

Payment Trees: Low Collateral Payments for Payment Channel Networks 197

Alice
& Bob :

7

Channel A
Alice : 5

Bob
& Charlie :

5

Bob : 2

Funding UTXO

Funding UTXO

Ledger

Channel B
Bob : 4

Charlie : 1

(a) Original State

Alice
& Bob :

7

Channel A
Alice : 3

Bob
& Charlie :

5

Bob : 2
Funding UTXO

Funding UTXO

Ledger

Channel B
Bob : 2

Charlie : 1

Alice & Bob : 5
Alice & Bob : 2

Bob & Charlie: 3
Bob & Charlie: 2

Split
Transactions

Alice : 2

Refund

Bob : 2

(b) Split of funds

Alice
& Bob :

7

Channel A
Alice : 3

Bob
& Charlie :

5

Bob : 2
Funding UTXO

Funding UTXO

Ledger

Channel B
Bob : 2

Charlie : 1

Alice & Bob : 5
Alice & Bob : 2

Bob & Charlie: 3
Bob & Charlie: 2

Split
Transactions

Refund

Alice : 2
Alice & Charlie :

2
Bob : 2

Merge

(c) Merge of trees

Alice
& Bob :

7

Channel A
Alice : 3

Bob
& Charlie :

5

Bob : 2
Funding UTXO

Funding UTXO

Ledger

Channel B
Bob : 2

Charlie : 1

Split
Transactions

Alice : 2

Charlie : 2

Punish

Punish

Refund

Alice : 2

Alice & Bob : 5
Alice & Bob : 2

Bob & Charlie: 3
Bob & Charlie: 2

Alice & Charlie :
2

Bob : 2

Merge

(d) Securing funds

Fig. 1. Stepwise construction of a Payment Tree across two channels. Boxes with
straight corners represent channel trees displaying their state. Boxes with round corners
represent transactions displaying output UTXOs. Edges indicate which transactions
spend the UTXO at their origin.

common ancestor to all other transactions. First, we add signatures to all trans-
actions except trroot. Afterwards, adding signatures to trroot makes the whole
transaction tree committable to the ledger at the same moment. (2) We assume
two transactions, tr0 and tr1, that require signatures of Alice and Bob, as well
as Bob and Charlie respectively. Bob can enforce that both transactions are cre-
ated atomically by only providing his signature after he received signatures from
Alice and Charlie. We note that techniques (1) and (2) can be used in tandem.

Payment Tree Construction. Figure 1 depicts construction of a Payment Tree
between Alice, Bob and Charlie. Construction consists of three atomic trans-
action tree updates. We note that the balance distribution between the parties
remains unchanged between the updates and no payment is executed. Alice and
Bob as well as Bob and Charlie share a channel as depicted in Fig. 1a. (1) Then,
as shown in Fig. 1b we update both trees by introducing a Split transaction that
spends the channels’ Funding UTXOs and creates two new Funding UTXOs each.
One UTXO contains the payment amount and is funded by coins from Alice,
who is payer, and Bob, who is intermediary, respectively. The other UTXO con-
tains the remaining coins and is used as Funding UTXO to reopen both channels
which can be used for further payments within the channels or further Payment
Tree constructions. (2) Next as shown in Fig. 1c both separate transaction trees
are combined using a Merge transaction. This transaction creates two UTXOs.
One UTXO requires Bob’s signature to be spent and contains his collateral. The
other UTXO is a Funding UTXO requiring the signatures of Alice and Charlie
and it contains Alice’s payment to Charlie. At this point, the coins are given to
Alice. (3) Lastly, as shown in Fig. 1d, before we can proceed with a payment,

198 M. Jourenko et al.

Alice
& Bob :

7

Channel A
Alice : 3

Bob
& Charlie :

5

Bob : 2
Funding UTXO

Funding UTXO

Ledger

Channel B
Bob : 2

Charlie : 1

Split
Transactions

Alice : 2

Charlie : 2

Punish

Punish

Payment

Charlie : 2

Alice & Bob : 5
Alice & Bob : 2

Bob & Charlie: 3
Bob & Charlie: 2

Alice & Charlie :
2

Bob : 2

Merge

(a) Payment

Alice
& Bob :

7

Channel A
Alice : 3

Bob
& Charlie :

5

Bob : 2
Funding UTXO

Funding UTXO

Ledger

Channel B
Bob : 2

Charlie : 1

Split
Transactions

Consolidation

Bob : 2

Charlie : 2

Alice & Bob : 5
Alice & Bob : 2

Bob & Charlie: 3
Bob & Charlie: 2

(b) Consolidation

Fig. 2. Payment and Consolidation using Payment Trees. Figure 2a modifies the Pay-
ment Tree to forward the funds in the Merge transaction’s Funding UTXO to the payee.
Figure 2b splits up the Payment Tree and distributes funds according to the Payment
Tree’s state in Fig. 2a.

the funds within the Merge transaction’s Funding UTXOs need to be secured
in case two parties, for example Bob and Charlie, collude to spend their Merge
transaction’s or Split transaction’s input with a different transaction. This attack
is similar to the Channel Closure attack described in Sect. 3 and would disable
commitment of the Merge transaction. However, we observe that all UTXOs
that can be spent for this attack require Bob’s signature. Respectively, in this
scenario we can uniquely identify Bob as malicious. In order to punish Bob and
secure the funds of Alice and Charlie respectively we create Punish transactions.
These transactions spend the same Funding UTXOs as the Merge transaction
but have a timelock that is higher than that of the Merge transaction by at
least Δ. Due to this, Bob can always avoid commitment of a Punish transac-
tion by committing the Merge transaction to the ledger. However, in case Bob
acted maliciously such that the Merge transaction cannot be committed to the
ledger, Alice and Charlie can reclaim their coins from Bob through the Punish
transactions.

Payment and Consolidation. Figure 2 depicts payment and consolidation using a
Payment Tree. Assuming a fully constructed Payment Tree as shown in Fig. 1d a
payment is executed by giving the coins within the Merge transaction’s Funding
UTXO to Charlie instead of Alice. As shown in Fig. 2a this changes the balance
distribution represented by the transaction tree, reducing Alice’s coins by 2 and
adding those to Charlie’s balance. A consolidation requires one atomic transac-
tion tree update as shown in Fig. 2b. This update spends the UTXOs within the
Merge transaction’s inputs and gives the coins to Bob and Charlie respectively.
Note that this step does not change the balance distribution between the parties.
Bob needs to make sure that this update is done atomically s.t. he avoids com-
mitment of a Punish transaction. At this point the transaction trees are separate
and in control of each channels’ members respectively. Both pair of parties can
now perform a last transaction tree update that replaces the respective trans-
action tree with a channel as shown in Fig. 1a but that now represents the new
balance distribution instead.

Payment Trees: Low Collateral Payments for Payment Channel Networks 199

System Goals. In the following we define the desired properties of our protocol.

Theorem 1 (Balance Security). Outside of performing the intended pay-
ment, the sum of a honest party’s coins is not reduced by participation in the
Payment Tree protocol.

Theorem 2 (Liveness). Eventually any honest party receives access to their
coins through UTXOs spendable with a witness consisting of a signature corre-
sponding to their verification key.

5 Transactions

We use three types of transactions. Split transactions are used to split off coins
from one channel, making them available to our construction in form of a Funding
UTXO. Payout transactions take a Funding UTXO as input and pay the money
to one of the two parties involved in it. Lastly, the Merge transaction is used to
combine the Funding UTXOs that were split off two channels by taking them
as input, paying out the intermediary’s coins out as collateral and creating a
Funding UTXO between the two remaining non-intermediary parties.

Split Transactions are of form Trsplit = (Uin, Uout, t) where Uin = {ref(fγ)}
consist of one Funding UTXO provided by the channel-tree of γ, Uout =
{fchange, fpay} consists of two Funding UTXOs. It holds that fchange.b+fpay.b = fγ

and fpay.b = b. Moreover, fγ .π = fchange.π = fpay.π, i.e. all Funding UTXOs are
shared between the same parties. The function call SPLIT(γ, b, t) creates a Split
transaction as described above and returns fpay. A function call to UNSPLIT(γ)
consolidates the transaction into the channel by updating the channel’s balance
distribution with the split off balance. Additionally it sets up a channel between
both parties by constructing a channel-tree with Funding UTXO fchange as root.
Split transactions are used to take off b coins from each channel to be used for
our construction. They are used to avoid that the existing channels are affected
in case a corrupted intermediary misbehaves. Although we represent this by
using a Split transactions as done with Virtual Channels and AMCU, it could
be included similarly as conditional payments from HTLCs by placing a Funding
UTXO instead of a HTLC contract.

Merge Transactions are of form Trmerge = (Uin, Uout, t) where Uin =
{fpay,0, fpay,1} and Uout = {fpay, ucollateral}. The two Funding UTXOs that are
provided as input fpay,0 and fpay,1 are shared between parties PA and PB as well
as between parties PB and PC respectively. The newly created Funding UTXOs
fpay in the output is shared between parties PA and PC . The other UTXO within
the outputs is ucollateral which pays out funds to PB . Lastly it holds that the
coins in all UTXOs are equal, i.e. fpay,0.b = fpay,1.b = fpay.b = ucollateral.b = b.
The function call MERGE(fpay,0, fpay,1, t) is a short-hand notation to construct
a Merge transaction. We extend helper function OUT UTXO to accept a Merge

200 M. Jourenko et al.

transaction as input as well. In this case it returns UTXO fpay. The helper func-
tion IN UTXO takes a Merge transaction as input and outputs the UTXOs that
are used within its inputs, i.e. fpay,0, fpay,1. Merge transactions are used to com-
bine transaction trees into one, essentially opening up a virtual channel between
Alice and Charlie that can be used for a one-time payment.

Payout Transactions are of form Trpayout = (Uin, Uout, t) where Uin = {f} is a
Funding UTXO and Uout = {upayout}. It holds that upayout pays out funds to
a party P and f.b = upayout.b. The function call PAYOUT(f,P, t) constructs a
Payout transaction as described above. We extend helper function IN UTXO to
take a Payout transaction as input in which case it outputs the UTXO f . Payout
transactions are used at several points within our construction to serve differ-
ent roles as shown in Fig. 3. Refund transactions are used whenever Funding
UTXOs are created. They are used to ensure that no funds are locked away
within Funding UTXOs indefinitely even when any other party stops collabora-
tion, which is essential to ensure the liveness property. Punish transactions are
used to incentivise an intermediary to collaborate and ensure Merge transactions
can be committed to the ledger. Without those, in case a Merge transaction is
not committed to the ledger it could result in the loss of coins for Charlie in case
the Refund transaction between Bob and Charlie is committed to the ledger
instead and after the payment between Alice and Charlie has been performed.
The Payment transaction is used to perform a change of the state, i.e. bal-
ance distribution, represented by the transaction tree, effectively performing a
payment. Lastly, Consolidation transactions are used to deconstruct the transac-
tion tree by applying the payment on both original transaction trees atomically.
Without these, we cannot enforce the payment outside of committing the trans-
action tree to the ledger itself because of which the protocol would not fulfill
the efficiency requirements for offchain protocols and thus not being classified as
such. We note that the Refund and Punish transactions between Alice and Bob
represent the same state s.t. the Punish transaction is redundant. However, for
simplicity we opted to include both transactions making the construction sym-
metric. Whereas similarly the Consolidation and Punish transactions between
Bob and Charlie do represent the same state in Fig. 3, it is not possible to remove
any of the transactions in the case where fees are paid to Bob which would be
included within the Consolidation but not the Punish transactions.

6 Our Payment Tree Construction

We describe the construction of a payment tree in respect to our running
example. Let P0,P1, . . . ,Pn, n ∈ N, be parties where parties Pi−1 and Pi, i ∈
{1, . . . , n} control channel γi. The protocol performs a payment of b ∈ N coins
from P0 to Pn. The value τ ∈ N represents the current time, whereas Δ ∈ N is
the maximum time it takes for a transactions to be included in the ledger after
committing it. We illustrate our approach in Fig. 3 for a two-hop payment, i.e.
for the case of n = 2. It is designed such that it can be extended to payment

Payment Trees: Low Collateral Payments for Payment Channel Networks 201

Alice
& Bob

1) Channel Alice & Bob

Alice : bA − b

Bob
& Charlie

Bob : bB

Bob : b′ B − b
Charlie : bC

Alice & Bob :
(bA + bB) − b

1) Split

Alice & Bob :
b

Bob & Charlie:
(b′ B + bC) − b

1) Split

Bob & Charlie:
b

2Δ
2) Merge

Alice & Charlie : b
Bob : b

1) Channel Bob & Charlie

Channel Tree

Channel Tree

2Δ+4Δ

Alice: b

4Δ
1) Refund

Alice: b

3Δ
3) Punish

Alice: b
Δ

5) Consolidation

Bob: b
2) Refund

4Δ
1) Refund

Bob: b

3Δ
3) Punish

Charlie: b

Δ
5) Consolidation

Charlie: b

2Δ+Δ
4) Payment / Consolidation

Charlie: b

Fig. 3. Transaction tree of a payment of b coins across 2 hops. Beforehand, the respec-
tive balances are bA and bB for Alice and Bob, b′

B and bC for Bob in Charlie within
their channels. Transactions are boxes with round corners containing the UTXOs they
create, whereas referenced UTXOs in inputs are indicated implicitly by arrows origi-
nating from the UTXO that is spent. Red numbers indicate timelocks. Numbers atop
the transaction indicate order of construction whereas transactions with same numbers
are constructed atomically. Channel trees are boxes with straight edges forming a black
box. (Color figure online)

paths of arbitrary lengths. The construction is based on the overview given in
Sect. 4. Numbers indicate the order in which transactions are created, whereas
transactions with the same numbers are created atomically (Fig. 4).

The Payment Tree Protocol. The protocol for constructing a Payment Tree
across a path of n channels is depicted in Algorithm 4. It makes use of Algorithm
1 that allows an intermediary to atomically create two transactions, Algorithm
2 that performs a construction step of the Payment Tree, and Algorithm 3 that
performs a consolidation step of the Payment Tree.

Helper Functions. Function SIGN(Tr, PS , PR) is used to sign and exchange sig-
natures of transactions. It takes a transaction Tr and two sets of parties PS

and PR as input. Each party in PS signs Tr and sends the signature to each
party in PR. This includes verification of signatures by the recipients. Func-
tion PARTIES takes a Funding UTXO as input and outputs a set containing
the two parties of which a signature is required to spend the UTXO. Func-
tion INTERMEDIARY(f0, f1) takes two Funding UTXOs f0, f1 as input, if an
intermediary exists, i.e. |PARTIES(f0) ∩ PARTIES(f1)| = 1, then it returns the
intermediary P ∈ PARTIES(f0) ∩ PARTIES(f1). Otherwise it returns ⊥. Func-
tion COUNTERPARY(f,P) takes a Funding UTXO and a party as input, if
P ∈ PARTIES(f), then it returns its counterparty PC ∈ (PARTIES(f)) \ {P}.

202 M. Jourenko et al.

Fig. 4. Algorithm that takes two Payout transactions as input and allows the interme-
diary party to enforce that either both or no transactions are fully signed.

Atomic Signatures. We assume a setting with two channels between three par-
ties. Protocol ATOMIC SIGN is shown in Algorithm 1. It enables the interme-
diary party to enforce that two transactions – one on each channel – are created
atomically. This is done by having the intermediary party provide signatures to
both transactions only after they received all signatures from its counterparties
(Fig. 5).

Merging Channels. Protocol MERGE as shown in Algorithm 2 takes two Fund-
ing UTXOs f0, f1, an amount of coins b and a time t as input where f0 is shared
between parties PA and PI , f1 is shared between parties PI and PB and it holds
that f0.b = f1.b = b. It creates a Merge transactions with timelock tm = t + 2Δ
spending both Funding UTXOs, paying out b coins to PI and containing a Fund-
ing UTXO holding b coins, which are paid out to PA after time tm+4Δ by means
of a Payout transaction. This transaction tree is created atomically as its root,
which is the Merge transaction, is signed last. Only after each party holds a fully
signed instance of the Merge transaction, two Punish transactions spending f0
and f1 and paying out b coins to PA and PB respectively are created atomically
using ATOMIC SIGN. These have timelocks equal to t+3Δ. Note that the cre-
ation of the Merge transaction must not re-distribute funds, i.e. the funds in f0
are paid by PA and the funds in f1 are paid by PI . The Punish transactions are
used to secure the funds within the Merge transaction by paying out funds to PA

and PB , if the Merge transaction cannot be committed to the ledger. Timelocks
are selected to perform transformations on the existing transaction through the
invalidation by timelock technique and also to allow the construction to be per-
formed iteratively. Timelock tm is selected s.t. a Consolidation transaction can be
placed with timelock t+Δ during the protocol’s consolidation phase. Timelocks
of the Punish transactions are selected s.t. they are invalidated by the Merge
transaction conditionally, i.e. only if the Merge transaction can be committed to
the ledger, the Punish transactions are invalid. The Payout transaction acts as
a Refund transaction for the new Merge transaction. Respectively we assign it

Payment Trees: Low Collateral Payments for Payment Channel Networks 203

Fig. 5. Creation of a Funding UTXO between two counterparties. The intermediary
can enforce atomic construction while Punish transactions provide incentive.

a timelock of tm + 4Δ such that Consolidation, Merge and Punish transactions
can be placed with timelocks tm + Δ, tm + 2Δ and tm + 3Δ respectively. Note
that if the Merge transaction is on top of the Payment Tree s.t. it is not used
for further channel merges, the Refund transaction’s timelock can be reduced to
tm + 2Δ. Lastly, if a transaction spends another transaction, its timelock needs
to be larger by at least Δ to ensure that all transactions can be committed to
the ledger as soon as their timelocks expire (Fig. 6).

Consolidation. Algorithm 3 takes a Merge transaction as input, invalidates it by
creating two Payout transactions atomically using the ATOMIC SIGN protocol
that spend the Merge transaction’s inputs. Both consolidation transactions per-
form a payment by giving the funds to the payee. Note that the protocol can be
adjusted to cancel a payment by refunding the funds to the payer instead (Fig. 7).

Payment Trees. Algorithm 4 performs a payment from P0 to Pn by iteratively
merging Funding UTXOs, s.t. the Merge transactions form the nodes of a bal-
anced binary tree as illustrated in Fig. 8. The algorithm takes the following
inputs: (1) The payment path γ1, . . . , γn, (2) the payment amount b, and (3)
time tmin. The value tmin is negotiated by the parties and represents the max-
imum amount of time the parties have to execute the protocol. The dispute
protocol starts if the protocol is not concluded until tmin. Note that even exist-
ing methods as HTLCs have to account for tmin.

In the following we refer to a certain depth within this binary tree as level,
beginning with Split transactions on level 0. The algorithm maintains lists of
Funding UTXOs F UTXOi for each level i ≥ 0 of the binary tree, as well as
lists of Merge transactions MRGj for each level j ≥ 1 of the binary tree. The

204 M. Jourenko et al.

Fig. 6. Invalidating a Merge transactions and atomically updating the state on the two
original Funding UTXOs.

algorithm proceeds as follows. Add a Funding UTXO from each Split transaction
to F UTXO0 in order (4–7) and create the Payment Tree by iterative use of
the MERGE protocol level-by-level (8–18). The Merge transactions and Funding
UTXOs created on level j are added to lists MRGj and F UTXOj respectively
and in order (12–13). Note that if there is an uneven amount of Funding UTXOs
within a level, we leave the odd one to be used in the level above instead (15–17).
The payment is executed after construction is concluded (19). Afterwards the
payment tree is deconstructed in reverse order by executing the CONSOLIDATE
protocol on each Merge transaction (20–24). Lastly the Split transactions are
removed and consolidation within all original channels concludes (25–27).

Dispute. This protocol is executed at time tmin if the payment tree protocol has
not come to conclusion in an orderly manner. Every honest party submits their
transactions to the ledger as soon as their respective timelocks expire. This will
result in commitment of the payment tree onto the ledger where transactions are
committed in order of their priority. If a Merge transaction cannot be committed
to the ledger, refunds and payments are done via Punish transactions.

Fees. Fees can be paid by the payer P0 and payee Pn or either of them alone to
the intermediaries to compensate for their invested collateral. Our approach to
handling fees is similar to the approach used for HTLCs, however, adapted to the
binary tree structure of Payment Trees. Any party acting as intermediary when
creating a Merge transaction receives cumulative fees from the other two parties
participating in the Merge transaction’s construction. The cumulative fee paid
to the intermediary is composed of two parts. For one, it contains the fees paid
to the intermediary themselves, and for another, it contains coins the party has
to forward to the parties who act as intermediaries of Merge transactions on the
lower levels of the Payment Tree. For simplicity, in the following we assume that
the path’s length is a power of 2, i.e. n = 2i, i ∈ N, the paid fees f are equal for

Payment Trees: Low Collateral Payments for Payment Channel Networks 205

Fig. 7. The full Payment Tree protocol from construction to consolidation.

each intermediary and all fees are shared between payer P0 and payee Pn equally.
Then, a party that acts as intermediary of level i of the Payment Tree receives
fi = f + 2 fi−1

2 = f + fi−1 coins, where f1 = f . The fee fi is paid equally by
the other two parties involved in the Merge transaction’s construction. Payment
of fees happens within Merge transactions by adding a fee to the collateral the
intermediary receives. However, this raises the challenge that we have to ensure
that all transactions receive sufficient funding: The coins within a transaction’s
inputs have to cover all coins within their outputs. Moreover, to ensure that the
consolidation step can be performed, the collateral of the intermediary within
a Merge transaction has to be at least as high as the coins within the Merge
transaction’s Funding UTXO [8]. Therefore, when performing the merge step
on level i every party has to have an additional balance of fi,cum =

∑h
j=i fj ,

whereas the collateral of a Merge transaction’s intermediary equals b+fi,cum+fi

where fi is paid equally from balances brought by the other two parties.

206 M. Jourenko et al.

Fig. 8. Payment tree in the shape of a balanced binary tree.

7 Collateral Efficiency and Security Analysis

In this section we discuss properties of the Payment Tree construction.

Efficiency. Figure 9 depicts the efficiency properties of Payment Trees, compar-
ing it to existing approaches. We compare two metrics: (1) The collateral, and
(2) the number of transactions that have to be committed to the ledger in case
of dispute. We do this for individual parties, as well as for the whole payment.

Commitment of each Merge transaction unlocks the collateral of one party.
To commit a Merge transaction located on level i of the payment tree it needs to
commit i transactions beforehand, i.e. i − 1 Merge transaction as well as a Split
transaction. This will happen at time 2Δi. As the height of the Payment tree is
limited by
log n� it follows that any party invests b2Δi ∈ O(bΔ log n) collateral
and has to commit i+1 ∈ O(log n) transactions. Regarding the total payment, we
observe that there are n

2i Merge transactions on level i of the payment tree. It fol-
lows that the total collateral equals the sum

∑�log n�
i=1 b2Δi n

2i = b2Δn
∑�log n�

i=1
i
2i .

As
∑∞

i=1
i
2i = 2 and each part of the sum is positive, it follows that the total

collateral b2Δn
∑�log n�

i=1
i
2i < 4bΔn ∈ O(bΔn) is linear in the length of the pay-

ment path n. The number of transactions can be computed in a similar fashion,
however, an intuitive approach is to recall that the transactions form a balanced
binary tree of height 1+
log n� which has at most 21+�log n� ≤ 2n ∈ O(n) nodes.
Although the collateral any individual party has to invest is logarithmic, there-
fore higher than Sprites but lower than HTLCs, the total collateral incurred
over the whole payment is linear in the path’s length. This is comparable to the
performance of Sprites and is by a factor of n lower than the total collateral of
HTLCs. A trade-off of Payment Trees is that an individual party might have
to commit up to O(log n) many transactions. Nevertheless the total number of
transactions over the whole payment is comparable to both, HTLCs and Sprites.
Payment Trees provide a performance comparable to Sprites without requiring
a ledger with smart contract capability.

Payment Trees: Low Collateral Payments for Payment Channel Networks 207

Method pp Collateral pp Tr. Total Collateral Total Tr. Smart Contracts
HTLC [15,2] O(bΔn) O(1) O(bΔn2) O(n) No
Sprites [10] O(b(n + Δ)) O(1) O(b(n + Δ)n) O(n) Yes

Payment Tree O(bΔ log n) O(logn) O(bΔn) O(n) No

Fig. 9. Comparison of the performance of Payment Trees across the whole payment
(Total) and individually per party (pp).

Denial of Service Attacks. The Payment Tree protocol mitigates existing attacks
such as the congestion and lockdown attacks [11,14] on HTLCs that aim to
lock a channel’s coins within unfulfilled HTLCs. This is done by reducing the
total and individual collateral of payments. While a large scale DoS attack on
multiple channels is difficult as the total collateral of Payment Trees is linear
in the payment path’s length, a specific intermediary can be targeted to act
a intermediary on the highest level of the Payment Tree to pay a logarithmic
collateral. Another aspect of the Lockdown attack is that a channel is blocked
by saturating the number of HTLCs applicable to a channel which is limited by
the maximum size of a transaction. The Payment Trees protocol mitigates this
by using Split transactions. Each pending payment requires the construction of
a Split transaction. This prevents that there is any transaction that increases in
size depending on the number of pending transactions. However, a tradeoff to
using Payment Trees is the increased number of transactions that would need to
be committed to the ledger in case of a dispute.

Wormhole Attacks. The Payment Tree protocol pays coins to intermediaries of
a Merge transaction and they include fees for all intermediaries on lower levels of
respective sub-trees. An attack similar to the wormhole attack can be performed
by a corrupted intermediary when creating a Merge transaction by replacing the
Merge transaction’s inputs with UTXOs they control. Doing this they could take
all fees that were intended to be forwarded to other parties while preventing them
to participate in the protocol. In contrast to the wormhole attack on HTLCs a
wormhole-like attack on the Payment Trees protocol requires making changes to
the transaction tree which in-turn can be detected and prevented. We assume
that either P0 and Pn are honest. Otherwise, if both are corrupted the attack
would only redistribute coins between corrupted parties resulting in no net gain
to the adversary. During creation of the Payment Tree all intermediaries send
their view of the protocol to P0 and Pn, i.e. the Merge transactions they are
involved in. Having this information P0 and Pn can verify correctness of the
construction and abort the payment in the negative case.

Security Proofs. We provide proof of Theorems 1 and 2 in the full version of the
paper.

208 M. Jourenko et al.

8 Conclusion

Payment Trees provide competitive performance to state-of-the-art approaches
as Sprites, while having fewer restrictions to its employability by not requiring
smart contract capability. Thus providing the first secure alternative to HTLCs
for the Lightning Network.

References

1. Raiden network. Accessed 03 Sept 2018
2. Bowe, S., Hopwood, D.: Hashed time-locked contract transactions (2017). https://

github.com/bitcoin/bips/blob/master/bip-0199.mediawiki. Accessed 29 Aug 2020
3. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security

with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

4. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

5. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
hubs over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 106–123. IEEE (2019)

6. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966. ACM (2018)

7. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with
constant collateral in bitcoin-compatible payment-channel networks. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 801–815. ACM Press,
November 2019. https://doi.org/10.1145/3319535.3345666

8. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
Cryptology ePrint Archive, Report 2020/998 (2020). https://eprint.iacr.org/2020/
998

9. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: Network
and Distributed Systems Security Symposium (2019)

10. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7 30

11. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. arXiv
preprint arXiv:2002.06564 (2020)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
13. PDecker, C., Russel, R., Osuntokun, O.: Eltoo: a simple layer2 protocol for bitcoin

(2017). https://blockstream.com/eltoo.pdf
14. Pérez-Solà, C., Ranchal-Pedrosa, A., Herrera-Joancomart́ı, J., Navarro-Arribas, G.,

Garcia-Alfaro, J.: LockDown: balance availability attack against lightning network
channels. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
245–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 14

15. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf

https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1145/3319535.3345666
https://eprint.iacr.org/2020/998
https://eprint.iacr.org/2020/998
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
http://arxiv.org/abs/2002.06564
https://blockstream.com/eltoo.pdf
https://doi.org/10.1007/978-3-030-51280-4_14
https://lightning.network/lightning-network-paper.pdf

BRICK: Asynchronous
Incentive-Compatible Payment Channels

Zeta Avarikioti1(B), Eleftherios Kokoris-Kogias2, Roger Wattenhofer1,
and Dionysis Zindros3,4

1 ETH Zürich, Zürich, Switzerland
2 IST Austria, Novi Research, Klosterneuburg, Austria

3 NKUA, Athens, Greece
4 IOHK, AthensAthensAthens, Singapore

Abstract. Off-chain protocols (channels) are a promising solution to
the scalability and privacy challenges of blockchain payments. Current
proposals, however, require synchrony assumptions to preserve the safety
of a channel, leaking to an adversary the exact amount of time needed
to control the network for a successful attack. In this paper, we intro-
duce Brick, the first payment channel that remains secure under net-
work asynchrony and concurrently provides correct incentives. The core
idea is to incorporate the conflict resolution process within the channel
by introducing a rational committee of external parties, called wardens.
Hence, if a party wants to close a channel unilaterally, it can only get
the committee’s approval for the last valid state.

Additionally, Brick provides sub-second latency because it does not
employ heavy-weight consensus. Instead,Brick uses consistent broadcast
to announce updates and close the channel, a light-weight abstraction that
is powerful enough to preserve safety and liveness to any rational parties.
We formally define and prove for Brick the properties a payment chan-
nel construction should fulfill. We also design incentives for Brick such
that honest and rational behavior aligns. Finally, we provide a reference
implementation of the smart contracts in Solidity.

1 Introduction

The prime solution to the scalability challenge [12] of large-scale blockchains,
are the so-called channels [13,33,36]. The idea is that any two parties that
interact (often) with each other can set up a joint account on the blockchain,
i.e., a channel. Using this channel, the two parties can transact off-chain, sending
money back and forth by just sending each other signed messages. The two
parties are relying on the blockchain as a fail-safe mechanism in case of disputes.

The security guarantees of a channel are ensured by a dispute handling mech-
anism. If one party tries to cheat the other party, in particular by trying to close
a channel on the underlying blockchain in an invalid (outdated) state, then the
attacked party has a window of time (t) to challenge the fraud attempt. Hence,
a channel is secure as long as all parties of the channel are frequently – at least
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 209–230, 2021.
https://doi.org/10.1007/978-3-662-64331-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_11&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_11

210 Z. Avarikioti et al.

once in t time – online and monitoring the blockchain. This is problematic in real
networks [30], as one party may simply execute a denial-of-service (DoS) attack
on the other party. To add insult to injury, the dispute period t is public; the
attacking party hence knows the exact duration of the denial-of-service attack.

The issue is well-known in the community, and there were solution attempts
using semi-trusted third parties called watchtowers [2,6,7,16,29]. The idea is
that worrisome channel parties can hire watchtowers that watch the blockchain
on their behalf in case they were being attacked. So instead of DoSing a single
machine of the channel partner, the attacker might need to DoS the channel
partner as well as its watchtower(s). This certainly needs more effort as the
adversary must detect a watchtower reacting and then block the dispute from
appearing on-chain. However, if large amounts of money are in a channel, it will
easily be worth the investment.

While DoS attacks are also possible in blockchains such as the Bitcoin block-
chain, DoS attacks on channels have a substantially different threat level. A
DoS attack on a blockchain is merely a liveness attack: One may prevent a
transaction from entering the blockchain at the time of the attack. However, the
parties involved with the transaction will notice this, and can simply re-issue
their transaction later. A DoS attack on a channel, on the other hand, will steal
all the funds that were in the channel. Once the fraudulent transaction is in
the blockchain, uncontested for t time, the attack succeeds, and nobody but the
cheated party (and its watchtowers) will know any better.

Channels need a more fundamental solution. Not unlike blockchains, intro-
ducing timing parameters is acceptable for liveness. Security on the other hand
should be guaranteed even if the network behaves completely asynchronously.
To that end we introduce Brick, a novel incentive-compatible payment channel
construction that does not rely on timing assumptions for the delivery of mes-
sages to be secure. Brick provides proactive security, detecting and preventing
fraud before it appears on-chain. As a result, Brick can guarantee the channels’
security even under censorship1 [30] or any liveness attack.

To achieve these properties, Brick needs to address three key challenges.
The first challenge is how to achieve this proactive check without using a single
trusted third party that approves every transaction [39]. The core idea of Brick
is to provide proactive security to the channel instead of reactive dispute res-
olution. To this end, Brick employs a group of wardens. If there is a dispute,
the wardens make sure the correct state is the only one available for submis-
sion on-chain, regardless of the amount of time it takes to make this final state
visible. The second challenge for Brick is cost. To simulate this trusted third
party, it would need the wardens to run costly asynchronous consensus [25] for
every update. Instead, in Brick we show that a light-weight consistent broadcast
protocol is enough to preserve both safety and liveness.

A final challenge of Brick that we address is incentives. While the wardens
may be partially byzantine, we additionally want honest behavior to be their

1 This censoring ability is encompassed by the chain-quality property [18] of blockchain
systems which is rightly bound to the synchrony of the network.

Brick 211

dominant strategy. Unfortunately, existing watchtower solutions do not align
the expected and rational behavior of the watchtower, hence a watchtower is
reduced to a trusted third party. Specifically, Monitors [16], Watchtowers [2], and
DCWC [6] pay the watchtower upon fraud. Given that the use of a watchtower
is public knowledge, any rational channel party will not commit fraud and hence
the watchtower will never be paid. Therefore, there is no actual incentive for a
third party to offer a watchtower service. On the other hand, Pisa [29] pays the
watchtower regularly every time a transaction is executed on the channel. The
watchtower also locks collateral on the blockchain in case it misbehaves. However,
Pisa’s collateral is not linked to the channel or the party that employed the
watchtower. Hence, a watchtower that is contracted by more than one channel
can double-assign the collateral, making Pisa vulnerable to bribing attacks. Even
if the incentives of Pisa get fixed, punishing a misbehaving watchtower in Pisa is
still a synchronous protocol (though for a longer period). In Brick, we employ
both rewards and punishment to design the appropriate incentives such that
honest and rational behavior of wardens align, while no synchrony assumptions
are required, i.e., the punishment of misbehaving wardens is not conditional on
timing assumptions.

To evaluate our channel construction we deploy our protocol on a large-
scale testbed and show that the overhead of an update is around the round-trip
latency of the network (in our case 0.1 s). Unlike existing channels, the parties in
Brick need not wait for the dispute transaction to appear on-chain. Hence, our
dispute resolution mechanism is three orders of magnitude faster than existing
blockchain systems that need to wait until the transaction is finalized on-chain.
We additionally implement the on-chain operations of Brick in a Solidity smart
contract that can be deployed on the Ethereum blockchain. We provide gas
measurements for typical operations on the smart contract illustrating that it is
practical. Our smart contract implementation is well tested and can be adopted
towards a real deployment of Brick.

In summary, this paper makes the following contributions:

– We introduce Brick, the first incentive-compatible off-chain construction
that operates securely with offline channel participants under full asynchrony
with sub-second latency.

– We define the desired channel properties and show they hold for Brick under
a hybrid model of rational and byzantine participants (channel parties and
wardens). Specifically, we present elaborate incentive mechanisms (rewards
and punishments) for the wardens to maintain the channel properties under
collusion or bribing.

– We evaluate the practicality of Brick by fully implementing its on-chain
functionality in Solidity for the Ethereum blockchain. We measure its opera-
tional costs in terms of gas and illustrate that its deployment is practical.

212 Z. Avarikioti et al.

2 Protocol Overview

2.1 System Model

Cryptographic Assumptions. We make the usual cryptographic assumptions:
the participants are computationally bounded and cryptographically-secure com-
munication channels, hash functions, signatures, and encryption schemes exist.

Blockchain Assumptions and Network Model. We assume that any mes-
sage sent by an honest party will be delivered to any other honest party within
a polynomial number of rounds. We do not make any additional assumptions
about the network (e.g., known bounds for message delivery). Furthermore, we
do not require a “perfect” blockchain system since Brick can tolerate temporary
liveness attacks. Specifically, if an adversary temporarily violates the liveness
property of the underlying blockchain, this may result in violating the liveness
property of channels but will not affect the safety. Nevertheless, we assume the
underlying blockchain satisfies persistence [18]. In Sect. 7, we discuss a modifi-
cation of Brick that is safe even when persistence is temporarily violated.

Threat Model. We initially assume that at least one party in the channel
is honest to simplify the security analysis. However, later, we show that the
security analysis holds as long as the “richest” party of the channel is rational and
intentionally deviates from the protocol only if it can increase its profit (utility
function). Regarding the committee, we assume that there are at most f out of
n = 3f + 1 byzantine wardens, and we define a threshold t = 2f + 1 to achieve
the liveness and safety properties. The non-byzantine part of the committee is
assumed rational; we first prove the protocol goals for t honest wardens, and
subsequently align the rational behavior to this through incentives.

2.2 Brick Overview

Both parties of a channel agree on a committee of wardens before opening the
channel. The wardens commit their identities on the blockchain during the fund-
ing transaction of the channel (opening of the channel). After opening the chan-
nel on the blockchain, the channel can only be closed either by a transaction
published on the blockchain and signed by both parties or by a transaction
signed by one of the parties and a threshold (t) of honest wardens. Thus, the
committee acts as power of attorney for the parties of the channel. Furthermore,
Brick employs correct incentives for the t rational wardens to follow the proto-
col, hence it can withstand t = 2f + 1 rational and f byzantine wardens, while
the richest channel party is assumed rational and the other byzantine.

A naive solution would then instruct the committee to run asynchronous
consensus on every new update, which would cost O(n4) [25] per transaction, a
rather big overhead for the critical path of our protocol. Instead in Brick, con-
sensus is not necessary for update transactions, as we only provide guarantees
to rational parties (if both parties misbehave one of them might lose its funds).

Brick 213

As a result, every time a new update state occurs in the channel (i.e., a trans-
action), the parties run a consistent broadcast protocol (cost of O(n)) with the
committee. Specifically, a party announces to each warden that a state update
has occurred. This announcement is a monotonically increasing sequence num-
ber to guarantee that the new state is the freshest state, signed by both parties
of the channel to signal that they are in agreement. If the consistent broadcast
protocol succeeds (t wardens acknowledge reception) then this can serve as proof
for both parties that the state update is safe. After this procedure terminates
correctly, both parties proceed to the execution of the off-chain state.

At the end of the life-cycle of a channel, a dispute might occur, leading to
the unilateral closing of the channel. Even in this case, we can still guarantee the
security and liveness of the closing with consistent broadcast. The crux of the
idea is that if 2f +1 wardens accepted the last sequence number before receiving
the closing request (hence the counterparty has committed), then at least one
honest warden will not accept the closing at the old sequence number. Instead,
the warden will reply to the party that it can only close at the state represented
by the last sequence number. As a result we define a successful closing to be at
the maximum of all proposed states, which guarantees safety. Although counter-
intuitive, this closing process is safe because the transactions are already totally
ordered and agreed to by the parties of the channel; thus, the committee simply
acts as shared memory of the last sequence number.

2.3 Reward Allocation and Collateral

To avoid bribing attacks, we enforce the wardens to lock collateral in the chan-
nel. The total amount of collateral is proportional to the value of the channel
meaning that if the committee size is large, then the collateral per warden is
small. More details on the necessary amount of collateral are thoroughly dis-
cussed in Sects. 3.2 and 7. Additionally, the committee is incentivized to actively
participate in the channel with a small reward that each warden gets when they
acknowledge a state update of the channel. This reward is given with a unidi-
rectional channel [21], which does not suffer from the problems Brick solves.
Moreover, the wardens that participate in the closing state of the channel get
an additional reward, hence the wardens are incentivized to assist a party when
closing in collaboration with the committee is necessary.

2.4 Protocol Goals

To define the goals of Brick, we first need to define the necessary properties of a
channel construction. Intuitively, a channel should ensure similar properties with
a blockchain system, i.e., a party cannot cheat another party out of its funds,
and any party has the prerogative to eventually spend its funds at any point
in time. The first property, when applied to channels, means that no party can
cheat the channel funds of the counterparty, and is encapsulated by Safety. The
second property for a channel solution is captured by Liveness; it translates to
any party having the right to eventually close the channel at any point in time.

214 Z. Avarikioti et al.

We say that a channel is closed when the locked funds of the channel are spent
on-chain, while a channel update refers to the off-chain change of the channel’s
state. In addition, we define Privacy which is not guaranteed in many popular
blockchains, such as Bitcoin [32] or Ethereum [38], but constitutes an important
practical concern for any functional monetary (cryptocurrency) system.

First, we define some characterizations on the state of the channel, namely,
validity and commitment. Then, we define the properties for the channel con-
struction. Each state of the channel has a discrete sequence number that reflects
the order of the state. We assume the initial state of the channel has sequence
number 1 and every new state has a sequence number one higher than the pre-
vious state agreed by both parties. We denote by si the state with sequence
number i.

Definition 1. A state of the channel, si, is valid if the following hold:

– Both parties of the channel have signed the state si.
– The state si is the freshest state, i.e., no subsequent state si+1 is valid.
– The committee has not invalidated the state. The committee can invalidate

the state si if the channel closes in the state si−1.

Definition 2. A state of the channel is committed if it was signed by at least
2f + 1 wardens or is valid and part of a block in the persistent2 part of the
blockchain.

Definition 3 (Safety). A Brick channel will only close in the freshest com-
mitted state.

Definition 4 (Liveness). Any valid operation (update, close) on the state of
the channel will eventually3 be committed (or invalidated).

Definition 5 (Privacy). No external (to the channel) party learns about the
state of the channel (e.g., the current distribution of funds between the parties
of a payment channel) unless at least one of the parties initiate the closing of
the channel.

3 Brick Design

In this section, we first present the Brick architecture assuming t honest war-
dens, and then introduce the incentive mechanisms aligning honest and rational
behavior.

2 The part of the chain where the probability of fork is negligible hence there is
transaction finality, e.g., 6 blocks in Bitcoin.

3 Depending on the message delivery.

Brick 215

3.1 Architecture

Brick consists of three phases: Open, Update, and Close. We assume the exis-
tence of a smart contract that has two functions, Open and Close, which receive
the inputs of the protocols and verify that they adhere to the abstractly defined
protocols specified below.

Protocol 1 describes the first phase, Open, which is the opening of a chan-
nel between two parties. In this phase, the parties create the initial funding
transaction, similarly to other known payment channels such as [13,33]. How-
ever, in Brick we also define two additional parameters in the funding trans-
action: the hashes of the public keys of the wardens of the channel, denoted by
W1,W2, . . . ,Wn, and the threshold t.

Protocol 1: Brick Open
Data: Parties A, B, wardens W1, . . . , Wn, initial state s1.
Result: Open a Brick payment channel.

/* The parties agree on the first update before opening the channel

*/

1. Register to {M, σ(M)} the announcement of Protocol 2 on input (A, B, s1).

/* The parties broadcast the first sequence number to the wardens

*/

2. Execute Protocol 3 on input (M, σ(M), A, B, W1, W2, . . . , Wn).
// without an update fee

/* The parties open the Brick channel */

3. Both parties A, B sign and publish on-chain
open(H(W1), H(W2), . . . , H(Wn), t, s1).

/* Closing fee F is included in the funding transaction, as well as

collateral C of each warden along with their signature. */

The second phase, Update, consists of two protocols, Protocol 2 (Update),
and Protocol 3 (Consistent Broadcast). Both algorithms are executed consecu-
tively every time an update occurs, i.e., when the state of the channel changes.
In Protocol 2, the parties of the channel agree on a new state and create an
announcement, which they subsequently broadcast to the committee with Pro-
tocol 3. To agree on a new state, both parties sign the hash of the new state4.
This way both parties commit to the new state of the channel, while none of the
parties can unilaterally close the channel without the collaboration of either the
4 Blinding the commitment to the state is not necessary for Brick, but we do it for

compatibility with an auditable extension of Brick [5] where the hash of the state
is given to the wardens along with the sequence number. Because the states of a
channel may be limited, the salt ri is used to prevent wardens from retrieving the
state by simply hashing all possible states, effectively compromising privacy.

216 Z. Avarikioti et al.

counterparty or the committee. The announcement, on the other hand, is the new
sequence number signed by both parties of the channel5. The signed sequence
number allows the wardens to verify agreement has been reached between the
channel parties on the new state, while the state of the channel remains private.
Upon receiving a valid announcement from a party, wardens reply with their
signature on the announcement. A party executes the new state update when it
receives t signatures from the wardens.

Protocol 2: Brick Update
Data: Parties A, B, current state s.
Result: Create announcement M, σ(M) (sequence number of new state signed

by both parties).

1. Both parties A, B sign, exchange, and store: {H(si, ri), i}, where ri is a
random number and si the current state. // The parties store only the

current and previous hash

2. Upon receiving the signature of the counterparty on {H(si, ri), i}, a party
replies with its signature on the sequence number σ(i). // creating the

announcement {M, σ(M)}(M = i)

Protocol 3: Brick Consistent Broadcast
Data: Parties A, B, wardens W1, . . . , Wn, announcement {M, σ(M)}.
Result: Inform the committee of the new update state and verify the validity

of the new state.

1. Each party broadcasts to all the wardens W1, W2, . . . , Wn the announcement
{M, σ(M)}. // alongside a fee r

2. Each warden Wj , upon receiving {M, σ(M)}, verifies that both parties’
signatures are present, and the sequence number is exactly one higher than the
previously stored sequence number. If the warden has published a closing
state, it ignores the state update. Otherwise, Wj stores the announcement
{M, σ(M)} (replacing the previous announcement), signs M , and sends the
signature σWj (M) to the parties. // only to the parties that payed the

fee

3. Each party, upon receiving at least t signatures on the announcement M ,
considers the state committed and proceeds to the state transition.

5 We abuse the notation of signature σ to refer to the multisig of both A and B.

Brick 217

The last phase of the protocol, Close, can be implemented in two different
ways: the first is similar to the traditional approach for closing a channel (Pro-
tocol 4: Optimistic Close) where both parties collectively sign the freshest state
(closing transaction) and publish it on-chain. However, in case a channel party
is not responding to new state updates or closing requests, the counterparty can
unilaterally close the channel in collaboration with the committee of the channel
(Protocol 5: Pessimistic Close).

In Protocol 5, a party requests from each warden its signature on the last
committed sequence number. A warden, upon receiving the closing request, pub-
lishes on-chain a closing announcement, i.e., the stored sequence number signed
along with a flag close. When t closing announcements are on the persistent
part of the chain, the party recovers the state that corresponds to the maximum
sequence number from the closing announcements si. Then, the party publishes
state si and the random number ri along with the signatures of both parties on
the corresponding hash and sequence number σ(H(si, ri), i) on-chain. As soon
as these data are included in a (permanent) block, the Brick smart contract
performs the following operations: (a) recovers from the submitted state si and
salt ri the hash H(si, ri) and the maximum sequence number i, (b) verifies that
the signatures of both parties are on the message {H(si, ri), i}, and (c) there
are t submitted announcements that correspond to warden identities committed
on-chain in Protocol 1. If all verifications check the smart contract closes the
channel in the submitted state si.

3.2 Incentivizing Honest Behavior

Brick actually works without the fees, if we assume one honest party and t
honest wardens. However, our goal is to have no honest assumptions and instead
align rational behavior to honest through incentives. There are three incentive
mechanisms in Brick:

Protocol 4: Brick Optimistic Close
Data: Parties A, B, state s.
Result: Close a channel on state s, assuming both parties are responsive and in

agreement.

1. A party p ∈ {A, B} broadcasts the request close(s).

2. Both parties A, B sign the state s (if they agree) and exchange their
signatures.

3. The party p (or any other channel party) publishes the signed by both parties
state, σA,B(s) on-chain.

/* The collateral C is returned to each warden */

/* The closing fee F is returned to the parties */

218 Z. Avarikioti et al.

Protocol 5: Brick Pessimistic Close
Data: Party p ∈ {A, B}, wardens W1, . . . , Wn, state si, random nonce ri.
Result: Close a channel on state si with the assist of the committee.

1. Party p broadcasts to the wardens W1, W2, . . . , Wn the request close().

2. Each warden Wj publishes on-chain a signature on the (last) stored
announcement σWj (M, close) and stops signing new state updates.

3. Party p, upon verifying t on-chain signed announcements by the wardens,
recovers the max(i) that is included in the announcements. Then, party p
publishes on-chain the state si, the random number ri, and the signature of
both parties on {H(si, ri), i}.

4. After the state is included in a (permanent) block, the smart contract
recovers {H(si, ri), i}, verifies both parties’ signatures and the wardens
identities, and then closes the channel in state si.

Update Fee (r). The parties establish a unidirectional channel [21] with each
warden and send a fee when they want a signature for a state update. Note that
the update fee is awarded to the wardens at step 1 of Protocol 3.

Closing Fee (F). During phase Open (Protocol 1), the parties lock a closing
fee F in the channel. If a party closes in a collaboration with the wardens, the
closing fee is split only among the first t wardens that publish an announcement
on-chain (see Protocol 6). If the channel closes optimistically (Protocol 4), the
closing fee returns to the parties.

Collateral (C). During phase Open, each warden locks collateral C at least
equal to the amount locked in the channel v divided by f . If a warden misbehaves,
the closing party can claim the warden’s collateral by submitting a proof-of-
fraud in the Brick smart contract during phase Close; otherwise, the collateral
is returned to the warden when the channel closes (Protocol 6). A proof-of-fraud
consists of two conflicting messages signed by the same warden: (a) a signature
on an announcement on a state update of the channel, and (b) a signature on
an announcement for closing on a previous state of the channel.

In case, a party submits x ≤ f proofs-of-fraud, the closing process is extended
until x+t wardens have published an announcement on-chain. Then, the channel
closes in the state with the maximum sequence number from the announcements
submitted by the t non-cheating wardens. On the other hand, if a party submits
at least f +1 proofs-of-fraud, the party that submitted the proofs-of-fraud claims
only the collateral from the cheating wardens, while the entire channel balance
is awarded to the counterparty. If no proofs-of-fraud are submitted the channel
closes as described in Protocol 5, as it is a subcase of Protocol 6 for x = 0.

We further demand that the size of the committee is at least n > 7, hence f >
2. As a result, we guarantee there is at least one channel party with locked funds

Brick 219

Protocol 6: Brick Pessimistic Close with Incentives
Data: Party p ∈ {A, B}, wardens W1, . . . , Wn, state si, random nonce ri.
Result: Close a channel on state si with the assist of the committee.

/* Similarly to Protocol 5 */

1. Party p broadcasts to the wardens W1, W2, . . . , Wn the request close().

2. Each warden Wj publishes on-chain a signature on the (last) stored
announcement σWj (M, close) and stops signing new state updates.

/* Closing party submits also proofs-of-fraud */

3. Party p, upon verifying t on-chain signed announcements by the wardens,
recovers the max(i) that is included in the announcements. Then, party p
publishes on-chain the state si, the random number ri, the signature of both
parties on {H(si, ri), i}, and any proofs-of-fraud.

/* Closing the channel with punishments */

4. After the state is included in a (permanent) block, the smart contract
recovers {H(si, ri), i}, and verifies both parties’ signatures, the wardens
identities, and the proofs-of-fraud.

(a) If the valid proofs-of-fraud x ≤ f , the smart contract closes the channel
as soon as t + x wardens have published an announcement on-chain. The
channel closes in the state with the maximum sequence number included in
the announcements, si. // Protocol 5 with t + x wardens

(b) If the valid proofs-of-fraud x ≥ f + 1, the smart contract closes the channel,
and awards the entire channel balance to the counterparty.

The smart contract awards the collateral of cheating wardens to party p, and
returns the collateral of all non-cheating wardens. The first t non-cheating
wardens whose signature are published on-chain get an equal fraction of the
closing fee F/t.

greater than each individual warden’s collateral, v
2 > v

f . This restriction along
with the aforementioned incentive mechanisms ensure resistance to collusion and
bribing of the committee, meaning that following the protocol is the dominant
strategy for the rational wardens.

We note that in a network with multiple channels, each channel needs to
maintain a unique id which will be included in the announcement to avoid replay
attacks. Otherwise, if there exist two channels with the same parties and watch-
towers, the parties can unjustly claim the watchtowers’ collateral by using signed
sequence numbers from the other channel, effectively violating safety.

4 Brick Analysis

We first prove Brick satisfies safety and liveness assuming at least one hon-
est channel party and at least t honest wardens. Furthermore, we note that

220 Z. Avarikioti et al.

Brick achieves privacy even if all wardens are byzantine while the channel par-
ties are rational. Then, we show that rational players (parties and wardens)
that want to maximize their profit will follow the protocol specification, for the
incentive mechanisms presented in Sect. 3.2. Essentially, we show that Brick
enriched with the proposed incentive mechanisms is dominant-strategy incentive-
compatible.

Security Under One Honest Participant and t Honest wardens. The
core idea for safety is that the channel will close in the state that corresponds
to the maximum sequence number submitted by t wardens. In particular, every
transaction is broadcast to the wardens and confirmed by at least t wardens
before the transaction is executed by the parties. Given that at most f wardens
are byzantine and at most another n − t = 3f + 1 − (2f + 1) = f can be slow,
then at most 2f can publish an outdated sequence number when closing the
channel. Since Brick waits for t = 2f +1 sequence numbers, at least one will be
submitted by an honest and up-to-date warden which will bear the maximum
sequence number and correspond to the freshest state.

Theorem 1. Brick achieves safety in asynchrony assuming one byzantine
party and f byzantine wardens.

Note that a channel can close in two possible states: either the last agreed
state by both parties, or the previous one. We still preserve safety in both cases.
If the last agreed state is considered valid then it is guaranteed to be the closing
state, whereas if the closing state is the previous then the last agreed state never
gets validated by t wardens.

Theorem 2. Brick achieves liveness in asynchrony assuming one byzantine
party and f byzantine wardens.

Lastly, Brick achieves privacy even against byzantine wardens. They only
receive the sequence number of each update. Therefore, as long as parties do not
intentionally reveal information, privacy is maintained.

Incentivizing Rational Players. In this section, we show that rational play-
ers, parties and wardens, that want to maximize their profit follow the protocols,
i.e., deviating from the honest protocol executions can only result in decreasing
a player’s expected payoff. Therefore, security and liveness hold from Theorems
1 and 2. Note that in our system model 2f +1 wardens and the richest party are
rational, while the rest can be byzantine. We consider each protocol separately,
and evaluate the players’ payoff for each possible action.

Intuitively, we provide correct incentives without utilizing timelocks because
the closing party is the one penalizing the cheating wardens when closing the
channel. Although counter-intuitive, the main idea is that the cheating party that
convinced the wardens to cheat will profit more from collecting the collateral of
the cheating wardens than closing the channel in any old state. Or in other words,

Brick 221

the cheating party is actually rationally baiting the possible byzantine wardens
to get their collateral. As we show, this leads to rational wardens following the
protocol faithfully. We omit the analysis due to space limitation, but can be
found in the full version [5].

5 Evaluation of BRICK

We evaluate the cost of consistent broadcast and of on-chain operations. The
questions asked are: (a) how deployment costs change as we increase wardens,
and (b) how off-chain costs scale.

Solidity Smart Contract. To evaluate the Ethereum deployment cost, we
implement on-chain operations as a Solidity 0.5.16 contract6. Our gas measure-
ments illustrated in Fig. 1 are based on May 2020 prices (1 ETH = 195.37 EUR
and gas = 20 Gwei). We compiled with solc 0.6.8 with optimizations enabled and
deployed on a local ganache-cli using truffle and web3. The measurements con-
cern contract deployment, opening, as well as optimistic and pessimistic closing.
The contract allows specification of the number n of wardens and their identities.
We used the secp256k1 elliptic curve [11,22] and the ecrecover precompiled
contract [38] for verification. We performed measurements for n = 3 to 30. We
recommend n = 13 since it is safe, gas-efficient and incentive-compatible.

After deployment, the contract is funded first by Alice and then by Bob. Next,
the collateral is calculated and wardens fund it in any order. Thereafter, Alice
or Bob can open the channel. Any participant can withdraw prior to opening,
at which point the channel is cancelled and everyone else can withdraw as well.
Once open, parties continue exchanging states off-chain. If multiple channels
are used, the cost of contract deployment is amortized by abstracting common
functionality into a library. However, opening and closing costs are recurrent.
Our deployment cost (≈ 9 EUR) is comparable to other state channel contracts
(e.g., the deployment of Pisa [29] contracts amounts to ≈ 17 EUR).

When the parties agree to close, Alice submits a transaction requesting clo-
sure. It contains her claimed closing state. If Bob agrees, he submits a transaction
to signal so. The contract then returns the parties’ values and the collaterals.
If Bob disagrees, the channel becomes unusable and must be closed pessimisti-
cally. The optimistic close operation measures the cumulative gas cost of these
2 transactions. The cost is minimal and this is the normal execution path.

Finally, the channel can be closed pessimistically by any party via a request
to the wardens. Each warden submits a transaction with the sequence number
they last saw signed by both Alice and Bob. The signatures are verified on-
chain, along with warden signatures; this operation spends the most gas. The
closing party monitors the chain for fraudulent warden claims. As soon as t
honest claims appear, the party sends a transaction to close the channel. The
transaction includes the fraud proofs, namely the latest announcement for each

6 The source code is available at https://github.com/dionyziz/brick.

https://github.com/dionyziz/brick

222 Z. Avarikioti et al.

warden who made a bad claim. These contain the warden signature on the plain-
text which consists of the contract address and sequence number. Closing the
channel releases the parties’ funds and slashes malicious wardens. After closure,
honest wardens redeem their collateral and fee by issuing further transactions.
Pessimistic closing was measured when no fraud proofs are provided and includes
the transaction of each of the t wardens and the final transaction by one of the
parties. We assumed that, while the counterparty is unresponsive, the wardens
were responsive and all submitted the same sequence number (limiting the need
for multiple signature validations).

Fig. 1. On-chain gas costs of deployment and operation in Ethereum.

Consistent Broadcast. We implement consistent broadcast in Golang using
Kyber [26] and cothority [14]. In Table 1 we evaluate our protocol on Deter-
lab [15] using 36 physical machines, each having 4 Intel E5-2420 v2 CPUs and
24 GB RAM. To model a WAN, we impose a 100ms rtt latency and a 35Mbps
bandwidth limit. The overhead of using a committee is almost equal to the
latency. The small overhead is due to the sequential message sending, hence the
last message is sent with a small delay. The total latency is close to 100 ms.
This is the time parties must wait to execute a transaction safely, meaning we
provide fast finality. Our numbers are three orders of magnitude faster than
current blockchains. Furthermore, channels are independent and embarrassingly
parallel; we can deploy multiple without increased overhead. Contrary to syn-
chronous solutions where finality is guaranteed after closure, Brick provides
instant finality.

Brick 223

Table 1. Microbenchmark of Brick

Number of wardens 7 34 151

Consistent Broadcast 0.1138 s 0.118 s 0.1338 s

6 Related Work

Payment channels were originally introduced by Spilman [36]. Several payment
channels solutions have been proposed [1,13,33], the most notable being the Bit-
coin Lightning Network [33]. All these solutions, however, require timelocks to
guarantee safety and therefore make strong synchrony assumptions that some-
times fail in practice.

To guarantee safety, traditional payment channels require participants to be
frequently online, actively watching the blockchain. To alleviate this necessity,
recent proposals introduced third-parties in the channel to act as proxies for the
participants of the channel in case of fraud. This idea was initially discussed by
Dryja [16], who introduced the Monitors or Watchtowers [2] operating on the
Bitcoin Lightning network [33]. Later, Avarikioti et al. proposed DCWC [6], a
less centralized distributed protocol for the watchtower service, where every full
node can act as a watchtower for multiple channels depending on the network
topology. In both these works, the watchtowers are paid upon fraud. Hence, the
solutions are not incentive-compatible since in case a watchtower is employed no
rational party will commit fraud on the channel and thus the watchtowers will
never be paid. This means there will be no third parties offering such a service
unless we assume they are altruistic.

In parallel, McCorry et al. [29] proposed Pisa, a protocol that enables the
delegation of Sprites [31] channels’ safety to third-parties called Custodians.
Although Pisa proposes both rewards and penalties similarly to Brick, it fails
to secure the channels against bribing attacks. Particularly, the watchtower’s col-
lateral can be double-spent since it is not tied to the channel/party that employed
the watchtower. More importantly, similarly to Watchtowers and DCWC, Pisa
demands a synchronous network and a perfect blockchain, meaning that trans-
actions must not be censored, to guarantee the safety of channels.

Concurrently to this work, Avarikioti et al. introduced Cerberus channels [7],
a modification of Lightning that incorporates rational watchtowers to Bitcoin
channels. Although Cerberus channels are incentive-compatible, they still require
timelocks, hence their security depends on synchrony assumptions and a perfect
blockchain that cannot be censored. Furthermore, Cerberus channels do not
guarantee privacy from the watchtowers, as opposed to Brick.

In a similar work, Lind et al. proposed Teechain [27], a layer 2 payment net-
work that operates securely under asynchrony using hardware trusted execution
environments (TEEs) to prevent parties from misbehaving. In contrast, Brick
eliminates the need for TEEs with the appropriate incentive mechanisms.

To summarize, we exhibit the differences of Brick to the other channel
constructions and watchtower solutions in Table 2. We observe that Brick is

224 Z. Avarikioti et al.

the only solution that maintains security under an asynchronous network and
offline channel parties while assuming rational watchtowers. Further, Brick is
secure (i.e., no loss of funds) even when the blockchain substrate is censored,
and also when the network is congested. Finally, an extension to Brick that
we describe in Sect. 7 enables protection against small scale persistence attacks
making it more secure than the underlying blockchain.

Table 2. Comparison with previous work

Protocol safe under Monitors [16] DCWC [6] Pisa [29] Cerberus [7] Brick [5]

Rational players ✗ ✗ ∼a ✓ ✓

Offline parties ✓ ✓ T � td
b T � td

b ✓

Asynchrony ✗ ✗ ✗ ✗ ✓

Censorship ✗ ✗ ✗ ✗ ✓

Congestion ✗ ✗ ✗ ✗ ✓

Forks ✗ ✗ ✗ ✗ ✓c

Privacy ✓ ✓ ✓ ✗ ✓

Bitcoin Compat. ✓ ✓ ✗ ✓ ✗
aThe watchtower needs to lock collateral per-channel, equal to the channel’s value.
Current implementation of Pisa does not provide this.
bThe party needs to be able to deliver messages and punish the watchtower within
a large synchrony bound T.
cPossible if consensus is run for closing the channel as described in Sect. 7.

State Channels, Payment Networks, and Sidechains. Payment channels
can only support payments between users. To extend this solution to handle
smart contracts [37] that allow arbitrary operations and computations, state
channels were introduced [31]. Recently, multiple state channel constructions
have emerged [10,17,31]. However, all these constructions use the same foun-
dations, i.e., the same concept on the operation of two-party channels. And as
the fundamental channel solutions are flawed the whole construction inherits the
same problems (synchrony and availability assumptions). Brick’s design could
potentially extend to an asynchronous state channel solution if there existed a
valuation function for the states of the contract (i.e., a mapping of each state
to a monetary value for the parties) to correctly align incentives. In this case,
the channel can evolve as long as the parties update the state, while in case of
an uncooperative counterparty the honest party can always pessimistically close
the channel at the last agreed state and continue execution on-chain.

Another solution for scaling blockchains is sidechains [8,19,24]. In this solu-
tion, the workload of the main chain is transferred in other chains, the sidechains,
which are “pegged” to the main chain. Although the solution is kindred to chan-
nels, it differs significantly in one aspect: in channels, the states updates are
totally ordered and unanimously agreed by the parties thus a consensus process
is not necessary. On the contrary, sidechains must operate a consensus process to
agree on the validity of a state update. Brick lies in the intersection of the two

Brick 225

concepts; the states are totally ordered and agreed by the parties, whereas war-
dens merely remember that agreement was reached at the last state announced.

Finally, an extension to payment channels is payment channel networks
(PCN) [9,28,34,35]. The core idea of PCN is that users that do not have a direct
channel can route payments using the channels of other users. While Brick
presents a novel channel construction that is safe under asynchrony, enabling
asynchronous multi-hop payments remains an open question.

7 Conclusion, Limitations and Extensions

Below, we discuss the rationale of Brick design, its limitations, and extensions.

Byzantine Players. If both channel parties are byzantine then the wardens’
collateral can be locked arbitrarily long since the parties can simply crash forever.
This is why in the threat model, we assume that at least the richest channel
party is rational to correctly align the incentives. We further demand byzantine
fault-tolerance to guarantee a truly robust protocol against arbitrary faults. We
assume at most f out of the 3f + 1 wardens are byzantine, which is necessary
to maintain safety, as dictated by well known lower bounds for asynchronous
consistent broadcast. Nevertheless, users of Brick can always assume f = 0
and configure the smart contract parameters accordingly.

Warden Unilateral Exit. If both parties are malicious, they might hold the
wardens’ collateral hostage. A similar situation is indistinguishable from the par-
ties not transacting often. As a result the wardens might want to exit the channel.
A potential extension can support this in two ways. First, we can enable com-
mittee replacement, meaning that a warden can withdraw its service as long as
there is another warden willing to take its place. In such a case, we simply replace
the collateral and warden identities with an update of the funding transaction
on-chain, paid by the warden that requests to withdraw its service. Second, if
a significant number (e.g., 2f + 1) of wardens declare they want to exit, the
smart-contract can release them and convert the channel to a synchronous chan-
nel [29]. The parties will now be able to close the channel unilaterally by directly
publishing the last valid state. If the counterparty tries to cheat and publishes
an old state, the party (or any remaining warden) can catch the dispute on-time
and additionally claim the (substantial) closing fee.

Committee Selection. Each channel has its own group of wardens, i.e., the
committee is independently selected for each channel by the channel parties.
The scalability of the system is not affected by the use of a committee since
each channel has its own independent committee of wardens. The size of the
committee for each channel can vary but is constrained by the threat model.
If we assume at least one honest party in the channel, a single rational warden
is enough to guarantee the correct operation of Brick. Otherwise, we require
more than 7 wardens to avoid hostage situations from colluding channel parties
(Sect. 3.2). Note that the cost for security for the parties is not dependent on
the committee size, but on the value of the channel. If the parties chose a small

226 Z. Avarikioti et al.

committee size, the collateral per warden is high, thus the update fees are few
but high. On the other hand, if the parties employ many wardens, the collateral
per warden is low, thus the update fees are many but low.

Consensus vs Consistent Broadcast. Employing consistent broadcast in a
blockchain system typically implies no conflict resolution as there is no liveness
guarantee if the sender equivocates. This is not an issue in channels since a valid
update needs to be signed by both parties and we provide safety guarantees only
to honest and rational parties7. The state updates in channels are totally ordered
by the parties and each sequence number should have a unique corresponding
state. Thereby, it in not the role of the warden committee to enforce agreement,
but merely to verify that agreement was reached, and act as a shared memory
for the parties. As a result, consistent broadcast is tailored for Brick as it offers
the only necessary property, equivocation protection.

Brick Security Under Execution Fork Attacks. We can extend Brick to
run asynchronous consensus [25] during the closing phase in order to defend
against execution fork attacks [23]. This would add an one-off overhead during
close but would make Brick resilient against extreme conditions [4]. For exam-
ple, in case of temporary dishonest majority the adversary can attack the per-
sistence8 of the underlying blockchain, meaning that the adversary can double-
spend funds. Similarly in channels, if the adversary can violate persistence, the
dispute resolution can be reversed, hence funds can be cheated out of a party.
However, in Brick the adversary can only close on the last committed state or
the freshest valid (not committed) state. With consensus during close, Brick
maintains safety (i.e., no party loses channel funds) even when persistence is
violated. A malicious party can only close the channel in the state that the con-
sensus decides to be last, thus a temporary take-over can only affect the chan-
nel’s liveness. Therefore, Brick can protect both against liveness and persistence
attacks9 on the underlying blockchain adding an extra layer of protection, and
making it safer to transact on Brick than on the blockchain.

Update Fees. Similarly to investing in stocks for a long period of time, many
invest in cryptocurrencies; resulting in large amounts of unused capital. Acting
as a warden can simply provide more profit (update fees) to the entities that
own this capital complementary to owning such cryptocurrencies. Currently, the
update fees are awarded to wardens on every state update via a unidirectional
channel. Ideally, these rewards would be included in the state update of the
channel. But even if we include an increased fee on every state update, the
parties can always invoke Optimistic Close, and update the channel state to
their favor when closing. Thus, the incentives mechanism is not robust if the
update rewards of the wardens are included in the state updates.

7 Of course if a party crashes we cannot provide liveness, but safety holds.
8 Persistence states that once a transaction is included in the permanent part of one

honest party’s chain, then it will be included in every honest party’s blockchain.
9 We assume the channel to be created long before these attacks take place, so the

adversary cannot fork the transaction that creates the channel.

Brick 227

Collateral. The collateral for each warden in Brick is v/f , where v is the total
value of the channel and f the number of byzantine wardens. This is slightly
higher than the lowest amount v/(f + 1) for which security against bribing
attacks is guaranteed in asynchrony when both channel parties and wardens are
rational. Towards contradiction, we consider a channel where each warden locks
collateral C < v/(f + 1). Suppose now a rational party p owns 0 coins in the
freshest state and v coins in a previous state. Due to asynchrony, p controls
the message delivery, hence f wardens may consider this previous state as the
freshest one. Consequently, if p bribes f + 1 wardens, which costs less than
(f + 1)v/(f + 1) = v, the party profits from closing the channel in the previous
state in collaboration with the bribed and “slow” wardens, violating safety.

In a synchronous network, this attack would not work since the other parties
would have enough time to dispute. However, under asynchrony (or offline par-
ties [29]) there is no such guarantee. Further, note that in a naive asynchronous
protocol with f byzantine wardens, the previous attack is always possible for any
collateral because a rational party can direct the profit from the collateral of the
byzantine wardens to bribe the rational wardens. We circumvent this problem in
Brick by changing the closing conditions: we force the closing party to choose
between closing the channel in an old state, or claiming the collateral of at least
f + 1 wardens and awarding the channel balance to the counterparty.

Finally, a trade-off for replacing trust is highlighted: online participation
with synchrony requirements or appropriate incentive mechanisms to compel
the honest behavior of rational players.

Decentralization. In previous payment channel solutions a party only hires a
watchtower if it can count on it in case of an attack. Essentially, watchtowers are
the equivalent of insurance companies. If the attack succeeds, the watchtower
should reimburse the cheated channel party [29]. After all, it is the watchtower’s
fault for not checking the blockchain when needed. However, in light of network
attacks (which are prevalent in blockchains [3,20]), only a few, centrally con-
nected miners will be willing to take this risk. Brick provides an alternative,
that proactively protects from such attacks and we expect to provide better
decentralization properties with minimal overhead and fast finality.

Bitcoin Compatibility. We believe Brick can be implemented in Bitcoin
assuming t honest wardens (Protocol 5) using chained transactions. In contrast,
we conjecture that the incentive-compatible version of Brick (Protocol 6) can-
not be deployed without timelocks in platforms with limited contracts like Bit-
coin.

Acknowledgments. We would like to thank Kaoutar Elkhiyaoui for her valuable
feedback as well as Jakub Sliwinski for his impactful contribution to this work.

228 Z. Avarikioti et al.

References

1. Raiden network (2017). https://raiden.network/. Accessed 22 Nov 2020
2. Hertig, A.: Bitcoin Lightning Fraud? Laolu Is Building a ‘Watchtower’

to Fight It (2018). https://www.coindesk.com/laolu-building-watchtower-fight-
bitcoin-lightning-fraud

3. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

4. Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security under
temporary dishonest majority. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 466–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32101-7 28

5. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R., Zindros, D.: Brick: Asyn-
chronous payment channels. arXiv preprint: 1905.11360 (2020)

6. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint: 1811.12740 (2018)

7. Avarikioti, Z., Thyfronitis Litos, O.S., Wattenhofer, R.: Cerberus channels: incen-
tivizing watchtowers for bitcoin. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 346–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 19

8. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
https://www.blockstream.com/sidechains.pdf

9. Bagaria, V., Neu, J., Tse, D.: Boomerang: redundancy improves latency and
throughput in payment networks. In: International Conference on Financial Cryp-
tography and Data Security (2020)

10. Coleman, J., Horne, L., Xuanji, L.: Counterfactual: Generalized state channels
(2018). https://l4.ventures/papers/statechannels.pdf

11. Courtois, N.T., Grajek, M., Naik, R.: Optimizing SHA256 in bitcoin mining. In:
Kotulski, Z., Ksi ↪eżopolski, B., Mazur, K. (eds.) CSS 2014. CCIS, vol. 448, pp.
131–144. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44893-
9 12

12. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

13. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

14. DeDiS cothority (2016). https://www.github.com/dedis/cothority
15. DeterLab network security testbed (2012). http://isi.deterlab.net/
16. Dryja, T.: Unlinkable outsourced channel monitoring (2016). https://youtu.be/

Gzg u9gHc5Q
17. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs

over cryptocurrencies. In: IEEE Symposium on Security and Privacy, pp. 327–344
(2017)

18. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

https://raiden.network/
https://www.coindesk.com/laolu-building-watchtower-fight-bitcoin-lightning-fraud
https://www.coindesk.com/laolu-building-watchtower-fight-bitcoin-lightning-fraud
https://doi.org/10.1007/978-3-030-32101-7_28
https://doi.org/10.1007/978-3-030-32101-7_28
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://www.blockstream.com/sidechains.pdf
https://l4.ventures/papers/statechannels.pdf
https://doi.org/10.1007/978-3-662-44893-9_12
https://doi.org/10.1007/978-3-662-44893-9_12
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://www.github.com/dedis/cothority
http://isi.deterlab.net/
https://youtu.be/Gzg_u9gHc5Q
https://youtu.be/Gzg_u9gHc5Q
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

Brick 229

19. Gaži, P., Kiayias, A., Zindros, D.: Proof-of-Stake Sidechains. In: IEEE Symposium
on Security and Privacy, pp. 139–156. IEEE (2019)

20. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in Bitcoin. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 692–705. ACM (2015)

21. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

22. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28632-5 9

23. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: 19th ACM Conference on Computer and Communications Security, pp.
906–917. ACM (2012)

24. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pin-
tore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 21–34.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 3

25. Kokoris-Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key
generation for computationally-secure randomness, consensus, and threshold sig-
natures. In: 27th ACM SIGSAC Conference on Computer and Communications
Security, pp. 1751–1767. ACM (2020)

26. The Kyber Cryptography Library (2010–2018)
27. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., Pietzuch, P.R.: Teechain: a

secure payment network with asynchronous blockchain access. In: Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pp. 63–79 (2019)

28. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: SilentWhispers: enforcing
security and privacy in decentralized credit networks. In: 24th Annual Network and
Distributed System Security Symposium (2017)

29. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pp. 16–30. ACM (2019)

30. Miller, A.: Feather-forks: enforcing a blacklist with sub-50% hash power. https://
bitcointalk.org/index.php?topic=312668.0. Accessed 22 Nov 2020

31. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7 30

32. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
33. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-

ments (2015)
34. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an

approach to routing in lightning network (2016)
35. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and

private: Efficient decentralized routing for path-based transactions. In: 25th Annual
Network and Distributed Systems Security Symposium (2018)

36. Spilman, J.: Anti DoS for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html. Accessed 22 Nov 2020

37. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-030-43725-1_3
https://github.com/dedis/kyber
https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

230 Z. Avarikioti et al.

38. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

39. Zamyatin, A., et al.: SoK: communication across distributed ledgers. IACR Cryp-
tology ePrint Archive, Report 2019/1128 (2019)

Mining

Ignore the Extra Zeroes:
Variance-Optimal Mining Pools

Tim Roughgarden1 and Clara Shikhelman2(B)

1 Columbia University, New York, NY 10027, USA
2 Chaincode Labs, New York, NY 10017, USA

Abstract. Mining pools decrease the variance in the income of cryp-
tocurrency miners (compared to solo mining) by distributing rewards to
participating miners according to the shares submitted over a period of
time. The most common definition of a “share” is a proof-of-work for
a difficulty level lower than that required for block authorization—for
example, a hash with at least 65 leading zeroes (in binary) rather than
at least 75.

The first contribution of this paper is to investigate more sophisti-
cated approaches to pool reward distribution that use multiple classes
of shares—for example, corresponding to differing numbers of leading
zeroes—and assign different rewards to shares from different classes.
What’s the best way to use such finer-grained information, and how
much can it help? We prove that the answer is not at all: using the addi-
tional information can only increase the variance in rewards experienced
by every miner.

Our second contribution is to identify variance-optimal reward-sharing
schemes. Here, we first prove that pay-per-share rewards simultaneously
minimize the variance of all miners over all reward-sharing schemes
with long-run rewards proportional to miners’ hash rates. We then show
that, if we impose natural restrictions including a no-deficit condition on
reward-sharing schemes, then the pay-per-last-N-shares method is opti-
mal.

Keywords: Blockchains · Cryptocurrencies · Mining pools ·
Variance-minimization

1 Introduction

In Bitcoin [13] and many other cryptocurrencies (Ethereum [3], for example),
miners produce proofs-of-work to authorize blocks of transactions in exchange
for rewards. A solo miner controlling a small fraction of the overall hashrate will
receive no reward for long stretches of time (e.g., for a Bitcoin miner with 0.1%
of the overall hashrate, for roughly a week on average). To spread payouts more
evenly over time, many miners join mining pools in which multiple miners join
forces and work to authorize a block in tandem.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 233–249, 2021.
https://doi.org/10.1007/978-3-662-64331-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_12&domain=pdf
http://orcid.org/0000-0002-7163-8306
http://orcid.org/0000-0002-0587-7181
https://doi.org/10.1007/978-3-662-64331-0_12

234 T. Roughgarden and C. Shikhelman

When a mining pool successfully authorizes a block (e.g., finding a nonce so
that the block hashes to a number with at least 75 leading zeroes in binary1),
the reward collected by the pool owner must be distributed to the participating
miners (perhaps less a commission) so that they continue to contribute. There
are many ways to distribute rewards (as evident already from the early survey
of Rosenfeld [16]); here, we isolate two of the design decisions involved.

Design decision #1: What information from miners should be the basis for their
rewards?

Typically, rewards are based on the shares submitted by each miner over a
period of time, where a “share” is a proof-of-work for a difficulty level lower
than that required for block authorization (e.g., 65 leading zeroes instead of 75).
This difficulty level is chosen to be low enough that a typical miner can produce
shares reasonably frequently (thereby receiving a somewhat steady payout) but
high enough that neither miners nor the pool are overwhelmed by the number
of shares that must be communicated. There is no obvious reason to restrict
designs to a simple uniform notion of shares, however. An example of a more
sophisticated approach would be to use multiple classes of shares—for example,
differing numbers of leading zeroes—and assign different rewards to shares from
different classes.

Design decision #2: How should the information submitted by miners determine
their rewards?

For example, with a single class of shares, two of the approaches common
in practice are pay-per-share (PPS), in which there is a fixed reward for each
share (independent of any block authorization events); and pay-per-last-N-shares
(PPLNS), in which the reward associated with each successful block authoriza-
tion is distributed equally among the most recently submitted N shares. Is there
a good reason to prefer one of these approaches over the other? Is some other
way of distributing rewards “better” than both of them?

The goal of this paper is to identify mining pool reward-sharing schemes
that are “optimal” in a precise sense.

1.1 Our Contributions

Model for Identifying Variance-Optimal Reward-Sharing Schemes. Given that
the primary raison d’être of mining pools is to reduce the variance in miners’
rewards [16], we focus on the objective of minimizing variance.2 Our first con-
tribution is the definition of a formal model that allows us to identify every
1 Technically, in Bitcoin this is defined by finding a hash that is smaller than a number

that gets adjusted over time. For ease of discussion we will continue to refer to the
number of leading zeros.

2 Rosenfeld [16] computed the variance of some specific reward-sharing schemes and
briefly considered multi-class shares (in [16, §7.5]) but did not pursue optimality
results. A discussion on variance minimization can also be found in [17].

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 235

reward-sharing scheme with a statistical estimator (of the miner hashrate distri-
bution) and formally compare the variance properties of different schemes. We
then use this model to investigate the two design decisions above. We focus on
schemes that are unbiased in the sense that the long-run rewards to a miner are
proportional to the fraction of the overall hashrate controlled by that miner (as
is the case for all of the most popular reward-sharing schemes).

Single-Class Shares are Optimal. It is intuitively clear that, at least in some
scenarios, multi-class shares can lead to higher payoff variance than single-class
shares. For example, consider a sequence of t consecutive messages, generated by
the miners, that qualify for some type of reward (say, because each starts with
at least 65 zeroes). In the extreme case in which there is only a single miner,
with 100% of the hashrate, the variance of that miner’s reward under standard
(single-class) PPS in such a sequence is zero (as all t messages must have been
generated by that miner, and each pays the same reward). With multi-class
shares, by contrast, there would be positive variance in the miner’s payoff across
such sequences because of (say) the varying number of zeroes across different
messages.

Our second contribution shows that variance degradation from multiple
classes of shares is a fundamental phenomenon and not just an edge case: for
every possible miner hashrate vector, every deviation from the dominant-in-
practice single-class model can only increase the variance in rewards of every
miner. For example, a version of PPLNS or PPS that conditions rewards on the
number of leading zeroes in a hash (e.g., with a smaller reward for 65 zeroes
and a larger reward for 75) would be worse for all miners than PPLNS or PPS
(respectively) with all shares treated equally. As shown in Fig. 1, the difference
in variance between single-class and multi-class shares can be significant.

Pay-per-Share is Optimal. Our third contribution identifies a sense in which
the pay-per-share method is variance-optimal: for every possible miner hashrate
vector, it simultaneously minimizes the variance of all miners over all unbiased
reward-sharing schemes. We stress that there is no a priori guarantee that a
scheme with such a guarantee exists—conceivably, small miners would be better
off under one scheme and larger miners under a different one. Our result shows
that no trade-offs between different miners are necessary—from the perspec-
tive of variance-minimization, all miners prefer pay-per-share. We also provide
a second statistical justification of the pay-per-share method by showing that it
corresponds to the maximum likehood estimator for the miner hashrate distri-
bution.

Pay-per-Last-N-Shares is Optimal Within a Restricted Class. One drawback of
the PPS scheme is that, in the short run, it might be obligated to pay out
rewards to miners that exceed the rewards that the pool has actually earned to
date. (Whereas, in the long run, the reward per share is set so that the pool can
almost surely cover its obligations with its earned rewards.) This issue motivates
our fourth contribution, in which we study practically motivated subclasses of

236 T. Roughgarden and C. Shikhelman

Fig. 1. Example variances in miner reward (over sequences of messages of a fixed
length t) under the PSS RSS, as a function of the miner’s fraction of the overall
hashrate. For the single-class case, we use a reward of 1 per share. For the 2-class
cases, we assume every share belonging to the second class (e.g., with at least 66 or
at least 67 zeroes) belongs also to the first class (e.g., with at least 65 zeroes). Let p
denote the probability that a share that belongs to the first class also belongs to the
second (e.g., 1

2
or 1

4
). We use a reward of 1

2
per share in the first class and an additional

bonus for each share in the second class. The bonus is set so that the expected value
of a share from the first class (which may or may not also belong to the second) is 1
(e.g., a bonus of 1 for p = 1

2
and a bonus of 2 for p = 1

4
).

reward sharing schemes (RSSes), such as those that never run a deficit and
must distribute any block reward immediately. We prove that the pay-per-last-
N-shares method is variance-optimal among RSSes in a natural subclass (and
not variance-optimal if the subclass restrictions are relaxed).

1.2 Related Work

The goals of this paper are closely related to those of Fisch et al. [7], although the
model and conclusions differ. In [7], miner risk aversion is modeled via a concave
utility function of the form u(x) = xα (where x is the reward and α ∈ (0, 1));
here, we assume that each miner’s preference is to minimize reward variance
(subject to the expected reward being proportional to their hashrate).3 Fisch et
al. [7] then define “optimality” in terms of a global objective function, namely

3 Variance-minimization has been regarded as a key objective function for mining pool
design since Rosenfeld’s seminal analysis of Bitcoin mining pools [16].

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 237

maximizing the total discounted utility of all miners. Because our optimality
results apply to all miners simultaneously (and not just e.g. for the total variance
of all miners), we are not forced to choose any method of aggregating benefits
across miners. Finally, Fisch et al. [7] consider only what they call “pure” pooling
strategies which do not allocate any rewards prior to a block authorization event
(which have the advantage of never running a deficit) and thus the PPS scheme
is outside of their model. (PPS does not run a deficit in the long run, but it can in
the short run.) Because of these differences, the main result in [7] advocates for
a geometric reward scheme (with the reward-per-share decaying with the share’s
distance from the next block authorization) to maximize total discounted utility;
our theory singles out the pay-per-share scheme as variance-optimal. (Though
our Theorem 5 does incorporate a no-deficit constraint to prove a restricted
variance-optimality result for the pay-per-last-N-shares method.)

Much of the previous theoretical work on mining pools has focused on incen-
tive aspects. For example, there are incentive issues both between different pools
(e.g., pool-hopping [16]) and within a single pool (e.g., the miner’s dilemma [5]
or the delayed reporting of shares [18]). Another game-theoretic analysis of min-
ing pools can be found in Lewenberg et al. [12], where the authors study the
dynamics of a network with several mining pools. They show that there exists
an instability in the choice of pools by miners, and that the miners will often
switch pools, given some natural topological assumptions on the network. Along
related lines, Laszka et al. [10] and Johnson et al. [8] examine the incentive of
mining pools to attack each other. They show that in certain cases pools can
benefit from such attacks.

We stress that while the present work does not focus on incentive issues per
se (excepting the discussion in Sect. 4.4), our main results nevertheless advocate
(on the basis of variance-minimization) for rules that happen to possess good
incentive properties (such as PPS, see e.g. [18]). That is, our results optimize
over all (not necessarily incentive-compatible) schemes and yet they champion
schemes with strong incentive-compatibility properties.

Another line of works considers the forces behind and consequences of central-
ization (either outside of a mining pool or within a mining pool). An empirical
study of this issue can be found in a recent paper by Romiti et al. [15]. The
results of this study point to centralization tendencies inside pools, with a small
number of miners reaping a large portion of the rewards. This raises incentive
and security concerns motivated by the power that a small group may hold. In [6]
Eyal and Sirer show that the Bitcoin protocol is not incentive compatible, in the
sense that colluding miners could gain profits larger than their proportional hash
power. As a counterpoint, in [9] the authors analyze mining as a stochastic game
and show that as long as all of the miners are small, honest mining is a Nash
equilibrium.

Others have studied the setting where there are a few miners with large
mining power (one can think of them as mining pools, but this does not have
to be the case) and many small miners. For Bitcoin this was studied in [11].
For Ethereum, which has a slightly different reward allocation rule in which a

238 T. Roughgarden and C. Shikhelman

miner can be rewarded for finding a block that does not end up in the main
chain (known as “uncle” rewards), it was shown in [21] that powerful miners can
attack weak miners.

A different approach taken in [1] takes into account the cost of mining equip-
ment purchased by miners. There it is shown that with time one can expect that
there will only be a small set of strong miners. These strong miners again can
be interpreted as mining pools.

An axiomatic approach to reward allocation for miners was taken by Chen et
al. in [4]. They start by stating the desired properties of reward allocation rule,
such as symmetry, sybil-proofness, collusion-proofness, and others. They proceed
to study which allocation rules satisfy these properties, showing that Bitcoin’s
allocation rule is the unique solution that satisfies a strong set of properties and
that this is no longer the case for slightly weaker properties or if the miners are
risk-averse.

Finally, we point the reader to two surveys that may be of interest. The
first is a Systematization of Knowledge paper [2], where the authors examine
results in the fields of game theory, cryptography, and distributed systems. The
second [20] offers a systematic study of blockchain networks, focusing on the
incentive aspects in the design of such systems.

2 Preliminaries

2.1 Model of Miners

We assume there is a finite set of miners, and use [k] := {1, 2, . . . , k} to denote
their possible identities (public keys). (Any number of miner identities may
belong to the same actor.) We assume that there is a finite message space M ,
such as {0, 1}256 (e.g., all possible hash function outputs). By a signed message
(s,m) we mean a miner s ∈ [k] and a message m ∈ M . The sets [k] and M are
known to all in advance. We assume that, due to capacity and communication
considerations, a mining pool is willing to accept only a subset A ⊆ M of the
possible messages (e.g., those with at least 65 leading zeroes).4

Each miner s has a nonnegative hashrate hs, not known a priori to the
designer, which controls the rate at which s can generate signed messages. We
model miner s as a Poisson process with rate hs, with each generated message of
the form (s,m) with m drawn uniformly at random from the message space M
(e.g., the output of SHA-256 on a block with a specific nonce, under the ran-
dom oracle assumption).5 We assume that a miner s sends one of its generated
messages (s,m) to the mining pool if and only if m ∈ A (e.g., a miner doesn’t
bother to send hashes with less than 65 zeroes). We can assume without loss of

4 Our results remain the same if each miner has its own subset Ai of acceptable
messages, provided the Ai’s all have the same size.

5 The Poisson assumption is for convenience. The important property is that the
identity of the sender of a new signed message is distributed proportionally to the
hashrate distribution, independent of the past.

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 239

generality that the total hashrate is 1 (
∑k

s=1 hs = 1) and hence the vector h
of hashrates can be interpreted as a probability distribution, called the hashrate
distribution.

The message distribution M(h) induced by a hashrate distribution h is the
distribution over signed messages arriving at the mining pool. A sample (s,m)
from M(h) can be generated by independently choosing a miner identity s
according to the hashrate distribution and an acceptable message m uniformly
at random from A. Each signed message received by the mining pool is an i.i.d.
sample from the message distribution.

2.2 Reward Sharing Schemes

A reward sharing scheme (RSS) ascribes a (possibly random) reward to the
sender of each signed message, given the messages received thus far. Formally,
an RSS is a random function ϕ from finite sequences (s1,m1), . . . , (st,mt) of
signed messages to real-valued rewards (for the miner st). An RSS is memoryless
if its output is independent of all but the most recent signed message. We write
ϕ(s,m) for the (random) output of a given memoryless RSS ϕ on a given signed
message (s,m).

For example, the pay-per-share (PPS) RSS deterministically pays a fixed
reward for each message received. That is,

PPS(s,m) = c

for some c > 0.6

For a more involved example, consider the pay-per-last-N-shares (PPLNS)
RSS, which distributes a fixed reward to the most recent N messages leading
up to the pool’s successful authorization of a block. Here, a miner’s reward for
a message depends on the future—on the number of blocks mined by the pool
over the course of the next N messages. (Note, however, the miner’s reward is
independent of the past.) We can model this uncertainty in our RSS framework
using random rewards:

PPLNS(s,m) = c · X,

where c > 0 is a constant and X ∼ Bin(N, p) is a binomial random variable,
where the number of trials is N and the success probability p is the probability
that a sample from the message distribution leads to a block authorization (e.g.,
if the acceptable messages A have 65 leading zeroes and 75 are necessary to
authorize a block, then p = 2−10).7

6 The constant c > 0 would typically be chosen so that the rate at which rewards
are granted to miners equals the rate at which the pool accrues block rewards (and
possibly transaction fees), less a commission.

7 Other schemes with future-dependent rewards can be similarly modeled. The key
requirement is that the probability distribution over the reward associated with a
share (with respect to future samples from the message distribution) is independent
of the hashrate distribution h. This is the case for most of the well-studied RSSes
(including e.g. the geometric reward schemes studied in [7]).

240 T. Roughgarden and C. Shikhelman

An example of a natural RSS that is not memoryless is the proportional RSS,
which upon a block authorization distributes the corresponding reward to miners
proportionally to the number of signed messages each miner sent since the most
recent successful block authorization. Here, the reward to a miner for a signed
message depends on the past, and specifically on how many signed messages the
pool has received since the most recent successful block authorization.

2.3 Message-Independence and Symmetrization

An RSS ϕ is message-independent if ϕ((s1,m1), . . . , (st,mt)) is independent of
m1,m2, . . . ,mt, that is, the RSS does not take into account the content of
the message m1, . . . ,mt.8 Message-independence corresponds to the notion of
“single-class shares” from the introduction—the RSS does not consider the con-
tents of a message beyond its acceptability (i.e., membership in A). Thus our
results about the optimality of single-class shares will be formalized as optimality
results for message-independent RSSes.

The PPS, PPLNS, and proportional RSSes are all message-independent. (To
avoid confusion, remember that every message reaching the RSS belongs to A;
non-acceptable messages are filtered out beforehand.) Conditioning a reward on,
for example, the number of leading zeroes in an acceptable message would lead
to a non-message-independent RSS.

For a (not necessarily message-independent) RSS ϕ, define its symmetrization
ϕsym by

ϕsym((s1,m1), . . . , (st,mt)) = Eu1,...,ut∼A[ϕ(si,mi)],

where the ui’s are i.i.d. uniformly random messages from A. For the special case
of a memoryless RSS ϕ, we can write

ϕsym(s,m) = Eu∼A[ϕ(s,m)].

We immediately have:

Proposition 1. For every RSS ϕ, its symmetrization ϕsym is message-
independent.

2.4 A Reward-Sharing Scheme as a Hashrate Estimator

To compare the statistical properties (such as variance-minimization) of dif-
ferent RSSes, it is useful to view an RSS as a statistical estimator of the
hashrate distribution. By an estimator, we mean a function that associates each
sequence (s1,m1), . . . , (st,mt) with a probability distribution over the miners [k].

8 All of the common RSSes that motivate this work are also anonymous, meaning
that ϕ((s1, m1), . . . , (st, mt)) is independent of s1, s2, . . . , st. While anonymity is
natural (and arguably unavoidable) in a permissionless blockchain setting, our pos-
itive results do not require that assumption. In any case, the RSSes advocated by
our results are anonymous.

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 241

Specifically, given an RSS ϕ, the corresponding estimator fϕ associates each
sequence (s1,m1), . . . , (st,mt) of signed messages with the k-vector p in which
the jth component pj is the fraction of the rewards awarded to miner j:

pj =
1
Z

·
∑

i∈[t] : si=j

ϕ((s1,m1), . . . , (si,mi)), (1)

where Z =
∑t

i=1 ϕ((s1,m1), . . . , (si,mi)) is a normalizing factor. For a memo-
ryless rule ϕ one can write ϕ(si,mi) instead of ϕ((s1,m1), . . . , (si,mi)) in (1). If
the RSS ϕ is randomized, so is the corresponding estimator fϕ (even for a fixed
sample).

The likelihood of a sequence (s1,m1), . . . , (st,mt) of signed messages with a
hashrate distribution h is the probability that t i.i.d. draws from the message
distribution M(h) induced by h is (s1,m1), . . . , (st,mt). A maximum likelihood
estimator (MLE) maps each sequence (s1,m1), . . . , (st,mt) to a hashrate distri-
bution maximizing the likelihood of that sequence. There is no a priori require-
ment that an MLE is induced by an RSS, though we’ll see in Theorem 2 that
the PPS RSS induces an MLE.

Some kind of unbiasedness assumption is required for meaningful variance-
minimization results (otherwise, a constant function can achieve zero variance).
Formally, we call an estimator f unbiased if, for every positive integer t and
hashrate distribution h,

E[f((s1,m1), . . . , (st,mt))] = h, (2)

where the expectation is over t i.i.d. samples from M(h) and any randomization
internal to the estimator. For example, the PPS, PPLNS, and proportional RSSes
all induce unbiased estimators. Also, because the message mi in a sample (si,mi)
from M(h) is chosen uniformly at random from A:

Proposition 2. For every unbiased RSS ϕ, its symmetrization ϕsym is also
unbiased.

An estimator is unbiased for miner s if the identity in (2) holds in the sth
coordinate. (An estimator is thus unbiased if and only if it is unbiased for every
miner.)

For a given estimator f , positive integer t, and hashrate distribution h, we
can define its miner-s t-sample variance as

E[(f((s1,m1), . . . , (st,mt)))s − hs)2],

where the expectation is again over t i.i.d. samples from M(h) and any random-
ization internal to the estimator. The t-sample variance of an estimator f for
a hashrate distribution h is the vector of all such variances (ranging over the
miner s).

242 T. Roughgarden and C. Shikhelman

2.5 When t is Random

The t-sample variance refers to a fixed number t of samples, corresponding to
a fixed number of miner shares. If one instead fixes an amount of time, then t
itself is a random variable (the number of shares found during that time window,
which is distributed according to a Poisson distribution). All of our t-sample
variance-optimality results (such as Theorems 4 and 5) hold simultaneously for
all positive integers t. Thus, by the law of total variance (see Eq. (3)), these
variance-optimality results carry over to the case in which t is a random variable
(e.g., the case of a fixed time window).

3 Warm-Up: Maximizing Likelihood

We begin with an observation that champions PPS from a statistical predic-
tion perspective—the corresponding estimator is in fact a maximum likelihood
estimator for the hashrate distribution h (given t i.i.d. samples from the mes-
sage distribution M(h)).9,10 The next section describes the main results of this
paper, on variance-optimality.

Theorem 1 (PPS Is an MLE). The estimator fPPS induced by the PPS
reward-sharing scheme is an MLE.

Before we prove Theorem 1, we need to state the following result that can be
found, for example, in [19]. Let X1, ...,Xn be i.i.d random variables with a dis-
crete support [k]. For s ∈ [k] let ns = |{Xi = s}|. We say that p = (p1, ..., pk) is
the maximum likelihood estimate if

p = argmaxq∈Q

n∏

s=1

qns
s

where Q = {q ∈ R
k :

∑k
s=0 qs = 1,∀s qs ≥ 0} denotes the simplex.

Theorem 2. The maximum likelihood estimate is given by the empirical distri-
bution defined by

ps =
ns

n

for all s ∈ [k].

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). First note that the values of the si’s are i.i.d. For
every i, si is chosen by the hash distribution, and for any i �= j, si is independent
of sj as the Poisson process is memoryless. Furthermore, the estimator induced

9 MLEs are deterministic (up to tie-breaking). Thus no randomized RSS (such as
PPLNS or the estimator induced by the proportional rule) can be a MLE.

10 A similar result can be found in [14] under the reasonable assumption that the shares
follow the Poisson distribution.

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 243

by PPS is the empirical distribution. Indeed, when focusing on PPS (with a fixed
reward of c per share), the identity in (1) specializes to

ps =
1

c · t
·

∑

i∈[t] : si=s

c

=
|{i : si = s}|

t
.

Theorem 1 now follows from Theorem 2.

While we believe Theorem 1 is a novel way to single out one RSS among many,
the primary purpose of mining pools is variance-minimization, not prediction per
se. We therefore proceed to our main results on variance-optimality, in which the
PPS RSS will continue to play a central role.

4 Main Results: Variance-Optimality

4.1 Single-Class Shares Are Optimal

Our first result proves that single-class shares are optimal, in the sense that
symmetrization can only reduce the variance of every miner.

Theorem 3 (Message-Independence Minimizes Variance). For every
unbiased RSS ϕ, hashrate distribution h, positive integer t, and miner j ∈ [k],
the miner-j t-sample variance under the estimator fϕ is at least as large as under
its symmetrization fϕsym .

Proof. The law of total variance states that for X and Y , random variables over
the same probability space,

Var[X] = E[Var[X | Y]] + Var[E[X | Y]]. (3)

For an unbiased RSS, we have that E[(f((s1,m1), . . . , (st,mt)))j − hj)2] =
Var[(fϕ((s1,m1), . . . , (st,mt)))j], and so we can apply the above. Here we
take X = fϕ(s,m)j , where s = (s1, ..., st) and m = (m1, ...mt). Note that
Em[fϕ(s,m)j | s] = fϕsym(s,m)j .

Plugging this into (3) we find that

Var[fϕ(s,m)j] = Es[Var[fϕ(s,m)j | s]] + Var[fϕsym(s,m)j].

The first term on the right-hand side is always nonnegative, and it equals 0
if fϕ = fϕsym . This completes the proof.

For example, consider a version of the PPLNS scheme that uses two classes
of shares (e.g., corresponding to at least 65 and at least 75 leading zeroes), with
different rewards (e.g., more for 75 zeroes). Theorem 3 implies that all miners
would enjoy lower variance (and the same expectation) if instead every share
of either type was rewarded according to the expected reward of a share in one
of the two classes (where the expectation is over a uniformly random message
from A).

244 T. Roughgarden and C. Shikhelman

4.2 PPS is Variance-Optimal

Theorem 3 is agnostic to all aspects of an RSS other than message-
independence—for example, it offers no opinion on which of PPS or PPLNS
is “better.” Our next result singles out PPS as variance-optimal among all unbi-
ased RSSes. We discuss this point further and revisit PPLNS after the proof of
Theorem 5.

Theorem 4 (PPS is Variance-Optimal). For every hashrate distribution h,
positive integer t, and miner j ∈ [k], the PPS RSS minimizes the miner-j t-
sample variance over all estimators that are unbiased for miner j.

To prove this, we show the following general statement:

Lemma 1. Let x = (m,b) be such that m is chosen uniformly from some set
F and b are the results of l coin flips for some constant l. Let {Fi} be pairwise
disjoint subsets of F × {0, 1}l. Let

X =
∑

i

ai1x∈Fi

and assume that E[X] = R for some constant R. Then the choice of ai that
minimizes the variance of X is ai = R

Pr[x∈∪Fi]
.

Intuitively we can think about the elements of Lemma 1 as follows. Assume that
a bitcoin mining pool runs a version of PPS where the reward for a miner is a
function of the number of leading zeroes in the hash. Then each Fi will be the
set of messages with a given number of leading zeroes, and for such a message
the pool will give a reward of ai.

If there is some extra randomness beyond the sampling of the miner, say as
in PPLNS, then this randomness will appear in the coin flips b. In this case,
a family Fi could be, for example, all the messages with the number of leading
zeros between 65 and 70, for which the coin flips sum up to exactly 5.

The reward given for the family Fi can be a function also of the history
(s1,m1), ..., (st−1,mt−1).

Lemma 1 essentially shows that the minimum variance is obtained by giving
the same reward for every family Fi, that is, discarding any information given
by the message or the randomness of the RSS.

Proof (of Lemma 1). Let X =
∑

i ai1x∈Fi
. Remembering that Var[X] = E[[X −

E[X]]2] we have that the smallest possible variance Var[X] = 0 is obtained if
and only if X = E[X].

In our notation, this means that for every i and i′ we must have that ai = ai′ ,
and as E[X] = R this gives us that for every i, ai = R

Pr[x∈∪Fi]
as needed.

It is left to deduce Theorem 4 from Lemma 1.

Proof (of Theorem 4). To show this, we first choose F = A, the family of all
messages that can be sent to the pool. Second, for a given RSS we define as Fi

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 245

the set of all the messages and result of the extra randomness that get the reward
ai. The expectation R is given by the assumption that the RSS is unbiased.

Note that in an unbiased RSS a miner j cannot get paid for the a message
sent by another miner (e.g., if hj = 0 then any payment to j would make the RSS
biased). To minimize the variance of miner j it is left to decide on the reward
of messages sent by them. By Lemma 1 we have that the smallest variance will
be obtained by giving the same reward for every message and flipping no extra
coins. This is exactly the definition of PPS.

Finally, we note that Theorem 4 considers minimizing the variance of some
fixed miner s ∈ [k]. As the optimal RSS is PPS (independent of s), it is actually
variance-optimal for all of the miners simultaneously. More precisely, we have
the following:

Corollary 1 (Miner-Optimality). For every hashrate distribution h and pos-
itive integer t, the PPS RSS simultaneously minimizes the variance of the miner-
s t-sample for all s over all unbiased estimators.

It is interesting to note that Corollary 1 holds even if each miner chooses
their own difficulty of shares (as is common in some mining pools). A miner that
is free to choose its difficulty in the PPS RSS can lower the variance further by
choosing the smallest possible difficulty.

We emphasize that there is no a priori guarantee that a statement like Corol-
lary 1 should hold for any RSS—for example, it is conceivable that small miners
would fare better under one scheme and large miners under a different one. Corol-
lary 1 shows that no trade-offs between different miners are necessary. This is
particularly interesting if we add other restrictions on the RSS.

4.3 Variance-Optimality of PPLNS

A shortcoming of PPS is that for any fixed reward per share, there is a constant
probability that at some point the pool will not have the funds to pay the
miners. The PPLNS method is common in practice and does not suffer from
this drawback. Does PPLNS become variance-optimal if we impose additional
constraints on an RSS?

We consider four constraints on an RSS.

(P1) No-deficit. An RSS can only distribute block rewards that have been earned
to date.

(P2) Liquidating. An RSS must distribute each block reward as soon as the
block is found.

(P3) N-bounded. The reward given for a share depends on at most the next N
shares found.

(P4) Past-agnostic. The distribution of the reward for a share should not depend
on the realizations of past rewards or on past blocks found.

The PPLNS method is variance-optimal for all miners, subject to (P1)–(P4).

246 T. Roughgarden and C. Shikhelman

Theorem 5. For every hashrate distribution h and positive integer t, the
PPLNS RSS simultaneously minimizes the variance of the miner-s t-sample for
all s over all unbiased RSSes that satisfy properties (P1)–(P4).

Before proceeding to the proof, we note that PPLNS is not variance-optimal if
any of the properties (P1)–(P4) are relaxed. Most of the RSSes that demonstrate
this are not particularly attractive, however, as they suffer from serious incentive
problems (see Sect. 4.4 for further discussion). The point of Theorem 5 is not so
much to argue that PPLNS is the only reasonable RSS for variance-minimization,
but rather to clarify the types of transgressions required by any RSS that does
better.

Proof (of Theorem 5). Let f be an unbiased RSS that follows constraints (P1)–
(P4) and has minimum variance. By (P1) we know that it can distribute only
block rewards that were already obtained, and by (P2) we know that it has to
distribute the reward immediately when a block is found. Thus, it is enough to
determine its behavior at the appearance of a block. Furthermore, by (P3) we
know that the reward can only be distributed among the last N shares, and so
f takes as an input only the last N messages before the block, even if t > N .
Thus, we can focus on a function that given the fact that share j is a block,
distributes the reward found among the shares j − N − 1, j − N − 2, ..., j. Call
this function fj and note that f =

∑
j is block fj .

By (P4), fj cannot depend on whether any of the other N shares is a block
or if the share already received a reward from a different block. The information
available for fj is the message sent with the shares, the arrival time of the
share with respect to the block, and the identity of the sender. This makes fj

independent of any fj′ , for j �= j′, and so it is enough to minimize the variance
of each fj separately.

After considering (P1)–(P4) we see that fj is an unbiased RSS over an N -
sample. By Corollary 1, PPS minimizes the variance for all of the miners simulta-
neously, and so in the context of fj this means that each of the N shares receives
the same reward. By (P2) all of the block reward needs to be distributed, so each
shares gets 1/N of the block reward, which is exactly the definition of PPLNS.

4.4 Relaxing the Constraints

All the properties (P1)–(P4) are required for the variance-optimality result in
Theorem 5. For starters, if the no-deficit condition, (P1), is dropped, the PPS
method has smaller variance.

Suppose the liquidating constraint (P2) is dropped. That is, an RSS need not
allocate the full block reward. With partial reward distributions, we can again
find an RSS with a smaller variance: For each share, reward a fixed amount
if in the next N shares at least one block is found. (The reward is the same,
whether 1 or 17 blocks are found over the next N shares.) This RSS has smaller
variance than PPLNS as the reward does not depend on the number of blocks
found. The variance of this RSS becomes smaller as a function of N , but a

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 247

direct consequence of this is that a large portion of funds will not be distributed.
Furthermore, it might incentivize miners to delay the publication of blocks until
they have published enough shares.

If N -boundedness (P3) is dropped, consider the following RSS. For a fixed N
let M be the expected number of blocks within N shares. For each share, reward
a sum proportional to M/N . If there are not enough funds in the pool, wait for
the next block to be found and start paying shares, ordered from the oldest to
the newest. This results in an RSS very similar to PPS, but with the risk of
funds delaying significantly. This RSS suffers from incentive issues, however: As
the delays inevitably grow, miners are incentivized to leave the pool for greener
pastures.

Finally, an RSS which is not past agnostic (P4) and has a smaller variance
is the following. Assume, again, that we expect to find M blocks for every N
shares. Then, for every block found, look back at the last N shares and reward
each one with a sum that will make their reward as close to M/N as possible. If
not all of the reward was distributes or if the reward is not enough to bring the
shares to M/N , distribute the reward in a way that will make the reward of all
of the N shares as even as possible. Although this RSS has a smaller variance,
it creates a negative incentive to mine if no block was found for a while.

Although the examples above have obvious incentive problems, it is not clear
that any such relaxation will create these issues. Studying this further may be
of interest.

5 Conclusions and Discussion

In this work, we have proposed a model for investigating the variance-
minimization properties of different mining pool reward-sharing schemes. We
focused on two design decisions: (i) What information from miners should be
the basis for their rewards?; and (ii) How should the information submitted by
miners determine their rewards? Our results strongly support the common prac-
tice of using a single class of shares, as the use of finer-grained information can
only increase the variance experienced by every miner. This holds true across dif-
ferent ways of translating single-class shares into miner rewards (PPS, PPLNS,
etc.). Our results also strongly support the pay-per-share scheme, which can be
justified both as a maximum likelihood estimator for the miner hashrate distribu-
tion and as the scheme that minimizes the variance of all miners simultaneously,
over all unbiased estimators.

This work focused single-mindedly on variance-minimization. This tunnel
vision is deliberate, both because it enables a tractable theory with particularly
crisp and interpretable results, and because in many cases it only makes our
results stronger. For example, our main results do not restrict consideration
to reward-sharing schemes with desirable incentive properties, but nevertheless
advocate (as variance-optimal) schemes that do have such properties.

Needless to say, there are many other scientifically interesting and practically
relevant dimensions along which one can compare reward-sharing schemes, all

248 T. Roughgarden and C. Shikhelman

of which should be taken into account in a real design. For example, in some
settings the variance-minimization benefits of the pay-per-share scheme may be
outweighed by the risk that would be taken on by the pool owner.

References

1. Arnosti, N., Weinberg, S.M: Bitcoin: a natural oligopoly. arXiv preprint
arXiv:1811.08572 (2018)

2. Azouvi, S., Hicks, A.: Sok: tools for game theoretic models of security for cryp-
tocurrencies. arXiv preprint arXiv:1905.08595 (2019)

3. Buterin, V., et al.: Ethereum: a next-generation smart contract and decentralized
application platform (2014). https://github.com/ethereum/wiki/wiki/%5BEnglish
%5D-White-Paper

4. Chen, X., Papadimitriou, C., Roughgarden, T.: An axiomatic approach to block
rewards. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 124–131 (2019)

5. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE (2015)

6. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

7. Fisch, B., Pass, R., Shelat, A.: Socially optimal mining pools. In: Devanur, N.R.,
Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 205–218. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71924-5 15

8. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic
analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 72–86. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1 6

9. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of the 2016 ACM Conference on Economics and Compu-
tation, pp. 365–382 (2016)

10. Laszka, A., Johnson, B., Grossklags, J.: When bitcoin mining pools run dry. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol.
8976, pp. 63–77. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48051-9 5

11. Leonardos, N., Leonardos, S., Piliouras, G.: Oceanic games: centralization risks
and incentives in blockchain mining. In: Pardalos, P., Kotsireas, I., Guo, Y., Knot-
tenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp.
183–199. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4 13

12. Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bit-
coin mining pools: a cooperative game theoretic analysis. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 919–927. Citeseer (2015)

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report,
Manubot (2019)

14. Paszek, E.: Introduction to statistics (2007)
15. Romiti, M., Judmayer, A., Zamyatin, A., Haslhofer, B.: A deep dive into

bitcoin mining pools: an empirical analysis of mining shares. arXiv preprint
arXiv:1905.05999 (2019)

http://arxiv.org/abs/1811.08572
http://arxiv.org/abs/1905.08595
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-319-71924-5_15
https://doi.org/10.1007/978-3-662-44774-1_6
https://doi.org/10.1007/978-3-662-48051-9_5
https://doi.org/10.1007/978-3-662-48051-9_5
https://doi.org/10.1007/978-3-030-37110-4_13
http://arxiv.org/abs/1905.05999

Ignore the Extra Zeroes: Variance-Optimal Mining Pools 249

16. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980 (2011)

17. Rosenfeld, M., et al.: A short note about variance and pool payouts (2011). https://
bitcointalk.org/index.php?topic=5264.0

18. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

19. Shashua, A.: Introduction to machine learning: class notes 67577 (2009)
20. Wang, W., et al.: A survey on consensus mechanisms and mining strategy man-

agement in blockchain networks. IEEE Access 7, 22328–22370 (2019)
21. Zamyatin, A., Wolter, K., Werner, S., Harrison, P.G., Mulligan, C.E.A., Knot-

tenbelt, W.J.: Swimming with fishes and sharks: beneath the surface of queue-
based Ethereum mining pools. In: 2017 IEEE 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 99–109. IEEE (2017)

http://arxiv.org/abs/1112.4980
https://bitcointalk.org/index.php?topic=5264.0
https://bitcointalk.org/index.php?topic=5264.0
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28

HaPPY-Mine: Designing a Mining Reward
Function

Lucianna Kiffer(B) and Rajmohan Rajaraman

Northeastern University, Boston, MA, USA
{lkiffer,rraj}@ccs.neu.edu

Abstract. In cryptocurrencies, the block reward is meant to serve as the
incentive mechanism for miners to commit resources to create blocks and
in effect secure the system. Existing systems primarily divide the reward
in proportion to expended resources and follow one of two static models
for total block reward: (i) a fixed reward for each block (e.g., Ethereum),
or (ii) one where the block reward halves every set number of blocks
(e.g., the Bitcoin model of halving roughly every 4 years) but otherwise
remains fixed between halvings. In recent work, a game-theoretic anal-
ysis of the static model under asymmetric miner costs showed that an
equilibrium always exists and is unique [4]. Their analysis also reveals
how asymmetric costs can lead to large-scale centralization in blockchain
mining, a phenomenon that has been observed in Bitcoin and Ethereum
and highlighted by other studies including [11,16].

In this work we introduce a novel family of mining reward functions,
HaPPY-Mine (HAsh-Pegged Proportional Yield), which peg the value of the
reward to the hashrate of the system, decreasing the reward as the hashrate
increases. HaPPY-Mine distributes rewards in proportion to expended
hashrate and inherits the safety properties of the generalized proportional
reward function established in [9]. We study HaPPY-Mine under a hetero-
geneous miner cost model and show that an equilibrium always exists with
a unique set of miner participants and a unique total hashrate. Signifi-
cantly, we prove that a HaPPY-Mine equilibrium is more decentralized than
the static model equilibrium under a set of metrics including number of
mining participants and hashrate distribution. Finally, we show that any
HaPPY-Mine equilibrium is also safe against collusion and sybil attacks, and
explore how the market value of the currency affects the equilibrium.

1 Introduction

Existing cryptocurrencies rely on block rewards for two reasons: to subsidize
the cost miners incur securing the blockchain and to mint new coins. Miners in
major cryptocurrencies like Bitcoin and Ethereum participate in the protocol
by packaging user transactions into blocks and incorporating those blocks into

We thank the anonymous reviewers and Yonatan Sompolinsky for their helpful com-
ments. The first author was supported by a Facebook Fellowship and Dfinity Scholar-
ship. This work was also partially supported by NSF grant CCF-1909363. This work
was initiated when the first author was at an internship at DAGlabs.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 250–268, 2021.
https://doi.org/10.1007/978-3-662-64331-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_13&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_13

HaPPY-Mine: Designing a Mining Reward Function 251

the blockchain (the global record of all transactions that have taken place in
the system). Creating a block involves significant computational power where
the miner preforms iterations of some kind of computation, the proof of work,
generally iterating over a hash function. This work, whether on a CPU, GPU or
other specialized hardware, comes at a cost to the miner. To compensate miners
for incurring this cost and to incentivize more miners to join, miners collect
a block reward of newly minted coins for each block that gets added to the
blockchain. In expectation, miners are rewarded in proportion to the resources
they contribute. This computational work is also what cryptographically ties
each block in the blockchain together and makes it so that anyone wanting to
fork the blockchain, i.e. erase transactions by creating their own version of a
subset of the chain, would have to redo an equivalent amount of work. The
more resources miners invest in the system, the greater the system hashrate, the
more expensive this attack becomes. In effect, the computational work of miners
secures the blockchain system by making the blockchain immutable.

There are two common frameworks for the block reward function in terms
of distribution of supply. Bitcoin’s protocol has a set maximum number of coins
that will ever be minted, therefore the mining reward diminishes over time. The
mining reward halves every 210,000 blocks (approximately every 4 years). For
now, miners continue to profit since the value of each Bitcoin has increased
over time making up for the decrease in reward with increases system hashrate.
Eventually though, the mining reward will reach zero and miners will be repaid
solely in transaction fees for the transactions they include in the blocks they
mine. Another cryptocurrency, Ethereum, currently has in its protocol a fixed
mining reward of 5 Ethers for all blocks ever. This means that the supply of
Ether is uncapped and the mining hashrate can grow linearly in the market
value of Ether.

In general miner costs are asymmetric [1] with miners with access to low-
cost electricity or mining hardware being at an advantage. This has led to large
centralization in both Bitcoin and Ethereum mining, with a significant portion
of the hashrate being controlled by a few mining pools [2,3,11]. This prevents
other players from having a share of the market. We ask the question, can we
design a mining reward function that alleviates these problems?

1.1 Main Contributions

In this paper, we develop a novel hashrate-based mining reward function,HaPPY-
Mine, which sets the block reward based on the system hashrate. HaPPY-Mine is
defined so that as the system hashrate increases, the block reward smoothly
decreases. We now outline the main contributions of this paper.

1. We introduce the notion of a hashrate-pegged mining reward function, and
formally argue that it can help in decentralizing the blockchain by reducing
the hashrate that a new miner is incentivized to buy.

2. We present HaPPY-Mine, a family of hashrate-pegged mining reward func-
tions that dispense rewards in proportion to the expended hashrate. We con-
duct a rigorous equilibrium analysis of the HaPPY-Mine family under general

252 L. Kiffer and R. Rajaraman

miner costs. We establish that equilibria always exist, and are more decen-
tralized than an equlibrium under the static reward function: in particular,
HaPPY-Mine equilibria have at least as many participating miners as and lower
total hashrate than an equilibrium for the static reward function.

3. We show that HaPPY-Mine equilibria (as well as that of a static reward func-
tion) are resistant to any collusion attack involving fewer than half the miners,
and that a Sybil attack does not increase the utility of the attacker.

4. We finally consider the scenario where rewards are issued in the currency of
the blockchain and study the effect of the change in the currency’s value on
the equilibrium. We show that in HaPPY-Mine, an increase in the value of the
cryptocurrency allows more higher cost miners to participate, again resulting
in greater decentralization as compared to an equilibrium under the static
reward function.

Outline of the Paper. We begin in Sect. 2 with a description of the equilibrium
analysis of [4], which provides a basic game-theoretic framework that we build
on. We also describe the properties satisfied by the generalized proportional allo-
cation rule of [9], of which our function is a special case. In Sect. 3 we introduce
our hash-pegged mining reward function and in Sect. 4 we analyze its equilibria.
We analyze other factors that impact the equilibria in Sect. 5. We conclude with
a discussion on the practicality of implementing the hash-pegged mining reward
function in a system and with future and related work in Sects. 6 and 7.

2 Background

In this paper, we follow a miner model of asymmetric costs with rewards being
awarded in proportion to expended resources(hashrate). Our study builds on
an analysis framework developed in [4]. In this section, we first summarize the
model of [4] and their equilibrium analysis of a static reward function for mining.
We next review proportional allocation, used in both the static reward function
and HaPPY-Mine, and state salient properties established in [9].

Equilibrium Analysis of Static Reward Function. The simple proportional
model introduced in [4] has n miners with costs c1, c2, . . . , cn where c1 ≤ c2 ≤
· · · ≤ cn ≤ ∞. A miner i who invests qi hashrate at a cost of ciqi has mining
reward and utility given by

xi(q) =
qi∑
j qj

and Ui(q) = xi(q) − ciqi,

respectively. The main result of [4] is that there is a unique pure strategy equi-
librium where each miner invests

qi =
1
c∗ max(1 − ci/c∗, 0)

for the unique value c∗ s.t. X(c∗) = 1 where

X(c) =
∑

i

max(1 − ci/c, 0).

HaPPY-Mine: Designing a Mining Reward Function 253

The value c∗ thus serves as a bound for which miners participate, with a miner
i participating if ci < c∗. They also show that the number of miners must be
finite for there to be an equilibrium strategy and that even countably infinite
miners would not have an equilibrium strategy.

Properties of Proportional Allocation. In [9], the authors define a set
of properties that allocation rules can satisfy: non-negativity, budget-balance
(strong- means all the reward is allocated, weak- means less or all of the reward is
allocated), symmetry (two miners with equal hashrate get equal reward), sybil-
proofness (can’t split hashrate and get more reward) and collusion-proofness
(can’t join hashrates and get more). They prove that the proportional allocation
rule is the only rule that satisfies all of the above properties. They also define a
generalized proportional allocation rule as

xi(q) = f(
∑

j

qj)
qi∑
j qj

for some function f which takes in the sum of hashrate and returns the amount
of reward that will be allocated. The static reward function is an example of
the generalized proportional allocation rule with f(

∑
j qj) = 1. In HaPPY-Mine,

we provide a family of functions for f . These functions follow the generalized
proportional allocation rule and, hence, satisfy all of the above properties with
a weak budget-balance as, by definition, the full reward value is not always
rewarded (i.e. f(

∑
j qj) ≤ 1).

3 Hashrate-Pegged Block Reward

We now introduce the notion of a hash-pegged mining reward function. We con-
sider a miner’s decision of how much hashrate to purchase when they are joining
the system. In this section, we consider a simplified model where the network
currently has hashrate 1 with network operational cost c and mining reward of
1 per block such that mining is profitable, i.e. c < 1 and the system’s utility is
U = 1 − c. Given the network hashrate H =

∑
j qj , we consider block reward

r(H) =
(

1
H

)δ

for a given parameter δ ≥ 0 such that any additional hashrate added to the
system decreases the block reward1.

The focus of this section is on answering the following question: Given a new
miner with cost ci, how much hashrate is this new miner incentivized to buy?
That is, what qi maximizes their utility

Ui(q) =
qi

1 + qi
r(1 + qi) − ciqi?

1 Note that our r(H) function is replacing [9]’s c function. We change notation so as
not to confuse the reward with the cost of hashrate.

254 L. Kiffer and R. Rajaraman

Case: δ = 0, Static Reward. First consider the fixed reward system where
the reward is always 1. A new miner joining the system with hashrate qi will
have utility Ui(q) = qi

qi+1 − ciqi which they want to maximize. By solving for
U ′

i(q) = 0 with qi > 0 and ci < 1, we find that the miner maximizes their utility

by buying hashrate qi =
√

1
ci

− 1.

Case: δ = 1, Linear Decrease in Reward. With r(H) = 1
H , a miner now

wants to maximize Ui(q) = qi

(qi+1)2 − ciqi. We can’t easily solve for U ′
i(q) =

1
(qi+1)2 − 2qi

(qi+1)3 −ci = 0. What we can observe is that Ui”(q) = 6qi

(qi+1)4 − 4
(qi+1)3

and that Ui”(q) < 0 for qi < 2, i.e. Ui(q) is concave down when a miner buys

less than double the current hashrate of the system. Since U ′
i(qi =

√
1
ci

− 1) =
2ci(

√
ci − 1) < 0 for ci < 1, we obtain that for a miner that’s acquiring less

than twice the current system hashrate, the hashrate bought by the miner under
a linearly diminishing reward (δ = 1) is less than that bought under a static
reward (δ = 0). (For a miner buying more than twice the hashrate (qi ≥ 2), ci

would have to be sufficiently small for this to be profitable i.e. ci < 1
(1+qi)2

< 1
9 .)

General δ. We now analyze the impact of a more drastic decay function (larger
δ) on the optimal hashrate bought by a new miner joining the system. When a
new miner joins with additional hashrate qi, the mining reward becomes (1

qi+1)δ,
where 0 ≤ δ < ∞. The utility function is now Ui(q) = qi

qi+1 (1
qi+1)δ − ciqi =

qi

(qi+1)δ+1 − ciqi.

Proposition 1. The optimal hashrate for a newminer decreases with increasing δ.

Our proof proceeds in two steps. We show that (1) the utility is a concave
function at the maxima and (2) the derivative of the utility w.r.t. qi is decreasing
in δ. We then obtain that the utility maximum (i.e. the qi s.t. U ′

i(q) = 0) is
decreasing with an increase in δ. Due to space constraints, we defer the proof to
the full version of this paper [14].

Thus, if we increase the δ exponent in the total block reward, we decrease the
hashrate that a new miner is incentivized to buy. While this may not have an
effect for smaller miners who do not have the resources to purchase their maximal
utility hashrate, Proposition 1 demonstrates that a hash-pegged reward function
can be a useful decentralization tool that disincentivizes rational big miners from
joining the system with a large fraction of the hashrate.

Note that Proposition 1 does not take into account the dynamic game
between different miner’s choices. We now formally define the above fam-
ily of hash-pegged mining reward functions for arbitrary system hashrate as
HaPPY-Mine and analyze the equilibria given a set of miners with asymmetric
costs.

HaPPY-Mine: Designing a Mining Reward Function 255

4 HaPPY-Mine Equilibrium Analysis

Building on the model of [4] we define a non-cooperative game between m miners
with cost c1 ≤ c2 ≤ · · · ≤ cm where each miner i with hashrate qi has utility

Ui(q) = xi(q) − ciqi.

In HaPPY-Mine we set the maximal block reward to be 1 and have the reward
start to decrease after the system’s hashrate surpasses Q, for a parameter Q > 0.
We define the reward for miner i as

xi(q) =
qi∑
j qj

r(q) where r(q) = min

⎛

⎝1,

(
Q

∑
j qj

)δ
⎞

⎠

for system parameter δ ∈ [0,∞).
The main results of this section concern the existence and properties of pure

Nash equilibria for the above HaPPY-Mine game. We begin our analysis by dif-
ferentiating r(q) and xi(q) with respect to qi, and finding the derivative of Ui(q)
w.r.t. qi.

U ′
i(q) =

⎧
⎨

⎩

∑
j qj−qi

(
∑

j qj)2
− ci if

∑
j qj < Q

Qδ

(
∑

j qj)δ+2 [
∑

j qj − (δ + 1)qi] − ci if
∑

j qj > Q

Recall that for equilibria we need that U ′
i(q) ≤ 0 with equality for qi > 0. (For

the case
∑

j qj = Q, we need the left and right derivatives to be nonnegative
and nonpositive, respectively.)

4.1 Examples with Diverse Cost Scenarios

We work through some cost examples to gain intuition for the equilibrium anal-
ysis of the above reward function.

Example 1. First we consider a general 2-miner case with δ and Q set to 1. In
this model we have 2 miners with costs c1, c2 s.t. c1 ≤ c2. See the full version
of this paper [14] for the full analysis. If c1 + c2 > 1 we use the analysis of [4]
with reward 1 and obtain that the equilibrium hashrate is q1 + q2 < Q = 1 with
qi = 1

c1+c2
(1 − ci

c1+c2
). If c1 + c2 ≤ 1, then there are multiple equilibria where

α + β = 1 with 1−c1
2 ≤ α ≤ 1 − c1 and 1−c2

2 ≤ β ≤ 1 − c2. Note the equilibria
system hashrate with two miners is always ≤ Q = 1.

Taking c1 + c2 ≤ 1, let us consider the total utility of an equilibrium.

max
α,β

(U1 + U2) = max
α,β

(1 − c1α − c2β) = max
α

(1 − c2 + (c2 − c1)α)

Thus, a utilitarian equilibrium is one where α is maximized, i.e. α = 1− c1. The
utilitarian equilibrium is thus the one with maximal utility for the miner with
least cost and lowest utility for the miner with most cost.

256 L. Kiffer and R. Rajaraman

Example 2. ci = i
i+1 We now consider an example from [4] where the cost func-

tion ci = i
i+1 , still considering δ = Q = 1. This case is interesting because in

the static reward case (i.e. Ui(q) = qi∑
i qi

− qici) the equilibrium strategy has that
∑

i qi > 1 and that only the first 7miners participate.This equilibriumpointwould
have less reward in HaPPY-Mine and thus may no longer be the equilibrium point.
We solve this in the full version of this paper [14] and find that

qi =
1
2

√
n − 2

∑n
j=1

j
j+1

(1 − (n − 2)i
∑n

j=1
j

j+1 (i + 1)
)

for all miners that participate in equilibrium. We can iterate over n to find that
with this strategy, equilibrium exists at n = 25, i.e. for n > 25 only the first 25
miners participate otherwise all miners participate. Thus HaPPY-Mine with δ = 1
results in an equilibrium with more miners participating than in the equilibrium
under a static reward function.

Example 3. ci = c for All i. The next example we consider is the case of homo-
geneous cost with m miners, Q = 1 and any δ. See the full version of this paper
[14] for the full analysis. For c > m−1

m , we can use the analysis of [4] and obtain
qi = m−1

m2c with
∑

i qi = m−1
mc < 1. For m−δ−1

m ≤ c ≤ m−1
m , an equilibrium exists

at
∑

i qi = 1 where qi = 1
m . Finally for c < m−δ−1

m we get an equilibrium strategy

with
∑

i qi > 1 where qi = 1
m

δ+1

√
m−δ−1

cm . In each case the equilibrium hashrate
forHaPPY-Mine for any δ is less than or equal to that of the static reward equilibria.
In Corollary 2 below, we show this in fact holds for any set of costs.

4.2 General Analysis of HaPPY-Mine

We now analyze the equilibria for the general case of HaPPY-Mine with m > δ+1
miners with costs c1 ≤ c2 ≤ ... ≤ cm < cm+1 = ∞. Recall the utility function

Ui(q) =

⎧
⎨

⎩

qi∑
j qj

− qici if
∑

j qj ≤ Q
qi∑
j qj

(Q∑
j qj

)δ − qici o/w

In the propositions below we first derive necessary conditions for an equi-
librium to exist in different cases depending on how the system hashrate

∑
i qi

compares with Q. Taking these propositions we derive lemmas proving the exis-
tence of equilibria given any set of miner costs. The lemmas also prove the
impossibility of equilibria to exist simultaneously for different values of

∑
i qi,

i.e. the uniqueness of the equilibria. We finish this section with our final theorem
statement defining the equilibria values given a set of costs, as well as corollaries
on the properties of the equilibria.

Proposition 2 (Necessary condition for equilibrium with total
hashrate less than Q, [4]). If

∑
i qi < Q at equilibrium then there exists

a c∗ > 1/Q such that X(c∗) = 1 and all miners i with ci < c∗ participate with
qi = 1

c∗ (1 − ci/c∗).

HaPPY-Mine: Designing a Mining Reward Function 257

Proof. If
∑

i qi < Q then miners have utility function Ui(q) = qi∑
j qj

− qici which
is the same as the simple proportional model of [4] where there is an equilibrium
strategy with qi = 1

c∗ max(1 − ci/c∗, 0) for c∗ such that X(c∗) = 1. In this
analysis

∑
j qj = 1

c∗ , and so for
∑

j qj < Q we have c∗ > 1/Q. ��
Proposition 3 (Necessary condition for equilibrium with total
hashrate equal to Q). If

∑
i qi = Q at equilibrium then all miners with

cost ci < 1/Q participate and satisfy

1
δ + 1

(Q − ciQ
2) ≤ qi ≤ Q − ciQ

2

Proof. Assume there is an equilibrium strategy such that
∑

i qi = Q. The utility
of a miner i is given by

Ui(q) = qi(
1
Q

− ci) ≤ 0

so miners with cost ci > 1/Q will not participate; those with ci < 1/Q will.
We take the n miners for which ci ≤ 1/Q.

∑
i qi = Q is an equilibrium iff,

U ′
i(q) =

{
1

Q2 [Q − qi] − ci ≥ 0 for
∑

j qj < Q
Qδ

Qδ+2 [Q − (δ + 1)qi] − ci ≤ 0 for
∑

j qj > Q

and thus, any equilibrium strategy satisfies

1
δ + 1

(Q − ciQ
2) ≤ qi ≤ Q − ciQ

2

Note that ci = 1/Q implies qi = 0, so a miner with cost 1/Q does not participate.
Thus, exactly those miners with ci < 1/Q participate in an equilibrium. ��
Proposition 4 (Necessary condition for equilibrium with total
hashrate more than Q). If

∑
i qi > Q at equilibrium then there exists a

c† < 1/Q such that X(c†) = δ + 1 and all miners with cost ci < c† participate
with

qi =
δ+1
√

Qδ

(δ + 1) δ+1
√

c† (1 − ci/c†)

Proof. Assume first there exists an equilibrium where miner i + 1 participates
and miner i does not with sum of hashrate H. This means

U ′
i+1(q) =

Qδ

Hδ+2
[H − (δ + 1)qi+1] − ci+1 = 0,

and thus ci+1 = Qδ

Hδ+2 [H − (δ + 1)qi+1]. For qi = 0 we get U ′
i(q) = Qδ

Hδ+1 − ci ≤ 0

which means Qδ

Hδ+1 ≤ ci, putting both together we get

Qδ

Hδ+1
≤ ci ≤ ci+1 =

Qδ

Hδ+2
[H − (δ + 1)qi+1],

258 L. Kiffer and R. Rajaraman

which implies qi+1 ≤ 0, a contradiction to miner i+1 participating. Thus in any
equilibrium, if miner i + 1 participates, then miner i must also participate.

Letting H =
∑

i qi > Q, for a miner i that participates in equilibrium

U ′
i(q) =

Qδ

Hδ+2
[H − (δ + 1)qi] − ci = 0 =⇒ qi =

H

δ + 1
(1 − Hδ+1

Qδ
ci).

Assuming that only the first n miners participate in equilibrium, we solve for H

H =
n∑

i=1

qi =
n∑

i=1

H

δ + 1
(1 − Hδ+1

Qδ
ci) = δ+1

√
Qδ(n − δ − 1)

∑n
i=1 ci

.

This also means player n + 1 must have U ′
n+1(q) ≤ 0 at qn+1 = 0, so we get

U ′
n+1(q) =

Qδ

Hδ+1
[H − (δ + 1)qn+1] − cn+1 =

Qδ

Hδ+1
− cn+1 ≤ 0,

=⇒ Qδ

Hδ+1
=

∑n
i=1 ci

n − δ − 1
≤ cn+1.

Let c† be the bound for which miners participate, i.e. miner i participates iff
ci < c†. Then from the above we get that c† =

∑n
i=1 ci

n−δ−1 . Rewriting this and using
the fact that ci/c∗ ≥ 1 for ci ≥ c†, we obtain

∑

i

max(1 − ci/c†, 0) = δ + 1,

co-opting the X(c) equation for c† s.t. X(c†) = δ + 1. Since c† = Qδ

Hδ+1 it must
be that c† < 1/Q. Lastly we plug c† into the equation for qi and get

qi =
δ+1
√

Qδ

(δ + 1) δ+1
√

c† (1 − ci/c†). ��

We now use Propositions 2, 3, and 4 to establish the following lemmas, which
will help prove our main theorem. We first define c∗ as the value for which
X(c∗) = 1 and, for m > δ + 1, c† as the value for which X(c†) = δ + 1. Note
that X(c) is a continuous increasing function in c and thus c∗ < c†.

Lemma 1 (Equilibrium when c∗ > 1/Q). If c∗ > 1/Q, then there exists a
unique equilibrium strategy with

∑
i qi < Q

Proof. We know from Proposition 2 that there is an equilibrium strategy with∑
i qi = 1

c∗ < Q. Since c∗ > 1/Q that implies c† > 1/Q so by Proposition 4 there
is not an equilibrium strategy with

∑
i qi > Q. Finally, lets assume there is an

equilibrium strategy with
∑

i qi = Q. Recall from Proposition 3 that all miners
with cost < 1/Q participate, so let n be those miners s.t. ci < 1/Q for i ≤ n.
From the definition of X(c) we have that

∑n
i=1 1− ci/c∗ ≤ 1 which we can solve

to be c∗(n − 1) ≤ ∑n
i=1 ci and we get n−1

Q <
∑n

i=1 ci. From Proposition 3 we
have that qi ≤ Q − ciQ

2 for all i ≤ n. Thus
∑n

i=1 qi ≤ ∑n
i=1 Q − ciQ

2 which
solves to

∑n
i=1 ci ≤ n−1

Q , and thus there is no equilibrium at
∑

i qi = Q. ��

HaPPY-Mine: Designing a Mining Reward Function 259

Lemma 2 (Equilibrium when c∗ ≤ 1/Q ≤ c†). If c∗ ≤ 1/Q ≤ c† then there
exists at least one equilibrium at

∑
i qi = Q and any equilibrium strategy has∑

i qi = Q with a miner i participating iff ci < 1/Q.

Proof. First, since c∗ ≤ 1/Q we know from Proposition 2 there is no equilibrium
at

∑
i qi < Q, and since c† ≥ 1/Q we know from Proposition 4 there is no equi-

librium at
∑

i qi > Q. Finally from Proposition 3, for there to be an equilibrium
at

∑
i qi = Q we need for each miner i with ci < 1/Q, qi must satisfy

1
δ + 1

(Q − ciQ
2) ≤ qi ≤ Q − ciQ

2.

Summing over all n s.t. ci < 1/Q for i ≤ n, and simplifying, we derive

n − δ − 1
Q

≤
n∑

i=1

ci ≤ n − 1
Q

Taking the fact that c∗ ≤ 1/Q we get
∑n

i=1 1 − ci/c∗ ≥ 1 which simplifies to
c∗(n−1) ≥ ∑n

i=1 ci. Taking the fact that c† ≥ 1/Q we get
∑n

i=1 1−ci/c† ≤ δ+1
which simplifies to c†(n − δ − 1) ≤ ∑n

i=1 ci. Putting these together, we obtain

n − 1
Q

≥
n∑

i=1

ci ≥ n − δ − 1
Q

��

Lemma 3 (Equilibrium when c† < 1/Q). If c† < 1/Q then there exists a
unique equilibrium strategy with

∑
i qi > Q.

Proof. We know from Proposition 4 that there is a unique equilibrium strategy

with
∑

i qi = δ+1

√
Qδ

c† > Q. Since c∗ < c† we know from Proposition 2 there is
not an equilibrium strategy with

∑
i qi < Q. Take the n miners s.t ci < c† for

i ≤ n. From the definition of X(c) we have

n∑

i=1

1 − ci/c† = δ + 1 =⇒
n∑

i=1

ci = c†(n − δ − 1) <
n − δ − 1

Q
.

Assume there is an equilibrium with
∑

i qi = Q. By Proposition 3, miner i s.t.
ci < 1/Q participates with 1

δ+1 (Q−ciQ
2) ≤ qi. If there are n miners s.t. ci < c†,

n∑

i=1

1
δ + 1

(Q − ciQ
2) ≤

n∑

i=1

qi ≤ Q =⇒ n − δ − 1
Q

≤
n∑

i=1

ci

which is a contradiction. Thus, there is no equilibrium with
∑

i qi = Q. ��
We can now put together the above lemmas to get our main result:

260 L. Kiffer and R. Rajaraman

Theorem 1. For any δ ∈ [0,∞) and m ≥ 2 miners with costs c1 ≤ c2 ≤ ... ≤
cm < cm+1 = ∞, let

X(c) =
∑

i

max(1 − ci/c, 0)

and c∗ s.t X(c∗) = 1 and (if m > δ + 1) let c† s.t. X(c†) = δ + 1. HaPPY-Mine

with Q > 0 has equilibria as follows with system hashrate
∑

i qi = H:

(a) if c∗ > 1/Q, there is a unique equilibrium with H = 1
c∗ < Q with

qi = max(
1
c∗ (1 − ci/c∗), 0)

(b) if c∗ ≤ 1/Q ≤ c† or c∗ ≤ 1/Q and m ≤ δ+1, there exists an equilibrium and
every equilibrium satisfies H = Q, with qi = 0 for ci ≥ 1/Q, and otherwise

1
δ + 1

(Q − ciQ
2) ≤ qi ≤ Q − ciQ

2

(c) if c† < 1/Q, m > δ+1, there is a unique equilibrium with H = δ+1

√
Qδ

c† > Q,

qi = max(
δ+1
√

Qδ

(δ + 1) δ+1
√

c† (1 − ci/c†), 0)

Proof. The case c∗ > 1/Q follows directly from Lemma 1. Next we consider
c∗ ≤ 1/Q and m ≤ δ + 1. Since c∗ ≤ 1/Q we know from Proposition 2 there is
no equilibrium at

∑
i qi < Q. For equilibria with

∑
i qi = H > Q we need that

U ′
i(q) = 0 for all miners who participate which gives us that qi = H

δ+1 [1−ci
Hδ+1

Qδ].
Assuming only the first n miners participate, we get H =

∑n
i qi =

∑n
i

H
δ+1 [1 −

ci
Hδ+1

Qδ]. We can simplify this to be Hδ+1

Qδ

∑n
i ci = n − δ − 1 < 0 which is not

satisfiable. The only option for equilibria is then for
∑

i qi = Q which we get from
Proposition 3 iff 1

δ+1 [Q − Q2ci] ≤ qi ≤ Q − Q2ci for all miners with ci < 1/Q.
Summing over all miners i ≤ n s.t ci < 1/Q we get n−δ−1

Q ≤ ∑n
i ci ≤ n−1

Q must
be satisfied. Notice that the left-most expression is negative so the left expression
is satisfied. We know c∗ ≤ 1/Q thus X(1/Q) =

∑n
i 1 − ciQ ≥ 1 which simplifies

to
∑n

i ci ≤ n−1
Q . Finally for m > δ + 1, the case for c∗ ≤ 1/Q ≤ c† follows from

Lemma 2 and the case for c† < 1/Q follows from Lemma 3. ��
In the following two corollaries we examine how the equilibria of HaPPY-Mine

changes with the parameter δ in terms of miner participation and the system
hashrate. In particular we show that any HaPPY-Mine equilibria has at least as
many miners participating (with at most the same system hashrate) as in the
static reward function equilibria.

Corollary 1. For any m miners with costs c1 ≤ c2 ≤ ... ≤ cm, HaPPY-Mine with
any Q, δ has equilibria with at least as many miners participating as the static
reward function. Furthermore, the number of miners participating in equilibria
for HaPPY-Mine monotonically increases in δ.

HaPPY-Mine: Designing a Mining Reward Function 261

Proof. By the analysis of [4] under the simple proportional model, the static
reward function has a unique equilibrium with all miners whose cost ci < c∗

participating s.t X(c∗) = 1. HaPPY-Mine has at least all the same miners partici-
pating in 3 scenarios: ci < c∗ for c∗ > 1/Q, ci < 1/Q for c∗ ≤ 1/Q and m ≤ δ+1
or 1/Q ≤ c† and ci < c† for c† < 1/Q where c∗ < c†, i.e. in all four cases, all
miners with ci < c∗ are participating and possibly additional miners.

For the general statement, take any δ-HaPPY-Mine equilibrium. If c∗ > 1/Q,
regardless of how you change δ, c∗ remains fixed so by Lemma 1, the equilibrium
remain the same with the same miners. Suppose instead c∗ ≤ 1/Q ≤ c†, as δ
increases c† increases. Thus for a larger δ, the equilibrium remains at

∑
i qi = Q

with the same miners of cost ci < 1/Q participating. If c† < 1/Q, then since c†

acts as an upper-bound for which miners participate, as δ increases, this upper
bound increases. This upper bound caps at 1/Q; then we switch to the second
equilibrium case where all miners with ci < 1/Q participate. ��
Corollary 2. HaPPY-Mine has equilibria with hashrate at most that of the static
reward function. Furthermore, HaPPY-Mine equilibria hashrate is monotonically
non-increasing with an increase in δ.

Proof. We prove the second part of the statement and note that the static reward
function is HaPPY-Mine with δ = 0, so the first statement follows. Given a set of
costs, we consider the possible values of c∗ and c†. (a) If c∗ > 1/Q, then for any
δ, H is always 1/c∗. (b) If c∗ ≤ 1/Q ≤ c† for some δ, then the equilibria hashrate
for that δ is H = Q. As δ increases, the value of c† increases so the equilibrium
hashrate will continue to be Q for any δ′ > δ. (c) If c† < 1/Q for some δ, we
that H > Q and we have two cases to consider for δ′ > δ. Since c† increases as
δ increases, either it increases s.t. c†

new becomes ≥ 1/Q or m < δ′ + 1, in either
case the new equilibrium hashrate would be H ′ = Q < H. The last case is that
c† < c†

new < 1/Q and m ≥ δ′ + 1. In this case we first assume H < H ′, i.e.

H =
Qδ/(δ+1)

(c†)1/(δ+1)

=
Qδ′/(δ′+1)Qδ/(δ+1)−δ′/(δ′+1)

(c†)1/(δ+1)

≥Qδ′/(δ′+1)Qδ/(δ+1)−δ′/(δ′+1)

(c†
new)1/(δ+1)

(c† < c†
new)

=
Qδ′/(δ′+1)

(c†
new)1/(δ′+1)

Qδ/(δ+1)−δ′/(δ′+1)

(c†
new)1/(δ+1)−1/(δ′+1)

=H ′ Q(δ−δ′)/(δ+1)(δ′+1)

(c†
new)(δ′−δ)/(δ+1)(δ′+1)

=H ′
(

1

c†
newQ

)(δ′−δ)/(δ+1)(δ′+1)

≥H ′ (c†
newQ < 1 and δ′ > δ)

��

262 L. Kiffer and R. Rajaraman

The previous corollaries together say that as δ increases, the number of miners
who participate in equilibrium increases with the total hashrate of the system
at equilibrium decreasing. We now explore what the impact of this is on the
market share of miners. In particular we want to check that the new equilibrium
does not disproportionately advantage lower cost miners. Unfortunately we can’t
make such a strong statement, owing to the presence of multiple equilibria when
the sum of hashrates equals Q. Instead, we get the following corollary which
states that for most cases, a miner’s relative market share to any higher-cost
miner does not go up. Formally, given two miners i, j with costs ci < cj and
δ s.t. qi, qj > 0 at equilibrium (i.e. both miners participate at equilibrium), we
define the relative market share rij(δ) as follows. If

∑
i qi
= Q, then there is

a unique equilibrium, so we define rij(δ) to be qi/qj . Otherwise, there may be
multiple equilibria and we define rij(δ) to be the ratio of the maximum value of
qi to the maximum value of qj in equilibrium (defining it to be the ratio of the
minimum values yields the same ratio).

Corollary 3. For any two miners i, j with costs ci < cj, parameters δ, δ′ such
that both miners participate in equilibrium at parameter δ, and δ′ > δ, rij(δ′) is
at least rij(δ).

Proof. Consider a miner who participates at equilibrium with a certain δ. Given
a set of costs, we consider the possible values of c∗ and c†. (a) If c∗ > 1/Q, then
for any δ, the equilibrium stays the same. (b) for c∗ ≤ 1/Q ≤ c†, any increase
in δ does not change this inequality and thus the equilibrium conditions do not
change and thus maintain the same equilibria maximum and minimum ratios
(i.e. rij(δ) = rij(δ′) for all δ′).

The only interesting case is thus (c) c† < 1/Q, as δ increases c† increases.
Given a δ′ > δ, we compare the relative market share of two miners i, j where
ci < cj as rij(δ′) = c†

new−ci

c†
new−cj

which is decreasing with an increase in c†
new (i.e.

increasing δ′). Thus, while c†
new < 1/Q, a miner’s relative market share to any

higher cost miner is decreasing.
The only case left to consider is a δ′ > δ s.t. c†

new ≥ 1/Q. The new equilibrium
hashrate q′

i for miners participating is bounded by 1
δ+1 (Q − ciQ

2) ≤ q′
i ≤ Q −

ciQ
2. If we compare q′

i, q
′
j at the bounds we get rij(δ′) = 1−ciQ

1−cjQ which is less

than the old relative market share of 1−ci/c†

1−cj/c† since c† < 1/Q. ��

5 Impact of Attacks and Currency on Equilibria

Our equilibrium analysis in Sect. 4 assumes that the number of miners and their
costs are known, and that the miner costs and rewards are in the same currency
unit. In this section, we analyze certain attacks and events that may impact
equilibria. We begin with the question: if miners are able to collude (two miners
pretend to be a single miner) or duplicate themselves (a single miner pretends
to be multiple miners), can they increase their own utility? In other words, are
HaPPY-Mine equilibria resistant to miner collusion and sybil strategies? We show

HaPPY-Mine: Designing a Mining Reward Function 263

that HaPPY-Mine equilibria are resistant to collusion and Sybil attacks. We also
study the effect of variable coin market value when reward is given in the coin of
the blockchain. Due to space constraints, we state the main results for collusion
resistance and the effect of variable coin market value, and refer the reader to
the full version of this paper [14] for Sybil resistance and the missing proofs in
this section.

Collusion Resistance. We consider the case of m homogeneous miners.

Lemma 4. Suppose m miners with uniform costs participate in HaPPY-Mine

with parameters δ,Q. If k ≤ m/2 of the miners collude and act as one miner (so
the game now has m − k + 1 miners), with each colluding miner receiving 1/k
of the colluding utility, the utility achieved in an equilibrium with collusion is at
most that achieved without collusion, assuming m is sufficiently large.

In the heterogeneous cost model, it is unclear what collusion would mean
for two miners with different costs, but one could imagine models where there
are some miners with the same cost and they choose to collude. We leave this
further analysis for future work. The general intuition we get from Lemma 4
is that with fewer miners, the equilibrium hashrate decreases thus the reward
may increase as the cost decreases. So for the miners who don’t collude, the
equilibrium utility increases. But for miners who collude, they must then share
the increased utility with all colluders, and it is unclear if the increase is enough
to make up for splitting the utility into k parts.

Variable Coin Market Value. In Sect. 4, we view the miner cost and reward
in terms of the same currency unit. In reality, the reward is given in the coin
of the blockchain being mined while cost is a real-world expense generally paid
in the currency of the country where the mining is taking place. To bridge this
gap we must understand how to convert real-world change in the price of the
cryptocurrency to the relationship between the reward and the cost to miners.

Consider the equilibrium analysis to be saying that a hashrate of 1 for miner
i costs ci unit of cost (say dollars) and that one coin of the reward has 1 unit of
worth (i.e. $1). Now, say the value of the currency changes by R, so one unit of
currency is now worth $R. We are now interested in understanding what happens
to the equilibrium of the system, i.e. which miners would now participate at
equilibrium and with what hashrate?

Lemma 5. In the static-reward model, an increase in the value of the cryptocur-
rency by a factor of R results in a new equilibrium strategy where the same miners
participate with Rqi hashrate where qi is the previous equilibrium hashrate. The
new system hashrate thus increases by a factor of R.

Lemma 6. In HaPPY-Mine, an increase in the value of the cryptocurrency by a
factor of R results in the participation cost threshold to increase (allowing higher
cost miners to participate), and the system hashrate to increase by a factor of R
until it reaches Q, then increase by a factor of δ+1

√
R.

264 L. Kiffer and R. Rajaraman

6 Discussion

In this paper we’ve presented a novel family of mining reward functions which
adjust to the hashrate of the system. Our functions fall in the class of gen-
eralized proportional allocation rules of [9] and thus inherit the properties of
non-negativity, weak budget-balance, symmetry, sybil-proofness and collusion-
proofness. These properties are defined based solely on the expectation of the
reward of a miner and not under any equilibrium. In this work we’ve shown that
for all Q > 0 and δ ≥ 0 HaPPY-Mine has an equilibrium at a unique hashrate and
set of miners, and if that hashrate is equal to Q there may be multiple equilibria
at Q. We further show that the equilibrium includes at least as many miners
as the static-reward function and is at a hashrate at most that for the static-
reward function. We also discuss collusion and sybil-proofness in equilibrium and
that as the market value of the coin increases, the equilibrium shifts to include
more miners at an increased hashrate that is sub-linear in the value of the coin
after the system hashrate surpasses Q (unlike the static-reward function whose
equilibrium hashrate increases linearly indefinitely).

We show that by relaxing the budget-balance property from [9], we are able
to improve upon fairness properties of a mining reward function. A question
for future work is whether we can generalize this into an axiomatic framework
for mining reward fairness and if there exists other functions in the generalized
proportional allocation family that can improve upon our fairness results.

Long-Term Dynamics. As our analysis focuses on equilibria, a natural ques-
tion to ask is whether we introduce any unfavorable long-term dynamics by
pegging our reward to the system hashrate. One such concern is on the control
of supply of the system. Two current versions of coin issuance are the Bitcoin
and Ethereum models. In Bitcoin the reward per block halves every 210K blocks
(approximately every 4 years until it is 0), so that half the total supply ever was
mined in the first 4 years. In Ethereum the block reward is set at 5 Ethers so
that the total supply will never be capped. Our proposed model is novel in that
assuming a steady increase in hashrate, the issuance will decrease smoothly over
time. The rate of decrease, δ, is a parameter set by the system designer.

In the start of any new cryptocurrency the coins have no value, thus the
miners that initially mine are speculating that the coins will have value in the
future making up for the cost. During this time the hashrate is generally low so
the existing miners do not incur much cost. When the currency does have more
value, it appears older coins were mined for “cheap”. One could argue that those
early miners mine speculatively, and for systems whose coin reward goes down
over time, early miners may also control a large portion of the supply. The steeper
the decline in the reward, the larger fraction of supply early miners control. As
an example, it is estimated that the creator of Bitcoin, Satoshi Nakamoto, and
assumed first miner, holds approximately 1 million Bitcoins2, about 5% of the
total supply ever, probably mined at a cost of only a few dollars [13,18].
2 Currently valued at 10 billion Dollars but which have never been spent and are

assumed to stay out of circulation.

HaPPY-Mine: Designing a Mining Reward Function 265

As a currency grows in value, new miners are incentivized to start mining in
the system until the cost to mine a block becomes close to the value of the reward
for that block. Since the total supply of the currency is tied to the hashrate
we get the interesting phenomena that as the system gains users (miners) the
projected total supply decreases, but inversely, if the system decreases in value
and starts to lose miners, HaPPY-Mine works a bit like a fail safe where the
reward will increase and hopefully aid in incentivizing the remaining miners to
stay, stabilizing the value of the system as opposed to a death spiral of miners
leaving and the reward just losing value. In this paper, we model the utility of
the miner as the per-block profit. To understand the long-term dynamics at play,
a future analysis of the evolving game should incorporate market share into the
utility of the miner and its impact on market centralization.

Setting Q and δ. We show that an increase in δ comes with an increase in good
decentralization properties we want, like more miners mining at equilibrium and
big miners joining with less hashrate. The more you increase δ however, the
more constrained the issuance of the currency becomes, which could lead to
centralization in the market control to early adopters. Setting Q and δ is thus a
balancing game and involves practical considerations.

The δ exponent in HaPPY-Mine controls how quickly the block reward declines.
A low δ would correspond to a gradual decrease in the block reward as the
hashrate increases. Q is the threshold from which point the reward starts to
decrease. One way to think of Q is as a security lower-bound for the system.
When the hashrate reaches Q, any additional hashrate would lower the reward.
A system designer should then choose a Q based on the mining hardware of the
system (e.g. ASICs,GPUs, etc.) and some understanding of likely advancements
in its performance and choose Q to be a conservative bound on the cost to amass
enough hardware to attack the system (e.g. a 51% attack). Based on this and
the issuance rate the system designer is targeting a δ can be set.

Since any change to parameters in blockchain systems generally require a
hardfork in the code, i.e. a change that breaks consensus between adopters
and non-adopters, the Bitcoin model of blockchain software development is to
avoid such changes unless absolutely critical. Other, more expressive systems
(e.g. Ethereum and Zcash), have relied on hardforks to implement changes and
increase functionality on a more regular basis. Though setting Q and δ could be
thoughtfully done only once in the inception of a new system, another approach
would be to periodically update their values if the system’s growth (both miner
hashrate and value of the currency) is not within the predicted bounds. One such
concern would be if the target hashrate Q underestimated the growth of the sys-
tem hashrate and thus stagnating the cost to attack the system. It would then
be incentive compatible to increase Q as it would incentivize higher hashrates
(increase security) while also increasing the reward for the miners. One idea is
to set Q based on a long-term expected growth and have periodic updates (on
the scale of years) to adjust Q based on miner increase and mining hardware
trends.

266 L. Kiffer and R. Rajaraman

7 Related Work

In this paper we’ve provided an equilibrium analysis of HaPPY-Mine, a new fam-
ily of mining reward functions pegged to the network hashrate. As stated above,
HaPPY-Mine is an example of the generalized proportional model of [9]. We com-
pare HaPPY-Mine with the equilibrium of the static reward function of [4] asso-
ciated with most cryptocurrencies. Other papers have looked at different games
involved in mining including the game between participants in mining pools and
different reward functions for how the pool rewards are allocated [20]. In [17],
the authors present a continuous mean-field game for bitcoin mining which cap-
tures how miner wealth and strategies evolve over time. They are able to capture
the “rich get richer” effect of initial wealth disparities leading to greater reward
imbalances. [12] models the blockchain protocol as a game between users generat-
ing transactions with fees and miners collecting those fees and the block reward.
They show if there is no block reward, then there is an equilibria of transaction
fee and miner hashrate. Higher fees incentivize higher miner hashrate which leads
to smaller block times (in between difficulty adjustments). When you introduce
a high static block reward, the users may no longer be incentivized to introduce
mining fees and there may no longer be an equilibrium.

In contrast, [8] also studies the case where there is no block reward, and
analyzes new games in which miners may use transactions left in the mempool
(pending transactions) to incentivize other miners to join their fork. Another
work exploring the mining game when there is no block reward is that of [21]
who introduce the gap game to study how miners choose periods of times when
not to mine (gaps) as they await more transactions (and their fees). They show
that gap strategies are not homogeneous for same cost miners and that the game
incentivizes miner coalitions reducing the decentralization of the system.

Previous work on rational attacks in cryptocurrency mining includes [5] who
study the security of Bitcoin mining under rational adversaries using the Ratio-
nal Protocol Design framework of [10] as a rational-cryptographic game. Also,
[6] who analyze the Bitcoin mining game as a sequential game with imperfect
information, and [19] analyze selfish mining by looking at the minimal fraction of
resources required for a profitable attack, tightening the previous lower-bounds
and further extending the analysis to show how network delays further lower
the computational threshold to attack. In [15], the authors explore the game of
Bitcoin mining cost and reward focusing on incentives to participate honestly.
They outline the choices different players can make in a blockchain system and
their possible consequences, but their analysis does not take into account block
withholding attacks. Another work related to the incentives at play in cryptocur-
rency mining is [7] which looks at the coordination game of Bitcoin miners in
choosing which fork to build on when mining. They find the longest chain rule
is a Markov Perfect equilibrium strategy in a synchronous network and explore
other miner strategies, some that result in persistent forks.

HaPPY-Mine: Designing a Mining Reward Function 267

References

1. Here’s how much it costs to mine a single bitcoin in your country. https://www.
marketwatch.com/story/heres-how-much-it-costs-to-mine-a-single-bitcoin-in-
your-country-2018-03-06

2. Pool distribution. https://btc.com/stats/pool?pool mode=month3
3. Top 25 miners by blocks. https://etherscan.io/stat/miner?blocktype=blocks
4. Arnosti, N., Matthew Weinberg, S.: Bitcoin: a natural oligopoly. In 10th Innova-

tions in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2018)

5. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

6. Beccuti, J., Jaag, C., et al.: The bitcoin mining game: on the optimality of hon-
esty in proof-of-work consensus mechanism. Swiss Economics Working Paper 0060
(2017)

7. Biais, B., Bisiere, C., Bouvard, M., Casamatta, C.: The blockchain folk theorem.
Rev. Fin. Stud. 32(5), 1662–1715 (2019)

8. Carlsten, M., Kalodner, H., Matthew Weinberg, S., Narayanan, A.: On the instabil-
ity of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167 (2016)

9. Chen, X., Papadimitriou, C., Roughgarden, T.: An axiomatic approach to block
rewards. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 124–131 (2019)

10. Garay, J., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol design:
cryptography against incentive-driven adversaries. In 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science, pp. 648–657. IEEE (2013)

11. Gervais, A., Karame, G.O., Capkun, V., Capkun, S.: Is bitcoin a decentralized
currency?. IEEE Secur. Privacy 12(3), 54–60 (2014)

12. Iyidogan, E.: An equilibrium model of blockchain-based cryptocurrencies. Available
at SSRN 3152803 (2019)

13. Kenton, W.: Satoshi Nakamoto. https://www.investopedia.com/terms/s/satoshi-
nakamoto.asp

14. Kiffer, L., Rajaraman, R.: Happy-mine: designing a mining reward function. arXiv
e-prints, pages arXiv-2103 (2021)

15. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013, p. 11 (2013)

16. Leonardos, N., Leonardos, S., Piliouras, G.: Oceanic games: centralization risks
and incentives in blockchain mining. In: Pardalos, P., Kotsireas, I., Guo, Y., Knot-
tenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp.
183–199. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4 13

17. Li, Z.: A Max Reppen, and Ronnie Sircar. A mean field games model for cryp-
tocurrency mining. arXiv preprint arXiv:1912.01952 (2019)

18. Redman, J.: Bitcoin’s early days: how crypto’s past is much different than the
present. https://news.bitcoin.com/bitcoins-early-days-how-cryptos-past-is-much-
different-than-the-present/

19. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

https://www.marketwatch.com/story/heres-how-much-it-costs-to-mine-a-single-bitcoin-in-your-country-2018-03-06
https://www.marketwatch.com/story/heres-how-much-it-costs-to-mine-a-single-bitcoin-in-your-country-2018-03-06
https://www.marketwatch.com/story/heres-how-much-it-costs-to-mine-a-single-bitcoin-in-your-country-2018-03-06
https://btc.com/stats/pool?pool_mode=month3
https://etherscan.io/stat/miner?blocktype=blocks
https://doi.org/10.1007/978-3-319-78375-8_2
https://www.investopedia.com/terms/s/satoshi-nakamoto.asp
https://www.investopedia.com/terms/s/satoshi-nakamoto.asp
https://doi.org/10.1007/978-3-030-37110-4_13
http://arxiv.org/abs/1912.01952
https://news.bitcoin.com/bitcoins-early-days-how-cryptos-past-is-much-different-than-the-present/
https://news.bitcoin.com/bitcoins-early-days-how-cryptos-past-is-much-different-than-the-present/
https://doi.org/10.1007/978-3-662-54970-4_30

268 L. Kiffer and R. Rajaraman

20. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

21. Tsabary, I., Eyal, I.: The gap game. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 713–728 (2018)

https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28

Selfish Mining Attacks Exacerbated
by Elastic Hash Supply

Yoko Shibuya1(B), Go Yamamoto1, Fuhito Kojima1, Elaine Shi2,
Shin’ichiro Matsuo1,3, and Aron Laszka4

1 NTT Research, San Francisco, USA
yshibuya@stanford.edu

2 Cornell University, Ithaca, USA
3 Georgetown University, Washington, D.C., USA

4 University of Houston, Houston, USA

Abstract. Several attacks have been proposed against Proof-of-Work
blockchains, which may increase the attacker’s share of mining rewards
(e.g., selfish mining, block withholding). A further impact of such attacks,
which has not been considered in prior work, is that decreasing the prof-
itability of mining for honest nodes incentivizes them to stop mining
or to leave the attacked chain for a more profitable one. The departure
of honest nodes exacerbates the attack and may further decrease prof-
itability and incentivize more honest nodes to leave. In this paper, we
first present an empirical analysis showing that there is a statistically
significant correlation between the profitability of mining and the total
hash rate, confirming that miners indeed respond to changing profitabil-
ity. Second, we present a theoretical analysis showing that selfish mining
under such elastic hash supply leads either to the collapse of a chain,
i.e., all honest nodes leaving, or to a stable equilibrium depending on the
attacker’s initial share.

Keywords: Blockchain · Selfish mining · Hash supply · Proof of Work

1 Introduction

When blockchains were first introduced, it was believed that profitable attacks
require at least 50% of the total mining power. However, several attacks have
been found to go against proof-of-work blockchains, such as selfish mining [2]
and block withholding against mining pools [1]. A common goal of many such
attacks is, at a high level, to increase the attacker’s share of the mining rewards
by reducing other miners’ effective mining power. Prior work found that such
attacks may be profitable even if the attacker’s original share of the total mining
power is less than 50%. An important limitation of prior work is that they do not

The complete version of this paper [6] is available on arXiv: https://arxiv.org/abs/
2103.08007.
E. Shi—This work was performed while the author was consulting for NTT Research
during summer 2020.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 269–276, 2021.
https://doi.org/10.1007/978-3-662-64331-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_14&domain=pdf
https://arxiv.org/abs/2103.08007
https://arxiv.org/abs/2103.08007
https://doi.org/10.1007/978-3-662-64331-0_14

270 Y. Shibuya et al.

consider how honest miners react to changes in profitability when attacks occur.
Most models assume that the total hash supply in a chain is fixed and does not
respond to changes in the profitability of the chain. In practice, however, most
miners are profit-oriented and choose which currency to mine (or to not mine at
all) based on their profitability.

In this paper, we first document real-world evidence of miner’s profit-oriented
behavior, using data from three different cryptocurrencies. We found a positive
and statistically significant correlation between total hash supply and per-hash
mining revenue, i.e., the evidence of elastic hash supply with respect to min-
ers’ revenue. We then provide a new analysis of selfish mining that takes into
account the elasticity of hash supply. In an elegant work by Huberman et al. [4],
the authors point out that Bitcoin mining is a free-entry, two-sided market. If
there is a profit to be made, more miners will enter, which will then trigger the
difficulty adjustment algorithm, making mining more difficult, and thus every-
one’s expected mining revenue decreases. In the equilibrium state, miners break
even, i.e., the revenue that they earn from mining is equal to their cost. Inspired
by this principle, we incorporate a free-entry condition in a model of selfish min-
ing, and thus our analysis essentially characterizes the long-term effects of selfish
mining on the eco-system in the equilibrium state.

During a selfish mining attack, because a fraction of the honest mining power
is being erased, the erased fraction is essentially not gaining rewards. The imme-
diate effect is that the cost of mining to earn each unit of reward becomes
proportionally higher for honest miners; and if the honest miners’ profitability
plunges below zero, they start to leave the system. As honest miners leave, the
impact of the attack on the remaining miners is magnified as a higher fraction
of their mining power is now erased, which in turn drives more miners away.
At the same time, as honest miners leave, the total mining power decreases.
Therefore, the mining difficulty drops, and thus mining becomes cheaper—this
second effect somewhat counteract the decreased profitability for honest miners
that stems from being the victim of selfish mining. When hash power is elastic,
what happens in the equilibrium state is driven simultaneously by the above
two opposite effects. We show that for a wide range of parameter regimes, the
first effect dominates and leads to a “collapse scenario”—specifically, selfish min-
ing drives costs up for honest miners, and all honest miners end up leaving the
system as a result. In some other parameter regimes, however, because the two
effects somewhat counteract each other, the system reaches a new equilibrium
after some but not all honest nodes have left. In either scenario, the unfairness
of selfish mining is significantly exacerbated by the elasticity of hash power.

The rest of the paper is organized as follows. Section 2 shows our empirical evi-
dence on the elasticity of hash supply, which motivates our model setting. Section 3
describes our theoretical model of selfish mining under elastic hash supply.

2 Empirical Findings

Only few pieces of literature have worked on measuring elasticity of hash sup-
ply [5], but our paper distinguishes itself from the prior literature in terms of

Selfish Mining Attacks Exacerbated by Elastic Hash Supply 271

length and coverage of time-series data. We study the elasticity of hash supply
with respect to miners’ revenue using data from 3 different currencies (Bitcoin,
Ethereum, and Ethereum Classic) from 2015–2020.

Data and Empirical Strategy. We downloaded cryptocurrency data from
three sources: Bitcoin data from Quandl, Ethereum data from Etherscan, and
Ethereum Classic data from crypto-ethereum-classic public library on BigQuery.
We use three variables in our regression analysis: daily price, network difficulty,
and total hash rate of each cryptocurrency. Different currencies have differ-
ent lengths of history, and thus we use data from 2017/1/1 to 2020/7/31 for
Ethereum and Ethereum Classic, and from 2015/1/1 to 2020/7/31 for Bitcoin.
We computed daily per-hash revenue from coinbase using daily price and net-
work difficulty (and data on cryptocurrency halving). We focus on miner’s rev-
enue from coinbase and not from transaction fees because transaction fees have
been randomly fluctuating over the recent years in these cryptocurrencies.

Technological advancements in cryptocurrency mining over the past 10 years
pose a challenge for regression analysis since they add significant time trends
to time-series variables. In order to deal with the trend issue, we apply time-
detrending filters that are commonly used in macroeconomics. Time-detrending
filters allow us to separate the slow-moving trend component from the shorter-
horizon cyclical fluctuations ([3]). We apply three types of time-detrending filters:
Hodrick-Prescott (HP), Baxter-King (BK), and Christiano-Fitzgerald (CF) fil-
ters.1 Figure 1 shows the decomposition of the logarithm of the total hash rate
in the Bitcoin network over the past three years, using HP filter. The total hash
rate of the Bitcoin network has an increasing trend over this time period, and
the filter removes out the trend. In the later regression analysis, we use the
cycle components of the variables after applying filters. To estimate the elastic-
ity of total hash rate with respect to per-hash revenue, we consider the following
regression equation:

Fig. 1. Application of HP filter to raw hash-rate data from Bitcoin.

1 For HP filter, we use λ = 10, 000. For BK filter we use (7, 90, 12) for high, low
frequencies, and lead-lag length, respectively. For CF filter, we use (7, 90) for high
and low-frequency length.

272 Y. Shibuya et al.

Δ log THRi,t = αiΔ log MRCi,t + εi,t, (1)

where THR stands for total hash rate, MRC stands for miners’ per-hash revenue
from coinbase. Parameter i is an index representing the cryptocurrency (Bitcoin,
Ethereum, or Ethereum Classic), and t is an index for time (day). Variables
with Δ are cycle components of the logged variables.2 We include year-month
fixed effect in the regression to take out some year/month fixed events such as
regulation changes, which might not be taken out by time-detrending filters.

Results. Table 1 summarizes the results of running the above regression for
the three cryptocurrencies. The main result of the regression analysis is that
with any type of time-detrending filter, in any time period, and for any cur-
rency, the coefficients on Δ log MRC are positive and statistically significant. In
other words, the total hash rate is elastic with respect to the miners’ per-hash
revenue from coinbase. The magnitude of the coefficient varies across different
time-detrending methods and different currencies, but the elasticity ranges from
0.028 to 0.183. One percentage change in the miners’ per-hash revenue from
coinbase causes 0.027 to 0.183% change in the total hash rate. Regression with a
longer sample period for Bitcoin data gives us a more interesting result. Table 2
summarizes the regression results for Bitcoin data with different sample periods.
Interestingly, elasticity is higher and more statistically significantly positive in
the recent period (2018–2020) compared to the beginning of the sample period
(2015–2017). This shows the possibility that the hash rate becomes more respon-
sive to the miners’ revenue as a currency grows.

Table 1. Regression results for three currencies in sample period 2017/1/1–2020/7/31

Bitcoin Ethereum Ethereum classic

HP BK CF HP BK CF HP BK CF

Δ log MRC 0.175∗∗∗

(5.53)
0.183∗∗∗

(8.83)
0.181∗∗∗

(1.30)
0.028∗∗∗

(3.69)
0.033∗∗∗

(5.08)
0.079∗∗∗

(12.54)
0.041∗∗∗

(3.20)
0.048∗∗∗

(3.12)
0.027∗∗∗

(2.57)

No. of obs 1308 1296 1308 1308 1296 1308 1308 1296 1308

Table 2. Regression results for Bitcoin data with three different sample periods

2015/1–2017/12 2018/1–2020/7 2015/1–2020/7

HP BK CF HP BK CF HP BK CF

Δ log MRC 0.082∗ 0.108∗∗∗ 0.078∗∗∗ 0.163∗∗∗ 0.152∗∗∗ 0.194∗∗∗ 0.126∗∗∗ 0.132∗∗∗ 0.143∗∗∗

(2.02) (3.83) (3.62) (4.85) (6.88) (11.76) (4.80) (7.38) (10.65)

No. of obs. 1096 1084 1096 943 931 943 2039 2015 2039
***p < 0.01, **p < 0.05, *p < 0.1, t-values in parentheses.

2 For regressions with Ethereum Classic data, we use daily difference in total hash rate
as an independent variable. The reasons for this is that total hash rate of Ethereum
Classic is volatile at high frequency, and does not exhibit any time trend.

Selfish Mining Attacks Exacerbated by Elastic Hash Supply 273

3 Model with Elastic Hash Supply

We first explain our baseline model without selfish mining and illustrate how
total hash rate is determined endogenously in an equilibrium by free-entry con-
dition. We then analyze the model with selfish mining, building on the seminal
work by Eyal and Sirer [2]. Lastly, we discuss the stability of equilibria.

In our model of selfish mining with elastic hash supply, the equilibrium state
is determined by the two opposing effects. An attack increases the cost of mining
for honest miners and thus makes honest miners leave. At the same time, when
some honest miners leave, the total mining power decreases and so does the cost
of mining for honest miners. 3 Which effect dominates depends on the attacker’s
initial share of mining power. We derive a threshold for the attacker’s initial
share such that (a) if the attacker’s share is below the threshold, the system has
a stable equilibrium with a positive hash supply by honest miners; and (b) if the
attacker’s share is above the threshold, all honest miners leave and the system
collapses. In either case, some or all honest miners leave the system, and thus
the effect of selfish mining is significantly exacerbated under elastic hash supply.

Notations. The following notations and basic assumptions are employed:

– B = expected reward for a new block, including both the coinbase and
the transaction fee. For example, as of December 2020, B is 6.25 BTC ≈
169,441 USD coinbase plus transaction fees for Bitcoin.

– C = expected cost of mining per unit of hash-rate until some miner finds a
new block. This includes electricity costs, depreciation, and other operational
costs. We assume that a miner’s cost is proportional to its hash rate, and the
cost per unit of hash-rate is the same for all miners. For example, C is the
cost per unit of hash-rate for 10 min for Bitcoin. On the online marketplace
NiceHash (nicehash.com), as of December 2020, the lowest-price offer for 1
PH/s of mining power4 for 24 h is 0.0069 BTC. From this, we can estimate
C as 0.0069 BTC / (PH/s) / 24 h · 10 min ≈ 1.31 USD / (PH/s).

– H = honest miners’ hash rate in total.
– M = attacking pool’s hash rate.

Baseline Model Without Selfish Mining. We consider a system with a
group of honest miners (with mining power H) and an attacking pool (with
mining power M). We assume elastic hash supply in the system: the equilibrium
mining power of honest miners (H∗) is determined such that honest miners make

3 In practice, as miners leave and the total mining power decreases, the price of the
cryptoccurrency may drop, thereby decreasing the revenue of the remaining honest
miners. Similar to the attacker’s increasing share due to miners leaving, this effect
exacerbates the impact of the attack, and in this sense, magnifies the phenomenon
that we identified in this paper. We leave the modeling and formal analysis of this
effect to future work.

4 We use PH/s and EH/s to denote peta-hash per second and exa-hash per second.

http://nicehash.com

274 Y. Shibuya et al.

zero profit with mining power H∗. The attacking pool’s mining power (M), block
rewards (B) and cost (C) are assumed to be fixed and to satisfy M < B/C.

Without selfish mining attack, the honest miners’ profit per unit hash rate is

UN (H) = B
1

H + M
− C. (2)

In an equilibrium, the elastic hash supply assumption implies UN (H∗) = 0. We
can solve for H∗:

H∗ =
B

C
− M > 0 (3)

Model with Selfish Mining. Now, we assume that the attacking pool per-
forms selfish mining as defined by [2].5 We can calculate the expected mining
reward per block discovery, including the hidden block discoveries, as

Battacker = B

(−2α4 + 5α3 − 4α2 + α
)

γ + 4α4 − 9α3 + 4α2

2α3 − 4α2 + 1

for the attacking pool, and

Bhonest = B

(
2α4 − 5α3 + 4α2 − α

)
γ − 4α4 + 10α3 − 6α2 − α + 1

2α3 − 4α2 + 1

for the honest miners, where we denote by α = M
H+M the fraction of the attacking

pool’s mining power out of the total mining power, and by γ the ratio of hon-
est miners that choose to mine on the attacking pool’s block. The total effective
mining power in the system under attack is (Bhonest+Battacker)(H+M)/B.6 The
honest miners’ effective mining power is given by Bhonest(H +M)/B = Bhonest

(1−α)B H

and the attacking pool’s effective mining power is Battacker(H + M)/B =
Battacker

αB M .
Then, the honest miners’ per hash-rate profit under selfish mining attack is

US(H) = B
Bhonest

(1 − α)B
B

(Battacker + Bhonest)(H + M)
− C. (4)

In an equilibrium, honest miners’ hash supply is again derived from US(H∗) = 0:

US(H∗) = B
1
M

{
α∗ · Bhonest(α∗)

(1 − α∗)(Battacker(α∗) + Bhonest(α∗))
− κ

}
= 0 (5)

for α∗ = M
H∗+M and κ = M · C

B .
A natural question is whether the above equilibrium condition has a solution

H∗ > M . If not, then the system cannot find an equilibrium where honest miners
stay in the system under selfish mining attack. This simple theorem answers that
the attacker’s hash rate must be bounded to avoid collapsing the system.
5 It is well-known that selfish mining attack proposed by [2] is not the optimal attacker

strategy, and thus please note that the actual equilibrium may be different.
6 These calculations should coincide Battacker = B · rpool and Bhonest = B · rothers,

where rpool and rothers are from Eq. (6) and (7) in [2].

Selfish Mining Attacks Exacerbated by Elastic Hash Supply 275

Theorem 1. For any given γ, there exists Mmax such that a solution H∗ of
US(H∗) = 0 with H∗ > M(> 0) exists if and only if M ≤ Mmax.

Proof. Battacker(α) and Bhonest(α) have the following properties: (A) Bhonest(α)
and Battacker(α) are continuous for 0 ≤ α ≤ 1/2, (B) Bhonest(1/2) = 0, and
(C) Bhonest(α) + Battacker(α) > 0 for all 0 ≤ α ≤ 1/2. Let us define a function
f(α) = α·Bhonest(α)

(1−α)(Battacker(α)+Bhonest(α)) . First, f(α) is continuous for 0 ≤ α ≤ 1/2
because of property (A) and property (C). Since f is continuous, there exists
αmax ∈ [0, 1/2] that achieves the maximum of f(α) for 0 ≤ α ≤ 1/2. Let
Mmax = B

C f(αmax). If Mmax < M , then US(H) < 0 for all H such that H > M ,
so solution H∗ does not exist. To complete the proof it suffices to find a solution
H∗ > M of US(H) = 0 for constant M that satisfies 0 < M ≤ Mmax. There
exists some α∗ ∈ (0, 1/2) such that f(α∗) = C

B M because f is continuous,
f(0) = f(1/2) = 0 by property (B), and 0 < C

B M ≤ C
B Mmax = f(αmax). We

find H∗ by solving α∗ = M
H∗+M , and H∗ > M because α∗ < 1/2. ��

We can find αmax by solving f ′(α) = 0:

γ =
4α6 − 16α5 + 26α3 − 16α2 + 1

2α6 − 8α5 − α4 + 14α3 − 10α2 + 2α
. (6)

With elastic hash supply, selfish mining attacks reduce the profitability of
honest miners, making honest miners leave the system, which in turn increases
the attacker’s share, further decreasing profitability for honest miners. If the
attacking pool’s share is large enough, the negative propagation effect forces
all honest miners to leave the system. For example, when γ = 1, we find that
f(αmax) is approximately 0.292. Since H∗ + M = B

C in the equilibrium without
selfish mining attacks, this implies that if the attacking pool’s share is larger
than 29.2%, then the attack makes all the honest miners eventually leave the
system. When 0 ≤ γ ≤ 1, f(αmax) is decreasing in γ, ranging from 0.3475 at
γ = 0 to 0.2919 at γ = 1.

When the system does not collapse, we can find a stable equilibrium from
the honest miners’ response. It is straightforward to check that (Eq. 6) has only
one solution in 0 ≤ α ≤ 1/2.7 This implies that we have only two equilibria H∗

1

and H∗
2 when M < Mmax. We assume H∗

1 < H∗
2 without loss of generality. Since

f ′(M
H∗

1+M) < 0 and f ′(M
H∗

2+M) > 0, we obtain the following proposition.

Proposition 1. For any given γ and M < Mmax, there are two equilibria, H∗
1

and H∗
2 (H∗

2 > H∗
1), where H∗

2 is stable and H∗
1 is unstable.

Figure 2 illustrates the honest miners’ per-hash revenue and cost, given
parameters B, C, γ, and M .8 Under the free entry condition, the equilibria
correspond to points H∗

1 and H∗
2 where the revenue curve intersects the cost,

7 We omit the details due to the restriction of space.
8 We set B = 169, 441 USD, C = 1.31 USD/(PH/s), γ = 1, and M = 0.25B

C
for Fig. 2.

We computed values of B based on Bitcoin price and block-reward and C based on
the most competitive offer from nicehash.com on December 29th, 2020.

http://nicehash.com

276 Y. Shibuya et al.

i.e., points with zero profit. In this case, equilibrium H∗
2 is stable, while H∗

1

is not. When honest miners’ mining power increases (decreases) by any small
amount ε > 0 from point H∗

1 , positive (negative) profit will be generated and
more honest miners will enter (leave) the system, ending up reaching equilib-
rium H∗

2 (or an equilibrium H = 0).9 On the other hand, when mining power
increases (decreases) from point H∗

2 , negative (positive) profit will be generated
and honest miners leave (enter) the system. Therefore, equilibrium H∗

2 is the
only stable equilibrium.

Fig. 2. Honest miners’ per hash-rate revenue and cost (PH/s: peta-hash per second,
EH/s: exa-hash per second)

References

1. Eyal, I.: The miner’s dilemma. In: 36th IEEE Symposium on Security and Privacy
(S&P), pp. 89–103. IEEE (2015)

2. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

3. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (2020)
4. Huberman, G., Leshno, J., Moallemi, C.C.: An economic analysis of the Bitcoin

payment system. Technical report, pp. 17–92, Columbia Business School (2019)
5. Noda, S., Okumura, K., Hashimoto, Y.: An economic analysis of difficulty adjust-

ment algorithms in proof-of-work blockchain systems. In: 21st ACM Conference on
Economics and Computation (EC), p. 611 (2020)

6. Shibuya, Y., Yamamoto, G., Kojima, F., Shi, E., Matsuo, S., Laszka, A.: Selfish
mining attacks exacerbated by elastic hash supply. In: Borisov, N., Diaz, C. (eds.)
FC 2021. LNCS, vol. 12675, pp. xx–yy (2021)

9 While H = 0 is an equilibrium, we do not consider cases where H < M in our
analysis since it is well known that such cases are unsustainable.

https://doi.org/10.1007/978-3-662-45472-5_28

Scaling Blockchains

Fraud and Data Availability Proofs:
Detecting Invalid Blocks in Light Clients

Mustafa Al-Bassam1(B), Alberto Sonnino1, Vitalik Buterin2, and Ismail Khoffi3

1 University College London, London, UK
{m.albassam,a.sonnino}@cs.ucl.ac.uk
2 Ethereum Research, Zug, Switzerland

vitalik@ethereum.org
3 LazyLedger Labs, Vaduz, Liechtenstein

ismail@lazyledger.io

Abstract. Light clients, also known as Simple Payment Verification
(SPV) clients, are nodes which only download a small portion of the
data in a blockchain, and use indirect means to verify that a given chain
is valid. Instead of validating blocks, they assume that the chain favoured
by the blockchain’s consensus algorithm only contains valid blocks, and
that the majority of block producers are honest. By allowing such clients
to receive fraud proofs generated by fully validating nodes that show
that a block violates the protocol rules, and combining this with prob-
abilistic sampling techniques to verify that all of the data in a block
actually is available to be downloaded so that fraud can be detected,
we can eliminate the honest-majority assumption for block validity, and
instead make much weaker assumptions about a minimum number of
honest nodes that rebroadcast data. Fraud and data availability proofs
are key to enabling on-chain scaling of blockchains while maintaining a
strong assurance that on-chain data is available and valid. We present,
implement, and evaluate a fraud and data availability proof system.

1 Introduction and Motivation

Due to the scalability limitations of existing blockchains, popular services have
stopped accepting Bitcoin [24] payments due to transactions fees rising as high as
$20 [16,25], and a popular Ethereum [7] contract caused the pending transactions
backlog to increase six-fold [36]. Users pay higher fees as they compete to get
their transactions included on the chain, due to space being limited, e.g., by
Bitcoin’s block size limit [2] or Ethereum’s block gas limit [37].

While increasing on-chain capacity limits would yield higher transaction
throughput, there are concerns that this creates a trade-off that would decrease
decentralisation and security. This is because increasing on-chain capacity would
increase the computational resources required for ordinary users to fully down-
load and verify the blockchain, to check that all transactions are correct and
valid. Consequently fewer users would afford to run fully validating nodes (full
nodes) that independently verify the blockchain, requiring users to instead run

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 279–298, 2021.
https://doi.org/10.1007/978-3-662-64331-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_15&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_15

280 M. Al-Bassam et al.

light clients that assume that the chain favoured by the blockchain’s consensus
algorithm only contains valid transactions [22].

Light clients operate well under normal circumstances, but have weaker assur-
ances compared to full nodes when the majority of the consensus (e.g., miners
or block producers) is dishonest (also known as a ‘51% attack’). When running
a full node, a 51% attack on the Bitcoin or Ethereum network can only censor,
reverse or double spend transactions, i.e., by forking the chain. However if users
run light clients, a 51% attack can generate blocks that contain invalid trans-
actions that, for example, steal funds or create new money out of thin air, and
light clients would not be able to detect this as they do not verify the chain.
This increases the incentive for conducting a 51% attack. On the other hand,
full nodes would reject those invalid blocks immediately as they verify the chain.

In this paper, we decrease the on-chain capacity vs. security trade-off by
making it possible for light clients to receive and verify fraud proofs of invalid
blocks from any full node that generates such proofs, so that they too can reject
them. This gives light clients a level of security similar to full nodes. We also
design a data availability proof system, a necessary complement to fraud proofs,
so that light clients have assurance that the block data required for full nodes to
generate fraud proofs from is available, given that there is a minimum number
of honest light clients to reconstruct missing data from blocks. This solves the
‘data availability problem’, which asks: how can light clients efficiently check
that all the data for a block has been made available by the block producer?

We also implement and evaluate the security and efficiency of our overall
design, and show in Sect. 5.4 that less than 1% of block data needs to be down-
loaded in order to check that the entire data of the block is available with 99%
probability. Fraud proofs for invalid blocks are in the order of kilobytes; with
practical parameters we show in Sect. 6 that for a 1 MB block, fraud proofs are
under 27 KB.

Our work also plays a key role in efforts to scale blockchains with sharding
[1,8,18], as in a sharded system no single node in the network is expected to
download and validate the state of all shards, and thus fraud proofs are necessary
to detect invalid blocks from malicious shards. By running light clients that
download block headers for shards, nodes can receive fraud proofs for invalid
shard block using the techniques described in this paper.

2 Background

Blockchains. The data structure of a blockchain consists of a chain of blocks.
Each block contains two components: a header and a list of transactions. In addi-
tion to other metadata, the header stores at minimum the hash of the previous
block, and the root of the Merkle tree of all transactions in the block.

Validity Rule. Blockchain networks have a consensus algorithm [3] to deter-
mine which chain should be favoured in the event of a fork, e.g., if proof-of-work
[24] is used, then the chain with the most accumulated work is favoured. They

Fraud Proofs 281

also have a set of transaction validity rules that dictate which transactions are
valid, and thus blocks that contain invalid transactions will never be favoured
by the consensus algorithm and should in fact always be rejected.

Full Nodes and Light Clients. Full nodes (also known as fully-validating
nodes) are nodes which download block headers as well as the list of transactions,
verifying that the transactions are valid according to the transaction validity
rules. Light clients only download block headers, and assume that the list of
transactions are valid according to the transaction validity rules. Light clients
verify blocks against the consensus rules, but not the transaction validity rules,
and thus assume that the consensus is honest in that they only included valid
transactions (unlike full nodes). Light clients may also receive Merkle proofs
from full nodes that a specific transaction or state is included in a block header.

Sparse Merkle Trees. A Sparse Merkle tree [11,19] is a Merkle tree that allows
for commitments to key-value maps, where values can be updated, inserted or
deleted trivially on average in O(log(k)) time in a tree with k keys. The tree is
initialised with n leaves where n is extremely large (e.g., n = 2256), but where
almost all of the leaves have the same default empty value (e.g., 0). The index
of each leaf in the tree is its key. Sub-trees with only empty descendant leaves
can be replaced by a placeholder value, and sub-trees with only one non-empty
descendant leaf can be replaced by a single node. Therefore despite the extremely
large number of leaves, each operation takes O(log(k)) time.

Erasure Codes and Reed-Solomon Codes. Erasure codes are error-
correcting codes [13,28] working under the assumption of bit erasures rather
than bit errors; in particular, the users knows which bits have to be recon-
structed. Error-correcting codes transform a message of length k into a longer
message of length n > k such that the original message can be recovered from a
subset of the n symbols. Reed-Solomon (RS) codes [35] have various applications
and are among the most studied error-correcting codes. They can correct up to
any combination of k of 2k known erasures, and operate over a finite field of
order q (where q is a prime power) such that k < n ≤ q. RS codes have been
generalised to multidimensional codes [12,32] in various ways [31,33,38]. In a p
multidimensional code, the message is encoded p times along p orthogonal axis,
and can be represented as coding in different dimensions of a multidimensional
array.

3 Assumptions and Threat Model

We present the network and threat model under which our fraud proofs (Sect. 4)
and data availability proofs (Sect. 5) apply. First, we present some primitives
that we use in the rest of the paper.

282 M. Al-Bassam et al.

– hash(x) is a cryptographically secure hash function that returns the digest of
x (e.g., SHA-256).

– root(L) returns the Merkle root for a list of items L.
– {e → r} denotes a Merkle proof that an element e is a member of the Merkle

tree committed by root r.
– VerifyMerkleProof(e, {e → r}, r, n, i) returns true if the Merkle proof is valid,

otherwise false, where n additionally denotes the total number of elements in
the underlying tree and i is the index of e in the tree. This verifies that e is
at index i, as well as its membership.

– {k, v → r} denotes a Merkle proof that a key-value pair k, v is a member of
the Sparse Merkle tree committed by root r.

3.1 Blockchain Model

We assume a generalised blockchain architecture, where the blockchain consists
of a hash-based chain of block headers H = (h0, h1, ...). Each block header hi

contains a Merkle root txRooti of a list of transactions Ti, such that root(Ti) =
txRooti. Given a node that downloads the list of unauthenticated transactions
Ni from the network, a block header hi is considered to be valid if (i) root(Ni) =
txRooti and (ii) given some validity function

valid(T, S) ∈ {true, false}

where T is a list of transactions and S is the state of the blockchain, then
valid(Ti, Si−1) must return true, where Si is the state of the blockchain after
applying all of the transactions in Ti on the state from the previous block Si−1.
We assume that valid(T, S) takes O(n) time to execute, where n is the number
of transactions in T .

In terms of transactions, we assume that given a list of transactions Ti =
(t0i , t

1
i , ..., t

n
i), where tji denotes a transaction j at block i, there exists a state

transition function transition that returns the post-state S′ of executing a trans-
action on a particular pre-state S, or an error if the transition is illegal:

transition(S, t) ∈ {S′, err}

transition(err, t) = err

We introduce the concept of intermediate state, which is the state of the chain
after processing only some of the transactions in a given block. Thus given the
intermediate state Iji = transition(Ij−1

i , tji) after executing the first j transactions
(t0i , t

1
i , ..., t

j
i) in block i where j ≤ n, and the base case I−1

i = Si−1, then Si = Ini .
In other words, the final intermediate state of a block is the post-state.

Therefore, valid(Ti, Si−1) = true if and only if Ini �= err.

Aim. The aim of this paper is to prove to clients that for a given block header
hi, valid(Ti, Si−i) returns false in less than O(n) time and less than O(n) space,
relying on as few security assumptions as possible.

Fraud Proofs 283

3.2 Participants and Threat Model

Our protocol assumes a network that consists of full nodes and light clients.

Full Nodes. These nodes download and verify the entire blockchain, generating
and distributing fraud proofs if a block is invalid. Full nodes store and rebroad-
cast valid blocks that they download to other full nodes, and broadcast block
headers associated with valid blocks to light clients. Some of these nodes may
participate in consensus by producing blocks, which we call block producers.

Full nodes may be dishonest, e.g., they may not relay information (e.g., fraud
proofs), or they may relay invalid blocks. However we assume that the graph of
honest full nodes is well connected, a standard assumption made in previous
work [17,18,21,24]. This results in a broadcast network, due to the synchrony
assumption we will make below.

Light Clients. These nodes have computational capacity and network band-
width that is too low to download and verify the entire blockchain. They receive
block headers from full nodes, and on request, Merkle proofs that some trans-
action or state is a part of the block header. These nodes receive fraud proofs
from full nodes in the event that a block is invalid.

As is the status quo in prior work [7,24], we assume that each light client is
connected to at least one honest full node (i.e., is not under an eclipse attack
[15]), as this is necessary to achieve a synchronous gossiping network (discussed
below). However when a light client is connected to multiple full nodes, they do
not know which nodes are honest or dishonest, just that at least one of them is.
Consequently, light clients may be connected to dishonest full nodes that send
block headers that have consensus (state agreement) but correspond to invalid
or unavailable blocks (violating state validity), and thus need fraud and data
availability proofs to detect this.

For data availability proofs, we assume a minimum number of honest light
clients in the network to allow for a block to be reconstructed, as each light
client downloads a small chunk of every block. The specific number depends on
the parameters of the system, and is analysed in Sect. 5.4.

Network Assumptions. We assume a synchronous peer-to-peer gossiping net-
work [5], a standard assumption in the consensus protocols of most blockchains
[18,21,24,26,40] due to FLP impossibility [14]. Specifically, we assume a maxi-
mum network delay δ; such that if one honest node can connect to the network
and download some data (e.g., a block) at time T , then it is guaranteed that any
other honest node will be able to do the same at time T ′ ≤ T + δ. In order to
guarantee that light clients do not accept block headers that do not have state
validity, they must receive fraud proofs in time, hence a synchrony assumption
is required. Block headers may be created by adversarial actors, and thus may
be invalid, and we cannot rely on an honest majority of consensus-participating
nodes for state validity.

284 M. Al-Bassam et al.

4 Fraud Proofs

In order to support efficient fraud proofs, it is necessary to design a blockchain
data structure that supports fraud proof generation by design. Extending the
model described in Sect. 3.1, a block header hi at height i contains at least the
following elements (not including any extra data required e.g., for consensus):

prevHashi. The hash of the previous block header.
dataRooti. The root of the Merkle tree of the data (e.g., transactions) included

in the block.
dataLengthi. The number of leaves represented by dataRooti.
stateRooti. The root of a Sparse Merkle tree of the state of the blockchain (to

be described in Sect. 4.1).

Additionally, the hash of each block header blockHashi = hash(hi) is also
stored by clients and nodes. Note that typically blockchains have the Merkle
root of transactions included in headers. We have abstracted this to a ‘Merkle
root of data’ called dataRooti, because as we shall see, as well as including
transactions in the block data, we also need to include intermediate state roots.

4.1 State Root and Execution Trace Construction

To instantiate a blockchain based on the state-based model described in Sect. 3.1,
we make use of Sparse Merkle trees, and represent the state as a key-value map.
In a UTXO-based blockchain e.g., Bitcoin [24], keys would be UTXO identifiers,
and values would be booleans representing if the UTXOs are unspent or not.
The state keeps track of all data relevant to block processing.

We now define a variation of the function transition defined in Sect. 3.1, called
rootTransition, that performs transitions without requiring the whole state tree,
but only the state root and Merkle proofs of parts of the state tree that the
transaction reads or modifies (which we call “state witness”, or w for short).
These Merkle proofs are effectively a deep sub-tree of the same state tree.

rootTransition(stateRoot, t, w) ∈ {stateRoot′, err}
A state witness w consists of a set of (k, v) key-value pairs and their

associated Sparse Merkle proofs in the state tree, w = {(k0, v0, {k0, v0 →
stateRoot}), (k1, v1, {k1, v1 → stateRoot}), ...}.

After executing t on the parts of the state shown by w, if t modifies any of
the state, then the new resulting stateRoot′ can be generated by computing the
root of the new sub-tree with the modified leafs. If w is invalid and does not
contain all of the state required by t during execution, then err is returned.

Let us denote, for the list of transactions Ti = (t0i , t
1
i , ..., t

n
i), where tji denotes

a transaction j at block i, then wj
i is the state witness for transaction tji for

stateRooti.
Given the intermediate state root interRootji = rootTransition(interRootj−1

i ,

tji , w
j
i) after executing the first j transactions (t0i , t

1
i , ..., t

j
i) in block i where j ≤ n,

Fraud Proofs 285

and the base case interRoot−1
i = stateRooti−1, then stateRooti = interRootni .

Hence, interRootji denotes the intermediate state root at block i after applying
the first j transactions t0i , t

1
i , ..., t

j
i in block i.

4.2 Data Root and Periods

The data represented by the dataRooti of a block contains transactions arranged
into fixed-size chunks of data called ‘shares’, interspersed with intermediate state
roots called ‘traces’ between transactions. We denote traceji as the jth interme-
diate state root in block i. It is necessary to arrange data into fixed-size shares
to allow for data availability proofs as we shall see in Sect. 5. Each leaf in the
data tree represents a share.

Given a list of shares (sh0, sh1, ...) we define a function parseShares which
parses these shares and outputs an ordered list of messages (m0,m1, ...), which
are either transactions or intermediate state roots. For example, parseShares on
some shares in the middle of some block i may return (trace1i , t

4
i , t

5
i , t

6
i , trace

2
i).

parseShares((sh0, sh1, ...)) = (m0,m1, ...)

Note that as the block data does not necessarily contain an intermediate state
root after every transaction, we assume a ‘period criterion’, a protocol rule that
defines how often an intermediate state root should be included in the block’s
data. For example, the rule could be at least once every p transactions, or b bytes
or g gas (i.e., in Ethereum [37]).

We thus define a function parsePeriod which parses a list of messages, and
returns a pre-state intermediate root tracexi , a post-state intermediate root
tracex+1

i , and a list of transaction (tgi , t
g+1
i , ..., tg+h

i) such that applying these
transactions on tracexi is expected to return tracex+1

i . If the list of messages vio-
late the period criterion, then the function may return err, for example if there
too many transactions in the messages to constitute a period.

parsePeriod((m0,m1, ...)) ∈ {(tracexi , tracex+1
i , (tgi , t

g+1
i , ..., tg+h

i)), err}

Note that tracexi may be nil if no pre-state root was parsed, as this may be
the case if the first messages in the block are being parsed, and thus the pre-state
root is the state root of the previous block stateRooti−i. Likewise, tracex+1

i may
be nil if no post-state root was parsed i.e., if the last messages in the block are
being parsed, as the post-state root would be stateRooti.

4.3 Proof of Invalid State Transition

A malicious block producer may provide a bad stateRooti in the block header that
modifies the state an invalid way, i.e., it does not match the new state root that
should be returned according to rootTransition. We can use the execution trace
provided in dataRooti to prove that some part of the execution trace resulting

286 M. Al-Bassam et al.

in stateRooti was invalid, by pin-pointing the first intermediate state root that
is invalid. We define a function VerifyTransitionFraudProof and its parameters
which verifies fraud proofs of invalid state transitions received from full nodes.
We denote dji as share number j in block i.

Summary of VerifyTransitionFraudProof. A state transition fraud proof con-
sists of (i) the relevant shares in the block that contain the bad state transition,
(ii) Merkle proofs that those shares are in dataRooti, and (iii) the state witnesses
for the transactions contained in those shares. The function takes as input this
fraud proof, then (i) verifies the Merkle proofs of the shares, (ii) parses the
transactions from the shares, and (iii) checks if applying the transactions on the
intermediate pre-state root results in the intermediate post-state root specified
in the shares. If it does not, then the fraud proof is valid, and the block that the
fraud proof is for should be permanently rejected by the client.

VerifyTransitionFraudProof(blockHashi,

(dyi , d
y+1
i , ..., dy+m

i), y, (shares)

({dyi → dataRooti}, {dy+1
i → dataRooti}}, ..., {dy+m

i → dataRooti}}),

(wy
i , wy+1

i , ..., wy+m
i), (tx witnesses)

) ∈ {true, false}

VerifyTransitionFraudProof returns true if all of the following conditions are
met, otherwise false is returned:

1. blockHashi corresponds to a block header hi that the client has downloaded
and stored.

2. For each share dy+a
i in the proof, VerifyMerkleProof(dy+a

i , {dy+a
i →

dataRooti}, dataRooti, dataLengthi, y + a) returns true.
3. Given parsePeriod(parseShares((dyi , d

y+1
i , ..., dy+m

i))) ∈ {(tracexi , tracex+1
i , (tgi ,

tg+1
i , ..., tg+h

i)), err}, the result must not be err. If tracexi is nil, then y = 0 is
true, and if tracex+1

i is nil, then y + m = dataLengthi is true.
4. Check that applying (tgi , t

g+1
i , ..., tg+h

i) on tracexi results in tracex+1
i . Formally,

let the intermediate state roots after applying every transaction in the proof
one at a time be interRootji = rootTransition(interRootj−1

i , tji , w
j
i). If tracex

is not nil, then the base case is interRootyi = tracex, otherwise interRootyi =
stateRooti−1. If tracex+1 is not nil, tracex+1 = interRootg+h

i is true, otherwise
stateRooti = interRooty+m

i is true.

5 Data Availability Proofs

A malicious block producer could prevent full nodes from generating fraud proofs
by withholding the data needed to recompute dataRooti and only releasing the
block header to the network. The block producer could then only release the

Fraud Proofs 287

data—which may contain invalid transactions or state transitions—long after
the block has been published, and make the block invalid. This would cause a
rollback of transactions on the ledger of future blocks. It is therefore necessary for
light clients to have a high level of assurance that the data matching dataRooti
is indeed available to the network.

We propose a data availability scheme based on Reed-Solomon erasure cod-
ing, where light clients request random shares of data to get high probability
guarantees that all the data associated with the root of a Merkle tree is avail-
able. The scheme assumes there is a sufficient number of honest light clients
making the same requests such that the network can recover the data, as light
clients upload these shares to full nodes, if a full node who does not have the
complete data requests it. It is fundamental for light clients to have assurance
that all the transaction data is available, because it is only necessary to withhold
a few bytes to hide an invalid transaction in a block.

A naive data availability proof scheme may simply apply a standard one
dimenisonal Reed-Solomon encoding to extend the block data. However a mali-
cious block producer could incorrectly generate the extended data. In that case,
proving that the extended data is incorrectly generated would be equivalent
to sending the entire block itself, as clients would have to re-encode all data
themselves to verify the mismatch with the given extended data. It is therefore
necessary to use multi-dimensional encoding, so that proofs of incorrectly gen-
erated codes are limited to a specific axis, rather than the entire data—limiting
the size of the proof to O(d

√
t) for d dimensions instead of O(t). For simplicity,

we will only consider bi-dimensional Reed-Solomon encodings in this paper, but
our scheme can be easily generalised to higher dimensions.

We first describe how dataRooti should be constructed under the scheme in
Sect. 5.1, and how light clients can use this to have assurance that the full data
is available in Sect. 5.2.

5.1 2D Reed-Solomon Encoded Merkle Tree Construction

c1 ck c2k

r1

rk

r2k

original tx
data

extended
data

extended
data

extended
data

Fig. 1. Diagram showing a 2D Reed-Solomon encoding process.

288 M. Al-Bassam et al.

Let extend be a function that takes in a list of k shares, and returns a list
of 2k shares that represent the extended shares encoded using a standard one
dimensional Reed-Solomon code.

extend(sh1, sh2, ..., shk) = (sh1, sh2, ..., sh2k)

The first k shares that are returned are the input shares, and the latter k are
the coded shares. Recall that all 2k shares can be recovered with knowledge of
any k of the 2k shares. A 2D Reed-Solomon Encoded Merkle tree can then be
constructed as follows from a block of data:

1. Split the original data into shares of size shareSize each, and arrange them
into a k × k matrix Oi; apply padding if the last share is not exactly of size
shareSize, or if there are not enough shares to complete the matrix. In the next
step, we extend this k ×k matrix to a 2k × 2k matrix Mi with Reed-Solomon
encoding.

2. For each row in the original k × k matrix Oi, pass the k shares in that row
to extend(sh1, sh2, ..., shk) and append the extra shares outputted (shk+1, ...,
sh2k) to the row to create an extended row of length 2k, thus extending the
matrix horizontally. Repeat this process for the columns in Oi to extend the
matrix vertically, so that each original column now has length 2k. This cre-
ates an extended 2k×2k matrix with the upper-right and lower-left quadrants
filled, as shown in Fig. 1. Then finally apply Reed-Solomon encoding horizon-
tally on each row of the vertically extended portion of the matrix to complete
the bottom-right quadrant of the 2k×2k matrix. This results in the extended
matrix Mi for block i.

3. Compute the root of the Merkle tree for each row and column in the 2k × 2k
matrix, where each leaf is a share. We have rowRootji = root((M j,1

i ,M j,2
i ,

...,M j,2k
i)) and columnRootji = root((M1,j

i ,M2,j
i , ...,M2k,j

i)), where Mx,y
i rep-

resents the share in row x, column y in the matrix.
4. Compute the root of the Merkle tree of the roots computed in step 3 and

use this as dataRooti. We have dataRooti = root((rowRoot1i , rowRoot
2
i , ...,

rowRoot2ki , columnRoot1i , columnRoot2i , ..., columnRoot2ki)).

We note that in step 2, we have chosen to extend the vertically extended
portion of the matrix horizontally to complete the extended matrix, however
it would be equally acceptable to extend the horizontally extended portion of
the matrix vertically to complete the extended matrix; this will result in the
same matrix because Reed-Solomon coding is linear and commutative with itself
[32]. The resulting matrix has the property that all rows and columns have
reconstruction capabilities.

The resulting tree of dataRooti has dataLengthi = 2 × (2k)2 elements, where
the first 1

2dataLengthi elements are in leaves via the row roots, and the latter
half are in leaves via the column roots.

In order to allow for Merkle proofs from dataRooti to individual shares, we
assume a wrapper function around VerifyMerkleProof called VerifyShareMerkle
Proof with the same parameters which takes into account how the underlying

Fraud Proofs 289

Merkle trees deal with an unbalanced number of leaves, as dataRooti is composed
from multiple trees constructed independently from each other.

The width of the matrix can be derived as matrixWidthi =
√

1
2dataLengthi.

If we are only interested in the row and column roots of dataRooti, rather than
the actual shares, then we can assume that dataRooti has 2×matrixWidthi leaves
when verifying a Merkle proof of a row or column root.

A light client or full node is able to reconstruct dataRooti from all the row and
column roots by recomputing step 4. In order to gain data availability assurances,
all light clients should at minimum download all the row and column roots
needed to reconstruct dataRooti and check that step 4 was computed correctly,
because as we shall see in Sect. 5.3, they are necessary to generate fraud proofs
of incorrectly generated extended data.

We nevertheless represent all of the row and column roots as a a single
dataRooti to allow ‘super-light’ clients which do not download the row and col-
umn roots, but these clients cannot be assured of data availability and thus do
not fully benefit from the increased security of allowing fraud proofs.

5.2 Random Sampling and Network Block Recovery

In order for any share in the 2D Reed-Solomon matrix to be unrecoverable, then
at least (k + 1)2 out of (2k)2 shares must be unavailable (see Theorem 1), as
opposed to k+1 out of 2k with a 1D code. When light clients receive a new block
header from the network, they should randomly sample 0 < s ≤ (2k)2 distinct
shares from the extended matrix, and only accept the block if they receive all
shares. The higher the s, the greater the confidence a light client can have that
the data is available (this will be analysed in Sect. 5.4). Additionally, light clients
gossip shares that they have received to the network, so that the full block can
be recovered by honest full nodes.

The protocol between a light client and the full nodes that it is connected to
works as follows:

1. The light client receives a new block header hi from one of the full nodes it is
connected to, and a set of row and column roots R = (rowRoot1i , rowRoot

2
i , ...,

rowRoot2ki , columnRoot1i , columnRoot2i , ..., columnRoot2ki). If the check root(R)
= dataRooti is false, then the light client rejects the header.

2. The light client randomly chooses a set of unique (x, y) coordinates S =
{(x0, y0)(x1, y1), ..., (xn, yn)} where 0 < x ≤ matrixWidthi and 0 < y ≤
matrixWidthi, corresponding to points on the extended matrix, and sends
them to one or more of the full nodes it is connected to.

3. If a full node has all of the shares corresponding to the coordinates in S
and their associated Merkle proofs, then for each coordinate (xa, yb) the full
node responds with Mxa,yb

i , {Mxa,yb

i → rowRootai } or Mxa,yb

i , {Mxa,yb

i →
columnRootbi}. Note that there are two possible Merkle proofs for each share;
one from the row roots, and one from the column roots, and thus the full
node must also specify for each Merkle proof if it is associated with a row or
column root.

290 M. Al-Bassam et al.

4. For each share Mxa,yb

i that the light client has received, the light client checks
VerifyMerkleProof(Mxa,yb

i , {Mxa,yb

i → rowRootai }, rowRootai ,matrixWidthi, b)
is true if the proof is from a row root, otherwise if the proof is from a column
root then VerifyMerkleProof(Mxa,yb

i , {Mxa,yb

i → columnRootbi}, columnRootbi ,
matrixWidthi, a) is true.

5. Each share and valid Merkle proof that is received by the light client is gos-
siped to all the full nodes that the light client is connected to if the full nodes
do not have them, and those full nodes gossip it to all of the full nodes that
they are connected to.

6. If all the proofs in step 4 succeeded, and no shares are missing from the
sample made in step 2, then the block is accepted as available if within 2 × δ
no fraud proofs for the block’s erasure code is received (Sect. 5.3).

Recovery and Selective Share Disclosure. There must be a sufficient num-
ber of light clients to sample at least (2k)2 − (k + 1)2 different shares in total
for the block to be recoverable; recall if (k + 1)2 shares are unavailable, the
Reed-Solomon matrix may be unrecoverable. Additionally, the block producer
can selectively releases shares as light clients ask for them, and always pass the
sampling challenge of the clients that ask for the first (2k)2 − (k + 1)2 shares, as
they will accept the blocks as available despite them being unrecoverable. The
number of light clients will be discussed in Sect. 5.4.

Table 1 in Sect. 5.4 will show that the number of light clients that this may
apply to is in the hundreds to low thousands if s is set to a reasonable size,
which is extremely low (less than ∼ 0.2% of users) compared to for example 1M+
users who have installed a popular Bitcoin Android SPV client [4]. Alternatively,
block producers can be prevented from selectively releasing shares to the first
clients if one assumes an enhanced network model where each sample request
for each share is anonymous (i.e., sample requests cannot be linked to the same
client) and the distribution in which every sample request is received is uniformly
random, for example by using a mix net [10]. As the network would not be able
to link different per-share sample requests to the same clients, shares cannot
be selectively released on a per-client basis. This also prevents adversarial block
producers from targeting a specific light client via its known IP address, by only
releasing shares to that light client. See Appendix A.2 for proofs.

5.3 Fraud Proofs of Incorrectly Generated Extended Data

If a full node has enough shares to recover any row or column, and after doing
so detects that recovered data does not match its respective row or column root,
then it should distribute a fraud proof consisting of enough shares in that row
or column to be able to recover it, and a Merkle proof for each share.

We define a function VerifyCodecFraudProof and its parameters that verifies
these fraud proofs, where axisRootji ∈ {rowRootji , columnRootji}. We denote axis
and axj as row or column boolean indicators; 0 for rows and 1 for columns.

Fraud Proofs 291

Summary of VerifyCodecFraudProof. The fraud proof consists of (i) the
Merkle root of the incorrectly generated row or column, (ii) a Merkle proof
that the row or column root is in the data tree, (iii) enough shares to be able to
reconstruct that row or column, and (iv) Merkle proofs that each share is in the
data tree. The function takes as input this fraud proof, and checks that (i) all
of the supplied Merkle proofs are valid, (ii) all of the shares given by the prover
are in the same row or column and (iii) that the recovered row or column indeed
does not match the row or column root in the block. If all these conditions are
true, then the fraud proof is valid, and the block that the fraud proof is for
should be permanently rejected by the client.

VerifyCodecFraudProof(blockHashi,

axisRootji , {axisRootji → dataRooti}, j, (row or column root)
axis, (row or column indicator)
((sh0, pos0, ax0), (sh1, pos1, ax1), ..., (shk, posk, axk)), (shares)
({sh0 → dataRooti}, {sh1 → dataRooti}}, ..., {shk → dataRooti}})

) ∈ {true, false}

Let recover be a function that takes a list of shares and their positions in
the row or column ((sh0, pos0), (sh1, pos1), ..., (shk, posk)), and the length of the
extended row or column 2k. The function outputs the full recovered shares
(sh0, sh1, ..., sh2k) or err if the shares are unrecoverable.

recover(((sh0, pos0), (sh1, pos1), ..., (shk, posk)), 2k) ∈ {(sh0, sh1, ..., sh2k), err}
VerifyCodecFraudProof returns true if all of the following conditions are met:

1. blockHashi corresponds to a block header hi that the client has downloaded
and stored.

2. If axis = 0 (row root), VerifyMerkleProof(axisRootji , {axisRootji → dataRooti},
dataRooti, 2 × matrixWidthi, j) returns true.

3. If axis = 1 (col. root), VerifyMerkleProof(axisRootji , {axisRootji → dataRooti},
dataRooti, 2 × matrixWidthi,

1
2dataLengthi + j) returns true.

4. For each (shx, posx, axx), VerifyShareMerkleProof(shx, {shx → dataRooti},
dataRooti, dataLength, index) returns true, where index is the expected index
of the shx in the data tree based on posx assuming it is in the same row or
column as axisRootji . See Appendix A.2 for how index can be computed.
Note that full nodes can specify Merkle proofs of shares in rows or columns
from either the row or column roots e.g., if a row is invalid but the full nodes
only has Merkle proofs for the row’s share from column roots. This also allows
for full nodes to generate fraud proofs if there are inconsistencies in the data
between rows and columns e.g., if the same cell in the matrix has a different
share in its row and column trees.

5. root(recover(((sh0, pos0), (sh1, pos1), ..., (shk, posk)))) = axisRootji is false.

292 M. Al-Bassam et al.

If VerifyCodecFraudProof for blockHashi returns true, then the block header
hi is permanently rejected by the light client.

5.4 Security Probability Analysis

We present how the data availability scheme presented in Sect. 5 can provide
lights clients with a high level of assurance that block data is available to the
network.

Fig. 2. p1(X ≥ 1) versus the number
of samples.

Fig. 3. Light clients ĉ for which pc(Y >
ĉ) ≥ 0.99.

Unrecoverable Block Detection. Figure 2 shows the probability p1(X ≥ 1)
that a single light client samples at least one unavailable share in a matrix with
(k + 1)2 unavailable shares, thus detecting that a block may be unrecoverable
(see Theorem 2 in Appendix A.1). Figure 2 shows how this probability varies
with the number of samples s for k = 32, 64, 128; each light client samples at
least one unavailable share with about 60% probability after 3 samplings (i.e.,
after querying respectively 0.073% of the block shares for k = 32 and 0.005%
of the block shares for k = 128), and with more than 99% probability after 15
samplings (i.e., after querying respectively 0.4% of the block shares for k = 32
and 0.02% of the block shares for k = 128). Furthermore, this probability is
almost independent of k for large values of k (see Corollary 2 in Appendix A.1).

Table 1. Minimum number of light clients (c) required to achieve pe(Z ≥ γ) > 0.99 for
various values of k and s. The approximate values have been approached numerically
as evaluating Theorem 4 can be extremely resource-intensive for large values of k.

pe(Z ≥ γ) s = 2 s = 5 s = 10 s = 20 s = 50

k = 16 692 277 138 69 28

k = 32 2805 1,122 561 280 112

k = 64 11,289 4,516 2,258 1,129 451

k = 128 >40,000 ∼18,000 ∼9,000 ∼4,500 1,811

Fraud Proofs 293

Multi-client Unrecoverable Block Detection. pc(Y > ĉ) is the probability
that more than ĉ out of c light clients sample at least one unavailable share in
a matrix with (k + 1)2 unavailable shares (see Theorem 3 in Appendix A.1).
Figure 3 shows the variation of the number of light clients ĉ for which pc(Y >
ĉ) ≥ 0.99 with the sampling size s, fixing c = 1000, and the matrix sizes are
k = 64, 128, 256. pc(Y > ĉ) is almost independent of k, and can be used to
determine the number of light clients that will detect incomplete matrices with
high probability (pc(Y > ĉ) ≥ 0.99); there is little gain in increasing s over 15.

Recovery and Selective Share Disclosure. Table 1 presents the probability
pe(Z ≥ γ) > 0.99 that light clients collectively samples enough shares to recover
every share of the 2k × 2k matrix (see Corollary 3 in Appendix A.1). We are
interested in the probability that light clients—each sampling s distinct shares—
collectively samples at least γ distinct shares, where γ is the minimum number
of distinct shares (randomly chosen) needed to have the certainty to be able to
recover the 2k × 2k matrix (see Corollary 1 in Appendix A.1).

6 Performance and Implementation.

We implemented the data availability proof scheme described in Sect. 5 and
a prototype of the state transition fraud proof scheme described in Sect. 4 in
2,683 lines of Go code and released the code as a series of free and open-source
libraries.1 We perform the measurements on a laptop with an Intel Core i5
1.3GHz processor and 16GB of RAM, and use SHA-256 for hashing.

Table 2 shows the space complexity and sizes for different objects. We observe
that the size of the state transition fraud proofs only grows logarithmically with
the size of the block and state; this is because the number of transactions in
a period remains static, but the size of the Merkle proof for each transaction

Table 2. Worst case space complexity and illustrative sizes for various objects for 250
KB and 1MB blocks. p represents the number of transactions in a period, w represents
the number of witnesses for those transactions, d is short for dataLength, and s is the
number of key-value pairs in the state tree. For the illustrative sizes, we assume that a
period consists of 10 transactions, the average transaction size is 225 bytes, and that
conservatively there are 230 non-default nodes in the state tree.

Object Space complexity 250 KB block 1MB block

State fraud proof O(p+ p log(d) + w log(s) + w) 14,090b 14,410b

Availability fraud proof O(d0.5 + d0.5 log(d0.5)) 12,320b 26,688b

Single sample response O(shareSize+ log(d)) 320b 368b

Header O(1) 128b 128b

Header + axis roots O(d0.5) 2,176b 4,224b

1 “https://github.com/musalbas/rsmt2d”.

https://github.com/musalbas/rsmt2d

294 M. Al-Bassam et al.

Table 3. Worst case time complexity and benchmarks for various actions for 250 KB
and 1MB blocks (mean over 10 repeats), where [G] means generate and [V] means
verify. p represents the number of transactions in a period, b represents the number of
transactions in the block, w represents the number of witnesses for those transactions,
d is short for dataLength, and s is the number of key-value pairs in the state tree.
For the benchmarks, we assume that a period consists of 10 transactions, the average
transaction size is 225 bytes, and each transaction writes to one key in the state tree.

Action Time complexity 250 KB block 1 MB block

[G] State fraud proof O(b + p log(d) + w log(s)) 41.22 ms 182.80 ms

[V] State fraud proof O(p + p log(d) + w) 0.03 ms 0.03 ms

[G] Availability fraud proof O(d log(d0.5) + d0.5 log(d0.5)) 4.91 ms 19.18 ms

[V] Availability fraud proof O(d0.5 log(d0.5)) 0.05 ms 0.08 ms

[G] Single sample response O(log(d0.5)) < 0.00001 ms < 0.00001 ms

[V] Single sample response O(log(d0.5)) < 0.00001 ms < 0.00001 ms

increases logarithmically. On the other hand, the availability fraud proofs (as
well as block headers with the axis roots) grow at least in proportion to the
square root of the size of the block, as the size of a single row or column is
proportional to the square root of the size of the block.

Table 3 shows the time complexity and benchmarks for various actions. To
generate and verify availability fraud proofs, we use an algorithm based on Fast
Fourier Transforms (FFT) to perform the encoding and decoding, which has a
O(k log(k)) complexity for a message of k shares [20,30]. As expected, verifying
an availability fraud proof is significantly quicker than generating one. This is
because generation requires checking the entire data matrix, whereas verification
only requires checking one row or column.

7 Related Work

The Bitcoin paper [24] briefly mentions the possibility of ‘alerts’, which are mes-
sages sent by full nodes to alert light clients that a block is invalid, prompting
them to download the full block to verify the inconsistency. Little further explo-
ration has been done on this, partly due to the data availability problem.

There have been online discussions about how one may go about designing a
fraud proof system [29,34], but no complete design that deals with all block inva-
lidity cases and data availability has been proposed. These earlier systems have
taken the approach of attempting to design a fraud proof for each possible way
to create a block that violates the protocol rules (e.g., double spending inputs,
mining a block with a reward too high, etc.), whereas this paper generalises the
blockchain into a state transition system with only one fraud proof.

On the data availability side, Perard et al. [27] have proposed using era-
sure coding to allow light clients to voluntarily contribute to help storing the
blockchain without having to download all of it, however they do not propose

Fraud Proofs 295

a scheme to allow light clients to verify that the data is available via random
sampling and fraud proofs of incorrectly generated erasure codes.

Error coding as a potential solution has been briefly discussed on IRC chat-
rooms with no analysis, however these early ideas [23] require semi-trusted third
parties to inform clients of missing samples, and do not make use of 2D cod-
ing and proofs of incorrectly generated codes and are thus vulnerable to block
producers that generate invalid codes.

Cachin and Stefano [9] introduce verifiable information dispersal, which
stores files by distributing them amongst a set of servers in a storage-efficient
way, where up to one third of the servers and an arbitrary number of clients
may be malicious. Data availability proofs on the other hand do not make any
honest majority assumptions about nodes, however require a minimum number
of honest light clients.

7.1 SParse FrAud pRotection (SPAR)

Since the release of this paper’s pre-print, new work by Yu et al. [39] on data
availability proofs was presented in FC’20 that builds on this work, which
adopts our security definitions and framework. An alternative data availabil-
ity proof scheme called SPAR is proposed where only an O(1) hash commitment
is required in each header with respect to the size of the block, compared to an
O(

√
n) commitment in our scheme. The scheme uses a Merkle tree where each

layer of the tree is coded with an LDPC code [6]. The scheme considers sampling
with two types of adversarial block producers: a strong adversary and a weak
adversary. A strong adversary can find, with NP-hardness, the specific shares
that must be hidden (the stopping set) in order to make the data unavailable. A
weak adversary cannot find the stopping set, and thus randomly selects shares
to withhold. Under a threat model that assumes a strong adversary, clients must
therefore sample more shares to achieve the same data availability guarantees.

According to the evaluation of the scheme in the paper [39], light clients
are required to download 2.5–4x more samples than our 2D-RS scheme from
each block to achieve the same level of data availability guarantee under a weak
adversary, and 10–16x more under a strong adversary. Furthermore, the size of
each sample is increased as shares must be downloaded from multiple layers of
the tree, as opposed to only the bottom layer in our 2D-RS scheme. However,
the overall amount of data that needs to be downloaded only increases loga-
rithmically with the block size as the size of the Merkle proofs only increase
logarithmically, while the header size is O(1) instead of O(

√
n).

Figure 4 in Appendix C compares the overall header and sampling bandwidth
cost for different block sizes for both the 2D-RS scheme and the SPAR scheme,
with a target data availability guarantee of 99% and 256 byte shares (used in
the evaluation in both this paper and SPAR). We observe that due to the high
sampling cost of SPAR, it outperforms 2D-RS in bandwidth costs only when
the block size is greater than 50 MB under the weak adversary model. After 50
MB, the fact that the bandwidth cost only increases logarithmically in SPAR
becomes advantageous.

296 M. Al-Bassam et al.

On the other hand, the size of each SPAR sample is smaller when the size
of the shares are smaller. To compare the best case scenario, Fig. 5 in Appendix
C shows the comparison between SPAR and 2D-RS assuming 32 byte shares
(i.e., the size of shares are equivalent to the size of the SHA-256 hash). This
shows that SPAR outperforms 2D-RS for blocks greater than 6 MB under the
weak adversary model. However, decreasing the share size increases the fraud
proof size and decoding complexity—we refer readers to the SPAR paper [39]
for metrics.

8 Conclusion

We presented, implemented and evaluated a complete fraud and data availability
proof scheme, which enables light clients to have security guarantees almost at
the level of a full node, with the added assumptions that there is at least one
honest full node in the network that distributes fraud proofs within a maximum
network delay, and that there is a minimum number of light clients in the network
to collectively recover blocks.

Acknowledgements. Mustafa Al-Bassam is supported by a scholarship from The
Alan Turing Institute and Alberto Sonnino is supported by the European Commission
Horizon 2020 DECODE project under grant agreement number 732546.

Thanks to George Danezis, Alexander Hicks and Sarah Meiklejohn for helpful dis-
cussions about the mathematical proofs.

Thanks to our shephard Sreeram Kannan for providing helpful feedback.

Appendix

See the full version of the paper at https://fc21.ifca.ai/papers/83.pdf.

References

1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A
sharded smart contracts platform. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS) (2018)

2. Antonopoulos, A.M.: Mastering bitcoin: unlocking digital crypto-currencies.
O’Reilly Media Inc. 1st edn. (2014)

3. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S.,
Danezis, G.: Consensus in the age of blockchains. CoRR abs/1711.03936 (2017).
https://arxiv.org/abs/1711.03936

4. Bitcoin Wallet Developers: Bitcoin wallet - apps on Google Play (2018). https://
play.google.com/store/apps/details?id=de.schildbach.wallet

5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

6. Burshtein, D., Miller, G.: Asymptotic enumeration methods for analyzing ldpc
codes. IEEE Trans. Inf. Theory 50(6), 1115–1131 (2004). https://doi.org/10.1109/
TIT.2004.828064

https://fc21.ifca.ai/papers/83.pdf
https://arxiv.org/abs/1711.03936
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://doi.org/10.1109/TIT.2004.828064
https://doi.org/10.1109/TIT.2004.828064

Fraud Proofs 297

7. Buterin, V.: Ethereum: the ultimate smart contract and decentralized applica-
tion platform (white paper) (2013). http://web.archive.org/web/20131228111141/
vbuterin.com/ethereum.html

8. Buterin, V.: Ethereum sharding FAQs (2018). https://github.com/ethereum/wiki/
wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982

9. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05), pp. 191–201. IEEE
(2005)

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees. In: Brumley, B.,
Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 199–215. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47560-8 13

12. Dudáček, L., Veřtát, I.: Multidimensional parity check codes with short block
lengths. In: Telecommunications Forum (TELFOR), 2016 24th, pp. 1–4. IEEE
(2016)

13. Elias, P.: Error-free coding. Trans. IRE Prof. Group Inf. Theory 4(4), 29–37 (1954)
14. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)
15. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s

peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15), pp. 129–144. USENIX Association, Washington, D.C. (2015). https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman

16. Karlo, T.: Ending Bitcoin support (2018). https://stripe.com/blog/ending-
Bitcoin-support

17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

18. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: Proceed-
ings of IEEE Symposium on Security and Privacy. IEEE (2018)

19. Laurie, B., Kasper, E.: Revocation transparency (2012). https://www.links.org/
files/RevocationTransparency.pdf

20. Lin, S.J., Chung, W.H., Han, Y.S.: Novel polynomial basis and its application
to Reed-Solomon erasure codes. In: Proceedings of the 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pp. 316–325. FOCS ’14, IEEE
Computer Society, Washington, DC, USA (2014). https://doi.org/10.1109/FOCS.
2014.41, http://dx.doi.org/10.1109/FOCS.2014.41

21. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. CCS ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978389

22. Marshall, A.: Bitcoin scaling problem, explained (2017). https://cointelegraph.
com/explained/Bitcoin-scaling-problem-explained

23. Maxwell, G.: (2017). https://botbot.me/freenode/bitcoin-wizards/2017-02-01/?
msg=80297226&page=2

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

http://web.archive.org/web/20131228111141/vbuterin.com/ethereum.html
http://web.archive.org/web/20131228111141/vbuterin.com/ethereum.html
https://github.com/ethereum/wiki/wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982
https://github.com/ethereum/wiki/wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982
https://doi.org/10.1007/978-3-319-47560-8_13
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://stripe.com/blog/ending-Bitcoin-support
https://stripe.com/blog/ending-Bitcoin-support
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://www.links.org/files/RevocationTransparency.pdf
https://www.links.org/files/RevocationTransparency.pdf
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1109/FOCS.2014.41
http://dx.doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1145/2976749.2978389
https://cointelegraph.com/explained/Bitcoin-scaling-problem-explained
https://cointelegraph.com/explained/Bitcoin-scaling-problem-explained
https://botbot.me/freenode/bitcoin-wizards/2017-02-01/?msg=80297226&page=2
https://botbot.me/freenode/bitcoin-wizards/2017-02-01/?msg=80297226&page=2
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

298 M. Al-Bassam et al.

25. Orland, K.: Your Bitcoin is no good here–Steam stops accepting cryptocurrency
(2017). https://arstechnica.com/gaming/2017/12/steam-drops-Bitcoin-payment-
option-citing-fees-and-volatility/

26. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.S.ébastien., Nielsen, J. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

27. Perard, D., Lacan, J., Bachy, Y., Detchart, J.: Erasure code-based low storage
blockchain node. In: IEEE International Conference on Blockchain (2018)

28. Peterson, W.W., Wesley, W., Weldon Jr Peterson, E., Weldon, E., Weldon, E.:
Error-correcting codes. MIT Press (1972)

29. Ranvier, J.: Improving the ability of SPV clients to detect invalid chains (2017).
https://gist.github.com/justusranvier/451616fa4697b5f25f60

30. Reed, I., Scholtz, R., Truong, T.K., Welch, L.: The fast decoding of Reed-Solomon
codes using Fermat theoretic transforms and continued fractions. IEEE Trans. Inf.
Theory 24(1), 100–106 (1978). https://doi.org/10.1109/TIT.1978.1055816

31. Saints, K., Heegard, C.: Algebraic-geometric codes and multidimensional cyclic
codes: a unified theory and algorithms for decoding using Grobner bases. IEEE
Trans. Inf. Theory 41(6), 1733–1751 (1995)

32. Shea, J.M., Wong, T.F.: Multidimensional codes. Encyclopedia of Telecommuni-
cations (2003)

33. Shen, B.Z., Tzeng, K.: Multidimensional extension of reed-solomon codes. In: Infor-
mation Theory 1998 Proceedings 1998 IEEE International Symposium on, p. 54.
IEEE (1998)

34. Todd, P.: Fraud proofs (2016). https://diyhpl.us/wiki/transcripts/mit-bitcoin-
expo-2016/fraud-proofs-petertodd/

35. Wicker, S.B.: Reed-solomon codes and their applications. IEEE Press, Piscataway,
NJ, USA (1994)

36. Wong, J.I.: CryptoKitties is causing Ethereum network congestion (2017). https://
qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/

37. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger -
Byzantium version, p. e94ebda (yellow paper) (2018). https://ethereum.github.
io/yellowpaper/paper.pdf

38. Wu, J., Costello, D.: New multilevel codes over GF(q). IEEE Trans. Inf. Theory
38(3), 933–939 (1992)

39. Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded
merkle tree: solving data availability attacks in blockchains. In: Financial Cryp-
tography and Data Security (2020)

40. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948 (2018)

https://arstechnica.com/gaming/2017/12/steam-drops-Bitcoin-payment-option-citing-fees-and-volatility/
https://arstechnica.com/gaming/2017/12/steam-drops-Bitcoin-payment-option-citing-fees-and-volatility/
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://gist.github.com/justusranvier/451616fa4697b5f25f60
https://doi.org/10.1109/TIT.1978.1055816
https://diyhpl.us/wiki/transcripts/mit-bitcoin-expo-2016/fraud-proofs-petertodd/
https://diyhpl.us/wiki/transcripts/mit-bitcoin-expo-2016/fraud-proofs-petertodd/
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

ACeD: Scalable Data Availability Oracle

Peiyao Sheng1(B), Bowen Xue2, Sreeram Kannan2, and Pramod Viswanath1

1 University of Illinois, Urbana-Champaign, IL 61801, USA
psheng2@illinois.edu

2 University of Washington, Seattle, WA, USA

Abstract. A popular method in practice offloads computation and stor-
age in blockchains by relying on committing only hashes of off-chain data
into the blockchain. This mechanism is acknowledged to be vulnerable to a
stalling attack: the blocks corresponding to the committed hashes may be
unavailable at any honest node. The straightforward solution of broadcast-
ing all blocks to the entire network sidesteps this data availability attack,
but it is not scalable. In this paper, we propose ACeD, a scalable solution
to this data availability problem with O(1) communication efficiency, the
first to the best of our knowledge. The key innovation is a new protocol that
requires each of theN nodes to receive onlyO(1/N) of the block, such that
the data is guaranteed to be available in a distributed manner in the net-
work. Our solution creatively integrates coding-theoretic designs inside of
Merkle tree commitments to guarantee efficient and tamper-proof recon-
struction; this solution is distinct from Asynchronous Verifiable Informa-
tion Dispersal [7] (in guaranteeing efficient proofs of malformed coding)
and Coded Merkle Tree [25] (which only provides guarantees for random
corruption as opposed to our guarantees for worst-case corruption). We
implement ACeD with full functionality in 6000 lines of Rust code, inte-
grate the functionality as a smart contract into Ethereum via a high-
performance implementation demonstrating up to 10,000 transactions per
second in throughput and 6000x reduction in gas cost on the Ethereum
testnet Kovan. Our code is available in [1].

1 Introduction

Public blockchains such as Bitcoin and Ethereum have demonstrated themselves
to be secure in practice (more than a decade of safe and live operation in the
case of Bitcoin), but at the expense of poor performance (throughput of a few
transactions per second and hours of latency). Design of high performance (high
throughput and low latency) blockchains without sacrificing security has been
a major research area in recent years, resulting in new proof of work [4,13,23,
24], proof of stake [3,9,10,15,18], and hybrid [6,20] consensus protocols. These
solutions entail a wholesale change to the core blockchain stack and existing
blockchains can only potentially upgrade with very significant practical hurdles

The full version of paper is available in https://arxiv.org/abs/2011.00102
P. Sheng and B. Xue—Contributed equally to this work.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 299–318, 2021.
https://doi.org/10.1007/978-3-662-64331-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_16&domain=pdf
https://arxiv.org/abs/2011.00102
https://doi.org/10.1007/978-3-662-64331-0_16

300 P. Sheng et al.

(e.g.: hard fork of existing ledger). To address this concern, high throughput
scaling solutions are explored via “layer 2” methods, including payment channels
[11,19] and state channels [17,21,22]. These solutions involve “locking” a part
of the ledger on the blockchain and operating on this trusted, locked state on an
application layer outside the blockchain; however the computations are required
to be semantically closely tied to the blockchain (e.g.: using the same native
currency for transactions) and the locked nature of the ledger state leads to
limited applications (especially, in a smart contract platform such as Ethereum).

Fig. 1. (a) Side blockchains commit the hashes of blocks to a larger trusted blockchain.
(b) An oracle layer is introduced to ensure data availability. (c) ACeD is a data avail-
ability oracle.

In practice, a popular form of scaling blockchain performance is via the fol-
lowing: a smaller blockchain (henceforth termed “side blockchain”) derives trust
from a larger blockchain (henceforth termed “trusted blockchain”) by commit-
ting the hashes of its blocks periodically to the trusted blockchain (Fig. 1a). The
ordering of blocks in the side blockchain is now determined by the order of the
hashes in the trusted blockchain; this way the security of the side blockchain is
directly derived from that of the trusted blockchain. This mechanism is simple,
practical and efficient – a single trusted blockchain can cheaply support a large
number of side blockchains, because it does not need to store, process or validate
the semantics of the blocks of the side blockchains, only storing the hashes of
them. It is also very popular in practice, with several side blockchains running on
both Bitcoin and Ethereum; examples include donation trace (Binance charity
[14]) and diplomas and credentials verification (BlockCert used by MIT among
others [16]).

For decentralized operations of this simple scaling mechanism, any node in
the side blockchain should be able to commit hashes to the trusted blockchain.
This simple operation, however, opens up a serious vulnerability: an adversarial
side blockchain node can commit the hash of a block without transmitting the

ACeD: Scalable Data Availability Oracle 301

block to any other side blockchain node. Thus, while the hash is part of the
ordering according to the trusted blockchain, the block corresponding to the hash
is itself unavailable at any side blockchain node; this data availability attack is a
serious threat to the liveness of the side blockchain. The straightforward solution
to this data availability attack is to store all blocks on the trusted blockchain, but
the communication and storage overhead for the trusted blockchain is directly
proportional to the size of the side blockchains and the mechanism is no longer
scalable.

We propose an intermediate “data availability oracle” layer that interfaces
between the side blockchains and the trusted blockchain (Fig. 1b). The oracle
layer accepts blocks from side blockchains, pushes verifiable commitments to the
trusted blockchain and ensures data availability to the side blockchains. The
N oracle layer nodes work together to reach a consensus about whether the
proposed block is retrievable (i.e., data is available) and only then commit it
to the trusted blockchain. The key challenge is how to securely and efficiently
share the data amongst the oracle nodes to verify data availability; if all oracle
nodes maintain a copy of the entire side blockchain data locally (i.e., repetition),
then that obviously leads to simple majority vote-based retrievability but is not
scalable. If the data is dispersed among the nodes to reduce redundancy (we call
this “dispersal”), even one malicious oracle node can violate the retrievability.
Thus it appears there is an inherent trade-off between security and efficiency.

The main point of this paper is to demonstrate that the trade-off between
security and efficiency is not inherent; the starting point of our solution is the uti-
lization of an erasure code such that different oracle nodes receive different coded
chunks. A key issue is how to ensure the integrity and correctness of the coded
chunks. Intuitively we can use a Merkle tree to provide the proof of inclusion
for any chunk, but a malicious block producer can construct a Merkle tree of a
bunch of nonsense symbols so that no one can successfully reconstruct the block.
To detect such attacks, nodes can broadcast what they received and meanwhile
download chunks forwarded by others to decode the data and check the correct-
ness. Such a method is used in an asynchronous verifiable information dispersal
(AVID) protocol proposed by [7]. AVID makes progress on storage savings with
the help of erasure code but sacrifices communication efficiency. Nodes still need
to download all data chunks; hence, the communication complexity is O(Nb). An
alternative approach to detect incorrect coding attacks is via an incorrect-coding
proof (also called fraud proof), which contains symbols that fail the parity check
and can be provided by any node who tries to reconstruct the data; consider
using an (n, k) Reed-Solomon code (which is referred as 1D-RS), with k coded
symbols in the fraud proof, essentially not much better than downloading the
original block (n symbols). For reducing the size of fraud proof, 2D-RS [2] places
a block into a (

√
k,

√
k) matrix and apply (

√
n,

√
k) Reed-Solomon code on all

columns and rows to generate n2 coded symbols; 2D-RS reduces the fraud proof
size to O(

√
b log b) if we assume symbol size is constant.

In summary (Table 1), to find a scalable solution for the data availability
oracle problem, erasure code based methods must defend against the incorrect
coding attack while minimizing the storage and communication cost. 1D-RS has

302 P. Sheng et al.

low communication complexity but when the storing node is adversarial, the
storage and download overhead are factor b worse than optimal. The storage
and download overhead of AVID remains optimal even under adversarial storing
node but the communication complexity is factor N worse than optimal. A full
analysis on each performance entry in the table is provided in full paper.

Our main technical contribution is a new protocol, called Authenticated
Coded Dispersal (ACeD), that provides a scalable solution to the data availabil-
ity oracle problem. ACeD achieves near-optimal performance on all parameters
(defined in Table 2): optimal storage, download and communication overhead
under the normal path, and near-optimal (worse by a logarithmic factor) stor-
age and download overhead when the storing node is adversarial, cf. Table 1.
We state and prove the security of the data availability guarantee and efficiency
properties of ACeD in a formal security model (Sect. 2).

Table 1. Performance metrics for different data availability oracles (N : number of
oracle nodes, b: block size).

Maximal

adversary

fraction

Normal case Worst case Communication

complexity

Storage

overhead

Download

overhead

Storage

overhead

Download

overhead

Uncoded (repetition) 1/2 O(N) O(1) O(N) O(1) O(Nb)

Uncoded (dispersal) 1/N O(1) O(1) O(1) O(1) O(b)

AVID [7] 1/3 O(1) O(1) O(1) O(1) O(Nb)

1D-RS 1/2 O(1) O(1) O(b) O(b) O(b)

2D-RS [2] 1/2 O(1) O(1) O(
√

b log b) O(
√

b log b) O(b)

ACeD 1/2 O(1) O(1) O(log b) O(log b) O(b)

Table 2. System performance metrics

Metric Formula Explanation

Maximal adversary fraction β The maximum number of adversaries is

βN

Storage overhead Dstore/Dinfo The ratio of total storage used and total

information stored

Download overhead Ddownload/Ddata The ratio of the size of downloaded data

and the size of reconstructed data

Communication complexity Dmsg Total number of bits communicated

Technical Summary of ACeD. There are four core components in ACeD, as
is shown in Fig. 1c with the following highlights.

– ACeD develops a novel coded commitment generator called Coded Interleav-
ing Tree (CIT), which is constructed layer by layer in an interleaved manner
embedded with erasure codes. The interleaving property avoids downloading
extra proof and thus minimizes the number of symbols needed to store.

– A dispersal protocol is designed to disperse tree chunks among the network
with the least redundancy and we show how feasible dispersal algorithms
ensure the reconstruction of all data.

ACeD: Scalable Data Availability Oracle 303

– A hash-aware peeling decoder is used to achieve linear decoding complexity.
The fraud proof is minimized to a single parity equation.

Performance Guarantees of ACeD. Our main mathematical claim is that
safety of ACeD holds as long as the trusted blockchain is secure, and ACeD is live
as long as the trusted blockchain is live and a majority of oracle nodes are honest
(i.e., follow protocol) (Sect. 4.1). ACeD is the first scalable data availability oracle
that promises storage and communication efficiency while providing a guarantee
for security with a provable bound and linear retrieval complexity; see Table 1
with details deferred to Sect. 4.2. The block hash commitment on the trusted
blockchain and the size of fraud proof are both in constant size.

Incentives. From a rational action point of view, oracle nodes are naturally
incentivized to mimic others’ decisions without storing/operating on their own
data. This “information cascade” phenomenon is recognized as a basic challenge
of actors abandoning their own information in favor of inferences based on actions
of earlier people when making sequential decisions [12]. In the context of ACeD,
we carefully use the semantics of the data dispersal mechanisms to design a proba-
bilistic auditing mechanism that ties the vote of data availability to an appropriate
action by any oracle node. This allows us to create a formal rational actor model
where the incentive mechanism can be mathematically modeled: we show that the
honest strategy is a strong Nash equilibrium; the details are deferred to full paper.

Algorithm to System Design and Implementation. We design an efficient
system architecture implementing the ACeD components. Multithreaded erasure
code encoding and block pipelining designs significantly parallelize the operations
leading to a high performing architecture. We implement this design in roughly
6000 lines of code in Rust and integrate ACeD with Ethereum (as the trusted
blockchain). We discuss the design highlights and implementation optimizations
in Sect. 5.

Evaluation. ACeD is very efficient theoretically, but also in practice. Our imple-
mentation of ACeD is run by lightweight oracle nodes (e.g.: up to 6 CPU cores)
communicating over a wide area network (geographically situated in three conti-
nents) and is integratedwith theEthereum testnetKovanwith full functionality for
the side blockchains to run Ethereum smart contracts. Our implementation scales
a side blockchain throughput up to 10,000 tx/s while adding a latency of only a few
seconds. Decoupling computation from Ethereum (the trusted blockchain) signifi-
cantly reduces gas costs associated with side blockchain transactions: in our exper-
iments on a popular Ethereum app Cryptokitties, we find that the gas (Ethereum
transaction fee) is reduced by a factor of over 6000. This is the focus of Sect. 6.

We conclude the paper with an overview of our contributions in the context
of the interoperability of blockchains in Sect. 7.

2 System and Security Model

The system is made up of three components: a trusted blockchain (that stores com-
mitments and decides ordering), clients (nodes in side blockchains who propose
data), and an intermediate oracle layer ensuring data availability (see Fig. 1c).

304 P. Sheng et al.

2.1 Network Model and Assumptions

There are two types of nodes in the network: oracle nodes and clients.
Oracle nodes are participants in the oracle layer. They receive block commit-

ment requests from clients, including block headers, and a set of data chunks.
After verifying the integrity and correctness of the data, they vote to decide
whether the block is available or not and submit the results to the trusted
blockchain.

Clients propose blocks and request the oracle layer to store and commit the
blocks. They periodically update the local ledger according to the commitment
states from the trusted blockchain and ask oracle nodes for the missing blocks
on demand.

One of the key assumptions of our system is that the trusted blockchain has
a persistent order of data and liveness for its service. Besides, we assume that in
the oracle layer, there is a majority of honest nodes. For clients, we only assume
that at least one client is honest (for liveness). Oracle nodes are connected to
all clients. The network is synchronous, and the communication is authenticated
and reliable.

2.2 Oracle Model

The oracle layer is introduced to offload the storage and ensure data availability.
The network of oracle layer consists of N oracle nodes, which can interact with
clients to provide data availability service. There exists an adversary that is able
to corrupt up to βN oracle nodes. Any node if not corrupted is called honest.

The basic data unit for the oracle layer is a block. A data availability oracle
comprises of the following primitives which are required for committing and
retrieving a block B.

1. Generate chunks: When a client wants to commit a block B to the trusted
blockchain, it runs (generate commitment(B,M)) to generate a commitment
c for the block B and a set of M chunks c1, ..cM which the block can be
reconstructed from.

2. Disperse chunks: There is a dispersal protocol disperse(B, (c1, .., cM), N)
which can be run by the client and specifies which chunks need to be sent to
which of the N oracle nodes.

3. Oracle finalization: The oracle nodes run a finalization protocol to finalize
and accept certain blocks whose commitments are written into the trusted
blockchain.

4. Retrieve Data: Clients can initiate a request (retrieve, c) for retrieving a set
of chunks for any commitment c that has been accepted by the oracle.

5. Decode Data: There is a primitive decode(c, {ci}i∈S) that any client can
run to decode the block from the set of chunks {ci}i∈S retrieved for the
commitment. The decoder also returns a proof that the decoded block B is
related to the commitment.

We characterize the security of the oracle model and formally define data avail-
ability oracle as follows,

ACeD: Scalable Data Availability Oracle 305

Definition 1. A data availability oracle for a trusted blockchain accepts blocks
from clients and writes commitments into the trusted blockchain with the follow-
ing properties:

1. Termination: If an honest client initiates a disperse request for a block B,
then block B will be eventually accepted and the commitment c will be written
into the trusted blockchain.

2. Availability: If a dispersal is accepted, whenever an honest client requests
for retrieval of a commitment c, the oracle is able to deliver either a block B
or a null block ∅ and prove its relationship to the commitment c.

3. Correctness: If two honest clients on running (retrieve, c) receives B1 and
B2, then B1 = B2. If the client that initiated the dispersal was honest, we
require furthermore that B1 = B, the original dispersed block.

A naive oracle satisfying all above expectations is trivial to construct, e.g.,
sending all oracle nodes a full copy of data. However, what we want is a scalable
data availability oracle. To better understand this motivation, in the next section,
we will introduce some metrics to concretize the oracle properties.

3 Technical Description of ACeD

In this section, we describe the four components of ACeD: CIT, dispersal pro-
tocol, retrieval protocol and block peeling decoder.

Fig. 2. The pipeline for a block to be committed in trusted blockchain.

3.1 Coded Interleaving Tree

The first building block of ACeD is a coded commitment generator which takes a
block proposed by a client as an input and creates three outputs: a commitment,
a sequence of coded symbols, and their proof of membership POM – see Fig. 2. The
commitment is the root of a coded interleaving tree (CIT), the coded symbols are
the leaves of CIT in the base layer, and POM for a symbol includes the Merkle proof
(all siblings’ hashes from each layer) and a set of parity symbols from all interme-
diate layers. A brief overview to erasure coding can be found in full paper.

306 P. Sheng et al.

The construction process of an example CIT is illustrated in Fig. 3. Suppose
a block has size b, and its CIT has � layers. The first step to construct the
CIT is to divide the block evenly into small chunks, each is called a systematic
symbol. The size of a systematic symbol is denoted as c, so there are s� = b/c
systematic symbols. And we apply erasure codes with coding ratio r ≤ 1 to
generate m� = s�/r coded symbols in base layer. Then by aggregating the hashes
of every q coded symbols we get m�/q systematic symbols for its parent layer
(layer � − 1), which can be further encoded to m�−1 = m�/(qr) coded symbols.
We aggregate and code the symbols iteratively until the number of symbols in
a layer decays to t, which is the size of the root.

Fig. 3. (1) CIT construction process of a block with s� = 8 systematic symbols, applied
with erasure codes of coding ratio r = 1

4
. The batch size q = 8 and the number of hashes

in root is t = 4. (2) Circled symbols constitute the 15th base layer coded symbol and
its POM. The solidly circled symbols are the base layer coded symbol and its Merkle
proof (intermediate systematic symbols), the symbols circled in dash are parity symbols
sampled deterministicly.

For all layers j except for root, 1 ≤ j ≤ �, denote the set of all mj coded
symbols as Mj , which contains two disjoint subsets of symbols: systematic sym-
bols Sj and parity symbols Pj . The number of systematic symbols is sj = rmj .
Specifically, we set Sj = [0, rmj) and Pj = [rmj ,mj). Given a block of s� sys-
tematic symbols in the base layer, the aggregation rule for the k-th systematic
symbol in layer j − 1 is defined as follows:

Qj−1[k] = {H(Mj [x]) | x ∈ [0,Mj), k = x mod rmj−1} (1)

Mj−1[k] = H(concat(Qj−1[k])) (2)

where 1 ≤ j ≤ � and H is a hash function. Q[k] is the tuple of hashes that will
be used to generate k-th symbol in the parent layer and concat represents the
string concatenation function which will concatenate all elements in an input
tuple.

ACeD: Scalable Data Availability Oracle 307

Generating a POM for a base layer symbol can be considered as a layer by
layer sampling process as captured by the following functions:

f� : [m�] →
(

m�−1

2

)
, · · · , f2 : [m�] →

(
m1

2

)
;

Each function maps a base layer symbol to two symbols of the specified layer: one is
a systematic symbol and the other is a parity symbol. We denote the two symbols
with a tuple of functions fj(i) = (pj(i), ej(i)), where pj(i) is the sampled system-
atic symbol and ej(i) is the sampled parity symbol, each is defined as follows:

pj(i) = i mod rmj−1; ej(i) = rmj−1 + (i mod (1 − r)mj−1) (3)

where pj : [m�] → [0, rmj−1) and ej : [m�] → [rmj−1,mj−1). Note that the
sampled non-base layer systematic symbols are automatically the Merkle proof
for both systematic and parity symbols in the lower layer.

There are two important properties of the sampling function. (1) It guaran-
tees that if at least η ≤ 1 ratio of distinct base layer symbols along with their
POM are sampled, then in every intermediate layer, at least η ratio of distinct
symbols are already picked out by the collected POM. It ensures the reconstruc-
tion of each layer of CIT (Lemma 2, reconstruction property). (2) All sampled
symbols at each layer have a common parent (Lemma 3, sibling property), which
ensures the space efficiency of sampling.

As described above, CIT can be represented by parameters T =
(c, t, r, α, q, d). All parameters have been defined except α, which is the undecod-
able ratio of an erasure code and d, which is the number of symbols in a failed
parity equation. Both of them will be discussed in the decoder section (Sect. 3.3).

Comparison with CMT. (1) CIT is designed for the Push model (the client
sends different chunks to different nodes) whereas CMT is designed for the Pull
model (the nodes decide which chunks to sample from the client). (2) The CIT
provides an ideal property (Lemma 2) that ensures reconstruction from any set
of nodes whose size is greater than a given threshold. Thus as long as enough
signatures are collected and we can be assured that the honest subset represented
therein is larger than this threshold, we are guaranteed reconstruction in CIT.
This is not the case in CMT, whose guarantees are probabilistic since each node
samples data in a probabilistic manner. (3) On the technical side, CIT requires
a new interleaving layer as well as a dispersal mechanism which decides how
to assign the different symbols from intermediate layers to different groups. (4)
Furthermore, CMT requires an assumption of an anonymous network whereas
CIT does not require an anonymous network.

3.2 Dispersal Protocol

Given the commitment, coded symbols and POM generated by CIT, the dispersal
protocol is used to decide the chunks all oracle nodes need to store. Consider a
simple model where there are M = b/(cr) chunks to be distributed to N nodes
(each node may receive k chunks) such that any γ fraction of nodes together
contains η fraction of chunks. The efficiency of the dispersal protocol is given by
λ = M/(Nk). We define the dispersal algorithm formally as follows,

308 P. Sheng et al.

Definition 2. The chunk dispersal algorithm is said to achieve parameters set
(M,N, γ, η, λ) if there is a collection of sets C = {A1, ..., AN} such that Ai ⊆ [M],
|Ai| = M

Nλ . Also, for any S ⊆ [N] with |S| = γN , it holds that |
⋃

i∈S

Ai| ≥ ηM .

To simplify the 5 dimensional region, we consider the tradeoff on the three
quantities: a certain triple (γ, η, λ) is said to be achievable if for any N , there
exists M such that the chunk dispersal algorithm can achieve parameters set
(M,N, γ, η, λ). In the ACeD model, γ is constrained by security threshold β
since the clients can only expect to collect chunks from at most (1−β)N nodes.
η is constrained by the undecodable ratio α of the erasure code since the total
chunks a client collects should enable the reconstruction. So for a given erasure
code, there is a trade-off between dispersal efficiency and security threshold.

Our main result is the demonstration of a dispersal protocol with near opti-
mal parameters (Lemma 1).

Lemma 1. If γ
λ < η, then (γ, η, λ) is not feasible. If γ

λ > log(1
1−η) then (γ, η, λ)

is feasible and there exists a chunk dispersal protocol with these parameters.

We provide a sketch of proof. If γ
λ < η, the maximum number of distinct

symbols is M
Nλ · γM = Mγ

λ < ηM , so (γ, η, λ) is not feasible.
If γ

λ > log(1
1−η), we prove that the probability of C is not a valid code can

vanish to as small as we want. The problem is transformed to the upper bound
of P (Y < ηM) use a standard inequality from the method of types [8], where Y
is the number of distinct chunks sampled. By sampling γ

λM chunks from a set
of M chunks randomly, we have P (Y < ηM) ≤ e−f(·)·M , where f(·) is a positive
function. So the probability of C is a valid code can be positive, which proves the
existence of a deterministic chunk distribution algorithm. And we can control
the probability of C is not a valid code to be vanishingly small. The detailed
proof of the result can be found in full paper.

In the dispersal phase, all oracle nodes wait for a data commitment c, k
assigned chunks and the corresponding POM. The dispersal is accepted if γ + β
fraction of nodes vote that they receive the valid data.

3.3 Retrieval Protocol and Block Decoding

When a client wants to retrieve the stored information, the retrieval protocol
will ask the oracle layer for data chunks. Actually, given erasure codes with
undecodable ratio α, an arbitrary subset of codes with the size of over ratio 1−α
is sufficient to reconstruct the whole block. When enough responses are collected,
a hash-aware peeling decoder introduced in [25] will be used to reconstruct the
block. The decoding starts from the root of CIT to the leaf layer and for each
layer, it keeps checking all degree-0 parity equations and then finding a degree-
1 parity equation to solve in turn. Eventually, either all symbols are decoded
or there exists an invalid parity equation. In the second case, a logarithmic size
incorrect-coding proof is prepared, which contains the inconsistent hash, d coded
symbols in the parity equation and their Merkle proofs. After an agreement is
reached on the oracle layer, the logarithmic size proof is stored in the trusted

ACeD: Scalable Data Availability Oracle 309

blockchain to permanently record the invalid block. Oracle nodes then remove
all invalid symbols to provide space for new symbols. In the special case when
the erasure code used by the CIT requires more than (1 − α) ratio of symbols
to decode the original block, oracle nodes need to invoke a bad code handling
protocol to reset a better code. We leave details in the full paper.

3.4 Protocol Summary

In summary, an ACeD system with N oracle nodes and block size b using CIT T
and dispersal protocol D can be represented by parameters (b,N, T ,D), where
T = (c, t, r, α, q, d) and D = (γ, η, λ). The pipeline to commit a block to the
trusted blockchain is as follows (see Fig. 2).

– A client proposes a block of size b, it first generates a CIT with base layer
symbol size c, number of hashes in root t, coding ratio r and batch size q.
There are M = b/(cr) coded symbols in the base layer. And then it disperses
M coded symbols, their POM and the root of CIT to N oracle nodes using
the dispersal protocol D = (γ, η, λ).

– Oracle nodes receive the dispersal request, they accept chunks and commit-
ment, verify the consistency of data, POM and root, vote their results. A
block is successfully committed if there are at least β + γ votes. Upon receiv-
ing retrieval requests, oracle nodes send the stored data to the requester.
Upon receiving the fraud proof of a block, oracle nodes delete the stored data
for that block.

– Other clients send retrieval requests to the oracle nodes on demand. Upon
receiving at least η ≥ 1 − α fraction of chunks from at least γ oracle nodes,
they reconstruct the block, if a coding error happens, the fraud proof will be
sent to the trusted blockchain.

4 Performance Guarantees of ACeD

Theorem 1. Given an adversarial fraction β < 1
2 for an oracle layer of N

nodes, ACeD is a data availability oracle for a trusted blockchain with O(b)
communication complexity, O(1) storage and download overhead in the normal
case, and O(log b) storage and download overhead in the worst case.

This result follows as a special case of a more general result below (Theo-
rem 2).

Proof. Suppose χ is an ACeD data availability oracle with parameters
(b,N, T ,D) where T = (c, t, r, α, q, d) and D = (γ, η, λ). There are at most
β < 1

2 fraction of adversarial nodes in the oracle layer. Then by setting
r, q, d, t = O(1), c = O(log b), b 	 N , χ is secure as long as β ≤ 1

2 (1 − λ log(1
α));

the communication complexity of χ is O(b) because

Nyt +
b

λr
+

(2q − 1)by
crλ

logqr

b

ctr
= O(N) + O(b) + O(b) = O(b)

310 P. Sheng et al.

the storage and download overhead in the normal case is O(1), because

Nyt

b
+

1
λr

+
(2q − 1)y

crλ
logqr

b

ctr
= O(1) + O(1) + O(

1
log b

log(
b

log b
)) = O(1)

the storage and download overhead in the worst case is O(log b), because

c(d − 1)
y

+ d(q − 1) logqr

b

ctr
= O(log b) + O(logqr(

b

log b
) = O(log b)).

A complete description of the security and performance guarantees of ACeD
is below.

Theorem 2. ACeD is a data availability oracle for the trusted blockchain toler-
ating at most β ≤ 1/2 fraction of adversarial oracle nodes in an oracle layer of
N nodes. The ACeD is characterized by the system parameters (b,N, T ,D), where
T = (c, t, r, α, q, d) and D = (γ, η, λ). y is a constant size of a hash digest, then

1. ACeD is secure under the conditions that

β ≤ 1 − γ

2
;

γ

λ
> log(

1
1 − η

); η ≥ 1 − α

2. Communication complexity is

Nyt +
b

λr
+

(2q − 1)by
crλ

logqr

b

ctr

3. In normal case, both the storage and download overhead are

Nyt

b
+

1
λr

+
(2q − 1)y

crλ
logqr

b

ctr

4. In worst case, both storage and download overhead are

c(d − 1)
y

+ d(q − 1) logqr

b

ctr

Proof. We prove the security and efficiency guarantees separately.

4.1 Security

To prove that ACeD is secure as long as the trusted blockchain is persistent and

1 − 2β ≥ γ;
γ

λ
> log(

1
1 − η

); η ≥ 1 − α,

we prove the following properties as per Definition 1.

ACeD: Scalable Data Availability Oracle 311

– Termination. In ACeD, a dispersal is accepted only if there is a valid
commitment submitted to the trusted blockchain. Suppose an honest client
requests for dispersal but the commitment is not written into the trusted
blockchain, then either the commitment is not submitted or the trusted
blockchain is not accepting new transactions. Since 1 − 2β ≥ γ, thus
β + γ ≤ 1 − β, even if all corrupted nodes remain silent, there are still
enough oracle nodes to vote that the data is available and the commitment
will be submitted, hence the trusted blockchain is not live, which contradicts
our assumption.

– Availability. If a dispersal is accepted, the commitment is on the trusted
blockchain and β +γ oracle nodes have voted for the block. Since the trusted
blockchain is persistent, whenever a client wants to retrieve the block, it
can get the commitment and at least γ nodes will respond with the stored
chunks. On receiving chunks from γ fraction of nodes, for a CIT applying
an erasure code with undecodable ratio α and a feasible dispersal algorithm
(γ, η, λ) (Lemma 1), because η ≥ 1−α, the base layer is reconstructable. Then
we prove the following lemma ensures the reconstruction of all intermediate
layers.

Lemma 2 (Reconstruction). For any subset of base layer symbols W�, denote
Wj :=

⋃
i∈W�

fj(i) as the set of symbols contained in POM of all symbols in W�.
If |W�| ≥ ηm�, then ∀j ∈ [1, �], |Wj | ≥ ηmj.

The proof of Lemma 2 utilizes the property when generating POM given base
layer symbols. (See details in full paper). Thus the entire tree is eventually recon-
structed and the oracle can deliver a block B, and the proof for B’s relationship
to commitment c is the Merkle proof in CIT. If a client detects a failed parity
equation and outputs a null block ∅, it will generate an incorrect-coding proof.

– Correctness. Suppose for a given commitment c, two honest clients recon-
struct two different blocks B1 and B2, the original dispersed block is B.
(1) If the client that initiated the dispersal was honest, according to the avail-

ability property, B1, B2 �= ∅, both clients can reconstruct the entire CIT.
If B1 �= B2, the commitment c1 �= c2, which contradicts our assumption
that the trusted blockchain is persistent.

(2) If the client that initiated the dispersal was adversary and one of the
reconstructed blocks is empty, w.l.o.g suppose B1 = ∅, the client can
generate a fraud proof for the block. If B2 �= ∅, the entire CIT is recon-
structed whose root is commitment c2. Since there is no failed equation in
the CIT of B2, c1 �= c2, which contradict our assumption that the trusted
blockchain is persistent.

(3) If the client that initiated the dispersal was adversary and B1, B2 �= ∅,
both clients can reconstruct the entire CIT. If B1 �= B2, the commitment
c1 �= c2, which contradict our assumption that the trusted blockchain is
persistent.

Thus we have B1 = B2, and if the client that initiated the dispersal is honest,
B1 = B.

312 P. Sheng et al.

4.2 Efficiency

Prior to computing the storage and communication cost for a single node to
participate dispersal, we first claim a crucial lemma:

Lemma 3. For any functions pj(i) and ej(i) defined in Eq. 3, where 1 ≤ j ≤ �,
0 ≤ i < m�, pj(i) and ej(i) are siblings.

Lemma 3 indicates that in each layer, there are exactly two symbols included
in the POM for a base layer symbol and no extra proof is needed since they are
siblings (see proof details in the full version of paper). For any block B, oracle
nodes need to store two parts of data, the hash commitment, which consists of t
hashes in the CIT root, and k dispersal units where each unit contains one base
layer symbol and two symbols per intermediate layer. Denote the total storage
cost as X, we have

X = ty + kc + k[y(q − 1) + yq] logqr

b

ctr
(4)

where y is the size of hash, b is the size of block, q is batch size, r is coding rate,
and c is the size of a base layer symbol. Notice that k = b

Nrcλ , we have

X = ty +
b

Nrλ
+

(2q − 1)by
Nrcλ

logqr

b

ctr
. (5)

It follows that the communication complexity is NX. In the normal case, each
node only stores X bits hence the storage overhead becomes NX

b , and similarly
when a client downloads data from N nodes, its overhead is NX

b . In the worst
case, we use incorrect-coding proof to notify all oracle nodes. The proof for a
failed parity equation which contains d coded symbols consist of d − 1 symbols
and their Merkle proofs, denote the size as P , we have

P = (d − 1)c + dy(q − 1) logqr

b

ctr
. (6)

The storage and download overhead in this case is P
y , the ratio of the proof

size and the size of reconstructed data, a single hash y.

5 Algorithm to System Design and Implementation

ACeD clients are nodes associated with a number of side blockchains; the honest
clients rely on ACeD and the trusted blockchain to provide an ordering service
of their ledger (regardless of any adversarial fraction among the peers in the side
blockchain). A client proposes a new block to all peers in the side blockchain
by running ACeD protocol. An honest client confirms to append the new block
to the local side blockchain once the block hash is committed in the trusted
blockchain and the full block is downloaded. As long as there is a single honest
client in the side blockchain, we have the following claim:

ACeD: Scalable Data Availability Oracle 313

Claim. Once a block is confirmed by an honest client, security is guaranteed
as long as the trusted blockchain is safe, even if the oracle layer is dishonest
majority. Liveness is guaranteed when the trusted blockchain is live and the
majority of the oracle layer is honest.

The claim indicates that in side blockchains, the safety of a confirmed block
only relies on the trusted blockchain because the commitment on it is irrefutable
once the trusted blockchain is safe, and the honest client has already downloaded
the full block. So even if the oracle layer is occupied by the dishonest majority,
those confirmed blocks are still safe. However, the liveness relies on the liveness
of both ACeD and the trusted blockchain. As for the side blockchain network,
because data persistence is guaranteed by ACeD, any client inside the network
can safely conduct a transaction and reconstruct the ledger without worrying
about a dishonest majority; similarly a valid transaction will eventually join the
ledger as long as there is a single honest client who can include the transaction
into a block.

Next we discuss the practical parameter settings for ACeD. We use these
parameter choices to design and implement an ACeD oracle layer that interfaces
with Ethereum as the trusted blockchain.

Parameter Specifications. We study an ACeD system with N = 9000 oracle
nodes with adversarial fraction β = 0.49; the block size b is 12 MB and therefore
b 	 N . In each block, the base layer symbol size c is 2000 log b ≈ 48 kB, which
corresponds to b

c ≈ 256 uncoded symbols in the base layer. Within the setup, we
construct a CIT of five layers with parameters: number of root symbols t = 16,
hash size y = 32 bytes, coding ratio r = 0.25, aggregation batch size q = 8
and 4 erasure codes of size (256,128,64,32) for each non-root layer. For selecting
erasure code properties, we use codes with undecodable ratio α = 0.125, maximal
parity equation size d = 8. In the dispersal protocol, we use η = 0.875 = 1 − α,
which translates to a dispersal efficiency λ ≤ 1−2β

log 1
1−η

= 1/150, and therefore

each oracle node needs to store roughly 17 symbols. With ACeD characterized
by those parameters, the total communication cost for a client to commit a 12
MB block is roughly 5.38 GB; this represents a 0.5N factor boost over storing
just one block. In the normal path, after accepting the 12 MB block, each oracle
node only has to store 448 kB of data, a 3.7% factor of the original data; if
there is an incorrect-coding attack, oracle layer will together upload data of size
339 kB incorrect-coding proof to the trusted blockchain. To download a block
in the normal path, a client can use a naive method of collecting all symbols
from all oracle nodes. Despite the conservative approach at block reconstruction,
the entire download takes 5.38 GB. A simple optimization involving selectively
querying the missing symbols can save significant download bandwidth: a client
only needs 896 coded symbols in the base layer to reconstruct the block; thus,
in the best case only 42 MB is needed to directly receive those symbols. When
there is an incorrect-coding attack, a new user only needs to download the fraud
proof which has been generated by other nodes (either client or oracle nodes);
the proof is only of the size of 339 kB. Table 3 tabulates the performance metrics
of ACeD (and baseline schemes) with these parameter settings. The calculation
details of other protocols are described in the full paper.

314 P. Sheng et al.

Table 3. Performance metrics under a specific system parameterization.

Maximal

adversary

fraction

Normal case Worst case Communication

complexity
Storage

costa
Download

costa,b
Storage

costa
Download

costa

Uncoded (repetition) 0.49 12MB 12MB 12MB 12MB 108GB

uncoded (dispersal) 0 1.3 kB 12MB 1.2 kB 12MB 12MB

AVID [7] 0.33 4.37 kB 13.4MB 32B 32B 354GB

1D-RS 0.33 4.37 kB 13.4MB 13.4MB 13.4MB 39.4MB

1D-RS 0.49 67.1 kB 12.1MB 12.1MB 12.1MB 604MB

2D-RS 0.33 5.4 kB 16.6MB 232.1KB 232.1KB 48.9MB

2D-RS 0.49 72.1 kB 13MB 925.6KB 925.6KB 648.6MB

ACeD 0.33 50.3 kB 42MB 339 kB 339 kB 452MB

ACeD 0.49 597 kB 42MB 339 kB 339 kB 5.38GB

a cost is derived by b
N

· overhead
b best case

The ACeD oracle layer interacts with the side blockchains and the trusted
blockchain. For a high performance (high throughput, low gas), the oracle layer
and its interaction protocols have to be carefully designed for software imple-
mentation. In this section, we discuss our system design decisions that guided
the implementation.

Architecture. We use Ethereum as the trusted blockchain. The oracle nodes
interact with Ethereum via a special (ACeD) smart contract; the contract is
owned by a group of permissioned oracle nodes, who individually cannot update
the contract, except that a majority of the oracle nodes together agree and
perform a single action on the smart contract. The contract only changes its
state after accepting a multisignature of majority votes [5]. We implement both
the oracle nodes and side blockchain nodes in RUST; the architecture is depicted
in Fig. 4. A detailed discussion of the design and implementation optimizations
of these four blocks is provided in full paper, which also discusses the data
structures that maintain the state of ACeD.

Fig. 4. The left figure depicts a block diagram of a side node; the right figure depicts
an oracle node. The sharp rectangle represents an active thread; round rectangles are
system states.

ACeD: Scalable Data Availability Oracle 315

6 Evaluation

We aim to answer the following questions through our evaluation. (a) What is
the highest throughput (block confirmation rate) that ACeD can offer to the
side blockchains in a practical integration with Ethereum? (b) What latency
overhead does ACeD pose to block confirmation? (c) How much is the gas cost
reduced, given the computation (smart contract execution) is not conducted on
the trusted blockchain? (d) What are the bottleneck elements to performance?

Testbed. We deploy our implementation of ACeD on Vultr Cloud hardware
of 6 core CPU, 16 GB memory, 320 GB SSD and a 40 Gpbs network interface
(for both oracle and side blockchain nodes). To simplify the oracle layer, we
consider all of oracle nodes are committee members, which is reflected in the
experiment topology: all the oracle nodes are connected as a complete graph,
and each side blockchain node has TCP connections to each of the oracle nodes.
We deploy a smart contract written in Solidity using the Truffle development tool
on a popular Ethereum testnet: Kovan. Oracle nodes write their smart contracts
using Ethereum accounts created with MetaMask, each loaded with sufficient
Keth to pay the gas fee of each Ethereum transaction. We use an LDPC code
of b

c = 128 input symbols with a coding rate of r = 0.25 to construct CIT with
q = 8, d = 8, α = 0.125, η = 0.875, t = 16. We fix the transaction length to be
316 bytes, which is sufficient for many Ethereum transactions.

Experiment Settings. We consider four separate experiments with varying
settings of four key parameters (Table 4): the number of oracle nodes, the number
of side blockchain nodes, block generation rate, and block size. The experiment
results are in Fig. 5.

Table 4. Four different experiments varying the parameters of ACeD.

side blockchain nodes # oracle nodes Block size(MB) Block generation rate(sec/blk)

A 5 5,10,15,25 4 5

B 5,10,20 10 4 5

C 5 10 4,8,16 5

D 3,5,8,10 10 4 8.33,5,3.125,2.5

(1) Throughput. We measure the rate of state update in the trusted blockchain
as viewed from each oracle blockchain nodes; the throughput is then the rate
averaged across time and across oracle blockchain nodes. The throughput perfor-
mance changes with four parameters: In experiments A and B, the throughput
is not noticeably impacted as the number of oracles or side blockchain nodes
increases. In experiment C, the block size has roughly a linear effect on through-
put, which continues until coding the block is too onerous (either it costs too
much memory or takes too long). In experiment D, we fix the product of the
block generating rate and the number of side blockchain node to constant, while

316 P. Sheng et al.

increasing the block generation rate, the throughput increases linearly; the per-
formance will hit a bottleneck when the physical hardware cannot encode a block
in a time smaller than the round time.

(2) The latency of ACeD is composed of three major categories: block encoding
time, oracle vote collection time and time to update the trusted blockchain.
We find latency stays relatively constant in all experiments (the exception is
experiment C where block encoding is onerous).

(3) Gas saving. ACeD transactions cost significantly less gas than a regu-
lar Ethereum transaction, independent of the computational complexity of the
transaction itself. The cost of an ACeD transaction voted by 10 oracles nodes
on a 4MB block costs on average 570K gas. Based on a historical analysis of 977
Crytokitties transactions, we estimate a 220 byte transaction costing roughly
180,000 gas: ACeD gas savings are thus over a factor 6000. We emphasize that
the saving in gas is independent of block generation rate or the block size, since
the smart contract only needs the block header and a list of the oracle signatures.

Fig. 5. Throughput (left) and Latency (right) for the 4 experiments A, B, C, D.

7 Conclusion and Discussion

Interoperability across blockchains is a major research area. Our work can be
viewed as a mechanism to transfer the trust of an established blockchain (e.g.:
Ethereum) to many small (side) blockchains. Our proposal, ACeD, achieves this
by building an oracle that guarantees data availability. The oracle layer enabled
by ACeD is run by a group of permissioned nodes which are envisioned to pro-
vide an interoperability service across blockchains; we have provided a detailed
specification of ACeD, designed incentives to support our requirement of an

ACeD: Scalable Data Availability Oracle 317

honest majority among the oracle nodes, and designed and evaluated a high
performance implementation.

ACeD solves the data availability problem with near optimal performance on
all metrics. However, when instantiating the system with specific parameters, we
observe that some metrics have to be computed with constant factors which give
rise to acceptable but non-negligible performance loss. The critical bottleneck for
ACeD is the lower undecodable ratio (the fraction of symbols in the minimum
stopping set) compared to 1D-RS coding; this undermines dispersal efficiency
and increases the communication cost under the existence of strong adversary.
Therefore, finding a deterministic LDPC code with a higher undecodable ratio
will immediately benefit the practical performance of ACeD; the construction of
such LDPC codes is an exciting direction of future work and is of independent
interest.

Acknowledgements. This research is supported in part by a gift from IOHK Inc., an
Army Research Office grant W911NF1810332 and by the National Science Foundation
under grant CCF 1705007.

References

1. Aced library. https://github.com/simplespy/ACeD.git
2. Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud and data availability proofs:

maximising light client security and scaling blockchains with dishonest majorities
(2019)

3. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pp. 913–930 (2018)

4. Bagaria, V., Kannan, S., Tse, D., Fanti, G., Viswanath, P.: Prism: deconstruct-
ing the blockchain to approach physical limits. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 585–602
(2019)

5. Breidenbach, L., Daian, P., Juels, A., Sirer, E.G.: An in-depth look at the parity
multisig bug (2017) http://hackingdistributed.com/2017/07/22/deepdive-parity-
bug

6. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

7. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: 24th
IEEE Symposium on Reliable Distributed Systems (SRDS 2005), pp. 191–201.
IEEE (2005)

8. Csiszár, I.: The method of types [information theory]. IEEE Trans. Inf. Theory
44(6), 2505–2523 (1998)

9. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

10. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.

https://github.com/simplespy/ACeD.git
http://hackingdistributed.com/2017/07/22/deepdive-parity-bug
http://hackingdistributed.com/2017/07/22/deepdive-parity-bug
http://arxiv.org/abs/1710.09437
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2

318 P. Sheng et al.

(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

11. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

12. Easley, D., Kleinberg, J., et al.: Networks, Crowds, and Markets, vol. 8. Cambridge
University Press, Cambridge (2010)

13. Fitzi, M., Gazi, P., Kiayias, A., Russell, A.: Parallel chains: Improving throughput
and latency of blockchain protocols via parallel composition. IACR Cryptol. ePrint
Arch. 2018, 1119 (2018)

14. Foti, A., Marino, D.: Blockchain and charities: a systemic opportunity to create
social value. In: Marino, D., Monaca, M.A. (eds.) Economic and Policy Implications
of Artificial Intelligence. SSDC, vol. 288, pp. 145–148. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45340-4 11

15. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

16. Jirgensons, M., Kapenieks, J.: Blockchain and the future of digital learning creden-
tial assessment and management. J. Teach. Educ. Sustain. 20(1), 145–156 (2018)

17. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbi-
trum: scalable, private smart contracts. In: 27th {USENIX} Security Symposium
({USENIX} Security 2018), pp. 1353–1370 (2018)

18. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

19. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that
go faster than lightning. CoRR abs/1702.05812 306 (2017)

20. Pass, R., Shi, E.: Hybrid consensus: Efficient consensus in the permissionless model.
In: 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

21. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper,
pp. 1–47 (2017)

22. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains. arXiv
preprint arXiv:1908.04756 (2019)

23. Yang, L., et al.: Prism: Scaling bitcoin by 10,000 x. arXiv preprint arXiv:1909.11261
(2019)

24. Yu, H., Nikolić, I., Hou, R., Saxena, P.: OHIE: blockchain scaling made simple. In:
2020 IEEE Symposium on Security and Privacy (SP), pp. 90–105. IEEE (2020)

25. Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded
Merkle Tree: solving data availability attacks in blockchains. In: Bonneau, J.,
Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 114–134. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51280-4 8

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-030-45340-4_11
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/1908.04756
http://arxiv.org/abs/1909.11261
https://doi.org/10.1007/978-3-030-51280-4_8

Efficient State Management
in Distributed Ledgers

Dimitris Karakostas1,2(B), Nikos Karayannidis2, and Aggelos Kiayias1,2

1 University of Edinburgh, Edinburgh, UK
dimitris.karakostas@ed.ac.uk, akiayias@inf.ed.ac.uk

2 IOHK, Singapore, Singapore
nikos.karagiannidis@iohk.io

Abstract. Distributed ledgers implement a storage layer, on top of
which a shared state is maintained in a decentralized manner. In UTxO-
based ledgers, like Bitcoin, the shared state is the set of all unspent
outputs (UTxOs), which serve as inputs to future transactions. The con-
tinuously increasing size of this shared state will gradually render its
maintenance unaffordable. Our work investigates techniques that mini-
mize the shared state of the distributed ledger, i.e., the in-memory UTxO
set. To this end, we follow two directions: a) we propose novel transac-
tion optimization techniques to be followed by wallets, so as to create
transactions that reduce the shared state cost and b) propose a novel fee
scheme that incentivizes the creation of “state-friendly” transactions. We
devise an abstract ledger model, expressed via a series of algebraic opera-
tors, and define the transaction optimization problem of minimizing the
shared state; we also propose a multi-layered algorithm that approxi-
mates the optimal solution to this problem. Finally, we define the neces-
sary conditions such that a ledger’s fee scheme incentivizes proper state
management and propose a state efficient fee function for Bitcoin.

1 Introduction

The seminal work of Shostak, Pease, and Lamport, during the early’80s, intro-
duced the consensus problem [19,27] and extended our understanding of dis-
tributed systems. 30 Years later, Bitcoin [25] introduced what is frequently
referred to as “Nakamoto consensus” and the blockchain data structure, followed
by widespread research on distributed ledgers.

In ledger systems, participants maintain a shared state which consists of three
objects: i) the public ledger, i.e., the list of transactions which form the system’s
history; ii) the mempool, i.e., the set of, yet unpublished, transactions; iii) the
active state which, in systems like Bitcoin, consists of the UTxO set. To support
thousands (or millions) of participants, a decentralized system’s state manage-
ment should be well-designed, primarily focused on minimizing the shared state.
Our work focuses on the third type, as poorly designed management often leads
to performance issues and even Denial-of-Service (DoS) attacks. In Ethereum,
during a 2016 DoS attack, an attacker added 18 million accounts to the state,
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 319–338, 2021.
https://doi.org/10.1007/978-3-662-64331-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_17&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_17

320 D. Karakostas et al.

increasing its size by 18 times [33]. Bitcoin saw similar spam attacks in 2013 [31]
and 2015 [2], when millions of outputs were added to the UTxO set.

Problem Statement. Mining nodes and full nodes incur costs for maintaining the
shared state in the Bitcoin network. This cost pertains to the resources (i.e.,
CPU, disk, network bandwidth, memory) that are consumed with every trans-
action transmitted, validated, and stored. An expensive part of a transaction is
the newly created outputs, which are added to the in-memory UTxO set. As the
system’s scale increases, the cost of maintaining the UTxO set gradually leads
to a shared-state bloat, which makes the cost of running a full node prohibiting.

Moreover, the system’s incentives, which are promoted via transaction fees,
only deteriorate the problem. For example, assume two transactions τA and τB :
τA spends 5 inputs and creates 1 output, while τB spends 1 input and creates 2
outputs. Assuming the size of a UTxO is equal to the size of consuming it (200
bytes) and that transaction fees are 30 satoshi per byte, τA costs 30×200× (5+
1) = 36000 satoshi and τB costs 30×200× (1+2) = 18000 satoshi. Although τB

burdens the UTxO set by creating a net delta of (2 − 1 = 1) new UTxO, while
τA reduces the shared state by consuming (1 − 5 = −4) UTxOs, τB is cheaper
in terms of fees. Clearly, the existing fee scheme penalizes the consumption of
multiple inputs, dis-incentivizing minimizing the shared state.

Our Contributions. Our goal is to devise a set of techniques that minimize
the shared state of a distributed ledger, i.e., the in-memory UTxO set. Our
approach is twofold: a) we propose transaction optimization techniques which,
when employed by wallets, help reduce the shared state’s cost; b) propose a novel
fee scheme that incentivizes “shared state-friendly” transactions.

In particular, we propose a UTxO model, which abstracts UTxO ledgers and
enables evaluating the cost of a ledger’s shared state. We then propose a trans-
action optimization framework, based on three levels of optimization: a) b) a
declarative (rule-based) level, c) a logical/algebraic (cost-based) level, and d)
a physical/algorithmic (cost-based) level. Following, we propose three transac-
tion optimization techniques based on the aforementioned optimization levels:
a) a rule-driven optimal total order of transactions (the last-payer rule), b) a
logical transaction transformation (the 2-for-1 transformation), and c) a novel
input selection algorithm that minimizes the UTxO set increase, i.e., favors con-
sumption over creation of UTxOs. We then define the transaction optimization
problem and propose a 3-step dynamic programming algorithm to approximate
the optimal solution. Finally, we define the state efficiency property that a fee
function should have, in order to correctly reflect a transaction’s shared-state
cost, and propose a state efficient fee function for Bitcoin.

Related Work. The problem of unsustainable growth of the UTxO set has con-
cerned developers for years. It has been discussed in community articles [13,15],
some [1] offering estimations on the level of inefficiency in Bitcoin. Additionally,
research papers [8,12,26,28] have analyzed Bitcoin’s and other cryptocurrencies’
UTxO sets to gain further insight. Engineering efforts, e.g., in Bitcoin Core’s

Efficient State Management in Distributed Ledgers 321

newer releases [22], have also focused on improving performance by reducing the
UTxO memory requirements. Various solutions have been proposed to reduce
the state of a UTxO ledger, e.g., consolidation of outputs [32] can help reduce the
cost of spending multiple small outputs. Alternatively, Utreexo [11], uses cryp-
tographic accumulators to reduce the size of the UTxO set in memory, while
BZIP [17] explores lossless compression of the UTxO set.

An important notion in this line of research is the “stateless blockchain” [30].
Such blockchain enables a node to participate in transaction validation without
storing the entire state of the blockchain, but only a short commitment to it.
Chepurnoy et al. [7] employ accumulators and vector commitments to build
such blockchain. Concurrently, Boneh et al. [5] introduce batching techniques
for accumulators in order to build a stateless blockchain with a trustless setup
which requires constant amount of storage. We consider an orthogonal problem,
i.e., constructing transactions in an incentive-compatible manner that minimizes
the state, so these tools can act as building blocks in our proposed techniques.

The role of fees in blockchain systems has also been a topic of interest in
recent years. Luu et al. [20] explored incentives in Ethereum, focusing on incen-
tivizing miners to correctly verify the validity of scripts run on this “global
consensus computer”. Möser and Böhme [24] investigate Bitcoin fees empirically
and observe that users’ behavior depends primarily on the client software, rather
than a rational cost estimation. Finally, in an interesting work, Chepurnoy et
al. [6] propose a fee structure that considers the storage, computation, and net-
work requirements; their core idea is to classify each transaction on one of the
three resource types and set its fees accordingly.

2 A UTxO Model

We abstract a distributed ledger as a state machine on which parties act. Specif-
ically, we consider only payments, i.e., value transfers between parties; a more
elaborate model could take into account arbitrary computations on the ledger’s
data. We note that our model considers only fungible assets.

Initially, we assume a ledger state Sinit, on which a transaction is applied
to move the ledger to a new state. Transactions that may be applied on a state
are valid, following a validation predicate. Each transaction is unique and moves
the system to a unique state; with hindsight, we assume that the ledger never
transitions to the same state (cf. Definition 5), i.e., valid transactions do not
form cycles.

Our formalism is similar to chimeric ledgers [34], though focused on UTxO-
based ledgers. Following, we provide some basic definitions in a “top-down”
approach, starting with the ledger L, which is an ordered list of transactions;
our notation of functions is the one typically used in functional programming
languages, for example a function f : A → B → C takes two input parameters
of type A and B respectively and returns a value of type C.

Definition 1. A ledger L is a list of valid transactions: L def
= List [Transaction].

322 D. Karakostas et al.

A transaction τ transitions the system from one state to another. UTxO-
based transactions are thus a product of inputs, which define the ownership of
assets, and outputs, which define the rules of re-transferring the acquired value.

Definition 2. A UTxO-based transaction τ is defined as: Transaction
def
=

(inputs : Set [Input], outputs : List [UTxO], forge : Value, fee : Value)

An unspent transaction output (UTxO) represents the ownership of some
value from a party, which is represented via an address α. Intuitively, in the real
world, an output is akin to owning a physical coin of an arbitrary denomination.

Definition 3. A UTxO is defined as follows: UTxO
def
= (α : Address, value :

Value, created : Timestamp).

A transaction’s input is a reference to a UTxO, i.e., an output that is owned
by the party that creates the transaction. An input consists of two objects: i) the
id of the transaction that created it (typically its hash) and ii) an index, which
identifies the specific output among all UTxOs of the referenced transaction.

Definition 4. An input is defined as: Input
def
= (id : Hash, index : Int).

Given an input and a ledger, three functions retrieve: i) the corresponding
output, ii) the corresponding transaction, and iii) the input value. All returned
values are wrapped in Option, denoting that a value may not be returned.

• UTxO : Input → L → Option[UTxO]
• τ : Input → L → Option[Transaction]
• value : Input → L → Option[Value]

A transaction defines some value that is given as a fee to the miner, i.e.,
the party who publishes the transaction into the ledger L. We require that all
transactions must preserve value as follows: τ.forged +

∑
i∈τ.inputs value(i,L) =

τ.fee +
∑

o∈τ.outputs o.value. We note that this applies only on standard transac-
tions, not “coinbase” transactions which create new coins.

Finally, we define the ledger’s state S. S comprises the UTxO set, i.e., the
set of all outputs of transactions whose value has not been re-transferred and
can be used as inputs to new transactions.

Definition 5. The ledger’s state is defined as: State
def
= Set [Input].

We now return to the state machine model. A transaction is applied on a
ledger state S1 and results in a ledger state S2 via the function:

txRun : Transaction → LedgerState → LedgerState

An ordered list of transactions T = [τ1, τ2, . . . , τN] can be applied sequentially on
state S1 to transit to state SN : SN = (txRun(τN).txRun(τ2).txRun(τ1))(S1),
assuming the function composition operator “.”.

Efficient State Management in Distributed Ledgers 323

Finally, every ledger state S corresponds to some cost C. We assume a cost
function, which assigns a signed integer of cost units to a ledger state.

cost : LedgerState → Cost

This function is employed in Definition 6, which defines a transaction’s cost;
minimizing this cost will be the target of our optimization. Observe that the
transaction’s cost might be negative, e.g., if the transaction reduces the state.

Definition 6. The cost of a transaction τ applied to a state S is the difference
between the cost of the final state minus the cost of the initial state:

costTx : Transaction → LedgerState → Cost
costTx(τ,S) = cost(txRun(τ,S)) − cost(S)

The cost of an ordered list of transactions [T] applied to a state S is the
difference between the cost of the final state minus the cost of the initial state:

costTotTx : [Transaction] → LedgerState → Cost
costTotTx([T],S) = cost((txRun(τN).txRun(τ2).txRun(τ1))(S1)) − cost(S)

We note that, in the rest of the paper, cost represents the size of the ledger’s
state. However, our model is generic enough to accommodate alternative cost
designs as well. For instance, cost could represent the computational effort of
producing or verifying the state, such that a cost unit would be a computational
cycle. Therefore, our analysis would also be directly applicable in that case, by
accordingly adapting some parts of the subsequent optimization framework like
the heuristics.

3 Transaction Optimization

The purpose of a distributed ledger is to execute payments, i.e., transfer value
from one party to another via transactions. Multiple transactions can perform
the same transfer of value between two parties. Such transactions are equivalent
in terms of their final result, i.e., transferring some value between parties A and
B, but may vary in their cost to the ledger state. Transaction optimization is
the problem of finding the equivalent transaction with minimum cost; our work
is heavily inspired by the seminal research on database query optimization [16].

The cost difference between equivalent transactions may be significant. For
example, assume that Alice wants to give Bob 100 coins and owns a UTxO of 100
coins and 100 UTxOs of 1 coin each. Consider the two equivalent plans: 1) Alice
spends the single UTxO of value 100 and creates 100 outputs of value 1 for Bob;
2) Alice spends the 100 UTxOs of 1 coin value and defines a single UTxO of value
100 to transfer to Bob. The cost of the two approaches exemplifies the ledger
state impact that equivalent transactions may have. The first plan increases the
ledger’s state by 99 UTxOs, while the second decreases it by the same amount.

324 D. Karakostas et al.

Following, we use the terms plan and transaction interchangeably, i.e., an
alternative plan that achieves the same goal is expressed as an alternative, equiv-
alent transaction. Definition 7 describes transaction equivalency, while Defini-
tion 8 defines equivalency between two ordered lists of transactions.

Definition 7. Transactions τ1, τ2 are equivalent (denoted τ1 ≡ τ2) if, when
applied to the same state SA of a ledger L, they result in states S1 and S2

respectively, with the same total accumulated value per unique address α:

∀α ∈ A
∑

i∈S1
oi=UTxO(i,L)
oi.address=α

oi.value =
∑

j∈S2
oj=UTxO(j,L)
oj .address=α

oj .value

where A is the set of all addresses of the parties participating in the ledger system.

Definition 8. Two different totally ordered sets of the same N transactions [Ti]
and [Tj] are equivalent (denoted as [Ti] ≡ [Tj]) if, when applied to the same ledger
state SA of a ledger L, they result in states S1 and S2 respectively, where the
total accumulated value per unique address α is the same in both states:

∀α ∈ A
∑

i∈S1
oi=UTxO(i,L)
oi.address=α

oi.value =
∑

j∈S2
oj=UTxO(j,L)
oj .address=α

oj .value

where A is the set of addresses of all participants in the distributed ledger system.

Following, we define the basic logical operators for expressing a transaction
and explore optimization techniques for compiling the optimal transaction plan.

3.1 Transaction Logical Operators - Ledger State Algebra

First, we introduce some basic logical operators, i.e., functions used to form
a transaction. The operators are regarded as basic logical steps for execut-
ing a transaction, i.e., irrespective of their particular implementation. However,
depending on their implementation, each step may correspond to different cost.
The operators operate on and produce a state, forming transactions which may
be equivalent (cf Definition 7). The operators and operands form a ledger state
algebra and, as the state is a set of UTxOs (cf. Definition 5), all common set
operators are applicable. In case of failure, they return the empty state ∅.

1. Input Selection σ(Pid,V) : LedgerState → LedgerState
σ(Pid,V) is a unary operator, which is given as input parameter a pair (Party
id, Value). Party id is an abstraction of a set of UTxOs, e.g., it could abstract
a wallet that controls a set of addresses, each owning multiple UTxOs. When
applied on a state Si, σ(Pid,V) produces a new state Sf ⊂ Si, where ∀o ∈
Sf : o ∈ Pid and

∑
o∈Pid

o.value ≥ V . Essentially, σ is a filter over a state,
selecting the UTxOs with aggregate value larger than, or equal to the input V .

Efficient State Management in Distributed Ledgers 325

2. Output Creation π[(a1,v1),...,(an,vn)] : LedgerState → LedgerState
π[(a1,v1),...,(an,vn)] is a unary operator, which is given a set of (Address,
Value) pairs and is applied on a state Si. It produces a new UTxO set
Sf with Sf ∩ Si = ∅, i.e., Sf includes only new UTxOs. Also ∀o ∈ Sf :
(o.address,

∑
o.address o.value) ∈ [(a1, v1), . . . an, vn)], i.e., the aggregate out-

put value per address is equal to the input parameter. We require that value
is preserved, i.e., the total value in Si is greater than (or equal to) the total
value in Sf ; the value difference is is the miners’ fee.

3. Transaction Validation τVR,Si
: LedgerState → LedgerState → LedgerState

τVR,Si
is a binary operator that validates input and output states SI ,SO,

against a set of rules VR, over an initial state SG. If validation succeeds, it
returns an updated state Sf = (SG − SI) ∪ SO.

Figure 1 depicts the simplest transaction under our algebra, i.e., a tree with a
root and two branches. The root is the transaction validation operator (τ) that
receives two inputs: a) the set of selected inputs (σ on the left branch) and b) the
set of outputs to be created (π on the right branch). Algebraically we express this
transaction as: T = (σAlice,V)′τ ′(πBob,V), ′τ ′ being the infix validation operator.

Fig. 1. The simplest expression of a transaction.

Moving one step further, we assume three transactions τ1, τ2 and τ3. The
execution of these transactions is totally ordered, i.e., τ1 → τ2 → τ3. Figure 2
depicts this expression. Here, τ1 is nested within τ2 and both are nested within
τ3. Such tree is executed from bottom to top, therefore τ2 is given the ledger
state generated after τ1 is executed; similarly, τ3 is given the ledger state gen-
erated after both τ1 and τ2 are executed. Given the above, we next define sub-
transactions; interestingly, transactions may spend outputs created from their
subtransactions, thus we also define the notion of correlated transactions.

Definition 9. A subtransaction is a transaction nested within a “parent” trans-
action; it is executed first, so its impact on the ledger state is visible to the parent.

Definition 10. Two transactions τ1, τ2 are correlated, if τ1 is a subtransaction
of τ2 and τ2 spends at least one output created by τ1.

3.2 A Transaction Optimization Framework

We now identify different phases in the transaction optimization process; in a
hypothetical transaction optimizer each phase would be a distinct module. These

326 D. Karakostas et al.

phases are different approaches to producing equivalent transactions. The phases
operate on three levels of optimization: a) a declarative (rule-based) level, b) a
logical/algebraic (cost-based) level, and c) a physical/algorithmic (cost-based)
level, as depicted in Fig. 3. The input of the process is a transaction set [τx], that
we want to optimize, and the output is the optimal transaction τx−Optimal.

Fig. 2. The expression tree entails a transaction execution total order.

Rules: This phase is declarative, as it does not depend on the cost; instead,
when applied, it necessarily produces a better transaction. Essentially it con-
sists of heuristic rules that are applied by default to produce an equivalent
transaction; example of such rules are “create a single output per address”
or “consume as many inputs and create as few outputs as possible”.

Algebraic Transformations: These are transformations at the level of logical
operators that define a transaction’s execution. Generally the efficiency of
such transformation is evaluated based on the entailed cost. Examples of
such transformations are the 2-for-1 transformation (cf. Definition 11) and
different transaction orderings (cf. Definition 9).

Methods and Structures: This phase optimizes the algorithm that imple-
ments a logical operator. For instance, given two algorithms A,B result in
transaction costs CA, CB , if CA < CB we would choose A; one such example
is the different implementations of the input selection operator σ, as shown in
Fig. 4. Optimizations in this phase may also change the data structure used
to access the underlying data, which in our case is the ledger state.

Planning and Searching: This phase employs a searching strategy to explore
the available space of candidate solutions, i.e., equivalent transaction plans.
This space consists of the transactions produced from the above phases, each
evaluated based on their cost, under the available cost model.

Efficient State Management in Distributed Ledgers 327

3.3 Transaction Optimization Techniques

In this section, we propose three transaction optimization techniques based
on the aforementioned optimization levels: a) heuristic rule-based, b) logi-
cal/algebraic transformation cost-based, and c) physical/algorithmic cost-based.

Fig. 3. The transaction optimization process.

Input Selection Optimization. We demonstrate this technique with an exam-
ple. Assume Alice wants to give Bob 5 coins. Figure 4 depicts three equivalent
transactions for implementing this payment. Observe that each plan is repre-
sented as a tree, where the intermediate nodes are the previously defined logical
operators (that act on a ledger state) and the leaf nodes are ledger states. We
also assume that the state cost is the number of elements (UTxOs) in the state.
The three transactions have the same structure, i.e., they are the same logical
expression, but result to different ledger states with different costs. The trans-
actions differ only in the output of the input selection operator (σ(Alice,5)), a
difference which may be attributed to different implementations of the operator;
in the paper’s full version [18], we provide a novel input selection algorithm that
minimizes the net delta of created UTxOs; it favors UTxO consumption over
creation.

The 2-for-1 Transformation. We again consider the example where Alice
wants to give Bob 5 coins. Figure 5 depicts a fourth, more complex, equivalent
transaction. This transaction consists of two subtransactions (cf. Definition 9),
where Alice first gives Bob 17 coins and then receives 12. When the first trans-
action is completed, an intermediate state (S′

i) is created, which is then given
as input to the second transaction, that produces the final ledger state Sf of
cost 3. Observe that, although more complex, this transaction minimizes the
final ledger state (72% cost reduction). Intuitively, this transaction spends all of
Alice’s outputs with the first sub-transaction and then does the same for Bob
with the second sub-transaction. Therefore, the optimal cost does not depend on
input selection (like the 3rd plan of Fig. 4), but requires the combination of two

328 D. Karakostas et al.

transactions that implement a single payment, under a specific amount (12).
Definition 11 provides a formal specification of the 2-for-1 logical (algebraic)
transformation.

Fig. 4. An example of three equivalent transactions that transfer 5 tokens from Alice
to Bob but incur different state costs.

Fig. 5. A 2-for-1 transaction that transfers 5 tokens from Alice to Bob.

Efficient State Management in Distributed Ledgers 329

Definition 11. Given a transaction τ1, which transfers an amount V from party
A to B, the algebraic 2-for-1 transformation creates an equivalent transaction τ2,
which consists of (a) (b) a subtransaction, which transfers V + Vc from party A
to B and (c) an outer transaction, which transfers Vc from party B to A.

Figure 6 depicts the 2-for-1 algebraic transformation based on an amount
Vc. To implement such a scheme we require an atomic operation, where the
grouped transactions are executed simultaneously. One method to implement the
atomic transfers is CoinJoin [21], which was proposed for increasing the privacy
in Bitcoin; in CoinJoin, the transaction is constructed and signed gradually by
each party that contributes its inputs. A similar concept is Algorand’s atomic
transfers [14], that groups transactions under a common id.

Fig. 6. The 2-for-1 algebraic transformation.

Intuitively, 2-for-1 reduces the transaction’s cost by also consuming UTxOs
of the receiving party, instead of only consuming outputs of the sending party.
Specifically, assume the initial state Si = {|A|, |B|}, where |A| denotes the num-
ber of outputs owned by party A. When issuing a payment to B, party A can
consume all outputs and consolidate its remaining value to a single UTxO, the
“change” output. Such transaction results in state Sf = {1, |B| + 1} with cost
cost(Sf) = |B| + 2. If we apply the 2-for-1 transformation, the final state is
S ′

f = {1+1, 1} with a cost of cost(S ′
f) = 3; if |B| > 1, then cost(S ′

f) < cost(Sf).
Therefore, if the receiving party has multiple outputs, this transformation creates
a transaction with a smaller cost. Consequently, by giving the opportunity to the
receiving party of a transaction to spend also its outputs, the 2-for-1 transforma-
tion always results in a greater shared state cost reduction than the individual
un-transformed transaction in the case where there are no fee constraints and
thus outputs can be spent freely; otherwise it is a cost-based decision.

Transaction Total Ordering and the Last-Payer Heuristic Rule. Assume
the following four transactions: (1) T1: Alice V1−→ Charlie, (2) T2: Bob V2−→ Charlie,
(3) T3: Eve V3−→ Alice, and (4) T4: Eve V4−→ Bob. which are applied on an initial
ledger state Si = {|Alice| = 5, |Bob| = 5, |Charlie| = 2, |Eve| = 3} with cost

330 D. Karakostas et al.

cost(Si) = 15; as before, |A| denotes the number of outputs owned by party A
and the state cost is the number of all UTxOs.

A first execution order is as follows: T1 → T2 → T3 → T4. For simplicity and
without loss of the generality, we assume that when a party pays, it always con-
sumes all available outputs, thus having a single output afterwards (the leftover
balance). Similarly, when a party gets paid, the number of UTxOs that it owns
increases by one. The state changes with each executed transaction:

i) Si = {|Alice| = 5, |Bob| = 5, |Charlie| = 2, |Eve| = 3}, cost = 15
ii) T1 : {|Alice| = 1, |Bob| = 5, |Charlie| = 3, |Eve| = 3}, cost = 12
iii) T2 : {|Alice| = 1, |Bob| = 1, |Charlie| = 4, |Eve| = 3}, cost = 8
iv) T3 : {|Alice| = 2, |Bob| = 1, |Charlie| = 4, |Eve| = 1}, cost = 8
v) T4 : {|Alice| = 2, |Bob| = 2, |Charlie| = 4, |Eve| = 1}, cost = 9

Under a different order, T3 → T4 → T1 → T2, the cost of the final state would be
7. Evidently, the different execution order results in different resulting state cost.
Therefore, by changing the nesting order of the transactions in an expression tree,
different plans may conduct the same payment with different cost.

Intuitively, parties should have the ability to consume outputs that are pro-
duced by the other transactions. For instance, regarding T1 and T3, the order
T3 → T1 is more cost effective (cost = 10) than T1 → T3 (cost = 11), since Alice
can consume the output created by Eve. Specifically, if in the last transaction
where P participates, either as a sender or a receiver, P is the sender, then it
can minimize its state cost; we call this the last-payer heuristic rule.

Ensuring that each party participates in their last transaction as a sender is
not always feasible. Specifically, conflicts may arise in cyclic situations, where
P1 pays P2 (T12) and also P2 pays P1 (T21). Here, it is impossible for both P1

and P2 to be the sender in their last transaction. Algorithm 1 below, achieves
a transaction ordering based on the last-payer heuristic that bypasses conflicts.
This algorithm has a time complexity of O(M log M) in the number M of par-
ticipants.

We provide a short example to demonstrate the inner-workings of Algo-
rithm 1. Assume the four transactions: T12 : P1 → P2, T21 : P2 → P1,
T13 : P1 → P3, and T23 : P2 → P3. First (line 2), the algorithm sorts the list of
participants in ascending order of receiving payments, i.e., the more payments a
party receives, the more last-payers will conflict, so it should not be considered
early-on as a last-payer. In our example, where P3 receives the most (2) pay-
ments, this results in order: P1,P2,P3. Next (lines 4 - 11), for each party P in
the ordered list, the algorithm tries to find a transaction where P pays a party
who has not been already considered as a last-payer (thus avoiding conflicts); if
such transaction exists, it is placed last in the final transaction ordering. Finally,
the list of remaining transactions is inserted to the head of the list (line 12). In
our example, the transaction ordering through each iteration is: 1st iteration :
[T12], 2nd iteration : [T12, T23], 3rd iteration : [T12, T23], final : [T21, T13, T12, T23].
As per the Last-Payer heuristic rule, each party is the sender in their last trans-
action, except for party P3 which only receives payments.

Efficient State Management in Distributed Ledgers 331

Algorithm 1: Transaction ordering algorithm based on the Last-Payer
heuristic rule.

Input: A set of M participants Set[P1, P2, . . . , PM]
Input: A set of k transactions Set[Tij], i, j = 1, 2, . . . , M among these participants to be

ordered. Assume that in transaction Tij party Pi pays party Pj (Pi

Vij
==⇒ Pj). Also

assume that the transactions are not correlated (see definition 10) and thus all
orders are equivalent (see definition 8).

Output: A totally ordered set of transactions [Tij].
1 output ←− ∅ [FinalOrderOfTransactions] ←− ∅
2 [OrderedParticipants] ←− Order the input set of participants in an ascending order of the

number of received payments.
3 [ParticipantsLastPaymentAdded] ←− ∅
4 while [OrderedParticipants] �= ∅ do
5 Pcurrent ←− get and remove first item from [OrderedParticipants]
6 TX ←− Find and then remove from Set[Tij], a transaction that Pcurrent pays some

participant P where P /∈ [ParticipantsLastPaymentAdded]
7 if Tx == ∅ then
8 continue; /* continue to the next participant */

9 else
10 [FinalOrderofTransactions] ←− Tx ; /* Put it last in the final ordered list */
11 [ParticipantsLastPaymentAdded] ←− Pcurrent

12 [FinalOrderOfTransactions] ←− Set[Tij] ; /* Add the remaining transactions of the
initial set at the beginning (head) of the ordered list */

13 ouput ←− [FinalOrderOfTransactions]

Assuming k transactions among M parties, Algorithm 1 is executed locally by
each party Pi after the M participants have coordinated off-chain the k transac-
tions. Specifically, the wallet of each participant exchanges information, in order
to gather all k transactions, and then executes the algorithm. The produced total
order of transactions will be expressed as a tree of the form depicted in Fig. 2
and will be implemented as an atomic operation in a similar manner to the 2-
for-1 transformation discussed above. Such off-chain coordination for transaction
posting is not unique to our work, e.g., this is also how CoinJoin [21] works.

Interestingly, the grouping of many transactions into an atomic operation in
general, is a method that can be also aimed at increasing privacy. Therefore, it
is an interesting direction for future research to see if it is possible to combine
both privacy and space efficiency considerations.

3.4 The Transaction Optimization Problem

Using the above ideas, we now formally define the transaction optimization prob-
lem as a typical optimization problem, assuming a set of available input selection
algorithms {Sel1, Sel2, . . . , Sell}.

Definition 12. Given N payments between M parties P1,P2, . . . ,PM and a
search space S of equivalent (cf. Definition 8), ordered lists of transaction plans
that execute the N payments, called candidate solutions, find the candidate τ ∈
S, such that eval(τ) ≤ eval(ρ), for all ρ ∈ S. Specifically:

332 D. Karakostas et al.

1. A candidate ρ ∈ S is an ordered list of transaction plans1 ||T1|| → ||T2|| →
· · · → ||Tk||, where the transaction plan of a transaction Tx is the pair:

||Tx|| def
= (Logical Expression, Input Selection Algorithm).

2. The search space S is defined by all candidates ||T1|| → ||T2|| → · · · → ||Tk||,
where, for each transaction Ti, an input selection algorithm is chosen from
{Sel1,Sel2, . . . ,Sel l} and, possibly, the 2-for-1 logical transformation (cf. Def-
inition 11) is applied.

3. eval evaluates the cost of every candidate ρ ∈ S (cf. Definition 6) as follows:

eval : [Transaction] → LedgerState → Cost ,
eval([T1, T2, . . . , Tk],Sinit) =

cost((txRun(Tk).txRun(T2).txRun(T1))(Sinit)) − cost(Sinit)

where cost(S) = |S| is the size of a ledger state (cf. Definition 5) and
(txRun(Tk).txRun(T2).txRun(T1))(Sinit) outputs the final state after
the list of transactions is executed on state Sinit for each plan ||Ti||.

Solving the Transaction Optimization Problem. We now present a 3-
step, dynamic programming algorithm, which solves the transaction optimization
problem via an exhaustive search and dynamically pruning candidate solutions:

Step 1: Create N transactions Tij , i, j ∈ [1,M], corresponding to the N payments

(Pi
Vij−−→ Pj), as follows: Tij = (σPi,Vij

(Sinit))‘τ ′(πPj ,V ij(Sinit)) where Vij is
the amount to be paid from Pi to Pj . For each transaction Tij , find the input
selection algorithm in {Sel1,Sel2, . . . ,Sel l} that minimizes eval(Tij ,Sinit).
Then, enforce the heuristic rule to create a single output per recipient address
for each transaction. At the end of this step, the algorithm outputs N transac-
tion plans, i.e., N pairs of transaction’s Tij logical expression and the chosen
input selection algorithm:

||Tij || = ((σPi,Vij
(Sinit))′τ ′(πPj ,V ij(Sinit)), Sels)

Step 2: On each transaction plan output of Step 1, perform a 2-for-1 transfor-
mation (cf. Definition 11). This step produces a transformed transaction as
depicted in Fig. 7, based on an amount p × Vij , where p is a configuration
parameter of the algorithm, typically in the range 0 < p ≤ 1. Then, for each
of the two transactions that comprise the 2-for-1 transformation, choose the
input selection algorithm that minimizes the eval function and enforce the
heuristic rule of a single output per recipient address. Finally, accept the 2-
for-1 transformed transaction only if its cost (given by eval) is smaller than
the non-transformed transaction.

1 We assume that transactions are non-correlated (cf. Definition 10) and all orderings
are equivalent (cf. Definition 8).

Efficient State Management in Distributed Ledgers 333

Fig. 7. Applying the 2-for-1 transformation to each separate transaction.

At the end of this step, the algorithm outputs k transaction plans, k ≥ N ,
comprising of the 2-for-1 transformed and the non-transformed transactions,
along with their input selection algorithms. Importantly, at this point, the

algorithm has an optimal plan for each individual payment (Pi
Vij−−→ Pj),

based on an exhaustive search of solutions and cost-driven choices.
Step 3: In this step, the algorithm finds the optimal execution order for the k

transactions produced in Step 2. Given the k! permutations, the search space
is pruned using the Last-Payer heuristic rule (cf. Section 3.3). Finally, the
algorithm outputs an ordered list of transaction plans that execute the N
payments with a minimum state ledger cost.

As shown, step 2 produces optimal transaction plans, w.r.t. executing the
individual transactions, since it performs an exhaustive search for the minimum-
cost solution. Step 3 though is based on a heuristic (Last-Payer) to prune the
search space, thus only approximating the optimal solution. Future work will
evaluate this rule’s efficiency and explore techniques to achieve optimality.

4 State Efficiency in Bitcoin

We now define the state efficiency property. Our goal is to incentivize users
to minimize the global state, without impacting the system’s functionality. In
that case, if all users are rational, i.e., operate following the incentives, then the
state will be minimized as much as possible. Future work will explore the actual
impact of deploying such incentives in real-world systems.

To achieve state efficiency, a transaction’s fee should be proportional to the
incurred state cost. In other words, the more a transaction increases the ledger’s
state, the higher its fees should be. Specifically, a transaction’s fee should reflect:
i) the transaction’s size, i.e., the cost of storing a transaction permanently on the
ledger and ii) the transaction’s state cost. A distributed ledger’s fee model should
aim at incentivizing users to minimizing both storage types, i.e., the distributed
ledger and the global state.

334 D. Karakostas et al.

First, we define the fee function F , i.e., the function that assigns an (integer)
fee on a transaction, given a ledger state: F : Transaction → LedgerState → Int .
Following, Definition 13 describes state efficiency. This property instructs the
fee function to (monotonically) increase fees, if a transaction increases the state.
Intuitively, between two equivalent transactions, the transaction that incurs
greater state cost should also incur a larger fee.

Definition 13. A fee function F is state efficient if

∀S ∈ S∀τ1, τ2 ∈ T | τ1 ≡ τ2 ∧ costTx (τ1,S) > costTx (τ2,S) : F (τ1,S) > F (τ2,S)

for transaction cost function (cf. Definition 6) and equivalence (cf. Definition 7).

Evidently, if the utility of users is to minimize transaction fees, a state efficient
fee function ensures that they are also incentivized to minimize the global state.
Finally, Definition 14 sets narrow state efficiency, a special case of state efficiency
which compares equivalent transactions that differ only in their inputs.

Definition 14. A fee function F is narrow state efficient if

∀S ∈ S∀τ1, τ2 ∈ T |
τ1 ≡ τ2 ∧ τ1.outputs = τ2.outputs ∧ costTx (τ1,S) > costTx (τ2,S) :

F (τ1,S) > F (τ2,S)

for transaction cost function (cf. Definition 6) and equivalence (cf. Definition 7).

Bitcoin’s State Management. Bitcoin’s consensus model does not consider fees.
Specifically, the user decides a transaction’s fees and the miners choose whether
to include a transaction in a block. Therefore, it has been stipulated that the
level of fees is the balance between the rational choices of miners, who supply
the market with block space, and users, who demand part of said space [3].

In practice, most users follow the client software’s choice even when not
needed [24], e.g., when blocks are not full. Similarly, miners usually follow the
hard-coded software rules and may accept even zero-fee transactions. The refer-
ence rules of the Bitcoin Wiki [3] define the fee rate x, which is the fraction of
fees per transaction size, Miners sort transactions based on this metric and solve
the Knapsack problem to fill a new block with transactions that maximize it.
Some notable alternatives also focus on fee rate [10,29], while reference rules [3]
used to also take into account the UTxO age.

As before, a transaction consists of inputs and outputs, i.e., old UTxOs which
are spent and newly-created UTxOs. Inputs and UTxOs have a fixed size ι and
ω respectively.2 The size of a transaction is the sum of its inputs and outputs,
i.e., is a linear combination of ι and ω, while a transaction’s cost is the difference

2 This assumption slightly diverges from the real-world, where UTxOs are typically of
varying size depending on the operations in the ScriptPubKey.

Efficient State Management in Distributed Ledgers 335

between the number of its UTxOs minus its inputs. Bitcoin’s fee function is
F = β · size(τ), where size(τ) is τ ’s size in bytes and β is a fixed fee per byte.3

We break the fee efficiency of F via a counterexample. Assume two transac-
tions which are applied on the same ledger state S; for ease of notation, in the
rest of the section F (τ) denotes F (τ,S). First, τ1 has 1 input and 1 output, so
its state cost is costTx(τ1,S) = 0 and its fee is F (τ1) = β · (ι+ω). Second, τ2 has
2 inputs and 1 output, i.e., its state cost is costTx(τ2,S) = −1, since it decreases
the state; however, its fee is F (τ2) = β · (2 · ι+ω) = F (τ1)+β · ι. Thus, although
costTx(τ1) > costTx(τ2), τ2’s fee is higher, since it is larger.

A better alternative fee function is the following: F ′ = β · size(τ) + ψ ·
costTx(τ,S). Note that this is state-efficient in our model for a sufficiently small
value of β (cf. Sect. 4.1). Observe with this function, when increasing the UTxO
set, a user needs to pay an extra fee ψ per UTxO. Given this change, the refer-
ence rules are updated so that, instead of only the fee rate, miners use the scoring
function: score(τ) = fees(τ)−ψ·costTx(τ,S)

size(τ) , where fees(τ) are τ ’s total fees. In market
prices, 1 byte of RAM costs $3.35 ·10−9 [23]. The average size of a Bitcoin UTxO
is 61 Bytes [9], so a single Bitcoin UTxO costs ψ = 61 · 3.35 · 10−9 = $2 · 10−7.
Given 10000 full nodes4, which maintain the ledger and keep the UTxO in mem-
ory, the cost becomes ψ = $0.002; equivalently, denominated in Bitcoin5, the
cost of creating a UTxO is ψ = 22 satoshi.

This solution incorporates the operational costs of miners, thus it is the
rational choice for miners who aim at maximizing their profit. Observe that, after
subtracting the fees that relate to UTxO costs, the scoring mechanism behaves
the same as the one currently used by Bitcoin miners. Therefore, if users wish to
prioritize their transactions, they would again simply increase their transaction’s
fees; in that case, the UTxO portion of the fees (i.e., ψ ·costTx(τ,S)) remains the
same, hence higher fees result in a higher score, similar to the existing mechanism.
Also we note that this mechanism is directly enforceable on Bitcoin without the
need of a fork.

4.1 A State Efficient Bitcoin

Intuitively, to make F state efficient we force the creator of a UTxO to subsidize
its consumption, i.e., to pay the user who later consumes it. Our fee function
is again: F ′ = β · size(τ) + ψ · costTx(τ,S). Assume two transactions τ1, τ2 with
i1, i2 inputs and o1, o2 outputs respectively:

costTx(τ1) > costTx(τ2) ⇔ o1 − i1 > o2 − i2 ⇔ o2 − o1 < i2 − i1 (1)

3 β = 0.0067$/byte [September 2020] (https://bitinfocharts.com).
4 https://bitnodes.io [July 2020].
5 1BTC = $9000 [July 2020] (https://coinmarketcap.com)

https://bitinfocharts.com
https://bitnodes.io
https://coinmarketcap.com

336 D. Karakostas et al.

F ′ is state efficient (cf. Definition 13) if:

F ′(τ1) > F ′(τ2) ⇒
size(τ1) · β + costTx(τ1) · ψ > size(τ2) · β + costTx(τ2) · ψ ⇒

(i1 · ι + o1 · ω) · β + (o1 − i1) · ψ > (i2 · ι + o2 · ω) · β + (o2 − i2) · ψ ⇒
(o1 − i1) · ψ − (o2 − i2) · ψ > (i2 · ι + o2 · ω) · β − (i1 · ι + o1 · ω) · β ⇒

(i2 − i1 + o1 − o2) · ψ > ((i2 − i1) · ι + (o2 − o1) · ω) · β
(1)
=⇒

ψ >
(i2 − i1) · ι + (o2 − o1) · ω

(i2 − i1) − (o2 − o1)
· β (2)

If F ′ is narrow state efficient, then o1 = o2 and the inequality is simplified:

ψ > ι · β (3)

We turn again to the previous example. For transaction τ1, with 1 input
and 1 output, F ′(τ1) = (ι + ω) · β and for transaction τ2, with 2 inputs and 1
output, F ′(τ2) = (2 · ι + ω) · β − ψ = F ′(τ1) + β · ι − ψ. Since Inequalities 2
and 3 ensure that ψ > ι · β, the size fee of the extra input in τ2 is offset by the
extra fee ψ, which is paid by the user who creates it. Again to evaluate these
variables we consider market prices. The size of a typical, pay-to-script-hash or
pay-to-public-key-hash, UTxO is 34 Bytes [4], while the size of consuming it
is 146 bytes. Therefore, to make and make present-day Bitcoin (narrow) state
efficient, we can set ω = 34, ι = 146, β = 0.0067$, and thus ψ > 0.0978$.

However, this approach presents a number of challenges. To enforce F ′, the
fee policy should be incorporated in the consensus protocol and a transaction’s
validity will depend on its amount of fees. As long as F ′(τ) > 0, i.e., a transac-
tion cannot have negative fees, the fee function can be enforced via a soft fork.
Specifically, this change is backwards compatible, as miners that do not adopt
this change will still accept transactions that follow the new fee scheme. However,
if costTx(τ) � 0 and possibly F ′(τ) < 0, to implement F ′ we need to establish
a “pot” of fees. When a user creates τ with fee F ′ = β · size(τ)+ψ · costTx(τ,S),
the first part (β · size(τ)) is awarded to the miners as before. The second part
(ψ · costTx(τ,S)) is deposited to (or, in case of negative cost, withdrawn from)
the pot. In case of negative cost, the transaction defines a special UTxO for
receiving the reimbursement. At any point in time, the size of the pot is directly
proportional to the UTxO set. Observe that the miners receive the same rewards
as before, so their business model is not affected by this change. Finally, the cost
of flooding the system with UTxOs increases by ψ per UTxO which, depending
on ψ, can render attacks ineffective.

5 Conclusion

Our paper explores optimizations that minimize the state which is shared among
the participants of a distributed ledger system. We compose a framework for

Efficient State Management in Distributed Ledgers 337

optimizing transactions on multiple levels, including heuristic rules, algebraic
transformations, and alternative sub-routines. Next, we formally define the opti-
mization problem of constructing state efficient transactions and present an algo-
rithm that approximates the optimal solution. Finally, we explore how fees can
incentivize proper state management and propose an amended, state efficient
fee function for Bitcoin. Our work also proposes various questions. For instance,
complex cost models could also consider a UTxO’s in-memory lifespan. Further-
more, future work could explore the implications of using a memory hierarchy,
instead of storing the entire state in memory.

Acknowledgements. This research was partially supported by H2020 project PRIV-
ILEDGE #780477.

References

1. Andresen, G.: Utxo uh-oh... (2015). http://gavinandresen.ninja/utxo-uhoh
2. Bitcoin: July 2015 flood attack (2015). https://en.bitcoin.it/wiki/July 2015 flood

attack
3. Bitcoin: Miner fees (2020). https://en.bitcoin.it/wiki/Miner fees
4. Bitcoin: Protocol documentation (2020). https://en.bitcoin.it/wiki/Protocol

documentation
5. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-

cations to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188 (2018). https://eprint.iacr.org/2018/1188

6. Chepurnoy, A., Kharin, V., Meshkov, D.: A systematic approach to cryptocurrency
fees. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 19–30. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 2

7. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with state-
less transaction validation. Cryptology ePrint Archive, Report 2018/968 (2018).
https://eprint.iacr.org/2018/968

8. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the bitcoin UTXO set. Cryptology ePrint Archive, Report 2017/1095
(2017). https://eprint.iacr.org/2017/1095

9. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the Bitcoin UTXO set. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol.
10958, pp. 78–91. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-
58820-8 6

10. Dos Santos, S., Chukwuocha, C., Kamali, S., Thulasiram, R.K.: An efficient miner
strategy for selecting cryptocurrency transactions. In: 2019 IEEE International
Conference on Blockchain (Blockchain), pp. 116–123 (2019)

11. Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the bitcoin
UTXO set. Cryptology ePrint Archive, Report 2019/611 (2019). https://eprint.
iacr.org/2019/611

12. Easley, D., O’Hara, M., Basu, S.: From mining to markets: the evolution of bitcoin
transaction fees. J. Finan. Econ. 134(1), 91–109 (2019)

13. Frost, E., van Wirdum, A.: Bitcoin’s growing utxo problem and how utreexo can
help solve it (2019). https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-
problem-and-how-utreexo-can-help-solve-it

http://gavinandresen.ninja/utxo-uhoh
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/Miner_fees
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://eprint.iacr.org/2018/1188
https://doi.org/10.1007/978-3-662-58820-8_2
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2017/1095
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2019/611
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it

338 D. Karakostas et al.

14. Fustino, R.: Algorand atomic transfers (2019). https://medium.com/algorand/
algorand-atomic-transfers-a405376aad44

15. Ichiba Hotchkiss, G.: The 1.x files: The state of stateless ethereum (2019). https://
blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum

16. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)
17. Jiang, S., et al.: Bzip: a compact data memory system for utxo-based blockchains.

In: 2019 IEEE International Conference on Embedded Software and Systems
(ICESS), pp. 1–8. IEEE (2019)

18. Karakostas, D., Karayannidis, N., Kiayias, A.: Efficient state management in dis-
tributed ledgers. Cryptology ePrint Archive, Report 2021/183 (2021). https://
eprint.iacr.org/2021/183

19. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

20. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd
Conference on Computer and Communications Security, pp. 706–719. ACM Press,
Denver, CO, USA, 12–16 October 2015. https://doi.org/10.1145/2810103.2813659

21. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world (2013). https://
bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902

22. Maxwell, G.: A deep dive into bitcoin core v0.15 (2017). http://diyhpl.us/wiki/
transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/

23. McCallum, J.C.: Historical memory prices 1957+ (2020). https://en.bitcoin.it/
wiki/Miner fee://jcmit.net/memoryprice.htm

24. Möser, M., Böhme, R.: Trends, tips, tolls: a longitudinal study of bitcoin transac-
tion fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015.
LNCS, vol. 8976, pp. 19–33. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48051-9 2

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
26. Nicolas, H.: The economics of bitcoin transaction fees. SSRN Electron. J. (2014).

https://doi.org/10.2139/ssrn.2400519
27. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J. ACM (JACM) 27(2), 228–234 (1980)
28. Pérez-Solà, C., Delgado-Segura, S., Navarro-Arribas, G., Herrera-Joancomart, J.:

Another coin bites the dust: an analysis of dust in UTXO based cryptocurrencies.
Cryptology ePrint Archive, Report 2018/513 (2018). https://eprint.iacr.org/2018/
513

29. Rizun, P.R.: A transaction fee market exists without a block size limit (2015)
30. Todd, P.: Making UTXO set growth irrelevant with low-latency delayed TXO com-

mitments (2016). https://petertodd.org/2016/delayed-txo-commitments
31. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks

in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44774-1 5

32. Bitcoin Wiki: How to cheaply consolidate coins to reduce miner fees (2020).
https://en.bitcoin.it/wiki/How to cheaply consolidate coins to reduce miner fees

33. Wilcke, J.: The ethereum network is currently undergoing a DOS attack (2016).
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-
dos-attack/

34. Zahnentferner, J.: Chimeric ledgers: translating and unifying UTXO-based and
account-based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262
(2018). https://eprint.iacr.org/2018/262

https://medium.com/algorand/algorand-atomic-transfers-a405376aad44
https://medium.com/algorand/algorand-atomic-transfers-a405376aad44
https://blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum
https://blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum
https://eprint.iacr.org/2021/183
https://eprint.iacr.org/2021/183
https://doi.org/10.1145/2810103.2813659
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/memoryprice.htm
https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/memoryprice.htm
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.2139/ssrn.2400519
https://eprint.iacr.org/2018/513
https://eprint.iacr.org/2018/513
https://petertodd.org/2016/delayed-txo-commitments
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://eprint.iacr.org/2018/262

Fast Isomorphic State Channels

Manuel M. T. Chakravarty1, Sandro Coretti2, Matthias Fitzi2(B), Peter Gaži3,
Philipp Kant4, Aggelos Kiayias5,6, and Alexander Russell7,8

1 IOHK, Utrecht, The Netherlands
manuel.chakravarty@iohk.io
2 IOHK, Zürich, Switzerland

{sandro.coretti,matthias.fitzi}@iohk.io
3 IOHK, Bratislava, Slovakia

peter.gazi@iohk.io
4 IOHK, Berlin, Germany
philipp.kant@iohk.io

5 IOHK, Edinburgh, UK
6 University of Edinburgh, Edinburgh, UK

akiayias@inf.ed.ac.uk
7 IOHK, Storrs, USA

8 University of Connecticut, Storrs, USA
acr@cse.uconn.edu

Abstract. State channels are an attractive layer-two solution for improv-
ing the throughput and latency of blockchains. They offer optimistic off-
chain settlement of payments and expedient offchain evolution of smart
contracts between multiple parties without any assumptions beyond those
of the underlying blockchain. In the case of disputes, or if a party fails to
respond, cryptographic evidence collected in the offchain channel is used
to settle the last confirmed state onchain, such that in-progress contracts
can be continued under mainchain consensus.

In this paper, we introduce Hydra, an isomorphic multi-party state
channel. Hydra simplifies offchain protocol and smart-contract develop-
ment by directly adopting the layer-one smart contract system, allow-
ing the same code to be used on- and off-chain. Taking advantage of the
extended UTxOmodel, we develop a fast off-chain protocol for evolution of
Hydra heads (our isomorphic state channels) that has smaller round com-
plexity than all previous proposals and enables the state channel process-
ing to advance on-demand, concurrently and asynchronously. We establish
strong security properties for the protocol, and we present and evaluate
extensive simulation results that demonstrate that Hydra approaches the
physical limits of the network in terms of transaction confirmation time
and throughput while keeping storage requirements at the lowest possible.
Finally, our experimental methodology may be of independent interest in
the general context of evaluating consensus protocols.

1 Introduction

Permissionless distributed ledger protocols suffer from serious scalability limi-
tations, including high latency (transaction settlement time), low throughput
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 339–358, 2021.
https://doi.org/10.1007/978-3-662-64331-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_18&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_18

340 M. M. T. Chakravarty et al.

(number of settled transactions per unit of time), and excessive storage required
to maintain the state of the system and its ever-growing transaction history.

Several approaches to mitigating these issues by improving the underlying
ledger protocols have been proposed. Such direct adaptations for scalability are
often referred to as layer-one solutions. Layer-one solutions face inherent limi-
tations, however, as settlement remains a unwieldy process involving the partic-
ipation of a large, dynamic set of parties and requiring exchange of significant
amounts of data. An alternative approach to improve scalability are layer-two
(or offchain) solutions that overlay a new protocol on top of the (layer-one)
blockchain. Layer-two solutions allow parties to securely transfer funds from the
blockchain into an offchain protocol instance, settle transactions in this instance
(quasi) independently of the underlying chain, and safely transfer funds back to
the underlying chain as needed.

Offchain solutions have the advantage that they do not require trust assump-
tions beyond those of the underlying blockchain, and that they can be very effi-
cient in the optimistic case where all participants of an offchain protocol instance
behave as expected.

The most prominent offchain solution are payment channels [7,15,28]. A pay-
ment channel is established among two parties, allowing them to pay funds back
and forth on this channel without notifying the layer-one protocol in the opti-
mistic case. Payment channels gave rise to payment channel networks, such as
Lightning [28], virtual payment channels, such as Perun [18], state channels which
generalize from payments to smart contracts [4], followed by state channel net-
works [14,20,25], multiparty state channels [26] and virtual state channels [17].

Despite the significant advances, important challenges remain:

– establishing high offchain processing performance that approximates the
physical limits of the underlying network; and

– reducing the significant conceptual and engineering overhead: In current solu-
tions, the offchain contract state must be verified in a non-native represen-
tation as the state of a contract to be evolved in a state channel needs to
be isolated and represented in a form that permits its manipulation both
offchain, and by the onchain smart contract scripting system in case of an
offchain dispute. Thus, computations performed offchain are no longer in the
representation used by the ledger itself; i.e., they are non-native.

Hydra. Hydra tackles both these challenges with the introduction of isomorphic
multi-party state channels. These are state channels that are capable of reusing
the exact state representation of the underlying ledger and, hence, inherit the
ledger’s scripting system as is. Thus, state channels effectively yield parallel,
offchain ledger siblings, which we call heads—the ledger becomes multi-headed.
The creation of a new head follows a similar commitment scheme as is common
in state channels. However, once a state channel is closed, the head state is
seamlessly absorbed into the underlying ledger state and the same smart contract
code as used offchain is now used onchain. This is possible, even without a priori
registration of the contracts used in a head, because one and the same state
representation and contract (binary) code is used offchain and onchain.

Fast Isomorphic State Channels 341

Not every blockchain scripting system is conducive to isomorphic state chan-
nels. Building them requires to efficiently carve out arbitrary chunks of blockchain
state, process them independently, and be able at any time to efficiently merge
them back in. We observe that the Bitcoin-style UTxO ledger model [5,29] is par-
ticularly well suited as a uniform representation of onchain and offchain state,
while simultaneously promising increased parallelism in transaction processing.
While the main restriction of the plain UTxO model has traditionally been
its limited scripting capabilities, the introduction of the Extended UTxO model
(EUTxO) [11] has lifted this restriction and enabled support for general state
machines. Extended UTxO models form the basis for the smart contract platforms
of existing blockchains, such as Cardano [13] and Ergo [16]; hence, the work pre-
sented in this paper would also be of immediate practical relevance.

Like the UTxO ledger representation, the EUTxO ledger representation makes
all data dependencies explicit without introducing false dependencies: two trans-
actions only depend on each other if there is an actual data dependency between
them.This avoids the over-sequentialization of systems depending on a global state
and is optimal as far as parallel transaction processing is concerned [8].

Exploiting the EUTxO ledger representation, we design an offchain protocol
with unparalleled performance. In particular, the offchain protocol is capable of
processing asynchronously and concurrently between different members of the
head, utilizing merely 3 rounds of interaction for updates.

In more detail, in Hydra, a set of parties commit a set of UTxOs (owned by
the parties) into an offchain protocol, called the head protocol. That UTxO set
constitutes the initial head state, which the parties can then evolve by handling
transactions among themselves without blockchain interaction in the optimistic
case.

In case of disputes or in case some party wishes to terminate the offchain pro-
tocol, the parties decommit the current state of the head back to the blockchain.
Ultimately, a decommit will result in an updated blockchain state that is con-
sistent with the offchain protocol evolution on the initially committed UTxO
set. To reduce mainchain overhead, the mainchain is oblivious of the detailed
transaction history of the head protocol that leads to the updated state. Cru-
cially, the time required to decommit is independent of the number of parties
participating in a head or the size of the head state. Finally, Hydra allows incre-
mental commits and decommits, i.e., UTxOs can be added to and removed from
a running head without closing it.

Cross-head Networking. In this paper, we focus solely on the analysis of the
Hydra head protocol. Nevertheless, the existence of multiple, partially overlap-
ping heads off the mainchain can give rise to cross-head communication (as in
the Lightning Network [28]), using similar techniques to [17,20].

Experimental Evaluation. We conducted detailed simulations of head perfor-
mance under a variety of load and networking scenarios, including both geo-
graphically localized heads and heads with participants spread over multiple
continents, incurring large network delays.

342 M. M. T. Chakravarty et al.

Instead of focusing on absolute metrics such as transactions per second
(TPS), we develop a “baseline” methodology where the protocol is vetted against
well-defined ideal baselines revealing its intrinsic design qualities while factoring
away experimental environment specificities. We found that our head protocol,
in the optimistic case, achieves progress that rivals the speed and throughput of
the network in all configurations; this is aided by the concurrency afforded by
the partial-only transaction ordering permitted by the graph-structure under-
lying UTxO ledgers. Moreover, the storage required by the protocol for the
participating nodes is maintained at the lowest level possible via a snapshot
“garbage collection” mechanism that incurs only a marginal overhead.

Comparison to Previous Work. A number of previous works study state channel
protocols. The Sprites protocol by Miller et al. [26] allows a set of parties to
initiate a smart contract instance onchain and take it offchain. The offchain
protocol runs in phases of 4 asynchronous rounds where a leader coordinates the
confirmation of new transactions among the off-chain participants (compared to
Hydra’s 3 asynchronous rounds). Similarly to Hydra, the Sprites protocol allows
to add/remove funds from the offchain contract while it is running.

Dziembowski et al. [17] utilize pairwise state channels and allow the instanti-
ation of a multi-party state channel among any set of parties that are connected
by paths of pairwise state channels—the instantiation of the multi-party chan-
nel does not require any interaction with the mainchain. The offchain protocol
proceeds in phases of at least 3 synchronous rounds to confirm new transactions
without the need for a coordinating leader.

By resolving disputes in a shared (onchain) contract, both of the above
works [17,26]—much like the Hydra protocol—achieve dispute resolution in
O(Δ) time (and independently of the number of state-channel participants),
where Δ is the onchain settlement time.

Our experimental evaluation in Sect. 4 includes a comparison to the Sprites
protocol [26]. We focused on a comparison to Sprites since it is an asynchronous
off-chain protocol as well. In contrast, a fair comparison to the (synchronous)
protocol in [17] seems difficult as we would have to choose a respective delay
bound, thereby introducing a tradeoff between offchain protocol performance
and contestations due to exceeded network delays.

An additional advantage over [26] and [17] is that those fix the set of contracts
that can be evolved in a given state channel at channel creation time. In Hydra,
new contracts can be introduced in a head after creation in the native EUTxO
language of the underlying blockchain. Finally, Hydra is isomorphic and thus
reuses the existing smart contract system and code for offchain computations.
This is not the case for [26] and [17]. For example, if we consider the sample
Solidity contract of [26], it would have to incorporate a whole state machine
capable of executing EVM bytecode to achieve contract (system) reuse—and
hence, isomorphic state channels.

There exist other smart-contract-enabled ledger models that share some of
the structural organization of the (E)UTxO model. In particular, the records
nano-kernel of ZEXE [10]. We believe that it ought to be possible to transfer

Fast Isomorphic State Channels 343

the approach that we are describing in the present paper from EUTxO to the
records nano-kernel. However, ZEXE’s privacy requirements raise a number of
additional questions, such as the amount of information that is being leaked by
the mainchain contract and the offchain protocol. These additional questions
prompted us to base our work on the EUTxO model, which does not have these
additional requirements. We leave those questions to future work.

There is also a large number of non-peer reviewed proposals for state-channel-
based solutions such as [2,14,24,25]. These proposals come with various degrees
of formal specification and provable security guarantees and their systematiza-
tion is outside of our current scope; it suffices to observe that none of them
provides the isomorphism property or comes with a complete formal security
analysis and an experimental evaluation.

Two concepts related, but distinct, from state channels are sidechains (e.g.,
[6,21,22]) and non-custodial chains (e.g., [3,19,23,27]), including plasma and
rollups. Sidechains enable the transfer of assets between a mainchain and a
sidechain via a pegging mechanism; contrary to a state channel, funds may be lost
in case of a sidechain security collapse. Non-custodial chains delegate mainchain
transaction processing to an untrusted aggregator and are capable, like state
channels, to protect against a security failure. However, as the aggregator is
a single-point-of-failure, in a setting where a large number of users are served
by the same non-custodial chain, this gives rise to the “mass-exit” problem
(see e.g., [19]); state-channels are similar in the sense that any single user may
unilaterally close the channel, however scaling to a large number of users can be
also achieved via state channel networks [20] (as opposed to a single monolithic
state channel) and in such settings multiple pathways may exist for any single
subset of users wishing to achieve a particular task; this diffuses the single-point
of failure problem—subject to the underlying channel network topology (note
that we do not exclude the possibility that “non-custodial chain networks” may
be devised to address this problem in a similar manner). Finally, work in progress
on optimistic rollups, reported in [3], claims a feature similar to our isomorphic
property, but without the latency benefits of our approach as their settlement
still advances with the underlying mainchain.

2 Preliminaries

The basis for our fast isomorphic state channels is Bitcoin’s UTxO ledger mo-
del [5,29]. It arranges transactions in a directed acyclic graph structure, thus
making the available parallelism explicit: any two transactions that are not
directly or indirectly dependent on each other can be processed independently.

Extended UTxO. The Extended UTxO Model (EUTxO) [11] preserves this struc-
ture, while enabling more expressive smart contracts, including multi-transaction
state machines, which serve as the basis for the mainchain portion of the work
presented here.

In addition to the basic EUTxO extension, we generalize the currency val-
ues recorded on the ledger from integral numbers to generalized user-defined

344 M. M. T. Chakravarty et al.

tokens [1]. Put simply (sufficient to understand the concepts in this paper), values
are sets that keep track of how many units of which tokens of which currency are
available. For example, the value {Coin �→ {Coin �→ 3}, c �→ {t1 �→ 1, t2 �→ 1}}
contains 3 Coin coins (there is only one (fungible) token Coin for a payment
currency Coin), as well as (non-fungible) tokens t1 and t2, which are both of
currency c. Values can be naturally added by component-wise addition for each
currency. In the following, ∅ is the empty value, and {t1, . . . , tn}::c is used as a
shorthand for {c �→ {t1 �→ 1, . . . , tn �→ 1}}.

Fig. 1. Transactions representing successive states in a CEM transition relation s
i−→

(s′, tx≡). Fields val and val′ are the value fields of the SM outputs and ρ̃ is the additional
data.

EUTxO-ledger transactions are quintuples tx = (I,O, valForge, r,K) compris-
ing a set of inputs I, a list of outputs O, values of forged/burned tokens valForge,
a slot range r = (rmin, rmax), and public keys K. Each input i ∈ I is a pair of an
output reference out-ref (formed by a transaction ID and an index identifying an
output of the transaction) and a redeemer ρ (used to supply data for validation).
Each output o ∈ O is a triple (val, ν, δ) consisting of a value val, a validator script
ν, and a datum δ. The slot range r indicates the slots within which tx may be
confirmed and, finally, K are the public keys under which tx is signed.

To validate a transaction tx with input set I, for each output o = (val, ν, δ)
referenced by an i = (out-ref, ρ) ∈ I, the corresponding validator ν is run on the
following inputs: ν(val, δ, ρ, σ), where the validation context σ consists of tx and
all outputs referenced by some i ∈ I (not just o). Ultimately, tx is valid if and
only if all validators return true.

State Machines (SMs). A convenient abstraction for EUTxO contracts span-
ning a sequence of related transactions are SMs; specifically, constraint emitting
machines (CEMs) [11]. Based on Mealy machines, they consist of a set of states
Scem, a set of inputs Icem, a predicate final

cem
: Scem → Bool identifying final

states, and a step relation s
i−→ (s′, tx≡), which takes a state s on an input i to

a successor state s′ if the constraints tx≡ are satisfied.
We implement CEMs on an EUTxO ledger (the mainchain) by representing a

sequence of CEM states as a sequence of transactions. Each of these transactions
has got an SM input icem and an SM output ocem, where the latter is locked by
a validator νcem, implementing the step relation. The only exceptions are the
initial and final state, which have got no SM input and output, respectively.
More specifically, given two transactions tx and tx′, they represent successive
states under s

i−→ (s′, tx≡) iff

Fast Isomorphic State Channels 345

– SM output ocem = (val, νcem, s) of tx is consumed by SM input i′
cem

=
(out-ref, ρ) of tx′, whose redeemer is ρ = i (i.e., the redeemer provides the
SM input) and

– either final
cem

(s′) = true and tx′ has no SM output, or o′
cem

= (val′, νcem, s′)
and tx′ meets all constraints tx≡.

Sometimes it is useful to have additional data ρ̃ provided as part of the redeemer,
i.e., ρ = (i, ρ̃). A state transition of the described type is represented by two
connected transactions as shown in Fig. 1. For simplicity, SM inputs and outputs
are not shown, except for the value fields val and val′ of the SM output.

3 The Hydra Protocol

The Hydra protocol locks a set of UTxOs on a blockchain (referred to as the
mainchain) and evolves it inside an offchain head, independently of the main-
chain. At any point, the head can be closed with the effect that the locked set
of UTxOs on the mainchain is replaced by the latest set of UTxOs inside the
head. The protocol guarantees wealth preservation: no funds can be generated
offchain, and no responsive honest party involved in the head can lose funds
other than by consenting to give them away.

For space reasons, this paper presents a simplified version of Hydra, con-
centrating on its basic concepts and ideas. More details are given in the online
version of the paper [12].

3.1 Protocol Setup

To create a head-protocol instance, any party may take the role of an initia-
tor and ask a set of parties, the head members, to participate in the head by
announcing the identities of the parties. The members then exchange crypto-
graphic key material establishing, amongst others, a public-key infrastructure.
Note that this process does not happen on the mainchain but out of band.1 The
setup procedure is detailed in [12], App. C.

3.2 Mainchain (Simplified)

The mainchain part of the Hydra protocol fulfills two principal functions: (1)
it locks the mainchain UTxOs committed to the head while the head is active,
and (2) it facilitates the settlement of the final head state back to the mainchain
after the head is closed. In combination, these two functions effectively result in
replacing the initial head UTxO set by the final head UTxO set on the mainchain
in a manner that respects the complete set of head transactions (but without
posting any other information about these transactions).

The mainchain state machine (SM), depicted in Fig. 2, comprises the four
states initial, open, closed, and final, where the first two realize (1) and the second
1 The process also may fail due to member corruption.

346 M. M. T. Chakravarty et al.

Fig. 2. Mainchain state diagram for a simplified version of Hydra.

two realize (2). Observe that SMs inherently sequentialize all actions involving
the machine state; this simplifies both reasoning about and implementing the
protocol but might hurt performance as steps that could otherwise be taken
in parallel now need to be sequentialized. Where such sequentialization would
severely affect protocol performance, we employ a (to our knowledge) novel tech-
nique to parallelize the progression of the SM on the mainchain.

We use said technique to parallelize the construction of the initial UTxO set.2

To create a head instance, the initiator submits a transaction initial containing
the protocol parameters, and establishing the state initial. Each member can now
attach a commit transaction (to a dedicated output of initial), which locks (on
the mainchain) the UTxOs that they want to commit to the head.

The commit transactions are subsequently collected by the collectCom trans-
action causing a transition from initial to open. Once collectCom is confirmed, the
members are ready to run the offchain head protocol. In case some members fail
to post a commit transaction, the head can be aborted by an abort transaction,
directly transitioning the state machine from initial to final.

To ensure exactly one commit transaction per member and that the col-
lectCom transaction collects all commits, transaction initial issues a single non-
fungible token, a so-called participation token, to each member. Each token must
be consumed by the corresponding member’s commit transaction, and the col-
lectCom transaction, to be valid, must collect the full set of participation tokens.

To close a head, any head member can post a close transaction, which takes
the SM state from open to closed. Transaction close supplies to the SM informa-
tion about the UTxO set to be restored along with a validity certificate, which
is checked by the SM. During a contestation period, contest transactions can
be posted, leaving the SM in the state closed but providing more up-to-date
certified information about the head UTxO state. Once the contestation period
is over, the fanout transaction can be posted, which takes the SM from closed
to final, such that the outputs of the fanout transaction correspond exactly to
the final head UTxO set.

The detailed workings of the mainchain SM is described in [12], App. D.

2 Without parallelization, all n members would have to post their UTxOs in sequence,
requiring a linear-size chain of n transactions, each causing one state transition.

Fast Isomorphic State Channels 347

3.3 Head (Simplified)

For ease of overall readability, in this section, we present a simplified version of
the head protocol and restrict ourselves to a high-level treatment of the execution
model and protocol security. In particular, we omit the graceful handling of (poten-
tially legitimate) transaction conflicts arising from two parties concurrently trying
to redeem the same UTxO.3 A description of the full head protocol together with
explicit definitions and a full security proof are given in [12], App. E.

A depiction of the simplified head protocol is given in Fig. 3.

Fig. 3. Head-protocol machine for the simple protocol from the perspective of party
pi. All relevant notation is explained in the text.

Quick Summary. The head protocol starts with an initial UTxO set U0, which
is identical to the UTxOs locked onchain.

Transactions. Individual transactions are confirmed in full concurrency by col-
lecting and distributing multisignatures (cf. [12], App. B for the definition of mul-
tisignatures) on each issued transaction separately. As soon as such a transaction
is confirmed, it irreversibly becomes part of the head UTxO state evolution—
the transaction’s outputs are immediately spendable in the head or can be safely
transferred back onchain in case of a head closure.

3 For now, such conflicts are treated like malicious ones, thus resulting in head closure.

348 M. M. T. Chakravarty et al.

Snapshots. To minimize local storage requirements and to allow for closing a
head via a transaction whose size is independent of the offchain transaction
history, the protocol continuously generates UTxO snapshots U1, U2, Unlike
transactions, snapshots are generated sequentially, where the head members take
turns acting as snapshot leaders.

Once a snapshot gets confirmed via a multisignature, participants can safely
delete all included transactions; the multisignature is now evidence that this
state once existed during head evolution.

Closing the Head. A party wanting to close the head decommits their local
state by posting, onchain, the latest observed confirmed snapshot U� together
with those confirmed transactions that are not yet included in this snapshot, so-
called hanging transactions. During the subsequent contestation period, other
head members may post their own local confirmed states if they are newer.

UTxOs and Transactions. In the UTxO model, independent transactions can be
processed concurrently; the exact order of transaction application is irrelevant
as long as the partial order imposed by the DAG structure is respected.

Given UTxO set U and transaction tx, by U ′ = U ◦ tx we express that U ′

results from U by applying tx, where U ′ = ⊥ if the validation fails. For a set of
transactions T , by U ′ = U ◦T we express that U ′ results from U by applying all
transactions in T where U ′ = ⊥ if the full transaction set cannot be applied.

Tools and Objects. A multisignature scheme from the initial setup is used to
certify protocol updates as confirmed, i.e., that every head member has approved
the respective update.

Every party maintains local objects to represent transactions, snapshots, and
their local state (current view of the head UTxO set). These objects exist in two
versions: a seen object has been signed by the party (the party has approved
the event), and a confirmed object has an associated valid multisignature (i.e.,
all parties have approved the event). A seen object X is denoted by X̂, and a
confirmed object by X. Every party locally maintains

– ŝ and s, the index of the latest seen/confirmed snapshot;
– Û and U , the latest seen/confirmed snapshot;
– T̂ and T , the current set of seen/confirmed transactions that have not yet

been considered by a confirmed snapshot;
– L̂ and L, the current seen/confirmed UTxO state—thus maintaining L̂ =

U ◦ T̂ and L = U ◦ T .

Code Conventions. The protocol machine is described from the perspective of
a generic head party pi. We assume that the parties communicate over pairwise
authenticated channels, and that a party only accepts messages authenticated
by its claimed sender. For simplicity, whenever a party pi sends a message to all
head parties, it also sends the message to itself.

By require(P) we express that predicate P must be satisfied for the further
execution of a routine—if P is not satisfied, the routine is exited immediately.

Fast Isomorphic State Channels 349

By wait(P) we express a non-blocking wait for predicate P to be satisfied. On
¬P , the execution of the routine is stopped, queued, and reactivated as soon
as P is satisfied. Finally, for simplicity, we assume the code executions of each
routine to be atomic—except for blocks of code that may be put into the wait
queue for later execution, in which case we assume the wait block to be atomic.

To facilitate reasoning about protocol security, in the code, we write output
(seen, tx) (output (conf, tx)) to make explicit (to the execution environment)
that a given transaction tx has been seen (confirmed) by a particular party.

3-round object confirmation. Transactions and snapshots are confirmed in an
asynchronous 3-round process:

– req: The issuer of a transaction or snapshot requests to confirm the object
by sending the object to every head member.

– ack: The head members acknowledge the object by replying with their signa-
tures on the object to the issuer.

– conf: The issuer collects all signatures, combines the multisignature, and
sends the multisignature to all head members.

Initializing the Head. Initially, the parties collect the public-key data from the
initial transaction corresponding to the head and verify that it is consistent with
the data exchanged during the setup phase. The parties then set L = L̂ =
U = Û = U0, where U0 is the initial UTxO set extracted from the collectCom
transaction. The initial transaction sets are empty, T = T̂ = ∅, and s = ŝ = 0.

Confirming New Transactions. (new). At any time, by calling (new, tx), a head
party can (asynchronously) inject a new transaction tx to the head protocol.
For this, the transaction must be applicable to the current confirmed local state:
L◦ tx �= ⊥. If the test passes, the issuer initiates a 3-round confirmation process
for tx as described above by sending out a (reqTx, tx) request.

(reqTx). Upon receiving a request (reqTx, tx), transaction tx is only signed if
tx applies to the local seen UTxO state: L̂ ◦ tx �= ⊥. Party pi then waits until
his confirmed UTxO state L has “caught up”: L ◦ tx �= ⊥. Finally, in case the
preconditions are satisfied, a signature on the hash of tx, σ = MS-Sign(H(tx)),
is delivered back to the transaction issuer by replying with (ackTx,H(tx), σ).

(ackTx). Upon receiving an acknowledgment (ackTx, h, σj) (corresponding to a
transaction issued by pi), pi stores the received signature. As soon as a sig-
nature has been received from every party, pi creates a multisignature σ̃ ←
MS-ASig(h, {σk}k=[n]) and sends it to all parties in a (confTx, h, σ̃) message.

(confTx). Upon receiving a confirmation (confTx, h, σ̃) (from the transaction
issuer) containing a valid multisignature σ̃, pi fetches the transaction tx with
H(tx) = h from storage and updates T = T ∪ {tx} and L = L ◦ tx.

350 M. M. T. Chakravarty et al.

Creating Snapshots. Snapshots are generated in a sequential round-robin man-
ner. The party responsible for issuing the ith snapshot is called the leader of
snapshot i. The head protocol in Fig. 3 uses a generic leader schedule defined by
the function leader : N → [n], which assigns a head member to every snapshot
number. For concreteness, assume that leader(s) = (s mod n) + 1.

(newSn). On activation via (newSn), if pi is the snapshot leader, they send mes-
sage (reqSn, s + 1,H) where H = {H(tx) | tx ∈ T }, indicating their wish to
include in the next snapshot the transaction set T —the confirmed transactions
from the leader’s view that have not yet been processed by a snapshot.

(reqSn). Upon receiving request (reqSn, s,H), party pi checks that s is the next
snapshot number and that the sending party pj is its snapshot leader. In T , all
(seen) transactions from T̂ are collected whose hashes are contained in H.

The party waits until the previous snapshot is confirmed (s = ŝ) and all
transactions in T are confirmed. Only then, pi builds the new snapshot, computes
a signature σi = MS-Sign(H(Û‖ŝ)), and replies (ackSn, s, σi) to pj .4

(ackSn). Upon receiving acknowledgment (ackSn, s, σj), the snapshot leader
stores the received signature. Once a signature has been received from every
party, the leader creates a multisignature σ̃ ← MS-ASig(H(Û‖s), {σk}k=[n]) and
sends it to all parties in a (confSn, h, σ̃) message.

(confSn). Upon receiving confirmation (confSn, s, σ̃) with a valid multisignature
σ̃ from the snapshot leader, pi obtains T from storage and updates s = s and
U = Û . The set of confirmed transactions can now be reduced by excluding the
transactions that have been processed by U : T ← T \ T .

Closing the Head. (close). To close a head, a party triggers the head-protocol
event (close), which returns the latest confirmed snapshot U together with
the hanging transactions T and all respective multisignatures. In Fig. 3, the
multisignatures on U and the transaction in T are summarized as Φ.

(cont). To contest the current state closed on the mainchain, a party causes the
head-protocol event (cont, η), with input η being the latest observed head sta-
tus that has been aggregated onchain for this head so far (by close and contest
transactions). The algorithm then computes “differential” data between the cur-
rent onchain head status and the contester’s confirmed view: the latest confirmed
snapshot (if newer than seen onchain) and the set of hanging transactions (not
yet considered by η). From the hanging transactions we only want to publish
those not yet contained in Tη and not yet processed by the (possibly newer)
snapshot from η. This is achieved by applying function applicable that tests, for
each transaction in tx ∈ T ∪ Tη in appropriate order, whether U ◦ tx �= ⊥ is still
applicable, and by removing Tη from the applicable set.

4 Note that no UTxO sets have to be exchanged in this process as the parties can
locally compute a new snapshot using the given transaction hashes.

Fast Isomorphic State Channels 351

Security. We now sketch the security definition and a proof of security for the
basic protocol without conflict resolution as described above. A comprehensive
security analysis of the protocol (with conflict resolution) is given in [12], App. E.

Recall that the head protocol gives different security guarantees depending
on the level of adversarial corruption. It provides correctness (safety) indepen-
dently of both, the number of corrupted parties, and network delays, in the
head. However, the guarantee that the protocol makes progress (i.e., that new
transactions get confirmed in the head) can only be provided in the case that no
head parties are corrupted and that all head-protocol messages are eventually
delivered.

We apply a game-based security proof that reflects the above distinction by
considering two different adversaries, an active adversary A with full control
over the protocol, and a network adversary A∅ that does not corrupt any head
parties but arbitrarily schedules message delivery in the head protocol under the
restriction to eventually deliver all sent network messages.

We capture protocol security by the following events, and prove the protocol
secure by showing that, in a random execution of the protocol, no (probabilistic-
polynomial-time) adversary can violate any of the following events except for a
negligible probability.

– Consistency (under A): No two uncorrupted parties observe conflicting
transactions confirmed.

– Conflict-Free Liveness: Under adversary A∅, if no conflicting transac-
tions are ever issued during the head protocol, then every transaction becomes
confirmed at some point.

– Soundness (under A)): The final UTxO set accepted on the mainchain
results from a set of seen transactions.

– Completeness (under A): All transactions observed as confirmed by an
honest party at the end of the protocol are considered on the mainchain.

We now sketch the arguments why the above events are satisfied.

Consistency. Follows from the fact that an honest party never signs a transaction
in conflict with his own view of the confirmed UTxO state, and that a confirmed
transaction implies that every party signed it.

Conflict-Free Liveness. Assume that all parties are honest and that no conflicting
transactions are ever published. A transaction is only issued if it is consistent
with the issuing party’s confirmed UTxO state (see new), implying, by conflict-
freeness, that the transaction is (immediately) consistent with the seen states of
all parties, who will thus eventually confirm the transaction by signing it (see
reqTx).

Soundness. Follows from the fact that only confirmed transactions eventually
affect the mainchain, and that a confirmed transaction has been seen by all
honest parties.

352 M. M. T. Chakravarty et al.

Completeness. Upon head closure, mainchain security guarantees that each hon-
est party gets to have included, in the mainchain ledger, a more recent confirmed
snapshot and/or hanging transactions (by a close and contest mainchain transac-
tion). By consistency and the fact that only confirmed information is included in
the aggregated mainchain state η, every transaction ever observed as confirmed
by an honest party will finally have been integrated into the final aggregated
state on the mainchain.

3.4 Extensions for the Full Protocol

To improve on the basic protocol, we change the mainchain state machine to
include (1) incremental commits and decommits (adding UTxOs to or remov-
ing them from the head without closing), (2) optimistic one-step head closure
without the need for onchain contestation, (3) pessimistic two-step head closure
with an O(Δ) contestation period, independent of n, where Δ is the onchain
settlement time of a transaction, and (4) split onchain decommit of the final
UTxO set (in case it is too large to fit into a single transaction). These changes
are described in [12], App. F, as well as the handling of transaction fees in order
to fund onchain state-machine progress.

4 Experimental Evaluation

This section investigates the latency (transaction settlement time) and through-
put (rate of transaction processing) of Hydra, using timing-accurate simulations.
Instead of simply providing particular numbers (such as transactions-per-second
(TPS)), we derive “baselines” that represent the theoretical optimum for any
consensus protocol and compare the results of our simulations to these baselines.
The comparison reveals that Hydra is near-optimal in terms of both throughput
and latency. Our methodology features two types of baselines:

The universal baseline considers only the cost of processing transactions and
disseminating them across the network of nodes in the state channel; observe
that any iterated consensus algorithm that yields full state at each node must
necessarily carry out both operations. As this protocol-independent baseline is
one against which any iterated consensus algorithm can be compared, near opti-
mality with respect to this baseline reflects ideal throughput.

The unlimited baseline focuses on the characteristics of the protocol itself. In
particular it asks how the protocol’s implementations compare to an idealized
execution of the protocol by a set of nodes that experience no local contention
for resources. This baseline comparison is meant to be complementary to the
universal baseline and helps answer the following question: Whenever there is
divergence between the universal baseline and the actual consensus protocol
execution in the experiment, how much of this divergence is to be attributed to
the inherent cost of running the consensus protocol vs. the costs arising due to
contention for resources within each node?

In this section we provide an overview of how we apply this methodology,
present graphs of our experimental setup, and discuss the results. Further notes
on the experiments are provided in [12], App. A.

Fast Isomorphic State Channels 353

4.1 Applying the Methodology

The experimental setup involves a fixed set of nodes, with a specified network
bandwidth per node and geographic location of each node that determines the
network latency between each pair of nodes. Each node submits transactions
with a specified transaction concurrency c: it sends c transactions as fast as its
resources allow, and then sends another one whenever one of the transactions it
sent previously gets confirmed. This controls the number of inflight transactions
to be c per node. Snapshots are performed regularly: nodes take turns to produce
snapshots, and whenever the current leader obtains a new confirmed transaction,
it creates a snapshot subsuming all the confirmed transactions it knows about.
Testing the system under heavy load like this allows us to determine its maximal
throughput. It also gives us a worst-case estimate for the latency; running at
capacity will only increase the latency compared to operation below capacity.

In order to properly gauge the simulation results, we compare them to base-
line scenarios that are sufficiently simple to facilitate optimistic performance
limits exactly. We derive those limits by considering each sequence of events
that has to happen in order for a number of transactions to be confirmed, and
summing up the time for each event in those sequences. In particular, we have
three resources that potentially limit the transaction rate: (1) the CPU capacity
at each node determines how fast transactions can be validated, and signatures
be created or verified; (2) the inbound and outbound network bandwidth limits
how many message bytes can be received and sent by each node in a given time;
(3) each message between two nodes is delayed by the network latency between
those nodes. Depending on the configuration of the system, the most utilized
of these resources will limit the transaction rate. This is an idealization: in a
real execution, additional contention effects will cause even the scarcest resource
to be blocked and idle occasionally. We thus expect experimental results to be
bounded by the baselines, and interpret the difference as the impact of such con-
tention effects. In addition to the universal baseline, where we assume perfect
trust between all participants (each transaction is only validated once by the
submitting node, no signatures have to be used), and which sets an upper limit
for the transaction throughput of any protocol that distributes and validates
transactions in a distributed system, we consider two protocol specific baselines:

Hydra Unlimited: This scenario resembles the head protocol, but executed under
ideal circumstances, ignoring contention effects as described above. In contrast
to a real execution of the protocol, where the snapshot size is an emergent
property depending on how fast transactions are confirmed, in the baseline, we
can directly control how many transactions are contained in a snapshot.

Sprites Unlimited: In order to compare to prior work, we also include a baseline
according to an optimal execution of the off-chain protocol from [26]. A deciding
difference to the head protocol is that in Sprites, all nodes send their inputs to
a leader, which collates them and collects signatures for a whole batch of trans-
actions. Compared to Hydra, this batching reduces the demand on CPU time

354 M. M. T. Chakravarty et al.

and number of messages (less signatures) at the expense of additional network
roundtrips and higher network bandwidth usage at the current leader node.

4.2 Experimental Results

We now summarize our simulations results (a detailed evaluation is given in [12]).
We performed experiments for three clusters with different geographic distri-

butions of nodes: a local deployment of three nodes within the same AWS region,
a continental deployment across multiple AWS regions on the same continent
(Ireland, London, and Frankfurt), and a global deployment (Oregon, Frankfurt,
and Tokyo)—see the next section for results with larger clusters. For each of
those clusters, we measure the dependency of confirmation time and transaction
throughput on bandwidth and transaction concurrency, and compare them with
the baselines described above. The numerical results depend on a number of
parameters that we set, representing the time that elementary operations within
the protocol take. We use the settings described below.

Transaction Size. We use two transaction types: (1) simple UTxO transactions
with two inputs and two outputs, whose size are 265 bytes, and (2) script trans-
actions containing larger scripts of 10 kbytes. We use transaction references of
32 bytes. For each message, we allow for a protocol-level overhead of 2 bytes.

Transaction Validation Time. This is the CPU time that a single node will
expend in order to check the validity of a transaction. We use conservative values
here: 0.4ms for simple transactions, and 3ms for script transactions.

Time for Multisignature Operations. We performed benchmarks for the mul-
tisignature scheme [9] resulting in the following estimates: 0.15ms for MS-Sign,
0.01ms for MS-ASig, and 0.85ms for MS-AVerify.

Transaction Throughput. Figure 4 displays results for simple UTxO transactions.
The different rows correspond to the different geographical setups of the clusters,
while the columns differ in transaction concurrency.

As expected, the Universal baseline consistently gives the highest transaction
rate. For Hydra Unlimited, three different snapshot sizes (number of contained
transactions) are considered (dotted, dashed, and solid lines). Comparing the
Universal and Hydra Unlimited baselines, we see that they are identical whenever
the transaction rate is limited by the network latency—since the baselines only
differ with respect to their demand for CPU time and network bandwidth.

The Sprites Unlimited baseline shows the effect of batching via a leader: as
the leader needs to send all transactions to all other nodes, its networking inter-
face is a frequent bottleneck. The additional leader roundtrips reduce throughput
whenever the network latency is the limiting resource. In contrast, when roundtrip
times are short, and bandwidth is sufficient for the CPU time to become the limit-
ing resource—as in the high-bandwidth region of the upper right panel of Fig. 4—
the savings by signing batches instead of single transactions become apparent, and
the Sprite baseline nearly reaches the Universal one.

Fast Isomorphic State Channels 355

●

●

●

●

●

● ●
●

●

●

●

●
● ● ● ●

●

●
● ● ● ● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

●
● ● ●

●

●
●

● ● ● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ● ●

●

●

●
● ● ● ● ●

Concurrency 1 Concurrency 5 Concurrency 10

Local
C

ontinental
G

lobal

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

100

1000

100

1000

10

100

bandwidth [Mbit/s]

tra
ns

ac
tio

n
th

ro
ug

hp
ut

 [t
x/

s]

Baseline Hydra Unlimited Sprites Unlimited Universal

Snapshot size 1 2 infinite

Fig. 4. Transaction rates for the head protocol, compared with the baseline scenarios.
Simple UTxO transactions with 2 inputs and 2 outputs. The lines represent the base-
lines, while the dots are measurements of the transaction rate from our simluations,
using a sample of 2000 transactions per measurement.

Comparing our experimental Hydra-protocol performance to the Hydra
Unlimited baseline, we see that in most cases, the simulation of the protocol (bold
dots) approximates the optimal curve quite well. We only get sizable differences
for low concurrency and insufficient bandwidth. Furthermore, the data reveals
that performing snapshots has a negligible impact on transaction throughput.
Transaction Confirmation Times. For Hydra Unlimited, we can derive a mini-
mal confirmation time by adding up the times for validating a transaction two
times (once at the issuing node, once at every other node), sending the reqTx
and ackTx messages across the longest path in the network, and creating and
validating the aggregate signature.

Figure 5 illustrates the conditions under which we achieve minimal confirma-
tion time. With sufficient bandwidth, we get very close to the baseline, indicated
by the line. While increasing concurrency improves transaction throughput, indi-
vidual transactions are more likely to be slowed down by network congestion.

356 M. M. T. Chakravarty et al.

Concurrency 1 Concurrency 5 Concurrency 10

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0
0.01

0.10

1.00

bandwidth [Mbits/s]

tra
ns

ac
tio

n
co

nf
irm

at
io

n
tim

e
[s

]

Node Location ●● Frankfurt

Fig. 5. Confirmation times for simple UTxO transactions, in a cluster located in one
AWS region. Each dot represents the measurement of the confirmation time of a sin-
gle transaction. From panel to panel, we increase the transaction concurrency. The
theoretically minimal confirmation time is represented by a line.

4.3 Larger Clusters

In addition to three-node clusters, we have also evaluated how the results depend
on cluster size by running simulations with clusters of up to 100 nodes (located
in the same AWS region):

– The transaction rates of a larger cluster are close to those for a three-node
cluster. This is due to the amount of computation per node per transaction
not depending on the number of participants5.

– The bandwidth needed at each node to reach the maximal transaction rate
does depend on the cluster size. This is not surprising, since each node needs
to communicate with more peers.

– For the same reason, the confirmation time of transactions increases with the
cluster size.

Note that these simulations still use a communication pattern where everyone
sends messages to everyone, which is suboptimal for large clusters. Instead, we
ought to construct a graph to broadcast messages, keeping the number of peers
for direct communication small. An advantage of the Hydra approach is that we
can easily have different versions of the head protocol, or different implementa-
tions of the same head protocol, optimized for different cluster sizes.

5 Note that aggregating signatures and verifying an aggregate signature do depend on
the number of participants. However, this does not impact the transaction rates in
our simulations, for three reasons: i) we assume that we aggregate the verification
keys once at the beginning of the head protocol, and only perform verification against
the already computed aggregate verification key during the protocol, ii) even for 100
participants, combining the signatures is quicker than producing a single signature,
iii) combining signatures is performed concurrently with the rest of the protocol
(see [12], App. A.2).

Fast Isomorphic State Channels 357

4.4 Discussion

Hydra consistently achieves subsecond settlement, even for globally distributed
heads. When we allocate sufficient networking resources, and choose low concur-
rency, we do get optimal confirmation times.

Regarding transaction throughput, more important than raw numbers are
the comparisons with the theoretical limits from the baselines scenarios:

– We saw that we do not pay a significant cost for creating snapshots, neither
in terms of transaction throughput, nor in terms of confirmation time. This is
a crucial point: compared to other state channel protocols, Hydra utilizes the
UTxO parallelism to avoid having to sequentialize transactions. Snapshots
are necessary for that approach, since otherwise, the decommit transactions
would become unwieldy. Seeing that snapshots do not slow down the protocol
in any significant way thus validates the design of Hydra.

– Comparing the Universal baseline, Hydra Unlimited, and the experimental
results, we see that we approach the theoretical limits in regions where we
can expect to. When the cost of achieving consensus via multisignatures is
dominated by network roundtrip times and transaction validation, we get
close to the Universal scenario. We see sizable deviations from Hydra Unlim-
ited only when we have low transaction concurrency and bandwidth.

Acknowledgments. Aggelos Kiayias was supported in part by EU Project
No.780477, PRIVILEDGE. We want to thank Duncan Coutts and Neil Davies for
advice on technical aspects of the simulations, and Neil Davies for providing the mea-
surements of round trip times between different AWS regions.

References

1. EUTxO with multi-currency. https://github.com/hydra-supplementary-material/
eutxo-spec/blob/master/extended-utxo-specification.pdf

2. The Connext Network. https://docs.connext.network/en/latest/background/
architecture.html

3. John, A.: The why’s of optimistic rollup. https://medium.com/@adlerjohn/the-
why-s-of-optimistic-rollup-7c6a22cbb61a, November 2019

4. Ian, A.: Ethereum’s Vitalik Buterin explains how state channels address privacy
and scalability. International Business Times (2017)

5. Nicola, A., Massimo, B., Stefano, L., Roberto, Z.: A formal model of Bitcoin trans-
actions. In: Financial Cryptography and Data Security, FC 2018, Nieuwpoort,
Curaçao, 2018, Revised Selected Papers, pp. 541–560 (2018)

6. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014)
7. Bitcoin Wiki. Payment channels. https://web.archive.org/web/

20191106110154/https://en.bitcoin.it/wiki/Payment channelsWiki article.
Accessed 11 June 2019

8. Blelloch, G.E.: Programming parallel algorithms. Commun. ACM 39, 85–97 (1996)
9. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based

on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

https://github.com/hydra-supplementary-material/eutxo-spec/blob/master/extended-utxo-specification.pdf
https://github.com/hydra-supplementary-material/eutxo-spec/blob/master/extended-utxo-specification.pdf
https://docs.connext.network/en/latest/background/architecture.html
https://docs.connext.network/en/latest/background/architecture.html
https://medium.com/@adlerjohn/the-why-s-of-optimistic-rollup-7c6a22cbb61a
https://medium.com/@adlerjohn/the-why-s-of-optimistic-rollup-7c6a22cbb61a
https://web.archive.org/web/20191106110154/
https://web.archive.org/web/20191106110154/
https://en.bitcoin.it/wiki/Payment_channels
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3

358 M. M. T. Chakravarty et al.

10. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 947–964 (2020)

11. Chakravarty, M.M.T., James, C., Kenneth, M., Orestis, Me., Michael, P.J., Philip,
W.: The extended UTxO model. In: 4th Workshop on Trusted Smart Contracts
(2020). http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20 paper 25.pdf

12. Chakravarty, M.M.T., et al.: Fast isomorphic state channels. Financial Cryptogra-
phy and Data Security, Web version (2021). https://fc21.ifca.ai/papers/162.pdf

13. Chakravarty, M.M.T., et al.: Functional blockchain contracts, May 2019. https://
iohk.io/en/research/library/papers/functional-blockchain-contracts/

14. Coleman, J., Horne, L., Li, X.: Generalized state channels, Counterfactual (2018)
15. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

16. Ergo Developers. Ergo: A resilient platform for contractual money, May 2019.
https://ergoplatform.org/docs/whitepaper.pdf

17. Stefan, D., Lisa, E., Sebastian, F., Julia, H., Kristina, H.: Multi-party virtual state
channels. In: Advances in Cryptology - EUROCRYPT 2019, Proceedings, Part (I),
pp. 625–656. Springer (2019). https://doi.org/10.1007/978-3-030-17653-2 21

18. Stefan, D., Lisa, E., Sebastian, F., Daniel, M.: Perun: virtual payment hubs over
cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
106–123. IEEE (2019)

19. Stefan, D., Grzegorz, F., Sebastian, F., Siavash, R.: Lower bounds for off-chain pro-
tocols: Exploring the limits of plasma. Cryptology ePrint Archive, Report 2020/175
(2020). https://eprint.iacr.org/2020/175

20. Stefan, D., Sebastian, F., Kristina, H.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966. ACM (2018)

21. Gaži, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 2019 IEEE
Symposium on Security and Privacy (SP), pp. 677–694. IEEE Computer Society,
Los Alamitos, CA, USA, May 2019

22. Kiayias, A., Zindros, D.: Proof-of-work sidechains. IACR Cryptology ePrint
Archive 2018, vol. 1048 (2018)

23. Georgios, K.: Plasma cash: Towards more efficient plasma constructions (2019)
24. Jeremy, L., Oliver, H.: Funfair technology roadmap and discussion (2017)
25. ScaleSphere Foundation Ltd., Celer network: Bring internet scale to every

blockchain (2018)
26. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state

channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7 30

27. Poon, J., Buterin, V.: Plasma: Scalable autonomous smart contracts. http://
plasma.io/plasma.pdf

28. Joseph, P., Thaddeus, D.: The bitcoin lightning network: scalable off-chain instant
payments (2016)

29. Zahnentferner, J.: An abstract model of UTxO-based cryptocurrencies with scripts.
IACR Cryptology ePrint Archive 2018, vol. 469 (2018)

http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_25.pdf
https://fc21.ifca.ai/papers/162.pdf
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://ergoplatform.org/docs/whitepaper.pdf
https://doi.org/10.1007/978-3-030-17653-2_21
https://eprint.iacr.org/2020/175
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
http://plasma.io/plasma.pdf
http://plasma.io/plasma.pdf

Authentication and Usability

What’s in Score for Website Users:
A Data-Driven Long-Term Study
on Risk-Based Authentication

Characteristics

Stephan Wiefling1,2(B) , Markus Dürmuth2, and Luigi Lo Iacono1

1 H-BRS University of Applied Sciences, Sankt Augustin, Germany
{stephan.wiefling,luigi.lo iacono}@h-brs.de
2 Ruhr University Bochum, Bochum, Germany
{stephan.wiefling,markus.duermuth}@rub.de

Abstract. Risk-based authentication (RBA) aims to strengthen
password-based authentication rather than replacing it. RBA does this
by monitoring and recording additional features during the login process.
If feature values at login time differ significantly from those observed
before, RBA requests an additional proof of identification. Although
RBA is recommended in the NIST digital identity guidelines, it has so
far been used almost exclusively by major online services. This is partly
due to a lack of open knowledge and implementations that would allow
any service provider to roll out RBA protection to its users.

To close this gap, we provide a first in-depth analysis of RBA charac-
teristics in a practical deployment. We observed N = 780 users with 247
unique features on a real-world online service for over 1.8 years. Based
on our collected data set, we provide (i) a behavior analysis of two RBA
implementations that were apparently used by major online services in
the wild, (ii) a benchmark of the features to extract a subset that is
most suitable for RBA use, (iii) a new feature that has not been used in
RBA before, and (iv) factors which have a significant effect on RBA per-
formance. Our results show that RBA needs to be carefully tailored to
each online service, as even small configuration adjustments can greatly
impact RBA’s security and usability properties. We provide insights on
the selection of features, their weightings, and the risk classification in
order to benefit from RBA after a minimum number of login attempts.

Keywords: Risk-based authentication (RBA) · Authentication
features · Big data analysis · Usable security

1 Introduction

Despite their long known weaknesses [5,12,15,19,29,48], passwords are still used
for authentication on most online services [35]. However, threats to password-
based authentication continue to evolve to attacks involving targeted guess-
ing [32] or stolen credentials sourced from data breaches [43].
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 361–381, 2021.
https://doi.org/10.1007/978-3-662-64331-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_19&domain=pdf
http://orcid.org/0000-0001-7917-6065
http://orcid.org/0000-0002-7863-0622
https://doi.org/10.1007/978-3-662-64331-0_19

362 S. Wiefling et al.

Thus, online services need to implement alternative or additional measures to
protect their user base. Two-factor authentication (2FA) is such a measure, but
tends to be only accepted in online banking use cases [17,36,45]. Also, universal
second factor (U2F) or biometric authentication require additional hardware and
active user enrollment, which makes them impractical for online services [13,21].

For these reasons, several major online services deployed risk-based authen-
tication (RBA) to protect their users [46]. RBA is an adaptive authentication
mechanism which increases password security with minimal impact on the user.
It achieves better usability than comparable 2FA methods [45] and is recom-
mended by NIST [22] to mitigate credential stuffing.

During the password entry, RBA monitors and records features that are
available in this context. These feature range from network information, or device
information, to behavioral information. Based on these features, RBA calculates
a risk score related to the login attempt. The score is typically classified by
an access threshold into low, medium, and high risk [20,24,28]. Based on the
estimated risk, the RBA system can invoke multiple actions. If the score is
under the threshold, i.e., a low risk, access is granted. If the score is above
this threshold, i.e., medium or high risk, the online service asks for additional
information (e.g., confirming an email address) or even blocks access.

RBA schemes, their configuration, and features have not been researched
thus far. These are, however, of crucial importance, since they can highly impact
security and usability for website users. A feature might reduce the number of re-
authentication requests but could also weaken the attack protection. To further
investigate this topic, we formulated the following research questions.

Research Questions. With these research questions, we aim to provide
answers on how RBA performs in a practical deployment and how RBA can
be configured to provide the best balance between security and usability.

RQ1: a) How often does RBA request for re-authentication in a practical
deployment?

b) How many user sessions need to be captured and stored in the login
history to achieve a stable and reliable RBA setup?

RQ2: a) Which RBA features have to be chosen to achieve good security?
b) How do RBA features need to be combined to achieve good security?
c) How often will different RBA feature combinations request legitimate

users for re-authentication?
RQ3: a) How practical are different RBA configurations regarding perfor-

mance?
b) How scalable and cost-efficient are different RBA configurations?

Contributions. We provide the first long-term data-driven analysis of RBA
characteristics. (i) We monitored and recorded the login behavior and features
of 780 users on a real-world online service for over 1.8 years. (ii) We derived two
RBA models based on the majority of deployments used in current practice. (iii)

A Data-Driven Long-Term Study on RBA Characteristics 363

We evaluated the two models on our data set and identified features that, in
combination, provide good security and usability. (iv) We proposed and tested a
new feature that had not yet been seen in the RBA and browser fingerprinting
context before. (v) We derived how specific factors influence RBA’s performance.

The results show that even small changes to RBA settings, e.g., the feature
set or access threshold, can strongly affect the usability and security properties of
RBA. Our work supports service owners regarding RBA design decisions on their
website. It helps administrators select suitable RBA properties—including the
RBA scheme, feature set, and weightings—for their website’s characteristics and
needs. Finally, researchers obtain insights on RBA’s inner workings in practice.
Understanding these factors can provide a comprehensive understanding of RBA
and foster a widespread adoption that goes beyond the current use by only major
online services.

2 RBA Models

We derived and evaluated two RBA models based on observations on the RBA
behavior of major online services [46] and algorithm descriptions in literature.

The simple model (SIMPLE) extends the single-feature model used in the
open source single sign-on solution OpenAM [31] and is assumed to be used at
GOG.com [46]. It also partly reflects models given in literature [16,24,42]. We
based our implementation on OpenAM, since it is freely available and probably
widely used. The SIMPLE algorithm checks a number of features for an exact
match in the user’s login history. The risk score is the number of inspected fea-
tures with at least one match in the login history divided by the total number
of considered features. Thus, the risk score granularity increases with the num-
ber of observed features. We tested this model in two variations to observe the
potential of OpenAM’s original implementation. For a fair comparison with an
influential RBA algorithm in literature [20], the first variation used the features
IP address with IP-based geolocation, and user agent string (SIMPLE-IPUA). In
the second variation, we enabled the maximum number of features in the Ope-
nAM solution to test its maximum potential (SIMPLE-ALL). Besides the three
features, there were registered client (HTML5 canvas and WebGL fingerprint),
and last login (i.e., logged in within the last 31 days).

The extended model (EXTEND) is comparable to the multi-features model
that Google, Amazon, and LinkedIn used [46] and presumably still use in some
form. We based this model on Freeman et al. [20], since it was the only compa-
rable algorithm described in the literature. The model calculates the risk score
S for a user u and a given feature set (x1, ..., xd) with d features as [20]:

Su(x) =

(
d∏

k=1

p(xk)
p(xk|u, legitimate)

)
p(u|attack)

p(u|legitimate)
(1)

p(xk) is the probability of a feature value in the global login history and
p(xk|u, legitimate) is the probability that a legitimate user has this feature value

364 S. Wiefling et al.

in its own login history. Since we did not collect attack data, we assumed that all
users are equally likely to be attacked. Thus, we set p(u|attack) = 1

|U | , where U

is the set of users with u ∈ U . The probability of legitimate logins for the user is
based on the proportion of logins, i.e., p(u|legitimate) = Number of user logins

Number of all logins .
Since the risk score depends on the global login history size, the risk score gran-
ularity increases with the number of entries in the global login history.

We smoothed the features with linear interpolation to add probabilities for
previously unseen but plausible values [20]. We also subdivided some features
into subfeatures with individual weightings (IP address → autonomous system
number (ASN) and country; user agent string → browser/OS name and version,
and device type, i.e., mobile or desktop). Freeman et al. evaluated these features
and subfeatures with the help of LinkedIn [20]. Thus, these potentially represent
a practical RBA feature set, which is why we chose and tested them as a baseline.

3 Data Set

We evaluated the RBA models with a data set containing real-world user behav-
ior to identify the model characteristics in a practical deployment.

Data Collection. We recorded user data from August 2018 to June 2020 on
an e-learning website for medical students. During course enrollment, they were
registered at the website by the faculty staff. The students used this online
service to exercise for their study courses and exams. After each successful login,
we collected 247 different features of the user’s online browser, network, and
device (see the pre-proceedings paper version [44] for the full list of features).
The features were relevant in the field of device fingerprinting [3,34] and could
help to identify users in RBA as well.

The data set is very challenging for RBA since the users are mostly located
in the same city. Thus, they could get similar feature values, e.g., IP addresses,
with higher probability. Testing this data will answer whether practical RBA
deployments can protect users in such a challenging scenario.

Survey. The e-learning website collected usernames, hashed passwords, and
features only. After the collection phase, we surveyed users between July and
August 2020 to improve data quality (see Appendix A for the questionnaire).

We recruited via a mailing list of the University of Cologne, addressing stu-
dents who potentially used the e-learning website between August 2018 and June
2020. We introduced the study as a survey on the overall website perception. We
drew 12 Amazon vouchers worth e10 among all participants after the study.

After verifying their account, the users were redirected to the survey. Besides
demographics, we included some questions about the website experience to dis-
tract from our actual study purpose. To improve data quality, we asked whether
the users knew about someone illegitimately logging into their website account.
We based this question on Shay et al. [39].

A Data-Driven Long-Term Study on RBA Characteristics 365

Fig. 1. Login history sizes and number of users in our data set

Demographics. In total, 182 website users (26.6% of login sessions) answered
the survey. 168 users passed the attention check. The users were 61.3% female
and 38.1% male (0.6% did not state the gender). The majority of users (79.7%)
were between 18 and 24 years old. The remaining users were 25–34 years (18.5%),
and 35–54 years old (1.8%). The age and gender distribution corresponds to the
expected demographics for such a study course.

Login Sessions. The data set consisted of 780 users and 9555 logins. The users
mostly logged in daily (44.3%) or several times a week (39.2%). They logged in
between one and 83 times (mean: 12.25, median: 9, SD: 11.18; see Fig. 1). They
used desktop (81.1%) and mobile devices (18.9%). The desktop devices were
Windows (62.5%), macOS (37.2%), and Linux (0.3%) based. Mobile devices
were iOS (75.2%) and Android (24.8%) based. The browsers were mainly Safari
(40.4%), Chrome (29.0%), Firefox (26.1%), and Edge (3.3%). To improve the
quality and validity of our results, we removed users who stated an illegitimate
login attempt in the survey. However, there were no such users (93.5% did not
notice, 6.5% did not know).

Feature Optimization. To improve the expected performance of some of the
features, we optimized them based on procedures found in literature [3,20,24,42]
and as described in the following.

We extracted additional subfeatures from the IP address, user agent string,
and timestamp features. Besides only extracting the hour [24], we also extracted
combinations of weekday and hour to gain more information.

Administrators aiming to deploy the EXTEND model need to adjust the
feature weightings to appropriate values. Freeman et al. [20] did not provide
subfeature weightings for IP address and user agent string. Thus, we calculated
weightings for our data set following the method described in their paper. As
a result, we set the weightings for the IP address (IP address: 0.6, ASN: 0.3,
country: 0.1) and user agent (full string: 0.53, browser: 0.27, OS: 0.19, device
type: 0.01). We chose the weightings based on the value of information when
present. They only relate to our specific data set, but can give an impression of
their distribution in practice.

New Feature: Round-Trip Time. We propose a new feature that has not
been seen in RBA and browser fingerprinting literature at the time of study. In

366 S. Wiefling et al.

concurrent and independent work, Rivera et al. [37] proposed a similar idea based
on the work-in-progress resource timing API. Apart from it being a different
approach, their feature is also client originated and thus less trustworthy than
our solution.

The web sockets technology [27], which is present in most online browsers
today [9], allows measuring the round-trip-time (RTT). The server requests a
data packet from the client and measures the time until the response. Popular
online browsers Chrome and Firefox did not display this process (ping and pong
frames) inside their developer tools at the time of study. RTTs can give infor-
mation on whether the user’s device is really located in the indicated region,
or whether the location was potentially spoofed, e.g., by VPNs or proxies [1,8].
This is also true in the presence of Content Delivery Networks (CDNs), where
the CDN edge node can be linked to the RTT. This results in an even better
measurement, since the edge nodes close to the user’s device are also considered.

When users entered the login credentials, we measured the RTT five times.
Then, we stored the smallest RTT value to get the best possible value and to
mitigate larger RTT variations, e.g., due to mobile connectivity. Besides the RTT
in microseconds (RTT-RAW), we stored RTTs in milliseconds (RTT-MS), and
rounded to the nearest five (RTT-5MS) and ten milliseconds (RTT-10MS).

Legal and Ethical Considerations. The participants were part of a model
medical education program. During enrollment, they signed a consent form
agreeing to the data collection for study purposes. They were always able to
view their data on request. The collected data was stored on encrypted hard
drives. Only the study researchers had access to them. The passwords on the
website were hashed with scrypt [33]. All participants gave informed consent on
these procedures. All survey questions included a “don’t know” option.

We do not have a formal IRB process at our university. But besides our ethical
considerations above, we made sure to minimize potential harm by complying
with the ethics code of the German Sociological Association (DGS) and the
standards of good scientific practice of the German Research Foundation (DFG).
We also made sure to comply with the EU General Data Protection Regulation.

4 Attacker Models

We evaluated the RBA systems using three attacker models based on known ones
in the RBA context [20,47]. All attackers possess the victim’s login credentials
(see Fig. 2).

Naive Attacker VPN Attacker Targeted Attacker
Login Credentials Country City, Browser, Device

Fig. 2. Overview of the attacker models tested in the study

A Data-Driven Long-Term Study on RBA Characteristics 367

The naive attacker tries to log in via an IP address of a random ISP located
somewhere in the world and uses popular user agent strings. We simulate these
attackers using a random subset of IP addresses sourced from real-world online
attacks [18]. Other feature values not related to the IP address are sourced from
our data set. The VPN attacker knows the same as the naive attacker plus the
correct country of the victim. The attacker spoofs the IP geolocation with VPN
services and uses popular user agent strings. We simulate these attackers with
known attacker IP addresses [18] located in the victim’s country. Feature values
not derived from the IP address are sourced from our data set. We also included IP
addresses not directly related to VPN services to consider services that tunnel traf-
fic through client devices. The targeted attacker extends the knowledge of the
VPN attacker by including locations and user agents of the victim. The attacker
accesses IP addresses of ISPs in that location, likely including the victim’s ones.
This attacker is identical to Freeman et al.’s phishing attacker [20]. We used a dif-
ferent term, however, as phishing is just one of the ways to obtain this level of
knowledge. We simulate this attacker with our data set. The feature values are
taken from all users except the victim. Since location dependent feature values in
our data set were in close proximity to each other, our simulated attacker is aware
of these circumstances and chooses feature values in a similar way.

5 Evaluating RBA Practice (RQ1)

Below, we analyze the RBA behavior in a practical deployment. We describe our
methodology to reproduce the RBA behavior and present the results.

Step 1: Calibrating Risk Scores. The risk scores of the RBA models have
different granularity (see Sect. 2). For a fair comparison, we calibrated the risk
score access thresholds of both RBA models. We adjusted regarding the percent-
age of blocked attacks in each attacker model, which we call the true positive
rate (TPR), as in related work [20]. We approximated the TPRs as close as pos-
sible. However, due to their granularity properties, SIMPLE TPRs were more
coarse-grained than those of EXTEND.

Step 2: Determine Re-authentication Count. By replaying user sessions,
we determined how often the data set’s legitimate users were asked for re-
authentication based on the number of logins. For each login attempt, we (i)
restored the state at the time of the login attempt, (ii) calculated the risk score
with the RBA model, and (iii) finally applied the calibrated RBA access thresh-
old to the risk score and stored the access decision.

To provide an average estimation of the RBA behavior, we calculated the
median re-authentication counts and rates for each login history size.

5.1 Results

Figure 3 shows the results for the targeted attacker case. We answer our research
questions regarding practical RBA deployments in the following.

368 S. Wiefling et al.

Fig. 3. Median re-authentication counts (top) and rates (bottom) per user based on
the login history size. The TPR (percentage of blocked attacks) relates to targeted
attackers. We added the baseline for 2FA (light grey line), the stable setup threshold
(dark grey line), and the mean login count (dotted black line) for orientation. Below the
stable setup threshold, users had to re-authenticate less than every 2nd login attempt.

Table 1. Median login count until re-authentication when blocking targeted attackers

Median logins until Median logins until Median logins until

Model TPR re-authentication Model TPR re-authentication Model TPR re-authentication

EXTEND 0.9992 2.4 SIMPLE-ALL 0.9991 1.71 SIMPLE-IPUA 0.9829 1.71

0.9947 6 0.9857 6 0.7474 12

0.9900 12 <0.9857 ∞ <0.7474 ∞
0.9799 12

<0.9799 ∞
Login history size: 12

Number of Re-authentication Requests in Practice (RQ1a). The users
logged into the website 12.25 times on mean. Thus, we considered a login history
size of 12 to determine the re-authentication count for the average user in our
data set. We define the median login count until re-authentication as the login
history size divided by the median re-authentication count. In the following, we
show the results with TPRs adjusted for each attacker model. Note that due to
the risk score characteristics, attackers of lower hierarchy were always blocked
as well (e.g., all naive attackers were blocked when blocking all VPN attackers).

Even when blocking all naive attackers with the highest possible TPR,
legitimate users were never asked for re-authentication at all, except for
SIMPLE-IP with TPR 0.999 (every 12th time). When VPN attackers were
blocked, legitimate users were mostly not asked for re-authentication at all. In
the other cases, they were prompted every 2.4th time (TPR 0.9995) and every
12th time (TPR 0.9946, 0.9903) with EXTEND, every 12th time with SIMPLE-
IP (TPR 0.9933), and every 6th time with SIMPLE-ALL (TPR 0.9999). When
blocking targeted attackers, our legitimate users were never asked for re-
authentication with TPRs lower than 0.98 in most cases (see Table 1 and Fig. 3).

A Data-Driven Long-Term Study on RBA Characteristics 369

Overall, the median re-authentication rate became lower with an increase
in the login history size. For very high TPRs, however, the numbers did not
decrease to a high degree, especially with the SIMPLE model.

Concluding the results, RBA rarely requests re-authentication for most cases
in our real-world data set, even when blocking targeted attackers up to a TPR
of over 0.9945 with EXTEND. However, the re-authentication rate strongly
depends on the RBA model and the assumed attacker model. The influence
of the feature set and the feature weightings will be analyzed in Sect. 6.

Required Login History Size (RQ1b). Since RBA is designed to request
less re-authentication than 2FA for legitimate users, this difference needs to
be noticeable in sensible RBA deployments. As a baseline to request less than
every second login attempt, we defined the required login history size as the size
above which the median re-authentication rate remains below 0.5. For statistical
validity, we considered login history sizes lower than 38 since these had at least
30 users (see Sect. 3).

In our data set, most TPRs required one or even no history entry for block-
ing targeted attackers in both models (see Fig. 3). However, EXTEND required
ten entries for TPR 0.9992. The SIMPLE models partly did not fulfill the
requirement (TPRs: 0.9829 SIMPLE-IPUA, 0.9991 SIMPLE-ALL). Based on
our results, we conclude that storing one entry is already sufficient for a stable
setup that blocks more than 99.45% of targeted attackers with the EXTEND
model. To block 99.92% of attack attempts, ten entries are needed in our use
case.

5.2 Discussion

Small variations of the access thresholds (see Sect. 1) can greatly affect the TPR.
For instance, changing a tiny fraction of the threshold lowered the TPR from a
very good 0.9829 to 0.7474 in SIMPLE-IPUA. We assume that this can make
it difficult for administrators to adjust the access thresholds correctly. To foster
a widespread RBA adoption in the wild, we suggest that RBA properties must
be easy for administrators to estimate, apply, and control. A possible solution
could be a dashboard showing the aggregated re-authentication rates and risk
scores per user. These metrics can help to control and adjust the thresholds
continuously and whenever necessary.

Even in settings involving a high TPR, the RBA models hardly ask for re-
authentication at all. While this is a very good sign for the security properties
of RBA, this influences users. Users will only feel protected by RBA if they get
prompted for re-authentication at least once [45]. To support users in feeling
protected, we suggest to inform about RBA being active.

6 Analyzing RBA Features (RQ2)

Based on our 247 collected features, we determined a subset that is suitable for
RBA use. To be qualified for RBA use, we defined necessary criteria. The features

370 S. Wiefling et al.

need to: (A) Have both a good level of stability and at least minimum
entropy: In contrast to fingerprinting properties for tracking purposes [34], we
require a certain level of entropy to make it harder for attackers to reproduce the
feature values by simply brute forcing them. This might cause RBA to ask for
re-authentication at a higher frequency. However, showing RBA presence by very
few re-authentication requests can lead to increased (perceived) security [45]. (B)
Be spoofable only with a high amount of effort: Easy-to-guess features will
not bring any attack detection advantage to the RBA feature set baseline. (C)
Increase differentiation between legitimate users and attackers: When
added to the baseline feature set, risk scores differences between legitimate users
and attackers should increase.

6.1 Study Setup

Based on the defined criteria, we developed and conducted several big data
computing jobs to analyze the performance of all features in our data set.

Test A: Entropy. To identify easy-to-spoof features, we calculated the Shannon
entropy of the feature values xij of each feature xi ∈ X in the login history with
n = |xi|:

Hxi
= −

n∑
j=0

xij · log2(xij) (2)

We calculated two variants of entropy. To observe overall differences, we cal-
culated the entropy Hglobalxi

for the global login history. To observe the feature
stability inside the login history of each user, we calculated the mean Shannon
entropy Huserxi

of each feature in the user’s login history. As a result, features
with Hglobalxi

= 0 did not contain any information to distinguish between users.
Similarly, features with Huserxi

= 0 did not change inside the users’ login histo-
ries.

Test B: Number of Feature Values. Some of the collected features can be
spoofed by attackers with low effort. This is especially true for client submitted
features, e.g., output of a JavaScript function executed in the user’s browser.

To make features harder to guess for attackers, they need to have a large
range of values with equal distribution. Assuming that accounts will be locked
after RBA detected an illegitimate login, it will be difficult for attackers to guess
correct feature values with increasing numbers of unique feature values.

Test C: Risk Score Changes. We studied the risk score behavior of the
features to evaluate their potential to improve the detection of attackers and
legitimate users. We tested the features with the EXTEND model since it pro-
vides fine grained risk scores.

A Data-Driven Long-Term Study on RBA Characteristics 371

For each feature, we calculated the risk scores of all illegitimate login attempts
by targeted attackers per user (attacker risk scores). We then calculated the
risk scores of all legitimate login attempts (legitimate risk scores). After that,
we determined the risk score relation (RSR) as the relation between the mean
attacker and mean legitimate risk scores:

RSRbasic =
mean attacker risk score

mean legitimate risk score
(3)

To ease comparison, we normalized the RSRs for each feature xi ∈ X to the
baseline:

RSRxi
= RSRbasicxi

− RSRbasicbaseline
(4)

The feature baseline varied depending on the feature being compared to, e.g., the
IP address when all compared features were added to the IP address. When test-
ing only one feature, the baseline was a feature without any entropy, to observe
risk score differences when entropy was added. If the RSR of a feature xi ∈ X
is greater than the baseline RSR, i.e., RSRxi

> 0.0, this feature increased the
differentiation between legitimate users and attackers compared to the baseline.

Subset Extraction. For each test, we defined the following thresholds to
extract a subset of suitable features for RBA use: (Test A) To extract features
having at least minimum entropy, we only considered features with Hglobalxi

>

0.1 and Huserxi
> 0.1. Based on the third quantile and the specific character-

istics of the data set, we chose this threshold as a minimum baseline. (Test B)
To focus on harder-to-guess features for RBA, we considered those with more
than ten unique feature values. More features were considered for both desktop
and mobile users in the global login history to adequately address security. We
made sure to check both mobile and desktop devices since mobile devices tend
to have less unique RBA feature values than desktop devices [40]. (Test C) To
ignore features causing only small RSR improvements, we considered features
with RSRxi

> 0.1.

Feature Reliability. The extracted features were present on all user sessions
but were very diverse, ranging from client originated to server side recorded.
Thus, we labeled them by the following properties: (i) Server side: These fea-
tures are measured on the server side. Since they do not depend on client orig-
inated input, they add a high level of trust. (ii) Client side JavaScript not
required: There might be users that deactivated JavaScript, e.g., for privacy
reasons. To ensure compatibility, we labeled features that can be measured with-
out JavaScript.

Based on the properties, we distinguished three categories of RBA features:
Single features add a high level of reliability and provide good RBA perfor-
mance on their own. Major add-on features are similar, but they only achieve
good RBA performance when added to a single feature. Both feature types can

372 S. Wiefling et al.

Table 2. Single and major add-on features that qualified for RBA use. The only single
feature is the IP address (bold). The other ones are major features that can be used in
addition to a single feature. All features are server originated and hence hard to spoof.

JavaScript Median logins until

Feature not required RSR Hglobal Huser Unique values re-authentication

IP address � 1.20 10.51 1.96 ����� **2.00

RTT-10MS � 1.75 2.45 1.04 ����� 1.50

RTT-5MS � 1.37 3.27 1.33 ����� 1.71

ASN (IP) � 0.91 3.17 0.76 ����� 3.00

RTT-MS � 0.56 5.43 2.00 ����� 2.00

Hour � 0.23 4.06 2.31 ����� 4.00

Region (IP) � 0.15 1.20 0.31 ����� 1.71

Weekday and hour � 0.15 6.72 2.78 ����� 4.00

Significantly higher than the baseline: ** p < 0.01

Baselines: Zero entropy feature (single feature), IP address (major add-on feature)

Unique values: Five dot scale (very low, low, medium, high, very high) mapped to the values (10–24,

25–74, 75–149, 150–300, >300).

be used with high weighting and are measured on the server side. Add-on fea-
tures are not as reliable as the features above but can be used in addition to
single features. They are client originated. Therefore, it is possible that some of
them could be blocked or modified, e.g., by anti-tracking measures [7].

Re-authentication Count Changes. We assume that less requests for re-
authentication can increase RBA usability and user acceptance [45]. Thus, we
measured whether certain features have the potential to decrease the requests for
legitimate users. We calculated the median login count until re-authentication
for average legitimate users (i.e., 12 logins) and a TPR of 0.8 (targeted attackers)
for each feature. We selected the TPR to allow all features to get a TPR close to
the desired TPR for fair comparison. Also, selecting targeted attackers allowed
us to test the features against the best possible attacker.

High re-authentication counts can signal administrators to weigh this fea-
ture lower, in combination with other features having lower counts, to balance
usability.

6.2 Results

In the following, we present our results ordered by the three RBA feature cate-
gories. For statistical testing, we used Kruskal-Wallis tests for the omnibus cases
and Dunn’s multiple comparison test with Bonferroni correction for post-hoc
analysis. We considered p-values lower than 0.05 as significant.

We calculated the risk scores on a high-performance computing (HPC) cluster
with more than 2400 CPU cores. This was necessary since such calculations were
computationally intensive. Using the HPC cluster reduced the calculation time
to approximately two days for all features (instead of 123.5 days using 32 cores).

A Data-Driven Long-Term Study on RBA Characteristics 373

After combining the features that passed all three tests, only the IP address
qualified as a single feature for RBA use. When being used in addition to the IP
address, seven features qualified as major add-on features, all of them network
or behavior based (see Table 2). Since the IP address was the only appropriate
single feature for this case, we extracted the add-on features using this feature.
27 features qualified by passing all three tests (see Table 3).

Table 3. Add-on features that qualified for RBA use in addition to single features. In
comparison to major add-on features, they are client originated and thus spoofable.

JavaScript Median logins until

Feature not required RSR Hglobal Huser Unique values re-authentication

Session Cookie � 22.39 9.51 0.51 ����� **12.00

User agent string (w/ subfeatures) � 10.33 7.43 1.21 ����� **12.00

Screen width and height � 3.28 4.70 0.64 ����� 3.00

WebGL fingerprint � 3.14 4.12 0.55 ����� 4.00

Accept language header � 3.01 2.57 0.33 ����� 3.00

App version � 2.74 6.29 1.01 ����� 2.40

Available width and height � 2.72 6.36 0.95 ����� 3.00

OS full version � 2.64 3.90 0.59 ����� 2.40

WebGL Version � 2.59 2.14 0.36 ����� 2.40

WebGL extensions � 2.52 3.62 0.56 ����� 6.00

HTML5 canvas fingerprint � 2.28 6.45 0.77 ����� 3.00

OS name and version � 2.27 3.91 0.59 ����� 2.40

Browser major version � 2.03 4.28 0.80 ����� **6.00

Device pixel ratio � 1.94 2.66 0.51 ����� 2.40

User agent string (no subfeatures) � 1.74 7.43 1.21 ����� 3.00

Main language � 1.61 1.35 0.24 ����� 3.00

Browser full version � 1.27 5.49 0.96 ����� **12.00

Browser name and version � 1.14 5.85 1.02 ����� **6.00

Local IP address � 1.13 3.27 0.49 ����� 1.00

Webkit temporary storage � 0.92 3.30 0.39 ����� 1.00

Battery discharging time � 0.75 1.95 0.48 ����� 1.00

Significantly higher than the baseline: ** p < 0.01
Unique values: Five dot scale (very low, low, medium, high, very high) mapped to the
values (10–24, 25–74, 75–149, 150–300, >300).
The session cookie was set by the server. RBA simply compared the stored value.
We omitted similar features for space reasons (see Table 4 in Appendix B for all results).

Conclusion. In summary, a set of features has to be chosen in most cases rather
than a single feature to achieve good RBA security. Using only one feature for
RBA risk estimation will make it hard to reliably distinguish between attackers
and legitimate users. The feature set needs to at least include features that we
identified as single or major add-ons (see Table 2) for good RBA security.

374 S. Wiefling et al.

6.3 Discussion

The results confirm our previous findings [46] that IP address, user agent, display
resolution, language, and login time are useful RBA features and hence, find
adoption in the wild. The results also show that most of the 247 analyzed features
are not suitable for RBA use. Many of them had few unique values or low RSRs.
This is good for privacy, as few features need to be collected. Also, many of
the popular features [46] are collected on the server side anyway, e.g., in the
logs [25]. Still, some of them may contain sensitive data [6] and must be protected
against data breaches. But, as we considered all features as categorical data,
these can be hashed, or even truncated to some degree, to produce the same
results. Our results suggest a set of relevant RBA features may provide security
benefits while preserving usability. This set is rather small compared to the 247
evaluated features. Thus, we discuss how to design a minimal RBA feature set
to also balance privacy. We discuss a selection of relevant features and feature
combinations based on our results and findings in literature below.

Features. The IP address proved to be the only RBA feature that can be used
as a single feature. The region and ASN are also hard to fake and to obtain
since they require network access from a specific ASN in a specific location.

The RTT turned out as a promising new RBA feature when being rounded
to milliseconds at least. Attackers need access to a device physically located
inside the victim’s location to forge this feature. Thus, using the RTT would
add high costs for attackers. However, due to more re-authentication requests,
the RTT needs to be weighted lower than other features to balance usability.

Timing features like weekday and hour increased security attributes while
having few re-authentication requests. Successful attacks need to estimate the
victim’s usual login times right to the day and hour, which can be greater effort.
This is especially the case for services that are not used on a daily basis.

The user agent string performed very well when used in combinations with
a subfeature hierarchy, confirming findings of Freeman et al. [20].

Since it can be used as a unique session identifier, the cookie seems to be an
obvious feature choice, and our results would support this view. However, cookies
should only be used very carefully or not at all as a RBA feature. They would
have to be stored permanently in the login history. Since there is no revocation
mechanism in the current RBA models, every cookie inside the login history
would always be valid. Thus, a stolen and even outdated cookie might have a
negative impact on the risk score, leading to false positives.

Feature Combinations. The IP address and user agent string features
are often named in literature [20,24,40]. According to our observations related to
the data set, they increased the RSR and significantly reduced re-authentications
compared to the single features.

RBA models in literature often use user agent strings to identify a browser
[16,20,24,40,46]. However, HTML5 canvas and WebGL fingerprints [14,

A Data-Driven Long-Term Study on RBA Characteristics 375

30] are newer approaches considered more difficult to fake. Both approaches
received lower RSRs and significantly higher re-authentication counts compared
to the user agent string in our data set. Following that, if canvas or WebGL
fingerprinting should be used to strengthen security, one should consider using
them with lower weightings.

7 Analyzing RBA Configuations (RQ3)

For good usability, the latency between submitting the login credentials and
getting the risk decision needs to be low. An acceptable delay ranges below
300 ms when considering the page load time [41]. Thus, we analyzed which
properties have an impact on the risk score calculation time. This can help to
design RBA systems with both good security and a low authentication time.

We replayed all legitimate logins with both models and measured the time it
took to calculate the risk score. We measured on a server with Intel Xeon Gold
6130 processor (2.1 GHz, 64 cores), 480 GB SSD storage, and 64 GB RAM. We
used Kruskal-Wallis tests to check for significant differences between features. For
variables suggesting a relation, we calculated the linear least squares regression
between them. We determined the effect sizes based on Cohen [11].

Fig. 4. Relationship between risk score calculation time and the size of the global login
history (left) or number of features (right) for EXTEND. The diagonal line represents
the fitted linear regression model. Left: We limited the y-axis to 30 ms for readability.

(Test 1) We first measured the calculation times for every feature. The
median calculation times ranged 4.5–8 ms for EXTEND (median: 5.63; SD: 0.9),
and 0.07–2.7 ms for SIMPLE (median: 0.08; SD: 0.17). There were no significant
differences between the features. However, there was a large significant effect
between the calculation time and the global login history size for EXTEND.
The linear regression yielded y = 4.1912 + 0.0003 · x, with y being the time in
ms and x the global login history size (R2 = 0.42; f = 0.85; p � 0.0001).

(Test 2) We then measured the calculation time based on the number of
features in the feature set. However, testing all 2247 − 1 combinations was not
feasible. Since there were no significant differences between all features in Test 1,
we chose the feature that ranged in the middle of all median calculation times.
We did this to select a feature that matches all features as well as possible. We
took this feature, added it to the feature set, measured the times, and did it
again until we reached the maximum number of features found in RQ2.

376 S. Wiefling et al.

The results showed significant effects between the number of features and
the calculation time (see Fig. 4). The fitted linear regression model resulted in
y = 1.5568+5.0038 ·x and a large effect size for EXTEND (R2 = 0.93; f = 3.71;
p � 0.0001), with y being the time in ms and x the number of features. Linear
regression for SIMPLE resulted in y = −0.0119 + 0.0013 · x and a medium
effect (R2 = 0.12; f = 0.37; p � 0.0001). However, the latter effects were hardly
noticeable.

Discussion. Administrators need to keep track of the included global login
history and features to ensure an acceptable authentication speed. The results
show that including a high amount of features impacts the performance for
EXTEND. However, our results for RQ1 already showed that capturing few
features was sufficient for good security and usability.

8 Limitations

We implemented the RBA models using Python. High-level programming lan-
guages like C++ might have reduced the calculation time. Nevertheless, our
results can still give estimates on factors that influence RBA performance.

The results are limited to the data set tested and the users who participated.
Our results are not representative of large-scale online services, but represent a
typical use case scenario of a daily to weekly use online service in a certain coun-
try. We assume that the IP country feature would have qualified with an inter-
national user base [20]. To allow a fair comparison of all features, we weighted
all features equally. We expect, however, that service owners weigh features indi-
vidually, possibly improving the RBA performance. Thus, we assume that our
study results represent a RBA performance baseline.

As in similar studies, we can never fully exclude that the website was targeted
by intelligent attackers. However, we implemented multiple countermeasures.
The website URL was only provided to students signing an informed consent.
The URL was not accessible via search engines due to geoblocking and other
measures to disallow crawling the site. IP scans reaching the website’s IP address
only received a white page instead of the e-learning website. The TLS certificate
also did not reveal the real DNS entry in this case. The fact that users did not
notice illegitimate login attempts and no data breaches were known underlines
that the website was likely not infiltrated.

9 Related Work

In previous work, we studied RBA’s usability characteristics [45,47]. The results
helped to estimate the usability of RBA characteristics in this study. To the
best of our knowledge, no studies analyzing RBA characteristics with long-term
login data exist in literature. Freeman et al. [20] tested their RBA model on a

A Data-Driven Long-Term Study on RBA Characteristics 377

LinkedIn data set using only IP address and user agent string as features. In
contrast to them, we tested their model with a huge set of features.

There is also related work regarding browser fingerprinting features for user
authentication purposes. Alaca and van Oorschot [3] classified 29 fingerprint-
ing features which have the potential to be used for user authentication. They
selected the features based on literature research but, in contrast to our study,
did not test them on real data. Spooren et al. [40] tested OpenAM’s RBA mech-
anism on simulated data with six features, which were screen resolution, browser
plugins, fonts, timezone, user agent, and geolocation. They found that mobile
devices were less reliable in terms of being uniquely identified. We were able to
confirm their findings for these six features. However, our study shows that there
are other features that can reliably identify mobile device users. Campobasso and
Allodi [8] studied a criminal infrastructure that tries to bypass RBA on malware
infected victim devices. Since its geolocation spoofing relied on SOCKS5 proxies,
our new RTT feature can detect these attacks. Andriamilanto et al. [4] tested
fingerprints of website users regarding their capability to be used for authenti-
cation purposes. In contrast to our study, their data set did not relate to login
attempts, contained only client originated features, and was not tested on RBA.

10 Conclusion

As long as password-based authentication predominates, constantly evolving
data breaches and targeted attacks with breached passwords [2] increase the
need of RBA for online services to protect their users. NIST recommends RBA
use since 2017 [22]. However, the current body of knowledge does not provide
insights on RBA characteristics. Understanding these is important to ensure that
practical RBA deployments protect users as much as possible while balancing
usability. To close this gap, we studied RBA characteristics with long-term usage
data of a real-world online service. Our results show that RBA can achieve low
re-authentication rates for legitimate users when blocking more than 99.45% of
targeted attacks with the EXTEND model. Moreover, our findings also show
that only few of the 247 collected features can be considered useful for practical
RBA deployments. The IP address is confirmed to be a must-have feature in gen-
eral, but it should be enriched by add-on features. Among them, the introduced
RTT showed to be a new promising feature. Cookies, however, should only be
used with great care or not at all, as stolen credentials together with a stolen
cookie might outweigh other features and falsely grant access.

Our contribution indicates that simply acquiring one of the commercially or
freely available RBA solutions is not sufficient. They still need to be customized
for the targeted online service in order to be optimized in terms of security and
usability. We provided insights on how to select proper features, their weightings,
and the access threshold. Based on our findings, we recommend to use RBA
algorithms comparable to the introduced EXTEND model, since its security and
usability properties outweighed the SIMPLE model. Overall, RBA protection
should be put in place shortly after the first deployment, as the login history
size did not affect it in our study.

378 S. Wiefling et al.

Acknowledgments. Thanks to the anonymous reviewers, our shepherd Gunes Acar,
and Florian Dehling for their detailed feedback, which greatly helped improve the
paper. We would like to thank Rudolf Berrendorf and Javed Razzaq for providing
us a huge amount of computational power for our big data analysis. We also thank
Gaston Pugliese for providing us his fingerprinting script, Annette Ricke and Jan Her-
rmann for their support and cooperation, and Tanvi Patil for proofreading the paper.
This research was supported by the research training group “Human Centered Sys-
tems Security” (NERD.NRW) sponsored by the state of North Rhine-Westphalia. The
Platform for Scientific Computing was supported by the German Ministry for Edu-
cation and Research, and the Ministry for Culture and Science of the state North
Rhine-Westphalia (research grant 13FH156IN6).

A Survey

We balanced all survey questions where applicable to mitigate social desirability
bias [38]. The questions were presented in random order to randomly distribute
ordering effects [26]. We varied the scale direction of the questions for a random
half of survey participants. For questions without an ordinal scale, we random-
ized the response options for each participant. We did all this to randomly dis-
tribute response order bias [10,23]. We also included an attention check similar
to previous work [47].

A.1 Online Service

Question (ii) and (iii) were on a five-point Likert scale including a “don’t know”
option.

(i) Which of these online services did you use at least once in the last three
years? [Multiple choice] � [website] � Google � Facebook � Twitch �
[made-up online service that did not exist] � Other:
The order of the subquestions varied randomly in this question.

(ii) How much or little did [website] support you in learning the lecture mate-
rial?
(5 - Did fully support, 1 - Did not support at all)

(iii) Please rate your agreement : I think I would recommend [website] to other
students.
(5 - Strongly agree, 1 - Strongly disagree)

(iv) As far as you know, has anyone ever illegitimately logged into your personal
[website] account? � Yes, more than once � Yes, only once � No � I don’t
know

A.2 Demographics

(i) How old are you? � 18–24 � 25–34 � 35–44 � 45–54 � 55–64 � 65–74 �
75 or older � Prefer not to say

(ii) What is your gender? � Female � Male � Non-Binary � Prefer not to say

A Data-Driven Long-Term Study on RBA Characteristics 379

B Features

Table 4. List of single (bold) and (major) add-on features that qualified for RBA use.
All features are present in all sessions of the data set.

Server JS not Unique Median logins

Feature side required RSR Hglobal Huser values until re-auth. p

IP address � � 1.20 10.51 1.96 4073 **2.00 <0.0001

Session Cookie � � 22.39 9.51 0.51 1534 **12.00 <0.0001

User agent string (w/ subfeatures) � � 10.33 7.43 1.21 638 **12.00 <0.0001

Screen width and height � � 3.28 4.70 0.64 176 3.00 -

WebGL fingerprint � � 3.14 4.12 0.55 90 4.00 0.8057

Screen height � � 3.09 4.34 0.64 126 4.00 0.3426

Accept language header � � 3.01 2.57 0.33 91 3.00 -

Available screen width � � 2.93 4.38 0.69 150 3.00 -

Screen width � � 2.93 4.28 0.63 138 4.00 0.8883

App version � � 2.74 6.29 1.01 534 2.40 -

Available width and height � � 2.72 6.36 0.95 411 3.00 -

OS full version � � 2.64 3.90 0.59 93 2.40 -

Available screen height � � 2.59 5.91 0.95 289 3.00 -

WebGL Version � � 2.59 2.14 0.36 56 2.40 -

Supported languages � � 2.53 2.54 0.36 87 3.00 -

WebGL extensions � � 2.52 3.62 0.56 69 6.00 0.1601

HTML5 canvas fingerprint � � 2.28 6.45 0.77 386 3.00 -

OS name and version � � 2.27 3.91 0.59 95 2.40 -

Browser major version � � 2.03 4.28 0.80 57 **6.00 0.0046

Device pixel ratio � � 1.94 2.66 0.51 70 2.40 -

RTT-10MS � � 1.75 2.45 1.04 51 1.50 -

User agent string (no subfeatures) � � 1.74 7.43 1.21 635 3.00 -

Main language � � 1.61 1.35 0.24 21 3.00 -

RTT-5MS � � 1.37 3.27 1.33 67 1.71 -

Browser full version � � 1.27 5.49 0.96 118 **12.00 0.0005

Browser name and version � � 1.14 5.85 1.02 161 **6.00 0.0064

Local IP address � � 1.13 3.27 0.49 716 1.00 -

Webkit temporary storage � � 0.92 3.30 0.39 735 1.00 -

ASN (IP) � � 0.91 3.17 0.76 43 3.00 -

Battery discharging time � � 0.75 1.95 0.48 1007 1.00 0.0860

Battery level � � 0.73 2.36 0.75 99 1.00 0.0935

RTT-MS � � 0.56 5.43 2.00 170 2.00 -

Hour � � 0.23 4.06 2.31 24 4.00 -

Region (IP) � � 0.15 1.20 0.31 16 1.71 -

Weekday and hour � � 0.15 6.72 2.78 145 4.00 0.2117

Significantly higher than the baseline: * p < 0.05
** p < 0.01
We omitted p-values of 1.0 for readability reasons.

380 S. Wiefling et al.

References

1. Abdou, A., van Oorschot, P.C.: Secure client and server geolocation over the Inter-
net. Login 43(1), 19–25 (2018)

2. Akamai: Credential Stuffing: Attacks and Economies. [state of the inter-
net]/security 5 (Special Media Edition) (April 2019)

3. Alaca, F., van Oorschot, P.C.: Device fingerprinting for augmenting web authenti-
cation: classification and analysis of methods. In: ACSAC 2016 (December 2016)

4. Andriamilanto, N., Allard, T., Guelvouit, G.L.: Guess Who?. In: IMIS 2020 (2021)
5. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million

passwords. In: SP 2012 (May 2012)
6. Bonneau, J., Felten, E.W., Mittal, P., Narayanan, A.: Privacy concerns of implicit

secondary factors for web authentication. In: WAY 2014 (2014)
7. Bujlow, T., Carela-Espanol, V., Lee, B.R., Barlet-Ros, P.: A survey on web track-

ing: mechanisms, implications, and defenses. Proc. IEEE 105(8), 1476–1510 (2017)
8. Campobasso, M., Allodi, L.: Impersonation-as-a-service: characterizing the emerg-

ing criminal infrastructure for user impersonation at scale. In: CCS 2020 (November
2020)

9. caniuse.com: Web sockets (July 2020)
10. Chan, J.C.: Response-order effects in Likert-type scales. Educ. Psychol. Meas.

51(3), 531–540 (1991)
11. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. (1988)
12. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of

password reuse. In: NDSS 2014 (February 2014)
13. Das, S., Dingman, A., Camp, L.J.: Why Johnny doesn’t use two factor a two-phase

usability study of the FIDO U2F security key. In: Meiklejohn, S., Sako, K. (eds.)
FC 2018. LNCS, vol. 10957, pp. 160–179. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-58387-6 9

14. Daud, N.I., Haron, G.R., Othman, S.S.S.: Adaptive authentication: implementing
random canvas fingerprinting as user attributes factor. In: ISCAIE 2017 (April
2017)

15. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: CHI 2006 (April
2006)

16. Djosic, N., Nokovic, B., Sharieh, S.: Machine learning in action: securing IAM API
by risk authentication decision engine. In: CNS 2020 (June 2020)

17. Dutson, J., Allen, D., Eggett, D., Seamons, K.: “Don’t punish all of us”: measuring
user attitudes about two-factor authentication. In: EuroUSEC 2019 (June 2019)

18. FireHOL: All cybercrime ip feeds (August 2020). http://iplists.firehol.org/?
ipset=firehol level4

19. Florencio, D., Herley, C.: A large-scale study of web password habits. In: WWW
2007 (May 2007)

20. Freeman, D., Jain, S., Dürmuth, M., Biggio, B., Giacinto, G.: Who are you? A
statistical approach to measuring user authenticity. In: NDSS 2016 (February 2016)

21. Gaddam, A.: Usage of behavioral biometric technologies to defend against bots.
In: Enigma 2019 (January 2019)

22. Grassi, P.A., et al.: Digital identity guidelines: authentication and lifecycle man-
agement. Tech. rep. NIST SP 800–63b, NIST, Gaithersburg, MD (June 2017)

23. Hartley, J.: Some thoughts on Likert-type scales. Int. J. Clin. Health Psychol.
14(1), 83–86 (2014)

https://doi.org/10.1007/978-3-662-58387-6_9
https://doi.org/10.1007/978-3-662-58387-6_9
http://iplists.firehol.org/?ipset=firehol_level4
http://iplists.firehol.org/?ipset=firehol_level4

A Data-Driven Long-Term Study on RBA Characteristics 381

24. Hurka�la, A., Hurka�la, J.: Architecture of context-risk-aware authentication system
for web environments. In: ICIEIS 2014 (September 2014)

25. IBM: Log File Formats: NCSA Combined Log Format (2003)
26. Kalton, G., Schuman, H.: The effect of the question on survey responses: a review.

J. R. Stat. Soc. Ser. A (Gen.) 145(1), 42–57 (1982)
27. Melnikov, A., Fette, I.: The WebSocket Protocol. No. 6455 in Request for Com-

ments (December 2011)
28. Molloy, I., Dickens, L., Morisset, C., Cheng, P.C., Lobo, J., Russo, A.: Risk-based

security decisions under uncertainty. In: CODASPY 2012 (February 2012)
29. Morris, R., Thompson, K.: Password security. Commun. ACM 22(11), 594–597

(1979)
30. Mowery, K., Shacham, H.: Pixel perfect. In: W2SP 2012 (May 2012)
31. Open Identity Platform: OpenAM: Adaptive Authentication Module (August

2016). https://git.io/JteWg
32. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:

password similarity models using neural networks. In: SP 2019 (May 2019)
33. Percival, C., Josefsson, S.: The scrypt password-based key derivation function.

Tech. rep. RFC7914 (August 2016)
34. Pugliese, G., Riess, C., Gassmann, F., Benenson, Z.: Long-term observation on

browser fingerprinting. Proc. PETS 2020(2), 558–577 (2020)
35. Quermann, N., Harbach, M., Dürmuth, M.: The state of user authentication in the

wild. In: WAY 2018 (August 2018)
36. Reynolds, J., Smith, T., Reese, K., Dickinson, L., Ruoti, S., Seamons, K.: A tale

of two studies: the best and worst of yubikey usability. In: SP 2018 (May 2018)
37. Rivera, E., Tengana, L., Solano, J., Castelblanco, A., López, C., Ochoa, M.: Risk-

based authentication based on network latency profiling. In: AISec 2020 (2020)
38. Shaeffer, E.M.: Comparing the quality of data obtained by minimally balanced and

fully balanced attitude questions. Public Opin. Q. 69(3), 417–428 (2005)
39. Shay, R., Ion, I., Reeder, R.W., Consolvo, S.: My religious aunt asked why i was

trying to sell her viagra. In: CHI 2014 (April 2014)
40. Spooren, J., Preuveneers, D., Joosen, W.: Mobile device fingerprinting considered

harmful for risk-based authentication. In: EuroSec 2015 (April 2015)
41. Stadnik, W., Nowak, Z.: The impact of web pages’ load time on the conversion

rate of an e-commerce platform. In: ISAT 2017 (September 2018)
42. Steinegger, R.H., Deckers, D., Giessler, P., Abeck, S.: Risk-based authenticator for

web applications. In: EuroPlop 2016 (June 2016)
43. Thomas, K., et al.: Protecting accounts from credential stuffing with password

breach alerting. In: USENIX Security 2019 (August 2019)
44. Wiefling, S., Dürmuth, M., Lo Iacono, L.: What’s in score for website users: a

data-driven long-term study on risk-based authentication characteristics. In: FC
2021 (Pre-Proceedings) (March 2021). https://nbn-resolving.org/urn:nbn:de:hbz:
1044-opus-53053

45. Wiefling, S., Dürmuth, M., Lo Iacono, L.: More than just good passwords? A study
on usability and security perceptions of risk-based authentication. In: ACSAC 2020
(December 2020)

46. Wiefling, S., Lo Iacono, L., Dürmuth, M.: Is this really you? An empirical study
on risk-based authentication applied in the wild. In: IFIP SEC 2019 (June 2019)

47. Wiefling, S., Patil, T., Dürmuth, M., Lo Iacono, L.: Evaluation of risk-based re-
authentication methods. In: IFIP SEC 2020 (September 2020)

48. von Zezschwitz, E., De Luca, A., Hussmann, H.: Honey, I shrunk the keys. In:
NordiCHI 2014 (October 2014)

https://git.io/JteWg
https://nbn-resolving.org/urn:nbn:de:hbz:1044-opus-53053
https://nbn-resolving.org/urn:nbn:de:hbz:1044-opus-53053

DAHash: Distribution Aware Tuning
of Password Hashing Costs

Wenjie Bai and Jeremiah Blocki(B)

Department of Compouter Science, Purdue University, West Lafayette, IN, USA
{bai104,jblocki}@purdue.edu

Abstract. An attacker who breaks into an authentication server and
steals all of the cryptographic password hashes is able to mount an
offline-brute force attack against each user’s password. Offline brute-force
attacks against passwords are increasingly commonplace and the dan-
ger is amplified by the well documented human tendency to select low-
entropy password and/or reuse these passwords across multiple accounts.
Moderately hard password hashing functions are often deployed to help
protect passwords against offline attacks by increasing the attacker’s
guessing cost. However, there is a limit to how “hard” one can make
the password hash function as authentication servers are resource con-
strained and must avoid introducing substantial authentication delay.
Observing that there is a wide gap in the strength of passwords selected
by different users we introduce DAHash (Distribution Aware Password
Hashing) a novel mechanism which reduces the number of passwords
that an attacker will crack. Our key insight is that a resource-constrained
authentication server can dynamically tune the hardness parameters of
a password hash function based on the (estimated) strength of the user’s
password. We introduce a Stackelberg game to model the interaction
between a defender (authentication server) and an offline attacker. Our
model allows the defender to optimize the parameters of DAHash e.g.,
specify how much effort is spent in hashing weak/moderate/high strength
passwords. We use several large scale password frequency datasets to
empirically evaluate the effectiveness of our differentiated cost password
hashing mechanism. We find that the defender who uses our mechanism
can reduce the fraction of passwords that would be cracked by a rational
offline attacker by up to 15%.

Keywords: Password hashing · DAHash · Stackelberg game

1 Introduction

Breaches at major organizations have exposed billions of user passwords to the
dangerous threat of offline password cracking. An attacker who has stolen the
cryptographic hash of a user’s password could run an offline attack by comparing
the stolen hash value with the cryptographic hashes of every password in a large
dictionary of popular password guesses. An offline attacker can check as many
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 382–405, 2021.
https://doi.org/10.1007/978-3-662-64331-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_20&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_20

DAHash 383

guesses as s/he wants since each guess can be verified without interacting with
the authentication server. The attacker is limited only by the cost of checking
each password guess i.e., the cost of evaluating the password hash function.

Offline attacks are a grave threat to security of users’ information for several
reasons. First, the entropy of a typical user chosen password is relatively low e.g.,
see [9]. Second, users often reuse passwords across multiple accounts to reduce
cognitive burden. Finally, the arrival of GPUs, FPGAs and ASICs significantly
reduces the cost of evaluating a password hash functions such as PBKDF2 [18]
millions or billions of times. Blocki et al. [8] recently argued that PBKDF2
cannot adequately protect user passwords without introducing an intolerable
authentication delay (e.g., 2 min) because the attacker could use ASICs to reduce
guessing costs by many orders of magnitude.

Memory hard functions (MHFs) [5,25] can be used to build ASIC resistant
password hashing algorithms. The Area x Time complexity of an ideal MHF will
scale with t2, where t denotes the time to evaluate the function on a standard
CPU. Intuitively, to evaluate an MHF the attacker must dedicate t blocks of
memory for t time steps, which ensures that the cost of computing the function
is equitable across different computer architectures i.e., RAM on an ASIC is
still expensive. Because the “full cost” [35] of computing an ideal MHF scales
quadratically with t it is also possible to rapidly increase guessing costs without
introducing an untenable delay during user authentication—by contrast the full
cost of hash iteration based KDFs such as PBKDF2 [18] and BCRYPT [26]
scale linearly with t. Almost all of the entrants to the recent Password Hashing
Competition (PHC) [34] claimed some form of memory-hardness.

Even if we use MHFs there remains a fundamental trade-off in the design of
good password hashing algorithms. On the one hand the password hash func-
tion should be sufficiently expensive to compute so that it becomes economically
infeasible for the attacker to evaluate the function millions or billions of times
per user—even if the attacker develops customized hardware (ASICs) to eval-
uate the function. On the other hand the password hashing algorithm cannot
be so expensive to compute that the authentication server is unable to handle
the workload when multiple users login simultaneously. Thus, even if an orga-
nization uses memory hard functions it will not be possible to protect all user
passwords against an offline attacker e.g., if the password hashing algorithm is
not so expensive that the authentication server is overloaded then it will almost
certainly be worthwhile for an offline attacker to check the top thousand pass-
words in a cracking dictionary against each user’s password. In this sense all of
the effort an authentication server expends protecting the weakest passwords is
(almost certainly) wasted.

Contributions. We introduce DAHash (Distribution Aware Hash) a password
hashing mechanism that minimizes the damage of an offline attack by tuning
key-stretching parameters for each user account based on password strength. In
many empirical password distributions there are often several passwords that are
so popular that it would be infeasible for a resource constrained authentication
server to dissuade an offline attacker from guessing these passwords e.g., in the

384 W. Bai and J. Blocki

Yahoo! password frequency corpus [7,9] the most popular password was selected
by approximately 1% of users. Similarly, other users might select passwords that
are strong enough to resist offline attacks even with minimal key stretching.
The basic idea behind DAHash is to have the resource-constrained authentica-
tion server shift more of its key-stretching effort towards saveable password i.e.,
passwords the offline attacker could be disuaded from checking.

Our DAHash mechanism partitions passwords into τ groups e.g., weak,
medium and strong when τ = 3. We then select a different cost parameter ki for
each group Gi, i ≤ τ of passwords. If the input password pw is in group Gi then
we will run our moderately hard key-derivation function with cost parameter ki

to obtain the final hash value h. Crucially, the hash value h stored on the server
will not reveal any information about the cost parameter ki or, by extension,
the group Gi.

We adapt a Stackelberg Game model of Blocki and Datta [6] to help the
defender (authentication server) tune the DAHash cost parameters ki to mini-
mize the fraction of cracked passwords. The defender (leader) groups passwords
into different strength levels and selects the cost parameter ki for each group
of passwords (subject to maximum workload constraints for the authentication
server) and then the offline attacker selects the attack strategy which maximizes
his/her utility (expected reward minus expected guessing costs). The attacker’s
expected utility will depend on the DAHash cost paremeters ki as well, the user
password distribution, the value v of a cracked password to the attacker and the
attacker’s strategy i.e., an ordered list of passwords to check before giving up.
We prove that an attacker will maximize its utility by following a simple greedy
strategy. We then use an evolutionary algorithm to help the defender compute
an optimal strategy i.e., the optimal way to tune DAHash cost parameters for
different groups of passwords. The goal of the defender is to minimize the per-
centage of passwords that an offline attacker cracks when playing the utility
optimizing strategy in response to the selected DAHash parameters k1, . . . , kτ .

Finally, we use several large password datasets to evaluate the effectiveness
of our differentiated cost password hashing mechanism. We use the empirical
password distribution to evaluate the performance of DAHash when the value v
of a cracked password is small. We utilize Good-Turing frequency estimation to
help identify and highlight uncertain regions of the curve i.e., where the empirical
password distribution might diverge from the real password distribution. To eval-
uate the performance of DAHash when v is large we derive a password distirbu-
tion from guessing curves obtained using the Password Guessing Service [29]. The
Password Guessing Service uses sophisticated models such as Probabilistic Con-
text Free Grammars [19,31,33], Markov Chain Models [11,12,20,29] and even
neural networks [22] to generate password guesses using Monte Carlo strength
estimation [13]. We find that DAHash reduces the fraction of passwords cracked
by a rational offline attacker by up to 15% (resp. 20%) under the empirical
distribution (resp. derived distribution).

DAHash 385

2 Related Work

Key-stretching was proposed as early as 1979 by Morris and Thomson as a way
to protect passwords against brute force attacks [23]. Traditionally key stretching
has been performed using hash iteration e.g., PBKDF2 [18] and BCRYPT [26].
More modern hash functions such as SCRYPT and Argon2 [5], winner of the
password hashing competition in 2015 [34], additionally require a significant
amount of memory to evaluate. An economic analysis Blocki et al. [8] suggested
that hash iteration based key-derivation functions no longer provide adequate
protection for lower entropy user passwords due to the existence of ASICs. On a
positive note they found that the use of memory hard functions can significantly
reduce the fraction of passwords that a rational adversary would crack.

The addition of “salt” is a crucial defense against rainbow table attacks [24]
i.e., instead of storing (u,H(pwu)) and authentication server will store
(u, su,H(su, pwu)) where su is a random string called the salt value. Salting
defends against pre-computation attacks (e.g., [14]) and ensures that each pass-
word hash will need to be cracked independently e.g., even if two users u and
u′ select the same password we will have H(su′ , pwu′) �= H(su, pwu) with high
probability as long as su �= su′ .

Manber proposed the additional inclusion of a short random string called
“pepper” which would not be stored on the server [21] e.g., instead of storing
(u, su,H(su, pwu)) the authentication server would store (u, su,H(su, xu, pwu))
where the pepper xu is a short random string that, unlike the salt value su, is not
recorded. When the user authenticates with password guess pw′ the server would
evaluate H(su, x, pw′) for each possible value of x ≤ xmax and accept if and only
if H(su, x, pw′) = H(su, xu, pwu) for some value of x. The potential advantage
of this approach is that the authentication server can usually halt early when
the legitimate user authenticates, while the attacker will have to check every
different value of x ∈ [1, xmax] before rejecting an incorrect password. Thus, on
average the attacker will need to do more work than the honest server.

Blocki and Datta observed that non-uniform distributions over the secret
pepper value x ∈ [1, xmax] can sometimes further increase the attacker’s work-
load relative to an honest authentication server [6]. They showed how to opti-
mally tune the pepper distribution by using Stackelberg game theory [6]. How-
ever, it is not clear how pepper could be effectively integrated with a modern
memory hard function such as Argon2 or SCRYPT. One of the reasons that
MHFs are incredibly effective is that the “full cost” [35] of evaluation can scale
quadratically with the running time t. Suppose we have a hard limit on the run-
ning time tmax of the authentication procedure e.g., 1 second. If we select a secret
pepper value x ∈ [1, xmax] then we would need to ensure that H(su, x, pw′) can
be evaluated in time at most tmax/xmax—otherwise the total running time to
check all of the different pepper values sequentially would exceed tmax. In this
case the “full cost” to compute H(su, x, pw′) for every x ∈ [1, xmax] would be
at most O

(
xmax × (tmax/xmax)2

)
= O

(
t2max/xmax

)
. If instead we had not used

pepper then it would have been possible to ensure that the full cost could be as
large as Ω(t2max) simply by allowing the MHF to run for time tmax on a single

386 W. Bai and J. Blocki

input. Thus, in most scenarios it would be preferable for the authentication
server to use a memory-hard password hashing algorithm without incorporating
pepper.

Boyen’s work on “Halting Puzzles” is also closely related to our own work [10].
In a halting puzzle the (secret) running time parameter t ≤ tmax is randomly
chosen whenever a new account is created. The key idea is that an attacker will
need to run in time tmax to definitively reject an incorrect password while it
only takes time t to accept a correct password. In Boyen’s work the distribution
over running time parameter t was the same for all passwords. By contrast, in
our work we assign a fixed hash cost parameter to each password and this cost
parameter may be different for distinct passwords. We remark that it may be
possible to combine both ideas i.e., assign a different maximum running time
parameter tmax,pw to different passwords. We leave it to future work to explore
whether or not the composition of both mechanisms might yield further security
gains.

3 DAHash

In this section, we first introduce some preliminaries about passwords then
present the DAHash and explain how the authentication process works with this
mechanism. We also discuss ways in which a (rational) offline attacker might
attempt to crack passwords protected with the differentiated cost mechanism.

3.1 Password Notation

We let P = {pw1, pw2, . . . , } be the set of all possible user-chosen passwords.
We will assume that passwords are sorted so that pwi represents the i’th most
popular password. Let Pr[pwi] denote the probability that a random user selects
password pwi we have a distribution over P with Pr[pw1] ≥ Pr[pw2] ≥ . . . and∑

i Pr[pwi] = 1.
The distributions we consider in our empirical analysis have a compressed

representation. In particular, we can partition the set of passwords P into
n′ equivalence sets es1, . . . , esn′ such that for any i, pw, pw′ ∈ esi we have
Pr[pw] = Pr[pw′] = pi. In all of the distributions we consider we will have
n′ � |P| allowing us to efficiently encode the distribution using n′ tuple
(|es1|, p1), . . . , (|esn′ |, pn′) where pi is the probability of any password in equiv-
alence set esi. We will also want to ensure that we can optimize our DAHash
parameters in time proportional to n′ instead of |P|.

3.2 DAHash

Account Creation: When a new user first register an account with user name
u and password pwu ∈ P DAHash will first assign a hash cost parameter ku =
GetHardness(pwu) based on the (estimated) strength of the user’s password. We
will then randomly generate a L bit string su ← {0, 1}L (a “salt”) then compute

DAHash 387

hash value hu = H (pwu, su; ku), at last store the tuple (u, su, hu) as the record
for user u. The salt value su is used to thwart rainbow attacks [24] and ku

controls the cost of hash function1.

Authentication with DAHash: Later, when user u enters her/his password
pw′

u, the server first retrieves the corresponding salt value su along with the
hash value hu, runs GetHardness(pw′

u) to obtain k′
u and then checks whether the

hash h′
u = H(pw′

u, su; k′
u) equals the stored record hu before granting access. If

pw′
u = pwu is the correct password then we will have k′

u = ku and h′
u = hu so

authentication will be successful. Due to the collision resistance of cryptographic
hash functions, a login request from someone claiming to be user u with password
pw′

u �= pwu will be rejected. The account creation and authentication processes
are formally presented in Algorithms 1 and 2 (see Appendix A).

In the traditional (distribution oblivious) key-stretching mechanism
GetHardness(pwu) is a constant function which always returns the same cost
parameter k. Our objective will be to optimize GetHardness(pwu) to minimize
the percentage of passwords cracked by an offline attacker. This must be done
subject to any workload constraints of the authentication server and (optionally)
minimum protection constraint, guiding the minimum acceptable key-stretching
parameters for any password.

The function GetHardness(pwu) maps each password to a hardness parameter
ku which controls the cost of evaluating our password hash function H. For hash
iteration based key-derivation functions such as PBKDF2 we would achieve cost
ku by iterating the underling hash function t = Ω(k) times. By contrast, for an
ideal memory hard function the full evaluation cost scales quadratically with the
running time tu so we have tu = O

(√
ku

)
i.e., the attacker will need to allocate

tu blocks of memory for tu time steps. In practice, most memory hard functions
will take the parameter t as input directly. For simplicity, we will assume that
the cost parameter k is given directly and that the running time t (and memory
usage) is derived from k.

Remark.We stress that the hardness parameter k returned by GetHardness(pwu)
should not be stored on the server. Otherwise, an offline attacker can immedi-
ately reject an incorrect password guess pw′ �= pwu as soon as he/she observes
that k �= GetHardness(pw′). Furthermore, it should not possible to directly infer
ku from the hash value hu ← H(pwu, su; ku). Any MHF candidate such as
SCRYPT [25], Argon2 [5] or DRSample [3] will satisfy this property. While the
hardness parameter ku is not stored on the server, we do assume that an offline
attacker who has breached the authentication server will have access to the func-
tion GetHardness(pwu) (Kerckhoff’s Principle) since the code for this function
would be stored on the authentication server. Thus, given a password guess pw′

1 We remark that the hardness parameter k is similar to “pepper” [21] in that it is
not stored on the server. However, the hardness parameter k is distinct from pepper
in that it is derived deterministically from the input password pwu. Thus, unlike
pepper, the authentication server will not need to check the password for every
possible value of k.

388 W. Bai and J. Blocki

the attacker can easily generate the hardness parameter k′ = GetHardness(pw′)
for any particular password guess.

Defending against Side-Channel Attacks. A side-channel attacker might
try to infer the hardness parameter k (which may in turn be correlated with the
strength of the user’s password) by measuring delay during a successful login
attempt. We remark that for modern memory hard password hashing algorithms
[3,5,25] the cost parameter k is modeled as the product of two parameters: mem-
ory and running time. Thus, it is often possible to increase (decrease) the cost
parameter without affecting the running time simply by tuning the memory
parameter2. Thus, if such side-channel attacks are a concern the authentica-
tion server could fix the response time during authentication to some suitable
constant and tune the memory parameter accordingly. Additionally we might
delay the authentication response for a fixed amount of time (e.g., 250 millisec-
onds) to ensure that there is no correlation between response time and the user’s
password.

3.3 Rational Adversary Model

We consider an untargeted offline adversary whose goal is to break as many
passwords as possible. In the traditional authentication setting an offline attacker
who has breached the authentication server has access to all the data stored on
the server, including each user’s record (u, su, h) and the code for hash function H
and for the function GetHardness(). In our analysis we assume that H can only be
used as a black box manner (e.g., random oracle) to return results of queries from
the adversary and that attempts to find a collision or directly invert H(·) succeed
with negligible probability. However, an offline attacker who obtains (u, su, h)
may still check whether or not pwu = pw′ by setting k′ = GetHardness(pw′) and
checking whether or not h = H(pw′, su; k′). The only limitation to adversary’s
success rate is the resource she/he would like to put in cracking users’ password.

We assume that the (untargeted) offline attacker has a value v = vu for
password of user u. For simplicity we will henceforth use v for password value
since the attacker is untargetted and has the same value vu = v for every user u.
There are a number of empirical studies of the black market [2,17,28] which show
that cracked passwords can have substantial value e.g., Symantec reports that
passwords generally sell for $4 − $30 [15] and [28] reports that e-mail passwords
typically sell for $1 on the Dark Web. Bitcoin “brain wallets” provide another
application where cracked passwords can have substantial value to attackers [30].

We also assume that the untargetted attacker has a dictionary list which
s/he will use as guesses of pwu e.g., the attacker knows pwi and Pr[pwi] for
each password i. However, the attacker will not know the particular password
pwu selected by each user u. Therefore, in cracking a certain user’s account the
attacker has to enumerate all the candidate passwords and check if the guess is
2 By contrast, the cost parameter for PBKDF2 and BCRYPT is directly proportional

to the running time. Thus, if we wanted to set a high cost parameter k for some
groups of passwords we might have to set an intolerably long authentication delay [8].

DAHash 389

correct until there is a guess hit or the attacker finally gives up. We assume that
the attacker is rational and would choose a strategy that would maximize his/her
expected utility. The attacker will need to repeat this process independently for
each user u. In our analysis we will focus on an individual user’s account that
the attacker is trying to crack.

4 Stackelberg Game

In this section, we use Stackelberg Game Theory [32] to model the interac-
tion between the authentication server and an untargeted adversary so that
we can optimize the DAHash cost parameters. In a Stackelberg Game the
leader (defender) moves first and then the follower (attacker) plays his/her best
response. In our context, the authentication server’s (leader’s) move is to spec-
ify the function GetHardness(). After a breach the offline attacker (follower) can
examine the code for GetHardness() and observe the hardness parameters that
will be selected for each different password in P. A rational offline attacker may
use this knowledge to optimize his/her offline attack. We first formally define
the action space of the defender (leader) and attacker (follower) and then we
formally define the utility functions for both players.

4.1 Action Space of Defender

The defender’s action is to implement the function GetHardness(). The implemen-
tation must be efficiently computable, and the function must be chosen subject
to maximum workload constraints on the authentication server. Otherwise, the
optimal solution would simply be to set the cost parameter k for each password
to be as large as possible. In addition, the server should guarantee that each
password is granted with at least some level of protection so that it will not
make weak passwords weaker.

In an idealized setting where the defender knows the user password distribu-
tion we can implement the function GetHardness(pwu) as follows: the authentica-
tion server first partitions all passwords into τ mutually exclusive groups Gi with
i ∈ {1, · · · , τ} such that P =

⋃τ
i=1 Gi and Pr[pw] > Pr[pw′] for every pw ∈ Gi

and pw′ ∈ Gi+1. Here, G1 will correspond to the weakest group of passwords and
Gτ corresponds to the group of strongest passwords. For each of the |Gi| pass-
words pw ∈ Gi we assign the same hash cost parameter ki = GetHardness(pw).

The cost of authenticating a password that is from Gi is simply ki. Therefore,
the amortized server cost for verifying a correct password is:

CSRV =
τ∑

i=1

ki · Pr[pw ∈ Gi], (1)

where Pr[pw ∈ Gi] =
∑

pw∈Gi
Pr[pw] is total probability mass of passwords in

group Gi. In general, we will assume that the server has a maximum amortized
cost Cmax that it is willing/able to incur for user authentication. Thus, the

390 W. Bai and J. Blocki

authentication server must pick the hash cost vector k = {k1, k2, · · · , kτ} subject
to the cost constraint CSRV ≤ Cmax. Additionally, we require that k(pwi) ≥
kmin to ensure a minimum acceptable level of protection for all accounts.

4.2 Action Space of Attacker

After breaching the authentication server the attacker may run an offline dic-
tionary attack. The attacker must fix an ordering π over passwords P and a
maximum number of guesses B to check i.e., the attacker will check the first
B passwords in the ordering given by π. If B = 0 then the attacker gives up
immediately without checking any passwords and if B = ∞ then the attacker
will continue guessing until the password is cracked. The permutation π specifies
the order in which the attacker will guess passwords, i.e., the attacker will check
password pwπ(1) first then pwπ(2) second, etc. Thus, the tuple (π,B) forms a
strategy of the adversary. Following that strategy the probability that the adver-
sary succeeds in cracking a random user’s password is simply sum of probability
of all passwords to be checked:

PADV = λ(π,B) =
B∑

i=1

pπ(i) . (2)

Here, we use short notation pπ(i) = Pr[pwπ(i)] which denotes the probability of
the ith password in the ordering π.

4.3 Attacker’s Utility

Given the estimated average value for one single password v the expected gain
of the attacker is simply v × λ(π,B) i.e., the probability that the password is
cracked times the value v. Similarly, given a hash cost parameter vector k the
expected cost of the attacker is

∑B
i=1 k(pwπ(i)) · (1 − λ(π, i − 1)) . We use the

shorthand k(pw) = ki = GetHardness(pw) for a password pw ∈ Gi. Intuitively,
the probability that the first i − 1 guesses are incorrect is (1 − λ(π, i − 1)) and
we incur cost k(pwπ(i)) for the i’th guess if and only if the first i − 1 guesses
are incorrect. Note that λ(π, 0) = 0 so the attacker always pays cost k(pwπ(1))
for the first guess. The adversary’s expected utility is the difference of expected
gain and expected cost:

UADV (v,k, (π,B)) = v · λ(π,B) −
B∑

i=1

k(pwπ(i)) · (1 − λ(π, i − 1)) . (3)

4.4 Defender’s Utility

After the defender (leader) moves the offline attacker (follower) will respond with
his/her utility optimizing strategy. We let P ∗

ADV denote the probability that the
attacker cracks a random user’s password when playing his/her optimal strategy.

P ∗
ADV = λ(π∗, B∗) , where (π∗, B∗) = arg max

π,B
UADV (v,k, (π,B)) . (4)

DAHash 391

P ∗
ADV will depend on the attacker’s utility optimizing strategy which will in

turn depend on value v for a cracked password, the chosen cost parameters ki

for each group Gi, and the user password distribution. Thus, we can define the
authentication server’s utility as

USRV (k, v) = −P ∗
ADV . (5)

The objective of the authentication is to minimize the success rate
P ∗

ADV (v,k) of the attacker by finding the optimal action i.e., a good way of
partitioning passwords into groups and selecting the optimal hash cost vector k.
Since the parameter k controls the cost of the hash function in passwords storage
and authentication, we should increase ki for a specific group Gi of passwords
only if this is necessary to help deter the attacker from cracking passwords in this
group Gi. The defender may not want to waste too much resource in protecting
the weakest group G1 of passwords when password value is high because they
will be cracked easily regardless of the hash cost k1.

4.5 Stackelberg Game Stages

Since adversary’s utility depends on (π,B) and k, wherein (π,B) is the responses
to server’s predetermined hash cost vector k. On the other hand, when server
selects different hash cost parameter for different groups of password, it has to
take the reaction of potential attackers into account. Therefore, the interaction
between the authentication server and the adversary can be modeled as a two
stage Stackelberg Game. Then the problem of finding the optimal hash cost
vector is reduced to the problem of computing the equilibrium of Stackelberg
game.

In the Stackelberg game, the authentication server (leader) moves first (stage
I); then the adversary follows (stage II). In stage I, the authentication server
commits hash cost vector k = {k1, · · · kτ} for all groups of passwords; in stage
II, the adversary yields the optimal strategy (π,B) for cracking a random user’s
password. Through the interaction between the legitimate authentication server
and the untargeted adversary who runs an offline attack, there will emerge an
equilibrium in which no player in the game has the incentive to unilaterally
change its strategy. Thus, an equilibrium strategy profile {k∗, (π∗, B∗)} must
satisfy

{
USRV (k∗, v) ≥ USRV (k, v) , ∀k ∈ FCmax

,

UADV (v,k∗, (π∗, B∗)) ≥ UADV (v,k∗, (π,B)) , ∀(π,B)
(6)

Assuming that the grouping G1, . . . , Gτ of passwords is fixed. The computation
of equilibrium strategy profile can be transformed to solve the following opti-
mization problem, where Pr(pwi), G1, · · · , Gτ , Cmax are input parameters and
(π∗, B∗) and k∗ are variables.

392 W. Bai and J. Blocki

min
k∗,π∗,B∗

λ(π∗, B∗)

s.t. UADV (v,k, (π∗, B∗)) ≥ UADV (v,k, (π,B)) , ∀(π,B),
τ∑

i=1

ki · Pr[pw ∈ Gi] ≤ Cmax,

ki ≥ kmin, ∀i ≤ τ .

(7)

The solution of the above optimization problem is the equilibrium of our
Stackelberg game. The first constraint implies that adversary will play his/her
utility optimizing strategy i.e., given that the defender’s action k∗ is fixed the
utility of the strategy (π∗, B∗) is at least as large as any other strategy the
attacker might follow. Thus, a rational attacker will check the first B∗ pass-
words in the order indicated by π∗ and then stop cracking passwords. The sec-
ond constraint is due to resource limitations of authentication server. The third
constraint sets lower-bound for the protection level. In order to tackle the first
constraint, we need to specify the optimal checking sequence and the optimal
number of passwords to be checked.

5 Attacker and Defender Strategies

In the first subsection, we give an efficient algorithm to compute the attacker’s
optimal strategy (π∗, B∗) given the parameters v and k. This algorithm in turn
is an important subroutine in our algorithm to find the best strategy k∗ for the
defender.

5.1 Adversary’s Best Response (Greedy)

In this section we show that the attacker’s optimal ordering π∗ can be obtained
by sorting passwords by their “bang-for-buck” ratio. In particular, fixing an
ordering π we define the ratio rπ(i) = pπ(i)

k(pwπ(i))
which can be viewed as the priority

of checking password pwπ(i) i.e., the cost will be k(pwπ(i)) and the probability
the password is correct is pπ(i). Intuitively, the attacker’s optimal strategy is to
order passwords by their “bang-for-buck” ratio guessing passwords with higher
checking priority first. Theorem 1 formalizes this intuition by proving that the
optimal checking sequence π∗ has no inversions.

We say a checking sequence π has an inversion with respect to k if for some
pair a > b we have rπ(a) > rπ(b) i.e., pwπ(b) is scheduled to be checked before
pwπ(a) even though password pwπ(a) has a higher “bang-for-buck” ratio. Recall
that pwπ(b) is the b’th password checked in the ordering π. The proof of Theorem
1 can be found in the Appendix of full version of this paper [4]. Intuitively, we
argue that consecutive inversions can always be swapped without decreasing the
attacker’s utility.

DAHash 393

Theorem 1. Let (π∗, B∗) denote the attacker’s optimal strategy with respect to
hash cost parameters k and let π be an ordering with no inversions relative to k
then

UADV (v,k, (π,B∗)) ≥ UADV (v,k, (π∗, B∗)) .

Theorem 1 gives us an easy way to compute the attacker’s optimal ordering
π∗ over passwords i.e., by sorting passwords according to their “bang-for-buck”
ratio. It remains to find the attacker’s optimal guessing budget B∗. As we pre-
viously mentioned the password distributions we consider can be compressed by
grouping passwords with equal probability into equivalence sets. Once we have
our cost vector k and have implemented GetHardness() we can further partition
password equivalence sets such that passwords in each set additionally have the
same bang-for-buck ratio.

Theorem 2 tells us that the optimal attacker strategy will either guess all of
the passwords in such an equivalence set esj or none of them. Thus, when we
search for B∗ we only need to consider n′ + 1 possible values of this parameter.
We will use this observation to improve the efficiency of our algorithm to compute
the optimal attacker strategy.

Theorem 2. Let (π∗, B∗) denote the attacker’s optimal strategy with respect
to hash cost parameters k. Suppose that passwords can be partitioned into n′

equivalence sets es1, . . . , esn′ such that passwords pwa, pwb ∈ esi have the same
probability and hash cost i.e., pa = pb = pi and k(pwa) = k(pwb) = ki. Let
ri = pi/ki denote the bang-for-buck ratio of equivalence set esi and assume that
r1 ≥ r2 ≥ . . . ≥ rn′

then B∗ ∈
{

0, |es1|, |es1| + |es2|, · · · ,
∑n′

i=1 |esi|
}
.

The proof of both theorems can be found in Appendix of the full version
of this paper [4]. Theorem 2 implies that when cracking users’ accounts the
adversary increases number of guesses B by the size of the next equivalence set
(if there is net profit by doing so). Therefore, the attacker finds the optimal
strategy (π∗, B∗) with Algorithm BestRes(v,k,D) in time O(n′ log n′) — see
Algorithm 3 in Appendix A. The running time is dominated by the cost of
sorting n′ equivalence sets.

5.2 The Optimal Strategy of Selecting Hash Cost Vector

In the previous section we showed that there is an efficient greedy algorithm
BestRes(v,k,D) which takes as input a cost vector k, a value v and a (com-
pressed) description of the password distribution D computes the attacker’s best
response (π∗, B∗) and outputs λ(π∗, B∗)—the fraction of cracked passwords.
Using this algorithm BestRes(v,k,D) as a blackbox we can apply derivative-free
optimization to the optimization problem in Eq. (7) to find a good hash cost
vector k which minimizes the objective λ(π∗, B∗) There are many derivative-
free optimization solvers available in the literature [27], generally they fall into
two categorizes, deterministic algorithms (such as Nelder-Mead) and evolution-
ary algorithm (such as BITEOPT [1] and CMA-EA). We refer our solver to as

394 W. Bai and J. Blocki

OptHashCostVec(v, Cmax, kmin,D). The algorithm takes as input the parameters
of the optimization problem (i.e., password value v, Cmax, kmin, and a (com-
pressed) description of the password distribution D) and outputs an optimized
hash cost vector k.

During each iteration of OptHashCostVec(·), some candidates {kci
} are pro-

posed, together they are referred as population. For each candidate solution kci

we use our greedy algorithm BestRes(v,kci
,D) to compute the attacker’s best

response (π∗, B∗) i.e., fixing any feasible cost vector kci
we can compute the

corresponding value of the objective function Padv,kci
:=

∑B∗

i=1 pπ∗(i). We record
the corresponding success rate Padv,kci

of the attacker as “fitness”. At the end
of each iteration, the population is updated according to fitness of its’ members,
the update could be either through deterministic transformation (Nelder-Mead)
or randomized evolution (BITEOPT, CMA-EA). When the iteration number
reaches a pre-defined value ite, the best fit member k∗ and its fitness P ∗

adv are
returned.

6 Empirical Analysis

In this section, we design experiments to analyze the effectiveness of DAHash.
At a high level we first fix (compressed) password distributions Dtrain and Deval

based on empirical password datasets and an implementation of GetHardness().
Fixing the DAHash parameters v, Cmax and kmin we use our algorithm
OptHashCostVec(v, Cmax, kmin,Dtrain) to optimize the cost vector k∗ and then
we compute the attacker’s optimal response BestRes(v,k∗,Deval). By setting
Dtrain = Deval we can model the idealized scenario where the defender has per-
fect knowledge of the password distribution. Similarly, by setting Dtrain �= Deval

we can model the performance of DAHash when the defender optimizes k∗ with-
out perfect knowledge of the password distribution. In each experiment we fix
kmin = Cmax/10 and we plot the fraction of cracked passwords as the value
to cost ratio v/Cmax varies. We compare DAHash with traditional password
hashing fixing the hash cost to be Cmax for every password to ensure that the
amortized server workload is equivalent. Before presenting our results we first
describe how we define the password distributions Dtrain and Deval and how we
implement GetHardness().

6.1 The Password Distribution

One of the challenges in evaluating DAHash is that the exact distribution
over user passwords is unknown. However, there are many empirical password
datasets available due to password breaches. We describe two methods for deriv-
ing password distributions from password datasets.

Empirical Password Datasets. We consider nine empirical password datasets
(along with their size N): Bfield (0.54 million), Brazzers (0.93 million), Clixsense

DAHash 395

(2.2 million), CSDN (6.4 million), LinkedIn (174 million), Neopets (68.3 million),
RockYou (32.6 million), 000webhost (153 million) and Yahoo! (69.3 million).
Plaintext passwords are available for all datasets except for the differentially
private LinkedIn [16] and Yahoo! [7,9] frequency corpuses which intentionally
omit passwords. With the exception of the Yahoo! frequency corpus all of the
datasets are derived from password breaches. The differentially LinkedIn dataset
is derived from cracked LinkedIn passwords3. Formally, given N user accounts
u1, . . . , uN a dataset of passwords is a list D = pwu1 , . . . , pwuN

∈ P of passwords
each user selected. We can view each of these passwords pwui

as being sampled
from some unkown distribution Dreal.

Empirical Distribution. Given a dataset of N user passwords the correspond-
ing password frequency list is simply a list of numbers f1 ≥ f2 ≥ . . . where fi is
the number of users who selected the ith most popular password in the dataset—
note that

∑
i fi = N . In the empirical password distribution we define the prob-

ability of the ith most likely password to be p̂i = fi/N . In our experiments using
the empirical password distribution we will set Dtrain = Deval i.e., we assume
that the empirical password distribution is the real password distribution and
that the defender knows this distribution.

In our experiments we implement GetHardness() by partitioning the password
dataset Dtrain into τ groups G1, . . . , Gτ using τ − 1 frequency thresholds t1 >
. . . > tτ−1 i.e., G1 = {i : fi ≥ t1}, Gj = {i : tj−1 > fi ≥ tj} for 1 < j < τ and
Gτ = {i : fi < tτ−1}. Fixing a hash cost vector k = (k1, . . . , kτ) we will assign
passwords in group Gj to have cost kj i.e., GetHardness(pw)= kj for pw ∈ Gj . We
pick the thresholds to ensure that the probability mass Pr[Gj] =

∑
i∈Gj

fi/N

of each group is approximately balanced (without separating passwords in an
equivalence set). While there are certainly other ways that GetHardness() could
be implemented (e.g., balancing number of passwords/equivalence sets in each
group) we found that balancing the probability mass was most effective.

Good-Turing Frequency Estimation. One disadvantage of using the empiri-
cal distribution is that it can often overestimate the success rate of an adversary.
For example, let λ̂B :=

∑B
i=1 p̂i and N ′ ≤ N denote the number of distinct pass-

words in our dataset then we will always have λ̂N ′ :=
∑

i≤N ′ p̂i = 1 which is
inaccurate whenever N ≤ |P|. However, when B � N we will have λ̂B ≈ λB i.e.,
the empirical distribution will closely match the real distribution. Thus, we will
use the empirical distribution to evaluate the performance of DAHash when the
value to cost ratio v/Cmax is smaller (e.g., v/Cmax � 108) and we will highlight
uncertain regions of the curve using Good-Turing frequency estimation.

3 The LinkedIn password is derived from 174 million (out of 177.5 million) cracked
password hashes which were cracked by KoreLogic [16]. Thus, the dataset omits
2% of uncracked passwords. Another caveat is that the LinkedIn dataset only con-
tains 164.6 million unique e-mail addresses so there are some e-mail addresses with
multiple associated password hashes.

396 W. Bai and J. Blocki

Let Nf = |{i : fi = f}| denote number of distinct passwords in our dataset
that occur exactly f times and let Bf =

∑
i>f Ni denote the number of distinct

passwords that occur more than f times. Finally, let Ef := |λBf
− λ̂NBf

| denote
the error of our estimate for λBf

, the total probability of the top Bf passwords
in the real distribution. If our dataset consists of N independent samples from an
unknown distribution then Good-Turing frequency estimation tells us that the
total probability mass of all passwords that appear exactly f times is approxi-
mately Uf := (f+1)Nf+1/N e.g., the total probability mass of unseen passwords
is U0 = N1/N . This would imply that λBf

≥ 1−∑f
j=0 Uj = 1−∑i

j=0
(j+1)Nj+1

N
and Ef ≤ Uf .

Table 1 below plots our error upper bound Uf for 0 ≤ f ≤ 10 for 9 datasets.
Fixing a target error threshold ε we define fε = min{i : Ui ≤ ε} i.e., the minimum
index such that the error is smaller than ε. In our experiments we focus on error
thresholds ε ∈ {0.1, 0.01}. For example, for the Yahoo! (resp. Bfield) dataset we
have f0.1 = 1 (resp. j0.1 = 2) and j0.01 = 6 (resp. j0.01 = 5). As soon as we
see passwords with frequency at most j0.1 (resp. j0.01) start to get cracked we
highlight the points on our plots with a red (resp. yellow) .

Table 1. Error Upper Bounds: Ui for different password datasets

Bfield Brazzers Clixsense CSDN Linkedin Neopets Rockyou 000webhost Yahoo!

U0 0.69 0.531 0.655 0.557 0.123 0.315 0.365 0.59 0.425

U1 0.101 0.126 0.095 0.092 0.321 0.093 0.081 0.124 0.065

U2 0.036 0.054 0.038 0.034 0.043 0.051 0.036 0.055 0.031

U3 0.02 0.03 0.023 0.018 0.055 0.034 0.022 0.034 0.021

U4 0.014 0.02 0.016 0.012 0.018 0.025 0.017 0.022 0.015

U5 0.01 0.014 0.011 0.008 0.021 0.02 0.013 0.016 0.012

U6 0.008 0.011 0.009 0.006 0.011 0.016 0.011 0.012 0.01

U7 0.007 0.01 0.007 0.005 0.011 0.013 0.01 0.009 0.009

U8 0.006 0.008 0.006 0.004 0.008 0.011 0.009 0.008 0.008

U9 0.005 0.007 0.005 0.004 0.007 0.01 0.008 0.006 0.007

U10 0.004 0.007 0.004 0.003 0.006 0.009 0.007 0.005 0.006

Monte Carlo Distribution. As we observed previously the empirical password
distribution can be highly inaccurate when v/Cmax is large. Thus, we use a
different approach to evaluate the performance of DAHash when v/Cmax is large.
In particular, we subsample passwords, obtain guessing numbers for each of these
passwords and fit our distribution to the corresponding guessing curve. We follow
the following procedure to derive a distribution: (1) subsample s passwords Ds

from dataset D with replacement; (2) for each subsampled passwords pw ∈
Ds we use the Password Guessing Service [29] to obtain a guessing number
#guessing(pw) which uses Monte Carlo methods [13] to estimate how many

DAHash 397

guesses an attacker would need to crack pw4. (3) For each i ≤ 199 we fix guessing
thresholds t0 < t1 < . . . < t199 with t0 := 0, t1 := 15, ti − ti−1 = 1.15i+25, and
t199 = maxpw∈Ds

{#guessing(pw)}. (4) For each i ≤ 199 we compute gi, the
number of samples pw ∈ Ds with #guessing(pw) ∈ [ti−1, ti). (5) We output
a compressed distribution with 200 equivalences sets using histogram density
i.e., the ith equivalence set contains ti − ti−1 passwords each with probability

gi

s×(ti−ti−1)
.

In our experiments we repeat this process twice with s = 12, 500 subsamples
to obtain two password distributions Dtrain and Deval. One advantage of this
approach is that it allows us to evaluate the performance of DAHash against a
state of the art password cracker when the ratio v/Cmax is large. The disadvan-
tage is that the distributions Dtrain and Deval we extract are based on current
state of the art password cracking models. It is possible that we optimized our
DAHash parameters with respect to the wrong distribution if an attacker devel-
ops an improved password cracking model in the future.

Implementing GetHardness()for Monte Carlo Distributions. For Monte
Carlo distribution GetHardness(pw) depends on the guessing number
#guessing(pw). In particular, we fix thresholds points x1 > . . . > xτ−1 and
(implicitly) partition passwords into τ groups G1, . . . , Gτ using these thresholds
i.e., Gi = {pw : xi−1 ≥ #guessing(pw) > xi}. Thus, GetHardness(pw) would
compute #guessing(pw) and assign hash cost ki if pw ∈ Gi. As before the thresh-
olds x1, . . . , xτ−1 are selected to (approximately) balance the probability mass
in each group.

6.2 Experiment Results

Figure 1 evalutes the performance of DAHash on the empirical distributions
empirical datasets. To generate each point on the plot we first fix v/Cmax ∈
{i × 102+j : 1 ≤ i ≤ 9, 0 ≤ j ≤ 5}, use OptHashCostVec() to tune our DAHash
parameters k∗ and then compute the corresponding success rate for the attacker.
The experiment is repeated for the empirical distributions derived from our 9
different datasets. In each experiment we group password equivalence sets into
τ groups (τ ∈ {1, 3, 5}) G1, . . . , Gτ of (approximately) equal probability mass.
In addition, we set kmin = 0.1Cmax and iteration of BITEOPT to be 10000. The
yellow (resp. red) regions correspond to unconfident zones where we expect that
the our results for empirical distribution might differ from reality by 1% (resp.
10%).

Figure 2 evaluates the performance of DAHash for Monte Carlo distributions
we extract using the Password Guessing Service. For each dataset we extract
two distributions Dtrain and Deval. For each v/Cmax ∈ {j × 10i : 3 ≤ i ≤
11, j ∈ {2, 4, 6, 8}} we obtain the corresponding optimal hash cost k∗ using
4 The Password Guessing Service [29] gives multiple different guessing numbers for

each password based on different sophisticated cracking models e.g., Markov, PCFG,
Neural Networks. We follow the suggestion of the authors [29] and use the minimum
guessing number (over all autmated approached) as our final estimate.

398 W. Bai and J. Blocki

Fig. 1. Adversary Success Rate vs v/Cmax for Empirical Distributions the red (resp.
yellow) shaded areas denote unconfident regions where the empirical distribution might
diverges from the real distribution Ui ≥ 0.1 (resp. Ui ≥ 0.01). (Color figure online)

OptHashCostVec() with the distribution Dtrain as input. Then we compute suc-
cess rate of attacker on Deval with the same cost vector k∗. We repeated this for 6
plaintext datasets: Bfield, Brazzers, Clixsense, CSDN, Neopets and 000webhost
for which we obtained guessing numbers from the Password Guessing Service.

Figures 1 and 2 plot PADV vs v/Cmax for each different dataset under empir-
ical distribution and Monte Carlo distribution. Each sub-figure contains three
separate lines corresponding to τ ∈ {1, 3, 5} respectively. We first remark that
τ = 1 corresponds to the status quo when all passwords are assigned the same
cost parameter i.e., getHardness(pwu) = Cmax. When τ = 3 we can interpret our
mechanism as classifying all passwords into three groups (e.g., weak, medium
and strong) based on their strength. The fine grained case τ = 5 has more
strength levels into which passwords can be placed.

DAHash 399

Fig. 2. Adversary success rate vs v/Cmax for Monte Carlo distributions

Fig. 3. Hash costs and cracked fraction per group for RockYou (Empirical Distribution)

DAHash Advantage: For empirical distributions the improvement peaks in
the uncertain region of the plot. Ignoring the uncertain region the improvement
is still as large as 15%. For Monte Carlo distributions we find a 20% improvement
e.g., 20% of user passwords could be saved with the DAHash mechanism.

Figure 3a explores how the hash cost vector k is allocated between
weak/medium/strong passwords as v/Cmax varies (using the RockYou empir-
ical distribution with τ = 3). Similarly, Fig. 3b plots the fraction of
weak/medium/strong passwords being cracked as adversary value increases. We
discuss these each of these figures in more detail below.

400 W. Bai and J. Blocki

How Many Groups (τ)? We explore the impact of τ on the percentage of
passwords that a rational adversary will crack. Since the untargeted adversary
attacks all user accounts in the very same way, the percentage of passwords the
adversary will crack is the probability that the adversary succeeds in cracking
a random user’s account, namely, P ∗

ADV . Intuitively, a partition resulting in
more groups can grant a better protection for passwords, since by doing so the
authentication server can deal with passwords with more precision and can better
tune the fitness of protection level to password strength. We observe in Figs. 1
and 2 for most of time the success rate reduction when τ = 5 is larger compared
to τ = 3. However, the marginal benefit plummets, changing τ from 3 to 5
does not bring much performance improvement. A positive interpretation of this
observation is that we can glean most of the benefits of our differentiated hash
cost mechanism without making the getHardness() procedure too complicated
e.g., we only need to partition passwords into three groups weak, medium and
strong.

Our hashing mechanism does not overprotect passwords that are too weak to
withstand offline attack when adversary value is sufficiently high, nor passwords
that are strong enough so that a rational offline attacker loses interest in cracking.
The effort previously spent in protecting passwords that are too weak/strong
can be reallocated into protecting “savable” passwords at some v/Cmax. Thus,
our DAHash algorithm beats traditional hashing algorithm without increasing
the server’s expected workload i.e., the cost parameters k are tuned such that
expected workload is always Cmax whether τ = 1 (no differentiated costs), τ = 3
(differentiated costs) or τ = 5 (finer grained differentiated costs). We find that
the defender can reduce the percentage of cracked passwords P ∗

ADV without
increasing the workload Cmax.

Understanding the Optimal Allocation k∗. We next discuss how our mech-
anism re-allocates the cost parameters across τ = 3 different groups as v/Cmax

increases—see Fig. 3a. At the very beginning v/Cmax is small enough that a
rational password gives up without cracking any password even if the authen-
tication server assigns equal hash costs to different groups of password, e.g.,
k1 = k2 = k3 = Cmax.

As the adversary value increases the Algorithm OptHashCostVec() starts to
reallocate k so that most of the authentication server’s effort is used to protect
the weakest passwords in group G1 while minimal key-stretching effort is used
to protect the stronger passwords in groups G2 and G3 In particular, we have
k1 ≈ 3Cmax for much of the interval v/Cmax ∈ [4∗103, 105] while k2, k3 are pretty
small in this interval e.g., k2, k3 ≈ 0.1 × Cmax. However, as the ratio v/Cmax

continues to increase from 106 to 107 Algorithm OptHashCostVec() once again
begins to reallocate k to place most of the weight on k2 as it is now necessary to
protect passwords in group G2. Over the same interval the value of k1 decreases
sharply as it is no longer possible to protect all of the weakest passwords group
G1.

As v/Cmax continues to increase Algorithm OptHashCostVec() once again
reallocates k to place most of the weight on k3 as it is now necessary to

DAHash 401

protect the strongest passwords in group G3 (and no longer possible to pro-
tect all of the medium strength passwords in group G2). Finally, v/Cmax gets
too large it is no longer possible to protect passwords in any group so Algorithm
OptHashCostVec() reverse back to equal hash costs , i.e., k1 = k2 = k3 = Cmax.

Figures 3a and 3b tell a complementary story. Weak passwords are cracked
first as v/Cmax increases, then follows the passwords with medium strength and
the strong passwords stand until v/Cmax finally becomes sufficiently high. For
example, in Fig. 3b we see that initially the mechanism is able to protect all
passwords, weak, medium and strong. However, as v/Cmax increases from 105

to 106 it is no longer possible to protect the weakest passwords in group G1.
Up until v/Cmax = 106 the mechanism is able to protect all medium strength
passwords in group G2, but as the v/Cmax crosses the 107 threshold it is not
feasible to protect passwords in group G2. The strongest passwords in group G3

are completely projected until v/Cmax reaches 2 × 107 at which point it is no
longer possible to protect any passwords because the adversary value is too high.

Viewing together with Fig. 3a, we observe that it is only when weak passwords
are about to be cracked completely (when v/Cmax is around 7 × 105) that the
authentication server begin to shift effort to protect medium passwords. The
shift of protection effort continues as the adversary value increases until medium
strength passwords are about to be massively cracked. The same observation
applies to medium passwords and strong password. While we used the plots
from the RockYou dataset for discussion, the same trends also hold for other
datasets (concrete thresholds may differ).

Robustness. We remark that in Figs. 1 and 2 the actual hash cost vector k we
chose is not highly sensitive to small changes of the adversary value v (only in
semilog x axis fluctuation of k became obvious). Therefore, DAHash may still
be useful even when it is not possible to obtain a precise estimate of v or when
the attacker’s value v varies slightly over time.

Incentive Compatibility. One potential concern in assigning different hash
cost parameters to different passwords is that we might inadvertently provide
incentive for a user to select weaker passwords. In particular, the user might
prefer a weaker password pwi to pwj (Pr[pwi] > Pr[pwj]) if s/he believes that
the attacker will guess pwj before pwi e.g., the hash cost parameter k(pwj) is so
small that makes rj > ri. We could directly encode incentive compatibility into
our constraints for the feasible range of defender strategies FCmax

i.e., we could
explicitly add a constraints that rj ≤ ri whenever Pr[pwi] ≤ Pr[pwj]. However,
Fig. 3b suggest that this is not necessary. Observe that the attacker does not
crack any medium/high strength passwords until all weak passwords have been
cracked. Similarly, the attacker does not crack any high strength passwords until
all medium strength passwords have been cracked.

7 Conclusions

We introduce the notion of DAHash. In our mechanism the cost parameter
assigned to distinct passwords may not be the same. This allows the defender to

402 W. Bai and J. Blocki

focus key-stretching effort primarily on passwords where the effort will influence
the decisions of a rational attacker who will quit attacking as soon as expected
costs exceed expected rewards. We present Stackelberg game model to capture
the essentials of the interaction between the legitimate authentication server
(leader) and an untargeted offline attacker (follower). In the game the defender
(leader) commits to the hash cost parameters k for different passwords and the
attacker responds in a utility optimizing manner. We presented a highly efficient
algorithm to provably compute the attacker’s best response given a password dis-
tribution. Using this algorithm as a subroutine we use an evolutionary algorithm
to find a good strategy k for the defender. Finally, we analyzed the performance
of our differentiated cost password hashing algorithm using empirical password
datasets . Our experiments indicate that DAHash can dramatically reduce the
fraction of passwords that would be cracked in an untargeted offline attack in
comparison with the traditional approach e.g., by up to 15% under empirical dis-
tributions and 20% under Monte Carlo distributions. This gain comes without
increasing the expected workload of the authentication server. Our mechanism
is fully compatible with modern memory hard password hashing algorithms such
as SCRYPT [25], Argon2id [5] and DRSample [3].

Acknowledgment. The work was supported by the National Science Foundation
under grants CNS #1704587, CNS #1755708 and CNS #1931443. The authors wish to
thank Matteo Dell‘Amico (shepherd) and other anonymous reviewers for constructive
feedback which helped improve the paper.

A Algorithms

Algorithm 1. Account creation
Input: u, pwu, L

1: su
$← {0, 1}L;

2: k ← GetHardness(pwu);
3: h ← H(pwu, su; k);
4: StoreRecord (u, su, h)

Algorithm 2. Password authentication
Input: u, pw′

u

1: (u, su, h) ← FindRecord(u);
2: k′ ← GetHardness(pw′

u);
3: h′ ← H(pwu, su; k′);
4: Return h == h′

DAHash 403

Algorithm 3. The adversary’s best response BestRes(v,k,D),
Input: k, v, D
Output: (π∗, B∗)
1: sort { pi

ki
} and reindex such that p1

k1
≥ · · · ≥ pn′

kn′ to get π∗;
2: B∗ = arg max UADV (v,k, (π∗, B))
3: return (π∗, B∗);

B FAQ

Could DAHash Harm User’s Who Pick Weak Passwords?

The simple answer is that it depends on whether or not our estimation of the
attacker’s value v is reasonably accurate. If our estimation of the value v of a
cracked password is way too high then it is indeed possible that the DAHash
parameters would be misconfigured in a way that harms users with weak pass-
words. However, even in this case we can ensure that every password receives
a minimum level of acceptable protection by tuning the parameter kmin which
controls minimum acceptable hash cost for any password. If our estimation of
v is accurate and it is feasible to deter an attacker from cracking weaker pass-
words then DAHash will actually tend to provide stronger protection for these
passwords. On the other hand if the password is sufficiently weak that we cannot
deter an attacker then these weak passwords will always be cracked no matter
what actions we take. Thus, DAHash will reallocate key-stretching effort to focus
on protecting stronger passwords.

References

1. Biteopt algorithm. https://github.com/avaneev/biteopt
2. Allodi, L.: Economic factors of vulnerability trade and exploitation. In: Thurais-

ingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, Dallas, TX,
USA, pp. 1483–1499. ACM Press, 31 October–2 November 2017. https://doi.org/
10.1145/3133956.3133960

3. Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel resistant
memory-hard functions. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017, Dallas, TX, USA, pp. 1001–1017. ACM Press, 31 October–2
November 2017. https://doi.org/10.1145/3133956.3134031

4. Bai, W., Blocki, J.: Dahash: Distribution aware tuning of password hashing costs
(2021). https://arxiv.org/abs/2101.10374

5. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: new generation of memory-hard
functions for password hashing and other applications. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 292–302. IEEE (2016)

6. Blocki, J., Datta, A.: CASH: a cost asymmetric secure hash algorithm for optimal
password protection. In: IEEE 29th Computer Security Foundations Symposium,
pp. 371–386 (2016)

7. Blocki, J., Datta, A., Bonneau, J.: Differentially private password frequency lists.
In: NDSS 2016, San Diego, CA, USA. The Internet Society, 21–24 February 2016

https://github.com/avaneev/biteopt
https://doi.org/10.1145/3133956.3133960
https://doi.org/10.1145/3133956.3133960
https://doi.org/10.1145/3133956.3134031
https://arxiv.org/abs/2101.10374

404 W. Bai and J. Blocki

8. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking. In:
2018 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, pp. 853–
871. IEEE Computer Society Press, 21–23 May 2018. https://doi.org/10.1109/SP.
2018.00009

9. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, San Francisco, CA,
USA, pp. 538–552. IEEE Computer Society Press, 21–23 May 2012. https://doi.
org/10.1109/SP.2012.49

10. Boyen, X.: Halting password puzzles: hard-to-break encryption from human-
memorable keys. In: Provos, N. (ed.) USENIX Security 2007, pp. 6–10, Boston,
MA, USA. USENIX Association, August 2007

11. Castelluccia, C., Chaabane, A., Dürmuth, M., Perito, D.: When privacy meets
security: Leveraging personal information for password cracking. arXiv preprint
arXiv:1304.6584 (2013)

12. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
Markov models. In: NDSS 2012, San Diego, CA, USA, The Internet Society, 5–8
February 2012

13. Dell’Amico, M., Filippone, M.: Monte Carlo strength evaluation: fast and reliable
password checking. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, Denver,
CO, USA, pp. 158–169. ACM Press, 12–16 October 2015. https://doi.org/10.1145/
2810103.2813631

14. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 16

15. Fossi, M., et al.: Symantec report on the underground economy, November 2008.
Accessed 1 August 2013

16. Harsha, B., Morton, R., Blocki, J., Springer, J., Dark, M.: Bicycle attacks con-
sidered harmful: Quantifying the damage of widespread password length leakage.
Comput. Secur. 100, 102068 (2021)

17. Herley, C., Florêncio, D.: Nobody sells gold for the price of silver: dishonesty,
uncertainty and the underground economy. In: Moore, T., Pym, D., Ioannidis, C.
(eds.) Economics of Information Security and Privacy, pp. 33–53. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-6967-5 3

18. Kaliski, B.: Pkcs# 5: password-based cryptography specification version 2.0 (2000)
19. Kelley, P.G., et al.: Guess again (and again and again): Measuring password

strength by simulating password-cracking algorithms. In: 2012 IEEE Symposium
on Security and Privacy, pp. 523–537. IEEE Computer Society Press, San Fran-
cisco, CA, USA, 21–23 May 2012. https://doi.org/10.1109/SP.2012.38

20. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
2014 IEEE Symposium on Security and Privacy, pp. 689–704. IEEE Computer
Society Press, Berkeley, CA, USA, 18–21 May 2014. https://doi.org/10.1109/SP.
2014.50

21. Manber, U.: A simple scheme to make passwords based on one-way functions much
harder to crack. Comput. Secur. 15(2), 171–176 (1996)

22. Melicher, W., et al.: Fast, lean, and accurate: Modeling password guessability using
neural networks. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, Austin, TX,
USA, pp. 175–191. USENIX Association, 10–12 August 2016

23. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979). http://dl.acm.org/citation.cfm?id=359172

https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.49
http://arxiv.org/abs/1304.6584
https://doi.org/10.1145/2810103.2813631
https://doi.org/10.1145/2810103.2813631
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-1-4419-6967-5_3
https://doi.org/10.1109/SP.2012.38
https://doi.org/10.1109/SP.2014.50
https://doi.org/10.1109/SP.2014.50
http://dl.acm.org/citation.cfm?id=359172

DAHash 405

24. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

25. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 (2009)

26. Provos, N., Mazieres, D.: Bcrypt algorithm. In: USENIX (1999)
27. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms

and comparison of software implementations. J. Global Optim. 56(3), 1247–1293
(2013)

28. Stockley, M.: What your hacked account is worth on the dark web, August
2016. https://nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-
is-worth-on-the-dark-web/

29. Ur, B., et al.: Measuring real-world accuracies and biases in modeling password
guessability. In: Jung, J., Holz, T. (eds.) USENIX Security 2015. pp. 463–481.
USENIX Association, Washington, DC, USA, 12–14 August 2015

30. Vasek, M., Bonneau, J., Castellucci, R., Keith, C., Moore, T.: The bitcoin brain
drain: examining the use and abuse of bitcoin brain wallets. In: Grossklags, J.,
Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 609–618. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54970-4 36

31. Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In: NDSS 2014. The Internet Society, San Diego, CA, USA, 23–26
February 2014

32. Von Stackelberg, H.: Market Structure and Equilibrium. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12586-7

33. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, pp. 391–405. IEEE Computer Society Press, 17–20
May 2009. https://doi.org/10.1109/SP.2009.8

34. Wetzels, J.: Open sesame: The password hashing competition and Argon2. Cryp-
tology ePrint Archive, Report 2016/104 (2016), http://eprint.iacr.org/2016/104

35. Wiener, M.J.: The Full Cost of Cryptanalytic Attacks. Journal of Cryptology
17(2), 105–124 (2003). https://doi.org/10.1007/s00145-003-0213-5

https://doi.org/10.1007/978-3-540-45146-4_36
https://nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-is-worth-on-the-dark-web/
https://nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-is-worth-on-the-dark-web/
https://doi.org/10.1007/978-3-662-54970-4_36
https://doi.org/10.1007/978-3-642-12586-7
https://doi.org/10.1109/SP.2009.8
http://eprint.iacr.org/2016/104
https://doi.org/10.1007/s00145-003-0213-5

Short Paper: Organizational Security:
Implementing a Risk-Reduction-Based

Incentivization Model for MFA Adoption

Sanchari Das1,2(B), Andrew Kim2, and L. Jean Camp2

1 University of Denver, Denver, US
2 Indiana University Bloomington, Bloomington, US

anykim@iu.edu

Abstract. Multi-factor authentication (MFA) is a useful measure for
strengthening authentication. Despite its security effectiveness, the adop-
tion of MFA tools remains low. To create more human-centric authen-
tication solutions, we designed and evaluated the efficacy of a risk-
reduction-based incentivization model and implemented our proposed
model in a large-scale organization with more than 92, 025 employees,
and collected survey data from 287 participants and interviewed 41 par-
ticipants. We observed negative perceptions and degraded understand-
ings of MFA technology due to the absence of proper risk and benefit
communication in the control group. Meanwhile, the experimental group
employees showed positive perceptions of MFA use for their work and
personal accounts. Our analysis and implementation strategy are critical
for reducing users’ risks, creating positive security tool usage experiences,
and motivating users to enhance their security practices.

Keywords: Authentication · User studies · Multi-factor
authentication · Security awareness · Organizational security · Usable
security · Risk communication

1 Introduction

Organizations and companies have often required their employees to use
multi-factor authentication (MFA) for protecting their accounts [10]. Although
MFA provides substantial added security, it has several user experience hin-
drances [11]. While making MFA mandatory on some accounts may improve
users’ online security, it often detrimentally affects users’ perceptions and mental
models of MFA [4]. Because MFA is usually rolled out without proper supple-
mental communication, users may come to see it as an unnecessary blocker in
their daily workflow rather than as an effective security measure [9]. Regard-
ing risk communication, Albayram et al. explored the use of visual methods for
explaining MFA benefits to users, noting that the themes of risk and self-efficacy
were compelling for communication [1].

Elaborating on the prior study, to test our understanding of risk commu-
nication and MFA with users, we implemented and tested an incentivization
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 406–413, 2021.
https://doi.org/10.1007/978-3-662-64331-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_21&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_21

Risk-Reduction-Based Incentivization Model for MFA Adoption 407

model for MFA risk and benefits communication in an organizational setting.
For the study, we conducted a preliminary information gathering interview with
M = 19 employees of an organization involved with the procurement, develop-
ment, implementation, and maintenance of MFA. This was done before the pilot
study to obtain data for developing the communication model. After that, we
conducted a survey with N1 = 287 employees and interviewed N2 = 22 employ-
ees at a large organization that had recently required users to enroll in MFA via
the Okta authentication application1.

Contrary to popular belief, we found that users are receptive to longer text-
and video-based communication. Our proposed model for this study, which was
tested on the experimental group (N = 187 out of a total of N1 = 287 survey
takers), consisted of an introduction to MFA and a text-based or video-based
communication that briefly outlined the security benefits of MFA while explain-
ing the potential risks of not adopting MFA. We wanted to examine how users in
a real-world organizational setting responded to such communication, providing
further details about improving MFA (or, in general, any security-focused tool)
rollout strategies.

2 Related Work

While multi-factor authentication improves online account security, MFA’s adop-
tion has been hindered by negative user perception of MFA technologies [3].

Risk Communication and Mental Models: Previous research has explored
risk communication for improving the security behavior of individuals [8]. It has
been shown that risk perception is often unrealistically low and increasingly vul-
nerable to online threats [15]. This aligns with Harbach et al.’s work, where they
pointed out the need for learning about user mental models and how risk commu-
nication can be utilized as a useful tool for improving users’ security hygiene [7].
Albayram et al. evaluated visual modes of risk communication, where users were
motivated through informative and self-sufficient videos [1]. They identified high-
priority tasks (e.g., security content to address) and approaches to avoid (e.g.,
using computer-generated voices) for improved outcomes for risk communication.
We extended these prior works to test the efficacy of different risk communication
modes (text and video) in a large-scale organizational setting.

User Experiences with MFA: MFA tools often have usability and accessi-
bility issues due to their lack of user-friendly terminology, risk communication,
and misaligned visual cues [4,16]. Braz et al. pointed out that changes in an
interface’s design impact users’ overall experience with MFA [2]. Reynolds et al.
identified a lack of usability in U2F applications, specifically during the setup
procedures [12]. The focus of our work is to analyze participants’ risk perceptions,
address the concerns of MFA users, and identify effective ways to communicate
the benefits of MFA while being aligned with users’ risk mental models.
1 https://www.okta.com.

https://www.okta.com

408 S. Das et al.

3 Methodology

We conducted our study in two phases (interview and survey) at a large interna-
tional organization (92, 025 full and temporary employees). At the beginning, we
conducted a series of semi-structured interviews with: 3 decision-making leaders,
5 core developers, 5 members of the communications and distribution team, 3
technological policy makers, and 3 members of the technical support team.

We then engaged the outreach community and employees of the organization
to establish text- and video-based risk communication strategies. Initially, the
content focused on the data breaches and employee negligence that had led to
broad negative impacts on the organization. However, during our initial pilot
testing (which included 23 employees), participants expressed concerns about
the pure focus on negative implications and the fear-mongering technique used
in the messaging. This led us to question how the negative messaging could
impact other participants. Thus, we went through nine more iterations of each
of the text- and video-based communications with the same 23 employees before
arriving at the finalized messages, which focused on MFA’s benefits instead.

In the second phase of the study, we conducted a survey with with employees
who worked in the organization’s technological field to remove the variability of
technical knowledge and expertise. In the first part of the survey, participants
(N1 = 287) were randomly assigned to one of two groups: the control group
(N11 = 100) or the experimental group (N12 = 187). Those in the experimental
group were also divided into two groups: one group presented with the text-
based risk communication and incentivization messaging (90) and one group
that would be presented with the video-based risk communication incentivization
messaging (97). In the second section of the survey, participants were asked
specific questions about Okta and their understanding of their MFA usage in
general (e.g., For which of the following accounts or services do you use multi-
factor authentication (MFA)?).

In the third section, participants were presented with the specific risk and
benefits communication messaging they had been randomly assigned. They were
instructed to read/watch before they answered questions about the benefits of
using MFA and the risks of not using it. The control group participants were not
given any form of risk and benefits communication messaging but were still asked
to answer questions about the benefits and risk trade-offs of MFA to compare
and contrast the effectiveness of the proposed model. In the fourth section of the
survey, we asked participants questions about their future expectations regarding
MFA at their organization. This included questions such as: What other digi-
tal identification methods would you like to use to log in to your accounts for
password-less access? Finally, a small subset of the participants (M = 22) was
randomly selected from our participant pool to complete an additional semi-
structured interview to gather further information on their MFA usage. The
study design and implementation were approved by the organization’s digital
experiences, strategies, policies, and communications review board.

Risk-Reduction-Based Incentivization Model for MFA Adoption 409

4 Results

The organization utilized two forms of multi-factor authentication: one for on-
premise authentication and the other for off-premise authentication. Due to the
company’s employee list’s dynamic nature, we limited our collection of data
from May 2019–September 2019. By the end of this study, we observed that
71, 115 employees were successfully enrolled in some form of MFA through Okta,
including push notification, call, etc. Of those 71, 115 users, 63, 964 were enrolled
in push and one-time-password (OTP) application-based authentication, and
49, 589 were enrolled in call-based authentication. These users were not mutu-
ally exclusive, as 41, 435 users were enrolled in both. A small number of employ-
ees (462 employees) were given Yubico security tokens2 as the second factor of
authentication.

User Risk Perception and Mental Models: Though the participants
seemed to be aware of online identity theft, their overall lack of knowledge of
MFA’s works was alarming and was made worse due to their blind trust in secu-
rity experts. This is critical, as developers, designers, and users often make false
assumptions about everyday systems’ underlying security [14]. Table 1 outlines
participants’ responses to various statements about MFA. Only 58% of partici-
pants responded that they understood how MFA works, and only 61% indicated
that they understood MFA benefits. 60% of participants reported that they
believed MFA would make their online data more secure, confirming the need to
make MFA enrollment and day-to-day usage easier for users.

Understudied Organizational Population: Prior studies conclude that
users often perceive MFA as challenging to set up and a hassle to use. Our study
show the impact of a common solution for increased adoption: making security
tools mandatory [5,13]. Our results show that requiring the use of tools with-
out properly justifying said requirement is often futile, leading users to adopt
negative behaviors, such as authentication tool sharing. Another significant con-
tribution of this paper is the inclusion of the proof-of-concept in a large-scale
organizational setting.

Users’ Preferred Authentication Methods: We asked users about their
likelihood of using any of the popular variations of multi-factor authentication.
Users were asked to rate the forms of MFA on a scale from “extremely likely” to
use to “unlikely” to use, including codes sent by email/text messages, hardware
tokens, biometrics, etc. Users noted that they would be open to using all of the
various forms of MFA. Push notifications seemed to be immensely popular among
the organization’s employees, with nearly 86% of participants rating that they
would be “extremely likely” to use MFA via this method. This is most likely due
to their previous experience with Okta, which uses a mobile-application-based
MFA implementation.
2 https://www.yubico.com/product/security-key-by-yubico/.

https://www.yubico.com/product/security-key-by-yubico/

410 S. Das et al.

Table 1. Participants’ understanding of and perception of MFA

Statement Strongly
agree

Agree Neither
agree nor
disagree

Disagree Strongly
disagree

I Understand How MFA
Works

83 83 13 55 53

I Understand the Benefits of
MFA

101 73 6 53 53

I Think MFA Will Make My
Online Data More Secure

94 78 11 52 52

I Trust MFA 64 101 17 54 51

I Think MFA Will Be Risky 5 67 77 105 33

I Think MFA Will Be Easy
to Use

41 99 39 57 51

Evaluation of Incentivization Model Through Risk and Benefits Com-
munication: In addition to filling out Likert scales, participants were also given
the option to submit open-ended responses regarding any questions/concerns
they may have had regarding MFA after viewing the videos and reading the
text. We asked similar questions to the control group. Users in the experimen-
tal group understood clear benefits of MFA usage based on text- (90/90 said
yes when asked about MFA benefits) and video- (81/97) information provided
to them in comparison to the control group (20/100 said they understood the
benefits of MFA). One participant noted:

“I think the video did a good job explaining it [what MFA is and its bene-
fits].”

A small fraction of users stressed that MFA might be useful in reducing risks,
but only marginally.

“I’m always concerned about my online data. Although MFA reduces the
concern, there will always be the risk of exposing my online data. Nothing
is safe, and when one process is shut-down, a new one pops-up to replace
it.”

Finally, another user said that both the videos and text made them wonder why
MFA is not more popular:

“I am concerned that not everything is already MFA-ed... I do not under-
stand why are we not MFA-ing all the things?”

Implementation and Adoption Issues. To further understand the effective-
ness of the risk and benefits communications, we also conducted semi-structured
interviews with a subset of the participants who completed the survey. From the

Risk-Reduction-Based Incentivization Model for MFA Adoption 411

developers’ perspective, the primary problem was that users were unaware of
what MFA did and was often forced to use MFA due to mandatory policies.

“every day, we get multiple emails; usually, they are easy to address. How-
ever, it is mostly when application developers do not have a clear under-
standing of the Okta (MFA) usage and often ask why Okta (MFA) inte-
gration is required for access.” (P1, Developer)

Another problem occurred when users used both security questions and their
phones as a second authentication factor but did not carry their devices.

“Often, they (users) need to reset the passwords for which they need to go
through Okta for the added layer of verification. They forget to bring their
devices since they did not know how to use MFA for a password reset, and
we need to do the reset for them.” (P3, Developer)

5 Discussions and Implications

Our results prove the overall notion that our incentivization model for risk reduc-
tion can be effective when used as part of a MFA rollout strategy in a real-world,
large-scale organization. It is important to note that the goal of our research was
not to criticize mandatory MFA policies as a security strategy, nor was it to prove
the effectiveness of text over video (or vice versa) as a communication medium.
Rather, we suggest that mandatory MFA policies in organizations should be
complemented with additional risk and benefit communications that align with
users’ mental models and backgrounds. Both the text- and video-based com-
munications received positive responses; thus, the emphasis should not be on
the medium of communication as much as it should be on the content and the
timeliness of delivery to users.

Given prior academic research [6], we found that communicated risks and
benefits are treated as incentives that help with users’ decision-making in adopt-
ing security tools and techniques. In order to encourage tool adoption, we must
provide users with the reasoning behind why such tools are necessary without
overwhelming them with too many technical details. Similarly, for multi-factor
authentication, we address the complications of the added steps to login by
explaining why such additional steps benefit the users and aligning our commu-
nications with the organization for which they work.

6 Limitations and Future Work

We found that our risk-reduction-based incentivization model most positively
influenced the security decision-making when added during rollout. However,
our studied organization was MFA-compliant when the study started, with some
of the participants already using MFA. Thus, further research can explore the
model’s effectiveness in an organization that has yet to require MFA usage among
its users. Additional experiments would help test our model across multiple
organizations to see its effectiveness with varying MFA policies and cultural
backgrounds of employees.

412 S. Das et al.

7 Conclusion

With the rise of users’ online presence, authentication has become more chal-
lenging and critical, especially for organizations where employees’ identities
are tightly coupled with the organization’s essential information. Our research
focused on mitigating risks by exploring how to encourage improved authentica-
tion technologies—namely, MFA. Despite the security benefits, usability remains
challenging for MFA. To resolve this issue, we proposed implementing risk and
benefits communication through text- and video-based messaging to improve
user adoption of new security tools and technologies. The user study imple-
mented a preliminary interview, a survey, and a semi-structured interview with
the ultimate goal of learning how effective a communication model could be dur-
ing real-world MFA implementations. Participants responded mostly positively
to both text- and video-based forms of risk communication, indicating the impor-
tance of mandating technologies and explaining them without security jargon to
the end-users. We propose that our risk-reduction-based incentivization model
be part of all MFA implementation strategies and policies to encourage positive
decision-making regarding security tool usage.

Acknowledgments. We would like to thank the organization and its employees where
the study was conducted, the University of Denver, Indiana University Bloomington.
Any opinions, findings, and conclusions or recommendations expressed in this material
are solely those of the author(s).

References

1. Albayram, Y., Khan, M.M.H., Fagan, M.: A study on designing video tutorials for
promoting security features: a case study in the context of two-factor authentica-
tion (2fa). Int. J. Human Comput. Interact 33(11), 927–942 (2017). https://doi.
org/10.1080/10447318.2017.1306765

2. Braz, C., Robert, J.M.: Security and usability: the case of the user authentication
methods. In: Proceedings of the 18th Conference on L’Interaction Homme-Machine.
pp. 199–203. IHM ’06, ACM, New York, NY, USA (2006). https://doi.org/10.
1145/1132736.1132768, http://doi.acm.org.proxyiub.uits.iu.edu/10.1145/1132736.
1132768

3. Das, S., Dingman, A., Camp, L.J.: Why johnny doesn’t use two factor a two-phase
usability study of the FIDO U2F security key. In: Meiklejohn, S., Sako, K. (eds.)
FC 2018. LNCS, vol. 10957, pp. 160–179. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-58387-6 9

4. Das, S., Wang, B., Tingle, Z., Camp, L.J.: Evaluating user perception of multi-
factor authentication: a systematic review. In: Proceedings of the 13th Inter-
national Symposium on Human Aspects of Information Security and Assurance
(HAISA 2019). HAISA (2019)

5. Furnell, S.M., Bryant, P., Phippen, A.D.: Assessing the security perceptions of
personal internet users. Comput. Secur. 26(5), 410–417 (2007)

https://doi.org/10.1080/10447318.2017.1306765
https://doi.org/10.1080/10447318.2017.1306765
https://doi.org/10.1145/1132736.1132768
https://doi.org/10.1145/1132736.1132768
http://doi.acm.org.proxyiub.uits.iu.edu/10.1145/1132736.1132768
http://doi.acm.org.proxyiub.uits.iu.edu/10.1145/1132736.1132768
https://doi.org/10.1007/978-3-662-58387-6_9
https://doi.org/10.1007/978-3-662-58387-6_9

Risk-Reduction-Based Incentivization Model for MFA Adoption 413

6. Garg, V., Camp, L.J., Connelly, K., Lorenzen-Huber, L.: Risk communication
design: video vs. text. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS,
vol. 7384, pp. 279–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31680-7 15

7. Harbach, M., Fahl, S., Smith, M.: Who’s afraid of which bad wolf? a survey of
it security risk awareness. In: 2014 IEEE 27th Computer Security Foundations
Symposium. pp. 97–110. IEEE (2014)

8. Harbach, M., Hettig, M., Weber, S., Smith, M.: Using personal examples to improve
risk communication for security and privacy decisions. In: Proceedings of the 32nd
Annual ACM Conference on Human Factors in Computing Systems. pp. 2647–
2656. ACM (2014)

9. Krol, K., Philippou, E., De Cristofaro, E., Sasse, M.A.: They brought in the horrible
key ring thing! analysing the usability of two-factor authentication in uk online
banking. arXiv preprint arXiv:1501.04434 (2015)

10. Lang, J., Czeskis, A., Balfanz, D., Schilder, M., Srinivas, S.: Security keys: practical
cryptographic second factors for the modern web. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 422–440. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54970-4 25

11. Petsas, T., Tsirantonakis, G., Athanasopoulos, E., Ioannidis, S.: Two-factor
authentication: is the world ready? quantifying 2fa adoption. In: Proceedings of
the 8th European Workshop on System Security, p. 4. ACM (April 2015). https://
doi.org/10.1145/2751323.2751327

12. Reynolds, J., Smith, T., Reese, K., Dickinson, L., Ruoti, S., Seamons, K.: A tale
of two studies: the best and worst of yubikey usability. In: 2018 IEEE Symposium
on Security and Privacy (SP). pp. 872–888. IEEE (2018). DOI: https://doi.org/
10.1109/SP.2018.00067

13. Sedera, D., Dey, S.: User expertise in contemporary information systems: concep-
tualization, measurement and application. Inf. Manage 50(8), 621–637 (2013)

14. Viega, J., Kohno, T., Potter, B.: Trust and mistrust in secure applications. Com-
mun. ACM 44(2), 31–36 (2001)

15. Weinstein, N.D.: Unrealistic optimism about future life events. J. Pers. Soc. Psy-
chol. 39(5), 806 (1980)

16. Weir, C.S., Douglas, G., Richardson, T., Jack, M.: Usable security: user preferences
for authentication methods in ebanking and the effects of experience. Interact.
Comput. 22(3), 153–164 (2010). https://doi.org/10.1016/j.intcom.2009.10.001

https://doi.org/10.1007/978-3-642-31680-7_15
https://doi.org/10.1007/978-3-642-31680-7_15
http://arxiv.org/abs/1501.04434
https://doi.org/10.1007/978-3-662-54970-4_25
https://doi.org/10.1007/978-3-662-54970-4_25
https://doi.org/10.1145/2751323.2751327
https://doi.org/10.1145/2751323.2751327
https://doi.org/10.1109/SP.2018.00067
https://doi.org/10.1109/SP.2018.00067
https://doi.org/10.1016/j.intcom.2009.10.001

Measurement

Lost in Transmission: Investigating
Filtering of COVID-19 Websites

Anjali Vyas1, Ram Sundara Raman1, Nick Ceccio1, Philipp M. Lutscher2,
and Roya Ensafi1(B)

1 University of Michigan, Ann Arbor, USA
{anjvyas,ramaks,ceccion,ensafi}@umich.edu

2 University of Oslo, Oslo, Norway
philipp.lutscher@stv.uio.no

Abstract. After the unprecedented arrival of the COVID-19 pandemic,
the Internet has become a crucial source of essential information on the
virus. To prevent the spread of misinformation and panic, many author-
ities have resorted to exercising higher control over Internet resources.
Although there is anecdotal evidence that websites containing informa-
tion about the pandemic are blocked in specific countries, the global
extent of these censorship efforts is unknown. In this work, we perform
the first global censorship measurement study of websites obtained from
search engine queries on COVID-19 information in more than 180 coun-
tries. Using two remote censorship measurement techniques, Satellite
and Quack, we collect more than 67 million measurements on the DNS
and Application layer blocking of 1,291 domains containing COVID-19
information from 49,245 vantage points in 5,081 ASes. Analyzing global
patterns, we find that blocking of these COVID-19 websites is relatively
low—on average, 0.20%–0.34% of websites containing information about
the pandemic experience interference. As expected, we see higher block-
ing in countries known for censorship such as Iran, China, and Kaza-
khstan. Surprisingly, however, we also find significant blocking of web-
sites containing information about the pandemic in countries generally
considered as “free” in the Internet space, such as Switzerland (DNS),
Croatia (DNS), and Canada (Application layer). We discover that net-
work filters in these countries flag many websites related to COVID-19
as phishing or malicious and hence restrict access to them. However, our
investigation suggests that this categorization may be incorrect—most
websites do not contain serious security threats—causing unnecessary
blocking. We advocate for stricter auditing of filtering policies world-
wide to help prevent the loss of access to relevant information.

Keywords: Censorship · COVID-19 · Filtering · Phishing

1 Introduction

The COVID-19 pandemic has necessitated heavy reliance on the Internet by
people all over the world. Essential information about the pandemic, includ-
ing details about the virus and the disease, state- and country-level spread,
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 417–436, 2021.
https://doi.org/10.1007/978-3-662-64331-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_22&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_22

418 A. Vyas et al.

guidelines, and tracing are primarily accessed through the Internet [21]. How-
ever, at the same time, there has also been a surge of misinformation which
has prompted authorities to exercise greater control over Internet resources [34].
Although restricting access to malicious resources may be necessary in order to
protect users, several studies have shown that access to legitimate information
also may be restricted [12,24,38,55].

Recent work by the censorship measurement community has pointed to the
blocking of specific websites related to the COVID-19 pandemic in certain coun-
tries. OONI [45], a censorship measurement platform, investigated Myanmar’s
government directive that all Internet service providers must block websites sup-
posedly containing “fake news” regarding the pandemic [24]. In addition, the
Citizen Lab [46] found that sources of COVID-19 information that criticize the
government are being actively censored on Chinese social media [12,38]. These
investigations reveal that governments are engaging in possibly detrimental cen-
sorship of COVID-19 information. However, efforts to measure censorship of
COVID-19 information have so far been restricted to certain countries and a
small number of websites. The global extent of blocking of legitimate COVID-19
information is as yet unknown.

In this paper, we present the first global censorship study of websites that
provide potentially factual information about the pandemic. We use two recently
introduced remote censorship measurement techniques, Satellite/Iris (we use just
“Satellite” for briefness) [32,39] and Quack [48] and study the DNS and Appli-
cation layer blocking (respectively) of 1,291 domains related to COVID-19 in
more than 180 countries. Specifically, we aim to answer the following research
questions:

1. What is the share of COVID-related websites blocked?
2. Where are COVID-related websites blocked?
3. What categories of COVID-related websites are blocked?
4. Why are COVID-related websites blocked?

To answer these research questions, we first gather a list of 81 neutral search
terms that yield potentially factual information about the pandemic from Google
Trends [21]. We then perform geo-distributed search engine crawls using three
popular search engines in nine different countries. We collect the top ten web-
sites from each crawl, resulting in a set of 1,291 domains most related to the
pandemic (which we refer to as “COVID-related test list”). We then perform
remote censorship measurements to 29,113 Satellite vantage points and 20,989
Quack vantage points, resulting in a pool of 67 million measurement points. We
make our list of domains and measurement data public for other researchers to
use [49]. We additionally add over 86 million measurements for domains that are
popular [2] and politically sensitive [10], but not strictly related to the pandemic.
This set of domains (which we term “Censorship Measurement test list”) has
been used extensively by censorship studies in the past [43,45] and provides a
point of comparison.

Analyzing patterns in the data, we find that the global blocking of websites
in the COVID-related test list is relatively low—On average, 0.20%–0.34% of the

Lost in Transmission: Investigating Filtering of COVID-19 Websites 419

websites on our COVID-related test list experienced interference compared to
0.70%–1.04% of websites in the Censorship measurement test list. As expected,
we see more blocking in both test lists in countries known for censorship such
as Iran, China, and Kazakhstan. However, more surprisingly, our measurements
show significant blocking of COVID-related websites in many countries with
high Internet freedom scores [11] such as Switzerland (DNS), Croatia (DNS),
and Canada (Application layer). Upon investigation, we find that networks in
these countries employ web filters such as Fortiguard [19], which categorize
many COVID-related websites as containing phishing or other malicious con-
tent, resulting in their unavailability from vantage points in these networks.

We utilize different URL classifying services [7,29,50] and manual investi-
gation to determine whether 46 COVID-related websites blocked by web filters
have harmful phishing or other malicious content. Interestingly, while Fortiguard
classifies 91.30% of the websites as phishing or malicious, our results show that
only 0–36.96% of websites are marked as containing security risks by other ser-
vices, illustrating the wide variance in categorization and, transitively, blocking
policies of web filters. Our manual investigation further suggests that only 2.17%
of websites actually contain harmful and evident security threats.

Our findings show that such ‘benevolent blocking’ may restrict the amount
of factual and, in some cases, essential information available on the Internet.
With that in mind, we advocate for stricter auditing of censorship policies and
for more transparency regarding what is being blocked by groups making use of
these filtering services. Only with such transparency can we ensure that valuable
information is kept open and available to Internet users.

2 Background and Related Work

The COVID-19 Pandemic and the Internet. On March 12, 2020, the World
Health Organization (WHO) officially declared the Coronavirus outbreak as a
pandemic. At the time of writing, more than two million deaths were confirmed
caused by COVID-19 worldwide [53]. Whereas there has been, and there still
is, a lot of variation in how governments respond to the pandemic, most gov-
ernments imposed regional or country-wide shutdowns, banned mass gatherings,
encouraged social distancing, made the wearing of face masks mandatory, and
invested in their health care systems to slow down the spread of the virus [8].

Apart from direct disease control, many authorities also increased their efforts
in controlling (mis)information during this global pandemic [3]. Reports empha-
size that conspiracy theories and disinformation attempts related to COVID-
19 have drastically increased [28]. Several studies show that bots and ordinary
users promote misinformation on social media [6,9,18,41]. As a response, many
authorities enacted policies to counter this so-called “infodemic.” Governments
passed laws to criminalize falsehood related to public health, created special
units to remove disinformation, and delegated this task to social media or private
Internet companies [34,55]. However, there is tentative evidence that legitimate
information on the pandemic is also blocked. For instance, reports by the Cit-
izen Lab and the New York Times show that regime-criticizing information on

420 A. Vyas et al.

the pandemic is actively censored in Chinese social media [12,38,55]. A report
by OONI shows that the Myanmar government has been ordering long Inter-
net shutdowns and blocking COVID-19 related content in a non-transparent
manner [24]. The pandemic offers an opportunity to intensify online censor-
ship efforts and undemocratic policies [22,25]. However, these case studies only
highlight specific cases of censorship in a few countries. To our knowledge, our
study is the first that systematically investigates the share of online blocking of
COVID-19 related websites worldwide.

Censorship Studies. Censorship mechanisms vary across countries and net-
works, and therefore many censorship measurement techniques have been pro-
posed to measure and quantify what is being blocked and how the blocking is
occurring. On a technical level, network censorship is defined as the deliberate
disruption or blocking of certain types of Internet communication by a network
adversary. At the coarsest level, an adversary may prevent access to Internet
connectivity completely for a user population, a phenomenon termed as Internet
shutdowns [13,14]. These are out of the scope of our study. Rather, we investigate
Internet censorship where access to specific websites is blocked. There are com-
monly three stages of a network connection that could be blocked. First, a censor
may restrict access during the TCP handshake stage of an Internet connection
between a client and server, based on the server’s IP address. This method is
not widely used because of the emergence of Content Delivery Networks (CDNs),
but is still used to block access to circumvention proxies [1]. Second, a censor
may inject a DNS query response with a non-routable IP, an IP that leads to
a blockpage, or may not return an IP at all [4,32]. Finally, a censor may also
inspect specific HTTP and TLS packets and on observing a particular keyword,
reset the connection, inject blockpages or drop packets [44,48]. In this paper, we
focus on DNS poisoning and application-layer blocking as they are two common
methods of censorship implementation.

Censorship measurements can be conducted from within countries of Interest
(“Direct Measurement”) or remotely from outside the country (“Remote Mea-
surement”). Direct Measurement uses volunteer devices or accessible vantage
points inside countries to send network packets to possibly blocked hosts. There
has been a plethora of studies that have directly measured censorship within a
specific country [5,17,26,45,51,54,56]. This kind of measurement is highly useful
for in-depth analysis of censorship, but due to scale, coverage, continuity, and
safety limitations is not ideal for widespread global measurement [43].

More recently, Remote Measurement techniques that can measure censorship
without accessible vantage points or volunteers have enabled global measure-
ments of high scale and coverage [31,32,39,42–44,48]. These techniques use side
channels in existing Internet protocols for interacting with remote systems, and
infer whether the connection is disrupted from their responses. In this paper, we
use two types of remote measurement techniques, Quack and Satellite.

– Satellite Satellite sends DNS requests from a single measurement machine
towards many infrastructural Open DNS resolvers and control resolvers in

Lost in Transmission: Investigating Filtering of COVID-19 Websites 421

Fig. 1. Flowchart of methodology steps

different countries [32,39]. Satellite then compares the responses from the
Open DNS resolvers and control resolvers using a set of 5 heuristics to deter-
mine the presence of network interference [32].

– Quack Quack uses infrastructural servers that have the TCP Echo function-
ality enabled on Port 7 as vantage points to measure censorship of specific
keywords [48]. Quack uses a retry-based mechanism to send HTTP-lookalike
requests containing both sensitive and benign payloads to the Echo server
vantage point. In the absence of any censorship, both types of requests would
be reflected back to the sender as is. However, in case the sensitive keyword
is censored (through injecting a blockpage, reset, or forcing the connection
to timeout), the expected response would not be received. Quack also uses
Echo’s sibling protocol, Discard, to determine directionality of blocking. In
the case of Discard, the remote vantage point is expected to drop all of the
packets, but a censor acting on incoming packets may choose to inject a reset
or a blockpage.

3 Methodology

To collect data on the blocking of potentially important information related
to the COVID-19 pandemic, we assemble a list of search keywords that yield
factual information related to COVID-19 and perform search engine crawls to
gather popular domains. We then test reachability to these domains using remote
censorship measurement techniques. Figure 1 provides a flowchart summarizing
the data collection methodology.

Selection of Search Engine Crawl Keywords. We first use Google Trends
to assemble a list of 81 different search terms meant to yield factual informa-
tion on COVID-19 in search engine results [21]. Google Trends provides data
about the most common Internet searches related to the pandemic performed
by Google Search users. We note that most search terms provided by Google
consisted of the word ‘coronavirus’ followed by another word or the name of a
country, such as ‘coronavirus cases’ or ‘coronavirus usa.’ We add 26 such key-
words to our list, followed by the same keywords with the word ‘coronavirus’
replaced with ‘covid’ or ‘covid-19.’ Finally, four general terms (‘coronavirus’,

422 A. Vyas et al.

Table 1. Distribution of vantage points used for measurement (CR: Covid-related test
list, CM: Censorship Measurement test list)

Technique # VPs # Countries # Autonomous
Systems (ASes)

Median # of
ASes Per
Country

CR CM CR CM CR CM CR CM

Satellite 29,113 28,415 165 166 4,073 3,920 5 5

Quack Echo 20,799 10,607 151 125 2,089 1,350 3.5 3

Quack Discard 7,730 7,993 112 112 1,165 1,184 3 3

‘corona virus’, ‘covid’, and ‘covid-19’) complete the list. We utilize this list of
frequently-searched keywords as they are more likely to yield factual and impor-
tant information on COVID-19 that should be available to anyone around the
world.

Forming the Test List. Using the list of 81 search terms (shown in Appendix
1), we perform search engine crawls to gather the URLs of websites containing
information on COVID-19. To ensure that our list of URLs accurately reflect
genuine websites people across the globe would access for COVID-19 information,
we execute this crawl on nine different geo-distributed vantage points located in
England, France, Germany, Ireland, Canada, Japan, South Korea, Singapore,
and Australia. Using Selenium [40], we query Google, Bing, and DuckDuckGo
with each of our search terms, recording the URLs of the top ten websites.

We take the union of the list of URLs recorded, which results in a list of
4,155 unique URLs hosted on 1,291 live domains. We use these 1,291 domains,
termed as the COVID-related test list as input to our measurements testing for
blocking. Since these websites form top search results for the different countries,
a censor aiming to block factual information on COVID-19 would likely block
these websites. These websites fall into 43 categories according to categorization
by Fortiguard’s URL filter service [19]. The most common categories are News
and Media, Government, and Health.

In addition to these 1,291 COVID-related domains, we also create an addi-
tional Censorship Measurement test list composed of 2,128 sensitive and popular
domains from Citizen Lab [10] and Alexa [2] that are regularly tested by other
censorship measurement platforms [43,45]. The overlap between the COVID-
related test list and the Censorship Measurement test list is very small, con-
sisting of only 70 domains, and as such, the two test lists provide a point of
comparison.

Censorship Measurement. We use Quack and Satellite to determine whether
the domains in the test input lists are being filtered. Measurements using these
techniques were performed for the COVID-related test list and the Censorship

Lost in Transmission: Investigating Filtering of COVID-19 Websites 423

Measurement test list over a period of two weeks, from June 12, 2020, to June
26, 2020, from different machines in North America. For Quack, we performed
both Echo and Discard measurements. The number and distribution of vantage
points used by each technique for measurements (of the COVID-related and
Censorship Measurement test lists) is shown in Table 1.

Ethics. We follow all the recommendations made in previous studies that have
performed remote censorship measurements [31,32,35,43,44,48] and have only
used “infrastructural” vantage points. Specifically, we only use nameservers for
DNS measurements [32] and servers and routers for Quack measurements in
countries with strict Internet control [48]. We also follow all the Internet mea-
surement recommendations made in the line of work using Internet-wide scans
such as ZMap [16]. We rate limit our measurements, close all connections, and
host a web server on our measurement machines which provides details of our
research and offers administrators the option to opt-out.

Data Analysis. Overall, we collect around 153 million censorship measurements
using our list of vantage points and the two test lists. We perform around 67
million measurements for our COVID-related test list. We augment our mea-
surements with country information from Maxmind [27] and AS information
combined from Maxmind [27], Routeviews [37], and Censys [15]. We perform
measurements in 186 countries and 5,081 Autonomous Systems (ASes).

Our measurement techniques perform multiple probes during each test, and
the test is marked as interfered only if all the probes fail. This helps to prevent
false positives from momentary glitches in the network. In addition, we manually
remove false positives originating from rogue vantage point responses and use
blockpage and false positive fingerprints recorded in previous studies [43,44] to
label our data and avoid false inferences.

We next calculate the average blocking rate across each of the countries
covered by our measurements. More precisely, we calculated the average blocking
rate in a country cc with n vantage points as:

Avg. Blocking Ratecc =

∑n
i=1 % domains blockedvpi

n
(1)

We use this quantitative value in our results. For our country-level aggregates
to be more accurate, we only report aggregate results for countries with 10 or
more vantage points in our results.

4 Results

The worldwide measurement of COVID-19-related websites allows us to answer
our research questions outlined in the introduction.

4.1 What Is the Share of COVID-related Websites Blocked?

On a positive note, the global average blocking rate of COVID-19 related web-
sites seems to be relatively low. On average, only 0.20%–0.34% (depending on the

424 A. Vyas et al.

Table 2. Top five countries having the highest average blocking rate across the three
sets of domains (CC: Covid-containing, CR: Covid-related, CM: Censorship measure-
ment) in Satellite, Quack Echo, and Quack Discard

Satellite Quack Echo Quack Discard

CC CR CM CC CR CM CC CR CM

CH

(4.32%)

CN

(10.74%)

CN

(15.71%)

EC

(2.50%)

IR

(8.98%)

IR

(29.50%)

CN

(1.52%)

IR

(7.77%)

IR

(33.27%)

HR

(2.39%)

IR

(1.76%)

IR

(14.95%)

CN

(1.17%)

CN

(4.30%)

CN

(11.81%)

CA

(1.42%)

CN

(4.45%)

CN

(11.44%)

KZ

(2.23%)

KZ

(0.57%)

IQ

(2.96%)

IR

(1.09%)

EC

(2.29%)

BD

(2.94%)

TW

(0.78%)

VN

(0.37%)

KZ

(1.82%)

AU
(1.55%)

SG
(0.56%)

ID
(2.46%)

CA
(0.82%)

SI
(1.25%)

PK
(2.48%)

IR
(0.48%)

EG
(0.28%)

TR
(1.57%)

DK

(1.26%)

CH

(0.52%)

AF

(2.10%)

BD

(0.79%)

TN

(0.71%)

TN

(1.74%)

RO

(0.31%)

RU

(0.19%)

EG

(0.93%)

protocol tested) of websites experience some sort of interference. This is lower
compared to an average blocking rate of 0.70%–1.04% per country from the
Censorship Measurement test list of politically sensitive and popular domains.
Nevertheless, our measurements still find many COVID-related websites filtered
in networks in a considerable number of countries. Perhaps the most surprising
finding is that several countries previously not known for Internet censorship
observe the highest blocking rates for these websites.

To showcase this, we create an additional set of domains from the COVID-
related test set that consists exclusively of the domains that have the phrases
“covid”, “corona” or “korona” in them. These domains likely became live after
the pandemic started with the purpose to provide users with information related
to COVID-19. We call this list COVID-containing and use it as an indicator of
blocking specifically related to the pandemic. There are 1,291 distinct domains in
our COVID-related set, out of which 152 are in our COVID-containing set. These
websites appear in the top search engine results for common COVID-19 queries,
and as such may provide useful information to Internet users on the pandemic.

Table 2 shows the top 5 countries in which we observe the highest average block-
ing rates for these three sets of domains in Satellite and Quack. Whereas we observe
the highest average blocking rate in China and Iran in most test lists, countries
previously not known for Internet censorship (Switzerland, Croatia, and Canada)
appear in the top 5 in the COVID-containing and COVID-related test lists.

To investigate this finding more systematically, we correlate our measure-
ments to a qualitative Internet censorship measure quantified by “Varieties of
Democracies” [11]. This measure is judged for 202 countries by several country
experts. Figure 2 illustrates the results. The labeled countries exhibit blocking
that is higher than 90% of blocking observed in all countries. A simple linear
regression shows a positive correlation between the level of Internet censorship
and the average blocking rate in most test sets. Nevertheless, in particular for
the COVID-containing list, we find many countries with low censorship scores
from “Varieties of Democracies” that experience relatively high website blocking
rates in our tests.

Lost in Transmission: Investigating Filtering of COVID-19 Websites 425

Switzerland

Croatia

KazakhstanAustralia Denmark

Czechia Iran

Serbia

Belarus

0

1

2

3

4

−2−101

Av
g.

 b
lo

ck
in

g
ra

te
China

Iran

Kazakhstan

Singapore

Switzerland

Croatia

Denmark

Australia

New Zealand

0

3

6

9

−2−101

ChinaIran

Iraq

Indonesia

Afghanistan

Colombia

Russia
Norway

Denmark

0

5

10

15

−2−101

Ecuador

ChinaIran

Canada Bangladesh

Greece

Tunisia

0.0

0.5

1.0

1.5

2.0

2.5

−2−101
Internet Censorship 2019 (low − high)

Av
g.

 b
lo

ck
in

g
ra

te

Iran

China

EcuadorSlovenia

Tunisia Bolivia Ukraine

0.0

2.5

5.0

7.5

−2−101
Internet Censorship 2019 (low − high)

Iran

China

Bangladesh

Pakistan

Tunisia Turkey
0

10

20

30

−2−101
Internet Censorship 2019 (low − high)

Fig. 2. Correlation between qualitatively measured Internet censorship level (2019) and
blocking with Satellite (top) and Quack Echo (bottom) for the Covid-containing (left),
Covid-related (middle) and Censorship Measurement (right) test sets—Note: X-axes
are reversed. The blue lines display the linear regression for each measurement and
test list. Correlation coefficients are β = .02 (p=.76) [Satellite, CC], β = −.33/−.04
(p = .0/.04) [Satellite, CR], β = −.76/−.04 (p = .00/.44) [Satellite, CM], β = −.07
(p=.09) [Echo, CC], β = −.38/−.17 (p = .00/.01) [Echo, CR], β = −1.55/−1.25 (p =
.00/.01) [Echo, CM]. Negative coefficients reflect a higher average blocking rate when a
country is qualitatively rated as more restrictive. The second values, if applicable, show
the coefficients after removing influential observations with a Cook’s distance above 1.
Discard measurements are comparable to the Echo measurements.

4.2 Where Are COVID-related Websites Blocked?

Based on the results in Table 2 and Fig. 2, we analyze the blocking of COVID-
related domains for certain countries in detail. We first explore two countries,
Switzerland and Croatia. Both countries are not typically known for online cen-
sorship but many DNS probes containing websites from our COVID-containing
and COVID-related domains appear to be filtered in networks that are in these
countries. Second, we look at Canada as another unexpected country for which
we found high average blocking rates for the COVID-containing test list using
Quack measurements. Finally, we summarize results for some of the other coun-
tries in which we found high censorship: China, Iran, and Kazakhstan.

Switzerland. According to “Varieties of Democracies” [11], Switzerland can
be considered one of the freest countries when it comes to Internet freedom.
However, our DNS measurements in Switzerland detect a high average blocking
rate (4.32%) in particular for keywords in our COVID-containing test list.

426 A. Vyas et al.

Fig. 3. CDF showing blocking of COVID-related, COVID-containing, and Censorship
Measurement domains in Switzerland—The AS numbers of the vantage points experi-
encing filtering of COVID-containing domains are annotated.

Fig. 4. Switzerland blockpages—The blockpages in the top left and right are ISP block-
pages, while the blockpage in the bottom left is a known blockpage of the web filter
Fortinet [44].

How is the Blocking Spread Out? We performed measurements to 922 Satellite
vantage points spanning 34 ASes in Switzerland. As shown in Fig. 3, the number
of domains blocked differs by vantage point, even within the same AS. Six out
of 34 ASes have at least one vantage point observing blocking of keywords from
our COVID-related and COVID-containing test lists. The AS with the largest
amount of vantage points, AS3303 (846 vantage points), observes high blocking
of content related to the pandemic. 82 out of the 152 domains in the COVID-
containing test list are filtered in our probes to at least one vantage point in this
AS. 599 vantage points in AS3303 observe blocking of at least one keyword from
the COVID-related list. This AS is the second largest in Switzerland according
to Censys [15].

What is the Censored Response? We find that 601 out of the 607 (99%) vantage
points experiencing blocking in Switzerland observed five distinct IP addresses
for DNS resolutions of filtered domains, all of which hosted a visible blockpage.
Ten vantage points in AS3303 responded with two IP addresses hosting the

Lost in Transmission: Investigating Filtering of COVID-19 Websites 427

Table 3. Top 10 filtered domains in Switzerland (DNS)

Domain Category % of VPs Domain Category % of VPs

www.covid-19.uk.com Phishing 66.44 covid-19-stats.info Phishing 65.74

coronavirus-realtime.com Malicious 66.40 coronavirus.zone Malicious 65.41

covid19graph.work Phishing 66.36 coronavirus-map.com Phishing 65.36

www.covid19ireland.com Phishing 66.22 coronastats.net Malicious 63.60

www.covid19maps.info Phishing 65.83 coronavirusfrance.org Phishing 1.58

blockpage shown in Fig. 4 (top left) for 74 domains from our COVID-containing
list. Interestingly, only domains from the COVID-containing list are resolved
to these IPs. Two vantage points in AS3303 and one in AS6830 observed DNS
resolutions to an IP address hosting the blockpage shown in Fig. 4 (bottom left),
which has previously been identified as one of the blockpages of the web filter
Fortinet [44]. The other two IP addresses hosting the blockpage shown in Fig. 4
(right) are observed for nine domains from the COVID-containing list, but these
are observed in a large number of vantage points (481 & 108).

What are the Websites that are Blocked? We explore the top websites from
our COVID-related test list that are blocked in our probes to DNS resolvers in
Switzerland. As shown in Table 3, most of the large-scale blocking in Switzerland
seems to be for protecting users from Phishing or Malicious websites (as catego-
rized by Fortiguard’s Web Filter service [19]). All of the top 10 websites also fall
in our COVID-containing set, primarily contain COVID-19 specific information,
and are all categorized as websites containing security threats.

Croatia. Croatia has the second-highest average blocking of COVID-containing
domains (2.39%) in Satellite measurements. Similar to Switzerland, Croatia is
generally considered as free in the online space, and hence such high levels of
filtering of COVID-19 specific content deserve scrutiny. We perform measure-
ments to 12 vantage points in Croatia, spread across six ASes. The vantage point
that observes the highest rate of blocking for both COVID-containing (28.66%)
and COVID-related (3.49%) domains is located in AS5391 and observes redi-
rection to the Fortinet blockpage shown in Fig. 4 (bottom left) when tested
with 43 domains from the COVID-containing test list. One other domain from
the COVID-related test list is also blocked (droneinfini.fr). Similar to our
observation in Switzerland, we observe high blocking of Phishing and Malicious
websites in Croatia.

Canada. We find significant amounts of application layer keyword filtering in
Canada. On average, we see 0.82% and 1.42% blocking of COVID-containing
domains in Quack Echo and Quack Discard measurements respectively.

How is the Blocking Spread Out? Quack collected measurements from 201 Echo
vantage points distributed across 52 different ASes and 109 Discard vantage

428 A. Vyas et al.

Fig. 5. Blocking distribution in Quack Echo measurements in different ASes in
Canada—The left bar shows the average blocking rate of the COVID-containing list
and the right bar shows the average blocking rate of the COVID-related list.

points in 34 ASes in Canada. Thirteen Echo vantage points observe blocking of
at least one domain from the COVID-related test list, and twelve of these also
observe blocking of at least one domain from the COVID-containing test list.
Figure 5 shows the amount of blocking across different ASes in our Echo mea-
surements. AS376 observes the highest amount of COVID-containing blocking.
Most of the ASes show considerable blocking of both COVID-containing and
COVID-related domains. Six Discard vantage points observe blocking of at least
one domain from the COVID-related and COVID-containing test lists. In our
Discard measurements, we observe similar rates of blocking as in Fig. 5 in three
ASes: AS376, AS812, and AS17001.

What is the Censored Response? Figure 5 also shows the type of blocking that is
performed in the different ASes. While a majority of ASes in Echo measurements
inject reset packets, probes to vantage points in AS376 experience connection
timeouts, and the vantage point in AS17001 observes a blockpage. The blockpage
explicitly mentions that the content has been blocked because it might contain
malicious content. We see similar type of blocking in Discard for the ASes per-
forming blocking. Thus, users in Canada observe different censored responses
based on the network they connect to.

What Websites are Blocked? Similar to Switzerland and Croatia, a significant
proportion of the top blocked websites in Canada may be targeted because they
are being perceived to be phishing or malicious (See Table 4). All of the top
five blocked domains in Canada (in both Echo and Discard measurements) are
COVID-containing domains. Analyzing measurements in the AS that observes
the highest amount of COVID-containing blocking, AS376 (RISQ-AS), which
consists of 4 vantage points, we see that all of the 48 distinct domains filtered
are COVID-containing domains. This AS observes the same blocking pattern in
Discard measurements as well. The five distinct domains AS17001 observes to
be blocked also belong to our COVID-containing test-list.

Lost in Transmission: Investigating Filtering of COVID-19 Websites 429

Table 4. Top 5 blocked domains in Canada (Application Layer)

Quack Echo Quack Discard

domain category % of VPs domain category % of VPs

covid-19.uk.com Phishing 3.93 covid19stats.global Phishing 5.50

covid19stats.global Phishing 2.86 coronastats.net Malicious 4.63

covid-19incanada.com Business 2.84 covid-19canada.com Business 4.63

covid19uk.live Reference 2.82 covid-19ireland.com Not Rated 4.63

www.covid19-maghreb.live Phishing 2.81 coronavirus-realtime.com Malicious 4.63

Other Countries. Countries which typically experience high levels of Internet
censorship such as China and Iran also observe high blocking of both COVID-
containing and COVID-related domains (see Table 2). While blocking in these
countries may not be strictly related to or caused by the pandemic, it may still
hinder users trying to obtain valuable news about the pandemic.

Iran. We performed Quack measurements to 39 Echo vantage points spread
across 17 ASes and 11 Discard vantage points spread across 9 ASes in Iran. In
both our Echo and Discard measurements, we observe high blocking of popular
news websites (e.g., www.huffpost.com) and social networking websites (e.g.,
www.facebook.com). In most cases, the blocked response is either a well-known
blockpage [44] or a connection timeout. We also performed DNS measurements
to 395 vantage points across 61 ASes in Iran, and observe similarly high blocking
of popular websites in the COVID-related test list. Some domains in the COVID-
containing test list are also blocked (e.g., coronavirusireland.ie), indicating
filtering policies against websites with pandemic information.

China. Our measurements to 1,417 Echo vantage points (in 70 ASes) and 337
Discard vantage points (in 33 ASes) in China observe large-scale blocking of
popular news and media websites and Google services. In China, the majority
of blocked responses are connection resets. DNS measurements to 4,279 Satellite
vantage points in 60 ASes also show similarly high blocking of COVID-related
websites containing news. While the blocking of COVID-containing domains
forms a smaller proportion of the blocking of COVID-related domains, some
networks block COVID-specific websites such as covid19japan.com.

Kazakhstan and Ecuador. We also observe significant blocking of both COVID-
containing (2.23%) and COVID-related (0.57%) domains in DNS measurements
to Kazakhstan. In this case, domains are resolved to state or Internet Service
Provider (ISP) blockpages. In Ecuador, we observe significant blocking of both
sets of domains using reset injection in application layer measurements (CC
2.5%, CR 2.29%).

4.3 What Categories of COVID-related Websites Are Blocked?

Figure 6 shows the distribution of blocking for different countries in five cat-
egories: Business, Government and Legal Organizations, Health and Wellness,

430 A. Vyas et al.

Fig. 6. Blocking distribution across categories—Left: Satellite, right: Quack Echo. The
categories were obtained using FortiGuard. Each point on the graph represents a coun-
try and the top blocking countries for certain categories have been labeled.

News and Media, and Phishing. As observed in the previous section, Phishing
websites observe significant amount of blocking, in both DNS and Application-
layer measurements. Since 24.3% of the COVID-containing test list is categorized
as Phishing, this blocking appears to be considerably new (since the pandemic
started) and COVID-specific. Many news and government websites, which may
contain important COVID-19 information, are blocked in our measurements to
countries which are known to perform Internet censorship.

4.4 Do COVID-related Websites Perform Phishing?

Throughout our findings, we observe a high blocking rate of many COVID-
containing and COVID-related websites that are characterized by the Fortiguard
classification service as phishing. Particularly in Switzerland and Croatia, we
find the use of the Fortinet web filter (see Fig. 4), which also uses the Fortiguard
classification service for blocking dangerous websites.

Given the increased prevalence of phishing during the pandemic [30], such
blocking is not surprising. However, it is important that websites containing fac-
tual information about COVID-19 without any security threats are not blocked
by mistake. To better understand whether the 46 websites blocked by the
Fortinet web filter in Switzerland and Croatia are actually security threats, we
compare it with three freely available URL classifying services: Checkphish [7]
(an online website that checks for signs of phishing in an URL), Palo Alto Net-
works [29] and WatchGuard [50]; two popular web filters [44].

We report our detailed results in Appendix 2. We observe substantial differ-
ences in the categorization. Fortiguard classifies 42 out of the 46 websites tested
as security risks with the tags “Phishing” or “Malicious”. Palo Alto networks
only classifies eight of the 46 as “High risk,” “Malware” or “Medium risk.”
Watchguard classifies 17 of the 46 domains as “Compromised”, “Suspicious”,
“Elevated Exposure” or “Malicious.” Six websites are considered risky by both
WatchGuard and Palo Alto Networks. Checkphish did not classify any websites
as Phishing.

We also manually determine whether each of these websites contain evi-
dent security risks. Three of the authors individually visited each of these web-
sites, categorized them, and reached a consensus. Other than coronavirus

Lost in Transmission: Investigating Filtering of COVID-19 Websites 431

-monitor.ru, which has an insecure looking popup box where card informa-
tion can be entered, none of the other websites seem to contain visible security
threats. Note that the manual classification does not consider the legitimacy of
the data. However, many of the websites list their sources (some common ones
are Johns Hopkins University dashboard [23] and government websites) and also
warn users that there could be inaccuracies in the data. These findings highlight
an important issue with web filter-based censorship—the lack of proper auditing
and incorrect categorizations of websites may lead to high amounts of unneces-
sary blocking for thousands of users, given that these web filters are often used
by organizations, ISPs, and governments for blocking dangerous websites [35,44].

5 Discussion

Implications and Future Work. Due to the COVID-19 “infodemic”, there has
been a significant shift in the priorities of many countries throughout the world—
the challenge at hand has been achieving a balance between allowing citizens to
access important information while also protecting them from harmful misinfor-
mation. Our study shows that the large-scale use of URL filtering services may
be inadvertently tipping the scale in the wrong direction. While URL classifying
and filtering services are known to contain mistakes [33,47], our results indicate
that highly searched (and potentially harmless) domains are being blocked in
several countries due to these errors. There is a serious lack of transparency sur-
rounding the decisions made by filters and large discrepancies from filter to filter,
a concern also echoed by recent work [47]. These issues make detailed auditing
of such services necessary. We advocate for further research into the mechanics
of filters and their categorization techniques, and for third-parties to monitor
and track filtering policies that affect a large number of users, such as ISP and
country-level deployments [44].

In cases where COVID-19 related censorship is more intentional, countries
could be using genuine reasons supporting the need for information control dur-
ing the pandemic as a facade for restricting information and continuing censor-
ship in the long run for unrelated reasons [36,52]. Future work should track the
overflow of censorship policies enacted during the pandemic over time to prevent
unnecessary loss of access. Moreover, more in-depth analyses of the contents of
a website will help to determine the reason behind filtering. A recent report
[55] highlights that content critical of China’s handling of COVID-19 have been
reported to be taken down in China, for instance.

Finally, while this study focuses on the filtering of websites related to popular
searches of factual COVID-19 information, there is a possibility that misinfor-
mation related to COVID-19 is blocked more restrictively. Future work can use
our measurement tools to monitor websites that are more likely to contain mis-
information. In addition, we do not account for website filtering performed by
search engines themselves; whereas top factual results are rarely suppressed by
search engines, future work studying misinformation needs to consider whether

432 A. Vyas et al.

search engine censorship is a significant contributor to information unavailabil-
ity. Search results obtained from other search engines such as Yandex or Baidu
could also be incorporated in test-lists to allow for more comprehensive findings.

Limitations. When assembling the input lists, we used results from search
crawls conducted in nine geo-distributed countries. Our censorship measure-
ments included several countries that were not included in this list and thus, it
is possible that there are resources local to these countries that are being filtered.
Moreover, by only using the top ten results from each search, we potentially miss
measuring the filtering of less popular websites, which we leave for future work.

Even though we run measurements from a large number of vantage points
around the globe, our vantage points do not have the granularity required to
detect all blocking. Moreover, only a handful of vantage points are available in
some countries, and hence our observations may be limited to a specific network
or region. Quack sends measurements to port 7 and port 9 and therefore may
miss censorship that is only applied to traffic on port 80 or port 443. In addition,
the Quack Discard technique cannot detect censorship that only affects outbound
traffic. However, studies have shown that such censorship is difficult to perform,
so it is unlikely to substantially alter our test results [48]. There is also the
possibility that some censors apply mechanisms to evade our detection, although
we are not aware of any such measures to-date. Finally, the Maxmind geolocation
database we used is known to have inaccuracies [20].

6 Conclusion

In this paper, we have explored the global extent of censorship related to the
pandemic using a test list of popular COVID-19 websites and remote censorship
measurement techniques. We find generally low levels of blocking related to the
pandemic. However, we observe that commercial URL filtering services deployed
in countries such as Switzerland and Canada mistakenly consider many COVID-
19-related websites as containing phishing threats and block them. When censors
engage in blocking of this kind, be it well-intentioned or purely suppressive, it has
the potential to cut off this vital flow of information. As an online community,
we must advocate for stricter auditing of filtering practices for ensuring that
essential information is available to every person that needs it.

Acknowledgements. The authors thank the shepherd Philipp Winter and the
reviewers for their constructive feedback. We also thank Prerana Shenoy for her help
with data analysis. This work was supported in part by research credits from Google.

Appendix 1

Classifier and Manual Categorizations. Table 5 shows the results of the
categorization of the 46 domains blocked by the Fortinet filter in Switzerland
and Croatia using different categorization tools.

Lost in Transmission: Investigating Filtering of COVID-19 Websites 433

Table 5. URL Classifier and Manual Categories—NTE stands for Navigation Time
Exceeded, E stands for error and NC stands for not categorized.

Website FortiGuard CP PAN WatchGuard Manual

canadacovid.ca Phishing no Low NC no

co19stats.com NC no Low NC no

coronastats.net Malicious no Malware Malicious Web Sites no

coronavictimes.net Phishing no Low Elevated Exposure no

coronavirus-global.com Phishing no Low Sports no

coronavirus-map.com Phishing NTE High Malicious no

coronavirus-map.org Phishing no Low Health no

coronavirus-monitor.com Phishing no Low Business and Economy no

coronavirus-monitor.ru Malicious NTE Medium Health yes

coronavirus-realtime.com Malicious NTE Malware Compromised no

coronavirus.zone Malicious no Malware Malicious no

coronavirusfrance.org Phishing no Low Elevated Exposure no

coronavirusireland.ie Phishing no Low News and Media no

coronavirusmap.co.uk Phishing no Low NC no

coronavirusstatistics.org Phishing NTE Low NC no

coronavirusupdate.me Phishing no Low Shopping no

coronavirususamap.com Phishing no Low NC no

covid-19-fr.fr Phishing no Low Health no

covid-19-stats.info Phishing no Malware Malicious no

covid-19.uk.com Phishing no Low NC no

covid-19ireland.com NC E Low Elevated Exposure no

covid-japan.com Phishing no Low News and Media no

covid-live.net Phishing no Low Elevated Exposure no

covid-stats.net NC no Low Elevated Exposure no

covid19-uk.co.uk Phishing no Low Elevated Exposure no

covid19dashboard.live Phishing no Low NC no

covid19graph.work Phishing no Low Malicious Web Sites no

covid19live.org Phishing no Low Elevated Exposure no

covid19statistics.org Phishing no Low Government no

covid19stats.global Phishing no High Malicious no

covid19video.com Phishing E Low NC no

droneinfini.fr Phishing no Low NC no

koronavirus-today.ru Phishing no Low NC no

map-covid-19.com Phishing NTE Low Reference Materials no

ru.coronavirus-global.com Phishing no Low Sports no

wa-daily-covid-19.com Phishing no Low Elevated Exposure no

worldcoronavirus.org Phishing no Low Elevated Exposure no

worldometers.cc NC E Low Suspicious content no

www.coronalive.info Phishing NTE Low NC no

www.coronavictimes.fr Phishing no Low Business and Economy no

www.coronavirus-india.net Phishing no Low NC no

www.covid19-maghreb.live Phishing no Low NC no

www.covid19ireland.com Phishing no Malware Government no

www.covid19maps.info Phishing NTE Low NC no

www.covidstats.com Phishing no Low NC no

www.vaccin-coronavirus.fr Phishing no Low Health no

434 A. Vyas et al.

Appendix 2

Search Engine Crawl Keywords. Table 6 shows the list of prefix and suffix
combinations used to construct the keywords used for our search engine crawls.

Table 6. Keyword permutations used for search engine crawls—Three terms (corona
virus, covid virus, and covid-19 virus) are excluded from the table.

Prefix Suffix

coronavirus, covid, covid-19 usa, ireland, uk, britain, india, canada, singapore,
korea, japan, australia, germany, france, update,
news, worldometer, deaths, victims, map, live,
infections, stats, toll, death toll, vaccine, dead,
<empty>

References

1. Afroz, S., Fifield, D.: Timeline of Tor censorship (2007). http://www1.icsi.berkeley.
edu/∼sadia/tor timeline.pdf

2. Alexa Internet, Inc., Alexa Top 1,000,000 Sites. http://s3.amazonaws.com/alexa-
static/top-1m.csv.zip

3. Allcott, H., Gentzkow, M., Yu, C.: Trends in the diffusion of misinformation on
social media. Research & Politics (2019)

4. Anonymous. Towards a comprehensive picture of the Great Firewall’s DNS cen-
sorship. In: Free and Open Communications on the Internet (FOCI) (2014)

5. Aryan, S., Aryan, H., Halderman, J.A.: Internet censorship in Iran: a first look. In:
Free and Open Communications on the Internet (FOCI) (2013)

6. Brennen, J.S., Simon, F., Howard, P.N., Nielsen, R.K.: Types, sources, and claims
of covid-19 misinformation. Reuters Institute (2020)

7. CheckPhish: Url Scanner to Detect Phishing in Real-time—CheckPhish. https://
checkphish.ai/

8. Cheng, C., Barceló, J., Hartnett, A.S., Kubinec, R., Messerschmidt, L.: Covid-19
government response event dataset. Nature Hum. Behav. 4, 756–768 (2020)

9. Cinelli, M., et al.: The covid-19 social media infodemic. arXiv preprint http://
arxiv.org/abs/2003.05004 (2020)

10. Citizen Lab. Block test list. https://github.com/citizenlab/test-lists
11. Coppedge, M., et al.: V-dem codebook v. 10 (2020). https://www.v-dem.

net/media/filer public/28/14/28140582-43d6-4940-948f-a2df84a31893/v-dem
codebook v10.pdf

12. Crete-Nishihata, M., Dalek, J., Knockel, J., Lawford, N., Wesley, C., Zhou, M.:
Censored contagion II: a timeline of information control on Chinese social media
during COVID-19 (2020). https://citizenlab.ca/2020/08/censored-contagion-ii-a-
timeline-of-information-control-on-chinese-social-media-during-covid-19/

13. Dahir, A.L.: Internet shutdowns are costing African governments more than
we thought. https://qz.com/1089749/internet-shutdowns-are-increasingly-taking-
a-toll-on-africas-economies/

14. Dainotti, A., et al.: Analysis of country-wide internet outages caused by censorship.
In: ACM Internet Measurement Conference (IMC) (2011)

http://www1.icsi.berkeley.edu/~sadia/tor_timeline.pdf
http://www1.icsi.berkeley.edu/~sadia/tor_timeline.pdf
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://checkphish.ai/
https://checkphish.ai/
http://arxiv.org/abs/2003.05004
http://arxiv.org/abs/2003.05004
https://github.com/citizenlab/test-lists
https://www.v-dem.net/media/filer_public/28/14/28140582-43d6-4940-948f-a2df84a31893/v-dem_codebook_v10.pdf
https://www.v-dem.net/media/filer_public/28/14/28140582-43d6-4940-948f-a2df84a31893/v-dem_codebook_v10.pdf
https://www.v-dem.net/media/filer_public/28/14/28140582-43d6-4940-948f-a2df84a31893/v-dem_codebook_v10.pdf
https://citizenlab.ca/2020/08/censored-contagion-ii-a-timeline-of-information-control-on-chinese-social-media-during-covid-19/
https://citizenlab.ca/2020/08/censored-contagion-ii-a-timeline-of-information-control-on-chinese-social-media-during-covid-19/
https://qz.com/1089749/internet-shutdowns-are-increasingly-taking-a-toll-on-africas-economies/
https://qz.com/1089749/internet-shutdowns-are-increasingly-taking-a-toll-on-africas-economies/

Lost in Transmission: Investigating Filtering of COVID-19 Websites 435

15. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search
engine backed by Internet-wide scanning. In: Proceedings of the 2015 ACM
SIGSAC Conference on Computer and Communications Security (2015)

16. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: USENIX Security Symposium (2013)

17. Ensafi, R., Winter, P., Mueen, A., Crandall, J.R.: Analyzing the great firewall of
China over space and time. In: Proceedings on Privacy Enhancing Technologies
(PETS) (2015)

18. Ferrara, E.: What types of COVID-19 conspiracies are populated by twitter bots?
First Monday (2020)

19. FortiNet: Fortiguard labs web filter. https://fortiguard.com/webfilter
20. Gharaibeh, M., Shah, A., Huffaker, B., Zhang, H., Ensafi, R., Papadopoulos, C.:

A look at infrastructure geolocation in public and commercial databases. In: ACM
Internet Measurement Conference (IMC) (2017)

21. Coronavirus search trends - google trends. https://trends.google.com/trends/
story/US cu 4Rjdh3ABAABMHM en

22. Jerreat, J.: Coronavirus the new scapegoat for media censorship, rights
groups say (2020). https://www.voanews.com/press-freedom/coronavirus-new-
scapegoat-media-censorship-rights-groups-say

23. Johns Hopkins University: Coronavirus Resource Center. Covid-19 dashboard by
the center for systems science and engineering (csse) at johns hopkins university
(jhu). https://coronavirus.jhu.edu/map.html

24. Kyaw, P.P., Xynou, M., Filastò, A.: Myanmar blocks “fake news” websites amid
covid-19 pandemic. https://ooni.org/post/2020-myanmar-blocks-websites-amid-
covid19/

25. Lachapelle, J., Lührmann, A., Maerz, S.F.: An update on pandemic backsliding:
Democracy four months after the beginning of the covid-19 pandemic. Policy Brief,
V-Dem Institute (2020)

26. MacKinnon, R.: China’s censorship 2.0: how companies censor bloggers. First Mon-
day (2009)

27. MaxMind. https://www.maxmind.com/
28. Ofcom: Half of UK adults exposed to false claims about coronavirus (2020).

https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2020/half-
of-uk-adults-exposed-to-false-claims-about-coronavirus

29. Palo Alto Networks. Test a site. https://urlfiltering.paloaltonetworks.com/
30. PC Magazine: Phishing attacks increase 350 percent amid covid-19 quarantine.

https://in.pcmag.com/privacy/135635/phishing-attacks-increase-350-percent-
amid-covid-19-quarantine

31. Pearce, P., Ensafi, R., Li, F., Feamster, N., Paxson, V.: Augur: internet-wide detec-
tion of connectivity disruptions. In: IEEE Symposium on Security and Privacy
(S&P), May 2017

32. Pearce, P., et al.: Global measurement of DNS manipulation. In: USENIX Security
Symposium (2017)

33. Peng, P., Yang, L., Song, L., Wang, G.: Opening the blackbox of virustotal: ana-
lyzing online phishing scan engines. In: ACM Internet Measurement Conference
(IMC) (2019)

34. Radu, R.: Fighting the ‘infodemic’: legal responses to COVID-19 disinformation.
Social Media+Society (2020)

35. Ramesh, R., et al.: Decentralized control: a case study of Russia. In: Proceedings
of the Network and Distributed System Security Symposium (NDSS) (2020)

https://fortiguard.com/webfilter
https://trends.google.com/trends/story/US_cu_4Rjdh3ABAABMHM_en
https://trends.google.com/trends/story/US_cu_4Rjdh3ABAABMHM_en
https://www.voanews.com/press-freedom/coronavirus-new-scapegoat-media-censorship-rights-groups-say
https://www.voanews.com/press-freedom/coronavirus-new-scapegoat-media-censorship-rights-groups-say
https://coronavirus.jhu.edu/map.html
https://ooni.org/post/2020-myanmar-blocks-websites-amid-covid19/
https://ooni.org/post/2020-myanmar-blocks-websites-amid-covid19/
https://www.maxmind.com/
https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2020/half-of-uk-adults-exposed-to-false-claims-about-coronavirus
https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2020/half-of-uk-adults-exposed-to-false-claims-about-coronavirus
https://urlfiltering.paloaltonetworks.com/
https://in.pcmag.com/privacy/135635/phishing-attacks-increase-350-percent-amid-covid-19-quarantine
https://in.pcmag.com/privacy/135635/phishing-attacks-increase-350-percent-amid-covid-19-quarantine

436 A. Vyas et al.

36. Reporters Without Borders: Middle east governments clamp down on coronavirus
coverage (2020). https://rsf.org/en/news/middle-east-governments-clamp-down-
coronavirus-coverage

37. University of Oregon Route Views Project. www.routeviews.org
38. Ruan, L., Knockel, J., Crete-Nishihata, M.: Censored contagion: how information

on the coronavirus is managed on Chinese social media (2020). https://citizenlab.
ca/2020/03/censored-contagion-how-information-on-the-coronavirus-is-managed-
on-chinese-social-media/

39. Scott, W., Anderson, T., Kohno, T., Krishnamurthy, A.: Satellite: joint analysis of
CDNs and network-level interference. In: USENIX Annual Technical Conference
(ATC) (2016)

40. SeleniumHQ Browser Automation. www.selenium.dev
41. Singh, L., et al.: A first look at COVID-19 information and misinformation sharing

on Twitter (2020)
42. Sundara Raman, R., Evdokimov, L. , Wustrow, E., Halderman, A., Ensafi, R.:

Investigating large scale HTTPS interception in Kazakhstan. In: Internet Mea-
surement Conference (IMC). ACM (2020)

43. Sundara Raman, R., Shenoy, P., Kohls, K., Ensafi, R.: Censored planet: an internet-
wide, longitudinal censorship observatory. In: ACM SIGSAC Conference on Com-
puter and Communications Security (CCS) (2020)

44. Sundara Raman, R., et al.: Measuring the deployment of network censorship filters
at global scale. In: Network and Distributed System Security Symposium (NDSS)
(2020)

45. The Tor Project. OONI: Open observatory of network interference. https://ooni.
torproject.org/

46. University of Toronto. Citizen Lab. https://citizenlab.ca/
47. Vallina, P., et al.: Mis-shapes, mistakes, misfits: an analysis of domain classification

services. In: ACM Internet Measurement Conference (IMC) (2020)
48. VanderSloot, B., McDonald, A., Scott, W., Halderman, J.A., Ensafi, R.: Quack:

scalable remote measurement of application-layer censorship. In: USENIX Security
Symposium (2018)

49. Vyas, A., Sundara Raman, R., Ceccio, N., Lutscher, P.M., Ensafi, R.: Investigating
filtering of COVID-19 websites (2020). https://censoredplanet.org/covid

50. WatchGuard. See a site’s content category. https://www.watchguard.com/help/
docs/help-center/en-US/Content/en-US/Fireware/services/webblocker/site
categories see websense c.html

51. Winter, P., Lindskog, S.: How the great firewall of china is blocking tor. In: Free
and Open Communications on the Internet (FOCI) (2012)

52. Wiseman, J.: European media freedom suffers under COVID-19 response (2020).
https://ipi.media/european-media-freedom-suffers-covid-19-response/

53. World Health Organization: Coronavirus disease (COVID-19) pandemic (2020).
https://www.who.int/emergencies/diseases/novel-coronavirus-2019

54. Xu, X., Mao, Z.M., Halderman, J.A.: Internet censorship in China: where does
the filtering occur? In: International Conference on Passive and Active Network
Measurement (PAM) (2011)

55. Zhong, R., Mozur, P., Kao, J., Krolik, A.: No ‘Negative’ news: how China censored
the coronavirus (2020). https://www.nytimes.com/2020/12/19/technology/china-
coronavirus-censorship.html

56. Zittrain, J., Edelman, B.: Internet filtering in China. IEEE Internet Comput. 7(2),
70–77 (2003)

https://rsf.org/en/news/middle-east-governments-clamp-down-coronavirus-coverage
https://rsf.org/en/news/middle-east-governments-clamp-down-coronavirus-coverage
www.routeviews.org
https://citizenlab.ca/2020/03/censored-contagion-how-information-on-the-coronavirus-is-managed-on-chinese-social-media/
https://citizenlab.ca/2020/03/censored-contagion-how-information-on-the-coronavirus-is-managed-on-chinese-social-media/
https://citizenlab.ca/2020/03/censored-contagion-how-information-on-the-coronavirus-is-managed-on-chinese-social-media/
www.selenium.dev
https://ooni.torproject.org/
https://ooni.torproject.org/
https://citizenlab.ca/
https://censoredplanet.org/covid
https://www.watchguard.com/help/docs/help-center/en-US/Content/en-US/Fireware/services/webblocker/site_categories_see_websense_c.html
https://www.watchguard.com/help/docs/help-center/en-US/Content/en-US/Fireware/services/webblocker/site_categories_see_websense_c.html
https://www.watchguard.com/help/docs/help-center/en-US/Content/en-US/Fireware/services/webblocker/site_categories_see_websense_c.html
https://ipi.media/european-media-freedom-suffers-covid-19-response/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.nytimes.com/2020/12/19/technology/china-coronavirus-censorship.html
https://www.nytimes.com/2020/12/19/technology/china-coronavirus-censorship.html

Under the Hood of the Ethereum Gossip
Protocol

Lucianna Kiffer1(B), Asad Salman1, Dave Levin2, Alan Mislove1,
and Cristina Nita-Rotaru1

1 Northeastern University, Boston, MA, USA
{lkiffer,amislove}@ccs.neu.edu, {salman.a,c.nitarotaru}@northeastern.edu

2 University of Maryland, College Park, MD, USA
dml@cs.umd.edu

Abstract. Blockchain protocols’ primary security goal is consensus: one
version of the global ledger that everyone in the network agrees on. Their
proofs of security depend on assumptions on how well their peer-to-peer
(P2P) overlay networks operate. Yet, surprisingly, little is understood
about what factors influence the P2P network properties. In this work,
we extensively study the Ethereum P2P network’s connectivity and its
block propagation mechanism. We gather data on the Ethereum net-
work by running the official Ethereum client, geth, modified to run as a
“super peer” with many neighbors. We run this client in North America
for over seven months, as well as shorter runs with multiple vantages
around the world. Our results expose an incredible amount of churn,
and a surprisingly small number of peers who are actually useful (that
is, who propagate new blocks). We also find that a node’s location has
a significant impact on when it hears about blocks, and that the pre-
cise behavior of this has changed over time (e.g., nodes in the US have
become less likely to hear about new blocks first). Finally, we find prune
blocks propagate faster than uncles.

1 Introduction

Ethereum [34] is a cryptocurrency that can also store and execute user-generated
programs often called smart contracts. Compared to Bitcoin [32], Ethereum is
significantly more expressive and can be used to implement decentralized voting
protocols, financial contracts, and crowdfunding programs. Today, Ethereum is
the second-most-valuable cryptocurrency behind Bitcoin, with a market capital-
ization of over $26B [6].

Given its complexity, it may be unsurprising that Ethereum has a number
of differences from Bitcoin. For the purposes of this paper, two such differences
stand out: First, Ethereum is based on a general purpose peer-to-peer (P2P)

We thank the anonymous reviewers and Arthur Gervais for their helpful comments.
This research was supported in part by NSF grants CNS-1816802 and CNS-1900879,
a Ripple unrestricted gift, and Facebook Fellowship. We also thank the Ethereum
Foundation for a gift of AWS credit used toward the collection of our data.
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 437–456, 2021.
https://doi.org/10.1007/978-3-662-64331-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_23&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_23

438 L. Kiffer et al.

overlay responsible for discovering other nodes and maintaining connectivity.
This P2P layer can be used by higher-level protocols other than Ethereum (in
fact, we find this is often the case). The Ethereum Network layer sits between
the P2P layer and the overlying application layer (the blockchain itself), and is
responsible for choosing peers, disseminating new blocks, and reaching network-
wide confirmation of transactions. Second, Ethereum’s 15 s (on average) block
interval is dramatically shorter than Bitcoin’s 10 min (on average). This sig-
nificantly reduced target block mining interval opens the door to much faster
“network confirmation” of accepted transactions.

Thus, the structure of the Ethereum P2P overlay, including aspects such as
peer connectivity and block propagation delay, play an important role in achiev-
ing the target performance and correct functioning. Most prior measurement
work on Ethereum has focused either primarily on the P2P layer [15,29] or pri-
marily on the application layer (i.e., the blockchain itself [8,9,26,27,33]), leaving
the Ethereum network layer not as well understood.

In this paper, we aim to better understand the network structure of
Ethereum, focusing on both how the Ethereum network is formed and evolves
over time, as well as how the network is used to propagate new blocks, a crucial
part of the consensus mechanism. We do this by integrating information from
the P2P layer (e.g., which nodes are available, who nodes choose to connect
to), information from the application layer (e.g., which blocks are ultimately
accepted), along with information from the Ethereum layer (e.g., which peers
nodes exchange block information with, and which peers actually provide the
most useful information).

We conduct our study by running a customized version of Ethereum’s official
Go client, geth, for over seven months, allowing us to observe the evolution of
the Ethereum network through multiple protocol changes. We also run multiple
nodes in a variety of vantage points across the globe for shorter lengths during
this time period, allowing us to study both how our peers interact and how the
location in the physical Internet affects the peers’ experience in the Ethereum
network. The results of our analysis can be summarized as follows:

• Extensive peer churn: We observe dramatic levels of churn in the Ethereum
network, both in terms of the number of unique peers and connection lengths.
Churn can run the risk of disconnecting a network or making it difficult to
quickly propagate information throughout it, and challenging to estimate the
size of the network. We investigate churn in the Ethereum network and find
that 68% of the peer IDs we see in our 200-day scraping period are present
only on a single day, and 90% of them are present on fewer than 25 days.

• Miner centralization: The top 15 miners are responsible for over 90% of
mined blocks. We investigate those miners and find that all but one are well-
known mining pools. We also note a difference in the efficiency of miners:
the top 3 mining pools have a much greater probability of a block they mine
being included in the blockchain (propagating faster and “winning” the block
race).

Under the Hood of the Ethereum Gossip Protocol 439

• Most announcers are long-lived: Comparing all peers to those who are
first to announce a block, we see that those announcing blocks tend to have
longer connections, larger average and total connection lengths, and are online
more days. Almost 70% of peers are seen only one day, but about 40% of our
announcing peers are seen only one day. The latter is still a large percent but
there is a set churn in peers who are not participating in block propagation.

• Announcers are diverse: Focusing on which peers tell our nodes about
new blocks first, we find that a large number of peers are responsible for
announcing a miner’s block first to our node. No one peer announces more
than 6% of a miner’s blocks to us first.

• Quick network-wide propagation: The speed at which new information
spreads throughout the Ethereum network is critical in how quickly trans-
actions can complete. We perform a novel analysis of network propagation
times by running nodes in three different vantage points (USA, South Korea,
and Germany). Despite the diversity of information sources across the three,
we find that the difference in time from when the first learns about a block
until when the last learns about it is very small: for instance, less than 100
ms for 85% of all new blocks.

• Location bias: Although our vantage points in North America, Asia, and
Europe did not experience any unfair disadvantages, we observed bias using
additional vantages in locations with fewer peers (South America and Ocea-
nia). We observe an significant disparity in which locations hear about blocks
first, with those two locations being first to hear about blocks only ∼3% of
the time.

2 Background

The Ethereum system consists of multiple layers. In this section, we provide an
overview of the components we study in this paper, and detail related work.

2.1 Overview

The purpose of Ethereum is to create a blockchain via proof-of-work mining.
Unlike systems that function almost exclusively as a currency, Ethereum is made
up of transactions that contain either (a) direct transfers of ETHER (the currency
unit of Ethereum) or (b) transactions that create or call smart contracts. Trans-
actions of the second type must also pay to run the computation via GAS in
extra ETHER sent with the transaction. While much work has examined smart
contracts (e.g., [9,27,33]), we are focused on the Ethereum network itself.

Miners are participants in the Ethereum network that listen on the network
for transactions and package them into blocks. To successfully create a block,
a miner must verify that all transactions included are valid (including code
execution and signatures), include the hash from the most recent block in the
miner’s chain as well as a Proof-of-Work (proof enough computational “work”
was done to create this block). Miners do this “work” by creating blocks whose
hash1 has a minimum specified number of leading zeros. The target number of
1 The Ethereum protocol uses their own memory-hard hash function, Ethhash [1].

440 L. Kiffer et al.

leading zeros is known as the difficulty and is adjusted at every block so that a
block will be generated roughly every 15 s. The miner whose block becomes part
of the chain is rewarded with 5 ETHER and the GAS of the transactions. Because
of the high variance in winning a block, miners often come together to form
mining pools where block rewards are split among the participants. We observe
in (Fig. 1) that the top 15 miners (14 of which are known mining pools) mined
over 90% of all blocks.

Mainchain, Uncles, and Prunes are different types of blocks in Ethereum.
Blocks that are part of the blockchain containing the history of Ethereum are
called mainchain blocks. However, not all valid blocks share this fate. With
a target time between blocks of 15 s, it often happens that two or more valid
blocks are mined within a short interval of each other by two different miners,
contending for the same position in the chain. Both blocks propagate through
the network and eventually consensus is reached on which of the two blocks
become part of the mainchain.

To still reward mining related to these discarded blocks, miners can also
choose to include these valid, but non-mainchain blocks as uncles in the blocks
they mine. A miner includes the hash of the discarded block in a special field of
the block only if the parent of the uncle (the block the uncle points to) is a
block in their own chain up to six blocks prior. Both the miner and the miner of
the uncle receive an additional, smaller amount of ETHER.

Finally, some valid blocks may be mined, but never end up in the mainchain
or become uncles (e.g. if the announcement of the block is significantly delayed),
we refer to such blocks as prunes. Note that because prunes are not on the
blockchain at all, we can only observe them by participating in the network and
hearing them being announced. On average, we observe roughly 6,000 mainchain
blocks, 400 uncle blocks, and 10 prune blocks each day.

2.2 Networking in Ethereum

The Ethereum system is made up of three layers: the application layer that con-
tains the blockchain, the Ethereum layer that contains peers exchanging infor-
mation about blocks and transactions, and the peer-to-peer (P2P) layer that
allows nodes to find others and establish connections (more details in the full
version of this paper [28]). We briefly overview these below based on the official
documentation [2,4,5], talks [20], and the official client code.

P2P Layer. The P2P layer is divided into two components: a discovery protocol
that allows nodes to find each other, and DevP2P that nodes use to communicate.
We detail the Discovery protocol in the full version of this paper [28].

The DevP2P Protocol runs in parallel to the Discovery protocol and is
responsible for establishing sessions with other nodes, sending and receiving mes-
sages between peers and managing the actual higher-level protocol being run.
In Ethereum, DevP2P uses RLPx, which is responsible for encrypting, encoding
and transferring messages between peers. Once a peer has been discovered during

Under the Hood of the Ethereum Gossip Protocol 441

the execution of the Discovery protocol, the RLPx protocol initiates the TCP
handshake and HELLO messages are exchanged. In the HELLO message, both
sides send the protocol version, the client software type, the capabilities and ver-
sion they support, the port they are listening on and their ENODEID. Importantly,
the DevP2P protocol checks if the remote node is running the same application-
layer protocol (e.g. eth for the Ethereum Wire Protocol), that they support each
others’ protocol version, and that they agree on the blockchain (i.e., the genesis
blocks and any forks). The nodes will disconnect if any of these conditions do not
hold, which is surprisingly common: prior work [29] found that over two months
in 2018, about 95% of nodes were running the eth protocol, but only 54.5%
of those agreed on the blockchain. Otherwise, if the conditions hold, the nodes
become peers and can exchange messages at the Ethereum layer (we distinguish
nodes at the P2P layer from peers at the Ethereum layer).

Ethereum Layer. The Ethereum Wire Protocol [2] is the application-layer
protocol for propagating transactions and blocks, and for requesting block and
state data so new clients can sync to the existing state. To be brief, we omit how
new clients sync to the blockchain and instead focus on how new messages are
propagated.

Transactions are transmitted in full via a TransactionMsg message either by
the originator of the transaction or when a node hears about a new transaction.

Blocks are transmitted in a more complicated fashion. When a node hears
about a new block, they first verify that the block belongs to their chain and
includes the PoW. At this point, the node propagates the full block by sending a
NewBlockMsg message to a subset of their peers.2 The node then fully validates
the whole block by adding it to their internal state. The node finally sends the
hash of the block to its remaining peers who have not heard about the block via
a NewBlockHashesMsg message. An overview of this process is provided in the
full version of this paper [28].

2.3 Ethereum Implementations

There are several versions of the Ethereum client, the most common are the
official Golang implementation called geth and a popular, non-official Rust-
based client, Parity. We deploy our measurements using the official geth client,
run by a vast majority of the network [7,29]. By default, the geth client used
to have the maxPeer, a cap of the number of peers the client will maintain,
constant set to 50. This cap is enforced by bounding 66% of its maxPeer as
incoming connections and the remaining connections as outbound. In order to
gain visibility into the network, we increased the maxPeer cap to 750 during
most of our experiments. The geth client will keep on accepting and making
connections until its peer cap is met, including looking for additional nodes to
connect to via the node discovery protocol.

2 In geth this subset is composed of a square root of their peers who have not heard
about the block.

442 L. Kiffer et al.

2.4 Related Work

The papers that most closely relate to our work are [15] and [29]. In [15], Gencer
et al. run a measurement-based comparative study of the Bitcoin and Ethereum
P2P networks with a focus on decentralization properties. For Ethereum they
look at peer bandwidth, connection latency (to peers and bounds between
nodes), and some amount of efficiency of miners through miner distribution
of blocks and uncle counts. In [29], Kim et al. scrape the Ethereum P2P network
by connecting to peers just long enough to establish a full DevP2P connection
and checking up to the DAO fork (i.e. not a ETC node). They focus their analy-
sis primarily on node client type, “freshness”, location/ASes and also connection
latency. These two papers ran scrapers collecting quick peer information while
we run a long-term full node which is able to collect more temporal node infor-
mation (i.e. analyze churn in more detail), and connect peer information with
the kinds of block data they send us (i.e. block propagation, some miner analy-
sis), as well as capture prune blocks which has yet to be observed in Ethereum.
We can also distinguish exactly the peers who fully participate in the Ethereum
protocol as those who send useful block information, i.e. propagate blocks.

We use ethernodes.org to compare the nodes we see and note that there has
been work showing how ethernodes.org data is not representative, e.g. many of
the peers it reports are not actually running the mainnet Ethereum protocol
[3,29]. They also briefly mention churn, but in no detail. We explore churn in
greater detail both in the ethernodes.org data and in our own peer data.

In another Ethereum network measurement study [14], Gao et al. scrape the
P2P layer for peers who they make TCP connections with, though similarly to
ethernodes.org, a TCP connection does not distinguish mainnet nodes. They
enumerate peer tables for those nodes and analyze their topological properties,
though peer tables do not represent actual peer connections on the network.
Other measurement works in this area include Decker et al. [11], who measure
the block propagation delay and fork-rate of Bitcoin3, work studying peer churn
in Bitcoin and other non-blockchain P2P networks [12,25,31], and many works
analyzing data extract-able from the blockchain [8,9,26,27,33].

3 Methodology

We now detail our data collection methodology, how we processed the resulting
data set, and provide a high-level overview of the data we collected.

3.1 Ethereum Client

We created an instrumented and customized version of the geth client [18] that
was designed to log detailed information about its network- and application-
layer activity. At the P2P layer, our client logs all attempted connections (both
inbound and outbound, called handshakes) along with remote node information
3 Find a median and mean delay of 6.5 and 12.6 s (from 2013).

Under the Hood of the Ethereum Gossip Protocol 443

including the remote node’s ENODEID, IP address, and announced software ver-
sion. Our client also logs all PING and PONG messages that Ethereum periodically
sends as “heartbeats” between nodes (measuring network latency).

At the Ethereum layer, our client logs a number of messages that are
exchanged between peers, primarily focused on messages concerning blocks
(NewBlockMsg and NewBlockHashesMsg). For each message, our client logs a
timestamp and the identity of the remote peer.

To limit any negative impact on the network, our client largely participates
in the network in the same manner as a regular full node (e.g., finding peers,
exchanging information, etc.). There are two primary modifications we make to
enable us to understand the Ethereum network: First, we modify our client to
suppress announcing and forwarding one-third of blocks and transactions (blocks
whose hash value is a multiple of three). We do so in order to study how those
messages are propagated without our client affecting their dissemination; our
client forwards the other two-thirds of blocks and transactions as normal.4 Sec-
ond, we modify our client to allow a much higher peer cap (the limit on the
number of network-layer peers the client will connect to). We do so in order to
study the behavior of many remote peers at once and, as Gencer et al. showed
in Bitcoin [17], the more connections we maintain, the earlier we receive block
information, meaning we are likely closer to their sources.

3.2 Data Collection

We conducted three runs of data collection with different numbers and locations
of our clients. We describe these below. In all cases, we use Amazon Web Services’
EC2 to host our client, using a r5.2xlarge machine time to ensure the hardware
had sufficient capacity. We configured the host operating system to sync with
timeservers via the Network Time Protocol service continually to adjust for clock
drift. Unless otherwise noted, we set the peer cap in our client to 750 peers (we
demonstrate below that we likely connected to the vast majority of other nodes).

We found that the geth client (v1.9.0) appeared to have some memory leaks
(that were exacerbated by our modification of the peer cap to a much larger level
than normal). As a result, our clients would sometimes crash and be immediately
restarted. We found that our client would often take a few hours to build up its
peer count (e.g., see Fig. 5), so for our analysis, we ignore any data from before
the client reported at least 400 peers.

Peer Cap Experiment. Our choice of a maximum of 750 peers for our long-
running measurements was because of a memory leak in the geth client. In
order to establish whether our choice of 750 peer cap is representative of the
network, we ran three clients in parallel in the us-east-1 Amazon data center
(in Virginia, U.S.) with increasing peer limits with peer caps of 500, 1000 and
1,500 peers respectively. We explore this experiment in detail in the full version
of this paper [28], and the results suggest that the reachable peers we can connect
to at any given time caps at about 1,000 peers.
4 We are unable to avoid forwarding information on all blocks/transactions, as doing

so would cause other peers to decide to stop peering with our client.

444 L. Kiffer et al.

Table 1. Peer and block counts for the longitudinal experiment, multiple vantage point
experiment and information propagation experiment. For the longitudinal experi-
ment we look at unique ENODEID and IP, while for the rest we look at ENODEID. We
note that useful refers to any peer who announces blocks to us while first refers to
peers to who are the first to announce a mainchain block to us.

Peer counts Block counts
runs location udp p2p peer useful first main uncle prune

longitudinal U.S. ID 1,301,568 194,608 90,265 24,945 12,593
May-Dec U.S. IP 339,832 138,107 55,091 22,982 9,359 1,179,883 79,938 2,695

vantage U.S. 119,892 20,339 8,932 2,822 1,331
Seoul 106,397 23,059 9,876 4,865 1,459

June 6–10, Frank. 107,559 24,744 10,876 4,695 1,138
14–16, 2019 All 150,961 31,188 15,644 6,526 2,465 39,345 2,977 113

information U.S. 299,971 21,257 9,234 5,055 1,214
Seoul 295,480 21,024 8,631 5,175 1,822

propagation Frank. 289,902 20,708 8,276 5,071 1,349
May 12- São P. 290,390 22,112 9,440 5,337 2,152
23, 2020 Sydney 307,173 23,225 9,643 5,556 1,559

All 480,355 30,896 14,613 6,913 3,867 69,199 4779 153

Longitudinal Experiment. Our primary data collection experiment was a
long-term longitudinal study of how the Ethereum network behaved over a period
of many months. We refer to this experiment as the longitudinal experiment, and
it consisted of a single client running in the Virginia Amazon data center between
May 15th, 2019 and December 13th, 2019.

Multiple Vantage Point Experiment. For a shorter period of time, we also
ran a client in the ap-northeast-2 Amazon data center (Seoul, South Korea) as
well as a client in the eu-central-1 Amazon data center (Frankfurt, Germany),
alongside our Virginia, U.S. client. We refer to this experiment as the multiple
vantage point experiment, and was run in 2019 between June 6th and June 10th
and then again between June 14th and June 16th.

For this experiment, we only consider times where all three nodes were up
(with a sufficient peer list, as described above). In total, this experiment resulted
in 6 days and 4 h of logged messages.

Information Propagation Experiment. In our multiple vantage point exper-
iment, we observed that our three chosen vantage points tended to be physically
close to where most of the blocks were first being announced from (Table 3)
and where the majority of our peers are located (Table 2). We finally ran one
additional experiment with our three locations in the multiple vantage point
experiment, as well as a node in the sa-east-1 Amazon data center (São Paulo,
Brazil) and the ap-southeast-2 Amazon data center (Sydney, Australia). We
chose these two additional locations as they appeared to be locations where very
few (<1%) of blocks are being first announced from, and including them would

Under the Hood of the Ethereum Gossip Protocol 445

allow us to better understand how network location affects when information in
the Ethereum network is received. We ran this experiment between May 12th
and 23rd, 2020, and we refer to it as the information propagation experiment.

Limitations. We note that since these are all EC2 instances, running copies of
the same machine in different Amazon locations allowed us to maintain location
as our only variable (so hardware differences would not affect our results) as
well as have the storage and memory capabilities needed. A clear limitation is
whether Amazon machines have a biased view of the network, including special
links between their centers we cannot control for. We note that a quarter of all
peers we connect to in the longitudinal experiment are running on EC2 instances,
the largest fraction from a single provider. We also weighted this choice with the
additional variable of using multiple cloud providers or VPNs which would have
added artificial latencies to our connections.

Ethernodes. Ethernodes [7] is a public web site that reports on aggregate statis-
tics for the Ethereum network and is widely cited when reporting statistics about
the Ethereum network, including in academic work [13,16,19,23,24]. Between
March 30 and October 15th, 2019, we scraped Ethernodes for the Ethereum
node information they report from their crawler. In the full version of this paper
[28] we use the Ethernodes data as a point of comparison for our data analysis.

4 Analysis

We organize the analysis section by working our way down the different lay-
ers involved in the Ethereum protocol. We are interested both in understanding
general trends in the network and narrowing in on specifics related to peer behav-
ior. Unless otherwise specified, the bulk of the analysis refers to data from the
longitudinal experiment.

We start with the Application layer, i.e. who is mining blocks. Our main
questions are: How is mining distributed among the top miners, and are the
top pools equally efficient? In other words, do some miners appear to have an
advantage (e.g., are less likely to mine non-mainchain blocks)?

Next, we move on to the Ethereum layer by examining the timestamps of
when we hear about different types of blocks. Here we are interested in answering:
How are blocks being propagated in Ethereum and is block propagation correlated
to the type of block, block size, or other factors?

We then examine the P2P layer, where we focus on who our nodes connect
to/come across. The bulk of the novelty in our work comes from tying peer
connectivity behavior with its usefulness in block propagation. This is done in
the following two layers both in breaking down the behavior of our peers in the
longitudinal experiment and comparing information received from peers from
different vantages. We ask: What trends can we observe in peer connectivity
behavior? How many of the peers that we come across end up being useful?

Finally, we end our analysis by looking at the underlying network and how
theposition of our nodes in the Internet affects their viewof the network.For thiswe
utilize both themultiple vantage point experiment and the informationpropagation

446 L. Kiffer et al.

experiment to answer: Are there advantageous geographic locations from which to
run an Ethereum peer and, if so, how large is the disparity between locations?

4.1 Application Layer

We begin by examining who is mining blocks by looking at the self-advertised
miner id in the blocks our client hears about. We take data from the seven
months of the longitudinal experiment, and group blocks by whether they are
part of the mainchain, uncles, or prunes.

Figure 1 plots the cumulative distribution of the blocks of different types
across miners (note the log scale on the x-axis). We can immediately observe
that the fraction of blocks mined is not uniform, and in fact highly skewed
towards a very small number of miners. While 90% of all blocks are mined by
less than 5% of miners (and the top three miners mine over half of the blocks),
over half of the miners mine just a single block. Unsurprisingly, when we examine
when these blocks are mined, the few miners who mine the majority of the blocks
are active for the length of the measurement period, while others who win less
frequently come and go more often.

We note that the low number of miner ids is not entirely surprising, as
miners often group into mining pools and all mine for the same miner id. As
a result, much of the discrepancy between how many blocks miners win can be
explained by dramatic differences in aggregate mining power across pools.

To further explore the discrepancy across miners, we examine each miner’s
uncle to mainchain and uncle to prune ratios in Fig. 1. Recall that uncles
and prunes occur when multiple blocks are mined at once, and eventually
one wins. Similar to the analysis of Gencer et al. [15], we say if mining was
“fair”, we would expect that all miners would typically mine a similar fraction

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256

F
ra

ci
on

 o
f B

lo
ck

s

Number of Miners

mainchain
uncle
prune

all

Fraction of all Blocks Mined by the Top X Miners US1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 B
lo

ck
s

Miner Rank (by mainchain blocks)

All
Mainchain

Uncle
Prune

Fraction of Blocks Mined By All Miners

Fig. 1. Left: Cumulative distribution of the number of all blocks won by top miners.
Note the log scale on the x-axis. Right: The fraction of total mainchain, uncle, and
prune blocks each miner mines. We see the top 3 miners mine disproportionately more
of the mainchain blocks than uncles or prunes and thus have a disproportionate
advantage over the other miners.

Under the Hood of the Ethereum Gossip Protocol 447

of uncles and prunes (relative to all blocks they mine)5. However, we see that
the top mainchain miners tend to have many fewer uncle and prune blocks
than mainchain blocks, but that this trend fades as we start to look towards
less-powerful miners. This suggests that larger miners appear to have some sort
of advantage in the network, as they suffer from uncles and prunes at a much
lower rate. Given a block race, having larger mining power increases a miner’s
odds of winning (as they are more likely to win the next block), and network
advantages (lower delays) would further increase their odds. It is unclear at
which point the former plays a bigger role.

Next, we examine the behavior of the Ethereum protocol layer to better
understand how blocks are propagated in the network.

4.2 Ethereum Protocol Layer

 1

 10

 100

 1000

 10000

06/19 07/19 08/19 09/19 10/19 11/19 12/19

N
um

be
r

of
 b

lo
ck

s

Date
US mainchain hash
US mainchain block

US uncle hash

US uncle block
US prune hash
US prune block

Number of blocks announced per day in US machine

Fig. 2. Count of new blocks by type and by
which message we first heard about the new
block (NewBlock or NewBlockHash).

We now explore general block trends
and how blocks get propagated in
the network. In Fig. 2, we exam-
ine how our client first hears about
blocks (NewBlockMsg or NewBlock
HashesMsg) over time. It is clear that
new mainchain blocks and uncles
are primarily announced to our node
first as the full block message, though
there are times when some blocks get
to it first as hashes. This corresponds
to our peers first propagating the full
block and then the hashes.6 Starting
in late October, we see the mainchain
count starts decreasing. This was due
to the upcoming difficulty bomb which causes the difficulty to gradually increase,
speeding up as the deadline approaches; this in turn caused blocks to be mined
more slowly.7

We next dig deeper into the NewBlockMsg messages to better understand
block propagation. Specifically, we look at the incoming NewBlockMsg messages
for each block, and measure the difference between the first time our client hears
about a given block and all subsequent times. Figure 3 presents the cumulative
distribution of times for different percentiles for each block, broken down by
whether or not it was a block that our client propagated (recall we only propagate
2/3 of blocks at random). We can observe that when we propagate blocks, the
lower percentiles tend to be longer (compared to when we do not). This may
5 Gencer et al. [15] compared Bitcoin prunes to all blocks mined, but for Ethereum

just used uncle counts. They found that at the time Bitcoin had a larger standard
deviation in mining fairness than Ethereum.

6 When prunes are first announced to us via a NewBlockHashesMsg, it generally cor-
respond to times we hear about odd blocks that do not follow the mainchain (i.e.
the block number is much smaller or larger than the current height).

7 The bomb was delayed with the Muir Glacier hardfork in early January 2020.

448 L. Kiffer et al.

be surprising, but is likely due to the fact that other nodes will not inform our
client if it knows we already know about a block; by propagating a block, we
effectively preclude being told. When we propagate a mainchain block we receive
fewer announcements for it, which is not true for prunes or uncles.

We further explore the propagation time for different block types in Fig. 3,
and note the propagation delay peaks at around 200 ms for all types of blocks.
However, prunes and uncles have a much longer tail, implying their dissem-
ination through the Ethereum network is significantly slower than mainchain
blocks. We explore whether a block’s delay is correlated with any factors about
the block. Specifically, we look at the relationship between the median delay of
mainchain blocks and their GAS count and find a very weak correlation coeffi-
cient of 0.035. Similarly, we see a similar weak correlation coefficient of 0.031
block size and median delay.

Finally, when we examine the number of announcements we receive per block,
we notice that we receive between 100 and 300 announcements for most blocks
except for prunes. The prune data is largely skewed by few peers (e.g., 70% of
prunes are only announced to our client by one peer), and these peers tend to
advertise many block hashes with either very low or very high block numbers
far from the correct mainchain. We note that for these prunes that are both
announced primarily as NewBlockHashes (i.e., we do not receive the full block)
and in large batches with block numbers that do not correspond to the current
height of the mainchain, we do not consider them true prunes of the mainchain
and exclude them from the propagation delay analysis of Fig. 3.

4.3 Peer-to-Peer Level

We now turn to examine the P2P protocol layer by looking at trends in our
connections to nodes. In Fig. 4 (left), we plot the number of unique nodes our
client PING/PONGs, starts a TCP handshake, and fully connects to (i.e. peers)
in each hour and day. In total in the longitudinal experiment, our machine
PING/PONGs 1,301,568, starts a TCP connection with 194,608, and fully con-
nects with 90,265 unique ENODEIDs. We see the fluctuation of our client’s peer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000

F
ra

ct
io

n
of

 b
lo

ck
s

Time difference in seconds
5th perc. not prop

5th perc. prop
10th perc. not prop

10th perc. prop

50th perc. not prop
50th perc. prop

95th perc. not prop
95th perc. prop

CDF of delta between first x% announcements

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
ra

ct
io

n
of

 a
nn

ou
nc

em
en

ts

Time difference in seconds

mainchain uncle prune

PDF of block delay US vantage runs

Fig. 3. Left: The difference in time for when our longitudinal experiment client hears
about a block from the first announcement to all subsequent announcements by per-
centile. Right: Probability distribution of the time of subsequent announcements since
our client first heard about that block from any peer.

Under the Hood of the Ethereum Gossip Protocol 449

count in Fig. 4(right), where we plot the peer count over time for different runs.
We can see the peer count rise steadily during the beginning of a measurement
and then fluctuate, often dropping by half before picking up again. We see this
significant churn in our full connections in Fig. 5, (left): we compare the average
number of peers we have to the number of new connections and connections
that end each hour, and see that within an hour we might make up to 3x the
number of connections as our average connections. This means each hour, our
client makes/ends around 1K–1.5K connections to 300–400 unique ENODEIDs,
i.e. reconnecting to the same nodes.

We further explore the trend of re-connecting to the same nodes in Fig. 5,
(right), where we plot a breakdown of the length of connections for connected
peers based on how long we are connected (short is 0–10 s, medium is 10–1,000 s,
long is 1,000 s or more). We can observe that while over 80% of unique peers we
connect with in an hour are long connections (>1000 s), we do see around 10%
of connections to both short and medium peers.

Peers Who Participate in Block Propagation. Given this high level of
churn, looking at all connections would be significantly biased by the many
short connections. Thus, we focus more narrowly on the peers who actually affect
information propagation in the Ethereum network: those peers who propagate
blocks to our client, called useful peers.

We plot the count of useful peers in Fig. 6, plotting the number of peers
who inform our client of different types of blocks each hour over the course of the
run. We can observe around 400 unique peers per hour (and around 1,000–2,000
unique peers per day, not shown) who announce relevant blocks.

We dig deeper into the behavior of different peers by comparing the connec-
tion lengths of three groups of peers: all peers, useful peers, and first announcers
(those peers who are the first to announce a block to us mined by the top 15
miners). In Fig. 6 we compare connection lengths and number of days we observe
these peers. We see a clear distinction between all peers and those announcing
blocks to us, where the latter tends to have longer connections and show up more

 1

 10

 100

 1000

 10000

 100000

05/19 06/19 07/19 08/19 09/19 10/19 11/19 12/19 01/20

N
um

be
r

of
 P

ee
rs

Datetime
PING/PONG daily

p2p daily
peer daily

PING/PONG hourly
p2p hourly

peer hourly

Unique Peers per Level

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000

pe
er

 c
ou

nt

minutes online

US machine peer buildup

Fig. 4. Left: the number of unique peers we PING/PONG, start a TCP connection
with, and establish a full connection with per hour and day. Right: Peer count per min-
utes online, a line for each run of the longitudinal experiment client, showing significant
churn even after we fully join the network.

450 L. Kiffer et al.

 0

 500

 1000

 1500

 2000

 2500

05/19 06/19 07/19 08/19 09/19 10/19 11/19 12/19 01/20

P
ee

r
co

un
t

Datetime
connection starts per hour
connection ends per hour

avg peer count

US runs connection churn

 0

 0.2

 0.4

 0.6

 0.8

 1

06/19 07/19 08/19 09/19 10/19 11/19 12/19

F
ra

ct
io

n

Date
short medium long

US fraction of peer connections by length (per hr unique)

Fig. 5. Left: the hourly number of peer connections that we start/end (similar counts),
and our average number of peers. Right: unique connections per hour by length: short
(<10s), medium (10–1000) and long (>1000s). Both figures together show how the
majority of the churn (short connections) are due to a minority of our peers.

days. There is an increase around 1,000 s for average peer online times which cor-
respond to many ENODEIDs coming from a few IPs (making up about 30% of the
announcing ENODEIDs) who are online only once for about 1,000 s8. Finally, the
“spike” at 15 s in all connection lengths comes from over 5,000 ENODEIDs mostly
from a single IP in China which reconnects many times; it disappears when we
normalize by IP in the middle graph.

Peer Location. Next we examine the physical location of peers by using the
geolite2 and ip2geotools tools to map IP addresses to continents. In Table 2,
we take a closer look at where the peers our client connects to are located. We list
all P2P nodes we connect to, all Ethereum peers and all useful peers across the
entire run. To observe a snapshot as well, we also include the useful peers from
a single 24-hour snapshot in 2019 and another in 2020. Generally the majority
of our peers are in Asia, Europe and North America, with useful peers skewing
more towards North America and P2P peers coming primarily from Asia.

Table 2. Fraction of peers (by unique IP address) across continents for all P2P connec-
tions, all Ethereum peer connections, and all useful peers across the entire longitudinal
experiment. Also included are the useful peers from two 24 h periods 1 year apart
(05/20/2019 and 05/20/2020).

Fraction of peers in locations
Data set Africa Asia Europe N.Amer Oceania S.Amer Unkn Count

P2P 0.0060 0.472 0.232 0.255 0.0148 0.0144 0.004 138,107
Ethereum 0.0057 0.348 0.283 0.329 0.0173 0.0108 0.006 55,091
useful 0.0014 0.315 0.262 0.398 0.0139 0.0049 0.004 22,982
2019-useful-24 hr 0.0010 0.289 0.286 0.409 0.0093 0.0046 0.0009 1,079
2020-useful-24 hr 0.0037 0.273 0.249 0.459 0.0129 0.0025 0.0006 1,632

8 Mostly Coinbase nodes who appear to be routinely generating a fresh ENODEID.

Under the Hood of the Ethereum Gossip Protocol 451

4.4 Internet Location

Finally, we explore the effect of the network geographical position on how peer
connections are made and how blocks are propagated. We discuss the highlights
of our findings in Table 3. We first look at the location of the peer who told
our longitudinal experiment client about each block first. We see that our client
primarily first heard blocks from peers in North America, with Europe and Asia
closely following. However, it is unclear the extent to which this is due to the fact
that our client in the longitudinal experiment was located in North America.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000 10000 100000 1x106

F
ra

ct
io

n
of

 p
ee

rs

Connection Length (seconds)
all peers

first announcers
useful peers

CDF Peer Connection Length All US

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 IP
s

Average Connection Length (seconds)
all peers

first announcers
useful peers

CDF Peer Average Connection Length US

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

F
ra

ct
io

n
of

 IP
s

Days
all peers

first announcers
useful peers

CDF Peer IP Total Days US

 0

 100

 200

 300

 400

 500

 600

 700

05/19 06/19 07/19 08/19 09/19 10/19 11/19 12/19 01/20

N
um

be
r

of
 u

ni
qu

e
pe

er
s

Datetime of message
all

mainchain
uncles
prunes

Sum of unique peers per hour who send NewBlockMsg or NewBlockHashesMsg

Fig. 6. Top left: Cumulative distribution of all connection lengths for peers. Top right:
Average connection length when grouping peers by IP. Bottom left: Total number
of days our client observes peers active. Bottom right: Number of unique peers who
announce blocks to us per hour for each kind of block and total unique per hour.

To explore this, we turn to examine the multiple vantage point experi-
ment run, where we also run clients in parallel in Seoul and Frankfurt. We
look at the fraction of where the first announcement for all blocks are received
from by continent, and also filter for just the blocks that machine was the first
to hear about (i.e. before the other two locations)

We can immediately observe that all three of our clients primarily hear about
new blocks from peers on the same continent where they are located, and this
effect is particularly strong when they are the first to hear about a block: our
U.S. client hears about new blocks for the first time from a North America peer
81% of the time; our Seoul client hears about blocks first from an Asia peer 90%
of the time; and our Frankfurt nodes hears about blocks first from a Europe peer
90% of the time. Additionally in the full version of this paper [28] we see some

452 L. Kiffer et al.

Table 3. For each experiment and machine, we look at when the node first heard about
a block and the location of the peer who told us about the block. For the multiple
vantage point experiment and information propagation experiment, we distinguish
when each location was the first to hear about a block.

Peer Location
Runs Node AF AS EU NA OC SA total fraction

longitudinal Virginia 2e−5 0.099 0.158 0.742 9e−4 5e−5 393,276

A
ll

B
lo
ck

s

multiple
vantage

Virginia 0 0.0679 0.205 0.727 0.000432 5e−5 39,345
Seoul 0 0.632 0.101 0.264 4e−3 3e−5 39,345

Frankfurt 0 0.0523 0.849 0.0989 3e−5 0 39,345

info
prop

Virginia 4e−5 0.0469 0.118 0.834 2e−4 0 69,199
Seoul 3e−4 0.766 0.048 0.182 0.0038 4e−5 69,199

Frankfurt 1e−4 0.103 0.788 0.109 6e−5 3e−5 69,199
São Paulo 2e−4 0.153 0.364 0.481 0.001 4e−4 69,199
Sydney 9e−5 0.550 0.1006 0.346 0.0045 7e−5 69,199

F
ir
st

to
H
ea

r

multiple
vantage

Virginia 0 0.0485 0.143 0.808 2e−4 2e−4 12,244 0.311
Seoul 0 0.897 0.00569 0.0972 2e−4 0 12,474 0.317

Frankfurt 0 0.0144 0.896 0.0891 0 0 14,627 0.372

info
prop

Virginia 0 0.011 0.0548 0.935 0 0 5,926 0.086
Seoul 2e−4 0.797 5e−4 0.199 0.0028 0 33,180 0.479

Frankfurt 4e−5 0.0418 0.905 0.0532 0 0 27,888 0.403
São Paulo 0 0.465 0.222 0.313 0 0 243 0.003
Sydney 5e−4 0.808 0 0.188 0.0041 0 1,962 0.028

evidence that the location of our machine effects the duration of it’s connection
to peers.

To determine which of our thle nodes heard about blocks first overall we
ensure all of our clients are synced to local timeservers using NTP. All three
clients “win” roughly one-third of the time.

The results thus far suggest that the majority of peers are located in North
America, Europe, and Asia (this observation is consistent with the peer infor-
mation posted on ethernodes.org as well) and that may also be where mining
is centered (i.e. where blocks are originating from). Thus, we wanted to run an
additional run with clients located far away from the majority of the network
to see how they perceive the network. To do so, we use the information propa-
gation experiment runs (which occurred about 1 year after the multiple vantage
point experiment runs), where we now include additional nodes in Sydney and
São Paulo. As before, we observe that the North America, Asia, and European
clients all typically hear about blocks first from peers on their continent. How-
ever, when we examine the new vantage points, we observe that the São Paulo
client receives most of its blocks first from Asia, followed by North America then
Europe; the Sydney client receives the vast majority of its blocks first from Asia.

Under the Hood of the Ethereum Gossip Protocol 453

We also examine whether any of our clients are the first to tell one of the
other clients about a block. We observe that though it does happen (especially
from Frankfurt/US/Seoul to São Paulo and Sydney), it is a small fraction of
the 69K blocks mined during these runs. For example, in the multiple vantage
point experiment, our Seoul client is the first to inform the Virginia client, and
Frankfurt is the first to inform the Seoul client about a block first just once,
while the Virginia client tells the Seoul client about 6 blocks first.

As a final analysis, we examine how “quickly” information in the Ethereum
network propagates to our different clients. See the full version of this paper
[28] for the plots of propagation time for mainchain blocks in both sets of runs.
Looking at the multiple vantage point experiment, the difference from when the
first and second machines hear about a block is less than 100 ms for 85% of
the blocks, and about 50 ms for 50% of the blocks. However, looking at the
information propagation experiment, we can see that the Sydney and São Paulo
clients are at a clear disadvantage, with a much longer and fatter tail of incoming
messages. We can see this even further in the final column of Table 3, where we
see that the São Paulo client and the Sydney client are the first overall to hear
about blocks only 0.3% and 2.8% of the time, respectively.

5 Discussion

We set out to better understand the structure of the network that powers
Ethereum. How this network operates has implications both on the security of
the underlying blockchain (e.g. the immutability of the blockchain) and on the
experience of users who need access to the blockchain in order to interact with
it (e.g. send/hear about transactions). Prior measurement work on Ethereum
has focused primarily on information stored on the blockchain or on the peer
discovery protocol of Ethereum. The main novelty of this work is on bridging
both observations of peer connectivity behavior with the block information the
peer provides.

In our longitudinal experiment spanning 7 months, we observe a small frac-
tion of the nodes we connect with actually passing all the handshake checks and
becoming full peers. We were able to start a TCP connection with 194,608 nodes
but only ended up successfully peering with 46% of them (Table 1). Moreover,
we found significant churn in the network, with more than 45% of those peers
only staying connected for up to 10 s per connection (Fig. 6). Additionally we
found that not all of those peers actually tell us about blocks, only about 27% of
our peers are useful, but they tend to stay connected for much longer time than
the non-useful ones. Maintaining longer connections with nodes than previous
work allowed us to capture propagation behavior of our peers which revealed
how few of the nodes we connected to participate in block propagation. Fur-
thermore, while examining the unexpected behavior of peers, we were unable to
discover the motivation for the common practice of connecting sporadically for
very short periods of time.

In the longitudinal experiment we were also able to examine miner behavior.
Unsurprisingly we find a small subset of mining ids(primarily big known mining

454 L. Kiffer et al.

pools) mine the majority of blocks, but at varying efficiencies(i.e. differing ratios
of mainchain, uncle and prune blocks). Though only about 14% of our full peers
were ever first to announce a block from the top 15 miners to our client, we were
unable to find any correlation between which peers are the first announcers for
which pools. This is likely by design (of the miners) as tracing blocks back to
miners would put them at risk for targeted attacks. Though we do find that first
announcers do maintain longer connections than even the useful peers.

In order to connect the behavior of peers to the speed with which information
propagates through Ethereum’s peer-to-peer network, we looked at how long it
takes for our peers to tell us about a block after it is mined (Fig. 3). Though the
propagation delay distribution peaks at around 20 ms, prunes and uncles have
a longer and heavier tail. This corresponds to mainchain blocks winning block
races. Looking deeper into the tail end of the propagation distribution we do find
a variety of odd behavior for all blocks. It is often the case that blocks continue
to be announced to us by new peers for hours after the first announcement, and
even after we have announced the same block to those peers. It is difficult to
speculate whether this behavior is malicious or from slow machines/connections.
Protocol changes to filter this behavior could thus inadvertently penalize clients
with slow connections or hardware who may be trying to honestly participate in
the network. We find additional odd behavior with the majority of prune blocks
being advertised as having block numbers vastly deviating from the mainchain
height, and being advertised by just a handful of peers. As these are sent mostly
as new hash announcements (and not the full block), they are likely cheap spam-
ming behavior and should potentially be filtered by the protocol.

Lastly, by running nodes in several parts of the world, we found that the
location of the node has an effect on when it hears about blocks first and where
it hears them from. Moreover, miners do appear to stand to gain an advantage
by operating out of specific locations that hear about blocks sooner. Our work
suggests that there may be significant locations at a disadvantage, so the extent
of this should be further studied and its implications on the decentralization of
the network. A finer appraisal of delay can also be done by observing transaction
traffic, as there are significantly more transactions flowing through the network
than blocks. Though it is known that transactions can impact consensus [10],
actually linking them to miner behavior is significantly more challenging than
blocks as blocks must originate from the miner but transactions can generally
come from any user in the network. Additionally we believe that understanding
the sporadic behavior of peers and the behavior of those peers not involved in
block propagation is key to understanding the health of Ethereum’s P2P network
and should be a focus for future work. Previous work on Eclipsing attacks on both
Ethereum and Bitcoin networks have shown how high churn in the network aids
an adversary in their attack [21,22,30]. Extending connection timeouts to avoid
early disconnects is a counter measure they prose, and based on our observations
could aid in preventing a portion of our disconnects. Though the experiments we
run are resource intensive (e.g. memory and bandwidth to maintain many con-
nections), they can be extended to any P2P network of other cryptocurrencies,

Under the Hood of the Ethereum Gossip Protocol 455

changing only the peer cap limit to be sufficient to hit a representative portion
of the network. As such, comparing our results to the behavior of other networks
would be illuminating.

References

1. Ethash. https://github.com/ethereum/wiki/wiki/Mining#ethash-dag
2. Ethereum wire protocol (eth). https://github.com/ethereum/devp2p/blob/

master/caps/eth.md
3. Measuring ethereum nodes. https://medium.com/coinmonks/measuring-

ethereum-nodes-530bfff08e9c
4. Node discovery protocol. https://github.com/ethereum/devp2p/blob/master/

discv4.md
5. The rlpx transport protocol. https://github.com/ethereum/devp2p/blob/master/

rlpx.md
6. Ethereum market capitalization (2020). https://coinmarketcap.com/currencies/

ethereum/
7. Ethereum node explorer. ethernodes.org (2020)
8. Anderson, L., Holz, R., Ponomarev, A., Rimba, P., Weber, I.: New kids on the

block: an analysis of modern blockchains. arXiv preprint arXiv:1606.06530 (2016)
9. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on

ethereum: identification, analysis, and impact. Future Gener. Comput. Syst. 102,
259–277 (2020)

10. Daian, P., et al.: Flash boys 2.0: frontrunning, transaction reordering, and consen-
sus instability in decentralized exchanges. arXiv preprint arXiv:1904.05234 (2019)

11. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
IEEE P2P 2013 Proceedings, pp. 1–10. IEEE (2013)

12. Donet Donet, J.A., Pérez-Solà, C., Herrera-Joancomartí, J.: The bitcoin P2P net-
work. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS,
vol. 8438, pp. 87–102. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44774-1_7

13. El Ioini, N., Pahl, C., Helmer, S.: A decision framework for blockchain platforms
for IoT and edge computing. In: SCITEPRESS (2018)

14. Gao, Y., Shi, J., Wang, X., Tan, Q., Zhao, C., Yin, Z.: Topology measurement and
analysis on ethereum P2P network. In: 2019 IEEE Symposium on Computers and
Communications (ISCC), pp. 1–7. IEEE (2019)

15. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in
bitcoin and ethereum networks. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957, pp. 439–457. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-58387-6_24

16. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

17. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in bitcoin. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 692–705 (2015)

18. go-ethereum client. https://github.com/ethereum/go-ethereum

https://github.com/ethereum/wiki/wiki/Mining#ethash-dag
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://medium.com/coinmonks/measuring-ethereum-nodes-530bfff08e9c
https://medium.com/coinmonks/measuring-ethereum-nodes-530bfff08e9c
https://github.com/ethereum/devp2p/blob/master/discv4.md
https://github.com/ethereum/devp2p/blob/master/discv4.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
http://arxiv.org/abs/1606.06530
http://arxiv.org/abs/1904.05234
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-662-58387-6_24
https://github.com/ethereum/go-ethereum

456 L. Kiffer et al.

19. Greene, R., Johnstone, M.N.: An investigation into a denial of service attack on
an ethereum network. In: Proceedings of the 16th Australian Information Security
Management Conference, p. 90 (2018)

20. E. E. Group. Networking: Dev P2P, RPLx, Discovery, and Eth wire protocol: via
zoom: https://www.youtube.com/watch?v=hnw59hmk6rk

21. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-
to-peer network. In: 24th {USENIX} Security Symposium ({USENIX} Security
15), pp. 129–144 (2015)

22. Henningsen, S., Teunis, D., Florian, M., Scheuermann, B.: Eclipsing ethereum peers
with false friends. In: 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pp. 300–309. IEEE (2019)

23. Holotescu, C., et al.: Understanding blockchain opportunities and challenges. In:
Conference Proceedings of «eLearning and Software for Education (eLSE)», vol.
4, pp. 275–283 (2018). “Carol I” National Defence University Publishing House

24. Imamura, M., Omote, K.: Difficulty of decentralized structure due to rational user
behavior on blockchain. In: Liu, J.K., Huang, X. (eds.) NSS 2019. LNCS, vol.
11928, pp. 504–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36938-5_31

25. Imtiaz, M.A., Starobinski, D., Trachtenberg, A., Younis, N.: Churn in the bitcoin
network: characterization and impact. In: 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pp. 431–439. IEEE (2019)

26. Kiffer, L., Levin, D., Mislove, A.: Stick a fork in it: analyzing the ethereum network
partition. In: Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
pp. 94–100 (2017)

27. Kiffer, L., Levin, D., Mislove, A.: Analyzing ethereum’s contract topology. In: Pro-
ceedings of the Internet Measurement Conference, vol. 2018, pp. 494–499 (2018)

28. Kiffer, L., Salman, A., Levin, D., Mislove, A., Nita-Rotaru, C.: Under the hood of
the ethereum gossip protocol. https://fc21.ifca.ai/papers/203.pdf

29. Kim, S.K., Ma, Z., Murali, S., Mason, J., Miller, A., Bailey, M.: Measuring
ethereum network peers. In: Proceedings of the Internet Measurement Conference,
vol. 2018, pp. 91–104 (2018)

30. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on ethereum’s
peer-to-peer network. IACR Cryptol. ePrint Arch. 2018, 236 (2018)

31. Mariem, S.B., Casas, P., Romiti, M., Donnet, B., Stütz, R., Haslhofer, B.: All that
glitters is not bitcoin-unveiling the centralized nature of the BTC (IP) network. In:
NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1–9. IEEE (2020)

32. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report
(2008)

33. Victor, F., Lüders, B.K.: Measuring ethereum-based ERC20 token networks. In:
Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 113–129. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_8

34. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

https://www.youtube.com/watch?v=hnw59hmk6rk
https://doi.org/10.1007/978-3-030-36938-5_31
https://doi.org/10.1007/978-3-030-36938-5_31
https://fc21.ifca.ai/papers/203.pdf
https://doi.org/10.1007/978-3-030-32101-7_8

Liquidations: DeFi on a Knife-Edge

Daniel Perez1(B), Sam M. Werner1, Jiahua Xu2,4, and Benjamin Livshits1,2,3

1 Imperial College London, London, UK
daniel.perez@imperial.ac.uk

2 University College London, Centre for Blockchain Technologies, London, UK
3 Brave Software, San Francisco, USA

4 École polytechnique fédérale de Lausanne, Lausanne, Switzerland

Abstract. The trustless nature of permissionless blockchains renders
overcollateralization a key safety component relied upon by decentral-
ized finance (DeFi) protocols. Nonetheless, factors such as price volatil-
ity may undermine this mechanism. In order to protect protocols from
suffering losses, undercollateralized positions can be liquidated. In this
paper, we present the first in-depth empirical analysis of liquidations
on protocols for loanable funds (PLFs). We examine Compound, one of
the most widely used PLFs, for a period starting from its conception to
September 2020. We analyze participants’ behavior and risk-appetite in
particular, to elucidate recent developments in the dynamics of the pro-
tocol. Furthermore, we assess how this has changed with a modification
in Compound’s incentive structure and show that variations of only 3%
in an asset’s dollar price can result in over 10 m USD becoming liquid-
able. To further understand the implications of this, we investigate the
efficiency of liquidators. We find that liquidators’ efficiency has improved
significantly over time, with currently over 70% of liquidable positions
being immediately liquidated. Lastly, we provide a discussion on how
a false sense of security fostered by a misconception of the stability of
non-custodial stablecoins, increases the overall liquidation risk faced by
Compound participants.

1 Introduction

Decentralized Finance (DeFi) refers to a peer-to-peer, permissionless blockchain-
based ecosystem that utilizes the integrity of smart contracts for the advance-
ment and disintermediation of traditional financial primitives [25]. One of the
most prominent DeFi applications on the Ethereum blockchain [27] are proto-
cols for loanable funds (PLFs) [13]. On PLFs, markets for loanable funds are
established via smart contracts that facilitate borrowing and lending [28]. In the
absence of strong identities on Ethereum, creditor protection tends to be ensured
through overcollateralization, whereby a borrower must provide collateral worth
more than the value of the borrowed amount. In the case where the value of the
collateral-to-borrow ratio drops below some liquidation threshold, a borrower
defaults on his position and the supplied collateral is sold off at a discount to
cover the debt in a process referred to as liquidation. However, little is known
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 457–476, 2021.
https://doi.org/10.1007/978-3-662-64331-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_24&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_24

458 D. Perez et al.

about the behavior of agents towards liquidation risk on a PLF. Furthermore,
despite liquidators playing a critical role in the DeFi ecosystem, the efficiency
with which they liquidate positions has not yet been thoroughly analyzed.

In this paper, we first lay out a framework for quantifying the state of a
generic PLF and its markets over time. We subsequently instantiate this frame-
work to all markets on Compound [17], one of the largest PLFs in terms of locked
funds. We analyze how liquidation risk has changed over time, specifically after
the launch of Compound’s governance token. Furthermore, we seek to quantify
this liquidation risk through a price sensitivity analysis. In a discussion, we elab-
orate on how the interdependence of different DeFi protocols can result in agent
behavior undermining the assumptions of the protocols’ incentive structures.

Contributions. This paper makes the following contributions:

– We present an abstract framework to reason about the state of PLFs.
– We provide an open-source implementation1 of the proposed framework for

Compound, one of the largest PLFs in terms of total locked funds.
– We perform an empirical analysis on the historical data for Compound, from

May 7, 2019 to September 6, 2020 and make the following observations: (i)
despite increases in the number of suppliers and borrowers, the total funds
locked are mostly accounted for by a small subset of participants; (ii) the
introduction of Compound’s governance token had protocol-wide implications
as liquidation risk increased in consequence of higher risk-seeking behavior
of participants; (iii) liquidators became significantly more efficient over time,
liquidating over 70% of liquidable positions instantly.

– Using our findings, we demonstrate how interaction between protocols’ incen-
tive structures can directly result in unexpected risks to participants.

2 Background

In this section we introduce preliminary concepts about blockchains and smart
contracts necessary to the understanding of the rest of the paper.

2.1 Blockchain

A blockchain, such as Bitcoin [19] or Ethereum [27], is in essence a decentralized
append-only database. Data is added to the blockchain in the form of transac-
tions that are grouped in blocks. Some rules are enforced by the protocols on
both transactions and blocks to ensure its correct working. Blockchains need
to be able to maintain consensus of which blocks are included. Both Bitcoin
and Ethereum use the Proof-of-Work consensus that requires block producers,
often called miners, to solve a computationally expensive puzzle to produce a
new block [21]. An important point to note is that miners are allowed to choose
which transactions to include in a block and in which order to include them.
This can potentially allow miners to profit from having a transaction included
before another one. This is commonly referred to as miner-extractable value [8].
1 https://github.com/backdfund/analyzer.

https://github.com/backdfund/analyzer

Liquidations: DeFi on a Knife-Edge 459

2.2 Smart Contracts

Ethereum Smart Contracts. On Ethereum, smart contracts are programs
written in a Turing-complete language, typically Solidity [11], that define a set
of rules that may be invoked by any network participant. These programs rely on
the Ethereum Virtual Machine (EVM), a low-level stack machine which executes
the compiled EVM bytecode of a smart contract [27]. Each instruction has a fee
measured in so-called gas, and the total gas cost of a transaction is a fixed base
fee plus the sum of all instructions’ gas [2,20]. The sender of a transaction must
then set a gas price, the amount of ETH he is willing to pay per unit of gas
consumed for executing the transaction. The transaction fee is thus given by
the gas price multiplied with the gas cost [22,26]. Within a transaction, smart
contracts can store data in logs, which are metadata specially indexed as part
of the transaction. This metadata, commonly referred to as events, is typically
used to allow users to monitor the activity of a contract externally.

Oracles. One of the major challenges smart contracts face concerns access to
off-chain information, i.e. data that does not natively exist on-chain. Oracles are
data feeds into smart contracts and provide a mechanism for accessing off-chain
information through some third party. In DeFi, oracles are commonly used for
price feed data to determine the real-time price of assets. For instance, via the
Compound Open Price Feed [6], vetted third party reporters sign off on price
data using a known public key, where the resulting feed can be relied upon by
smart contracts.

Stablecoins. An alternative to volatile cryptoassets is given by stablecoins,
which are priced against a peg and can be either custodial or non-custodial. For
custodial stablecoins (e.g. USDC [4]), tokens represent a claim of some off-chain
reserve asset, such as fiat currency, which has been entrusted to a custodian. Non-
custodial stablecoins (e.g. DAI [18]) seek to establish price stability via economic
mechanisms specified by smart contracts. For a thorough discussion on stablecoin
design, we direct the reader to [15].

3 Protocols for Loanable Funds (PLF)

In this section, we introduce several concepts of Protocols for Loanable Funds
(PLFs) necessary for understanding how liquidations function in DeFi on
Ethereum.

3.1 Supplying and Borrowing in DeFi

In DeFi, asset supplying and borrowing is achieved via so-called protocols for
loanable funds (PLFs) [13], where smart contracts act as trustless intermediaries
of loanable funds between suppliers and borrowers in markets of different assets.
Unlike traditional peer-to-peer lending, deposits are pooled and instantly avail-
able to borrowers. On a DeFi protocol, the aggregate of tokens that the PLF
smart contracts hold, which equals the difference between supplied funds and
borrowed funds, is termed locked funds [9].

460 D. Perez et al.

3.2 Interest Model

Borrowers are charged interest on the debt at a floating rate determined by a
market’s underlying interest rate model. A small fraction of the paid interest is
allocated to a pool of reserves, which is set aside in case of market illiquidity,
while the remainder is paid out to suppliers of loanable funds. Interest in a given
market is generally accrued through market-specific, interest-bearing derivative
tokens that appreciate against the underlying asset over time. Hence, a supplier
of funds receives derivative tokens in exchange for supplied liquidity, representing
his share in the total value of the liquidity pool for the underlying asset. The
most prominent PLFs are Compound [5] and Aave [1], with 2.5bn USD and
2.7bn USD in total funds locked respectively, at the time of writing [9].

3.3 Collateralization

Given the pseudonymity of agents in Ethereum, borrow positions need to be
overcollateralized to reduce the default risk. Thereby, the borrower of an asset
is required to supply collateral, where the total value of the supplied collateral
exceeds the total value of the borrowed asset. Each asset is associated with a
collateralization ratio, namely the minimum collateral-to-borrow ratio when the
asset is used to collateralize a new borrow position. For example, in order to
borrow 100 USD worth of DAI with ETH as collateral at a collateralization ratio
of 125%, a borrower would have to lock 125 USD worth of ETH to collateralize
the borrow position. Thus, the protocol limits monetary risk from defaulted
borrow positions, as the underlying collateral of a defaulted position can be sold
off to recover the debt. The inverse of the collateralization ratio is referred to
as the collateral factor, which is the amount of a deposit that may be used as
collateral. For example, if the collateralization ratio on a PLF for the market of
DAI is 125%, the collateral factor would be 0.8, implying that for each $1 deposit
of DAI, the supplier may borrow $0.8 worth of some other asset.

3.4 Liquidation

The process of selling a borrower’s collateral to recover the debt value upon
default is referred to as liquidation. A borrow position can be liquidated once
the value of the collateral falls below some pre-determined liquidation threshold,
i.e. the minimum acceptable collateral-to-borrow ratio. Any network participant
may liquidate these positions by paying the debt asset to acquire the underlying
collateral at a discount. Hence, liquidators are incentivized to actively monitor
others’ collateral-to-borrow ratios. Note that in practice, the amount of liquid-
able collateral that a single liquidator can purchase may be capped.

3.5 Leveraging

In finance, leverage refers to borrowed funds being used as the funding source
for additional, typically more risky capital. In DeFi, leverage is the fundamental

Liquidations: DeFi on a Knife-Edge 461

component of PLFs, as a borrower is required to first take up the role of a supplier
and deposit funds which are to be used as leverage for his borrow positions, as
we have just seen. The typical aim of leveraging is to generate higher returns
through increased exposure to a particular investment. For example, a borrower
wanting to gain increased exposure to ETH may:

1. Supply ETH on a PLF.
2. Leverage the deposited ETH to borrow DAI.
3. Sell the purchased DAI for ETH.
4. Repeat steps 1 to 3 as desired.

This behavior essentially enables users to construct so-called leveraging spi-
rals, whereby a user repeatedly re-supplies borrowed funds in order to get
increased exposure to some cryptoasset. However, increased exposure comes at
the cost of higher downside risk, i.e., the risk of the value of the leveraged asset
or borrowed asset to decrease due to changing market conditions.

3.6 Use Cases of PLFs

We present the different incentives2 an agent may have for borrowing from
and/or supplying to a PLF:

Interest Suppliers of funds are incentivized by interest which accrues on a per
block basis.

Leveraged long position To take on a long position of an asset refers to
purchasing an asset with the expectation that it will appreciate in value.
These positions can be taken on a PLF by leveraging the asset on which the
long position shall be taken.

Leveraged short position A short position refers to borrowing funds of an
asset, which one believes will depreciate in value. Consequently, the taker of
a short position sells the borrowed asset, only to repurchase it and pay back
the borrower once the price has fallen, while profiting from the price change
of the shorted asset. This can be achieved by taking on a leveraged borrow
position of a stablecoin, where the locked collateral is the asset to short.

Liquidity mining As a means to attract liquidity, PLFs may distribute gover-
nance tokens to their liquidity providers. The way these tokens are distributed
depends on the PLF. For instance, on Compound, the governance token COMP3

is distributed among users across markets proportionally to the total dollar
value of funds borrowed and supplied. This directly incentivizes users to mine
liquidity in a market through leveraging in order to receive a larger share of
governance tokens. For example, a supplier of funds in market A can borrow
against his position additional funds of A, at the cost of paying the differ-
ence between the earned and paid interest. The incentive for pursuing this

2 Note that leverage on a PLF in DeFi may in part be motivated by tax benefits,
as certain jurisdictions may not tax capital gains on borrowed funds. However, a
detailed analysis of this lies outside the scope of this paper.

3 Contract address: 0xc00e94cb662c3520282e6f5717214004a7f26888.

https://etherscan.io/address/0xc00e94cb662c3520282e6f5717214004a7f26888

462 D. Perez et al.

behaviour exists if the reward (i.e. the governance token) exceeds the cost of
borrowing.

Token utility An agent may be able to obtain a token from a PLF which
has some desired utility. For example, for the case of governance tokens, the
desired token utility could be the right to participate in protocol governance
or a claim on protocol earnings.

4 Methodology

In this section, we describe our methodology for the different analyses we perform
with regard to leveraging on a PLF. To be able to quantify the extent of leveraged
positions over time, we first introduce a state transition framework for tracking
the supply and borrow positions across all markets on a given PLF. We then
describe how we instantiate this framework on the Compound protocol using
on-chain events data.

4.1 Definitions

Throughout the paper, we use the following definitions in the context of PLFs:

Market A smart contract acting as the intermediary of loanable funds for a
particular cryptoasset, where users supply and borrow funds.

Supply Funds deposited to a market that can be loaned out to other users and
used as collateral against depositors’ own borrow positions.

Borrow Funds loaned out to users of a market.
Collateral Funds available to back a user’s aggregate borrow positions.
Locked funds Funds remaining in the PLF smart contracts, equal to the dif-

ference between supplied and borrowed funds.
Supplier A user who deposits funds to a market.
Borrower A user who borrows funds from a market. Since a borrow position

must be collateralized by deposited funds, a borrower must also be a supplier.
Liquidator A user who purchases a borrower’s supply in a market when the

borrower’s collateral-to-borrow ratio falls below some threshold.

4.2 States on a PLF

In this section, we provide a formal definition of the state of a PLF. We denote
Pt as the global state of a PLF at time t. For brevity, in the following definitions,
we assume that all the values are at a given time t. We define the global state
for the PLF as

P = (M, Γ,P, Λ)

where M is the set of states of individual markets, Γ is the price the Oracle used,
P is the set of states of individual participants and Λ ∈ (0, 1) is the close factor
of the protocol, which specifies the upper bound on the amount of collateral a
liquidator may purchase.

Liquidations: DeFi on a Knife-Edge 463

We define the state of an individual market m ∈ M as

m = (I,B,S, C)

where I is the market’s interest rate model, B is the total borrows, S is the total
supply of deposits, and C is the collateral factor.

Pm is the state of all participants in market m and the positions of a partic-
ipant P in this market is defined as

Pm = (Bm, Sm)

where Bm and Sm are respectively the total borrow positions and total supplied
deposits of a market participant in market m.

For a given market m, the total deposits supplied Sm is thus given by:

Sm =
∑

Pm∈Pm

Sm (1)

Similarly, the market’s total borrows Bm is given by:

Bm =
∑

Pm∈Pm

Bm (2)

The state of a participant P is liquidable if the following holds:

∑
m∈M

{
[Sm · C + I(Sm)] · Γ (m) · Km

}

∑
m∈M

{
[Bm + I(Bm)] · Γ (m)

} < 1 (3)

where Γ (m) returns the price of the underlying asset denominated in a prede-
fined numéraire (e.g. USD), I(Sm) returns the interest earned with supply Sm,
I(Bm) returns the interest accrued with borrow Bm, and Km ≤ 1 denotes the
liquidation threshold of market m. In Compound, liquidation threshold Km is
set to be constant at 100% protocol-wide, whereas with other protocols such as
Aave, Km is specific to the collateral asset from market m, and can be dynami-
cally adjusted when the risk level of the asset changes.

The transition from a state of a market m from time t to t + 1 is given by
some state transition σ, such that mt

σ−→ mt+1.

4.3 Leveraging Spirals on a PLF

Here we examine the workings of leveraging in DeFi using a PLF. We assume
a speculator on some volatile asset B, holds initial capital α in B. In order to
increase his exposure to B, the speculator may borrow a stable asset A against
his α on a PLF at a collateralization ratio δ > 1. For simplicity, we shall assume
in this illustrative example that a speculator will leverage his position on the
same PLF. Note that the cost of borrowing is given by some floating interest
rate γ for the specific asset market. In return for his collateral, the borrower

464 D. Perez et al.

receives α
δ in the volatile asset B. As the debt is denominated in units of a stable

asset (e.g. DAI), the borrower has an upper limit on his net debt, remaining
unaffected by any volatility in the value of asset A. In order to leverage his
position, the debt denominated in A may be used to buy4 additional units of
asset B, which can subsequently be used to collateralize a new borrow position.
This process is illustrated in Fig. 1 and can be repeated numerous times, by
which the total exposure to asset A, the underlying collateral to the total debt
in asset A, increases at a decaying rate.

Fig. 1. The steps of leveraging using a PLF. 1. Initial capital αB in asset B is deposited
as collateral to borrow asset A. 2. Interest accrues over the debt of the borrow position
for asset B. 3. The borrowed asset A is sold for asset B on the open market. 4. The
newly purchased units of asset B are locked as collateral for a new borrow position of
asset A.

The total collateral C a borrower must post through a borrow position with a
leverage factor k, a collateralization ratio δ and an initial capital amount α can
be expressed as

∑k
i=0

α
δi . Hence, the total debt Π for the corresponding borrow

position is:

Π =
(k∑

i=1

α

δi

)
·(1 + γ) (4)

where γ is the interest rate. Note that Eq. (4) assumes a borrower uses the same
collateralization ratio δ for his positions, as well as that all debt is taken out for
the same asset on the same PLF and hence the floating interest rate is shared
across all borrow positions.

4 In practice this may be done via automated market makers [29] (e.g. Uniswap [23])
or via decentralized exchanges [10].

Liquidations: DeFi on a Knife-Edge 465

Fig. 2. The events emitted by the Compound protocol smart contracts used for initi-
ating state transitions and the states affected by each event.

4.4 States and the Compound PLF

For our analysis, we apply our state transition framework to the Compound
PLF. Therefore, we briefly present the workings of Compound in the context of
our framework.

State Transitions. We initiate state transitions via events emitted from the
Compound protocol smart contracts. We provide an overview of the state vari-
ables affected by Compound events in Fig. 2.

Funds Supplied. Every market on Compound has an associated “cToken”,
a token that continuously appreciates against the underlying asset as interest
accrues. For every deposit in a market, a newly-minted amount of the market’s
associated cToken is transferred to the depositor. Therefore, rather than tracking
the total amount of the underlying asset supplied, we account the total deposits
of an asset supplied by a market participant in the market’s cTokens. Likewise,
we account the total supply of deposits in the market in cTokens.

Funds Borrowed. A borrower on Compound must use cTokens as collateral
for his borrow position. The borrowing capacity equals the current value of the
supply multiplied by the collateral factor for the asset. For example, given an
exchange rate of 1 DAI = 50 cDAI, a collateral factor of 0.75 for DAI and a price
of 1 DAI = 1 USD, a holder of 500 cDAI (10 DAI) would be permitted to borrow
up to 7.5 USD worth of some other asset on Compound. Therefore, as funds
are borrowed, an individual’s total borrow position, as well as the respective
market’s total borrows are updated.

Interest. The accrual of interest is tracked per market via a borrow index, which
corresponds to the total interest accrued in the market. The borrow index of a
market is also used to determine and update the total debt of a borrower in the
respective market. When funds are borrowed, the current borrow index for the
market is stored with the borrow position. When additional funds are borrowed

466 D. Perez et al.

(a) Number of suppliers and borrowers.
(b) Amount of funds supplied, borrowed
and locked.

Fig. 3. Number of active accounts and amount of funds on Compound over time.

or repaid, the latest borrow index is used to compute the difference of accrued
interest since the last borrow and added to the total debt.

Liquidation. A borrower on Compound is eligible for liquidation should his
total supply of collateral, i.e. the value of the sum of the borrower’s cToken
holdings per market, weighted by each market’s collateral factor, be less than
the value of the borrower’s aggregate debt (Eq. (3)). The maximum amount of
debt a liquidator may pay back in exchange for collateral is specified by the close
factor of a market.

5 Analysis

In this section, we present the results of the analysis performed with the frame-
work outlined in Sect. 4. We analyze data from the Compound protocol [17] over
a period ranging from May 7, 2019—when the first Compound markets were
deployed on the Ethereum main network—to September 6, 2020. The full list of
contracts considered for our analysis can be found in Appendix A. When ana-
lyzing a single market, we choose the market for DAI, as it is the largest by an
order of magnitude.

5.1 Borrowers and Suppliers

We first examine the total number of borrowers and suppliers on Compound
by considering any Ethereum account that, at any time within the observation
period, either exhibited a non-zero cToken balance or borrowed funds for any
Compound market. The change in the number of borrowers and suppliers over
time is displayed in Fig. 3a.

We see that the total number of suppliers always exceeds the total number
of borrowers. This is because on Compound, one can only borrow against funds

https://fc21.ifca.ai/papers/144.pdf

Liquidations: DeFi on a Knife-Edge 467

(a) Distribution of supplied funds. (b) Distribution of borrowed funds.

Fig. 4. Cumulative distribution of funds in USD. Accounts are sorted from least to
most wealthy and bucketed in bins of 10, i.e. a single bar represents the sum of 10
accounts.

he supplied as collateral, which automatically makes the borrower also a sup-
plier. Interestingly, the number of suppliers has increased relative to the number
of borrowers over time. There is notable sudden jump in both the number of
suppliers and borrowers in June 2020.

In terms of total deposits, a very similar trend is observable in Fig. 3b, which
shows that at the same time, the total supplied deposits increased, while the total
borrows followed shortly after. Furthermore, the total funds borrowed exceeded
the total funds locked for the first time in July 2020 and have remained so until
the end of the examined period. We discuss the reasons behind this in the next
part of this section.

Despite the similarly increasing trend for the number of suppliers/borrowers
and amount of supplied/borrowed funds, we can see in Fig. 4 that the majority
of funds are borrowed and supplied only by a small number of accounts. For
instance, for the suppliers in Fig. 4a, the top user and top 10 users supply 27.4%
and 49% of total funds, respectively. For the borrowers shown in Fig. 4b, the
top user accounts for 37.1%, while the top 10 users account for 59.9% of total
borrows. While one could think that this concentration comes from the fact
that top accounts are pools receiving money from several participants, only one
of the top 10 suppliers and none of the top 10 borrowers fit in this category.
We provide a list of the top suppliers and borrowers with a description of the
accounts in Figure 10 of Appendix B.

5.2 Leveraging Spirals

As we have seen in Sect. 3, in PLFs, leveraging can be used either to gain more
exposure to a particular currency or to gain some incentive provided by the
protocol. To understand how leveraging can affect the total amounts borrowed
and supplied on Compound, we use the methodology we defined in Sect. 4.3 to
measure the existence of leveraging spirals on Compound.

https://fc21.ifca.ai/papers/144.pdf

468 D. Perez et al.

We find that the top supplier deposited a total of 342 million USD and
borrowed 247 million. However, after the inspection of leveraging spirals, we
find that the user has provided only 16% of the funds, while the rest of the
minted funds have been part of leveraging spirals, which means that the user
provided a total of roughly 55 million USD to the protocol.

In total, we find a total of 2,141 accounts using this leveraging spiral technique
for a total of over 600 million USD, or roughly half of the total amount of funds
supplied to the protocol.

5.3 The COMP Governance Token

The sudden jumps exhibited in Figs. 3a and 3b can be explained by the launch
of Compound’s governance token, COMP, on June 15, 2020. The COMP governance
token allows holders to participate in voting, create proposals, as well as delegate
voting rights. In order to empower Compound stakeholders, new COMP is minted
every block and distributed among borrowers and suppliers in each market.

Initially, COMP was allocated proportionally to the accrued interest per mar-
ket. However, the COMP distribution model was modified via a governance vote
on July 2, 2020, such that the borrowing interest rate was removed as a weight-
ing mechanism in favor of distributing COMP per market on a borrowing demand
basis, i.e. per USD borrowed. The distributed COMP per market is shared equally
between a market’s borrowers and suppliers, who receive COMP proportionally to
their borrowed and supplied amounts, respectively. Hence, a Compound user is
incentivized to increase his borrow position as long as the borrowing cost does
not exceed the value of his COMP earnings. This presumably explains the drop in
the degree of collateralization, as the total amount locked is seen surpassed by
the total borrows after the COMP launch (Fig. 3b), leading to elevated liquidation
risk of borrow positions.

5.4 Liquidation Risk

Given the high increase in the number of total funds borrowed and supplied,
as well as the decrease in liquidity relative to total borrows, we seek to iden-
tify and quantify any changes in liquidation risk on Compound since the launch
of COMP. Figure 5 shows the total USD value of collateral on Compound and
how close collateral amounts are from liquidation. In addition to the substan-
tial increase in the total value of collateral on Compound since the launch of
COMP, the risk-seeking behavior of users has also changed. This can be seen by
examining collateral to borrow ratios, where since beginning of July, 2020, a
total of approximately 350 m to 600 m USD worth of collateral has been within
a 5% price range of becoming liquidable. However, it should be noted that the
likelihood of the amount of this collateral becoming liquidable highly depends
on the price volatility of the collateral asset.

In order to examine how liquidation risk differs across markets, we measure
for the largest market on Compound, namely DAI, the sensitivity of collateral
becoming liquidable given a decrease in the price of DAI. Figure 6 shows the

Liquidations: DeFi on a Knife-Edge 469

Fig. 5. Collateral locked over time, showing how close the amounts are from being
liquidated. Positions can be liquidated when the ratio drops below 100%.

amount of aggregate collateral liquidable at the historic price, as well as at a 3%
and 5% decrease relative to the historic price for DAI. We mark the date on
which the COMP governance token launched with a dashed line. It can be seen
that since the launch of COMP, 3% and 5% price decreases of DAI relative to
its peg USD would have resulted in a substantially higher amount of liquidable
collateral. In particular, a 3% decrease would have turned collateral worth in
excess of 10 million USD liquidable.

Fig. 6. Sensitivity analysis of the liquidable collateral amount given DAI price move-
ment relative to its peg USD. COMP launch date is marked by the dashed vertical line.

470 D. Perez et al.

5.5 Liquidations and Liquidators

In order to better understand the implications of the increased liquidation risk
since the launch of COMP, we examine historical liquidations on Compound and
subsequently measure the efficiency of liquidators.

Historical Liquidations. The increased risk-seeking behavior suggested by the
low collateral to borrow ratios presented in the previous section are in accordance
with the trend of rising amount of liquidated collateral since the introduction of
COMP. The total value of collateral liquidated on Compound over time is shown
in Fig. 7. It can be seen that the majority of this collateral was liquidated on a
few occasions, perhaps most notably on Black Thursday (March 12, 2020), July
29, 2020 (DAI deviating from its peg significantly), and in early September 2020
(ETH price drop).

Liquidation Efficiency. We measure the efficiency of liquidators as the num-
ber of blocks elapsed since a borrow position has become liquidable and the
position actually being liquidated. The overall historical efficiency of liquidators
is shown as a cumulative distribution function in Fig. 8, from which it can be
seen that approximately 60% of the total liquidated collateral (35 million USD)
was liquidated within the same block as it became liquidable, suggesting that
the majority of liquidations occur via bots in a highly efficient fashion. After 2
blocks have elapsed (on average half a minute), 85% of liquidable collateral has
been liquidated, and after 16 blocks this value amounts to 95%.

It is worth noting that liquidation efficiency has been skewed by the more
recent liquidation activities which were of a much larger scale than when the
protocol was first launched. Specifically, in 2019, only about 26% of the liquida-
tions occurred in the block during which the position became liquidable, com-
pared to 70% in 2020. This resulted in some lost opportunities for liquidators
as shown in Fig. 6. The account 0xd062eeb318295a09d4262135ef0092979552afe6, for
instance, had more than 3,000,000 USD worth of ETH as collateral exposed at
block 8,796,900 for the duration of a single block: the account was roughly 20
USD shy of the liquidation threshold but eventually escaped liquidation. If a
liquidator had captured this opportunity, he could have bought half of this col-
lateral (given the close factor of 0.5), at a 10% discount, resulting in a profit of
150,000 USD for a single transaction. It is clear that with such stakes, partic-
ipants were incentivized to improve liquidation techniques, resulting in a high
level of liquidation speed and scale.

https://etherscan.io/address/0xd062eeb318295a09d4262135ef0092979552afe6

Liquidations: DeFi on a Knife-Edge 471

Fig. 7. Amount (in USD) of liquidated collateral from May 2019 to August 2020.

5.6 Summary

In this section, we have analyzed the Compound protocol with a focus on liq-
uidations. We have found that despite the increase in number of suppliers and
borrowers over time, the total amount of funds supplied and borrowed remain
extremely concentrated among a small set of participants.

We have also seen that the introduction of the COMP governance token has
changed how users interact with the protocol and the amount of risk that they
are willing to take. Users now borrow vastly more than before, with the total
amount borrowed surpassing the total amount locked. Due to excessive borrow-
ing without a sufficiently safe amount of supplied funds, borrow positions now
face a higher liquidation risk, such that a crash of 3% in the price of DAI could
result in an aggregate liquidation value of over 10 million USD.

Finally, we have shown that the liquidators have become more efficient with
time, and are currently able to capture a majority of the liquidable funds
instantly.

6 Discussion

In this section, we enumerate several points that we deem important for the
future development of PLFs and DeFi protocols. We first discuss the influence
of governance tokens, by intention or not, on how users behave within a protocol.
Subsequently, we discuss potential risks that lie in the use of governance tokens,
and the contagion effect that user behavior in a protocol can have on another
protocol. Finally, we discuss how miner-extractable value [8] can potentially
affect liquidation incentives in such protocols.

472 D. Perez et al.

Fig. 8. Number of blocks elapsed from the time a position can be liquidated to actual
liquidation on Compound from May 7, 2019 to September 6, 2020, shown as a CDF.

6.1 Governance Token Influence

As analyzed in Sect. 5, the distribution of the COMP token has vastly changed the
Compound landscape and user behavior. Until the introduction of the token,
borrowing was costly due to the payable interest, which implies a negative cash
flow for the borrower. Therefore, a borrower would only borrow if he could justify
this negative cash flow with some application external to Compound. With the
introduction of this token, borrowing could yield a positive cash flow due to
the monetary value of the governance token. This creates a situation where
both suppliers and borrowers end up with a positive cash flow, inducing users to
maximize both their supply and borrow. This model is, however, only sustainable
when the price of the COMP token remains sufficiently high to keep this cash flow
positive for borrowers. This directly results in users taking increasingly higher
risk in an attempt to gain larger monetary rewards, with liquidators ultimately
profiting more from their operations.

6.2 Governance Token Risks

The increased use of governance tokens across DeFi protocols (e.g. YFI on Yearn
Finance, AAVE on Aave, UNI on Uniswap) can be seen as a promising step towards
achieving a higher degree of decentralization in terms of protocol governance.
However, despite the increased usage of governance tokens, to the best of our
knowledge there is still a dearth of academic research examining the different
governance models and specifically the relation between their security assump-
tions and the employed governance token. For instance, the option to aggregate
governance tokens via flash loans [24] can pose a significant security risk to DeFi
protocols should an attacker attempt to propose and execute malicious protocol

Liquidations: DeFi on a Knife-Edge 473

updates. Furthermore, even in the case of flash loan resistant governance models,
the relationship between the financial value of a protocol’s governance token and
the economically secure regions of the protocol remains unexamined and serves
as a further risk that designers of governance models have to take into account.
Despite the existence of protective mechanisms against governance attacks on
some protocols (e.g. multi-sig approvals or selected “guardians” that are able to
halt the governance process), it remains questionable which of such mechanisms
are indeed desirable from a decentralized governance perspective and whether
there might be more suitable alternatives.

6.3 Contagion Effects

This behavior also indirectly affected other protocols, in particular DAI. The
price of DAI is aimed to be pegged to 1 USD resting on an arbitrage mecha-
nism, whereby token holders are incentivized to buy or sell DAI as soon as the
price moves below or above 1 USD, respectively. However, a rational user seek-
ing to maximize profit will not sell his DAI if holding it somewhere else would
yield higher profits. This was precisely what was happening with Compound,
whose users locking their DAI received higher yields in the form of COMP, than
from selling DAI at a premium, thereby resulting in upward price pressure [7].
Interestingly, DAI deviating from its peg also has a negative effect for Compound
users. Indeed, as we saw in Sect. 5, many Compound users might have been over-
confident about the price stability of DAI and thus only collateralize marginally
above the threshold when they borrow DAI. This has resulted in large amounts
being liquidated due to the actual, higher extent of the volatility in the DAI
price.

6.4 Miner-Extractable Value

In the context of PLFs, liquidations can be seen as miner-extractable value.
Indeed, it is easy for the miner to check whether a position is liquidable or not
after each processed transaction and to add a transaction to liquidate the posi-
tion immediately after the transaction making it liquidable. In our analysis of
the Compound protocol, we have not found any sign of miners participating in
liquidations, directly or indirectly. We show the top miners and the top liquida-
tors for each miner in Fig. 11 of Appendix C. Although we found no correlation
between miners and liquidators, this is a real risk that could make the role of
liquidator, which is essential for the protocol security, less interesting for those
who are not collaborating with miners.

7 Related Work

In this section we briefly discuss existing work related to this paper.
A thorough analysis of the Compound protocol with respect to market risks

faced by participants was done by [14]. The authors employ agent-based mod-
eling and simulation to perform stress tests in order to show that Compound

https://fc21.ifca.ai/papers/144.pdf

474 D. Perez et al.

remains safe under high volatility scenarios and high levels of outstanding debt.
Furthermore, the authors demonstrate the potential of Compound to scale to
accommodate a larger borrow market while maintaining a low default probabil-
ity. This differs from our work as we conduct a detailed empirical analysis on
Compound, focusing on how agent behavior under different incentive structures
on Compound has affected the protocol’s state with regard to liquidation risk.

A first in-depth analysis on PLFs is given by [13]. The authors provide a tax-
onomy on interest rate models employed by PLFs, while also discussing market
liquidity, efficiency and interconnectedness across PLFs. As part of their anal-
ysis, the authors examine the cumulative percentage of locked funds solely for
the Compound markets DAI, ETH, and USDC.

In [3], the authors provide a formal state transition model of PLFs5 and prove
fundamental behavioural properties of PLFs, which had previously only been
presented informally in the literature. Additionally, the authors examine attack
vectors and risks, such as utilization attacks and interest bearing derivative token
risk. This work differs to our work, as the authors of [3] formalize the properties of
PLFs through an abstract model, while we provide a thorough empirical analysis
with a focus on liquidations and risks brought upon by governance tokens, such
as for Compound and the COMP token.

In [16], the authors show how markets for stablecoins are exposed to delever-
aging feedback effects, which can cause periods of illiquidity during crisis.

The authors of [12] demonstrate how various DeFi lending protocols are
subject to different attack vectors such as governance attacks and undercollater-
alization. In the context of the proposed governance attack, the lending protocol
the authors focus on is Maker [18].

8 Conclusion

In this paper, we presented the first in-depth empirical analysis of liquida-
tions on Compound, one of the largest PLFs in terms of total locked funds,
from May 7, 2019 to September 6, 2020. We analyzed agents’ behavior and
in particular how much risk they are willing to take within the protocol. Fur-
thermore, we assessed how this has changed with the launch of the Compound
governance token COMP, where we found that agents take notably higher risks in
anticipation of higher earnings. This resulted in variations as little as 3% in an
asset’s price being able to turn over 10 million USD worth of collateral liquidable.
In order to better understand the potential consequences, we then measured the
efficiency of liquidators, namely how quickly new liquidation opportunities are
captured. Liquidators’ efficiency was found to have improved significantly over
time, reaching 70% of instant liquidations. Lastly, we demonstrated how overcon-
fidence in the price stability of DAI, increased the overall liquidation risk faced
by Compound users. Rather ironically, many users wishing to make the most of
the new incentive scheme ended up causing higher volatility in DAI—a dominant

5 Note that in [3], PLFs are referred to as lending pools.

Liquidations: DeFi on a Knife-Edge 475

asset of the platform, resulting in liquidation of their own assets. This is not
Compound’s misdoing, but rather highlights the to date unknown dynamics of
incentive structures across different DeFi protocols.

Appendix

Appendix is available online at https://fc21.ifca.ai/papers/144.pdf.

References

1. AAVE: AAVE (2020). https://aave.com/. Accessed 17 Aug 2020
2. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: GASOL: gas

analysis and optimization for ethereum smart contracts. In: TACAS 2020. LNCS,
vol. 12079, pp. 118–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45237-7 7

3. Bartoletti, M., Chiang, J.H.Y., Lluch-Lafuente, A.: SoK: lending pools in decen-
tralized finance. arXiv preprint arXiv:2012.13230 (2020)

4. Circle: USDC (2020). https://www.circle.com/en/usdc
5. Compound: Compound (2019). https://compound.finance/. Accessed 17 Aug 2020
6. Compound: Open price feed (2020). https://compound.finance/prices. Accessed 15

Sept 2020
7. Cyrus: Upcoming comp farming change could impact the dai peg (2020). https://

forum.makerdao.com/t/upcoming-comp-farming-change-could-impact-the-dai-
peg/2965. Accessed 27 Aug 2020

8. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 910–927. IEEE (2020)

9. DeFi Pulse: How do we calculate total value locked (TVL)? (2020). https://
defipulse.com/

10. dYdX: dydx (2019). https://dydx.exchange/
11. Solidity v0.8.0 documentation (2020). Accessed 12 Jan 2020
12. Gudgeon, L., Perez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized

financial crisis. In: Crypto Valley Conference on Blockchain Technology, pp. 1–15
(2020). https://doi.org/10.1109/CVCBT50464.2020.00005

13. Gudgeon, L., Werner, S.M., Perez, D., Knottenbelt, W.J.: DeFi protocols for loan-
able funds: interest rates, liquidity and market efficiency (2020)

14. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An Analysis of the Market Risk
to Participants in the Compound Protocol (2020). https://scfab.github.io/2020/
FAB2020 p5.pdf

15. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., Minca, A.: Stablecoins
2.0: economic foundations and risk-based models. In: 2nd ACM Conference on
Advances in Financial Technologies (AFT 2020), New York (2020). https://doi.
org/10.1145/3419614.3423261

16. Klages-Mundt, A., Minca, A.: (In) stability for the blockchain: Deleveraging spirals
and stablecoin attacks. arXiv preprint arXiv:1906.02152 (2019)

17. Leshner, R., Hayes, G.: Compound: The Money Market Protocol. Technical report
(2018)

https://fc21.ifca.ai/papers/144.pdf
https://aave.com/
https://doi.org/10.1007/978-3-030-45237-7_7
https://doi.org/10.1007/978-3-030-45237-7_7
http://arxiv.org/abs/2012.13230
https://www.circle.com/en/usdc
https://compound.finance/
https://compound.finance/prices
https://forum.makerdao.com/t/upcoming-comp-farming-change-could-impact-the-dai-peg/2965
https://forum.makerdao.com/t/upcoming-comp-farming-change-could-impact-the-dai-peg/2965
https://forum.makerdao.com/t/upcoming-comp-farming-change-could-impact-the-dai-peg/2965
https://defipulse.com/
https://defipulse.com/
https://dydx.exchange/
https://doi.org/10.1109/CVCBT50464.2020.00005
https://scfab.github.io/2020/FAB2020_p5.pdf
https://scfab.github.io/2020/FAB2020_p5.pdf
https://doi.org/10.1145/3419614.3423261
https://doi.org/10.1145/3419614.3423261
http://arxiv.org/abs/1906.02152

476 D. Perez et al.

18. Maker: The maker protocol: MakerDAO’s multi-collateral Dai (MCD) system.
https://makerdao.com/en/whitepaper/. Accessed 08 June 2020

19. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). www.
bitcoin.org

20. Perez, D., Livshits, B.: Broken metre: attacking resource metering in EVM. In:
Network and Distributed System Security Symposium. Internet Society, Reston,
VA (2020). https://doi.org/10.14722/ndss.2020.24267

21. Perez, D., Xu, J., Livshits, B.: Revisiting transactional statistics of high-scalability
blockchains. In: ACM Internet Measurement Conference, vol. 16, pp. 535–550.
ACM, New York (2020). https://dl.acm.org/doi/10.1145/3419394.3423628

22. Pierro, G.A., Rocha, H.: The influence factors on ethereum transaction fees. In:
2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), pp. 24–31. IEEE (2019)

23. Uniswap: Uniswap whitepaper (2020). https://hackmd.io/@HaydenAdams/
HJ9jLsfTz#%F0%9F%A6%84-Uniswap-Whitepaper. Accessed 26 Aug 2020

24. Wang, D., et al.: Towards understanding flash loan and its applications in DeFi
ecosystem (2020). http://arxiv.org/abs/2010.12252

25. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: SoK: Decentralized Finance (DeFi) (2021). http://arxiv.org/abs/2101.08778

26. Werner, S.M., Pritz, P.J., Perez, D.: Step on the gas? A better approach for rec-
ommending the ethereum gas price. In: Pardalos, P., Kotsireas, I., Guo, Y., Knot-
tenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp.
161–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53356-4 10

27. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

28. Xu, J., Vadgama, N.: From banks to DeFi: the evolution of the lending market
(2021)

29. Xu, J., Vavryk, N., Paruch, K., Cousaert, S.: SoK: Decentralized Exchanges (DEX)
with Automated Market Maker (AMM) protocols (2021). http://arxiv.org/abs/
2103.12732

https://makerdao.com/en/whitepaper/
www.bitcoin.org
www.bitcoin.org
https://doi.org/10.14722/ndss.2020.24267
https://dl.acm.org/doi/10.1145/3419394.3423628
https://hackmd.io/@HaydenAdams/HJ9jLsfTz#%F0%9F%A6%84-Uniswap-Whitepaper
https://hackmd.io/@HaydenAdams/HJ9jLsfTz#%F0%9F%A6%84-Uniswap-Whitepaper
http://arxiv.org/abs/2010.12252
http://arxiv.org/abs/2101.08778
https://doi.org/10.1007/978-3-030-53356-4_10
http://arxiv.org/abs/2103.12732
http://arxiv.org/abs/2103.12732

Cryptography

High-Threshold AVSS with Optimal
Communication Complexity

Nicolas AlHaddad1(B), Mayank Varia1, and Haibin Zhang2

1 Boston University, Boston, USA
{nhaddad,varia}@bu.edu

2 Shandong Institute of Blockchain, Jinan, China
bchainzhang@aliyun.com

Abstract. Asynchronous verifiable secret sharing (AVSS) protocols pro-
tect a secret that is distributed among n parties. Dual-threshold AVSS
protocols guarantee consensus in the presence of t Byzantine failures and
privacy if fewer than p parties attempt to reconstruct the secret. In this
work, we construct a dual-threshold AVSS protocol called Haven that
is optimal along several dimensions. First, it is a high-threshold AVSS
scheme, meaning that it is a dual-threshold AVSS with optimal param-
eters t < n/3 and p < n − t. Second, it has O(n2) message com-
plexity, and for large secrets it achieves the optimal O(n) communica-
tion overhead, without the need for a public key infrastructure or trusted
setup. While these properties have been achieved individually before, to
our knowledge this is the first protocol that achieves all of the above
simultaneously. The core component of Haven is a high-threshold AVSS
scheme for small secrets based on polynomial commitments that achieves
O(n2 log(n)) communication overhead, as compared to prior schemes that
require O(n3) overhead with t < n/4 Byzantine failures or O(n4) over-
head for the recent high-threshold protocol of Kokoris-Kogias et al. (CCS
2020). Using standard amortization methods based on erasure coding, we
can reduce the communication complexity to O(n|s|) for a large secret s.

1 Introduction

Broadcast protocols are a core component in the design of fault-tolerant sys-
tems; for example, they enable replica servers to coordinate their actions in
state machine replication, and they contribute toward the finality of cryptocur-
rencies. Reliable broadcast protocols between n servers ensure both that a mes-
sage is delivered to all servers and that the delivered messages are identical.
While there exist many broadcast protocols that assume strict or partial syn-
chrony (i.e., an upper bound on message delivery times), asynchronous reliable
broadcast protocols do not rely on any timing assumptions and are inherent
more robust against denial-of-service and performance attacks. Bracha’s asyn-
chronous reliable broadcast protocol has O(n2) total message complexity and
achieves reliability for up to t < n/3 Byzantine failures [11], which is optimal for
protocols without setup that provide correctness, liveness, and agreement [24].
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 479–498, 2021.
https://doi.org/10.1007/978-3-662-64331-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_25&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_25

480 N. AlHaddad et al.

Asynchronous verifiable secret sharing (AVSS) protocols [19] introduce a
fourth guarantee: privacy of the message against any coalition of up to p servers
comprising the t Byzantine servers plus p − t honest servers that unintention-
ally cooperate with the adversary. Combining asynchronous broadcast with a
Shamir secret sharing scheme [36] with threshold p, AVSS protocols proceed in
two phases: a sharing phase in which the initial holder or dealer of a secret mes-
sage s distributes secret shares of s to all servers, and a reconstruction phase
in which any collection of p + 1 servers can recover s. This is the asynchronous
version of verifiable secret sharing [22] because correct reconstruction is required
even against a malicious dealer. While many AVSS protocols consider p = t, a
subset called dual-threshold AVSS protocols consider p > t.

In this paper, we explore high-threshold asynchronous verifiable secret shar-
ing (HAVSS) protocols, which are a special case of dual-threshold AVSS that can
achieve any possible consensus threshold t < n/3 and privacy threshold p < n − t.
These match the known upper bounds for consensus [34] and privacy (the honest
servers must be able to reconstruct even if the Byzantine servers refuse to do so).
HAVSS enables the generation of an asynchronous fair coin tossing protocol that
can be used to remove the trusted dealer assumption needed in many distributed
computations, such as efficient asynchronous Byzantine agreement, distributed
key generation, threshold signatures, and threshold encryption [14–16,28].

Our Contributions. In this work, we contribute an HAVSS protocol called Haven
that is optimal along several dimensions:

– Haven achieves any consensus threshold of t < n/3 and privacy threshold of
p < n − t.

– Haven has O(n2) message complexity during sharing and reconstruction.
Concretely, every server sends 2 messages to each party during sharing (3 for
the dealer), and 1 message to each party during reconstruction.

– For a short secret s sampled randomly from a finite field, its communication
overhead (i.e., number of field elements sent) is O(n2 log n) without trusted
setup. If trusted setup is permissible, this can be reduced to O(n2) in some
cases.

– For a long secret s, its communication complexity is O(n|s|).
– Haven does not require trusted setup or a public key infrastructure (PKI).

All of these parameters improve upon the recent breakthrough by Kokoris-
Kogias et al. [28], the first HAVSS protocol with optimal resilience. Our com-
munication complexity even beats many existing AVSS schemes that were not
striving for dual-threshold. Table 1 shows a comparison of our work to several
related protocols, which we describe in more detail below.

Why is HAVSS Possible? Suppose there are n = 3t + 1 parties, where the dealer
is one of the t Byzantine servers, and the honest servers are split into two camps:

– t + 1 informed servers that always receive valid messages from the Byzantine
servers (i.e., what honest servers would have sent), and

– t clueless servers that never receive any messages from Byzantine servers.

High-Threshold AVSS with Optimal Communication Complexity 481

Table 1. Comparison of our Haven protocol with several prior AVSS protocols. Note
that Haven’s communication complexity, computational assumption, and reliance on
trusted setup depend on the polynomial commitment scheme used; the contents of this
table are predicated on the use of Bulletproofs [13] (cf. Sect. 3.3).

Works threshold complexity avoiding setup crypto

dual high message comm. amortized rounds no trust? no PKI? assumption

Cachin et al.

[15]

✓ ✗ O(n2) O(κn3) O(κn2) 3 ✓ ✓ DL

Backes et al. [2] ✗ ✗ O(n2) O(κn2) O(κn2) 3 ✗ ✓ t-SDH

Kate et al. [25] ✗ ✗ O(n2) O(κn3) O(κn) > 4 ✗ ✗ t-SDH

Kokoris-Kogias

et al. [28]

✓ ✓ O(n2) O(κn4) O(κn3) 4 ✓ ✗ DL

Haven option 1 ✓ ✓ O(n2) O(κn2) O(κn) 3 ✗ ✓ t-SDH

Haven option 2 ✓ ✓ O(n2) Õ(κn2) O(κn) 3 ✓ ✓ DL + ROM

One might wonder: is it even possible to achieve p = 2t privacy? Intuitively, it
seems that we run into a paradox. The informed servers can complete the sharing
phase because they receive valid messages from 2t+1 servers (i.e., from their per-
spective, the clueless servers appear Byzantine). Ergo, the 2t + 1 informed and
clueless servers must collectively be able to recover the secret, even if the Byzan-
tine servers refuse to participate in reconstruction. However, the clueless servers
cannot contribute anything meaningful toward the reconstruction because they
have only received messages from the informed servers. Hence, if the t + 1 < p
informed servers can learn the secret with the clueless servers, then they must
have been able to learn the secret without them, breaking privacy.

Fortunately, there is one flaw in the above argument that enables HAVSS
(and which schemes like Haven must exploit): even if the t + 1 informed servers
collectively possess enough data to learn the secret, they might not actually
transmit this data during reconstruction. Ergo, they might still rely on the clue-
less servers during the actual reconstruction protocol, even if the clueless servers
are relying information that the informed servers collectively know.

Overview of the Construction. The core of Haven is a construction for small,
randomly chosen secrets. Like other (dual-threshold) AVSS schemes, it broadly
follows a “two-layer secret sharing” approach. The dealer begins by constructing
a degree p polynomial R that is a Shamir secret sharing with her secret s encoded
at location R(0). We call R the recovery polynomial because the reconstruction
phase consists of each party Pi revealing R(i) so that everyone can interpolate
R and learn the secret. Next for i ∈ [1, n], the dealer constructs the degree t
polynomial Si that is a Shamir secret sharing with the secret encoded at location
R(i) = Si. This creates a diagonal pattern as shown on Fig. 1.

482 N. AlHaddad et al.

Fig. 1. Overview of the data transmitted during Haven. Each party Pi receives column
i of this matrix from the dealer; note that this includes Si = R(i). If Pi never received
R(i), then t + 1 other parties will send their points on row i, from which Pi can
interpolate the polynomial Si and learn the value Si(i) = R(i). At the reconstruction
stage, any p + 1 points on the polynomial (1 per party) suffice to interpolate R and
learn the secret s = R(0).

The sharing phase of Haven follows a 3-message (send, echo, ready) format,
just like Bracha’s reliable broadcast. There are two goals that are achieved con-
currently:

– Each party Pi must learn Si, which we call its share polynomial. To do this
privately, the dealer sends each party one share on everyone else’s share poly-
nomial, which they can disperse in the echo stage. Polynomial commitments
(and their succinct proofs/arguments) enable each party Pi to verify the
integrity of everyone else’s claimed point on her share polynomial.

– The parties must collectively reach consensus about which share polynomials
to use (against a Byzantine dealer). To do this, the dealer produces a vector
commitment of the n + 1 polynomial commitments and uses Bracha’s reliable
broadcast to disseminate this value (which is not sensitive).

Because we provide each server with 1 share on everyone else’s Si, observe that
t + 1 servers collectively hold enough data to reconstruct all polynomials and
recover the secret (as stated above). This is acceptable because HAVSS only
aims to protect against t Byzantine adversaries.

Unlike previous (dual-threshold) AVSS constructions, Haven does not
encompass R and Si into a (larger) bivariate polynomial. Instead, we directly
check for consistency of these univariate polynomials by designing a polynomial
commitment scheme that is:

High-Threshold AVSS with Optimal Communication Complexity 483

– Homomorphic, in order to construct a succinct proof that the polynomials
intersect at the correct point (i.e., that R(i) − Si(i) = 0).

– Degree-revealing, meaning that its proofs demonstrate an upper bound on
the degree of the committed polynomial (cf. Definition 4) so that parties can
consistently reconstruct it.

– Deterministic, so that once party Pi learns Si, she can now prove the value at
new points. This property allows Pi to prove that she is sending the correct
value for Si(i) = (R(i)) during reconstruction.

The communication complexity of Haven is dominated by the transmission of a
polynomial commitment between each pair of parties. These commitments can
be constant-sized with trusted setup, or logarithmic in size otherwise, which
leads to the two options shown in Table 1.

Finally, we extend Haven into an HAVSS scheme for large, arbitrarily-chosen
secrets with linear communication overhead. The idea is simple: choose a short,
ephemeral secret key k, and engage in (1) the above HAVSS protocol to share k
and (2) an asynchronous verifiable information dispersal protocol [17] to dissem-
inate the ciphertext Enck(s) without concern for privacy. The linear overhead
to disseminate the ciphertext dominates the cost of HAVSS for secrets of length
|s| = Ω(n log n) (this can be reduced to |s| = Ω(n) with trusted setup).

Related Work. Several AVSS protocols were proposed in the 1990s with uncondi-
tional security [5,18,19], but at the expense of huge communication complexity.
The first practical AVSS was achieved by Cachin et al. [15] using computa-
tional assumptions (namely, the discrete logarithm assumption). Their protocol
achieves an optimal message complexity of O(n2) and resilience of n > 3t, but
their O(κn3) communication complexity is suboptimal. Cachin et al. [15] also
constructed the first dual-threshold AVSS with consensus t < n/4 and privacy
p < n/2, with the same message and communication complexity as above.

Recently, Kokoris-Kogias et al. [28] constructed the first HAVSS protocol.
As described above, breaking the privacy barrier from p < n/2 to p < 2n/3
is a challenging accomplishment. Nevertheless, the improved privacy comes at
a price of O(κn4) communication complexity with 4 rounds of communication,
plus the need for a public key infrastructure (PKI) so that any server can pass
along digitally-signed messages from other senders to their intended destination.
Kokoris-Kogias et al. use their HAVSS in a black-box manner to construct ran-
domness beacons, distributed key generation, threshold signatures, and more;
using Haven reduces the communication of those constructions too.

Several other works focused on providing linear (amortized) communication
overhead of AVSS for large secrets, including Cachin and Tessaro [17] and more
recently Basu et al. [4] and Kate et al. [25]. The latter two works use polyno-
mial commitments [26] that require a trusted setup to achieve an optimal com-
munication complexity of O(κn), but for short messages their communication
complexity is O(κn3) in the worst case.

Our construction makes extensive use of polynomial commitments, which
were introduced by Kate et al. [26] and subsequently used by Backes et al. [2]

484 N. AlHaddad et al.

to design an AVSS protocol (with a single threshold). We also leverage recent
works that construct polynomial commitments without trusted setup; we use
Bulletproofs [13] in our construction, but our techniques are amenable to other
polynomial commitment schemes (e.g., [9,10,12]).

Finally, we focus exclusively on worst-case metrics for message and (amor-
tized) communication complexity in this paper. There exist several works that
contain a “fast path” and “slow path” approach whose typical communication
complexity is comparable to Haven and can provide benefits like lower com-
putational cost or higher thresholds for some security properties, even if the
worst-case metrics are identical or worse (e.g., [1,3,24,33]).

Organization. The rest of this paper is organized as follows. In Sect. 2, we define
(high-threshold) asynchronous verifiable secret sharing as well as many of the
building blocks that we need in this work. In Sect. 3, we construct Haven for
“short” secrets that are approximately equal in length to the security param-
eter. Finally, in Sect. 4, we amortize Haven to achieve lower communication
complexity for secrets that are substantially larger than the security parameter.

2 Definitions

In this section, we provide definitions for polynomial and vector commitments
that we will use within Haven as well as a definition for asynchronous verifi-
able secret sharing. In the definitions below, κ denotes the security parameter,
“negligible” refers to a function vanishing faster than any inverse polynomial,
“overwhelming” refers to 1 − ε for a negligible function ε, and PPT is an abbre-
viation for probabilistic polynomial time.

2.1 Commitment Schemes

In this work, we consider non-interactive commitment schemes for polynomials
and vectors. We begin by defining a polynomial commitment scheme [26]. In this
work, we exclusively consider schemes that are homomorphic, and our definition
is similar to the notion of “linear combination schemes” from Boneh et al. [8]
except that we restrict our attention to deterministic schemes.

Definition 1. A polynomial commitment scheme P comprises four algorithms
Setup, Com, Eval, Verify and an optional fifth algorithm Hom that act as follows:

– Setup(1κ, F,D) → pp is given a security parameter κ, a finite field F, and an
upper bound D on the degree of any polynomial to be committed. It generates
public parameters pp that are required for all subsequent operations.

– Com(pp, φ(x), d) → φ̂ is given a polynomial φ(x) ∈ F[x] of degree d ≤ D. It
outputs a commitment string φ̂ (throughout this work, we use the hat notation
to denote a commitment to a polynomial).

– Eval(pp, φ, i) → 〈i, φ(i), w〉 is given a polynomial φ as well as an index i ∈ F.
It outputs a 3-tuple containing i, the evaluation φ(i), and witness string wi.

High-Threshold AVSS with Optimal Communication Complexity 485

– Verify(pp, φ̂, y, d) → True/False takes as input a commitment φ̂, a 3-tuple
y = 〈i, j, w〉, and a degree d. It outputs a Boolean.

– Hom(pp, φ̂1, φ̂2, a) → ̂φ1 + aφ2 takes in commitments to two polynomials φ1

and φ2 of degree at most D, as well as a field element a ∈ F. Outputs the
commitment Com(pp, φ,max{d1, d2}) to the polynomial φ = φ1 + aφ2.

Informally, the Verify method of a polynomial commitment scheme should return
True if and only if φ(i) = j, w is a witness previously created by Eval, and the
degree of φ is at most d. We formalize this guarantee in Definitions 2–5 below.

Definition 1 is mostly similar to prior works that have defined and constructed
polynomial commitments [9,10,13,25,26]. There are three differences. First, the
verifier learns an upper bound on the degree of the polynomial. Second, we
restrict our attention to deterministic Com algorithms, and consequently the
witness generation process in Eval is well-specified purely from the polynomial
(i.e., without requiring the randomness string used earlier in the Com stage).
These changes have consequences for our security definitions (see Definitions 4
and 5) and constructions of polynomial commitments (see Sect. 3.3). Third, we
don’t include a method to open the entire polynomial φ; this is without loss
of generality since revealing φ is equivalent to revealing enough evaluations to
interpolate φ.

There are two predominant styles of security definitions for polynomial com-
mitments: game-based definitions that resemble the binding and hiding proper-
ties of traditional commitments [25,26], or simulation-based definitions in the
vein of zero knowledge proofs of knowledge [9,10,13].

The weaker indistinguishability style suffices for this work, and we use it
in the definitions below. Definitions 2, 3, and 5 are nearly identical to their
counterparts in [25,26], whereas Definition 4 is a new security guarantee that
we require in this work (cf. Sect. 3.3 for constructions). All of these definitions
apply equally whether or not the commitment scheme is homomorphic.

Definition 2 (Strong correctness). Let pp ← Setup(1κ, F,D). For any poly-
nomial φ(x) ∈ F[x] of degree d with associated commitment φ̂ = Com(pp, φ, d):

– If d ≤ D, then for any i ∈ F the output y ← Eval(pp, φ̂, i) of evaluation is
successfully verified by Verify(pp, φ̂, y, d).

– If d > D, then no adversary can succeed with non-negligible probability at
creating a commitment φ̃ that is successfully verified at d + 1 randomly chosen
indices.

Definition 3 (Evaluation binding). Let pp ← Setup(1κ, F,D). For any PPT
adversary A(pp) that outputs a commitment φ̃, a degree d, and two evaluations
y = 〈i, j, w〉 and y′ = 〈i′, j′, w′〉, there exists a negligible function ε(κ) such that:

Pr[(φ̃, y, y
′
, d) ← A(pp) : i = i

′ ∧ j �= j
′ ∧ Verify(pp, φ̃, ỹ, d) ∧ Verify(pp, φ̃, ỹ

′
, d)] < ε(κ).

Definition 4 (Degree binding). Let pp ← Setup(1κ, F,D). For any PPT
adversary A that outputs a polynomial φ of degree deg(φ), evaluation ỹ, and
integer d, there exists a negligible function ε(κ) such that:

Pr[(φ, ỹ, d) ← A(pp), φ̂ = Com(pp, φ, deg(φ)) : Verify(pp, φ̂, ỹ, d) ∧ deg(φ) > d] < ε(κ).

486 N. AlHaddad et al.

Definition 5 (Hiding for random polynomials). Let pp ← Setup(1κ,
F,D), d be an arbitrary integer less than D, and I ⊂ F be an arbitrary set
of indices with |I| ≤ d. Randomly choose a φ ← F[x] of degree d and construct
its commitment φ̂ = Com(pp, φ, d). For all PPT adversaries A, there exists a
negligible polynomial ε(κ) such that:

Pr[(x, y) ← A(pp, φ̂, {Eval(pp, φ, i)}i∈I) : y = φ(x) ∧ x /∈ I] < ε(κ),

where the probability is taken over A’s coins and the random choice of φ.

In words, the hiding definition states that even given evaluations at the indices
in I, no adversary can find a new point on φ with non-negligible probability.
Note that the hiding property is only achievable for randomly-chosen φ because
we defined Eval deterministically.

Finally, we provide the syntax for (static) vector commitments, which are
succinct encodings of finite, ordered lists in such a way that one can later open
a value at a specific location [20,31]. (We use 0-indexing throughout this work.)

Definition 6. A static vector commitment scheme V = (vSetup, vCom, vGen,
vVerify) comprises four algorithms that operate as follows:

– vSetup(1κ, U, L) → p̄p is given a security parameter κ, a set U , and a maxi-
mum vector length L. It generates public parameters p̄p.

– vCom(p̄p,v) → C is given a vector v ∈ U � where � ≤ L. It outputs a com-
mitment string C.

– vGen(p̄p,v, i) → wi is given a vector v and an index i. It outputs a witness
string wi.

– vVerify(p̄p, C, u, i, w) → True/False takes as input a vector commitment C,
an element u ∈ U , an index i, and a witness string we. It outputs a Boolean
value that should only equal True if u = v[i] and w is a witness to this fact.

This is a special case of a polynomial commitment scheme, and indeed through-
out this work we assume that vector commitments are instantiated using our
polynomial commitments (see Sect. 3.3) although other instantiations are possi-
ble like Merkle trees [32]. Vector commitments also have analogous binding and
hiding security guarantees to Definitions 2–5 [20,31]. Without loss of general-
ity, we can consider U = {0, 1}∗ by hashing strings before running the vector
commitment algorithms.

2.2 Dual-Threshold Asynchronous Verifiable Secret Sharing

In this section, we define dual-threshold asynchronous verifiable secret sharing
(DAVSS) protocols that are the focus of this work. Our definition is consistent
with the works of Cachin et al. [15] and Kokoris-Kogias et al. [28]. Recall that,
informally, an AVSS scheme is an interactive protocol between n servers that
allows one server (the “dealer”) to split a secret among all servers in such a
way that they obtain consensus over the shared secret while also protecting the

High-Threshold AVSS with Optimal Communication Complexity 487

privacy of the secret until reconstruction time, even though some of the servers
are adversarial. The term “dual-threshold” means that the number of parties
required for reconstruction of the secret may be different than the number of
Byzantine failures that can be withstood.

Definition 7. A (n, p, t) dual-threshold asynchronous verifiable secret sharing
(DAVSS) protocol involves n servers interacting in two stages.

– Sharing stage. This stage begins when a special party, called the “dealer” Pd, is
activated on an input message of the form (ID.d, in, share, s). Here, the value
ID.d is a tag identifying the session, and s is the dealer’s secret. Pd begins
the protocol to share s using ID.d. A server Pi has completed the sharing for
ID.d when it generates a local output of the form (ID.d, out, shared).

– Reconstruction stage. After server Pi has completed the sharing stage,
it may start reconstruction for ID.d when activated on a mes-
sage (ID.d, in, reconstruct). Eventually, the server halts with output
(ID.d, out, reconstructed, zi). In this case, we say that Pi reconstructs zi for
ID.d.

An (n, p, t)-DAVSS satisfies the following security guarantees in the presence of
an adversary A who can adaptively and maliciously corrupt up to t servers.

– Liveness. If A initializes all honest servers on a sharing ID.d, delivers all
associated messages, and the dealer Pd is honest throughout the sharing stage,
then with overwhelming probability all honest servers complete the sharing.

– Privacy. If an honest dealer shared s using ID.d and at most p − t honest
servers started reconstruction for ID.d, then A has no information about s.

– Agreement. Provided that A initializes all honest servers on a sharing ID.d
and delivers all associated messages: (1) if some honest server completes the
sharing for ID.d, then all honest servers complete the sharing for ID.d, and
(2) if all honest servers start reconstruction for ID.d, then with overwhelming
probability every honest server Pi reconstructs some si for ID.d.

– Correctness. Once p + 1 honest servers have completed the sharing for ID.d,
there exists a fixed value z ∈ F such that the following holds with overwhelming
probability: (1) if the dealer shared s using ID.d and is honest throughout the
sharing stage, then z = s and (2) if an honest server Pi reconstructs zi for
ID.d, then zi = z.

A high-threshold asynchronous verifiable secret sharing (HAVSS) protocol is a
(n, p, t)-DAVSS that supports any choice of t < n/3 and p < n − t.

3 HAVEN for Short, Uniformly Random Secrets

In this section, we show how to use polynomial commitments to construct an
HAVSS protocol called Haven for a short secret s that is uniformly sampled
from a finite field F. Then, we demonstrate that our construction achieves all the
security properties for an HAVSS. Finally, we show how to modify two existing
polynomial commitment schemes so that they meet our Definitions 2–5.

488 N. AlHaddad et al.

3.1 Construction

Like all AVSS protocols, Haven proceeds in two phases: a sharing phase in
which the dealer distributes shares of her secret s, and a reconstruction phase
in which the servers collectively reconstruct the secret. We formally present the
two phases of Haven in Algorithms 1 and 2, respectively. Here, we present the
concepts behind the construction.

Sharing Phase. The sharing phase of Haven follows the same communication
pattern as Bracha’s asynchronous reliable broadcast [11] and the AVSS protocol
of Cachin et al. [15]. First, the dealer transmits a Õ(n)-size send message to all
parties. Then, everyone sends a Õ(1)-size echo and ready messages to all parties.

Lines 1–14 show the dealer’s initial work, culminating in the send message.
This is the most complex part of the protocol, and we describe it in detail.

– In lines 2–4, the dealer samples a degree-p recovery polynomial R and along
with n different degree-t share polynomials S1, . . . , Sn, all in F[x]. They satisfy
R(0) � s and Si(i) � R(i), but are otherwise uniformly sampled. Figure 1
pictorially shows the relationships between these polynomials; we stress that
they need not be consistent with any low-degree bivariate polynomial.

– In lines 5–6, the dealer computes polynomial commitments of R and all Si.
– Recall that an evaluation contains one (x, y) coordinate as well as a proof that

this coordinate is on the committed polynomial. In line 8, we form a vector
yS

i containing n evaluations, but in a transposed order: this vector contains
the evaluation of one point on each share polynomial S1, . . . , Sn.

– In lines 9–10, we construct the n test polynomials Ti � R − Si along with
evaluations proving that Ti(i) = 0 for all i. This proves consistency between
the share and recovery polynomials, as shown in Fig. 1. (Interestingly, even
though we have committed to R, we never evaluate it directly.)

– In lines 11–12, we build the root commitment C; this is a vector commitment
to all of the polynomial commitments. Looking ahead, we will run Bracha’s
reliable broadcast protocol on C, and servers will only believe a polynomial
(commitment) if it can be linked back to C. Abusing notation, we assume
each polynomial commitment contains the witness to its own inclusion in C
(this witness is ignored when running a polynomial Verify check).

– Finally, in lines 13–14, the dealer sends to party Pi the root commitment, all
n + 1 polynomial commitments, one evaluation on everybody’s share polyno-
mial, and all n evaluations of the test polynomial.

When a party Pi receives the send message from the dealer, it performs
several checks to ensure that the message is internally consistent (lines 16–18):

– All polynomial evaluations received are verifiably part of Sj and Tj .
– The degrees of the Sj and Tj polynomials are at most t and p, respectively.
– The recovery and share polynomials are equal at R(i) = Si(i).
– All polynomial commitments link back to the root commitment.

High-Threshold AVSS with Optimal Communication Complexity 489

Algorithm 1. Sharing phase of Haven, for server Pi and tag ID.d

1: upon receiving (ID.d, in, share, s): � only if party is the dealer Pd

2: randomly choose recovery polynomial R ∈ F[x] of degree p s.t. R(0) = s
3: for i ∈ [1, n] do
4: randomly choose share polynomial Si ∈ F[x] of degree t s.t. Si(i) = R(i)

5: compute R̂ = Com(pp, R, p) � make polynomial commitments
6: compute each Ŝi = Com(pp, Si, t) and let Ŝ = 〈Ŝ1, Ŝ2, . . . , Ŝn〉
7: for i ∈ [1, n] do � evaluate and create witnesses
8: compute yS

i = [Eval(pp, Sj , i) for j ∈ [1, n]] � one point on each Sj

9: compute T̂i = Hom(R̂, Ŝi, −1) � Ti(x) = R(x) − Si(x)

10: compute yT = [Eval(pp, Ti, i) for i ∈ [1, n]] � tests if all Si(i) = R(i)

11: compute C = vCom(p̄p, 〈R̂, Ŝ1, Ŝ2, . . . , Ŝn〉) � root commitment
12: append to R̂ and each Ŝi a witness of inclusion in C at the right location

13: for i ∈ [1, n] do
14: send “ID.d, send, seti” to party Pi, where seti = {C, R̂, Ŝ, yS

i , yT }

15: Upon receiving (ID.d, send, setj) from Pd for the first time: � echo stage
16: if all Verify(pp, Ŝj , y

S
i [j], t) and Verify(pp, T̂j , y

T [j], p) are true then
17: if R̂ and all Ŝ are in C at the expected locations then
18: if Tj(j) = 0 for all j ∈ [1, n] then � dealer’s message is consistent
19: for j ∈ [1, n] do � send message to each party Pj

20: send “ID.d, echo, infoi,j” to Pj , where infoi,j = {C, Ŝj , y
S
i [j]}

21: Upon receiving (ID.d, echo, infoj,i) from Pm for the first time: � ready stage
22: if Ŝm is in C at location m and Verify(pp, Ŝm, yS

i [m], t) = True then
23: if not yet sent ready and received 2t + 1 valid echo with this C then
24: send “ID.d, ready, C” to all parties � Bracha consensus on C

25: Upon receiving (ID.d, ready, C) from Pm for the first time:
26: if not yet sent ready and received t + 1 ready with this C then
27: send “ID.d, ready, C” to all parties � Bracha consensus on C

28: if received 2t + 1 ready with this C then
29: wait to receive t + 1 valid echo with this C � must happen eventually
30: interpolate Si from the t + 1 valid yS

m[i] in the received echo
31: compute y∗

i = Eval(pp, Si, i) � evaluation of Si(i)
32: output (ID.d, out, shared) � locally halt

If all checks pass: party Pi sends an echo message to each party Pj containing
what it believes to be the root commitment C (as part of Bracha’s broadcast)
along with two pieces of information about party j’s share polynomial: its com-
mitment Ŝj and the evaluation at one point Sj(i) (to help Pj interpolate the
polynomial). We stress that when party Pi sends an echo message, she may not
yet be able to tell whether her polynomial (commitments) will become the con-
sensus ones, because the Bracha broadcast protocol on C might not be complete.

490 N. AlHaddad et al.

Algorithm 2. Reconstruction phase of Haven, for server Pi and tag ID.d

1: Upon receiving (ID.d, in, reconstruct):
2: for j in [1, n] do
3: send (ID.d, reconstruct-share, Ŝj , y∗

j) � to Party Pj

4: Upon receiving (ID.d, reconstruct-share, Ŝm, y∗
m): � from Party Pm

5: if Ŝm in C and Verify(pp, Ŝm, y∗
m, t) then

6: if received p + 1 valid reconstruct-share messages then
7: interpolate R from the p + 1 valid points � assume that R(j) = Sj(j)
8: output (ID.d, out, reconstructed, R(0))

When party Pi receives an echo message from another party, she will disre-
gard the message if either the received polynomial commitment or evaluation
cannot link back to the received root commitment (all of which may be differ-
ent from her local state from the earlier send message). The remainder of the
protocol proceeds as in Bracha’s broadcast.

Reconstruction Phase. If a party Pi completes the sharing and starts the recon-
struction stage, then this party knows the share polynomial Si and a witness that
it links back to the broadcast root commitment. She sends all parties an evalua-
tion of Si(i) along with the witness linking Si to the root commitment; observe
that Pi can construct this evaluation because the commitment is deterministic.
Everyone verifies this evaluation and interprets this point as R(i) instead; this is
acceptable because at least t + 1 honest parties have verified that R(j) = Sj(j)
for all j during the sharing phase (line 18). Given p + 1 valid messages from
other parties, Pi can interpolate R and recover the secret s.

3.2 Analysis

In this section, we prove that our Haven protocol is a high-threshold AVSS.

Theorem 1. Assuming that the underlying polynomial and vector commitment
schemes satisfy Definitions 2–6, then Haven protocol is a high threshold AVSS
with O(n2) message complexity and O(κn2c) communication complexity, where
κ is the security parameter and c is the size of the underlying commitments and
evaluations.

Below, we provide proofs for each of the four security properties in
Definition 7 and the efficiency claim.

Proof (Liveness). If the dealer Pd is honest and all messages are delivered, then
Pd will send everyone the same root commitment, polynomial commitments.
Also, each party receives 1 point on every share polynomial. All of the checks
on lines 16–18 pass, so the honest parties can echo these points, from which
everyone will be able to send ready messages and interpolate their own share
polynomial. If any dishonest party tries to send a malformed commitment or

High-Threshold AVSS with Optimal Communication Complexity 491

evaluation in their echo message, then evaluation binding (Definition 3) ensures
that it will not link back to the root commitment, so honest parties will disregard
this message.

Proof (Privacy). We focus first on the reconstruction stage, and we assume with-
out loss of generality that the adversary A knows her own share polynomials.
As a result, she knows t points on the recovery polynomial R and will receive
p− t additional points from honest parties. From this information alone, Shamir
secret sharing guarantees that A learns nothing about the secret unless she can
distinguish at least 1 more point on R from random.

Next, we consider the information available to the adversary A during the
sharing stage. The dealer’s send messages give A a total of t evaluations on each
share polynomial Si, but the hiding property (Definition 5) guarantees that
this is insufficient to distinguish any other point on Si from random with non-
negligible probability. The subsequent echo and ready messages are of no help
because they only contain information about A’s share polynomials, not those
of other parties.

Proof (Agreement). Suppose that an honest party Pi has completed the sharing
for ID.d. We must show that another (arbitrary) honest Pj will also complete
the sharing.

– Since Pi completed the sharing, she heard 2t + 1 ready messages with the
same root commitment C∗ and have confirmed that the dealer correctly split
the large secret s into proper shares and fingerprinted them correctly in the
root commitment C∗. At least t + 1 of those senders are honest and will
send ready messages to everyone. Due to line 27, this will cause all honest
parties to send ready messages if they have not yet done so. Ergo, party Pj

will eventually hear 2t+1 ready messages with root commitment C∗, thereby
satisfying the conditional on line 28.

– Since Pi completed the sharing, she must have sent a ready message in line 24
or line 27 (this is an xor since honest parties only send one ready message).

– The condition for line 27 cannot be satisfied until t + 1 parties sent a ready
due to line 24, at least one of whom must be honest (say, party Pm). For
this to occur, party Pm must have observed 2t + 1 echo messages that are
internally consistent and link to the same root commitment C∗.

– At least t+1 of those echo message senders are honest, so they will also send
consistent echo messages to party Pj . Once this happens, Pj can complete
the wait step on line 29. Also, the echo messages contain enough information
for Pj to compute lines 30–31 and complete the sharing.

Next, suppose all honest servers start reconstruction for ID.d (note that there
are at least p + 1 honest servers). Because these parties completed the sharing,
they each have a share polynomial that can be linked back to the common root
commitment C∗. Hence, they can construct an evaluation at Si(i) that will be
accepted by others. Once p + 1 such points are received, each honest server can
recover a secret.

492 N. AlHaddad et al.

Proof (Correctness). First, assume that an honest dealer shared a secret s. Then,
the share polynomial evaluations at all {Si(i)}i∈[1,n] lie on a degree p polynomial
that will recover s. By the Agreement property, once an honest server completes
the sharing, the parties will have a common root commitment C∗. Thus, the
only way to deviate from a reconstruction of s is to reveal an invalid evalu-
ation of Si(i), which occurs with negligible probability by evaluation binding
(Definition 3).

The second correctness property requires evaluation and degree binding. Even
with a dishonest dealer, still the parties reconstruct the secret using p + 1 of
the n points S1(1), . . . , Sn(n). This reconstruction is unique if and only if that
polynomial is of degree p. Recall that at least t+1 honest parties verified during
the sharing stage that R(j) − Sj(j) = 0 for all j, where this polynomial is of
degree p (line 18). Evaluation binding ensures that the Si(i) evaluations revealed
during reconstruction match the values tested earlier, and degree binding ensures
that the points lie on a degree p polynomial as desired.

Proof (Efficiency). The protocol achieves a message complexity of O(n2) because
every party sends n echo, ready, and reconstruct-share messages (plus n send
messages for the dealer). Also assuming a field size |F| = O(κ), every stage of
Haven has O(κn2c) communication complexity. In the send stage the dealer
sends n messages of size O(κnc), and in all other stages each party sends n
messages of size O(κc).

3.3 Constructing the Underlying Commitments

To complete our Haven construction for short secrets, it remains only to con-
struct deterministic polynomial commitment schemes that satisfy Definitions
2–5 for random polynomials with short commitments and evaluations. In this
section, we present two such constructions. The first construction is based on
Bulletproofs [13], and it provides constant-size commitments and logarithmic-
size evaluations without trusted setup. The second construction is based on the
scheme of Kate et al. [26], and its commitments and evaluations are constant-
sized at the expense of requiring trusted setup.

Deterministic Bulletproofs. Bulletproofs [13] are constant-sized vector commit-
ments that support logarithmic-sized arguments of the result of an inner product
operation applied to two (committed) vectors. One can construct a polynomial
commitment from Bulletproofs as follows: Com(pp, φ, d) commits to the vector
φ = 〈φj〉j∈[0,d] of coefficients of the polynomial, Eval(pp, φ, i) constructs the vec-
tor i = 〈1, i, i2, . . . , id〉 (padding with 0 s if needed) and produces an argument
to the value of φ · i = φ(i), and Verify checks this argument.

The commitment scheme in Bulletproofs is deterministic: Setup(1κ,D) uni-
formly samples D + 1 group elements g0, . . . , gD ← Gκ, and then Com(φ) =
∏d

j=0 g
φj

j . If the discrete log assumption holds for the family G = {Gκ}κ∈N, then
this commitment scheme is binding, and it is also hiding when the polynomial

High-Threshold AVSS with Optimal Communication Complexity 493

φ is chosen uniformly at random (even though it is not hiding otherwise) Bul-
letproofs are also homomorphic, and its argument reveals an upper bound d on
the degree of the committed polynomial (it’s the number of non-zero entries in
the public vector i).

The only remaining issue is with Definition 5, since Bulletproof arguments
are not hiding. We can resolve the issue of hiding using the blinding technique
previously used by [9,12,13,21]. Concretely, because Eval(pp, φ, i) cannot show
an argument for the inner product φ · i directly, instead the evaluator can: sample
and commit to a random ephemeral polynomial ψ ∈ F[x] of degree d, send this
commitment along with the two field elements φ(i) and ψ(i) to the verifier,
query the (public coins) verifier for a challenge c ∈ F, and use the homomorphic
property to construct a non-hiding argument proving that (ψ + cφ) · i equals
ψ(i) + cφ(i). It is acceptable for this argument to reveal information about
ψ + cφ because the polynomial ψ serves as a one-time pad that hides φ from
the verifier.

We believe that this construction can be adapted to construct deterministic
versions (for random polynomials) of other linear combination schemes [8] such as
DARK [12], Dory [30], and the post-quantum polynomial commitment schemes
[7,27,37] based on FRI [6]. We leave this as an open question for future work.

Deterministic KZG Commitments. Kate et al. construct two polynomial com-
mitment schemes, the first of which (called PolyCommitDL in their work [26,
§3.2]) is already deterministic and was shown to meet Definitions 2, 3, and 5
based on the t-bilinear strong Diffie-Hellman assumption. The only discrepancy
between our requirements and their construction is Definition 4. We must verify
that the commitments of the share polynomials Si are of degree at most t. How-
ever, the PolyCommitDL construction is predicated upon using trusted setup to
generate powers of a generator element pp = 〈g, g2, . . . , gD〉, and once this infor-
mation is public, it is impossible to verify whether a committer has committed
to a polynomial of the maximum degree or a smaller one.

If there exist constant integers α and β such that p = αt + β (such as
the case where n = 3t + 1 and p = 2t), then there is a simple resolution
to this issue: always construct polynomial commitments of maximum degree
so that we can rely on strong correctness (Definition 2) instead. Observe that
throughout Algorithm 1, there only exist commitments to polynomials of two
different degrees: R of degree p = αt (in line 5) and each Si of degree t (in line
6). In our construction, party Pi must be able to (a) interpolate Si when given
evaluations from t + 1 honest parties and (b) verify that the share polynomials
are constructed in this fashion. Ergo, we can set the maximum degree D = p
during setup, sample Si as a polynomial of degree D, and adjust line 6 of the
Eval method to provide α distinct evaluations of the polynomial to each party
(say, party i receives evaluations at the points i, i + t, i + 2t, . . .) as well as β
evaluations of the polynomial in common to all parties (say, at points αt + 1,
αt + 2, . . ., αt + β). Each test polynomial Ti is now the difference of two degree-
D polynomials, so it is also of degree D with overwhelming probability. Finally,
while each party receives α points on each share polynomial Si, it suffices that

494 N. AlHaddad et al.

only one of those points intersect with R for the test polynomial to guarantee
correct reconstruction.

4 Amortizing HAVEN for Long Secrets

In this section, we show how to extend Haven to share a large secret s using
O(κn) communication complexity such that any p + 1 people can reconstruct the
secret. Following the techniques used by Krawczyk [29] and Cachin and Tessaro
[17], the core idea is to use a communication-efficient protocol for asynchronous
reliable broadcast of the ciphertext corresponding to the long secret s, alongside
Algorithm 1 to share the ephemeral symmetric key.

Building Blocks. In more detail, our construction uses a (t, n)-information disper-
sal algorithm IDA [35], a semantically secure symmetric key encryption scheme,
and a collision-resistant hash function H. By comparison to Shamir secret shar-
ing, an IDA scheme is similar in that it contains algorithms to split and recon-
struct an object to and from shares, respectively, but it differs in two ways:

1. Shares of an IDA might leak information about the original object while
Shamir shares do not.

2. Shares of an IDA are smaller in size than the original object while Shamir
shares are of the same size.

More formally, an IDA consists of the following two algorithms.

1. split(f, t, n): Splits an object f into n shares such that any t can reconstruct
the original object f where each share has size |f |/t.

2. reconstruct(s): Takes a vector of t shares and combine them to reconstruct
the original object f .

Also, we define an encryption scheme as containing a key generation algo-
rithm, an encryption method Enc : k,m
→ c, and a decryption method
Dec : k, c
→ m such that no probabilistic polynomial time adversary can distin-
guish ciphertexts belonging to two arbitrarily-chosen plaintexts m0 or m1 with
noticeable probability. A hash function H : {0, 1}∗ → F is called collision resis-
tant if no polynomial time adversary can find two inputs x and x′ �= x such
that H(x) = H(x′) with non-negligible probability. We refer readers to [23] for
formal definitions.

Our New Construction. To support long secrets, our Amortized Haven protocol
makes the following additions to the sharing phase in Algorithm 1.

– At the start of the protocol, the dealer generates a random key k ∈ F and
encrypts the large secret s using k by running c = Enck(s). Using split(c, t +
1, n), the ciphertext is then encoded in n pieces c1, . . . , cn of length |s|/t.
Additionally, we add hi = H(ci) to the vector that forms the root commitment
(line 11). Finally, the send message to party Pi also includes the ciphertext c
and all witnesses to different hashes of every piece hi = H(ci) that is included
in the root commitment (line 14).

High-Threshold AVSS with Optimal Communication Complexity 495

– Upon receiving (ID.d, send, setj): party Pi adds one more consistency check to
the list of requirements for her to produce an echo response. Namely, Pi checks
that the every piece cj is linked back to the root commitment using the witness
provided by the dealer. To acquire each piece cj , Pi runs split(c, t + 1, n) the
same way the dealer did. Pi then adds to infoi,j the corresponding ci along
with it’s witness.

– Upon receiving(ID.d, echo, infoj,i): party Pi adds one more consistency check
to the list of requirements for her to produce a ready response. Namely, Pi

checks that every cm is linked back to the root commitment using the witness
provided by Pm. The rest of the protocol proceeds as normal.

At the start of reconstruction, each honest party recovers the large ciphertext by
running reconstruct IDA on t + 1 pieces that are linked to the root commitment
that we have agreement on. The reconstruction phase continues as before and
reconstructs the key k. The parties use the symmetric key k to decrypt the
ciphertext and recover the original large secret s.

Theorem 2. Suppose that t = O(n), the underlying polynomial and vector
commitments satisfy Definitions 2–6, Enc is a semantically secure encryption
scheme, and H is collision resistant hash function. Then, amortized Haven for
a large secret s = Ω(n log n) is a high threshold AVSS that achieves a message
complexity of O(n2) and a communication overhead of O(κn).

Proof. We first examine communication costs. None of the changes above impact
the message complexity: each party still sends O(n) send, echo, ready, and
reconstruct-share messages. The communication complexity now has two com-
ponents: the HAVSS for the short key and the IDA for the long message. These
costs sum to O(κn2 log n) + O(((|s|/t) · n) · n) = O(n|s|) as desired.

Next, the only two properties of an HAVSS that are directly impacted by
the IDA of an encryption of the long secret are privacy and agreement. We
argue about each property below in turn. Both properties only require minor
adjustments to the arguments made in the proof of Theorem 1.

– Privacy: If the dealer is honest, the privacy argument in Theorem 1 guarantees
that the adversary doesn’t get hold of the secret key k used to encrypt the
large secret s. The only thing that the adversary would get hold of is encrypted
shares of the s. By definition of semantic security the attacker will not be able
to extract any useful information about s from the ciphertext except with
negligible probability.

– Agreement: Since at least t + 1 honest parties have to verify that all pieces
{ci} are part of the polynomial commitment. Then if agreement is reached
over the polynomial commitment, then agreement is reached over the pieces.
Availability is also guaranteed, since each honest party has heard t + 1 echo
messages from honest parties. Hence each honest party would have available
t + 1 pieces that are consistent with the root commitment, enough to recon-
struct the ciphertext c and thus the large secret s.

496 N. AlHaddad et al.

Acknowledgments. The authors are grateful to Ran Canetti and the anonymous
reviewers for their valuable feedback. This material is based upon work supported by
the DARPA SIEVE program under Agreement No. HR00112020021 and the National
Science Foundation under Grants No. 1414119, 1718135, 1801564, and 1931714.

References

1. Abraham, I., Nayak, K., Ren, L., Shrestha, N.: On the optimality of optimistic
responsiveness. IACR Cryptol. ePrint Arch. 2020, 458 (2020)

2. Backes, M., Datta, A., Kate, A.: Asynchronous computational VSS with reduced
communication complexity. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 259–276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36095-4 17

3. Basu, S., Malkhi, D., Reiter, M., Tomescu, A.: Asynchronous verifiable secret-
sharing protocols on a good day. CoRR. abs/1807.03720 (2018)

4. Basu, S., Tomescu, A., Abraham, I., Malkhi, D., Reiter, M.K., Sirer, E.G.: Efficient
verifiable secret sharing with share recovery in BFT protocols. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, pp. 2387–2402. Association for Computing Machinery, New York (2019)

5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
STOC 1993, pp. 52–61. Association for Computing Machinery, New York (1993)

6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: ICALP, vol. 107 of LIPIcs, pp. 14:1–14:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

7. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. In: ITCS, vol. 151 of LIPIcs, pp. 5:1–5:32. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

8. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: recursive zk-SNARKs
from any additive polynomial commitment scheme. IACR Cryptol. ePrint Arch.
2020, 1536 (2020)

9. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

10. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree
polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 561–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 19

11. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987)

12. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334 (2018)

https://doi.org/10.1007/978-3-642-36095-4_17
https://doi.org/10.1007/978-3-642-36095-4_17
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-76581-5_19
https://doi.org/10.1007/978-3-319-76581-5_19
https://doi.org/10.1007/978-3-030-45721-1_24

High-Threshold AVSS with Optimal Communication Complexity 497

14. Cachin, C.: An asynchronous protocol for distributed computation of RSA inverses
and its applications. In: Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA,
July 13–16, 2003, pp. 153–162 (2003)

15. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: ACM Conference on Computer
and Communications Security, pp. 88–97. ACM (2002)

16. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: practical
asynchronous byzantine agreement using cryptography (extended abstract). In:
PODC, pp. 123–132. ACM (2000)

17. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: Fraig-
niaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 503–504. Springer, Heidelberg
(2005). https://doi.org/10.1007/11561927 42

18. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis. Citeseer (1996)

19. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: STOC, pp. 42–51. ACM (1993)

20. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

21. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. Electron. Colloquium Comput. Complex. 24, 57 (2017)

22. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21–23 October 1985, pp. 383–395 (1985)

23. Goldreich, O.: A uniform-complexity treatment of encryption and zero-knowledge.
J. Cryptol. 6(1), 21–53 (1993). https://doi.org/10.1007/BF02620230

24. Hirt, M., Kastrati, A., Liu-Zhang, C.-D.: Multi-threshold asynchronous reliable
broadcast and consensus. IACR Cryptol. ePrint Arch. 2020, 958 (2020)

25. Kate, A., Miller, A.K., Yurek, T.: Brief note: asynchronous verifiable secret shar-
ing with optimal resilience and linear amortized overhead. CoRR, abs/1902.06095
(2019)

26. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

27. Kattis, A., Panarin, K., Vlasov, A.: Redshift: transparent SNARKs from list poly-
nomial commitment IOPs. IACR Cryptol. ePrint Arch. 2019, 1400 (2019)

28. Kokoris-Kogias, E., Spiegelman, A., Malkhi, D.: Asynchronous distributed key gen-
eration for computationally-secure randomness, consensus, and threshold signa-
tures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (2020)

29. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

30. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. IACR Cryptol. ePrint Arch. 2020, 1274 (2020)

https://doi.org/10.1007/11561927_42
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/BF02620230
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12

498 N. AlHaddad et al.

31. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 30

32. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

33. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: DISC, vol. 91 of LIPIcs, pp. 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017)

34. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

35. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM 36(2), 335–348 (1989)

36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
37. Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with poly-

logarithmic communication complexity. IACR Cryptol. ePrint Arch. 2019, 1020
(2019)

https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/3-540-48184-2_32

Fine-Grained Forward Secrecy:
Allow-List/Deny-List Encryption

and Applications

David Derler1 , Sebastian Ramacher2 , Daniel Slamanig2 ,
and Christoph Striecks2(B)

1 DFINITY, Zurich, Switzerland
david@dfinity.org

2 AIT Austrian Institute of Technology, Vienna, Austria
{sebastian.ramacher,daniel.slamanig,christoph.striecks}@ait.ac.at

Abstract. Forward secrecy is an important feature for modern crypto-
graphic systems and is widely used in secure messaging such as Signal
and WhatsApp as well as in common Internet protocols such as TLS,
IPSec, or SSH. The benefit of forward secrecy is that the damage in case
of key-leakage is mitigated. Forward-secret encryption schemes provide
security of past ciphertexts even if a secret key leaks, which is interesting
in settings where cryptographic keys often reside in memory for quite a
long time and could be extracted by an adversary, e.g., in cloud com-
puting. The recent concept of puncturable encryption (PE; Green and
Miers, IEEE S&P’15) provides a versatile generalization of forward-secret
encryption: it allows to puncture secret keys with respect to ciphertexts
to prevent the future decryption of these ciphertexts.

We introduce the abstraction of allow-list/deny-list encryption
schemes and classify different types of PE schemes using this abstrac-
tion. Based on our classification, we identify and close a gap in existing
work by introducing a novel variant of PE which we dub Dual-Form
Puncturable Encryption (DFPE). DFPE significantly enhances and, in
particular, generalizes previous variants of PE by allowing an interleaved
application of allow- and deny-list operations.

We present a construction of DFPE in prime-order bilinear groups,
discuss a direct application of DPFE for enhancing security guarantees
within Cloudflare’s Geo Key Manager, and show its generic use to con-
struct forward-secret IBE and forward-secret digital signatures.

Keywords: Puncturable encryption · Forward secrecy

1 Introduction

Leakage of secret keys is a major security risk in modern systems and cryp-
tographic protocols. For example, key-leakage can be a significant problem in

Author list in alphabetical order. See https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 499–519, 2021.
https://doi.org/10.1007/978-3-662-64331-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_26&domain=pdf
http://orcid.org/0000-0002-5345-3906
http://orcid.org/0000-0003-1957-3725
http://orcid.org/0000-0002-4181-2561
http://orcid.org/0000-0003-4724-8022
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1007/978-3-662-64331-0_26

500 D. Derler et al.

secure messaging applications such as Signal or WhatsApp, but also in other
well-known Internet protocols such as TLS, IPSec, or SSH. Those applications
typically address this risk by providing the property of forward secrecy. Forward
secrecy mitigates the problems associated to the leakage of a long-term secret
key in the sense that the confidentiality of the data encrypted in old cipher-
texts is still protected after a key is leaked. However, key-leakage is problematic
far beyond the aforementioned applications. One of the prime examples of key-
leakage being an important risk is when decryption keys are kept in software or
trusted execution environments (TEEs) like ARM’s TrustZone or the increas-
ingly popular SGX by Intel. Such scenarios are typically found within heavily
virtualized environments such as cloud computing. In such settings, it is well
known that the shared resources introduce the danger of information leakage,
i.e., extracting decryption keys held in shared memory, e.g., via co-located vir-
tual machines controlled by an attacker [34,41,42]. At the same time, microarchi-
tectural attacks such as cache attacks (against TEEs) are getting increasingly
sophisticated and more devastating (cf. [35]). While rotating keys frequently
helps to reduce the risk, frequently deploying new keys becomes impractical if
the frequency gets too high.

Concrete Example. We will illustrate this problem by a concrete practical
example. As the use of TLS for securing communication on the Internet grows,
content distribution networks (CDNs) such as Cloudflare face a new issue: all of
their endpoints terminating TLS connections deployed in colocations all over the
world need access to the secret keys associated to the certificate (i.e., public key)
to guarantee low latency. As those secret keys belong to the customers, they need
to provide the keys to the CDNs or deploy solutions such as Keyless SSL1, where
customers are required to run their own keyserver answering signing requests
from the CDN. The latter comes at the cost of higher latency if users are not close
to the location of the key server. The former—while providing better latency for
users worldwide—faces a different issue: due to various differences in local laws
or other regulations surrounding the use of secret keys, customers might not be
interested in having their keys exposed to certain locations and areas. Systems
like Cloudflare’s Geo Key Manager2 tackle this issue by giving customers the
control on the locations their secret keys are stored when shared with Cloudflare.
Effectively, customers are able put whole regions on allow-lists, e.g., Europe or
the US. At the same time, they are able to put multiple colocations within those
regions, e.g., London in Europe, on deny-lists. Finally, they are also able to
directly put colocations on the allow-list that are not inside the regions already
on allow-lists, e.g., Singapore.

Since the customer’s secret keys are highly sensitive, such a system profits
from strong security including forward secrecy. The currently deployed solution
does not provide forward secrecy, a feature that helps to put the distributed
keys at a much lower risk. Looking ahead, with our approach, adding areas to

1 https://www.cloudflare.com/ssl/keyless-ssl/.
2 https://blog.cloudflare.com/introducing-cloudflare-geo-key-manager/.

https://www.cloudflare.com/ssl/keyless-ssl/
https://blog.cloudflare.com/introducing-cloudflare-geo-key-manager/

Fine-Grained Forward Secrecy 501

allow-lists, colocations within these areas on deny-lists, as well as allow-listing
single colocations is efficiently possible and adds forward secrecy on top.

Fine-Grained Forward-Secrecy. We will follow the approach of restricting
(or customizing) the capabilities of secret keys held in memory via crypto-
graphic means to achieve fine-grained forward secrecy. Arguably, this still does
not entirely eliminate the problem of key-leakage. Yet, it helps to significantly
reduce the damage if key-leakage happens, and, at the same time, removes the
requirement to frequently rotate keys. While forward secrecy can be efficiently
obtained in interactive protocols, it is more involved for non-interactive primi-
tives. In the past, forward secrecy has been studied for various non-interactive
primitives such as digital signatures [6], identification schemes [1], public-key
encryption [10], symmetric cryptography [7], and proxy re-encryption [20]. The
basic idea is to discretize time into intervals and to have a fixed public key over a
potentially long period of time. However, the secret key “evolves” over time such
that a leaked secret key in interval i is no longer useful for any interval j < i.
In particular, for public-key encryption, this guarantees that all “old” cipher-
texts can no longer be decrypted. Obviously, if the switches between intervals
happen too frequently, it requires good synchronization, whereas for longer time
intervals a looser synchronization (which is desirable) is sufficient. Nevertheless,
in any case, the achieved forward-secrecy property is very coarse grained, i.e.,
switching the interval essentially destroys access to all old ciphertexts.

Green and Miers [27] introduced the cryptographic concept of puncturable
encryption (PE) as a versatile generalization of forward-secret public-key encryp-
tion for asynchronous messaging. The idea here is to provide a more fine-grained
forward-secrecy property that allows a secret key to be “punctured” on specific
ciphertexts (or tags associated to them) in a way that the resulting decryption
key will then no longer be useful to decrypt ciphertexts on which the key has
been punctured over time. Following these initial works, a number of alterna-
tive PE schemes [14,19,28,37,38] as well as some variations of PE schemes with
different puncturing capabilities [21,39] have been proposed.

Allow-List/Deny-List Encryption Schemes. To provide a comprehensive
classification of different cryptographic primitives (and mostly PE schemes),
we introduce allow-/deny-list (ALDL) encryption. It represents a very simple
abstraction of encryption mechanisms maintaining allow and deny lists. Here,
ciphertexts and decryption keys are linked to both allow and deny lists in a
certain way. Allow lists incorporate positive tags while deny lists have negative
tags. A ciphertext can carry two tags—a positive and negative tag—that are
determined during the encryption procedure. Decryption keys can be associated
to several positive and negative tags. For example, a ciphertext with a positive
tag t+ and negative tag t− can be decrypted by a secret key that is associated
to t+ but not to t−. More generally this means that a decryption key that is
linked to a positive tag is able to decrypt the ciphertext if that ciphertext has
the positive tag attached. On the other hand, a decryption key that is associated
to a negative tag is not able to decrypt ciphertexts that have those negative tags
attached.

502 D. Derler et al.

On a high level, this has interesting applications and subsumes several cryp-
tographic primitives as shown in Table 1. For example, an identity-based encryp-
tion (IBE) [9,15] scheme can be seen as an ALDL encryption scheme where an
allow list can contain an identity, i.e., an id. Ciphertexts and secret keys are
associated to a certain id (i.e., a positive tag) from the allow list. If the id of the
ciphertext matches the secret-key id, then decryption works.

Furthermore, a PE scheme can be seen as an ALDL encryption scheme where
the deny list contains a set of tags. A ciphertext is associated to a certain negative
tag and decryption keys are associated to a deny list of negative tags. Now, when
the tag of the ciphertext is on the deny list, then decryption is not successful
while all other ciphertexts with tags not on the deny list can be successfully
decrypted. An interesting application is forward-secret zero round-trip time (0-
RTT) key-exchange [19,28].

Recently, Derler et al. [21] and Wei et al. [39] proposed the new forward-secret
primitives called fully PE (FuPE) and forward-secret puncturable IBE (fs-PIBE),
respectively, that can be abstracted by ALDL encryption in the following sense.
Within FuPE, ciphertexts are associated to a positive and negative tag while
decryption keys can be first associated to several negative tags in a deny list and
a final positive tag in an allow list. In fs-PIBE on the other hand, ciphertexts
are also associated to a positive and a negative tag while decryption keys can
be first associated to one positive tag in the allow list and afterwards to several
negative tags inserted to a deny list. FuPE realized the first forward-secret proxy
re-encryption (PRE) scheme while fs-PIBE has been shown to have applications
to Cloud e-mails. In these approaches, the order of inserting tags to the allow
and deny lists plays a crucial role.

In our work, we want to enhance those capabilities even further. In particular,
our work allows to first associate the secret key with several negative tags in a
deny list, then with a positive tag in the allow list, and afterwards with several
further negative tags again in the deny list, which yields new applications areas
not yet covered by existing approaches. Our enhancement gives more flexibility
and more fine-grained forward secrecy enhancing techniques from prior works.
In Table 1, we compare all discussed approaches.

Our Contribution. We propose a versatile variant of puncturable encryption
dubbed dual-form puncturable encryption (DFPE), which extends recent works
on PE that are not expressive enough to achieve our goals. We carefully adapt
the PE techniques envisioned by Green and Miers [27] and Günther, Hale, Jager,
and Lauer [28] to equip PE with interleaved negative and positive puncturing.
While the concept of Fully PE (FuPE) due to Derler et al. [20,21] is related to
our solution, it is not sufficient. In their work, positively punctured keys can no
longer be negatively punctured. In contrast to Derler et al.—who can instantiate
their FuPE scheme from any Hierarchical Identity-Based Encryption (HIBE) [25]
scheme—we require novel tools and in particular the concept of tagged HIBEs
(THIBEs), a generalization of HIBEs. Our ideas on THIBEs are related to the
work of Abdalla, Kiltz, and Neven [2], but with different goals.

Fine-Grained Forward Secrecy 503

Table 1. Overview of allow-list (AL)/deny-list (DL) encryption variants with actions
performed on the allow and deny lists and in which order. We use 1 to denote support
for a single tag and ∞ to indicate many tags in arbitrary order. We further list cryp-
tographic primitives and applications abstracted by the ALDL-encryption variants.

ALDL variant 1. action 2. action 3. action Primitive applications

1 AL (1) – – IBE E-mail (e.g., [9])

2 DL (∞) – – PE Key exchange (e.g., [27,28])

3a AL (1) DL (∞) – fs-PIBE Cloud e-mail, weak

forward-secret IBE (e.g., [39])

3b DL (∞) AL (1) – FuPE Forward-secure PRE (e.g., [21])

4. (this work) DL (∞) AL (1) DL (∞) DFPE Enhanced Geo Key Manager,

forward-secret IBE and

signatures

Dual-Form Puncturable Encryption (DFPE): Loosely speaking, DFPE allows to
puncture secret keys on negative tags (like within PE), i.e., a key punctured on
a negative tag can no longer decrypt ciphertexts under this tag, but in addi-
tion a secret key can be customized to a given positive tag once and then fur-
ther punctured negatively. Keys customized to a positive tag can only decrypt
ciphertexts to this positive tag and whose negative tags are distinct from the
ones the key was punctured on. We introduce the concept of DFPE and rigor-
ously model its security requirements. For concrete instantiations of DFPE, we
introduce a generalization of HIBEs called tagged HIBEs (THIBEs) along with
a suitable security model and which we instantiate using ideas underlying the
Boneh-Boyen-Goh (BBG) [8] HIBE. Since it requires some modifications and
tweaks to provide the features required by a THIBE scheme, we provide a care-
ful proof of security of our THIBE. A main benefit of starting from the BBG
HIBE is that the size of the ciphertexts in our THIBE is constant. Finally, we
show how DFPE can be generically constructed from any THIBE and provide a
proof-of-concept implementation of our concrete DFPE scheme.

Enhancing Cloudflare’s Geo Key Manager: We show how the currently used
approach based on a combination of both pairing-based identity-based broad-
cast encryption (IBBE) [18] and identity-based revocation (IBR) [4], which so
far does not provide forward-secrecy, can be instantiated using DFPE as a sin-
gle primitive. Thereby, it supports the required functionality of adding areas to
allow-lists, colocations within these areas on deny-lists, allow-listing single colo-
cations is efficiently possible, and at the same time adds forward secrecy on top
while achieving comparable parameter sizes.

Cryptographic Applications: We demonstrate that DFPE is a versatile cryp-
tographic tool by generically instantiating other primitives. This immediately
yields (new) constructions thereof. In particular, we show how to generically
construct forward-secure IBE [40], thereby—to the best of our knowledge—
obtaining the first fs-IBE scheme with compact ciphertexts, as well as forward-
secure signatures [1,6,30,31]. Especially, the latter turned out to be an interest-
ing primitive in the context of distributed ledgers [17,17,22,23,26].

504 D. Derler et al.

We present notation, pairings and the q-wBDHI assumption in Appendix A.

2 Tagged Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) [8,25,29] organizes identities in
a tree where identities at some level can delegate secret keys to its descendant
entities, but cannot decrypt ciphertexts intended for other higher-level identities.
A tagged HIBE (THIBE) is a generalization of HIBEs where secret keys can
be tagged and ciphertexts are tagged (a concept related to [2] but adapted
to different goals in our work). Correctness now ensures that untagged secret
keys are capable of decrypting (tagged) ciphertexts if the identities match while
tagged secret keys can only decrypt (tagged) ciphertexts correctly if the identities
and the tag match. The distinguishing feature between HIBEs and THIBEs is
that delegated secret keys on any hierarchy can be tagged and, afterwards, even
further delegated. In a certain sense, through tagging, secret keys can be further
restricted on the same hierarchy level and beyond in their decryption capabilities.

2.1 Definition, Correctness, and Security Notions of THIBEs

Before constructing THIBEs, we first present our THIBE definition and continue
with its correctness property as well as its security notions.

Definition 1 (THIBE). For some hierarchy parameter � ∈ N, a tagged hierar-
chical identity-based encryption (THIBE) scheme THIBE with message space M,
tag space T , and identity space ID≤�, consists of the PPT algorithms (Gen,Del,
Tag,Enc,Dec):

Gen(1κ, �) : output a keypair (pk, skε
ε). (We assume that pk is given as input

to Del,Tag, and Dec implicitly; let ε /∈ ID ∪ T be a distinguished element
associated to non-tagged or non-delegated secret keys.)

Del(skt
id′ , id) : output a secret key skt

id if id ′ ∈ ID�′−1 is a prefix of id ∈ ID�′
,

for some �′ ∈ [�] else output skt
id′ .

Tag(skε
id , t) : output a secret key skt

id if t ∈ T , else output skε
id .

Enc(pk,M, id , t) : for message M ∈ M, identity id ∈ ID≤�, and tag t ∈ T ,
output a ciphertext Ct

id .
Dec(skt′

id′ , Ct
id) : output M ∈ M ∪ {⊥}.

Correctness of THIBE. Essentially, correctness follows the HIBE correctness
(i.e., a secret key can decrypt a ciphertext if the identity in such key is a prefix
of the identity associated to the ciphertext), but we additionally require that the
tag in the ciphertext matches the tag in the secret key as well.

More formally, for all κ, � ∈ N, all (pk, skε
ε) ← Gen(1κ, �), all M ∈ M, all

id , id ′ ∈ ID≤� ∪ {ε} where id ′ ∈ ID�′−1 is a prefix of id ∈ ID�′
, for some

�′ ∈ [�], all t ∈ T ∪{ε}, all skt
id ← Tag(skε

id , t), all skt
id ← Del(skt

id′ , id), all t′ ∈ T
all Ct′

id ← Enc(pk,M, id , t′), we have that Dec(skt
id , Ct′

id) = M if t = t′.

Fine-Grained Forward Secrecy 505

THIBE-IND-CPA and THIBE-IND-CCA Security Notions. A THIBE

scheme is THIBE-IND-CPA-secure or THIBE-IND-CCA-secure if and only if
any PPT adversary A succeeds in the following experiments only with probability
at most negligibly larger than 1/2.

First, A receives an honestly generated pk. Let Ext(·, ·, ·) be a key-extraction
oracle that, given skε

ε, an identity id ∈ ID≤�, and a tag t ∈ T ∪ {ε}, outputs
a secret key skt

id via iteratively running Del to compute skε
id and, afterwards,

returning Tag(skε
id , t). Furthermore, let Dec′ be a decryption oracle that, given

skε
ε and a ciphertext Ct

id , outputs Dec(skt
id , Ct

id), where skt
id ← Ext(skε

ε, id , t).
During the experiment, A may adaptively query the Ext(skε

ε, ·, ·)-oracle for cor-
responding secret key skε

ε to pk. Only for THIBE-IND-CCA security, A has
access to the decryption oracle Dec′. At some point, A outputs two equal-length
messages M0,M1 and receives a target ciphertext Ct∗

id∗ ← Enc(pk,Mb, id∗, t∗) in
return, for uniform b ← {0, 1}. Eventually, A outputs a guess b∗. We say that
A is valid if and only if A never queried the Ext-oracle on a prefix of id∗ for
tag t ∈ {t∗, ε}, and only outputs equal-length messages. For THIBE-IND-CCA
security, A is only valid if it additionally did not query Dec′ on the challenge
ciphertext. We say that any valid A succeeds if b = b∗. More formally, the
experiments are given in Experiment 1.

Experiment Expthibe-ind-TTHIBE,A (1κ, �)

(pk, skε
ε) ← Gen(1κ, �)

(M0, M1, id
∗, t∗, ,) ← AExt(skε

ε,·,·) ,Dec′(skε
ε, ·) (pk)

b ←$ {0, 1}
C∗ ← Enc(pk, Mb, id

∗, t∗)

b∗ ← AExt(skε
ε,·,·) ,Dec′(skε

ε, ·) (, C∗)
if b = b∗ return then 1, else return 0

Experiment 1: THIBE-IND-T-security for THIBE: T ∈ {CPA,CCA}.

Definition 2. For any PPT adversary A, we define the advantage function as

Advthibe-ind-T
THIBE,A (1κ, �) :=

∣
∣
∣
∣
Pr

[

Expthibe-ind-TTHIBE,A (1κ, �) = 1
]

− 1
2

∣
∣
∣
∣
,

for integer � ∈ N, for T ∈ {CPA, CCA}.

2.2 Constructing Tagged Hierarchical Identity-Based Encryption

We present our construction of a THIBE. The scheme construction closely follows
the construction of the Boneh-Boyen-Goh (BBG) HIBE [8], but has one addi-
tional distinguished element in the secret keys (used for positive puncturings
later in our DFPE construction). This element is not related to any hierarchy

506 D. Derler et al.

Gen(1κ, �) : Generate a bilinear group BG := (p, e, G1, G2, GT , g1, g2) ← BGen(1κ),

set M := GT , set T := {0, 1}κ, and set ID := Zp, sample g, h, h0, h1, . . . , h� ← G1,

choose α, r ← Zp, set pk := (BG, H, g, h, h0, h1, . . . , h�, g
α
2), for hash function

H : T �→ Zp (modelled as RO in the security proof) where H(ε) := 0,

and skε
ε := (hα · hr

0, gr
2 , hr

1, . . . , hr
� , gr).

Del(skt
id′ , id) : For id =: (id1, . . . , id�′+1) and �′ := |id ′|, if id �= (id ′, id�′+1), then

return skt
id′ . Otherwise, if t = ε, parse skt

id′ =: (a0, a1, K�′+1, . . . , K�, g
′).

Sample r′ ← Zp and return

(
a0 · K

id�′+1
�′+1

·
(
h0 ·

∏|�′+1|
i=1 h

idi
i

)r′
, a1 · gr′

2 , (Ki · hr′
i)�′+1<i≤�, g

′ · gr′
)

.

Otherwise, if t �= ε, parse skt
id′ =: (a0, a1, K�′+1, . . . , K�). Sample r′ ← Zp and return

(
a0 · K

id�′+1
�′+1

·
(
h0 ·

∏�′+1
i=1 h

idi
i

)r′
· gH(t)·r′

, a1 · gr′
2 , (Ki · hr′

i)�′+1<i≤�

)
.

Tag(skε
id , t) : If t = ε, return skε

id . Otherwise, set �′ := |id | and id =: (id1, . . . , id�′).
Parse skε

T =: (a0, a1, K�′+1, . . . , K�, g
′). Sample r′ ← Zp and return

(
a0 · g′H(t) ·

(
h0 ·

∏�′
i=1 h

idi
i

)r′
· gH(t)·r′

, a1 · gr′
2 , (Ki · hr′

i)�′<i≤�

)
.

Enc(pk, M, id , t) : Set �′ := |id | and id =: (id1, . . . , id�′). Sample s ← Zp, and return

(C1, C2, C3) :=
(
e(h, gα

2)
s · M, gs

2,
(
h0 ·

∏�′
i=1 h

idi
i

)s
· gH(t)·s

)
.

Dec(skt′
id′ , Ct

id) : If id ′ �= id or t′ �= t, return ⊥. Otherwise, parse skt
id′ as (a0, a1, . . .)

and (C1, C2, C3) := Ct
id . Return M ′ := C1 · e(C3, a1) · e(a0, C2)−1.

Scheme 1: Construction of THIBE.

level and can be embedded into the secret key at any stage. In Scheme 1, we
formally construct our THIBE.

Correctness of THIBE. Correctness essentially follows from the correctness of
the Boneh-Boyen-Goh HIBE [8]; in particular, see that decryption succeeds for
matching secret keys skt

id =: (a0, a1, . . .) = (hα · (h0 ·
∏�′

i=1 hidi
i · gH(t))r, gr

2) and
ciphertexts Ct

id =: (C1, C2, C3) = (e(h, gα
2)s · M, gs

2, (h0 ·
∏�′

i=1 hidi
i · gH(t))s), for

id =: (id1, . . . , id �′):

C1 · e(C3, a1)
e(a0, C2)

= e(h, gα
2)s · M · e((h0 ·

∏�′

i=1 hidi
i · gH(t))s, gr

2)

e(hα · (h0 ·
∏�′

i=1 hidi
i · gH(t))r, gs

2)
= M.

Fine-Grained Forward Secrecy 507

Theorem 1. If the q-wBDHI assumption holds, then THIBE defined in
Scheme 1 is THIBE-IND-CPA-secure in the random-oracle (RO) model. Con-
cretely, for any valid PPT adversary A with at most qk = qk(κ) key queries,
there is a distinguisher D on q-wBDHI with q = � + 1, such that

Advthibe-sind-cpa
THIBE,A (1κ, �) ≤ qk · Advq-wBDHI

BGen,D (1κ),

for group generator BGen and number of RO-queries qk = qk(κ).

Due to space constraints, we refer the reader to the full version of this work
for the proof of Theorem 1.

THIBE-IND-CCA Security. We now discuss how to obtain THIBE-IND-
CCA security for our construction THIBE by applying the well-known Fujisaki-
Okamoto transform [24]. Basically, the encryption algorithm will encrypt as its
message (M, r) with M the original message and r a sufficiently large randomly
sampled bit string (this requires an injective encoding (M, r) into the message
space of the THIBE scheme). The THIBE-encryption is de-randomized and uses
as random coins H(r) where H is a hash function modeled as a random ora-
cle (RO) to obtain the ciphertext Ct

id . The decryption algorithm applies the
original decryption algorithm from the THIBE-IND-CPA-secure THIBE scheme
to receive (M ′, r′). Then, it re-encrypts (M ′, r′) using random coins H(r,M ′)
to obtain the ciphertext C

t

id . If it holds that Ct
id = C

t

id , it outputs M ′ and
otherwise it outputs ⊥.

Corollary 1. If the q-wBDHI assumption holds, then THIBE defined in
Scheme 1 is THIBE-IND-CCA-secure in the RO model. Concretely, for any valid
PPT adversary A with at most qk = qk(κ) key queries, there is a distinguisher
D on q-wBDHI with q = � + 1, such that

Advthibe-sind-cca
THIBE,A (1κ, �) ≤ qk · qc · Advq-wBDHI

BGen,D (1κ),

for group generator BGen and number of RO-queries qk = qk(κ) and qc = qc(κ).

3 Dual-Form Puncturable Encryption

Puncturable encryption (PE) has been introduced by Green and Miers in [27]
and subsequently used and refined in several works, e.g., in [11,16,19,21,28]. We
recall, that a PE scheme is a public-key encryption scheme where each ciphertext
can be encrypted with respect to one (or more tags). PE features an additional
puncturing algorithm that takes a secret key and a tag t as input and produces
an updated secret key. This updated secret key is able to decrypt all ciphertexts
except those tagged with t and (updated) secret keys can be iteratively “punc-
tured” on distinct tags. (In our generalized allow-/deny-list encryption concept,
this will correspond to our secret-key manipulation with respect to a deny list.)

Despite being slightly different in their concrete formulation (e.g., some
schemes allow single tags, others multiple tags), existing PE schemes all provide

508 D. Derler et al.

the same basic idea in their functionality, i.e., that they allow to puncture secret
keys in a way that they can no longer decrypt certain ciphertexts. A notable
difference is in the formulation of Fully PE (FuPE) from Derler et al. [20] where
secret keys can be punctured with respect to so-called negative tags (resembling
the functionality of PE) and in addition to so-called positive tags. If a secret
key is punctured with respect to a positive tag, then it can only decrypt cipher-
texts that are tagged with respect to the corresponding positive tag. Although
this approach adds more flexibility, it still lacks an important feature, namely,
once keys are positively punctured, they can no longer be negatively punctured.
Mapped to the application that we have in mind, this means that derived FuPE
keys will loose the key-manipulation property (a versatile feature that we want
to enable). To mitigate this problem and to make the concepts of PE more
comprehensible, we introduce the new notion of Dual-Form PE (DFPE) which
enables the negative-puncturing features of keys after those keys have already
been positively punctured.

3.1 Definition, Correctness, and Security Notions of DFPE

Before constructing DFPE, we first present our DFPE definition and continue
with its correctness property as well as its security notions.

Definition 3 (DFPE). A Dual-Form Puncturable Encryption (DFPE) scheme
DFPE with message space M, positive and negative tag spaces T+ and T−, respec-
tively, consists of the PPT algorithms (Gen,NPunc,PPunc,Enc,Dec):

Gen(1κ, �−) : key generation, on input a unary security parameter 1κ ∈ N and
maximum number of negative tags �− ∈ N, outputs public and secret keys
(pk, skε

ε). (We assume that pp implicitly determines M, T+, and T−; we
consider ε to be not part of the positive and negative tag spaces.)

NPunc(skt+
T , t−) : negative puncturing, on input a secret key sk

t+
T with T ⊂ T− ∪

{ε} and t+ ∈ T+ ∪ {ε}, and a tag t− ∈ T−, outputs sk
t+
T∪{t−}.

PPunc(skε
T , t+) : positive puncturing, on input a secret key skε

T and positive tag
t+ ∈ T+, outputs a key sk

t+
T .

Enc(pk,M, t−, t+) : encryption, on input a public key pk, a message M ∈ M, a
negative tag t− ∈ T−, and a positive tag t+ ∈ T+, outputs a ciphertext C

t+
t− .

(We note that t+ and t− are publicly retrievable given the ciphertext and the
public key pk.)

Dec(sk
t′
+

T , C
t+
t−) : on input a secret key sk

t′
+

T and a ciphertext C
t+
t− , outputs M ∈ M

if t− /∈ T and t′+ = t+; else output ⊥.

Correctness of DFPE. Essentially, correctness ensures that even if a secret
key is negatively punctured and afterwards positively punctured, or vice versa,
decryption succeeds if the resulting secret key matches the positive tag of the
ciphertext and the negative tag of the ciphertext was not already punctured.

More formally, for all κ, �− ∈ N, all (pk, skε
ε) ← Gen(1κ, �−), all T ⊂ T− ∪{ε},

all t− ∈ T−, all t+ ∈ T+ ∪ {ε}, all arbitrarily interleaved runs of sk
t+
T∪{t−} ←

Fine-Grained Forward Secrecy 509

Experiment Expdfpe-ind-TDFPE,A (1κ, �−)

(pk, skε
ε) ← Gen(1κ, �−)

(M0, M1, t
∗
−, t∗

+, st) ← AExt(skε
ε,·,·) ,Dec′(skε

ε, ·) (pk)
b ← {0, 1}
C∗ ← Enc(pk, Mb, t

∗
−, t∗

+)

b∗ ← AExt(skε
ε,·,·) ,Dec′(skε

ε, ·) (st, pk, C∗)
if b = b∗ return 1, else return 0

Experiment 2: DFPE-IND-T-security for DFPE: T ∈ {CPA,CCA}.

NPunc(skt+
T , t−), all t′+ ∈ t+ and sk

t+
T ← PPunc(skε

T , t′+), all M ∈ M, all C
t′
+

t− ←
Enc(pk,M, t−, t′+), we have that Dec(sk

t′
+

T , C
t′
+

t−) = M if t− /∈ T .

DFPE-IND-CPA and DFPE-IND-CCA Security Notions. We define
security notions for DFPE, dubbed DFPE-IND-CPA and DFPE-IND-CCA. A
DFPE scheme is DFPE-IND-CPA-secure or DFPE-IND-CCA-secure if any PPT
adversary A succeeds in the following experiment only with probability at most
negligibly larger than 1/2. First, public and secret keys (pk, skε

ε) are honestly
generated. During the experiments, A may adaptively query a Ext(skε

ε, ·, ·)-
oracle, while for the DFPE-IND-CCA experiment, A may adaptively query a
Dec′(skε

ε, ·)-oracle additionally:

Ext(skε
ε, T, t+), on input secret key skε

ε, negative-tag set T ⊂ T−, and positive
tag t+ ∈ T+ ∪ {ε}, outputs sk

t+
T ← PPunc(skε

T�
, t+), for iteratively punc-

tured secret key skε
Ti

← NPunc(skε
Ti−1

, ti−1), for all pairwise-different tags
(t0, . . . , t�−1) ∈ (T)� with � := |T | and i ∈ [�] in arbitrary order. (It allows
the positive tag t+ = ε but not the negative-tag set T = {ε} nor the empty
set T = ∅ as input.)

Dec′(skε
ε, C

t+
t−), on input secret key skε

ε and ciphertext C
t+
t− , derives skt+

ε ←
PPunc(skε

ε, t+) and outputs M ← Dec(skt+
ε , C

t+
t−). (The oracle does not allow

a ciphertext input associated to the tags t− = ε and t+ = ε.)

The public key pk is given to A. A outputs equal-length messages (M0,M1),
a target negative tag t∗− ∈ T−, and a target positive tag t∗+ ∈ T+. The target
challenge ciphertext C∗ ← Enc(pk,Mb, t

∗
−, t∗+), for uniform b ← {0, 1}, is given to

A. Eventually, A outputs a guess b∗, and succeeds, i.e., the experiment outputs
1, if the equation b = b∗ holds.

We say that A is valid if and only if A has not queried the Ext-oracle to
obtain keys such that the challenge ciphertext can be trivially decrypted; for the
DFPE-IND-CCA case, we additionally require that A did not query Dec′-oracle
with the challenge ciphertext. More concretely, if any valid PPT A succeeds only
with probability at most negligibly larger than 1/2, then we say an DFPE scheme
is DFPE-IND-CPA and DFPE-IND-CCA secure, respectively. In Experiment 2,
we formally state the security experiments.

510 D. Derler et al.

Fig. 1. Example of a DFPE secret key that has been punctured on t0. The secret key

sk
t+
t0

has the boxed elements (sk001t0 , sk01t0 , sk1t0).

Definition 4. We define the advantage of an adversary A in the DFPE-IND-T
experiment Expdfpe-ind-TDFPE,A (1κ, �−) as

Advdfpe-ind-T
DFPE,A (1κ, �−) :=

∣
∣
∣Pr

[

Expdfpe-ind-TDFPE,A (1κ, �−) = 1
]

− 1
2

∣
∣
∣.

We say a DFPE scheme DFPE is DFPE-IND-T-secure for T ∈ {CPA, CCA}, if
Advdfpe-ind-T

DFPE,A (1κ, �−) is a negligible function in κ for all valid PPT A.

3.2 Constructing Dual-Form Puncturable Encryption

Subsequently, we present a construction of a DFPE scheme based on pairings.
Unfortunately, we cannot instantiate our DFPE scheme directly from HIBEs as
done in prior work on PE [28] and Fully PE [20,21]. The reason is that we want
to allow puncturings even after secret keys were extracted for a specific positive
tag such that those keys can be further restricted with respect to negative tags.
Realizing this generically from HIBEs stays unknown, but we use tagged HIBEs
(THIBEs) to construct DFPE-IND-CCA-secure DFPE. This allows to fulfill the
needs for our applications we have in mind not being achieved before by FuPE.
By applying THIBEs, we are able to instantiate our DFPE scheme using Type-3
bilinear groups as they represent the state-of-the-art regarding efficiency and
similarity of the security levels of the base and target groups.

To construct a DFPE scheme from THIBEs, we implicitly arrange negative
tags of the DFPE scheme associated to secret keys in a complete binary tree, i.e.,
the nodes represent a prefix bit representation of the negative tag and, hence,
the root of the tree is associated with keys skt+

ε of the DFPE. In Fig. 1, we give
an example with a secret key punctured on a negative tag t0.

We define an additional PPT helper algorithm Trunc to prune the tree to
output a punctured secret key that corresponds to a given set of tags. This is
reminiscent of prior works, e.g., [10,19,20,28].

Intuition of Trunc. Essentially, Trunc takes the current tree configuration as
provided in the secret key (i.e., which tags are already punctured and, hence,

Fine-Grained Forward Secrecy 511

how the tree is pruned for such tags). It further receives a negative tag t− that
will be punctured. Trunc first finds all elements from the root to the associated
leaf of tag t−. (Since those elements can be used to derive a secret key for tag t−.)
It delegates the key elements on that path such that no ancestor elements for t−
are available anymore and keeps the other key elements. The result is a pruned
tree that excludes secret-key material for t− for the new set of punctured tags
T ∪ {t−}. The concrete PPT algorithms works as follows (see that the positive
tag t+ is not touched in Trunc).

Trunc(skt+
T , t−) : on input keys (skT,1, . . . , skT,m) := sk

t+
T , for some integer m,

output a punctured secret key according to t− = (t1, . . . , t�) as follows:
1a. let skT,i be the secret key part associated to the unique node which is

associated to a prefix of t−. (Such unique element always exists, oth-
erwise t− would have been punctured already.) Derive delegated secret
keys hanging from the path to t− by iteratively calling Del on all pre-
fixes of t− starting from the node associated to skT,i and set sk′

T :=
(sk′

T,≤m, sk′
T,m+1, sk

′
T,m+2, . . .), where sk′

T,≤m is the same as sk
t+
T , but

without skT,i, and sk′
T,m+1, sk

′
T,m+2, . . . are those derived delegated keys

via Del hanging from the path to t−; else,
1b. if there exist a leaf associated to a t−-secret key skT,i, for i ∈ [m], then

set sk
t+
T∪{t−} := sk′

T,≤m, where sk′
T,≤m is the same as sk

t+
T , but without

the leaf-associated secret key skT,i.
2. Output sk

t+
T∪{t−}.

Concrete Construction of DFPE. The intuition of the concrete DFPE con-
struction is as follows. Key generation returns the public-secret key pair of the
THIBE key generation as its initial public and secret keys. The negative and
positive tag spaces are set to T− = |ID�| (i.e., corresponding to a leaf in the
tree) and T+ = T (i.e., corresponding to THIBE’s tags), respectively. Nega-
tive puncturing takes a secret key, runs Trunc to truncate the tree, and returns
the punctured secret key (according to the pruned-tree configuration). Positive
puncturing takes a secret key and a positive tag t+, and punctures all part secret
keys with t+ using Tag. Encryption takes the public key, negative and positive
tags, and the message to return the output of THIBE’s encryption algorithm.
Decryption finds the associated secret key part such that the negative tag t− of
the ciphertext is matched (i.e., if t− was not yet punctured in the secret key,
then such key material is available). Furthermore, if the positive tag t+ of the
secret key matches the positive tag of the ciphertext, then decryption returns
the output of THIBE’s decryption algorithm.

More formally, let THIBE = (THIBE.Gen,THIBE.Del,THIBE.Tag,THIBE.Enc,
THIBE.Dec) with message space MTHIBE, identity space ID≤�, and tag space T
be a THIBE scheme. We present our DFPE scheme DFPE = (Gen,NPunc,PPunc,
Enc,Dec) with message space M := MTHIBE, negative tag space T− := ID�,
and positive tag space T+ := T in Scheme 2 and further show that it satisfies
correctness and the DFPE-IND-CCA security notion.

512 D. Derler et al.

Gen(1κ, �) : Return (pk, skε
ε) ← THIBE.Gen(1κ, �). (We assume that the negative tag

space T− is of size |ID�| for simplicity.)

NPunc(sk
t+
T , t−) : Return sk

t+
T∪{t−} ← Trunc(sk

t+
T , t−).

PPunc(skε
T , t+) : Compute sk

t+
ti

← THIBE.Tag(skε
ti

, t+), for all skε
T =: (skε

t1
, . . . , skε

tm
),

for some integer m, and output sk
t+
T := (sk

t+
ti

)i∈[m].

Enc(pk, M, t−, t+) : Return C
t+
t− ← THIBE.Enc(pk, M, t−, t+).

Dec(sk
t′
+

T , C
t+
t−) : Parse sk

t′
+

T =: (. . . , sk
t′
+

t′
−

, . . .) such that t′− is a prefix of t−, run sk
t′
+

t− ←

THIBE.Del(sk
t′
+

t′
−

, t), and return M := THIBE.Dec(sk
t′
+

t− , C
t+
t−). (Note that if t− /∈ T ,

such prefix always exists.)

Scheme 2: DFPE-IND-CCA-secure DFPE scheme DFPE.

Correctness of DFPE. Correctness essentially follows from the correctness of
THIBE; in particular, see that if t− /∈ T , then there exist a part-secret key that
is capable of decrypting the ciphertext. Due to space constraints, for a proof of
the following theorem, we refer the reader to the full version of this work.

Theorem 2. If THIBE is a THIBE-IND-CCA-secure THIBE, then DFPE
defined in Scheme 2 is DFPE-IND-CCA-secure. Concretely, for any valid PPT
adversary A, there is an adversary D on the THIBE-IND-CCA-security, such
that

Advdfpe-ind-cca
DFPE,A (1κ, �−) ≤ Advthibe-sind-cca

THIBE,D (1κ, �−),

for some integer �− ∈ N.

3.3 Implementation and Evaluation

We have implemented our DFPE-IND-CPA-secure DFPE scheme as presented
in Sect. 3.2 in Python 3.8 based on pyrelic3 using the BN254 curve that yields
a security level of around 100 bit [5,33] with the relic pairing library version
0.5.0 [3]. The measurements were performed on a laptop with an Intel Core
i7-8650U @ 1.9 GHz running Ubuntu 20.04. In Table 2, we present the average
runtime over 100 runs each and sizes of public keys, secret keys and cipher-
texts using negative tag spaces of size 248, 264, and 280 for a random message,
respectively. From Table 2, one can see that the algorithms Gen, Enc, Dec, and
PPunc are very efficient. The benchmarks of the Dec algorithm assumes that no
additional key extraction is necessary. Thus, the runtime of the decryption is
independent of the size of the parameter space. The NPunc algorithm needs less
than a second for all levels, but is still the slowest algorithm overall.4 However,

3 https://github.com/sebastinas/pyrelic, commit 264e6396.
4 It is a central open issue in the context of PE to make these algorithms more efficient.

https://github.com/sebastinas/pyrelic

Fine-Grained Forward Secrecy 513

Table 2. Performance estimation and evaluation: exponentiations in G1 and G2 are
denoted as G, pairings as P . Runtime in ms and sizes in bytes.

Tags Gen Enc Dec PPunc NPunc |pk| |skε
ε| max |skidT | |C|

2� G O(�)G 2P O(�)G O(�2)G G2 (� + 2)G1, G2 O(�2)G1, O(�)G2 G1, G2

248 2.0 2.7 0.4 2.3 110.2 64 1664 78336 96

264 2.6 3.4 0.4 3.0 192.0 64 2176 137216 96

280 3.1 4.1 0.4 3.7 292.6 64 2688 212480 96

(negative) puncturing is often an offline operation and thus our performance
results are perfectly acceptable.

Furthermore, we can observe that the size of ciphertexts do not depend on
the size of the negative tag space. In the random oracle model, the basis elements
stored in the public key can be derived via the random oracle, so its size can
be made independent of the tag space. The size of the secret key depends both
on the tag space as well as the performed puncturings. Depending on the exact
choice of tags, punctured secret keys can grow up to at most 78 MB, 137 MB
and 212 MB, respectively.

4 Applications

4.1 Cloudflare’s Geo Key Manager

Let us now continue the discussion on Cloudflare’s Geo Key Manager5 in
more detail. The currently used system combines pairing-based constructions of
identity-based broadcast encryption (IBBE) [18] as well as identity-based revo-
cation (IBR) [4] schemes with compact ciphertexts in the following way: first,
the private key6 sk is secret shared in two shares sk1 and sk2. Using the IBBE
scheme, the first share, sk1 is encrypted with respect to the allowed regions. The
second share, sk2 is encrypted with the IBR scheme revoking access for all denied
colocations. Now, if a colocation receives the two ciphertexts, it can recover the
encrypted shares only if it is within the allowed region and not one of the denied
colocations. Otherwise, it can only recover at most one of the shares. For adding
allowed colocations not already contained within one of those allowed areas, sk
is additionally encrypted with the IBBE scheme for all allowed colocations. So
overall, ciphertexts contain two constant-size IBBE ciphertexts and a constant-
size IBR ciphertext. We can obtain the same functionality also from only using
DFPE. In addition, we also obtain the important property of forward secrecy.

Using DFPE. The idea is to allow the regions using the positive tags and deny
colocations by puncturing on unique negative tags assigned to each colocation.

5 https://blog.cloudflare.com/geo-key-manager-how-it-works.
6 Technically, an encryption key for sk, but that does not make a difference.

https://blog.cloudflare.com/geo-key-manager-how-it-works

514 D. Derler et al.

Indeed, assume that (pk, skε
ε) is Cloudflare’s DFPE key-pair. Next, Cloudflare

would derive keys for each region by using the name of the region as positive tag
in the DFPE scheme, e.g., obtaining skEU

ε for Europe. Each colocation is assigned
a unique negative tag and they receive the secret key for the region additionally
punctured on that tag, e.g., skEU

London for the European data center in London.
If customers now want to store their secret key, they encrypt the key for each
allowed region using the region as positive tag and the denied colocations of the
corresponding region as negative tags. If a colocation needs to access the key,
it can only decrypt if one of the ciphertexts was encrypted for the region and
that particular ciphertext was not tagged with one of the positive tags of the
colocation. They are unable to decrypt the other ciphertexts, since they do not
have access to the positively tagged keys. For denying colocations in allowed
regions, we follow the same approach, but encrypt the ciphertext including all
negative tags of the region’s colocations without the ones being allowed.

Achieving Forward Secrecy. Since DFPE allows to puncture on multiple
negative tags, we can additionally obtain forward secrecy as an important new
feature: we can partition the tag space into one part containing the colocation
tags, and another part identifying time periods by viewing this part as ordered
sequence. Thereby, the customers can specify a time epoch as additional negative
tag, say t = 2021-02 for ciphertexts decryptable in February 2021. Once the
month passed, all colocations puncture the secret keys on the month’s tag, and
are then no longer able to decrypt those ciphertexts. The time periods can be
designed in such a way, that they match the renewal periods of certificates.

We note that when switching to DFPE, each colocation only has to manage
one DFPE secret key instead of an IBBE and an IBR secret key and DFPE
easily achieves both allowing and denying of areas and colocations with one
single primitive, respectively, while at the same time it additionally provides
forward-secrecy. The approach of using DFPE, however, comes at the cost of
having the size of the ciphertexts depend linearly on the number of allowed
areas instead of 3 ciphertexts when using IBBE and IBR. When considering
continents, the number of regions is very small (<10), thus our ciphertext size
can be considered quasi-constant. Also note that the combined IBBE and IBR
ciphertext requires 576 bytes7 using the same curve, which corresponds to six
regions in the DFPE-based approach. Therefore, when considering the continents
as regions, we obtain ciphertexts that are at most the same size and, thus,
forward secrecy is achieved without additional cost. Additionally, Cloudflare
only needs to send the ciphertexts for specific regions to their colocations. Hence,
colocations only have to store a single ciphertext. We note that the number of
negative tags (denied colocations together with the epoch) does not influence
the ciphertext size.

7 https://rwc.iacr.org/2018/Slides/Sullivan.pdf.

https://rwc.iacr.org/2018/Slides/Sullivan.pdf

Fine-Grained Forward Secrecy 515

4.2 Cryptographic Primitives

Forward-Secret Identity-Based Encryption. Interestingly, although there
are some works on forward-secret IBE [12,32,36], they all consider a very weak
model in which the master secret key stays constant and, hence, the private
key generator (PKG) is able to generate user keys for arbitrary time periods
and, thus, inherently invalidating an important aspect of forward secrecy. We
are only aware of a dedicated construction of a forward-secret hierarchical IBE
(HIBE) by Yao et al. [40], which also yields a forward-secret IBE as a special
case. This works also considers forward-secrecy for the master secret key. As
we will show, DFPE generically yields forward-secret IBE and, thus, offering
new instantiations thereof. In particular, to the best of our knowledge, using the
concrete DFPE construction, this leads to the first fs-IBE scheme with compact
ciphertexts. We recall the definition of an fs-IBE scheme and its security in the
full version of the work due to space constraints.

fs-IBE Construction. Having a DFPE scheme allows to construct an fs-IBE
scheme by mapping time intervals to negative tags. The only syntactical dif-
ference is that the NPunc and PPunc algorithms of DFPE are mapped to the
Update and Ext algorithms of fs-IBE. In particular, when we are at a time inter-
val i in the fs-IBE scheme, this corresponds to secret keys that are punctured
with respect to tag set T = {1, . . . , i − 1} in the DFPE scheme and moving from
time interval i to interval i + 1 corresponds to puncturing the secret key at tag
i, i.e., T := T ∪ {i}. It is straightforward to show the following:

Corollary 2. If the DFPE scheme provides DFPE-IND-T-security, then the
resulting fs-IBE scheme provides fs-IBE-IND-T-security, for T ∈ {CPA,CCA}.

Forward-Secret Signatures. Forward-secret signatures [1,6,30,31] are a prim-
itive that has recently found interest in distributed ledgers [17,22,23,26].

Having a DFPE scheme and, in particular, a fs-IBE scheme, we can generically
construct a forward-secret signature scheme. The idea is simply to adopt the
Naor-transform [9], which converts any IBE-IND-CPA secure IBE scheme into
an EUF-CMA secure signature scheme. We first briefly recall this transform: We
consider an IBE scheme and the master secret key sk acts as the signing key. Let
id = m, the message to be signed, then skm extracted with sk for identity m
acts as the signature for m. The signature verification is done by checking if skm

functions properly as a correct IBE decryption key for identity m by encrypting
a random plaintext and checking if decryption yields to the original plaintext.

The basic idea of this transform applied to the forward-secret setting is as
follows. We start with the master secret key skε

ε as initial signing key and to
develop the signing key over time, we update the secret key to the next time
period, i.e., to update the signing key from interval i to interval i + 1 we run
skε

i+1 ← Update(skε
i , ε, i). Now, within every time interval i one uses the current

signing key with the above Naor-transform. One straightforwardly obtains:

Corollary 3. If the fs-IBE scheme provides fs-IBE-IND-CPA-security, then the
signature scheme obtained via the Naor-transform provides EUF-CMA-security.

516 D. Derler et al.

Using our DFPE from Sect. 3.2 in the above compiler, this yields forward-secret
signatures with the same efficiency as in recent work [22,23,26].

Acknowledgements. This work was supported by the European commission through
ECSEL Joint Undertaking (JU) under grant agreement n◦783119 (Secredas), grant
agreement n◦826610 (Comp4Drones), through the Horizon 2020 research and innova-
tion programme under grant agreement n◦871743 (Kraken), project IoT4CPS funded
by the Austrian “ICT of the future” program of the Austrian Research Promotion
Agency (FFG) and the Federal Ministry of Austria for Climate Action, Environment,
Energy, Mobility, Innovation and Technology (BMK), and by the Austrian Science
Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet).
The work of the first two authors was partly done while at Graz University of Tech-
nology.

A Notation, Pairings and q-wBDHI Assumption

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let κ ∈ N be the security
parameter. For a finite set S, we denote by s ← S the process of sampling s
uniformly from S. For an algorithm A, let y ← A(κ, x) be the process of running
A on input (κ, x) with access to uniformly random coins and assigning the result
to y. (If not given explicitly, we assume that κ is implicitly given as input.) To
make the random coins r explicit, we write A(κ, x; r). We say an algorithm A is
probabilistic polynomial time (PPT) if the running time of A is polynomial in
κ. A function f is negligible if its absolute value is smaller than the inverse of
any polynomial (i.e., if ∀c∃k0∀κ ≥ k0 : |f(κ)| < 1/κc). We may write q = q(κ) if
we mean that the value q depends polynomially on κ.

Pairings. Let G1, G2, GT be cyclic groups of order p. A pairing e : G1 × G2 →
GT is a map that is bilinear (i.e., for all g1, g

′
2 ∈ G1 and g2, g

′
2 ∈ G2, we have

e(g1 · g′
1, g2) = e(g1, g2) · e(g′

1, g2) and e(g1, g2 · g′
2) = e(g1, g2) · e(g1, g′

2), non-
degenerate (i.e., for generators g1 ∈ G1, g2 ∈ G2, we have that e(g1, g2) ∈ GT is
a generator), and efficiently computable. Let BGen be a PPT algorithm that, on
input a security parameter κ, outputs BG = (p,G1, G2, GT , e, g1, g2) for genera-
tors g1 and g2 of G1 and G2, respectively, and Θ(κ)-bit prime p.

q-wBDHI Assumption. We recall the q-wBDHI [8] assumptions ported to
Type-3 groups [13]. We define the advantage of an adversary D with respect to
q-wBDHI as

Advq-wBDHI
BGen,D (κ) :=

∣
∣
∣ Pr[D(pp, e(g1, gr

2)
α(q+1)

) = 1] − Pr[D(pp, e(g1, gr
2)

u) = 1]
∣
∣
∣,

where BG ← BGen(1κ), and pp = (BG, gα
1 , gα2

1 , . . . , gαq

1 , gα
2 , gr

1, g
r
2), for α, r, u ←

Zp. We say the q-wBDHI assumption holds if Advq-wBDHI
BGen,A is a negligible function

in the security parameter κ for all PPT adversaries A.

Fine-Grained Forward Secrecy 517

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74835-9 10

3. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is
an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

5. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019)

6. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

7. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

11. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS,
vol. 10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 8

12. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R., Puglisi, O.: Fully non-
interactive onion routing with forward-secrecy. In: Lopez, J., Tsudik, G. (eds.)
ACNS 2011. LNCS, vol. 6715, pp. 255–273. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21554-4 15

13. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of Ψ revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)

14. Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (puncturable)
KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 159–190. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 6

15. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-540-74835-9_10
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-642-21554-4_15
https://doi.org/10.1007/978-3-642-21554-4_15
https://doi.org/10.1007/978-3-030-64837-4_6
https://doi.org/10.1007/3-540-45325-3_32

518 D. Derler et al.

16. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC, pp. 1115–1127. ACM (2016)

17. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 3

18. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 12

19. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425–455. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 14

20. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 219–250.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 8

21. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications.
IACR ePrint 2018, 321 (2018)

22. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for con-
sensus. In: USENIX, pp. 2093–2110. USENIX Association (2020)

23. Drijvers, M., Neven, G.: Forward-secure multi-signatures. IACR Cryptol. ePrint
Arch. 2019, 261 (2019)

24. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

25. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

26. Gorbunov, S., Wee, H.: Digital signatures for consensus. Cryptology ePrint Archive,
Report 2019/269 (2019)

27. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: IEEE S&P, pp. 305–320. IEEE (2015)

28. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward
secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

29. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 31

30. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

31. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
ACM CCS, pp. 108–115. ACM (2000)

32. Lu, Y., Li, J.: Forward-secure identity-based encryption with direct chosen-
ciphertext security in the standard model. Adv. Math. Commun. 11(1), 161–177
(2017)

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/978-3-319-76578-5_8
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/3-540-44647-8_20

Fine-Grained Forward Secrecy 519

33. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Phan, R.C.-W., Yung,
M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 83–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7 5

34. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: ACM CCS, pp.
199–212. ACM (2009)

35. Schwarz, M., Gruss, D.: How trusted execution environments fuel research on
microarchitectural attacks. IEEE Secur. Priv. 18(5), 18–27 (2020)

36. Singh, K., Pandurangan, C., Banerjee, A.K.: Lattice based forward-secure iden-
tity based encryption scheme with shorter ciphertext. J. Internet Serv. Inf. Secur.
3(1/2), 5–19 (2013)

37. Sun, S.-F., Sakzad, A., Steinfeld, R., Liu, J.K., Gu, D.: Public-key puncturable
encryption: modular and compact constructions. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 309–338.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 11

38. Susilo, W., Duong, D.H., Le, H.Q., Pieprzyk, J.: Puncturable encryption: a generic
construction from delegatable fully key-homomorphic encryption. In: Chen, L., Li,
N., Liang, K., Schneider, S. (eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp.
107–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 6

39. Wei, J., Chen, X., Wang, J., Hu, X., Ma, J.: Forward-secure puncturable identity-
based encryption for securing cloud emails. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019, Part II. LNCS, vol. 11736, pp. 134–150. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 7

40. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: Id-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In:
ACM CCS, pp. 354–363. ACM (2004)

41. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: ACM CCS, pp. 305–316. ACM (2012)

42. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: ACM CCS, pp. 990–1003. ACM (2014)

https://doi.org/10.1007/978-3-319-61273-7_5
https://doi.org/10.1007/978-3-030-45374-9_11
https://doi.org/10.1007/978-3-030-59013-0_6
https://doi.org/10.1007/978-3-030-29962-0_7

Faster Homomorphic Encryption
over GPGPUs via Hierarchical DGT

Pedro Geraldo M. R. Alves1(B) , Jheyne N. Ortiz1 , and Diego F. Aranha2

1 University of Campinas, Campinas, Brazil
{pedro.alves,jheyne.ortiz}@ic.unicamp.br

2 Aarhus University, Aarhus, Denmark
dfaranha@cs.au.dk

Abstract. Privacy guarantees are still insufficient for outsourced data
processing in the cloud. While employing encryption is feasible for data
at rest or in transit, it is not for computation without remarkable per-
formance slowdown. Thus, handling data in plaintext during processing
is still required, which creates vulnerabilities that can be exploited by
malicious entities. Homomorphic encryption schemes enable computation
over ciphertexts without knowing the related plaintexts or the decryp-
tion key. This work focuses on the challenge of developing an efficient
implementation of the BFV scheme on CUDA. This is done by com-
bining and adapting different literature approaches, as the double-CRT
representation and the Discrete Galois Transform. Moreover, we propose
and implement an improved formulation of the DGT inspired by clas-
sical algorithms, which computes the transform up to 2.6 times faster
than the state-of-the-art. By using these approaches, we obtain up to 3.6
times faster homomorphic multiplication.

Keywords: Fully homomorphic encryption · BFV · CUDA ·
Polynomial multiplication · Privacy-preserving computing

1 Introduction

With the growing data collection by governments and companies, protecting its
secrecy becomes as important as processing and extracting useful information.
However, how to efficiently collect and compute user data without undermining
their privacy is an open problem. System breaches may happen even when data
holders choose the most conservative practices and never share data intentionally.

The Breach Level Index provides distressful statistics about data leakage.
It states that most breaches occur by accidental loss on leaving plaintext data
exposed inadvertently. Attacks from malicious parties, which explore vulnerabili-
ties to subvert security mechanisms, are also far from negligible [29]. Data can be
protected by encryption even in case of leakage. However, encryption-decryption
cycles during its lifespan create a weak point in the system’s security. Thus,
building the system roots attached to mathematical guarantees and dispensable
decryption is the only way to achieve a more reliable security.
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 520–540, 2021.
https://doi.org/10.1007/978-3-662-64331-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_27&domain=pdf
http://orcid.org/0000-0002-7175-8383
http://orcid.org/0000-0001-7152-2103
http://orcid.org/0000-0002-2457-0783
https://doi.org/10.1007/978-3-662-64331-0_27

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 521

Homomorphic Encryption (HE) schemes enable data processing while pro-
tecting its confidentiality. They allow the evaluation of arithmetic circuits over
ciphertexts by a third party without any knowledge of the corresponding plain-
texts or the decryption key, preventing the computation’s inputs and outcome
to be learned. Hence, HE is a natural candidate for solving privacy issues caused
by malicious third parties, careless administrators, or other security flaws during
the processing, such as side-channel vulnerabilities.

Many of the HE schemes available in the literature rely on the hardness of the
Ring-Learning with Errors (RLWE) problem. This assumption offers a strategy
for protecting messages, encoded as polynomials in Rq = Zq[x]/(f(x)), by adding
noise in a way that it can only be removed when given a trapdoor. There are
several proposals following this approach such as BFV [21], CKKS [13], and
TFHE [14]. All depend on polynomial arithmetic as the main building block, so
its efficient implementation is critical for adopting HE in the real-world.

CUDA is an important tool for the efficient implementation of polynomial
arithmetic. It’s a SIMD architecture developed and maintained by NVIDIA for
employing the data parallelism potential of a GPU in tasks beyond graphi-
cal processing. However, the particularities of CUDA impose challenges for its
cryptographic use. Its processing flow demands careful planning to align possi-
ble conditional branches with certain thread groups, and its memory paradigm
considers several structures with different dimensions and latency characteris-
tics, separated from the machine’s main memory. Moreover, at this point, no
general-purpose cryptographic library or polynomial arithmetic framework sup-
ports CUDA. Hence, these constraints motivate the development of a complete
toolkit to work as an arithmetic engine aimed at RLWE-based cryptosystems.

Our Contributions. This work presents mathematical tools and techniques for
the efficient implementation of the BFV scheme in CUDA. We follow the litera-
ture by employing the Residue Number System (RNS) as the best approach for
handling the multiprecision arithmetic required, and the Halevi, Polyakov, and
Shoup modification of BFV to solve the division and rounding problem in the
RNS domain [9,24]. The main contributions of this study are:

– A novel hierarchical formulation of the Discrete Galois Transform (DGT) that
offers about two times lower latency on GPUs than the best version available
in the literature. Moreover, we collect evidence that suggests it is faster than
the commonly used Number Theoretic Transform (NTT). Such formulation
is inspired by Bailey’s version of the Fast Fourier Transform [7].

– Compatible choice of parameters between the DGT and the RNS repre-
sentation. We show that the double-CRT representation proposed by Gen-
try et al. is a better implementation design than the usual approach of work-
ing with Mersenne or Solinas primes in different rings [10].

– A more efficient, GPU-optimized, state machine which reduces the need for
moving data in and out of the DGT domain and between the main memory
and the GPU global memory.

These contributions are not limited to the BFV cryptosystem and can be
easily applied to other RLWE-based schemes, such as CKKS. Moreover, we

522 P. G. M. R. Alves et al.

provide latency benchmarks from a proof-of-concept implementation named
spog, which was built based on the methods above. Two relevant works employ-
ing the DGT are considered for comparison with our results: Badawi, Polyakov,
Aung, Veeravalli, and Rohloff [4]; and Badawi, Veeravalli, Mun, and Aung [6].
When considering homomorphic multiplication as the main performance-critical
operation, spog offers higher performance against these works, surpassing a
3.6-factor performance improvement against the latter.

2 Mathematical Background

The efficient implementation of an RLWE-based cryptosystem on CUDA
requires carefully designed building blocks for adjusting the operations to the
architecture’s limitations. The BFV cryptosystem, as well as other HE propos-
als, relies on large parameters for achieving proper security levels. This imposes
a challenge in the light of GPGPUs’1 constraints, for both the size of the coef-
ficients, much larger than the native integer instruction set; and the polynomial
arithmetic, that requires highly-optimized algorithms to reduce the computa-
tional complexity and improve the scalability of expensive operations, such as
polynomial multiplication.

This Section describes the Fan and Vercauteren cryptosystem; presents the
Residue Number System (RNS) representation, used to avoid the multiprecision
arithmetic; and introduces the Discrete Galois Transform (DGT), a more suitable
variant of the Fast Fourier transform (FFT) to GPU implementation.

2.1 The BFV Cryptosystem

Fan and Vercauteren proposed a variant of Brakerski’s homomorphic cryptosys-
tem, nowadays referred to as BFV, that relies on the hardness of the Ring-
Learning With Errors (RLWE) problem [21]. Classified as a leveled homomorphic
encryption scheme (LHE), it is currently one of the most efficient cryptosystems
of its class concerning speed and memory consumption and remains untouched
by recent advances in cryptanalysis [1,16].

Let p > 1 be an integer and n a power-of-2. BFV’s basic arithmetic is built
upon polynomial rings of the form Rp = Zp[X]/(Xn+1). The scheme defines the
following parameter set: a security parameter λ; a decomposition base ω > 1;
the modulus t ≥ 2 that determines the plaintext domain Rt; and the modulus
q � t that determines the ciphertext domain Rq. Moreover, it makes use of
an error distribution χerr, usually a zero-mean discrete Gaussian distribution
parameterized by the standard deviation σ.

Let l = �logω q�. The main procedures of BFV are the following:

KeyGen(λ, ω): Let sk ← R3 be the secret key. Sample a ← Rq uniformly at ran-
dom and e ← χerr, and define the public key pk = (b, a) = ([−(a · sk + e)]q , a).

1 GPGPU, acronym for General-Purpose Graphics Processing Unit.

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 523

Generate the evaluation key evk as: Sample ai ← Rq uniformly at random,
ei ← χerr, and compute γi =

(
[−(ai · sk + ei) + ωi · sk2]q,ai

)
. Define evk =

⋃l
i=0 γi. Output (sk, pk, evk).

Encrypt(m, pk): for a plaintext message m ∈ Rt and a public key pk = (b, a),
sample u ← R2 uniformly at random and e1, e2 ← χerr, and compute the
ciphertext c =

(
[Δm + b · u + e1]q , [a · u + e2]q

)
, where Δ = �q/t�.

Decrypt(c, sk): for a ciphertext c = (c0, c1) and the secret key sk = s, recover
the plaintext m =

[⌊
t
q [c0 + c1 · s]q

⌉]

t
.

Add(c0, c1) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute cadd =
([c0,0 + c1,0]q , [c0,1 + c1,1]q).

Relin((c0, c1, c2), evk) : for c0, c1, c2 ∈ Rq, evk = (b,a), and a decomposition
of c2 in base w such that c2 =

∑l
i=0 c

(i)
2 wi, return([

c0 +
∑l

i=0 bi · c
(i)
2

]

q
,
[
c1 +

∑l
i=0 ai · c

(i)
2

]

q

)
.

Mul(c0, c1, evk) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute

c =
([⌊

t
q · c0,0 · c1,0

⌉]

q
,
[⌊

t
q · (c0,0 · c1,1 + c0,1 · c1,0)

⌉]

q
,
[⌊

t
q · c0,1 · c1,1

⌉]

q

)

and return cmul = Relin(c, evk).

2.2 Residue Number System

As can be observed in Sect. 2.1, BFV depends upon computationally expen-
sive polynomial operations. Moreover, the literature reveals that big integer
arithmetic is required to offer proper security levels [28]. A common strategy
in implementations of BFV is to use the Chinese Remainder Theorem (CRT)
on the Residue Number System (RNS) to map large integers to a set of smaller
residues capable of being evaluated by processor’s native instructions [9,19].

Definition 1 (CRT). Let x be a polynomial in Rq, and {p0, . . . , p�−1} a set
of pairwise coprimes. The CRT decomposition results in a set X with � residues
such that CRT(x) =

{
[x]p0 , . . . , [x]p�−1

}
. The inverse CRT(X) is defined as:[

∑�−1
i=0

M
pi

·
[(

M
pi

)−1

Xi

]

pi

]

M

= x, where M =
∏�−1

i=0 pi.

Addition and multiplication in the RNS domain work by applying the operation
residue-wise. However, division and modular reduction are more complicated
and require a more advanced technique, as described next.

2.3 Division and Rounding Inside the RNS Domain

Some parts of BFV are hardly compatible with RNS, such as the coefficient-
wise division and rounding used in decryption and homomorphic multiplication.
Motivated by that, two variants of BFV can be found in the literature, BEHZ-
BFV and HPS-BFV, which propose modifications to the cryptosystem to support
them in the RNS domain [8,24].

524 P. G. M. R. Alves et al.

Let Q = {q0, q1, . . . , q�−1} be a RNS basis which we can use to represent
any ciphertext, as described in Sect. 2.2. BEHZ-BFV and HPS-BFV claim that
the division and rounding can be computed by extending base Q to a new basis
B = {b0, b1, . . . , bk−1} such that

∏
qi <

∏
bj . While BEHZ-BFV looks for an

exact rounding, HPS-BFV shows how to build operations to minimize the error
and merge it into the natural cryptosystem noise. This allows a much simpler
procedure, with a lower computational cost, to be used. HPS-BFV’s authors
present an analysis that demonstrates that their procedures are simpler and
have lower complexity and noise growth than those in BEHZ-BFV.

The HPS-BFV methods are composed by a basis extension procedure, which
computes a polynomial representation in a base B from its representation in base
Q; and two methods to scale down and round an integer in its RNS representation
by t/q, one to be used on decryption, which is a more straightforward scenario
that requires the output to be in base {t}, and one for homomorphic encryption,
which is a bit more complicated since the outcome must lie in base B.

Both variants of BFV take the fact that q is not defined as a prime integer.
Thus, they represent and work with Rq polynomials in an RNS base composed
by a factorization of q, i.e. q =

∏�−1
i=0 qi. One of the advantages of doing this is

the automatic merge of the RNS bounds with the ciphertext coefficient domain.

2.4 Discrete Galois Transform

The Fast Fourier Transform (FFT) is a well-known method that offers linear
computational cost for polynomial multiplication when the operands lie in its
domain and quasi-linear when considering the computation of the transform
itself. However, the FFT is defined on C, which makes it harder for its direct
applicability in the context of RLWE-based cryptosystems, defined on integer
domains. Thus, variations offering the same functionality but built upon inte-
ger arithmetic were proposed in the literature, such as the Number Theoretic
Transform (NTT) over GF (p), and the Discrete Galois Transform (DGT) over
GF (p2), for some convenient choice of a prime number p [17,26].

The main difference of DGT over NTT is caused by their domains, which
results in memory bandwidth savings, as deeply discussed in Sects. 3 and 4.
Despite this, they are sufficiently similar so that they share most of the com-
putation data paths and their efficient implementation strategies. Further-
more, as GF (p2) can be represented in the set of Gaussian integers Zp[i] =
{a + ib | a, b ∈ Zp}, it uses finite field arithmetic with Zp elements as building
blocks, which resonates with the representation used by RNS and BFV. In Def-
inition 2 we introduce the base formulation, as done in by Badawi et al. [5].

Definition 2 (Discrete Galois Transform). Let p ≥ 3 be a prime number,
x = {x0, . . . , xn−1} be a vector of length n such that xk ∈ GF (p2) for 0 ≤ k < n,
and g be an n-th primitive root of unity in GF (p). Then, the DGT and its inverse
are defined as: Xk =

∑n−1
j=0 xjg

−jk ∈ GF (p2) and xk = n−1
∑n−1

j=0 Xjg
jk ∈

GF (p2), respectively.

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 525

3 Efficient CUDA Operation on Cyclotomic Rings

An efficient implementation of the arithmetic of cyclotomic polynomial rings
requires a convenient approach for polynomial multiplication and a proper data
representation, not only with low computational complexity but also that fits
well in the processing hardware. This Section provides optimization strategies
for implementing polynomial arithmetic on CUDA.

3.1 Fast Polynomial Multiplication

The complexity to compute a polynomial multiplication using a textbook for-
mula is Θ

(
n2

)
for n-degree polynomials, which means that performance will be

seriously affected with the increase of the degree.
In the context of cryptosystems based on RLWE, as observed by Lindner and

Peikert, security is strongly related to the degree of the polynomial ring [25].
Specifically on BFV, Player concludes that a parameter set nowadays consid-
ered secure, with an estimated security upper bound close to λ = 128, requires
n between 211 and 215 [28]. Hence, an efficient implementation of polynomial
multiplication for operands with a large degree is vital for performance.

FFT-based transforms, such as the NTT, provide a domain in which the poly-
nomial multiplication complexity is reduced to Θ (n), and among those, the DGT
is a promising variant defined over GF (p2). As introduced in Sect. 2.4, this field
can be represented as the set of Gaussian integers Zp[i] = {a + ib | a, b ∈ Zp},
which enables the polynomial folding of inputs and consequently halves their
degree. This folding works such that, for a polynomial P (x) =

∑n−1
j=0 aj · xj , we

have fold(P (x)) =
∑n/2−1

j=0 (aj + i · aj+n/2) · xj , for i =
√−1 and n even.

Considering the use of Gaussian integer arithmetic [3], a first impression may
be that the increased cost of the arithmetic nullifies the reduction of the polyno-
mial degree due to the quadratic extension. However, it is important to notice
that, by working with half the coefficients, only half the roots, like those in Def-
inition 2, are required compared to the FFT or NTT. In this way, in a memory-
constrained scenario, this property implies a speedup caused by fewer memory
transactions and enables a more coalesced pattern. In the case of CUDA, such
operations may target the GPU’s global memory, which is significant in size but
has high latency, or even shared or constant memories, which are fast but very
small. The resulting increased arithmetic density favors GPU implementations.

Badawi et al. propose Algorithm 1 for polynomial multiplication through the
DGT. It first folds both input signals and then applies a twisting by powers of
n/2-th primitive roots of i, which provides a negacyclic convolution. This equips
the algorithm with a free polynomial reduction by a cyclotomic polynomial [17].
Finding these roots is a complex computational task usually performed by brute
force when p is sufficiently small. Otherwise, numerical methods may be used.
We offer in Appendix B a suggestion for their construction.

There is no need for the bit-reversal procedure in the context of implement-
ing a polynomial multiplication. Thus, an efficient implementation avoids it by

526 P. G. M. R. Alves et al.

Algorithm 1: Polynomial multiplication in Zp[x]/(xn + 1) via DGT
Input: Polynomials a, b ∈ Zp[x]/(xn + 1), p a prime number, n a power-of-two

integer, and h a primitive n
2
-th root of i modulo p.

Output: c = a · b ∈ Zp[x]/(xn + 1).
1 for j = 0; j < n/2; j = j + 1 do
2 a′

j = aj + iaj+n/2 // Folding the input polynomials

3 b′
j = bj + ibj+n/2

4 for j = 0; j < n/2; j = j + 1 do
5 a′

j = hj · a′
j (mod p) // Applying the right-angle convolution

6 b′
j = hj · b′

j (mod p)

7 a′ = DGT(a′) // Computing the DGT of both operands

8 b′ = DGT(b′)
9 for j = 0; j < n/2; j = j + 1 do

10 c′
j = a′

j · b′
j (mod p) // Component-wise multiplying in Zp[i]

11 d′ = IDGT(c′) // Computing the IDGT of the multiplication result

12 for j = 0; j < n/2; j = j + 1 do
13 u = h−j · d′

j (mod p) // Removing the twisting factors

14 cj = ure // Unfolding the result

15 cj+ n
2

= uim

16 return c

selecting a decimation-in-frequency (DIF) algorithm for the forward transform
and a decimation-in-time (DIT) algorithm for the inverse, as defined by Chu and
George [15]. In this work, we follow the proposal of Badawi et al. and choose
the Gentleman-Sande, a DIF, and the Cooley-Tukey, a DIT, data-paths for the
forward and inverse versions of the DGT, respectively [5].

The canonical formulation of these contains a combination of three nested
loops, which increases the complexity of its implementation, especially on the
CUDA architecture. This structure creates dependencies between the loops and
disturbs parallel execution. So, for better compatibility with the programming
model, they have to be rewritten by wiping out one layer of nesting and leaving
only two loops, an outer loop related to the stride and an inner loop that asserts
the access patterns. For each outer loop iteration, the inner one can be completely
parallelized. Our proposals have a much weaker dependency between iterations
and can be seen in Algorithms 2 and 3.

3.2 An Improved and Hierarchical DGT

The procedures described in Algorithms 2 and 3 require synchronization at the
end of each iteration of the outer loop. On CUDA, this enforces a limitation on
the polynomial degree at the cost of latency, since the only data structure that
provides such synchronicity at the hardware level is a Thread Block, and its
dimension is limited to 1024 threads in modern hardware. An alternative imple-
mentation involves calling a different CUDA kernel for each iteration, forcing

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 527

Algorithm 2: Rewritten forward DGT via Gentleman-Sande
Input: A folded vector x ∈ Z[i]k, p a prime number, k a power-of-two integer,

and g a primitive k-th root of unity modulo p.
Output: x ← DGT(x) in bit-reversed ordering.

1 for s = 0; s < �log(k)�; s = s + 1 do
2 m = k

2(s+1)

3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

) · 2m

6 a = g
j· k

2(log(k)−s) (mod p)
7 (u, v) = (x[i], x[i + m])
8 (x[i], x[i + m]) = (u + v, a · (u − v)) (mod p)

9 return x

Algorithm 3: Rewritten inverse DGT via Cooley-Tukey
Input: A vector x ∈ Z[i]k in bit-reversed order, p a prime number, k a

power-of-two integer, and g a primitive k-th root of unity modulo p.
Output: x ← k · IDGT(x) in standard ordering.

1 m = 1
2 for s = 0; s < �log(k)�; s = s + 1 do
3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

) · 2m

6 a = g
−j· k

2s+1 (mod p)
7 (u, v) = (x[i], x[i + m])
8 (x[i], x[i + m]) = (u + a · v, u − a · v) (mod p)

9 m = 2 · m

10 return x

a CPU-sided synchronization. This incurs a considerable overhead caused by
several kernel calls.

In this scenario, we propose a technique for splitting the DGT transform
into smaller blocks that better fit the processing hardware and does not require
synchronizing large sets of threads, called hierarchical DGT. It is an adaptation
of the four-step FFT algorithm, initially proposed by David H. Bailey and later
on revisited by Govindaraju et al. [7,23].

The general idea of the hierarchical DGT and hierarchical inverse DGT,
referred to respectively as HDGT and HIDGT, is to split the DGT computation
over Zp[x]/(xn +1) into computations in smaller rings with optimal degree near√

n. In practice, the vector of coefficients is treated as a matrix and the DGT is
performed over the columns and rows of this matrix. The objective of this is to
avoid the case in which one is unable to compute the DGT of an entire polynomial
in a single CUDA kernel call. We move to a higher granularity approach in which

528 P. G. M. R. Alves et al.

we apply the transform multiple times over arbitrary small polynomials that can
perfectly fit in our processing architecture.

The HDGT is described in Algorithm 4. Firstly, the polynomial a(x) is rep-
resented by taking its coefficient embedding as a = (a0, a1, . . . , an−1). To be
represented in the DGT domain GF (p2), a ∈ Z

n
p is folded as a (n/2)-size vector

of Gaussian integers ã ∈ Zp[i]n/2, as described in Sect. 3.1. In the Algorithm, the
“right-angle” convolution is given by multiplying the j-th coefficient of ã by hj ,
for j ∈ Zn/2, where h is the (n/2)-th primitive root of i in Zp[i].

After the folding and twisting procedures, the (n/2)-length vector of Gaussian
integers ã is treated as a matrix with dimensions (Nr, Nc). These dimensions shall
be chosen so that each coefficient’s subset fits in the processing hardware. In our
case, the objective is to find a subset that fits in the GPU’s shared memory so
that the DGT can be performed in a single Thread Block.

Since the bit-reversal is not used in Algorithm 2, the called “step-2” of Bai-
ley’s method has to be rewritten. In line 8, the twiddle factors are the powers of
g, the (n/2)-th root of unity modulo p. Since the output of the DGT is not cor-
rected from the bit-reversed order, the twiddle factors become gbit-reversal(j)·k

instead of gj·k, which matches the position of the corresponding element in ã
when it is seen as a matrix.

Algorithm 4: Hierarchical forward DGT
Input: A polynomial a ∈ Zp[x]/(xn + 1), p a prime number, n = 2 · Nr · Nc a

power-of-two integer, h a primitive n/2-th root of i modulo p, and g a
primitive n/2-th root of unity modulo p.

Output: ã = HDGT(a).
1 for j = 0; j < n/2; j = j + 1 do
2 ãj = aj + iaj+n/2 // Fold the input polynomial

3 ãj = ãj · hj (mod p) // Twist the folded polynomial

4 for k = 0; k < Nc; k = k + 1 do
5 ã ,k = DGT(ã ,k) // Step 1: Apply the DGT through Nc columns

6 for j = 0; j < Nr; j = j + 1 do
7 for k = 0; k < Nc; k = k + 1 do

8 ãj,k = ãj,k · gbit-reversal(j)·k (mod p) // Step 2: Multiplication by

the twiddle factors in bit-reversal order

9 for j = 0; j < Nr; j = j + 1 do
10 ãj, = DGT(ãj,) // Step 3: Apply the DGT through the Nr rows

11 return ã

The inverse counterpart of the hierarchical DGT simply executes the inverse
steps of the forward transform, and is described in Algorithm 5. It adopts
the IDGT transform via Cooley-Tukey, described in Algorithm 3, without bit-
reversing the input vector. The algorithm executes the inverse steps of the for-
ward transform by first applying the IDGT over the rows of ã. The twiddle
factors are removed by multiplying âj,k by g−bit-reversal(j)·k, since the column

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 529

indexes of the output of the previous step still are in bit-reversed order. Consid-
ering that the powers of g can be precomputed, they can be multiplied by N−1

c ,
avoiding the additional multiplication. Finally, the IDGT is applied over the
columns of â and the matrix indexes are back to standard ordering. Following
the same approach, the powers of h−1 can be precomputed already multiplied
by the scalar N−1

r . This avoids the multiplication by the scaling factor when
applying the IDGT over the columns of â.

Algorithm 5: Hierarchical inverse DGT
Input: ã = HDGT(a), p a prime number, n = 2 · Nr · Nc a power-of-two integer,

h a primitive n/2-th root of i modulo p, and g a primitive n/2-th root
of unity modulo p.

Output: A polynomial a ∈ Zp[x]/(xn + 1).
1 for j = 0; j < Nr; j = j + 1 do
2 âj, = IDGT(ãj,) // Step 3: Apply IDGT to each of Nr rows

3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do

5 âj,k = âj,k · g−bit-reversal(j)·k · N−1
c (mod p) // Step 2: Remove

twiddle factors

6 for k = 0; k < Nc; k = k + 1 do
7 â ,k = IDGT(â ,k) // Step 1: Apply IDGT to each of Nc columns

8 for j = 0; j < n/2; j = j + 1 do
9 âj = âj · h−j · N−1

r (mod p) // Remove the twisting

10 aj = âjre // Unfold the output polynomial

11 aj+ n
2

= âjim

12 return a

As in FFT and NTT, the two operands are evaluated using the HDGT
for further point-wise multiplication. The polynomial corresponding to a · b in
Zp[x]/(xn + 1) is obtained by computing the HIDGT.

3.3 Polynomial Representation and Memory Locality

The usability of an RLWE-based cryptosystem requires the careful selection
of a parameter set that satisfies all the security constraints of the application.
For instance, with BFV one must select q, t, n, and σ such that a security
level λ is achieved. More than that, these parameters together determine the
multiplicative depth supported by the scheme. Thus, as discussed by Fan and
Vercauteren, the selection of such parameters is too complex to be affected by
the particularities of the implementation [21].

A constraint for choosing those is the hardware instruction set. By selecting a
big q one may be confronted by the lack of hardware support for native processing
of the coefficients. Through RNS, as described in Sect. 2.2, we handle this by
splitting big integers in small residues following the limits of the underlying
machine.

530 P. G. M. R. Alves et al.

The link between the cryptosystem and RNS must be carefully designed
so that data secrecy is provided with suitable performance. For that, Gen-
try et al. suggested the double-CRT representation, which encapsulates data
into two layers [22]. The first layer is the RNS representation, as described in
Definition 1. After that, a set of polynomial residues with full support for native
hardware evaluation of addition and multiplication is obtained. However, we
still need a second layer for the latter, since the multiplication of polynomials
can achieve a quite high computational complexity without some well-designed
algorithm, as discussed in Sect. 3.1. Because of that, the second layer consists
of moving each residue, individually, to a different domain with a convenient
property for efficient polynomial multiplication. The original proposal of dou-
ble-CRT is the use of the NTT as this transform, but a similar approach using
the FFT would also be expected. This work, however, proposes that the second
layer of the double-CRT should use the DGT instead of the NTT since the for-
mer appears to suit much better the cyclotomic ring arithmetic in GPUs and
presents more efficient memory access patterns [5].

Another design decision, widespread to HE implementations, is the selection
of a single special prime p for the application of the transform over all RNS
residues [18,20]. For instance, let x be a polynomial and {q0, . . . , q�−1} a set of
� pairwise coprimes, then

{
DGTp([x]q0), . . . ,DGTp([x]q�−1)

}
is the set of trans-

formed residues. By using such a prime, one is capable of taking advantage of
their intrinsic mathematical properties, as in the selection of a Mersenne or Soli-
nas prime, which enables the use of a very efficient modular reduction. Nonethe-
less, this approach does not interplay well with the RNS layer and requires algo-
rithmic efforts to correct these modular reductions and keep consistency for each
residue. In this way, we propose a simpler solution by computing the transform
layer using the coprime related to each residue, at the cost of a more expensive
modular reduction since, in most cases, there are not enough special primes for
the required number of residues. Thus, in this representation, the set of residues
becomes

{
DGTq0([x]q0), . . . ,DGTq�−1([x]q�−1)

}
. Moreover, without the need for

those corrections, we become capable of increasing RNS’ residues to the biggest
supported word size of the target architecture, reducing the number of residues
needed. By choosing q =

∏�−1
i=0 qi we establish a bond between BFV, RNS, and

the DGT.
Lastly, our state machine proposal targets the insistent maintenance of data

in our version of the double-CRT representation in GPU’s memory. Data copy
between the main memory and the GPU’s memory has high latency and must
be avoided.

4 Experimental Results

In this Section we present spog
2, a proof-of-concept implementation that

consolidates the aforementioned techniques by exploring parallel processing on
GPGPUs through CUDA.
2
spog, acronym for “Secure Processing on GPGPUs”.

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 531

Designed from scratch, spog is a modular implementation in which the
arithmetic operations are separated from the cryptosystem. The polynomial
operations were implemented on a sister library named cuPoly, while BFV was
implemented separated on spog-BFV. Both are based on CUDA and closely
follow the sketch provided in Sect. 3, pursuing low-latency methods with a simple
API and stretching the size of the residues to the highest supported by mod-
ern CUDA-supported GPUs, which is 63-bit residues with 1 bit for storing the
sign. By doing this, we guarantee that BFV can be easily replaced by any other
scheme based on the RLWE; thus, our work is not restricted to a single scheme.
The entire arithmetic implementation can also be replaced without affecting the
cryptosystem code. Hence, spog is flexible enough to encourage future work to
develop and test different setups using the presented libraries.

cuRAND, a NVIDIA probabilistic library, was used for the sampling required
by the BFV. This library offers sampling directly to the GPU memory, avoiding
the cost of data copy. Sampling uniformly at random from Rx is implemented
through its uniform sampler and the result is reduced by x. On the other hand,
the discrete Gaussian distribution is not supported by this library. Because of
that, an alternative implementation works by truncating a normal distribution,
natively supported by cuRAND. The statistical validity of this design still needs
to be asserted at the cost of compromising the security. Moreover, to the best of
our knowledge, cuRAND lacks sufficient scrutiny by the scientific community so
that it can be seen as cryptographic secure. However, this is a common imple-
mentation decision in the literature and is also done by the related works cited
in Sect. 4.1.

spog and cuPoly source code are available to the community under a GNU
GPLv3 license [2].

4.1 Related Work

We consider Badawi, Polyakov, Aung, Veeravalli, and Rohloff, work, referred
as BPAVR, the state-of-the-art implementation in GPUs for BFV [4]. It com-
plements Halevi, Polyakov, and Shoup proposal and provides the first imple-
mentation of the HPS-BFV method on a high-end NVIDIA Tesla V100 GPU,
demonstrated by the authors to be the fastest and most scalable variant of the
scheme when compared to BEHZ-BFV [8,24].

BPAVR do not describe all details regarding their performance results, only
presenting latency measurements for decryption and homomorphic multiplica-
tion. Because of that, and the fact of their source code is not publicly available,
we also consider a similar work of Badawi, Veeravalli, Mun, and Aung, which
offers timings for encryption, decryption, homomorphic addition, and homo-
morphic multiplication for a CUDA-based BFV implementation, denoted by
BVMA [6]. The authors compare BVMA with Microsoft SEAL, a reference on
the field with support for HPS-BFV [12]; and NFLlib-FV, an equally important
work implementing the BEHZ-BFV variant; with impressive speedups on all sce-
narios [27]. Despite of their efforts for parallel computation, the other libraries

532 P. G. M. R. Alves et al.

presented in that work are CPU-based implementations and thus show a signif-
icant slowdown, up to 27 times, when compared to BVMA. Hence, we do not
believe that the direct comparison with spog is relevant to this paper.

Lastly, both works apply the DGT as the underlying solution to handle poly-
nomial multiplication. So, by comparing spog with them, we can collect evi-
dence about the suitability of the HDGT over the DGT for such task.

4.2 Execution Environment, Methodology, and BFV Parameters

The experimental results presented in the next Sections for BPAVR or BVMA
are those reported by the authors in their corresponding publications. We do
not re-execute the benchmarks provided in the related work. This decision is
based on the fact that the implementations and benchmarking tools were not
made available to the community. Because of that, we decided to collect our
measurements in a similar processing hardware adopted in the related works
using the same parameters.

We used Google Cloud’s virtual machines (VMs) for emulating the compu-
tational environment described in those works. Two instances were considered:
gc.k80 and gc.v100 , which provide a NVIDIA Tesla K80 GPU, used on BVMA
measurements; and a NVIDIA Tesla V100 GPU, used on BPAVR. We precisely
followed the execution environment described in each work, running GCC 7.2.1
and CUDA 8.0 at gc.k80 ; and GCC 7.3.1 and CUDA 9.0 at gc.v100 . CUDA
events were used to measure execution time, following the common methodol-
ogy from the literature.

Our benchmark targets the most relevant primitives for HE. Regarding BFV,
implemented in spog, we consider encryption, decryption, homomorphic addi-
tion, and homomorphic multiplication (including the relinearization cost). On
the polynomial arithmetic side, implemented in cuPoly, we focus on the per-
formance gains caused by the replacement of the canonical DGT by the HDGT.

In our measurements, we do not include initialization steps, which are per-
formed only once and have negligible effect on long term runs. Because of that,
the latency for generating cryptographic keys is not described in this work. Sim-
ilarly, sampling is not explicitly considered in the benchmarks, despite of being
included in the timings for encryption.

Two different setups are considered for compatibility with each work, both
choosing t = 256 for the plaintext domain.

BPAVR parameters: Different polynomial ring settings are used identified by
the pairs (
log(q)�, log(n)) ∈ {(60, 11), (60, 12), (120, 13), (360, 14), (600, 15)}
for the ciphertext coefficient domain and the ring degree, respectively. These
offer a security level of at least 128 bits [4].

BVMA parameters: Different polynomial ring settings are used identified
by the pairs (
log(q)�, log(n)) ∈ {(62, 11), (186, 12), (372, 13), (744, 14),
(744, 15)} for the ciphertext coefficient domain and the ring degree, respec-
tively. These offer a security level of 80 bits [6].

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 533

4.3 Memory Consumption

Let q̂ and b̂ be the main and auxiliary RNS bases used to represent elements
of Rq and used by the HPS-BFV methods described in Sect. 2.3, respectively;
and nresqb the quantity of elements in q̂ ∪ b̂. A BFV ciphertext on spog is
composed by two N -degree polynomials represented as nresqb residues with
63-bits coefficients, thus requiring s(N, nresqb) := 63 · (2 · N · nresqb) bits for
storage.

The ciphertext expansion factor, however, depends also on its slot occupancy.
Through batching, a single ciphertext can store up to N integer plaintexts [11].
Hence, the expansion factor is given by s(N,nresqb)

63·batch size
.

4.4 SPOG Operations

In Table 1 we compare spog with BVMA on gc.k80 , and with BPAVR on
gc.v100 . As mentioned in Sect. 4.1, The authors of BPAVR offer measurements
for decryption and homomorphic multiplication only, what inhibits the compar-
ison with spog for encryption and homomorphic addition.

One of the major motivations for using a FHE scheme is the applicability
of its homomorphic primitives, and because of that, we focus on improving the
performance of these. As can be seen, homomorphic multiplication, a critical and
known expensive operation, reports speedup between 2.0 and 3.6 times when
compared to the BVMA. When compared to the BPAVR these speedups lies
between 2 and 2.4. The different characteristics between both setups, considering
the processing hardware and the cryptosystem parameters, makes the direct
comparison between both data sets impossible, however the performance gains
are consistent.

Homomorphic addition, a much simpler operation, presented gains between
2 and 5.2 times when compared to the BVMA. The latter is probably not related
to the HDGT, since this procedure is essentially a coefficient-wise addition, but
to the better state machine, as described in Sect. 3.3.

Despite our focus in this work does not being on encryption and decryption,
the faster polynomial multiplication strategy and the improved state machine
offered up to 4.6 times faster encryption and about 2 times faster decryption.

4.5 Efficiency of the HDGT

A major contribution of this work is the HDGT, a novel formulation of the DGT
which better explores the parallel capability of GPUs and compensate its mem-
ory limitations. However, a carefully evaluation of its quality must be done to
understand the performance gains on realistic scenarios. Thus, at this Section, we
provide a comparison between the HDGT and the best implementation designs
for the canonical DGT.

534 P. G. M. R. Alves et al.

Table 1. Comparison between spog and two state-of-the-art implementations,
BVMA and BPAVR. Average running time of 100 independent executions, in mil-
liseconds, for the most relevant BFV operations for the setups described in Sect. 4.2.

gc.k80 gc.v100

log n 11 12 13 14 log n 12 13 14 15

Encrypt spog 0.303 0.309 0.575 1.630 – – – – –

BVMA 0.541 1.440 2.645 6.657 – – – – –

Ratio 1.785 4.660 4.600 4.084 – – – – –

Decrypt spog 0.089 0.098 0.191 0.542 spog 0.029 0.031 0.049 0.099

BVMA 0.151 0.194 0.252 0.610 BPAVR 0.054 0.059 0.087 0.111

Ratio 1.697 1.980 1.319 1.125 Ratio 1.862 1.903 1.776 1.121

Hom. Add. spog 0.009 0.010 0.021 0.066 – – – – –

BVMA 0.037 0.052 0.068 0.127 – – – – –

Ratio 4.111 5.200 3.238 1.924 – – – – –

Hom. Mul. spog 0.926 1.214 3.061 13.914 spog 0.423 0.472 0.823 2.325

BVMA 3.343 3.873 7.700 28.953 BPAVR 0.859 1.012 2.010 4.826

Ratio 3.610 3.190 2.516 2.081 Ratio 2.031 2.144 2.442 2.076

As discussed before, the HDGT works by splitting a high-degree polyno-
mial, which does not fit in the processing hardware, and applying the DGT
in a divide-and-conquer approach through blocks of arbitrarily small size. To
evaluate this design, we implemented the canonical DGT adopting two different
strategies, namely DGT-I and DGT-II. The former uses a multi-kernel design
which executes the loop synchronization employing a different CUDA kernel for
each iteration. This way, the transformation requires log n

2 kernels to process an
n-degree polynomial. The latter uses a single-kernel design, which is only com-
patible with polynomial rings with degree smaller or equal than 4096 since these
are the only that fit GPU’s shared memory. These strategies are better described
in Sect. 3.2. We verified the impact of this change in two important procedures
direct affected by the DGT, encryption and homomorphic multiplication.

Table 2 presents the latency measurements. The HDGT is about 2 times
faster than the DGT-I, which results in speedups ranging from 1.4 to 2.2 times on
BFV’s primitives. The DGT-II, though, presents a slowdown in most cases. This
relates to the need for serialization within HDGT’s steps, which was implemented
by splitting the algorithm into 4 sequential kernels. DGT-II is always executed by
a single kernel, implying a much smaller overhead. This suggests that the single-
kernel design better accommodates smaller instances. Such effect doesn’t sustain
on gc.v100 that better handles the high-granularity of the HDGT. Unfortunately,
DGT-II is not scalable to bigger rings.

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 535

Table 2. Comparison between spog running the canonical DGT using a multi-kernel
and a single-kernel strategy, called DGT-I and DGT-II, respectively; and the HDGT.
The first row group compares the transform alone. Average running time of 100 inde-
pendent executions, in milliseconds, for the setups described in Sect. 4.2.

gc.k80 gc.v100

logn 11 12 13 14 15 11 12 13 14 15

DGT HDGT 0.059 0.071 0.146 0.432 0.651 0.018 0.019 0.020 0.031 0.073

DGT-I 0.114 0.131 0.281 0.711 1.637 0.035 0.034 0.040 0.078 0.188

Ratio 1.934 1.864 1.925 1.644 2.517 1.934 1.815 2.040 2.487 2.593

DGT-II 0.052 0.091 – – – 0.026 0.047 – – –

Ratio 0.881 1.292 – – – 1.423 2.492 – – –

Encrypt HDGT 0.303 0.309 0.575 1.630 3.127 0.103 0.098 0.099 0.153 0.315

DGT-I 0.571 0.499 0.861 2.597 5.835 0.144 0.146 0.159 0.287 0.704

Ratio 1.882 1.614 1.499 1.593 1.866 1.395 1.498 1.615 1.883 2.238

DGT-II 0.276 0.377 – – – 0.120 0.188 – – –

Ratio 0.910 1.220 – – – 1.163 1.921 – – –

Hom. Mult. HDGT 0.926 1.214 3.061 13.914 28.990 0.436 0.423 0.472 0.823 2.325

DGT-I 1.795 2.031 4.231 19.952 42.800 0.795 0.783 0.913 1.609 4.078

Ratio 1.938 1.673 1.382 1.434 1.476 1.825 1.850 1.934 1.956 1.754

DGT-II 0.642 0.983 – – – 0.362 0.466 – – –

Ratio 0.693 0.810 – – – 0.830 1.102 – – –

5 Conclusion

This work investigates strategies to achieve an efficient implementation of the
leveled homomorphic encryption scheme BFV on the CUDA architecture. To ful-
fill this objective, we explored different approaches for the utilization of the DGT
in the reduction of the computational complexity of polynomial multiplications.
The outcome is an optimized version of the hierarchical DGT, a high granularity
implementation of DGT that better fits the GPU processing. Furthermore, the
double-CRT concept is revisited and an efficient state machine is proposed so we
can avoid the costs to alternate between DGT and RNS domains, and between
the machine’s main memory and GPU’s memory.

Our implementation of BFV, named spog, is compared with two other
works in the literature, BVMA and BPAVR, that represent the state-of-the-art
implementations on CUDA. Homomorphic addition, in spite of being a simple
and usually fast operation, presented speedups between 2 and 5.2 times over
the BVMA. Furthermore, spog’s homomorphic multiplication showed itself
between 2.0 and 3.6 times faster over the BVMA.

As future work, we intend to verify the gains of applying our methods on
other relevant RLWE-based cryptosystems such as the CKKS [13], and spog

as a tool for the acceleration of privacy-focused deep learning algorithms.

Acknowledgements. This work was supported in part by CNPq, grants number
164489/2018-5, 203175/2019-0, and 44265/2019-2; and CAPES grant number 1591123.
We specially thank LG for financial support within project “Privacy-preserving analyt-
ics”, project number 5296; Google for GCP Research Credits Program under number

536 P. G. M. R. Alves et al.

106101194491; and the Concordium Blockchain Research Center at Aarhus University,
Denmark.

A Properties of Gaussian Integers

This Appendix presents important properties of Gaussian integers and useful
results that can be applied on their implementation. In the following, we recall
some important properties stated by Wuthrich that are useful to this work [30].

Definition 3 (Norm). The norm of a Gaussian integer is defined as its product
with its conjugate3. That is, N(a+ib) = (a+ib)·(a−ib) = a2+b2, so N(α) = α·α.
Proposition 1 (Wuthrich’s Proposition 5.7). For each prime number p ≡
1 mod 4 there are exactly two Gaussian primes π and π of norm p.

Lemma 1 (Wuthrich’s Lemma 5.4). If π ∈ Z[i] is such that N(π) is a
prime number, then π is a Gaussian prime.

Lemma 2 (Wuthrich’s Lemma 5.6). Let p be a prime number with p ≡ 1
mod 4. Then there exists a Gaussian prime π such that p = π.π.

Lemma 3 (Wuthrich’s Lemma 5.10). Any prime p ≡ 1 mod 4 can be
written as a sum of two squares. This is a manifestation of Fermat’s theorem on
sums of two squares.

From Lemma 2 and Proposition 1, if p is prime such that p ≡ 1 mod 4, then
we know that it can be factored as a product of exactly two Gaussian primes
that are the conjugate of each other. Lemma 3 is a direct consequence since we
know that a prime p ≡ 1 mod 4 can be factored as p = π ·π and, assuming that
π = a + bi, we obtain that π · π = a2 + b2.

B Generating k-th Primitive Roots of i Modulo p

The use of the DGT for polynomial multiplication in a cyclotomic polynomial
ring requires the computation of a k-th root of i modulo a prime p, discussed in
Sect. 3.1. This element is used for achieving a cyclotomic polynomial reduction
for free when n is a power of two. When p is a Mersenne prime, the literature
presents efficient analytic methods; for other choices of p, the best option still is
a trial-and-error approach.

Badawi et al. state that a naive implementation of such approach takes 156
hours to find a 214-th primitive root of i for p = 264 − 232 + 1 [5]. Because of
that, they propose a more efficient strategy, when p ≡ 1 mod 4, by factoring
p in two Gaussian primes, namely f0 and f1. This decomposition of p is quite
simple and relies on Lemma 2 and Proposition 1.

3 Let x = a + ib be a Gaussian integer. If y is x’s conjugate then y = a − ib.

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 537

Algorithm 6: decompose in gaussian primes: Decomposes a prime.
Input: A prime p
Output: Gaussian integers f0 and f1 such that f0 · f1 = p

1 do
2 n = sample(Zp)

3 while n(p−1)/2 �≡ −1 mod p

4 k = n(p−1)/4 mod p
5 u = gcd(p, k + i)
6 return (f0, f1) = (u, u)

Algorithm 6 starts from the Fermat’s Little Theorem, which states that if p
is a prime then np−1 ≡ 1 mod p for all n ∈ Zp. Hence, the square root of that
must be equivalent to either 1 or −1. In the latter case, we can find a number
k2 such that k ≡ n(p−1)/4 ≡ i mod p. In other words, if k2 ≡ −1 mod p then
k2 + 1 ≡ 0 mod p and p divides k2 + 1. Since k2 + 1 factors in (k + i) · (k − i),
we found a factorization of p.

At this point, there is no guarantee that k + i is a Gaussian prime. By
Lemma 4, we find that the greatest common divisor of p and k + i is either
k + i or that there exists some u such that u | p and u | k + i. Thus, since
u = gcd(p, k + i) results in a Gaussian prime, we take it as the first factor of p.
From Lemma 2, u is the second factor.

Lemma 4. Let p be an odd prime such that p ≡ 1 mod 4 and k ∈ Zp. The
greatest common divisor of p and k + i is k + i or a Gaussian prime u such that
u | p and u | k + i.

Proof. By the Fermat’s theorem on sums of two squares, we have that an odd
prime p can be expressed as p = x2 + y2, with x, y ∈ Z, if, and only if, p ≡ 1
mod 4. Since x2 + y2 = (x + iy)(x − iy) and N(x + iy) = N(x − iy) = p, then
x + iy and x − iy are Gaussian primes and p = (x + iy)(x − iy) is the unique
factorization of p in Z[i], not considering the order of the factors4.

On the other hand, we have that (k + i)(k − i) ≡ p mod p, by construction.
Combining the two facts, we obtain that p = (x + iy)(x − iy) ≡ (k + i)(k − i),
which is equivalent to (k + i)(k − i) = �(x + iy)(x − iy), for some � ∈ Z.

When � = 1, we have an equality and we find that (k + i) and (k − i) are
indeed the factors of p. When � �= 1, (k+i) is not a Gaussian prime and still can
be factored in Z[i]; otherwise, it would be a factor of p. We know that p divides
(k + i)(k − i) but not k + i, or its conjugate, since k < p and (k + i)/p is not a
Gaussian integer. Then, k + i and p must share a common factor u that can be
found as the greatest common divisor. Since the two factors of p are x + iy and
x + iy, u must be one of them.

4 Wuthrich proves in Theorem 5.8 that every 0 �= α ∈ Z[i] has a unique factoriza-
tion [30].

538 P. G. M. R. Alves et al.

Finally, the factors of p can be found by computing the greatest common
divisor of p and k + i and then computing its conjugate. Since p = x2 + y2 and
N(x+ iy) = N(x− iy) = x2 +y2, by Lemma 1, the factors are Gaussian primes.

Given a method for factoring a prime number p ≡ 1 mod 4 in Z[i],
Badawi et al. propose Algorithm 7, which makes much faster the step of pre-
computing a k-th root of i for a prime p ≡ 1 mod 4 [5]. The method starts
by finding the factorization p = f0 · f1 ∈ Zp[i] using the Algorithm 6. Thus,
we have that each Gaussian prime fj , with j = {0, 1}, defines a cyclic group
corresponding to the set of Gaussian integers modulo fj . Then, a k-th root of i

modulo p, denoted as h, is constructed via CRT using that hj = ζ
(p−1)

4n
j mod fj ,

with j = {0, 1}, where ζj is a generator for the cyclic group j.

Algorithm 7: Compute the k-th primitive root of i mod p, for a prime
number p ≡ 1 mod 4.
Input: An integer k and a prime p ≡ 1 mod 4.
Output: The k-th primitive root of i mod p.

1 f0, f1 = decompose in gaussian primes(p)
2 while True do
3 for j = 0; j < 2; j = j + 1 do

4 ζj = sample generator(fj); hj = ζ
�(p−1)/(4k)�
j mod fj

5 h = f1 · (
f−1
1 · h0 mod f0

)
+ f0 · (

f−1
0 · h1 mod f1

)
mod p

6 if hk ≡ i mod p then
7 return h

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

2. Alves, P.: SPOG: secure processing on GPGPUs (2021). https://github.com/spog-
library

3. Alves, P., Ortiz, J.N., Aranha, D.F.: Faster homomorphic encryption over GPGPUs
via hierarchical DGT. Cryptology ePrint Archive, Report 2020/861 (2020).
https://eprint.iacr.org/2020/861

4. Badawi, A.A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Imple-
mentation and performance evaluation of RNS variants of the BFV homomorphic
encryption scheme. IACR Cryptology ePrint Archive 2018, 589 (2018)

5. Al Badawi, A., Veeravalli, B., Aung, K.M.M.: Efficient polynomial multiplication
via modified discrete Galois transform and Negacyclic convolution. In: Arai, K.,
Kapoor, S., Bhatia, R. (eds.) FICC 2018. AISC, vol. 886, pp. 666–682. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-03402-3 47

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://github.com/spog-library
https://github.com/spog-library
https://eprint.iacr.org/2020/861
https://doi.org/10.1007/978-3-030-03402-3_47

Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT 539

6. Badawi, A.Q.A., Veeravalli, B., Mun, C.F., Aung, K.M.M.: High-performance FV
somewhat homomorphic encryption on GPUs: an implementation using GPUs.
TCHES 1(2), 70–95 (2018)

7. Bailey, D.H.: FFTs in external or hierarchical memory. J. Supercomput. 4(1), 23–
35 (1990)

8. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

9. Bajard, J.C.J., Meloni, N., Plantard, T.: Efficient RNS bases for cryptography.
In: IMACS World Congress: Scientific Computation, Applied Mathematics and
Simulation (2005)

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014)

11. Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter,
K.E.: Logistic regression over encrypted data from fully homomorphic encryption.
IACR Cryptology ePrint Archive 2018, 462 (2018)

12. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
IACR Cryptology ePrint Archive 2017, 224 (2017)

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

15. Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press (1999)

16. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 19

17. Crandall, R.E.: Integer convolution via split-radix fast Galois transform. Center
for Advanced Computation Reed College (1999)

18. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 11

19. Ding, C., Pei, D., Salomaa, A.: Chinese Remainder Theorem: Applications in Com-
puting, Coding, Cryptography. World Scientific (1996)

20. Emmart, N., Weems, C.C.: High precision integer multiplication with a GPU using
Strassen’s algorithm with multiple FFT sizes. Parallel Process. Lett. 21(3), 359–
375 (2011)

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

22. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

23. Govindaraju, N.K., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High perfor-
mance discrete Fourier transforms on graphics processors. In: SC, p. 2. IEEE/ACM
(2008)

https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1007/978-3-642-32009-5_49

540 P. G. M. R. Alves et al.

24. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

25. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

26. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

27. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 20

28. Player, R.: Parameter selection in lattice-based cryptography. Ph.D. thesis, PhD
thesis, Royal Holloway, University of London (2018)

29. Thales: 2019 Thales Data Threat Report, USA (2019). https://go.thalesesecurity.
com/rs/480-LWA-970/images/2019-DTR-Global-USL-Web.pdf

30. Wuthrich, C.: Further number theory (2011). https://www.maths.nottingham.ac.
uk/plp/pmzcw/download/fnt chap5.pdf. Accessed 18 June 2020

https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://go.thalesesecurity.com/rs/480-LWA-970/images/2019-DTR-Global-USL-Web.pdf
https://go.thalesesecurity.com/rs/480-LWA-970/images/2019-DTR-Global-USL-Web.pdf
https://www.maths.nottingham.ac.uk/plp/pmzcw/download/fnt_chap5.pdf
https://www.maths.nottingham.ac.uk/plp/pmzcw/download/fnt_chap5.pdf

Multi-instance Publicly Verifiable Time-Lock
Puzzle and Its Applications

Aydin Abadi1(B) and Aggelos Kiayias1,2

1 University of Edinburgh, Edinburgh, UK
aydin.abadi@ucl.ac.uk

2 IOHK, Hong Kong, People’s Republic of China
akiayias@inf.ed.ac.uk

Abstract. Time-lock puzzles are elegant protocols that enable a party to lock a
message such that no one else can unlock it until a certain time elapses. Neverthe-
less, existing schemes are not suitable for the case where a server is given multiple
instances of a puzzle scheme at once and it must unlock them at different points
in time. If the schemes are naively used in this setting, then the server has to start
solving all puzzles as soon as it receives them, that ultimately imposes significant
computation cost and demands a high level of parallelisation. We put forth and
formally define a primitive called “multi-instance time-lock puzzle” which allows
composing a puzzle’s instances. We propose a candidate construction: “chained
time-lock puzzle” (C-TLP). It allows the server, given instances’ composition, to
solve puzzles sequentially, without having to run parallel computations on them.
C-TLP makes black-box use of a standard time-lock puzzle scheme and is accom-
panied by a lightweight publicly verifiable algorithm. It is the first time-lock puz-
zle that offers a combination of the above features. We use C-TLP to build the
first “outsourced proofs of retrievability” that can support real-time detection and
fair payment while having lower overhead than the state of the art. As another
application of C-TLP, we illustrate in certain cases, one can substitute a “verifi-
able delay function” with C-TLP, to gain much better efficiency.

1 Introduction

Time-lock puzzles are interesting cryptographic primitives that allow sending informa-
tion to the future. They enable a party to lock a message such that, no one else can
unlock it until a certain time has passed1. They have a wide range of applications, such
as e-voting [12], fair contract signing [8], and sealed-bid auctions [26]. Over the last
two decades, a variety of time-lock puzzles have been proposed. Nevertheless, existing
puzzle schemes do not offer any efficient remedy for the multi-instance setting, where
a server is given multiple instances of a puzzle at once and it should find one puzzle’s
solution after another. It is a natural generalisation of the single puzzle setting. Appli-
cation areas include, but not limited to: (a) mass release of confidential documents over
time, (b) gradually revealing multiple secret keys, (c) verifying continuous availabil-
ity of cloud’s services, e.g. data storage or secure hardware, or (d) scheduled private

1 There exist protocols that use an assistance of a third party to support time-release of a secret.
This protocols’ category is not our focus in this paper.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 541–559, 2021.
https://doi.org/10.1007/978-3-662-64331-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_28&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_28

542 A. Abadi and A. Kiayias

payments, where not only is every payment made after a certain period, but also the
payment details remain confidential during the period. If existing puzzle schemes are
used directly in the multi-instance setting, then the server has to deal with all puzzle
instances, right after it receives them. This results in a significant computation over-
head and requires a high level of parallelisation.

In this paper, we propose “multi-instance time-luck puzzle”, a primitive that allows
composing a puzzle’s instances, where given the composition, a server can deal with
each instance sequentially. We formally define the primitive and present an instantia-
tion of it, “chained time-lock puzzle” (C-TLP). It makes black-box use of a standard
time-lock puzzle scheme and is equipped with a lightweight verification algorithm that
allows anyone to check the correctness of a solution found by the server. Its overall com-
putation complexity of solving z puzzles is equivalent to that of solving only the last
puzzle. The same procedure also imposes a communication overhead linear with z, i.e.
O(z). C-TLP is the first time-lock puzzle scheme that offers all the above features. Fur-
thermore, we present concrete applications of the primitive and demonstrate its use case
in a blockchain-based solution. Specifically, we combine the primitive’s instantiation
with a smart contract and apply the combination to “outsourced proofs of retrievabil-
ity” research line, and propose “smarter outsourced proofs of retrievability” (SO-PoR)
scheme which offers a combination of real-time detection (i.e. a data owner client is
notified in almost real-time when a PoR proof is rejected) and fair payment (i.e. in every
verification, the storage server is paid only if a PoR proof is accepted) while imposing
very low overhead, that makes it particularly suitable for mission-critical data. SO-PoR
verification and store phases impose 1

4.5 and 1
46×105 of computation costs imposed by

the same phases in the fastest outsourced PoR. A server-side bandwidth of SO-PoR is
much lower too; for instance, for a 1-GB file and 100 verifications, a server in SO-PoR
requires 9 × 104 times fewer bits than those required in the state of the art protocol.
Also, we show under certain circumstances C-TLP can play the role of a “verifiable
delay function” (VDF) but with much lower overhead, i.e. a prover’s computation and
communication costs will be reduced by factors of 3 and 6.5 respectively.

Summary of Our Contributions. We (a) put forth the notion of multi-instance time-
lock puzzle, formally define it, and identify its concrete applications, (b) present a can-
didate construction, C-TLP, the first multi-instance time-lock puzzle that is built on a
standard time-lock puzzle, supports public verifiability, and has low costs, (c) propose
the first outsourced PoR that can offer real-time detection and fair payment while main-
taining low costs, and (d) show in certain cases, a VDF can be replaced with C-TLP to
gain better efficiency.

2 Related Work

In this section, we provide a summary of related work. For a comprehensive survey, we
refer readers to the paper’s full version [2].

Time-Lock Puzzles. The idea to send information into the future, i.e. time-lock puz-
zle/encryption, was first put forth by Timothy C. May. A time-lock puzzle allows a
party to encrypt a message such that it cannot be decrypted until a certain time has

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 543

passed. In general, a time-lock scheme should allow generating (and verifying) a puz-
zle to take less time than solving it. The scheme that May proposed relies on a trusted
agent. Later, Rivest et al. [26] propose an RSA-based puzzle scheme that does not
require a trusted agent, and is secure against a receiver who may have access to many
computation resources that run in parallel. The latter protocol has been the core of
(almost) all later time-lock puzzle schemes that supports the encapsulation of an arbi-
trary message. Later, [8,15] proposed a scheme which also let a puzzle generator prove
(in Zero-knowledge) to a puzzle solver that the correct solution will be recovered after a
certain time. Recently, [9,22] propose homomorphic time-lock puzzles, where an arbi-
trary function can be run over puzzles before they are solved. In the protocols, all puz-
zles have an identical time parameter, and their solutions are supposed to be discovered
at the same time. They are based on the RSA-based puzzle and fully homomorphic
encryption, computationally expensive. Very recently, Chvojka et al. in [13] propose
incremental time-release encryption which lets a server, given a set of encrypted mes-
sages, discover messages sequentially over time. It is the closest work to ours. Nev-
ertheless, the scheme uses the RSA time-lock puzzle [26] in a non-black-box manner,
offers no (public) verification, is based on asymmetric key encryption instead of sym-
metric key encryption used in the majority of time lock-puzzle schemes, and uses a
non-standard (asymmetric) encryption scheme.

Outsourced Proofs of Retrievability. Proofs of retrievability (PoR) schemes, intro-
duced in [18], ensures a client’s data on a cloud server is fully accessible. Ever since a
variety of PoR’s has been proposed. Recently, [3,30] present outsourced PoR protocols
that let clients outsource the verification to a potentially malicious third-party auditor.
The scheme in [3] has the fastest prove and verification algorithms. It uses message
authentication code (MAC) based tags, zero-knowledge proofs and error-correcting
codes. But, it has several shortcomings, i.e. it offers no real-time detection, provides
no efficient way for fair payments and has high costs of setup and auditor onboarding.
Xu et al. in [30] propose a publicly verifiable outsourced PoR to improve the previous
scheme’s setup cost. It uses BLS signatures-like tags, polynomial arithmetic and error-
correcting codes. It assumes an auditor is fully trusted during each verification whose
overhead is higher than [3]. Recently in [5] two protocols are proposed, “basic PoSt”
and “compact PoSt”. They ensure that a client’s data remains available on a server for
a period, without the client’s involvement in that period. The basic PoSt uses a Merkle
tree-based PoR and VDF. It has a high communication cost. Since it requires a verifier
to validate VDF’s outputs, it imposes a significant computation cost, in practice. The
compact PoSt has a lower communication cost than the basic one, as it let the server
combine PoR proofs. It is mainly based on a trapdoor delay function (TDF).

Blockchain-Based PoR. There exist distributed PoR schemes that let a client distribute
its file among different (tailored) blockchain nodes, e.g. Permacoin [23], Filecoin [21],
and KopperCoin [20]. But, they have either a large proof size (e.g. in [21,23]) logarith-
mic with the file size when a Merkle tree is used, or high concrete verification overhead
(e.g. in [20]) due to the use of BLS signatures. There are protocols that use blockchain to

544 A. Abadi and A. Kiayias

verify the retrievability of off-chain data [6,14,17,25,28,31]. Nevertheless, they either
impose a high communication/computation cost [6,14,17,25,28], or clients have to be
online for each verification [31]. Campanelli et al. [10] present a fair exchange mecha-
nism over a blockchain that ensures the server gets paid if it provides an accepting PoR
proof. But, this scheme assumes either the client can perform the verification itself or a
third-party, acting on the client’s behalf, carries out the verification honestly.

3 Preliminaries

In this section we provide the main primitives used in this paper. We also summarise
our notations in Table 1.

Table 1. Notation table.

Setting Symbol Description

G
en

er
ic

z Number of puzzles or delegated verifications

h, hj Hash values

d, dj Randomness of commitment

n Number of file blocks

m, mj Plaintext messages

ö Pair representation

#»o Vector representation

p̈ : (mj , dj) Commitment opening

H Hash function

C
-T

L
P

λ TLP security parameter

Δ Time win. message remains hidden

S Max. squaring done per sec.

T T = SΔ

sj j-th solution

öj j-th puzzle, öj : (oj,1, oj,2)

fj Time when j-th solution is found

k, kj Sym. key encryption keys

pk, sk Public and secret keys

q1, q2 Large prime numbers

N RSA modulus, N = q1q2

Setting Symbol Description

SO
-P
oR

PRF Pseudorandom function

k̂, vj , lj PRF’s keys

ι Security parameter, ι = 128-bit

p Large prime number, |p| = ι

w Blockchain block index

g Blockchain security parameter: chain quality

λ′ Blockchain generic security parameter

F Outsourced encoded file

Fj A file block

|F | Number of file blocks, |F | = n

||F || File bit-size

σi Permanent tag

σb,j Disposable tag

α, αj , ri, rb,j Pseudorandom values

c Number of challenges

Bj Blockchain’s j-th block

(μj , ξj) j-th PoR proof

Δ1 Time taken to generate a PoR

Δ2 Time taken a contract gets a message

e Coins paid for an accepting PoR

3.1 Smart Contract

Cryptocurrencies, such as Bitcoin and Ethereum, in addition to offering a decentralised
currency, support computations on transactions. In this setting, often a certain com-
putation logic is encoded in a computer program, called “smart contract”. To date,
Ethereum is the most predominant cryptocurrency framework that enables users to
define arbitrary smart contracts. In this framework, contract code is stored on the
blockchain and executed by all parties (i.e. miners) maintaining the cryptocurrency,

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 545

when the program inputs are provided by transactions. The program execution’s cor-
rectness is guaranteed by the security of the underlying blockchain components. To
prevent a denial of service attack, the framework requires a transaction creator to pay a
fee, called “gas”, depending on the complexity of the contract running on it.

3.2 Commitment Scheme

A commitment scheme involves two parties: sender and receiver, and includes two
phases: commit and open. In the commit phase, the sender commits to a message: m
as Com(m, d) = h, that involves a secret value: d. At the end of the commit phase, the
commitment: h is sent to the receiver. In the open phase, the sender sends the opening:
p̈ = (m, d) to the receiver who verifies its correctness: Ver(h, p̈) ?= 1 and accepts if the
output is 1. A commitment scheme must satisfy two properties: (a) hiding: infeasible for
an adversary to learn any information about the committed value: m, until the commit-
ment: h is opened, and (b) binding: infeasible for an adversary (i.e. the sender) to open
a commitment: h to different values: p̈′ = (m′, d′) than that used in the commit phase,
i.e. infeasible to find p̈′, s.t. Ver(h, p̈) = Ver(h, p̈′) = 1, where p̈ �= p̈′. There exist effi-
cient non-interactive commitment schemes both in (a) the random oracle model using
the well-known hash-based scheme that Com(m, d) involves computing: H(m||d) = h

and Ver(h, p̈) requires checking: H(m||d) ?= h, where H(.) is a collision resistance hash
function, and (b) the standard model, e.g. Pedersen scheme [24].

3.3 Pseudorandom Function

Informally, a pseudorandom function (PRF) is a deterministic function that takes a key
and an input; and outputs a value indistinguishable from that of a truly random function
with the same input. A PRF is formally defined as follows [19].

Definition 1. Let W : {0, 1}ψ × {0, 1}η → {0, 1}ι be an efficient keyed function. It is
said W is a pseudorandom function if for all probabilistic polynomial-time distinguish-
ers B, there is a negligible function, μ(.), such that:

∣
∣
∣
∣
Pr[BWk(.)(1ψ) = 1] − Pr[Bω(.)(1ψ) = 1]

∣
∣
∣
∣
≤ μ(ψ)

where the key, k
$← {0, 1}ψ, is chosen uniformly at random and ω is chosen uniformly

at random from the set of functions mapping η-bit strings to ι-bit strings.

3.4 Time-Lock Puzzle

In this section, we restate the formal definition of a time-lock puzzle as well as RSA-
based time-lock puzzle protocol [26]. We consider the RSA-based puzzle because of its
simplicity and being the core of (almost) all later time-lock puzzle schemes.

Definition 2 (Time-lock Puzzle). A time-lock puzzle comprises the following efficient
three algorithms, such that the puzzle satisfies completeness and efficiency properties.

546 A. Abadi and A. Kiayias

– Algorithms:
• Setup(1λ,Δ) → (pk, sk): a probabilistic algorithm that takes as input secu-

rity: 1λ and time: Δ parameters. It outputs a public-private key pairs: (pk, sk).
• GenPuz(s, pk, sk) → ö: a probabilistic algorithm that takes as input a solution:

s and the public-private key pairs: (pk, sk). It outputs a puzzle: ö.
• SolvPuz(pk, ö) → s: a deterministic algorithm that takes as input the public

key: pk and puzzle: ö. It outputs a solution: s.
– Completeness: always SolvPuz(pk, GenPuz(s, pk, sk)) = s.
– Efficiency: the run-time of algorithm SolvPuz(pk, ö) is bounded by poly(Δ,λ),

where poly(.) is a polynomial.

Informally, a time-lock puzzle’s security requires that the puzzle solution remain
hidden from all adversaries running in parallel within the time period, Δ. It is essential
that no adversary can find a solution in time δ(Δ) < Δ, using π(Δ) processors running
in parallel and after a potentially large amount of pre-computation. So, such factors are
explicitly incorporated into the puzzle’s definitions [7,16,22].

Definition 3 (Time-lock Puzzle Security). A time-lock puzzle is secure if for all λ
and Δ, all probabilistic polynomial time adversaries A = (A1,A2) where A1 runs
in total time O(poly(Δ,λ)) and A2 runs in time δ(Δ) < Δ using at most π(Δ) parallel
processors, there exists a negligible function μ(.), such that:

Pr

⎡

⎢
⎢
⎣

A2(pk, ö, state) → b

∣
∣
∣
∣
∣
∣
∣
∣

Setup(1λ,Δ) → (pk, sk)
A1(1λ, pk,Δ) → (s0, s1, state)
b

$← {0, 1}
GenPuz(sb, pk, sk) → ö

⎤

⎥
⎥
⎦

≤ 1
2
+ μ(λ)

An RSA-based time-lock puzzle construction that realises the above definitions was
proposed in [26]. The construction is as follows.

1. Setup: TLP.Setup(1λ,Δ)
(a) Compute N = q1q2, where qi is a large randomly chosen prime number. Then

compute Euler’s totient function of N , as: φ(N) = (q1 − 1)(q2 − 1).
(b) Set T = SΔ as the total number of squaring needed to decrypt an encrypted

messagem, whereΔ is the period (in seconds) within which the message should
remain private and S is the maximum number of squaring modulo N per second
that can be performed by a solver.

(c) Choose a random key: k for a semantically secure symmetric key encryption
that has three algorithms: (GenKey, Enc, Dec).

(d) Pick a uniformly random value r from Z
∗
N .

(e) Compute a = 2T mod φ(N).
(f) Set pk = (N,T, r) as public key and set sk = (q1, q2, a, k) as secret key.

2. Generate Puzzle: TLP.GenPuz(m, pk, sk)
(a) Encrypt the message using the symmetric key encryption: o1 = Enc(k,m).
(b) Encrypt the key: k, as: o2 = k + ra mod N .
(c) Sets: ö = (o1, o2) as ciphertext or puzzle. Next, output ö.

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 547

3. Solve Puzzle: TLP.SolvPuz(pk, ö)
(a) Find b, where b = r2T mod N , by using T number of squaring r modulo N .
(b) Decrypt the key’s ciphertext: k = o2 − b mod N .
(c) Decrypt the message’s ciphertext: m = Dec(k, o1). Output m.

Informally, the time-lock puzzle’s security relies on the hardness of factoring prob-
lem, the security of the symmetric key encryption, and sequential squaring assumption.
We refer readers to the paper’s full version [2] for more discussion on the construction
and its security.

4 Multi-instance Time-Lock Puzzle

4.1 Strawman Solution

In the following, we elaborate on the problems that would arise if an existing time-lock
puzzle is used directly to handle multiple puzzles at once. Without loss of generality, to
illustrate the problems, we use the well-known TLP scheme presented in Sect. 3.4.

Consider the case where a client wants a server to learn a vector of messages: # »m =
[m1, ...,mz] at times [f1, ..., fz] respectively, where the client is available and online
only at an earlier time f0 < f1. For the sake of simplicity, let Δ = f1 − f0 and Δ =
fj+1 − fj , where 1 ≤ j ≤ z. A naive way to address the problem is that the client uses
the TLP to encrypt each message mj separately, such that it can be decrypted at time
fj if all ciphertexts and public keys are passed on to the server at time t0. For the server
to decrypt the messages on time, it needs to start decrypting all of them as soon as the
ciphertexts and public keys are given to it.

Parallel Composition Problem. The above naive approach yields two serious issues:

(a) imposing a high computation cost, as the server has to perform SΔ
z∑

j=1

j squaring to

decrypt all messages, and (b) demanding a high level of parallelisation, as each puzzle
has to be dealt with separately in parallel to the rest. The issues can be cast as “parallel
composition problem”, where z instances of a puzzle scheme are given at once to a
server whose only option, to find solutions on time, is to solve them in parallel.2 Also,
for the client to efficiently compute aj for each message mj , where j > 1, it has to
perform at least one modular multiplication, i.e. aj = a1aj−1 = 2jT , where a1 = 2T . In
this step, in total z − 1 modular multiplications are required to compute all aj values,
for z messages (which is not optimal). Note, we do not see the above issues as previous
schemes’ flaws, because they were not initially designed for the multi-puzzle setting.

4.2 An Overview of Our Solutions

Our key observation is, in the naive approach, the process of decrypting messages has
many overlaps leading to a high computation cost. So, by removing the overlaps, we can
considerably lower the overall cost both in puzzle solving and puzzle creating phases.

2 It should not be confused with the “universally composable” notion put forth in [11].

548 A. Abadi and A. Kiayias

One of our core ideas is to chain the puzzles. While chaining different puzzles may
seem a relatively obvious approach to tackle the issues, designing a secure protocol that
also can make black-box use of a standard time-lock puzzle scheme, supports public
verifiability, and has low costs is challenging (we refer readers to the paper’s full ver-
sion for a detailed discussion). In our solution, a client first encrypts the message that is
supposed to be decrypted after the rest and embeds the information needed for decrypt-
ing it into the ciphertext of the message that will be decrypted before that message. In
other words, the client integrates the information (i.e. a part of public keys) needed to
decrypt message mj into the ciphertext related to message mj−1. In this case, the server
after learning message mj−1 at time fj−1 learns the public key needed to perform the
sequential squaring to decrypt the next message: mj . This means after fully decrypting
mj−1, the server starts squaring sequentially to decrypt mj .

Addressing Parallel Composition Problem. The above approach solves the parallel
composition problem for two main reasons. First, the total number of squaring required
to decrypt all z messages is now much lower, i.e. SΔz, and is equivalent to the number
of squaring needed to solve only the last puzzle, i.e. z-th one. Second, it does not call
for high parallelisation. Because now the server does not need to deal with all of the
puzzles in parallel; instead, it solves them sequentially one after another.

Adding Efficient Publicly Verifiable Algorithm. To let the scheme support efficient
public verifiability, we use the following novel trick. The client uses a commitment
scheme to commit to every message: mi and publishes the commitment. Then, it uses
the time-lock encryption to encrypt the commitment’s opening, i.e. a combination of mi

and a random value. But, unlike the traditional commitment, the client does not open the
commitment itself. Instead, the server does that, after it discovers the puzzle’s solution.
When it finds a solution, it decodes the solution to find the opening and sends it to the
public who can check the solution correctness. So, to verify a solution’s correctness, a
verifier only needs to run the commitment’s verification algorithm that is: (a) publicly
verifiable, and (b) efficient. It can be built in the random oracle or the standard model.

The approach also allows the client at the setup to compute only a single a = 2T

reusable for all z puzzles, imposing only O(1) cost.

4.3 Multi-instance Time-Lock Puzzle Definition

In this section, we provide a formal definition of a multi-instance time-lock puzzle.
Our starting point is the time-lock puzzle definition, i.e. Definition 2, but we extend it
from several perspectives, so it can: (a) handle multiple solutions/messages in setup, (b)
produce multiple puzzles for the messages, (c) solve the puzzles given the puzzles and
public parameters, and (d) support public verifiability. In the following, we provide the
formal definition of a multi-instance time-lock puzzle.

Definition 4 (Multi-instance Time-lock Puzzle). A multi-instance time-lock puzzle
has the following five algorithms and satisfies completeness and efficiency properties.

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 549

– Algorithms:
• Setup(1λ,Δ, z) → (pk, sk,

#»

d): a probabilistic algorithm that takes as input
security: 1λ and time: Δ parameters and the total number of solutions/puzzles:
z. Let jΔ be a time period after which j-th solution is found. It outputs public-
private key pair: (pk, sk) and a vector of fixed size secret witnesses:

#»

d .
• GenPuz(# »m, pk, sk,

#»

d) → ö: a probabilistic algorithm that takes as input a
message vector: # »m = [m1, ...,mz], the public-private key pair: (pk, sk), and
the witness vector:

#»

d . It outputs ö : (#»o ,
#»

h), where #»o is a puzzle vector, and
#»

h

is a commitment vector. Each j-th element in vectors #»o and
#»

h corresponds to a
solution sj of the form: sj = mj||dj .

• SolvPuz(pk, #»o) → #»s : a deterministic algorithm that takes as input the public
key: pk and puzzle vector: #»o . It outputs a solution vector: #»s .

• Prove(pk, sj) → p̈j: a deterministic algorithm that takes the public key: pk
and a solution: sj ∈ #»s . It outputs a proof, p̈j : (mj, dj) given to the verifier.

• Verify(pk, p̈j, hj) → {0, 1}: a deterministic algorithm that takes public key:
pk, proof: p̈j and commitment: hj ∈ #»

h . It outputs 0 if it rejects, or 1 if it accepts.
– Completeness: for any honest prover and verifier, it always holds that:

• SolvPuz(pk, [o1, ..., oj]) = [s1, ..., sj], for every j, 1 ≤ j ≤ z.
• Verify(pk, Prove(pk, sj), hj) → 1.

– Efficiency: the run-time of algorithm SolvPuz(pk, [o1, ..., oj]) = [s1, ...sj] is
bounded by: poly(jΔ, λ), where poly(.) is a fixed polynomial and 1 ≤ j ≤ z.

Informally, a multi-instance time-lock puzzle is secure if it satisfies two properties:
a solution’s privacy and validity. The former requires its j-th solution to remain hidden
from all adversaries running in parallel within time period: jΔ, while the latter one
requires that it is infeasible for a PPT adversary to come up with an invalid solution and
passes the verification. The two properties are formally defined in Definitions 5 and 6.

Definition 5 (Multi-instance Time-lock Puzzle’s Solution-Privacy). A multi-
instance time-lock puzzle is privacy-preserving if for all λ and Δ, any number of puzzle:
z ≥ 1, any j (where 1 ≤ j ≤ z), any pair of randomised algorithm A : (A1,A2), where
A1 runs in time O(poly(jΔ, λ)) and A2 runs in time δ(jΔ) < jΔ using at most π(Δ)
parallel processors, there exists a negligible function μ(.), such that:

Pr

⎡

⎢
⎢
⎣

A2(pk, ö, state) → ä
s.t.
ä : (bi, i)
mbi,i = mbj,j

∣
∣
∣
∣
∣
∣
∣
∣

Setup(1λ,Δ, z) → (pk, sk,
#»

d)
A1(1λ, pk, z) → (# »m, state)
∀j′, 1 ≤ j′ ≤ z : bj′

$← {0, 1}
GenPuz(# »m′, pk, sk,

#»

d) → ö

⎤

⎥
⎥
⎦

≤ 1
2
+ μ(λ)

where # »m : [(m0,1,m1,1), ..., (m0,z,m1,z)], # »m′ : (mb1,1, ...,mbz,z), and 1 ≤ i ≤ z.

The definition above also ensures the solutions to appear after j-th one, remain hidden
from the adversary with a high probability, as well. Similar to [7,16,22], it captures that
even if A1 computes on the public parameters for a polynomial time, A2 cannot find
j-th solution in time δ(jΔ) < jΔ using π(Δ) parallel processors, with a probability
significantly greater than 1

2 . As highlighted in [7], we can set δ(Δ) = (1 − ε)Δ for a
small ε, where 0 < ε < 1.

550 A. Abadi and A. Kiayias

Definition 6 (Multi-instance Time-lock Puzzle’s Solution-Validity). A multi-
instance time-lock puzzle preserves a solution validity, if for all λ and Δ, any number
of puzzles: z ≥ 1, all probabilistic polynomial-time adversaries A = (A1,A2) that run
in time O(poly(Δ,λ)) there is negligible function μ(.), such that:

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A2(pk, #»s , ö, state) → a
s.t.
a : (j, p̈j, p̈

′)
p̈j : (mj, dj), p̈′ : (m′, d′)
mj ∈ # »m, dj ∈ #»

d ,m �= m′

Verify(pk, p̈, hj) = 1
Verify(pk, p̈′, hj) = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Setup(1λ,Δ, z) → (pk, sk,
#»

d)
A1(1λ, pk,Δ, z) → (# »m, state)
GenPuz(# »m, pk, sk,

#»

d) → ö
SolvPuz(pk, #»o) → #»s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ μ(λ)

where # »m = [m1, ...,mz], and hj ∈ #»

h ∈ ö.

Definition 7 (Multi-instance Time-lock Puzzle Security). A multi-instance time-lock
puzzle scheme is secure if it meets solution-privacy and solution-validity properties.

4.4 Chained Time-Lock Puzzle (C-TLP) Protocol

In this section, we present the chained time-lock puzzle (C-TLP), an instantiation of the
multi-instance time lock puzzle. Since we have already presented an outline of C-TLP
(in Sect. 4.2), in this section we present C-TLP protocol in detail. Recall, a client wants a
server to learn a vector of messages: # »m = [m1, ...,mz] at times [f1, ..., fz] respectively,
where the client is available and online only at an earlier time f0 < f1. Also, the client
wants to ensure that anyone can validate a solution found by the server, i.e. supports
public verifiability. For the sake of simplicity, let Δ = f1 − f0 and Δ = fj+1 − fj ,
where 1 ≤ j ≤ z and T = SΔ. Below, we provide C-TLP protocol. We refer readers
to the paper’s full version [2] for further remarks on the protocol.

1. Setup: Setup(1λ,Δ, z).
(a) Call: TLP.Setup(1λ,Δ) → (p̂k, ŝk), s.t. p̂k = (N,T, r1) and ŝk =

(q1, q2, a, k1).
(b) Pick z − 1 fixed size random generators: #»r = [r2, ..., rz] from Z

∗
N .

(c) Pick z − 1 random keys: [k2, ..., kz] for a symmetric key encryption. Let
#»

k =
[k1, ..., kz], where k1 ∈ ŝk. Also, pick z fixed size sufficiently large random
values:

#»

d = [d1, ..., dz], e.g. |dj| = 128-bit or 1024-bit depending on the choice
of a commitment scheme.

(d) Set pk = (aux, N, T, r1) as public key. Set sk = (q1, q2, a,
#»

k , #»r ,
#»

d) as secret
key. Note, aux contains a cryptographic hash function’s description and the size
of the random values. Also, note that all generators, except r1 are kept secret.
Output pk and sk.

2. Generate Puzzle: GenPuz(# »m, pk, sk)
Encrypt the messages, starting with j = z, in descending order. ∀j, z ≥ j ≥ 1 :
(a) Set pkj = (N,T, rj) and skj = (q1, q2, a, kj). Note, if j = 1 then rj ∈ pk;

otherwise (when j > 1), rj ∈ #»r .

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 551

(b) Generate a puzzle (or ciphertext pair):
• if j = z, then run: TLP.GenPuz(mj||dj, pkj, skj) → öj = (oj,1, oj,2).
• otherwise, run: TLP.GenPuz(mj||dj||rj+1, pkj, skj) → öj = (oj,1, oj,2).

(c) Commit to each message, e.g. H(mj||dj) = hj and output: hj .
(d) Output: öj = (oj,1, oj,2) as puzzle (or ciphertext pair).
By the end of this phase, vectors of puzzles: #»o = [ö1, ..., öz] and commitments:
#»

h = [h1, ...hz] are generated. All public parameters and puzzles are given to a
server at time t0 < t1, where Δ = f1 − f0.

3. Solve Puzzle: SolvPuz(pk, #»o)
Decrypt the messages, starting with j = 1, in ascending order. ∀j, 1 ≤ j ≤ z :
(a) If j = 1, then set rj = r1, where r1 ∈ pk; Otherwise, set rj = u.
(b) Set pkj = (N,T, rj).
(c) Run: TLP.SolvPuz(pkj, öj) → xj , where öj ∈ #»o
(d) Parse xj . Note that if j < z then xj = mj||dj||rj+1; otherwise, we have xj =

mj||dj . Therefore, xj is parsed as follows.
• if j < z :

i Parse mj||dj||rj+1 into mj||dj and u = rj+1

ii Output sj = mj||dj

• otherwise (when j = z), output sj = xj = mj||dj

4. Prove: Prove(pk, sj). Parse sj into p̈j : (mj, dj), and send the pair to the verifier.
5. Verify: Verify(pk, p̈j, hj). Verifies the commitment, H(mj, dj)

?= hj . If passed,
accept the solution and output 1; otherwise, reject it and output 0.

Theorem 1 (C-TLP Security). C-TLP is a secure multi-instance time-lock puzzle.

Proof (Outline). The proof of Theorem 1 relies on the security of the TLP, symmetric
key encryption, and commitment schemes. It is also based on the fact that the proba-
bility to find a certain random generator is negligible. It shows both C-TLP’s solution
privacy (due to security of the above three schemes) and validity (due to the security
of the commitment) are satisfied. We refer readers to the paper’s full version [2] for
detailed proof. 	

4.5 Cost Analysis Table

We summarize C-TLP’s cost analysis in Table 2. It considers a generic setting where
the protocol deals with z puzzles. We refer readers to the paper’s full version [2] for
detailed analysis.

5 Smarter Outsourced PoR (SO-PoR) Using C-TLP

As discussed in Sect. 2, the existing outsourced PoR’s have serious shortcomings, e.g.
having high costs, not supporting real-time detection, or suffering from the lack of a
fair payment mechanism. In this section, we present SO-PoR to addresses them.

552 A. Abadi and A. Kiayias

Table 2. C-TLP’s detailed cost breakdown

(a) Computation Cost
Protocol Function

Protocol Operation
GenPuz SolvPuz Verify

Complexity

Exp. z + 1 Tz −
O(Tz)

Add. or Mul. z z −
Commitment z − z

C-TLP

Sym. Enc z z −

(b) Communication Cost (in bit)

Protocol Model Client Server Complexity

Standard 3200z 1524z
O(z)C-TLP

R.O. 2432z 628z

5.1 SO-PoR Overview

SO-PoR uses a unique combination of (a) homomorphic MAC-based PoR [27], (b) C-
TLP, (c) a smart contract, (d) a pre-computation technique, and (e) blockchain-based
random extraction beacon [1,3]. It uses the MAC-based PoR, due to its high efficiency.
Since the MACs are privately verifiable and secret verification keys are needed to check
PoR proofs, SO-PoR also uses C-TLP to efficiently make them publicly verifiable. In
this case, C-TLP encapsulates the verification keys and reveals each of them to ver-
ifiers only after a certain time. SO-PoR also uses a smart contract which acts as a
public verifier on the client’s behalf to verify proofs and pay an honest server. The
pre-computation technique allows the client at setup to generate a constant number of
disposable homomorphic MACs for each verification. The combination of disposable
homomorphic MACs and C-TLP makes it possible to (a) use a smart contract and (b)
take advantage of MACs efficiency in the setting where public verifiability is needed.
This combination has applications beyond PoR. A blockchain-based random extraction
beacon allows the server to independently derive a set of unpredictable random values
from the blockchain such that the values’ correctness is publicly verifiable.

At a high-level SO-PoR works as follows. The client encodes its file using an error-
correcting code and for each j-th verification it does the following. It picks two random
keys: (vj, lj) of a PRF. It uses vj to generate c random blocks’ indices, i.e. challenged
blocks. It uses lj to generate a disposable MAC on each challenged block. It also uses
C-TLP to make two puzzles, one that encapsulates vj , and another that encapsulates lj .
It deposits enough coins to cover z successful PoR verifications in a smart contract. The
client sends the encoded file, tags and the puzzles to the server. When j-th PoR proof
is needed, the server manages to discover key vj that lets it determine which file blocks
are challenges. The server also uses the beacon to extract a set of random values from
the blockchain. Using the MACs, challenged blocks, and beacon’s outputs, the server
generates a compact PoR proof. The server sends the proof to the contract. After that,
it can delete the related disposable MACs. For the same verification, after a fixed time,
it manages to find the related MACs verification key: lj . It sends the key to the server
who checks the correctness of lj and PoR proof. If the contract accepts all proofs, then
it pays the server for j-th verification; otherwise, it notifies the client.

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 553

5.2 SO-PoR Model Overview

SO-PoR model is built upon the traditional PoR paradigm [27] which is a challenge-
response protocol where a server proves to an honest client that its file is retrievable (see
the paper’s full version [2] for a formal definition of the PoR). In SO-PoR, however, a
client may not be available for verification. So, it wants to delegate a set of verifications
that it cannot carry out. Informally, in this setting, it (in addition to file retrievability)
must have three guarantees: (a) verification correctness: every verification is performed
honestly, so the client can trust the verification’s result without redoing it, (b) real-time
detection: the client is notified in almost real-time when a proof is rejected, and (c)
fair payment: in every verification, the server is paid only if a proof is accepted. In
SO-PoR, three parties are involved: an honest client, potentially malicious server and a
standard smart contract. SO-PoR also, analogous to [27], allows a client to perform the
verification itself, when it is available. We present our formal definition of SO-PoR in
the paper’s full version [2].

5.3 SO-PoR Protocol

This section presents SO-PoR protocol in detail, followed by the rationale behind it.

1. Client-side Setup.
(a) Gen. Public and Private Keys: Picks a fresh key: k̂ and two vectors of keys: #»v and

#»

l , where each vector contains z fresh keys. It picks a large prime number: p
whose size is determined by a security parameter, (i.e. its bit-length is equal to
the bit-length of PRF(.)’s output, |p| = ι). Moreover, it runs Setup(.) in C-TLP
scheme to generate a key pair: (pk, sk).

(b) Gen. Other Public Parameters: Sets c to the total number of blocks challenged in
each verification. It defines parameters: w and g, where w is an index of a future
block: Bw in a blockchain that will be added to the blockchain (permanent state)
at about the time first delegated verification will be done, and g is a security
parameter referring to the number of blocks (in a row) starting from w. It sets
z: the total number of verifications, ||F ||: file bit size, Δ1: the maximum time is
taken by the server to generate a proof, Δ2: time window in which a message is
(sent by the server and) received by the contract, and e amount of coins paid to
the server for each successful verification. Sets p̂k : (pk, e, g, w, p, c, z,Δ1,Δ2).

(c) Sign and Deploy Smart Contract: Signs and deploys a smart contract: SC to a
blockchain. It stores public parameters: (z, ||F ||,Δ1,Δ2, c, g, p, w), on the con-
tract. It deposits ez coins to the contract. Then, it asks the server to sign the
contract. The server signs if it agrees on all parameters.

2. Client-side Store.
(a) Encode File: Splits an error-corrected file, e.g. under Reed-Solomon codes, into

n blocks; F : [F1, ..., Fn], where Fi ∈ Fp.
(b) Gen. Permanent Tags: Using the key: k̂, it computes n pseudorandom values: ri

and single value: α, as follows.

554 A. Abadi and A. Kiayias

α = PRF(k̂, n + 1) mod p, ∀i, 1 ≤ i ≤ n : ri = PRF(k̂, i) mod p

It uses the pseudorandom values to compute tags for the file blocks.

∀i, 1 ≤ i ≤ n : σi = ri + α · Fi mod p

So, at the end of this step, a set of tags are generated, σ : {σ1, ..., σn}.
(c) Gen. Disposable Tags: For j-th verification (1 ≤ j ≤ z):

i chooses the related key: vj ∈ #»v and computes c pseudorandom indices.

∀b, 1 ≤ b ≤ c : xb,j = PRF(vj, b) mod n

ii picks the corresponding key: lj ∈ #»

l and computes c pseudorandom values:
rb,j and single value: αj , as follows.

αj = PRF(lj, c + 1) mod p, ∀b, 1 ≤ b ≤ c : rb,j = PRF(lj, b) mod p

iii generates c disposable tags.

∀b, 1 ≤ b ≤ c : σb,j = rb,j + αj · Fy mod p

where y = xb,j . At the end of this step, a set σj of c tags are computed,
σj : {σ1,j, ..., σc,j}.

(d) Gen. Puzzles: Sets # »m = [v1, l1, ..., vz, lz] and then encrypts the vector’s elements,
by running: GenPuz(# »m, pk, sk) in C-TLP scheme. This yields a puzzle vector:
[(V1, L1), ..., (Vz, Lz)] and a commitment vector:

#»

h . The encryption is done in
such a way that in each j-th pair, Vj will be fully decrypted at times tj and Lj

will be decrypted at time t′j , where tj + Δ1 + Δ2 ≤ t′j < tj+1.

(e) Outsource File: Stores F , n, p̂k, {σ, σ1, ..., σz, (V1, L1), ..., (Vz, Lz)} on the
server. Also, it stores

#»

h on the smart contract.
3. Cloud-Side Proof Generation. For j-th verification (1 ≤ j ≤ z), the cloud:

(a) Solve Puzzle and Regen. Indices: Receives and parses the output of SolvPuz(.) in
C-TLP, to extract vj , at time tj . Using vj , it regenerates c pseudorandom indices.

∀b, 1 ≤ b ≤ c : xb,j = PRF(vj, b) mod n

(b) Extract Key: Extracts a seed: uj , from the blockchain as follows: uj =
H(Bγ ||...||Bζ), where γ = w + (j − 1) · g and ζ = w + j · g.

(c) Gen. PoR: Generates a PoR proof.

μj =
c∑

b=1

PRF(uj, b) · Fy mod p, ξj =
c∑

b=1

PRF(uj, b) · σb,j mod p

where y is a pseudorandom index: y = xb,j

(d) Register Proofs: Sends the PoR proof: (μj, ξj) to the smart contract within Δ1.

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 555

(e) Solve Puzzle and Regen. Verification Key: Receives and parses the output of algo-
rithm SolvPuz(.) in C-TLP to extract lj , at time t′j . Also, it runs Prove(.) in
C-TLP, to generate a proof: p̈j , of lj’s correctness. It sends p̈j (containing lj) to
the contract, so it can be received by the contract within Δ2.

4. Smart Contract-Side Verification. For j-th verification (1 ≤ j ≤ z), the contract:
(a) Check Arrival Time: checks the arrival time of the decrypted values sent by

the server. In particular, it checks, if (μj, ξj) was received in the time win-
dow: (tj, tj + Δ1 + Δ2] and whether lj was received in the time window:
(t′j, t

′
j + Δ2].

(b) Verify Puzzle Solution: runs Verify(.) in C-TLP to verify p̈j (i.e. checks the
correctness of lj ∈ p̈j). If approved, then it regenerates the seed: uj =
H(Bγ ||...||Bζ), where γ = w + (j − 1) · g and ζ = w + j · g.

(c) Verify PoR: regenerates the pseudorandom values and verifies the PoR proof.

ξj

?= μj · PRF(lj, c + 1) +
c∑

b=1

(PRF(uj, b) · PRF(lj, b)) mod p (1)

(d) Pay: if Eq. 1 holds, pays and asks the server to delete all disposable tags for this
verification, i.e. σj .

If either check fails, it aborts and notifies the client.
5. Client-server PoR: When the client is online, it can interact with the server to check

its data availability too. In particular, it sends c random challenges and random
indices to the server who computes POR using only: (a) the messages sent by the
client in this step, (b) the file: F , and (c) the tags: σi ∈ σ, generated in step 2b. The
proof generation and verification are similar to the MAC-based schemes, e.g. [27].

Theorem 2. SO-PoR protocol is secure if the MACs are unforgeable, PRF(.) is a
secure pseudorandom function, the blockchain and C-TLP protocol are secure, and
H(Bγ ||...||Bζ) outputs an unpredictable random value (where ζ − γ is a security param-
eter).

Proof (Outline). Let Mi be a blockchain miners and β be the maximum number of
miners which can be corrupted in a secure blockchain. We first argue that the adversary
who corrupts either C ⊆ {M1, ...,Mβ} or C ′ ⊆ {S,M1, ...,Mβ−1} with a high
probability, cannot influence the output of Verify(.) performed by a smart contract in a
blockchain (i.e. the verification correctness holds) due to the security of the underlying
blockchain. Then, we argue that if a proof produced by an adversary who corrupts
C ′ ⊆ {S,M1, ...,Mβ−1} is accepted by Verify(.) with probability at least ε, then the
file can be extracted by a means of an extraction algorithm, due to the security of the
underlyingMACs, PRF(.) and C-TLP as well as the unpredictability of random extractor
beacon’s output, i.e. H(Bγ ||...||Bζ). Next, we argue that after the server broadcasts a
proof at a certain time to the network, the client can get a correct output of Verify(.) at
most after time period Υ , by a means of reading the blockchain, due to the correctness
of Verify(.) and the maximum delay on the client’s view of the output (i.e. Υ -real-time
detection). Also, we argue that fair payment is held due to the security of blockchain
and correctness of Pay(.). We refer readers to the paper’s full version [2] for detailed
proof. 	

556 A. Abadi and A. Kiayias

5.4 Evaluation

In this section, we provide a summary of comparisons between SO-PoR and outsourced
PoRs [3,5,30]. Among the two protocols in [5] we only consider “basic PoSt” as it sup-
ports public verifiability. Briefly, in terms of property, only SO-PoR offers an explicit
solution for real-time detection and fair payment. In terms of computation cost, the veri-
fication algorithm in SO-PoR is much faster than the other three protocols; Specifically,
when c = 460, SO-PoR verification3 needs about 4.5 times fewer computation than
the verification required in the fastest outsourced PoR [3]. Also, [3] has the worst store
cost, that is much higher than that of SO-PoR; e.g. for a 1-GB file, SO-PoR requires over
46×105 times fewer exponentiations than [3] needs in the same phase. SO-PoR and [5]
require a server to solve puzzles (and the imposed cost has to be compensated by the
client) but the other two protocols do not need that. Also, I/O cost and proof complexity
of all protocols are O(1) except [5] whose I/O cost and proof complexity are O(log n).
The server-side bandwidth of SO-PoR is much lower than the rest; e.g., for 1-GB file
and z = 100 verifications, a server in SO-PoR requires 9×104, 7 and 1729 times fewer
bits than those required in [3,30] and [5] respectively. A client in SO-PoR has a higher
bandwidth than the rest (but this cost is one-off). Thus, SO-PoR offers additional prop-
erties, it has lower verification cost and lower server-side bandwidth than the rest while
its other costs remain reasonable. Table 3 outlines the cost comparison results. For a full
analysis, we refer readers to the paper’s full version [2] where we also compare SO-PoR
costs with that of the most efficient traditional PoR [27].

Table 3. Outsourced PoR’s cost comparison. z: total verifications, c: number of challenges for
each verification, n: total number of file blocks, c′ = (0.1)c, and ||F ||: file bit size.

Computation Cost Communication Cost
Protocols Operation

Store SolvPuz Prove Verify Client Server Verifier Proof Size

Exp. z + 1 Tz − − 128(n+
SO-PoR

Add. or Mul. 2(n + cz) z 4cz 2z(1 + c) cz + 19z)
884z − O(1)

Exp. 9n − − − 256z+ 4672n+
[3]

Add. or Mul. 10n − 4z(c + c′) z(9c + 3)
128n

||F || 256z
O(1)

Exp. − − z(3 + c) 6z

Add. or Mul. 4n − 2z(3c + 4) 2cz[30]

Pairing − − 7z −
2048n 6144z − O(1)

Exp. − 3Tz − 3z 128cz log n+
[5]

Add. or Mul. − Tz − −
128

4096z
− O(log n)

3 As shown in [4], to ensure 99% of file blocks is retrievable, it suffices to set c = 460.

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 557

6 C-TLP as Efficient Variant of VDF

There are cases where a client wants a server to learn distinct random challenges, at
different points in time within a certain period, without the client’s involvement in that
period. Such challenges can let the server generate certain proofs that include but are
not limited to the continuous availability of services, such as data storage or secure
hardware. The obvious candidates that can meet the above needs are VDF (if public
verifiability is desirable) and TDF (if private verifiability suffices). PoSt protocols in
[5] are two examples of the above cases. We observed that in these cases, VDF/TDF
can be replaced with C-TLP to gain better efficiency. The idea is that the client computes
random challenges, encodes them into C-TLP puzzles and sends them to the server who
can eventually solve each puzzle, extract a subset of challenges and use them for the
related proof scheme while letting the public efficiently verify the solutions’ correct-
ness. To illustrate the efficiency gain, we compare C-TLP performance with the two
current VDF functions [7,29]. Table 4 summarises the result. The cost analysis consid-
ers the generic setting where z outputs are generated. Among several VDF schemes
proposed in [7], we focus on the one that uses sequential squaring, as it is more efficient
than the other schemes in [7]. As the table indicates, the overall cost of [7] in each of
the three phases is much higher than C-TLP and [29]. Now, we compare the compu-
tation cost of C-TLP with [29]. At setup, a client in C-TLP performs at most 3z + 1
more exponentiations than it does in [29]. But, at both prove and verify phases, C-TLP
outperforms [7], especially when they are in the same model. In particular, at the prove
phase, C-TLP, in both models, requires Tz fewer multiplications than [29] does. Also,
in the same phase, it requires 3 times fewer exponentiations than [29]. In the verify
phase, when C-TLP is in the standard model, it has a slightly lower cost than [29] has in
the random oracle model. However, when both of them are in the random oracle model,
C-TLP has a much lower cost, as it requires no exponentiations whereas [29] needs 3z
exponentiations. Hence, C-TLP supports both standard and random oracle models and
in both paradigms, it outperforms the fasted VDF, i.e. [29], designed in the random ora-
cle model. Furthermore, the proof size in C-TLP is 3.2 and 6.5 times shorter than [7]
and [29] respectively, when they are in the same model. In the paper’s full version [2],
we also show how C-TLP can be employed in the PoSt protocols [5] to reduce costs.

Table 4. VDF’s cost comparison

Computation Cost
Protocols Model Operation

Setup Prove Verify
Proof size (bit)

Exp. 3z + 1 Tz 2z
1524zStandard

Mul. z − z

Exp. z + 1 Tz −
628z

C-TLP

R.O.
Mul. − − −
Exp. 230 Tz z

2048z[7] R.O.
Mul. − 2z · 230 2z · 230
Exp. − 3Tz 3z

4096z[29] R.O.
Mul. − Tz −

558 A. Abadi and A. Kiayias

7 Conclusion

Time-lock puzzles are important cryptographic protocols with various applications. But,
existing puzzle schemes are not suitable to deal with multiple puzzles at once. In this
work, we put forth the concept of composing multiple puzzles, where given puzzles
composition at once, a server can find one puzzle’s solution after another. This process
does not require the server to deal with all of them in parallel which reliefs the server
from having numerous parallel processors and allows it to save considerable compu-
tation overhead. We proposed a candidate construction: chained time-lock puzzle (C-
TLP) that possesses the aforementioned features. Furthermore, C-TLP is equipped with
an efficient verification algorithm publicly executable. We also illustrated how to use
C-TLP to construct an efficient outsourced proofs of retrievability scheme that supports
real-time detection and fair payment while keeping its costs considerably lower than
the state of the art protocols. Moreover, we showed how VDFs in certain settings can
be replaced with C-TLP to gain considerable cost improvement.

Acknowledgment. Aydin Abadi is supported in part by EPSRC under “OxChain” project with
grant number EP/N028198/1 and by the European Union’s Horizon 2020 Research and Innova-
tion Programme under “FENTEC” project with grant number 780108.

References

1. Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge proofs-
timestamping in the blockchain era-. IACR Cryptol. ePrint Arch. 2019, 644 (2019)

2. Abadi, A., Kiayias, A.: Multi-instance publicly verifiable time-lock puzzle and its applica-
tions (full version). Financial cryptography repository (2021). https://fc21.ifca.ai/papers/115.
pdf

3. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced proofs of
retrievability. In: CCS 2014 (2014)

4. Ateniese, G., et al.: Provable data possession at untrusted stores. In: CCS 2007 (2007)
5. Ateniese, G., Chen, L., Etemad, M., Tang, Q.: Proof of storage-time: efficiently checking

continuous data availability. In: NDSS 2020 (2020)
6. Banerjee, P., Nikam, N., Ruj, S.: Blockchain enabled privacy preserving data audit. CoRR

abs/1904.12362 (2019)
7. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H.,

Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 757–788. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 25

8. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol.
1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 15

9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: rate-1
fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.)
TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-36033-7 16

10. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contingent pay-
ments revisited: attacks and payments for services. In: CCS 2017 (2017)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols.
In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14–17
October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE Computer Society (2001)

https://fc21.ifca.ai/papers/115.pdf
https://fc21.ifca.ai/papers/115.pdf
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-030-36033-7_16

Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications 559

12. Chen, H., Deviani, R.: A secure e-voting system based on RSA time-lock puzzle mechanism.
In: BWCCA 2012 (2012)

13. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Generic constructions of incremental and
homomorphic timed-release encryption. IACR Cryptol. ePrint Arch. 2020, 739 (2020)

14. Francati, D., et al.: Audita: a blockchain-based auditing framework for off-chain storage.
CoRR 2019 (2019)

15. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36504-4 13

16. Garay, J.A., Kiayias, A., Panagiotakos, G.: Iterated search problems and blockchain security
under falsifiable assumptions. IACR Cryptol. ePrint Arch. 2019, 315 (2019)

17. Hao, K., Xin, J., Wang, Z., Jiang, Z., Wang, G.: Decentralized data integrity verification
model in untrusted environment. In: Cai, Y., Ishikawa, Y., Xu, J. (eds.) APWeb-WAIM 2018,
Part II. LNCS, vol. 10988, pp. 410–424. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96893-3 31

18. Juels, A., Kaliski Jr., B.S.: PORs: proofs of retrievability for large files. In: CCS 2007 (2007)
19. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press,

Boca Raton (2007)
20. Kopp, H., Bösch, C., Kargl, F.: KopperCoin – a distributed file storage with financial incen-

tives. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016. LNCS, vol. 10060, pp.
79–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49151-6 6

21. Labs, P.: Filecoin: a decentralized storage network (2017). https://filecoin.io/filecoin.pdf
22. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In:

Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 620–649.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 22

23. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin work for
data preservation. In: S&P 2014 (2014)

24. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 9

25. Renner, T., Müller, J., Kao, O.: Endolith: a blockchain-based framework to enhance data
retention in cloud storages. In: PDP 2018 (2018)

26. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech.
rep. (1996)

27. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-89255-7 7

28. Vorick, D., Champine, L.: Sia: simple decentralized storage. Nebulous Inc. (2014)
29. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EURO-

CRYPT 2019, Part III. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4 13

30. Xu, J., Yang, A., Zhou, J., Wong, D.S.: Lightweight delegatable proofs of storage. In:
Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part I.
LNCS, vol. 9878, pp. 324–343. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45744-4 16

31. Zhang, Y., Deng, R.H., Liu, X., Zheng, D.: Blockchain based efficient and robust fair pay-
ment for outsourcing services in cloud computing. Inf. Sci. 462, 262–277 (2018)

https://doi.org/10.1007/3-540-36504-4_13
https://doi.org/10.1007/3-540-36504-4_13
https://doi.org/10.1007/978-3-319-96893-3_31
https://doi.org/10.1007/978-3-319-96893-3_31
https://doi.org/10.1007/978-3-319-49151-6_6
https://filecoin.io/filecoin.pdf
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-319-45744-4_16
https://doi.org/10.1007/978-3-319-45744-4_16

Practical Post-quantum Few-Time
Verifiable Random Function with

Applications to Algorand

Muhammed F. Esgin1,2(B), Veronika Kuchta3, Amin Sakzad1, Ron Steinfeld1,
Zhenfei Zhang4, Shifeng Sun1, and Shumo Chu5

1 Monash University, Melbourne, Australia
muhammed.esgin@monash.edu

2 CSIRO’s Data61, Melbourne, Australia
3 The University of Queensland, Brisbane, Australia

4 Manta Network, Boston, USA
5 University of California, Santa Barbara, USA

Abstract. In this work, we introduce the first practical post-quantum
verifiable random function (VRF) that relies on well-known (module) lat-
tice problems, namely Module-SIS and Module-LWE. Our construction,
named LB-VRF, results in a VRF value of only 84 bytes and a proof of
around only 5 KB (in comparison to several MBs in earlier works), and
runs in about 3 ms for evaluation and about 1 ms for verification.

In order to design a practical scheme, we need to restrict the num-
ber of VRF outputs per key pair, which makes our construction few-
time. Despite this restriction, we show how our few-time LB-VRF can
be used in practice and, in particular, we estimate the performance of
Algorand using LB-VRF. We find that, due to the significant increase in
the communication size in comparison to classical constructions, which
is inherent in all existing lattice-based schemes, the throughput in LB-
VRF-based consensus protocol is reduced, but remains practical. In par-
ticular, in a medium-sized network with 100 nodes, our platform records
a 1.14× to 3.4× reduction in throughput, depending on the accompany-
ing signature used. In the case of a large network with 500 nodes, we can
still maintain at least 24 transactions per second. This is still much better
than Bitcoin, which processes only about 5 transactions per second.

Keywords: Post-quantum · Verifiable random function · Blockchain ·
Lattice · Algorand

1 Introduction

The notion of verifiable random function (VRF) was put forth by Micali, Rabin
and Vadhan [35]. It allows a user to generate a random value that is both authen-
ticated and publicly verifiable. VRFs have been used in practice, for example, in

Z. Zhang—Work was done while with Algorand.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 560–578, 2021.
https://doi.org/10.1007/978-3-662-64331-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_29&domain=pdf
https://doi.org/10.1007/978-3-662-64331-0_29

Practical Post-quantum Few-Time Verifiable Random Function 561

DNSSEC protocol [22], and in blockchain consensus protocols [12,21] to estab-
lish Proof-of-Stake. In both cases, a VRF serves as a fundamental building block
to provide verifiable random inputs to the protocol. There are currently two
main VRF constructions namely, ECVRF [38] (based on elliptic curves), and
BLS-VRF [8,9] (based on pairings). Specifically, ECVRF over curve25519 is cur-
rently in the standardization process by CRFG [23] and is deployed by Algorand
[12,21], while BLS-VRF is adopted by Dfinity [26].

The main drawback of the above-mentioned VRF constructions is that they
are vulnerable to quantum attacks. This is a significant concern especially in the
blockchain setting since attackers may “rewrite history” if they are able to forge
the VRF (with a quantum computer). Let us explain why this is a major concern
even today. In a blockchain use case as in Algorand, VRF is used to ensure that
the committee members are selected honestly for all the blocks that are already
committed on the chain. A new user, who has no record of the previous blocks,
can be assured of the validity of the blocks by looking at the votes that has
been recorded as long as VRF remains secure. In such protocols, since a block
is agreed by the majority of the committee members, there will never be a
fork of the blockchain. However, when the VRF security is compromised, one
can “rewrite history” by corrupting selected committee members for any given
round (including rounds in the past), and then can create a fork to the blockchain
subsequent to that round. As a result, a potential future security threat against
the integrity of VRFs is important even today. To circumvent such a threat,
in this paper we introduce the first post-quantum VRF construction that does
not rely on heavy machinery and meets practical efficiency levels. We emphasize
that our focus in this paper is realization of practical constructions.

Technical Challenges in the Lattice Setting. Construction of an efficient
lattice-based VRF is quite challenging as realizing long-term pseudorandomness
and uniqueness properties together (while maintaining practicality) does not go
well in the lattice setting. To understand why that is the case, let us first briefly
explain how ECVRF works.

In ECVRF, the secret key is a field element x and the corresponding public
key is a group element xG for some public generator G. The ECVRF output is
then a group element xP , where P = H(xG, μ) is computed deterministically
from the VRF input μ and a public key xG for some publicly computable function
H. Then, a sigma protocol (with Fiat-Shamir transformation) is applied to prove
that both the VRF output xP and the public key xG have the same discrete log-
arithm with respect to P and G, respectively (i.e., x = logG(xG) = logP (xP)).
In essence, pseudorandomness follows from DDH assumption and the uniqueness
comes from the fact that, for a fixed input μ and a fixed public key xG, there is
a unique xP such that x = logG(xG) and P = H(xG, μ).

Issue with Long-Term Pseudorandomness in the Lattice Setting. The main tech-
nique to hide a secret key s in lattice-based cryptography is to disturb a lattice
point by computing t = 〈b, s〉+e, where b is a public vector, s is the secret vector
and e is a small (secret) error sampled from some error distribution. Assuming
that computations are done over a ring R, t is precisely a Module-LWE (MLWE)

562 M. F. Esgin et al.

sample in R and is indistinguishable from a uniformly random element in R
based on MLWE.

Now, let’s see the difficulty in constructing an MLWE-based lattice analogue
of the above DDH-based VRF. In this lattice-based VRF, for a fixed user secret
key s, one can map an input message μ together with the user public key to a
vector b = H(pk, μ) using a deterministic function H (modelled as a random
oracle). From here, with the hope of hiding the secret s, one may attempt to
compute the corresponding VRF value as v = 〈b, s〉+e for some error e sampled
from an error set of many elements. However, unlike the DDH-based setting
above, this approach violates the uniqueness property as there are multiple small
e values that can be used, and thus multiple possible VRF values for a given
(pk, μ).

An alternative approach could be to choose the error in a deterministic way.
In particular, one may compute v = Round(〈b, s〉) for some rounding func-
tion Round(·), which simply chops off some least significant bits, and rely for
pseudorandomness on the learning with rounding (LWR) problem [5]. In fact,
this approach has been used to construct lattice-based pseudorandom functions
(PRFs) [31,41]. The issue here is that currently, there is no known efficient
zero-knowledge proof to prove that the VRF evaluator indeed computed v in
this fashion. For example, the recent results from [41] yield such a proof of size
in the order of several MBs. Therefore, this approach does not address our prac-
tical goals.

Issue with Uniqueness in the Lattice Setting. Another orthogonal issue is
in relation to uniqueness. Efficient lattice-based signature schemes are non-
deterministic and therefore standard transformation from a unique signature to
a VRF (as given in [35]) does not trivially work. Moreover, the approach taken
in [38] to prove uniqueness of the ECVRF construction also does not apply in
the lattice setting. In particular, the authors in [38] show that for any given
VRF output that is not generated honestly and any valid proof, there exists a
single random oracle output c that can make the proof verify. As the chance of
hitting that challenge is negligibly small, the uniqueness follows. However, the
same idea does not work in the lattice setting.

1.1 Our Contribution

We propose the first practical verifiable random function, named LB-VRF, based
on standard post-quantum hardness assumptions, namely Module-SIS (MSIS)
and Module-LWE (MLWE). A single LB-VRF proof costs around 5KB and runs
in about 3 ms for evaluation and 1 ms for verification. To show the practicality
of our results, we implemented LB-VRF and tested it in practice. We discuss
the implementation and evaluation further below.

The main drawback of our construction is that a single key pair can only be
used to generate a limited number k of VRF outputs. Therefore, we say that our
LB-VRF construction is ‘k-time’. However, we show that this aspect is not a sig-
nificant disadvantage in the blockchain setting as the users can frequently update

Practical Post-quantum Few-Time Verifiable Random Function 563

their keys. In fact, some privacy-enhanced blockchain applications such as Mon-
ero and Zcash employ one-time public keys per transaction (see, for example,
[6,18,36,37,39,40,42]). For instance, as detailed in Sect. 4.1.6 of Zcash specifica-
tion [28], a fresh signature key pair is generated for each transaction.

We also note that the aspect of being k-time is only required to satisfy
pseudorandomness (i.e., to prevent the user secret key from being leaked), and
is not related to the soundness (i.e., uniqueness). That is, it is infeasible for
a cheating prover, even by violating the k-time property, to produce incorrect
VRF outputs that pass the verification algorithm.

Main Idea. A user secret key in LB-VRF is a short vector s, and the public key
becomes t = As for a public matrix A. Then, we use the so-called “Fiat-Shamir
with Aborts” technique [33] to prove knowledge of the secret key. However, this
proof is relaxed in the sense that it only proves knowledge of s′ such that c̄t = As′

for some secret relaxation factor c̄ (i.e., the proof has a knowledge gap). This
relaxation complicates the uniqueness proof. If we would want to prove an exact
relation, then such a proof alone would require about 50 KBs [17], which we
consider too costly for our target blockchain application.

From the discussion about the pseudorandomness in the introduction, the
option that remains at hand, and the one we employ in LB-VRF for the compu-
tation of the VRF value v, is to use no error at all, i.e. set v = 〈b, s〉. This method
only leaks a limited amount information on s for a relatively small number k of
VRF outputs, but fortunately it suffices for our application of VRF to blockchain
protocols. This method does, however, leak too much information on the secret
s when many VRF outputs are computed with the same key. In particular, one
cannot output, say, 264 VRF values vi = 〈bi, s〉 where bi = H(pk, μi) (at least
while still preserving practicality). This issue with long-term pseudorandomness
does not seem to be efficiently addressable with the existing lattice-based tools.

More concretely, we map the VRF input μ and the user public key t to
a vector b using a random oracle. We then prove in zero-knowledge that the
VRF value computed as v = 〈b, s〉 is well-formed. However, again due to the
relaxed nature of the underlying zero-knowledge proof that we use to achieve
short proofs, the uniqueness does not immediately follow. To handle this, we
show via a “double rewinding” argument that as long as the MSIS problem is
hard (with certain parameters), any two VRF outputs computed by an efficient
uniqueness attack algorithm under the same public key and input must be the
same (see the proof of Theorem 31). Therefore, we can only achieve computa-
tional uniqueness, based on the standard MSIS hardness assumption. In regards
to pseudorandomness, we show that it follows from MLWE as long as at most k
VRF outputs are produced under a single key pair.

To further reduce the VRF value size and increase computational efficiency,
we introduce an additional optimization technique which performs the VRF
value computation in a subring of a commonly-used cyclotomic ring. We show
that the uniqueness security property is still preserved even when using this
optimisation technique. This technique results in ≈ 8× smaller VRF values for

564 M. F. Esgin et al.

typical parameters compared to outputting the full ring element as the VRF
output, and approximately doubles the evaluation and verification speed.

Implementation and Deployment. We present an efficient implementation
of our k-time LB-VRF. In particular, we implement the “worst-case” (in terms
of performance) setting where a single key pair is used only once (i.e., k = 1) and
show that even that case is practical. Our code is open-sourced1. We compare
the performance of our scheme against ECVRF over curve25519 and BLS-VRF
over BLS12-381 curve. The implementation details are provided in Sect. 4.

Table 1. Comparison of our scheme and classical VRFs.

ECVRF [4] BLS-VRF [3] LB-VRF

PK size 32 bytes 96 bytes 3.32 KB

Proof size 80 bytes 48 bytes 4.94 KB

Prove time 0.2 ms 0.6 ms 3.1 ms

Verification time 0.2 ms 2.0 ms 1.3 ms

Since our construction increases sizes significantly, it is important to under-
stand how practical our scheme can really be in real world protocols. For a fair
comparison, we also investigate the impact of integrating our scheme to the Algo-
rand protocol. With both ECVRF and Ed25519 signatures, Algorand blockchain
is able to transmit 5 MB of data per block, with a block generation time of less
than 5 s. This allows Algorand to achieve 1000 transactions per second (TPS),
with over 1000 nodes, as of today. We report the performance estimation of
our LB-VRF with four different signatures, Ed25519 (used by Algorand), and 3
NIST PQC third round candidates. The data is presented in Table 2, and more
details are provided in Sect. 4.

Table 2. Performance comparison in terms of TPS (the numbers are approximate).
TPS (transactions per second) is a generic metric used by multiple blockchain plat-
forms. In comparison, Bitcoin achieves about 5 TPS.

VRF Type ECVRF LB-VRF LB-VRF LB-VRF LB-VRF

Sign. Type + Ed25519 + Ed25519 + Dilithium + Falcon + Rainbow

10 nodes 1000 1000 353 624 997

100 nodes 1000 862 292 532 860

500 nodes 1000 250 24 120 250

Assumption ECC lattice + ECC lattice lattice lattice + MQ

1 https://github.com/zhenfeizhang/lb-vrf.

https://github.com/zhenfeizhang/lb-vrf

Practical Post-quantum Few-Time Verifiable Random Function 565

1.2 Related Work

Originally introduced by Micali, Rabin and Vadhan [35], VRFs have become an
important cryptographic primitive in several applications. In [35], the authors
show a relation between VRFs and unique signatures by combining the unpre-
dictability property of a unique signature with the verifiability by extending
the Goldreich-Goldwasser-Micali construction of a pseudorandom function [24].
The concept of a VRF has been investigated further in [32] and [15]. In [32] the
authors provide a construction of a verifiable unpredictable function (VUF) from
a unique signature scheme and turn it into a VRF using the original transform
from [35]. The aforementioned VRFs are constructed from number-theoretic
assumptions. More number-theoretic constructions are given in [1,7,14,27,29].
In [10] the authors introduced the notion of weak VRF where pseudorandom-
ness is required to hold only for randomly selected inputs. Further VRF-related
primitives such as simulatable VRF, constrained VRF have been introduced in
[11,19].

On the side of quantum-safe proposals, feasibility of a lattice-based VRF
was given in [25,41]. The construction in [25] relies on heavy machinery such
as constrained PRFs and there is no practical efficiency evaluation provided.
In the latter work, the authors in [41] briefly mention in a remark (without
a rigorous security or performance analysis) that their zero-knowledge proofs
give rise to a lattice-based VRF construction. However, the authors claim that
this construction satisfies only trusted uniqueness, which is not sufficient for
blockchain applications. Moreover, this construction is expected to be far from
practical as even more basic proofs in [41] require MBs of communication.

2 Preliminaries

We use λ and to denote the security parameter a function negligible in λ. We
define the polynomial rings R ..= Z[x]/(xd + 1) and Rq

..= Zq[x]/(xd + 1) for d a
power of 2. We denote by bold, capital letters (e.g. M) matrices whose elements
are in R and denote by bold, lower case letters (e.g. v), vectors whose elements
are in R. Sc denotes the set of polynomials in R with infinity norm at most
c ∈ Z

+. We write 0n to denote the n-dimensional zero vector and In for the
n-dimensional identity matrix.

Let Rp
∼= R(1)

p × · · · × R(s)
p for some s ≥ 1. That is, R(i)

p = Zp[x]/(fi(x))
such that fi with deg(fi) = d/s is an irreducible factor of xd + 1 mod p for each
i = 1, . . . , s. In our LB-VRF construction, a set of operations will be performed
in R(1)

p for better efficiency. We will denote this ring by R̄p = Zp[x]/(f(x)) (see
Table 3 for the concrete ring R̄p). The other subrings R(2)

p , . . . ,R(s)
p of Rp will

not be of concern for our construction.

Definition 2.1 (MSISq,n,m,β [30]). Let R be some ring and K a uniform dis-
tribution over Rn×m

q . Given a random matrix A ∈ Rn×m
q sampled from K, find

a non-zero vector v ∈ Rm
q such that A · v = 0 and ‖v‖ ≤ β.

566 M. F. Esgin et al.

Definition 2.2 (MLWEq,n,m,χ [30]). Let χ be a distribution over Rq, s
$← χm

be a secret key. The MLWEq,s distribution is obtained by sampling A $← Rn×m
q

and error e $← χn and outputting (A,A · s + e). The goal is to distinguish the
MLWEq,s output from the uniform distribution U(Rn×m

q ,Rn
q).

In our analysis, we use the following result that helps us argue the invertibility
of challenge differences.

Lemma 2.3 ([34]). Let n ≥ k > 1 be powers of 2 and p ≡ 2k+1 (mod 4k) be a
prime. Any f in Zp[X]/(Xn + 1) is invertible if one of the following is satisfied

0 < ‖f‖∞ < p1/k/
√

k or 0 < ‖f‖ < p1/k.

2.1 Verifiable Random Function

Definition 2.4 (Verifiable Random Function [35]). Let ParamGen, KeyGen,
VRFEval, Verify be polynomial-time algorithms where:

ParamGen(1λ): On input a security parameter 1λ, this probabilistic algorithm
outputs some global, public parameter pp.

KeyGen(pp): On input public parameter pp this probabilistic algorithm outputs
two binary stings, a secret key sk and a public key pk.

VRFEval(sk, x): On input a secret key sk and an input x ∈ {0, 1}�(λ), this algo-
rithm outputs (v, π) for the VRF value v ∈ {0, 1}m(λ) and the corresponding
proof π proving the correctness of v.

Verifypk(v, x, π): On input (pk, v, x, π), this probabilistic algorithm outputs either
1 or 0.

A VRF is required to have the following security properties [35]:

Provability: If (v, π) is the output of VRFEval(sk, x), then Verifypk(v, x, π) out-
puts 1.

Pseudorandomness: Let A = (A1,A2) be a polynomial-time adversary playing
the following experiment Exp-PRand:
1. pp ← ParamGen(1λ)
2. (pk, sk) ← KeyGen(pp)
3. (x, st) ← AOVRFEval(·)

1 (pk)
4. (v0, π0) ← VRFEval(sk, x)
5. v1

$← {0, 1}m(λ)

6. b
$← {0, 1}

7. b′ ← AOVRFEval(·)
2 (vb, st)

where OVRFEval(·) is an oracle that on input a value x outputs the VRF value
v and the corresponding proof of correctness π(sk, x).
The adversary A that did not issue any queries to OVRFEval on the value x,
wins the above game with probability:

Pr [b = b′ | A runs Exp-PRand] ≤ 1
2

+ negl(λ).

Practical Post-quantum Few-Time Verifiable Random Function 567

Unconditional Full Uniqueness: No values (pk, v1, v2, x, π1, π2) can satisfy
Verifypk(v1, x, π1) = Verifypk(v2, x, π2) = 1 when v1 = v2.

In our work, we make two modifications to the above standard VRF security
model. First, we use a k-time variant of the pseudorandomness property, where
the OVRFEval(·) oracle can be queried at most k − 1 times by the adversary
(together with the challenge query to VRFEval(·) in the pseudorandomness exper-
iment, this gives a total of k VRFEval(·) queries in the experiment). We also define
the VRF output space to be R̄p (which is determined by our scheme’s public
parameters pp), rather than {0, 1}m(λ) used in the original definition. The latter
change does not introduce any difficulties since a pseudorandom output in R̄p

can be easily mapped into a pseudorandom binary string with a cryptographic
hash function or a randomness extractor.

Second, we slightly modify the “Unconditional Full Uniqueness” property of
a VRF to a weaker “Computational Full Uniqueness”, where the adversary is
assumed to run in polynomial time. In particular, we define it as follows.

Definition 2.5 (Computational Full Uniqueness). Let pp ←
ParamGen(1λ). A VRF is said to satisfy computational full uniqueness, if, on
input pp, a polynomial-time adversary A outputs (x, pk, v1, π1, v2, π2) ← A(pp)
such that Verifypk(v1, x, π1) = Verifypk(v2, x, π2) = 1 and v1 = v2 with at most
negl(λ) probability.

Remark 2.6 The notion of computational uniqueness has been first introduced in
[20]. However, it is defined w.r.t. VRF without parameter generation algorithm
ParamGen(1λ), implying that public parameters can also be set maliciously. Such
a notion was actually defined in the context of anonymous VRF, which is an
extension of a standard VRF.

Remark 2.7 There is also a notion of computational trusted uniqueness [38] in
the literature, in which one roughly requires that, given the VRF public key pk,
each VRF input corresponds to a unique VRF output. The word “trusted” is
basically used to indicate that the key generation process is trusted. Hence, in
such a model, uniqueness with respect to untrusted key generation process is
not a concern.

In the application of VRF to the blockchain consensus protocols [12,21],
it was observed in [13] that pseudorandomness is not sufficient, and in fact
an additional security property is needed, which is called the unpredictability
under malicious key generation in [13, Section 3.2]. Informally, it means that an
attacker that can maliciously choose the VRF key cannot bias the VRF output
on a randomly chosen input, as long as the attacker has no information on the
random input when choosing its VRF key. Accordingly, we formally define below
an unbiasability property that captures this requirement in the same spirit with
[13]. However, for consistency with the rest of our game-based security notions,
we provide a game-based definition, whereas the one in [13] is in the universal
composability (UC) framework.

568 M. F. Esgin et al.

Unbiasability: Let A = (A1,A2) be a polynomial-time adversary playing the
following experiment Exp-Bias:
1. pp ← ParamGen(1λ)
2. (st, pk, v∗) ← A1(pp)

3. x
$← {0, 1}�(λ)

4. (π, v) ← A2(x, st)
5. b ← Verifypk(v, x, π)

A wins if b = 1 and v = v∗. We say that a VRF is unbiasable if

Pr[A wins Exp-Bias] ≤ 2−m(λ) + negl(λ).

3 Lattice-Based Few-Time Verifiable Random Function

3.1 k-time LB-VRF Construction

We use the parameter k ∈ Z
+ to denote that a particular public-secret key pair

output by KeyGen below is used to generate at most k VRF outputs. We further
define the following challenge set:

C = { c ∈ R : ‖c‖∞ ≤ 1 ∧ ‖c‖1 ≤ κ }. (1)

When performing operations over R̄p, if a term x is initially defined over
R, then we first compute x̄ = x mod (p, f(x)) and then perform the remaining
operations over R̄p. For example, given x ∈ Rs and y ∈ R̄s

p for s ≥ 1, 〈x,y〉 ∈ R̄p

indicates that 〈x̄,y〉 is computed over R̄p, where x̄ = x mod (p, f(x)).

ParamGen(1λ): On input a security parameter λ, it outputs a public parameter
pp = (A, G,H), where G : {0, 1}∗ → R̄n+�+k

p and H : {0, 1}∗ → C are two

hash functions, and A $← Rn×(n+�+k)
q .

KeyGen(pp): On input the public parameters pp, it randomly samples s $←
S

n+�+k
1 , computes t = A · s ∈ Rn

q and outputs pk = t and sk = s.
VRFEval(A, t, s, μ): On input public parameters pp, a public key t, a secret key

s, and a message μ ∈ {0, 1}∗, perform the following.
1. Compute b = G(A, t, μ) ∈ R̄n+�+k

p .
2. Compute v = 〈b, s〉 ∈ R̄p.

3. Pick y $← S
n+�+k
β .

4. Compute w1 = A · y ∈ Rn
q .

5. Compute w2 = 〈b,y〉 ∈ R̄p.
6. Compute c = H(A, t, μ,w1, w2, v).
7. Compute z = y + c · s ∈ Rn+�+k; if ‖z‖∞ > β − κ goto step 3.

The algorithm outputs the VRF proof π := (z, c) and the VRF value v.
Verifypk(π, v,A, μ): On input VRF public key pk = t, the VRF proof π = (z, c),

the VRF value v, public parameter A and a message μ the algorithm com-
putes:

1. Check ‖z‖∞
?≤ β − κ.

Practical Post-quantum Few-Time Verifiable Random Function 569

2. Compute w′
1 := A · z − c · t over Rq.

3. Compute w′
2 := 〈b, z〉 − c · v over R̄p for b = G(A, t, μ) ∈ R̄n+�+k

p .

4. Check c
?= H(A, t, μ,w′

1, w
′
2, v).

Table 3 summarizes the 3 different concrete parameter settings. For a detailed
rationale behind these settings, please refer to the full version of this paper2.

Table 3. Summary of identifiers and results of the parameter setting.

Param. Explanation Set I Set II Set III

k # of VRF outputs per key pair 1 3 5

d d = dim(Rq) 256 256 256

q prime q ≡ 1 mod 2d 100679681 ∼ 226.8 ∼ 227.1

p prime p ≡ 17 mod 32 2097169 ∼ 220 ∼ 220

Rq polynomial ring Zq [x]/(xd + 1)

f(x) a factor of xd + 1 mod p x32 + 852368

R̄p polynomial ring Zp[x]/(f(x))

n MSIS rank 4 4 4

� MLWE rank 4 4 4

κ Hamming weight of a challenge 39 39 39

β max. coeff of masking randomness 89856 109824 129792

average number of restarts < 3 < 3 < 3

RHF MSIS/MLWE root-Hermite factor ≈ 1.0045 ≈ 1.0046 ≈ 1.0047

Proof size size of a proof (c, z) 4.94 KB 6.13 KB 7.34 KB

VRF size size of a VRF evaluation v 84 Bytes 84 Bytes 84 Bytes

PK size size of a public key t 3.32 KB 3.34 KB 3.39 KB

3.2 Security Analysis

The provability of our k-time LB-VRF construction follows via straightforward
investigation. The pseudorandomness and unbiasability properties are also dis-
cussed and proved in the full version of the paper. We now focus on computa-
tional full uniqueness of our scheme.

Computational Full Uniqueness. For the computational full uniqueness
property, the following are the two main requirements:

– hardness of MSISq,n,n+�+k,γ for γ = 8κβ
√

n + � + k,
• Looking ahead, this implies that (13) below holds without mod q and

therefore also over R̄p.
– any challenge difference is invertible in R̄p.

2 https://eprint.iacr.org/2020/1222.pdf.

https://eprint.iacr.org/2020/1222.pdf

570 M. F. Esgin et al.

Theorem 31 (Uniqueness). Let γ = 8κβ
√

n + � + k for the parameters
κ, β, n, �, k defined in Table 3 and assume that MSISq,n,n+�+k,γ is hard with
q > γ/2. Further, let p > 220 be a prime such that p ≡ 17 mod 32. Then, k-
time LB-VRF construction satisfies computational full uniqueness in the random
oracle model.

Proof. Let A be a PPT adversary against computational full uniqueness of k-
time LB-VRF construction. We will show that two valid VRF evaluations pro-
duced by A on the same input must be the same, or else the MSISq,n,n+�+k,γ

problem is solved, which occurs with negligible probability by the assumed hard-
ness of the latter problem.

Let A $← Rn×(n+�+k)
q , and G and H be two random oracles. Denote pp =

(A, G,H) as the public parameters output by ParamGen. Then, A(pp) outputs
two valid VRF proof-evaluation pairs (π0, v0) with π0 = (z0, c0) and (π′

0, v
′
0)

with π′
0 = (z′

0, c
′
0).

Rewind 1: Using a standard forking argument, we rewind A to the point c0 =
H(A, t, μ,Az0−c0t, 〈b, z0〉−c0v0, v0) was queried, and return another challenge
c1 for the same input. With non-negligible probability, A produces another valid
VRF output using c1 such that (π1 = (z1, c1), v1) is a valid VRF proof-evaluation
pair. Here, A may output a second valid pair, but we simply discard it.
Rewind 2: In a similar fashion as above, we rewind A to the point c′

0 =
H (A, t, μ,Az′

0 − c′
0t, 〈b, z′

0〉 − c′
0v

′
0, v

′
0) was queried, and return another chal-

lenge c′
1 for the same input. With non-negligible probability, A produces another

valid VRF output using c′
1 such that (π′

1 = (z′
1, c

′
1), v

′
1) is a valid proof-evaluation

pair. Again, A may output a second valid pair, but we simply discard it.
Overall, we have the following satisfied for (π0 = (z0, c0), v0), (π1 =

(z1, c1), v1), (π′
0 = (z′

0, c
′
0), v

′
0), (π

′
1 = (z′

1, c
′
1), v

′
1)

(A, t, μ, Az0 − c0t, 〈b, z0〉 − c0v0, v0)
= (A, t, μ, Az1 − c1t, 〈b, z1〉 − c1v1, v1) ,

(2)

(A, t, μ, Az′
0 − c′

0t, 〈b, z′
0〉 − c′

0v
′
0, v′

0)
= (A, t, μ, Az′

1 − c′
1t, 〈b, z′

1〉 − c′
1v

′
1, v′

1) .
(3)

The above two equalities implies the following

v0 = v1 =: v, (4)
v′
0 = v′

1 =: v′, (5)
Az0 − c0t = Az1 − c1t over Rq, (6)
Az′

0 − c′
0t = Az′

1 − c′
1t over Rq, (7)

〈b, z0〉 − c0v0 = 〈b, z1〉 − c1v1 over R̄p, (8)
〈b, z′

0〉 − c′
0v

′
0 = 〈b, z′

1〉 − c′
1v

′
1 over R̄p. (9)

Practical Post-quantum Few-Time Verifiable Random Function 571

From now on, we stick to the notations v and v′ due to (4) and (5). Rewriting
(6) and (7), we get

A(z0 − z1) = (c0 − c1)t, (10)
A(z′

0 − z′
1) = (c′

0 − c′
1)t, (11)

Define z̄ := z0 − z1, z̄′ := z′
0 − z′

1, c̄ := c0 − c1 and c̄′ := c′
0 − c′

1. Multiplying
(10) by c̄′ and (11) by c̄ and subtracting off the results, we get

A (c̄′z̄ − c̄z̄′) = 0. (12)

Note that the following holds

‖c̄′z̄ − c̄z̄′‖ ≤ ‖c̄′z̄ − c̄z̄′‖∞ · √
n + � + k ≤ 2 · ‖c̄′‖1‖z̄‖∞ · √

n + � + k

≤ 2 · 2κ · 2β · √
n + � + k = 8κβ

√
n + � + k.

By the assumption that MSISq,n,n+�+k,γ for γ = 8κβ
√

n + � + k is hard, we
conclude from (12) that, except for negligible probability,

c̄′z̄ = c̄z̄′ over R. (13)

The fact that there is no mod q reduction comes from the following:
‖c̄′z̄‖∞, ‖c̄z̄′‖∞ < γ < q/2.

Next, from (8), we get (replacing v0 and v1 with v)

〈b, z0〉 − c0v = 〈b, z1〉 − c1v over R̄p,

⇐⇒ 〈b, z̄〉 = c̄v over R̄p. (14)

Similarly, from (9), we get

〈b, z̄′〉 = c̄′v′ over R̄p. (15)

Multiplying (14) by c̄′ and (15) by c̄, and then subtracting off the results, we get

〈b, c̄′z̄ − c̄z̄′〉 = c̄c̄′ (v − v′) over R̄p. (16)

Now since (13) holds over R, by reducing mod p, it also holds over Rp, and
by further reducing mod f it also holds over R̄p. Therefore, the left-hand side
of (16) is equal to 0. By the assumption on p and Lemma 2.3, any challenge
difference is invertible in Rp and thus also in R̄p. This implies that v = v′. ��

4 Implementation

4.1 Implementation of LB-VRF

We implemented Set I parameters (see Table 3) of our LB-VRF using Rust lan-
guage. The source code of our implementation is available on GitHub3. The
3 https://github.com/zhenfeizhang/lb-vrf.

https://github.com/zhenfeizhang/lb-vrf

572 M. F. Esgin et al.

core operations are ring arithmetic over Rq and R̄p, hash functions, and extend-
able output functions. We use SHA512 as our hash function, and ChaCha20 to
extend hash digests into vector b and challenge c. For ring multiplications, we
use index based method for polynomial multiplications involving secret keys or
challenges (both are ternary polynomials); school book multiplication for R̄p;
and NTT multiplications for Rq. We also hand-picked p, q and f(x) for efficient
mod reduction. We leave architecture-dependent optimizations, such as AVX2,
to future work.

Our tests were conducted over a MacBookPro 2018, with an Intel(R)
Core(TM) i7-8559U CPU @ 2.70 GHz. The benchmark was conducted with
Rust’s benchmark tool known as criterion. The benchmark data is shown in
Table 1. One may see that although the speed of LB-VRF is on par with clas-
sical VRFs, the size is significantly increased. This is unfortunately an inherit
drawback from the current state of post-quantum cryptography.

4.2 Integration into Algorand Blockchain

Algorand’s TPS Model. To illustrate our benchmark results better, it is
important to understand the bottleneck of the current Algorand protocol. Algo-
rand’s mainnet currently employs over 1000 nodes. A node is a whale holder
of tokens and is likely to self-elect as a voter. Algorand allows for roughly 5.4
MB of “payload” transmission per round as a result of their efficient consensus
protocol. To break up this data, 1000 nodes implies 1000 ECVRF proofs, which
is 80 KB of data. It is straightforward to see that the majority of the data is
reserved for transactions. If we assume that a transaction is 1 KB on average,
with an additional 64 bytes of data for authentications, then Algorand allows
for 5K transactions per block, or, roughly 1K transaction per second (TPS).
Therefore, we estimate the Algorand TPS throughput as follows:

TPS1 =
payload size − (total VRF cost) × #nodes

(transaction size + signature size) × blocktime
.

It is also important to distinguish two notions

– Blocksize: a block is a set of data that is agreed by all the participants.
Typically, it consists of transactions.

– Payload: the data that is transmitted through the network, during a block
time. Typically, it consists of transactions and VRF data.

Note that the VRF data are not included in a block. This is because, during
the voting, different committee member may have different views of the (subset
of) voters, and there does not need to be a global view. Alternatively speaking,
the committee does not need to agree on all votes, as long as each committee
member has seen enough votes.

Our Model. We envision that our k-time VRF may be deployed as follows. A
user commits to a k-time VRF public key, pk1, at round n via publishing a hash

Practical Post-quantum Few-Time Verifiable Random Function 573

digest, along with a signature, of the public key. This allows her to use this VRF
key at any round after n+t (for a suitable parameter t ≥ 0) via transmitting both
the VRF public key and the VRF output to the other voters. Additionally, she
similarly commits to �t/k�−1 more public keys at rounds n+1, . . . , n+�t/k�−1
(i.e., s := �t/k� public keys pk1, . . . , pks are committed in total). This additional
step is to make sure that the user can still participate in consensus right after
the first public key pk1 is consumed (without having to wait for t rounds).

Now at some round n + t + i for i ≥ 0, the VRF output is accepted if it is
verified under the public key which hashes to the committed digest at round n. If
the user has used k time of the VRF already, it needs to commit to a new public
key and start using pk2 in the next round(s). On the other hand, if the VRF
output does not result into a winning ticket, the user does not publish anything,
and thus, retains its ability to use the VRF key in future rounds. Overall, the
user always has exactly s “usable” public keys committed on blockchain and uses
the earliest committed key in creating the VRF output. The verifier therefore
needs to scan the blocks starting from n to make sure that the user is using the
first of s VRF public keys committed. This step prevents the users from choosing
between committed public keys.

We remark that for a given round n1, the user may choose not to publish its
public key even if it wins the lottery, and therefore retains its current public key
for a later round n2. This also happens for ECVRF where the user can forfeit
a winning ticket. This does not harm the security as long as the user cannot
predict the VRF output for n2. Our VRF protocol requires the user to commit
to a VRF public key at least t blocks prior to using it.

Since our VRF data becomes non-negligible compared to the whole payload,
for a fair comparison, we set the network payload size as an invariant in our
estimation, rather than the blocksize. In addition, we also alter the content in
a block. For a k-time VRF, the user needs to commit to the VRF public key
several rounds prior to using it. This commitment must be recorded in a block.

Concretely, in our model, we further set k = 1 to minimize VRF cost, and
have the following estimation:

TPS2 =
payload size − (total VRF cost + digest + signature) × #nodes

(transaction size + signature size) × blocktime
.

Our Estimation. It is easy to see that our LB-VRF cannot scale to 1K nodes
as 1K nodes already imply 8 MB of LB-VRF data (see below). We therefore
compare our scheme with a maximum of 500 nodes. We note that although this
number is smaller than the current status of Algorand, it is already sufficient for
large blockchain platforms, and already exceeds the number of nodes of Algorand
when it was launched.

Using the above formula, we computed estimates for the TPS of Algorand
using our LB-VRF in combination with a variety of post-quantum signature
schemes, in Table 2. In this computation, we make the following assumptions.
We assume a payload size of 5.4 MB. Since our LB-VRF is a one-time VRF,
we assume that in the Algorand consensus protocol, a node publishes both the

574 M. F. Esgin et al.

VRF output, as well as the next VRF public key the node is committed to use.
Therefore, in the TPS estimation formula above, we take the total VRF cost to
be the sum of LB-VRF’s VRF size (84 bytes), proof size (4.94 KB), and public-
key length (3.32 KB), which is around 8 KB, using parameter set I in Table 3. In
addition, we also require 32 bytes hash digest for the next VRF public key, and
a signature of various bytes (see below) to authenticate that VRF public key.
As done for Algorand, we assume 1 KB data for a transaction size. As Algorand
generates a block in about 5 s, we take blocktime as 5 s4. The last moving part
in the equation is the signature size, which we set as 64 bytes for Ed25519, 700
bytes for Falcon5, 2 KB for Dilithium [16], and 66 bytes for Rainbow6.

Note that the post-quantum security of the signature scheme used in the
consensus protocol is not of as a big concern as the VRF because the adver-
sary cannot affect the consensus steps in the past by breaking the signature
scheme. Therefore, until the quantum threat is imminent, one may opt to keep
using Ed25519 as the signature in the hybrid “LB-VRF + Ed25519” mode, and
switch to a post-quantum signature only when large-scale quantum computers
are expected very soon.

Our Result. We test our LB-VRF with a modified version of Algorand’s ref-
erence implementation [2]. Our tests were conducted over a testnet with a max-
imum of 8 nodes, due to the limitation of resources. We use pingpong package
from [2] to initiate transactions with increasing rates till the network saturates.
We deploy the test over ARDC Nectar Research Cloud. Each node is a m3.small
instance with 2 vCPU, 30GB Disk and 4GB RAM. The results are summarised
in Table 4.

We remark that the main purpose of this test is not to show how TPS pro-
gresses with increasing number of nodes, which will be largely dominated by the
network topology. Indeed, the current behaviour is inconclusive in that respect.
Instead, we want to observe the impact of replacing an ECVRF with an LB-
VRF, for a same network setting. As expected, both the TPS and Tx per block
is reduced slightly, for both local setting and cloud setting. The block generation
time is slightly slower for the cloud setting due to the network latency. On the
other hand, we only see marginal differences for block generation time between
the ECVRF version and the LB-VRF version. For small networks, when the
blockchain network cannot fully utilize the TPS, we argue that a LB-VRF based
consensus is practical.

4 This is a rough estimation in September 2020. Since then, Algorand has upgraded
its consensus for faster block generation time.

5 https://falcon-sign.info/.
6 https://www.pqcrainbow.org/.

https://falcon-sign.info/
https://www.pqcrainbow.org/

Practical Post-quantum Few-Time Verifiable Random Function 575

Table 4. Cloud experiment with variable number of nodes

Setting Metrics Algorand with ECVRF Algorand with LB-VRF

2 Nodes TPS 771 746

Tx per block 3322 3251

Block time 4.30 s 4.35 s

4 Nodes TPS 941 836

Tx per block 4255 3648

Block time 4.52 s 4.36 s

8 Nodes TPS 821 811

Tx per block 3637 3525

Block time 4.42 s 4.34 s

Acknowledgment. This work was supported in part by Australian Research Council
Discovery Grant DP180102199 and also by use of the Nectar Research Cloud, a collab-
orative Australian research platform supported by the National Collaborative Research
Infrastructure Strategy (NCRIS).

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-
based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 554–571. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01001-9 32

2. Algorand: Goal: a reference implementation of Algorand. https://github.com/
algorand/go-algorand

3. Algorand: Reference implementation of BLS signature. https://github.com/
algorand/bls sigs ref

4. Algorand: Source code of ECVRF. https://github.com/algorand/libsodium
5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:

Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

6. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: IEEE Symposium on Security and Privacy, S&P, pp. 459–474. IEEE Computer
Society (2014)

7. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

https://doi.org/10.1007/978-3-642-01001-9_32
https://doi.org/10.1007/978-3-642-01001-9_32
https://github.com/algorand/go-algorand
https://github.com/algorand/go-algorand
https://github.com/algorand/bls_sigs_ref
https://github.com/algorand/bls_sigs_ref
https://github.com/algorand/libsodium
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26

576 M. F. Esgin et al.

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

10. Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak veri-
fiable random functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
558–576. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-
5 33

11. Chase, M., Lysyanskaya, A.: Simulatable VRFs with applications to multi-theorem
NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 17

12. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT:
super fast and partition resilient byzantine agreement. IACR Cryptology ePrint
Archive 2018, 377 (2018)

13. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

14. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 1

15. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

16. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

17. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

18. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: ACM
Conference on Computer and Communications Security, pp. 567–584. ACM (2019).
https://eprint.iacr.org/2019/1287

19. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10879-7 7

20. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware
blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 690–719. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-
2 23

21. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, 28–31 October 2017, pp. 51–68.
ACM (2017)

22. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
provably preventing DNSSEC zone enumeration. In: NDSS 2015 (2015)

23. Goldberg, S., Reyzin, L., Papadopoulos, D., Včelák, J.: Verifiable random functions
(VRFs). Internet Engineering Task Force, June 2020. https://tools.ietf.org/html/
draft-irtf-cfrg-vrf-07

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-00457-5_33
https://doi.org/10.1007/978-3-642-00457-5_33
https://doi.org/10.1007/978-3-540-74143-5_17
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://eprint.iacr.org/2019/1287
https://doi.org/10.1007/978-3-319-10879-7_7
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-07
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-07

Practical Post-quantum Few-Time Verifiable Random Function 577

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th Annual Symposium on Foundations of Computer
Science, West Palm Beach, Florida, USA, 24–26 October 1984, pp. 464–479. IEEE
Computer Society (1984)

25. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

26. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system. arXiv preprint arXiv:1805.04548 (2018)

27. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 33

28. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification.
Version 2020.1.14 [Overwinter+Sapling+Blossom+Heartwood+Canopy] (2020).
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

29. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 5

30. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

31. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to E-Cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70700-6 11

32. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

33. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

34. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

35. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, FOCS 1999, 17–18 October 1999,
New York, NY, USA, pp. 120–130. IEEE Computer Society (1999)

36. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-Cash from bitcoin. In: 2013 IEEE SP 2013, pp. 397–411. IEEE Computer Society
(2013)

37. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
38. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint

Archive, Report 2017/099 (2017). https://eprint.iacr.org/2017/099
39. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-

based (linkable ring signature) protocol for blockchain cryptocurrency Monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
http://arxiv.org/abs/1805.04548
https://doi.org/10.1007/978-3-642-13190-5_33
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://doi.org/10.1007/978-3-662-46497-7_5
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/3-540-45708-9_38
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-319-78381-9_8
https://eprint.iacr.org/2017/099
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25

578 M. F. Esgin et al.

40. van Saberhagen, N.: Cryptonote v 1.0 (2012). https://cryptonote.org/whitepaper
v1.pdf

41. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

42. Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size
and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 25

https://cryptonote.org/whitepaper_v1.pdf
https://cryptonote.org/whitepaper_v1.pdf
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-51280-4_25
https://doi.org/10.1007/978-3-030-51280-4_25

Practical Witness-Key-Agreement
for Blockchain-Based Dark Pools

Financial Trading

Chan Nam Ngo1(B) , Fabio Massacci1,2 , Florian Kerschbaum3,
and Julian Williams4

1 University of Trento, Trento, Italy
channam.ngo@unitn.it, fabio.massacci@ieee.org

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
3 University of Waterloo, Waterloo, Canada

florian.kerschbaum@uwaterloo.ca
4 Durham Business School, Durham, UK

julian.williams@durham.ac.uk

Abstract. We introduce a new cryptographic scheme, Witness Key
Agreement (WKA), that allows a party to securely agree on a secret
key with a counter party holding publicly committed information only
if the counter party also owns a secret witness in a desired (arithmetic)
relation with the committed information.

Our motivating applications are over-the-counter (OTC) markets and
dark pools, popular trading mechanisms. In such pools investors wish to
communicate only to trading partners whose transaction conditions and
asset holdings satisfy some constraints. The investor must establish a
secure, authenticated channel with eligible traders where the latter com-
mitted information matches a desired relation. At the same time traders
should be able to show eligibility while keeping their financial informa-
tion secret.

We construct a WKA scheme for languages of statements proven in the
designated-verifier Succinct Zero-Knowledge Non-Interactive Argument
of Knowledge Proof System (zk-SNARK). We illustrate the practical
feasibility of our construction with some arithmetic circuits of practical
interest by using data from US$ denominated corporate securities traded
on Bloomberg Tradebook.

Keywords: Blockchain-based dark pool · Witness-key-agreement ·
zk-SNARK · Quadratic Arithmetic Program · Designated-verifier

1 Introduction

Existing Blockchain-Based Financial Systems. Financial intermediation
is traditionally based on trusted third party solutions, such as exchanges (e.g.

This research was conducted during the author’s visit to the University of Waterloo.

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12675, pp. 579–598, 2021.
https://doi.org/10.1007/978-3-662-64331-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64331-0_30&domain=pdf
http://orcid.org/0000-0001-9783-3911
http://orcid.org/0000-0002-1091-8486
http://orcid.org/0000-0001-5306-9632
https://doi.org/10.1007/978-3-662-64331-0_30

580 C. N. Ngo et al.

NASDAQ or CME) or clearing mechanisms (e.g. EU’s TARGET2-Securities and
US’s Depository Trust & Clearing Corporation).

New technologies have been recently proposed to replace these intermediaries
with distributed protocols on blockchain. See for example ZeroCash [36], a cryp-
tocurrency, or FuturesMEX [33], a crypto-based distributed futures exchange, or
the dark pool exchange with three parties [11]. In those systems, the users com-
mit financial information (e.g. accounts, bids and quotes) to a blockchain and
use zero-knowledge proofs to show that their committed information satisfy a
certain relation to preserve the integrity of the market and the solvency of the
users. Noticeably, anonymity in those systems is as critical as confidentiality, e.g.
the linkage of one’s transactions can lead to strategic attacks against them [32].

New Dark Pools Requirements. Private markets, i.e. dark pools, further
reduce public information to protect large investors. The investor in a dark pool,
who wants to sell at least v shares at price p, wants to disclose v and p only to
traders who committed to have cash c ≥ pv. Alternatively she might be willing
to buy from somebody who has at least v′ shares (an iceberg quote) or accept a
price pegged within an interval, etc. For the very same reasons, the trader might
not want to make his information fully public, but just to reassure the investor
that he meets the constraints.

To make distributed dark pools possible, we propose Witness Key Agreement
(WKA). In presence of a public blockchain holding parties’ publicly committed
information, WKA allows a party (the Verifier) to post a problem relation (e.g.
a desired arithmetic or boolean combination of secret information) and securely
agree on a secret key with another party (the Prover) holding a secret wit-
ness that both corresponds to the publicly committed information and satisfies
the desired relation (i.e. the implicitly defined problem instance of the relation
between the commits and the secret witness).

Witness Key Agreement. Given n parties each having committed their pri-
vate information ω and published the respective commitments φ anonymously on
a public bulletin board, we consider the problem that a party wants to securely
and anonymously agree on a secret key k with each counterparty based on their
committed information ω. The initiating party wants to make sure that (and the
key agreement is only successful if) the counterparty’s committed information
ω satisfies a public relation R (given by the initiating party), i.e. R(φ, ω) = 1,
while each counterparty does not want to disclose their ω.

With our problem we push further the envelope of Non-Interactive Zero
Knowledge (NIZK) [22]. In both cases, given an instance and an NP-relation
R, a party (the Prover) can convince another party (the Verifier) that there
exists a witness ω of the instance φ such that R(φ, ω) = 1, without leaking
information about it. The successful outcome of NIZK is the binary verification
result 1 while our desired outcome is a shared secret key.

Anonymity-Preserving Communication Model. In our problem, we con-
sider the anonymity of each party as critical as other WKA security properties.
Therefore, our communication model assumes an anonymous network to hide the

Practical Witness-Key-Agreement 581

Table 1. Dark pool example relations

In each relation we denote x = SHA256(x; rx) the public SHA256 commit-
ment of the secret business variable x using randomness rx. For a dark pool
transaction we denote by c the cash capacity of a trader, c the threshold given
by the investor. For a bid we denote (p, v) as the bid price and the bid volume.

Sufficient Capacity (SC)
Public φ= (c , c) Secret ω= (c, rc)
Conditions: c = SHA256(c; rc) ∧ c ≥ c

Price Range (PR)
Public φ= (p , p+, p−) Secret ω= (p, rp)
Conditions: p = SHA256(p; rp) ∧ p− ≤ p ≤ p+

Matchable Bid (MB)
Public φ= (p , v , p+, p−, c) Secret ω= (p, v, rp, rv)
Conditions: p = SHA256(p; rp), p− ≤ p ≤ p+ ∧ v = SHA256(v; rv), c ≥ pv

parties’ identities (e.g., IP address) and all WKA communication must utilize
the public bulletin board (e.g. a blockchain), i.e. to publish a message, a party
sends it through the anonymous network to the public bulletin board which is
readable by all parties.1

Practical WKA Construction. We base our WKA construction on the con-
crete efficient construction of zk-SNARK from Non-Interactive Linear Proof
(NILP) [24] for Quadratic Arithmetic Programs (QAP) [19] given by Groth [24]
and we utilize Linear-Only Encryption (LE) [6] to compile such NILP to a WKA
scheme. We provide the first practical Witness Key Agreement under designated-
verifier zk-SNARK proof for QAP. In our WKA scheme construction a desig-
nated verifier can first broadcast a common reference string as a challenge for the
relation R of interest. A prover can then publish a partial zk-SNARK proof as
a response for the committed instance that satisfies R. Using the partial proof,
the verifier can derive a shared secret key with the prover.

Non-goals. The focus of our protocol design is to protect against digital
attacks on integrity, anonymity and confidentiality. Physical, economic and social
attacks are, and always will be, possible similarly to centralized systems (e.g.
insider trading, cartels manipulating the underlying assets or the availability
glitches such as the NASDAQ ones [38]) and they are typically dealt with by
ex-post law enforcement [31].

2 Dark Pools as a Motivating Application for WKA

From a security perspective the constraints from the investor are easily captured
by an NP-relation R as in Table 1 where the instance φ is the public information
(i.e. the trader’s commitment and the investor’s constraints) and the witness
1 WKA does not intend to hide whether the Prover/Verifier established communica-

tion as they are completely anonymous.

582 C. N. Ngo et al.

ω is the private information (the trader’s committed information). An investor
may look for traders with enough capacity and use the Sufficient Capacity (SC)
relation in Table 1. A trader may ask the investor to show interest in some price
ranges, e.g. from p′

− to p′
+ using the Price Range (PR) relation and in addition

check the consistency of the challenged threshold using Matchable Bid (MB),
if the investor has previously committed to desired bid price p and volume v,
where c′ ≥ pv. Thus, the investor can simply post the relation R and use WKA
to securely agree on a secret key with each interested and eligible trader hold-
ing a secret witness ω (to their committed instance φ) that satisfies the desired
relation, i.e. R(φ, ω) = 1. Each agreed key can then be used for the negotia-
tion (usually a conversation, not just a single message) of the offer between the
investor and each eligible trader.

Our WKA construction also aims for succinct communication which is impor-
tant when using a distributed ledger. The committed information (the instance)
is also frequently updated, while the relation R of interest may be persistent.
WKA is advantageous in this case as it works efficiently with different instances
of the same relation. Additionally, WKA allows the trader to send a message
encrypted using the key along with the public response (that will be used by
the verifier to reconstruct the key and decrypt the message). This may save one
round and is key when executing over a blockchain.2

3 Related Work and Alternative Candidate Schemes

We summarize a comparison of WKA in terms of usability and efficiency against
applicable alternative candidate schemes in Table 2. (We refer the reader to the
Appendix A of the full version of the paper [34] for more details).

A trivial (but wrong) solution is to ask each prover to couple a public key
pk with a zk-SNARK proof π for the satisfaction of the arithmetic relation
R. The verifier can then encrypt the private offer with pk after verifying the
proof π. Only the prover with the corresponding private key sk can decrypt.
Since the decryption condition above says nothing about the validity of π, one
cannot guarantee that pk is actually from the prover that produced π. Signature
of Knowledge [25] (SoK), can be used to sign the public key pk. However, SoK
delivers only pk of the prover thus allows only a one-way communication from the
verifier to the prover. Further, the prover cannot make sure that the upcoming
message encrypted with pk is from the verifier: as pk is public, anyone can see it

2 One can argue that there could be DDOS attacks where an attacker can post either
malformed offers, or correctly formed ones but they have no intention of filling, to
the blockchain. In the first case, as the Verifier only needs to forge the last proof
element F (1) while the Prover has to compute the full proof (4(m− l + 3n)) as shown
in Table 3, such an attack will require tremendous effort from the Prover but not so
much from the Verifier. In the second case, unfortunately we cannot solve this as it
exists even in the centralized system. A trader/investor can post an offer, and cancel
it before it is filled or immediately in the next round. However, at the point the offer
was posted, the exchange cannot know whether the offer will be canceled or not.

Practical Witness-Key-Agreement 583

Table 2. Comparison of solutions

n is the number of parties. The comparison criteria include: (i) A: is anonymous com-
munication supported? (ii) PB: does the solution satisfies proportional burdern, i.e.
only the involved parties perform the computation? (iii) DL: does the solution con-
siders the information bound on a distributed ledger? (iv) AC: are arithmetic circuits
supported? (v) BR: blockchain-round complexity, i.e. the number of rounds happen
on the blockchain; (vi) BC: blockchain-communication complexity, i.e. the size of the
data communicated through the blockchain; and (vii) C: computational complexity.

Solution A PB DL AC BR BC C
Full MPC [27] y y y 13 O(n2) O(n2)
2-3 Servers MPC [11] y y N/A N/A O(1)
Paired 2PC [27] y y y 2 O(n) O(n)
Practical WE [18] y y y 1 O(1) O(1)
Practical AKE [26] y y y 2 O(1) O(1)
WKA (ours) y y y y 2 O(1) O(1)

Full MPC fails proportional burden, yields an unacceptable 13 rounds of blockchain
communication and have a high communication and computational complexity
(O(n2)). Using 2-3 servers MPC, one obtains better efficiency (no communication over
blockchain; communication and computational complexity stay constant w.r.t n). Yet,
it does not leverage existing ledgers; and anonymity, which is critical, is not guaran-
teed. Paired 2PC yields a desirable 2 rounds of blockchain communication. However,
in order to guarantee anonymity, it fails proportional burden; the communication and
computational complexity also become unacceptable (O(n)). Practical WE and AKE
only supports algebraic relations. WKA is practical and satisfies all requirements.

and send a message to the prover using pk. Other similar generic constructions
are generally based on the modification of R to include a transformation of
kr. Our WKA scheme uses directly R which yields a lower bound of circuit
complexity. Besides, those approaches usually require full proof verification (that
involves pairings, e.g. 5 as in [24]), which is more costly than our construction,
where the Verifier directly forges the last proof element (only computation in
the field F) and it even stops 1 step early.

Secure Multiparty Computation (MPC) [12] can be a general solution but is
with either usability and efficiency issues. Firstly, setting up an MPC using exist-
ing distributed ledgers is not trivial as every party must be known in advanced
or a PKI must be available in the setup phase for securing the communication
over the ledger, e.g. as in [8]. Additionally, general Full MPC (where n parties
join the computation, e.g. [27]) yields an unacceptable 13 rounds of blockchain
communication; while the 2–3 Servers MPC (where n parties secret share their
private inputs to the servers and let them perform the computation, e.g. [11])
and Paired 2PC (where the verifier contacts and perform a 2PC with each other
party, e.g. [27]) fail to guarantee anonymity which can be critical [32].

Authenticated key exchanges (AKE) [5,9] only support relations on creden-
tials. Here we have other relations among values not related to credentials as they
can change dynamically. Language-AKE [26] is more flexible but it does not sup-

584 C. N. Ngo et al.

port non-algebraic relations such as SHA-256 employed by ZeroCash [36]. One
can also use Witness Encryption [18] (WE) with the desired arithmetic relation
R, and only the provers who possess the witness ω for that instance φ such that
R(φ, ω) = 1 could decrypt. However, general WE constructions [3,16,17,20] are
impractical while practical WE under a GS proof [13] cannot support arithmetic
relation of depth greater than 1, e.g. SHA-256 as employed by ZeroCash [36]).

4 Witness Key Agreement

Notations. A multivariate polynomial t : Fm → F over a finite field F has a
degree d if the degree of each monomial in t is at most d and a monomial has
degree d. A multivalued multivariate polynomial t : F

m → F
μ is a vector of

polynomials (t1, . . . , tμ) where each ti : Fm → F is a multivariate polynomial.
We denote a scalar by x and a vector by x. We write x ← X when picking an
element x uniformly from a finite set X. We write y ← A(x) when picking the
randomness r and returning y = A(x; r). Pr[ε|Ω] denotes the probability of an
event ε over the probability space Ω. We denote the security parameter by 1λ

in the unary form and the negligible function as negl(·). Given two probability
functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ)− g(λ)| = O(λ−c) for
every constant c > 0. We say that f is negligible when f(λ) ≈ 0.

Remark 1 (Generation of the relation R). We follow the notation of Groth [24]
so that a relation generator R receives a security parameter 1λ and returns a
polynomial-time decidable binary relation R, i.e. R ← R(1λ). Hence for nota-
tional simplicity we can assume 1λ can be deduced from R.

Definition 1 (Witness Key Agreement). Let L be an NP-language with the
witness relation R(φ, ω). We call φ an instance of L and ω a witness for φ. A
Witness Key Agreement (WKA) scheme Ω for L is a tuple of polynomial-time
algorithms (KChallenge, KResponse, KDerive):

(pc, sc) ← KChallenge(R) is run by the verifier and takes as input the relation R
(from which the security parameter 1λ can be deduced), outputs a public and
a secret challenge parameter (pc, sc).

(pr, kr) ← KResponse(R, pc, φ, ω) is run by the prover with inputs the relation
R, the public challenge parameter pc, the instance φ, and the corresponding
witness ω, outputs a public response parameter pr and a secret key kr.

{kc,⊥} ← KDerive(R, sc, φ, pr) is run by the verifier and takes as input the
relation R, the secret challenge parameter sc, the instance φand the public
response parameter pr, outputs a key kc or ⊥ (Fig. 1).

Security Properties. WKA is closely related to Non-Interactive Zero-
Knowledge (NIZK) Proof System. The key difference is the outcome of NIZK
is only a binary verification result while WKA’s outcome is a key upon suc-
cess. Hence the security properties of WKA are also very similar to those of
NIZK. Furthermore, we require WKA to be secure against MITM attack. (See

Practical Witness-Key-Agreement 585

Fig. 1. Security of witness key agreement scheme

586 C. N. Ngo et al.

Appendix B of [34] for a trivial WKA generic construction that is insecure under
MITM attack.)

WKA Construction Roadmap. We base our WKA construction on the effi-
cient construction of zk-SNARK from Non-Interactive Linear Proof (NILP) [24]
for Quadratic Arithmetic Programs (QAP) [19] given by Groth [24] and we uti-
lize Linear-Only Encryption (LE) [6] to compile such NILP to a WKA scheme.

Linear Interactive Proofs (LIP) [6] is an extension of interactive proofs [23]
in which each prover’s message is an affine combination of the previous messages
sent by the verifier.

Groth renamed the input-oblivious two-message LIPs into NILP [24] to clar-
ify the connection between LIP and NIZK. NILP considers only adversaries
using affine prover strategies, i.e. a strategy which can be described by a tuple
(Π,π0) where Π ∈ F

k×y represents a linear function and π0 ∈ F
k represents an

affine shift. Then, on input a query vector σ ∈ F
y, the response vector π ∈ F

k

is constructed by evaluating the affine relation π = Πσ + π0.

Key Observation. The proof π obtained with NILP consists of k elements (by
evaluating k linear functions3 corresponding to the proof matrix Π), in which
the k-th element can be obtained in two ways given the first k − 1 elements [24]:
(1) On the prover’s side, if π is valid then the first k−1 elements fully determine
the last one; (2) On the verifier’s side, the first k − 1 elements can be used in
a proof forging formula to obtain the last one. By the prover computing π and
publishing the first k−1 elements of π, both parties can agree on the last element
to use as a shared secret key for secure communication.4 With this observation
we construct WKA from a new NILP notion: split designated verifier NILP
(Sect. 5).

Succinct zero-knowledge non-interactive argument of knowledge (zk-SNARK)
follows the relaxation from Perfect Soundness to Computational Soundness [21].
Bitansky et al. [6] also showed that NILP can be compiled into both publicly
verifiable (verifier degree 2, using bilinear maps) and designated-verifier (using
linear-only encryption scheme) zk-SNARK. Intuitively the prover computes the
proof π as linear combinations of the CRS σ and the verifier checks the argument
by checking the quadratic equations corresponding to the relation R.

Linear-Only Encryption (LE) scheme Σ (Bitansky et al. [6]), e.g. a two-
ciphertexts variant of Paillier [35], is a tuple of polynomial-time algorithms
(KeyGen, Enc, ImgVer, Dec, Add) where the ImgVer (image verification) pre-
vents oblivious ciphertext samplings in the image of Enc using pk, i.e. this
property prevents the adversary from encrypting plaintexts from scratch (see
appendix E of [34] for further details), and Add is for evaluating linear combi-

3 In the concrete construction by Groth [24] (see also Fig. 3), k = 3 and the proof
matrix Π is represented as the coefficients of the linear functions.

4 The concrete example of this observation can be seen in Fig. 3 in Sect. 6. The first
two elements A and B (Eq. (7) and (8)) uniquely define C (Eq. (9)) and they can be
fed into the proof forging formula (Eq. (11)) to get the 3rd element C which should
be the same for either party.

Practical Witness-Key-Agreement 587

nations of valid ciphertexts. An LE scheme satisfies correctness, additive homo-
morphism, indistinguishability under chosen plaintext attack (IND-CPA) and in
addition linear-only homomorphism which essentially says that it is infeasible to
generate a new valid ciphertext except by evaluating an affine combination of
valid ciphertexts (via Add)5. Such LE scheme can be instantiated using existing
encryption schemes. The security of an LE scheme relies on the assumptions of q-
power Diffie-Hellman, q-power Knowledge of Exponent and q-power Knowledge
of Equality [6].

For relation functionality and efficiency in WKA we leverage on Quadratic
Arithmetic Programs (QAP) by Gennaro et al. [19]: an arithmetic circuit can
be transformed into a system of equations that check the consistency of a set
of instance variables φ and witness variables ω in a relation R. The consistency
checker is compiled into zk-SNARK. Thus zk-SNARK for QAP covers applica-
tions that employ arithmetic relations of multiplicative depth larger than one
such as SHA256. In our WKA construction the partial proof size is also suc-
cinct, as it has at most 3 elements regardless of R. Response computation and
key derivation are efficient, i.e. only linear in QAP size.

Limitations of Our WKA Construction. Our WKA scheme, as any scheme,
inherits the limitations of its components:, i.e. the designated-verifier zk-SNARK
that is compiled from an NILP for QAP by Groth [24]. Firstly zk-SNARKs are
not known to satisfy composability and therefore cannot be run out of the box
in parallel in the design of larger protocols [30].6 In a basic dark pool scenario we
only consider sequential composition where each execution of WKA concludes
before the next execution begins [10]. For extended scenario one might need to
use other instruments to identify parallel runs as described in Principle 10 of
security protocol design by Abadi and Needham [1]. However, note that we still
consider security against MITM attack, which is important for key agreement
protocols. Secondly our WKA scheme makes use of QAP [19] hence it is only
as efficient as the circuit expressing the constraints. Finally, we opted for sim-
plicity rather than making the WKA scheme subversion-resistant as this which
would require the zero-knowledge property be maintained even when the CRS is
maliciously generated (see Bellare et al. [4]). Abdolmaleki et al. [2] and Fuchs-
bauer [15] constructed subversion-resistant NIZK based on Groth’s zk-SNARK
construction [24]. However, both works consider only the publicly verifiable zk-
SNARK construction based on bilinear groups. Our WKA construction requires

5 This property formally guarantees that given a valid ciphertext π by an adversary,
it is possible to efficiently extract the corresponding affine function (Π ,π0) that
explains π. Such property is important for Knowledge Soundness of WKA.

6 Users are advised to run the shared secret through a hash function modelled as a
random oracle before using it as a key for any other cryptosystem.

588 C. N. Ngo et al.

designated-verifier zk-SNARK, and therefore those constructions are not appli-
cable to our scheme. Hence, we consider only honest setups.7

5 WKA from NILP

We first define our split designated verifier NILP based on Groth’s definition [24].
The CRS is first split into two parts (σP ,σV) where σV is only available to the
verifier. Subsequently, in proof computation we split the proof matrix Π ∈ F

k×y

into two parts: Π1 ∈ F
k−1×y and Π2 ∈ F

1×y. The proof π is also split into
π1 = Π1σP that consists of k − 1 elements and π2 = Π2σP consists of the last
element. This split of Π and π is not necessary in a zk-SNARK proof system
but it is essential in our WKA scheme as we need to split the proof into two
parts (See our key observation in Sect. 4).

Definition 2 (Split designated-verifier NILP). Let L be an NP-language
with the witness relation R(φ, ω). We call φ an instance of L and ω a witness
for φ. A split designated-verifier (split DV) NILP for L consists of the tuple of
polynomial-time algorithms (Setup, Prove, Verify, Simulate):

(σP ,σV) ← Setup(R): output σP ∈ F
y and σV ∈ F

x.
(π1,π2) ← Prove(R,σ, φ, ω): obtain (Π1,Π2) ← ProofMatrix(R,φ, ω) where

Π1 ∈ F
k−1×y and Π2 ∈ F

1×y and output π1 = Π1σP and π2 = Π2σP

{0, 1} ← Verify(R,σV , φ,π1,π2): obtain t ← Test(R,φ) where t : Fy+k → F
η is

an arithmetic circuit corresponding to the evaluation of multivariate polyno-
mials such that t(σV ,π1,π2) = 0 if π is valid..

(π1,π2) ← Simulate(R,σV , φ): obtain t ← Test(R,φ) and solve t(σV ,π1,π2) =
0 for the output (π1,π2).

where y, x, k, η and d are constants or polynomials in 1λ (deduced from R [24]).

A tuple of PPT algorithms (Setup, Prove, Verify, Simulate) is a split DV NILP
if it has perfect completeness, perfect zero-knowledge and statistical soundness
against affine prover strategies.

Construction of Witness Key Agreement. We construct WKA from Split
DV NILP as shown in Fig. 2. Below we describe the construction at a high level.

We first modify the LE scheme’s encryption algorithm interface for explicit
used randomness. We omit the randomness r and write only [m] ← Enc(pk,m) in
case r is not necessary in subsequent computation. We write [m] = Enc(pk,m, r)

7 Such an assumption can be relaxed by asking a TTP to generate the CRS (such
as Bloomberg itself). Using a TTP for bootstrapping security protocols have been
considered in literature, see for example HAWK [29]. This is a much weaker trust
assumption than managing orders themselves because the generation of the CRS
requires only the relation R and the public key for the encryption. Therefore such a
TTP is only trusted to do the computation correctly. Without the private key, the
TTP cannot learn additional information.

Practical Witness-Key-Agreement 589

to incorporate the randomness directly into the encryption algorithm. Sec-
ondly we require that the additive homomorphism of LE applies to both
the message and the randomness used, i.e. Add(pk, 〈[mi, ri]〉, 〈αi〉) evaluates
[
∑

αimi,
∑

αiri].

The Challenge Phase. In KChallenge, the verifier generates a CRS (σP , σV)
from R (using a split DV NILP). The verifier then encrypts each elements
{σP,i}y

i=1 of the σP with an LE scheme (with key pair pk, sk). Additionally,
we require the verifier to encrypt the randomnesses {rP,i}y

i=1 that are used for
the encryption of the CRS {σP,i}y

i=1 in KChallenge into {[rP,i]}y
i=1. Finally s/he

publishes a challenge that consists of pk and the encrypted elements. The verifier
keeps private sk of the LE scheme and the plain CRS σV .

The Response Phase. Upon seeing the challenge, in KResponse, the prover
computes a response by generating a valid proof π for the desired tuple (φ, ω)
(using the proof matrix of the split DV NILP and the additive homomorphic
operation Add of the LE scheme). When the prover evaluates the last encrypted
element [π2, r2] using the proof matrix Π2 and the encrypted CRS {[σP,i]}y

i=1,
by the additively homomorphic property of the LE scheme, s/he can also eval-
uate the ciphertext [r2] of the randomness r2 of the encrypted [π2, r2] using the
same Π2 and {[rP,i]}. The prover publishes the first encrypted k − 1 elements
{[π1,j , r1,j]}k−1

j=1 and the encrypted randomness [r2] as a public response and
keeps secret the last encrypted element [π2, r2].

Fig. 2. Construction of witness key agreement

590 C. N. Ngo et al.

The Key Derive Phase. When the verifier sees the instance φ and the corre-
sponding response, in KDerive, s/he can decrypt the encrypted elements using
sk to get {π1,j}k−1

j=1 and forge the last element π2 using the plain CRS σV . The
verifier then uses the evaluated [r2] to reconstruct the correct ciphertext [π2, r2]
of the last element, i.e. the verifier decrypts [r2] to get r2 to use as the random-
ness in the final encryption of π2 to get [π2]. After that, both parties agree on
the same [π2, r2].

We refer the reader to Appendix C of [34] for the proof sketch of our main
theorem as follows.

Theorem 1 (Security of WKA). If Σ satisfies correctness, additive homo-
morphism, IND-CPA and linear-only homomorphism, and the underlying split
DV NILP satisfies perfect completeness, perfect zero-knowledge and statistical
knowledge soundness against affine prover strategies, then Ω satisfies correctness,
adaptive knowledge soundness, honest verifier zero-knowledge, response and key
indistinguishability, and security against man-in-the-middle attack.

6 WKA from NILP Based on QAP

We recall the formal definition of Quadratic Arithmetic Programs (QAP) [19]
and how to construct a NILP for QAP [24].

Definition 3 (QAP). A quadratic arithmetic program Q over a field F for a
relation R(φ, ω) consists of three sets of polynomial {ui(X), vi(X), wi(X)}m

i=0

and a target polynomial t(X) = Πn
q=1(X−rq) such that with a0 = 1, φ = {ai}l

i=1,
and ω = {ai}m

i=l+1, the following Eq. (12) holds.

m∑

i=0

aiui(X)
m∑

i=0

aivi(X) =
m∑

i=0

aiwi(X) + h(X)t(X) (12)

where ui(X), vi(X), wi(X) are of degee n − 1 and h(X) is of degree n − 2.

Remark 2 (QAP description). For convenience we follow the QAP description
of Groth [24], we consider the QAP

R, i.e.
(F, aux, l, {ui(X), vi(X), wi(X)}m

i=0, t(X))

where F is a finite field; aux is some auxiliary information; 1 ≤ l ≤ m; ui(X),
vi(X), wi(X), t(X) ∈ F[X], ui(X), vi(X), wi(X) are of at most degree n − 1.
Such QAP defines a binary relation

R =

⎧
⎨

⎩
(φ, ω)

∣
∣
∣
∣
∣
∣

a0 = 1, φ = {ai}l
i=1, ω = {ai}m

i=l+1∑m
i=0 aiui(X)

∑m
i=0 aivi(X)

=
∑m

i=0 aiwi(X) + h(X)t(X)

⎫
⎬

⎭

Practical Witness-Key-Agreement 591

Fig. 3. Split NILP for QAP based on Groth [24]

A split DV NILP for QAP can be directly reformulated as in Fig. 3 by modi-
fying the Prove algorithm. We simply split the proof matrices into two matrices
Π1 and Π2 where Π1 ∈ F

2×y corresponds to the matrix used in Eq. (7) and (8)
while Π2 ∈ F

1×y corresponds to the matrix used in Eq. (9). Since the NILP in
Fig. 3 is secure (see Groth’s security proof [24, Theorem 1]), our split DV NILP
is also secure (see Appendix D of [34]). We show in Fig. 4 how to construct Ω
using a split DV NILP obtained from the NILP in Fig. 3.

592 C. N. Ngo et al.

Fig. 4. Witness key agreement for QAP

Table 3. Theoretical performance evaluation

Alg. #Enc #Dec #Mult

KChallenge 4(m− l + 2n) – –

KResponse – – 4(m− l + 3n)

KDerive 1 k –

m is the number of variables in a QAP, l is the num-
ber of instance variables, and n− 1 is the degree of
polynomials in the QAP. The number of decryp-
tion k is construction dependent. In our case we
have k = 3.

Theorem 2. If the LE scheme Σ satisfies correctness, additive homomorphism,
IND-CPA and linear-only homomorphism, then the construction in Fig. 4 yields
a WKA scheme Ω that satisfies correctness, adaptive knowledge soundness, hon-
est verifier zero-knowledge, response and key indistinguishability, and security
against man-in-the-middle attack.

Practical Witness-Key-Agreement 593

7 Instantiation and Performance Evaluation

Instantiation. We choose to instantiate the linear-only encryption scheme Σ
with a variant of the Paillier cryptosystem [35] similarly to Gennaro et al. [19]
and Bitansky et al. [6] (see Appendix E of [34]).

Theoretical WKA Performance Evaluation. We can then estimate the
theoretical performance of our WKA scheme Ω based on the number of encryp-
tions, decryptions, and scalar multiplications for computing Π1({[σP,i]}) and
Π2({[σP,i]}) (Table 3). Let m be the number of variables of a QAP, l be the
number of instance variables, and n−1 be the degree of polynomials of the QAP.
The KChallenge algorithm requires the generation of {[σP,i]} hence m − l + 2n
encryptions on the investor’s side. The KResponse algorithm requires only the
proof computation on the trader’s side which yields m − l + 3n scalar multipli-
cations. The above numbers are doubled to fix the malleability of the scheme
(see Appendix E of [34]). It is then doubled again for computing the ciphertexts
of the randomnesses. Finally the KDerive algorithm only requires k decryptions
and one encryption on the investor’s side. The proof size is also only 6 Paillier
ciphertexts.

Baseline Performance. Paillier [35] is the main ingredient in our construction
and its performance is well-studied in literature. Several optimization techniques
were already present in the original paper [35], and Jost et al. [28] took a step
further to improve the performance by orders of magnitude faster compared to
a näıve implementation.

For the timing of the Paillier encryption scheme we use the data from Table 4
by Jost et al. [28] as an upper bound8 for the encryption time. The numbers were
obtained on an Intel i7-4600U CPU at 2.10 GHz with 4 cores running Ubuntu 64-
bit v14.04. In particular, the reported result shows that, at 2048-bit key length,
the encryption rate for 32-bit messages can reach 56 K/s at the cost of 5.7 s
pre-computation time.

Table 4. Specific circuit evaluation

Relation R m n− 1 TC (s) TR (s)

SC 25821 28312 5.8 7.8

PR 26080 28572 5.8 7.9

PR’ 26598 29094 6 8

MB 51382 56361 11.6 15.6

We support 2048-bit key length and provide
112-bit security. Recall m is the number of
variables and n− 1 is the degree of polyno-
mials of the QAP. SC and PR are used for
our dark pool simulation.

8 Benchmarked in 2015. As such, it provides a lower bound to our WKA performance.

594 C. N. Ngo et al.

Circuit Evaluation. We implement the relations SC, PR, MB and a new rela-
tion PR’ which is the same as PR but with added check, e.g. (p1 < p < p2)∨(p3 <
p < p4), in Table 1 as arithmetic circuits with the libsnark library [37] and mea-
sure the number of required variables m and the corresponding degree of the
polynomials (n−1). Finally the runtime of KChallenge and KResponse, the most
costly for 138-bit security for guessing r [28], 2048-bit key length, using the 32-
bit messages and the encryption rate as in Scheme 3 from Jost et al. [28]. The
evaluation of the new PR’ relation and the MB relation illustrates the scalabil-
ity of WKA. PR’ consists of 1 consistency check for 1 commitment (1 private
variable) and 4 arithmetic conditions with public variables, while MB consists
of 2 consistency checks for 2 commitments (2 private variables). MB is in fact a
building block for more general relation: c′ > p1 · v1 + p2 · v2 + p3 · p3 + . . . ph · vh.
This is usable for both Multi-bids Auction and Biometrics Sharing (Hamming
distance between two extracted features). This will require 2h commitments as
it scales linearly with the number of private variables.

As shown in Table 4, the performances of SC, PR and PR’ are close as their
circuit complexity are similar to each other, as SC, PR and PR’ require only
one commitment consistency check while MB requires two of them. Hence, the
runtime of MB is approximately double that of the others. KChallenge (TC)
requires only 5.8 s for the SC while PI takes only 5.9 s. After the KChallenge,
the key-agreement with KResponse (TR) takes only 7.8 s for SC and 7.9 s for
PR. Even if we add 1 s of one-way network latency into each message as we
are employing an anonymous network (e.g. Tor) [14, Fig. 2]. The overhead of
each WKA operation is lower than any known permission-less blockchain’s block
generation time (with Ethereum being the fastest at around 15 s).9 Hence each
step can be fit within a single block generation time.10

Fig. 5. Example of Tradebook messages and trades (May 1st, 2019)

9 https://ethstats.net/.
10 In our protocol, the blockchain is the actual bottleneck. Looking at Table 4, the

runtime of each step (including setups) is less than the block time of the fastest
permissionless blockchain (Ethereum roughly generates a block every 15 s). Hence
evaluating the interfaces of our scheme with the blockchain is equivalent to evaluating
the blockchain itself. We should add that the current blockchain technologies is not
adequate yet for high speed dark pools. Our major concern and main evaluation
focus therefore is our scheme’s crypto overhead.

https://ethstats.net/

Practical Witness-Key-Agreement 595

Dark Pools Simulation. For our simulation we make use of the Bloomberg
Tradebook [7] for the period 13/03–1/5/2019 (35 trading days).

The Tradebook only contains the number of messages and the number of
trades per day (see Fig. 5). Using WKA, an investor can setup a secure conver-
sation including multiple messages which eventually lead to a trade. This means
that the number of conversations (i.e. the truly necessary WKA executions) can
be much smaller than the number of messages in Fig. 5. These conversations can
also happen in parallel if they belong to different trades (or traders). From the
available data we cannot know exactly which messages belong to the same con-
versation, or how many conversations there are and the point of time at which
they happened as this is the whole point of a Dark Pool. We therefore considered
the worst possible case where each message is a conversation by itself (almost
always ending nowhere) and they are executed sequentially one after another
by a single trader. We also considered a more plausible scenario one trade-one
trader where each trade is done by a different trader and all messages of the day
eventually belong to some trade.

We can combine the number of messages and trades from the extracted mar-
ket data (examples shown in Fig. 5) and Table 4 to estimate the corresponding
execution overhead throughout a day of trading. The final results are reported in
Fig. 6. Performance is evaluated in terms of execution overhead to the expected
processing time (1 day) as in a realistic setting using actual trading data is at
least comparable on a day by day basis: if we were to run a day of trading mes-
sages, we would expect it to not take more than a day to actually exchange those
messages.

We combine the relations SC with PR and we consider the execution time of
a message as the running time of SC’s KChallenge (5.8 s). For trades execution
time we consider the sequential execution of KResponse from SC and the whole
challenge and response time of PR (21.6 s), adding the one-way delay of Tor (1 s)
per message. As shown in Fig. 6, even under worst possible assumption, only 7
days out of 35 days require more than 1 day of execution in our simulation. With
a less extreme approach (solid line) the overhead is smaller than 10%.

Fig. 6. WKA evaluation on bloomberg tradebook

596 C. N. Ngo et al.

8 Conclusion

We introduced the notion of witness-key-agreement. Specifically we defined split
designated-verifier non-interactive linear proof following Groth’s definition of
NILP [24]. We then compiled the obtained split DV NILP into a Witness Key
Agreement scheme using Linear-Only Encryption. Our obtained construction is
efficient. After a one-time setup that yields a common challenge for a relation R
of interest, a party can agree on a secret key with another party given that the
latter knows a witness of a committed instance.

Finally, our concrete WKA scheme for quadratic arithmetic programs yields
both succinct communication complexity, i.e. the response to the common chal-
lenge consists of only 3 encrypted elements (6 Paillier ciphertexts), and efficient
response computation and key derivation, i.e. only linear to the QAP size.

Our scheme is particularly suitable for private auctions in financial interme-
diation in which one party wants to privately communicate with another party
about committed financial information which satisfies a relation R of interest.
It is also usable in other applications such as biometric-data sharing.

Our new notions, i.e. Witness-Key-Agreement and Split Designated Verifier
NILP may be of independent research interest as well as interesting application
of NILP.

Acknowledgements. We thank Ian Goldberg, Ivan Visconti, and the anonymous
reviewers for their many insightful comments and suggestions. Chan Nam Ngo and
Fabio Massacci were partly supported by the European Commission under the H2020
Programme Grant Agreement No. 830929 (CyberSec4Europe). Florian Kerschbaum
was supported by NSERC grants RGPIN-05849, CRDPJ-531191, IRC537591, and the
Royal Bank of Canada.

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Software Eng. 22(1), 6–15 (1996)

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 1

3. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis,
M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 16

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 72–84. IEEE (1992)

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-39555-5_16
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26

Practical Witness-Key-Agreement 597

6. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

7. Bloomberg: Tradebook Bloomberg Professional Services (2019). https://www.
bloomberg.com/professional/solution/tradebook/. Accessed 01 May 2019

8. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175–1191. ACM (2017)

9. Camenisch, J., Casati, N., Gross, T., Shoup, V.: Credential authenticated identifi-
cation and key exchange. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
255–276. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 14

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 2001 IEEE International Conference on Cluster Computing, pp. 136–
145. IEEE (2001)

11. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: Pro-
ceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pp. 148–159 (2019)

12. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: The Twentieth ACM Symposium on Theory of Computing, pp. 11–19. ACM
(1988)

13. Derler, D., Slamanig, D.: Practical witness encryption for algebraic languages or
how to encrypt under Groth-Sahai proofs. Des. Codes Crypt. 86(11), 2525–2547
(2018)

14. Dhungel, P., Steiner, M., Rimac, I., Hilt, V., Ross, K.W.: Waiting for anonymity:
Understanding delays in the tor overlay. In: 2010 IEEE Tenth International Con-
ference on Peer-to-Peer Computing (P2P), pp. 1–4. IEEE (2010)

15. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 11

16. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

18. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: 45th ACM Symposium on Theory of Computing, pp. 467–476. ACM (2013)

19. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

20. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance indepen-
dent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 24

21. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM Symposium on Theory of Computing, pp.
99–108. ACM (2011)

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://www.bloomberg.com/professional/solution/tradebook/
https://www.bloomberg.com/professional/solution/tradebook/
https://doi.org/10.1007/978-3-642-14623-7_14
https://doi.org/10.1007/978-3-642-14623-7_14
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-44371-2_24

598 C. N. Ngo et al.

22. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 690–728
(1991)

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

24. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

25. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 20

26. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-secure authenticated key-exchange for algebraic languages. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 18

27. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

28. Jost, C., Lam, H., Maximov, A., Smeets, B.J.: Encryption Performance Improve-
ments of the Paillier Cryptosystem. IACR Cryptology ePrint Archive 2015, 864
(2015)

29. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE (2016)

30. Kosba, A.E., et al.: How to Use SNARKs in Universally Composable Protocols.
IACR Cryptology ePrint Archive 2015, 1093 (2015)

31. Markham, J.W.: Manipulation of commodity futures prices-the unprosecutable
crime. Yale J. Regul. 8, 281 (1991)

32. Massacci, F., Ngo, C.N., Nie, J., Venturi, D., Williams, J.: The seconomics
(security-economics) vulnerabilities of decentralized autonomous organizations. In:
Stajano, F., Anderson, J., Christianson, B., Matyáš, V. (eds.) Security Protocols
2017. LNCS, vol. 10476, pp. 171–179. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-71075-4 19

33. Massacci, F., Ngo, C.N., Nie, J., Venturi, D., Williams, J.: FuturesMEX: secure,
distributed futures market exchange. In: 2018 IEEE Symposium on Security and
Privacy, pp. 335–353. IEEE (2018)

34. Ngo, C.N., Massacci, F., Kerschbaum, F., Williams, J.: Practical Witness-Key-
Agreement for Blockchain-based Dark Pools Financial Trading. IFCA Archive,
2021 (2021). https://fc21.ifca.ai/papers/113.pdf. Accessed 26 Mar 2021

35. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

36. Sasson, E.B., et al.: ZeroCash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

37. SCIPR Lab: libsnark: a C++ library for zkSNARK proofs (2019). https://github.
com/scipr-lab/libsnark. Accessed 01 May 2019

38. TheVerge: Data glitch sets tech company stock prices at USD 123.47. https://
www.theverge.com/2017/7/3/15917950/nasdaq-nyse-stock-market-data-error.
Accessed 01 May 2019

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-642-36362-7_18
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-71075-4_19
https://doi.org/10.1007/978-3-319-71075-4_19
https://fc21.ifca.ai/papers/113.pdf
https://doi.org/10.1007/3-540-48910-X_16
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://www.theverge.com/2017/7/3/15917950/nasdaq-nyse-stock-market-data-error
https://www.theverge.com/2017/7/3/15917950/nasdaq-nyse-stock-market-data-error

Author Index

Abadi, Aydin II-541
Al-Bassam, Mustafa II-3, II-279
AlHaddad, Nicolas II-479
Alves, Pedro Geraldo M. R. II-520
Amarasinghe, Niluka I-205
Apostolaki, Maria I-147
Aranha, Diego F. II-520
Avarikioti, Zeta II-209

Baghery, Karim I-457
Bai, Wenjie II-382
Bao, Tiffany I-117
Bartoletti, Massimo I-93
Benarroch, Daniel I-393
Bhat, Adithya II-37
Blazy, Olivier I-415
Blocki, Jeremiah II-382
Botta, Vincenzo I-73
Boyen, Xavier I-205
Bracciali, Andrea I-93
Bultel, Xavier I-415
Buterin, Vitalik II-279

Camp, L. Jean II-406
Campanelli, Matteo I-393
Canella, Claudio I-293
Ceccio, Nick II-417
Chakravarty, Manuel M. T. II-339
Chiu, Michael II-57
Chu, Shumo II-560
Clark, Jeremy I-360
Coretti, Sandro II-339

Das, Sanchari II-406
Deb, Soubhik II-104
Delgado-Segura, Sergi I-167
Derler, David II-499
Doupé, Adam I-117
Durak, F. Betül I-229
Dürmuth, Markus II-361

Ensafi, Roya II-417
Eriguchi, Reo I-271
Esgin, Muhammed F. II-560

Fauzi, Prastudy I-436
Ferreira Torres, Christof I-33
Ferreira, Loïc I-331
Fiore, Dario I-393
Fitzi, Matthias II-339
Friolo, Daniele I-73

Gaži, Peter II-339
Gerault, David I-351
Gervais, Arthur I-3, I-33
Goyal, Vipul II-65
Gruss, Daniel I-293, I-311
Guajardo, Jorge I-229
Gurkan, Kobi I-393
Gvili, Yaron I-476

Haslhofer, Bernhard I-187

Iannillo, Antonio Ken I-33
Ichikawa, Atsunori I-271

Jourenko, Maxim II-189

Kalabić, Uroš II-57
Kanjalkar, Sanket I-167
Kannan, Sreeram II-84, II-104, II-299
Kant, Philipp II-339
Kappos, George I-167
Karakostas, Dimitris II-319
Karayannidis, Nikos II-319
Kate, Aniket II-37
Kempner, Octavio Perez I-415
Kerber, Thomas I-497
Kerschbaum, Florian II-579
Khabbazian, Majid I-53
Khoffi, Ismail II-279
Kiayias, Aggelos I-497, II-3, II-319, II-339,

II-541
Kiffer, Lucianna II-250, II-437
Kim, Andrew II-406
Knottenbelt, William J. II-3
Kohlweiss, Markulf I-457, I-497
Kojima, Fuhito II-269
Kokoris-Kogias, Eleftherios II-3, II-209

600 Author Index

Kolonelos, Dimitris I-393
Kuchta, Veronika II-560
Kunihiro, Noboru I-271

Lafourcade, Pascal I-415
Larangeira, Mario II-189
Laszka, Aron II-269
Lepore, Cristian I-93
Levin, Dave II-437
Li, Hanjun II-65
Lipmaa, Helger I-436
Livshits, Benjamin I-3, II-457
Lo Iacono, Luigi II-361
Lutscher, Philipp M. II-417

Maffei, Matteo I-187, II-131
Magri, Bernardo II-37
Maire, Cedric I-147
Makri, Eleftheria I-249
Massacci, Fabio II-579
Matsuo, Shin’ichiro II-269
McKague, Matthew I-205
Meiklejohn, Sarah I-167
Miller, Andrew I-167
Mirzaei, Arash II-151
Mislove, Alan II-437
Mizrahi, Ayelet II-170
Moreno-Sanchez, Pedro I-187, II-3, II-131

Nadahalli, Tejaswi I-53
Ngo, Chan Nam II-579
Nita-Rotaru, Cristina II-437
Nordholt, Peter Sebastian I-187
Nuida, Koji I-271

Ortiz, Jheyne N. II-520

Pakki, Jaswant I-117
Perez, Daniel II-457
Pindado, Zaira I-436
Piotrowska, Ania I-167

Qin, Kaihua I-3

Raizes, Justin II-65
Rajaraman, Rajmohan II-250
Ramacher, Sebastian II-499
Romiti, Matteo I-187
Rotaru, Dragos I-249
Roughgarden, Tim II-233

Ruoti, Scott I-360
Russell, Alexander II-339

Sakzad, Amin II-151, II-560
Salman, Asad II-437
Sankagiri, Suryanarayana II-84
Scalas, Alceste I-93
Scheffler, Sarah I-476
Schuster, Thomas I-311
Schwarz, Michael I-293, I-311
Schwarzl, Martin I-293, I-311
Seamons, Kent I-360
Sheng, Peiyao II-299
Shi, Elaine II-269
Shibuya, Yoko II-269
Shikhelman, Clara II-233
Shoshitaishvili, Yan I-117
Siim, Janno I-436, I-457
Slamanig, Daniel II-499
Sonnino, Alberto II-279
State, Radu I-33
Steinfeld, Ron II-151, II-560
Striecks, Christoph II-499
Sun, Shifeng II-560
Sundara Raman, Ram II-417

Tairi, Erkan II-131
Tanaka, Keisuke II-189
Thyagarajan, Sri Aravinda Krishnan II-37
Tschudi, Daniel II-37
Tse, David II-104

van Oorschot, P. C. I-360
Vanbever, Laurent I-147
Varia, Mayank I-476, II-479
Venturi, Daniele I-73
Vercauteren, Frederik I-249
Victor, Friedhelm I-187
Visconti, Ivan I-73
Viswanath, Pramod II-84, II-299
Volkhov, Mikhail I-457
Vyas, Anjali II-417

Wagh, Sameer I-249
Wang, Ruoyu I-117
Wang, Xuechao II-84
Wattenhofer, Roger I-53, II-209
Werner, Sam M. II-457
Wiefling, Stephan II-361
Williams, Julian II-579

Author Index 601

Xu, Jiahua II-457
Xue, Bowen II-299

Yamamoto, Go II-269
Yousaf, Haaroon I-167
Yu, Jiangshan II-151

Zamyatin, Alexei II-3
Zappala, Daniel I-360
Zhang, Haibin II-479
Zhang, Zhenfei II-560
Zhou, Liyi I-3
Zindros, Dionysis II-3, II-209
Zohar, Aviv II-170
Zunino, Roberto I-93

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Blockchain Protocols
	SoK: Communication Across Distributed Ledgers
	1 Introduction
	2 The Cross-Chain Communication Problem
	2.1 Historical Background: Distributed Databases
	2.2 Distributed Ledger Model
	2.3 Cross-Chain Communication System Model
	2.4 Formalization of Correct Cross-Chain Communication
	2.5 The Generic CCC Protocol

	3 Impossibility of CCC Without a Trusted Third Party
	3.1 What Is a Trusted Third Party?
	3.2 Relating CCC to Fair Exchange
	3.3 Incentives and Rational CCC

	4 The CCC Design Framework
	4.1 (Pre-)Commit Phase
	4.2 Verification Phase
	4.3 Abort Phase

	5 Classification of Existing CCC Protocols
	5.1 Exchange Protocols
	5.2 Migration Protocols
	5.3 Insights and General Observations

	6 CCC Challenges and Outlook
	6.1 Heterogeneous Models and Parameters Across Chains
	6.2 Heterogeneous Cryptographic Primitives Across Chains
	6.3 Collateralization and Exchange Rates
	6.4 Lack of Formal Security Analysis
	6.5 Lack of Formal Privacy Analysis
	6.6 Upcoming Industrial and Research CCC Trends

	7 Concluding Remarks
	A Fair Exchange Using CCC
	References

	Reparo: Publicly Verifiable Layer to Repair Blockchains
	1 Introduction
	1.1 Existing Solutions and Their Limitations
	1.2 Our Contributions

	2 A Primer on Ethereum
	2.1 Ethereum Ledger

	3 Repairability in Ethereum
	3.1 Repairing Ethereum Using Reparo
	3.2 Discussion

	4 Experiments in Ethereum
	4.1 Special Transactions: repairTx, voteTx
	4.2 Performing Repairs

	5 Conclusion and Future Work
	A Prominent Bugs
	References

	Short Paper: Debt Representation in UTXO Blockchains
	1 Introduction
	2 Transactions in the UTXO Model
	3 Debt-Enabling UTXO Blockchain
	3.1 Debt Transactions
	3.2 Outstanding Debt Transactions and Debt Pools

	4 Prototype
	4.1 System Architecture
	4.2 Implementation

	5 Conclusion
	References

	Instant Block Confirmation in the Sleepy Model
	1 Introduction
	2 Technical Roadmap
	2.1 Starting Point: Algorand
	2.2 Selecting a Committee
	2.3 Consensus with Different Committees
	2.4 Summary of Challenges and Theorem Statement

	3 Related Work
	3.1 Comparison of Confirmation Times and Communication Complexity

	4 Definitions
	4.1 Blockchain Execution Model
	4.2 Tools
	4.3 Other Notation

	5 The Blockchain Protocol
	5.1 Committee Selection
	5.2 Binary Byzantine Agreement
	5.3 Block Proposal
	5.4 Putting It All Together

	References

	Blockchain CAP Theorem Allows User-Dependent Adaptivity and Finality
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Security Model
	4 Protocol Description
	5 Main Result
	6 Conclusion
	A Algorand BA is a Checkpointing Protocol
	References

	PoSAT: Proof-of-Work Availability and Unpredictability, Without the Work
	1 Introduction
	1.1 Dynamic Availability
	1.2 Static vs Dynamic Adversary
	1.3 PoSAT Achieves PoW Dynamic Availability
	1.4 PoSAT Has PoW Unpredictability
	1.5 Related Work
	1.6 Outline

	2 Protocol
	2.1 Primitives
	2.2 Protocol Description

	3 Model
	4 Security Analysis
	4.1 Main Security Result
	4.2 Step 1: Mining Lag of Newly Joined Nodes
	4.3 Step 2: Simulating a Static System
	4.4 Step 3: Upgrading the Adversary
	4.5 Step 4: Growth Rate of the Adversarial Tree
	4.6 Step 5: Existence of Nakamoto Blocks
	4.7 Step 6: Putting Back All Together

	5 Discussion
	References

	Payment Channels
	Post-Quantum Adaptor Signature for Privacy-Preserving Off-Chain Payments
	1 Introduction
	2 Preliminaries
	2.1 Adaptor Signatures (AS)
	2.2 Elliptic Curves and Isogenies
	2.3 Security Assumptions: GAIP and MT-GAIP

	3 CSI-FiSh
	3.1 Zero-Knowledge Proof for Group Actions

	4 IAS: An Adaptor Signature from Isogenies
	4.1 Our Construction

	5 Performance Evaluation
	5.1 Evaluation Results
	5.2 Comparison with LAS

	6 Building Payment-Channel Networks from IAS
	7 Conclusion
	References

	FPPW: A Fair and Privacy Preserving Watchtower for Bitcoin
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries and Notations
	2.1 Preliminaries
	2.2 Notations

	3 FPPW Overview
	3.1 System Model
	3.2 FPPW Overview
	3.3 Watchtower Service Properties

	4 FPPW Channel
	4.1 FPPW Channel Establishment
	4.2 FPPW Channel Update
	4.3 FPPW Channel Closure
	4.4 FPPW Watchtower Abort

	5 Security Analysis
	6 Fee Handling
	References

	Congestion Attacks in Payment Channel Networks
	1 Introduction
	2 Background on the Lightning Network
	3 Lightning Network Analysis
	3.1 Default Parameter Values
	3.2 Network Statistics

	4 Attacking the Entire Network
	4.1 Evaluation

	5 Attacking Hubs - Attack on a Single Node
	5.1 Evaluation

	6 Mitigation Techniques
	7 Related Work
	8 Conclusions and Future Work
	References

	Payment Trees: Low Collateral Payments for Payment Channel Networks
	1 Introduction
	2 Background
	3 The Channel Closure Attack on AMCU
	4 Protocol Overview
	5 Transactions
	6 Our Payment Tree Construction
	7 Collateral Efficiency and Security Analysis
	8 Conclusion
	References

	Brick: Asynchronous Incentive-Compatible Payment Channels
	1 Introduction
	2 Protocol Overview
	2.1 System Model
	2.2 Brick Overview
	2.3 Reward Allocation and Collateral
	2.4 Protocol Goals

	3 Brick Design
	3.1 Architecture
	3.2 Incentivizing Honest Behavior

	4 Brick Analysis
	5 Evaluation of Brick
	6 Related Work
	7 Conclusion, Limitations and Extensions
	References

	Mining
	Ignore the Extra Zeroes: Variance-Optimal Mining Pools
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Model of Miners
	2.2 Reward Sharing Schemes
	2.3 Message-Independence and Symmetrization
	2.4 A Reward-Sharing Scheme as a Hashrate Estimator
	2.5 When t is Random

	3 Warm-Up: Maximizing Likelihood
	4 Main Results: Variance-Optimality
	4.1 Single-Class Shares Are Optimal
	4.2 PPS is Variance-Optimal
	4.3 Variance-Optimality of PPLNS
	4.4 Relaxing the Constraints

	5 Conclusions and Discussion
	References

	HaPPY-Mine: Designing a Mining Reward Function
	1 Introduction
	1.1 Main Contributions

	2 Background
	3 Hashrate-Pegged Block Reward
	4 HaPPY-Mine Equilibrium Analysis
	4.1 Examples with Diverse Cost Scenarios
	4.2 General Analysis of HaPPY-Mine

	5 Impact of Attacks and Currency on Equilibria
	6 Discussion
	7 Related Work
	References

	Selfish Mining Attacks Exacerbated by Elastic Hash Supply
	1 Introduction
	2 Empirical Findings
	3 Model with Elastic Hash Supply
	References

	Scaling Blockchains
	Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light Clients
	1 Introduction and Motivation
	2 Background
	3 Assumptions and Threat Model
	3.1 Blockchain Model
	3.2 Participants and Threat Model

	4 Fraud Proofs
	4.1 State Root and Execution Trace Construction
	4.2 Data Root and Periods
	4.3 Proof of Invalid State Transition

	5 Data Availability Proofs
	5.1 2D Reed-Solomon Encoded Merkle Tree Construction
	5.2 Random Sampling and Network Block Recovery
	5.3 Fraud Proofs of Incorrectly Generated Extended Data
	5.4 Security Probability Analysis

	6 Performance and Implementation.
	7 Related Work
	7.1 SParse FrAud pRotection (SPAR)

	8 Conclusion
	References

	ACeD: Scalable Data Availability Oracle
	1 Introduction
	2 System and Security Model
	2.1 Network Model and Assumptions
	2.2 Oracle Model

	3 Technical Description of ACeD
	3.1 Coded Interleaving Tree
	3.2 Dispersal Protocol
	3.3 Retrieval Protocol and Block Decoding
	3.4 Protocol Summary

	4 Performance Guarantees of ACeD
	4.1 Security
	4.2 Efficiency

	5 Algorithm to System Design and Implementation
	6 Evaluation
	7 Conclusion and Discussion
	References

	Efficient State Management in Distributed Ledgers
	1 Introduction
	2 A UTxO Model
	3 Transaction Optimization
	3.1 Transaction Logical Operators - Ledger State Algebra
	3.2 A Transaction Optimization Framework
	3.3 Transaction Optimization Techniques
	3.4 The Transaction Optimization Problem

	4 State Efficiency in Bitcoin
	4.1 A State Efficient Bitcoin

	5 Conclusion
	References

	Fast Isomorphic State Channels
	1 Introduction
	2 Preliminaries
	3 The Hydra Protocol
	3.1 Protocol Setup
	3.2 Mainchain (Simplified)
	3.3 Head (Simplified)
	3.4 Extensions for the Full Protocol

	4 Experimental Evaluation
	4.1 Applying the Methodology
	4.2 Experimental Results
	4.3 Larger Clusters
	4.4 Discussion

	References

	Authentication and Usability
	What's in Score for Website Users: A Data-Driven Long-Term Study on Risk-Based Authentication Characteristics
	1 Introduction
	2 RBA Models
	3 Data Set
	4 Attacker Models
	5 Evaluating RBA Practice (RQ1)
	5.1 Results
	5.2 Discussion

	6 Analyzing RBA Features (RQ2)
	6.1 Study Setup
	6.2 Results
	6.3 Discussion

	7 Analyzing RBA Configuations (RQ3)
	8 Limitations
	9 Related Work
	10 Conclusion
	A Survey
	A.1 Online Service
	A.2 Demographics

	B Features
	References

	DAHash: Distribution Aware Tuning of Password Hashing Costs
	1 Introduction
	2 Related Work
	3 DAHash
	3.1 Password Notation
	3.2 DAHash
	3.3 Rational Adversary Model

	4 Stackelberg Game
	4.1 Action Space of Defender
	4.2 Action Space of Attacker
	4.3 Attacker's Utility
	4.4 Defender's Utility
	4.5 Stackelberg Game Stages

	5 Attacker and Defender Strategies
	5.1 Adversary's Best Response (Greedy)
	5.2 The Optimal Strategy of Selecting Hash Cost Vector

	6 Empirical Analysis
	6.1 The Password Distribution
	6.2 Experiment Results

	7 Conclusions
	A Algorithms
	B FAQ
	References

	Short Paper: Organizational Security: Implementing a Risk-Reduction-Based Incentivization Model for MFA Adoption
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussions and Implications
	6 Limitations and Future Work
	7 Conclusion
	References

	Measurement
	Lost in Transmission: Investigating Filtering of COVID-19 Websites
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Results
	4.1 What Is the Share of COVID-related Websites Blocked?
	4.2 Where Are COVID-related Websites Blocked?
	4.3 What Categories of COVID-related Websites Are Blocked?
	4.4 Do COVID-related Websites Perform Phishing?

	5 Discussion
	6 Conclusion
	References

	Under the Hood of the Ethereum Gossip Protocol
	1 Introduction
	2 Background
	2.1 Overview
	2.2 Networking in Ethereum
	2.3 Ethereum Implementations
	2.4 Related Work

	3 Methodology
	3.1 Ethereum Client
	3.2 Data Collection

	4 Analysis
	4.1 Application Layer
	4.2 Ethereum Protocol Layer
	4.3 Peer-to-Peer Level
	4.4 Internet Location

	5 Discussion
	References

	Liquidations: DeFi on a Knife-Edge
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Smart Contracts

	3 Protocols for Loanable Funds (PLF)
	3.1 Supplying and Borrowing in DeFi
	3.2 Interest Model
	3.3 Collateralization
	3.4 Liquidation
	3.5 Leveraging
	3.6 Use Cases of PLFs

	4 Methodology
	4.1 Definitions
	4.2 States on a PLF
	4.3 Leveraging Spirals on a PLF
	4.4 States and the Compound PLF

	5 Analysis
	5.1 Borrowers and Suppliers
	5.2 Leveraging Spirals
	5.3 The COMP Governance Token
	5.4 Liquidation Risk
	5.5 Liquidations and Liquidators
	5.6 Summary

	6 Discussion
	6.1 Governance Token Influence
	6.2 Governance Token Risks
	6.3 Contagion Effects
	6.4 Miner-Extractable Value

	7 Related Work
	8 Conclusion
	References

	Cryptography
	High-Threshold AVSS with Optimal Communication Complexity
	1 Introduction
	2 Definitions
	2.1 Commitment Schemes
	2.2 Dual-Threshold Asynchronous Verifiable Secret Sharing

	3 Haven for Short, Uniformly Random Secrets
	3.1 Construction
	3.2 Analysis
	3.3 Constructing the Underlying Commitments

	4 Amortizing Haven for Long Secrets
	References

	Fine-Grained Forward Secrecy: Allow-List/Deny-List Encryption and Applications
	1 Introduction
	2 Tagged Hierarchical Identity-Based Encryption
	2.1 Definition, Correctness, and Security Notions of THIBEs
	2.2 Constructing Tagged Hierarchical Identity-Based Encryption

	3 Dual-Form Puncturable Encryption
	3.1 Definition, Correctness, and Security Notions of DFPE
	3.2 Constructing Dual-Form Puncturable Encryption
	3.3 Implementation and Evaluation

	4 Applications
	4.1 Cloudflare's Geo Key Manager
	4.2 Cryptographic Primitives

	A Notation, Pairings and q-wBDHI Assumption
	References

	Faster Homomorphic Encryption over GPGPUs via Hierarchical DGT
	1 Introduction
	2 Mathematical Background
	2.1 The BFV Cryptosystem
	2.2 Residue Number System
	2.3 Division and Rounding Inside the RNS Domain
	2.4 Discrete Galois Transform

	3 Efficient CUDA Operation on Cyclotomic Rings
	3.1 Fast Polynomial Multiplication
	3.2 An Improved and Hierarchical DGT
	3.3 Polynomial Representation and Memory Locality

	4 Experimental Results
	4.1 Related Work
	4.2 Execution Environment, Methodology, and BFV Parameters
	4.3 Memory Consumption
	4.4 SPOG Operations
	4.5 Efficiency of the HDGT

	5 Conclusion
	A Properties of Gaussian Integers
	B Generating k-th Primitive Roots of i Modulo p
	References

	Multi-instance Publicly Verifiable Time-Lock Puzzle and Its Applications
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Smart Contract
	3.2 Commitment Scheme
	3.3 Pseudorandom Function
	3.4 Time-Lock Puzzle

	4 Multi-instance Time-Lock Puzzle
	4.1 Strawman Solution
	4.2 An Overview of Our Solutions
	4.3 Multi-instance Time-Lock Puzzle Definition
	4.4 Chained Time-Lock Puzzle (C-TLP) Protocol
	4.5 Cost Analysis Table

	5 Smarter Outsourced PoR (SO-PoR) Using C-TLP
	5.1 SO-PoR Overview
	5.2 SO-PoR Model Overview
	5.3 SO-PoR Protocol
	5.4 Evaluation

	6 C-TLP as Efficient Variant of VDF
	7 Conclusion
	References

	Practical Post-quantum Few-Time Verifiable Random Function with Applications to Algorand
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Verifiable Random Function

	3 Lattice-Based Few-Time Verifiable Random Function
	3.1 k-time LB-VRF Construction
	3.2 Security Analysis

	4 Implementation
	4.1 Implementation of LB-VRF
	4.2 Integration into Algorand Blockchain

	References

	Practical Witness-Key-Agreement for Blockchain-Based Dark Pools Financial Trading
	1 Introduction
	2 Dark Pools as a Motivating Application for WKA
	3 Related Work and Alternative Candidate Schemes
	4 Witness Key Agreement
	5 WKA from NILP
	6 WKA from NILP Based on QAP
	7 Instantiation and Performance Evaluation
	8 Conclusion
	References

	Author Index

