
Mining for Privacy: How to Bootstrap
a Snarky Blockchain

Thomas Kerber(B), Aggelos Kiayias, and Markulf Kohlweiss

The University of Edinburgh and IOHK, Edinburgh, Scotland
papers@tkerber.org, {akiayias,mkohlwei}@ed.ac.uk

Abstract. Non-interactive zero-knowledge proofs, and more specifically
succinct non-interactive zero-knowledge arguments (zk-SNARKs), have
been proven to be the “Swiss army knife” of the blockchain and dis-
tributed ledger space, with a variety of applications in privacy, interop-
erability and scalability. Many commonly used SNARK systems rely on a
structured reference string, the secure generation of which turns out to be
their Achilles heel: If the randomness used for the generation is known,
the soundness of the proof system can be broken with devastating conse-
quences for the underlying blockchain system that utilises them. In this
work we describe and analyse, for the first time, a blockchain mecha-
nism that produces a secure SRS with the characteristic that security is
shown under comparable conditions to the blockchain protocol itself. Our
mechanism makes use of the recent discovery of updateable structured
reference strings to perform this secure generation in a fully distributed
manner. In this way, the SRS emanates from the normal operation of the
blockchain protocol itself without the need of additional security assump-
tions or off-chain computation and/or verification. We provide concrete
guidelines for the parameterisation of this setup which allows for the
completion of a secure setup in a reasonable period of time. We also pro-
vide an incentive scheme that, when paired with the update mechanism,
properly incentivises participants into contributing to secure reference
string generation.

1 Introduction

In the domain of distributed ledgers, non-interactive zero-knowledge proofs have
many interesting applications. In particular, they have been successfully used
to introduce privacy into these inherently public peer-to-peer systems. Most
notably, Zerocash [2] demonstrates their usefulness in the creation of private
currencies. Beyond this, there are numerous suggestions [21,25,29] to apply the
same technology to smart contracts for increased privacy. Beyond privacy, other
applications of zero knowledge include blockchain interoperability, e.g., [17], and
scalability, e.g., [9].

For the practical efficiency of these designs, two things are paramount: The
succinctness of proofs, and the speed of verifying these proofs. The distributed

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12674, pp. 497–514, 2021.
https://doi.org/10.1007/978-3-662-64322-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64322-8_24&domain=pdf
https://doi.org/10.1007/978-3-662-64322-8_24


498 T. Kerber et al.

nature of the ledgers mandates that a large number of users store and verify each
proof made, rendering many zero-knowledge proof systems not fit for purpose.

Research into so-called zk-SNARKs [18–20,26,27] aims at optimising exactly
these features, with proof sizes typically under a kilobyte, and verification times
in the milliseconds. It is a well-known fact that non-interactive zero-knowledge
requires some shared randomness, or a common reference string. For many suc-
cinct systems [18–20,26,27], a stronger property is necessary: Not only is a shared
random value needed, but it must adhere to a specific structure. Such structured
reference strings (or SRS) typically consist of related group elements: gxi for all
i ∈ Zn, for instance.

The obvious way of sampling such a reference string from public randomness
reveals the exponents used – and knowledge of these values breaks the sound-
ness of the proof system itself. To make matters worse, the security of these
systems typically relies (among others) on knowledge of exponent assumptions,
which state that to create group elements related in such a way requires knowing
the underlying exponents and hence any SRS sampler will have to “know” the
exponents used and be trusted to erase them, becoming effectively a single point
of failure for the underlying system. While secure multi-party computation can
be, and has been, used to reduce the trust placed on such a setup process [31],
the selection of the participants for the secure computation and the verification
of the generation of the SRS by the MPC protocol retain an element of central-
isation. Using an MPC setup remains a controversial element in the setup of a
decentralised system that requires SNARKs.

Recent work has found succinct zero-knowledge proof systems with updateable
reference strings [19,26]. In these systems, given a reference string, it is possible
to produce an updated reference string, such that knowing the trapdoor of the
new string requires both knowing the trapdoor of the old string, and knowing
the randomness used in the update. [19] conjectured that a blockchain protocol
may be used to securely generate such a reference string. Nevertheless, the exact
blockchain mechanism that produces the SRS and the description of the security
guarantees it can offer has, so far, remained elusive.

1.1 Our Contributions

In this work we describe and analyse, for the first time, a blockchain mechanism
that produces a secure SRS with the characteristic that security is shown for
similar conditions under which the blockchain protocol is proven to be secure.
Notably different, we make implicit use of secure erasure, and require honest
majority only during a specific initialisation period. The SRS then emanates
from the normal operation of the blockchain protocol itself without the need of
additional security assumptions or off-chain computation and/or verification.

We rely primarily on the chain quality property of “Nakamoto-style” ledgers
[14] – distributed ledgers in which a randomised process selects which user may
append a block to an already established chain. Such ledgers rely on an honest
majority of hashing power (or some other resource) – and can be shown to



Mining for Privacy: How to Bootstrap a Snarky Blockchain 499

guarantee a chain quality property which suggests that any sufficiently long
chain segment will have some blocks created by an honest user, cf. [14,15,28].

Our construction, described in Sect. 3 integrates reference string updates into
the block creation process, but we face additional difficulties due to update calcu-
lation being a computationally heavy operation (albeit, contrary to brute-force
hashing, useful). The issues arising from this are two fold. Firstly, an adver-
sarial party can take shortcuts by supplying a low amount of entropy in their
updates, and try to utilise this additional mining power to subvert the reference
string which potentially has a large benefit for the adversary. Secondly, even
non-colluding rational block creators may be incentivised to use bad random-
ness which would reduce or remove any security benefits of the updates. Our
work addresses both of these issues.

We prove formally that our mechanism produces a secure reference string
in the full version of this paper [22, Appendix F] by providing an analysis in
the universal composition framework [10]. Furthermore, the full version of this
paper [22, Section 4] demonstrates via experimental analysis how to concretely
parameterise a proof-of-work ledger to ensure that an adversary which takes
shortcuts (while honest users do not) will still fail in subverting the reference
string. The concrete results provided in our experimental section can be used to
inform the selection of parameters in order to run our reference string generation
mechanism in live blockchain systems.

We further introduce an incentive scheme in Sect. 4, which ensures that ratio-
nal participants in the protocol, who intend to maximise their profits, will avoid
low-entropy attacks. In short, the incentive mechanism mandates that a ran-
dom fraction of update contributors in the final chain will be asked to reveal
their trapdoor, which will be verified to be the output of a random oracle by
the underlying ledger rules. Only if a user can demonstrate that their update
is indeed random do they receive a suitably determined reward for their effort.
Careful choice of the reward assignment enables us to demonstrate that rational
participants will utilise high entropy exponents, thus contributing to the SRS
computation.

1.2 Related Work

Beyond the obvious relation to the works introducing updateable reference
strings in [19,26] (most notably Sonic [26], which we follow closely in our instan-
tiation in the full version of this paper [22, Appendix A]), there have been
attempts of practically answering the question of how to securely generate ref-
erence strings. These have been in a setting where the string is not updateable.

Notably [5] describes the mechanism used by Sprout, the first version of
Zcash, during the initial setup of the cryptocurrency’s SRS. It uses multi-party
computation to generate a reference string, with a root of trust on the ini-
tial group of people participating. Due to performance constraints on the MPC
protocol, the set of parties participating is relatively small, although only the
honesty of a single participating party is required.



500 T. Kerber et al.

For the Sapling version of Zcash, a different approach was used when their ref-
erence string was replaced (due to an upgrade of the zero-knowledge statement,
and proof system used). Their second CRS generation mechanism, described
in [6] uses a multiple-phase round-robin mechanism to generate a reference string
for Groth’s zk-SNARK [18]. They utilise a random beacon to ensure the uniform
distribution of the result, and a coordinator to perform deterministic auxiliary
computations.

A great deal of work has also gone into the design of non-interactive zero-
knowledge which does not require structure in it’s references, such as DARK [8],
STARKs [1], and Bulletproofs [7]. While these pose a promising alternative
which does not require the techniques used in this work, leveraging updatabil-
ity of reference strings may permit greater efficiency without additional security
assumptions, and may be useful in instantiating generic constructions, such as
the polynomial commitments-based Halo Infinite [3].

2 Updateable Structured Reference Strings

While updateable structured reference strings (uSRSs) are modelled in the works
we are building on [26, Section 3.2], we model their security in the setting of
universal composability (UC) [10]. Here, a uSRS is a reference string with an
underlying trapdoor τ , which has had a structure function S imposed on it. S(τ)
is the reference string itself, while τ is not revealed to the adversary. In the full
version of this paper [22, Appendix A], we prove that Sonic [26] (with small mod-
ifications for extraction, as described in Subsect. 2.2), satisfies all the properties
we require in this section. Our main proof is independent of the Sonic protocol
however, and applies to any updateable reference string scheme satisfying the
properties laid out in the rest of this section.

2.1 Standard Requirements

A uSRS scheme S consists of a trapdoor domain T , an initial trapdoor τ0, a
set P of permissible (and invertible) permutations over T (i.e. bijective func-
tions whose domain and codomain is T ), and a structure function S with the
domain T . We require P to include the identity function id, and to be closed
under function composition: ∀p1, p2 ∈ P : p1 ◦ p2 ∈ P . An efficient permu-
tation lifting † should exist, such that for any permutation p ∈ P and τ ∈ T ,
p†(S(τ)) = S(p(τ)). Finally, there must exist algorithms ρ ← ProveUpd(S(τ), p)
and b ← VerifyUpd(S(τ), ρ, S(p(τ))) for creating and verifying update proofs
respectively. The format of these update proofs is not specified, however the
following constraints must be met:

1. Correctness. Applying an honestly generated update proof will verify: ∀p ∈
P, τ ∈ T : VerifyUpd(S(τ), ProveUpd(S(τ), p), S(p(τ))).

2. Structure preservation. Applying any valid update is equivalent to apply-
ing some permutation p ∈ P on the trapdoor: ∀ρ, τ, srs′ : VerifyUpd(S(τ),
ρ, srs′) =⇒ ∃p ∈ P : srs′ = S(p(τ)).



Mining for Privacy: How to Bootstrap a Snarky Blockchain 501

3. Update uniformity. Applying a random permutation is equivalent to select-
ing a new random trapdoor: Let D be the uniform distribution over T , and for
all τ ∈ T , let Dτ be the uniform distribution over the multiset { p(τ) | p ∈ P }.
Then ∀τ ∈ T : D = Dτ .

We define a corresponding UC functionality FuSRS, which provides a refer-
ence string S(p(τH)), which the adversary can influence by providing the per-
mutation p ∈ P , given only S(τH) as input, for a randomly sampled τH ∈ T .

Functionality uSRS

The updateable structured reference string functionality uSRS allows the ad-
versary to update a reference string by applying a permutation from a set of
permissible permutations P .

The functionality is parameterised by a trapdoor domain T , a structure func-
tion S, and a set of permissible permutations P over T .

State variables and initialisation values.

Variable Description
τ := The honest part of the trapdoor
τ := The trapdoor

When receiving a message from

if τ = then let τ
R

T

return S(τ )

When receiving a message srs from a party φ

query with (permute, φ) and receive the reply p
if τ = then

assert p P τ
let τ p(τ )

return S(τ)

We believe this functionality to be of independent interest, and it is not
explicitly tied to our implementation. Notably, while we use a distributed ledger
as a weak form of a broadcast channel, other broadcasts can be considered
without modification to this functionality. While, as presented, the functionality
does not dictate any specific usage, we conjecture that when parameterised with
an appropriate structure function and permutation set it can be used to securely
instantiate updateable SRS-based SNARKs, such as Sonic [26], Marlin [11], or
Plonk [13]. Due to the UC setting, this would require additional lifting to enable
UC knowledge extraction, such as that of C∅C∅ [24].

2.2 Simulation Requirements

In addition to the basic properties of correctness, structure preservation, and
update uniformity, any simulator wishing to help realise FuSRS via updates will
need to have access to two additional properties:



502 T. Kerber et al.

1. Update proof simulation. From an initial SRS S(τ) for which the sim-
ulator knows the trapdoor, it can produce a valid update to any (cor-
rectly structured) SRS. Formally: ∃Sρ∀τ1, τ2 ∈ T : VerifyUpd(S(τ1),
Sρ(τ1, S(τ2)), S(τ2)), where Sρ is a PPT algorithm.

2. Permutation extraction. The simulator must be capable of extracting the
permutation p underlying any valid adversarial update proof.

The most natural method to achieve permutation extraction would be using
white-box extractors, as the updates themselves typically rely on some form
of knowledge assumption, such as knowledge-of-exponent. However, white-box
extractors cannot be used in UC proofs. Instead, we will assume that the update
proof is proven to correspond to a specific trapdoor through a lower-level NIZK.
Crucially, this lower-level NIZK should not require a structured reference string,
and rely only on a common random string, or a random oracle. Fortunately,
it is not subject to stringent efficiency requirements as the full version of this
paper [22, Section 4] demonstrates.

Specifically, we assume that the basic update proof ρ is a statement in a
NIZK relation R where the witness is an encoding of the corresponding permu-
tation p. We require each update proof to have one and only one corresponding
permutation, formally expressed by requiring R to be a bijection. This results
in a straightforward modification to the ProveUpd and VerifyUpd algorithms
that permits the extraction of the underlying permutations even in the UC set-
ting: ProveUpd also creates a NIZK proof π of (ρ, p), and returns (ρ, π), While
VerifyUpd returns true only if this newly embedded NIZK proof also verifies.

The addition of this NIZK trivially preserves all security properties including
correctness, due to the definition of R:

Definition 1. A uSRS scheme is permutation extractable if the relation

R := {(ProveUpd(S(τ), p), p) | τ ∈ T, p ∈ P}
is a bijection, and in NP.

We show in [22, Appendix A] that the relation required for the case of
Sonic [26] can be efficiently constructed, and leave the question of how to achieve
extraction without the reliance on a further NIZK to future work.

3 Building uSRS from Chain Quality

This section shows how to securely initialise a uSRS using a distributed ledger
by requiring block creators to perform updates on an evolving uSRS during
an initial setup period. After waiting for agreement on the final uSRS, it can
be safely used. To formally model this approach, we discuss the ideal and real
worlds used in our simulation proof. Both worlds have access to a ledger, however
the ideal world’s ledger is independent of the reference string (which is instead
provided by the independent FuSRS functionality), while the real world’s ledger
is programmed to generate it using updates.



Mining for Privacy: How to Bootstrap a Snarky Blockchain 503

3.1 High-Level Overview

This basic premise of this paper relies on Nakamoto-style ledgers’ basic means
of operation: Different users can extend a chain of blocks if they can satisfy some
condition, with this condition being associated with a type of hardness which
ensures attackers are limited in the number of extensions they can perform.
Given such a structure, we associate a uSRS update with each block prior to
a time δ1. This time is selected such that the security properties of the ledger
ensure at least one of the blocks is honest in each competitive chain at this point.

In our modelling, we construct this from a ledger functionality with an addi-
tional leadership state, which is derived from information miners embed in their
blocks. Specifically for our case, these encode uSRS updates. We leave this suffi-
ciently general to allow other uses as well. The basic idea is to show that a ledger
which performs uSRS updates in its leadership state is equivalent to one which
doesn’t, but is accompanied by the FuSRS functionality. They make up our real
and ideal worlds respectively. After time δ1, users wait a further time period δ2
until common prefix ensures that all parties agree on the reference string.

While ledger functionalities are often treated as global, our approach effec-
tively constructs one ledger from another – the ledger is not a dependency of
our protocol, but a component. In this context, globality is irrelevant, as the
environment already has direct access to the functionality. We expect protocols
building on the ledger to use it in a global fashion, however. The same is not
true for the uSRS – most usages will likely rely on the simulator being able to
extract its trapdoor.

3.2 Our Ledger Abstraction

Our construction of the updateable structured reference string functionality
relies heavily on the properties of common prefix, chain quality, and chain growth
defined in the “Bitcoin backbone” analysis by Garay et al. [14], for Nakamoto-
style consensus algorithms. Despite our use in the section title, we make use of
all three properties, not just that of chain quality. We emphasise chain quality, as
it is the property central to ensuring an honest update has occurred. We briefly
and informally restate the three properties:

– Common prefix. Given the current chains Π1 and Π2 of two parties, and
removing k blocks from the first, it is a prefix of the second: Π

�k
1 ≺ Π2.

– Chain quality. For any party’s current chain Π, any consecutive l blocks in
this chain will include μ blocks created by an honest party.

– Chain growth. If a party’s chain is of length c, then s time slots later, it
will be at least of length c + γ.

These parameters determine the length of the two phases of our protocol. In the
first phase, we construct the reference string itself from the liveness parameter
(assuming μ ≥ 1), and in the second phase, we wait until this reference string
has propagated to all users. The length of the first phase is at least δ1 ≥ �lγ−1�s,



504 T. Kerber et al.

and that of the second at least δ2 ≥ �kγ−1�s. Combined, they make up the total
uSRS generation delay δ ≥ (�lγ−1� + �kγ−1�)s.

We assume a ledger which guarantees the backbone properties. While we do
not prove any specific existing proof-of-work ledger (or those based on a different
leader-selection mechanism) formally UC-realise this specific formalisation, we
argue all ledgers with “Nakamoto-style” (as opposed to BFT-style) consensus do
so.. Both ledger and argument are presented in the full version of this paper [22,
Appendix B]. Our functionality further depends on a global clock Gclock, defined
in [22, Appendix E.1]. For the purposes of this paper, it is sufficient that this
is a beacon providing monotonically increasing values representing the current
time to any party requesting them.

In addition to this, we assume each block created can contain additional
information, provided by its creator (the “miner”), which can be aggregated to
construct a “leader state”. Each created block is associated with an update a, and
the ledger is parameterised by two procedures, Gen, and Apply, which describe
the honest selection of updates, and the semantics of updates respectively. Look-
ing forward, these utilise ProveUpd and VerifyUpd internally, although the for-
malism is sufficiently general to allow usage of the leader state for other, parallel
purposes. The exact parameters differ in our ideal and real world, with the
ideal world “hiding” the uSRS updates. Additionally, the real world adds time-
sensitivity: It does nothing to the SRS after the setup period. Gen is randomised,
takes a leader state σ and the current time t as inputs, and produces an update
a. Apply takes a leader state σ, an update a, and an update time t, and returns
a successor state σ′: σ′ = Apply(σ, (a, t)). For a chain, the leader state may be
computed by sequentially applying all updates in the chain, starting from an
initial state ∅.

The adversary controls when and which party creates a new block, as well as
the transactions each new block contains (provided it does not violate the back-
bone properties). For transactions created by a corrupted party, the adversary
can further control the block’s timestamp (within the reasonable limits of not
being in the future, and being after the previous block), and the desired update
a itself. For honest parties updates, Gen is used instead.
The UC interfaces our ledger provides are:

– submit. Submitting new transactions for the ledger.
– read. Reading the confirmed sequence of transactions.
– projection. Reading the current chain’s sequence of (potentially uncon-

firmed) transactions.
– leader-state. Reading the confirmed leader state.
– advance. The adversary switches a party to a longer chain.
– extend. The adversary instructs a party to create a block.

While this ledger abstraction is not the focus of this paper, we believe it to be of
independent interest in cases where finer control over miner’s actions, or better
access to the competing chains is desired.



Mining for Privacy: How to Bootstrap a Snarky Blockchain 505

3.3 The Ideal World

Our ideal world consists of two functionalities, composed in parallel (by which
we mean: the environment may address either, and they do not interact). The
first is a variant of FuSRS, with the modification that it cannot be addressed
by honest parties before δ time slots have passed. Formally, this modification is
made with a wrapper functionality Wdelay(F, δ), described in [22, Appendix E.4].

The second is the Nakamoto-style ledger functionality, parameterised with
arbitrary leader-state generation and application procedures which are also par-
tially used in the hybrid world: Gen = GenIdeal and Apply = ApplyIdeal, and
the following ledger parameters:

1. A common prefix parameter k.
2. Chain quality parameters μ and l.
3. Chain growth parameters γ and s.

Formally then, our ideal world consists of the pair (Wdelay(δ, FuSRS), F ideal
nakLedger),

as well as the global functionality Gclock.

3.4 The Hybrid World

In our hybrid world, we use a uSRS scheme S, with algorithms ProveUpd,
VerifyUpd, the structure function S, permissible permutations P , permutation
lifting †, initial trapdoor τ0. The hybrid world consists of a separate Nakamoto-
style ledger F real

nakLedger, a NIZK functionality FR
NIZK, and the global clock Gclock.

The ledger is then parameterised by the same chain parameters as those in the
ideal world, and the following leader-state procedures:

procedure Apply((srs, σideal), ((srs′, ρ, π, aideal), t))
if srs = ∅ then let srs ← S(τ0)
if t ≤ δ1 ∧ VerifyUpd(srs, ρ, srs′) then

send (verify, ρ, π) to FR
NIZK and receive the reply b

if b then
let srs ← srs′

return (srs, ApplyIdeal(σideal, aideal, t))
procedure Gen((srs, σideal), t)

if t > δ1 then
return (ε, ε, ε, GenIdeal(σideal, t))

else
let p

R←− P ; ρ ← ProveUpd(srs, p)
send (prove, ρ, p) to FR

NIZK and receive the reply π
return (p†(srs), ρ, π, GenIdeal(σideal, t))

Note that these parameterising algorithms use FR
NIZK, and are therefore the

reason the ledger depends on this hybrid functionality.
Key here is that once a block is received after the initial chain quality period,

any reference string update it may declare is no longer carried out – at this point
the uSRS is not necessarily stable, as the chain may still be reorganised, but
should not change for this particular chain. Further, these procedures always



506 T. Kerber et al.

mimic the ideal-world behaviour, extending it rather than replacing it. This
demonstrates the composability of allowing block leaders to produce updates:
One system using updates for security does not impact other parallel uses of the
leadership state.

There is little additional work to be done to UC-emulate the ideal-world
behaviour, besides ensuring that queries are routed appropriately, especially
how the reference string is queried in the hybrid world. We describe this with a
small “adaptor” protocol in the full version of this paper [22, Appendix C],
ledger-adaptor. This forwards most queries, and treats uSRS queries as
querying the appropriate part of the leader state after time δ, and by ignor-
ing them before. Formally, our real world consists of the global clock Gclock, and
the system ledger-adaptor(δ, F real

nakLedger(FR
NIZK)).

3.5 Alternative Usage of Gclock

In both worlds, Gclock is used to determine the cutoff point after which the
reference string is deemed secure. A simple alternative to this usage of the clock
is to instead rely on the length of the chain for this purpose. We did not make
this choice as it complicates the ideal world: The delay wrapper would have to
communicate with the ideal world ledger, and query it for the length of parties’
chains. We do not regard a clock as a significant additional assumption, however
little of the remainder of this paper differs if chain lengths are used instead. Even
in this case, a clock is present to guarantee liveness, although it is used only to
constrain the adversary.

3.6 UC Emulation

Our security is derived through UC-emulation, stated in the following theorem:

Theorem 1. For any updateable reference string scheme S, satisfying correct-
ness, structure preservation, update uniformity, update simulation with Sρ, and
permutation extraction, ledger-adaptor (in the (F real

nakLedger, FR
NIZK)-hybrid

world, parameterised as in Subsect. 3.4) UC-emulates the pair of functionalities
(F ideal

nakLedger, Wdelay(δ, FuSRS)), parameterised as in Subsect. 3.3, in the presence
of the global clock functionality Gclock, with the simulator Sledger-adaptor.

A full security proof and simulator may be found in the full version of this
paper [22, Appendix F & D].

4 Low-Entropy Update Mitigation

While our analysis indicates that in a Byzantine, honest majority setting, our
protocol produces a trustworthy reference string, it also asks participants to
dedicate computational resources to updates. It follows that in a rational setting,
players need to be properly incentivised to follow the protocol. We emphasise



Mining for Privacy: How to Bootstrap a Snarky Blockchain 507

that the rational setting is not the focus of this paper, and optimistically, in a
setting where the majority of miners are rational and a small fraction honest, the
few honest blocks are sufficient to eliminate the issue described in this section.

For Sonic, a protocol deviation exists that breaks the security of the reference
string: By choosing the exponent in a specific low-entropy fashion, (e.g., y = 2l)
the computation of the update, which primarily relies on repeated squaring, can
be done significantly faster. More generally, some permutations in P may be more
efficiently computable. In more detail, instead of using a random permutation p,
a specific choice is made that eases the computation of srs′ – in the most extreme
case, for any uSRS scheme, the update for p = id is trivial.

4.1 Proposed Construction

In order to facilitate a mitigation for this class of attacks, we will need to assume
an additional property of the underlying ledger, in particular it must provide a
“resettable” randomness beacon: With each advance operation (where adver-
sary must be restricted in how often it may do such advance queries), a random
beacon value is sampled in a variable bcn and is associated with the correspond-
ing block. Beacons of this kind are often easily available, for instance by hashing
the proof-of-work [4], and are inherent in many proof-of-stake designs. Prior
work [12] demonstrates that such beacon values allow for the adversary to bias
them only by “resetting” it at most a certain number of times, say t, before
they are fixed by entering the ledger’s confirmed state, with the exact value of t
depending on the chain parameters.

We can then amend Gen to derive its random values from the random oracle,
by sending the query (bcn, nonce) to FRO, where nonce is a randomly selected
nonce, and bcn is the previous block’s beacon value. The response is used to
index the set of trapdoor permutations P , choosing the result p, and the nonce
is stored by miners locally, and kept private. We adapt the Phase 1 period δ1 so
that at least l′ := l(1 − θ)−1 + c blocks will be produced, where θ and c are new
security parameters (to be discussed below). Next, after Phase 2 ends, we can
be sure that the beacon value associated with the end of Phase 1 has been reset
at most t times.

We extract from bcn l′ biased coins, each with probability θ. For each block,
if the corresponding coin is 1, it is required to reveal its randomness within a
period of time at least as long as the liveness parameter. Specifically, a party
which created one of the selected blocks may reveal its nonce. If its update
matches this nonce, the party receives an additional reward of value R times the
standard block reward.

While this requires a stricter chain quality property, with the ledger func-
tionality instead enforcing that one of these l non-opened updates are honest,
we sketch why this property still holds in the next section.



508 T. Kerber et al.

4.2 Security Intuition

Consider now a rational miner with hashing power α. We know that, at best,
using an underlying blockchain like Bitcoin, the relative rewards such a miner
may expect are at most α/(1 − α) in expectation; this assumes a selfish mining
strategy that wins all network races against the other rational participants. Now
consider a miner who uses low entropy exponents to save on computational power
on created blocks and, as a result, boosts their hashing power α to an increased
relative hashing power of α′ > α. The attacker can further try to influence the
blockchain by forking and selectively disclosing blocks which has the effect of
resetting the bcn value to a preferred one. To see that the impact of this is
minimal, we prove the following lemma.

Lemma 1. Consider a mapping ρ 
→ {0, 1}l′ that generates l′ independent
biased coin flips, each with probability θ, when ρ is uniformly selected. Con-
sider any fixed n ≤ l′ positions and suppose an adversary gets to choose any one
out of t independent draws of the mapping’s random input with the intention to
increase the number of successes in the n positions. The probability of obtaining
more than n(1 + ε)θ successes is exp(−Ω(ε2θn) + ln t).

Proof. In case t = 1, result follows from a Chernoff bound on the event E defined
as obtaining more than n(1 + ε)θ successes, and has probability exp(−Ω(ε2θn)).
Given that each reset is an independent draw of the same experiment, by apply-
ing a union bound we obtain the lemma’s statement. ��

The optimal strategy of a miner utilising low-entropy attacks is to minimise
the number of blocks of other miners are chosen, to increase its relative reward.
Lemma 1 demonstrates that at most a factor of (1+ ε)−1 damage can be done in
this way. Regardless of whether a miner utilises low-entropy attacks or not, their
optimal strategy beyond this is selfish mining, in the low-entropy attack mining
in expectation l′α′/(1 − α′) blocks [14]. A rational miner utilising low-entropy
attacks will not gain any additional rewards, while a miner not doing so will
gain at least l′α/(1−α)(1+ε)−1θR rewards from revealing their randomness, by
Lemma 1. It follows that for a rational miner, this strategy can be advantageous
to plain selfish mining only in case:

α′

1 − α′ > (1 + θ(1 + ε)−1R) α

1 − α

If we assume a miner can increase their effective hash rate by a factor of c,
using low-entropy exponents, then their advantage in the low entropy case is
α′ = αc/(αc + β), where β = 1 − α is the relative mining power of all other
miners. If follows that the miner benefits if and only if:

αc
αc+β · αc+β

β > (1 + θ(1 + ε)−1R) α
β

⇐⇒ c > 1 + θ(1 + ε)−1R

If we adopt a sufficiently large intended time interval between blocks it is possible
to bound the relative savings of a selfish miner using low-entropy exponents;



Mining for Privacy: How to Bootstrap a Snarky Blockchain 509

following the parameterisation of the full version’s simulation [22, Section 4.2],
if a selfish miner using such exponents can improve their hashing power by at
most a multiplicative factor c then we can mitigate such attack by setting R to
(c − 1)/(θ(1 + ε)−1).

5 Discussion

While the clean generation of a new reference string from a ledger protocol is
itself useful, real-world situations are likely to be more complex. In this section
we discuss practical adjustments that may be made.

5.1 Upgrading Reference Strings

As distributed ledgers are typically long-lived, and may well outlive any reference
string used within it – or have been running before a reference string was needed.
Indeed, the Zcash protocol has seen upgrades in its reference string. A reference
string being replaced with a new one is innocuous without further context, how-
ever it is important to consider how they are usually used in zero-knowledge
proofs. If the proof they are used in is stateless, upgrading from an insecure to a
secure reference string behaves as one may naively expect: It ensures that after
the upgrade, security properties hold.

In the example of Zcash, which runs a variant of the Zerocash [2] protocol,
the situation is more muddy. Zerocash makes stateful zero-knowledge proofs.
Suppose a user is sceptical of the security of the initial setup – and there is good
reason to be [30] – but is convinced the second reference string is secure. Is such
a user able to use Zcash with confidence in its security?

Had Zcash not had safeguards in place, the answer would be no. While the
protocol may operate as intended currently, and the user can be convinced of
that, due to the stateful nature of the proofs, the user cannot be convinced
of the correctness of this state. The Zcash cryptocurrency did employ similar
safeguards to those we outline below. We stress the importance of such here, as
not every project may have the same foresight.

Specifically, for a Zerocash-based system, an original reference string’s back-
door could have been used to create mismatched transactions, and to effectively
“mint” large coins illicitly. This process is undetectable at the time, and the
minted coins would persist across a reference string upgrade. Our fictitious user
may therefore be rightfully suspicious as to the value of any coins he is sold –
they may be a part of an almost infinite pool!

Such an attack, once carried out (especially against a currency) is hard to
recover from – it is impossible to identify “legitimate” owners of the currency,
even if the private transaction history were deanonymised, and the culprit identi-
fied. The culprit may have traded whatever he created already. Simply invalidat-
ing the transaction would therefore harm those he traded with, not himself. In
an extreme case, if he traded one-to-one with legitimate owners of the currency,
he would succeed in effectively stealing the honest users funds. If such an attack



510 T. Kerber et al.

is identified, the community has two unfortunate options: Annul the funds of
potentially legitimate users, or accept a potentially large amount of inflation.

We may assume a less grim scenario however: Suppose we are reasonably
confident in the security of our old reference string, but we are more confident of
the new one. Is it possible to convince users that we have genuinely upgraded our
security? We suggest the usage of a type of firewalling property. Such properties
are common in the domain of cross-chain transfers [17], and are designed to
prevent a catastrophic failure on one chain damaging another.

For monetary transfers, the firewall would guarantee an upper-bound of funds
was not exceeded. Proving the firewall property is preserved is easy if a small
loss of privacy is accepted – each private coin being re-minted before it can be
used after the upgrade, during which time its value must be declared. Assuming
everything operates fine, and the firewall property is not violated, users interact-
ing with the post-firewall state can be confident as to the upper bound of funds
available. Further, attacks on the system can be identified: If an attacker mints
too many coins, eventually the firewall property will be violated, indicating that
too many coins were in circulation – bringing the question of how to handle this
situation with it. We believe that a firewall property does however give peace of
mind to users of the system, and is a practical means to assuage concerns about
the security of a system which once had a questionable reference string.

In Zcash, a soft form of such firewalling is available, in that funds are split
across several “pools”, each of which uses a different proving mechanism. The
total value of each pool can be observed, and values under zero would be consid-
ered a cause for alarm, and rejected. Zcash use the terminology “turnstiles” [32],
and no attacks have been observed through them.

A further consideration for live systems is that as the full version’s simu-
lation [22, Section 4.2] shows, the time required strongly depends on the fre-
quency between blocks. This may conflict with other considerations for select-
ing the block time – a potential solution for this is to only perform updates
on “superblocks”: blocks which meet a higher proof-of-work (or other selection
mechanism) criteria than usual.

5.2 The Root of Trust

An important question for all protocols in the distributed ledger setting is
whether a user entering the system at some point during its runtime can be
convinced to trust in its security. Early proof-of-stake protocols, such as [23],
did poorly at this, and were subject to “stake-bleeding” attacks [16] for instance
– effectively meaning new users could not safely join the network.

For reference strings, if a newly joining user is prepared to accept that the
honest majority assumption holds, they may trust the security of the reference
string, as per Theorem 1. There is a curious difference to the security of the
consensus protocol however: to trust the consensus – at least for proof-of-work
based protocols – it is most important to trust a current honest majority, as
these protocols are assumed to be able to recover from dishonest majorities at
some point in their past. The security of the reference string on the other hand



Mining for Privacy: How to Bootstrap a Snarky Blockchain 511

only relies on assuming honest majority during the initial δ time units. This may
become an issue if a large period of time passes – why should someone trust the
intentions of users during a different age?

In practice, it may make sense to “refresh” a reference string regularly to
renew faith in it. It is tempting to instead continuously perform updates, however
as noted in Subsect. 5.1, this does not necessarily increase faith in a stateful
system, although is can remove the “historical” part from the honest majority
requirement when used with stateless proofs.

Most subversion attacks are detectable – they require lengthy forks which
are unlikely to occur during a legitimate execution. In an optimistic case, where
no attack is attempted, this may provide an additional level of confirmation: if
there are no widespread claims of large forks during the initial setup, then the
reference string is likely secure (barring large-scale out-of-band censorship). A
flip side to this is that it may be a lot easier to sow doubt, however, as there is
no way to prove this: A malicious actor could create a fork long after the initial
setup, and claim that it is evidence of an attack to undermine the credibility of
the system.

5.3 Applications to Non-updateable SNARKs

Updateable SNARK schemes have two distinct advantages which our protocol
makes use of: First, they have an explicit update procedure which allows a party
φ to replace a reference string whose security depends on some assumption A,
with one whose security depends on A ∨ (φ is honest). Second, they can survive
with a partially biased reference string, a fact which we don’t use directly in this
paper, however the functionality FuSRS we provide permits rejection sampling,
encoding it into the ideal world.

The lack of an update algorithm can be resolved for some zk-SNARKs, such
as [18], by the existence of a weaker property: In two phases, the reference
string can be constructed with (potentially different) parties performing round-
robin updates (also group exponentiations) in each phase. This approach is also
detailed in [6], and it implies a natural translation to our protocol, in which the
first phase is replaced with two phases of the same length, performing the first
and second phase updates respectively.

The security of partially biased references strings has not been sufficiently
analysed for non-updateable SNARKs, however this weakness can be mitigated.
Following [6], it is possible to use a pure random beacon (as opposed to the reset-
table one used in Sect. 4) to create a “pure” reference string from the “impure”
one presented so far. To sketch the design: The random beacon would be queried
after time δ, and the randomness used to select a trapdoor permutation over the
reference string. This would then be applied by each party independently, arriv-
ing at the same – randomly distributed – reference string.

As this is not required for updateable SRS schemes, we did not perform this
analysis in depth. However the approach to the simulation would be to perform
the SRS generation identically, and then program the random beacon to invert
all permutations applied to the honest reference string. Since this includes the



512 T. Kerber et al.

one honest permutation applied on every honest update, this is indistinguishable
from a random value to the adversary. It is worth noting that the requirement
of a random beacon is on the stronger side of requirements, especially as it
should itself not allow adversarial influence to provide the desired advantage.
Approaches using block hashes for randomness introduce exactly the limited
influence which we are attempting to remove!

Acknowledgements. The second and third author were partially supported by the
EU Horizon 2020 project PRIVILEDGE #780477. We thank Eduardo Morais for pro-
viding data on the required depth of reference strings for Zcash’s Sapling protocol.

References

1. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

2. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press, May 2014

3. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: recursive zk-SNARKS
from any additive polynomial commitment scheme. Cryptology ePrint Archive,
Report 2020/1536 (2020). https://eprint.iacr.org/2020/1536

4. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
Cryptology ePrint Archive, Report 2015/1015 (2015). http://eprint.iacr.org/2015/
1015

5. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. In: FC 2018. LNCS, vol. 10958,
pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-
8_5

6. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017). http://eprint.iacr.org/2017/1050

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018

8. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

9. Buterin, V.: On-chain scaling to potentially 500 tx/sec through mass
tx validation. https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-
through-mass-tx-validation/3477

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

11. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1_26

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2020/1536
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
http://eprint.iacr.org/2017/1050
https://doi.org/10.1007/978-3-030-45721-1_24
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://doi.org/10.1007/978-3-030-45721-1_26


Mining for Privacy: How to Bootstrap a Snarky Blockchain 513

12. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8_3

13. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PlonK: permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_10

15. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_10

16. Gaži, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake
blockchains. Cryptology ePrint Archive, Report 2018/248 (2018). https://eprint.
iacr.org/2018/248

17. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Sym-
posium on Security and Privacy, pp. 139–156. IEEE Computer Society Press, May
2019

18. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

19. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

20. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_20

21. Juels, A., Kosba, A.E., Shi, E.: The ring of gyges: investigating the future of crimi-
nal smart contracts. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 283–295. ACM Press, October 2016

22. Kerber, T., Kiayias, A., Kohlweiss, M.: Mining for privacy: how to bootstrap a
snarky blockchain. Cryptology ePrint Archive, Report 2020/401 (2020). https://
eprint.iacr.org/2020/401

23. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

24. Kosba, A., et al.: C∅c∅: a framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015). https://eprint.iacr.
org/2015/1093

25. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press,
May 2016

https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://eprint.iacr.org/2018/248
https://eprint.iacr.org/2018/248
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://eprint.iacr.org/2020/401
https://eprint.iacr.org/2020/401
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093


514 T. Kerber et al.

26. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128.
ACM Press, November 2019

27. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press, May 2013

28. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

29. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.T.:
zkay: specifying and enforcing data privacy in smart contracts. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 1759–1776. ACM Press,
November 2019

30. Swihart, J., Winston, B., Bowe, S.: Zcash counterfeiting vulnerability success-
fully remediated. ECC Blog, February 2019. https://electriccoin.co/blog/zcash-
counterfeiting-vulnerability-successfully-remediated/

31. Zcash. Parameter generation (2018). https://z.cash/technology/paramgen/
32. Zcash. Address and value pools in Zcash (2019). https://zcash.readthedocs.io/en/

latest/rtd_pages/addresses.html#turnstiles

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://z.cash/technology/paramgen/
https://zcash.readthedocs.io/en/latest/rtd_pages/addresses.html#turnstiles
https://zcash.readthedocs.io/en/latest/rtd_pages/addresses.html#turnstiles

	Mining for Privacy: How to Bootstrap a Snarky Blockchain
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Updateable Structured Reference Strings
	2.1 Standard Requirements
	2.2 Simulation Requirements

	3 Building uSRS from Chain Quality
	3.1 High-Level Overview
	3.2 Our Ledger Abstraction
	3.3 The Ideal World
	3.4 The Hybrid World
	3.5 Alternative Usage of Gclock
	3.6 UC Emulation

	4 Low-Entropy Update Mitigation
	4.1 Proposed Construction
	4.2 Security Intuition

	5 Discussion
	5.1 Upgrading Reference Strings
	5.2 The Root of Trust
	5.3 Applications to Non-updateable SNARKs

	References




