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Preface

FC 2021, the 25th International Conference on Financial Cryptography and Data
Security, was held online during March 1–5, 2021.

We received an all-time record of 223 submissions, of which 6 were desk rejected
due to non-compliance with page limits and 217 were considered for review. Of these,
54 were included in the program, 47 as regular papers, four as short papers, and three
as Systematization of Knowledge (SoK) papers; a 25% acceptance rate. Revised papers
appear in these proceedings.

The review process was double-blind and carried out entirely online via the HotCRP
review platform. The review period lasted about 10 weeks, taking place between the
end of September and the beginning of December 2020. Papers received four reviews
on average. The review period was followed by an online discussion, which was at
times extensive—two papers received 27 comments and the median discussion had
five comments. After discussion, papers were either accepted, rejected, or conditionally
accepted,with a ProgramCommittee (PC)member assigned in the latter case to shepherd
the paper and ensure that specific improvements were made. One of the conditionally
accepted papers could not be included in the program due to a technical flaw discovered
during the shepherding process.

We are grateful to the 127 Program Committee members and 94 external reviewers
who reviewed all the submissions and provided thoughtful and constructive feedback,
which considerably strengthened the quality of the final program. Two reviewers stood
out in terms of the quality of their reviews and were named “Distinguished Review-
ers”: Zeta Avarikioti and Dionysis Zindros. Additionally, we would like to recognize
reviewers whose contributions went above and beyond the expectations of a regular
PC member: Joseph Bonneau, Christian Cachin, Jeremy Clark, Juan Garay, Arthur
Gervais, Katharina Kohls, Johannes Krupp, Wouter Lueks, Sarah Meiklejohn, Pedro
Moreno-Sanchez, Bart Preneel,MarkoVukolić, RiadWahby, andRenZhang. Finally,we
would like to recognize three external reviewers for their outstanding service: Christian
Badertscher, Ankit Gangwal, and Henning Seidler.

FC 2021 no longer distinguished between two “tracks”, one on traditional financial
cryptography and another on blockchain research, and instead had a single track
with a wide variety of topics including blockchain-related papers. When classify-
ing papers into these two broad categories, we found that 72% of submitted papers
were on topics related to blockchain research, while only 55% of accepted papers
fell in that category. The accepted papers were organized according to their topic
into 12 sessions: Smart Contracts, Anonymity and Privacy in Cryptocurrencies, Secure
Multi-party Computation, System and Application Security, Zero-knowledge Proofs,
Blockchain Protocols, Payment Channels, Mining, Scaling Blockchains, Authentication
and Usability, Measurement, and Cryptography.

Due to the COVID-19 global pandemic, a physical meeting was impossible; instead
FC 2021 was held as a four-day online event. Papers were presented in 12 sessions, with
a short live presentation followed by a question-and-answer session with the audience.
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Authors also recorded a longer paper presentation of 20–30 minutes that is available
online, linked from the conference website. In addition to the 12 regular paper sessions,
the program included a Rump session, a keynote talk on “Signature and Commitment”
by Whitfield Diffie, a keynote Fireside Chat with SEC Commissioner Hester Peirce, a
General Assembly, and a social hour at the end of each day. We are grateful to all the
session chairs for their service. Andwewould like to offer special thanks toKayMcKelly
and Kevin McCurley for providing and managing the online conference platform. We
would also like to thank Sergi Delgado Segura and Rafael Hirschfeld for their service
as conference general chairs, and the IFCA directors and Steering Committee for their
help organizing the conference during this particularly challenging year.

Finally, we would like to thank the sponsors of the conference for their generous
support: our Platinum sponsor Novi; our Gold sponsors Chainalysis and IBM; and our
Silver sponsors NTT Research and Protocol Labs.

August 2021 Nikita Borisov
Claudia Diaz
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Abstract. Credit allows a lender to loan out surplus capital to a bor-
rower. In the traditional economy, credit bears the risk that the bor-
rower may default on its debt, the lender hence requires upfront collat-
eral from the borrower, plus interest fee payments. Due to the atomicity
of blockchain transactions, lenders can offer flash loans, i.e., loans that
are only valid within one transaction and must be repaid by the end of
that transaction. This concept has lead to a number of interesting attack
possibilities, some of which were exploited in February 2020.

This paper is the first to explore the implication of transaction atom-
icity and flash loans for the nascent decentralized finance (DeFi) ecosys-
tem. We show quantitatively how transaction atomicity increases the
arbitrage revenue. We moreover analyze two existing attacks with ROIs
beyond 500k%. We formulate finding the attack parameters as an opti-
mization problem over the state of the underlying Ethereum blockchain
and the state of the DeFi ecosystem. We show how malicious adver-
saries can efficiently maximize an attack profit and hence damage the
DeFi ecosystem further. Specifically, we present how two previously exe-
cuted attacks can be “boosted” to result in a profit of 829.5k USD
and 1.1M USD, respectively, which is a boost of 2.37× and 1.73×, respec-
tively.

1 Introduction

A central component of our economy is credit : to foster economic growth, market
participants can borrow and lend assets to each other. If credit creates new
and sustainable value, it can be perceived as a positive force. Abuse of credit,
however, necessarily entails negative future consequences. Excessive debt can
lead to a debt default—i.e., a borrower is no longer capable to repay the loan
plus interest payment. This leads us to the following intriguing question: What
if it were possible to offer credit without bearing the risk that the borrower does
not pay back the debt? Such a concept appears impractical in the traditional
financial world. No matter how small the borrowed amount, and how short the
loan term, the risk of the borrower defaulting remains. If one were absolutely
certain that a debt would be repaid, one could offer loans of massive volume –
or lend to individuals independently of demographics and geographic location,
effectively providing capital to rich and poor alike.
c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12674, pp. 3–32, 2021.
https://doi.org/10.1007/978-3-662-64322-8_1
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Given the peculiarities of blockchain-based smart contracts, flash loans
emerged. Blockchain-based smart contracts allow to programmatically enforce
the atomic execution of a transaction. A flash loan is a loan that is only valid
within one atomic blockchain transaction. Flash loans fail if the borrower does
not repay its debt before the end of the transaction borrowing the loan. That
is because a blockchain transaction can be reverted during its execution if the
condition of repayment is not satisfied. Flash loans yield three novel properties,
absent in traditional finance:

– No debt default risk: A lender offering a flash loan bears no risk that
the borrower defaults on its debt1. Because a transaction and its instructions
must be executed atomically, a flash loan is not granted if the transaction
fails due to a debt default.

– No need for collateral: Because the lender is guaranteed to be paid back,
the lender can issue credit without upfront collateral from the borrower: a
flash loan is non-collateralized.

– Loan size: Flash loans can be taken from public smart contract-governed
liquidity pools. Any borrower can borrow the entire pool at any point in
time. As of September 2020, the largest flash loan pool Aave [13] offers in
excess of 1B USD [1].

To the best of our knowledge, this is the first paper that investigates flash
loans. This paper makes the following contributions:

– Flash loan usage analysis. We provide a comprehensive overview of how
and where the technique of flash loans can and is utilized. At the time of
writing, flash loan pool sizes have reached more than 1B USD.

– Post mortem of existing attacks. We meticulously dissect two events
where talented traders realized a profit of each about 350k USD and 600k
USD with two independent flash loans: a pump and arbitrage from the 15th
of February 2020 and an oracle manipulation from the 18th of February 2020.

– Attack parameter optimization framework. Given the interplay of six
DeFi systems, covering exchanges, credit/lending, and margin trading, we
provide a framework to quantify the parameters that yield the maximum
revenue an adversary can achieve, given a specific trading attack strategy.
We show that an adversary can maximize the attack profit efficiently (in less
than 13ms) due to the atomic transaction property.

– Quantifying opportunity loss. We show how the presented flash loan
attackers have forgone the opportunity to realize a profit exceeding 829.5k USD
and 1.1M USD, respectively. We realize this by finding the optimal adversar-
ial parameters the trader should have employed, using a parametrized opti-
mizer. We experimentally validate the opportunity loss on a locally deployed
blockchain mirroring the attacks’ respective blockchain state.

– Impact of transaction atomicity on arbitrage. We show quantitatively
how atomicity reduces the risk of revenue from arbitrage. Specifically, by
analyzing 6.4M transactions, we find that the expected arbitrage reward

1 Besides the risk of smart contract vulnerabilities.
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decreases by 123.49 ± 1375.32 USD and 1.77 ± 10.59 USD for the DAI/ETH
and MKR/ETH markets respectively when the number of intermediary trans-
actions reaches 5, 000.

Paper Organization: The remainder of the paper is organized as follows.
Section 2 elaborates on the DeFi background. Section 3 dissects two known flash
loan attacks. Section 4 proposes a framework to optimize the attack revenues
and Sect. 5 evaluates the framework on the two analyzed attacks. Section 6 anal-
yses the implications of the atomic transaction property. Section 7 provides a
discussion. We conclude the paper in Sect. 8.

2 Background

Decentralized ledgers, such as Bitcoin [44], enable the performance of trans-
actions among a peer-to-peer network. At its core, a blockchain is a chain
of blocks [17,44], extended by miners crafting new blocks that contain trans-
actions. Smart contracts [49] allow the execution of complicated transactions,
which forms the foundation of decentralized finance, a conglomerate of financial
cryptocurrency-related protocols. These protocols for instance allow to lend and
borrow assets [4,39], exchange [11,24], margin trade [3,24], short and long [3],
and allow to create derivative assets [4]. At the time of writing, the DeFi
space accounts for over 8B USD in smart contract locked capital among dif-
ferent providers. The majority of the DeFi platforms operate on the Ethereum
blockchain, governed by the Ethereum Virtual Machine (EVM), where the
trading rules are governed by the underlying smart contracts. A decentralized
exchange is typically referred to as DEX. We refer to the on-chain DeFi actors
as traders and distinguish among the two types of traders:

Liquidity Provider: a trader with surplus capital may choose to offer this
capital to other traders, e.g., as collateral within a DEX or lending platform.

Liquidity Taker: a trader which is servicing liquidity provider with fees in
exchange for accessing the available capital.

2.1 DeFi Platforms

We briefly summarize relevant DeFi platforms for this work.

Automated Market Maker (AMM) DEX: While many exchanges follow
the limit order book design [34,35,40], an alternative exchange design is to
collect funds within a liquidity pool, e.g., two pools for an AMM asset pair
X/Y [11,34]. The state (or depth) of an AMM market X/Y is defined as (x, y),
where x represents the amount of asset X and y the amount of asset Y in the
liquidity pool. Liquidity providers can deposit/withdraw in both assets X and
Y to in/decrease liquidity. The simplest AMM mechanism is a constant product
market maker, which for an arbitrary asset pair X/Y , keeps the product x × y
constant during trades. When trading on an AMM exchange, there can be a
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difference between the expected price and the executed price, termed slip-
page [10]. Insufficient liquidity and other front-running trades can cause slip-
page on an AMM [52]. We assume that a constant product AMM ETH/WBTC
market is supplied with 10 ETH and 10 WBTC (i.e., the exchange rate
is 1 ETH/WBTC). A trader can purchase 5 WBTC with 10 ETH (cf. 10× 10 =
(10 + 10) × (10 − 5)) at an effective price of 2 ETH/WBTC. Hence, the slippage
is 2−1

1 = 100%.

Margin Trading: Trading on margin allows a trader to take under-
collateralized loans from the trading platform and trade with these borrowed
assets to amplify the profit (i.e., leverage). On-chain margin trading platforms
remain in control of the loaned asset (or the exchanged asset) and hence is able
to liquidate when the value of the trader’s collateral drops too low.

Credit and Lending: With over 3B USD total locked value, credit represents
one of the most significant recent use-cases for blockchain based DeFi systems.
Due to the lack of legal enforcement when borrowers default, they are required
to provide between 125% [24] to 150% [39] collateral of an asset x to borrow
100% of another asset y (i.e., over-collateralization).

2.2 Reverting EVM State Transitions

The Ethereum blockchain is in essence a replicated state machine. To achieve a
state transition, one applies as input transactions that modify the EVM state
following rules encoded within deployed smart contracts. A smart contract can be
programmed with the logic of reverting a transaction if a particular condition is
not met during execution. The EVM state is only altered if a transaction executes
successfully, otherwise, the EVM state is reverted to the previous, non-modified
state.

Flash Loans. Flash loans are possible because the EVM allows the reversion of
state changes. A flash loan is only valid within a single transaction and relies
on the atomicity of blockchain (and, specifically, EVM) transactions within a
single block. Flash loans entail two important new financial properties: First, a
borrower does not need to provide upfront collateral to request a loan of any
size, up to the flash loan liquidity pool amount. Any borrower, willing to pay
the required transaction fees (which typically amounts to a few USD) is an
eligible borrower. Second, risk-free lending: If a borrower cannot pay back the
loan, the flash loan transaction fails. Ignoring smart contract and blockchain
vulnerabilities, the lender is hence not exposed to the risks of a debt default.

2.3 Flash Loan Usage in the Wild

To our knowledge, the Marble Protocol introduced the concept of flash loans [8].
Aave [13] is one of the first DeFi platforms to widely advertise flash loan capa-
bilities (although others, such as dYdX also allow the non-documented possi-
bility to borrow flash loans) since January 2020. At the time of writing, Aave
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charges a constant 0.09% interest fee for flash loans and amassed a total liquidity
beyond 1B USD [1]. In comparison, the total volume of U.S. corporation debt
reached 10.5T USD in August, 2020 [12].

Fig. 1. Accumulative flash loan amounts of 13 cryptocurrencies on Aave. Note that
the y-axis is a logarithmic scale.

By gathering all blockchain event logs from Aave with a full archive Ethereum
node, we find 5, 616 flash loans issued from the Aave smart contract (cf.
0x398eC7346DcD622eDc5ae82352F02bE94C62d119) between the 8th of Jan-
uary, 2020 and the 20th of September, 2020. In Fig. 1, we show the accumulative
flash loan amounts of 13 different loan currencies. Among them, DAI is the most
popular with the accumulative amount of 447.2M USD. We inspect and classify
the Aave flash loan transactions depending on which platforms the flash loans
interact with (cf. Fig. 11 in Appendix A). We notice that most flash loans interact
with lending/exchange DeFi systems and that the flash loan’s transaction costs
(i.e., gas) appear significant (at times beyond 4M gas, compared to 21k gas for
regular Ether transfer). The dominating use cases are arbitrage and liquidation.
Further details are presented in Appendix A.

Flash Loan Arbitrage Example: The value of an asset is typically deter-
mined by the demand and supply of the market, across different exchanges. Due
to a lack of instantaneous synchronization among exchanges, the same asset can

Fig. 2. High-level executions of a flash loan based arbitrage transaction
0xf7498a2546c3d70f49d83a2a5476fd9dcb6518100b2a731294d0d7b9f79f754a: (1) flash
loan; (2) exchange USDC for DAI in Curve Y pool; (3) exchange DAI for USDC
in Curve sUSDC pool; (4) repay. Note that Curve provides several on-chain cryptocur-
rency markets, also known as pools.

https://etherscan.io/address/0x398eC7346DcD622eDc5ae82352F02bE94C62d119
https://etherscan.io/tx/0xf7498a2546c3d70f49d83a2a5476fd9dcb6518100b2a731294d0d7b9f79f754a
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be traded at slightly different prices on different exchanges. Arbitrage is the pro-
cess of exploiting price differences among exchanges for a financial gain [46]. In
Fig. 2, we present, as an example, the execution details of a flash loan based
arbitrage transaction on the 31st of July, 2020. The arbitrageur borrowed a
flash loan of 2.048M USDC, performed two exchanges, and realized a profit
of 16.182k USDC (16.182k USD). This example highlights how given atomic
transactions, a trader can perform arbitrage on different on-chain markets, with-
out the risk that the prices in the DEX would intermediately change. Flash loans
moreover remove the currency volatility risk for arbitrageurs. In Sect. 6, we quan-
tify the implications of transaction atomicity on arbitrage risks.

Besides arbitrage, we noticed another two use cases for flash loans: (i) wash
trading (fraudulent inflation of trading volume), (ii) loan collateral swapping
(instant swapping from one collateral to another), and also a variation of flash
loan, (iii) flash minting (the momentarily token in- and decrease of an asset).
We elaborate further on these in Appendix B and provide real-world examples.

2.4 Related Work

There is a growing body of work focusing on various forms of manipulation and
financially-driven attacks in cryptocurrency markets.

Crypto Manipulation: Front-running in cryptocurrencies has been extensively
studied [5,18,22,25,32,52]. Remarkably, Daian et al. [22] introduce the concept
of miner extractable value (MEV) and analyze comprehensively the exploitability
of ordering blockchain transactions. Our work focuses on flash loans, which qual-
ify as a potential MEV that miners could exploit. Gandal et al. [26] demonstrate
that the unprecedented spike in the USD-BTC exchange rate in late 2013 was
possibly caused by price manipulation. Recent papers focus on the phenomenon
of pump-and-dump for manipulating crypto coin prices [28,33,51].

Smart Contract Vulnerabilities: Several exploits have taken advantage of
smart contract vulnerabilities (e.g., the DAO exploit [9]). The most commonly
known smart contract vulnerabilities are re-entrance, unhandled exceptions,
locked ether, transaction order dependency and integer overflow [37]. Many tools
and techniques, based on fuzzing [31,36,50], static analysis [19,47,48], symbolic
execution [37,43,45], and formal verification [14,16,27,29,30], emerged to detect
and prevent these vulnerabilities. In this work, we focus on DeFi economic secu-
rity, which might not result from a single contract vulnerability and could involve
multiple DeFi platforms.

3 Flash Loan Post-Mortem

Flash loans enable anyone to have instantaneous access to massive capital. This
section outlines how that can have negative effects, as we explain two attacks
facilitated by flash loans yielding an ROI beyond 500k%. We evaluate the pro-
posed DeFi attack optimization framework (cf. Sect. 4) on these two analyzed
attacks (cf. Sect. 5).
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3.1 Pump Attack and Arbitrage (PA&A)

On the 15th of February, 2020, a flash loan transaction (cf. 0xb5c8bd9430b
6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838 at an ETH price of
264.71 USD/ETH), followed by 74 transactions, yielded a profit of 1, 193.69 ETH
(350k USD) given a transaction fee of 132.36 USD (cumulative 50, 237, 867 gas,
0.5 ETH). We show in Sect. 5.1 that the adversarial parameters were not optimal,
and that the adversary could have earned a profit exceeding 829.5k USD.

1) Flash Loan Provider (dYdX)
borrow 10,000.00 ETH

2) Lending (Compound)
collateralize 5,500.00 ETH and borrow 112.00 WBTC

3.1) Margin Trade Provider (bZx)
5x short 1,300.00 ETH against WBTC

3.2) Exchange (WBTC Uniswap)
convert 5,637.62 ETH to 51.35 WBTC

4) Exchange (WBTC Uniswap)
convert 112.00 WBTC to 6,871.41 ETH

5) Flash Loan Provider (DyDx)
repay 10,000.00 ETH

3,200.00 ETH 10,071.41 ETH

71.41 ETH

Flash loan
transaction

(block 9484688)

Block 
9484917 - 9496602

a) Exchange (Kyber)
convert 4,377.72 ETH to 112.00 WBTC

b) Lending (Compound)
repay 112.00 WBTC and redeem 5,500.00 ETH

ETH Flow

WBTC Flow

Uniswap Pool Size
2817.77 ETH 
77.09 WBTC

8455.40 ETH 
25.74 WBTC

Uniswap Pool Size
8455.40 ETH
25.74 WBTC

1583.98 ETH 
137.74 WBTC

Fig. 3. The pump attack and arbitrage. The attack consists of two parts, a flash loan
and several loan redemption transactions.

Attack Intuition: The core of PA&A is that the adversary pumps the price
of ETH/WBTC on a constant product AMM DEX (Uniswap) with the lever-
aged funds of ETH in a margin trade. The adversary then purchases ETH at
a “cheaper” price on the distorted DEX market (Uniswap) with the borrowed
WBTC from a lending platform (Compound). As shown in Fig. 3, this attack
mainly consists of two parts. For simplicity, we omit the conversion between
ETH and WETH (the 1:1 convertible ERC20 version of ETH).

Flash Loan (Single Transaction): The first part of the attack (cf. Fig. 3)
consists of 5 steps within a single transaction. In step 1 , the adversary bor-
rows a flash loan of 10, 000.00 ETH from a flash loan provider (dYdX). In step
2 , the adversarial trader collateralizes 5, 500.00 ETH into a lending platform
(Compound) to borrow 112.00 WBTC. Note that the adversarial trader does
not return the 112.00 WBTC within the flash loan. This means the adver-
sarial trader takes the risk of a forced liquidation against the 5, 500.00 ETH
collateral if the price fluctuates. In steps 3 , the trader provides 1, 300 ETH
to open a short position for ETH against WBTC (on bZx) with a 5× lever-
age. Upon receiving this request, bZx transacts 5, 637.62 ETH on an exchange
(Uniswap) for only 51.35 WBTC (at 109.79 ETH/WBTC). Note that at the
start of block 9484688, Uniswap has a total supply of 2, 817.77 ETH and 77.09
WBTC (at 36.55 ETH/WBTC). The slippage of this transaction is significant
with 109.79−36.55

36.55 = 200.38%. In step 4 , the trader converts 112.00 WBTC
borrowed from lending platform (Compound) to 6, 871.41 ETH on the DEX

https://etherscan.io/tx/0xb5c8bd9430b
https://etherscan.io/tx/6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838
https://etherscan.io/block/9484688
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(Uniswap) (at 61.35 ETH/WBTC). We remark that the equity of the adversar-
ial margin account is negative after the margin trading because of the significant
price movement. The pump attack could have been avoided if bZx checked the
negative equity and reverted the transaction. At the time of the attack, this
logic existed in the bZx contracts but was not invoked properly. In step 5 , the
trader pays back the flash loan plus an interest of 10−7 ETH. After the flash loan
transaction (i.e., the first part of PA&A), the trader gains 71.41 ETH, and has
a debt of 112 WBTC over-collateralized by 5, 500 ETH (49.10 ETH/WBTC). If
the ETH/WBTC market price is below this loan exchange rate, the adversary
can redeem the loan’s collateral as follows.

Loan Redemption: The second part of the trade consists of two recurring steps,
(step a - b ), between Ethereum block 9484917 and 9496602. Those transactions
aim to redeem ETH by repaying the WBTC borrowed earlier (on Compound).
To avoid slippage when purchasing WBTC, the trader executes the second part
in small amounts over a period of two days on the DEX (Kyber, Uniswap). In
total, the adversarial trader exchanged 4, 377.72 ETH for 112 WBTC (at 39.08
ETH/WBTC) to redeem 5, 500.00 ETH.

Identifying the Victim: We investigate who of the participating entities
is losing money. Note that in step 3 of Fig. 3, the short position (on bZx)
borrows 5, 637.62 − 1, 300 = 4, 337.62 ETH from the lending provider (bZx),
with 1, 300 ETH collateral. Step 3 requires to purchase WBTC at a price
of 109.79 ETH/WBTC, with both, the adversary’s collateral and the pool funds
of the liquidity provider. 109.79 ETH/WBTC does not correspond to the mar-
ket price of 36.55 ETH/WBTC prior to the attack, hence the liquidity provider
overpays by nearly 3× of the WBTC price.

How Much are the Victims Losing: We now quantify the losses of the liquid-
ity providers. The loan provider lose 4, 337.62 (ETH from loan providers) - 51.35
(WBTC left in short position) × 39.08 (market exchange rate ETH/WBTC) =
2, 330.86 ETH. The adversary gains 5, 500.00 (ETH loan collateral in Compound)
- 4, 377.72 (ETH spent to purchase WBTC) + 71.41 (part 1) = 1, 193.69 ETH.

More Money is Left on the Table: Due to the attack, Uniswap’s price of
ETH was reduced from 36.55 to 11.50 ETH/WBTC. This creates an arbitrage
opportunity, where a trader can sell ETH against WBTC on Uniswap to syn-
chronize the price. 1, 233.79 ETH would yield 60.65 WBTC, instead of 33.76
WBTC, realizing an arbitrage profit of 26.89 WBTC (286, 035.04 USD).

3.2 Oracle Manipulation Attack

We proceed to detail a second flash loan attack, which yields a profit of 2, 381.41
ETH (c. 634.9k USD) within a single transaction (cf. 0x762881b07feb63c436
dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15, on the 18th of February,
2020, at an ETH price of 282.91 USD/ETH) given a transaction fee of 118.79
USD. Before diving into the details, we cover additional background knowledge.

https://etherscan.io/block/9484917
https://etherscan.io/block/9496602
https://etherscan.io/tx/0x762881b07feb63c436
https://etherscan.io/tx/dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15
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We again show how the chosen attack parameters were sub-optimal and optimal
parameters would yield a profit of 1.1M USD instead (cf. Sect. 5.2).

Price Oracle: One of the goals of the DeFi ecosystem is to not rely on trusted
third parties. This premise holds both for asset custody as well as additional
information, such as asset pricing. One common method to determine an asset
price is hence to rely on the pricing information of an on-chain DEX (e.g.,
Uniswap). DEX prices, however, can be manipulated with flash loans.

Attack Intuition: The core of this attack is an oracle manipulation using a
flash loan, which lowers the price of sUSD/ETH. In a second step, the adversary
benefits from this decreased sUSD/ETH price by borrowing ETH with sUSD as
collateral.

1) Flash Loan Provider (bZx)
borrow 7,500.00 ETH

2) Exchange (sUSD Uniswap)
convert 540.00 ETH to 92,419.70 sUSD

3) Exchange (Kyber)
convert 360.00 ETH to 63,584.09 sUSD

4) Exchange (Synthetix)
deposit 3,517.86 ETH for 943,837.59 sUSD

5) Lending (bZx)
collateralize 1,099,841.39 sUSD and borrow 6,799.27 ETH

6) Flash Loan Provider (bZx)
repay 7,500.00 ETH

3,082.14 ETH

1,099,841.39 sUSD

9,881.41 ETH

2,381.41 ETH ETH Flow sUSD Flow

Uniswap Pool Size
879.76 ETH  243,441.12 sUSD

1,419.76 ETH 151,021.42 sUSD

Kyber Reserve Pool Size
0.91 ETH 107,901.90 sUSD

360.91 ETH 44,317.80 sUSD

Fig. 4. The oracle manipulation attack.

Adversarial Oracle Manipulation: We identify a total of 6 steps within this
transaction (cf. Fig. 4). In step 1 , the adversary borrows a flash loan of 7, 500.00
ETH (on bZx). In the next three steps ( 2 , 3 , 4 ), the adversary converts a total
of 4, 417.86 ETH to 1, 099, 841.39 sUSD (at an average of 248.95 sUSD/ETH).
The exchange rates in step 2 and 3 are 171.15 and 176.62 sUSD/ETH respec-
tively. These two steps decrease the sUSD/ETH price to 106.05 sUSD/ETH
on Uniswap and 108.44 sUSD/ETH on Kyber Reserve, which are collectively
used as a price oracle of the lending platform (bZx). Note that Uniswap is a
constant product AMM, while Kyber Reserve is an AMM following a differ-
ent formula (cf. Appendix C). The trade on the third market (Synthetix) in
step 4 is yet unaffected by the previous trades. The adversarial trader then
collateralizes all the purchased sUSD (1, 099, 841.39) to borrow 6, 799.27 ETH
(at exchange rate

collateral factor = max(106.05, 108.44) × 1.5 = 162.66 sUSD/ETH on bZx).
Now the adversary possesses 6, 799.27+3, 082.14 ETH and in the last step repays
the flash loan amounting to 7, 500.00 ETH. The adversary, therefore, generates a
revenue of 2, 381.41 ETH while only paying 0.42 ETH (118.79 USD) transaction
fees.

Identifying the Victim: The adversary distorted the price oracle (Uniswap
and Kyber) from 268.30 sUSD/ETH to 108.44 sUSD/ETH, while other DeFi
platforms remain unaffected at 268.30 sUSD/ETH. Similar to the pump attack
and arbitrage, the lenders on bZx are the victims losing assets as a result of the
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distorted price oracle. The lender lost 6, 799.27 ETH - 1, 099, 841 sUSD, which
is estimated to be 2, 699.97 ETH (at 268.30 sUSD/ETH). The adversary gains
6, 799.27 (ETH from borrowing) - 3, 517.86 (ETH to purchase sUSD) - 360 (ETH
to purchase sUSD) - 540 (ETH to purchase sUSD) = 2, 381.41 ETH.

4 Optimizing DeFi Attacks

The atomicity of blockchain transactions guarantees the continuity of the action
executions. When the initial state is deterministically known, this trait allows an
adversary to predict the intermediate results precisely after each action execution
and then to optimize the attacking outcome by adjusting action parameters.
In light of the complexity of optimizing DeFi attacks manually, we propose a
constrained optimization framework that is capable of optimizing the action
parameters. We show, given a blockchain state and an attack vector composed
of a series of DeFi actions, how an adversary can efficiently discover the optimal
action parameters that maximize the resulting expected revenue.

4.1 System and Threat Model

The system considered is limited to one decentralized ledger which supports
pseudo-Turing complete smart contracts (e.g., similar to the Ethereum Virtual
Machine; state transitions can be reversed given certain conditions).

We assume the presence of one computationally bounded and economically
rational adversary A. A attempts to exploit the availability of flash loans for
financial gain. While A is not required to provide its own collateral to perform the
presented attacks, the adversary must be financially capable to pay transaction
fees. The adversary may amass more capital which possibly could increase its
impact and ROI.

4.2 Parametrized Optimization Framework

We start by modeling different components that may engage in a DeFi attack. To
facilitate optimal parameter solving, we quantitatively formalize every endpoint
provided by DeFi platforms as a state transition function S′ = T (S; p) with the
constraints C(S; p), where S is the given state, p are the parameters chosen by
the adversary and S′ is the output state. The state can represent, for example,
the adversarial balance or any internal status of the DeFi platform, while the
constraints are set by the execution requirements of the EVM (e.g., the Ether
balance of an entity should never be a negative number) or the rules defined
by the respective DeFi platform (e.g., a flash loan must be repaid before the
transaction termination plus loan fees). When quantifying profits, we ignore
the loan interest/fee payments and transaction fees, which are negligible in the
present DeFi attacks. The constraints are enforced on the input parameters and
output states to ensure that the optimizer yields valid parameters.
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We define the balance state function B(E;X;S) to denote the balance of
currency X held by entity E at a given state S and require Eq. 1 to hold.

∀(E,X,S), B(E;X;S) ≥ 0 (1)

The mathematical DeFi models applied in this work are detailed in Appendix C.
Our parametrized optimizer is designed to solve the optimal parameters that

maximizes the revenue given an on-chain state, DeFi models and attack vector.
An attack vector specifies the execution order of different endpoints across var-
ious DeFi platforms, depending on which we formalize a unidirectional chain of
transition functions (cf. Eq. 2).

Si = Ti(Si−1; pi) (2)

By nesting transition functions, we can obtain the cumulative state transition
functions ACCi(S0; p1:i) that satisfies Eq. 3, where p1:i = (p1, ..., pi).

Si = Ti(Si−1; pi) = Ti(Ti−1(Si−2; pi−1); pi)

= Ti(Ti−1(...T1(S0, p1)...; pi−1); pi) = ACCi(S0; p1:i)
(3)

Therefore the constraints generated in each step can be expressed as Eq. 4.

Ci(Si; pi) ⇐⇒ Ci(ACCi(S0; p1:i); pi) (4)

We assume an attack vector composed of N transition functions. The objective
function can be calculated from the initial state S0 and the final state SN (e.g.,
the increase of the adversarial balance).

O(S0;SN ) ⇐⇒ O(S0;ACC(S0; p1:N )) (5)

Given the initial state S0, we formulate an attack vector into a constrained
optimization problem with respect to all the parameters p1:N (cf. Eq. 6).

maximize O(S0;ACC(S0; p1:N ))
s.t. Ci(ACCi(S0; p1:i); pi) ∀i ∈ [1, N ] (6)

5 Evaluation

In the following, we evaluate our parametrized optimization framework on the
existing attacks described in Sect. 3. We adopt the Sequential Least Squares
Programming (SLSQP) algorithm from SciPy2 to solve the constructed opti-
mization problems. Our framework is evaluated on a Ubuntu 18.04.2 machine
with 16 CPU cores and 32 GB RAM.

2 https://www.scipy.org/. We use the minimize function in the optimize package.

https://www.scipy.org/
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5.1 Optimizing the Pump Attack and Arbitrage

We first optimize the pump attack and arbitrage. Figure 5 summarizes the nota-
tions and the on-chain state when the attack was executed (i.e., S0). We use
these blockchain records as the initial state in our evaluation. X and Y denote
ETH and WBTC respectively. In the PA&A attack vector, we intend to tune
the following two parameters, (i) p1: the amount of X collateralized to borrow
Y (cf. step 2 and 3 in Fig. 3) and (ii) p2: the amount of X collateralized to
short Y (cf. step 4 in Fig. 3). Following the methodology specified in Sect. 4.2,
we derive the optimization problem and the corresponding constraints, which
are presented in Fig. 6. We detail the deriving procedure in Appendix D. We
remark that there are five linear constraints and only one nonlinear constraint,
which implies that the optimization can be solved efficiently.

We repeated our experiment for 1, 000 times, the optimizer spent 6.1ms
on average converging to the optimum. The optimizer provides a maximum
revenue of 2, 778.94 ETH when setting the parameters (p1; p2) to (2, 470.08;
1, 456.23), while in the original attack the parameters (5, 500; 1, 300) only yield
1, 171.70 ETH. Due to the ignorance of trading fees and precision differences,
there is a minor discrepancy between the original attack revenue calculated with
our model and the real revenue which is 1, 193.69 ETH (cf. Sect. 3). This is a
829.5k USD gain over the attack that took place, using the price of ETH at that
time. We experimentally validate the optimal PA&A parameters by forking the
Ethereum blockchain with Ganache [6] at block 9484687 (one block prior to the
original attack transaction). We then implement the pump attack and arbitrage
in solidity v0.6.3. The revenue of the attack is divided into two parts: part one
from the flash loan transaction, and part two which is a follow-up operation in
later blocks (cf. Sect. 3) to repay the loan. For simplicity, we chose to only validate
the first part, abiding by the following methodology: (i) We apply the parameter
output of the parametrized optimizer, i.e., (p1; p2) = (2, 470.08; 1, 456.23) to the
adversarial validation smart contract. (ii) Note that our model is an approxi-
mation of the real blockchain transition functions. Hence, due to the inaccuracy
of our model, we cannot directly use the precise model output, but instead use
the model output as a guide for a manual, trial, and error search. We find 1, 344

Fig. 5. Initial on-chain states of the
PA&A.

Fig. 6. Generated PA&A constraints.
uX(S4) is nonlinear with respect to p1
and p2.

https://etherscan.io/block/9484687
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is the maximum value of p2 that allows the successful adversarial trade. (iii)
Given the new p2 constraint, our optimizer outputs the new optimal parameters
(2, 404; 1, 344). (iv) Our optimal adversarial trade yields a profit of 1, 958.01
ETH on part one (as opposed to 71.41 ETH) and consumes a total of 3.3M gas.

5.2 Optimizing the Oracle Manipulation Attack

In the oracle manipulation attack, we denote X as ETH and Y as sUSD, while
the initial state variables are presented in Fig. 7. We assume that A owns zero
balance of X or Y. There are three parameters to optimize in this attack, (i) p1:
the amount of X used to swap for Y in step 2); (ii) p2: the amount of X used to
swap for Y in step 3); (iii) p3: the amount of X used to exchange for Y in step 4).
We summarize the produced optimization problem and its constraints in Fig. 8,
of which five constraints are linear and the other two are nonlinear. We present
the details in Appendix E.

We execute our optimizer 1, 000 times, resulting in an average conver-
gence time of 12.9 ms. The optimizer discovers that setting (p1; p2; p3) to
(898.58;546.80; 3, 517.86) results in 6, 323.93 ETH in profit for the adversary.
This results in a gain of 1.1M USD instead of 634.9k USD. We fork the
Ethereum blockchain with Ganache at block 9504626 (one block prior to the orig-
inal adversarial transaction) and again implement the attack in solidity v0.6.3.
We validate that executing the adversarial smart contract with parameters
(p1; p2; p3) = (898.58; 546.8; 3, 517.86) renders a profit of 6, 262.28 ETH, while
the original attack parameters yield 2, 381.41 ETH. The attack consumes 11.3M
gas (which fits within the current block gas limit of 12.5M gas, but wouldn’t
have fit in the block gas limit of February 2020). By analyzing the adversarial
validation contract, we find that 460 is the maximum value of p2 which reduces
the gas consumption below 10M gas. Similar to Sect. 5.1, we add the new con-
straint to the optimizer, which then gives the optimal parameters (714.3; 460;
3, 517.86). The augmented validation contract renders a profit of 4, 167.01 ETH
and consumes 9.6M gas.

Fig. 7. Initial on-chain states of the
oracle manipulation attack.

Fig. 8. Constraints generated for
the oracle manipulation attack.
B(A;Y; S4), PY(M; S2) are nonlinear
components with respect to p1, p2, p3.

https://etherscan.io/block/9504626
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6 Implications of Transaction Atomicity

In an atomic blockchain transaction, actions can be executed collectively in
sequence, or fail collectively. Technically, operating DeFi actions in an atomic
transaction is equivalent to acquiring a lock on all involved financial markets
to ensure no other market agent can modify market states intermediately, and
releasing the lock after executing all actions in their sequence.

To quantify objectively the impact of transaction atomicity (specifically, how
the transaction atomicity impacts arbitrage profit), we proceed with the follow-
ing methodology. We consider the arbitrages that involve two trades TA and TB

to empirically compare the atomic and non-atomic arbitrages (cf. Fig. 9). We
define the atomic and non-atomic arbitrage profit as follows.

Atomic Arbitrage Profit (aarb): is defined as the gain of two atomically
executed arbitrage trades TA and TB on exchange A and B.

Non-atomic Arbitrage Profit (naarb): is defined as the arbitrage gain, if TA

executes first, and TB ’s execution follows after i intermediary transactions.
Conceptually, a non-atomic arbitrage requires the arbitrageur to lock assets

for a short time (order of seconds/minutes). Those assets are exposed to price
volatility. The arbitrageur can at times realize a gain, if the asset increases in
value, but equally has the risk of losing value. A trader engaging in atomic
arbitrage is not exposed to this volatility risk, which we denote as holding value.

Fig. 9. On the impact of transac-
tion atomicity on arbitrage. The arbi-
trageur submits the first trade TA,
which aims to purchase an asset at a
“cheaper” prices (•) and sell the asset
on another exchange at a “higher”
price (•). In a non-atomic environment,
TB is not immediately executed after
TA. The holding value is the in/de-
crease in price when holding the asset
between TA and TB .

Fig. 10. Simulated impact of
intermediary transactions on arbi-
trage revenue. The average reward
decreases by 123.49 ± 1375.32 USD
and 1.77±10.59 USD for the DAI/ETH
and MKR/ETH markets respectively,
at 350 USD/ETH, for 5, 000 intermedi-
ary transactions. Note that we present
the 95% bootstrap confidence interval
of mean [23] for readability.
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Holding Value (hv): is defined as the change in the averaged price of the given
asset pair on the two exchanges, which represents the asset value change during
the non-atomic execution period.

We introduce holding value to neutralize the price volatility and can hence
objectively quantify the financial advantage of atomic arbitrage. Given these
variables, we define the profit difference in Eq. 7.

profit difference = aarb - (naarb - hv) (7)

We simulate atomic and non-atomic based on 6, 398, 992 transactions we col-
lect from the Ethereum mainnet (from block 10276783 onwards). We insert 0 -
5, 000 blockchain transactions following the trade transaction TA. Note that 0
intermediary transaction is equivalent to the atomic arbitrage. The insertion
order follows the original execution order of these transactions, some of which
may be irrelevant to the arbitrage. We present the simulated profit differ-
ence in Fig. 10. We observe that the average profit difference reaches 123.49 ±
1375.32 USD and 1.77 ± 10.59 USD for the DAI/ETH and MKR/ETH markets
respectively when the number of intermediary transactions increases to 5, 000.

7 Discussion

The current generation of DeFi had developed organically, without much scrutiny
when it comes to financial security; it, therefore, presents an interesting secu-
rity challenge to confront. DeFi, on the one hand, welcomes innovation and the
advent of new protocols, such as MakerDAO, Compound, and Uniswap. On
the other hand, despite a great deal of effort spent on trying to secure smart
contacts [21,31,38,48,50], and to avoid various forms of market manipulation,
etc. [15,41,42], there has been little-to-no effort to secure entire protocols.

As such, DeFi protocols join the ecosystem, which leads to both exploits
against protocols themselves as well as multi-step attacks that utilize several
protocols such as the two attacks in Sect. 3. In a certain poignant way, this high-
lights the fact the DeFi, lacking a central authority that would enforce a strong
security posture, is ultimately vulnerable to a multitude of attacks by design.
Flash loans are merely a mechanism that accelerates these attacks. It does so by
requiring no collateral (except for the minor gas costs), which is impossible in the
traditional fiance due to regulations. In a certain way, flash loans democratize
the attack, opening this strategy to the masses. As we anticipate in the earlier
version of this paper, following the two analyzed attacks, economic attacks facil-
itated by flash loans become increasingly frequent, which have incurred a total
loss of over 100M USD [7].

Determining What is Malicious: An interesting question remains whether
we can qualify the use of flash loans, as clearly malicious (or clearly benign).
We believe this is a difficult question to answer and prefer to withhold the value
judgment. The two attacks in Sect. 3 are clearly malicious: the PA&A involves
manipulating the WBTC/ETH price on Uniswap; the oracle manipulation attack

https://etherscan.io/block/10276783
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involves price oracle by manipulatively lowering the price of ETH against sUSD
on Kyber. However, the arbitrage mechanism, in general, is not malicious — it is
merely a consequence of the decentralized nature of the DeFi ecosystem, where
many exchanges and DEXs are allowed to exist without much coordination with
each other. As such, arbitrage will continue to exist as a phenomenon, with
good and bad consequences. Despite the lack of absolute distinction between
flash loan attacks and legitimate applications of flash loans, we attempt to sum-
marize two characteristics that appear to apply to malicious flash loan attacks:
(i) the attacker benefits from a distorted state created artificially in the flash
loan transaction (e.g., the pumped market in the PA&A and the manipulated
oracle price); (ii) the attacker’s profit causes the loss of other market participants
(e.g., the liquidity providers in the two analyzed attacks in Sect. 3).

We extend our discussion in Appendix F.

8 Conclusion

This paper presents an exploration of the impact of transaction atomicity and
the flash loan mechanism on the Ethereum network. While proposed as a clever
mechanism within DeFi, flash loans are starting to be used as financial attack
vectors to effectively pull money in the form of cryptocurrency out of DeFi.
In this paper, we analyze existing flash loan-based attacks in detail and then
proceed to propose optimizations that significantly improve the ROI of these
attacks. Specifically, we are able to show how two previously executed attacks can
be “boosted” to result in a revenue of 829.5k USD and 1.1M USD, respectively,
which is a boost of 2.37× and 1.73×, respectively.

Acknowledgments. We thank the anonymous reviewers and Johannes Krupp for
providing valuable comments and helpful feedback that significantly strengthened the
paper. We are moreover grateful to the Lucerne University of Applied Sciences and
Arts for generously supporting Kaihua Qin’s Ph.D.

A Classifying Flash Loan Use Cases

In Fig. 11, we present the DeFi platforms that use a total of 5, 615 Aave flash loan
transactions3 between the 8th of January, 2020 and the 20th of September, 2020.
We find that more than 30% of the flash loans are interacting with Kyber, Mak-
erDAO, and Uniswap. Compound and MakerDAO accumulate 433.81M USD
flash loans which occupy 90% of the total flash loan amount. On average, a flash
transaction uses 1.43M gas, while the most complex one consumes 6.3M gas.

3 We collect in total 5, 616 flash loans with one transaction performing two flash loans.
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B Flash Loan Use Cases

B.1 Wash Trading

The trading volume of an asset is a metric indicating its popularity. The most
popular assets therefore are supposed to be traded the most—e.g., Bitcoin to

Fig. 11. Classifying the usage of flash loans in the wild, based on an analysis of trans-
actions between the 8th of January, 2020 and the 20th of September, 2020 on Aave [13].
Others include the platform combinations that appear less than five times and the ones
of which the owner platforms are unknown to us. The total amount is calculated at
the price – DAI ($1); ETH ($350); USDC ($1); BAT ($0.2); WBTC ($10, 000); ZRX
($0.3); MKR ($500); LINK ($10); USDT ($1); REP ($15), KNC ($1.5), LEND ($0.5),
sUSD ($1).
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date enjoys the highest trading volume (reported up to 50T USD per day) of all
cryptocurrencies.

Malicious exchanges or traders can mislead other traders by artificially inflat-
ing the trading volume of an asset. In September 2019, 73 out of the top 100
exchanges on Coinmarketcap [20] were wash trading over 90% of their vol-
umes [2]. In centralized exchanges, operators can easily and freely create fake
trades in the backend, while decentralized exchanges settle trades on-chain. Wash
trading on DEX thus requires wash traders to hold and use real assets. Flash
loans can remove this “obstacle” and wash trading costs are then reduced to the
flash loan interest, trading fees, and (blockchain) transaction fees, e.g., gas. A
wash trading endeavor to increase the 24-h volume by 50% on the ETH/DAI
market of Uniswap would for instance cost about 1, 298 USD (cf. Fig. 12). We
visualize in Fig. 12 the required cost to create fake volumes in two Uniswap mar-
kets. At the time of writing, the transaction fee amounts to 0.01 USD, the flash
loan interests range from a constant 1 Wei (on dYdX) to 0.09% (on Aave), and
exchange fees are about 0.3% (on Uniswap).

Fig. 12. Wash trading cost on two Uniswap markets with flash loans costing 0.09%
(Aave) and a constant of 1 Wei (dYdX) respectively. The 24-h volumes of ETH/DAI
and ETH/WBTC market were 963, 786 USD and 67, 690 USD respectively (1st of
March, 2020).

Wash Trading Example: On March 2nd, 2020, a flash loan of 0.01
ETH borrowed from dYdX performed two back-and-forth trades (first con-
verted 0.01 ETH to 122.1898 LOOM and then converted 122.1898 LOOM
back to 0.0099 ETH) on Uniswap ETH/LOOM market (cf. 0xf65b384
ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544). The 24-h
trading volume of the ETH/LOOM market increased by 25.8% (from 17.71 USD
to 22.28 USD) as a result of the two trades.

B.2 Collateral Swapping

We classify DeFi platforms that rely on users providing cryptocurrencies
[13,24,39] as follows: (i) a DeFi system where a new asset is minted and backed-

https://etherscan.io/tx/#1
https://etherscan.io/tx/#1
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Fig. 13. Flash mint example.

up with user-provided collateral (e.g., MakerDAO’s DAI or SAI [39]) and (ii) a
DeFi system where long-term loans are offered and assets are aggregated within
liquidity pools (e.g., margin trading [3] or long term loans [13]). Once a collat-
eral position is opened, DeFi platforms store the collateral assets in a vault until
the new/borrowed asset are destroyed/returned. Because cryptocurrency prices
fluctuate, this asset lock-in bears a currency risk. With flash loans, it is possible
to replace the collateral asset with another asset, even if a user does not possess
sufficient funds to destroy/return the new/borrowed asset. A user can close an
existing collateral position with borrowed funds, and then immediately open a
new collateral position using a different asset.

Collateral Swapping Example: On February 20th, 2020, a flash loan bor-
rowed 20.00 DAI (from Aave) to perform a collateral swap (on MakerDAO),
cf. 0x5d5bbfe0b666631916adb8a56821b204d97e75e2a852945ac7396a82e207e0ca.
Before this transaction, the transaction sender used 0.18 WETH as collateral
for instantiating 20.00 DAI (on MakerDAO). The transaction sender first with-
draws all WETH using the 20.00 DAI flash loan, then converts 0.18 WETH
for 178.08 BAT (using Uniswap). Finally the user creates 20.03 DAI using BAT
as collateral, and pays back 20.02 DAI (with a fee to Aave). This transaction
converts the collateral from WETH to BAT and the user gained 0.01 DAI, with
an estimated gas fee of 0.86 USD.

B.3 Flash Minting

Cryptocurrency assets are commonly known as either inflationary (further units
of an asset can be mined) or deflationary (the total number of units of an asset are
finite). Flash minting is an idea to allow an instantaneous minting of an arbitrary
amount of an asset—the newly-mined units exist only during one transaction.
It is yet unclear where this idea might be applicable to, the minted assets could
momentarily increase liquidity.

Flash Minting Example: A flash mint function (cf. Fig. 13) can be integrated
into an ERC20 token, to mint an arbitrary number of coins within a transac-
tion only. Before the transaction terminates, the minted coins will be burned.
If the available amount of coins to be burned by the end of the transaction
is less than those that were minted, the transaction is reverted (i.e., not exe-
cuted). An example ERC20 flash minting code could take the following form (cf.
0x09b4c8200f0cb51e6d44a1974a1bc07336b9f47f):

https://etherscan.io/tx/0x5d5bbfe0b666631916adb8a56821b204d97e75e2a852945ac7396a82e207e0ca
https://etherscan.io/address/0x09b4c8200f0cb51e6d44a1974a1bc07336b9f47f
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C DeFi Models

In the following, we detail the quantitative DeFi models applied in this work.
Note that we do not include all the states involved in the DeFi attacks but only
those relevant to the constrained optimization.

Flash Loan: We assume a flash loan platform F with zX amount of asset X,
which the adversary A can borrow. The required interest to borrow b of X is
represented by interest(b).

State: In a flash loan, the state is represented by the balance of A, i.e., B(A;X;S).
Transitions: We define the transition functions of Loan in Eq. 8 and Repay in
Eq. 9, where the parameter bX denotes the loaned amount.

B(A;X;S′) = B(A;X;S) + bX

s.t. zX − bX ≥ 0 (8)

B(A;X;S′) = B(A;X;S) − bX − interest(bX)
s.t. B(A;X;S) − bX − interest(bX) ≥ 0 (9)

Fixed Price Trading: We define the endpoint SellXforY that allows the
adversary A to trade qX amount of X for Y at a fixed price pm. maxY is the
maximum amount of Y available for trading.

State: We consider the following state variables:

– Balance of asset X held by A: B(A;X;S)
– Balance of asset Y held by A: B(A;Y;S)

Transitions: Transition functions of SellXforY are defined in Eq. 10.

B(A;X;S′) = B(A;X;S) − qX

B(A;Y;S′) = B(A;Y;S) +
qX
pm

s.t. B(A;X;S) − qX ≥ 0

maxY − qX
pm

≥ 0 (10)

Constant Product Automated Market Maker: The constant product
AMM is with a market share of 77% among the AMM DEX, the most com-
mon AMM model in the current DeFi ecosystem [11]. We denote by M an AMM
instance with trading pair X/Y and exchange fee rate f.

State: We consider the following states variables that can be modified in an
AMM state transition.
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– Amount of X in AMM liquidity pool: uX(S), which equals to B(M;X;S)
– Amount of Y in AMM liquidity pool: uY(S), which equals to B(M;Y;S)
– Balance of X held by A: B(A;X;S)
– Balance of Y held by A: B(A;Y;S)

Transitions: Among the endpoints of M, we focus on SwapXforY and SwapYforX,
which are the relevant endpoints for the DeFi attacks discussed within this work.
pX is a parameter that represents the amount of X the adversary intends to trade.
A inputs pX amount of X in AMM liquidity pool and receives oY amount of Y
as output. The constant product rule [11] requires that Eq. 11 holds.

uX(S) × uY(S) = (uX(S) + (1 − f)pX) × (uY(S) − oY) (11)

We define the transition functions and constraints of SwapXforY in Eq. 12 (anal-
ogously for SwapYforX ).

B(A;X;S′) = B(A;X;S) − pX

B(A;Y;S′) = B(A;Y;S) + oY

uX(S′) = uX(S) + pX

uY(S′) = uY(S) − oY

where oY =
pX × (1 − f) × uY(S)
uX(S) + pX × (1 − f)

s.t. B(M;X;S) − pX ≥ 0 (12)

Because an AMM DEX M transparently exposes all price transitions on-
chain, it can be used as a price oracle by the other DeFi platforms. The price of
Y with respect to X given by M at state S is defined in Eq. 13.

pY(M;S) =
uX(S)
uY(S)

(13)

Automated Price Reserve: The automated price reserve is another type of
AMM that automatically calculates the exchange price depending on the assets
held in inventory. We denote a reserve holding the asset pair X/Y with R. A
minimum price minP and a maximum price maxP is set when initiating R. R
relies on a liquidity ratio parameter lr to calculate the asset price. We assume
that R holds kX(S) amount of X at state S. We define the price of Y in Eq. 14.

PY(R;S) = minP × elr×kX(S) (14)

The endpoint ConvertXtoY provided by R allows the adversary A to exchange
X for Y.

State: We consider the following state variables:

– The inventory of X in the reserve: kX(S), which equals to B(R;X;S)
– Balance of X held by A: B(A;X;S)
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– Balance of Y held by A: B(A;Y;S)

Transitions: We denote as hX the amount of X that A inputs in the exchange to
trade against Y. The exchange output amount of Y is calculated by the following
formulation.

jY =
e−lr×hX − 1
lr × PY(R;S)

We define the transition functions within Eq. 15.

kX(S′) = kX(S) + hX

B(A;X;S′) = B(A;X;S) − hX

B(A;Y;S′) = B(A;Y;S) + jY

where jY =
e−lr×hX − 1
lr × PY(R;S)

s.t. B(A;X;S) − hX ≥ 0
PY(R;S′) − minP ≥ 0
maxP − PY(R;S′) ≥ 0 (15)

Collateralized Lending and Borrowing: We consider a collateralized lending
platform L, which provides the CollateralizedBorrow endpoint that requires
the user to collateralize an asset X with a collateral factor cf (s.t. 0 < cf < 1) and
borrows another asset Y at an exchange rate er. The collateral factor determines
the upper limit that a user can borrow. For example, if the collateral factor
is 0.75, a user is allowed to borrow up to 75% of the value of the collateral.
The exchange rate is for example determined by an outsourced price oracle. zY
denotes the maximum amount of Y available for borrowing.

State: We hence consider the following state variables and ignore the balance
changes of L for simplicity.

– Balance of asset X held by A: B(A;X;S)
– Balance of asset Y held by A: B(A;Y;S)

Transitions: The parameter cX represents the amount of asset X that A aims to
collateralize. Although A is allowed to borrow less than his collateral would allow
for, we assume that A makes use the entirety of his collateral. Equation 16 shows
the transition functions of CollateralizedBorrow.

B(A;X;S′) = B(A;X;S) − cX

B(A;Y;S′) = B(A;Y;S) + bY

where bY =
cX × cf

er
s.t. B(A;X;S′) − cX ≥ 0; zY − bY ≥ 0 (16)
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A can retrieve its collateral by repaying the borrowed asset through the end-
point CollateralizedRepay. We show the transition functions in Eq. 17 and
for simplicity ignore the loan interest fee.

B(A;X;S′) = B(A;X;S) + cX

B(A;Y;S′) = B(A;Y;S) − bY

s.t. B(A;Y;S) − bY ≥ 0 (17)

Margin Trading: A margin trading platform T allows the adversary A to
short/long an asset Y by collateralizing asset X at a leverage �, where � ≥ 1.

We focus on the MarginShort endpoint which is relevant to the discussed
DeFi attack in this work. We assume A shorts Y with respect to X on F. The
parameter dX denotes the amount of X that A collateralizes upfront to open the
margin. wX represents the amount of X held by F that is available for the short
margin. A is required to over-collateralize at a rate of ocr in a margin trade. In
our model, when a short margin (short Y with respect to X) is opened, F performs
a trade on external X/Y markets (e.g., Uniswap) to convert the leveraged X to
Y. The traded Y is locked until the margin is closed or liquidated.

State: In a short margin trading, we consider the following state variables:

– Balance of X held by A: B(A;X;S)
– The locked amount of Y: L(A;Y;S)

Transitions: We assume F transacts from an external market at a price of emp.
The transition functions and constraints are specified in Eq. 18.

B(A;X;S′) = B(A;X;S) − cX

L(A;Y;S′) = L(A;Y;S) + lY

where lY =
dX × �

ocr × emp

s.t. B(A;X;S) − cX ≥ 0;wX + dX − dX × �

ocr
≥ 0 (18)

D Optimizing the Pump Attack and Arbitrage

In the following, we detail the procedure of deriving the pump attack and arbi-
trage optimization problem. Figure 5 summarizes the on-chain state when the
attack was executed (i.e., S0). X and Y denote ETH and WBTC respectively. For
simplicity, we ignore the trading fees in the constant product AMM (i.e., f = 0
for M). The endpoints executed in the pump attack and arbitrage are listed in
the execution order as follows.

1. Loan (dYdX)
2. CollateralizedBorrow (Compound)
3. MarginShort (bZx) & SwapXforY (Uniswap)
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4. SwapYforX (Uniswap)
5. Repay (dYdX)
6. SellXforY & CollateralizedRepay (Compound)

In the pump attack and arbitrage vector, we intend to tune the following two
parameters, (i) p1: the amount of X collateralized to borrow Y in the endpoint
2) and (ii) p2: the amount of X collateralized to short Y in the endpoint 3).
Following the procedure of Sect. 4.2, we proceed with detailing the construction
of the constraint system.

0): We assume the initial balance of X owned by A is B0 (cf. Eq. 19), and we
refer the reader to Fig. 5 for the remaining initial state values.

B(A;X;S0) = B0 (19)

1) Loan. A gets a flash loan of X amounts p1 + p2 in total

B(A;X;S1) = B0 + p1 + p2

with the constraints

p1 ≥ 0, p2 ≥ 0, vX − p1 − p2 ≥ 0

2) CollateralizedBorrow: A collateralizes p1 amount of X to borrow Y from
the lending platform L

B(A;X;S2) = B(A;X;S1) − p1 = B0 + p2

B(A;Y;S2) =
p1 × cf

er

with the constraint zY − p1 × cf

er
≥ 0

3) MarginShort & SwapXforY. A opens a short margin with p2 amount of X at
a leverage of � on the margin trading platform T; T swaps the leveraged X for Y
at the constant product AMM M

B(A;X;S3) = B(A;X;S2) − p2 = B0

uX(S3) = uX(S0) +
p2 × �

ocr

uY(S3) =
uX(S0) × uY(S0)

uX(S3)
L(A;Y;S3) = uY(S0) − uY(S3)

with the constraint wX + p2 − p2 × �

ocr
≥ 0

4) SwapYforX. A dumps all the borrowed Y at M

B(A;Y;S4) = 0
uY(S4) = uY(S3) + B(A;Y;S2)

uX(S4) =
uX(S3) × uY(S3)

uY(S4)
B(A;X;S4) = B0 + uX(S3) − uX(S4)
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5) Repay. A repays the flash loan

B(A;X;S5) = B(A;X;S4) − p1 − p2

with the constraint B(A;X;S4) − p1 − p2 ≥ 0

6) SellXforY & CollateralizedRepay. A buys Y from the market with the
market price pm and retrieves the collateral from L

B(A;X;S6) = B(A;X;S5) + p1 − B(A;Y;S2) × pm

The objective function is the adversarial ETH revenue (cf. Eq. 20).

O(S0; p1; p2) = B(A;X;S6) − B0

= uX(S0) +
p2 × �

ocr
− uX(S4) − p2

− p1 × cf × pm
er

(20)

E Optimizing the Oracle Manipulation Attack

In the oracle manipulation attack, X denotes ETH and Y denotes sUSD. Again,
we ignore the trading fees in the constant product AMM (i.e., f = 0 for M).
The initial state variables are presented in Fig. 7. We assume that A owns zero
balance of X or Y. We list the endpoints involved in the oracle manipulation
attack vector as follows.

1. Loan (bZx)
2. SwapXforY (Uniswap)
3. ConvertXtoY (Kyber reserve)
4. SellXforY (Synthetix)
5. CollateralizedBorrow (bZx)
6. Repay (bZx)

We construct the constrained optimization problem as follows.

1) Loan: A gets a flash loan of X amounts p1 + p2 + p3

B(A;X;S1) = p1 + p2 + p3

with the constraints

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, vX − p1 − p2 − p3 ≥ 0

2) SwapXforY: A swaps p1 amount of X for Y from the constant product AMM
M

B(A;X;S2) = B(A;X;S1) − p1 = p2 + p3

uX(S2) = uX(S0) + p1

uY(S2) =
uX(S0) × uY(S0)

uX(S2)
B(A;Y;S2) = uY(S0) − uY(S2)
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3) ConvertXtoY: A converts p2 amount of X to Y from the automated price
reserve R

B(A;X;S3) = B(A;X;S2) − p2 = p1

kX(S3) = kX(S0) + p2

PY(R;S3) = minP × elr×kX(S3)

B(A;Y;S3) = B(A;Y;S2) +
e−lr×p2 − 1

lr × PY(R;S0)
s.t. maxP − PY(R;S3) ≥ 0

4) SellXforY: A sells p3 amount of X for Y at the price of pm

B(A;X;S4) = B(A;X;S3) − p3 = 0

B(A;Y;S4) = B(A;Y;S3) +
p3
pm

with the constraint maxY − p3
pm

≥ 0

5) CollateralizedBorrow: A collateralizes all owned Y to borrow X according
to the price given by the constant product AMM M (i.e., the exchange rate
er = 1

PY(M;S2)
)

B(A;Y;S5) = 0
B(A;X;S5) = B(A;Y;S4) × cf × PY(M;S2)

with the constraint

zY − B(A;Y;S4) × cf × PY(M;S2) ≥ 0

6) Repay: A repays the flash loan

B(A;X;S6) = B(A;X;S5) − p1 − p2 − p3

with the constraint B(A;X;S5) − p1 − p2 − p3 ≥ 0

The objective function is the remaining balance of X after repaying the flash
loan (cf. Eq. 21).

O(S0; p1; p2; p3) = B(A;X;S6)
= B(A;X;S5) − p1 − p2 − p3

= B(A;Y;S4) × cf × PY(M;S2)
− p1 − p2 − p3

(21)
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F Extended Discussion

In the following, we extend our discussion in Sect. 7.

Responsible Disclosure: It is somewhat unclear how to perform responsible
disclosure within DeFi, given that the underlying vulnerability and victim are
not always perfectly clear and that there is a lack of security standards to apply.
We plan to reach out to Aave, Kyber, and Uniswap to disclose the contents of
this paper.

Does Extra Capital Help: The main attraction of flash loans stems from
them not requiring collateral that needs to be raised. One can, however, wonder
whether extra capital would make the attacks we focus on more potent and the
ROI greater. Based on our results, extra collateral for the two attacks of Sect. 3
would not increase the ROI, as the liquidity constraints of the intermediate
protocols do not allow for a higher impact.

Potential Defenses: Here we discuss several potential defenses. However, we
would be the first to admit that these are not foolproof and come with potential
downsides that would significantly hamper normal interactions.

– Should DEX accept trades coming from flash loans?
– Should DEX accept coins from an address if the previous block did not show

those funds in the address?
– Would introducing a delay make sense, e.g., in governance voting, or price

oracles?
– When designing a DeFi protocol, a single transaction should be limited in its

abilities: a DEX should not allow a single transaction triggering a slippage
beyond 100%.

Looking into the Future: In the future, we anticipate DeFi protocols eventu-
ally starting to comply with a higher standard of security testing, both within
the protocol itself, as well as part of integration testing into the DeFi ecosystem.
We believe that eventually, this may lead to some form of DeFi standards where
it comes to financial security, similar to what is imposed on banks and other
financial institutions in traditional centralized (government-controlled) finance.
We anticipate that either whole-system penetration testing or an analytical app-
roach to modeling the space of possibilities like in this paper are two ways to
improve future DeFi protocols.

Generality of the Optimization Framework: We show in Sect. 5 that our
optimization framework performs efficiently on a given attack vector. To discover
new attacks on a blockchain state with the framework, we may need to iterate
over all the combinations of DeFi actions. The search space thus explodes as
the number of DeFi actions increases. Our optimization framework requires to
model every DeFi action manually. This, however, makes the framework less
handy for users who are unfamiliar with the mathematical formulas of the DeFi
actions. To make the framework more accurate, we can build gas consumption
and block gas limit into the models, which requires to comprehend every DeFi
action explicitly. We leave the automation of modeling for future work.
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18. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the hydra: towards prin-
cipled bug bounties and exploit-resistant smart contracts. In: 27th {USENIX}
Security Symposium ({USENIX} Security 18), pp. 1335–1352 (2018)

19. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts
(2018). arXiv preprint arXiv:1809.03981

20. CoinMarketCap: Bitcoin market capitalization (2019)
21. Crytic: Echidna: Ethereum fuzz testing framework. https://github.com/crytic/

echidna
22. Daian, P., et al.: Flash Boys 2.0: frontrunning, transaction reordering, and con-

sensus instability in decentralized exchanges. In: IEEE Security and Privacy 2020
(2020)

23. DiCiccio, T.J., Efron, B.: Bootstrap confidence intervals. In: Statistical Science,
pp. 189–212 (1996)

24. dYdX: dYdX (2020). https://dydx.exchange/

https://aavewatch.now.sh/
https://www.bti.live/bti-september-2019-wash-trade-report/
https://www.bti.live/bti-september-2019-wash-trade-report/
https://bzx.network/
https://compound.finance/
https://github.com/ConsenSys/0x-review
https://github.com/ConsenSys/0x-review
https://www.trufflesuite.com/ganache
https://preventflashloanattacks.com/
https://github.com/marbleprotocol/flash-lending
https://github.com/marbleprotocol/flash-lending
https://www.sec.gov/litigation/investreport/34-81207.pdf
https://www.investopedia.com/terms/s/slippage.asp
https://www.investopedia.com/terms/s/slippage.asp
https://uniswap.org/
www.marketwatch.com/story/u-s-corporate-debt-soars-to-record-10-5-trillion-11598921886#:~:text=U.S.%20corporations%20now%20owe%20a, new%20BofA%20Global%20Research%20report
www.marketwatch.com/story/u-s-corporate-debt-soars-to-record-10-5-trillion-11598921886#:~:text=U.S.%20corporations%20now%20owe%20a, new%20BofA%20Global%20Research%20report
www.marketwatch.com/story/u-s-corporate-debt-soars-to-record-10-5-trillion-11598921886#:~:text=U.S.%20corporations%20now%20owe%20a, new%20BofA%20Global%20Research%20report
www.marketwatch.com/story/u-s-corporate-debt-soars-to-record-10-5-trillion-11598921886#:~:text=U.S.%20corporations%20now%20owe%20a, new%20BofA%20Global%20Research%20report
https://github.com/aave/aave-protocol
http://arxiv.org/abs/1809.03981
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://dydx.exchange/


Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit 31

25. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

26. Gandal, N., Hamrick, J., Moore, T., Oberman, T.: Price manipulation in the Bit-
coin ecosystem. J. Monet. Econ. 95(4), 86–96 (2018)

27. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
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Abstract. In recent years, Ethereum gained tremendously in popular-
ity, growing from a daily transaction average of 10K in January 2016 to
an average of 500K in January 2020. Similarly, smart contracts began
to carry more value, making them appealing targets for attackers. As
a result, they started to become victims of attacks, costing millions of
dollars. In response to these attacks, both academia and industry pro-
posed a plethora of tools to scan smart contracts for vulnerabilities before
deploying them on the blockchain. However, most of these tools solely
focus on detecting vulnerabilities and not attacks, let alone quantifying
or tracing the number of stolen assets. In this paper, we present Horus,
a framework that empowers the automated detection and investigation
of smart contract attacks based on logic-driven and graph-driven anal-
ysis of transactions. Horus provides quick means to quantify and trace
the flow of stolen assets across the Ethereum blockchain. We perform
a large-scale analysis of all the smart contracts deployed on Ethereum
until May 2020. We identified 1,888 attacked smart contracts and 8,095
adversarial transactions in the wild. Our investigation shows that the
number of attacks did not necessarily decrease over the past few years,
but for some vulnerabilities remained constant. Finally, we also demon-
strate the practicality of our framework via an in-depth analysis on the
recent Uniswap and Lendf.me attacks.

Keywords: Ethereum · Smart contracts · Attack detection · Forensics

1 Introduction

As of today, Ethereum [47] revolutionized the way digital assets are traded by
being the first to introduce the concept of Turing-complete smart contracts on
the blockchain. These are programs that are executed and stored across the
blockchain. However, due to the tamper-resistant nature of blockchains, smart
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contracts can no longer be modified once deployed. At the time of writing,
Ethereum has a market capitalization of over 42 billion USD, making it the
second most valuable cryptocurrency on the market [4]. As of writing, WETH,
the most valuable Ethereum smart contract holds more than 2 billion USD worth
of ether (Ethereum’s own cryptocurrency) [13]. Moreover, Ethereum grew in the
past 4 years from a daily transaction average of 10K in January 2016 to an
average of 500K in January 2020 [12]. Such an increase in value and popularity
attracts abuse and the lack of a governing authority has led to a “Wild West”-like
situation, where several attackers began to exploit vulnerable smart contracts to
steal their funds. In the past, several smart contracts hosting tens of millions of
USD were victims to attacks (e.g., [24,35,50]). Hence, over the past few years a
rich corpus of research works and tools have surfaced to identify smart contract
vulnerabilities (e.g., [2,15,18,21,23,26,29,43,44]). However, most of these tools
only focus on analyzing the bytecode of smart contracts and not their transac-
tions or activities. Only a small number leverages transactions to detect attacks
(e.g., [3,36,48]), whereas the majority either requires the Ethereum client to be
modified or large and complex attack detection scripts to be written. Moreover,
none of these tools allow to directly trace stolen assets after their detection.

In this work, we introduce Horus, a framework capable of automatically
detecting and analyzing smart contract attacks from historical blockchain data.
Besides detecting attacks, the framework also provides means to quantify and
trace the flow of stolen assets across Ethereum accounts. The framework replays
transactions without modifying the Ethereum client and encodes their execution
as logical facts. Attacks are then detected using Datalog queries, making the
framework easily extendable to detect new attacks. Stolen funds are traced by
loading detected transactions into a graph database and performing transaction
graph analysis. Using our framework, we conduct a longitudinal study that spans
the entire past Ethereum blockchain history, from August 2015 to May 2020,
consisting of over 3 million smart contracts. One of the fundamental research
questions we are investigating is whether these years of efforts have yielded
visibly fewer attacks in the wild. If the tools proposed herein are effective, one
could argue that attacks should have declined over time. To quantify the answer
to this question, we start by investigating whether attacks occur continuously,
or if they appear sporadically. While most well-known attacks carry significant
monetary value, we wonder whether smaller, but ongoing attacks may occur
more often and remain rather occluded.

Contributions. We present the design and implementation of Horus, a
framework that helps identifying smart contract attacks based on a sequence
of blockchain transactions using Datalog queries. In addition, the framework
extracts the quantity of stolen funds, including ether as well as tokens, and
traces them across accounts to support behavioral studies of attackers. We pro-
vide a longitudinal study on the security of Ethereum smart contracts of the
past 4.5 years, and find 8,095 attacks in the wild, targeting a total of 1,888 vul-
nerable contracts. Finally, we perform a forensic analysis of the recent Uniswap
and Lendf.me hacks.
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The remainder of the paper is organized as follows. Section 2 introduces back-
ground on smart contracts and the Ethereum virtual machine. Section 3 presents
our framework. Our evaluation is discussed in Sect. 4. Section 5 analyzes our
results and presents our forensic analysis on the Uniswap and Lendf.me inci-
dents. Finally, Sect. 6 and Sect. 7 discuss related work and conclude our paper,
respectively.

2 Background

Smart Contracts. Although, the notion of smart contracts is not new [41],
the concept only became wide-spread with the release of Ethereum in 2015.
Ethereum smart contracts are fully-fledged programs that are different from
traditional programs in several ways. They are deterministic as they must be exe-
cuted across a network of mutually distrusting nodes. Once deployed, smart con-
tracts cannot be removed or updated, unless they have been explicitly designed
to do so. Furthermore, every smart contract has a balance that keeps track of
the amount of ether owned by the contract, and a value storage that allows to
keep state across executions. They are usually developed using a high-level pro-
gramming language, such as Solidity [46], that compiles into low-level bytecode.
This bytecode is interpreted by the Ethereum Virtual Machine (EVM).

Transactions. The deployment and execution of smart contracts occurs via
transactions. Smart contracts are identifiable via a unique 160-bit address that
is generated during deployment. Transactions may only be initiated by externally
owned accounts (EOA)1. Smart contract functions are triggered by encoding the
function signature and arguments in the data field of a transaction. A fallback
function is executed whenever the provided function name is not implemented.
Transactions may also contain a given amount of ether that shall be transferred
from one account to another. Smart contracts may call other smart contracts
during execution, thus, a single transaction may trigger further transactions,
so-called internal transactions.

Ethereum Virtual Machine. The EVM is a stack-based virtual machine
that supports a Turing-complete set of instructions allowing smart contracts
to store data and interact with the blockchain. The EVM uses a gas mechanism
to associate costs to the execution of instructions. This guarantees termina-
tion and prevents denial-of-service attacks. The EVM holds a machine state
µ = (g, pc,m, i, s) during execution, where g is the gas available, pc is the pro-
gram counter, m represents the memory contents, i is the active number of words
in memory, and s is the content of the stack.

3 The Horus Framework

In this section, we provide details on the design and implementation of the
Horus framework. Horus automates the process of conducting longitudinal
1 EOAs are accounts controlled via private keys that have no associated code.
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Fig. 1. Architecture of Horus. Shaded boxes represent custom components, whereas
boxes highlighted in white represent off-the-shelf components.

studies of attacks on Ethereum smart contracts. The framework has the capa-
bility to detect and analyze smart contract attacks from historical data. More-
over, the framework also provides means to trace the flow of stolen assets across
Ethereum accounts. The latter is particularly useful for studying the behavior
of attackers. Figure 1 provides an overview on the architecture of Horus. The
framework is organized as an EAT (extract, analyse, and trace) pipeline consist-
ing of three different stages:

(1) Extraction: The extraction stage takes as input a list of transactions from
which execution related information is extracted and stored as Datalog facts.

(2) Analysis: The analysis stage takes as input a set of Datalog relations and
queries, which together identify attacks on the extracted Datalog facts.

(3) Tracing: The tracing stage retrieves a list of attacker accounts obtained via
the analysis and fetches all transactions related to these accounts (including
normal transactions, internal transactions and token transfers). Afterwards,
a graph database is created, which captures the flow of funds (both ether and
tokens) from and to these accounts. Further, the database can be augmented
with a list of labeled accounts to enhance the tracing of stolen assets.

In the following, we describe each of the three pipeline stages in more detail.
The entire framework was written in Python using roughly 2,000 lines of code2.

3.1 Extraction

The role of the extractor is to request from the Ethereum client the execution
trace for a list of transactions and to convert them into logic relations that reflect
the semantics of their execution. An execution trace consists of an ordered list
of executed EVM instructions. Each record in that list contains information
such as the executed opcode, program counter, call stack depth, and current
stack values. Unfortunately, execution traces cannot be obtained directly from
historical blockchain data, they can only be recorded during contract execution.
Fortunately, the Go based Ethereum client (Geth) provides a debug functionality
via the debug traceTransaction and debug traceBlockByNumber functions,
which gives us the ability to replay the execution of any given past transaction or

2 Code and data are publicly available at https://github.com/christoftorres/Horus.

https://github.com/christoftorres/Horus
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block and retrieve its execution trace. Execution traces are requested via Remote
Procedure Call (RPC). Previous works [3,34,36,48,49], did not rely on RPC as
it is too slow. Instead, they modified Geth to speed up the process of retrieving
execution traces. However, this has the limitation that users cannot use Geth’s
default version, but are required to use a modified version, and changes will need
to be carried over every time a new version of Geth is released. Moreover, at
the time of writing, none of these works publicly disclosed their modified version
of Geth, which not only makes it difficult to reproduce their results, but also
to conduct future studies. Therefore, rather than modifying Geth, we decided
to improve the speed on the retrieval of execution traces via RPC. We noticed
that execution traces contain a number of information that is irrelevant for our
analysis. Fortunately, Geth allows us to inject our own execution tracer written
in JavaScript [42]. Through this mechanism, we are able to reduce the size of the
execution traces and improve execution speed, without actually modifying Geth.
For example, our JavaScript code removes the current program counter, the
remaining gas and the instruction’s gas cost from the execution trace. Moreover,
instead of returning a complete snapshot of the entire stack and memory for
every executed instruction, our code only returns stack elements and memory
slices that are relevant to the executed instruction.

.decl opcode(step:number, op:Opcode, tx_hash:symbol)

.decl data_flow(step1:number, step2:number, tx_hash:symbol)

.decl arithmetic(step:number, op:Opcode, operand1:Value, operand2:Value,

arithmetic_result:Value, evm_result:Value)

.decl storage(step:number, op:Opcode, tx_hash:symbol, caller:Address,

contract:Address, index:Value, value:Value, depth:number)

.decl condition(step:number, tx_hash:symbol)

.decl erc20_transfer(step:number, tx_hash:symbol, contract:Address, from:

Address, to:Address, value:Value)

.decl call(step:number, tx_hash:symbol, op:Opcode, caller:Address, callee:

Address, input:symbol, value:Value, depth:number, call_id:number,

call_branch:number, result:number)

.decl selfdestruct(step:number, tx_hash:symbol, caller:Address, contract:

Address, destination:Address, value:Value)

.decl block(block_number:number, gas_used:number, gas_limit:number,

timestamp:number)

.decl transaction(tx_hash:symbol, tx_index:number, block_number:number, from

:Address, to:Address, input:symbol, gas_used:number, gas_limit:number,

status:number)

Listing 1. List of Datalog facts extracted by Horus.

Listing 1 shows the list of Datalog facts that our extractor produces by
iterating through each of the records of the execution traces and encoding
relevant information. While most facts are related to low level EVM opera-
tions (e.g., call), others are related to high level operations. For example, the
erc20 transfer fact refers to the ERC-20 token event “Transfer” that is emit-
ted whenever tokens are transferred, where contract denotes the address of
the token contract, and from and to, denote the sender and receiver of the
tokens, respectively. It is important to note that this list can easily be modified
or extended to support different studies from the one proposed in this paper
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Fig. 2. The example on the left depicts the propagation of taint via the ADD instruction,
where the result pushed onto stack s′ becomes tainted because the second operand on
stack s was tainted. The example on the right depicts the propagation of taint via the
SHA3 instruction, where the result pushed onto stack s′ becomes tainted because the
memory m was tainted.

by modifying the extractor, analyzer and tracer. Besides using the default types
number and symbol, we also define our own three new types: Address for 160-bit
values, Opcode for the set of EVM opcodes, and Value for 256-bit stack values.

Dynamic Taint Analysis. The extractor leverages dynamic taint analysis
to track the flow of data across instructions. Security experts can then use the
data flow fact to check if data flows from one instruction to another. Taint is
introduced via sources, then propagated across the execution and finally checked
if it flows into sinks. Sources represent instructions that might introduce untrusted
data (e.g., CALLDATALOAD or CALLDATACOPY), whereas sinks represent instruc-
tions that are sensitive locations (e.g., CALL or SSTORE). We implemented our own
dynamic taint analysis engine. The engine loops through every executed instruc-
tion and checks whether the executed instruction is a source, for which the engine
then introduces taint by tagging the affected stack value, memory region or stor-
age location according to the semantics defined in [47]. We implemented the stack
using an array structure following LIFO logic. Memory and storage are imple-
mented using a Python dictionary that maps memory and storage addresses to
values. Taint propagation is performed at the byte level (see examples in Fig. 2).

Execution Order. Attacks such as the Parity wallets hacks were composed
of two transactions being executed in a specific order. To detect such multi-
transactional attacks, our framework encodes a total order across multiple trans-
actions via the triplet o = (b, t, s), where b is the block number, t is the transac-
tion index, and s is the execution step. The execution step is a simple counter
that is reset at the beginning of the execution of a transaction and its value
is incremented after each executed instruction. An execution step is bound to a
transaction index, which is on the other hand bound to a block number. As such,
our framework is able to precisely identify the execution order of any instruction
across multiple transactions and the entire blockchain history.

3.2 Analysis

The second stage of our pipeline uses a Datalog engine to analyze whether a
given list of Datalog relations and queries match any of the previously extracted
Datalog facts. These Datalog queries identify adversarial transactions, i.e.,
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malicious transactions that successfully carried out a concrete attack against
a smart contract by exploiting a given vulnerability. Our framework uses Soufflé
as its Datalog engine. Soufflé compiles Datalog relations and queries into a highly
optimized C++ executable [22]. In the following, we provide Datalog queries for
detecting reentrancy, Parity wallet hacks, integer overflows, unhandled excep-
tions and short address attacks. Although, a number of smart contract vulner-
abilities exist [1], in this work we focus on those that are ranked by the NCC
Group as the top 10 smart contract vulnerabilities [30] and for which we can
extract the amount of ether or tokens that were either stolen or locked.

Reentrancy. Reentrancy occurs whenever a contract calls another contract, and
the called contract calls back the original contract (i.e., a re-entrant call) before
the state in the original contract has been updated appropriately. We detect
reentrancy by identifying cyclic calls originating from the same caller and calling
the same callee (see Listing 2). We check if two successful calls (i.e., result is
1), share the same transaction hash, caller, callee, id and branch, where
the second call has a higher call depth than the first call. Afterwards, we check
if there are two storage operations with the same call depth as the first call,
where the first operation is an SLOAD and occurs before the first call, and the
second operation is an SSTORE and occurs after the second call.

Reentrancy(hash, caller, callee, depth2, amount) :-

storage(step1, "SLOAD", hash, _, caller, index, _, depth1),

call(step2, hash, _, caller, callee, _, _, depth1, id, branch, 1),

call(step3, hash, _, caller, callee, _, amount, depth2, id, branch, 1),

storage(step4, "SSTORE", hash, _, caller, index, _, depth1),

depth1 < depth2, step1 < step2, step3 < step4, !match("0", amount).

Listing 2. Datalog query for detecting reentrancy attacks.

Parity Wallet Hacks. In this paper, we focus on detecting the two Parity
wallet hacks [35,50]. Both hacks were due faulty access control implementa-
tions that allowed attackers to set themselves as owners, which allowed them
to perform critical actions such as the transfer of funds or the destruction of
contracts. We detect the first Parity wallet hack by checking if there exist two
transactions t1 and t2, both containing the same sender and receiver, where
the first 4 bytes of t1’s input match the function signature of the initWallet
function (i.e., e46dcfeb), and if the first 4 bytes of t2’s input match the function
signature of the execute function (i.e., b61d27f6) (see Listing 3). Afterwards,
we check whether there is a call, which is part of t2 and where t2 is executed
after t1 (i.e., block1 < block2; block1 = block2, index1 < index2).

ParityWalletHack1(hash1, hash2, caller, callee, amount) :-

transaction(hash1, index1, block1, from, to, input1, _, _, 1),

substr(input1, 0, 8) = "e46dcfeb",

transaction(hash2, index2, block2, from, to, input2, _, _, 1),

substr(input2, 0, 8) = "b61d27f6",

call(_, hash2, "CALL", caller, callee, _, amount, _, 1),

(block1 < block2; block1 = block2, index1 < index2).

Listing 3. Datalog query for detecting the first Parity wallet hack.
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We detect the second Parity wallet hack in a very similar way to the first
one, except that in this case we check if t2’s input matches the function signa-
ture of the kill function (i.e., cbf0b0c0) and t2 contains a selfdestruct (see
Listing 4).

ParityWalletHack2(hash1, hash2, contract, destination, amount) :-

transaction(hash1, index1, block1, from, to, input1, _, _, 1),

substr(input1, 0, 8) = "e46dcfeb",

transaction(hash2, index2, block2, from, to, input2, _, _, 1),

substr(input2, 0, 8) = "cbf0b0c0",

selfdestruct(_, hash2, _, contract, destination, amount),

(block1 < block2; block1 = block2, index1 < index2).

Listing 4. Datalog query for detecting the second Parity wallet hack.

Integer Overflows. We detect integer overflows by checking if data from
CALLDATALOAD or CALLDATACOPY opcodes flows into an arithmetic operation,
where the arithmetic result does not match the result returned by the EVM.
Afterwards, we check whether the result of the arithmetic operation flows into
an SSTORE storage operation and an erc20 transfer occurs, where the amount
is one of the two operands used in the arithmetic computation (see Listing 5).
Please note that in this work, we only focus on detecting integer overflows related
to ERC-20 tokens, since token smart contracts have been identified in the past
to be frequent victims of integer overflows [32,33].

IntegerOverflow(hash, from, to, amount) :-

(opcode(step1, "CALLDATALOAD", hash);

opcode(step1, "CALLDATACOPY", hash)),

arithmetic(step2, _, operand1, operand2, arithmetic_res, evm_res),

arithmetic_res != evm_res, (operand1 = amount; operand2 = amount),

storage(step3, "SSTORE", hash, _, _, _, _, 1),

data_flow(step1, step2, hash), data_flow(step2, step3, hash),

erc20_transfer(_, hash, _, from, to, amount), !match("0", amount).

Listing 5. Datalog query for detecting integer overflow attacks.

Unhandled Exception. Inner calls executed by smart contracts may fail and
by default only the state changes caused by those failed calls are rolled back. It
is the responsibility of the developer to check the result of every call and perform
proper exception handling. However, many developers forget or decide to ignore
the handling of such exceptions, resulting in funds not being transferred to their
rightful owners. We detect an unhandled exception by checking whether a call
with opcode "CALL" failed (i.e., result is 0) with an amount larger than zero and
where the result was not used in a condition (see Listing 6).

UnhandledException(hash, caller, callee, amount) :-

call(step, hash, "CALL", caller, callee, _, amount, _, 0),

!match("0", amount), !used_in_condition(step, hash).

Listing 6. Datalog query for detecting unhandled exceptions.

Short Address. The ERC-20 functions transfer and transferFrom take as
input a destination address and a given amount of tokens. During execution the
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EVM will add trailing zeros to the end of the transaction input if the transaction
arguments are not correctly encoded as chunks of 32 bytes, thereby shifting the
input bytes to the left by a few zeros, and therefore unwillingly increase the num-
ber of tokens to be transferred. However, attackers can exploit this fact by gen-
erating addresses that end with trailing zeros and omit these zeros, to then trick
another party (e.g., web service) into making a call to transfer/transferFrom
containing the attacker’s malformed address. We detect a short address attack by
first checking if the first 4 bytes of a transaction’s input match either the func-
tion signature of transfer (i.e., a9059cbb) or transferFrom (i.e., 23b872dd).
Then, for the function transfer we check whether the length of the input is
smaller than 68 (i.e., 4 bytes function signature, 32 bytes destination address,
and 32 bytes amount), and for the function transferFrom we check whether the
length of the input is smaller than 100 (i.e., 4 bytes function signature, 32 bytes
from address, 32 bytes destination address, and 32 bytes amount), and finally
we check if an erc20 transfer occurred (see Listing 7).

ShortAddress(hash, from, to, amount) :-

transaction(hash, _, _, input, _, _, 1, _),

(substr(input, 0, 8) = "a9059cbb", strlen(input) / 2 < 68;

substr(input, 0, 8) = "23b872dd", strlen(input) / 2 < 100),

erc20_transfer(_, hash, _, from, to, amount), !match("0", amount).

Listing 7. Datalog query for detecting short address attacks.

3.3 Tracing

The final stage of our pipeline is the tracing of stolen assets, such as ether and
tokens, from attacker accounts to labeled accounts (e.g., exchanges). The tracer
starts by extracting sender addresses and timestamps from malicious transac-
tions that have been identified via the Datalog analysis. Sender addresses are
assumed to be accounts belonging to attackers. Afterwards, the tracer uses Ether-
scan’s API to retrieve for each sender address all its normal transactions, internal
transactions and token transfers, and loads them into a Neo4j graph database.
We rely on a third-party service such as Etherscan to retrieve normal trans-
actions, internal transactions and token transfers, because a default Ethereum
node does not provide this functionality out-of-the-box. Accounts are encoded
as vertices and transactions as directed edges between those vertices. We differ-
entiate between three types of accounts: attacker accounts, unlabeled accounts,
and labeled accounts. Every account type contains an address. Labeled accounts
contain a category (e.g., exchange) and a label (e.g., Kraken 1). We obtain cat-
egories and labels from Etherscan’s large collection of labeled accounts3. We
downloaded a total of 5,437 labels belonging to 204 categories. We differenti-
ate between three different types of transactions: normal transactions, internal
transactions, and token transactions. Each transaction type contains a transac-
tion value, transaction hash, and transaction date. Token transactions contain a

3 https://etherscan.io/labelcloud.

https://etherscan.io/labelcloud
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token name, token symbol and number of decimals. Transactions can be loaded
either backwards or forwards. Loading transactions forwards allows us to track
where attackers sent their stolen funds to, whereas loading transactions back-
wards allows us to track where attackers received their funds from. We start with
the attacker’s account when loading transactions and recursively load transac-
tions for neighboring accounts that are part of the same transaction for up to a
given number of hops. We do not load transactions for accounts with more than
1,000 transactions. This is to avoid bloating the graph database with transactions
from mixing services, exchanges or gambling smart contracts. Moreover, when
loading transactions backwards, we only load transactions that occurred before
the timestamp of the attack, whereas when loading transactions forwards, we
only load transactions that occurred after the timestamp of the attack. Finally,
when all transactions are loaded, security experts can query the graph database
using Neo4j’s own graph query language called Cypher, to trace the flow of stolen
funds. Evidently, our tracing is only effective up to a certain point, since mixing
services and exchanges prevent further tracing. Nonetheless, our tracing is still
useful to study whether attackers send their funds to mixers or exchanges and
to identify which services are being used and to what extend.

4 Evaluation

In this section, we demonstrate the scalability and effectiveness of our framework
by performing a large-scale analysis of the Ethereum blockchain and comparing
our results to those presented in previous works.

Dataset. We used the Ethereum ETL framework [28] to retrieve a list of trans-
actions for every smart contract deployed up to block 10 M. We collected a total
of 697,373,206 transactions and 3,362,876 contracts. The deployment timestamps
of the collected contracts range from August 7, 2015, to May 4, 2020. We fil-
tered out contracts without transactions and removed transactions that have
a gas limit of 21,000 (i.e., do not execute code). Moreover, similar to [36], we
skipped all the transactions that were part of the 2016 denial-of-service attacks,
as these incur high execution times [40]. After applying these filters, we ended
up with a final dataset of 1,234,197 smart contracts consisting of 371,419,070
transactions. During the extraction phase, Horus generated roughly 700 GB of
Datalog facts on the final dataset.

Experimental Setup. All experiments were conducted using a machine with
64 GB of memory and an Intel(R) Core(TM) i7-8700 CPU with 12 cores clocked
at 3.2 GHz, running 64-bit Ubuntu 18.04.5 LTS. Moreover, we used Geth version
1.9.9, Soufflé version 1.7.1, and Neo4j version 4.0.3.
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4.1 Results

Table 1. Summary of detected vulnerable contracts and adversarial transactions.

Results Validation

Vulnerability Contracts Transactions TP FP p

Reentrancy 46 2,508 45 1 0.97

Parity Wallet Hacks 600 1,852 600 0 1.00

Parity Wallet Hack 1 596 1,632 596 0 1.00

Parity Wallet Hack 2 238 238 238 0 1.00

Integer Overflow 125 443 65 0 1.00

Overflow (Addition) 37 139 25 0 1.00

Overflow (Multiplication) 23 120 20 0 1.00

Underflow (Subtraction) 104 352 68 0 1.00

Unhandled exception 1,068 3,100 100 0 1.00

Short address 55 275 5 0 1.00

Total unique 1,888 8,095

Table 1 summarizes our results: we found 1,888 attacked contracts and 8,095
adversarial transactions. From these contracts, 46 were attacked using reen-
trancy, 600 were attacked during the Parity wallet hacks, 125 were attacked
via integer overflows, 1,068 suffered from unhandled exceptions, and 55 were
victims of short address attacks. For the Parity wallet hacks, we find that the
majority was attacked during the first hack. We also observe that most contracts
that are vulnerable to integer overflows, were attacked via an integer underflow.

4.2 Validation

We confirm our framework’s correctness, by comparing our findings to those
reported by previous works for which results were publicly available. Also, we
solely compare our finding to works that similarly to Horus, focus on detecting
attacks rather than vulnerable contracts. In cases where the results were not
publicly available, we manually inspected the source code and transactions of
flagged contracts using Etherscan. Table 1 summarizes the results of our vali-
dation in terms of true positives (TP), false positives (FP) and precision (p).
Overall our framework achieves a high precision of 99.54%.

Reentrancy. First, we compare our results to those of Sereum [36]. The
authors reported a total of 16 vulnerable contracts, where 14 are false posi-
tives. The true positives include the DAO [6] and the DSEthToken [8] con-
tract, which Horus has also identified. Horus has flagged none of the 14
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false positives. Next, we compare our results to ÆGIS [14,16]. Horus suc-
cessfully detected the 7 contracts that were reported by ÆGIS. Then, we com-
pare our results to SODA [3]. Horus identified 25 of the 26 contracts that
were flagged as true positives by SODA. We analyzed the remaining con-
tract (0x59abb8006b30d7357869760d21b4965475198d9d) and found that it is
not vulnerable to reentrancy, which is in line with what other previous works
discovered [48]. For the 5 false positives reported by SODA, we detected
3 of them, where two (0xd4cd7c881f5ceece4917d856ce73f510d7d0769e and
0x72f60eca0 db6811274215694129661151f97982e) are actual true positives
and have been misclassified by SODA. The other one (known as HODLWal-
let [9]) is indeed a false positive. Afterwards, we compare our results with those
of EthScope [48]. Horus detected 45 out of the 46 true positives reported
by EthScope. The non-reported contract is the DarkDAO [7], which did not
suffer from a reentrancy attack and is, therefore, a false positive. In terms of
false positives, Horus only has one in common with EthScope, namely the
aforementioned HODLWallet contract. The other two false positives that Eth-

Scope reported were correctly identified as true negatives by Horus. Finally,
we compare our results with those of Zhou et al. [51]. Horus found 22 of the 26
contracts that have been reported as true positives by Zhou et al. We inspected
the remaining 4 contracts and found that they are false positives.

Parity Wallet Hacks. For the first Parity wallet hack, we compared our results
to those reported by ÆGIS and Zhou et al. ÆGIS reported 3 contracts, which
have also been found by Horus. Next, Zhou et al. reported 622 contracts, of
which Horus found 596. We analyzed the remaining 26 contracts and found
that these are false positives. After analyzing their list of transactions, we could
not find evidence of the two exploiting transactions, namely initWallet and
execute. For the second Parity wallet hack, we compared our results to those of
ÆGIS. Horus found 238 contracts, of which 236 were also reported by ÆGIS.
The remaining two are true positives and have not been identified by ÆGIS.

Integer Overflow. We compared our findings to those of Zhou et al. The
authors found 50 contracts, whereas we found 125 contracts. Horus detected 49
of the 50 contracts reported by Zhou et al. We analyzed the undetected contract
(0xa9a8ec071ed0ed5be571396438a046a423a0c206) and found no evidence of
an integer overflow. Besides our comparison with Zhou et al., we also tried to
analyze manually the source code of the reported contracts. We were able to
obtain the source code for 65 of the 125 reported contracts. Our manual inspec-
tion identified that all of the contracts are true positives. They either contained
a faulty arithmetic check or no arithmetic check at all.

Unhandled Exception. Since none of the previous works analyzed unhandled
exceptions, we manually analyzed the source code of the contracts reported by
Horus. However, we limited our validation to a random sample of 100 contracts
since manually analyzing 1,068 contracts is infeasible. We find that all of the
100 contracts contained in their source code either a direct call or a function call
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that did not check the return value. Therefore, we conclude that Horus reports
no false positives on the detection of unhandled exceptions.

Short Address. We compared our results to those reported by SODA. SODA

detected 726 contracts and 6,599 transactions, whereas Horus detected 55 con-
tracts and 275 transactions. After further investigation, we found that the con-
tracts and transactions detected by Horus were also detected by SODA. We
also found that SODA reported transactions that failed or where the transferred
amount was zero, while Horus only reported transactions that were successful
and where an ERC-20 transfer event was successfully triggered with an amount
larger than zero. Moreover, we were able to obtain the source code for 5 of the
reported contracts and confirm that the transfer or transferFrom functions
contained inside those contracts do not validate the input length of parameters.

5 Analysis

In this section, we demonstrate the practicality of Horus in detecting and ana-
lyzing real-world smart contract attacks via an analysis of our evaluated results
and a case study on the recent Uniswap and Lendf.me incidents.

5.1 Volume and Frequency of Attacks

Fig. 3. Weekly average of daily contract deployments and attacks over time.

Figure 3 depicts the weekly average of daily attacks in comparison to the weekly
average of daily deployments. We state that the peak of weekly deployed con-
tracts was at the end of 2017, and that the largest volume of weekly attacks
occurred before this peak. Moreover, most attacks seem to occur in clusters of
the same day. We suspect that attackers scan the blockchain for similar vulner-
able contracts and exploit them at the same time. The first three spikes in the
attacks correspond to the DAO and Parity wallet hacks, whereas the last spike
corresponds to the recent Uniswap/Lendf.me hacks.

Figure 4 depicts the occurrences of adversarial transactions per vulnerability
type that we measured during our evaluation. While reentrancy attacks seem
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Fig. 4. Volume and frequency of smart contract attacks over time.

to occur more sporadically, other types of vulnerabilities such as unhandled
exceptions are triggered rather continuously. Overall, we see that over time less
contracts became victims to short address attacks and integer overflows, sug-
gesting that smart contracts have become more secure over the past few years.
However, we also see that smart contracts still remain vulnerable to well-known
vulnerabilities such as reentrancy and unhandled exceptions, despite automated
security tools being available. Figure 4 also illustrates for each adversarial trans-
action the amount of USD that was either stolen (reentrancy and Parity wallet
hack 1) or locked (unhandled exception and Parity wallet hack 2). The USD
amounts were calculated by multiplying the price of one ether at the time of
the attack times the ether extracted via our Datalog query. We do not provide
USD amounts for short address attacks and integer overflows, because these
attacks involve stolen ERC-20 tokens and we were not able to obtain the histor-
ical prices of these tokens. We can see that the DAO hack and the first Parity
wallet hack remain the two most devastating attacks in terms of ether stolen,
with ether worth 94,812,885 USD and 107,773,036 USD, respectively. We marked
well-known incidents such as the DAO hack, or the two Parity wallet hacks for
the reader’s convenience and to demonstrate that Horus is able to detect them.

5.2 Forensic Analysis on Uniswap and Lendf.me Incidents

Fig. 5. Invested ETH and net profit made by Uniswap attackers over time.
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Uniswap. On April 18, 2020, attackers were able to drain a large amount of
ether from Uniswap’s liquidity pool of ETH-imBTC [11]. They purposely chose
the imBTC token as it implements the ERC777 standard, which would allow
them to register a callback function and therefore perform a reentrancy attack
on Uniswap. The attackers would start by purchasing imBTC tokens for ETH.
Afterward, they would exchange half of the purchased imBTC tokens within
the same transaction back to ETH. However, the latter would trigger a call-
back function that the attackers registered before the attack, allowing them to
take control and call back the Uniswap contract to exchange the remaining half
of imBTC tokens to ETH before the conversion rate was updated. Thus, the
attackers could trade the second batch of imBTC tokens at a more profitable
conversion rate. Interestingly, this vulnerability was known to Uniswap and was
publicly disclosed precisely a year before the attack [5].

We used Horus to extract and analyze all the transactions mined on that day,
and identified a total of 525 transactions performing reentrancy attacks against
Uniswap with an accumulated profit of 1,278 ETH (232,239.46 USD). The attack
began at 00:58:19 UTC and ended roughly 3.5 h later at 04:22:58 UTC. Figure 5
depicts a timeline of the attack, showing the amount of ether that the attackers
invested and the net profit they made per transaction. We see that the net profit
goes down over time. The highest profit made for a single transaction was roughly
9.79 ETH (1,778.72 USD), while the lowest profit was 0.01 ETH (2.73 USD). The
attackers began their attack by purchasing tokens for roughly 80 ETH and went
over time down to 1 ETH. Moreover, we see that the profit was mostly tied to the
amount of ether that the attackers were investing (i.e., using to purchase imBTC
tokens). However, we also see that sometimes there were some fluctuations, where
the attackers were making more profit while they would invest the same amount
of ether. This is probably due to other participants trading imBTC on Uniswap
during the attack and therefore influencing the exchange rates. In the last step,
we traced the entire ether flow from the attackers account for up to 5 hops using
Horus’s tracing capabilities. Our transaction graph analysis reveals that the
attackers exchanged roughly 702 ETH (55% of the stolen funds) for tokens on
different exchanges: 589 ETH on Uniswap for WETH, DAI, USDC, BAT, and
MKR, 31 ETH on Compound, and 82 ETH on 1inch.exchange. The latter is of
particular interest for law enforcement agencies as 1inch.exchange keeps track

Fig. 6. Deposited and borrowed tokens by Lendf.me attackers over time.
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of IP addresses of transactions performed over their platform [37], which can be
useful in deanonymizing the attackers.

Lendf.me. On April 19, 2020, attackers were able to drain all of Lendf.me’s
liquidity pools [10]. Similar to the Uniswap hack, the attackers exploited the
fact that Lendf.me was trading imBTC and could register a callback function to
perform a reentrancy attack. The attackers would start by depositing x amount
of imBTC tokens into Lendf.me’s liquidity pool. Next, still within the same
transaction, they would deposit another amount y, however, this time triggering
the callback function registered by the attackers, which would withdraw the
previously deposited x tokens from Lendf.me. By the end of the transaction,
the imBTC balance of the attackers on the imBTC token contract would be
x−y, but the imBTC balance on the Lendf.me contract would be x+y, thereby
increasing their imBTC balance on Lendf.me by x without actually depositing
it. Similar to Uniswap, the issue here is that the user’s balance is only updated
after the transfer of tokens, thus the update is based on data before the transfer
and therefore ignoring any updates made in between.

Using Horus, we extracted and analyzed all the transactions mined on
that day. We identified a total of 46 transactions performing reentrancy attacks
against Lendf.me, and 19 transactions using the stolen imBTC tokens to borrow
other tokens. Figure 6 shows on the left the amount of imBTC tokens that the
attackers deposited during the attack and the amount of USD that the attackers
made by borrowing other tokens. The right-hand side of Fig. 6 depicts the num-
ber of tokens in USD that the attackers borrowed from Lendf.me. The attackers
borrowed from 12 different tokens, worth together 25,244,120.74 USD, where
10.31M USD are only from borrowing WETH. The attackers launched their
attack at 00:58:43 UTC and stopped 2 h later at 02:12:11 UTC. They started
depositing low amounts of imBTC and increased their amounts over time up to
291.35 imBTC. The borrowing started at 01:22:27 UTC and ended at 03:30:42
UTC. Finally, we used Horus to trace the flow of tokens from the attackers
account for up to 3 hops. We found that the attackers initially traded some
parts of the stolen tokens for other tokens on ParaSwap, Compound, Aave, and
1inch.exchange. However, at 14:16:52 UTC, thus about 10 h later, the attack-
ers started sending all the stolen tokens back to Lendf.me’s admin account
(0xa6a6783828ab3e4a9db54302bc01c4ca73f17efb). Lendf.me then moved all
the tokens into a recovery account (0xc88fcc12f400a0a2cebe87110dcde0dafd2
9f148) where users could then reclaim their tokens.

6 Related Work

Static Analysis. Researchers proposed a number of tools to detect smart
contract vulnerabilities via static analysis. Luu et al. [26] proposed Oyente,
the first symbolic execution tool for smart contracts. Other tools such as
Osiris [15], combine symbolic execution and taint analysis to detect integer
bugs. Mythril [29] uses a mix of symbolic execution and control-flow check-
ing. Maian [31] employs inter-procedural symbolic execution. teEther [25]
automatically generates exploits for smart contracts. HoneyBadger [17]
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performs symbolic execution to detect honeypots. However, symbolic execution
is often unable to explore all program states, making it generally unsound. For-
mal verification tools were proposed [27,45], together with a formal definition
of the EVM [20]. EthBMC [18] uses bounded model checking to detect vulner-
abilities, whereas eThor [38] uses reachability analysis. Zeus [23] verifies the
correctness of smart contracts using abstract interpretation and model checking.
SmartCheck [43] checks Solidity source code against XPath patterns. VeriS-

mart [39] leverages counter example-based inductive synthesis to detect arith-
metic bugs. Securify [44] extracts semantic information from the dependency
graph to check for compliance and violation patterns using Datalog. Vandal [2]
converts EVM bytecode to semantic logic relations and checks them against
Datalog queries. The main difference between these works and ours, is that they
analyze the bytecode of smart contracts, whereas we analyze the execution of
transactions.

Dynamic Analysis. Although less apparent, a number of dynamic approaches
have also been proposed. ECFChecker [19] enables the runtime detection of
reentrancy attacks via a modified EVM. Sereum [36] proposes a modified EVM
to protect deployed smart contracts against reentrancy attacks. ÆGIS [14,16]
presents a smart contract and a DSL to protect against all kinds of runtime
attacks. SODA [3] uses a modified Ethereum client to inject custom modules
for the online detection of malicious transactions. Perez et al. [34] use Datalog
to study the transactions of vulnerable smart contracts that have been detected
by previous works. EthScope [48] loads historical data into an Elasticsearch
database and adds dynamic taint analysis to the client to analyze transactions.
Zhou et al. [51] study attacks and defenses by encoding transactional information
as action trees and result graphs. TxSpector [49] is a concurrent work to ours
and adopts the Datalog facts proposed by Vandal. However, these facts were
designed to analyze bytecode and do not allow to detect multi-transactional
attacks. In contrast to these works, our work does not modify the Ethereum
client. Instead, we dynamically inject our custom tracer into the client. We also
provide a new set of Datalog facts that allow to check for multi-transactional
attacks and describe data flows between instructions via dynamic taint analysis.
Finally, none of the aforementioned tools provide means to trace stolen assets
across the Ethereum blockchain.

7 Conclusion

A wealth of automated vulnerability detection tools for Ethereum smart con-
tracts were proposed over the past years. This raises the question whether the
security of smart contracts has improved. In this paper, we presented the design
and implementation of an extensible framework for carrying out longitudinal
studies on detecting, analyzing, and tracing of smart contract attacks. We ana-
lyzed transactions from August 2015 to May 2020 and identified 8,095 attacks as
well as 1,888 vulnerable contracts. Our analysis revealed that while the number
of attacks seems to have decreased for attacks such as integer overflows, unhan-
dled exceptions and reentrancy attacks still seem to remain present despite an
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abundance of new smart contract security tools. Finally, we also presented an
in-depth analysis on the recent Uniswap and Lendf.me incidents.
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Abstract. A Hashed Time Lock Contract (HTLC) is a central con-
cept in cryptocurrencies where some value can be spent either with the
preimage of a public hash by one party (Bob) or after a timelock expires
by another party (Alice). We present a bribery attack on HTLC’s where
Bob’s hash-protected transaction is censored by Alice’s timelocked trans-
action. Alice incentivizes miners to censor Bob’s transaction by leaving
almost all her value to miners in general. Miners follow (or refuse) this
bribe if their expected payoff is better (or worse). We explore conditions
under which this attack is possible, and how HTLC participants can pro-
tect themselves against the attack. Applications like Lightning Network
payment channels and Cross-Chain Atomic Swaps use HTLC’s as build-
ing blocks and are vulnerable to this attack. Our proposed solution uses
the hashpower share of the weakest known miner to derive parameters
that make these applications robust against this bribing attack.

Keywords: Bitcoin · HTLC · Bribe · Miner extractable value

1 Introduction

Bitcoin started the modern cryptocurrency revolution by removing trusted inter-
mediaries and replacing them with a dynamic set of miners. These miners vali-
date transactions and are paid by the system in the form of block rewards and
also by transaction participants in the form of fees. Rational miners will always
choose higher-fee transactions than lower-fee ones, and this behavior will get
reinforced over time as block rewards decrease to zero [1]. This setup has often
raised ([2–4]) the possibility of miners being bribed by transaction participants
to favor one participant over the other. Typical bribing attacks envision the pay-
ing party (Alice) cheating the paid party (Bob) by Alice double-spending the
same value in a separate transaction paying back to Alice. Miners are bribed by
Alice to include the double-spending transaction in the blockchain by forking it
and orphaning the block with the first transaction, thereby cheating Bob of the
payment from the first transaction. These bribery attacks, however, operate at
a block level because, to be cheated, Bob needs to be convinced that the first
transaction is buried in the blockchain by k blocks (in Bitcoin, k = 6). Before
this happens, Bob should ideally not honor the first transaction, but monitor
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the public Bitcoin blockchain. If a transaction where Alice double-spends the
same bitcoins back to herself is seen, and Bob’s transaction is abandoned in an
orphaned block, Bob should not honor Alice’s first transaction by not giving
Alice the goods and services that were promised.

A more sophisticated concept of transactions exists where Bob does want
Alice to pay the transaction value back to herself, but only after some time
has elapsed. During this time, Bob reserves the option of getting paid himself
from the same payment source. This complex transaction structure is the build-
ing block for financial contracts like escrows, payment channels, atomic swaps,
etc. The required time delay is implemented using a blockchain artefact called
timelocks. A rudimentary version of timelocks (nLocktime) was in the first Bit-
coin implementation by Satoshi Nakamoto in 2009 [5]. More sophisticated time-
locks that lock transactions, specific bitcoins, or specific script execution paths
were added later [6–8]. Bitcoin script allows for timelocks to be combined with
hashlocks in an OR condition to create a new kind of transaction called Hash
Timelocked Transactions (HTLC). As we will see later, HTLC’s open the possi-
bility of transaction level bribing of miners where miners do not have to orphan
mined blocks, but just have to ignore a currently valid transaction and wait for
the timelocked bribe to become valid. Additionally, in this attack, the bribe is
endogenous to the transactions and does not have to be implemented externally
through public bulletin boards or other third party smart contracts. Bribery
attacks that operate at a transaction level are far more insidious compared to
block orphaning bribery attacks. Block orphaning attacks undermine the native
cryptocurrency’s trust with the larger community and could be detrimental to
the briber’s financial position in general. Transaction level bribery, on the other
hand, targets specific contracts on the blockchain and could go unnoticed as the
larger cryptocurrency system hums along. This sort of an attack, where a miner
has visibility into the pool of transactions that are waiting for confirmation
(mempool) and can include or not include a transaction in their mined block
is discussed in a more general setting in [9] under the umbrella term “Miner
Extractable Value”.

1.1 HTLC

HTLC’s are a type of smart contract that use preimage resistance of crypto-
graphic hash functions, along with timelocks, to enable an escrow service. Say
we have a buyer who has some bitcoin and wants to buy some goods/services
from a seller. The buyer commits their bitcoin into a contract which is locked
by an OR condition of:

– Preimage to a cryptographic hash. This is the payment path. The buyer
creates a random secret preimage and cryptographically hashes it to get a
digest. This digest is used to lock the payment path. The buyer will reveal
the preimage to the seller once the buyer has possession of the goods/services.
The seller can use this preimage and their own signature to send the funds to
an address they control. The exchange of the preimage for the goods/services
can be implemented in a variety of ways, leading to different applications.
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– A timelock. This is the refund path. The buyer sets a timelock after which
the funds are refunded back. This path is to ensure that the funds do not get
locked in the contract if the seller aborts.

This transaction (HTLC TXN) is broadcast and is confirmed on the Bitcoin
blockchain to a sufficient depth to be considered finalized. The seller then
exchanges their goods and services for the preimage of the hash from the buyer.
This exchange process is independent of the transaction itself. Each applica-
tion that uses HTLC’s has its own way of doing this exchange. For example,
Atomic Swaps rely on another public blockchain to reveal the secret preimage.
After the exchange is done, the seller will attempt to move the UTXO created
in HTLC TXN’s payment path to an address that the seller controls with a simpler
unencumbered transaction (SELLER TXN) that uses the seller’s signature and the
preimage received from the buyer. If the exchange is not done, the buyer waits
for the timelock to expire, and uses the REFUND TXN to send the funds back to
themselves.

1.2 Bribing Attack

The attack can begin after the HTLC TXN is confirmed and the buyer already has
the goods/services for which the buyer committed the funds for. If the buyer
acts in good faith and does nothing, there is no attack. If the buyer acts in bad
faith, the buyer will try to censor SELLER TXN from being included in any future
block. The buyer broadcasts the REFUND TXN (which sends the funds back to the
buyer) and chains it with a BRIBE TXN, which sends the funds from the buyer
to any miner who mines it by leaving the output field empty. Note that in the
BRIBE TXN, the buyer can send an ε amount to themselves. This makes the bribe
not just a griefing attack (where the attacker does not profit), but marginally
profitable. Also note that SELLER TXN and the pair [REFUND TXN, BRIBE TXN]
spend the same UTXO and are inherently incompatible. If one of them is con-
firmed on the blockchain, the other becomes invalid. In the rest of this paper,
we will use BRIBE TXN and the pair [REFUND TXN, BRIBE TXN] interchangeably.
Pseudo-code for these transactions are in Appendix A.

Bitcoin’s consensus rules govern what transactions can be included in a block
by miners, but does not say anything about what transactions miners can or can-
not ignore. It gives the benefit of the doubt to miners, allowing the possibility
that miners have not seen a specific transaction because of network delays/fail-
ures. Miners could be (or not be) interested in a transaction because its fees are
high (or low). In our attack scenario, miners see SELLER TXN and BRIBE TXN at
the same time. But as per the consensus rules, miners cannot include BRIBE TXN
immediately because it is timelocked. But crucially, there is no obligation to
include the SELLER TXN immediately either. As blocks go by, BRIBE TXN becomes
valid and can be included in the blockchain and SELLER TXN is censored, with
the sale proceeds going to the miners and the buyer, but not to the seller. The
seller could increase their fees to compete with the timelocked bribe, but that
would come out of their own pocket, as they have already handed out the goods
and services to the buyer.
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In the following sections, we show how the two main applications of HTLC’s:
Lightning Payment Channels and Atomic Swaps, are both vulnerable to this
bribing attack.

1.3 Payment Channels

Payment channels [10,11] are a promising solution to the scalability problem in
cryptocurrencies like Bitcoin and Ethereum, which have low transaction through-
puts. Lightning Network’s [11] payment channels rely on HTLC’s to enforce the
revocation of older commitment transactions. In our attack scenario, Alice and
Bob have a payment channel that they have updated over time using many
commitment transactions. Both Alice and Bob keep their own copy of the com-
mitment transaction, where their copy can be broadcast by them, and will lock
their side of the channel balance with an HTLC and the counterparty’s side with
a regular payment. This means that in the case of a channel closure, the broad-
caster has to wait for his payment, but the counterparty can withdraw funds
immediately. Without loss of generality, we can assume that in one such update
(u1), the entire channel balance was in Bob’s favor, and Alice has zero balance
in her favor. In a subsequent update (u2), Alice delivers some goods/services to
Bob, and after u2, the entire channel balance is in Alice’s favor and Bob has zero
balance on his side of the channel. As a part of the Lightning Protocol, during
u2’s negotiation, Bob gives Alice the preimage (p1) of a hash that lets her punish
him if u1 ever makes it to the blockchain.

The briber (in our case, Bob) broadcasts an outdated commitment transac-
tion u1 (called Revoked Commitment Transaction in Lightning). This has one
output which is an HTLC. He then follows it up by broadcasting the bribing
transaction: BRIBE TXN. Note that the BRIBE TXN is timelocked and should be
invalid till the timelock expires. The victim (Alice in our case), sees u1 on the
blockchain, and using her knowledge of the revocation preimage, sends the cor-
responding SELLER TXN (called Breach Remedy Transaction in Lightning) to
the pool of transactions to be included in the blockchain, Note that SELLER TXN
should be valid immediately as it has no timelock on it. But if all miners wait for
the BRIBE TXN’s timelock to expire, and during that time ignore the SELLER TXN,
the bribing attack is successful. The amount that goes from the BRIBE TXN to
the miner does not matter to Bob because he already has the equivalent good-
s/services from Alice for that value. Therefore, he is bribing with what he has
already spent.

Lightning Network uses HTLC’s to also implement payment hops from, say,
Alice to Bob through Carol - where Alice and Bob do not have a direct payment
channel between each other, but both have a channel to Carol. HTLC’s are
used here to ensure that Carol can use her channels to send funds from Alice
to Bob without Carol’s own funds being put at risk. Either the entire payment
goes through from Alice to Bob through Carol (who gets the routing fees), or the
entire payment is aborted, and all parties retain their own pre-payment balances.
Using a series of messages [12], Alice, Bob, and Carol communicate using an off-
chain protocol and negotiate a series of commitment transactions that each have
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an additional HTLC that sends the new payment from Alice to Bob through
Carol. These HTLC’s have a different payment specific secret preimage and its
associated hash that locks the hashlock arm of the HTLC. They also have a
lower timeout value (compared to the channel’s timeout value) that refunds this
particular payment back to the source in case any other node along the payment
route aborts the payment. These hops do not affect the bribing attack model:
an outdated commitment transaction can still be broadcast by the briber and
the victim has to respond.

1.4 Atomic Swaps

Atomic Swaps are a way to exchange cryptocurrencies between two separate
public blockchain systems (say, between Bitcoin and Litecoin) without involv-
ing a trusted third party [13,14]. TierNolan’s classic Atomic Swap construc-
tion [15] relies on two HTLC TXN’s to get around the trusted third party. Alice
and Bob have their own HTLC TXN’s in the blockchains whose assets they have.
These HTLC TXN’s will enable corresponding SELLER TXN’s to the other party and
REFUND TXN’s to themselves. Alice initiates her side of the swap by publishing an
HTLC on her blockchain which has a timelock of 2 · t and hash of a secret preim-
age that only she knows. Bob accepts the swap by publishing his own HTLC on
his blockchain with a timelock of 1 · t and the same hash whose preimage he does
not know. Alice then redeems Bob’s HTLC by revealing her secret through a
SELLER TXN on Bob’s blockchain. Bob’s knowledge of this secret (by monitoring
Bob’s public blockchain) enables Bob to publish his own SELLER TXN on Alice’s
blockchain, thereby completing the swap.

In the atomic swap described above, Alice can try to censor Bob’s SELLER TXN
with her own BRIBE TXN on her blockchain that lets her keep assets on Bob’s
blockchain, and leave most of her bribing profits on her own blockchain to miners.
This way, Alice only profits if her attack succeeds, and has no possibility of a
loss. Ideally, this should not be possible because Bob’s SELLER TXN is valid from
the moment he gets to know of Alice’s secret preimage, and Alice’s BRIBE TXN
is invalid at that time. But if all miners are made aware of Alice’s BRIBE TXN,
the bribing attack might succeed.

2 Analysis

In this section, we analyze the parameters under which this bribing attack is
successful. As Alice and Bob both have to agree on the HTLC for it to be valid,
they can control these parameters to avoid the attack. The HTLC parameters
are:

– T : denotes the number of blocks needed until the BRIBE TXN becomes valid.
This is the HTLC’s timelock expressed in terms of number of blocks.

– f : fee offered by Alice to miners to confirm her SELLER TXN.
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– b: bribe offered by Bob to miners to confirm his BRIBE TXN. Note that b is
not explicitly called out in the transaction because all unclaimed outputs of
a transaction go to the miner who confirms it. Typically, b > f .

There are parameters of the network that Alice and Bob do not control. These are
the percentages of the total hashpower that identifiable miners control. Uniden-
tifiable miners are grouped in a catch-all group. Miners are identified based on
their coinbase transaction indicators (see Sect. 3.1 for more details). Let there
be n miners Mj , 1 ≤ j ≤ n, each with a fraction pj of the total hashpower.

2.1 Assumptions

– Miners are rational and choose the most profitable strategy on what trans-
actions to include in their blocks while conforming to the consensus rules of
Bitcoin. Their goal is to maximize expected payoff, and not mine altruistically.

– Miners are also rational in the sense that they will not choose a dominated
strategy when they can choose one that is not. A strategy s is dominated
by strategy s′ if the payoff for playing strategy s is strictly greater than the
payoff for playing s′, independent of other players’ strategies.

– Miners do not create forks. If a transaction is included in a valid block, miners
build the blockchain on top of that block.

– Relative hashpowers of miners is common knowledge. Currently, almost all
Bitcoin blocks are mined by mining pools, and almost all of these blocks
have an identifiable signature in the coinbase transaction that allows them to
identify this relative share of hashpowers.

– Relative hashpowers of miners stay constant over the duration of the bribing
attack.

– The attacker and the victim of the bribery attack have no hashpower of their
own.

– Timelocks are expressed in number of blocks, and we are thus operating in a
setting where block generation is equivalent to clock ticks.

– Block rewards and fees generated by transactions external to our setting are
constant and have no bearing on the attack itself.

– All miners can see timelocked transactions that are valid in the future. Cur-
rently, the most popular Bitcoin implementation, Bitcoin Core, does not allow
timelocked transactions that are “valid in the future” to enter its pool. Con-
sequently, it does not forward such transactions through the peer to peer
network. This is not a consensus rule, but rather an efficiency gain whereby
allowing only valid transactions to enter the pool and propagate across the
peer to peer network reduces network and memory load. We assume that
SELLER TXN and BRIBE TXN are visible to all miners immediately after they
are broadcast by their respective parties. Also, some mining pools run “trans-
action accelerator” services where they cooperate with other mining pools to
get visibility to transactions that pay an extra fee (on top of the blockchain
fee). We assume that malicious buyers have access to such services.
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2.2 Setting

We analyze this attack by modeling the sequence of blocks being mined as a
(Markov) game, called the bribing game. A bribing game has n miners, and runs
in T +1 sequential stages. Stages represent periods between two mined blocks. In
each stage, every miner has two possible actions: follow or refuse (corresponding
to a miner excluding the SELLER TXN from the miner’s block template or not).
After all miners play their action, a single miner is randomly selected as the
leader of the stage. In other words, after all the miners have decided on their
block template, a single miner wins the proof of work lottery and this miner’s
block extends the blockchain.

Let B1, B2, . . . , BT be all the blocks that can include SELLER TXN. Let BT+1

be the block that includes BRIBE TXN. Note that BRIBE TXN cannot be included
in B1, B2, . . . , BT as it’s not valid then. Let Ei,j denote the event that miner j
is selected as the leader of stage i. The events Ei,j are independent of each other
and the actions taken by miners. Ei,j represents block Bi being mined by miner
Mj . In addition, the selection probability of miner j for block i is given by:

∀i, j Pr(Ei,j) = pj ,

which corresponds to the hashpower of miner Mj . Each stage is in either of two
states: active or inactive. The game starts in an active stage (i.e., the first stage
is active). Stage i, i > 1, becomes inactive if the leader of stage i − 1 plays the
action refuse (corresponds to including SELLER TXN), or if stage i − 1 is already
inactive. Therefore, if one stage becomes inactive, all the following stages become
inactive. This intuitively makes sense because once SELLER TXN is confirmed, it
stays confirmed in subsequent blocks and more importantly, BRIBE TXN is invalid
after that. The payoffs for each stage i are determined by whether 1 ≤ i ≤ T or
if i = T + 1.

– 1 ≤ i ≤ T : If the leader plays refuse, the payoff is f > 0. If the leader plays
follow , the payoff is 0. Non-leaders’ payoff is always 0.

– i = T + 1: Leader’s payoff is b > 0. Non-Leaders’ payoff is 0.

Let us call a miner Mj strong if pj ≥ f
b ; otherwise we call Mj weak . Note that

the bribing attack is successful if all miners follow the bribe (i.e., they always
ignore SELLER TXN). This corresponds to the strategy profile in which all miners
play the action follow in all stages. Without loss of generality, there are two
possible distributions of hashpowers among miners:

– All miners are strong; i.e., pj ≥ f
b for 1 ≤ j ≤ n.

– At least one miner is weak; i.e., ∃pj s.t. pj < f
b for 1 ≤ j ≤ n.

In the next sections, we analyze both of these distributions.

2.3 All Miners Are Strong

Lemma 1. If all miners are strong (i.e., pj ≥ f
b for 1 ≤ j ≤ n), then the

strategy profile in which every miner plays follow in all stages is an equilibrium.
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Proof. Consider Miner j (Mj), and assume that all other miners follow the bribe
in all stages. We show that following the bribe in all stages is the best response
for Mj as well. If Mj follows the bribe in all stages, they will earn pj · b in
expectation. This is because, when all miners play follow in all stages, stage
T + 1 will be active, and its leader, which is Mj with probability pj , earns b.

If Mj plays refuse with non-zero probability in at least one stage. Let x > 0
be the probability that stage T +1 becomes inactive as the result of Mj ’s actions.
In other words, x is the probability that Mj plays refuse in a Stage 1 ≤ i ≤ T in
which they are selected as the leader. Note that other miners cannot make stage
T +1 inactive as they always play follow and only Mj is including SELLER TXN in
their block template. The expected payoff of Mj is, therefore, x ·f +(1−x) ·pj ·b,
which is not more than pj · b, because pj ≥ f

b and x > 0.

Note that when all miners are strong, the equilibrium shown in Lemma 1
(which favours bribery) exists no matter how large T is. As of this writing,
the average fees for Bitcoin transactions since the beginning of 2019 is around
0.00003 BTC (author’s own analysis of the Bitcoin blockchain). The average
balance held by a lightning channel is 0.026 BTC [16]. If we use these values, we
get the equilibrium stated in Lemma 1 exists if each miner has over 0.115% of
the total hash power of the entire Bitcoin network. Due to the permissionless and
anonymous nature of Bitcoin, however, we can never be sure that the weakest
miner has a hash power above 0.115% of the total hash power. However, we can
inspect the Bitcoin blockchain to guesstimate the distribution of hashpowers
among known mining pools, and recommend channel parameters based on that.
We treat this in more detail in Sect. 3. Next, we consider the case where at least
one miner is weak. We show that, in this case, the value of T matters.

2.4 One Miner is Weak

Recall that when a stage becomes inactive, all its followup stages become inactive
as well. Moreover, all miners receive zero payoff in an inactive stage, irrespective
of what they play. Note that, for every miner (weak or strong), playing follow
at state T + 1 is the strictly dominant strategy if stage T + 1 is active. This is
because the expected payoff of a miner in an active stage T + 1 is pjb if they
play follow , and pjf (which is smaller than pjb) if they play refuse. In the next
lemma, we show that in active stages other than stage T + 1, playing refuse is
the strictly dominant strategy for weak miners.

Lemma 2. In any active stage i, 1 ≤ i ≤ T , playing refuse is the strictly
dominant strategy for any weak miner.

Proof. A miner earns b if stage T + 1 is active and this miner is selected as the
leader of stage T + 1. Therefore, the probability that a Miner j (Mj) earns b
is at most pj . From the definition of weakness, for Mj , we have pj · b < f . So,
if stage T + 1 is active, the weak miner gets an expected payoff less than f .
Additionally, in stages < T , the probability that a miner earns f is strictly less
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than one, because, no matter how large T is, there is always a non-zero chance
that the miner never gets selected as a leader. Therefore, across all stages up to
and including stage T +1, the expected payoff of a weak miner is always strictly
less than f .

Assume Mj is weak (i.e., pj < f
b ), and plays follow in an active stage i,

1 ≤ i ≤ T . We now show that playing refuse in stage i will improve her payoff.
Suppose Mj plays refuse instead of follow in the active stage i. If Mj is not
selected as the leader of stage i, then the game remains the same as the case
where Mj played follow . If Mj is selected as the leader, however, they will earn
f . This is an improvement over the expected payoff of Mj from the previous
paragraph, which is strictly less than f .

2.5 The Elimination of Dominated Strategies

By Lemma 2, playing refuse is the strictly dominant strategy for every weak
miner; any other strategy is strictly dominated. Hence, we can simplify the anal-
ysis of the bribing game by eliminating strictly dominated strategies. Let us call
a bribing game safe if after eliminating strictly dominated strategies, the only
action left for each miner (strong or weak) in stage one is to play refuse. If
every miner plays refuse in stage one, the game is effectively over as other stages
become inactive immediately after, with SELLER TXN confirmed and BRIBE TXN
becoming invalid.

Recollect that, if all the miners are strong, the bribing game is not safe no
matter how large T is (Lemma 1). By the next theorem, however, the game is
safe if there is at least one weak miner, and T is large enough.

Theorem 1. Suppose there is at least one weak miner, and

T >
log f

b

log(1 − pw)
(1)

where pw is the sum of the selection probabilities of weak miners. Then, the
bribing game is safe.

Proof. By Lemma 2, playing refuse is the strictly dominant strategy for every
weak miner in each stage i, 1 ≤ i ≤ T . By eliminating the dominated strategies
of weak miners, we get a smaller game in which weak miners play refuse in every
stage i, 1 ≤ i ≤ T .

Consider a strong miner M , who plays follow in stage 1. Their reward for
playing follow is only possible at stage T + 1. Let α be the probability that
stage T + 1 will be active. Since weak miners only play refuse in the first T
stages, we get

α ≤ (1 − pw)T

≤ (1 − pw)
log f

b
log(1−pw)

≤ f

b(1 − pw)
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where (1 − pw)T is the probability that no weak miner is selected as a leader in
the first T stages. Thus, the expected payoff of M at stage T + 1 is less than

f

b(1 − pw)
· (1 − pw).b = f

where f
b(1−pw) is an upper bound on the probability that stage T + 1 is active,

and (1−pw) is an upper bound on the probability that M is selected as the leader
of stage T + 1. Note that the probability that M earns f prior to stage T + 1
is strictly less than one. Therefore, at the beginning of stage 1, the expected
payoff of M is strictly less than f . Now, if M plays refuse (instead of follow)
in the first stage, we will have two possibilities. First possibility is that M is
selected as the leader of stage 1, in which case M earns f , which is strictly more
than its expected payoff. In the second possibility where M is not selected as
the leader of stage 1, the game remains identical to the original case where M
plays follow . This implies that M is better off playing refuse in the first stage,
which concludes the proof. We remark that this result does not imply that M
is better off playing refuse in every stage. In fact, as the game proceeds to new
stages, the expected payoff of M can change, and M may choose to play follow .

2.6 The Elimination of Dominated Strategies of Strong Miners

A bribing game with parameters f and b may be safe for a significantly smaller
T than what is given in Theorem 1. In its proof, we eliminated only strictly
dominated strategies of weak miners. In principle, we can continue the process
by eliminating strictly dominated strategies of strong miners as well. To do so,
we can first sort the strong miners according to their selection probabilities.
Starting with the strong miner with the smallest selection probability, and an
upper bound of T from Theorem 1, we can calculate the minimum number of
initial stages in which the miner is strictly better off playing refuse. We then
eliminate the strictly dominated strategies of that miner, and move to the next
strong miner. At the end of this iterated elimination process, if all miners play
refuse in the first stage, then the game is proven to be safe. As we iterate from
time period 0 to time period T , the value of t where all miners play refuse for the
last time shows us that if we had begun the game at this point, the game would
have been safe in the first stage itself. This new starting point of the game results
in the new ending point being at Tnew = Told − t. In this new setting, the game
is safe in the first stage. The actual algorithm to find t and an accompanying
worked example are presented in Appendix B. Tnew is lower than T , and now,
with just one weak miner, and elimination of dominated strategies of all miners,
the game is safe for lower values of T . This lower value of T makes the usage of
HTLC’s more practical and convenient.

3 Solutions

In the introduction, we pointed out that the two main applications of HTLC’s:
Lightning Channels and Atomic Swaps, are both vulnerable to this bribing
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attack. In this section, we first analyze the Bitcoin blockchain to get an estimate
of the hashpower share of known mining pools. This lets us find parameters that
can harden the HTLC constructions in each of these applications such that they
are not vulnerable to the bribing attack. In the case of Atomic Swaps, to use
these parameters, we propose a modification to the classic atomic swap protocol.

3.1 Mining Pools and Their Hashpower Shares

We try to find the weakest known miners in the Bitcoin ecosystem by analyzing
the miners of the 16000 blocks from Block #625000. We know the coinbase
transaction indicators of larger mining pools. Using these, we can attribute mined
blocks to known mining pools. Looking at these blocks, we can estimate each of
these mining pools’ share of the total hashpower based on how many blocks they
have mined. Mining pools and their hashpower shares are shown in Table 1. We
see that the weakest known pools are under 1% of the total hashpower, and this
leads to our proposed fixes for both Lightning Channels and Atomic Swaps.

Table 1. Hashpower of 16000 blocks from block #625000

Mining pool Hashpower Mining pool Hashpower

F2Pool 15.7937% BTCTOP 2.6313%

PoolIn 15.5563% NovaBlock 0.9500%

BTC.com 12.2688% SpiderPool 0.6125%

AntPool 12.1625% Bitcoin.com 0.1938%

Huobi 6.5875% UkrPool 0.0938%

58COIN 6.3000% SigmaPool 0.0750%

ViaBTC 5.7875% OkKong 0.0688%

OKEX 5.6437% NCKPool 0.0625%

Unknown 4.0687% MiningCity 0.0500%

SlushPool 3.8188% KanoPool 0.0250%

Lubian.com 3.6938% MiningDutch 0.0187%

Binance 3.5375%

3.2 Lightning

In the Lightning Network specifications (specifically, from Bolt 2 [17]), we have
the following parameters:

– channel reserve satoshis: Each side of a channel maintains this reserve so it
always has something to lose if it were to try to broadcast an old, revoked
commitment transaction. Currently, this is recommended to be 1% of the
total value of the channel. This is the amount that the cheated party can
utilize as extra fees without dipping into their own side of the channel.
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– to self delay : This is the number of blocks that the counterparty’s self outputs
must be delayed in case a channel closes unilaterally from the counterparty’s
side. In one popular Lightning client: c-lightning [18], this is set by default to
144 blocks (approximately 1 day). In another popular Lightning client: LND
[19], it is scaled in a range from 1 day to 14 day based on the channel value.

We do not find any documented reasons on why these important parameters
are set the way they are. Based on the analysis from Sects. 2.4 and 2.5, and
the distribution of hashpowers, we can formulate what these values ought to be.
First, we note that channel reserve satoshis on the victim’s side of this bribing
attack can be used by the victim to increase their fees to thwart the attack. We
posit that channel reserve satoshis being at 1% is reasonable, given that there
are many known miners whose hashpower is less than 1% of the total hashpower
of all miners. If it were lower than, say, 0.03%, as per Sect. 2.3, the channel would
be always vulnerable to this bribing attack.

We then set f
b to be 0.01, and calculate the total weak hashpower to be 0.0215

(from Table 1). Based on Theorem 1, we get T > 212 blocks. This is larger than
the suggested default of to self delay at 144 blocks. So, if the channel operator
is paranoid, they can set to self delay to this higher value of 212. We can plug in
the hashpowers from Table 1 into Algorithm 1, with f = 1 and b = 100 and we
get a value of T = 54 blocks. If the channel operator is #reckless and believes
that miners eliminate strictly dominated strategies of other miners (a stronger
assumption than just assuming that weak miners exist), they can open channels
with this much lower timelock value. Note that these values do not actually
impact the usage of the Lightning Network, but are merely security parameters
that ensure that both parties are adequately protected in case the other party
decides to bribe miners.

3.3 Atomic Swaps

Atomic Swaps that have Bitcoin on one side need to take Bitcoin’s block time
of 10 min into account. Even if the other blockchain in question (say Litecoin)
has faster block generation, till Bitcoin’s transactions are not confirmed, the
atomic swap in question cannot be considered executed. Commercial platforms
like Komodo [20] use 15,600 s (26 blocks) as the HTLC’s timelock value when
they setup swaps between Bitcoin-like currencies or ERC-20 style tokens. Other
works [14,21,22] have suggested that a timelock period of 1 day (144 blocks) is
a good default.

Based on Theorem 1, we get f
b = 0.68 at T = 26 blocks and f

b = 0.122 at
T = 144 blocks. A fee to bribe ratio of 0.68 (for T = 26 blocks) is quite high.
This suggests that T = 26 blocks does not provide enough security for reasonable
values of fee to bribe ratios. At 144 blocks, we have a reasonable fee to bribe
ratio of 0.122.

Unlike Lightning channel’s channel reserve satoshis, due to its inherently
asymmetric nature, there is no simple way to encode this extra fee in the atomic
swap itself. Alice has to convince Bob upfront that she will not attempt the
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bribing attack when it is Bob’s turn to redeem his side of the swap. One way of
achieving this is for Bob to offer a lower value than what Alice wants. This way,
if Alice attempts the bribery attack, Bob can increase his SELLER TXN fees to the
amount dictated by Theorem 1 or Algorithm 1. But if Alice does not attempt
to bribe, this atomic swap setup is unfair to her as she is getting a lower value
from Bob than what she is offering to Bob.

To solve this, we present an extension to the classic Atomic Swap protocol
that allows a way for Alice to include extra fees in the swap for Bob to use to
“counter-bribe” only if Alice attempts to bribe.

Risk Free Atomic Swap: Here, as with the classic protocol, Alice creates a
(random) secret preimage and hashes it to get her “locking string”. Alice creates
a transaction that commits her swap amount such that Bob can claim this
amount only if he knows the preimage. The “refund” part of this transaction,
instead of sending the amount back to Alice after a timelock, sends it to a multisig
controlled by both Alice and Bob. Alice also creates a second transaction that
uses this multisig controlled output as its first input, and another unrelated
input from Alice which adds the extra fees required to make the swap risk-free.
The total output of this second transaction is sent to Bob only if he has the
secret preimage, or to Alice after a timelock. This pair of transactions is created
by Alice; the second transaction is pre-signed by Bob and needs to be held by
Alice before she broadcasts the first transaction. These transactions, and the
accompanying flowchart are listed in detail in AppendixC. Based on whether
Alice or Bob abort the swap, or Alice bribes miners, or Alice and Bob complete
a normal swap, a combination of these transactions will be broadcast on the
both blockchains by Alice and/or Bob as depicted by the flow chart.

4 Related Work

There are two major strands of censorship attacks in blockchains. Ignore attacks
(that incentivize miners to ignore certain transactions) and fork attacks (that
incentivize miners to orphan blocks with certain transactions by forking the
blockchain).

4.1 Ignore Attacks

Ignore Attacks are presented in [23,24], and [25]. In [23], smart contracts in a
“funding blockchain” are used to censor transactions in a “target blockchain”.
Funding blockchains need to support powerful smart contract primitives to be
able to program these attacks – typically Ethereum is used. Two such attack
smart contracts presented in [23] are Pay-per-Miner and Pay-per-Block. In Pay-
per-Miner, every miner gets a bribe at the end of the bribing period if the bribing
attack succeeds, even if the miner followed the bribe or not. A weak miner could
refuse the bribe, and attempt to mine with the SELLER TXN, but not succeed in
mining a block. This miner would still be eligible for the bribe at the end. This
contract does not consider a weak miner’s lower probability of mining the final
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block with the bribe and hence, overpays. In Pay-Per-Block, every miner is paid
incrementally per block during the bribing period. This attack also bribes weak
miners who go against the bribe, and thus have a higher expected reward at the
end of the bribing period. Both these attacks would get better if miners could
cryptographically prove to the smart contract that they are following the bribe.

Concurrent to our work, a similar timelocked bribing attack is presented
in [25]. They consider the situation where all miners are strong (i.e., pj ≥ f

b
for all miners 1 ≤ j ≤ n), and like us, they conclude that the bribing attack
will be successful and is independent of the bribing period T . To alleviate this
situation where all miners are strong and bribing attacks could happen, they
propose a modified construction of the HTLC called MAD-HTLC (Mutually
Assured Destruction HTLC). MAD-HTLC adds a second transaction chained to
the HTLC with a collateral from the bribing counterparty to ensure that they
have something to lose if they attempt to bribe. However, [25] does not consider
weak miners, or elimination of dominated strategies - which we show lead to
HTLC parameters that can be adjusted to safeguard against this bribing attack
with any distribution of miner hashpowers and values of f and b. Our approach
also doesn’t need a modification to the HTLC construction and the associated
collateral and extra transaction costs.

Transaction Pinning [26] tries to make a transaction inherently unprofitable
to mine, independent of any future bribe. The attacker, who can validly spend
one of the target transaction’s outputs broadcasts multiple low fee-rate trans-
actions that spends their path of the target transaction. This makes the entire
transaction package unprofitable to mine, thereby censoring the first transaction,
which the victim can spend through another path. To remedy this, the victim
can use CPFP carve-outs [27] to bump up the fee-rate of the censored transac-
tion and still get it confirmed by a miner. To enable this, Lightning Channels
will allow “anchor outputs” [28] to let either party bump up their fees without
being blocked by the counterparty.

These types of Ignore Attacks rely on being able to setup and communi-
cate incentives (in the present, or in the future) to miners such that the most
profitable strategy for each miner is to wait for the incentive. Whether these
incentives succeed or not, depends on the current value available to miners, the
future value promised to miners, and the ability of miners to be able to extract
these values. Unlike previous research, our work takes into account all these
parameters.

4.2 Fork Attacks

Fork Attacks go back a long way, with the earliest one discussed on bit-
cointalk.org being feather forking [2]. In this attack, a miner wants to censor
a specific transaction and announces on some public bulletin board that they
will not add blocks on top of any block that contains this specific transaction.
If this miner has a reasonable chance of getting a block, other rational min-
ers will follow them instead of mining “normally” and hence forgo the fees of
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the censored transaction. Feather forking is also analyzed under the Pay-per-
Commit contract in [23]. Feather forking relies on a miner committing to the
attack, and this being common knowledge among all miners. This attack relies
on both a funding cryptocurrency blockchain to set up the attack and a way to
communicate with all miners that the attack is going to happen.

Miners can be also incentivized to fork the Bitcoin blockchain with “Whale
Transactions” [3]. Here, the attacker waits for a target transaction to be con-
firmed to a sufficient depth to get the corresponding goods and services from
their victim. After that, the attacker tries to fork the blockchain by succes-
sively broadcasting transactions that have high fees (whale transactions) and
also reverse the target transaction. These whale transactions are then included
in blocks of the blockchain fork that rational miners might follow. The authors
evaluate the relationship between confirmation depth, the attacker’s secret min-
ing lead, the attacker’s hashpower, the whale transaction fees and whether these
attacks are profitable. External smart contracts on platforms like Ethereum can
be used [4,24] to incentivize Bitcoin miners to abandon the honest blockchain
suffix and mine on top of a briber’s fork. In [24], the attacker chooses the set of
transactions to be mined for each block, and hands it out to miners through the
smart contract. This is similar to how mining pools operate. Miners get rewarded
in the “funding cryptocurrency” (Ether, in this case). Incentivizing every Bitcoin
miner with Ether given the relative size of the two systems seems far fetched to
us.

Fork Attacks rely on attackers being able to incentivize rational miners to
orphan a reasonable length suffix of the blockchain. The attack succeeds if it is
conducted after the primary transaction has been thought confirmed by the vic-
tim. Given that most proof-of-work cryptocurrencies have a probabilistic notion
of finality, these attacks are feasible. On the other hand, Bitcoin has seen fewer
and fewer orphan blocks over time [29], and the possibility of this kind of attack
is considerably lower now than they were in, say, 2015.

5 Conclusion

In this work, we observe that HTLC’s are vulnerable to an “in-band” bribing
attack where the HTLC initiator (buyer, in our case) can receive goods and
services offline and then prevent the seller from getting their due share by bribing
miners. This bribe can only work if the “time value” of waiting for the bribe is
worthwhile for all miners. A rather self-evident observation is that when the
timelock on the bribe expires and the bribe transaction is still valid, it will be
claimed in the immediate next block as the fee on it is considerably higher than
normal transaction fees. Additionally, stronger miners are likely to mine any
specific block - and therefore more likely to mine the block in which the bribe is
valid and available. Therefore, we posit that weaker miners will ignore the bribe
altogether and will attempt to mine the seller’s transaction while the timelock
holds and the fee on the seller’s transaction is good enough. This leads us to
the relationship between the fee to bribe ratio and the distribution of miners’
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hashpowers. Based on this analysis, we propose Lightning Channel parameters
that make them resistant to this kind of bribing attack. In Atomic Swaps, our
analysis also proposes a fee for the victim to safeguard themselves. To enable
that, we propose a modification to the classic Atomic Swap protocol that can
bring in this fee into the swap and still keep it fair for both parties.

Appendix A Transactions in Pseudo Bitcoin Script

HTLC Transaction:

HTLC_TXN: { txid: HTLC_TXN_TXID

vin: [{ txid: SOURCE_TXN_ID that pays the buyer.

scriptSig: <buyer ’s sig for SOURCE_TXN_ID > }]

vout: [{ value: <value >

scriptPubKey: IF

OP_HASH160 <digest > OP_EQUALVERIFY

<seller_pubkey_1 >

OP_ELSE

<delay > OP_CSV OP_DROP <buyer_pubkey_1 >

OP_ENDIF OP_CHECKSIG }]

}

Seller Transaction, spending from the hashlocked path:

SELLER_TXN: { txid: SELLER_TXN_TXID

vin: [{ txid: HTLC_TXN_TXID

scriptSig: <seller_sig_1 > <preimage > OP_TRUE }]

vout: [{ value: <value >

scriptPubKey: <seller_pubkey_2 > OP_CHECKSIG }]

}

Refund Transaction, spending from the timelocked path: REFUND TXN:

REFUND_TXN: { txid: REFUND_TXN_TXID

vin: [{ txid: HTLC_TXN_TXID

scriptSig: <buyer_sig_1 > OP_FALSE

sequence: <delay > }]

vout: [{ scriptPubKey: <buyer_pubkey_2 > OP_CHECKSIG }]

}

Bribe Transaction, which leaves the output values to miners: BRIBE TXN:

BRIBE_TXN: { txid: BRIBE_TXN_TXID

vin: [{ txid: REFUND_TXN_TXID

scriptSig: <buyer_sig_2 > }]

vout: [{ // Empty output. Entire amount goes to the miner }]

}
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Appendix B Iterated Removal of Dominated Strategies

The FIND T procedure receives as input a list of mining hashpowers (leader
selection probabilities), and the values of parameters f and b. As output, it
returns the lowest value of T such that all miners refuse the bribe in the first
stage of the game. It uses the inner procedure CALCULATE BRIBERY MATRIX to
determine the behavior of more strong miners at each block when less strong
miners’ strategies get dominated (Fig. 1).

Example (Table 2): Let’s take the case of 4 miners with hashpower shares
P = [0.1, 0.2, 0.3, 0.4], f = 11, b = 100. Applying Theorem 1, we get an upper
bound of T to be 21. Running the procedure CALCULATE BRIBERY MATRIX returns
the matrix shown in Table 2, with “1” standing for refuse and “0” standing for

Fig. 1. Iterated removal of dominated strategies
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follow . Note that this matrix shows the conservative scenario of T = 21 blocks
(as given by Theorem 1. The aim of this algorithm is to find a more aggressive
(lower) value of T which we get if we eliminate dominated strategies of strong
miners. We now go through the actions of each miner.

Table 2. Bribery matrix, worked example

Blocks 0.1 0.2 0.3 0.4

Block #1 1 1 1 1

Block #2 1 1 1 1

Block #3 1 1 1 1

Block #4 1 1 1 1

Block #5 1 1 1 1

Block #6 1 1 1 1

Block #7 1 1 1 1

Block #8 1 1 1 1

Block #9 1 1 1 1

Block #10 1 1 1 1

Block #11 1 1 1 1

Block #12 1 1 1 1

Block #13 1 1 1 1

Block #14 1 1 1 1

Block #15 1 1 1 1

Block #16 1 1 0 0

Block #17 1 0 0 0

Block #18 1 0 0 0

Block #19 1 0 0 0

Block #20 1 0 0 0

Block #21 1 0 0 0

The miner with hashpower 0.1 (p0) will play refuse at every block because

we have T >
log f

b

log(1−pw) . The miner with hashpower 0.2 (p1) will play refuse as
long as the expected bribe (payable at T + 1) calculated at a particular block is
lower than the fees that they would earn if they mine that block. In this case,
(1 − pw)t · p1 · b < f till t = 6 for values of f = 11, b = 100, pw = 0.1. This
means that p1 will start playing follow as we get closer to t = T (specifically
when we are 5 blocks away from T ). The miner with hashpower 0.3 (p3) will play
refuse along similar lines, by looking at the actions of miners p0 and p1 over the
different blocks. One thing to notice is that at block #16, p2 will act assuming
that p0 and p1 will both play refuse. At block #17, p2 will act assuming that
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p0 will play refuse and p1 will play follow . This is implemented in the algorithm
by using the 0’s and 1’s in the bribery matrix and using them as factors in line
#13 of the CALCULATE BRIBERY MATRIX procedure. This way, on line #13, we
only use miners who play refuse at each block to calculate the expected bribe.

In the main procedure FIND T, we then find the last block in which all miners
play refuse and return that as the result. In the real world, we can give a 5–6
block cushion on top of this, and it will still be significantly lower than the upper
bound of T .

Appendix C Risk Free Atomic Swaps

Please check the IACR Eprint version of this paper for pseudo-code transactions
and flow chart of the risk free atomic swap.
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Abstract. In this work, we consider executions of smart contracts for
implementing secure multi-party computation (MPC) protocols on fork-
ing blockchains (e.g., Ethereum), and we study security and delay issues
due to forks. In this setting, the classical double-spending problem tells
us that messages of the MPC protocol should be confirmed on-chain
before playing the next ones, thus slowing down the entire execution.

Our contributions are twofold:
– For the concrete case of fairly tossing multiple coins with penalties,

we notice that the lottery protocol of Andrychowicz et al. (S&P
’14) becomes insecure if players do not wait for the confirmations of
several transactions. In addition, we present a smart contract that
instead retains security even when all honest players immediately
answer to transactions appearing on-chain. We analyze the perfor-
mance using Ethereum as testbed.

– We design a compiler that takes any “digital and universally compos-
able” MPC protocol (with or without honest majority), and trans-
forms it into another one (for the same task and same setup) which
maintains security even if all messages are played on-chain without
delays. The special requirements on the starting protocol mean that
messages consist only of bits (e.g., no hardware token is sent) and
security holds also in the presence of other protocols. We further
show that our compiler satisfies fairness with penalties as long as
honest players only wait for confirmations once.

By reducing the number of confirmations, our protocols can be signifi-
cantly faster than natural constructions.

Keywords: MPC · Blockchain · Finality · Forks · Smart contracts

1 Introduction

The rise of blockchains1 is progressively changing the way transactions are exe-
cuted over the Internet. Indeed, the traditional client-server paradigm turns out
1 We use the terms “blockchain” and “distributed ledger” interchangeably.
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to be insufficient when many parties want to perform a distributed computa-
tion, especially in cases where features like public verifiability and automatic
punishment are desired. Blockchains through the execution of smart contracts
naturally allow many players to perform a joint computation, even when they
are not simultaneously online; moreover, they allow to publicly check the actions
of all players2 and enforce a proper behavior through financial punishments.

Forks, Finality and Double Spending. Typical blockchains experience some
delays before a transaction can be considered confirmed. Indeed, a large part
of the most used blockchains consists of a list of blocks that can temporary fork.
In such cases, fork-resolution mechanisms decide which branch is eventually part
of the list of blocks and which one is discarded, at the price of cutting off some
transactions that for some time have appeared on the blockchain. These final-
ity limitations generate delays and uncertainty, and a significant effort has been
made recently to design blockchains with better finality [8,9,12,15,26,27].

It is well known that the existence of transactions that appear and then
disappear from a blockchain is the source of the (in)famous double-spending
attack. The solution to the double spending problem is pretty harsh: the receiver
of a payment will have to wait long time (i.e., until the transaction is confirmed
and becomes irreversible) before taking future actions. Obviously, this can be
problematic when an entire process consists of many sequential transactions and
the confirmation time is long.

The double spending problem does not seem to extend to the case where
another on-chain transaction is connected to the payment transaction. Indeed,
in this case, if as a consequence of a fork the payment transaction disappears,
then the connected transaction disappears too. This chaining of transactions
related to the same process can be easily implemented through smart contracts.

Insecurity of Smart Contracts with hasty Players. Since transactions are not
immediately confirmed in a forking blockchain, the full execution of a smart
contract with multiple sequential transactions might take too long. It would
thus be natural to speed up the execution of smart contracts by playing mes-
sages immediately. Indeed, as mentioned above, by appropriately chaining the
transactions of a smart contract, attacks exploiting the cancellation of a transac-
tion like in the double-spending attack are not effective,3 and therefore playing
immediately without waiting confirmations could be a valid option.

However, we notice that forks can help an adversary to mount more subtle
attacks. For example, let us consider a smart contract executed by two players,
Alice and Bob, willing to establish jointly a random string: 1) Alice starts the
protocol by sending to the smart contract a commitment to a random string
r1; 2) Bob sends a random string r2 to the smart contract; 3) Alice then opens
the commitment, and if the opening is valid the common string is defined to be

2 We will often use the two terms “party” and “player” as synonyms.
3 Since we are considering protocols running entirely on-chain, double spending attacks

can not be exploited to avoid the payment of some off-chain service.
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r = r1 ⊕ r2. For concreteness, say that Alice is honest and Bob is corrupted,
and assume that a fork happens after Alice already sent the commitment. If Bob
runs the protocol honestly on the first branch, he gets to see Alice’s opening,
and thus he can completely bias the output on the other branch by just sending
r′
2 = r′ ⊕ r1 to the smart contract, for any value r′ of his choice. The above

scenario can be a serious threat for integrity of data and even confidentiality
in other protocols. This motivating example clearly shows that, unless one has
proven some kind of resilience to forks, it is certainly preferable to always wait
that transactions are confirmed, at the price of having very slow executions of a
smart contract. Such slowness could be unacceptable in some applications.

Why MPC on Blockchains? Blockchains offer public verifiability of distributed
computations, in the sense that in case of dispute everyone can verify what hap-
pened and when. Moreover, smart contracts can automatically punish whoever
violates some a-priori established rules. Clearly, the above advantages are useful
also when players are running a privacy-preserving computation, in the form of
a multi-party computation (MPC) protocol.

A popular example of MPC that can benefit from a blockchain is e-voting,
since public verifiability is an important property of remote elections and sev-
eral systems rely on a bulletin board that can be instantiated with a blockchain.
Another well known example is the one illustrated by Andrychowicz et al. [1,2]
who, despite the very limited expressive power of Bitcoin transactions, have
shown how to use blockchains to obtain fairness through penalties to MPC pro-
tocols with dishonest majority, somehow circumventing the impossibility result
of Cleve [11] (that holds without assuming setup).

Note that executing an MPC protocol on-chain allows players not to be
online all at the same time. Moreover, differently from protocols running on a
TCP/IP WAN where players must know each other’s IP address beforehand4,
with the aid of a ledger any player can join a protocol execution by just reading5

a transaction containing the required information (e.g., the functionality, the
minimum number of parties, or any other identifying information).

The above features, and the dilemma about playing immediately risking secu-
rity or waiting for confirmation making the entire process very slow, motivate our
work aiming at obtaining smart contracts for fast/fair/secure/publicly-verifiable
MPC protocols on forking blockchains.

We remark that at least some of the aforementioned advantages provided
by our constructions do not come already from the use of payment channels.
Consider for instance payment channels allowing to run a computation in large
part off-chain. The use of similar channels for MPC would require players to be
simultaneously online with point-to-point connections, therefore suffering of the
issues discussed above.

4 We remark that executing a protocol on a payment channel does not offer any
advantage in terms of anonymity with respect to an off-chain execution.

5 Blockchain identifiers are usually public pseudonyms not necessarily correlated with
the real user identities. This feature offers some privacy compared to IP addresses.



76 V. Botta et al.

1.1 Our Contributions

Fair Lottery with Penalties and Fully Hasty Players. In Andrychowicz et al. [1,2]
and in Kumaresan et al. [6,20] it was shown how to obtain fairness (i.e., the
adversary should be discouraged from avoiding that honest players learn the
output after he gets it) through penalties. The idea is that a player should
deposit some coins of the underlying cryptocurrency and the smart contract
should return the coins back only in case the player completes correctly the
execution of the protocol defined by the smart contract.

In light of the negative result by Cleve [11] on achieving fairness without
honest majority, we will also consider fairness with penalties. Recall that we are
planning to do so still admitting that the blockchain could fork and trying to
obtain fast executions avoiding as much as possible to wait for confirmations of
transactions.

We analyze a variant of the attack described earlier that can be applied to a
smart contract based on Andrychowicz et al. [1,2] protocol for securely realizing
multi-party lotteries6 The main difference with the toy example from above is
that in their work each player commits to a random value ri between 1 and n
(where n is the total number of participants to the lottery), and then, after all
the commitments have been opened, the winner of the lottery is defined to be
the player w = r1+ . . .+rn (mod n)+1. An appealing feature of this protocol is
that it achieves fairness with penalties: if a malicious player aborts the protocol
(e.g., it does not open the commitment before a certain time bound), then a
previously deposited amount of coins is automatically transferred to the honest
players (i.e., to those that correctly opened the commitment on time).

We note that in the protocol of Andrychowicz et al. it is vital that players are
non-hasty and therefore post new transactions only after the previous ones are
already confirmed on the blockchain. Indeed, in the presence of hasty players,
a malicious party can commit to a value ri such that

∑
i ri (mod n) + 1 = i,

assuming that all players already opened the commitments on a minor branch
of a fork. As our main contribution, in Sect. 3, we circumvent the limitations
of [1,2], and present a smart contract that implements the lottery functionality7

remaining secure even in the presence of hasty players. Fairness with penalties
can be added without affecting the efficiency of the protocol. In fact, the smart
contract we design is more general, in that it allows the players to establish a
common, uniformly random, string (which in turn allows to run a lottery). When
referring to our protocol depending on the context we will sometimes say lottery
protocol and sometimes parallel coin-tossing protocol.

The main idea in our construction consists of combining unique signa-
tures [24] and random oracles (similarly to constructions of verifiable random

6 Protocols of [1,2] is based on Bitcoin, but this makes no difference for our attack.
7 We specify that our smart contract implements a parallel coin-tossing protocol. In

some cases, we say that our smart contract implements a lottery protocol since we
are interested in comparing our protocol with the lottery protocol of Andrychowicz
et al. We remark that the output of a coin-tossing protocol can be used to compute
a lottery winner.
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functions) as follows: first of all, players compute unique signatures on input the
concatenation of the ordered sequence of their public keys. Notice that as long
as at least one player is honest, we have a long string that no PPT player could
predict when selecting his public key. Then this long string is given in input
to a random oracle, returning a uniformly distributed string as an output. The
simulator will program the random oracle to force in the simulation the same
random string obtained in the ideal-world execution.

There is still an attack that can be mounted. Assume that in the presence
of a fork the entire protocol is executed in a branch. The adversary could take
advantage of the output in one branch to decide to play the same first round
or a different first round in the other branch biasing successfully the distribu-
tion of the output. To circumvent this problem, we make executions in different
branches completely independent by also passing a branch id as input to the
unique signature evaluation procedure. As branch id we take the hash of the
block containing the last deposit. Therefore, when a protocol is entirely run in a
branch, we have that the two branch ids are different and thus there is no point
in adaptively choosing the same or a different message in another branch. Indeed,
in any case, the outputs in different branches will be completely independent.
In order to deal with multiple executions of the real-world protocol in different
branches, we will also have a simulator that will play multiple times in the ideal
world. Since the output of the protocol is a random string, it can be then used in
many applications, not only to run a multi-party lottery. Note that our protocol
is around 50% more efficient than the lottery of Andrychowicz et al. Let’s say
that t is the number of blocks needed for transaction confirmation, then our
lottery protocol can be run by using only t + 1 blocks, whereas Andrychowicz
et al. requires 2 · t blocks to be completed.

Notice that this result makes no use of finality of transactions on a blockchain
except from the one needed for calculating the output. The protocol can be run
in the presence of fully hasty players, and is therefore very efficient.

We stress that we consider the adversary as a player that tries to exploit
the existence of forks in order to bias the output of the smart contract. We are
not modelling the adversary of the smart contract as a player that has control
over forks, deciding which branch will eventually be discarded and which one will
become permanently part of the blockchain. Obviously, a powerful adversary that
has control over the forks can always play the protocol with a different input
on each branch to then select the one that produced the output that she likes
the most. This is unavoidable when there is little use of finality of transactions.
Nevertheless, notice that in many cases this is not a problem. Indeed think of the
need of establishing a random string to then use it as first round of a statistically
hiding commitment scheme or as common reference string for a non-interactive
zero-knowledge proof. In such scenarios the adversary can freely select a random
string from any polynomially large set of randomly sampled strings without
compromising any security. In other cases like playing bingo, the fact that the
adversary can decide the string out of several candidates can be an issue.
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Defining On-Chain MPC with Hasty Players. We model the execution of a smart
contract through transactions sent by different players is a computation involving
multiple parties, and therefore when considering “security” of such computations
we naturally refer to secure MPC. We formalize how to execute an MPC protocol
in the presence of a blockchain. Our definition builds on the model of blockchain
protocols, introduced in [16,25]. A blockchain protocol allows players to keep a
consistent record of transactions satisfying: (i) consistency (i.e., the view of the
blockchain obtained by different players is identical up to pruning k blocks from
the chain); and (ii) liveness (i.e., if all honest parties attempt to broadcast a
message, then after w rounds, an honest party will see that message at depth k
in the ledger).

Hence, running an MPC protocol π with the aid of a blockchain protocol sim-
ply means that the players exchange messages using the blockchain. Intuitively,
a player is called non-hasty if she always waits that the previous messages are
confirmed on the blockchain before sending the next one. On the other hand,
a hasty player sends her next message by just looking at her current view of
the blockchain (without pruning blocks). Apart from these changes, security is
defined similarly as in the standard real-ideal world paradigm. Intuitively, in a
protocol running with hasty players, block confirmation is not needed. However,
if parties wants to keep a natural blockchain feature like public verifiability, the
last message exchanged in the protocol must be necessary confirmed. Through-
out the paper, when we talk about no confirmation we implicitly assume the last
message is confirmed for public verifiability guarantees.

The definition of security in the presence of hasty players has importance in
forking blockchains, in which miners can discard non-confirmed blocks, achieving
consensus on other blocks. Our definition applies to forking sidechains too.

General-Purpose MPC with Hasty Players and Fairness with Penalties. Having
motivated the problem of running MPC protocols on forking blockchains, we
show a general compiler to obtain smart contracts that implements ideal multi-
party functionalities retaining security in the presence of forks and allowing
players to be hasty.8

In order to preserve security in the presence of forks, our compiler makes
sure that, whenever an execution of the MPC protocol is repeated in multiple
branches, each honest player protects herself from attacks exploiting forks by
refusing to play again a message of the same execution of the protocol in case the
blockchain shows a different prefix in the transcript of the execution. Specifically,
if on one branch B2 there is a player that changes the message already played in
a different branch B1, then each honest player that played already in B1 and is
asked to play again on input a different prefix in B2 will abort the execution in

8 In this work all our positive results consist of on-chain protocols for secure compu-
tation that are stand-alone secure, with security preserved under sequential com-
position. The reason why we do not try to obtain universal composability is that
existing notions of universal composability with a ledger [10] rely on non-forking
ledger functionalities and therefore on non-hasty players.
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B2. Clearly, this strategy forces a unique execution regardless of forks, and thus
security holds even in the presence of fully hasty players. For more details about
our compiler and its extension adding fairness with penalties see Sect. 4.

1.2 Related Work

Following [1,2], other works focus on achieving fairness with penalties for differ-
ent applications of interest, including lotteries [6], decentralized poker [7,22], and
general-purpose computation [4,6,19,21,23]. In the more recent work of [4] the
authors proposed a fair with penalties MPC protocol with increased efficiency
of the off-chain phase. In particular, the line of works by Kumaresan et al. relies
on an elegant paradigm working in two phases: 1) during the first phase, players
run an MPC protocol to obtain the output in hidden form (e.g., a secret sharing
of the output); since the output is hidden, such a protocol can be executed off
chain, as malicious aborts do not violate fairness; 2) during the second phase, the
output is reconstructed in a fair manner on chain. Unfortunately, the security of
this paradigm in the presence of hasty players is difficult to assess, as protocols
relying on intermediate ideal functionalities (such as the “claim-or-refund” and
“multi-lock” functionality [6,20], or a smart contract functionality [4]), although
implementable using Bitcoin or Ethereum, may be insecure when executed with
hasty players. Moreover, known results about designing protocols in a hybrid
model allowing to make calls to a functionality are applicable only to the clas-
sical setting where multiple executions of the same instance of the protocol due
to forks are not possible. Also note that performing a large part of the compu-
tation off chain hinders one of the main advantages of blockchain-aided MPC
(i.e., public verifiability of the entire process). Our results, in contrast, consider
MPC protocols executed completely on-chain through smart contracts.

A different line of works, shows how to perform MPC in the presence of an
abstract transaction ledger [3,10,16,18,28], of which Bitcoin and Ethereum are
possible implementations. However, such an idealized ledger does not account
for the possibility of forks, thus (implicitly) meaning that the players using it
are modeled as non-hasty.

Our main contribution is a protocol to jointly generate a random beacon.
It is known that there exist protocols suited for blockchains generating random
values. A well known implementation is RANDAO [30]. The smart contract
introduced in RANDAO is similar to a smart contract implementation of the
Andrychowicz et al. lottery protocol [2].

As we show in Sect. 3 even this smart contract is subject to attacks in case
some party does not wait for the confirmation of the first phase of the protocol.
On the contrary, our lottery protocol described in Sect. 3.1 is secure even if
parties do not wait for block confirmations.

2 Threat Model

Our n-party parallel coin-tossing (PCT) protocol in the presence of hasty play-
ers is secure w.r.t. dishonest majority, meaning that it can tolerate up to n − 1
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corrupted players. We assume that the blockchain adversary is computationally
bounded, and when there is a fork in the blockchain, we pragmatically assume
that the adversary has negligible impact on deciding which branch will be con-
firmed. Our generic compiler can be secure in the presence of hasty players w.r.t.
dishonest majority when the protocol to be compiled is secure w.r.t. dishonest
majority. We point out that if one would like to consider a very strong adver-
sary with even 49% of the computational power of the network, then clearly
our assumption does not hold. However, we stress that with such an adversary
even the 6-block rule in Bitcoin does not make much sense. To guarantee that
a delicate transaction (i.e., the coinbase transaction) is confirmed with a strong
enough adversary, up to 144 blocks are necessary in Bitcoin [31], meaning 1 day
to communicate even a single protocol message. Therefore if one would like
to consider such strong adversaries even a protocol requiring one confirmation
might be impractical.

We will also consider adversaries mounting DoS attacks through aborts. In
our context the adversary can mount this attack by causing an abort to the
protocol by e.g. not playing anymore and, in our generic compiler, also by send-
ing different messages on different branches, making honest players abort the
execution. Such adversaries have the only purpose of penalizing honest players
that will therefore waste time and transaction fees and perhaps restarting the
protocol from scratch.

3 Parallel Coin Tossing

A coin-tossing protocol allows a set of players to agree on a uniformly random
string, and has many important applications (e.g., it allows to easily implement
a decentralized lottery). Our protocol leverages standard techniques to achieve
fairness with penalties, but does not require finality (thus allowing players to be
fully hasty). We start summarizing the protocol of [2] below and we show that
their protocol becomes completely insecure in the presence of hasty players. This
naturally leads to our new protocol, which we describe and analyze in Sect. 3.1.

The Protocol of Andrychowicz et al. Recall that in the Bitcoin ledger, each
account is associated to a pair of keys (pk , sk), where pk is the verification key
of a signature scheme—representing the address of an account—while sk is the
corresponding secret key used to sign (the body of) the transactions. Each block
on the ledger contains a list of transactions, and new blocks are issued by an
entity called miner. The blockchain is maintained via a consensus mechanism
based on proof of work; users willing to add a transaction to the ledger forward
it to the miners, which will try to include it in the next minted block.

In the description below, we say that a transaction is valid if it is computed
correctly (i.e., the signature is valid, the coins have not been spent already, and so
on), and that it is confirmed if it appears in the common-prefix of all the miners
(i.e., it is at least k-blocks deep in the ledger). Each transaction Tx includes:
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– A set of input transactions Tx1,Tx2, · · · from which the coins needed for the
actual transaction Tx are taken;

– A set of input scripts containing the input for the output scripts of
Tx1,Tx2, · · · ;

– An output script defining in which condition Tx can be claimed;
– The number of coins taken from the redeemed transactions;
– A time lock t specifying when Tx becomes valid (i.e., a time-locked transaction

won’t be accepted by the miners before time t has passed).

The construction by [1,2] relies on a primitive called time-locked commitment.
Let n denote the number of parties. Each party Pj creates n − 1 Commitji�=j

transactions containing a commitment to its lottery value. In particular, the
output script of such a transaction ensures that it can be claimed either by
Pj via an Openj

i transaction exhibiting a valid opening for the commitment, or
by another transaction that is signed by both Pj and Pi. Before posting these
transactions on the ledger, Pj creates a time-locked transaction PayDepositji
redeeming Commitji , sends it off-chain to each Pi�=j , and finally posts all the
Commitji transactions on the ledger. In case Pj does not open the commitment
before time τ , then each recipient of a PayDepositji transaction can sign it and
post it on the ledger; since time τ has passed, the miners will now accept the
transaction as a valid transaction redeeming Commitji . More in details:

Deposit phase: Each player Pj computes a commitment yj = Hash(xj ||δj),
where δj is some randomness, sends off-chain the PayDepositji transactions
(with time-lock τ) to each Pi�=j , and posts the Commitji transactions.

Betting phase: Pj bets one coin in the form of a transaction PutMoneyj

(redeeming a previous transaction held by Pj , and with Pj ’s signature as
output script). All the players agree and sign off-chain a Compute transaction
taking as input all the (PutMoneyj)j∈[n] transactions, and then the last player
that receives the Compute transaction posts it on the ledger. In order to claim
this transaction, a player Pw′ must exhibit the openings of the commitments
of all participants: The script checks that the openings are valid, computes
the index of the winner w (as a function of the values x1, . . . , xn), and checks
that w′ = w (i.e., the only participant that can claim the Compute transaction
is the winner of the lottery).

Compensation phase: After time τ , in case some player Pj did not send all
of its {Openj

i}i∈[n],i �=j transactions, all the other players Pi�=j can post the
PayDepositji transaction, thus obtaining a compensation.

A Simple Attack in the Presence of Hasty Players. The main idea behind our
attack is that, in the presence of hasty players, the protocol’s messages can end-
up answering messages appeared on (still) unconfirmed blocks. By looking at
different branches of a fork, an attacker can try to change an old (in the sense
that even an answer to it has already been published on-chain) unconfirmed
transaction by re-posting it, with the hope that it will end-up on a different
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branch and become part of the common prefix. This essentially corresponds to
a reset attack on the protocol.

The construction described above relies on the (implicit) assumption that
the players are non-hasty. In particular, each player Pj should wait to post its
PutMoneyj

i transaction only after all the Commitji transactions are confirmed on
the ledger, in such a way that all players are aligned on the same branch (and so
the miners have the {Commitji}i∈[n],j �=i transactions in their common prefix). In
the case of hasty players, when a fork occurs, an attacker can take advantage of
the openings of the other parties played in a faster branch in order to bias the
result of the lottery on a slower branch. If eventually the slower branch remains
permanently in the blockchain, then clearly the attack is successful.

For concreteness, let us focus on Blum’s coin tossing, in which the winner is
defined to be w = x1 + . . . + xn mod n + 1. Consider the following scenario:

– The (hasty) players P1, . . . ,Pn run a full instance of the protocol; note that
this requires at least 3 blocks.

– The attacker Pn hopes to see a fork containing all the {Commitij} transactions
of the other n − 1 players.

– Since the attacker Pn now knows the openings x1, . . . , xn−1, it can post a new
set of {Commit′in}i∈[n],i �=n transactions containing a commitment to a value
x′

n such that x1 + . . . + xn−1 + x′
n mod n + 1 = n.

In case the new set of transactions ends up on a different branch which is finally
included in the common prefix, Pn wins the lottery. In the next section, we
propose a new protocol that does not suffer from this problem.

3.1 Our PCT Protocol

We now present a parallel coin-tossing (PCT) protocol on blockchain that is
secure in the presence of hasty players. The main challenge that we face is
that the protocol must prevent an adversary from choosing adaptively her con-
tribution to the coin tossing in a branch of a fork, after possibly seeing the
contributions of the other players in different branches.

We tackle this problem by requiring that each honest party computes his
contribution by evaluating a unique signature (see the full version for the formal
definition) upon input the public keys of all players. Notice that if the adversary
A sees some signatures in a branch, and changes her public key in another branch,
then A cannot predict the signatures of the honest players on this other branch by
the unforgeability property of the signature scheme, and thus A will not manage
to bias the final output. Hence, we hash the concatenation of all the signatures in
order to determine the final output. Assuming that the hash function is modelled
as a random oracle, we would like to argue that the output of the protocol looks
uniform.

However, the following subtlety arises. Assume without loss of generality that
only Pn is corrupt and that the protocol proceeds until the end on a given branch
of the blockchain. Denote by pkn the public key chosen by the attacker. Further,
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assume that A notices another branch where all honest players have already sent
their public keys. Now, the adversary can either: (i) publish a different public
key pk ′

n, or (ii) publish the same public key pkn as in the other branch. In case
A “likes” the outcome of the protocol on the first branch, she will choose option
(ii) and thus can bias the protocol output.

To avoid the above attack, we identify each branch with a string bid that
is uniquely associated to it, and include bid as part of the message to sign.
Intuitively, this solves the previous problem as, even if all the public keys stay
the same on two different branches, the value bid will change thus ensuring that
the protocol output will also be different (and uniformly random). We proceed
with a more detailed description of our protocol (see also Fig. 1).9

– One of the players chooses a random value sid that represents the identifier
of the current protocol execution, and publishes sid on the blockchain.

– Each player Pi willing to participate generates the public and private keys
for the unique signature (pk i, sk i) ←$ Gen(1λ), and publishes pk i on the
blockchain.

– Each player Pi lets yi = Sign(sk i, pk1|| · · · ||pkn||sid ||bid), where bid is the
hash of the blockchain10 up to the block that contains the last public key,
and publishes yi on the blockchain.

– Each player Pi checks that Verify(pk j , x, yj) = 1 for all j �= i, where x =
pk1|| · · · ||pkn||sid ||bid , and outputs Hash(y1|| · · · ||yn).

We stress that thanks to the value bid , the protocol execution becomes branch
dependent. In particular, the chances of success of a corrupted Pj to bias the
output are not affected by the potential use of different public keys in branches
of a fork corresponding to a protocol run with a given sid .

Security Analysis. Let fpct be the n-party functionality that picks a uniformly
random string ω and sends it to all the n parties. The theorem below establishes
the security of our coin-tossing protocol in the (programmable) random oracle
(RO) model. We note that the security of the original protocol by Andrychowicz
et al. [1,2] also relies on the RO heuristic, as do all currently known analysis of
blockchain protocols [14,25].

Proofs can be found in the full version.

Theorem 1. If (Gen,Sign,Verify) is a unique signature scheme, the protocol of
Fig. 1 securely implements the functionality fpct in the presence of hasty players
and malicious adversaries with aborts, in the programmable RO model.

9 Note that our protocol can be run on generic blockchains. In the full version, we
provide an implementation using Ethereum smart contracts, but the protocol can
also be implemented in Bitcoin using the opcode OP RETURN in case players do
not need to get fairness with penalties.

10 For efficiency the hash can be more simply applied to the block containing pkn.
Nevertheless, for the sake of simplicity of the protocol description and of the security
analysis we will stick with hashing the entire blockchain.
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Fig. 1. Our new protocol for parallel coin tossing.

Fairness with Penalties. We now discuss how to augment the protocol π∗
pct in

order to achieve fairness with penalties. First of all, each party should publish
also a deposit along with her public key on the blockchain. The deposit can be
redeemed by showing a valid signature on the value x = pk1|| · · · ||pkn||sid ||bid .

Assume that Pn is corrupted. The adversary can wait that the honest parties
publish their value y1, . . . , yn−1 on a given branch, and thus locally compute
the output Hash(y1|| · · · ||yn), where yn is Pn’s signatures on x corresponding to
public key pkn. Now, if Pn does not like the output it can either: (i) publish yn

in any case , or (ii) decide not to publish yn. In case (i), Pn plays honestly, takes
back his deposit and every player obtains the output. In case (ii), Pn aborts the
protocol, but loses her deposit.

Note that the penalty mechanism for our protocol is too sophisticated for the
scripting language used in Bitcoin. Instead in Ethereum we can design a smart
contract to define the PCT protocol, having fairness with penalties and without
penalizing the efficiency.

In the full version we give details about how the smart contract works.
We call π̃∗

pct the fair (with penalties) version of protocol π∗
pct. The informal

description of the smart contract used in π̃∗
pct is given in Fig. 2 and the protocol

is described below:

(i) Setup phase: At the beginning, one of the players creates the smart contract.
When the contract is posted on the blockchain, the constructor automati-
cally generates a unique session identifier sid .

(ii) Deposit phase: For each i ∈ [n], Pi can decide to participate to the PCT
protocol by triggering the function deposit to send a safety deposit and
his public key pk i of an unique signature scheme. After time1 blocks have
passed, if (pk1, . . . , pkn) are collected by the smart contract, it computes
bid as Hash(B), where B is the blockchain that contains (pk1, . . . , pkn). The
deposit phase ends and parties can start to redeem their deposit.



Shielded Computations in Smart Contracts Overcoming Forks 85

(iii) Claim phase: For each i ∈ [n], Pi can claim his deposit back by triggering
the function claim of the smart contract and sending a value yi such that
Verify(pk i, x, yi) = 1, where x = pk1|| · · · ||pkn||sid ||bid , and pk i is the pub-
lic key of Pi. After time2 blocks have passed, the claim phase ends and the
smart contract computes and publishes the output as Hash(y1|| · · · ||yn).

Fig. 2. Smart contract for parallel coin tossing.

Theorem 2. If (Gen,Sign,Verify) is a unique signature scheme, π̃∗
pct described

in Fig. 2 securely realizes fpct and satisfies fairness with penalties in the presence
of hasty players and malicious adversaries, in the programmable RO model.

A Remark on DoS Attacks. Note that in π̃∗
pct there is no need to fix the identity of

the participants “before” the execution of the protocol. We can consider the case
in which a party Pi participates to a protocol execution only after she triggers
the deposit function giving as an input her public key. Our PCT protocol can
be executed even if only two parties decide to participate and thus n does not
need to be fixed beforehand. Moreover, time1 is independent of n and of the
number of blocks to wait for considering a transaction confirmed. Registered
parties are not incentivized to abort the protocol (i.e., by not triggering the
claim function) due to financial compensation (parties must send a collateral
deposit together with the first message). This makes DoS attacks in which the
attacker aborts the protocol multiple times (making honest parties waste time
and money) financially inconvenient.

3.2 Experimental Evaluation

We also provide some experiments to show noticeable improvements in our PCT
protocol with respect to the lottery protocol of Andrychowicz et al. in terms of
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the number of blocks needed for completion of the protocol. Since the confirma-
tion time has a considerable impact on the overall communication with respect
to the number of rounds, we measure the efficiency of on-chain protocols in terms
of the number of blocks11.

We evaluate the efficiency of π∗
pct compared with the protocol from [1,2]. To

evaluate the efficiency in the best case we consider the following assumptions:

– Transactions in the last k blocks are considered not confirmed yet.
– All parties send the message at round i of the protocol as soon as they read

all messages from round i−1 on B�k
i , where k is 0 in case of hasty executions.

– Whenever a player broadcasts a transaction, it appears in the next block.
– All messages in a round of the MPC protocol fit in a single block.

In case of non-hasty executions if we have a ρ-round MPC protocol π running
on the blockchain, the number of blocks needed to complete the execution with
the previous assumption is ρ · k.

Analysis. We now give a comparison between our coin-tossing protocol and the
one of Andrychowicz et al. To allow for a fair comparison between our coin-
tossing protocol and the one presented in [1,2], we implemented both protocols
in Solidity using Ethereum smart contracts.12 See the full version for the code
of the smart contracts.

For both protocols, in the deposit phase, a timeout t̄ must be provided by the
contract creator, so that players have enough time to send their deposits together
with the corresponding additional information required by the protocol. In the
ideal conditions described above, the timeout can be of just one block. The same
argument applies to the opening phase of [1,2]. A comparison is described below:

– Lottery: Due to the expressiveness of smart contracts, our implementation
of [1,2] requires one step less than the original implementation using in bit-
coin. Specifically, we can embed the betting phase in the commit/deposit
phase, by just requiring that the players deposit 1 more coin. Since in their
setting block confirmation is required at each step, the overall execution takes
exactly 3 · k blocks (including one round for posting the smart contract).

– Our PCT: As proven in Sect. 3.1, our PCT protocol can be executed in fully-
hasty mode. The entire execution consists of 2 + k blocks (including 1 block
for posting the contract and confirmation of the output). In the worst case,
where all messages will appear to the state of the honest player after k blocks
for each step, the overall execution takes 3 · k, as much as [2].

GAS Consumption. As it can be seen in Fig. 3, PCT is more expensive in terms
of GAS consumption than Lottery. It is well motivated by the fact that Lottery
uses only hash function to compute the commitments and no other expensive

11 Notice that whenever players are all online and ready to play, the execution should
be fast and waiting for confirmations of all messages would be painful.

12 Notice that the average time for a new block to appear is around 15 s [13].
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computations. Our PCT protocol needs also unique signatures. Our GAS cal-
culation for unique signature is based on the BLS signatures implementation
provided for testing in [29], but improved implementations could potentially
lower the GAS consumption. It can be seen anyway as an affordable cost to pay
to achieve efficiency still maintaining the same security guarantees.

Fig. 3. GAS consumption comparison between our smart contract implementation of
PCT (Sect. 3.1) protocol and the Lottery of Andrychowicz et al. [2] (Sect. 3).

4 Our Generic Compiler

Our compiler starts from the observation that a stand-alone MPC protocol could
be insecure when executed on a blockchain. To be concrete, a rewinding simula-
tor of the MPC protocol can not be used to prove the security of the on-chain
MPC protocol, since rewinding would have the unclear meaning of rewinding the
blockchain. Moreover, we do not want to give control of the blockchain to the sim-
ulator (i.e., no control of the majority of the stake, of the computational power,
and so on) since our result aims at being generic w.r.t. the type of blockchain
used. Essentially, the simulator is going to incarnate just the honest players of
the MPC protocol during the simulation. In order perform a simulation in the
presence of a concurrently played blockchain protocol, (i.e., rewinding is not pos-
sible and the blockchain is generic and therefore not controlled by the simulator),
we therefore require the initial protocol π received in input by the compiler to
be universally composable secure. This guarantees the existence of a straight-
line simulator and allows us to avoid simulators that “control” the blockchain13,
13 Typically a simulator that controls the blockchain requires some specific assumptions

on the blockchain like in [16] where only some restricted proof-of-stake blockchains
were compatible with the simulation.
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therefore allowing the applicability of our results to generic blockchains. Addi-
tionally, we require π to have only “digital” communication since players when
running the protocol on-chain must produce messages that consists of bits only.
Therefore an exchange of hardware (e.g., PUFs) in π can not be accepted.

Notice that the original protocol might require private and authenticated
channels. Since the entire traffic of our protocol will be redirected to the
blockchain, we will use public-key encryption and digital signatures. The first
message of each player in the compiled protocol will consist of a pair of pub-
lic keys, one to receive encrypted messages and one to allow others to verify
signatures of messages.

Compiler Description. Intuitively our transformation proceeds as follows. Our
starting point is any MPC protocol π UC-securely computing an n-party func-
tionality f : ({0, 1}∗)n → ({0, 1}∗)n in the presence of malicious players (with
aborts). Hence, the honest players fix the random tape for running π and simply
execute protocol π by broadcasting their messages on the blockchain. Further-
more, each honest player Pi keeps track of the longest protocol transcript αi

generated so far and, in the presence of a fork, aborts the execution in case the
view on a given branch is not consistent with αi. This intuitively ensures that
the underlying protocol π is run only once, even in the presence of forks.

Since the initial protocol π may require private channels between the players,
we need to augment the above transformation in such a way that subsets of hon-
est parties can exchange messages in a confidential and authenticated manner.
Let m

(r)
i,j be the message that Pi sends to Pj at the generic round r. The latter

is achieved by having Pi encrypting m
(r)
i,j using the public encryption key ek j of

Pj , and then signing the resulting ciphertext c
(r)
i,j with its own private signing

key sk i, which is the standard way of building a secure channel. We refer the
reader to the full version for a formal description.

On Fairness Through Penalties. To obtain a fair with penalties protocol πfair,
we use the following technique, borrowed from [6,20]. Let’s consider a protocol
π′ running with parties P1, . . . ,Pn for a functionality f ′ that, given the out-
put y ← f(x1, . . . , xn), where xi is the input of player Pi, secret shares y into
(σ1, . . . , σn) (for a full threshold sharing scheme), generates a set of commit-
ments C = (γ1, . . . , γn) such that γi is the commitment of σi. Each player Pi

obtains as an output the pair (C, σi)14. The fair protocol with penalties in the
presence of hasty players can be obtained as follows: (i) We compile π′ with our
generic compiler, obtaining π′

bc. (ii) In our protocol πfair, parties P1, . . . ,Pn first
engage in π′

bc. After π′
bc ends, each Pi obtains the output (C, σi). Now, each Pi

has a limited time t1 to send his tuple C to a smart contract together with a
payment of some deposit. (iii) If everyone sent the same tuple C, each player
Pi has another time shift t2 to send their share σi of γi to receive back their
deposit. Else, if after t2, (σ1, . . . , σn) are posted to the smart contract, each Pi

14 Pi implicitly receives also a decommitment information of γi.
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can reconstruct the output by using all collected shares. Else, players that have
not opened their shares within t2, will be penalized since their coins will remain
frozen forever into the smart contract.

We prove that fairness can be achieved if honest parties playing πfair wait
for confirmation only of step (ii). The reason for requiring the confirmation of
phase (ii) is that otherwise the adversary can try to generate an abort during the
execution of π′

bc after learning the output of the entire protocol πfair on a different
branch. Now, let’s say that t is the time needed for transaction confirmation in
the blockchain, and r the number of rounds of π′

bc, πfair requires around r + 2t
blocks to complete the on-chain execution (including output confirmation). To
maintain security of Kumaresan et al. protocols by blindly posting messages
on-chain, the overall execution requires around r · t blocks to be successfully
terminated. More details are provided in the full version.

Remark on DoS Attacks. Note that in our construction deposits can be made at
the end of step (ii) since adversaries trying to violate fairness can be spotted only
during step (iii). Therefore an adversary can freely abort the execution before
step (iii). Intuitively, by taking as input a protocol achieving identifiable abort
[17] that is publicly verifiable15, a player cheating in any point of the protocol
execution can be successfully spotted and punished. This can be done by making
a player posting a smart contract that will act as an external judge that exploits
public verifiability of the underlying protocol. Unfortunately, protocols compiled
with our construction would lose the identifiable abort property. This is due to
the fact that the adversary can make honest players aborting by running two
correct executions of the underlying protocol on two branches but using different
messages. In such case, the two executions would be both considered valid in both
branches by the smart contract mentioned above.

5 Conclusions

We have focused on MPC protocols implemented on forking blockchains using
smart contracts, and have shown how to design such protocols allowing players
to be hasty (i.e., without being delayed by finality limitations).

Our work shows that, beyond the double-spending attack, there are other
issues that can affect both security and privacy of MPC protocols implemented
by a smart contract. On the negative side, we showed that a well-known MPC
protocol implemented via smart contracts becomes insecure in the presence of
forks and hasty players (because the adversary can play adaptively on a branch
of a fork depending on the information observed on the other branch). On the
positive side, we have shown smart contracts within on-chain MPC protocols
that remain secure even when there are forks and players are hasty.

Moreover we have also discussed how to get fairness with penalties. This
allows us to get smart contracts that are simultaneously safe, fair and fast. We

15 An efficient construction can be found at [5].
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have also provided in Sect. 3.2 some experiments to show noticeable improve-
ments of our PCT protocol with respect to the lottery protocol of Andrychowicz
et al. in terms of number of blocks needed for completion of the protocol and
gas consumption of the smart contracts.
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1 Università degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

2 Stirling University, Stirling, UK
3 Technical University of Denmark, Lyngby, Denmark
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Abstract. We develop a formal model of Algorand stateless smart con-
tracts (stateless ASC1). We exploit our model to prove fundamental
properties of the Algorand blockchain, and to establish the security of
some archetypal smart contracts. While doing this, we highlight various
design patterns supported by Algorand. We perform experiments to vali-
date the coherence of our formal model w.r.t. the actual implementation.

1 Introduction

Smart contracts are agreements between two or more parties that are auto-
matically enforced without trusted intermediaries. Blockchain technologies rein-
vented the idea of smart contracts, providing trustless environments where they
are incarnated as computer programs. However, writing secure smart contracts
is difficult, as witnessed by the multitude of attacks on smart contracts platforms
(notably, Ethereum)—and since smart contracts control assets, their bugs may
directly lead to financial losses.

Algorand [20] is a late-generation blockchain that features a set of interesting
features, including high-scalability and a no-forking consensus protocol based
on Proof-of-Stake [7]. Its smart contract layer (ASC1) aims to mitigate smart
contract risks, and adopts a non-Turing-complete programming model, natively
supporting atomic sets of transactions and user-defined assets. These features
make it an intriguing smart contract platform to study.

The official specification and documentation of ASC1 consists of English
prose and a set of templates to assist programmers in designing their contracts
[1,3]. This conforms to standard industry practices, but there are two drawbacks:

1. Algorand lacks a mathematical model of contracts and transactions suitable
for formal reasoning on their behaviour, and for the verification of their prop-
erties. Such a model is needed to develop techniques and tools to ensure that
contracts are correct and secure;
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N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12674, pp. 93–114, 2021.
https://doi.org/10.1007/978-3-662-64322-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64322-8_5&domain=pdf
https://doi.org/10.1007/978-3-662-64322-8_5


94 M. Bartoletti et al.

2. furthermore, even preliminary informal reasoning on non-trivial smart con-
tracts can be challenging, as it may require, in some corner cases, to resort
to experiments, or direct inspection of the platform source code.

Given these drawbacks, we aim at developing a formal model that:

o1. is high-level enough to simplify the design of Algorand smart contracts and
enable formal reasoning about their security properties;

o2. expresses Algorand contracts in a simple declarative language, similar to
PyTeal (the official Python binding for Algorand smart contracts) [5];

o3. provides a basis for the automatic verification of Algorand smart contracts.

Contributions. This paper presents:

– a formal model of stateless ASC1 providing a solid theoretical foundation to
Algorand smart contracts (Sect. 2). Such a model formalises both Algorand
accounts and transactions (Sects. 2.1–Sect. 2.4, Sect. 2.6), and smart contracts
(Sect. 2.5);

– a validation of our model through experiments [4] on the Algorand platform;
– the formalisation and proof of some fundamental properties of the Algo-

rand state machine: no double spending, determinism, value preservation
(Sect. 2.7);

– an analysis of Algorand contract design patterns (Sect. 3.2), based on several
non-trivial contracts (covering both standard use cases, and novel ones). Quite
surprisingly, we show that stateless contracts are expressive enough to encode
arbitrary finite state machines;

– the proof of relevant security properties of smart contracts in our model;
– a prototype tool that compiles smart contracts (written in our formal declar-

ative language) into executable TEAL code (Sect. 4).

Our formal model is faithful to the actual ASC1 implementation; by objec-
tives o.1–o.3, it strives at being high-level and simple to understand, while cover-
ing the most commonly used primitives and mechanisms of Algorand, and sup-
porting the specification and verification of non-trivial smart contracts (Sect. 3.2,
Sect. 4). To achieve these objectives, we introduce minor high-level abstractions
over low-level details: e.g., since TEAL code has the purpose of accepting or
rejecting transactions, we model it using expressions that evaluate to true or
false (similarly to PyTEAL); we also formalise different transaction types by
focusing on their function, rather than their implementation. Our objectives
imply that we do not aim at covering all the possible TEAL contracts with
bytecode-level accuracy, and our Algorand model is not designed as a full low-
level formalisation of the behavior of the Algorand blockchain. We discuss the
differences between our model and the actual Algorand platform in Sect. 5. Due
to space constraints, we provide the proofs of our statements in a separate tech-
nical report [14].
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2 The Algorand State Machine

We present our formal model of the Algorand blockchain, including its smart
contracts (stateless ASC1), incrementally. We first define the basic transac-
tions that generate and transfer assets (Sect. 2.1–Sect. 2.3), and then add atomic
groups of transactions (Sect. 2.4), smart contracts (Sect. 2.5), and authorizations
(Sect. 2.6). We discuss the main differences between our model and Algorand
in Sect. 5.

Table 1. Summary of notation.

a, b, . . . Users (key pairs)

x,y, . . . ∈ X Addresses

τ , τ ′ , . . . ∈ A Assets

v, w, . . . ∈ 0..264 − 1 Values

σ, σ′ ∈ A ⇀ N Balances

x[σ] Accounts

t, t′ , . . . ∈ T Transactions

e, e′ , . . . Scripts

r, r′ . . . ∈ N Rounds

Tlv ⊆ T Transactions in last Δmax rounds

fasst ∈ A → X Asset manager

flx ∈ (X × N) ⇀ N Lease map

ffrz ∈ X ⇀ 2A Freeze map

Γ, Γ ′ , . . . Blockchain states

|= σ Valid balance

flx, r |= t Valid time constraint

W |= T , i Authorized transaction in group

�e�WT ,i Script evaluation

2.1 Accounts and Transactions

We use a, b, . . . to denote public/private key pairs (kp
a , k

s
a). Users interact with

Algorand through pseudonymous identities, obtained as a function of their public
keys. Hereafter, we freely use a to refer to the public or the private key of a, or to
the user associated with them, relying on the context to resolve the ambiguity.
The purpose of Algorand is to allow users to exchange assets τ , τ ′ , . . . Besides
the Algorand native cryptocurrency Algo, users can create custom assets.

We adopt the following notational convention:

– lowercase letters for single entities (e.g., a user a);
– uppercase letters for sets of entities (e.g., a set of users A);
– calligraphic uppercase letters for sequences of entities (e.g., list of users A).

Given a sequence L, we write |L| for its length, set(L) for the set of its elements,
and L.i for its ith element (i ∈ 1..|L|); ε denotes the empty sequence. We write:

– {x �→v} for the function mapping x to v, and having domain equal to {x};
– f{x �→v} for the function mapping x to v, and y to f(y) if y �= x;
– f{x �→⊥} for the function undefined at x, and mapping y to f(y) if y �= x.

Accounts. An account is a deposit of one or more crypto-assets. We model
accounts as terms x[σ], where x is an address uniquely identifying the account,
and σ is a balance , i.e., a finite map from assets to non-negative 64-bit integers.
In the concrete Algorand, an address is a 58-characters word; for mathematical
elegance, in our model we represent an address as either:
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– a single user a. Performing transactions on a[σ] requires a’s authorization;
– a pair (A, n), where A is a sequence of users, and 1 ≤ n ≤ |A|, are multisig
(multi-signature) addresses. Performing transactions on (A, n)[σ] requires
that at least n users out of those in A grant their authorization;1

– a script2 e. Performing transactions on e[σ] requires e to evaluate to true.

Fig. 1. Transaction types. Fields type, fv, lv, lx are common to all types.

Each balance is required to own Algos, have at least 100000 micro-Algos for
each owned asset, and cannot control more than 1000 assets. Formally, we say
that σ is a valid balance (in symbols, |= σ) when:3

Algo ∈ dom (σ) ∧ σ(Algo) ≥ 100000 · |dom (σ)| ∧ |dom (σ)| ≤ 1001

Transactions. Accounts can append various kinds of transactions to the
blockchain, in order to, e.g., alter their balance or set their usage policies. We
model transactions as records with the structure in Fig. 1. Each transaction
has a type, which determines which of the other fields are relevant.4 The field
snd usually refers to the subject of the transaction (e.g., the sender in an assets
transfer), while rcv refers to the receiver in an assets transfer. The fields asst and
val refer, respectively, to the affected asset, and to its amount. The fields fv (“first
valid”), lv (“last valid”) and lx (“lease”) are used to impose time constraints.

Algorand groups transactions into rounds r = 1, 2, . . . To establish when a
transaction t is valid, we must consider both the current round r, and a lease
map flx binding pairs (address, lease identifier) to rounds: this is used to enforce
mutual exclusion between two or more transactions (see e.g. the periodic payment

1 W.l.o.g., we consider a single-user address a equivalent to (A, n) with A=〈a〉, n=1.
2 We formalize scripts (i.e., smart contracts) later on, in Sect. 2.5.
3 Since the codomain of σ is N, the balance entry σ(Algo) represents micro-Algos.
4 In Algorand, the actual behaviour of a transaction may depend on both its type and

other conditions, e.g., which optional fields are set. For instance, pay transactions
may also close accounts if the CloseRemainderTo field is set. For the sake of clarity,
in our model we prefer to use a richer set of types; see Sect. 5 for other differences.
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contract in Sect. 3). Formally, we define the temporal validity of a transac-
tion t by the predicate flx, r |= t, which holds whenever:

t.fv ≤ r ≤ t.lv and t.lv − t.fv ≤ Δmax and(
t.lx = 0 or (t.snd, t.lx) �∈ dom (flx) or r > flx(t.snd, t.lx)

)

First, the current round must lie between t.fv and t.lv, whose distance cannot
exceed Δmax rounds5. Second, t must have a null lease identifier, or the identifier
has not been seen before (i.e., flx(t.snd, t.lx) is undefined), or the lease has expired
(i.e., r > flx(t.snd, t.lx)). When performed, a transaction with non-null lease
identifier acquires the lease on (t.snd, t.lx), which is set to t.lv.

2.2 Blockchain States

We model the evolution of the Algorand blockchain as a labelled transition
system. A blockchain state Γ has the form:

x1[σ1] | · · · | xn[σn] | r | Tlv | fasst | flx | ffrz (1)

where all addresses xi are distinct, | is commutative and associative, and:

– r is the current round;
– Tlv is the set of performed transactions whose “last valid” time lv has not

expired. This set is used to avoid double spending (see Theorem 1);
– fasst maps each asset to the addresses of its manager and creator ;
– flx is the lease map (from pairs (address, integer) to integers), used to ensure

mutual exclusion between transactions;
– ffrz is a map from addresses to sets of assets, used to freeze assets.

We define the initial state Γ0 as a0[{Algo �→v0}] | 0 | ∅ | fasst | flx | ffrz, where
dom (fasst) = dom (flx) = dom (ffrz) = ∅, a0 is the initial user address, and
v0 = 1016 (which is the total supply of 10 billions Algos).

We now formalize the ASC1 state machine, by defining how it evolves by sin-
gle transactions (Sect. 2.3), and then including atomic groups of transactions
(Sect. 2.4), smart contracts (Sect. 2.5), and the authorization of transactions
(Sect. 2.6).

2.3 Executing Single Transactions

We write Γ
t−→1 Γ ′ to mean: if the transaction t is performed in blockchain

state Γ, then the blockchain evolves to state Γ ′ .6 We specify the transition
relation −→1 through a set of inference rules (see [14, Fig. 5 in Appendix] for the
full definition): each rule describes the effect of a transaction t in the state Γ
of Eq. (1). We now illustrate all cases, depending on the transaction type (t.type).
5 Δmax is a global consensus parameter, set to 1000 at time of writing.
6 Note that Γ

t−→1 Γ ′ does not imply that transaction t can be performed in Γ: in fact,
t might require an authorization. We specify the required conditions in Sect. 2.6.



98 M. Bartoletti et al.

When τ ∈ dom (σ), we use the shorthand σ + v:τ to update balance σ by
adding v units to token τ ; similarly, we write σ − v:τ to decrease τ by v units:

σ + v:τ ≡ σ{τ �→σ(τ ) + v} σ − v:τ ≡ σ{τ �→σ(τ ) − v}

Pay to a New Account. Let t.snd = xi for some i ∈ 1..n, let t.rcv = y �∈
{x1, . . . ,xn} (i.e., the sender account x is already in the state, while the receiver
y is not), and let t.val = v. The rule has the following preconditions:

c1. t does not cause double-spending (t �∈ Tlv);
c2. the time interval of the transaction, and its lease, are respected (flx, r |= t);
c3. the updated balance of xi is valid (|= σi − v : Algo);
c4. the balance of the new account at address y is valid (|= {Algo �→v}).

If these conditions are satisfied, the new state Γ ′ is the following:

xi[σi − v:Algo] | y[{Algo �→v}] | · · · | r | Tlv ∪ {t} | fasst | upd(flx, t) | ffrz

In the new state, the Algo balance of xi is decreased by v units, and a
new account at y is created, containing exactly the v units taken from xi. The
balances of the other accounts are unchanged. The updated lease mapping is:

upd(flx, t) =

{
flx{(t.snd, t.lx) �→ t.lv} if t.lx �= 0
flx otherwise

Note that all transaction types check conditions c1. and c2. above; further,
all transactions check that updated account balances are valid (as in c3. and
c4.).

Pay to an Existing Account. Let t.snd = xi, t.rcv = xj , t.val = v, and
t.asst = τ . Besides the common checks, performing t requires that xj has “opted
in” τ (formally, τ ∈ dom (σj)), and τ must not be frozen in accounts xi and xj

(formally, τ �∈ ffrz(xi) ∪ ffrz(xj)). If xi �= xj , then in the new state the balance
of τ in xi is decreased by v units, and that of τ in xj is increased by v units:

xi[σi − v:τ ] | xj [σj + v:τ ] | · · · | r | Tlv ∪ {t} | fasst | upd(flx, t) | ffrz

where all accounts but xi and xj are unchanged. Otherwise, if xi = xj , then the
balance of xi is unchanged, and the other parts of the state are as above.

Close. Let t.snd = xi, t.rcv = xj �= xi, and t.asst = τ . Performing t has two
possible outcomes, depending on whether τ is Algo or a user-defined asset. If
τ = Algo, we must check that σi contains only Algos. If so, the new state is:

xj [σj + σi(Algo):Algo] | · · · | r | Tlv ∪ {t} | fasst | upd(flx, t) | ffrz
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where the new state no longer contains the account xi, and all the Algos in xi

are transferred to xj . Instead, if τ �= Algo, performing t requires to check only
that xi actually contains τ , and that xj has “opted in” τ . Further, τ must not
be frozen for addresses xi and xj , i.e. τ �∈ ffrz(xi) ∪ ffrz(xj). The new state is:

xi[σi{τ �→⊥}] | xj [σj + σi(τ ):τ ] | · · · | r | Tlv ∪ {t} | fasst | upd(flx, t) | ffrz

where τ is removed from xi, and all the units of τ in xi are transferred to xj .

Gen. Let t.snd = xi, t.rcv = xj , and t.val = v. Performing t requires that xi

has enough Algos to own another asset, i.e. |= σi{τ �→v}, where τ is the (fresh)
identifier of the new asset. In the new state, the balance of xi is extended with
{τ �→v}, and fasst is updated, making xj the manager of τ . The new state is:

xi[σi{τ �→v}] | · · · | r | Tlv ∪ {t} | fasst{τ �→(xj ,xi)} | upd(flx, t) | ffrz

Opt in. Let t.snd = xi and t.asst = τ . Performing t requires that τ already
occurs in Γ, and that xi has enough Algos to store it. If the balance σi does not
have an entry for τ , in the new state σi is extended with a new entry for τ :

xi[σi{τ �→0}] | · · · | r | Tlv ∪ {t} | fasst | upd(flx, t) | ffrz

Otherwise, if xi’s balance has already an entry for τ , then σi is unchanged.

Burn. Let t.snd = xi and t.asst = τ . Performing t requires that xi is the creator
of τ , and that xi stores all the units of τ (i.e., there are no units of τ in other
accounts). In the resulting state, the token τ no longer exists:

xi[σi{τ �→⊥}] | · · · | r | Tlv ∪ {t} | fasst{τ �→⊥} | upd(flx, t) | ffrz

Note that this transaction requires an authorization by the asset manager of τ ,
which is recorded in fasst. (We address this topic in Sect. 2.6.)

Revoke. Let t.snd = xi and t.rcv = xj . Performing t requires that both xi

and xj are already storing the asset τ , and that τ is not frozen for xi and xj .
In the new state, the balance of xi is decreased by v = t.val units of the asset
τ = t.asst, and the balance of xj is increased by the same amount:

xi[σi − v:τ ] | xj [σj + v:τ ] | · · · | r | Tlv ∪ {t} | fasst | upd(flx, t) | ffrz

The effect of a rvk transaction is essentially the same as pay . The difference is
that rvk must be authorized by the manager of the asset τ , while pay must be
authorized by the sender xi (see Sect. 2.6).
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Freeze and Unfreeze. A frz transaction t with t.snd = xi and t.asst = τ
updates the mapping ffrz into f ′

frz, such that f ′
frz(xi) = ffrz(xi)∪{τ }, whenever

the asset τ is owned by xi. This effectively prevents any transfers of the asset
τ to/from the account xi. The dual transaction unfrz updates the mapping ffrz
into f ′

frz such that f ′
frz(xi) = ffrz(xi) \ {τ }.

Delegate. A delegate transaction t with t.snd = xi, t.rcv = xj and t.asst = τ
updates the manager of τ , provided that fasst(τ ) = (xi,xi), for some xk. In the
updated mapping fasst{τ �→(xj ,xk)}, the manager of τ is xj .

Initiating a New Round. We model the advancement to the next round of
the blockchain as a state transition Γ

�−→1 Γ ′ . In the new state Γ ′ , the round
is increased, and the set Tlv is updated as T ′

lv = {t ∈ Tlv | t.lv > r}. The other
components of the state are unchanged.

2.4 Executing Atomic Groups of Transactions

Atomic transfers allow state transitions to atomically perform sequences of
transactions. To atomically perform a sequence T = t1 · · · tn from a state Γ, we
must check that all the transactions ti can be performed in sequence, i.e. the
following precondition must hold (for some Γ1, . . . , Γn):

Γ
t1−→1 Γ1 · · · Γn−1

tn−→1 Γn

If so, the state Γ can take a single-step transition labelled T . Denoting the new
transition relation with −→, we write the atomic execution of T in Γ as follows:

Γ
T−→ Γn

Fig. 2. Smart contract scripts (inspired by PyTeal [5]).
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2.5 Executing Smart Contracts

In Algorand, custom authorization policies can be defined with a smart contract
language called TEAL [6]. TEAL is a bytecode-based stack language, with an
official programming interface for Python (called PyTeal): in our formal model,
we take inspiration from the latter to abstract TEAL bytecode scripts as terms,
with the syntax in Fig. 2. Besides standard arithmetic-logical operators, TEAL
includes operators to count and index all transactions in the current atomic
group, and to access their id and fields. When firing transaction involving scripts,
users can specify a sequence of arguments; accordingly, the script language
includes operators to know the number of arguments, and access them. Further,
scripts include cryptographic operators to compute hashes and verify signatures.

The script evaluation function �e�WT ,i (Fig. 3) evaluates e using 3 param-
eters: a sequence of arguments W, a sequence of transactions T forming an
atomic group, and the index i< |T | of the transaction containing e. The script
tx(n).f evaluates to the field f of the nth transaction in group T . The size of T is
given by txlen, while txpos returns the index i of the transaction containing the
script being evaluated. The script arg(n) returns the nth argument in W. The
script H(e) applies a public hash function H to the evaluation of e. The script
versig(e1, e2, e3) verifies a signature e2 on the message obtained by concatenating
the enclosing script and e1, using public key e3. All operators in Fig. 3 are strict :
they fail if the evaluation of any operand fails.

2.6 Authorizing Transactions, and User-Blockchain Interaction

As noted before, the mere existence of a step Γ
t−→1 Γ ′ does not imply that t

can actually be issued. For this to be possible, users must provide a sequence W

of witnesses, satisfying the authorization predicate associated with t; such
a predicate is uniquely determined by the authorizer address of t, written
auth(t, fasst). For transaction types close, pay , gen, optin the authorizer address
is t.snd; for burn, rvk , frz and unfrz on an asset τ it is the asset manager fasst(τ ).
Intuitively, if auth(t, fasst) = x, then W authorizes t iff:

1. if x is a multisig address (A, n), then W contains at least n signatures of t,
made by users in A; (if x is a single-user address a: see footnote 1)

2. if x is a script e, then e evaluates to true under the arguments W.

Fig. 3. Evaluation of scripts in Fig. 2.
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We now formalize the intuition above. Since the evaluation of scripts depends
on a whole group of transactions T , and on the index i of the current transac-
tion within T , we define the authorization predicate as W |= T , i (read: “W
authorizes the ith transaction in T”). Let sigA(m) stand for the set of signatures
containing siga(m) for all a ∈ A; then, W |= T , i holds whenever:

1. if auth(T .i, fasst) = (A, n), then |set(W) ∩ sigset(A)(T , i)| ≥ n

2. if auth(T .i, fasst) = e, then �e�WT ,i = true

Note that, in general, the sequence of witnesses W is not unique, i.e., it may
happen that W |= T , i and W′ |= T , i for W �= W′. For instance, the Oracle
contract in Sect. 3 accepts transactions with witnesses of the form 0 s or 1 s′,
where the first element of the sequence represents the oracle’s choice, and the
second element is the oracle’s signature.

Given a sequence of sequences of witnesses W = W0 · · ·Wn−1 with n = |T |,
the group authorization predicate W |= T holds iff Wi |= T , i for all
i∈0..n − 1.

User-Blockchain Interaction. We model the interaction of users with the
blockchain as a transition system. Its states are pairs (Γ,K), where Γ is a
blockchain state, while K is the set of authorization bitstrings currently known
by users. The transition relation �=⇒ (with �∈{w,�,W:T}) is given by the rules:

(Γ,K) w=⇒ (Γ,K ∪ {w})

Γ
�−→ Γ ′

(Γ,K) �=⇒ (Γ ′ ,K)

Γ
T−→ Γ ′ set(W) ⊆ K W |= T

(Γ,K) W:T===⇒ (Γ ′ ,K)

With the first two rules, users can broadcast a witness w, or advance to the
next round. The last rule gathers from K a sequence of witnesses W, and lets
the blockchain perform an atomic group of transactions T if authorized by W.

2.7 Fundamental Properties of ASC1

We now exploit our formal model to establish some fundamental properties of
ASC1. Theorem 1 states that the same transaction t cannot be issued more
than once, i.e., there is no double-spending. In the statement, we use −→∗ T−→−→∗

to denote an arbitrarily long series of steps including a group of transactions T .

Theorem 1 (No double-spending). Let Γ0 −→∗ T−→ −→∗ Γ
T′
−→ Γ ′ . Then, no

transaction occurs more than once in TT′ .

Define the value of an asset τ in a state Γ = x1[σ1] | · · · | xn[σn] | r | · · · as
the sum of the balances of τ in all accounts in Γ:

valτ (Γ) =
∑n

i=1
valτ (σi) where valτ (σ) =

{
σ(τ ) if τ ∈ dom (σ)
0 otherwise
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Theorem 2 states that, once an asset is minted, its value remains constant,
until the asset is eventually burnt. In particular, since Algos cannot be burnt
(nor minted, unlike in Bitcoin and Ethereum), their amount remains constant.

Theorem 2 (Value preservation). Let Γ0 −→∗ Γ −→∗ Γ ′ . Then:

valτ (Γ ′) =

{
valτ (Γ) if τ occurs in Γ and it is not burnt in Γ −→∗ Γ ′

0 otherwise

Theorem 3 establishes that the transition systems −→ and =⇒ are deterministic:
crucially, this allows reconstructing the blockchain state from the transition log.
Notably, by item 3 of Theorem 3, witnesses only determine whether a state
transition happens or not, but they do not affect the new state. This is unlike
Ethereum, where arguments of function calls in transactions may affect the state.

Theorem 3 (Determinism). For all λ∈{�,T} and �∈{�, w}:

1. if Γ
λ−→ Γ ′ and Γ

λ−→ Γ ′′ , then Γ ′ = Γ ′′ ;
2. if (Γ,K) �=⇒ (Γ ′ ,K ′) and (Γ,K) �=⇒ (Γ ′′ ,K ′′), then (Γ ′ ,K ′) = (Γ ′′ ,K ′′);

3. if (Γ,K) W:T==⇒ (Γ ′ ,K ′) and (Γ,K)
W′:T
==⇒ (Γ ′′ ,K ′′), then Γ ′ = Γ ′′ and K ′ =

K ′′ =K.

3 Designing Secure Smart Contracts in Algorand

We now exploit our formal model to design some archetypal smart contracts,
and establish their security (Sect. 3.2). First, we introduce an attacker model.

3.1 Attacker Model

We assume that cryptographic primitives are secure, i.e., hashes are collision
resistant and signatures cannot be forged (except with negligible probability). A
run R is a (possibly infinite) sequence of labels �1�2 · · · such that (Γ0,K0)

�1=⇒
(Γ1,K1)

�2=⇒ · · · , where Γ0 is the initial state, and K0 = ∅ is the initial (empty)
knowledge; hence, as illustrated in Sect. 2.6, each label �i in a run R can be either
w (broadcast of a witness bitstring w), W:T (atomic group of transactions T

authorized by W), or � (advance to next round). We consider a setting where:

– each user a has a strategy Σ, i.e. a PPTIME algorithm to select which label
to perform among those permitted by the ASC1 transition system. A strategy
takes as input a finite run R (the past history) and outputs a single enabled
label �. Strategies are stateful : users can read and write a private unbounded
tape to maintain their own state throughout the run. The initial state of a’s
tape contains a’s private key, and the public keys of all users;7

7 Notice that new public/private key pairs can be generated during the run, and their
public parts can be communicated as labels w.
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– an adversary Adv who controls the scheduling with her stateful adversarial
strategy ΣAdv : a PPTIME algorithm taking as input the current run R and
the labels output by the strategies of users (i.e., the steps that users are
trying to make). The output of ΣAdv is a single label �, that is appended to
the current run. We assume the adversarial strategy ΣAdv can delay users’
transactions by at most δAdv rounds, where δAdv is a given natural number.8

A set Σ of strategies of users and Adv induces a distribution of runs; we say that
run R is conformant to Σ if R is sampled from such a distribution. We assume
that infinite runs contain infinitely many �: this non-Zeno condition ensures
that neither users nor Adv can perform infinitely many transactions in a round.

3.2 Smart Contracts

We now exploit our model to specify some archetypal ASC1 contracts, and reason
about their security. To simplify the presentation, we assume δAdv = 0, i.e., the
adversary Adv can start a new round (performing �) only if all users agree.9

The table below summarises our selection of smart contracts, highlighting the
design patterns they implement.

Use case/Pattern Signed

witness

Timeouts Commit/

reveal

State

machine

Atomic

transfer

Time

windows

Oracle � �
HTLC � �
Mutual HTLC [14, §B.1] � � �
O(n2)-collateral lottery � � �
0-collateral lottery [14, §B.2] � � � �
Periodic payment �
Escrow [14, §B.3] � �
Two-phase authorization � � �
Limit order [14, §B.4] � �
Split [14, §B.5] � �

Oracle. We start by designing a contract which allows either a or b to withdraw
all the Algos in the contract, depending on the outcome of a certain boolean
event. Let o be an oracle who certifies such an outcome, by signing the value 1
or 0. We model the contract as the following script:

Oracle � tx.type = close and tx.asst = Algo and
(
(tx.fv > rmax and tx.rcv = a)

or (arg(0) = 0 and versig(arg(0), arg(1), o) and tx.rcv = a)
or (arg(0) = 1 and versig(arg(0), arg(1), o) and tx.rcv = b)

)

8 Without this assumption, Adv could arbitrarily disrupt deadlines: e.g., ΣAdv could
make a always lose lottery games (like the ones below) by delaying a’s transactions.

9 All results can be easily adjusted for δAdv > 0, but this would require more verbose
statements to account for possible delays introduced by Adv.
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Once created, the contract accepts only close transactions, using two argu-
ments as witnesses. The argument arg(0) contains the outcome, while arg(1) is
o’s signature on (Oracle , arg(0)), i.e., the concatenation between the script and
the first argument. The user b can collect the funds in Oracle if o certifies the
outcome 1, while a can collect the funds if the outcome is 0, or after round rmax .

Theorem 4 below proves that Oracle works as intended. To state it, we define
T p as the set of transactions allowing a user p to withdraw the contract funds:

T p = {t | t.type = close, t.snd = Oracle , t.rcv = p, t.asst = Algo}
The theorem considers the following strategies for a, b, and o:

– Σa : wait for s = sigo(Oracle , 0); if s arrives at round r ≤ rmax , then imme-
diately send a transaction t ∈ T a with t.fv = r and witness 0 s; otherwise, at
round rmax + 1, send a transaction t ∈ T a with t.fv = rmax + 1;

– Σb : wait for s′ = sigo(Oracle , 1); if s′ arrives at round r, immediately send a
transaction t ∈ T b with t.fv = r and witness 1 s′;

– Σo : do one of the following: (a) send o’s signature on (Oracle , 0) at any time,
or (b) send o’s signature on (Oracle , 1) at any time, or (c) do nothing.

Theorem 4. Let R be a run conforming to some set of strategies Σ, such that:
(i) Σo ∈ Σ; (ii) R reaches, at some round before rmax , a state Oracle [σ] | · · · ;
(iii) R reaches the round rmax + 2. Then, with overwhelming probability:

(1) if Σa ∈ Σ and o has not sent a signature on (Oracle , 1), then R contains a
transaction in T a , transferring at least σ(Algo) to a;

(2) if Σb ∈ Σ and o has sent a signature on (Oracle , 1) at round r ≤ rmax , then
R contains a transaction in T b , transferring at least σ(Algo) to b.

Notice that in item (1) we are only assuming that a and o use the strate-
gies Σa and Σo , while b and Adv can use any strategy (and possibly collude).
Similarly, in item (2) we are only assuming b’s and o’s strategies.

Hash Time Lock Contract (HTLC). A user a promises that she will either
reveal a secret sa by round rmax , or pay a penalty to b. More sophisticated con-
tracts, e.g. gambling games, use this mechanism to let players generate random
numbers in a fair way. We define the HTLC as the following contract, parame-
terised on the two users a, b and the hash ha = H(sa) of the secret:

HTLC (a, b, ha ) � tx.type = close and tx.asst = Algo and(
(tx.rcv = a and H(arg(0)) = ha ) or (tx.rcv = b and tx.fv ≥ rmax )

)

The contract accepts only close transactions with receiver a or b. User a can
collect the funds in the contract only by providing the secret sa in arg(0), effec-
tively making sa public.10 Instead, if a does not reveal sa , then b can collect the

10 If sa is a sufficiently long bitstring generated uniformly at random, collision resistance
of the hash function ensures that only a (who knows sa) can provide such an arg(0).
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funds after round rmax . We state the correctness of HTLC in Theorem 5; first,
let T p be the set of transactions allowing user p to withdraw the contract funds:

T p =
{
t

∣
∣ t.type = close, t.snd = HTLC (a, b, ha), t.rcv = p, t.asst = Algo

}

We consider the following strategies for a and b:

– Σa : at a round r < rmax , send a t ∈ T a with t.fv = r and witness sa ;
– Σb : at round rmax , check whether any transaction in T a occurs in R. If not,

then immediately send a transaction t ∈ T b with t.fv = rmax .

Theorem 5. Let R be a run conforming to some set of strategies Σ, such that:
(i) R reaches, at some round before rmax , a state HTLC (a, b, ha)[σ] | · · · ; (ii)
R reaches the round rmax + 1. Then, with overwhelming probability:

(1) if Σa ∈ Σ, then R contains a transaction in T a , transferring at least σ(Algo)
to a;

(2) if Σb ∈ Σ and R does not contain the secret sa before round rmax + 1, then
R contains a transaction in T b , transferring at least σ(Algo) to b.

Lotteries. Consider a gambling game where n players bet 1Algo each, and the
winner, chosen uniformly at random among them, can redeem nAlgos. A simple
implementation, inspired by [9–11] for Bitcoin, requires each player to deposit
n(n − 1)Algos as collateral in an HTLC contract.11 For n = 2 players a and b,
such deposits are transferred by the following transactions:

tHa = {type : pay , snd : a, rcv : HTLC (a, b, ha), val : 2, asst : Algo, . . .}
tHb = {type : pay , snd : b, rcv : HTLC (b, a, hb), val : 2, asst : Algo, . . .}

The bets are stored in the following contract, which determines the winner as a
function of the secrets, and allows her to withdraw the whole pot:

Lottery � tx.type = close and tx.asst = Algo andH(arg(0)) = ha andH(arg(1)) = hb

and if (arg(0) + arg(1)) 2 = 0 then tx.rcv = a else tx.rcv = b

with ha �=hb .
12 Players a and b start the game with the atomic transactions:

Ta,b = tHa tHb tLa tLb where:
tLa = {type : pay , snd : a, rcv : Lottery , val : 1, asst : Algo, . . .}
tLb = {type : pay , snd : a, rcv : Lottery , val : 1, asst : Algo, . . .}

The transaction tLa creates the contract with a’s bet, and tLb completes it with
b’s bet. At this point, there are two possible outcomes:

(a) both players reveal their secret. Then, the winner can withdraw the pot, by
performing a close action on the Lottery contract, providing as arguments
the two secrets, and setting her identity in the rcv field;

11 A zero-collateral lottery is presented in [14, §B.2].
12 This check prevents a replay attack: if a chooses ha =hb , then b cannot win.
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(b) one of the players does not reveal the secret. Then, the other player can
withdraw the collateral in the other player’s HTLC (and redeem her own).

To formalise the correctness of the lottery, consider the sets of transactions:

T secr
p,q =

{
t

∣
∣ t.type = close, t.snd = HTLC (p, q, hp), t.rcv = p, t.asst = Algo

}

T tout
p,q =

{
t

∣
∣ t.type = close, t.snd = HTLC (p, q, hp), t.rcv = q, t.asst = Algo

}

T lott
p = {t | t.type = close, t.snd = Lottery , t.rcv = p, t.asst = Algo}

and consider the following strategy Σa for a (the one for b is analogous):

1. at some r < rmax , send a transaction t ∈ T secr
a,b with t.fv = r and witness sa ;

2. if some transaction in T secr
b,a occurs in R at round r′ < rmax , then extract its

witness sb and compute the winner; if a is the winner, immediately send a
transaction t∈T lott

a with t.fv = r′ and witness sasb ;
3. if at round rmax no transaction in T b,a occurs in R, immediately send a

transaction t∈T tout
b,a with t.fv = rmax .

Theorem 6 below establishes that the lottery is fair, implying that the
expected payoff of player a following strategy Σa is at least negligible; instead, if
a does not follow Σa (e.g., by not revealing her secret), the expected payoff may
be negative; analogous results hold for player b. This result can be generalised
for n>2 players, with a collateral of n(n−1)Algos. As in the HTLC, we assume
that sa and sb are sufficiently long bitstrings generated uniformly at random.

Theorem 6. Let R be a run conforming to a set of strategies Σ, such that:
(i) R contains, before rmax , the label Ta,b ; (ii) R reaches round rmax +1. For
p �=q∈{a, b}, if Σp ∈Σ, then: (1) R contains a transaction in T secr

p,q , transferring
at least 2Algo to p; (2) the probability that R contains T tout

q,p or T lott
p , which

transfer at least 1Algo to p, is ≥ 1
2 (up-to a negligible quantity).

Periodic Payment. We want to ensure that a can withdraw a fixed amount
of v Algos at fixed time windows of p rounds. We can implement this behaviour
through the following contract, which can be refilled when needed:

PP (p, d, n) � tx.type = pay and tx.val = v and tx.asst = Algo and
tx.rcv = a and tx.fv% p = 0 and tx.lv = tx.fv + d and tx.lx = n

The contract accepts only pay transactions of v Algos to receiver a. The condi-
tions tx.fv% p = 0 and tx.lv = tx.fv+ d ensure that the contract only accepts
transactions with validity interval [k p, k p+d], for k∈N. The condition tx.lx = n
ensures that at most one such transactions is accepted for each time window.
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Finite-State Machines. Consider a set of users A who want to stipulate a
contract whose behaviour is given by a finite-state machine with states q0, . . . , qn.
We can implement such a contract by representing each state qi as a script ei;
the current state/script holds the assets, and each state transition qi → qj is a
clause in ei which enables a close transaction to transfer the assets to ej . This
clause requires tx.rcv = ej—except in case of loops, which cannot be encoded
directly:13 in this case, we identify the next state as tx.rcv = arg(0), also requiring
all users in A to sign arg(0) to confirm its correctness. To ensure that any user in
A can trigger a state transition (by firing the corresponding transaction), their
signatures must be exchanged before the contract starts. We show an instance
of this pattern as the two-phase authorization contract below.

An alternative technique is based on quines. As before, a state transition
qi → qj is rendered as a transaction which closes ei and transfers the balance to
ej . Here, all such scripts ek have the same code, except for a single state constant
k which occurs at a specific offset, and which represents the current state. To
verify that tx.rcv represents a legit next state, ei requires a witness w such that:
(i) tx.rcv is equal to the hash of w, and the state constant j within w is indeed a
next state for i; (ii) tx.snd is equal to the hash of w′, where w′ is obtained from
w by replacing the state constant j with the current state i. Performing these
checks could be possible by using concatenation and substring operators.14

Two-Phase Authorization. We want a contract to allow user c to withdraw
some funds, but only if authorized by a and b. We want a to give her authoriza-
tion first; if b’s authorization is not given within p ≥ Δmax rounds, then anyone
can fire a transaction to reset the contract to its initial state. We model this con-
tract with two scripts: P1 represents the state where no authorization has been
given yet, while P2 represents the state where a’s authorization has been given.
Conceptually, the contract implements a finite-state machine, looping between
two states until the contract funds are withdrawn by c.

P1 � tx.type = close and tx.asst = Algo and versig(txid, arg(0), a) and
tx.rcv = P2 and tx.fv%(4 ∗ p) = 0 and tx.lv = tx.fv + Δmax

P2 � tx.type = close and tx.asst = Algo and(
(versig(txid, arg(0), b) and tx.rcv = c) or
(versig(arg(0), arg(1), a1) and versig(arg(0), arg(2), b1) and
tx.rcv = arg(0) and tx.fv%(4 ∗ p) = 2 ∗ p and tx.lv = tx.fv + Δmax)

)

The scripts P1 and P2 use a time window with 4 frames, each lasting p rounds.
Script P1 only accepts close transactions which transfer the balance to P2 ; the
time constraint ensures that such transactions are sent in the first time frame.
The script P2 accepts two kinds of transactions: (a) transfer the balance to c,
using an authorization by b; (b) transfer the balance to P1 , in the 4th time frame.

13 This is because Algorand contracts cannot have circular references: contract accounts
are referenced by script hashes, and no script can depend on its own hash.

14 In Algorand, these operators are available only for LogicSigVersion ≥ 2.
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Fig. 4. Translation of a close transaction (left: τ = Algo, right: τ �= Algo).

Note that in P2 we cannot use the (intuitively correct) condition tx.rcv = P1 , as
it would introduce a circularity. Instead, we apply the state machines technique
described above: we require tx.rcv = arg(0), with arg(0) signed by both a and
b,15 and assume that these signatures are exchanged before the contract starts.

4 From the Formal Model to Concrete Algorand

We now discuss how to translate transactions and scripts in our model to concrete
Algorand. We first sketch how to compile our scripts into TEAL. The compilation
of most constructs is straightforward. For instance, a script e + e ′ is compiled
by using the opcode +, and similarly for the other arithmetic and comparison
operators, and for the cryptographic primitives. The logic operators and , or
are compiled via the opcode bnz, to obtain the short-circuit semantics. The
not operator is compiled via the opcode !. The operator txid(n) is compiled as
gtxn n TxID, txlen is compiled as global GroupSize, txpos is compiled as txn
GroupIndex, and arg(n) as arg n.

Finally, compiling the script tx(n).f depends on the field f. If f is fv, lv,
or lx, then the compilation is gtxn n i, where i is, respectively, FirstValid,
LastValid, or Lease. For the other cases of f, the compilation of tx(n).f gen-
erates a TEAL script which computes f by decoding the concrete Algorand
transaction fields, and making them available in the scratch space. This decod-
ing is detailed in Table 2 in [14]. From the same table we can also infer how
to translate transactions in the model to concrete Algorand transactions. For
instance, translating a transaction of the form:

{type : close, snd : x, rcv : y, asst : τ }
results in the concrete transaction in Fig. 4 (where we omit the irrelevant fields).

Our modelling approach is supported by a prototype tool, called secteal
(secure TEAL), and accessible via a web interface at:

http://secteal.cs.stir.ac.uk/

The core of the tool is a compiler that translates smart contracts written as
expressions, based on the script language (Sect. 2.5), into executable TEAL byte-
code. In its current form, secteal supports experimentation with our model, and
15 We use other key pairs a1 and b1 to avoid confusion with the signatures on txid.

http://secteal.cs.stir.ac.uk/
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is provided with a series of examples from Sect. 3.2. Users can also compile their
own secteal contracts, paving the way to a declarative approach to contract
design and development. secteal is a first building block toward a comprehen-
sive IDE for the design, verification, and deployment of contracts on Algorand.

5 Conclusions

This work is part of a wider research line on formal modelling of blockchain-
based contracts, ranging from Bitcoin [12,28,32] to Ethereum [18,23–26,31],
Cardano [19], Tezos [17], and Zilliqa [33]. These formal models are a necessary
prerequisite to rigorously reason on the security of smart contracts, and they are
the basis for automatic verification. Besides modelling the behaviour of trans-
actions, in Sect. 3.1 we have proposed a model of attackers: this enables us to
prove properties of smart contracts in the presence of adversaries, in the spirit
of long-standing research in the cryptography area [8,9,13,16,22,29,30].

Differences Between Our Model and Algorand. Besides not modelling
the consensus protocol, to keep the formalization simple, we chose to abstract
from some aspects of ASC1, which do not appear to be relevant to the devel-
opment of (the majority of) smart contracts. First, we are not modelling some
transaction fields: among them, we have omitted the fee field, used to specify an
amount of Algos to be paid to nodes, and the note field, used to embed arbitrary
bitstrings into transactions. We associate a single manager to assets, while Algo-
rand uses different managers for different operations (e.g., the freeze manager
for frz/unfrz and the clawback manager for rvk). We use two different transac-
tions types, pay and close, to perform asset transfers and account closures: in
Algorand, a single pay transaction can perform both. Note that we can achieve
the same effect by performing the pay and close transactions within the same
atomic group. Although Algorand relies on 7 transaction types, the behaviour of
some transactions needs to be further qualified by the combination of other fields
(e.g., freeze and unfreeze are obtained by transactions with the same type afrz,
but with a different value of the AssetFrozen field). While this is useful as an
implementation detail, our model simplifies reasoning about different behaviours
by explicitly exposing them in the transaction type. In the same spirit, while
Algorand uses different transaction types to represent actions with similar func-
tionality (e.g., transferring Algos and user-defined assets are rendered with dif-
ferent transaction types, pay and axfer), we use the same transaction type (e.g.,
pay) for such actions. Our model does not encompass some advanced features of
Algorand, e.g.: rekeying accounts, key registration transactions (keyreg), some
kinds of asset configuration transaction (e.g., decimals, default frozen, different
managers), and application call transactions.16 Our script language substantially
covers TEAL opcodes with LogicSigVersion=1, but for a few exceptions, e.g.
bitwise operations, different hash functions, jumps.
16 Application call transactions are used to implement stateful contracts, and therefore

are outside the scope of this paper.
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Related Work. Besides featuring an original consensus protocol based on
proof-of-stake [20], Algorand has also introduced a novel paradigm of (state-
less) smart contracts, which differs from the paradigms of other mainstream
blockchains. On the one hand, Algorand follows the account-based model, simi-
larly to Ethereum (and differently from Bitcoin and Cardano, which follow the
UTXO model). On the other hand, Algorand’s paradigm of stateless contracts
diverges from Ethereum’s stateful contracts: rather, it resembles Bitcoin’s, where
contracts are based upon custom transaction redeem conditions. Besides these
differences, Algorand natively features user-defined assets, while other platforms
render them as smart contracts (e.g., by implementing ERC20 and ERC721
interfaces in Ethereum). Overall, these differences demand for a formal model
that is substantially different from the models devised for the other blockchain
platforms.

Our formalization of the Algorand’s script language is close, with respect to
the level of abstraction, to the model of Bitcoin script developed in [12]. Indeed,
both works formalise scripts in an expression language, abstracting from the
bytecode. A main difference between Algorand and Ethereum is that Ethereum
contracts are stateful: their state can be updated by specific bytecode instruc-
tions; instead, (stateless) TEAL scripts merely authorize transactions. Conse-
quently, a difference between our model and formal models of Ethereum con-
tracts is that the semantics of our scripts has no side effects. In this way, our work
departs from most literature on the formalization of Ethereum contracts, where
the target of the formalization is either the bytecode language EVM [24,25,31],
or the high-level language Solidity [15,21,27].

Future Work. Our formal model of Algorand smart contracts can be expanded
depending on the evolution of the Algorand framework. In mid August 2020,
Algorand has introduced stateful ASC1 contracts [2], enriching contract accounts
with a persistent key-value store, accessible and modifiable through a new kind
of transaction (which can use an extended set of TEAL opcodes). To accom-
modate stateful contracts in our model, we would need to embed the key-value
store in contract accounts, and extend the script language with key-value store
updates. The rest of our model (in particular, the semantics of transactions
and the attacker model) is mostly unaffected by this extension. Future work
could also investigate declarative languages for stateful Algorand smart con-
tracts, and associated verification techniques. Another research direction is the
mechanization of our formal model, using a proof assistant: this would allow
machine-checking the proofs developed by pencil-and-paper in [14, §D]. Similar
work has been done e.g. for Bitcoin [32] and for Tezos [17].
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Abstract. The lack of fungibility in Bitcoin has forced its userbase
to seek out tools that can heighten their anonymity. Third-party Bit-
coin mixers use obfuscation techniques to protect participants from
blockchain transaction analysis. In recent years, various centralized and
decentralized Bitcoin mixing methods were proposed in academic liter-
ature (e.g., CoinJoin, CoinShuffle). Although these methods strive to
create a threat-free environment for users to preserve their anonymity,
public Bitcoin mixers continue to be associated with theft and poor
implementation. This paper explores the public Bitcoin mixer ecosystem
to identify if today’s mixing services have adopted academia’s proposed
solutions. We perform real-world interactions with publicly available mix-
ers to analyze both implementation and resistance to common threats in
the mixing landscape. We present data from 21 publicly available mixing
services on the deep web and clearnet.

Our results highlight a clear gap between public and proposed Bitcoin
mixers in both implementation and security. We find that the majority
of key security features proposed by academia are not deployed in any
public Bitcoin mixers that are trusted most by Bitcoin users. Today’s
mixing services focus on presenting users with a false sense of control to
gain their trust rather than employing secure mixing techniques.

1 Introduction

In May of 2019, European Union authorities seized Bestmixer, a mixing service
that advertised to eradicate any criminal history associated with a user’s Bitcoin.
After an investigation, authorities asserted that the majority of the $200 million
that traveled through the service had “a criminal origin or destination” [6].

Bitcoin mixing services are not illegal by nature: Their guarantee to obfus-
cate a trail of funds appeals to benign users who seek anonymity, and various
centralized mixing services are available to the public today. The techniques
implemented by these services have a direct impact on user privacy and security.
For example, Bestmixer claimed to eradicate all “order history completely and
automatically in 24 h” [5]. This claim was proven false when authorities seized
c© International Financial Cryptography Association 2021
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IP-addresses, transactions logs, wallet addresses, and chat messages that were
stored on multiple Bestmixer servers.

The dual use of mixing services, by both privacy-wary users and cyber-
criminals, provides two motivations for their study. Aiding the former, security
researchers in academia have proposed plethora designs and implementations
for secure mixing [11,12,15,16,22–25]. Hunting the latter, researchers devel-
oped techniques that are capable of tracking Bitcoins through deployed mix-
ers [10,19,21]. However, a gap remains: Despite active research in Bitcoin mixing
and un-mixing, it is unclear on what techniques current, actually deployed dual-
use Bitcoin mixers base their operation and, thus, it is unclear what security
properties their users can expect. The effect of this is clear: Although proto-
cols for ideal mixing exist, the majority of publicly available services are still
associated with distrust and scam accusations [7].

In this paper, we provide the first active and systematic measurement of the
current public Bitcoin mixing ecosystem to identify if academically proposed
solutions are adopted. The key challenge of this measurement is to scalably ana-
lyze public mixers and correlate our observations with academically proposed
solutions. Another challenge is the majority of public mixers are black-box ser-
vices, which do not have their code available to the public. To tackle these
challenges, we perform real-world mixer interactions with five public mixers to
identify actual behaviors that are indicative of their implementation and their
resistance to common threats. We leverage our direct interactions, the pub-
lic nature of Bitcoin’s blockchain, and mixer-specific features to identify these
behaviors.

Our results highlight a gap of implementation and security between aca-
demically proposed mixing solutions and actual public mixers. For example,
our security analysis identifies a lack of coin theft prevention in all five public
mixers studied, even though solutions exist, such as Obscuro [23]. Our results
also include mixer-specific characteristics that would benefit from longitudinal
research.
Overall, this paper makes the following contributions:

– We provide an overview of the current Bitcoin mixing service landscape, both
regarding published academic literature and through information that is col-
lected from actual public mixers.

– We conduct active experiments with five popular public mixing services to
collect data and transaction IDs of real-world mixer interactions.

– We perform an implementation and security analysis on our mixing dataset.
Among other insights, we determined that none of the studied public mixers
implement cutting-edge security properties as proposed by academia.

2 Background

Bitcoin mixing services provide their users with improved anonymity by lever-
aging inherent characteristics of both Bitcoin and blockchain technology. Before
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diving into the details of mixers, here we present background knowledge on Bit-
coin itself and discuss prior research work that is related to Bitcoin mixers.

Bitcoin and Blockchain. Bitcoin (BTC) is a decentralized digital currency
that relies on a peer-to-peer (P2P) distributed network to store and check the
validity of transaction data [20]. This data is stored on a public ledger where users
are identified by pseudonymous addresses (we will discuss the security implica-
tions of these addresses further in Sect. 2). The blockchain is the underlying
architecture of the public ledger. Each block holds the hash of its predecessor
and a Merkle tree of transactions. Any change in transaction information would
lead to a different Merkle root hash and hash of the block itself.

Another integral part of Bitcoin’s implementation is its use of the Ellip-
tic Curve Digital Signature Algorithm (ECDSA). The pseudonymous addresses
users create are each derived from corresponding public/private key pairs stored
in user’s wallets. To prevent forgery of transactions, Bitcoin users sign created
transactions with their private key. When transaction information is sent out to
nodes in the P2P network, they use the sender’s public key to validate that the
transaction was signed by the corresponding private key.

Anonymity in Bitcoin. Bitcoin uses pseudonymous addressing to identify its
users. While these users are capable of creating as many addresses as they would
like, they are not required to do so. In turn, researchers have used clustering,
transaction analysis, taint analysis, and behavior analysis to track patterns and
build relationships between public keys [9,13,14,17,18]. The official Bitcoin web-
site highlights potential threats to user anonymity and clearly states that the
currency is not anonymous [1].

Bitcoin Transactions. Bitcoin makes use of a transaction-based public ledger.
Inputs and outputs of transactions are referred to as Unspent Transaction Out-
puts (UTXOs). Transactions consume UTXOs as inputs and create new ones as
outputs. UTXOs can only be used in full or not at all. It is quite unlikely that
a UTXO will match the exact requested spent amount. Thus, the majority of
Bitcoin transactions have two outputs. While the recipient receives one output,
the left over (change output) amount is sent back to the sender at a new address.

Transaction metadata includes public keys, input and output UTXOs, size of
the transaction, and hash of the transaction as a unique identifier. Transaction
inputs also include signatures using the sender’s private key; this allows anyone
to use the sender’s public key to verify the validity of the signed transaction.

Related Work. In 2013, Moser et al. [19] explored Bitcoin Fog, BitLaundry,
and the Send Shared functionality of Blockchain.info to attempt tracing their
outputs back to their input accounts in a series of experiments. They identified
that two of the services, Bitcoin Fog and Blockchain.info, successfully obfus-
cated their funds. They were successfully able to trace their BitLaundry outputs
back to their original inputs using Blockchain.info’s transaction graph function-
ality which has since been deprecated. In 2015, Novetta [21] conducted experi-
ments with BitMixer, BitLaunder, Shared Coin, and Bitcoin Blender to identify
provable links in mixing schemes, identify fingerprints of individual mixers, and
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Fig. 1. High-Level diagram of a Bitcoin mixer with three participants and a centralized
mixer run by an operator. The participants send their Bitcoin to the mixer. From its
pool of collected Bitcoin, the mixer returns funds to participants’ specified output
addresses such that they are not returned their initial deposit.

identify if mixing can be detected on the blockchain. The study found fingerprint-
ing patterns in the services based on recurring addresses, fees, and branching
patterns. Balthasar and Hernandez-Castro [10] interacted with DarkLaunder,
Bitlaunder, CoinMixer, Helix, and Alphabay and identified security and pri-
vacy limitations in the services. Their work highlights the need for secure and
privacy-aware protocols to improve the Bitcoin mixing ecosystem.

3 Bitcoin Mixers

Bitcoin mixers are services that offer the ability to obfuscate users’ funds.
Figure 1 depicts the general functionality of a mixer with three users. Each user
sends their Bitcoins into the service and is returned another user’s input to a
different address. This output is associated with a completely different transac-
tion history. The mixer operator runs the service and is aware of all connections
(permutations) between inputs and outputs. Although this high-level view may
seem easily traceable, mixers use obfuscation techniques that make it difficult
to trace transactions and identify mixing service use on the blockchain.

Obfuscation Techniques. Since their inception, mixing services have adapted
to threats stemming from transactional analysis. Traceable characteristics of
transactions include the mixer’s input address, the user’s address, the amount
sent to and from the service, and the timestamps of input and output transac-
tions. The mixer input address is presented to the user to send their funds to the
service. If the same input address was used for all users, it would be simple to
identify mixing participants and the Bitcoin the mixer has in its pool. To avoid
this, mixers generate new input addresses for each user. Additionally, the user’s
address could be traceable if kept consistent throughout the mixing interaction.
Therefore, mixers allow their participants to specify multiple output addresses.

Patterns in amounts and timestamps of transactions could also indicate mixer
use. Because network fees are public information, mixers add private, random-
ized mixing fees to each transaction. Additionally, mixing delays are used to
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make blockchain analysis more difficult. There are more than 300,000 Bitcoin
transactions every 24 h [8]. Thus, it is in mixing participants’ best interest that
delays are maximized. While the majority of services randomize fees and delays,
some allow users to customize these features.

Threats. Trust is incredibly important for the success of a Bitcoin mixer. As
third-party services, they must convince users that funds will be properly mixed
and returned. Thus, mixers often offer features for users to check the status of
their mix or proudly promote positive reviews from forum posts. Still, Bitcoin
mixers are continuously accused of scams and poor implementation [7].

While mixers may pose threats to their participants’ funds and anonymity,
users and external attackers also contribute to the threat landscape. Some of the
threats posed by users and external attackers, such as tracing transactions, are
mitigated with obfuscation features. Others, such as coin theft, can be mitigated
by the proposed mixer implementations that will be discussed in Sect. 4. The
majority of current mixing implementations involve a centralized third party
that is run by an all-powerful operator. The threats that are posed by this mixer
operator are much more difficult to detect. In this paper, we focus our security
analysis on the following threats presented by Tran et al. [23]:

Permutation Leak: An adversary is able to access mixing logs or a database
pertaining to the permutation between input and output addresses.

Coin Theft: An adversary steals the input coins by providing users with an
alternative address or by compromising the mixer’s address. The mixer oper-
ator can also steal users’ funds.

Dropping of Participants: A malicious mixer operator can deny participation
to selected benign users to reduce the anonymity set.

Small Mixing Set Size: The mixing set size during each round is directly
indicative of the quality of the mix. A large mixing set ensures anonymity
and protection against blockchain analysis.

Join-then-abort: An adversarial participant disrupts the mix by aborting the
mixing protocol before its execution.

4 Academic Mixing Techniques

In response to the threats facing Bitcoin mixers, the Bitcoin community and
academic literature have proposed alternative methods to improve trust and
eliminate threats. In this section, we discuss the general architecture of four
decentralized and four centralized proposed mixing protocols.

4.1 Decentralized Mixing Protocols

The intrinsic anonymity in the Bitcoin ecosystem makes trusting a third party
that runs a mixing service highly risky. Therefore, decentralized mixing protocols
strive to avoid the use of a third party. Most of the following protocols assume
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a decentralized method for users to find other participants, which is called boot-
strapping. Generally, decentralized protocols suffer from limited scalability and
long wait times to find mixing peers.

CoinJoin. CoinJoin is a method for multiple transactions from multiple senders
to be combined into one transaction [15]. Without any modification to the cur-
rent Bitcoin protocol, this technique makes it difficult for outside entities to
identify the corresponding recipient for each input. Users may collaborate to
identify a uniform output amount and combine their transactions into one. In
turn, senders face lower transaction fees and lessen the transactions on the Bit-
coin network. Additionally, participants of CoinJoin transactions do not face risk
of theft: each participant must sign the transaction before it is considered valid.

CoinShuffle. Ruffing et al. [22] presented CoinShuffle in 2014. The mixing pro-
tocol requires no third party, is compatible with the existing Bitcoin network,
and uses CoinJoin to execute transactions. The protocol assumes that users
have a secure, decentralized method to express their interest in participation.
Output address shuffling and a final CoinJoin transaction eliminate the risk of
permutation leak and coin theft attacks.

CoinParty. Ziegeldorf et al. [25] proposed CoinParty, a mixing protocol with
multiple one-to-one transactions to and from escrow addresses. While compati-
ble with the existing Bitcoin network, CoinParty uses secure multi-party compu-
tation for users to collaborate. Temporary threshold ECDSA escrow addresses
eliminate the risk of coin theft if 2/3 of the participants are benign users. Similar
to CoinShuffle, output addresses are shuffled to avoid permutation leaks.

Xim. Bissias et al. [11] explored the threats presented by Sybil-based denial-
of-service attacks to Bitcoin mixing services. They present Xim, a two-party
mixing implementation. Unlike the previously described methods, Xim provides
a decentralized method for finding mixing participants. Joining a mix interaction
requires both participants to spend funds. The requirement to pay to advertise
and respond to desired mixing partners make Sybil attacks difficult.

4.2 Centralized Mixing Protocols

Centralized mixing protocols aim to secure a scheme where an untrusted third
party exists, and participants send their funds through these centralized services.

OBSCURO. Tran et al. [23] presented a centralized Bitcoin mixer using Trusted
Execution Environments (TEEs). Obscuro addresses the threats posed by mix-
ing operators to lessen the control they have on the functionality and day-to-day
activity of the service. To do so, the mixer codebase is isolated from the rest of
the system. Users are given the ability to verify the isolated functionalities using
remote attestation and are guaranteed a large mixing set size. Obscuro’s imple-
mentation requires no changes to the existing Bitcoin network and is generic such
that it can be implemented with any TEE technique.
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Mixcoin. Bonneau et al. [12] propose Mixcoin, a Bitcoin mixing protocol that
provides accountability to expose malicious centralized mixers. To do so, signed
warranties are implemented between the participants and the service. If any
wrongdoing occurs on the mixer’s part, users have proof of an agreement between
both parties to post on public forums. Warranties can be verified by publicly
available information such as transactions or public keys. Thus, Mixcoin pro-
vides an incentive for mixers to operate in a trustworthy manner. The protocol
assumes there are various mixers Mi, and each mixer has a warranty signing key
KMi

which is consistently used to sign warranties with each participant. Thus,
the mixer’s reputation relies heavily on the use of their key. Although account-
ability is achieved, the mixer can steal funds from its users and potentially leak
permutations between inputs and outputs.

Blindcoin. Valenta and Rowan [24] address Mixcoin’s susceptibility to permu-
tation leak attacks with Blindcoin. Without any changes to the existing Bitcoin
protocol, a blind signature scheme and an append-only public log are added
onto the Mixcoin protocol. The user includes a blinded token consisting of their
output address and a nonce in their initial offer to the mixing service. The use
of this token eliminates the threat of a permutation leak attack by the mixer
operator. In addition, the mixing service is required to post this blinded token
to an append only public log. As a result, Blindcoin ensures accountability while
keeping the mapping of input to output addresses secret. However, Blindcoin
does not prevent coin theft since the mixer can still steal funds from its users.

TumbleBit. Heilman et al. [16] present TumbleBit, a unidirectional and unlink-
able payment hub protocol. TumbleBit is completely compatible with the current
Bitcoin protocol and relies on an untrusted centralized intermediary M to trans-
fer funds between users. TumbleBit’s transactions are sent off-blockchain and are
not affected by the latency issues in Bitcoin. These payments are essentially off-
blockchain puzzles generated through interactions with M.

5 Public Mixing Services

Today’s most popular Bitcoin mixing services are centralized to avoid scalabil-
ity and participant bootstrapping issues inherent in decentralized methods. To
begin our analysis of the current mixing service landscape, we first gathered
a list of centralized mixers. The majority of these mixers were posted as ser-
vice announcements on Bitcointalk, a key forum for Bitcoin-related discussions.
Appendix A.1 outlines the characteristics we collected for each mixing service.
Our findings are displayed in Table 1 with some of these characteristics omitted
for simplicity. A signifies that the service offers the feature while a � indi-
cates lack of the feature. Any field marked with a dash was not found or not
applicable to the service. Note that the information presented is solely based on
the data that is available on each mixer’s website or Bitcointalk forum posts as
of May 1st, 2020 and does not involve any actual transactions.
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Popularity Analysis. Our next step was to identify a metric to rank mixing
services based on popularity for in-depth analysis. As seen in Table 1, every
mixing service has a Tor mirror that is highly recommended. These sites have a
.onion extension and cannot be indexed by standard search engines. As a result,
identifying the amount of traffic for each service is quite difficult.

To address this obstacle, we first categorized mixers into two categories:
Trusted and Untrusted. We based this categorization on service support and user
activity on the Bitcointalk forum. Trusted mixers displayed consistent commu-
nication with an active user base on the forum and had zero scam accusations at
the time of the study. Untrusted mixers displayed a lack of communication with
their users and had one or more scam accusations. Any mixer without a service
announcement on Bitcointalk or an inactive open-source community was also

Table 1. The inclusion of various Bitcoin mixer features on current Bitcoin mixing
services. This data is based solely on publicly available information on the mixer’s
website or Bitcointalk forum posts as of May 1st, 2020 and does not involve any trans-
actions. Furthermore, the mixers are categorized as Trusted or Untrusted based on
their standing and activity on the Bitcointalk forum.
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Samourai Whirlpool 2015 � � � � � � � � � � – – –

CryptoMixer 2016 � � � � � � � � � � 1 356 �

Mixer.money 2016 � � � � � � � � � � – 151 �

BitCloak 2016 � � � � � � � � � � 1 174 �

ChipMixer 2017 � � � � � � � � � � 1 1887 �

BitMix.biz 2017 � � � � � � � � � � 1 147 �

FoxMixer 2017 � � � � � � � � � � 6 39 �

Wasabi Wallet 2018 � � � � � � � � � � – – –

MixTum 2018 � � � � � � � � � � 1 99 �

Bitcoin Mixer 2019 � � � � � � � � � � 1 108 �

Sudoku Wallet 2019 � � � � � � � � � � 3 68 �
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Bitcoin Fog 2011 � � � � � � � � � � 6 647 �

PenguinMixer 2017 � � � � � � � � � � 2 – –

Blender.io 2017 � � � � � � � � � � 3 103 �

BMC Mixer 2017 � � � � � � � � � � 2 2 �

SmartMix 2019 � � � � � � � � � � 3 170 �

Mixer Tumbler 2019 � � � � � � � � � � 3 17 �

AtoB Mixer 2019 � � � – � � � � � � – 102 �

Anonymix 2020 � � � � � � � � � � 1 – –

BlockMixer 2020 � � – – � � � � � � 3 1 �

DarkWeb Mixer – � � � – � � � � � � – – –
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marked as Untrusted due to a lack of information from its user base. The only
exceptions to this categorization were Samourai Wallet’s Whirlpool and Wasabi
Wallet. Although these services do not have Bitcointalk service announcements,
they were categorized as Trusted due to their active community and open-source
implementation.

After analysis of forum posts, 11 mixers were Trusted and 10 were Untrusted.
We chose five web-based Trusted services for in-depth analysis: ChipMixer, Mix-
Tum, Bitcoin Mixer, CryptoMixer, and Sudoku Wallet. These services were
chosen based on their popularity and unique features. We did not select any
Untrusted mixing services for this in-depth analysis due to ethical concerns.

ChipMixer. was established in 2017. With over 95 pages of Bitcointalk forum
posts and no scam allegations, the service is the most popular mixer. ChipMixer
is a unique implementation with the introduction of chips. It generates addresses
and funds them with increments of 0.001 BTC up to 8.192 BTC. These addresses
are provided to ChipMixer’s participants along with their corresponding private
keys as outputs. Rather than executing on-blockchain transactions, users are
expected to import the given private keys to their wallets off-blockchain. Thus,
there is no link between funds deposited to ChipMixer and the chips given to
participants. Users may split, merge, even bet or donate the given chips before
withdrawal using the corresponding private keys. These features can be used
multiple times, in any order, and on individual chips.

While ChipMixer does not require an account, users are given a session token
and an input address that lasts for seven days. The service also gives users the
option to destroy their sessions prematurely within this seven-day period, and
service logs are kept for the same length. Mixing fees are purely donation-based
and users may choose to donate any amount of their given chips. On withdrawal,
users are given a cryptographically signed receipt proving that the funds are
coming from ChipMixer. Additionally, users are given the option to receive a
voucher code and use the non-withdrawn chips in other ChipMixer interactions.

MixTum. was established in 2018. The service claims to have a separate pool
of Bitcoin from cryptocurrency stock exchanges such as Binance, OKEex, and
DigiFinex. MixTum guarantees that participant funds are not mixed within a
pool of other user’s Bitcoin and instead outputs are from exchanges.

MixTum is a traditional Bitcoin mixer that sends on-block-chain transactions
to return participant funds. Mixing fees are up to 5% (randomized) plus 0.00015
BTC for the output network fee. Users can specify up to two output addresses
which receive multiple payments when funds are returned. The number of pay-
ments and distribution of funds between these addresses is randomized by the
service. In addition, randomized delays of up to six hours are implemented on
output transactions. MixTum provides users with a PGP signed letter of guar-
antee with information regarding the mixing interaction.

MixTum offers a free trial with the minimum required amount of 0.001 BTC,
one output address, and no mixing fees. Although MixTum claims logs are not
kept, they do keep data regarding participant interactions until the completion
of the output transaction or until the session expires in seven days.
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Bitcoin Mixer. was established in 2019. The service provides its users with a
Mix ID to check the status of their mix. The minimum input amount accepted is
0.0002 BTC. When multiple output addresses are specified (up to seven), users
can control the distribution and delays for each. Delays for each output address
range from less than one hour (rapid) to 12 h. The service keeps logs for up to
seven days but gives users the option to manually delete their session details.
The mixing fees for Bitcoin Mixer are 0.25% plus 0.000001 BTC per output.

CryptoMixer. was established in 2016. The service’s initial announcement on
Bitcointalk stated that it has over 2,000 BTC in reserve. CryptoMixer leveraged
the trust of reputable Bitcointalk users to verify the services pool of funds [2–4].

CryptoMixer allows a minimum input of 0.001 BTC. The maximum input
changes based off of the amount of Bitcoin in its reserve. Accounts are not
required, and instead users are given a CryptoMixer code to identify their ses-
sions. This code can be used in future sessions to receive discounts and ensure
previous inputs are not returned. CryptoMixer’s site claims it has a 100% zero-
logs policy but also states that transaction details are routinely deleted. Based
on the fees, delays, distribution, and number of output addresses set, partici-
pants are given a security level for their mix. The Standard, Silver, and Gold
security levels offer higher thresholds for obfuscation. For example, the Standard
level offers up to 24-hour delays while Gold offers up to 96 h.

Unlike the other services, CryptoMixer allows users to generate an unlim-
ited number of input addresses to send their funds. Each input address also
comes with a verifiable, digitally signed letter of guarantee, proving that it was
generated by the service. Each given address is valid for 24 h.

Sudoku Wallet was established in 2019. The service is a single-use wal-
let which outputs private keys rather than on-blockchain transactions. These
outputs are of two to four addresses funded from previously executed CoinJoin
transactions. The distribution between these addresses is not configurable by
the user. There is no minimum or maximum input enforced. Sudoku Wallet does
not require accounts but provides users with a wallet key to access their session
before it is automatically deleted in seven days. The service claims to have a
strict “no logs” policy. To send funds to Sudoku Wallet, one input address is
provided along with its corresponding private key. The mixing fee is randomized
from 0.5% to 1% plus the CoinJoin fee which is described as the number of
output addresses involved in the CoinJoin times the transaction fee.

6 Evaluation

In this section, we describe the methodology of our in-depth experiments on
five chosen mixers to understand more about the implementation of these mixer
services. In addition, we outline our results of the experiments conducted with
each mixer. Detailed results are included in Appendix B with transaction IDs.
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6.1 Methodology

The experiments are real-world interactions with five public mixing services:
ChipMixer, MixTum, Bitcoin Mixer, CryptoMixer, and Sudoku Wallet. Our goal
is to identify if these mixers have adopted implementation and security solutions
provided by the academic literature discussed in Sect. 4. Overall, we use data
from Table 1 and our experiments to compare implementation and security of
the five services with the proposed mixing protocols from Sect. 4.

We conducted three trials of experiments: each consisted of one transaction
with each of five mixing services. We ensured that all five interactions during
a trial were finished before moving onto the next. To estimate the necessary
amount of funds to execute all 15 mixer interactions, we set a constant network
fee of 0.50 USD (0.000053 BTC) and calculated the worst-case mixing fees for
each service. The total fees were estimated to be 57.25 USD (0.00635 BTC).
To account for changing network fees, unexpected mixer fees, or coin theft, we
determined 100 USD (0.011 BTC) would be sufficient to execute all three trials.

During the first trial, input amounts were set to the minimum required by
each service. Inputs were gradually raised in the second and third trials. We
increased the obfuscation parameters from trial to trial when customizable. This
included longer delays, a higher number of output addresses, and higher fees.
The public nature of the blockchain allowed for comparison between interac-
tions with a single service to identify unexpected behavior. We specify the exact
parameters, input, and output values for each trial in the results for each service
in Appendix B. To calculate the mixing fees for on-blockchain transactions the
total BTC sent to and from the mixing service (excluding network fees) were
subtracted.

Table 2. Data collected during our experiments with each studied mixer along with
their description.

Data field Description

Obfuscation parameters Obfuscation features set (number of output addresses, delays,
distribution, etc.)

Input amount Amount sent to mixer (before network fees)

Input network fee Network fee on transaction to mixer (BTC)

Input address Address given to user by mixer to send initial funds

Time in Date and time of input transaction

Input transaction ID Transaction ID of input transaction

Output amount Amount sent back to user’s deposit address(es)

Output network Fee Amount of network fees on transaction(s) to deposit address(es)

Time out Date and time output transactions are sent from mixer

Output transaction ID Transaction ID of output transaction

Mixer fee Service fee collected

Additional information Information unique to service: Letter of Guarantee, Special
Mixing Code, Receipt, etc.
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All five mixers offer a Tor mirror, so we used the Tor Browser. To store,
receive, and send Bitcoin, we used the desktop wallet Electrum. We maintained
two separate wallets for legacy and SegWit functionality. All transactions were
labeled according to their corresponding mixer and trial number. In addition to
collecting screenshots of every mixing interaction, the data described in Table 2
was recorded. This includes transaction information such as the input and output
transaction IDs, the obfuscation parameters, and unique information for each
service including letters of guarantee. Next, we will discuss the general steps
taken and any special data collected for each service.

Setup. Before beginning the first trial, we purchased 100 USD worth of Bitcoin
from the exchange Coinbase. At the time, this equated to 0.01788742 BTC.
Then, we created two separate Electrum wallets: Legacy and SegWit.

ChipMixer. There are five general steps in interactions with ChipMixer. During
Step 1, users are given their session token and told to save it permanently to
access their session for the next seven days. Step 2 is the Deposit step: send at
least 0.001 BTC in one transaction to a given input address, wait for one network
confirmation on this transaction, and then refresh the page. During this step,
users are also able to enter voucher codes from previous interactions to use funds
that have not been withdrawn. At Step 3, users have a full view of their current
chips grouped by value and have the ability to split, merge, commonize, bet,
and donate. On this page, they are also given the option to withdraw or receive
a voucher for chips. These two options directly lead to Step 4, the withdrawal.
Users are given the private key to their withdrawn chips and steps on how to
import this key to Electrum, Bitcoin Core, or to a JSON file. As another option,
they can sweep the chips to a desired output address. Before the final step, a
signed receipt is offered for download. In Step 5, sessions can be destroyed.

We created a new session for each trial with ChipMixer. The session token
was recorded to test its validity after the seven-day period or after sessions were
manually deleted. The given input address and the input transaction ID was
noted to identify patterns in the movement of funds. Chipmixer’s method of
returning funds does not involve output addresses, so we used the SegWit wallet
for all three trials. We considered the obfuscation parameters for ChipMixer to
be the set of features used (split, merge, and donate) as well as the method
of withdrawal. Commonize and betting were not used in all three trials. We
attempted both sweep and private key transfer withdrawals to identify effects
on traceability. Before destroying each session, we attempted to access each
session’s signed receipt to verify the signature.

Results. The results from each ChipMixer trial are displayed in Appendix B.1
Table 6. In our trials with ChipMixer, we did not encounter any unexpected
mixing fees. In Trial 1, we swept the private keys to our Electrum wallet with
an on-blockchain transaction (requiring network fees). In Trial 2, we transferred
the private keys to our Electrum wallet off-blockchain (no network fees). In all
three trials, we could not access the signed receipt offered by ChipMixer due to
an internal server error.
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MixTum. In MixTum for Step 1, users enter up to two output addresses. In
Step 2, users are given an input address along with its corresponding QR code.
In addition, a signed letter of guarantee is provided for download.

Trials for MixTum were attempted with both legacy and SegWit addresses.
The only customizable obfuscation parameter was the number of output
addresses. On Step 2, all letters of guarantee were downloaded and signatures
were verified using GnuPG. Transactions from MixTum were analyzed for their
distribution and randomized delay. Mixing fees were also checked to see if they
were accurately calculated. Input and Output transaction IDs were used to gain
insight about the movement of funds.

Results. Table 7 in Appendix B.2 displays the obfuscation parameters, total
input, total output, output network fees, and mixing fees pertaining to each trial
with MixTum. For all three trials, signed letters of guarantee were successfully
downloaded and verified. MixTum’s calculator output displayed a smaller value
than received on all three trials. In Trials 2 and 3, mixing fees were up to 5% plus
0.00015 BTC as advertised. However, Trial 1 charged a mixing fee of 0 BTC.

Bitcoin Mixer. In Step 1, users specify up to seven output addresses each with
distribution (%) and delay (rapid to 12 h). In Step 2, the service provides a Mix
ID and an input address. After delays, the output transactions are executed. In
Step 3, users review their mix information and can delete their mix.

In Step 1, we attempted specifying both legacy and SegWit addresses to
Bitcoin Mixer. The main obfuscation parameters for this service were the num-
ber of output addresses, percentage distribution, and delay. We heightened the
intensity of these parameters from trial to trial and verified the accuracy of dis-
tributions and delays. Mix IDs for each session were noted to check their validity
after deletion of the mix. After receiving outputs, we calculated the mixing fees
to identify unexpected behavior. In all three trials, we deleted our mix informa-
tion.

Results. Table 8 in Appendix B.3 outlines the obfuscation parameters, input,
output, and mixer fees associated with each Bitcoin Mixer trial. The distribu-
tions, mixing fees, and outputs were accurately calculated. Outputs were gener-
ally received 20 to 30 min early, indicating randomization of delays. The deletion
of Mix IDs was successful in all three trials.

CryptoMixer. In Step 1, users specify up to 10 output addresses and set the
delay and distribution for each. Users can then specify their preferred service
fee. The combination of these three obfuscation parameters determines the secu-
rity level of the mix. On the same page, CryptoMixer’s calculator displays the
expected amount that each output address will receive. Before continuing to
Step 2, the CryptoMixer code can be entered. In Step 2, a letter of guarantee is
presented along with an input address. As input transactions are made the ser-
vice displays the received amounts and their confirmations. If the amount is not
sufficient, the service specifies the expected output as a negative value. Finally,
users are also provided with a CryptoMixer code to use with future transactions.
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Trials with CryptoMixer were conducted with both legacy and SegWit
addresses. The customizable obfuscation parameters for this service include the
number of input and output addresses, delay, distribution, and service fee. While
Trial 1 was customized to fall under the Standard security level, Trial 2 and 3
were both set to the Silver security level. We recorded the output values displayed
from the service’s calculator to check for accuracy. The CryptoMixer code from
Trial 1 was used in Trial 2 to test its effectiveness against receiving previous
inputs. Finally, the letter of guarantee was downloaded for each input address
in all three trials and both the signature and contents were verified.

Results. Appendix B.4 Table 9 displays the obfuscation parameters, input, out-
put, and mixer fees associated with each CryptoMixer trial. The service’s cal-
culator displayed accurate outputs based on the set mixing fee for each trial.
We did not receive any output from CryptoMixer on Trials 2 and 3. We were
successfully able to download and verify the letters of guarantee provided by the
service. Additionally, we received five-digit CryptoMixer codes in each trial but
could not evaluate the effectiveness of their use.

Sudoku Wallet. In Step 1, users are presented with a wallet key. In Step 2, an
input address is presented along with its corresponding private key. After three
confirmations on the input transaction(s), the user can proceed. In Step 3, two
to four addresses with balances adding up to the user’s input amount minus
mixing fees are presented along with their private keys. The user then has the
option to sweep these funds or import the private keys to their wallet. In Step 4,
users are urged to delete their wallet and generate a new one to mix more funds.

We created a new wallet for each transaction and recorded the wallet key to
check its validity after deletion. In Step 2, we noted the input address and its pri-
vate key. The obfuscation parameter for Sudoku Wallet is limited to the method
of withdrawing the funds. In Step 3, we recorded the given output addresses
and calculated the mixing fee to identify unexpected behavior. We studied the
history of these output addresses to ensure they used CoinJoin transactions.

Results. Appendix B.5 Table 10 displays the obfuscation parameters, input,
output, output network fees, and mixer fees associated with each Sudoku Wallet
trial. Mixing fees for each trial were inconsistent and unverifiable with any pre-
viously executed CoinJoin transactions. Trial 1 had a mixer fee of 0 BTC while
Trial 3 had a fee of 0.0027 BTC (90% of the input).

7 Analysis

In this section, we provide an implementation and security analysis of the five
public mixing services.

7.1 Implementation Analysis

We use the data gathered in Sect. 5 regarding current public mixers and our
experiments (discussed in Sect. 6) to identify the adoption of academically
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proposed solutions in ChipMixer, MixTum, Bitcoin Mixer, CryptoMixer, and
Sudoku Wallet.

Table 3 outlines which mixing services include key characteristics of proposed
solutions in their implementation. The characteristics selected include CoinJoin,
shuffling of output addresses in one transaction, multisignature escrows, TEXT
field use to share data, signed warranties, blinding, and off-blockchain transac-
tions. Each of these characteristics are used in at least one of the academically
proposed solutions.

ChipMixer. Through tracing our input transactions and outputs received by
ChipMixer, we identified that funds sent to the service are routinely involved in
the creation of chips ranging from 0.001 BTC to 8.192 BTC. For example, our
Trial 1 input of 0.001 BTC was involved in the creation of five chips of 8.192
BTC. The creation of these chips involves a transaction resembling CoinJoin.
The transaction includes UTXOs sent to ChipMixer by users as its input set.
The output is a set of chips of a uniform size. Unlike CoinShuffle, this CoinJoin
is solely created with funds available in ChipMixer’s wallet. Thus, the need for
multiple signatures and shuffling of output addresses is eliminated.

Table 3. The inclusion of academically proposed techniques in the five studied pub-
lic mixers. The five mixers exhibit a lack of adoption of proposed techniques. Out-
put address shuffling, multisignature escrows, the use of TEXT fields in transactions,
remote attestation, and blinding are not implemented by any of the services studied.
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ChipMixer incorporates off-blockchain transactions by giving users the option
to split, merge, bet, commonize, and donate their given chips. These options have
an impact on the amount and distribution of the mix without executing multi-
ple on-blockchain transactions. The withdrawal of funds via importing private
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keys is also done off-blockchain. Thus, a complete ChipMixer mixing interaction
can be done with only one on-blockchain input transaction. This is compara-
ble to TumbleBit and its incorporation of off-blockchain puzzles to send Bitcoin
between two users.

ChipMixer claims to provide a signed receipt on withdrawal of chips.
Although the service was unable to provide this receipt in all three trials, we do
not believe it is comparable to the signed warranties produced in Mixcoin and
Blindcoin. While ChipMixer’s signed receipt aims to prove the origin of output
funds, Mixcoin and Blindcoin’s signed warranty outlines the terms of the mix
before any input or output.

Overall, our analysis did not provide any evidence that ChipMixer imple-
ments signed warranties, blinding, remote attestation, output address shuffling,
or multisignature escrow addresses.

MixTum. MixTum offers a PGP signed letter of guarantee before any inputs to
the service. The letters for all three trials included the generated input address,
the output address(es), the maximum mixing time, the deadline for users to send
their input by, and the maximum service fee. This guarantee can be compared to
the signed warranty provided in Mixcoin which includes the value to be mixed,
the deadline for the input to be sent, the deadline for the service to return
funds, the output address, the mixing fee rate, a nonce, and the number of
confirmations required on the input. Mixcoin’s protocol requires that users create
the terms of the mix and provide them to the service. In the case of MixTum, the
service creates the majority of the terms including the fee and deadline to return
funds. Overall, the PGP signed letter of guarantee from MixTum provides enough
information to identify a breach in protocol and holds the service accountable.

We did not identify any evidence that MixTum incorporates CoinJoin, out-
put address shuffling, multisignature escrow addresses, TEXT field use, remote
attestation, blinding, or off-blockchain transactions.

Bitcoin Mixer. Through our analysis and experiments with Bitcoin Mixer,
we identified that the service does not implement any of the proposed mixing
solutions found in CoinShuffle, CoinParty, Xim, Obscuro, Mixcoin, Blindcoin,
or TumbleBit. The service does not implement CoinJoin transactions or shuffle
output addresses of multiple users in one transaction. In addition, Bitcoin Mixer
does not implement multisignature escrow addresses, TEXT fields in transac-
tions, remote attestation, a signed warranty, blinding, or off-blockchain transac-
tions.

CryptoMixer. CryptoMixer provides a signed letter of guarantee along with
each input address. Unlike MixTum, CryptoMixer’s letter of guarantee is signed
using its Bitcoin private key. This letter provides confirmation of the origin of
the input address, distribution of funds to each output address, delay for each
output address, deadline for inputs, minimum and maximum input allowed, and
mixing fee. This guarantee can be compared to the signed warranty provided in
Mixcoin. In this case, the user specifies output addresses, delays, distributions,
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and the fees. Thus, CryptoMixer’s letter of guarantee ensures accountability and
can be used against the service in case of a breach of protocol.

Overall, the signed warranty was the only academically proposed solution
adopted by CryptoMixer. We did not identify any evidence of CoinJoin, out-
put address shuffling, multisignature escrow addresses, TEXT field use, remote
attestation, blinding, or off-blockchain transactions.

Sudoku Wallet. Sudoku Wallet claims to provide funds from pre-mixed Coin-
Join transactions. Blockchain analysis in all three trials revealed that inputs were
not involved in uniform output CoinJoin transactions after being sent to the ser-
vice. Additionally, outputs had not been involved in uniform output CoinJoin
interactions in recent history. Thus, we do not believe the service uses CoinJoin
transactions. However, Sudoku Wallet does make use of off-blockchain transac-
tions on withdrawal. Like ChipMixer, the use of private keys as outputs ensures
that outputs are not detectable on the blockchain.

Overall, we did not identify any evidence of CoinJoin transactions, output
address shuffling, multisignature escrow addresses, TEXT field use, remote attes-
tation, signed warranties, or blinding.

7.2 Security Analysis

We build our security analysis upon Obscuro’s security analysis performed on
CoinJoin, CoinShuffle, CoinParty, Xim, Mixcoin, Blindcoin, and TumbleBit [23].
We expand on their academically proposed Bitcoin mixer comparison by per-
forming similar analysis on the five mixing services included in this study. Table 4

Table 4. A security comparison of the five public mixing services against the threats
presented in Sect. 3. All five services lack prevention against coin theft, relationship
anonymity attacks, and do not guarantee participation. A similar table conducting a
security comparison of academically proposed mixers is provided in Obscuro [23].
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displays the results of this analysis. We compare the mixers based on their resis-
tance to the threats outlined in Sect. 3.

Coin Theft. The five mixers in the study do not have protections in place
against coin theft. ChipMixer, Bitcoin Mixer, and Sudoku Wallet provide no
proof of origin for the provided input address, making it possible for adversaries
or malicious mixer operators to steal funds. MixTum and CryptoMixer provide
signed letters of guarantee, making it difficult for an attacker to inject their own
address. However, the letter of guarantee is ineffective against malicious mixer
operators. Although it sets accountability, users can still have their funds stolen.
Mixcoin and Blindcoin suffer from the same protections against a malicious oper-
ator. Thus, six out of eight mixing services in Obscuro’s analysis implement
protections against coin theft. For example, CoinJoin, CoinShuffle, and Tum-
bleBit use multisig addresses to ensure all parties are involved in the movement
of funds.

ChipMixer and Sudoku Wallet provide private keys as outputs. Importing
these keys to a wallet may be appealing because of its off-blockchain nature,
however it leaves users susceptible to coin theft. The mixing service could still
access the private key and sweep the funds to a separate address without user
permission.

Relationship Anonymity. Relationship anonymity is not guaranteed in any
of five mixing services. Malicious mixing operators can directly learn the per-
mutation between inputs and outputs. Additionally, all five services store or log
session data for at least a limited amount of time, providing a tempting tar-
get for adversaries. In comparison, five out of eight proposed mixing services
from Obscuro’s analysis provide a method to ensure relationship anonymity. For
example, CoinParty and CoinShuffle use output address shuffling while Blindcoin
and TumbleBit use blinding.

Participation Guarantee. All five public mixers lack resistance against drop-
ping participants. This is common in protocols that involve a mixer operator
who can control the mixer’s worldview. In comparison, five out of eight proto-
cols studied in Obscuro’s analysis guarantee participation for all users. The
only centralized protocol included in these five is Obscuro. In its implementa-
tion, selective dropping of participants results in a DoS attack because of the
protocols dependence on public bulletin boards.

Large Mixing Set Guarantee. Of all five services, CryptoMixer was the only
to guarantee a large mixing set size. For public mixing services, we view the
mixing set to be the pool of UTXOs that the mixing service controls. To guar-
antee a large mixing set, CryptoMixer provided reputable Bitcointalk users with
access to a list of their owned addresses along with signatures for each. The users
confirmed that the service had nearly 2,000 BTC in their pool. In comparison,
two out of eight proposed services provide a guarantee of a large mixing set. For
example, Obscuro refunds user inputs when a minimum number of participants
is not reached. Mixcoin, Blindcoin, and TumbleBit do not include an agreement
of a minimum mixing set size in their centralized protocols. In decentralized
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protocols such as CoinJoin, CoinShuffle, and CoinParty, users are guaranteed a
small set due to the communication overhead and long wait times with larger
anonymity sets.

Join-then-abort Resistance. All five public mixing services provide resistance
against join-then-abort attacks. Users are unable to abort the mixing protocol
after funds have been sent to the given input address. In comparison, five out of
eight proposed protocols also provide resistance against this attack. In CoinJoin
implementations, like CoinShuffle, users are able to disrupt the mix by disap-
proving of the final transaction.

Minimum On-Chain Transactions. The number of on-block-chain transac-
tions for the five mixers in this study is similar to the proposed protocols in
Obscuro’s analysis. Aside from Xim, which requires three ads on-blockchain
before the four transactions in Barber’s Fair Exchange, and TumbleBit, which
uses two escrow channels, the proposed protocols require one to two transactions.

7.3 Additional Interesting Behavior

Our experiments on ChipMixer, MixTum, CryptoMixer, and Sudoku Wallet
revealed additional, interesting behavior associated with each service. We believe
these behaviors represent an opportunity for a long-term study to learn more
about the underlying service implementation.

ChipMixer. ChipMixer generates new chips by creating transactions which
resemble traditional CoinJoin with uniform output chip values ranging from
0.001 BTC to 8.192 BTC. The set of inputs for these chip generation transactions
is comprised of UTXOs adding up to the exact amount necessary to create
the specified number of chips. In turn, chip generation does not include change
transactions in its output. We identified this pattern in all four of our input
transactions with ChipMixer. Additionally, we were able to trace these created
chips to identify outputs to other users. It is possible that a large number of
inputs could be sent to ChipMixer to gain a better understanding of their pool
of chips. Appendix C.1 provides some example chip generation transactions.

Although ChipMixer claims logs and session information is deleted in seven
days, we found that our session tokens for all three trials were still valid after
16 days. This could indicate that deletion of logs and session tokens is manually
done by the mixer operator.

ChipMixer incorporates various features that focus on providing users with an
illusion of control over their funds. However, off-blockchain transactions such as
split and merge essentially have no impact on the chips available in ChipMixer’s
pool. In addition, voucher codes carry no value outside of the service.

MixTum. MixTum is built upon Jambler.io, a mixing platform that provides the
source code to start a mixer. The letter of guarantee and the input address are
generated from Jambler.io, and the platform pays MixTum a commission on com-
pletion of each mixing interaction. Jambler.io claims to obtain funds from cryp-
tocurrency exchanges and use a scoring algorithm to only mix with “pure” funds.
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MixTum’s typical mixing fees are up to 5% + 0.00015 BTC. However, in
Trial 1 we sent the minimum 0.001 BTC, we received an output of 0.001 BTC.
The transaction fee on this output was 0.00024227 BTC. Thus, the service did
not charge a mixing fee and lost money. This was tested twice with the same
result.

CryptoMixer. CryptoMixer returned an output in Trial 1 even though the ser-
vice stated that the input amount was less than required. In Trial 2, we identified
that the service does not accept transactions less than the minimum 0.001 BTC.
However, CryptoMixer’s calculator still recognizes inputs less than the minimum
and calculates accordingly. We believe CryptoMixer treats all inputs to a ses-
sion as donations if an input less than the minimum is detected before an output
transaction is scheduled. The first three inputs for Trial 2 were 0.001 BTC, 0.001
BTC, and 0.0005 BTC. All three received their first confirmation at the same
time. We believe CryptoMixer recognized that one of these inputs was less than
0.001 BTC and treated all inputs as donations as a result. In Trial 3, we learned
that input addresses do not accept more than one transaction. Our second trans-
actions were not recognized and CryptoMixer did not send an output. Overall,
CryptoMixer has poor implementation and lacks proper documentation.

Sudoku Wallet. On the presentation of the input address, Sudoku Wallet also
provides a corresponding private key. We believe this is done to give users the
illusion that they still have access to their funds. However, in all three of our
trials, Sudoku Wallet moved the funds associated with the input address before
we obtained our output. For example, in Trial 1, we swept our outputs at 12:51
AM, however the input address funds had been moved to a separate address at
12:33 AM. This shows how simple coin theft is when mixers output private keys.

Sudoku Wallet’s mixing fees are described as 0.5% to 1% (randomized) plus
the CoinJoin fee. However, mixing fees were inconsistent in all three trials. We
were not able to identify any CoinJoin transactions to calculate the fees in each
output’s blockchain history. Thus, more transactions will need to be executed to
understand the mixing fees.

During Trial 3, the provided wallet key was entered onto the Sudoku Wal-
let website. We received an error stating that the Bitcoin Client function
loadwallet() verification failed. This error reveals that Sudoku Wallet creates
a new wallet for each user to keep track of balances. This is the only implemen-
tation of separate wallet creation. Although Sudoku Wallet states that logs are
not maintained, this is similar to logging transaction data for each participant.

8 Discussion and Limitations

Our analysis shows a clear disconnect between the five publicly available mix-
ers studied and academically proposed solutions. Key characteristics of these
solutions have not been widely adopted by today’s most trusted Bitcoin mixing
services. We found that none of the five public mixing services we tested use the
proposed features of output address shuffling, multisignature escrow addresses,
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TEXT fields in transactions, remote attestation, or blinding. The only three
characteristics adopted include CoinJoin, signed warranties, and off-blockchain
transactions.

All five mixers performed poorly in security analysis. The lack of prevention
against coin theft, permutation leaks, and dropping of participants in public ser-
vices shows that these services are not built to prioritize security and anonymity
concerns addressed in academic literature. Rather, most services appear to be
focused on providing their users with the illusion of control over their mix. On
a positive note, centralized mixers displayed complete resistance against join-
and-abort attacks, unlike proposed decentralized solutions. CryptoMixer also
leverages Bitcointalk to guarantee a minimum mixing set size.

To gain credibility and trust from their users, today’s mixers must employ
a combination of key characteristics provided by proposed academic solutions.
Public mixing services should advertise the use of proven solutions from academic
literature, use trusted third-party remote attestation services, provide signed
letters of guarantee, and adopt open-source practices. Mixers should also aim to
leverage the solidified trust users have with reputable members of Bitcointalk
and actively engage with their participants. Output addresses can be encrypted
with the mixer’s public key and included in the TEXT field of input transactions
to lessen the threat of selective dropping of participants. Although it would result
in higher network fees, mixers should identify a minimum mixing set size and
ensure outputs include multiple users rather than one-to-one transactions. The
use of private keys as outputs must be eliminated from services to ensure safety
against coin theft.

Ultimately, our trials were quite lightweight. A higher number of trials with
larger transactions could lead to a more in-depth understanding of the reason-
ing behind certain mixer behavior. Our understanding of mixer features relies
heavily on information collected from each service’s website as well as posts
from Bitcointalk. A long-term analysis of both trusted and untrusted services
could paint a better picture of the ever-changing features being implemented
into the public mixing atmosphere. Additionally, this study could be expanded
to include open-source wallets that provide their own mixing implementations
such as Wasabi Wallet and Samourai Wallet.

9 Conclusion

The Bitcoin mixing ecosystem attracts a wide range of users, many of whom
simply wish to remain anonymous. The association of scams and poor implemen-
tation by these services has led to the proposal of secure protocols in academic
literature. These proposed solutions provide methods to ensure accountability
for mixing services and secure communication between participants without the
leakage of input and output permutations. Through real world mixer interac-
tions, we identified that there exists a disconnect in both implementation and
resistance to common mixing threats between today’s public mixing services
and academically proposed solutions. We strongly believe that the disparities
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identified in this work represent an overall lack of regard for secure implemen-
tation. Although mixing services are often associated with criminal activity, the
adoption of secure mixing methods could better their reputation and provide a
foundation for future Bitcoin mixer research.

Acknowledgement. We would like to express our gratitude to the anonymous review-
ers for their valuable feedback. This work was supported in part by the National Science
Foundation (NSF) in grants 2000792, 1651661, and 1703644.

A Appendix 1

A.1 Public Mixer Characteristics

(See Table 5).

Table 5. Mixer characteristics collected for our initial analysis of the public Bitcoin
mixer landscape.

Characteristic Description

Min Minimum mixing amount allowed

Max Maximum mixing amount allowed

Account Is registration required to participate?

Fees Mixing fees

Time Time to finish mixing

Delay Amount of delay on mixing output

Logs Amount of time service keeps logs

Input addresses Number of input addresses given to user

Output addresses Number of output addresses user may specify

Distribution control Does the user have control of the distribution of funds across their

specified output addresses?

Minimum blocks Number of network confirmations needed before mixing begins

Additional features Additional unique features (letter of guarantee, receipt, check mix

function, etc.)

Tor Hidden service URL

Clearnet Clearnet URL

Established Year established

Bitcointalk Bitcointalk service announcement URL

Forum posts Number of forum posts as of May 1st, 2020

Scam accusation(s) Does the mixer have any unresolved scam accusations?
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B Appendix 2

B.1 ChipMixer Results

Table 6. Results for ChipMixer trials.

Trial Obfuscation parameters Input (BTC) Output (BTC) Output

network fees

(BTC)

Mixer fees

(BTC)

Txn IDs

1 sweep 0.001 0.000921 0.000079 0 1

2 split, donate, merge, withdraw 0.003 0.002 0 0.001 2

3 voucher, sweep 0.004 0.00381195 0.00018805 0 3

1 I1: 467e3de55595849259650ef0dfdcad22b945bf98cc99cb0cc5d2f4ad6c4a9c9b

O1: 5e2673cb8e845aa41ba7c04b1aa6b1da415bffa87d01806f4e762133964694e1
2 I1: a0e9c07185369c217f740ee06a8b3499dd15d365647c78f34e6d3195132eb99b

I2: 3a8f4b06c8d30dcb333376b7168df3c1a93812086f5c31cf7c104715d2dc0d3b

O1: 6647ea4eaf7b6968101e2618a21608d4111f836aec7cf1589972f678a5a06ad4
3 I1: 7675b43440cd2ac9c95134085262c1df8a8284ac4daeb9223402084363f53405

I2: 2fac417838683750b879e743811cea0c263efc0bf8c24a72b5f80cb393b78578

O1: 47a373922147c11b3a7b3d0675a62bf94c6d1e1d8252e915ca8bef83e37a0cd2

O2: 0755d63c3e989810bb8b0f65e852845d8c9538446278f438f0ca3a5f99310e00

Trial 1. In Trial 1, 0.001 BTC was sent in one transaction, I1, from the SegWit
wallet. Within 30 s of the first confirmation on this input, we received one chip of
0.001 BTC. In Step 3, we were given the option to donate, withdraw, or receive
a voucher. Options to split or merge were unavailable. We chose to withdraw our
chips and proceeded to Step 4. We attempted to download the signed receipt
but received an internal server error. Next, we chose to sweep the chip to the
SegWit wallet with a network fee of 0.000079 BTC. The interaction resulted in
0 BTC mixing fees and our final output, O1, was 0.000921 BTC.

Trial 2. In Trial 2, 0.003 BTC was sent to ChipMixer in two separate trans-
actions from the SegWit wallet, I1 and I2. These transactions were 0.002 BTC
and 0.001 BTC. The service provided one chip of 0.002 BTC (chip 1) and one
of 0.001 BTC (chip 2). We split chip 1 into two chips of 0.001 BTC. Then, we
donated one of these chips to ChipMixer and did not identify any movement of
funds from the input address. Next, we merged the two remaining 0.001 BTC
chips into one 0.002 BTC chip. On Step 4, we attempted to access the signed
receipt but received an internal server error. We chose to withdraw our final chip
by importing the private key into a new wallet. Importing resulted in 0 BTC
network fees and 0 BTC mixer fees. The output to our wallet, O1, was 0.002
BTC.

Trial 3. In Trial 3, two separate sessions were created. In the first session,
transaction I1 of 0.001 BTC was sent to ChipMixer and withdrawn for a voucher.
The service provided a 53 character alphanumeric code. In the second session,
transaction I2 of 0.003 BTC was sent to the given input address. The voucher
code from the first session was also redeemed. In total, the service provided
two 0.001 BTC and one 0.002 BTC chips. On withdrawal, the chips were swept
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into the SegWit wallet. This resulted in two on-blockchain transactions with
outputs of 0.00190361 BTC and 0.00190834 BTC, O1 and O2. The network fees
associated with these transactions were 0.00009639 BTC and 0.00009166 BTC
respectively. The total mixer fee was 0 BTC.

B.2 MixTum Results

Table 7. Results for MixTum trials.

Trial Obfuscation parameters Input (BTC) Output (BTC) Output network

fees (BTC)

Mixer fees

(BTC)

Txn IDs

1 1 Output 0.001 0.001 0.00024227 0 4

2 2 Outputs 0.002 0.001762 0.0004707 0.000238 5

3 2 Outputs 0.003 0.00276 0.00049838 0.00024 6

4 I1: 0cf2b5ae532f7efb78133b0cf63b8a11af658dba5cab810a6125cb8c81433896

O1: 41102ce0aab86f143bd836cecae1495c1c4dbb3cf4b2b4ee19e2f7e9c8dd264b
5 I1: 3acc63ef655aed1a47323aeace7d3107ce8e26dc046a3a05998b284aa9221d91

O1: 24b0e68ee157eef4567ce853198f1af5196fc0ffbfa875e20a84044bf6b82de0

O2: 9f60da6b97b39c6de65f7b7e59def229fe990a70c66ab1263a71f7d262aac9ca
6 I1: 32328f8ea37163f06894e3ddd8620e4bfb93c1b968b70a1c7973d5fa4e81ffb3

I2: 3863aab6e6f84f4da584975b9719511954ebc10a0ceca918b26f250d3553b211

O1: da0f4c46f528f4df7d7383eee5064e69759403410f63049f4fe59341f1ee9991

O2: 8ac7f54fb2fa52811d07ff3fa5f7031f8499e0d63ba37691e8979612e3107181

O3: d9cf6777e294f2936f9219cbd10a4926f93986fa9d79829e72e6f422eae1e59f

Trial 1. In Trial 1, one legacy output address was specified. A SegWit output
address was attempted but was not accepted by the service. One input transac-
tion, I1, of 0.001 BTC was sent to a compatibility format input address provided
by MixTum. Within five minutes, an output transaction, O1 of 0.001 BTC was
received. The network fee on the output was 0.00024227 BTC and mixing fees
were 0 BTC.

Trial 2. In Trial 2, two legacy output addresses were specified. One input trans-
action, I1, of 0.002 BTC was sent to a compatibility format input address pro-
vided by MixTum. The first output, O1, of 0.001 BTC was received in one hour
and 14 min. The network fee on this transaction was 0.00024227 BTC. A second
output, O2, of 0.000762 BTC was received in four hours and 55 min with a net-
work fee of 0.00022843. The overall mixing fee for this interaction was equal to
4.4% of the input plus 0.00015 BTC.

Trial 3. In Trial 3, two legacy output addresses were specified. Two input trans-
actions, I1 and I2, were sent to a compatibility format input address provided
by MixTum. I1 was 0.002 BTC and I2 was 0.001 BTC. The first output address
received two output transactions, O1 and O2, of 0.0004 BTC and 0.001 BTC
47 min after the input. The second output address received an output, O3, of
0.00136 BTC in 52 min. The network fees for these output transactions were
0.00017997 BTC, 0.00017305 BTC, and 0.00014536 BTC respectively. The over-
all mixing fee for this trial was 3% of the input amount plus 0.00015 BTC.
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B.3 Bitcoin Mixer Results

Table 8. Results for Bitcoin Mixer trials.

Trial Obfuscation

parameters

Input (BTC) Output (BTC) Mixer fees (BTC) Txn IDs

1 1 Output rapid delay 0.0002 0.0001985 0.0000015 7

2 3 Outputs

distribution (%): 35,

35, 30 delay (hr): 1, 2,

2

0.0004 0.000396 0.000004 8

3 5 Outputs

distribution (%): 13.3,

5.36, 21.98, 30.72,

28.64 delay (hr): 1, 2,

5, 10, 12

0.0006 0.0005935 0.0000065 9

7 I1: 1e986fcb917e3b6702f7c0855ef97bb63852f3a7b4b732c979c24a650d83d60a

O1: 1752cc1c59e086a41e5eff494a3e949220585174df969524ba0315ff43baacc1
8 I1: f3ea2711301deda2a6e1721a6cb535c8d989a9536089c72b1df693ec72d3a979

O1: a445e5f62e7a7aaccbb5f0094dead98ff340f00fa461bb02bcebb5c39209ce39

O2: b29103754707b9553948efe16e0f0f2ed24afd9344851ae6aba53d48d6295188

O3: a38b52879b069709aa7baa3928b71f3c2ebb8dcfbce23b481fc0f5b00f00afe1
9 I1: 101a29a16be3357b5b9733e9cb5576d735ba4526f0937071a1bc43158e4cf4ab

O1: 1423cc8eadc7be5b71c25286244ca9815479691a816c545eb46ce9d40ae6d3c8

O2: fa5bb1ade1c6e99ffa964ad5b76f005c4e6c4b740b1697fd664e43f0f8522e2a

O3: a1d08152d1e5e9d75996591e69b663f0eefb96fa31f06fd6ca907084d2e04f26

O4: 61ef79f1ff7ae348a453f4e1d073ce5cf7a732d6c0e50d9fe04d0005eec142f4

O5: 32ad310b25f2f4f11288e8115fce4126526643f49afc5c5e80f081bab3d853b1

Trial 1. In Trial 1, one output SegWit address was specified with rapid delay.
The service provided a compatibility format input address and a mix ID. One
transaction, I1, of 0.0002 BTC was sent to this address. Within 30 s of the
first network confirmation, an output transaction, O1, of 0.0001985 BTC was
received. Overall, the interaction had a mixing fee of 0.0000015 BTC.

Trial 2. In Trial 2, three legacy output addresses were specified. Delay and
distribution among these addresses was set to be 1 h with 35%, 2 h with 35%,
and 2 h with 30% respectively. The service provided one compatibility format
input address. One transaction, I1, of 0.0004 BTC was sent to this address. The
first output address received output O1 of 0.0001386 BTC in 43 min. The second
received output O2 of 0.0001386 BTC in 1 h and 44 min. The third received
output O3 of 0.0001188 BTC in 1 h and 44 min. The overall mixing fee for this
trial was 0.000004 BTC.

Trial 3. In Trial 3, five SegWit output addresses were specified. Delay and
distribution was set to be 1 h with 13.3%, 2 h with 5.36%, 5 h with 21.98%,
10 h with 30.72%, and 12 h with 28.64% respectively. The service provided one
compatibility format input address. One transaction, I1, of 0.0006 BTC was sent
to this address. Output O1 of 0.00007894 BTC was received by the first output
address in 31 min. Output O2 of 0.00003181 BTC was received by the second
output address in 1 h and 26 min. Output O3 of 0.00013045 BTC was received
by the third output address in 4 h and 26 min. Output O4 of 0.00018232 BTC
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was received by the fourth output address in 9 h and 26 min. Finally, output O5

of 0.00016998 BTC was received by the fifth output address in 11 h and 26 min.
The overall mixing fee for this trial was 0.0000065 BTC.

B.4 CryptoMixer Results

Table 9. Results for CryptoMixer trials.

Trial Obfuscation parameters Input (BTC) Output (BTC) Mixer fees (BTC) Txn IDs

1 1 Output 2 Input 0.5060% fee

1 h 15min delay

0.001 0.00049494 0.00050506 10

2 CryptoMixer Code 3 Outputs

4 Inputs distribution (%):

20.05, 19.96, 59.99 delays:

3hr 7m, 9hr 1min, 15hr 2min

0.002 0 0 11

3 3 Outputs 2 Inputs

distribution (%): 20.43,

19.85, 59.72 delays: 3hr 3min,

9hr 8min, 15hr 4min

0.002 0 0 12

10 I1: a02d447aae65ce5d671b2cf1ba183cf08399655f17ed26269c0124e0cf4f5e3d

I2: 73e8f1f233c9ca966f7ab34a4074a558269b37cfb65c4f1a3482f66b8d6e3c6f

O1: f60a746dd452f1c687f0ff92849ede81ecbe7787440f2906c47385f0d9279fcd
11 I1: 1268643164dddfee0fce627295fb6c26d62dadb418630c3601e812feb612d0fe

I2: 02667f20e8355136aec0295409c5d689bf8a7a9ec1302e8a2941154ec565062e

I3: 1c2bfe577e9bb80cbbd2d56108145d640112128b4518348676b468032f947b62

I4: 9b5e7617ee123c10e697c838d9d061118c3749bf0b89c12107c6daf0df2f798d
12 I1: fb930e8d5c9ffe10edc40f880671da7bc8370eee101bc46a20e9fafc0ceb4ddb

I2: 5d010989689bae4d4ec4bd4e9c3984a4632548fa15aeac9ea90d94f15fc2928d

Trial 1. In Trial 1, one SegWit output address was specified. Additionally, the
mixing service fee and delay were set to 0.5060% and 1 h and 15 min respectively.
This qualified for a Standard security level. The service provided a five character
alphanumeric CryptoMixer code and one legacy format input address with its
corresponding letter of guarantee. One transaction, I1, of 0.001 BTC was sent to
this address. The service’s calculator stated that the output would be 0.00049494
BTC. However, after one confirmation the service displayed an error stating
that the “amount is less than required.” The error did not disappear and the
number of confirmations on our original input did not update after the first
detected confirmation. Assuming the service expected an additional payment of
0.00049494 BTC, we generated a second input address and executed another
input transaction, I2. However, this was ignored by the service. After 1 h and
21 min of the first input, we received output O1 of 0.00049494 BTC with a
network fee 0.00007749 BTC. The overall mixing fee for this interaction was
0.00050506 BTC.

Trial 2. In Trial 2, the CryptoMixer code from Trial 1 was used and three
legacy output addresses were specified. Delay and distribution for these output
addresses was 3 h and 7 min with 20.05%, 9 h and 1 min with 19.96%, and 15 h
and 2 min with 59.99% respectively. The mixing fee was set to 1.0176%. These
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parameters qualified the interaction for a Silver security level. The service pro-
vided the same CryptoMixer code from Trial 1 and we manually generated four
legacy format input addresses. The letter of guarantee for each of these addresses
was successfully downloaded. Input transactions I1, I2, I3, and I4 were executed
with 0.001 BTC, 0.001 BTC, 0.0005 BTC, and 0.001 BTC respectively. The ser-
vice’s calculator stated that 0.00039386 BTC, 0.00039209 BTC, and 0.001178
BTC would be deposited to out output addresses. However, no outputs were
received.

Trial 3. In Trial 3, no CryptoMixer code was used and three legacy output
addresses were specified. Delay and distribution for these output addresses was
3 h and 3 min with 20.43%, 9 h and 8 min with 19.85%, and 15 h and 4 min
with 59.72% respectively. The mixing service fee was set to 1.0820%. These
parameters qualified this trial for Silver security level. We received a new five
character CryptoMixer code and manually generated two legacy format input
addresses. The letter of guarantee for each of these addresses was successfully
downloaded. Input transactions I1 and I2 were executed with 0.001 BTC each.
However, we received the same error from Trial 1 stating “amount is less than
required.” For both inputs the service stated 0.00051082 BTC was pending.
Thus, two transactions of 0.0005 BTC and 0.00001082 BTC were sent to each
input address. However, the service did not identify these transactions and no
outputs were received.

B.5 Sudoku Wallet Results

Table 10. Results for Sudoku Wallet trials.

Trial Obfuscation parameters Input (BTC) Output (BTC) Output network

fees (BTC)

Mixer fees

(BTC)

Txn IDs

1 sweep 0.001 0.00087261 0.00012739 0 13

2 sweep 0.002 0.00171162 0.00024839 0.00003999 14

3 sweep 0.003 0.0000769 0.00022310 0.0027 15

13 I1: 175996ac5b80fcc2df3cc44894ecbdd4e26a35ae20f076ff242d112900bc4898

O1: d37438550d5418c26b3b9a0cadc20007d80d12177b096ef286c53ef10cad11c9
14 I1: 778e990edf67d546bd8eeae9111078e381c7cc7d0eff93e58da8b13bb0d275d2

O1: a63076611384abf4cd1e3df92b327c324af910e14914c6038b60e037814935c9
15 I1: 3c18b011a01f243d2cace66c07cf6016385ffa20f55e0cbdfccf34fa96f18088

O1): 310ec6f888c9db47c1d24410f5a38b3b40461b378a355f0363faaed8f5166443

Trial 1. Sudoku Wallet provided a 25 character alphanumeric wallet key. The
service then presented an input address with its corresponding private key. We
sent one transaction, I1, of 0.001 BTC to this input address. After the service
detected three confirmations on this input, we were able to view two output
addresses funded with 0.00059025 BTC and 0.00040975 BTC along with their
private keys. These funds were then swept to our SegWit wallet through an on-
blockchain transaction, O1. The network fee for this transaction was 0.00012739
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BTC and 0.00087261 BTC was the final output. The overall mixing fee for this
interaction was 0 BTC.

Trial 2. Sudoku Wallet provided a new 25 character alphanumeric wallet key.
The service presented an input address with its corresponding private key. We
sent one transaction, I1, of 0.002 BTC to this address. After three confirmations,
we were presented three output addresses with 0.00066667 BTC, 0.00064667
BTC, and 0.00064667 BTC. These funds were then swept to our legacy wallet
through an on-blockchain transaction, O1. The network fee for this transaction
was 0.00024839 BTC and 0.00171162 BTC was the final output. The overall
mixing fee for this interaction was 0.00003999 BTC.

Trial 3. We received a new 25 character alphanumeric wallet key. We sent one
transaction, I1, of 0.003 BTC to the given input address. After three confirma-
tions, we were presented three output addresses of 0.0001 BTC each with corre-
sponding private keys. These funds were swept to our SegWit wallet through
an on-blockchain transaction. O1. The network fee for this transaction was
0.00022310 BTC and 0.0000769 BTC was the final output. The overall mixing
fee for this interaction was 0.0027 BTC.

C Appendix 3

C.1 Chip Generation Transactions

(See Table 11).

Table 11. Example chip generation transactions.

Chip size (BTC) Transaction ID

8.192 a3098c6d8961c6674ad4590a3b50c2ca213d833b49a2c774ce5248cabed135a2

0.256 5b7bfd2f60d6058344cdb59fe64d3c1402378c3489210de2a6d18a34e1c0bd5b

4.096 66c3429e06f5e8732717bbeba30d7df28f81a785c4018ad0a269959bbd37bce6
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Abstract. Cryptocurrencies are widely used today for anonymous
transactions. Such currencies rely on a peer-to-peer network where users
can broadcast transactions containing their pseudonyms and ask for
approval. Previous research has shown that application-level eavesdrop-
pers, meaning nodes connected to a large portion of the Bitcoin peer-to-
peer network, are able to deanonymize multiple users by tracing back the
source of transactions. Yet, such attacks are highly visible as the attacker
needs to maintain thousands of outbound connections. Moreover, they
can be mitigated by purely application-layer countermeasures.

This paper presents a stealthier and harder-to-mitigate attack exploit-
ing the interactions between the networking and application layers. Par-
ticularly, the adversary combines her access over Internet infrastruc-
ture with application-layer information to deanonymize transactions. We
show that this attack, namely Perimeter, is practical in today’s Inter-
net, achieves high accuracy in Bitcoin, and generalizes to encrypted cryp-
tocurrencies e.g., Ethereum.

Keywords: Deanonymization · Bitcoin · Ethereum · Blockchain ·
BGP · Routing attack · Network-layer attack

1 Introduction

Anonymity is among the essential properties of any cryptocurrency [38].
The most successful cryptocurrencies today i.e., Bitcoin and Ethereum, are
pseudonymous [27]: clients are able to securely transact while using pseudonyms
that cannot be trivially mapped to their real-world identities. Cryptocurrencies
operate using a peer-to-peer (P2P) network of nodes. When a node performs
a transaction, it sends the transaction to its peers, which propagate it further.
Consequently, an adversary that listens to all exchanged messages can map each
transaction to the IP address of the node that created it, effectively deanonymiz-
ing that node.

Multiple attacks have exploited this transaction broadcasting mechanism to
map Bitcoin pseudonyms to their originating IP address [20,22,34,40]. To do
so, they use a “supernode”: a seemingly regular node that connects to all active
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Bitcoin nodes and listens to the transactions they relay. 1 Yet, such attacks are
highly noticeable [33], as the “supernode” establishes 50–117 new connections
to every reachable Bitcoin client. Moreover, such attacks can be mitigated by
purely application-level countermeasures. For instance, the diffusion broadcast
mechanism mitigates the attacks presented in [20,34], while Dandelion [23] and
its improvements [28] reduce the effectiveness of the attack presented in [22].

In this work, we introduce Perimeter: a stealthier, harder-to-mitigate,
network-level attack. Perimeter relies on an attack vector that has been over-
looked: leveraging access to the Internet infrastructure. Connections of any cryp-
tocurrency are inevitably routed over the Internet, thus accessible to multiple
Autonomous Systems (ASes) and Internet Exchange Points (IXPs). As a result, a
malicious AS or IXP that combines her access to the Internet infrastructure with
application-level knowledge can perform a cross-layer deanonymization attack.
Our routing analysis of the Bitcoin network reveals that such attacks are practi-
cal in today’s Internet. Indeed, we found that at least 6 distinct network adver-
saries can deanonymize more than 35% of the Bitcoin clients (see Sect. 5). The
Perimeter attack is stealthier than previous attacks, as it is completely passive
(no need for new connections); and harder to mitigate, as the attacker’s power
is dependent on the Internet routing protocol (BGP) i.e., not on the application
protocol.

Perimeter is composed of two phases. In the first phase, the attacker eaves-
drops on the victim’s connections at the packet-level to collect information about
the transactions the victim propagates to its peers. In the second phase, the
attacker analyzes this information to distinguish the victim’s transactions.

The attacker eavesdrops on the victim’s connections by directly reading each
packet’s payload i.e., not by establishing connections. In effect, the attack is
undetectable and equally effective against nodes, which do not accept con-
nections e.g., NATed notes. Notably, unlike previous work on network-level
attacks [17,48], which require the attacker to control all connections of a victim,
Perimeter works with just a fraction. We experimentally show that an adver-
sary intercepting only 25% of the victim’s connections can deanonymize it with
70% accuracy (see Sect. 6).

The adversary distinguishes the victim’s transactions using anomaly detec-
tion (Isolation Forest [35]). The victim’s transactions appear as anomalies as
they have a distinct propagation pattern. For example, in Bitcoin, the victim
will send a transaction that it generated to an unusually high portion of its
peers compared to other transactions. Unlike previous work on deanonymizing
Bitcoin clients that rely solely on the time difference between announcements of
the same transaction across nodes [20,22,33,34], Perimeter is agnostic to it.
As a result, Perimeter is not sensitive to broadcast protocol changes e.g., dif-
fusion, trickle, etc. Instead, Perimeter leverages the victim’s interactions with
its peers to infer whether the victim knew a transaction before its peers.

Perimeter generalizes to encrypted cryptocurrencies. Taking the popular
Ethereum as an example, we observe that an AS or IXP-level adversary is a

1 Similar techniques could be applied to Ethereum.



A Network-Layer Attack on the Anonymity of Cryptocurrencies 149

practical threat for two main reasons. First, similarly to the Bitcoin network,
the Ethereum network is affected by the centralization of the Internet traffic.
Indeed, we observe that for the majority of clients there are 4 distinct adver-
saries intercepting 30% of their connections (see Sect. 5). Second, a network
adversary can infer the victim’s peers by eavesdropping on the IP packets, as
their header is inevitably unencrypted. This combined with the lack of ran-
domness in broadcasting transactions (e.g., diffusion), makes traditional attacks
(solved in Bitcoin) such as Koshy et al. [34] effective.

To summarize, we make the following key contributions:

– A novel attack vector against anonymity that is effective against Bitcoin
(Sects. 3, 4) and generalizes to encrypted cryptocurrencies.

– A thorough analysis of the Bitcoin and Ethereum networks from the routing
perspective using real-world control-plane data. Our analysis demonstrates
the feasibility of such an attack in today’s Internet (Sect. 5).

– An evaluation of Perimeter’s practicality using both realistic simulations
and “in-the-wild” experiments against Bitcoin clients (Sect. 6).

– A comprehensive set of deployable countermeasures (Sect. 7).

2 Background

In this section, we briefly describe Bitcoin, Ethereum, and Internet routing.

2.1 Bitcoin Workings

Bitcoin is a currency that does not rely on any central authority or trusted party.
Instead, Bitcoin relies on a peer-to-peer (P2P) network in which nodes use a con-
sensus mechanism to jointly agree on an append-only log of all the transactions
that ever happened, the blockchain. Bitcoin users are associated with one or mul-
tiple cryptographic pseudonyms, which cannot be trivially mapped to the user’s
real-world identities. Thus, we say that Bitcoin is pseudonymous. Attempts to
map pseudonyms to real-world identities constitute deanonymization attacks.

To transfer funds among each other, Bitcoin clients issue transactions in
which they declare the transfer of a certain amount of Bitcoin from their Bitcoin
pseudonym to one (or multiple) others. Transactions need to be propagated in
the network, verified by all nodes, and eventually added to the blockchain. Upon
receiving a new transaction, a Bitcoin client advertises it to its peers using an
“inv” message that includes the hash of the transaction. The peers which are
unaware of an advertised transaction request it by replying to the advertisement
with a “getdata” message that includes the hash of the transaction. Finally, a
Bitcoin client sends the transaction to those peers that request it with a “tx”
message.

The Bitcoin Core has included two modifications that affect the way transac-
tions are propagated.2 First, a client advertises transactions with independent,
2 We mention the modifications that are relevant to our work.
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exponential delays to its peers. This broadcast mechanism is called diffusion and
was introduced as a countermeasure against deanonymization attacks. Second,
the diffusion delay that a client adds before an advertisement to a given peer
differs depending on which initiated the connection between them. Particularly,
a Bitcoin node halves the delay for peers to which it initialized the connection
as these are less of a privacy concern [3].

2.2 Ethereum Workings

Ethereum supports decentralized applications that are backed by smart con-
tracts: protocols or small pieces of software running on top of the Ethereum
network and performing irreversible transactions with no third-party interven-
tion. In the context of Ethereum, a transaction is a data structure describing
the exchange of Ether signed with the private key corresponding to a users’
pseudonym. Similar to Bitcoin, Ethereum relies on a P2P network of nodes and
is pseudonymous. In contrast to Bitcoin, though, all Ethereum communications
are encrypted [11]. Thus, an on-path eavesdropper cannot read the exchanged
messages.

The Ethereum protocol also differs from the Bitcoin protocol in the way
transactions are broadcasted. Ethereum broadcasts newly learned transactions
without delay across transmissions. It also makes use of an advertisement system,
but only for a subset of its neighbor peers. In particular, consider an Ethereum
(Geth [6]) node with n peers, each time it learns a new transaction, the node
broadcasts it to �√n� of its peers and then it advertises it to the remaining
n − �√n� peers, excluding those which is already aware of it.

2.3 Internet Routing

The Internet is composed of smaller networks called Autonomous Systems (AS).
Each AS contains multiple hosts that are addressed with a unique IP. ASes
build physical connections to each other to exchange traffic under certain eco-
nomic agreements. Oftentimes, ASes also participate in Internet eXchange Points
(IXPs). In this case, multiple ASes connect to a single physical location and
exchange traffic. BGP [9] is the routing protocol that regulates how IP packets
are forwarded in the Internet. Particularly, BGP computes the unidirectional
AS-paths along which traffic from each host will reach its destination. ASes and
IXPs in this AS-path forward traffic, and thus they can eavesdrop, drop, or delay
it.

3 Overview

In this section, we give an overview of the Perimeter attack before we elaborate
on its workings in Sect. 4. In particular, we first describe the attacker’s goal,
profile, and procedure (Sect. 3.1). Next, we illustrate the Perimeter attack
against a Bitcoin client with an example (Sect. 3.2). Finally, we describe how
the attack generalizes to Ethereum (Sect. 3.3).
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3.1 PERIMETER at a High-Level

Attacker’s Goal. The attacker’s goal is to deanonymize a specific node, mean-
ing to map the IP of a victim node to the transaction(s) it created.3 Concretely,
the attacker’s goal is to compute a set of transactions that contains (most of)
the victim’s transaction(s) (i.e., maximize true positives) and as few as possible
transactions created by other nodes (i.e., minimize false positives). We refer to
this set of transactions as the victim’s anonymity set.

Fig. 1. (a) From the networking viewpoint, the attacker (AS2) naturally i.e., accord-
ing to BGP, intercepts some of the victim’s connections. (b) From the application
viewpoint, the attacker (partially) surrounds the victim without establishing any new
connection. Surrounding the victim allows the attacker (AS2) to read the unencrypted
Bitcoin messages the victim node A sends and receives.

Attacker’s Profile. The attacker is an Autonomous System (AS) or Internet
eXchange Point (IXP) that naturally (i.e., according to BGP’s calculations)
intercepts any direction of X% of the victim’s connections and knows the victim’s
IP.4 Due to the centralization of the Internet traffic, multiple ASes and IXPs
intercept a large portion of a host’s connections even if they are not their direct
provider, as we show in Sect. 5.

Attack Procedure. The attack consists of eavesdropping on the victim’s con-
nections and analyzing collected data to distinguish the victim’s transaction(s).
Concretely, the adversary first leverages her position in the Internet to gain vis-
ibility over the transactions that the victim propagates. We refer to this process
as surrounding since the adversary creates a logical circle around the victim
across which she can observe the incoming and outgoing information. Notably,
the adversary surrounds the victim in a purely passive and undetectable man-
ner, as she only observes traffic that she anyway forwards. Next, the adversary

3 Such an attack is very harmful to the victim because an attacker can often link all
other transactions the victim made to the deanonymized one [39].

4 Finding the IP of a person is practical as it is revealed every time this person visits
a website or an application e.g., skype call.
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computes statistics on the transactions the victim advertises and uses anomaly
detection to find the victim’s transactions. Useful statistics include the number
of times the victim or its peers sent or received a transaction.

3.2 PERIMETER in Action

An Example Scenario. Figure 1a illustrates how an attacker running Perime-
ter can deanonymize Bitcoin transactions. This network is composed of seven
ASes (AS0 - AS6), some of which host Bitcoin clients (nodes A-G). Traffic
between each pair of nodes is forwarded following the AS-path that BGP calcu-
lates. As a result, AS2 intercepts the connections between node A and nodes B,
C, D and E. Assume that AS2 is malicious and aims at deanonymizing Alice’s
transactions. AS2 knows the IP of the node on which Alice runs her Bitcoin
wallet, namely the IP of node A. Thus, AS2 aims at mapping node A to the
transaction(s) it generates, TX#33 in this example.

Fig. 2. To deanonymize Alice’s transaction in Ethereum, the attacker (AS2) connects to
some of the victim’s peers. AS2 infers some of the victim’s peers’ IPs by eavesdropping
on the victim’s connections. (b) In effect, the attacker indirectly surrounds the victim
from the application viewpoint.

PERIMETER Attack on Bitcoin. AS2 eavesdrops on the victim’s connections
that she naturally intercepts and creates the initial anonymity set from the
transactions that node A propagates i.e., TX #15, TX #11, TX #35, and
TX #33. From the application viewpoint, AS2 has passively formed a (partial)
logical circle around the victim, as illustrated in Fig. 1b. Next, AS2 tries to
reduce the size of the anonymity set by removing transactions that are most
likely not generated by the victim. AS2 knows that a Bitcoin node only receives
transactions it requests and only requests transactions it does not know already.
Thus, AS2 excludes TX #35 from the anonymity set as AS2 has observed node
A receiving TX #35 from node C. AS2 cannot use the same technique for TX
#15 and TX #11 because AS2 does not intercept the victim’s connections to
the nodes from which it received these transactions, i.e., nodes F and G. Instead,
AS2 uses anomaly detection to find the victim’s transaction, which appears as
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an anomaly with respect to its propagation pattern. For instance, the number
of peers that requested TX #33 from node A is higher for TX #33 than for
any other transaction. We elaborate on the anomaly detection procedure and
the features used in Sect. 4.

3.3 Generalizing PERIMETER to Ethereum

Figure 2a illustrates the same attack scenario as before but with nodes A-G
belonging to the Ethereum network. We now explain how AS2 could use Perime-
ter to deanonymize node A in this case. Unlike Bitcoin, Ethereum connections
are encrypted, meaning that AS2 cannot directly read the content of the mes-
sages the victim exchanges with its peers. To deanonymize an Ethereum client,
AS2 uses the observation made by Biryukov et al. [20] according to which a node
can be uniquely identified in a single session by its directly connected neighbor-
ing nodes. Unlike in the attack presented by Biryukov et al. [20] that used a
Bitcoin-specific flaw to infer connections, in Perimeter, the attacker can infer
the IP addresses of the victim’s peers by reading the unencrypted headers of
the packets the victim node A inevitably sends and receives. After connecting
to some of the victim’s peers,5 distinguishing the victim’s transactions (across
those its peers propagate) is strictly more straightforward than for Bitcoin. That
is the case as most Ethereum nodes (geth version [6]) advertise the new transac-
tions immediately to their peers. From the application viewpoint, the adversary
has again partially surrounded the victim, as seen in Fig. 2b.

4 PERIMETER Workings

Having described the Perimeter attack at the high-level in Sect. 3, we now elab-
orate on Perimeter’s technical details. Concretely, we describe how the attacker
(i) distinguishes Bitcoin traffic (Sect. 4.1); (ii) retrieves propagated transactions
(Sect. 4.2); and (iii) uses anomaly detection (Isolation Forest) to find the vic-
tim’s transaction(s) (Sect. 4.3). Finally, we discuss the features the attacker uses
(Sect. 4.4).

4.1 Recognizing Bitcoin Traffic

The adversary surrounds the victim node and reads the data exchanged in the
Bitcoin connections to create the initial anonymity set. To do so, the adversary
first needs to distinguish Bitcoin traffic across all the connections she intercepts.
The adversary can easily distinguish Bitcoin traffic since most clients use a par-
ticular TCP port, i.e., 8333. Notably, the adversary can recognize the Bitcoin
connections, even between clients using another TCP port. To do so, the adver-
sary can search on the packet payload to find known Bitcoin message types,

5 Ethereum facilitates connecting to a client using its IP (i.e., discovery v4 UDP
packet).
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e.g., “inv” or “getdata”. Indeed, the adversary can perform string searching at
line-rate even in commodity hardware [32]. Importantly, the adversary performs
string search on a single packet per connection. Once she finds a Bitcoin message
in a packet of a connection, she can use a filter that matches on the 4-tuple of
the TCP connection (i.e., IP addresses and TCP ports) to distinguish it.

4.2 Creating the Initial Anonymity Set

To create the initial anonymity set, the attacker needs to distinguish all trans-
actions that the victim itself or its peers have advertised. This is challenging as
Bitcoin messages can be split among multiple packets, and those packets can
be re-ordered, lost, and re-transmitted while being transferred in the Internet.
As a result, concatenating each Bitcoin connection’s payloads (packet stream)
would not result in the complete list of messages that the corresponding clients
exchanged (message stream). To reconstruct the message stream, the adversary
can use tools such as GoPacket [7] that leverage the sequence number contained
in the TCP header.

Next, the adversary includes in the anonymity set the hashes of the trans-
actions that are included in three types of messages, namely “inv”, “getdata”,
and “tx”. Finally, the adversary calculates statistics per transaction hash. Par-
ticularly, she calculates the number of “inv”, “getdata”, and “tx” that are sent
and received per transaction.

4.3 Analyzing Data

Having collected the initial anonymity set, the adversary needs to reduce it to
the transactions that the victim created. Doing so is challenging for two reasons.
First, the number of transactions the victim propagates is orders of magnitude
higher than those that it creates. Second, the adversary does not have ground
truth to train on (e.g., transactions that the victim created).

To address these challenges, the adversary formulates the problem to an
unsupervised anomaly detection problem, meaning a problem that requires iden-
tifying data points that differ from the norm (i.e., anomalies) in an unlabeled
dataset. Doing so allows the attacker to train directly on the traffic she observes,
leveraging the fact that the victim’s transactions are a tiny minority compared
to all transactions the victim propagates. As a result, the attacker can learn the
most common propagation pattern and distinguish the victim’s transactions as
anomalies. Indeed, the victim’s transactions will exhibit different propagation
patterns, e.g., the victim will propagate the transaction it generates to more
peers compared to other transactions.

The attacker uses an Isolation Forest (IF) [35,36] to solve this unsupervised
anomaly detection problem since IF is more efficient, expressive, and inter-
pretable than clustering-based approaches or neural networks. Concretely, IF is
more efficient, especially with high-dimensional data, than distance-based meth-
ods, including classical nearest-neighbor and clustering-based approaches. This
is because IF is a tree-based machine learning algorithm that directly identifies
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anomalies by isolating outliers in the data rather than first defining the normal
behavior and calculating point-based distances. Finally, in contrast to neural
network methods, such as autoencoders, IF is easy to interpret, and it is not
too sensitive to parameter tuning. IF achieves this by building an ensemble of
decision trees to partition the data points. To create these trees, IF recursively
generates partitions by randomly selecting a feature and then selecting a ran-
dom split value between the minimum and the maximum value of the selected
feature. The number of required random splits to isolate a sample averaged over
a forest of such random trees determines the normality of a sample. IF leverages
the observation that anomalies are more natural to isolate, and thus they need
fewer splits on average than normal data points.

4.4 Feature Selection

We started our feature investigation with a pool of features, including some
timing-related and some interaction-related (i.e., related to the interaction
between the victim and its peers). Using cross-validation in our simulation
runs (see Sect. 6.1), we selected three interaction-related features: (i) number
of “getdata” messages; (ii) number of “tx” messages; and (iii) the portion of
clients which requested a transaction. Next, we describe the features in detail
and explain why they allow the victim’s transaction(s) to stand out as anomalies.

The number of “getdata” messages that the victim received per trans-
action: This is equivalent to the number of times the victim sent a transaction.
Thus, the adversary can capture this feature independently of the direction of the
victim’s connections she intercepts. A Bitcoin client will only send a “getdata”
for an advertised transaction if it has not received this transaction before. Thus,
the victim is expected to receive more “getdata” for a transaction it created, as
its peers are unlikely to have received it from others.

The number of “tx” messages the victim received per transaction: If the
victim received a transaction from one of its peers, then the victim could not
have created it. That is because, in order for the victim to receive a transaction,
it should have requested this transaction from its peer, and thus, it should not
have known this transaction beforehand. The number of “tx” the victim received
for a transaction is equivalent to the number of “getdata” the victim sent. In
effect, an AS-level (or IXP-level) adversary would be able to calculate this feature
independently of the direction of traffic she intercepts, namely to or from the
victim node.

The portion of clients that requested a transaction from the victim
across those the victim advertised this transaction to: This feature is similar to
the number of “getdata” with one critical difference. It considers that because
of diffusion, the victim might delay advertising its transaction to some of the
peers so much that they learn it from elsewhere. The victim’s transaction will
have a high request/advertisement ratio because the victim knows about the
transaction much earlier than its peers.
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5 PERIMETER’s Practicality

As we described in Sect. 3, an effective Perimeter attacker needs to naturally
intercept some of the victim’s connections. In this section, we show that this
attacker model is practical, taking into consideration both real-world Internet
routing and the two biggest cryptocurrency peer-to-peer networks, namely the
Bitcoin and the Ethereum networks. To that end, we first investigate how likely
it is for a given cryptocurrency client to be vulnerable to Perimeter. We found
that for 50% of the Bitcoin (60% of the Ethereum) clients, there are at least four
distinct network adversaries that can intercept 30% of their connection. Second,
we investigate how likely it is for a random transaction to be deanonymized. We
found that only five network adversaries (if they were colluding) would be able
to deanonymize the majority of transactions created in Bitcoin. We describe our
methodology in Sect. 5.1 before we summarize our results in Sect. 5.2.

5.1 Methodology

To realistically evaluate the practicality of the Perimeter attack, we simulated
BGP [9], the default routing protocol in the Internet. Particularly, for each pair
of ASes in the Internet, we compute the BGP AS-path: the sequences of ASes
and IXPs that can intercept packets sent by clients hosted in this AS pair.
We then calculated the ability of various ASes and IXPs to perform various-
powered Perimeter attacks against the Bitcoin and Ethereum clients. Notably,
we augment the routing analysis of the Bitcoin network presented in [17] by
adding IXP links and by analyzing the Ethereum network.

Fig. 3. Both Bitcoin and Ethereum are vulnerable to Perimeter’s attacker model.

We used three datasets for our evaluation: (i) the IPs of the Ethereum and
Bitcoin clients; (ii) the BGP advertised routes; and (iii) the publicly-available
economic relationship among ASes and IXPs.

Ethereum & Bitcoin IPs to ASes. We fetched the IPs of the Bitcoin and
Ethereum from publicly available data [12,13]. We removed onion addresses as
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we could not assign them to actual IPs. Next, we inferred the most-specific prefix
and the AS hosting each Bitcoin and Ethereum client. To that end, we processed
almost a million BGP routes (covering all Internet prefixes) advertised on BGP
sessions maintained by 6 RIPE BGP collectors [10] (rrc00- rrc05). We do the
mapping by associating each prefix to the origin AS advertising it.

AS-Level Topology and Forwarding Paths. To infer an AS-level topology,
we used the economic relationships between ASes provided by CAIDA [25]. An
AS-level topology is a directed graph in which each node corresponds to an AS,
and each link represents an inter-domain connection between two neighboring
ASes. Each link is also labeled with the business relationship between the two
ASes (customer, peer, or provider). We augmented our AS-level topology with
IXP links provided by CAIDA [26] following the methodology in [15,37].

Our augmented AS-level topology is composed of ∼67 K ASes, more than
∼700 IXPs, and ∼4M links. Our datasets were collected in September 2019. We
computed the actual forwarding paths on our AS-level topology following the
routing tree algorithm described in [30].

5.2 Findings

Using the Internet topology described in Sect. 5.1, we calculated how vulnerable
individual clients are to Perimeter and how likely it is for a transaction to be
deanonymized.

The Majority of Bitcoin Clients are Vulnerable to PERIMETER by Mul-
tiple Potential Attackers. We calculated the number of distinct attackers able
to intercept a fraction of the potential victims’ connections. We summarize our
results in Fig. 3a. The x-axis corresponds to the number of distinct attackers
that can perform a Perimeter attack against the portion of the Bitcoin clients
shown in the y-axis. We consider four attack types depending on the fraction of
the victim’s traffic that the attacker intercepts. Specifically, we consider attack-
ers intercepting 30%, 50%, 70%, and 90%, which correspond to different lines
in the plots. As expected, all Bitcoin clients are vulnerable to Perimeter by
their own provider, which intercepts >90% of their connections. Interestingly
though, >90% of all Bitcoin clients are also vulnerable to Perimeter by at
least one more network adversary. Moreover, we observe that for 50% of the
Bitcoin clients, there are at least 4 attackers able to intercept 30% of their con-
nections. This is worrying as such adversaries can deanonymize Bitcoin clients
with at least 70% accuracy, as we observe from our experiments in the Bitcoin
Mainnet (see Sect. 6). Worse yet, for 20% of the Bitcoin clients, there are at least
4 potential attackers that can perform the Perimeter attack leveraging their
access to 50% of the victims’ connections.

PERIMETER’s Attacker Model is Practical in the Ethereum Network.
We plot the same results for Ethereum in Fig. 3b. We observe that Ethereum
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is slightly more vulnerable than Bitcoin to a passive AS-level (or IXP-level)
adversary. Particularly, we observe that for most clients, there are four distinct
network adversaries intercepting 30% of their connections. Observe that these
adversaries can almost effortlessly infer 30% of the clients’ peers. This is wor-
rying considering that geth [6], the most used Ethereum version [12], does not
implement diffusion or any other randomized broadcast mechanism.

Fig. 4. 5 network adversaries intercept 72% (80%) of all possible Bitcoin (Ethereum)
connections.

Few Well-Established Attackers Can Perform a Network-Wide
Deanonymization Attack. Figure 4 illustrates the cumulative percentage of
connections that can be intercepted by an increasing number of ASes or IXPs
(e.g., by colluding with each other). We observe that only ten ASes/IXPs
together intercept 90% of the Ethereum clients and 85% of the Bitcoin clients.
If those ten network providers decided to collude, they would be able to
deanonymize 85% of all transactions in Bitcoin and able to infer at least 90% of
the Ethereum peer-to-peer graph. This is especially alarming considering that
the attack is entirely passive; thus, there is no reputation risk involved in per-
forming it. As an intuition, the list of the most powerful attackers include ASes
such as Amazon, Alibaba, DigitalOcean, and OVHcloud but also large IXPs
such as DataIX Novosibirsk, the Amsterdam Internet Exchange, the Hong Kong
Internet Exchange, and London Internet Exchange.

6 PERIMETER’s Effectiveness

We evaluate the effectiveness of Perimeter in simulation (Sect. 6.1) and in
the wild (Sect. 6.2). We found that an attacker intercepting 25% of the victim’s
connections can deanonymize a client with 70% accuracy in the Bitcoin Mainnet.
Unsurprisingly, the Perimeter attack appears even more effective in simulation.
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6.1 PERIMETER in Simulation

We evaluated Perimeter using a realistic simulation whose delays we have
tuned based on Internet-wide measurements. We elaborate on our methodology
before we describe our results.

Simulator. We modeled the entire Bitcoin networks by extending the realistic
event-driven simulator used in [17]. We used the 0.19.1 version of the Bitcoin
Core as a reference for the behavior of the Bitcoin clients. Among other imple-
mentation details, we simulated diffusion: the poisson delay that a node waits
before advertising a new transaction to each peer and the preference to outgoing
connections in advertising and in requesting transactions [3]. We simulated all
nodes whose IPs were reachable, and we could locate in the Internet as described
in Sect. 5.

Simulating Internet Delays. To realistically model Internet delays among
clients in our simulation, we leveraged the RIPE Atlas platform. RIPE Atlas [1]
is a data collection system composed of a global network of devices, called probes,
that can actively perform Internet measurements. In particular, to estimate the
delay between each pair of Bitcoin nodes, we measure the delay between probes
in the ASes hosting these Bitcoin nodes. Indeed, Internet delay between two
particular hosts located in any AS-pair is representative of the delay between any
pair of hosts in the same AS-pair. That is because the Internet path between any
pair of hosts in the same AS-pair is common. We performed ping measurements
for each pair of ASes say (ASA, ASB) in which there are at least two Bitcoin
clients (e.g., one Bitcoin client in ASA and one in ASB) and at least one RIPE
probe available (i.e., either in ASA or in ASB). If multiple probes existed in
the same AS, we used one for each prefix in which at least one client is hosted.
We perform each measurement at least three times and use the median delay.
Our measurement campaign lasted 7 h and included ∼50 K pings. We leveraged
delay measurements available from RIPE atlas [2] to add the delays of AS-pairs,
which we could not measure ourselves. Together these delay measurements cover
72% of the Bitcoin connections.

We configure the delay of each node pair in the simulation with a randomly-
selected value across the delays measured in the corresponding AS-pairs. We
validated our augmented simulator by ensuring that the median transaction
propagation delay aligns with the value reported in [14].

Procedure. We simulated a total of 10000 transactions, among which 100 were
created by the victim client. We use 70% of all transactions for training and 30%
for testing. For feature selection, we use 5-fold cross-validation on the training
set. We run the attack assuming the adversary intercepts a fraction of the vic-
tim’s connection i.e., 25%, 50%, 75%, 100%.

Results. We summarize our results in Table 1. We observe that an attacker can
always (i.e., almost independently of the percentage of connections she inter-
cepts) deanonymize the victim with 100% true positive and low false-positive
rate. This is expected because the simulated environment is idealized. In par-
ticular, all clients run the same code, are benign and are in the same condition
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Table 1. In simulation, an adversary
deanonymizes the victim with 100%
accuracy even when intercepting 25%
of its connections.

Simulation 25% 50% 75% 100%

True positives 1 1 1 1

False positives 0.002% 0.002% 0.001% 0%

Table 2. In the wild, an adversary
deanonymizes the victim with 90%
accuracy when intercepting 50% of its
connections.

Mainnet 25% 50% 75% 100%

True positives 0.7 0.9 0.9 1

False positives 0.002% 0.003% 0.003% 0.0%

concerning load. Such an environment creates a straightforward case for anomaly
detection.

6.2 PERIMETER in the Wild

We evaluated Perimeter on the actual Bitcoin network. We describe our
methodology before we describe our results.

Methodology. For our in-the-wild experiment, we used as victim a Bitcoin
node version 0.19.1 of the Bitcoin Core running. Since we only attack our own
node, our experiment is ethical: we did not disturb the normal operation of the
Bitcoin network in any way. We configured our victim to not listen for incom-
ing connections but instead only connect to a predefined set of peers randomly
selected across those in [13].6 We capture a total of ∼30 K of transactions, among
which 10 transactions were created by our victim. As the attack is completely
passive, we use the same transactions to measure the effectiveness of various
powered adversaries. In particular, we run the attack assuming the adversary
intercepts a fraction of the victim’s connection i.e., 25%, 50%, 75%, 100%.

We split the resulting dataset into the training and testing sets. We used all
the victim’s transactions and 30% of the transactions from other clients as the
testing set. We included all of the victim’s transactions in the testing to have a
more accurate estimate of true positives. In any case, the victim’s transactions
are too few to affect the training of the model. We used the remaining 70% of
transactions from other clients as the training set. Finally, we used the features
we selected in the simulation, and we describe them in Sect. 4.4.

Results. Table 2 summarizes our results. We observe that an adversary inter-
cepting only 25% of the victim’s connections can deanonymize it with 70% true
positives and only 0.002% false positives. Moreover, an adversary intercepting
50% of a client’s connections (or more) can deanonymize the victim with 90%
accuracy (or above). As a baseline, consider that previous attacks using “supern-
odes” report accuracies of 11%–60% [20] and 75% [22], thus lower than Perime-
ter. This demonstrates the effectiveness of a network-layer attacker exploiting
her access over the Internet infrastructure.
6 We do not allow incoming connections to prevent attacks from light clients during

the experiment.
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7 Countermeasures

The Perimeter attack poses a serious and practical threat to the anonymity
properties of Bitcoin, as shown in Sect. 5 and Sect. 6. We argue that such a threat
should and can be avoided for current and future cryptocurrencies by employing
the following countermeasures.

Encrypting Traffic. One of the most critical enablers of the Perimeter attack
is that traffic is routed over the Internet unencrypted. Undoubtedly, encrypting
Bitcoin’s traffic would make the currency more anonymous, from the Perime-
ter’s perspective. Still, encryption alone cannot adequately mitigate the threat
of passive AS-level adversaries. Observe that the Perimeter attack generalizes
to Ethereum, whose traffic is encrypted, even though, in this case, the attacker
also needs to establish new connections.

Using Fake Peers. Perimeter generalizes to encrypted cryptocurrencies
(e.g., Ethereum) because of the networking footprint of its clients. Particularly,
a Perimeter attacker can infer a client’s peers by eavesdropping on this client’s
connections. Inferring a client’s peers is critical for its deanonymization [34]. To
shield against this attack, a client could establish connections to ‘fake” peers with
which it does not interact in practice, effectively deceiving a potential attacker
into connecting to irrelevant clients. In doing so, the client should not request or
store any transaction from fake peers; neither should it not advertise new trans-
actions to them. In effect, the client obfuscates its footprint from a networking
attacker.

Obfuscating the Client’s State. One of the key features used to deanonymize
Bitcoin clients in the Perimeter attack is whether the victim requested (or
received) a particular transaction from any of its observed peers. By requesting a
transaction, the client reveals to a networking attacker (or potentially malicious
client) that they do not know about a transaction and thus that they have
not created it. As a result, the adversary can safely exclude some transactions,
effectively decreasing the initial anonymity set. This is also true for the Ethereum
geth client [6]. To avoid this, a client should also request the transactions it
creates from peers that advertise them. While by doing so, the client increases
its load without learning anything new, it also deprives potential attackers of an
extremely effective feature. Notably, obfuscating the transactions a client knows
by requesting them is aligned with obfuscating the transactions a light client
is interested in by requesting more transactions (i.e., using Bloom Filters in
Bitcoin’s BIP37 [31]).

Routing-Aware Transactions’ Requests. Instead of requesting more trans-
actions to obfuscate its state, a client can achieve a similar effect by carefully
selecting the peer from which it requests an unknown transaction. Particularly,
a client should request transactions in a routing-aware manner, meaning avoid
requesting multiple transactions from clients whose connections are intercepted
by the same AS or IXP. In effect, an adversary is unlikely to have an accurate
view of which transactions the victim knew.
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Routing-Aware Transactions’ Advertisement. While Perimeter does not
directly use timing information, previous works [20,22,34] have shown the need
for obfuscating the first-ever propagation of a transaction from each node. In
fact, this need has motivated countermeasures, such as the adoption of diffu-
sion in the Bitcoin Core and the creation of Dandelion [28]. We argue that such
improvements need to also account for AS-level adversaries. Particularly in diffu-
sion, one could increase the delay for clients whose path contains a very common
AS or IXP. Similarly, the first node to advertise a transaction in the Dandelion
protocol could be selected (in addition to the current criteria) such that the
created traffic does not often traverse the same AS or IXP.

Using Tor or VPN Services. The goal of the Perimeter attacker is to
link transactions to IP addresses. Thus, if a client manages to obfuscate its IP
address by using Tor or a VPN service, it should be protected against some of
the potential attackers. Unfortunately, this statement is only partially true. Tor
is anonymous by design but has performance and security limitations, while a
VPN is less anonymous but more robust. Regarding Tor, a network adversary
can easily prevent the client from using Tor either by exploiting the Dos mech-
anism [21] or by merely dropping the corresponding traffic. Observe that the
latter is possible as the IPs of all Tor relays are publicly known, and the adver-
sary might intercept the corresponding connections. Even if the client manages
to use Tor, it would still be vulnerable to deanonymization by a network attacker
that leverage timing analysis [47]. On the contrary, using a VPN service would
be an effective countermeasure if the VPN provider is used by other Bitcoin users
and/or the victim is not using the same VPN provider for additional communica-
tion. Indeed, an attacker would still be able to map the victim’s transactions to
the VPN provider’s IP. Thus, it is critical that the attacker cannot also trivially
map the victim’s identity to the VPN provider’s IP.

8 Related Work

Deanonymizing Cryptocurrency Transactions. Researchers have studied
Bitcoin’s anonymity properties from two angles: the blockchain analysis and the
traffic analysis of the P2P network. From the blockchain-analysis angle, sev-
eral papers have shown that linking transactions made by the same user relying
on publicly available blockchain data is possible [16,39,41–43] even across ses-
sions. These works are orthogonal to ours. From the traffic-analysis angle, several
papers have shown that linking transactions to IPs is possible by analyzing data
collected from one or multiple “supernodes” [20,22,34,40], which establish con-
nections to all reachable clients. Unlike, Perimeter such attacks are visible as
the attacker needs to maintain thousands of outbound connections. Moreover,
these attacks can be mitigated by existing techniques such as diffusion, increasing
delay to inbound connections [3], and Dandelion [23,28].

AS-Level Adversaries. AS-level attacks can be active or passive [46]. In an
active attack, the adversary performs BGP hijacks. Active adversaries can parti-
tion the Bitcoin network [17], deanonymize Tor [47], and compromise certificate
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authorities’ infrastructure [19]. While effective, active AS-level adversaries are
highly visible. In a passive attack, the adversary operates on traffic that she natu-
rally intercepts. Passive adversaries can eclipse clients [48] and delay blocks [17].
Perimeter is orthogonal to the above works as it acts against anonymity while
being completely invisible (passive attacker).

Measuring Cryptocurrency Networks. Apostolaki et al. [17] presented the
first analysis of the Bitcoin network from the routing perspective. Our analysis
augments this by including IXPs in the AS-level topology and by analyzing
the Ethereum network. Gencer et al. [29] analyzed both Ethereum and Bitcoin
from the bandwidth, availability, and geographic distribution perspective but not
from the routing perspective. Finally, Saad et al. [45] presented a measurement
analysis on the AS distribution, location, and performance of Bitcoin clients,
also not considering Internet routing.

Countermeasures. To the best of our knowledge, none of the existing coun-
termeasures against previous attacks protects against Perimeter. Countermea-
sures against deanonymization attacks such as Dandelion [23,28] do not prevent
AS-level attacks as the selection of the first peer who receives a new transac-
tion is independent of the AS-level topology. Relay networks such as Falcon [4],
SABRE [18], and FIBRE [5] are irrelevant to Perimeter as they focus on block
propagation. Mixing protocols [24,44] allow users to obscure transaction history
but cannot prevent a Perimeter attacker from mapping the IP of a node with
a transaction that this node created. Finally, a recent modification in Bitcoin
Core [8] reduces the chances of a client to select peers from the same AS by
improving IP bucketing. While this might be effective against [48], it cannot
prevent Perimeter. That is because this selection only affects outgoing con-
nections, and most importantly, it does not consider the AS-path.

9 Conclusion

This paper presented Perimeter, the first passive network-level deanonymiza-
tion attack that is practical and effective against Bitcoin. We showed that
Perimeter is stealthier than previous deanonymization attacks while achiev-
ing higher accuracy. We revealed that Bitcoin and Ethereum are vulnerable to
the Perimeter’s attacker model based on real-world data. While Perimeter
poses a severe threat to Bitcoin and similar cryptocurrencies, we also explained
a comprehensive list of deployable countermeasures.
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string searching on pisa. In: Proceedings of the 2019 ACM Symposium on SDN
Research, pp. 21–28 (2019)

33. Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in bitcoin-like
digital cash systems. IEEE Commun. Surv. Tutorials 20(3), 2543–2585 (2018)

34. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using
P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 30

35. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE (2008)

36. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans.
Knowl. Discovery Data (TKDD) 6(1), 1–39 (2012)

37. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.: As relationships,
customer cones, and validation. In: Proceedings of the 2013 Conference on Internet
Measurement Conference, pp. 243–256 (2013)
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Abstract. Payment channel networks, and the Lightning Network in
particular, seem to offer a solution to the lack of scalability and privacy
offered by Bitcoin and other blockchain-based cryptocurrencies. Previous
research has focused on the scalability, availability, and crypto-economics
of the Lightning Network, but relatively little attention has been paid to
exploring the level of privacy it achieves in practice. This paper presents
a thorough analysis of the privacy offered by the Lightning Network,
by presenting several attacks that exploit publicly available information
about the network in order to learn information that is designed to be
kept secret, such as how many coins a node has available or who the
sender and recipient are in a payment routed through the network.

1 Introduction

Since its introduction in 2008, Bitcoin [29] has become the most widely adopted
cryptocurrency. The decentralized and permissionless nature of Bitcoin allows
all users to join the network and avoids the need for intermediaries and author-
ities who control the flow of money between them. Instead, the validity of each
transaction is verified by a consensus decision made by the network participants
themselves; valid transactions are then recorded in the public blockchain. The
blockchain thus acts as a ledger of all transactions that have ever taken place.

The need to broadcast transactions to all peers in the network and store
them in a permanent ledger, however, presents two problems for the longevity
of blockchain-based cryptocurrencies. First, it imposes severe scalability limita-
tions: the Bitcoin blockchain today is over 300 GB, and Bitcoin can achieve
a throughput of only ten transactions per second. Other cryptocurrencies
achieve somewhat higher throughputs, but there is an inherent tradeoff in these
broadcast-based systems between throughput and security [11,14]. Second, the
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transparent nature of the ledger means anyone can observe the flow of coins,
identify the counterparties to a transaction, and link different transactions. This
has been shown most decisively for Bitcoin [4,27,35,39,41], but this type of anal-
ysis extends even to cryptocurrencies that were explicitly designed with privacy
in mind [6,17,19,23,28,34,48].

The most promising solutions that have been deployed today to address the
issue of scalability are so-called “layer-two” protocols [15], with the Lightning
Network (LN) [33] emerging as the most popular one since its launch in March
2018. In Lightning, pairs of participants use the Bitcoin blockchain to open and
close payment channels between themselves. Within a channel, these two users
can make arbitrarily many off-chain payments between themselves, without hav-
ing to use the blockchain. Beyond a single channel, Lightning supports multi-hop
payment routing, meaning even participants who are not connected directly can
still route payments through a broader payment channel network (PCN). Nodes
in the network are incentivized to route payments by a fee they can charge for
payments they forward.

In addition to the promise it shows in improving scalability, Lightning also
seems to address the issue of privacy. As we elaborate on in Sect. 2, the nodes
in the network and most of the channels in the network are publicly known in
order to build up the PCN (although some channels may be kept private), as
is the capacity of a given channel, meaning the maximum payment value that
can be routed through it. The individual balances associated with the channel,
however, are kept secret. Furthermore, payments are not broadcast to all peers
and are not stored in a public ledger. Even if a payment passes through multiple
channels, onion routing is used to ensure that each node on the path can identify
only its immediate predecessor and successor.

As is the case with ledger-based cryptocurrencies, however, the gap in Light-
ning between the potential for privacy and the reality is significant, as we show
in this work. In particular, we consider four main privacy properties promised
by LN [2,24]:

Private channels should allow two nodes to share a channel but keep its exis-
tence, along with all of its information (capacity, participants, etc.), hidden
from the rest of the network. We explore this property in Sect. 3.2 by present-
ing a heuristic that identifies on-chain funding of private channels and one or
even both of the participants.

Third-party balance secrecy says that although the capacity of the channel
is public, the respective balances of the participants should remain secret.
We explore this property in Sect. 4 by presenting and evaluating a generic
method by which an active attacker (i.e., one opening channels with nodes in
the network) can discover channel balances.

On-path relationship anonymity says that intermediate nodes routing the
payment should not learn which other nodes, besides their immediate prede-
cessor or successor, are part of the payment’s route. We explore this property
in Sect. 5, where we leverage an LN simulator we developed (described in



An Empirical Analysis of Privacy in the Lightning Network 169

Sect. 5.1) to evaluate the ability of an intermediate node to infer the sender
and recipient in payments that it routes.

Off-path payment privacy says that any node not involved in routing a pay-
ment should not infer any information regarding the routing nodes or the
payment value. We explore this property in Sect. 6 by presenting and evalu-
ating a method by which an active attacker can use the ability to discover
balances to form network snapshots. By comparing consecutive network snap-
shots, the attacker can infer payments by identifying where and by how much
the balances of channels changed.

1.1 Ethical Considerations

The attacks presented in Sects. 5 and 6 are evaluated on a simulated network
rather than the live one, but our attack in Sect. 4 is evaluated on the live test
network. As in related active attacks on Bitcoin [7,8,22], we made every effort
to ensure that our attacks did not interfere with the normal functioning of the
network: the messages sent during the attack have no abnormal effect and do
not cost any money to process, and their volume is relatively modest (we sent
at most 24 messages per node we attacked). We thus believe that they did not
have any long- or short-term destructive effect on the nodes that processed them.
We disclosed the results of this paper to the developers of the three main LN
clients and the liquidity provider Bitrefill in February 2020, and have discussed
the paper with the Lightning developers since then.

1.2 Related Work

We consider as related all research that focuses on the Lightning Network, par-
ticularly as it relates to privacy. Most of the previous research has focused on
the scalability, utility and crypto-economic aspects of LN [9,20,21,24,45], or on
its graph properties [26,40]. Rohrer et al. [37] study the susceptibility of LN to
topology-based attacks, and Tochner et al. [44] present a DoS attack that exploits
how multi-hop payments are routed. Among other findings, they show that the
ten most central nodes can disrupt roughly 80% of all paths using their attack.
Pérez-Solà et al. [32] present an attack that diminishes the capacity of a node’s
channels, preventing it from participating in the network. Tikhomirov et al. [42]
show how a wormhole attack prevents honest intermediaries from participating
in routing payments.

In terms of privacy, Malavolta et al. [25] identify a new attack exploiting
the locking mechanism, which allows dishonest users to steal payment fees from
honest intermediaries along the path. They propose anonymous multi-hop locks
as a more secure option. Nowatowski and Tøn [31] study various heuristics in
order to identify Lightning transactions on the Bitcoin blockchain. Concurrently
to our work, Romiti et al. [38] developed several heuristics to link Bitcoin wallets
to Lightning entities. One of their heuristics is similar to the tracing heuristic
we develop in Sect. 3.2, but their goal is to create augmented Bitcoin clustering
methods rather than identify private channels. As we describe further in Sect. 4,
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others have performed balance discovery attacks [16,30,43]. The main limitation
of these attacks is that they rely on specifics of the error messages the attacker
receives, so may easily become irrelevant as the network evolves. We overcome
this limitation by presenting a generic attack (in Sect. 4), as well as investigating
the implications of such an attack more broadly (in Sect. 6).

Béres et al. [5] look briefly at the question of finding the sender and recip-
ient of a payment. Similarly to our work, they develop an LN traffic simulator
based on publicly available network snapshots and information published by cer-
tain node owners. Their work considers only single-hop payments, however, and
does not look at other privacy properties. There are a number of other Lightning
network studies that use a network simulator [9,10,13,49]. Several of these simu-
lators were used to perform economic analysis of the Lightning network [9,13,49],
while the CLoTH simulator [10] provides only performance statistics (e.g., time
to complete a payment, probability of payment failure, etc.). However, all of
those simulators make several simplifying assumptions about the topology, path
selection algorithm, and distribution of payments. As such, they are not suitable
for an analysis of its privacy properties.

2 Background

In order to open a Lightning channel, two parties deposit bitcoins into a 2-of-2
multi-signature address, meaning any transaction spending these coins would
need to be signed by both of them. These funds represent the channel capacity ;
i.e., the maximum amount of coins that can be transferred via this channel.
Once a channel is established, its participants can use it to exchange arbitrarily
many payments, as long as either has a positive balance. They can also close the
channel using a Bitcoin transaction that sends them their respective balances
from the 2-of-2 multi-signature address.

Most users, however, are not connected directly, so instead need to route their
payments through the global Lightning Network. Here, nodes are identified by
public keys, and edges represent channels, which are publicly associated with a
channel identifier cid, the channel capacity C, and a fee fee that is charged for
routing payments via this channel. Privately, edges are also implicitly associated
with the inward and outward balances of the channel. Except for private chan-
nels, which are revealed only at the time of routing, the topology of this network
and its public labels are known to every peer.

When routing a payment, the sender (Alice) uses onion routing to hide her
relationship with the recipient (Bob). Alice selects the entire path to Bob (source
routing), based on the capacities and fees of the channels between them. The
eventual goal is that each intermediate node on this path forwards the payment
to its successor, expecting that its predecessor will do the same so its balance
will not change. The nodes cannot send the money right away, however, because
it may be the case that the payment fails. To thus create an intermediate state,
LN uses hashed time-lock contracts (HTLCs), which allow for time-bound con-
ditional payments. In summary, the protocol follow five basic steps to have Alice
pay Bob:
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1. Invoicing Bob generates a secret x and computes the hash h of it. He issues
an invoice containing h and some payment amount amt, and sends it to Alice.

2. Onion routing Alice picks a path A → U1 → · · · → Un → B. Alice then
forms a Sphinx [12] packet destined for Bob and routed via the Ui nodes.
Alice then sends the outermost onion packet onion1 to U1.

3. Channel preparation Upon receiving onioni from Ui−1, Ui decodes it to
reveal: cid, which identifies the next node Ui+1, the amount amti to send
them, a timeout ti, and the packet onioni+1 to forward to Ui+1. Before send-
ing onioni+1 to Ui+1, Ui and Ui−1 prepare their channel by updating their
intermediate state using an HTLC, which ensures that if Ui−1 does not pro-
vide Ui with the pre-image of h before the timeout ti, Ui can claim a refund
of their payment. After this is done, Ui can send onioni+1 to Ui+1.

4. Invoice settlement Eventually, Bob receives onionn+1 from Un and decodes
it to find (amt, t, h). If amt and h match what he put in his invoice, he sends
the invoice pre-image x to Un−1 in order to redeem his payment of amt. This
value is in turn sent backwards along the path.

5. Channel settlement At every step on the path, Ui and Ui+1 use x to settle
their channel; i.e., to confirm the updated state reflecting the fact that amti
was sent from Ui to Ui+1 and thus that amt was sent from Alice to Bob.

3 Blockchain Analysis

3.1 Data and Measurements

The Lightning network can be captured over time by periodic snapshots of the
public network graph, which provide ground-truth data about nodes (identi-
fiers, network addresses, status, etc.) and their channels (identifiers, capacity,
endpoints, etc.). To obtain a comprehensive set of snapshots, we used data pro-
vided to us by (1) our own lnd client, (2) one of the main c-lightning developers,
and (3) scraped user-submitted (and validated) data from 1ML1 and LN Big-
sun.2 To analyze on-chain transactions, we also ran a full Bitcoin node, using
the BlockSci tool [18] to parse and analyze the raw blockchain data.

Our LN dataset included the hash of the Bitcoin transaction used to open
each channel. By combining this with our blockchain data, we were thus able to
identify when channels closed and how their funds were distributed. In total, we
identified 174,378 channels, of which 135,850 had closed with a total capacity of
3315.18 BTC. Of the channels that closed, 69.22% were claimed by a single out-
put address (i.e., the channel was completely unbalanced at the time of closure),
29.01% by two output addresses, and 1.76% by more than two outputs.

3.2 Private Channels

Private channels provide a way for two Lightning nodes to create a channel but
not announce it to the rest of the network. In this section, we seek to understand
1 https://1ml.com/.
2 https://ln.bigsun.xyz/.

https://1ml.com/
https://ln.bigsun.xyz/
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the extent to which private channels can nevertheless be identified, to understand
their privacy limitations as well as the scope of our remaining attacks on the
public network.

We first provide an upper bound on the number of private channels using a
property heuristic, which identifies Bitcoin transactions that seem to represent
the opening and closing of channels but for which we have no public channel
identifier.

Property Heuristic. To align with our LN dataset, we first looked for all Bit-
coin transactions that (1) occurred after January 12, 2018 and (2) before Septem-
ber 7, 2020, and (3) where one of the outputs was a P2WSH address (which LN
channels have to be, according to the specification). We identified 3,500,312
transactions meeting these criteria, as compared with the 174,378 public chan-
nels opened during this period. We then identified several common features of
the known opening transactions identified from our dataset: (i) 99.91% had at
most two outputs, which likely represents the funder creating the channel and
sending themselves change; (ii) 99.91% had a single P2WSH output address; (iii)
99.85% had a P2WSH output address that received at most 16,777,215 satoshis,
which at the time of our analysis is the maximum capacity of an LN channel;
(iv) 99.99% had a P2WSH output that appeared at most once as both an input
and output, which reflects its “one-time” usage as a payment channel and not as
a reusable script; and (v) 99.99% were funded with either a WitnessPubHeyHash
address or ScriptHash address.

By requiring our collected transactions to also have these features and exclud-
ing any transactions involved in opening or closing public channels, we were left
with 267,674 potential transactions representing the opening of private channels.
If the outputs in these transactions had spent their contents (i.e., the channel
had been closed), then we were further able to see how they did so, which would
provide better evidence of whether or not they were associated with the Light-
ning Network. Again, we identified the following features based on known closing
transactions we had from our network data: (i) 100% had a non-zero sequence
number, as required by the Lightning specification [2]; (ii) 100% had a single
input that was a 2-of-2 multisig address, again as required by the Lightning
design; and (iii) 98.24% had at most two outputs, which reflects the two partic-
ipants in the channel.

By requiring our collected opening transactions to also have a closing trans-
action with these three features, we were left with 77,245 pairs of transactions
that were potentially involved in opening and closing private channels. Again,
this is just an upper bound, since there are other reasons to use 2-of-2 multisigs
in this way that have nothing to do with Lightning.

We identified 77,245 pairs of transactions that were potentially involved in
opening and closing private channels, but likely has a high false positive rate.
We thus developed a tracing heuristic, which follows the “peeling chain” [27]
initiated at the opening and closing of public channels to identify any associated
private channels.
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Tracing Heuristic. We next look not just at the properties of individual trans-
actions, but also at the flow of bitcoins between transactions. In particular, we
observed that it was common for users opening channels to do so in a “peel-
ing chain” pattern [27]. This meant they would (1) use the change in a channel
opening transaction to continue to create channels and (2) use the outputs in a
channel closing transaction to open new channels. Furthermore, they would often
(3) co-spend change with closing outputs; i.e., create a channel opening trans-
action in which the input addresses were the change from a previous opening
transaction and the output from a previous closing one.

By systematically identifying these operations, we were able to link together
channels that were opened or closed by the same Lightning node by following the
peeling chain both forwards and backwards. Going backwards, we followed each
input until we hit a transaction that did not seem to represent a channel opening
or closure, according to our property heuristic. Going forwards, we identified the
change address in a transaction, again using the property heuristic to identify
the channel creation address and thus isolate the change address as the other
output, and continued until we hit one of the following: (1) a transaction with no
change output or one that was unspent, meaning we could not move forwards, or
(2) a transaction that did not satisfy the property heuristic. We also did this for
all of the outputs in a known channel closing transaction, to reflect the second
pattern identified above.

We started with the 174,378 public channels identified in our LN dataset.
By applying our tracing heuristic, we ended up with 27,386 additional channel
opening transactions. Of these, there were 27,183 that fell within the same range
of blocks as the transactions identified by our property heuristic.

Using the tracing heuristic, however, not only identified private channels but
also allowed us to cluster together different channels (both public and private),
according to the shared ownership of transactions within a peeling chain [27]. To
this end, we first clustered together different channels according to their presence
in the same peeling chain, and then looked at the public channels within each
cluster and calculated the common participant, if any, across their endpoints. If
there was a single common participant, then we could confidently tag them as
the node responsible for opening all of these channels.

In order to find the other endpoint of each private channel, we followed
the closing outputs of the channel’s closing transaction, whenever applicable,
leveraging the second and third observed patterns in the tracing heuristic. In
particular, when a closing output was spent in order to open a new channel,
we performed the same clustering operation as earlier. We failed to identify
the second participant in each channel only when the channel was still open,
the channel was closed but the closing output was still unspent, or the closing
output was used for something other than Lightning.

Out of the 27,183 transactions we identified as representing the opening of
private channels, we were able to identify both participants in 2,035 (7.5%), one
participant in 21,557 (79.3%), and no participants in 3,591 (13.2%). Our identi-
fication method applies equally well, however, to public channels. We were able



174 G. Kappos et al.

to identify the opening participant for 155,202 (89.0%) public channels. Simi-
larly, for the public channels that were already closed, which represent 185,860
closing outputs, we were able to associate 143,577 (77.25%) closing outputs with
a specific participant.

4 Balance Discovery

Previous attacks designed to discover the balances associated with individual
channels (as opposed to just their capacity) [16,30,43] exploited debug infor-
mation as an oracle. In these attacks, an attacker opens a channel with a node
and routes a fake payment hash, with some associated amount amt, through its
other channels. Based on the error messages received and performing a binary
search on amt (i.e., increasing amt if the payment went through and decreasing
it if it failed), the attacker efficiently determines the exact balance of one side of
the channel. In this section we perform a new generic attack on the LN testnet.
As compared to previous attacks, our attacker must run two nodes rather than
one. If error messages are removed or made generic in the future, however, our
attack would continue to work whereas previous attacks would not.

The Attack. In our attack, an attacker running nodes A and D needs to form
a path A → B → C → D, with the goal of finding the balance of the channel
B → C. This means our attacker needs to run two nodes, one with a channel
with outgoing balance (A), and one with a channel with incoming balance (D).
Creating the channel A → B is easy, as the attacker can just open a channel
with B and fund it themselves. Opening the channel C → D is harder though,
given that the attacker must create incoming balance.

Today, there are two main options for doing this. First, the attacker can
open the channel C → D and fund it themselves, but assign the balance to C
rather than to D (this is called funding the “remote balance”). This presents
the risk, however, that C will immediately close the channel and take all of its
funds. We call this approach unassisted channel opening. The second option is
to use a liquidity provider (e.g., Bitrefill3 or LNBIG4), which is a service that
sells channels with incoming balance.5 We call this assisted channel opening.

Once the attacker has created the channels A → B and C → D, they route a
random payment hash H to D, via B and C, with some associated amount amt.
If D receives H, this means the channel from B to C had sufficient balance to
route a payment of amount amt. If D did not receive H after some timeout, the
attacker can assume the payment failed, meaning amt exceeded the balance from
B to C. Either way, the attacker can (as in previous attacks) repeat the process
using a binary search on amt. Eventually, the attacker discovers the balance of
the channel as the maximum value for which D successfully receives H.
3 https://www.bitrefill.com/.
4 http://lnbig.com/.
5 Bitrefill, for example, sells a channel with an incoming balance of 5000000 satoshis

(the equivalent at the time of writing of 493.50 USD) for 8.48 USD.

https://www.bitrefill.com/
http://lnbig.com/
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To a certain extent, this attack generalizes even to the case in which there
is more than one intermediate channel between the two attacker nodes. In this
more general case, however, the above method identifies the bottleneck balance
in the entire path, rather than the balance of an individual channel. In the event
of a payment failure though, the current C-lightning and LND clients return
an error index, which is the position of the node at which the payment failed.
This means that an attacker would know exactly where a payment failed along
a longer path. We chose not to use this index when implementing our attack,
in order to keep it fully generic and to test just the basic version, but leave an
attack that does use this index as interesting future research.

Attack Results. We performed this attack on testnet on September 3 2020.
We ran two LN nodes and funded all our channels (unassisted), both locally
and remotely, which required a slight modification of the client (as fully fund-
ing a remote channel is restricted by default). We opened channels with every
accessible node in the network. At the time of the attack there were 3,159 nodes
and 9,136 channels, of which we were able to connect to 103 nodes and attack
1,017 channels. We were not able to connect to a majority of the overall nodes,
which happened for a variety of reasons: some nodes did not publish an IPv4
address, some were not online, some had their advertised LN ports closed, and
some refused to open a channel.

Of these 1,017 channels, we determined the balance of 568. Many (65%) of
the channels were fairly one-sided, meaning the balance of the attacked party
was 70% or more of the total capacity. We received a variety of errors for the
channels where we were unsuccessful, such as TemporaryChannelFailure, or we
timed out as the client took more than 30 s to return a response.

We did not carry out the attack on mainnet due to cost and ethical consid-
erations, but believe it likely that the attack would perform better there. This
is because there is no cost for forgetting to close open channels on testnet or
maintain a node, whereas on mainnet a user is incentivized by an opportunity
cost (from fees) to ensure a node is maintained and its channels are active.

Attacker Cost. In our experiment we used testnet coins, which are of essen-
tially no value, so the monetary cost for us to perform this attack was negligible.
To understand the practical limitations of this attack, however, we estimate the
minimum cost on mainnet. When creating the outgoing channel A → B, the
attacker must pay for the opening and closing transaction fees on the Bitcoin
blockchain. At the time of our attack, this was 0.00043 BTC per transaction.
They must also remotely fund the recipient node with enough reserve satoshis to
allow the forwarding of high payments, which at present are 1% of the channel
capacity. To create the incoming channel C → D, the attacker can use liquidity
providers like Bitrefill, who at the time of writing allow users to buy channels
with 0.16 BTC incoming capacity for 0.002604 BTC.

Purchasing the cheapest incoming liquidity available today would cost the
attacker 0.00086 BTC and 0.005 BTC on hold, enabling routes to 4,811 chan-
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nels (with a total capacity of 45 BTC). This would require opening 2,191 chan-
nels with a maximum channel capacity of 0.04998769 BTC. In total, this would
require the attacker to spend 1.097 BTC and put 109.53 BTC on hold.

5 Path Discovery

We now describe how an honest-but-curious intermediate node involved in rout-
ing the payment can infer information regarding its path, and in particular can
identify the sender and recipient of the payment. Our strategy is similar to a
passive variant of a predecessor attack [46] proposed against the Crowds [36]
anonymous communication network. Our strategy can be further extended by
analyzing the sparse network connectivity and limited number of potential paths
due to channel capacity.

In contrast to previous work [5], we consider not only single-hop routes but
also routes with multiple intermediate nodes. The only assumption we make
about the adversary’s intermediate node is that it keeps its channel balanced,
which can be easily done in practice.

We define PrS and PrR as the probability that the adversary successfully
discovers, respectively, the sender and recipient in a payment. Following our
notation, Béres et al. claim, based on their own simulated results, that PrS = PrR

ranges from 0.17 to 0.37 depending on parameters used in their simulation. We
show that this probability is actually a lower bound, as it does not take into
account multiple possible path lengths or the chance that a payment fails (their
simulation assumes that all payments succeed on the first try).

The strategy of our honest-but-curious adversary is simple: they always guess
that their immediate predecessor is the sender. In other words, if we define H
as the adversary’s position along the path, they always assume that H = 1.
Similarly, they always guess that their immediate successor is the recipient. We
focus on the probability of successfully guessing the sender; the probability of
successfully guessing the recipient can be computed in an analogous way.
Successful Payments. We start by analyzing the success probability of this
adversary in the case of a successful payment, which we denote as Prsucc

S . We
define as Pr[L = �] the probability of a path being of length �, and as Pr[H =
h | L = �] the probability that the adversary’s node is at position h given that
the path length is �. According to the Lightning specification [2], the maximum
path length is 20. By following the strategy defined above, we have that

Prsucc
S =

20∑

n=3

Pr[L = � | succ] · Pr[H = 1 | L = �, succ]

= Pr[L = 3 | succ]

+
20∑

n=4

Pr[L = � | succ] · Pr[H = 1 | L = �, succ]

since Pr[H = 1 | L = 3, succ] = 1 given that the adversary is the only interme-
diate node in this case. Hence, Pr[L = 3 | succ] is a lower bound on PrS .
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To consider the overall probability, we focus on the conditional probabilities
Pr[H = 1 | L = �, succ]. If all nodes form a clique,6 then it would be almost
equally probable for any node to be in any hop position H = h. (The only
reason the distribution is not entirely uniform is that some channels may be
chosen more often than others, depending on the relative fees they charge, but
an adversary could choose fees to match its neighbors as closely as possible.) In
this case then, the probability that H = 1 is just 1/(� − 2).

Failed Payments. Similarly, in case the payment fails, we define the probability
PrfailS as

PrfailS =
20∑

�=3

Pr[L = � | fail] · Pr[H = 1 | L = �, fail].

This is the same formula as for Prsucc
S so far, but we know that Pr[L = 3 | fail] = 0,

since if the adversary is the only intermediate node the payment cannot fail.
Furthermore, the conditional probability Pr[H = 1 | L = �, fail] is different
from the probability Pr[H = 1 | L = �, succ], as the fact that a payment failed
reveals information to the adversary about their role as an intermediate node.
In particular, if an intermediate node successfully forwards the payment to their
successor but the payment eventually fails, the node learns that their immediate
successor was not the recipient and thus that the failed path was of length
L ≥ 4 and their position is not L − 1. This means that Pr[L = � | fail] becomes
Pr[L = � | fail, � ≥ 4]. We thus get

PrfailS = Pr[L = 4 | fail, � ≥ 4]

+
20∑

�=5

Pr[L = � | fail] · Pr[H = 1 | L = �, fail].

This gives Pr[L = 4 | fail, � ≥ 4] as a lower bound in the case of a failed payment.
As we did in the case of successful payments, we assume a clique topology as the
best case for this adversary’s strategy, in which their chance of guessing their
position is 1/(� − 3) (since they know they are not the last position). We thus
obtain

PrfailS = Pr[L = 4 | fail, � ≥ 4] +
20∑

�=5

Pr[L = � | fail] · 1
� − 3

.

5.1 Lightning Network Simulator

In order to investigate the success of this on-path adversary, we need measure-
ments that it would require significant resources to obtain from the live net-
work, such as the average path length for a payment. Given the financial and
6 This would rather be a clique excluding a link between the sender and recipient,

since otherwise they would presumably use their channel directly.
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ethical concerns this would raise, we make the same decision as in previous
work [5,9,10,13,49] to develop a Lightning network simulator to perform our
analysis. We implemented our simulator in 2,624 lines of Python 3 and will
release it as open-source software.

Network Topology. As mentioned in Sect. 2, we represent the network as a
graph G = (V,E). We obtain the information regarding V and E from the
snapshots we collected, as described in Sect. 3.1, which also include additional
information such as capacities and fees. The network topology view of our sim-
ulator is thus an exact representation of the actual public network.

Geolocation. Nodes may publish an IPv4, IPv6 or .onion address, or some com-
bination of these. If a node advertised an IPv4 or IPv6 address then we used it
to assign this node a corresponding geolocation. This enabled us to accurately
simulate TCP delays on the packets routed between nodes, based on their dis-
tance and following previous studies [14] in using the global IP latency from
Verizon.7 For nodes that published only a .onion, we assign delays according to
the statistics published by Tor metrics, given the higher latency associated with
the Tor network.8

Path Selection. As discussed in Sect. 2, the route to the destination in LN
is constructed solely by the payment sender. All clients generally aim to find
the shortest path in the network, meaning the path with the lowest amount of
fees. As shown by Tochner et al. [44], however, both the routing algorithm and
the fee calculation differ across the three main choices of client software: lnd, c-
lightning, and eclair. We could not easily extract or isolate the routing algorithms
from these different implementations, so chose to implement all three versions
of the path finding algorithm ourselves. We did this using Yen’s k-shortest path
algorithm [47] and the networkx Dijkstra’s SPF algorithm.9

Software Versions. Our collected snapshots did not include information about
software versions, so we scraped the Owner Info field for each node listed on
the 1ML website. Although in 91% of the cases this field is empty, the results
allow us to at least estimate the distribution of the client software. We obtained
information about 370 nodes and found that 292 were lnd, 54 were c-lightning, and
24 were eclair. We randomly assign software versions to the remaining nodes in
the network according to this distribution, and then modify the weight function
in the path finding algorithm according to the software version.

Payment Parameters. Our first parameter, tpay, represents the total daily
number of payments happening in LN. For this, we use an estimate from
LNBIG [3], the largest node that holds more than 40% of the network’s total

7 https://enterprise.verizon.com/terms/latency/.
8 https://metrics.torproject.org/onionperf-latencies.html.
9 https://networkx.github.io/documentation/stable/reference/algorithms/

shortest paths.html.

https://enterprise.verizon.com/terms/latency/
https://metrics.torproject.org/onionperf-latencies.html
https://networkx.github.io/documentation/stable/reference/algorithms/shortest_paths.html
https://networkx.github.io/documentation/stable/reference/algorithms/shortest_paths.html
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Fig. 1. Average path length.

capacity at the time of writing. According to LNBIG, the total number of routed
transactions going through the network is 1000–1500 per day, but this does not
take into account the payments performed via direct channels. Given this esti-
mation, we use two values for tpay: 1000, representing a slight underestimate
of today’s volume, and 10,000, representing a potential estimate for the future
of LN.

We also define as endpoints the parameter that determines the sender and
the recipient of a payment. We define two values for this parameter: uniform,
which means that the payment participants are chosen uniformly at random,
and weighted, which means the participants are chosen randomly according to
a weighted distribution that takes into account their number of direct channels
(i.e., their degree). Similarly, we use values to determine the values of payments.
When values is cheap, the payment value is the smallest value the sender can
perform, given its current balances. When values is expensive, the payment value
is the biggest value the sender can send.

5.2 Simulation Results

Given the parameters tpay, endpoints, and values, we ran two simulation instances,
with the goal of finding the worst-case and best-case scenarios for the on-path
adversary. Based on the respective probabilities for Prsucc

S and PrfailS , we can see
that the worst case is when the path is long and the payment is likely to succeed,
while the best case is when the path is short and the payment is likely to fail.
Since the total volume tpay does not affect the path length, we use tpay = 1000 for
both instances. Each simulation instance was run using the network and node
parameters scraped on September 1, 2020.

In our first simulation, lengthslong, our goal was to capture the adversary’s
worst case. This meant we chose endpoints = uniform, so that the choice of
sender and receiver was not biased by connectivity, and thus paths were not
short due to their potentially high connectivity. Similarly, we chose values =
cheap to minimize the probability of having a payment fail. For our second
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Fig. 2. Probability of correctly identifying the sender given successful and failed pay-
ment. For detailed simulation settings of lengthslong and lengthsshort see Sect. 5.2

simulation, lengthsshort, our goal was to capture the adversary’s best case, so we
chose endpoints = weighted to ensure highly connected nodes were picked more
often and thus paths were shorter. We also chose values = expensive, leading to
many balance failures.

As shown in Fig. 1, even when we attempted to maximize the path length in
lengthslong, 14.98% of paths still consist of only one hop. In lengthsshort, 56.65% of
paths consisted of a single hop. This interval agrees with recent research, which
argues that 17–37% of paths have only one intermediate node [5]. The main
reason the paths are short even in lengthslong is that the network topology and
the client path finding algorithm have a much larger effect on the path length
than endpoints or values.

Beyond the results in Fig. 1, running our simulator enabled us to estimate the
probabilities Pr [L = �] for 3 ≤ � ≤ 20 for both the best- and worst-case scenario
for the adversary. We now use those results to compute the probabilities Prsucc

S

and PrfailS for the case where our adversary is successful only when it is impossible
to be wrong (LowerBound) as well as in the case of a clique topology (clique), as
shown in Fig. 2. Here the clique topology is the worst possible topology for the
adversary, since a less complete topology would allow the adversary to rule out
nodes that cannot be involved in the payment and thus increase their confidence.

Prsucc
S is bounded from below when L = 3, since in that case the adversary

can never be wrong. Similarly, PrfailS is bounded from below when L = 4. In
the case of a successful payment, the lower bound on Prsucc

S ranges from 15%
(lengthslong) to 57% (lengthsshort). On the other hand, the lower bound of PrfailS

increases with the percentage of unsuccessful attempts, up to 83% (lengthsshort),
which is significantly higher than any previously recorded experiment. This is
also not just a theoretical result: according to recent measurements, 34% of
payments fail on the first try [1].

Our measurements show that even an adversary following an extremely sim-
ple strategy can have a high probability of inferring the sender of a payment
routed through their node, especially in the case in which the payment fails.
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This is likely due to LN’s highly centralized topology, which means paths are
short and often involve the same intermediate nodes, as well as the fact that
clients are designed to find the cheapest—and thus shortest—paths. Without
changes in the client or the network topology, it is thus likely that intermediate
nodes will continue to be able to violate on-path relationship anonymity.

6 Payment Discovery

In this section, we analyze the off-path payment privacy in Lightning, in terms
of the ability of an attacker to learn information about payments it did not
participate in routing.

Informally, our attack works as follows: using the balance discovery attack
described in Sect. 4, the attacker constructs a network snapshot at time t consist-
ing of all channels and their associated balances. It then runs the attack again
at some later time t + τ and uses the differences between the two snapshots to
infer information about payments that took place by looking at any paths that
changed. In the simplest case that only a single payment took place between t
and t + τ (and assuming all fees are zero), the attacker can see a single path
in which the balances changed by some amount amt and thus learn everything
about this payment: the sender, the recipient, and the amount amt. More gener-
ally, two payments might overlap in the paths they use, so an attacker would need
to heuristically identify such overlap and separate the payments accordingly.

6.1 Payment Discovery Algorithm

We define τ to be the interval in which an attacker is able to capture two snap-
shots, St and St+τ , and let Gdiff = St+τ − St be the difference in balance for
each channel. Our goal is then to decompose Gdiff into paths representing dis-
tinct payments. More specifically, we construct paths such that (1) each edge on
the path has the same amount (plus fees), (2) the union of all paths results in
the entire graph Gdiff , and (3) the total number of paths is minimal. This last
requirement is to avoid splitting up multi-hop payments: if there is a payment
from A to C along the path A → B → C, we do not want to count it as two
(equal-sized) payments of the form A to B and B to C.

We give a simple algorithm that solves the above problem under the assump-
tion the paths are disjoint. This assumption may not always hold, but we will
see in Sect. 6.3 that it often holds when the interval between snapshots is rel-
atively short. Our algorithm proceeds iteratively by “merging” payment paths.
We initially consider each non-zero edge in Gdiff as a distinct payment. We then
select an arbitrary edge with difference amt, and merge it with any adjacent
edges with the same amount (plus the publicly known fee f) until no edge of
weight amt can be merged.

A
amt+fA,B+fB,C−−−−−−−−−−→ B, B

amt+fB,C−−−−−−→ C ⇒ infer payment A to C
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Fig. 3. The precision and recall of our payment discovery attack, based on the snap-
shot interval τ (in log scale). The error bars show 95% confidence intervals over five
simulation runs.

We then remove this path from Gdiff and continue with another edge. Asymptot-
ically the running time of this algorithm is O(|E|2) for E edges; given the size
and sparsity of Lightning Network today this means it runs in under a second.

There are several ways this algorithm can make incorrect inferences. First, it
would incorrectly merge two same-valued payments A to B and B to C occur-
ring end-to-end. Second, our algorithm does not attempt to resolve the case that
a single channel is used for multiple payments in an interval. Looking ahead to
Sect. 6.3, our experiments show this happens infrequently when the snapshot
intervals are short enough. Finally, as we saw in Sect. 4, balance discovery may
fail for some (or many) channels in the network. Our algorithm takes a conser-
vative approach designed to minimize the false positive rate: as a final filtering
step, it suppresses any pairs of inferred payments with approximately the same
amount (within a small threshold of two satoshis).

6.2 Attack Simulation

We denote the attacker’s precision by P (the number of correctly detected pay-
ments divided by the total number of detected payments) and recall by R (the
number of correctly detected payments divided by the number of actual pay-
ments). We are primarily interested in understanding how these performance
metrics depend on the interval at which an attacker takes snapshots (τ).

To answer these questions we leverage the simulator we developed in Sect. 5.1,
and extend it to include the balance discovery attack from Sect. 4. Due to the
fact that 98% of the errors in this attack were because a node was not online
or did not participate in any payments, we set a 0.05 probability of it failing
on a functional channel in which both nodes are online. In keeping with the
discussion in Sect. 5.1, we use tpay = 2000 as the total number of payments per
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day and sample the senders and recipients randomly from all nodes in the net-
work. In terms of payment value, our simulation is a pessimistic scenario where
the payment amounts are very small (1000 satoshis on average) but fluctuate
uniformly within a small range around this average (±10 satoshis). This is pes-
simistic because it is close to the worst-case scenario, in which all payments have
identical amounts, but two factors make it likely that real-world payments would
have much greater variation: (1) payments are denominated in fine-grained units
(1 satoshi = 10−8 BTC), and (2) wallets typically support generating payment
invoices in units of fiat currency by applying the real-time Bitcoin exchange rate,
which is volatile.

6.3 Simulated Attack Results

In order to figure out the effect of the snapshot interval τ on P and R, we take
balance inference snapshots of the entire network for varying time intervals,
ranging from τ = 1 second to τ = 28 seconds. Each time, we run the simulator
for a period of 30 days, amounting to 60,000 payments in total. Figure 3 shows
the relationship between τ and the number of payments inferred and confirms the
intuition that the attack is less effective the longer the attacker waits between
snapshots, as this causes overlap between multiple payments. At some point,
however, sampling faster and faster offers diminishing returns; e.g., for τ = 32
seconds, the attacker has a recall R of 66%, which increases slowly to 74.1% for
τ = 1 second. With a realistic minimum of τ = 30 seconds, which is the time it
took us and others to run the balance discovery attack on a single channel [16]),
the attacker has a recall of more than 67%. Because of our final filtering step
in our discovery algorithm, we have a precision P very close to 95% for smaller
values of τ .

7 Conclusions

In this paper, we systematically explored the main privacy properties of the
Lightning Network and showed that, at least in its existing state, each property
is susceptible to attack. Unlike previous work that demonstrated similar gaps
between theoretical and achievable privacy in cryptocurrencies, our research does
not rely on patterns of usage or user behavior. Instead, the same interfaces that
allow users to perform the basic functions of the network, such as connecting to
peers and routing payments, can also be exploited to learn information that was
meant to be kept secret. This suggests that these limitations may be somewhat
inherent, or at least that avoiding them would require changes at the design level
rather than at the level of individual users.

Acknowledgements. George Kappos, Haaroon Yousaf and Sarah Meiklejohn are
supported in part by EPSRC Grant EP/N028104/1, and in part by the EU H2020
TITANIUM project under grant agreement number 740558. Sanket Kanjalkar and
Andrew Miller are supported by the NSF under agreement numbers 1801369 and
1943499. Sergi Delgado-Segura was partially funded by EPSRC Grant EP/N028104/1.



184 G. Kappos et al.

References

1. The lightning conference: of channels, flows and icebergs talk by Christian Decker.
https://www.youtube.com/watch?v=zk7hcJDQH-I

2. Lightning network specifications. https://github.com/lightningnetwork/lightning-
rfc

3. Person behind 40% of LN’s capacity: “I have no doubt in Bitcoin and the Light-
ning Network”. https://www.theblockcrypto.com/post/41083/person-behind-40-
of-lns-capacity-i-have-no-doubt-in-bitcoin-and-the-lightning-network

4. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4
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design and applications of a blockchain analysis platform. arXiv:1709.02489 (2017)

https://www.youtube.com/watch?v=zk7hcJDQH-I
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://www.theblockcrypto.com/post/41083/person-behind-40-of-lns-capacity-i-have-no-doubt-in-bitcoin-and-the-lightning-network
https://www.theblockcrypto.com/post/41083/person-behind-40-of-lns-capacity-i-have-no-doubt-in-bitcoin-and-the-lightning-network
https://doi.org/10.1007/978-3-642-39884-1_4
http://arxiv.org/abs/1911.09432
https://github.com/bogatyy/grin-linkability
https://github.com/bogatyy/grin-linkability
http://arxiv.org/abs/1712.10222
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://arxiv.org/abs/1709.02489


An Empirical Analysis of Privacy in the Lightning Network 185

19. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of
anonymity in Zcash. In: 27th USENIX Security Symposium 2018 (2018)

20. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 439–453 (2017)

21. Khan, N., State, R.: Lightning network: a comparative review of transaction fees
and data analysis. In: Prieto, J., Das, A.K., Ferretti, S., Pinto, A., Corchado, J.M.
(eds.) BLOCKCHAIN 2019. AISC, vol. 1010, pp. 11–18. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-23813-1 2

22. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anoymity in Bitcoin using P2P
network traffic. In: International Conference on Financial Cryptography and Data
Security (FC) (2014)

23. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66399-9 9

24. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017)

25. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous Multi-Hop Locks for blockchain scalability and interoperability. In: Proceed-
ings of NDSS (2018)

26. Martinazzi, S.: The evolution of lightning network’s topology during its first year
and the influence over its core values. arXiv preprint arXiv:1902.07307 (2019)

27. Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference. ACM (2013)
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Abstract. Bitcoin (BTC) pseudonyms (layer 1) can effectively be de-
anonymized using heuristic clustering techniques. However, while per-
forming transactions off-chain (layer 2) in the Lightning Network (LN)
seems to enhance privacy, a systematic analysis of the anonymity and pri-
vacy leakages due to the interaction between the two layers is missing.
We present (Please, find the full version of this paper with appendix at
https://arxiv.org/abs/2007.00764.) clustering heuristics that group BTC
addresses, based on their interaction with the LN, as well as LN nodes,
based on shared naming and hosting information. We also present link-
ing heuristics that link 45.97% of all LN nodes to 29.61% BTC addresses
interacting with the LN. These links allow us to attribute information
(e.g., aliases, IP addresses) to 21.19% of the BTC addresses contribut-
ing to their deanonymization. Further, these deanonymization results
suggest that the security and privacy of LN payments are weaker than
commonly believed, with LN users being at the mercy of as few as five
actors that control 36 nodes and over 33% of the total capacity. Overall,
this is the first paper to present a method for linking LN nodes with BTC
addresses across layers and to discuss privacy and security implications.

1 Introduction

Payment channel-networks (PCNs) have emerged as a promising alternative to
mitigate the scalability issues with current cryptocurrencies. These layer-2 pro-
tocols, built on-top of layer-1 blockchains, allow users to perform transactions
without storing them on the Bitcoin (BTC) blockchain. The idea is that two
users create a funding transaction that locks coins, thereby creating a payment
channel between them [6]. Further payments no longer require on-chain transac-
tions but rather peer-to-peer mutual agreements on how to distribute the coins
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locked in the channel. At any point, both users can decide to close the channel
by creating a settlement transaction that unlocks the coins and distributes them
according to the last agreed balance.

While there are different payment channel designs, the BTC Lightning Net-
work (LN) [16] is the most widespread PCN implementation to date. At the time
of writing (September 2020), according to 1ml.com, the LN features a network
of 13, 902 public active nodes, 37, 003 channels and a total capacity of more than
1, 108.70 BTC, worth 11, 569, 618 USD.

Apart from scalability, PCNs are considered beneficial to improve the well-
known lack of privacy of cryptocurrencies [4], where the anonymity claim
stemming from the usage of pseudonyms in on-chain transactions has been
largely refuted from both academia and industry [12]. The key to an effective
deanonymization of BTC pseudonyms lies in heuristic methods, which cluster
addresses that are likely controlled by the same entity [14]. In practice, entities
correspond to user wallets or software services (e.g., hosted wallet, exchange)
that control private keys on behalf of their users.

In this work, we challenge the widespread belief that the LN greatly improves
privacy by showing for the first time how LN nodes can be linked to BTC
addresses, which results in a bi-directional privacy leakage affecting LN and BTC
itself. Related research [8,13,15,17,18] already focused on security and privacy
aspects on the PCN layer, but, so far, none of them focused on linking off-chain
LN nodes to on-chain BTC addresses. This is a challenging task because such
links are not provided explicitly in the LN protocol as they would severely affect
the privacy of node operators (e.g., revealing their business to competitors).

Our Contributions. Our methodology is structured in two main strategies:
(i) heuristics on layer 1, to create clusters of BTC addresses controlled by the
same actor, and on layer 2, clusters of LN nodes; and (ii) heuristics to link
these clusters across layers. In Sect. 4, we present four novel on-chain clustering
heuristics (star, snake, collector, proxy), which group BTC addresses based on
their interaction patterns with the LN. With these heuristics, we can cluster
19.39% of all BTC entities funding an LN channel, and 13.40% of all entities
closing a channel. We also present an LN node clustering heuristic leveraging
public announcements of aliases and IP addresses, which allows us to group
1, 251 nodes into 301 clusters. In Sect. 5, we present two novel cross-layer linking
algorithms. One exploits that the same BTC address can be used to close one
channel and then re-use the coins to open a new channel, which allows us to
link 26.48% of the LN nodes to 20.96% BTC addresses in our dataset, when
combined with the previous on- and off-chain clustering heuristics. The other
algorithm exploits the reuse of a single BTC entity for opening several channels
to different LN nodes and it allows us to link 29.61% of the addresses to 45.97%
of nodes.

Given these results, we finally discuss the impact of our deanonymization
techniques on the privacy of BTC entities as well as the security and privacy of
the LN. In a nutshell, we are able to (i) attribute 21.19% of the BTC addresses
with information from the LN (e.g., IP addresses); (ii) measure the centralized
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control of the capacity in the LN and observe that as few as five actors consisting
of 36 nodes control over 33% of the total capacity; (iii) show that as few as five
users can threaten the security of the LN by means of (possibly targeted) DoS
attacks and violate the privacy of over 60% of the cheapest payment paths
because they are routed through them.

For the reproducibility of the results, we make our dataset and our imple-
mentation available at https://github.com/MatteoRomiti/lightning study1.

2 Background and Problem Statement

We now define the simplified model and terminology used throughout this paper,
elaborating then on the cross-layer linkage problem, as well as on related work
in this area. For further details on PCNs, we refer to recent surveys [6,9].

2.1 BTC Blockchain (Layer 1)

A BTC address a is a tuple containing (i) a number of coins (in Satoshis)
associated to this address; and (ii) an excerpt of the BTC script language that
denotes the (cryptographic) conditions under which a can be used in a transac-
tion. Although in principle it is possible that a can be spent under any condi-
tion that can be expressed in the BTC script language, in practice most of the
addresses share a few conditions: (i) requiring a signature σ on the transaction
verifiable under a given public key pk; and (ii) requiring two signatures {σ1, σ2}
verifiable with two given public keys pk1 and pk2 (i.e., multisig address). We say
that an address a is owned by a user if she can produce the required signature/s.

A BTC transaction tx is identified by txid computed as the hash of the body
of tx, i.e., H(Input,Output). Input denotes the set of addresses set as input and
being spent in tx; and Output is the set of addresses set as output. A transaction
can have also a change output, where coins and address are owned by the same
user controlling the inputs.

We define a BTC entity e as a set e := {ai} of addresses controlled by
the same user as clustered with the well-known and effective [7] co-spending
heuristic [14]. This heuristic assumes that if two addresses (i.e. a1 and a2) are
used as inputs in the same transaction while one of these addresses along with
another address (i.e. a2 and a3) are used as inputs in another transaction, then
the three addresses (a1, a2, a3) are likely controlled by the same actor.

A BTC wallet is the software used by a BTC user to handle BTC addresses
owned by her. A wallet may correspond to a BTC entity, if addresses are reused.

2.2 Nodes and Payment Channels in the LN (Layer 2)

A node n in the Lightning Network (LN) is a tuple n := (nid, IP,Alias), where
nid is the identifier of the node; IP denotes the IP address associated with the
node, and Alias the associated lexical label.
1 The proprietary attribution data from Chainalysis is not included in the published

dataset. The reader can contact the company for further inquiry.

https://github.com/MatteoRomiti/lightning_study
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Fig. 1. Life cycle of an LN channel. At layer 1, a source entity e1 tops up entity
e2 that is then used in txF1 as funding entity of the channel c1 represented by multisig
address aLN

C1 . The channel c1 is established at layer 2 between the nodes n1 and n2.
The channel c1 is then closed with the settlement transaction txS sending the funds
back to two settlement entities, e2 and e3. The former, e2, reuses these coins in txF2

to fund another channel (c2) between n2 and n3 represented at layer 1 by the multisig
address aLN

C2 . The coins in the other settlement entity, e3, are instead collected into a
destination entity e4, not directly involved in the LN.

A payment channel c is then created between two nodes and denoted by
the tuple c := (chpoint, n1, n2), where chpoint denotes the channel’s endpoint
that is set to the identifier tx.txid of the funding transaction tx that created the
channel. As the transaction may have several outputs, chpoint also contains the
output index of the multisig address that locks the funds in the channel (e.g.,
chpoint:choutindex); while n1 and n2 are the nodes of the channel.

An LN wallet is the software used by an LN user to manage her node, as well
as the channels of this node. In practice, an LN wallet comes with an integrated
BTC wallet to open and close channels in the LN. Recent releases of two LN
wallet implementations (lnd and c-lightning) [5,19] enable opening/closing a
channel using an external BTC wallet.

2.3 Cross-Layer Interaction

In this section, we describe the interaction between BTC and the LN by means of
the example illustrated in Fig. 1. Assume Alice wants to open a payment channel
with Bob. Further, assume that Alice has a BTC wallet with coins in address
aBTC
1 and she wants to open a payment channel with Bob. Additionally assume

that Alice has never interacted with the LN before and only has an LN wallet,
whose integrated BTC wallet handles aLN

4 . In this setting, the lifetime of the
payment channel between Alice and Bob is divided into the following phases:



Cross-Layer Deanonymization Methods in the Lightning Protocol 191

Replenishment. Alice first transfers coins from her BTC wallet (represented
by entity e1 := {aBTC

1 , aBTC
2 , aBTC

3 }) to her LN wallet (entity e2 := {aLN
4 }), to

top up the LN wallet from the BTC wallet. We call e1 the source entity as it is
used as the source of funds to be later used in the LN.

Funding. Alice can now open a channel with Bob by first computing a deposit
address aLN

C1 shared between Alice and Bob. In the next step, Alice creates a
funding transaction txF1 where txF1.Input := aBTC

4 , txF1.Output := aLN
C1 ,

and txF1.txid := H(txF1.Input, txF1.Output).2 After txF1 appears on the BTC
blockchain, the payment channel c1 between Alice and Bob is effectively open.
The channel c1 is then represented in the payment channel network as the tuple
(c1.chpoint, n1, n2), where n1 and n2 are nodes belonging to Alice and Bob.

Payment. After the channel c1 is open, during the payment phase, both Alice
and Bob can pay each other by exchanging authenticated transactions in a peer-
to-peer manner authorizing the updates of the balance in the channel. Follow-
ing our example, Alice and Bob create a settlement transaction txS where
txS .Input := aLN

C1 , txS .Output := {aLN
4 , aLN

5 } so that aLN
4 belongs to Alice, and

aLN
5 belongs to Bob. The cornerstone of payment channels is that Alice and Bob

do not publish txS in the BTC blockchain. Instead, they keep it in their memory
(i.e., off-chain) and locally update the balances in their channel c1. Both Alice
and Bob can repeat this process several times to pay each other.

Settlement. When the channel is no longer needed, Alice and Bob can close
the channel by submitting the last agreed settlement transaction into the BTC
blockchain, thereby unlocking the coins from aLN

C1 into two BTC addresses, each
belonging to one of them with a number of coins equal to the last balance they
agreed off-chain. In practice, the settlement transaction may have more than two
outputs: Alice can pay Bob to a third address where Bob needs to provide data
other than a signature to redeem the coins (e.g., the valid preimage of a hash
value before a certain timeout as defined in the Hash Time Lock Contract [1]).

Collection. After the settlement transaction appears in the BTC blockchain,
Bob gets the coins in his LN wallet. As a final step, Bob might want to get his
coins into a different BTC wallet of his own. For that, Bob transfers funds from
aLN
5 to aBTC

6 , which we call destination address.
We note several points here. First, the addresses involved in the lifetime of

payment channels could have been clustered into entities. In such a case, we
refer to the source/funding/settlement/destination entity involved in the steps
instead of the particular address itself. In our example, Alice owns entity e1 that
controls (among others) aBTC

1 and we thus say that entity e1 is the source entity
in the replenishment step. Second, the same entity can be used at the same time
for settlement and funding. Finally, Alice gets the coins from the channel with
Bob in entity e2 that is then reused later to open a new payment channel.

2 Although theoretically a payment channel can be dual-funded (i.e., Bob also con-
tributes x1 to the funding transaction), this feature is under discussion in the com-
munity [3] and currently only single-funded channels are implemented in practice.
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2.4 The Cross-Layer Linking Problem

A starting point, as shown in Fig. 1, is to identify the funding transaction
txF1 corresponding to the payment channel c1 := (chpoint, n1, n2), by finding
the transaction (and the output index) that fulfills the condition txF1.txid =
c1.chpoint. While this is trivial, we cannot assert that the entity e2 in txF1.Input
also controls n1, as it could also be that e2 controls n2. Similarly, while we can
deterministically get the settlement transaction txS used to close the channel c1,
we cannot unambiguously link each settlement entity to the corresponding node.

The goal of this work is to cluster BTC entities based on their interactions
with the LN and then unambiguously link these clusters to LN nodes that are
under their control. Technically, this corresponds to finding a function that takes
a set of LN channels as input and returns tuples of the form (entity, node) for
which it can be asserted that the LN node is controlled by the linked BTC entity.

2.5 Related Work

Single-layer security attacks on the LN topology were the focus of many recent
studies: Rohrer et al. [17] measured the LN topology and found that the LN
is highly centralized and vulnerable to targeted (e.g., DoS) attacks. Similarly,
Seres et al. [18] found that the LN provides topological stability under random
failures, but is structurally weak against rational adversaries targeting network
hubs. Also, Martinazzi and Flori [13] have shown that the LN is resilient against
random attacks, but very exposed to targeted attacks, e.g., against central play-
ers. Lin et al. [8] inspected the resilience of the LN and showed that removing
hubs leads to the collapse of the network into many components, evidence sug-
gesting that this network may be a target for the so-called split attacks. Single-
layer LN privacy has recently been studied by Kappos et al. [11], who focused
on balance discovery and showed that an attacker running an active attack can
easily infer the balance by running nodes and sending forged payments to target
nodes. Nowostawski and Ton [15] conducted an initial cross-layer analysis and
investigated footprints of the LN on the public BTC blockchain in order to find
which transactions in the BTC blockchain are used to open and close LN chan-
nels. Our work instead uses the funding and settlement transactions (and more)
as input data to investigate for the first time: (i) the link between LN nodes and
BTC entities; (ii) clustering of BTC entities allowed by blockchain footprint for
the interaction of these entities with the LN; and (iii) the associated security
and privacy implications.

3 Dataset

In this section, we present the data we collected for our analysis.
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3.1 Off-Chain Data: LN

We used the LN Daemon (LND) software and captured a copy of the LN topology
at regular intervals (30 min) via the describegraph command since May 21 2019.
The off-chain part of our dataset contains 98, 431 channels, 37, 996 of which
were still open on September 9, 2020. The most recent channel in our dataset
was opened on September 9, 2020, while the oldest was opened on January
12, 2018. We also define the activity period of a node as the time that starts
with the funding transaction that opened the first public channel in which the
node appeared and ends either with the settlement transaction of its last public
channel or with 2020-09-09 (the time of preparing the dataset), if the nodes had
still public channels open. Finally, we observe that channels in our dataset were
established between 10, 910 distinct nodes.

3.2 On-Chain Data: BTC Blockchain

First, for each channel in our off-chain dataset, we used the transaction hash
included in the channel’s field chpoint for retrieving the funding transaction.
Then, we checked whether the coins sent to the multisig address were spent or
not. If a coin was spent, we fetched the settlement transaction, that uses that
multisig address as input. We obtained this data by querying the open-source
GraphSense API3 and the Blockstream API4. We thereby extracted 98, 240 fund-
ing transactions5 and 60, 447 settlement transactions. Next, we extracted the
input addresses of all funding transactions and the output addresses of all set-
tlement transactions and mapped them to funding and settlement entities, as
defined in Sect. 2.1. Before clustering entities, we used BlockSci [10] to filter
CoinJoin transactions because they would merge addresses of unrelated users.
For the same reason, we also made sure that no CoinJoins from Wasabi nor
Samourai6 wallets were in our dataset. On the funding side, we also extracted
the source entities that were sending coins to funding entities; on the settle-
ment side, we retrieved destination entities that received coins from settlement
entities. For that purpose, we implemented a dedicated data extraction and
analytics job for the GraphSense Platform and executed it on a snapshot of the
BTC blockchain up to block 647, 529 (2020-09-09 23:06), amounting for a total of
566, 776, 778 transactions and 703, 443, 739 addresses clustered into 336, 847, 691
entities. After having extracted the BTC entities that were involved in opening
and closing payment channels, we attributed them using the Chainalysis API7

and assigned service categories (e.g., exchange, hosted wallet) to entities.
Table 1 summarizes the number of addresses (# Addr) found in funding and

settlement transactions as well as the number of resulting entities after apply-
ing the co-spending heuristic on these addresses (# Entities). We can clearly
3 https://api.graphsense.info/.
4 https://github.com/Blockstream/esplora/blob/master/API.md.
5 Some channels were opened with the same funding transaction.
6 https://github.com/nopara73/WasabiVsSamourai.
7 https://www.chainalysis.com/.

https://api.graphsense.info/
https://github.com/Blockstream/esplora/blob/master/API.md
https://github.com/nopara73/WasabiVsSamourai
https://www.chainalysis.com/
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Table 1. On-chain dataset summary

Source Funding Settlement Destination

# Addr 170,777 88,166

# Entities 196,131 96,838 53,371 424,732

# Addr (Exp.) 70,638,581 196,818 2,243,525 107,474,279

# Services 5,812 1 5 67,969

# Relations 203,328 438,725

observe that the number of distinct source entities (196, 131) is lower than the
number of destination entities (424, 732), which is also reflected in the number of
relations (# Relations) representing monetary flows from source to funding enti-
ties and from settlement to destination entities, respectively. These unbalanced
numbers might be due to funds going from settlement entities to mixing services,
as we discuss later. Since the co-spending heuristic also groups addresses which
were not part of our dataset snapshot, we also added the number of expanded
addresses (# Addr (Exp.)). The difference between the number of addresses and
entities on both the source and destination side can be explained by the presence
of super-clusters, which are responsible for large transaction inputs and outputs
and typically represent service entities such as cryptocurrency exchanges [7].
Finally, this table also lists the number of identified service entities (# Ser-
vices). We only found them in few cases for funding (1) and settlement (5)
entities, probably because mostly non-custodial wallets are used when opening
and closing channels and known services in our dataset behave only as source
and destination entities. Roughly 0.9% of all source entities were categorized,
with the majority (0.8%) being exchanges. On the settlement side, we identified
10% of all destination entities as wallets being controlled by services, with the
majority (8%) being mixing services. We can not fully account for this strong
connection to mixing, but it does suggest that many LN users are privacy-aware.
Indeed, there is evidence that the LN is recognized as a privacy technology com-
plementary to mixing. e.g., the well-known mixing wallet Wasabi suggests LN
as one way to enhance privacy when using the wallet8.

3.3 Ground Truth Data: LN Payments

We devised and implemented a simple process that allows us to create a ground
truth dataset of entity-node pairs that can then be compared with our linking
results as a validation step. We first run our linking algorithms resulting in an
initial set of entity-node pairs. We then found a trade-off for selecting the target
nodes: some randomly-selected linked nodes for generality purposes and some
other nodes with the highest number of settlement transactions as a sign of
being very active on the network and reusing funds, a useful aspect for the next

8 https://docs.wasabiwallet.io/using-wasabi.

https://docs.wasabiwallet.io/using-wasabi
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steps. Next, we managed to open channels, perform payments and close channels
with 52 of them. For these nodes that received coins from us, we are able to see
their settlement entity, but only 11 nodes further spent the settlement funds in
other transactions, necessary for us to capture their spending behaviors with
our heuristics. We additionally managed to have channels open to us from 3 LN
nodes that provide inbound channels as a service, revealing their funding entities.
We performed this activity at the beginning of September 2020 (block 646559)
and after waiting some days to let the nodes spend our coins, we run the linking
algorithms again on our latest dataset (until block 647, 529) so that for these
targeted nodes we have both ground truth and heuristically-obtained links to
entities. In Sect. 5.3, we compare this ground truth data with our linking results,
while a more detailed explanation of the methodology to extract this data is
presented in the appendix.

4 Clustering Heuristics

In this section we introduce the on-chain and off-chain clustering heuristics.

4.1 On-Chain BTC Entity Clustering (Layer 1)

LN-blockchain interactions result in monetary flows from source to funding and
from destination to settlement entities (see Fig. 1). When analyzing the resulting
entity graph abstraction, we observed four patterns (see Fig. 2).

Fig. 2. On-chain clustering heuristics. Following the same notation of Fig. 1, in the
star pattern, a source entity e1 replenishes three different funding entities creating a
single cluster (e1, e2, e3, e4). In the snake pattern, a series of funding transactions are
performed using the change address of a previous funding transaction as input and
the funding entities can be clustered (e1, e2, e3). In the collector and proxy pattern,
multiple settlement entities merge their coins in one single entity and these settlement
entities can be clustered (e1, e2, e3, e4).
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First, several funding entities received funds from the same source entities
with one source entity transferring coins to several funding entities. This forms
a star-shaped pattern and reflects a current LN wallet feature, which requires9

users to transfer funds from an external wallet (source entity) to an internal
wallet (funding entity) before opening a channel. If these source entities are not
services, which is rarely the case (see Sect. 3), then we can assume:

Definition 1 (Star Heuristic). If a component contains one source entity that
forwards funds to one or more funding entities, then these funding entities are
likely controlled by the same user.

Second, again on the funding side, we observed a snake-like pattern in which
source entities transfer coins to a funding entity, which then opens a channel
and the change from the funding transaction is used to fund another channel,
and so on (analogous to the Bitcoin Change-Heuristic [14]).

Definition 2 (Snake Heuristic). If a component contains one source entity
that forwards funds to one or more entities, which themselves are used as source
and funding entities, then all these entities are likely controlled by the same user.

Third, we identified a so-called collector pattern, which mirrors the previ-
ously described star pattern on the settlement side: a user forwards funds from
several settlement entities, which hold the unlocked coins of closed channels in
an internal wallet, to the same destination entity, which serves as an external
collector wallet of funds and therefore fulfills a convenience function for the user.

Definition 3 (Collector Heuristic). If a component contains one destina-
tion entity that receives funds from one or more settlement entities, then these
settlement entities are likely controlled by the same user.

Fourth, we found a refined collector pattern, which we call proxy pattern:
a user first aggregates funds from several settlement transactions in a single
settlement entity and then forwards them to a single destination entity.

Definition 4 (Proxy Heuristic). If a component contains one destination
entity that receives funds from one or more entities, which themselves are used
as settlement and destination entities, then these entities are likely controlled by
the same user.

We compute the above heuristics as follows: we construct 1-hop ego-networks
for the funding and settlement entities and extract funding relations and settle-
ment relations (see Sect. 3). Next, we compute all weakly-connected components
in these graphs and filter them by the conditions defined above.

Table 2 shows the number of BTC entities we were able to cluster with each
heuristic. When regarding the connected components, we can clearly see the rare

9 We note that this requirement may no longer be there if the “fund-from-external-
wallet” functionality, already available in the recent release [19], is widely adopted.
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Table 2. On-chain clustering results

Star (F) Snake (F) Collector (S) Proxy (S)

# Components 52 (0.3%) 5, 638 (31%) 1, 476 (14%) 989 (9%)

# Entities 139 18, 512 (19%) 3, 923 (7%) 3, 229 (6%)

# Addresses 144 18, 556 6, 146 12, 292

occurrence of the star patterns and the dominance of the snake pattern, which
represents 31% of all funding components. On the settlement side, 23% of all
components either match the collector or the proxy pattern. Consequently, we
were able to group 19.39% (18, 651) of all funding entities and 13.40% (7, 152) of
all settlement entities. This corresponds to 18, 700 funding addresses and 18, 438
settlement addresses.

Discussion. Our heuristic can, by definition, also yield false positives for two
main reasons: first, an entity could represent several users if clustered addresses
are controlled by a service (e.g., exchange) on behalf of their users (custodial
wallet) or if transactions of several unrelated users are combined in a CoinJoin
transaction. Second, users could transfer ownership of BTC wallets off-chain, e.g.,
by passing a paper wallet. While the second case is hard to filter automatically,
we applied countermeasures to the first case: first, we filtered known CoinJoin
transactions (see Sect. 3), and second, we filtered all components containing ser-
vice entities by using Chainalysis, one of the most comprehensive attribution
dataset available.

Countermeasures. We suspect that the above patterns reflect a user behav-
ior that is already known to compromise the privacy of transactions: reuse of
TXOs (transaction outputs). If outputs of funding transactions are not reused
for opening other channels, the snake heuristic would not work; if users refrain
from funding channels from a single external source and avoid collecting funds
in a single external destination entity, the other heuristics would not yield any
significant results. Despite not pervasive on the network, Coinjoins and similar
solutions could, in theory (e.g., if used as funding transactions), obfuscate the
entity linked to an LN node behind a set of unrelated addresses.

4.2 Off-Chain LN Nodes Clustering (Layer 2)

We have also designed an algorithm to cluster LN nodes based on aliases and IPs
reported in the LN, along with their corresponding autonomous systems (AS). If
a set of node aliases share a common substring, and they are hosted on the same
AS, we cluster them. Similarly, if a set of nodes report the same IP or onion
address, we cluster them assuming they are controlled by the same entity. This
allows us to cluster 1, 251 nodes into 301 clusters. Due to space constraints, we
defer the description of this clustering the appendix.
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5 Linking LN Nodes and BTC Entities

In this section, we present two algorithms that link LN nodes to the BTC enti-
ties that control them. In both of these heuristics, we do not consider settlement
transactions with more than two output entities (1.9% of the settlement transac-
tions), as they are not a cooperative close and do not allow us to unambiguously
link nodes and output entities. Furthermore, we ignore settlement transactions
that involve punishment transactions [2]. Finally, an assumption that we make
in both of the following linking algorithms is that if one node in a channel has
been linked to a settlement entity and the settlement transaction has two output
entities, then the other node can be linked to the other settlement entity.

5.1 Linking Algorithm 1: Coin Reuse

Our linking algorithm builds upon the usage pattern that appears when a pay-
ment channel is closed and the user that receives the coins from such channel
reuses them to open a new payment channel. An illustrative example of this
linking algorithm is included in Fig. 1 where a funding entity e2 has been used
to open a channel c1 between nodes n1 and n2 with the funding transaction txF1.
Later, this channel has been closed in the settlement transaction txS , releasing
the coins in the channel to the entities e2 (i.e., the same that was used as input
in txF1) and e3. Finally, assume that the owner of entity e2 decides to open a
new channel reusing the coins from txS performing a new funding transaction
txF2 which results in the payment channel c2 between the aforementioned node
n2 and n3. In this situation, given that the entity e2 has appeared in the settle-
ment transaction of c1 and has been reused to open a new channel in the funding
transaction c2, our heuristic concludes that the entity e2 controls node n2.

Definition 5 (Linking Algorithm 1: Coin Reuse). Assume that a BTC
entity e opens an LN channel c1 := (chpoint1, n1, n2). If e is used as settle-
ment entity to close the LN channel c1 and also as funding entity to open a
new LN channel c2 := (chpoint2, n1, n3), and the nodes n2 and n3 have activity
period overlap, then the user controlling entity e also controls the LN node n1 in
common to both channels c1 and c2.

We applied the linking algorithm based on coin reuse which resulted in 83
tuples of (funding transaction, settlement transaction, funding transaction) and
22 entities reusing their addresses for opening and closing channels. Once these
22 entities are linked to LN nodes, all the other output entities in the settlement
transactions of these 22 entities can be linked to the counter-party nodes in the
channels as mentioned earlier. Finally, after these new links are created, our
heuristic can iteratively go over the settlement transactions that involve these
newly linked entities to find other entity-node pairs.

After 7 iterations, the heuristic yielded 9, 042 entities linked to 2, 170 nodes,
thus having cases where a node is linked to multiple entities. In total, considering
the number of entities we have in our dataset (138, 457 overall, both funding and
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settlement side10) the heuristic is able to link 6.53% of them. This result is a lower
bound on the possible number of linked entity-node pairs because the linking
algorithm mainly relies on channels to be closed (in our dataset only half of them
are) and on a specific subset of entities, namely the output entities of settlement
transactions with exactly two outputs, one per node. In fact, if we focus only
on settlement transactions with two output entities, we have 32, 321 entities,
27.98% of which can be linked, showing thereby that this linking algorithm has
a targeted but effective linking effect. Regarding the nodes percentages, we can
link 19.89% of the total (10, 910 overall) and 46.91% of the nodes for which
there exists at least one channel that has been closed using a 2-output-entity
settlement transaction, confirming the trend we observed with entities.

Discussion. We note that requiring that the same entity is used for all three
transactions (i.e., funding and settlement of the first channel as well as funding of
the second channel) may be too restrictive and leave out further links of entities
and nodes. However, we enforce this restriction to avoid false positives that could
be otherwise introduced as we describe next. Assume we control an LN node,
n2, with an associated BTC entity e1 that funds channel c1 between node n2

and n1 through txF1. Furthermore, we have an LN wallet with an associated
BTC entity, e3, on our phone provided by a third-party app. This means that
there must be another node in the LN, n3, managed by this third-party app.
When we decide to close channel c1, we specify an address provided by our
third-party app, hence belonging to entity e3, as settlement address to receive
the funds back. We finally proceed to use these funds to open a new channel,
c2, again with node n1 but from node n3, the third-party node. Without the
requirement on the same funding entity, the heuristic would link the node n1, in
common between the two channels, to the entity e3 reusing the funds, which is
false. With the same funding address requirement, instead, this case is ignored. A
further condition that needs to be satisfied to strengthen this heuristic is that the
nodes not common to the two channels (nodes n1 and n3 in Fig. 1) have a time
overlap in their activity period. This excludes the unlikely, but not impossible
case that one node changes its ID (public key) from n2 to n3 keeping the same
BTC wallet (and thus entity), which could allow one to open two channels from
two different nodes, but to the same node, using the same BTC entity, creating
a false-positive case for the heuristic.

Countermeasures. The default functionality of LN wallets followed thus far
by virtually all users consists of having a single wallet per node from where to
extract the funds to open channels and where to send the coins after channels
connected to such node are closed. We conjecture that this setting favors the
usage pattern leveraged in the linking algorithm described in this section. As a
countermeasure, we advocate for the support of funding and settlement channels
of a single node from different (external) BTC wallets, helping thus to diversify

10 Here we do not consider source and destination entities as they do not directly
interact with the LN.
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the source of funds. We observe that recent versions of the LN wallet lnd and
c-lightning have started to support this functionality [5,19].

5.2 Linking Algorithm 2: Entity Reuse

In this linking algorithm we leverage the usage pattern that appears when a user
reuses the same BTC wallet (e.g., the one integrated within the LN wallet) to
open several payment channels. Thus, in this linking algorithm we assume that
an entity e opened several payment channels with other entities. This common
usage pattern in practice can be detected at the blockchain by finding the set of
NC funding transactions that have e in common as the funding entity. We can
thus say that e has opened NC channels. At the LN, if there is only one node
n common to all the NC channels funded by e, we say that e controls n. An
illustrative example of this linking algorithm is shown in the appendix.

Definition 6 (Linking Algorithm 2: Entity Reuse). If there are NC > 1
channels opened by one single funding entity e that have only one LN node n
in common, and there are at least two nodes nx and ny in these channels with
activity period overlap, then the user controlling entity e controls node n too.

We can link 9, 904 entities to 2, 170 nodes which correspond to 7.15% of all
the entities and 22.84% of all the nodes respectively.

Discussion. The way this linking algorithm has been described and imple-
mented so far might yield false entity-node links. As discussed in Sect. 5.1, a
user can open a channel from its node n2 to another node n1, then close the
channel, change its node ID to n3 keeping the same BTC wallet and finally open
a second channel to n1. For this linking algorithm, this example would cause
a false positive because n1 would be linked to the BTC entity of this user. To
prevent this from happening, we add the following condition. Consider the set of
nodes appearing in the channels funded by a single funding entity e and exclude
from this set the node that has been linked to e with this heuristic. Now, if
there is at least one pair of nodes (n2, n3 from the example above) in this set
that have an activity period overlap, then we discard the false-positive risk as
it is not possible for node n2 to change to n3 keeping two channels open. When
implementing this additional requirement, we discovered that our results do not
contain any false positive as there is at least one pair of nodes with an activity
period overlap for each entity-node link. To further validate the results of this
second linking algorithm, we report that it provides the same entity-node links
that are in common with the linking algorithm presented in Sect. 5.1.

Countermeasures. A countermeasure to this heuristic is to not reuse the same
funding entity to open multiple channels. This can be achieved either by having
multiple unclustered addresses in a wallet or to rely on external wallets [5,19].

5.3 Validation

For the validation of the heuristics presented in this work we use the ground
truth dataset presented in Sect. 3. For each of the 11 nodes that received funds
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from us, we compare their set of ground truth settlement entities with their set
of linked entities from our linking algorithms. If there is an intersection between
these two sets, we say that the link is validated. In total, we find that 7 nodes
(i.e., 63%) are validated. The validation for the 3 nodes that opened channels to
us is the same, but uses their ground truth funding entities as set for comparison
with the set of linked entities from our linking algorithms. In this case, we can
validate 2 nodes. The lack of validation for the other nodes can have several
reasons: i) as reported in Sect. 3, we notice that only 11 out of the 52 nodes
receiving our coins (by default on newly-generated BTC addresses) also spent
them, ii) the coins spent are not merged with funds from other channels or iii)
the coins are spent and merged with funds from channels missing in our dataset.
Nevertheless, one should note that over time our ground truth data will increase
and more nodes could be validated as soon as they spend our funds.

We believe that our small ground truth dataset is a reasonable trade-off
between obtaining a representative picture of the LN main net and a responsible
and ethical behavior that does not alter the LN properties significantly. We also
see our methodology to gather ground truth data as an interesting contribution
due to its scalability features: costs are relatively low (two on-chain transactions
and LN routing fees for each targeted node) and executable in a programmatic
way. We defer a more detailed description of this methodology to the appendix.

6 Assessing Security and Privacy Impact

We merged the results of our clustering algorithms (Sect. 4) and our linking
algorithms (Sect. 5), thereby increasing the linking between entities and nodes
as shown in Table 3. We defer to the appendix a detailed description of the
contribution for each heuristic individually.

6.1 Privacy Impact on BTC Entities (Layer 1)

The linking algorithms and clustering algorithms described in this work allow
attributing activity to BTC entities derived from their interaction with the LN.
Assume that a cluster is formed by a certain number of BTC entities and LN
nodes, then if any of the LN nodes has publicly identifiable information (e.g.,
alias or IP address), this information can be attributed to the BTC entities as
well. In total, we can attribute tagging information to 17, 260 different entities
that in total account for 50, 456 different addresses, which represent 21.19% of
our dataset.

This deanonymization is based purely on publicly available data11 and can be
carried out by a low budget, passive adversary that simply downloads the BTC
blockchain and the information from the LN. We envision that further impact
can be achieved by a more powerful adversary (e.g., a BTC miner). Moreover,

11 We note that Chainalysis attribution data is not strictly necessary for the linking
algorithms.
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Table 3. Summary results

Linking + Clustering % addresses linked % entities linked % nodes linked

Linking Algorithm 1 18.16 6.53 19.89

Linking Algorithm 1 + all on/off-chain 20.96 8.14 23.64

Linking Algorithm 2 19.19 7.15 22.84

Linking Algorithm 2 + all on/off chain 29.61 12.72 45.97

the possible deanonymization of BTC entities hereby presented shows that it is
crucial to consider the privacy of both layers simultaneously instead of one of
them at a time as largely done so far in the literature.

6.2 Security and Privacy Impact on the LN (Layer 2)

We have evaluated the implications of our clustering and linking algorithms in
the security and privacy of the LN. In summary, we studied how the capacity of
the LN is distributed across actors and found that a single actor controls over
24% of the total LN capacity and as few as five actors consisting of 36 nodes
control over 33% of the total capacity. Few LN actors are thus in a privileged
situation that can be used to diminish the security and privacy of the LN. For
instance, we observed that the entity with the highest capacity can render useless
over 40% of the channels for a period of time by means of DoS attacks. Similar
issues appear from the privacy point of view, where just 5 actors can learn
the payment amounts used in up to 60% of the cheapest paths in the LN and
determine who pays to whom in up to 16% of the cheapest paths. Due to space
constraints, we defer a detailed discussion of our security and privacy assessment
to the appendix.

7 Conclusion and Future Work

In this paper, we presented two novel linking algorithms to reveal the ownership
of BTC addresses that are controlled by LN nodes using publicly-available data.
We also developed four BTC address clustering algorithms and one LN node
clustering algorithm that allowed us to link 29.61% of the BTC addresses in our
dataset to 45.97% of the public LN nodes, and cluster 1, 251 LN nodes into 301
actors. Finally, we discussed the security and privacy implications of our findings
in the LN, where we find that a single actor controls 24% of the overall capacity
and a few actors have a large impact on value privacy and payment relationship
anonymity. These few actors also have a large overlap with those that would
be candidates for high-impact attacks, the success of which can have significant
negative effects on payment success and throughput for the entire LN.

Scalability issues appear in a broad range of blockchain applications and
layer-2 protocols are increasingly considered as possible solutions. In light of
these developments, we find an interesting venue for future work to evaluate
whether our heuristics apply to layer-2 protocols other than the LN such as the
Raiden Network for Ethereum.
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Abstract. The modern financial world has seen a significant rise in the
use of cryptocurrencies in recent years, in no small part due to convincing
levels of anonymity promised by such schemes. Bitcoin, despite being the
most widespread, has significant lapses of anonymity. Several recent con-
structions aim to bridge some of those gaps. Amid such developments,
there have been many attempts to evaluate the anonymity prospects of
such schemes, but always with a rather narrow view based on metrics
tailored to the schemes being studied.

Here, we employ a common universal framework to characterise the
many aspects of anonymity achieved, or not, by any (crypto, digital, or
physical) currency schemes, irrespective of the underlying implementa-
tion. We focus on a few high-profile practical cases of interest (including
Bitcoin, Zcash, Monero, Mimblewimble) and use our common framework
to draw detailed and meaningful comparisons.

Keywords: Anonymity · Cryptocurrencies

1 Introduction

Cryptocurrencies are undeniably one of the most attention-grabbing develop-
ments in security research of the last decade. They continue to open up new
classes of inquiries for the crypto- and distributed-systems communities, while
also arguably offering tangible financial benefits as alternatives to traditional
fiat currencies.

Thanks to the blockchain technology, trust, the grease of financial transac-
tions, can now be inferential rather than axiomatic. The decentralised nature,
ease of conducting cross-border transactions, resistance to censure, and promises
(or hopes) of privacy and anonymity, are factors that have contributed towards
this popularity. Bitcoin is the first and by far the most widely used true1 cryp-
tocurrency at the time of this writing, and has attracted much attention with
respect to its privacy and anonymity aspects.
1 By which we mean: permissionless, fully decentralized, with democratic governance,

and transparently operated—in other words, conducive to trust from first principles.
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Anonymity broadly means that an entity cannot be uniquely identified in a
given setting. This concept has been widely discussed in the context of anony-
mous communication and information sharing. Consequently, many terminolo-
gies [22,30] and theoretical models such as k -anonymity have been developed to
model anonymity [10,29]. For better or worse, these available theoretical frame-
works have been borrowed for discussing anonymity in cryptocurrencies.

Many traditional currency schemes are centralised systems where customers
depend on another party to preserve their privacy. For example, in a banking
model, banks are bound by regulation to preserve the confidentiality of customer
information. If the transaction history of a particular individual or entity were
exposed to an outsider, it could result in many undesirable consequences, from a
subjective sense of betrayal, to more concrete abuses such as misuse of informa-
tion to gain undue advantages in contract bidding. Even worse, if currency units
came attached with transaction histories, that could lead to the blacklisting of
specific units based on their use in unlawful activities in the past, even though
the units may have had only uncontroversial uses afterwards.

Anonymity of cryptocurrencies has received much attention since the cur-
rent Bitcoin framework is claimed to provide only a form of ‘pseudonymity’ as
transactions are linked to payment addresses in a big graph that is visible to
all [9,15]. Detailed analyses of public transaction data, such as the work pre-
sented in [6,19,26], have shown that it is possible to uncover behaviour patterns
of Bitcoin users and trace their identities in real life.

As a result of this tension between the need for, and the lack of, improved
anonymity in cryptocurrencies, a lot of energy has been expended to fulfil that
demand. Some solutions are centered around improving the Bitcoin framework
(e.g. Zcash) whereas other approaches have sought to revisit the blockchain
machinery in the design of new cryptocurrency schemes (e.g. Monero). Despite
many such solutions making claims of “anonymity”, some studies claim that
those could still be subject to deanonymisation [18,20].

As rationalised in [4], despite a large number of studies on cryptocurrency
anonymity, no standardised means are available to evaluate the actual level of
privacy achieved by different cryptocurrencies. Many studies have been con-
ducted in isolation using various metrics, with the consequence that it is not
feasible to compare and benchmark the anonymity landscape in a reliable man-
ner across various schemes. To make matters worse, it turns out that the very
notion of anonymity itself, in such complex multi-party systems as decentralized
cryptocurrencies, has been until now very poorly understood, and is anything
but clear-cut. We discuss the specifics in a separate report [5].

1.1 Our Contribution

The present study was initially motivated by the works of [3,4,9,15], which
lifted the veil on the multiplicity of anonymity notions for cryptocurrencies, but
stopped short of actually providing a crisp formalism for defining and using
those notions. Over the course of this study, we identified a very fine-grained
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structure for the intuitive notion of payment anonymity, parameterised through
qualitative distinct definitions that are all sensible and justifiable in appropriate
scenarios [5].

Our purpose in this work, is to analyse the multiple precise ways in which a
broad notion of anonymity can be envisaged, and we provide a common game-
based security template that combines a massive group of explicit attacker sce-
narios. Indeed, our notions generalise many security notions familiar to cryptog-
raphers such as known vs. chosen plaintext, forward security, indistinguishabil-
ity, active vs. passive adversaries, and so on. The fact that we consider all of
these security dimensions simultaneously multiplies the number of definitions,
but also allows us to meaningfully understand and compare the anonymity of
systems that differ along multiple dimensions. However, it should be noted that
we do not intend to address the anonymity of the underlying construction of
currency schemes in this work i.e. consensus or communication mechanisms.

Our framework is based around the fundamental notion of distinguishability,
leading to a security concept of indistinguishability, likely familiar to readers
from other security definitions. These notions are further particularized to cer-
tain subjects such as transaction value, sender, recipient and metadata, and
parameterised across multiple dimensions based on which information and capa-
bilities are given to the adversary [5].

Our main contribution here is to demonstrate the concrete potential of our
model by analysing the anonymity landscape from a few major cryptocurrency
implementations. We start with a simple Trusted Third Party scheme as a
benchmark and show that it is, as expected, anonymous against all adversaries
appropriate to the trusted third party model. We then study Bitcoin, which still
receives much criticism in relation to anonymity. In addition, we also examine
Zcash, Monero and Mimblewimble; three cryptocurrency schemes with diverse
implementations, which have recently become popular due to their claims for
improved anonymity.

The take-away message from our effort is that (financial) anonymity is not
an all-or-nothing binary property; it is far more subtle. We fully intend that
our framework be used to clearly spell out what aspects of privacy a certain
coin does or does not satisfy, across diverse implementations. Of course, one
could be content with asking for absolute fungibility (think: isotopically pure
melted gold), but that is likely not to lead us anywhere, as no cryptocurrency
in existence comes close to reaching that goal. This only makes the need for a
(much) more refined model all the more pressing.

Organisation. Subsequent sections of this paper are organised as follows. We
first present a brief summary of related studies where theoretical notions of
anonymity have been discussed with reference to cryptocurrencies. We then set
forth the preliminaries of our framework, while emphasising its features and
relevant anonymity definitions. Next, we present the analysis outcomes followed
by a detailed discussion on the significance of this work.
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1.2 Other Related Work

As mentioned at the outset, many early studies have focused on quantitative
analysis of publicly available Bitcoin transaction data such as payment addresses
and values as the Bitcoin blockchain records all transaction details publicly. As
claimed in [17,25,26,28], such public transaction data can be used to compromise
the anonymity of Bitcoin users by studying behavioural patterns and transac-
tion flows etc. Moving forward, some have attempted to formalise anonymity
concepts in a theoretical manner, yet such are not standardised across different
constructions. For example, Androulaki et al. [6] conducted an analysis of Bit-
coin privacy based on activity unlinkability and profile indistinguishability with
respect to addresses and transactions, which was also used in [21] to analyse Bit-
coin network data. Conversely, [33] uses the notion of unlinkability with respect
to linking different entities as formulated by [22].

More recently, new currency schemes have emerged with more promis-
ing anonymity expectations, which has led to more concrete formalisation of
anonym- ity concepts. Zcash is one such scheme which offers improved anonymity
levels through its ‘shielded transactions’, which conceal payment addresses and
values. Yet, experimental studies in [14,24,34] have shown that it is prone to
linkability of transactions with corresponding payment addresses.

The Cryptonote protocol, which forms the foundation for several currency
systems, is claimed to satisfy anonymity in terms of unlinkability and untrace-
ability [31]. Their interpretation of unlinkability is more specific in that, given
two transactions, it should not be possible to identify whether both transactions
were intended to the same party. Untraceability on the other hand is defined as
the inability to identify the corresponding sender for a given transaction. Never-
theless, subsequent studies in [20,32] claim that Monero, which originated from
the Cryptonote protocol, is prone to deanonymisation attacks through analyses
of public transaction data.

Fungibility, which is the property of every currency unit being identical, is
regarded by many as an elementary requirement of any currency scheme, but it
is a tall order. It is well accepted that Bitcoin is not fungible [9,27]. Although
it has been claimed in [24] that Zcash achieves fungibility through its use of
zero-knowledge SNARK proofs, the survey study of [9] makes the countermand-
ing claim that Mimblewimble [23] is the only cryptocurrency scheme to do so.
Even so, the original Mimblewimble is insecure, and the fix proposed in [11], by
making it preserve a lot more data, reintroduces coin history thereby negating
the original fungibility claim.

Methods such as network analysis proposed in [7] and transaction graph-
based analysis in [8] provide means for modelling anonymity through experimen-
tal analysis, which however may not be possible across different constructions.
In comparison, our model deviates from this as our emphasis is on modelling
anonymity from first principles in any currency scheme.

With the increasing complexity, comparing anonymity of cryptocurrencies
has become a challenge. Surveys conducted in [4,9,15] present independent cat-
egorisations of cryptocurrencies based on different anonymity properties such as
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untraceability, unlinkability, fungibility, hidden values and hidden IP addresses.
In a different approach, [3] provides a systematic grouping of a subset of cryp-
tocurrencies in terms of four privacy tiers; pseudonymity, set anonymity, full
anonymity and confidential transactions, based on unlinkability and hidden
user identities. Yet, all such categorisations provide a very high level picture of
anonymity levels based on the techniques used by the schemes, which is orthog-
onal to our work.

Nonetheless, these studies, mostly based on experimental analyses or specific
constructions, do not necessarily facilitate the assessment and comparison of
cryptocurrencies in terms of a common, fine-grained, formal qualitative model
of anonymity.

2 Anonymity Framework

Our work is based on an abstract model of a cryptocurrency scheme, depict-
ing the overall functionality of a generic cryptocurrency scheme. We construct
an anonymity framework for this scheme through a game-based approach. We
chose game-based definitions over the UC (Universal Composability) framework
because the former are intuitive and can be agreed upon by non-specialists (much
less non-cryptographers). This is essential as a bridge between theory and appli-
cations. Further, UC, though a very nice theoretical methodology, is best suited
for small primitives whose ideal functionalities may still have a clean description,
which is certainly not the case with cryptocurrencies. This abstract anonymity
model is formalised in detail in [5]; here we summarise the points of interest for
our purposes in this paper of analysing concrete cryptocurrency schemes.

2.1 A Generic Cryptocurrency Scheme

We define a currency scheme in terms of a security parameter λ ∈ Z
+, and a

system state consisting of payment addresses, each having a public key (apk) and
a private key (ask), and transaction history. A transaction takes place between
senders and recipients with inputs such as values and other metadata (such
as IP addresses). Each transaction comprises private and public parts (ts and
tp), with the latter being broadcast to the network. A mint operation collects
new transactions on the network at any given time and generates a new state.
New currency units may be created as a result of minting, as per its underlying
implementation. Then an adjudicate operation selects the rightful new state of
the system. Accordingly, consecutive states of the scheme form a partial ordering.

It should be noted that we model only the generic functionality of a cryp-
tocurrency scheme in this scheme. Hence, we do not consider the specifics of the
underlying consensus mechanism or the communication here.

Further details of the algorithms are included in Appendix A. The full the-
oretical study in [5] details how correctness and security requirements of this
abstract currency scheme are established.
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Definition 1. A cryptocurrency scheme Π, is defined in terms of security
parameter λ ∈ Z

+ and with the functionality prescribed by means of a set of algo-
rithms; {Init, CreateAddr, IsValidPubAddr, IsValidSecAddr, GetBalance, Cre-
ateTxn, IsValidPubTxn, IsValidSecTxn, ExtractSenderPubAddr, ExtractRecipi-
entPubAddr, ExtractInputVal, ExtractOutputVal, IsMintable, Mint, Adjudicate,
IsValidState, IsGenesisState, CreateCheckpointState, RetrieveCheckpointState}.

2.2 A Comprehensive Adversarial Capability Model

We define a comprehensive adversarial model to include a wide range of capa-
bilities for adversarial power and knowledge, represented by a set of parameters
(Table 1). Adversarial knowledge of public/secret keys of senders/recipients, val-
ues, metadata and other transaction-related data are modelled by ψ. Here, meta-
data refers to implementation specific data that appear in a transaction such as
IP addresses, while the knowledge of a transaction represents other related infor-
mation as shown in Table 1. Adversarial power is modelled by the adversary’s
ability to modify the state (δ), to control state initialisation in the experimental
setup (α), and to cause minting to fail during the game (β). This parametri-
sation accommodates a wide range of adversaries; passive with all parameters
equal to ‘0’, static with δ, α = 1 and adaptive with parameter values greater
than 1. It is assumed that the adversary (A) has oracle access to hidden entities
via opaque handles.

Table 1. Parameters of the adversarial capability model

Param. Value Adversarial knowledge Adversarial power

Sender
public/secret
keys

Recipient
public/secret
keys

Transact-
ion
value

Transact-
ion
meta-data

Transact-
ion

State
manipul-
ation

State
initialis-
ation

Cause
mint to
fail

ψpks/ψsks ψpkr/ψskr ψv ψm ψt δ α β

0 Hidden Hidden Hidden Hidden Hidden Hidden Hidden
random-
ness,
honest init

Not
allowed

1 Hidden but
revealed at the
end

Hidden but
revealed at the
end

Hidden but
revealed at
the end

Hidden but
revealed at
the end

tp is
revealed

Can view
the state

Public ran-
domness,
honest init

Allowed

2 Access public
keys through
oracle

Access secret
keys through
oracle

Chosen by
Oracle and
known

Chosen by
oracle and
known

ts is
revealed

Can
manipulate
the state

Public ran-
domness,
adversarial
init

–

3 A chooses
identity, oracle
creates addresses

A chooses
randomness,
oracle creates
addresses

A chooses
values

A chooses
metadata

Random-
ness is
revealed

- Hidden
random-
ness,
adversarial
init

–

4 A generates
address

A generates
address

– – A chooses
randomness

– – –

5 – – – – A creates
transaction

– – –
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Fig. 1. Anonymity game

2.3 All-in-one Generic Flexible Anonymity Game

We now formulate a generic game, that captures different attacker scenarios, each
depicting a unique aspect of anonymity. We use the variable ω = (ωsωrωvωm)
to set the test variable/s (the attacker’s goal); sender (s), recipient (r), value
(v) and metadata (m). Accordingly, we develop a set of definitions around the
fundamental concept of indistinguishability, which requires the adversary to dis-
tinguish between two known entities in the game. We also define a weaker notion,
unlinkability, in which case, the two entities to choose between, are not known
to the attacker explicitly, but rather by their history in previous transactions.
We define the Anonymity Game between a challenger (C) and an adversary (A)
as given in Fig. 1 and further explained in Appendix A.1.

2.4 Notions of Anonymity

Unsurprisingly, there are around 5,000,000 distinct combinations of ω, ψ, δ, α
and β alone, resulting in different attacker scenarios, which reveal the com-
plexity of what it means for a currency scheme to be anonymous. While some
notions may not result in apprehensible real world scenarios, others may assist
in assessing different aspects of anonymity. Each notion is defined based on a
unique adversary, as per the goal, knowledge and power (i.e. GOAL-KNOWL-
POWER), which is also given as a unique parameter vector, ω-ψ-(δ, α, β) setting
the game. The strongest adversary is assigned the full power (to manipulate the
state setup, the state, and minting) and the full knowledge (of secret keys of
senders/recipients, values, metadata, transaction), which we call a FULL-FULL
adversary. The weakest is named a NIL-NIL adversary, with no power nor knowl-
edge. Others are named accordingly to reveal relevant adversarial capabilities.

3 Analysis

Formally proving consistency and all implications and separations that exist
across all resulting flavours of anonymity would be far beyond the scope and
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space available in this paper (but see [5] for details). Instead, we will focus on
specific notions of interest towards our purpose here to demonstrate how our
framework can be deployed to very precisely characterise concrete properties
of actual cryptocurrencies. We consider Indistinguishability (IND) and Unlink-
ability (ULK) notions related to sender (S), recipient (R) and value (V) (not
metadata which may be different in each implementation), in a bid to provide a
meaningful comparison across real-world currency schemes.

We start by analysing a Trusted Third Party scheme, which has a very high
level of anonymity, as a benchmark for comparison. Then, we study the Bitcoin
system, followed by Zcash, Monero and Mimblewimble, all three of which claim
to have convincing anonymity levels, yet have very diverse implementations.

3.1 A Trusted Third Party (TTP) Scheme

Consider a TTP scheme where a trusted Central Authority (CA) operates a cur-
rency scheme. The CA registers users, validates, creates and mints transactions
upon request by users. We also assume that the CA communicates with all other
parties over authenticated channels and only honours requests from the right-
ful owners of accounts. A user registers one or more accounts with the CA and
maintains funds under those registered identities. No negative fund balances are
allowed at any given time. A user can request the CA to create a transaction,
and subsequently to mint the transactions and the CA performs corresponding
fund transfer/s and creates a transaction record internally. The CA can view
the transaction history at any time. With this functionality, there are no pub-
lic/private keys involved in the scheme and transactions will always be secret,
hence the system state is always internal and private.

Adversarial Capabilities. In the TTP model, CA can have its own state
variables outside the challenger and the adversary, and thus is not required
to accept the adversarial state. Also, the initial state will be an empty list of
transactions, accounts etc., allowing any method of state initialisation possible.
Hence we can allow the adversary to take any value for δ and α in our model
(Table 1). Further, we assume that transactions are encrypted with an asymmet-
ric system using CA’s public key, and hence can be revealed in the end without
revealing any information. We model user identities in terms of a single address
thereby setting apk = ask in our model. To enable the adversary to supply
sender/recipient addresses to the challenger, we provide access to an additional
oracle DelegateAccess to transfer the authority of the addresses controlled by
the adversary to the challenger. Thus, the challenger is able to create the trans-
actions required for different scenarios. Note that this oracle is only specific to
the TTP functionality, and is reminiscent of how ideal functionalities must be
augmented with corruption functions in the UC model.

Analysis of Anonymity. First, we consider a FULL power adversary (denoted
by (2δ, 3α, 1β)), who has the complete knowledge of recipients, value and meta-
data, but knows senders only by public keys and provides the input transactions
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to the game (named as PUBS knowledge denoted by ((3, 0)s, (4, 4r), 3v, 3m, 5t)ψ)
against the goal of S-IND. We name this adversary as S-IND-PUBS-FULL, who
in this case cannot learn any new information about the sender correspond-
ing to the minted transaction as the state is private, and thus has negligi-
ble advantage of winning the Anonymity game (given by the parameter vec-
tor (1s000)ω-((3,0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 1β)). Hence, the TTP scheme
is secure against S-IND-PUBS-FULL adversary and also against a S-ULK-
NILS-FULL adversary having no knowledge of senders (NILS knowledge) repre-
sented by (1s000)ω-((0,0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 1β) by implication. Sim-
ilar anony-mity notions hold for R and V as well. Accordingly, we can say that
the scheme is secure even against an adversary with FULL-FULL capabilities,
for all entities; i.e. ALL-IND-FULL-FULL setting, as the scheme does not leak
any information to the adversary. This is modelled by the vector (1111)ω-((4, 4)s,
(4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 1β), which depicts ‘absolute fungibility ’ demonstrat-
ing the strongest possible level of anonymity in our model.

3.2 Bitcoin

The Bitcoin peer-to-peer cryptocurrency relies on a public blockchain where
transaction data are public. Users are identified via public addresses and they
initiate transactions using their private keys to spend funds (unspent transaction
outputs). Transaction inputs include references to unspent transaction outputs
and a set of new outputs with corresponding values, which later becomes inputs
to another transaction. In addition, transactions also contain additional data
which help in the verification. Participating network nodes compete to create new
blocks (mining) to include new transactions in the blockchain and a qualifying
block is accepted by the network based on a Proof-of-Work system.

Adversarial Capabilities. Most parameters in our model directly corresponds
to Bitcoin except that there is no secret transaction part of the transaction ts.
Since the scheme does not have a private state, this can be modelled with δ �= 0
in our model. Similarly, honest state initialisation with hidden randomness is
not allowed, and hence we model this by setting α �= 0.

Analysis of Anonymity. As all Bitcoin transaction details are public, any
adversary has non-negligible advantage in winning the game against any test
variable (i.e. S, R or V), since they can observe the topology of the transaction
graph. Adversaries can create a specific set of transactions (through the oracle)
chosen in a way that they can correctly identify the graph (by analysing starting
balances of inputs etc.). Hence, it is not secure in any adversary with respect to
indistinguishability or unlinkability of S, R or V.

Conversely, consider a weak adversary in our game against an empty test
variable, who has no information of the transaction (NIL knowledge), but can
view the state setup and the state (VIEW power), denoted by NIL-IND-NIL-
VIEW and parameterised by (0000)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(1δ, 1α, 0β).
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Here, the adversary has to distinguish between two identical transactions carry-
ing same data, except with different randomness. Despite the public transaction
history, the adversary cannot identify the correct transaction with a substantial
probability, thus making the Bitcoin system secure against this attacker. How-
ever, if we increase at least one capability, the scheme becomes insecure. Thus,
we conclude that Bitcoin only satisfies an extremely weak notion in our model,
which only provides anonymity against two identical transactions that only differ
in the randomness. It should be noted however that we make this claim subject
to the computational and operational assumptions of the Bitcoin construction.
In fact, the only way to make the scheme anonymous is to make the state private
(i.e. δ = 0), which is impossible with the current Bitcoin construction.

3.3 Zcash

Zcash emerged as a result of the efforts of improving the anonymity of Bitcoin.
We consider the Zcash Sapling specification for this study. This scheme con-
sists of shielded and transparent payment addresses where transparent addresses
and related transactions operate similar to Bitcoin [12]. Here we only consider
the transactions between shielded addresses (referred to as addresses hereafter).
Each address has a private spending key that allows the owner to spend the
coins (notes) sent to that address. Each note is coupled with a unique nullifier
generated using the spending key and a note commitment, which is publicly
revealed when the note is created. Without the private key, it is infeasible to
link a note commitment to its nullifier. An unspent note in Zcash is a note with
a publicly revealed commitment and a hidden nullifier. When a shielded trans-
action is created, nullifiers of input notes and commitments of output notes are
revealed. In addition, the value of a shielded transaction is also hidden, and is
revealed through value commitments related to input and output notes, and rel-
evant balancing operations are carried out as homomorphic operations. Further,
zk-SNARK primitives are used for functions such as proving the ownership of
notes, verifying and validating transactions [12].

Adversarial Capabilities. Similar to Bitcoin, we can model Zcash addresses
through the payment addresses apk, ask in our model. As the state is public, it
can be modelled by setting δ ∈ {1, 2} and α ∈ {1, 2, 3}. In shielded transactions,
senders and recipients correspond to the nullifiers of input notes and to the com-
mitments of output notes respectively. Further, the values of input/output notes
are also concealed as value commitments. tp represents nullifiers of input notes,
output note commitments and value commitments whereas actual input/output
notes and relevant data can be modelled by ts. The knowledge of secret keys (i.e.
ψsks) is required to link the nullifiers of input notes to their owners (senders)
and the private keys of recipients (i.e. ψskr) should be known to link the note
commitments of output notes to their owners (recipients).
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Analysis of Anonymity. We begin by analysing the unlinkability property.
Although the linkability of Zcash transactions is explored in literature such
as [24] with respect to transactions involving both shielded and transparent
addresses, we only consider shielded addresses here. Consider an adversary for
S-ULK who has all powers except to cause minting to fail (ACTIVE power),
and has full knowledge of recipients, values, metadata and public transaction
data (output note commitments), except the senders (NILS-PUBT knowledge)
which we capture in a parameter vector ((0, 0)s, (4, 4)r, 3v, 3m, 1t)ψ-(2δ,3α,0β).
The adversary cannot obtain any additional knowledge of the transaction as
output note commitments do not leak any information about the sender, and
thus has a negligible advantage over winning the game. Hence, Zcash scheme is
secure in S-ULK-NILS-PUBT-ACTIVE. If the adversary is given more powers to
cause minting to fail (i.e. FULL power), then he may gain additional information
about account balances etc., making the system insecure against S-ULK-NILS-
PUBT-FULL. Further, for any ψt > 1, the adversary has access to additional
knowledge about the transaction which makes the system insecure. Hence, we
can also show that Zcash is secure in R-ULK-NILR-PUBT-ACTIVE, but not in
R-ULK-NILR-PUBT-FULL.

The scheme also satisfies S-IND-PUBST-ACTIVE security, as the knowledge
of senders’ public keys and public transaction data (PUBST knowledge) does not
reveal any information about the nullifiers of input notes (i.e. ((3, 0)s, (4, 4)r, 3v,
3m, 1t)ψ-(2δ,3α,0β)). Yet, with the same reasoning as with S-ULK, Zcash fails
in S-IND-PUBST-FULL. Similarly, Zcash is secure in R-IND-PUBRT-ACTIVE,
but not in R-IND-PUBRT-FULL.

When testing for the value (i.e. ωv = 1), the system is secure against a
FULL power adversary, having only the knowledge of public keys of senders,
recipients and public transaction, but with no knowledge of the values (NILV-
PUBSRT knowledge) as in V-ULK-NILV-PUBSRT-FULL (given by (001v0)ω-
((3, 0)s, (3, 0)r, 0v, 3m, 1t)ψ-(2δ, 3α, 1β)), since failed minting attempts do
not reveal any information despite knowing public keys. Hence, the level of
anonymity with respect to V depends on the knowledge of secret keys as the
value is hidden. Therefore, V-IND property holds only for an adversary with
ACTIVE power and PUBSRT knowledge; i.e. V-IND-PUBSRT-ACTIVE notion
denoted by (001v0)ω-((3, 0)s, (3, 0)r, 3v, 3m, 1t)ψ-(2δ, 3α, 0β).

Accordingly, we can say that Zcash satisfies the strongest level of anonymity
against a PUBSRT-ACTIVE adversary for all test variables given by ALL-IND-
PUBSRT-ACTIVE setting and parameterised by (1111)ω-((3, 0)s, (3, 0)r, 3v, 3m,
1t)ψ-(2δ,3α,0β). Hence, Zcash achieves higher anonymity prospects compared to
Bitcoin, and is bounded by the knowledge of secret keys of payment addresses.

3.4 Monero

Monero is another cryptocurrency that claims improved anonymity based on
several cryptographic primitives such as ring signatures and stealth addresses
to achieve anonymity with respect to senders and recipients [32]. In addition,
Ring Confidential Transactions (RingCT) are used to conceal transaction values
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through value commitments [32]. Each user has two pairs of private/public keys
as spend and view keys. A sender creates a one-time public key (stealth address)
for each output using recipients’ public keys. The sender mixes the actual inputs
with a set of additional random public keys (aka mixins) using ring signatures,
to produce a signature for the ring of inputs. The one-time public key, the
signature and the public keys of inputs (in the ring) are submitted to the network
along with other transaction data [2,32]. A sender can include an (optional) pre-
agreed, encrypted payment ID, enabling respective recipients to identify the
sender using their private keys. The recipients can retrieve outputs using both
their private/public view keys and can spend them using the spending keys.
Outsiders can only view the public keys in the ring (of probable senders), with
each being an equally probable input to the transaction.

Adversarial Capabilities. Similar to others, the Monero Blockchain state is
also public, thus we set the parameters δ ∈ {1, 2} and α ∈ {1, 2, 3} as before.
However, most of the transaction data (e.g. actual senders, recipients, values
etc.) are hidden from the public. We map public and private keys of both spend
and view keys collectively to public/private keys in our model. We represent
mixin data by metadata in our model, i.e. ψm. The knowledge of secret keys
of a sender/recipient is sufficient to identify the respective sender/recipient of a
transaction, respectively. Conversely, the knowledge of ψskr alone is not enough
to identify the sender, if the transaction does not contain a payment ID.

Analysis of Anonymity. First we look at the unlinkability property of Monero,
which is analogous to the notion of traceability of Monero, referred to in [16,32].
We consider the S-ULK-NILS-PUBT-ACTIVE notion as with Zcash, without
the knowledge of likely senders (i.e. ((0, 0)s, (4, 4)r, 3v, 3m, 1t)ψ-(2δ,3α,0β)). The
state only reveals the public keys of a possible set of senders, but not the recip-
ients nor the value. Yet, if the adversary chooses the mixins, then he has addi-
tional information about the sender as ring participants are public. Thus, Mon-
ero cannot be secure if the adversary knows the mixins in the ring. Hence, we
define a weaker adversary by setting ψm = 0 in our model, with an adver-
sary having no knowledge of sender or metadata (NILSM-PUBT knowledge), in
which case Monero is secure in S-ULK-NILSM-PUBT-ACTIVE (modelled by
(1s000)ω-((0, 0)s, (4, 4)r, 3v, 0m, 1t)ψ-(2δ,3α,0β)).

With S-IND-PUBSMT-ACTIVE, Monero cannot be secure as the knowledge
of mixins along with the public keys of probable senders may leak information
about the actual sender. Further, the knowledge of the transaction tp can also
leak information about the mixins. Hence, we consider a weaker adversary with
no knowledge of metadata or the transaction (i.e. NILMT-PUBS knowledge)
with S-IND-NILMT-PUBS-ACTIVE, represented by (1s000)ω-((3, 0)s, (4, 4)r,
3v, 0m, 0t)ψ-(2δ,3α,0β), who fails against Monero. However, these claims may
be broken if the mixins are not chosen carefully by the sender.

With recipient anonymity, we can see that Monero complies with R-ULK-
NILR-PUBT-ACTIVE as funds are received by stealth addresses which can be
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claimed only by the recipient with the matching private key. This notion of
unlinkability closely relates to the notions described in [16,32]. Similarly, Mon-
ero is also secure in R-IND-PUBRT-ACTIVE as the knowledge of recipients’
public keys do not reveal anything about the stealth addresses. Further, as val-
ues are hidden, Monero’s anonymity in V reduces to the knowledge of the secret
keys of the senders/recipients similar to Zcash and hence it satisfies V-ULK-
NILV-PUBSRT-FULL and V-IND-PUBSRT-ACTIVE notions. As with Zcash,
S-IND, S-ULK, R-IND, R-ULK and V-IND goals fail against a FULL power
adversary with the information leakage from failed minting. Thus, we can see
that the maximal anonymity level satisfied by Monero is the ALL-IND-NILMT-
PUBSR-ACTIVE security given by the parameter vector (1111)ω-((3, 0)s, (3, 0)r,
3v, 0m, 0t)ψ-(2δ,3α,0β).

3.5 Mimblewimble

The Mimblewimble protocol focuses on improving anonymity and scalability
through confidential transactions and transaction aggregation [11,13]. We study
the Grin implementation for this analysis [1]. A coin in this is a commitment,
C = vH + rG where v is the value, r is the randomness (hence the private key
of the coin), and H,G are generators of a discrete logarithm [11]. The opening
of the commitment of a coin is necessary to spend that coin, which requires the
corresponding secret key (r). The sender sends the input coins (commitments)
to the recipient over an authenticated channel, who then adds the commitments
to the output coins (by including individual private keys) and a partial signature
for the transaction (using a random nonce), which is sent back to the sender.
The sender validates the received signature and generates his portion of the
signature and broadcasts the transaction on the network, which is verified (via
the relevant public key generated through public transaction data) and minted
by the network nodes subsequently. Transactions are included in the blockchain,
subject to transaction aggregation which hides the actual transaction graph [1].
A typical transaction consists of input/output coins (commitments) and relevant
range proofs (proving that values are positive), transaction fee and a signature.

Adversarial Capabilities. As before, the Mimblewimble state is public. How-
ever, transactions hide the senders, recipients and the values while revealing
only the commitments required to validate a given transaction by any third-
party. The knowledge of the secret key (r) of the coins is required to produce a
valid signature for a transaction, allowing the rightful owners to spend the coins.
Hence we model the knowledge of secret keys of inputs and outputs as ψsks and
ψskr

respectively in our model. The knowledge of the public key of the transac-
tion can be modelled as ψpks

and ψpkr
. As the sender initiates a transaction by

communicating with relevant recipients, when the adversary knows any of the
secret keys, there is no anonymity (i.e. when ψsks

, ψskr
> 0 in the model).
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Analysis of Anonymity. Consider the S-IND-PUBSRT-ACTIVE notion,
which is parameterised by (1s000)ω-((3, 0)s, (3, 0)r, 3v, 3m, 1t)ψ-(2δ,3α,0β).
Despite lear- ning the value, metadata and public transaction data, the adversary
is not able to distinguish between any sender, as secret keys are not known, thus
making Mimblewimble secure against this adversary. However, any further leak-
age of information (i.e. private keys of recipients) would compromise anonymity.
Similarly, the notion of S-ULK-NILS-PUBRT-ACTIVE denoted by (1s000)ω-
((0, 0)s, (3, 0)r, 3v, 3m, 1t)ψ-(2δ,3α,0β) is also satisfied by implication. With a
similar argument, we can show that it also satisfies R-IND-PUBSRT-ACTIVE
and R-ULK-NILR-PUBST-ACTIVE. With V-IND, we can see that it is secure in
V-IND-PUBSRT-ACTIVE as the value is hidden similar to Zcash and Monero,
and hence also secure in V-ULK-NILV-PUBSRT-FULL. Thus, we can conclude
that Mimblewimble satisfies strongest anonymity with respect to ALL-IND-

Fig. 2. Maximal anonymity notions sat-
isfied by: TTP (red), Bitcoin(yellow),
Zcash(blue), Monero(pink), Mimblewim-
ble(green) (Color figure online)

Fig. 3. Sender indistinguishability sat-
isfied by: TTP (red), Bitcoin(yellow),
Zcash(blue), Monero(pink), Mim-
blewimble(green) (Color figure online)
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Fig. 4. Recipient indistinguishability sat-
isfied by: TTP (red), Bitcoin(yellow),
Zcash(blue), Monero(pink), Mimblewim-
ble(green) (Color figure online)

Fig. 5. Value unlinkability satis-
fied by: TTP (red), Bitcoin(yellow),
Zcash(blue), Monero(pink), Mim-
blewimble(green) (Color figure online)
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PUBSRT-ACTIVE, denoted by the vector (1111)ω-((3, 0)s, (3, 0)r, 3v, 3m, 1t)ψ-
(2δ,3α,0β).

4 Discussion

While anonymity on the surface looks like an atomic notion, it is evident from
the above analysis that it is actually quite quirky and splits apart under a pow-
erful microscope. These findings reveal how minute differences of anonymity
exist among the currency schemes studied, as illustrated by the Figs. 2 to 5.
Figure 2 compares the schemes with respect to the maximal anonymity notion2.
Compared to the TTP scheme, the other four schemes show weaker anonymity
prospects, proving that they do not meet the criteria for “absolute fungibility”.
As expected, Bitcoin demonstrates the weakest anonymity of all. Conversely
Zcash, Monero and Mimblewimble demonstrate improved anonymity with minor
deviations among them. Zcash shows the highest level while Mimblewimble shows
weaker anonymity with respect to the participants of a transaction and in Mon-
ero, anonymity is compromised when details of the choice of mixins are leaked
to the adversary. Nevertheless, the knowledge of the randomness of the coins
(i.e. ψt > 1) hinders the anonymity in all three schemes above. Figures 3 to 5
compare three individual anonymity notions related to S-IND, R-IND and V-
ULK, and accordingly Zcash is secure against a stronger adversary, compared to
other two. However, we only consider shielded addresses here whereas in reality
Zcash users have the option to choose transparent addresses, in which case its
anonymity is degraded to that of Bitcoin.

On that account, our work shows the very complex nature of the level of
anonymity realised by various currency schemes. Consequently, our analysis
demonstrates how one can effectively evaluate anonymity in a unified manner
across dissimilar implementations as opposed to different categorisations pre-
sented in studies such as [4,9,15]. Hence, claims for anonymity cannot be made
lightly in the presence of such granularity.

Therein, we have presented a qualitative recap of anonymity of a subset of real
world cryptocurrency schemes as our major contribution in this work. One may
wonder why we need such granularity in modelling anonymity in the context of
cryptocurrencies, yet the findings of our case studies show how a minute change
such as varying one value along a single dimension, could drastically affect the
level of anonymity. The study of such impact and the interdependencies can be
regarded as a separate study by itself and hence is recommended as a future
work in this context.

As noted earlier, this study does not investigate the privacy aspects of the
underlying consensus mechanism or the network of a cryptocurrency scheme,
which may leak information independently from the currency scheme in which
case it may affect the achievable level of anonymity. Our model already provides a
way of capturing this leak as an instance of metadata, but the exact mechanisms
2 I.e. where the adversary has to distinguish between two transactions that differ in

all aspects: sender, receiver, value and metadata.



220 N. Amarasinghe et al.

by which such leaks occur would have to be studied on a case by case basis and
it would be another direction for further study.

5 Conclusion

In this paper, we have demonstrated how anonymity of cryptocurrency schemes
can be analysed rigorously by means of a common framework, regardless of the
implementation method. Our analysis is centered around an extensive group of
anonymity properties based on the fundamental property of indistinguishabil-
ity, further particularised to varying security subjects and adversarial models.
Together, these represent a precise and exhaustive recount of true anonymity
achieved by any currency scheme. We are first to be surprised by the richness of
this formal financial anonymity landscape, which is unlike other formal notions
of security and privacy seen in cryptography. This reality is well demonstrated
through the case studies presented in this work.

Acknowledgements. Xavier Boyen is the recipient of an Australian Research Coun-
cil Future Fellowship and acknowledges generous support from the grant, number
FT140101145. Authors also thank the anonymous reviewers for their comments.

Appendix A Anonymity framework

We provide a summary of the framework here while a comprehensive explanation
is available in the report in [5]. We use the notation in Table 2.

Table 2. Notation

Description Notation

Security parameter λ : λ ∈ Z
+

A tuple of random bit strings ρ : ρ ∈ ({0, 1}∗)∗

A system state/Current state, a set of states p, P

Public key/Private key of a payment address apk, ask

Ordered tuple of one/more addresses (senders/recipients) of secret keys S̄, R̄

Ordered tuple of one/more addresses containing only public keys S, R

Public and private parts of a transaction tp, ts

Ordered tuples of input and output values of a transaction Vold, Vnew

Metadata for a transaction m

Excess value of a transaction (fees + minted value) Vx

A tuple of addresses of miners Rm

Return X if y, otherwise return 1 Xy

If a = ⊥ then return c, else return b a?b : c

If a = ⊥ then return b, else return a a? : b
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Table 3. Functions of the framework.

Algorithm Syntax

Init p0 ← Initπ(1λ)

CreateAddress ⊥ ∨ (apk, ask, tp, ts) ← CreateAddrπ(p, d; ρ)

IsValidPubAddr {0, 1} ← IsValidPubAddrπ(apk, p)

IsValidSecAddr {0, 1} ← IsValidSecAddrπ(apk, ask, p)

GetBalance ⊥ ∨ Bal ← GetBalanceπ(apk, ask, p)

CreateTxn ⊥ ∨ (ts, tp) ← CreateTxnπ(R, Vnew, S̄, Vold, m, p, ρ)

IsValidPubTxn {0, 1} ← IsValidPubTxnπ(tp, p)

IsValidSecTxn {0, 1} ← IsValidSecTxnπ(tp, ts, p)

ExtractSenderPubAddr ⊥ ∨ S ← ExtractSenderPubAddrπ(tp, ts, p)

ExtractRecipientPubAddr ⊥ ∨ R ← ExtractRecipientPubAddrπ(tp, ts, p)

ExtractInputVal ⊥ ∨ Vold ← ExtractInputVal(tp, ts, p)

ExtractOutputVal ⊥ ∨ Vnew ← ExtractOutputVal(tp, ts, p)

IsMintable {0, 1} ← IsMintableπ({tp}, p)

Mint ⊥ ∨ (p
′
, Vx) ← Mintπ({tp}, Rm, p)

Adjudicate p
′ ∈ P : p ∨ p

′ ← Adjudicateπ(P, p)

IsValidState {0, 1} ← IsValidStateπ(p, λ)

IsGenesisState {0, 1} ← IsGenesisStateπ(p, λ)

RetrieveCheckpointState ⊥ ∨ pc ← RetrieveCheckpointStateπ(p)

CreateCheckpointState ⊥ ∨ pc ← CreateCheckpointStateπ(p)

AdditionalFunctionality (outputs) ← AdditionalFunctionality(inputs)

Functionality of a Generic Cryptocurrency Scheme. We define the algo-
rithms of the currency scheme in Table 3. There may be additional functionality
associated with real world cryptocurrency systems, e.g. Smart contracts with
Ethereum. In order to capture such additional features, we define a supplemen-
tary function AdditionalFunctionality. This enables us realise the security
implications of functionality of a scheme that may be outside our base model.

A.1 Anonymity Game

We present the Anonymity game and required helper functions here. Helper
functions check the adversarial conditions of inputs at the start of the game
(CheckAdvConditions) and reveals data in the end (RevealData) based on the
parameter ψ (Fig. 6). Moreover, the test variable, ω = (ωs, ωr, ωv, ωm) with each
ωx ∈ {0, 1} indicates which entity is being tested in a given instance of the game.
The adversarial inputs are crafted based on the ω, ψ, δ, α and β parameters.
Figure 7 illustrates the game.
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Fig. 6. Additional helper functions for the Anonymity game

Fig. 7. Anonymity Game
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In this game, we use ‘〈condition〉’ notation after an action to check if a valid
outcome is obtained and if the condition inside the brackets is false, then the
game terminates and the adversary loses the game. Upon submission of valid
inputs, the adversary continues to evolve the current state through appropriate
oracle queries. If ψt �= 5, then the challenger creates two transactions (Fig. 7 -
lines 12 and 13), or chooses the transactions provided by the adversary otherwise.
Out of the two transactions, only one transaction is minted based on the chosen
bit b (line 15). Failed mint operations are not allowed except when β = 1 and
to check this condition, the notation ‘〈IsMintableπ({tp1} ∪ T, pO)β̄ 〉’ is used.
In this case, when β = 0, β̄ = 1 and the game continues if IsMintable() = 1.
When β = 1, β̄ = 0 and hence IsMintable()0 = 1 always and hence the game
proceeds. After revealing the relevant data (line 16), the adversary is not allowed
to create any transactions involving revealed addresses. The adversary wins the
game if the chosen bit is guessed correctly, subject to the condition β∨(fO �= 1).

A.2 Anonymity Notions

We summarise some useful anonymity notions with their corresponding param-
eter vectors in Table 4 below. Formal definitions of these notions are given in [5].

Table 4. Some useful anonymity notions

Goal Adversarial knowledge Adversarial power Parameter vector

ALL-IND FULL FULL (1s1r1v1m)ω-((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ ,3α,1β)

ALL-IND NILMT-PUBSR ACTIVE (1s1r1v1m)ω-((3, 0)s, (3, 0)r, 3v, 0m, 0t)ψ-(2δ ,3α,0β)

ALL-IND PUBSRT ACTIVE (1s1r1v1m)ω-((3, 0)s, (3, 0)r, 3v, 3m, 1t)ψ-(2δ ,3α,0β)

S-IND PUBST ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 1t)ψ-(2δ, 3α, 0β)

S-IND NILMT-PUBS ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 0m, 0t)ψ-(2δ, 3α, 0β)

S-ULK NILS-PUBT ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 1t)ψ-(2δ ,3α,0β)

R-IND PUBRT ACTIVE (0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 1t)ψ-(2δ ,3α,0β)

R-ULK NILR-PUBT ACTIVE (0s1r0v0m)ω-((4, 4)s, (0, 0)r, 3v, 3m, 1t)ψ-(2δ ,3α,0β)

V-IND PUBSRT ACTIVE (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 3v, 3m, 1t)ψ-(2δ ,3α,0β)

V-ULK NILV-PUBSRT FULL (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 1t)ψ-(2δ ,3α,1β)

NIL-IND NIL VIEW (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(1δ ,1α,0β)

NIL-IND NIL NIL (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(0δ ,0α,0β)
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20. Möser, M., et al.: Narayanan, A., et al.: An empirical analysis of traceability in the
monero blockchain. Proceedings on Privacy Enhancing Technologies (3) (2018)

21. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin
transaction graph. Future Internet 5(2), 237–250 (2013). copyright - Copyright
MDPI AG 2013; Last updated - 2014–07-30

22. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by
data minimization: Anonymity, unlinkability, undetectability, unobservability,
pseudonymity, and identity management. http://dud.inf.tu-dresden.de/literatur/
Anon Terminology v0.34.pdf (August 2010), v0.34

https://eprint.iacr.org/2021/036
https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1007/3-540-36467-6_5
https://scalingbitcoin.org/papers/mimblew- imble.txt
https://scalingbitcoin.org/papers/mimblew- imble.txt
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
http://arxiv.org/abs/1704.04299
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf


The Complex Shape of Anonymity in Cryptocurrencies 225

23. Poelstra, A.: Mimblewimble (2016). https://scalingbitcoin.org/he/papers/
mimblewimble.pdf

24. Quesnelle, J.: An Analysis of Anonymity in the Zcash Cryptocurrency. Master’s
thesis, University of Michigan-Dearborn (2018)

25. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

26. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

27. Ruffing, T., Moreno-Sanchez, P., et al.: ValueShuffle: mixing confidential transac-
tions for comprehensive transaction privacy in bitcoin. In: Brenner, M. (ed.) FC
2017. LNCS, vol. 10323, pp. 133–154. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70278-0 8

28. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the
bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 29

29. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

30. Tsukada, Y., Mano, K., Sakurada, H., Kawabe, Y.: Anonymity, privacy, onymity,
and identity: a modal logic approach. In: 2009 International Conference on Com-
putational Science and Engineering, vol. 3, pp. 42–51 (August 2009)

31. Van Saberhagen, N.: Cryptonote v 2. 0 (2013). https://cryptonote.org/whitepaper.
pdf

32. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D., Yuen, T.H.: Anonymity reduction
attacks to monero. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS,
vol. 11449, pp. 86–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14234-6 5

33. Wijaya, D.A., Liu, J.K., Steinfeld, R., Sun, S.-F., Huang, X.: Anonymizing bitcoin
transaction. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016.
LNCS, vol. 10060, pp. 271–283. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49151-6 19

34. Zhang, Z., Li, W., Liu, H., Liu, J.: A refined analysis of zcash anonymity. IEEE
Access 8, 31845–31853 (2020)

https://scalingbitcoin.org/he/papers/mimblewimble.pdf
https://scalingbitcoin.org/he/papers/mimblewimble.pdf
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/978-3-319-70278-0_8
https://doi.org/10.1007/978-3-319-70278-0_8
https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1007/978-3-030-14234-6_5
https://doi.org/10.1007/978-3-030-14234-6_5
https://doi.org/10.1007/978-3-319-49151-6_19
https://doi.org/10.1007/978-3-319-49151-6_19


Secure Multi-party Computation



Improving the Efficiency of AES
Protocols in Multi-Party Computation

F. Betül Durak(B) and Jorge Guajardo(B)

Robert Bosch LLC — Research and Technology Center, Pittsburgh, USA
{betul.durak,jorge.guajardomerchan}@us.bosch.com

Abstract. The AES is a standardized symmetric block cipher, whose
efficiency has been studied widely. This has resulted in very efficient soft-
ware and hardware implementations of AES, which allow for the encryp-
tion of millions of blocks per second. However, AES was not designed
with Multi-Party Computation in mind. Though there are many real-
world applications of MPC requiring block ciphers, standard ciphers such
as AES are far from being efficient for real-world applications of MPC.
In this paper, we study how to improve the efficiency of AES modes of
operation in the actively secure MPC setting with dishonest majority
with precomputation as put forward by SPDZ and its variants. We pro-
pose two new protocols. The first one is aimed at improving the efficiency
of the Sbox computation, the only non-linear layer in the AES. In par-
ticular, we use an (equally secure) inverse Sbox computation instead of
the standard forward Sbox. The second protocol improves on the overall
AES computation by optimizing the off-line phase and computing special
(Beaver)-tuples specifically designed to improve the performance of the
Sbox AES computation. Our proposals, result in an overall improvement
of 3.33. The on-line phase of the protocols is fully implemented using the
MP-SPDZ framework.

1 Introduction

Secure multi-party computation (MPC) was introduced in the seminal work of
Yao [26] and follow up work [14,24] more than 30 years ago. MPC has been far
from being practical until recently when it has been implemented and tested
in various frameworks1 [5,10,17,22,25]. MPC can come with various flavors in
terms of security where we have actively, covertly, and passively secure protocols;
in terms of underlying techniques such as garbled circuits or secret sharing; or
in terms of adversarial settings such as honest or dishonest majority. Designing
protocols which are actively secure in the dishonest majority setting and also
efficient remains a challenge. In this work, we will focus on one significant MPC
protocol: SPDZ [13]. SPDZ is based on linear secret sharing and achieves active
security in the dishonest majority setting. In practice, we use the MP-SPDZ
framework [17] as it is commonly used for benchmarks.

1 See [16] for comparisons of various implementations.
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Advanced Encryption Standard (AES) and Modes of Operation. The AES is a
symmetric-key block cipher that was invented and standardized two decades
ago [1]. It is a block cipher accepting 128-bit inputs and outputs using 128-
bit, 192-bit and 256-bit keys corresponding to 10, 12 and 14 rounds variants,
respectively. All rounds except for the last one include four different layers: (i) a
non-linear substitution layer SubBytes or AES Sbox, which is applied to each of
the 16 bytes in the AES state each round. This is followed by (ii) the ShiftRows,
(iii) the MixColumns, and (iv) the AddRoundKey layers, all of which are linear
operations. Before the first round, an AddRoundKey layer is applied. The last
round of all variants excludes the MixColumns layer.

In practice, any block cipher such as AES is used in a mode of operation such
as CTR, AES-GCM, AES-CCM, etc. We will refer to the operation of encrypting
one data block with AES as the forward AES (or forward cipher) computation
and similarly, we will refer to the AES “decryption” operation as the inverse
AES (or inverse cipher) operation. We refer to encryption and decryption when
we talk about mode of operations to encrypt/decrypt data that is longer than
a single AES block. We observe that depending on the mode of operation, it is
possible to use the forward AES for both encryption and decryption operations
(e.g., CTR mode). Alternatively, certain modes of operation require the use of
both forward AES for encryption and the inverse AES for decryption (e.g. CBC
mode). Notice that the inverse AES requires inverting not only the order of the
layers but also the operation in each layer itself. In particular, the SubBytes
layer reverses the order of operations given in the Sbox computation; inverting
ShiftRows shifts rows to the left instead of shifting them to the right; the inverse
of MixColumns uses a different matrix than forward AES to multiply the columns
in inverse AES. Finally, the round keys that are added to the internal states need
to be read in reverse order from the list of expanded keys.

The AES security and efficiency has been widely studied. As a result, there
are many fast standard AES software and hardware implementations in the
literature. However, AES was not designed to be efficient in MPC. Among the
four AES layers, only the SubBytes layer performs non-linear operations. Since
in the MPC setting, the cost for the linear layers is negligible because of their
linearity (i.e. they can be implemented without interaction), the focus of this
paper is on optimizing the Sbox MPC implementation.

Why an MPC Implementations of AES? Since the main point of MPC is to
“distribute” trust among participants of the protocol, one very significant appli-
cation of MPC is to protect long term secret keys. This allows participants in a
computation to manage their secrets without requiring hardware security mod-
ules (which tend to be expensive and hard to manage and deploy) or without
relying on off-the-shelf secure environments (which have been demonstrated to
suffer from major vulnerabilities rendering them unsuitable to keep the confi-
dentiality and integrity cryptographic secret keys [20,21]). In this setting, the
secret key is distributed among participants by splitting it into shares such that
only a qualified subset of participants can encrypt or decrypt data by running
the MPC protocol without ever revealing the key. In this work, we assume that
the encryption/decryption mechanism will be the AES.
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1.1 Our Contributions

In this work, we study new optimization techniques for MPC evaluation of AES
following the SPDZ model [13], which itself is based on the offline/online com-
putation model (proposed by Beaver [4]) combined with information theoretic
MACs to achieve security against active malicious adversaries.

The main contribution of our work starts with the observation that in the
MPC setting, implementing the inverse AES can be made faster than the for-
ward AES. This is due to the fact that the inverse SubBytes can be modified to
require less operations than the (forward) SubBytes operation, while keeping the
same functionality and security. We start our study by looking into two different
approaches to compute AES: the method in [11], which we denote as AES-BD
and it uses bit decomposition to implement the AES Sbox computation and a
method called as AES-LT which implements a table look up described in [18]. We
choose to work with AES-BD due to the very costly storage requirements of the
AES-LT method. More specifically, in AES-LT, each Sbox operation requires the
pre-computation of a large masked table. We compare the performance of these
two methods in Sect. 4. We, then, focus on the implementation of a single Sbox
in AES-BD in MP-SPDZ framework to compute the forward AES encryption in
GF(240) [11]. Our results indicate that we can achieve about a 50% penalty in
latency compared to the AES-LT approach of [18] but our approach requires 20
times less storage. The performance achieved is also about the same as the best
semi-honest implementation presented in [8] but we achieve active security.

Our high-level idea relies on the following observations: AES-BD follows a
specific order of operations where the protocol has to perform one bit decompo-
sition on the secret input; 7 linear transformations which are all local computa-
tions; six secret multiplications; one more bit decomposition; and finally an Sbox
affine transformation. Two bit decompositions are necessary because the opera-
tions after the first secret bit decomposition results with composition of secret
values due to the multiplications. In order to apply the last affine forward Sbox
transformation, AES-BD performs a second secret bit decomposition. Secret bit
decomposition in MPC is a costly operation. Namely, it requires random values
from the offline phase and communication to reveal masked values (as described
in detail in Appendix 6.2). Thus, we wish to avoid excessive usage of it. Our
specific idea is to avoid the need for the second secret bit decomposition to save
communication and merge all the local computations into a single operation.
This results in a factor of four performance improvement as well as it allowed
us to save communication/storage. We note that this optimization requires no
changes to the offline phase of SPDZ protocol. We can indeed take the MP-SPDZ
framework as it is and integrate our protocol.

Next, we explore offline phase pre-computation that result in additional
online performance improvement. We exploited the fact that bit decomposi-
tion in GF(240) is a linear operation and that we can pre-compute specialized
tuples during the SPDZ offline phase. Observe that the idea of using special-
ized tuples has been previously described [7,12,13,23] but not in the context of
improving the computation of the AES in MPC. Following this approach, we can
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pre-compute all the secret bit decompositions in the offline phase and reduce the
number of full secret multiplications to 2 instead of 6 as forward AES requires.
Strictly speaking, all linear functions can be computed by masking and revealing
operations. We implemented both of our optimizations and verified the expected
theoretical gains for the storage and communication as well as the performance.
In particular, we save 33.6 KBytes of storage (resulting in 61% improvement) and
10.17 KBytes of communication (resulting in 55% reduction in communication
overhead) compared to the implementation in [11]. The performance improves
from 5 msec to 1.5 msec with the proposed protocols resulting in a factor of 3.33
improvement.

Given the fact that the inverse AES operation is more efficient to implement
in the MPC setting and that parallelisable and highly efficient modes such as
CTR, OFB or CFB only use the forward-AES for encryption and decryption,
we also propose to implement such modes of operation with the inverse AES
in both encryption and decryption operations, instead. For example, we could
implement CTR mode of operation where both encryption and decryption are
implemented with only inverse AES for each block. Note that in terms of security,
the forward and inverse AES are equivalent [1, Section 5.3.5] [3]. Thus, having a
mode of operation encrypting blocks with inverse AES is as secure as the mode
of operation encrypting blocks with forward AES.

The remainder of this paper is organized as follows. In Sect. 3, we discuss in
detail the performance of previous AES implementations in the active malicious
adversary setting using SPDZ as previously proposed in [11,18]. Our new pro-
tocols and optimizations are described in Sect. 4. We thoroughly compare our
implementation requirements in Sect. 4.5. Here we also include in our analysis
implementations in the semi-honest setting [2,8]. To the best of our knowledge
the mentioned implementations constitute the fastest and most efficient imple-
mentations of AES in each of their corresponding security MPC settings.

2 Preliminaries

Notation. We will denote the secret sharing of a value x as �x�. It is understood
that for n parties Pi, i = 1 . . . n, x =

∑
i xi where xi are random shares of x. We

will refer to the share xi also as �x�i, so it is also valid to write x =
∑

i�x�i.

The SPDZ Protocol. A secret sharing scheme allows a secret value to be shared
and computed securely among multiple untrusted parties. We will denote the
secret sharing of a value x as �x�. It is understood that for n parties Si, where
i = 1 . . . n, x =

∑
i xi where xi are random shares of x. We use SPDZ which uses

linear secret sharing with information theoretic MACs as proposed [12,13]. SPDZ
achieves security against active malicious adversaries. In particular, it allows for
active adversaries with dishonest majority without abort. It guarantees that
the if the protocol terminates then the output received by the honest parties
is correct, except with negligible probability. In this paper (as in most previous
work), this probability is set to 2−40.
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Additive Homomorphic Properties. SPDZ secret sharing offers additive
homomorphic properties as follows. Given additive shares �s1� and �s2� and
c ∈ Fp, each party can locally compute the additive share of addition and scalar
multiplication as �s1 + s2� ← �s1� + �s2� and �cs� ← c�s�.

Authenticated Homomorphic Multiplication in the Online/Offline
Model. We recall the authenticated secret sharing in [13], in which each secret s
is augmented with an information-theoretic Message Authenticated Code (MAC)
computed as αs, where α is a global MAC key owned by the dealer. We denote
the authenticated share of a secret s as 〈·〉, which contains the additive share
of s and the additive share of αs as 〈s〉 = (�s�, �αs�), where �αs� is created
in the same manner as �s�. The algorithm to create shares uses the homomor-
phic multiplication protocol with malicious security from [13,19]. In this setting,
each party Si owns a share of the MAC key �α�i. The protocols follows the pre-
computation model using Beaver multiplication triples [4] of the form (a, b, c)
such that c = a ∗ b.

Offline Phase. In the offline phase, all parties harness homomorphic encryption
(HE) and zero-knowledge (ZK) protocols [13,19] to compute the authenticated
share of the Beaver triple and its MAC in such a way that no party learns
about (a, b, c) and α. This is achieved in the pre-computation phase using a
somewhat homomorphic encryption (SHE) scheme. To this end, each Si obtains
(〈a〉i, 〈b〉i, 〈c〉i), where 〈a〉i = (�a�i, �αa�i) and similarly 〈b〉i = (�b�i, �αb�i) and
〈ab〉i = 〈c〉i = (�c�i, �αc�i) = (�ab�i, �αab�i)

Online Phase. In the online phase, several protocols are required to perform
online computations. For now, we only describe the multiplication protocol.
Throughout the paper, we will use a few additional protocols, which we will
describe when they are introduced.

Multiplication (without MAC verification). In order to multiply two secret value �u�
and �v� with multiplication triplets (�a�, �b�, �c�), each Si (locally) computes
�ε�i ← �u�i − �a�i, and �ρ�i ← �v�i − �b�i. All parties come together to open
ε and ρ by broadcasting �ε�i and �ρ�i. Finally, each Si (locally) computes
�uv�i ← �c�i + ε�b�i + ρ�a�i + ερ.

Verifying the MAC of the multiplication. During the multiplication protocol above,
the parties also get �αuv�i ← �αc�i + ε�αb�i + ρ�αb�i + ερ. For all (partially)
open values they perform a MACCheck protocol [12, Fig. 10] which requires
multiple commitment rounds to guarantee synchronicity. In particular, with-
out the commitments, it might be possible that a malicious party broadcasts
different σi values to different parties in the protocol in such a way that
the addition of the σi values still is equal to zero even if some of them are
incorrect. Full multiplication is the combination of these two protocols.

MPC Framework for AES: MP-SPDZ allows us to implement functions in binary
finite field (such as GF(240)) as well as prime finite field (as in Zp). Standard
AES arithmetic is defined with Galois field GF(28) with a reduction modulus.
To satisfy statistical security, [18] requires computations in the binary finite
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field GF(240). Therefore, the AES implementation in Keller2 et al. [18] is also
over GF(240) instead of GF(28). This means that MP-SPDZ needs to define
the field GF(240) with a reduction modulus and an isomorphic embedding from
GF(28) elements to GF(240) elements (these elements form a sub-field of size
28). As detailed in [18], the reduction modulus to define GF(240) is Q(X) =
X40 + X20 + X15 + X10 + 1 and the embedding of X is defined with X5 + 1.

3 Analysis of Previous MPC AES Implementations

In this sections, we will discuss two previous methods to implement AES Sboxes
in MPC presented in [11,18]. Reference [11] uses arithmetic circuits (denoted by
AES-BD) by taking advantage of the algebraic presentation of the AES Sbox,
which uses multiplications and linear transformations. Keller et al. [18] uses table
look-ups (denoted by AES-LT). This makes computations very fast but requires
pre-computed data during the offline phase. This, in turn, results in additional
communication and storage requirements.

Implementation Environment. We have implemented all (online) protocols pre-
sented in this paper as well as estimated their offline phase complexity. All num-
bers reported have been obtained by running our experiments on a standard
laptop with an Intel i5-8350U 1.70 GHz processor and 24 GB of RAM. We have
also implemented the protocols in [11,18] to be able to provide a meaningful
comparison and verify that our estimates are accurate.

Estimates and Complexity. For the Sbox computations, we consider the opera-
tions performed during the offline and online phases, separately. For the offline
phase, we estimate the communication complexity required to generate the tuples
needed in the online phase. The online phase requires all the precomputed data
to be available to the participants before computation. This communicated data
can be stored by each player for later use or used on-the-fly3. For the online
phase, there are three aspects to consider: (i)computation complexity; (ii) stor-
age of the precomputed data from the offline phase consumed during the online
phase; and (iii) the communication complexity, which we separate into two parts:
amount of data exchange among the parties and the number of rounds. We
observe that this distinction might be useful in further optimizations as, in prac-
tice, transmitting 1 MByte of data in one round trip will be much faster than
transmitting 10 KBytes of data with 100 rounds, thus resulting in potential per-
formance improvements. In our analysis, we report the storage, round trip and

2 This approach has been implemented in the MP-SPDZ library, which we have used
for our implementation.

3 If stored, then it requires storage per player and the amount is equal to the amount
transferred during the computation. If the protocol is “on-the-fly”, then no storage
is required but the pre-computed data has to be available realtime and on request
when needed. In practice, it is likely that storage will be required since the offline
phase is much slower than the online phase.
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communication complexity for full AES by multiplying the complexities for a
single Sbox by 160 (16 Sbox computations per round and 10 rounds).

3.1 Complexity of Available SPDZ Modules for AES

As previously mentioned, to achieve security, SPDZ embeds GF(28) into GF(240).
Thus, we will apply the embedding to the initial states and reverse the embed-
ding after computations. Both embedding and reverse embedding require bit
decomposition and it has to be done for full AES regardless of the method used
for Sbox computations. Depending on the method used, the SPDZ AES S-box
computation requires certain operations which can be classified into 3 different
types: reveal used to make a secret value publicly available, bit decomposition
of embedded value (denoted by BDEmbed), and multiplication of two secret val-
ues (denoted by mult). In the following, we describe these operations in more
detail and analyze their communication and storage requirements. Table 1 sum-
marizes these complexities and the actual measured latency and communication
complexity in our implementation.

1. reveal: uses no stored data. In theory, revealing one secret GF(240) element,
requires a round trip communication of 10 bytes.

2. BDEmbed: uses a tuple (〈a〉, 〈a1〉, . . . , 〈a7〉) where 〈ai〉’s are the decomposed
bits of a random secret value4 a. Each bit 〈ai〉 needs 40 bits storage, therefore
the tuple has 8 · 2 · 40 bits = 80 bytes (as each bit requires a 40-bit MAC).
Communication used to reveal a GF(240) element which is 10 bytes per oper-
ation.

3. mult: implements multiplication using Beaver triples. Hence, the storage is a
triplet of data, i.e. 30 bytes (3*80 bit) and communication is used to reveal
two elements, which amounts to 20 bytes per player, per operation.

Table 1. Estimated storage (i.e. data required from the offline phase) and commu-
nication requirements for three functions (1a) and actual running time and communi-
cation requirements in practice averaged over 100 runs (1b). The reported figures are
per player.

Operation storage comm.
(bytes) (bytes)

reveal 0 10
BDEmbed 80 10

mult 30 20

(a) Estimated overhead offline phase

Operation latency comm.
(msec) (bytes)

reveal 0.0015 9.16
BDEmbed 0.0061 9.16

mult 0.0017 17.6

(b) Implementation online phase

4 A more detailed explaination is given in Sect. 4.2.
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3.2 AES-BD Arithmetic Circuits [11]

In [11], the Sbox evaluation of �s� first computes the inverse �s−1� by �s254�
followed by the AES affine transformation [1]. For the inverse computation of
�s�, AES-BD method observes that: (1) �s254� can be computed with an addition
chain using the powers of two: �s254� = (�s2� ∗ �s4�) ∗ (�s8� ∗ �s16�) ∗ (�s32� ∗
�s64�)∗ �s128� and (2) that exponentiation by powers of two is a linear operation
over any binary finite field. Hence, to generate these 7 powers, AES-BD applies
7 linear transformations.

Protocol 1 defines the full version of the Sbox computation on an input �s�
using AES-BD. In step 1, the bit decomposition is applied to the secret state.
Step 2 computes the powers with linear transformations operating on bits. Step
3 computes �s254� using 6 multiplications. The output from Step 3 is actually a
GF(240) value even though the input is the bit decomposition of �s�. To continue
the operations as described in [1], another bit decomposition is required. Step
4 applies the second bit decomposition, the result of which is used in the affine
transformation in Step 5. The output from Step 5 is a bit decomposed value
(compliant with the AES standard [1]), thus, we compose it back to a GF(240)
element. Note that all the steps include computations in GF(240).

Input: A secret input as state 〈s〉 ∈ GF(240)
Output: Computes 〈Sbox(s)〉
1: Apply bit decomposition on 〈s〉 = [〈s0〉, 〈s1〉, · · · , 〈s7〉]
2: Compute {〈s2〉, . . . , 〈s128〉} with linear transformation using [〈s0〉, 〈s1〉, · · · , 〈s7〉]
3: Compute 〈y〉 = 〈s254〉 = ((〈s2〉 ∗ 〈s4〉) ∗ (〈s8〉 ∗ 〈s16〉)) ∗ ((〈s32〉 ∗ 〈s64〉) ∗ 〈s128〉)
4: Apply bit decomposition on 〈y〉 as [〈y0〉, 〈y1〉, · · · , 〈y7〉]
5: Apply Sbox affine transformation to compute the output bits [〈x0〉, 〈x1〉, · · · , 〈x7〉]
6: Compose 〈x〉 from its bits

7: return 〈x〉
Protocol 1: One Sbox computation of forward AES-BD method

Offline Phase. We need to generate 16 random bits and 6 triplets for one Sbox.
This requires 2560 random bits and 960 triplets for the full AES.

Online Phase. The complexity of the online phase are as follows:

1. Storage: tuples are required for the multiplication and bit decomposition
operations. Since there are 6 multiplications per Sbox, we store 6*30 bytes.
Moreover, we need to store 160 bytes due to the two bit decomposition (see
Table 1). Thus, for a single Sbox, the protocol stores 340 bytes. For the full
AES, it stores 54.4 Kbytes per player.

2. Round Trip: each Sbox operation requires 5 round-trips. Thus, the full AES
block requires 800 round-trips.

3. Communication: Among the 5 round-trips, two of them consume 10 bytes
each and the remaining ones require 120 bytes (120 = 20*3 + 20*2 + 20*1).
In total, 140 bytes communication per Sbox. For the full AES, data commu-
nication is 140*160 bytes = 20.8 KBytes.



Improving the Efficiency of AES Protocols in Multi-Party Computation 237

In Appendix 6.1, the look-up table method AES-LT [18] is described. Its perfor-
mance is compared with AES-BD in Table 2.

4 AES Decryption in MPC

In this section, we describe our core ideas and the protocols that we propose as a
new mode of operation. The final optimized protocol for the Sbox computation is
the result of several improvements which we describe next as different protocols.

4.1 Optimized AES-BD for Inverse AES

Protocol 2 explains the inverse Sbox computation in inverse AES. In Step 1,
we apply the bit decomposition on the embedded input state for once and all.
This is important to compute the inverse affine transformation as operated in
Step 2. The output from Step 2 is still the bit decomposed values, thus we can
compute the powers of the state in Step 3 by using 7 linear transformations.
The output from Step 3 are now composed values in GF(240). Therefore, to
compute the 254th power (i.e. the inverse of the secret state), we apply 6 (secret
by secret) multiplications from the output of Step 3 without applying another
bit decomposition. This saves 1 bit decomposition operation.

Input: A secret input state 〈x〉 ∈ GF(240)
Output: Computes 〈Sbox−1(x)〉
1: Apply bit decomposition on 〈x〉 = [〈x0〉, 〈x1〉, · · · , 〈x7〉]
2: Apply inverse Sbox affine transformation to compute the output bits [〈s0〉, 〈s1〉, · · · , 〈s7〉]

(that forms 〈s〉) from the bits of 〈x〉
3: Compute {〈s2〉, . . . , 〈s128〉} with linear transformation using [〈s0〉, 〈s1〉, · · · , 〈s7〉]
4: Compute 〈b〉 = 〈s254〉 = ((〈s2〉 ∗ 〈s4〉) ∗ (〈s8〉 ∗ 〈s16〉)) ∗ ((〈s32〉 ∗ 〈s64〉) ∗ 〈s128〉)
5: return 〈b〉

Protocol 2: Single Sbox computation of inverse AES-BD method

The difference between Protocol 1 and Protocol 2 comes from the fact that
when we reversed the order of computations, we can do them with one single bit
decomposition at the beginning in Protocol 2 (Step 1). In forward AES, we first
compute the inverse of the input (Step 3 in Protocol 1) which is a composed value.
Therefore, we have to apply one more bit decomposition (Step 4 in Protocol 1
) to compute the forward Sbox affine transformation. Therefore, in inverse AES
we save 1.6 KBytes of data as well as one bit decomposition operation.

Next, we observe that linear operations can be integrated together to improve
the computational complexity further. Indeed, Protocol 2 integrates several
steps. More specifically, we integrate the computations in Step 2 and 3 into
a set of pre-computed variables. We generate these pre-computed values once
for all Sbox computations and we do the multiplication (given in Step 4) with
this pre-computed values by skipping Step 2 and 3. The reason this is possible is
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that Steps 2 and 3 are the affine and linear transformations which operate one
after another. This gives us a significant advantage in terms of computational
complexity, which we further detail in the next section.

4.2 Performance Optimization of Protocol 2

Sbox in GF(28): For a secret state �s�, the Sbox of this state is computed as
Sbox(�s�) = Mfwd(�s�254) + Cfwd, where Mfwd is a public matrix of bits, Cfwd is a
public vector of bits and �s�254 is represented with bits. Mfwd and Cfwd are given
in [1]. As mentioned previously, �s�254 is computed with an addition chain using
a list of powers = [2, 4, 8, 16, 32, 64, 128]. This is shown in (1). Note that one can
swap the power and matrix computation due to linearity.

Sbox(�s�) =

6∏

i=0

[Mfwd(�s�)]
powers[i] + Cfwd

= [Mfwd(�s�)]
powers[0] ∗ [Mfwd(�s�)]

powers[1] ∗ . . . ∗ [Mfwd(�s�)]
powers[7] + Cfwd

�x� = [Mfwd(�s�)]
254 + Cfwd

(1)

Inverse Sbox in GF(28): For a secret state �x�, Sbox−1(�x�) =
Mbwd((�x� + Cfwd)

254), where Mbwd is the inverse matrix to compute the inverse
Sbox as shown in (2)

Sbox−1(�x�) = [Mbwd(�x� + Cfwd)]254

= [Mbwd(�x� + Cfwd)]powers[0] ∗ . . . ∗ [Mbwd(�x� + Cfwd)]powers[6]

�s� =
6∏

i=0

[Mbwd(�x� + Cfwd)]powers[i]
(2)

Inverse Sbox in GF(240): We now describe how to compute inverse Sbox in
GF(240) for an embedded secret input byte �embed byte�. Before describing the
method, we introduce few functions that we will use in the description.

1. ApplyBDEmbed is a function that takes a vector of 8 bits which represents a
value in GF(28) and returns the bit embedding in GF(240).

2. BDEmbed is a function that takes a composite value in GF(240) and returns
the 8 bits of this embedded value for positions {0, 5, 10, 15, 20, 25, 30, 35}.
More precisely, for an input �x�, BDEmbed outputs �y0�, . . . , �y7� such that
�x� =

∑7
i=0�yi� ∗ (0x20)i. This is due to the fact that the embedding in MP-

SPDZ works with a special reduction modulus Q(X) = X40 + X20 + X15 +
X10 + 1 (see Appendix 6.3 for more details).

3. InverseBDEmbed is a function that takes a composite value in GF(240) and
returns the bits of its unembedded value in GF(28).

To better understand BDEmbed and InverseBDEmbed, consider the following
example. Let x ∈ GF(28), x is embedded into GF(240) as y = X5+1, represented
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by the byte 0x21. When we apply BDEmbed to the value y ∈ GF(240), the output
is the eight bits [1, 1, 0, 0, 0, 0, 0, 0], where only the 0th and 5th bits are set to 1
and bits 10th, . . . , 35th are set to 0. We can think of this as a function that takes
8 bits of an element in GF(240) and packs them into a byte by returning the
bits specified in the function BDEmbed. On the other hand, when y is input to
InverseBDEmbed, the output is [0, 1, 0, 0, 0, 0, 0, 0] which is the bit decomposition
of x = 0x02 ∈ GF(28).

For the full algorithm, we can take the computations given in (2) and trans-
form all the steps into embedded format. The full algorithm is given in Protocol
3. In Step 1, we add the embedded input �embed byte� to Cfwd after embed-
ding Cfwd. The output is called �x�. In Step 2, we bit decompose �x� and obtain
a vector �y�. Step 3–5 merges the following operations: first, �y� goes through
the affine transformation with matrix Mbwd where the matrix Mbwd is multiplied
with vector �y�, the result is �s�. The output �s� would be, therefore, a vector of
bits, too. Then, it computes �s2�, . . . , �s128� with another linear transformation.
These steps are merged with the help of a table named magic. We pause here to
explain the computations of the table magic and why Steps 3–5 work.

�s� = Mbwd(�x�)

= Mbwd(
7∑

i=0

�yi� ∗ (0x20)i)

= Mbwd(�y0� ∗ (0x20)0 + . . . + �y7� ∗ (0x20)7)

= �y0� ∗ Mbwd((0x20)0) + . . . + �y7� ∗ Mbwd((0x20)7)

(3)

The last line in (3) is due to the linearity of the operations. Since �yi�’s are
bits, they can be taken out and all we are left is to compute the affine trans-
formation of the powers of (0x20) by multiplying with Mbwd in the unembedded
domain. This is shown in steps 3–4 of Protocol 4. The rest of the steps in Pro-
tocol 4 is to merge the linear transformations to compute the powers of two of
�s�. Notice that the entire procedure in Protocol 4 will be used in Step 3 of
Protocol 3. We implicitly apply 7 linear transformations (L0, . . . L6) to compute
Mbwd(�y�+Cfwd)powers[i] ∀i ∈ {0, . . . , 6} in the vector mapper from a precomputed
table denoted by magic. Protocol 4 describes how to compute the magic table.

4.3 Optimizations with Offline Phase

In this section, we present an additional optimization technique for inverse AES
protocol given in Protocol 3. Our technique requires special tuples computed in
the offline phase without requiring any changes in the underlying SHE and ZK
protocols. The idea of such an optimization comes from the fact that for binary
finite fields, the bit decomposition turns out to be a linear operation (as opposed
to finite fields with (odd) prime characteristics). This gives us the opportunity
to integrate several steps in the beginning where the bit decomposition is per-
formed. We refer to Appendix 6 for in depth and early-stage optimization ideas.
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Input: A secret input state 〈embed byte〉 ∈ GF(240)

Output: Computes 〈Sbox−1(embed byte)〉
1: Compute 〈x〉 = embed byte + ApplyBDEmbed(Cfwd)

2: 〈y〉 = BDEmbed(〈x〉)
3: for i ∈ {0, . . . 6} do

4: mapper[i] =
7∑

j=0
(magic[i][j] ∗ 〈yj〉) � mapper = [〈s2〉, . . . , 〈s128〉]

5:
6: end for

7: Compute 〈s254〉 = ((mapper[0] ∗ mapper[1]) ∗ · · · ∗ mapper[6])

8: return 〈s254〉

Protocol 3: Optimized Single Sbox Implementation of Protocol 2

Input: Public matrix Mbwd and public vector Cfwd

Output: Computes a predefined table magic

1: for i ∈ {0, . . . 6} do

2: for j ∈ {0, . . . 7} do

3: A = InverseBDEmbed(0x20j) � return a vector of 8 bits

4: B = Mbwd ∗ A � matrix*vector multiplication

5: C = ApplyBDEmbed(B) � Composes embedded value from its bits

6: D = Cpowers[i] � powers = [2, 4, 8, 16, 32, 64, 128]

7: magic[i][j] = D

8: end for

9: end for

10: return magic

Protocol 4: Computation of magic once for all AES decryption.

Protocol 5 shows the final optimized protocol. In Step 1, one gets 13 secret
GF(240) elements computed in the offline phase. Each function Li is a linear
transformation used to compute 2i+1th power of a secret. This corresponds to
130 bytes of data that needs to be stored in the offline phase. Step 2 performs
one reveal, which requires 1 round-trip and 10 bytes of communication. Step 3,
4, 5 and 6 only require local computations. Step 7 is multiplication of two secret
values (which is the unaltered SPDZ protocol) computed from the previous step:
〈L0(x) ∗ L1(x)〉 and 〈L2(x) ∗ L3(x)〉 with two reveals, each needing 20 bytes of
data. Step 8 is a special multiplication which requires only 1 reveal (10 bytes
and 1 round-trip). More specifically, we multiply 〈L4(x)∗L5(x)〉 by 〈L6(x)〉 using
Beaver triplets. Let 〈L4(x) ∗ L5(x)〉 be masked with a secret 〈b〉, obtained from
the offline tuples in Step 1; then L4(x)∗L5(x)+b is revealed. L6(x) is masked with
L6(a) where 〈L6(x)〉 + 〈L6(a)〉 is already revealed. Finally, we use the product of
these two masks, 〈b ∗ L6(a)〉 in Step 1. Step 8 is a normal SPDZ multiplication
which requires 2 reveals (20 bytes and 2 round-trips).

For a single Sbox the complete optimization requires 130 bytes of storage
to store the special tuples generated in the offline phase, 6 round-trips, and 60
bytes of communication as opposed to 260 bytes storage, 13 round-trips, and
130 bytes of communication with Protocol 3. We implemented our optimization
in full AES and report the results in Table 2. Observe that the communication
and storage requirements for Protocol 5 is less than half that of Protocol 3.
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Input: A secret input state 〈x〉 ∈ GF(240)
Output: Computes 〈Sbox−1(x)〉 ∈ GF(240)
1: Receive a tuple with 13 secret GF(240) values from the offline phase: T =

(〈a〉, 〈L0(a)〉, . . . , 〈L6(a)〉, 〈L0(a) ∗ L1(a)〉, 〈L2(a) ∗ L3(a)〉, 〈L4(a) ∗ L5(a)〉, 〈b〉, 〈b ∗ L6(a)〉) 5

2: Compute 〈y〉 = 〈x〉 + 〈a〉 and reveal y.

3: Compute L0(y), . . . , L6(y), A = L0(y) ∗ L1(y), B = L2(y) ∗ L3(y), C = L4(y) ∗ L5(y)

4: Compute 〈L0(x) ∗ L1(x)〉 as follows:
〈L0(x) ∗ L1(x)〉 = A + L1(y) ∗ 〈L0(a)〉 + L0(y) ∗ 〈L1(a)〉 + 〈L0(a) ∗ L1(a)〉

5: Compute 〈L2(x) ∗ L3(x)〉 as
〈L2(x) ∗ L3(x)〉 = B + L3(y) ∗ 〈L2(a)〉 + L2(y) ∗ 〈L3(a)〉 + 〈L2(a) ∗ L3(a)〉

6: Compute 〈L4(x) ∗ L5(x)〉 as
〈L4(x) ∗ L5(x)〉 = B + L5(y) ∗ 〈L4(a)〉 + L4(y) ∗ 〈L5(a)〉 + 〈L4(a) ∗ L5(a)〉

7: Compute 〈L0(x) ∗ L1(x) ∗ L2(x) ∗ L3(x)〉
8: Compute 〈U〉 = 〈L4(x) ∗ L5(x)〉 + 〈b〉 and reveal U .
9: Compute V = L6(y). 6 and 〈L4(x) ∗ L5(x) ∗ L6(x)〉 as follows:

U ∗ V + 〈b〉 ∗ V + 〈L6(a)〉 ∗ U + 〈b ∗ L6(a)〉
10: Compute the full product 〈X〉 = 〈L0(x) ∗ · · · ∗ L6(x)〉
11: return 〈X〉

Protocol 5: Storage and Communication Optimizations of Protocol 3

Table 2. Storage (measured with data required from offline phase), round trip and
communication requirements for a full block of inverse AES compared with forward
AES

estimated storage # round comm

overhead (KB) trip (KB)

AES-BD 54.4 800 20.4

Protocol 1

AES-LT 410 160 1.6

Protocol 7

Protocol 3 41.6 640 18.8

Protocol 5 20.8 260 9.6

implementation latency comm

(ms) (KBytes)

AES-BD 5.026 18.37

Protocol 1

AES-LT 0.80 3.13

Protocol 7

Protocol 3 1.642 17.21

Protocol 5 1.501 8.20

When we compare Protocol 5 with AES-LT, we observe that AES-LT requires
over twenty times as much storage as our protocols, while the latency of AES-LT
is almost twice as fast requiring 2.5 times less communication overhead.

4.4 Offline Phase Tuples

In Protocol 5 we assume the availability of special tuples from the offline
phase: T = (〈a〉, 〈L0(a)〉, . . . , 〈L6(a)〉, 〈L0(a) ∗ L1(a)〉, 〈L2(a) ∗ L3(a)〉, 〈L4(a) ∗
L5(a)〉, 〈b〉, 〈b ∗ L6(a)〉). For the computation of such tuples, we refer to the orig-
inal SPDZ offline phase protocols in [13] (Reshare in Fig. 4, PAngle in Fig. 6, and
Triple generation in Fig. 7 from ΠPREP [13, eprint version]).

We like to generate T = (〈a〉, 〈L0(a)〉, . . . , 〈L6(a)〉, 〈L0(a) ∗ L1(a)〉, 〈L2(a) ∗
L3(a)〉, 〈L4(a) ∗ L5(a)〉, 〈b〉, 〈b ∗ L6(a)〉) from two random values a, b. We adapt
the SPDZ Triplet protocol to generate them in Protocol 6. Let C1 = L0(a) ∗
L1(a), C2 = L2(a) ∗ L3(a), C3 = L4(a) ∗ L5(a), b,D = b ∗ L6(a).
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Input: Random a, b.
Output: T = (〈a〉, 〈L0(a)〉, . . . , 〈L6(a)〉, 〈C1〉, 〈C2〉, 〈C3〉, 〈b〉, 〈D〉)
1: Each player generates ai and bi such that a =

∑
i ai and b =

∑
i bi.

2: Each player broadcasts eai and ebi .
3: Each player invokes ΠZKPoPK.

4: Players set ea =
∑

i eai and eb =
∑

i ebi .

5: Players set eLj(a) = Lj(ea) for j = 0, . . . , 6.
6: n players generate 〈a〉 ← PAngle(a0, . . . , an, ea), 〈b〉 ← PAngle(b0, . . . , bn, eb) and

〈Lj(a)〉 ← PAngle(Lj(a), eLj(a)) for j = 0, . . . , 6.
7: Players compute eD = eL6(a) ∗ eb and

eC1 = eL0(a) ∗ eL1(a)
eC2 = eL2(a) ∗ eL3(a)
eC3 = eL4(a) ∗ eL5(a)

8: n players set
(D1, . . . , Dn, e′

D) = ReShare(eD,NewCipherText)
(C11, . . . , C1n, e′

C1
) = ReShare(eC1 ,NewCipherText)

(C21, . . . , C2n, e′
C2

) = ReShare(eC2 ,NewCipherText)

(C31, . . . , C3n, e′
C3

) = ReShare(eC3 ,NewCipherText)
9: n players generate

〈D〉 = PAngle(D1, . . . , Dn, e′
D)

〈C1〉 = PAngle(C11, . . . , C1n, e′
C1

)

〈C2〉 = PAngle(C21, . . . , C2n, e′
C2

)

〈C3〉 = PAngle(C31, . . . , C3n, e′
C3

)

10: return 〈a〉, 〈b〉, 〈Lj(a)〉 for j = 0, . . . , 6 from Step 6 and 〈C1〉, 〈C2〉, 〈C3〉, 〈D〉 from Step 9.

Protocol 6: Adapted Triplet Protocol of [13]

Line 5 in Protocol 6 is the computation of the powers of two with the underly-
ing homomorphic encryption scheme. SPDZ in GF(240) uses a modified version of
BGV [6] protocol as HE in the pre-processing phase. Essentially, we can replace,
in BGV, the polynomial ring R = Z[X]/Xd +1 with binary coefficients where d is
a power of two with a cyclotomic ring with reduction polynomial Φm(X). When
m = 75, Φm(X) has degree 40, and the cyclotomic ring is isomorphic to GF(240)
[15]. In this ring, for a polynomial P (X), squaring P 2(X) modulo Φm(X) is
equivalent to computing P (X2) mod Φm(X) (a.k.a. Frobenius authomorphism).
This automorphism is nearly free, meaning that it adds little noise and does
not cause to change the “level” in BGV. L0, . . . , L6 are squaring operations and
computing a homomorphic encryption of them as we do in Line 5 can be done
with similar parameters and without a performance penalty.

Overall, if we neglect local computation overhead, the cost of tuple gen-
eration is what is communicated: Reshare (also called in PAngle), broadcasts,
and ZKPoPK. The original Triple protocol from [13] needs 4 Reshare calls. Our
adapted version in Protocol 6 needs 17 Reshare calls. In Protocol 5, we observe
that the protocol needs 4 pairs of triplets as well as the tuple T from the offline
phase. In total, to generate all the data it requires (17 + 4*2 = 25) Reshare calls
in the offline phase. On the other hand, Protocol 3 needs BDEmbed which uses
8 Reshare calls and 6 multiplications which requires 4 Reshare calls per multipli-
cation. In total, Protocol 3 makes 32 Reshare calls, whereas Protocol 5 makes 25
such calls per SBox a reduction of more than 20%.
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4.5 Comparison with Other AES MPC Implementations

In this section, we briefly compare this work to previous implementations in the
literature. We compare latency, security, and storage and bandwidth require-
ments. Latency refers to the time required to process one single AES block. We
have not optimized the implementation reported in this paper for throughput,
which refers to the time required to process many such blocks, possibly in par-
allel and, therefore, we do not discuss this aspect explicitly. Table 3 summarizes
the discussion.

Security. From a security perspective, the implementations in [11,18] and this
paper provide the strongest type of security (active security against malicious
adversaries with a dishonest majority). The works described in [2,8] although
only secure in the semi-honest setting with honest majority also offer a privacy
guaranteed in the client-server model where clients outsource data to untrusted
servers performing the computation. In this setting, [2] shows that their protocol
provides privacy as long as the servers do not get information about the out-
put disclosed to the client. This is strictly weaker than the standard malicious
security guarantees provided in the SPDZ-based protocols as corretness is not
guaranteed. This has been pointed out in [2].

Latency, Storage, and Bandwidth. The AES implementation with the smallest
latency is given in [18]. But this latency comes at the cost of considerable storage
costs (a factor of more than 20 compared to this work and two orders of magni-
tude larger than [2,8]). The implementation with the lowest storage costs is the

Table 3. Comparison of distributed (MPC) online single threaded AES implementa-
tions (LAN Setting). All performance data is for two parties implementation unless
otherwise noted. For SPDZ protocols we use 240 for statistical security. TLU:Table
Look-Up; BitDec: BitDecomposition; CR: Correlated Randomness; na: not available

Protocol Secret

sharing

Security SBox Impl. Latency

per block

(msec)

LAN

(Gbps)

Storage

(KB)

Comm.

(KB)

[2] Replicated

2-out-3

sharing w.

CR

Semi-honest Boolean

circuit

166 10 na 1 bit

per

AND

gate

AES-BD [11] SPDZ Active BitDec 5.026† 1 54.4 20.4

AES-LT [18] SPDZ w

Masked

TLU

Active active TLU 0.80‡ 1 410 1.6

[8] Replicated

2-out-3

sharing

Semi-honest Arithmetic

circuit

1.7 10 na 1 bit

per

AND

gate

This work (

Protocol 5)

SPDZ Active BitDec 1.5 1∗ 20.8 8.2

† Latency reported in [18] is 5.20 msec. Values in this table correspond to own implementation.
‡ Latency reported in [18] is 0.928 msec. Values in this table correspond to own implementation.
∗ Estimated by benchmarking laptop network interface.



244 F. B. Durak and J. Guajardo

works in [2,8] since they only require the online computation of correlated ran-
domness bits. This translates into significantly lower bandwidth requirements,
which likely would provide significant gains in throughput (see next paragraph).
However, this is at the cost of weaker security guarantees. Among implementa-
tions providing active security [11,18], our work seems to strike an interesting
trade-off in terms of latency and storage requirements. It appears that table
lookup implementations might be best suited to applications in which very little
data needs to encrypted or decrypted. In this case, the storage requirements can
be ignored. In applications, in which large amounts of data are to be processed,
it seems that Protocol 5 would be a very attractive solution achieving smaller
latency than [2,8] and having rather modest storage requirements.

Further Optimizations and Throughput. The performance that we have reported
does not make use of parallelization potential in the underlying platform (e.g.,
multi-threading or multi-cores). In practice, each AES round can be imple-
mented with 16 parallel and independent Sbox computations (all internal states
go through Sboxes independently), hence reducing communication overhead and
bandwidth requirements. Such parallelism will not change the storage or the vol-
ume of data to transmit but will increase throughput. In addition, depending
on the platform and the mode of operation properties, one can further paral-
lelize by taking advantage of the multiple cores in the platform. This has been
used in [8] to achieve their best throughput. As we start to process multiple,
blocks in parallel, there will be increased pressure on the network bandwidth.
We expect that at some point this will start to affect our throughput and con-
sequently, that [2,8] will still have higher throughput than any current active
security implementation. This is because of their almost negligible bandwidth
requirements and their ability to use the PRSS trick [2,9], which in the active
security setting would have to be adapted.

5 Conclusion

We propose two optimized protocols for AES computations in MPC setting. Our
first protocol requires no changes to the offline phase and only takes advantage of
flexible Sbox computations. The second protocol proposes to use special tuples
generated in the offline phase and utilizes them in order to make more efficient
transformations and multiplications required in the online phase of Sbox compu-
tation. Our implementation results indicates that we reduce the running time,
the storage and communication cost of AES-BD three times with our techniques.

6 Appendix

6.1 AES-LT with Masked Table [18]

In a table look-up based implementation of the AES standard, the table rep-
resenting the Sbox is publicly available. Such look-ups happen securely by the
key owner who knows all the internal states.7 On the other hand, in MPC,
7 Excluding side-channel attacks attacks.
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the internal states as well as the secret key are secrets which are distributed
among participants and therefore it is not possible to perform a table look-
up based on secret state information. The idea in [18] is to generate a pair
(x,MaskedTable) such that x ⊕MaskedTable = Sbox in the offline phase and dis-
tribute it as secret shares to each participant: (�x�, �MaskedTable�). Therefore,
in MPC, instead of looking up a public entry with a secret internal state, we
look up a secret table with a (public) masked internal state. The MaskedTable
generation is described in [18]. We observe that every single Sbox computation
requires one pair (�x�, �MaskedTable�). Thus, even though the online phase is a
lot faster than other methods, it requires a lot more data to be communicated
and stored from the offline phase. The online computations of a single Sbox in
AES-LT [18] is shown in Protocol 7.

Input: A secret input as state 〈s〉 ∈ GF(240), one pair (〈x〉, 〈MaskedTable〉)
Output: Computes 〈T[s]〉, where T is the public Sbox table

1: The parties compute h = x ⊕ s and reveals h

2: The parties locally compute 〈T[s]〉 = 〈MaskedTable〉[h] where 〈MaskedTable〉[h] means the hth

component of 〈MaskedTable〉
3: return 〈T[s]〉

Protocol 7: One Sbox computation of AES-LT method

Offline Phase. For 10 rounds and 16 bytes per round, Protocol 7 must prepare
160 MaskedTable for a block of AES requiring 48 KBytes of communication
during the offline phase [18]. Communicating 160 tables for the online phase
requires 410 KBytes per party.

Online Phase. The online phase requirements are as follows:

– Storage: the protocol needs one masked table per Sbox operation. Each table
has 256 GF(240)-elements. Thus, to process one full AES block, 410 KBytes
of storage are required per participant.

– Round trip: Per Sbox, we need one round trip of communication between
players for a reveal. For the whole AES 160 rounds are required.

– Communication: Per Sbox, one reveal operation is performed, which
requires 10 bytes of communication. Thus, 1600 bytes of communication
needed in total for a full AES block.

6.2 Details of BDEmbed

In this section, we describe the bit decomposition of an embedded value in MP-
SPDZ which is important to understand our optimization techniques given in
4.3. The following algorithm is used to compute BDEmbed of an embedded secret
input �x�. This computation is run in Step 2 in Protocol 3. In total, Protocol 3
requires 13 rounds of communication. This is summarized in Table 4.
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1. Take a secret pair (〈a〉, 〈a′〉) where 〈a′〉 is the output of InverseBD
Embedding(a) computed during the offline phase.

2. Compute 〈x̄〉 = 〈x〉 + 〈a〉 and reveal x̄.
3. Compute the bits of the clear value x̄. Call it x′.
4. Compute 〈y′〉 = x′ + 〈a′〉
5. Return 〈y〉 which is the composition of 〈y′〉.

Table 4. Complexity of steps in Protocol 3

Storage (bytes) Round trip Communication (bytes)

Step 2 (1-bit decomposition) 80 1 10

Step 3–5 (transformations) 0 0 0

Step 6 (6 multiplications) 180 13 130

6.3 Regarding The Embedding from GF(28) to GF(240)

We further clarify the notation used in Sect. 4 and some aspects of the embedding
used, originally introduced in [11]. As previously mentioned, given an element
x ∈ GF(28), one can map this to an element in GF(240) ∼= GF((28)5), using the
irreducible polynomial Q(X) = X40+X20+X15+X10+1. Thus, x ∈ GF(28) gets
mapped to the element X5+1 ∈ GF(240). We observe the following equivalences:

x0 ∼= (X5 + 1)0 = 1; x1 ∼= (X5 + 1)1 = X5 + 1, or (0x21)16; · · ·
x7 ∼= (X5 + 1)7 = X35 + X30 + X25 + X15 + X10 + X5 + 1, or (0x0842108421)16

It has been observed [11,17] that this representation can be used to extract the
GF(28) element representation by extracting indeces that are a multiple of 5 in
the corresponding GF(240) representation. In Sect. 4, we have abused notation
and written 0x2016 = (0010 0000)2 to mean X5 ∈ GF(240) (as the 5th bit of
0x2016 is set to 1).
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Abstract. Secure comparison has been a fundamental challenge in
privacy-preserving computation, since its inception as Yao’s millionaires’
problem (FOCS 1982). In this work, we present a novel construction for
general n-party private comparison, secure against an active adversary,
in the dishonest majority setting. For the case of comparisons over fields,
our protocol is more efficient than the best prior work (edaBits: Crypto
2020), with ∼ 1.5× better throughput in most adversarial settings, over
2.3× better throughput in particular in the passive, honest majority set-
ting, and lower communication. Our comparisons crucially eliminate the
need for bounded inputs as well as the need for statistical security that
prior works require. An important consequence of removing this “slack”
(a gap between the bit-length of the input and the MPC representation)
is that multi-party computation (MPC) protocols can be run in a field of
smaller size, reducing the overhead incurred by privacy-preserving com-
putations. We achieve this novel construction using the commutative
nature of addition over rings and fields. This makes the protocol both
simple to implement and highly efficient and we provide an implementa-
tion in MP-SPDZ (CCS 2020).

Keywords: Secure comparison · Multi-party computation ·
Unconditional security · Dishonest majority

1 Introduction

After years of active research, both in theoretical results and system building,
multi-party computation (MPC) is becoming practical as a paradigm. Recent
research results and practical implementations [1,13], deployment of MPC in
real-life applications [3], as well as organizations beyond academia offering com-
mercial MPC solutions [26,27,30], confirm that MPC is reaching maturity. How-
ever, MPC, just like any other cryptographic primitive deployed to enhance
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privacy, comes at a significant efficiency penalty, in terms of computation and
communication. While some research focuses on tailoring MPC solutions to a
particular problem, to compensate for this efficiency penalty, other works focus
on improving the efficiency of fundamental MPC building blocks, which are
applicable to a wide variety of problems.

Secure comparison is an important problem in multi-party computation –
it involves the comparison of two or more secret values in a privacy-preserving
manner. Comparison is a fundamental building block, necessary for the real-
ization of various larger tasks: from online auctions to big data analytics and
machine learning. Given the privacy considerations that today’s digital infras-
tructure entails, protocols for secure comparison are a fundamental MPC tool
in privacy-preserving applications.

Since the introduction of the secure comparison problem by Andrew Yao in
1982 [34] as the millionaires’ problem, research efforts have pushed the frontiers of
performance of this primitive. MPC has traditionally been efficient either on lin-
ear operations, when it is based on arithmetic circuits, or on non-linear operations,
when it is based on Boolean circuits. Recent applications require a combination
of linear and non-linear operations, and they are most of the time addressed with
solutions based on arithmetic circuits, because these are significantly more efficient
than Boolean circuits for the linear part, which presents itself as the bulk of the
computation. Given the non-linear nature of the comparison operation, protocols
for secure comparison still remain a bottleneck for privacy-preserving computa-
tion. Thus, any improvement in this line of work has a compounding impact on
improving the overall efficiency of privacy-preserving computations.

In this work, we present a novel comparison protocol that is secure against
an active adversary in the dishonest majority setting and holds for general n-
party computation. Our work improves upon the state-of-the-art protocol for
comparison in dishonest majority in both the total time and communication
by a factor of two for the OT-based preprocessing. In addition, our protocol is
easy to implement requiring no heavy cryptography. Notably, our protocol is
highly conducive to amortization and preprocessing, which makes it attractive
for deployment in real-life applications, as these are important considerations in
building practical secure systems.

1.1 Our Contribution

We present Rabbit1, a novel secure comparison protocol, which leverages the com-
mutative nature of addition over rings and fields. Our protocol exploits recent
advances in the generation and deployment of doubly authenticated shared bits
(daBits [25]), which are bits living both in Fp and in F2k , as well as extended
doubly authenticated bits (edaBits [14]), which correspond to shared integers in
the arithmetic domain, whose bit decomposition is shared in the binary domain.
The proposed comparison is more efficient than previously proposed secure com-
parison protocols, while at the same time removing the dependence on bounds

1 The name is an extension of the daBit [25], maBit [24] and edaBit [14] line of work.
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and statistical parameters. This allows the MPC engines used for our secure
comparison to be smaller than the ones required by previous protocols, which
has a positive impact on the concrete efficiency of the MPC protocols. Concretely
we make the following contributions:

(i) Novel comparison protocol: We propose Rabbit, a novel secure com-
parison protocol based on the commutative nature of addition over rings
and fields. Rabbit is a general n-party protocol and crucially eliminates the
need for any “slack” – a statistically larger dataspace to ensure security
of computations, and thus enables computations over smaller datatypes.
For instance, to compute over 64-bits, prior works require the use of 128-
bit datatypes, while we can support these computations in standard 64-bit
datatypes.

(ii) Security: Since we eliminate the slack and keep an exact tab of overflows,
our protocols are unconditionally secure even against active adversaries in
the dishonest majority setting. In the case of comparison over fields, we do
have to account for a statistical security parameter, because of the existing
implementation of edaBits [14]. In general, when implemented in a larger
body of MPC computation, our comparison inherits the security properties
of the platform, such as statistical security when using MP-SPDZ [13].

(iii) Simplicity and Efficiency: Our protocol is straightforward to implement.
As shown in Fig. 1b, it is merely a few lines of code in MP-SPDZ. This
also makes our protocol highly amenable to secure implementation. As for
efficiency, the benefits of our work over the state-of-the-art are most pro-
nounced in the case of comparison over fields. In this case, we improve
end-to-end computations such as secure evaluation of ResNet-50 up to 2x
faster, albeit at a higher communication.

1.2 Technical Overview

Our central focus in this work is to propose novel and efficient protocols for
secure comparison. Comparison protocols usually rely on statistical security or
bit-decomposition combined with prefix computation to achieve the results. We
observe that:

(i) When considering arithmetic secret shares, the bit encoding modulus over-
flow of secrets enables exact integer relations between the secret, the secret
shares, and the modulus.

(ii) Using the commutativity of addition over standard structures, such as rings
and fields, we can express a sum in two different ways and thus equate the
corresponding constraint equations.

These two observations together enable more efficient protocols for comparisons.
More specifically, the core idea behind our comparison protocols lies in our ability
to detect when a sum over a particular modulus overflows (i.e., wraps around),
and when this happens we can correct it. Observe that given two integers x, y P
ZM , their sum x+y mod M is less than either of the two summands, iff the sum
wrapped around the modulus. That is, given a comparison function:



252 E. Makri et al.

Fig. 1. Our protocol relies on the commutative properties of addition over rings/fields
as shown in Fig. 1a. This diagram indicates the two different ways we can obtain the
value b. The [·]M notation indicates that the corresponding values or sums are taken
modulo M . The horizontal arrows indicate addition of a uniformly random value r P
{0, . . . ,M − 1}, used to mask the secret input of the comparison x (so that we can
later open it without information leakage, to perform a comparison). The vertical
arrows indicate addition of a known constant B P {0, . . . ,M − 1} related to the public
quantity to be compared against. These two ways of computing the sum b, are necessary
for the comparison protocol between a secret value x and a public constant M − B.
The code on the right (Fig. 1b) shows the simplicity of implementing our protocol,
implemented in this case in the MP-SPDZ codebase [13].

LT(·, ·) : Z × Z Ñ {0, 1} Ď Z :

{
LT(x, y) “ 1 if (x ă y);
LT(x, y) “ 0 otherwise,

we can compute the modular sum x + y mod M , by performing computations
over the integers as:

x+y mod M “ x+y−M ·LT(x+y mod M,x) “ x+y−M ·LT(x+y mod M,y)

This is due to the observation that LT(x+y mod M,x) (or LT(x+y mod M,y))
is true, iff the sum wrapped around. Given that the LT(·, ·) function detects (i.e.,
outputs true) when a wrap around happens, we can indeed realize the modular
sum, while performing computations over the integers, by conditionally subtract-
ing the quantity of the wrap around (i.e., M), when LT(·, ·) returns true.

Notation. We use [x]N to denote the sharing of a secret x in the ring ZN . We
primarily consider two values of the modulus: N “ M and N “ 2, where M
is a fixed constant, set to either a prime p, or a power of two 2k. The types of
sharings are:

(i) [x]M , where the secret is x P ZM or [b]2, where the secret is a bit b P F2;
(ii) [x]M and [x0]2 , . . . [xm−1]2 such that x “ ∑m−1

i“0 xj · 2j (mod M) and M ă
2m (this is also known as an edaBit [14])

Similarly, given a (public) constant value R P ZM , we denote by R0, . . . , Rm−1

the bit decomposition of R, and by Ri its individual bits (at the corresponding
position i).
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2 Comparison Protocols

In this section we present our comparison protocols and their workings on a
step-by-step basis. Then, for each presented protocol, we also show correctness.
We do not provide any formal proofs of security of our protocols, as these follow
trivially from the arithmetic black box functionality paradigm [11]. We present
the protocols in the following order:

(i) First, we present the protocol ΠLTBits (Fig. 3), which realizes a comparison
between a secret bit-decomposed value, and a public value, and outputs a
secret bit indicating the result of the comparison. This is a building block
that uses prefix computation for comparison.

Fig. 2. Proposed comparison protocols, their inputs, and their interdependencies.

(ii) Second, we introduce the protocol ΠLTC (Fig. 4), which invokes ΠLTBits and
performs a comparison between a secret value (without bit-decomposition),
and a public value, where the output is a secret bit indicating the result of
the comparison.

(iii) Third, we present a specialized comparison protocol, ΠReLU (Fig. 5), that can
be applied when the modulus is a power of 2 and the public constant against
which we compare is half the modulus. Note that this is an important case,
as it corresponds to computation of the ReLU function, which is widely used
in machine learning.

(iv) Finally, in ΠLTS (Fig. 6), we show how to generalize ΠLTC to compare two
secret shared values, where once again the output is a secret bit.

Note that given our novel approach of comparison, there is a difference between
secret-public constant comparison (ΠLTC) and secret-secret comparison (ΠLTS),
which often comes for free when using standard techniques that require a slack.
For more details on this, we refer the reader to Sect. 4. Finally, for all proposed
protocols, the output can either be an element of ZM or F2 (depending on the
needs of the follow-up computations) indicating the result of the comparison.
An overview of all our comparison protocols, their inputs, and their interdepen-
dencies is given in Fig. 2.
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2.1 Comparison with Bitwise Shared Input – LTBits Protocol

The protocol ΠLTBits, listed in Fig. 3, follows a standard bit decomposition idea
to privately compute a secret bit, indicating the result of a comparison. It is
essentially an adaptation of the BIT-LT protocol by Damg̊ard et al. [9], which
instead of two secret bit-decomposed inputs (that BIT-LT receives), it receives
one bitwise secret shared input and a public arithmetic value to compare upon,
while its output is a secret Boolean value indicating the result of the compar-
ison. Notably, each component of our bit-decomposed secret lives in F2, unlike
Damg̊ard et al.’s [9] construction, where each secret bit lives in Fp. The protocol
LTBits computes the following:

1. The XOR of each bit of the secret input [xi]2 value with the corresponding
bit of the public value Ri. This results in a bit-string [y0]2 , . . . [ym−1]2 with
ones on all positions where the bits of the values to be compared differ.

2. A prefix OR (circuit computes for each position i of a bit vector, the OR
between all previous bits in the vector up to position i. - more details in
Catrina and de Hoogh [6]) of the previously computed bits [yi]2, which results
in a vector [zi]2 of 0’s followed by 1’s with the transition from 0 to 1 occurring
at the first bit where the secret and the public value differ.

3. In this step, the previous vector is converted into a vector [wi]2 , i “
0, . . . ,m − 1 of all 0’s and a single 1 at the index of the first differing bit.

4. In the last step, we take the inner product between the vector w (which is
a vector of 0’s in all positions, except for the position of the first differing
bit of the values to be compared) and the bits of the public value R. This
inner product results in 0, if at the position of the differing bit R was 0,
which further implies that x is larger than R, and it results in 1 otherwise.
We have computed the value [(x ă R)]2, but we are actually after [(R ă x)]2,
thus 1 − [(x ă R)]2 concludes the protocol.

Fig. 3. Protocol for comparison between an input shared bitwise and a public value.

Correctness of ΠLTBits: To see the correctness of ΠLTBits, note the following
series of observations:
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1. To compare two numbers, we start from the most significant bit (MSB) and
look for the first bit where the two numbers differ. This is precisely what is
computed in Step 1 of ΠLTBits. Thus, ym−1, . . . , y0 contains a series of 0’s,
followed by a 1, which in turn is followed by bits that are irrelevant to the
comparison.

2. As a consequence, zm−1, . . . , z0 contains a series of 0’s followed by 1’s starting
at the first location where xi and Ri differ. Let k P {0, . . . , m−1} be the largest
index where xi ‰ Ri. Thus, wi “ 1 iff i “ k and wi “ 0 otherwise.

3. Finally, multiplying wi by Ri ensures the following:

output “
{

1 if Rk “ 1, xk “ 0 (implying R ą x)
0 otherwise (implying R ď x)

�

2.2 Comparison with a Constant – LTC Protocol

The protocol ΠLTC, listed in Fig. 4, is a comparison protocol between a shared
secret value, and a public constant. Unlike ΠLTBits, it does not require the secret
input value to be bitwise secret shared, but it invokes the protocol ΠLTBits twice.
These two invocations can be parallelized, decreasing the total number of rounds
of the comparison protocol. ΠLTC requires an edaBit as an input. An edaBit is a
shared value in the arithmetic domain, accompanied by its own bit decomposi-
tion in the binary domain [14]. The core idea behind this comparison protocol
is that addition in a ring or field is commutatitve as explained in Fig. 1a.

Fig. 4. Protocol for comparison between an input shared in ZM and a public value R
for any modulus M (in particular, M can be 2k or a prime p).

The ΠLTC protocol proceeds as follows:

1. Using the arithmetic value [r]M of the random edaBit from the input, the
parties mask the input value x, computing [a].
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2. [a] is opened, without revealing any information about x.
3. The parties then do the following:

(a) Invoke ΠLTBits to compare the masked value [a] against the random
edaBit (in bitwise sharing), resulting in [w1]2.

(b) Invoke ΠLTBits to compare b “ [a+M −R]M against the random edaBit (in
bitwise sharing), resulting in [w2]2.

(c) Compare in the clear b against the public value B “ M − R, resulting in
w3.

4. Finally, they conclude the comparison test by computing [w]2 “ 1 − ([w1]2 −
[w2]2+w3). This equation follows from the way we exploited the commutative
property of addition, and its correctness is explained in the next paragraph.
The output at this step is the binary value indicating the result of the com-
parison, shared in F2. Depending on the follow-up computations in the larger
MPC protocol that uses the comparison, if the next input needs to be arith-
metic, a classical daBit [25] can be used to transform the representation of
this bit in ZM .

Correctness of ΠLTC: Let us denote by [x] the value of x P ZM , i.e., the
modular reduction in {0, 1, . . . ,M −1}. We are interested in securely computing
the Boolean value (x ă R), for R a public constant. Furthermore, let LT(x, y)
be defined as follows:

LT(x, y) “
{

1 if x ă y

0 otherwise
(1)

Recall from Sect. 1.2 that the LT(x, y) function enables writing exact integer
relations for the sum of two numbers as follows:

[x + y] “ [x] + [y] − M · LT([x + y] , [x])
“ [x] + [y] − M · LT([x + y] , [y])

(2)

To be consistent with the notation followed in Fig. 1a, we define B “ M − R,
and c “ [x + B]. We then use the commutative nature of addition to represent
the sum b “ [x + r + B] in two different ways, as shown in Fig. 1a. Using Eq. 2
for the two additions in the top path and noting that a, b,B P ZM :

b “ [a + B] “ a + B − M · LT(b,B)
“ x + r − M · LT(a, r) + B − M · LT(b,B)

(3)

Similarly, using Eq. 2 for the two additions on the bottom path , we get:

b “ [c + r] “ c + r − M · LT(b, r)
“ x + B − M · LT(c,B) + r − M · LT(b, r)

(4)

Equating the RHS of Eq. 3, and Eq. 4, we get:

LT(a, r) + LT(b,B) “ LT(c,B) + LT(b, r) (5)

Recall that the result we are after is LT(x,R), which is equivalent to (1 −
LT(c,B)), since B “ M − R, and c “ [x + B]. Thus, from Eq. 5 we have
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LT(c,B) “ 1−(LT(a, r)+LT(b,B)−LT(b, r)), which is exactly what we compute
in Step 4 of ΠLTC. Finally, to complete the proof, we reiterate that LT(c,B) “ 0
iff (x ă R) and that LT(·, ·) correctly computes the function defined by Eq. 1. �

2.3 ΠReLU – Special Case of ΠLTC for R “ 2k−1, M “ 2k

ΠLTC is a general comparison protocol for comparing against any public value.
However, a special case of interest is when the modulus is a power of 2 and
the public constant to be compared against is half the modulus. When con-
sidering privacy-preserving alternatives to machine learning, the use of fixed-
point arithmetic converts the widely used ReLU(x) “ max(x, 0) function to the
above comparison, when considering such a special modulus (power of 2). In
this case, where R “ 2k−1 and M “ 2k, the protocol can be optimized fur-
ther to improve performance. We present this optimized protocol in Fig. 5. This
comparison setting is useful in a number of privacy-preserving machine learning
frameworks [22,32], where fixed point encoding transforms the ReLU function
into a comparison with R “ 2k−1 and M “ 2k. In this case, we can simplify
our protocol to open the masked value a “ [x + r] (Step 1 of the protocol),
subtract the mask r from it using a binary circuit in the secret shared domain
(Steps 2, 3, 4 of the protocol), and extract the MSB of this result (Step 6). This
way we are essentially extracting the MSB of x. This replaces the overhead of
two invocations of ΠLTBits with a single invocation of a binary addition protocol
(ΠBitAdder). The computation in Step 4 can also be used to perform comparisons
when R “ 2� is another power of two, however that would require additional
computation over the bits sk−1, . . . , s�.

Fig. 5. Protocol for comparison between an input shared in Z2k and 2k−1.

Correctness of ΠReLU: Observe that in this special case comparison with the
constant 2k−1 where the modulus is 2k, the MSB of the secret input defines the
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result of the comparison. Our protocol essentially performs a bit decomposition
of the input [x]2k by masking it (using the arithmetic version of the edaBit) and
then again subtracting this mask in a binary circuit (using the binary version
of the edaBit). This results in the bit decomposition of x, and by extracting
its MSB we conclude the comparison, and hence the computation of this ReLU
function.

Remark – Optimizing ΠReLU: Note that Step 4 in Figure 5 can be optimized as
we only require a single bit [sk−1]2. In particular, this requires log2 k rounds and
k log2 k invocations of bit-triples. This can be reduced to log2 k rounds and 2k−2
bit-triples by simply modifying the MSB values and using a prefix computation
protocol ΠPreOpL (cf [6]). We modify the most significant bit of the input tuple
to be (1, 0) before passing to the ΠPreOpL. Consequently, the second element of
the output tuple of the ΠPreOpL protocol is the carry bit [sk−2]2 and thus [sk−1]2
can be computed locally as the XOR of the MSB’s of the two bits and the bit
[sk−2]2.

2.4 Comparison with Secret – LTS Protocol

While the protocol described in Sect. 2.2 provides an efficient way to compare
with a public constant, the protocol described in this section, ΠLTS, listed in
Fig. 6, enables the comparison of two secret values x and y. In most prior works,
due to the use of a slack or bounds on inputs, the corresponding protocols for
these two settings are nearly identical. In our case, the elimination of slack

Fig. 6. Protocol for comparison between two arithmetic inputs shared in ZM , for any
modulus M (in particular, M can be 2k or a prime p).
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requires slightly different protocols. We provide a brief discussion on applications
of either of these protocols in Sect. 4.2.
Each step of the protocol ΠLTS computes the following:

1. Parties mask the input values [y] and [x] using the arithmetic shares of two
random edaBits [r] and [r′], resulting in shared values [b] and [a] P ZM .

2. These masked values are opened (without revealing any information about x
or y) and the value T ” a + b (mod M) is computed locally.

3. The parties then perform the following computations:
(a) Using ΠLTBits, a secret comparison between the open value b and the

bitwise sharing of the edaBit r, and store the result [w1]2.
(b) A similar comparison between a and the bitwise sharing of r′, and store

the output in [w2]2.
(c) Check in the clear whether (T ă b), and store this value in w3.
(d) Compute a circuit for bitwise addition of two binary (secret) vectors,

where the result is a bitwise secret shared vector of the bits of (r + r′).
(e) Extract the last carry bit from the binary adder (Step 3d) as [w4]2.
(f) Finally, using ΠLTBits, compare the value T against the bitwise secret

sharing of r + r′ (computed in Step 3d), and store the output in [w5]2.
4. In the end, the parties conclude the comparison protocol by computing the

output [w]2 “ [w1]2 + [w2]2 + w3 − [w4]2 − [w5]2. This final step, similarly to
the LTC protocol follows from the way we exploit the commutative nature of
addition, and we show correctness subsequently. The final output is the binary
sharing of the comparison result, which can be transformed to a shared bit
in ZM if needed.

Correctness of ΠLTS: Following the same notation set-up as in Sect. 2.2 for
ΠLTC, we denote by [x] the value of x P ZM , and the function LT(x, y) as defined
in Eq. 1. We are interested in securely computing the Boolean value (x ă y),
for x and y two secret shared values in ZM . The intuition for our protocol is
presented in Fig. 7 and follows the same idea as in ΠLTC, viz., computing a sum
in two different ways and using Eq. 2 to find a constraint between the various
wrappings around the modulus.

First note that [x] ă [y] iff LT([y − x] , [y]) “ 1. We then mask the inputs y
and −x using the two edaBits: [b] “ [y + r], [a] “ [r′ − x]. Finally, we look at
computing the value [T ] “ [y − x + r + r′] in two different ways, as the sum of
a and b, and as the sum of y − x and r + r′. Looking at the addition using the
first way, we first open the values a and b, and write the exact integer relation
(using Eq. 2):

T “ b + a − M · LT(T, b) (6)

We can also write similar expressions for b and a,

b “ [y] + [r] − M · LT(b, [r])
a “ [−x] + [r′] − M · LT(a, [r′])

(7)
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Fig. 7. Intuition behind the comparison protocol for two secret values, once again based
on the commutative nature of addition over rings and fields.

Thus the first expression for the sum T is given by (combining Eqs. 6, 7):

T “ [y] + [r] − M · LT(b, [r]) + [−x] + [r′] − M · LT(a, [r′]) − M · LT(T, b) (8)

Grouping the terms differently and computing the sum using the latter expres-
sion:

T “ [y − x] + [r + r′] − M · LT(T, [r + r′]) (9)

Once again, [y − x] and [r + r′] can be expanded using Eq. 2 as:

[y − x] “ [y] + [−x] − M · LT([y − x] , [y])
[r + r′] “ [r] + [r′] − M · LT([r + r′] , [r]).

(10)

Plugging Eq. 10 into Eq. 9, and equating that with the expression in Eq. 8, we
get the following expression for LT([y − x] , [y]), the quantity of interest:

LT([y − x] , [y]) “ LT(b, [r]) + LT(a,
[
r′]) + LT(T, b) − LT(

[
r + r′] , [r]) − LT(T,

[
r + r′])

This completes the correctness proof. To generate an efficient protocol for this
expression, the final observation is that LT([r + r′] , [r]) is generated as a by-
product of the computation required to generate the bit decomposition of r + r′

from the bit decompositions of r, r′ (to enable a call to ΠLTBits). �

3 Evaluation

We implement our protocol in the MP-SPDZ Framework [13]. The entire protocol
is a handful of lines of python code, as shown in Fig. 1b, and reads directly from
the pseudocode; this makes it highly amenable to implementation. We evaluate
our protocol over various MPC settings and a brief summary of our experiments
is provided below:

(i) Throughput of Comparisons: In this experiment, we measure the
throughput of comparison operations and compare this with prior art. These
results are presented in Sect. 3.1.

(ii) Private Evaluation of ResNet-50: We provide benchmarks for evaluat-
ing ResNet-50 [17] using dishonest majority privacy-preserving computation.
We use the state-of-the-art matrix triple generation algorithm [7] and com-
bine that with our comparison protocol and compare that against the prior
art [7,14]. These results are presented in Sect. 3.2.
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Set-up Details: We use an MPC set-up similar to prior works [14,24,25]. Each
party is run on an Intel(R) Core(TM) i9-9900 CPU @ 3.10 GHz with 128 GB
of RAM over a 10 Gb/s network switch with an average round-trip ping time
of 1 ms. For the WAN setting we use two or three machines depending on the
protocol wich are equipped with Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60 GHz
and 54 GB of RAM while the network capability was slowed down using the
Linux tc command limiting the bandwidth to 100Mb/s and 100 ms round-trip
ping time.

3.1 Throughput of Rabbit comparisons

We conduct experiments in all combinations of the possible adversarial models
(active, passive), adversarial settings (honest majority, dishonest majority), and
domains (OT-based in Z2k , OT-based in Fp, HE-based in Fp), and in both the
LAN and WAN network settings. Table 1 provides a summary of the primitives
used as preprocessing (i.e., offline cost) for a Rabbit comparison, vs. an edaBit
comparison [14], their online round complexity, security, and the need for slack,
in Z2k and in Fp. As in Escudero et al. [14], we benchmark the time required for
a million comparisons between two (DM) or three (HM) servers described in the
setup above. Table 2, 3 show the number of comparisons per second (through-
put) and communication per party (kbits) for a single operation in the LAN
and WAN settings respectively. Our protocol improves prior art in runtime and
communication by upto 2×, and in all cases, achieves these without any slack.

Communication for ΠLTC over Fp. Note that our protocol incurs higher com-
munication cost, when performing comparisons over fields. This is due to the
use of a more expensive Prefix OR computation. Prior works encode the data in
a larger dataspace and simply extract the MSB for the comparison. In a man-
ner similar to the optimization from ΠLTC to ΠReLU, we can extract the MSB
to compute a comparison. This operation requires using a prefix computation
protocol ΠPreOpL (cf [6]), which has a linear overhead of 2(k − 1) bit-triples in
log2 k rounds – matching that of edaBits [14]. If a different encoding is used,
where positive and negative numbers are determined by comparison with �p/2�,

Table 1. Theoretical complexity comparison of exact comparison functionality over Z2k

and Fp where k is the bit-size of the datatypes, l is the log2 bound on the inputs/data,
and m refers to the number of bits to be truncated.

Sub-protocols Rabbit edaBits Comp. [14]

Z2k Fp Z2k Fp

edaBits 1:{k} 1:{k} 1:{l} 2:{l − m + s,m}
daBits 1 1 1 1

ANDs 3(k − 1) k log2 k* 3(l − 1) 2(k − 1)

# Rounds 2 + log2 k log2 k 2 log2 l 2 log2 k

Security, slack Perfect, No Statistical, No Statistical, Yes Statistical, Yes
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Table 2. Throughput and communication for running secure comparisons using Rabbit
in contrast to prior art over LAN for 16 threads, with 2 million comparisons in total.

Domain Rabbit edaBits Comp. [14]

Thru.(ops/s) Comm.(kb) Thru.(ops/s) Comm.(kb)

Dishonest majority Active 2k (OT) 2936 1252.4 3038 1252.2

p (OT) 1537 2847.0 1056 4458.6

p (HE) 1495 1678 1495 1635.99

Passive 2k (OT) 165368 39.5 172211 38.3

p (OT) 73947 87.8 51478 132.2

p (HE) 65750 67.63 41175 41.71

Honest majority Active 2k 117607 5.62 116616 5.54

p 88780 9.43 41028 19.62

Passive 2k 5706569 0.5 5600265 0.5

p 1421412 0.96 472316 1.58

the same protocol can be used with statistical correctness, determined by the
specific choice of prime (with a small gap between p and 2k). A suitable choice of
prime p would also further lower the prepossessing time, when performed using
HE.

3.2 Neural Network Evaluation

In this section, we provide benchmarks for using our approach for comparison on
evaluating the ResNet-50 architecture [17]. In our experiments, we consider neu-
ral network inference over 64-bit datatypes and compare the offline and online
performance of our protocol with the state-of-the-art protocols with active secu-
rity in the dishonest majority setting. For prior art, we use the recent protocol for
matrix triple generation [7] in conjunction with our ΠLTC comparison protocol.
The results are summarized below.

The work of Chen et al. [7] requires the plaintext modulus to be 128-bits, due
to the slack required in the comparison. In this work, we eliminate that slack and
hence only require generation of matrix triples using homomorphic encryption
(HE) with a plaintext space of 64-bits. While Chen et al. [7] require a 128-bit
modulus and N “ 215 (degree of the cyclotomic polynomial), we can generate
64-bit triples. This enables us to run the algorithm with lower HE parameters
(and consequently better performance). We use N “ 214, a plaintext modulus
of 64-bits and a ciphertext modulus of 480. With a conservative analysis this
leaves enough room for 40-bits of statistical security. We set the block size to 64
instead of 128 and thus pack 4 matrices in a single ciphertext (compared to 2 in
Chen et al. [7]). We list the sizes of matrices required for the computations in
ResNet-50 and then measure the time required (and communication overhead)
for matrix triple generations using these different set-ups. We run the protocols
on a similar set-up as Chen et al. [7], using a 5 Gb/s LAN bandwidth and about
300 Mbps WAN bandwidth. Hence, just for the triple generation, our communi-
cation complexity reduces by about 60% and the total time by about 40% of [7]
for the same set of triple generations (LAN and WAN settings are fairly similar
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Table 3. Throughput and communication for running secure comparisons using Rabbit
in contrast to prior art over WAN. All numbers were produced using 2 million compar-
isons with 8 threads, except in the active security, dishonest majority field cases where
we used only 32,000 comparisons due to time constraints. Note that for the active secu-
rity, dishonest majority field case with HE preprocessing, the 54 GB RAM machines
ran out of memory due to the large ciphertexts kept in memory by MP-SPDZ - for
Rabbit there were no memory issues as the memory footprint is reduced to half due to
ciphertexts that only need to accommodate 64-bits plaintexts.

Domain Rabbit edaBits Comp. [14]

Thru.(ops/s) Comm.(kb) Thru.(ops/s) Comm.(kb)

Dishonest Majority Active 2k (OT) 33 1237 33 1237

p (OT) 1.37 29646 0.37 112594

p (HE) 2 19089 N/A N/A

Passive 2k (OT) 596 39.26 604 38.18

p (OT) 366 87.59 245 131

p (HE) 427 67.01 431 41.71

Honest Majority Active 2k 5444 5.54 5488 5.52

p 1639 16.96 1463 19.53

Passive 2k 15096 0.49 15182 0.49

p 11492 0.96 7640 1.53

as the protocols are compute dominated). Furthermore, our computational bur-
den for the matrix triple computations reduces from about 72 GB to 9.3 GB –
a critical improvement for systems based on HE.

We also run the offline and online computations for the comparisons in
ResNet-50 and compare the total time. Our protocol takes about 11 h and 2883.3
GB of communication. When compared to prior art of Chen et al. [7], they evalu-
ate the same network in about 24hrs with 2036 GB (using improved comparisons
using edaBits). Thus, our work is 2× faster albeit uses slightly more communica-
tion due to the communication gap for Rabbit and edaBit for dishonest majority
within a characteristic p field. Thus, our comparison protocol, combined with the
improvement in the triple generation phase due to slack elimination, provides
a significant throughput improvement over state-of-the-art MPC protocols for
neural network evaluation.

4 Discussion

In this section, we provide a deeper discussion on the following aspects of this
work. We (1) elaborate on our central contribution of removing the slack and
how it enables computation over smaller data types; (2) we discuss applications
of these protocols; and (3) provide an analysis of the statistical security provided
by our protocol along with the choice of modulus for the case of fields.
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4.1 Elimination of “Slack” in Comparisons

One important contribution of this work is the elimination of a “slack” between
the inputs (in other words the computable part of the data) and the actual size
of the datatypes used in the MPC engines. Note that prior work in the dishonest
majority setting requires a slack to accommodate for the statistical parameter.
Commonly, this statistical parameter, which is necessary to ensure security, is
at least 40-bits. This implies that the actual datatypes used in the MPC are
at least 40-bits longer than the values we need to compute upon. As a conse-
quence, prior work requires 128-bit datatypes for the MPC, necessary to support
64-bit computations. On the contrary, our comparison protocol achieves exact
comparison without the need for any slack and thus operates on smaller, 64-
bit datatypes. As shown in Sect. 3.2, when the slack removal is combined with
recent advances such as the contributions of the work of Chen et al. [7], the
smaller MPC datatypes enable faster triple generation, reduce the communica-
tion and computational overhead and increase the overall efficiency of the MPC
computations, beyond secure comparisons.

4.2 Applications to Machine Learning and Beyond

Privacy-preserving machine learning, which is of increasing interest in the field
of MPC, often relies on efficient protocols for computing ReLU, a non-linear
function that is given by ReLU(x) “ max(x, 0). Using fixed-point encoding,
computation of the ReLU function reduces to a comparison with an encoding of
0 (i.e., a constant). Given that this non-linear function is the bottleneck of many
state-of-the-art secure machine learning protocols [18,21], our proposed protocol
improves this entire line of work.

The thresholding operation is yet another application where we require a
comparison with a public constant. In image processing and computer vision,
threasholding is used for segmenting images (e.g., turn a grayscale image into a
binary one). In particular, it replaces a pixel with a black (resp. white) pixel, if
the image intensity is less (resp. greater) than a fixed constant. In yet another
application, Cryptography for #metoo [19], the system heavily relies on the
use of public value thresholding. In adversarial machine learning, algorithms for
robustness that work over privacy-preserving computation also require thresh-
oldings with small public values. In all these applications, the functionality can
be efficiently achieved using our comparison with constant protocol. Thus, our
efficient comparison with constant protocol, ΠLTC (Sec. 2.2), is deployable on
several application scenarios.

On the other hand, there are applications, where secure comparisons with a
constant do not suffice, but a comparison between two values that are both secret
is required. In such cases, our comparison with secret protocol, ΠLTS (Sect. 2.4)
can be deployed. Applications in this line of work go as far in the past as the first
instance of the problem: Yao’s millionaires’ problem [34], and include amongst
others also secure auctions [4], and secure linear programming [28].
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4.3 Statistical Security

We remark that the protocols ΠLTBits, ΠLTC, ΠReLU and ΠLTS are all inherently
information theoretically secure. However, when combined with a larger MPC
platform, the overall security is set by the weaker between the MPC platform and
the protocol, and hence when using protocols such as SPDZ [12], BDOZa [2],
SPDZ2k [10], our security reduces to statistical. The current implementation
has a small statistical security due to the use of edaBits [14]. The protocol for
edaBit generation produces shares:

[r]M and {[ri]2}m−1
i“0 such that r ”

m−1∑
i“0

ri · 2i (mod M) (11)

In particular, for the correctness of ΠLTC in Sec. 2.2, we require that r “ ∑
ri ·2i,

and this condition is different from Eq. 11 in a subtle yet important way. In the
case where M “ 2m, this does not raise an issue. However, in all other cases,
in particular including the field case, we have 2m−1 ă M ă 2m, and so we can
have r “ (

∑
ri · 2i) − M . In this case, the correctness of ΠLTC does not hold, as

the set of sharings {[ri]2}m−1
i“0 does not correspond to the bit decomposition of

r. To address this issue, we note that this failure probability depends on the size
of the gap between the modulus and the bounding power of 2 in relation to the
modulus. The failure probability is given by:

Failure probability “ 2m − M

2m
(12)

which is simply the probability that r is between M and 2m. Thus, if δ “ 2m−M ,
the failure probability can be made small for suitable choice of δ/2m. Thus, in
practice, we choose the largest 64-bit prime p “ 264 − 59 for our implemen-
tation. This gives our protocol a failure probability of less than 2−59. How-
ever, from a security point of view, for statistical hiding, we use the fact that
r Ð R{0, 1, · · · , 2m −1} when reduced modulo M is still close to uniform in ZM

(to ensure the masked value is hidden). If the former distribution is D1 and the
latter is D2, then this statistical distance can be computed exactly as given in
Eq. 13. Thus, the statistical closeness can also be made negligible by a suitable
choice of δ/2m. A union bound over the two expressions (Eq. 12 and 13) allows
us to achieve both correctness and privacy with a statistical parameter close to
58-bits.

Statistical closeness “ Distance(D1,D2)

“ 1
2

[(
δ−1∑
i“0

2
2m

− 1
M

)
+

(
2m−1∑
i“δ

1
M

− 1
2m

)]

“ δ · (M − δ)
M · 2m

ď δ

2m

(13)

Furthermore, we note that one can use rejection sampling as follows: run ΠLTBits

over the bit decomposition of r and the modulus M to check if r ě M . If this is
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the case then reject the sample. This way we can eliminate such edaBits and note
that the rejections happen with probability similar to the expression in Eq. 12
and is thus ideal once again when the prime p is close to a power of 2.

As an aside, the closer the prime is to the power of two, the lower is the
failure probability. However, when combining with other protocols, such as those
mentioned in Sect. 3.2, there are other considerations in choosing the prime. For
instance, for efficiency reasons BFV [5,15] requires special prime modulus, where
p−1 has a large factor (around 214 - 216). One such prime is p “ 264 −83, where
33196 | p−1 and φ(33196) “ 16128 (with φ the Euler’s Totient function), which
would be secure given the 16k degree and appropriately chosen modulus q.

5 Comparison with Related Work

After the seminal work of Yao [34], which operates in the two-party setting,
and is based on garbled circuits, many works studied the problem of secure
comparisons, both in the two-party [8,29,35], as well as in the multi-party
setting [6,9,20,23]. In this work, we focus on the general n-party setting.
Damg̊ard et al. [9] were the first to tackle the challenge of secure, constant-
round bit decomposition of secret shared inputs, which is a necessary building
block for most comparison protocols. In the same work [9], they extend and
apply their bit-decomposition protocol to develop a secure comparison protocol
(amongst other applications). Their comparison protocol works in the general
n-party setting, with any underlying linear secret sharing scheme (LSSS), and
provides unconditional security against active adversaries (assuming that the
multiplication protocol of the LSSS is also actively secure), in the honest major-
ity setting.

Improving upon the complexity of Damg̊ard et al.’s [9] bit decomposition,
comparison, equality, and interval test protocols, Nishide and Ohta [23] pro-
vide new, simplified protocols. In addition, Nishide and Ohta [23] construct new
secure comparison, equality, and interval test protocols, which do not rely on bit
decomposition. For their deterministic equality test protocol that is independent
of bit decomposition, Nishide and Ohta [23] apply a masking technique similar
to the one we use in our comparison protocol: they use a random shared value
that the parties possess both in its Fp and in its bit decomposed form to mask
and afterwards open the secret shared input of the equality test.

In an attempt to design comparison protocols with concrete efficiency instead
of asymptotic, Catrina and de Hoogh [6] propose several versions of secure equal-
ity and comparison tests. Their protocols run in logarithmic number of rounds,
in the bit-length of the values to be compared, but also with logarithmic commu-
nication cost (instead of the usually linear communication cost). The efficiency
of these protocols comes also at the cost of statistical, instead of unconditional
security and have been adopted and implemented in a number of MPC platforms
(e.g., [1,13]). Our comparison protocol, in combination with the recent advances
in the generation of daBits [25], and edaBits [14] performs concretely better than
the one of Catrina and de Hoogh [6], while offering unconditional (instead of
statistical) security in Z2k .
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Lipmaa and Toft [20] propose three different comparison protocols. Only one
of these comparison protocols works for the general n-party setting with active
security, and while it offers sublinear online communication complexity, it is not
constant-round and it has linear offline communication cost. Like other protocols
in the literature [8,29], the core of [20] lies in the idea of splitting the two strings
to be compared into smaller, equal length blocks, and perform the comparison
on the first block where they differ. This way the problem of comparison only
needs to be addressed on smaller strings (the blocks), and equality testing can
be applied to the larger strings (to allow for the necessary reduction of the size
of the blocks on which comparison is to be performed). Other recent concretely-
efficient comparison protocols such as [16,31–33] also eliminate the need for a
slack but operate in fixed adversarial models and are tied to a 3-party MPC
setting.

Table 4. Comparison of the related work in the n-party setting in terms of offline,
and online communication and computation complexity; in terms of rounds; in terms
of security; and in terms of adversarial model and adversarial settings supported. In
the context of adversarial setting HM stands for honest majority, while DM stands
for dishonest majority. *perfect security holds only when the underlying secret sharing
scheme operates over Z2k .

Protocol Communication Computation Rounds Security Adversary Setting

Offline Online Offline Online

[9] – O(� log �) – O(� log �) O(1) Perfect Active HM

[23] – O(�) – O(�) O(1) Perfect Passive HM

[6] – O(log �) – O(log �) O(log �) Statistical Passive HM

[20] O(�) O(log �) O(log �) O(log �) O(log �) Statistical Active HM

Rabbit O(�) O(� log �) O(�) O(�) O(log �) Perfect* Active DM

In Table 4 we detail the asymptotic costs and security features of the related
work in secure comparisons for the general n-party setting. It is important to
remark that most prior secure comparison protocols require the values to be com-
pared to be smaller than the space where the comparison takes place. Although
this may result in efficient protocols for the particular comparison operations, it
also requires a larger MPC engine to perform all (other) computations. Essen-
tially, this means that all adjacent computations should be performed in a larger
space, and all values to be communicated throughout the protocol need to be
larger by a factor proportional to the necessary slack for the secure comparison.
Our protocol crucially overcomes this limitation.

6 Conclusion

In this work, we propose novel comparison protocols for general n-party com-
putation. Our protocols enjoy perfect security, when we operate over Z2k , and
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crucially eliminate the need for “slack” – a larger dataspace to compute secure
comparisons, enabling computations over smaller datatypes. In terms of concrete
efficiency, our protocols improve prior art by twice for most adversary structures,
while keeping a smaller communication complexity. Given that comparisons are a
fundamental secure computation primitive, many MPC applications can benefit
from our protocols.
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Abstract. This paper studies the problem of constructing secure mul-
tiparty computation protocols whose outputs satisfy differential privacy.
We first provide a general framework for multiparty protocols generating
shares of noise drawn from distributions capable of achieving differential
privacy. Then, using this framework, we propose two kinds of proto-
cols based on secret sharing. The first one is a constant-round protocol
which enables parties to jointly generate shares of noise drawn from
the discrete Laplace distribution. This protocol always outputs shares of
noise while the previously known protocol fails with non-zero probability.
The second protocol allows the parties to non-interactively obtain shares
of noise following the binomial distribution by predistributing keys for
pseudorandom functions in the setup phase. As a result, the parties can
compute a share of noise enough to provide the computational analogue
of ε-differential privacy with communication complexity independent of
ε. It is much more efficient than the previous protocols which require
communication complexity proportional to ε−2 to achieve (information-
theoretic) (ε, δ)-differential privacy for some δ > 0.

Keywords: Secure multiparty computation · Differential privacy ·
Laplace distribution · Binomial distribution

1 Introduction

There is an increasing demand for services aggregating private data from a large
number of parties and providing some statistical analysis of them. A typical
example is computing histograms of customer information held by banks [9] or
medical data stored on servers [25]. Secure multiparty computation (MPC) is a
cryptographic technique which enables the parties to compute a function on their
data without revealing any information on them to an adversary. Assume that
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there are n parties holding their private inputs xi, i ∈ [n] := {1, 2, . . . , n}. Let g
be a function to compute on their inputs. In an MPC protocol based on secret
sharing [31], (1) the parties share their inputs among the other parties, (2) they
obtain a share of g(x) via interaction, and (3) a designated party reconstructs
g(x), where x = (x1, . . . , xn). The privacy requirement is that an adversary who
corrupts at most t parties learns nothing about the inputs of the other parties
beyond what follows from the inputs of the corrupted parties and the output.

However, standard MPC protocols output an exact calculation result and
cannot prevent the adversary from learning what follows from the result. For
example, the exact result of a statistical survey can be used to find out whether a
specific individual actually participates in that survey, which may make individ-
uals less motivated about pooling their information. To deal with this problem,
differentially private mechanisms [2,18,21,26] add noise drawn from an appro-
priate distribution to the calculation result and make the distributions of the
outputs for two “similar” inputs approximately the same. Nevertheless, since the
parties’ inputs are typically sensitive, it is not appropriate to assume a trusted
party who aggregates their data and applies the mechanism to them, and hence
it is necessary to do that task in a distributed setting.

From this point of view, several studies have proposed MPC protocols com-
bined with differential privacy [11,17,19,33]. In [17], the parties compute a share
of noise r so that a noisy output g(x)+r achieves differential privacy. Technically,
the authors in [17] devise methods to jointly generate shares of noise following
the binomial distribution of parameter 1/2 and the discrete Laplace distribution.

That task is not straightforward in that it is necessary to guarantee differ-
ential privacy even against an adversary that has access to the internal states of
the corrupted parties. Particularly, it cannot be solved by a simple protocol in
which a designated party samples noise from a certain distribution and shares it
among the other parties. An alternative solution may be to let each party add
noise ri to his share of g(x) and then reconstruct g(x) +

∑
i∈[n] ri. However,

to ensure that
∑

i∈[n] ri is distributed according to our target distribution, we
require that the distribution has the reproductive property, which does not hold
in the case of the Laplace distribution. Furthermore, since the adversary can
subtract the noise generated by the corrupted parties, each honest party has to
add more noise and as a result, the noisy output loses its utility.

Although the contributions of [17] are helpful and well suited to our moti-
vations introduced above, there is still room for improvement with respect to
the communication and round complexity. First, the protocols for the binomial
distribution must generate many uniform random bits, which requires commu-
nication complexity proportional to ε−2 to achieve (ε, δ)-differential privacy (see
Sect. 2.3 for its definition) for some δ > 0. Secondly, the protocol for the dis-
crete Laplace distribution is essentially based on securely evaluating a Boolean
circuit generating biased bits. Hence, it requires round complexity proportional
to the depth approximately log log δ−1. Moreover, it fails to generate noise with
non-zero probability, that is, there is no outcome of the protocol with a certain
probability and therefore the parties should re-run it again. Since the probability
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is determined by a level of differential privacy, the only solution to making it
negligible with the same level of privacy is to run the protocol several times.

1.1 Our Results

A General Framework for Distributed Noise Generation. Our first con-
tribution is that we reduce distributed noise generation to secure computation of
a function h with input domain Sn for some finite set S such that on a uniform
random input s = (si)i∈[n] ∈ Sn, the output h(s) is according to a certain dis-
tribution capable of providing differential privacy. More precisely, assume that
for T ⊆ [n] of size at most t, the distribution of h(s) conditioned on (si)i∈T

being fixed provides (ε, δ)-differential privacy. Then we can obtain a protocol
that is (ε, δ)-differentially private against an adversary who corrupts at most t
parties by combining a (non-differentially private) protocol for computing g(x)
on the parties’ private inputs x and a protocol for computing h(s) on random
inputs s. A more formal statement is given in Sect. 3. Using this framework,
we can concentrate on the task of obtaining the noise generator function h and
its compact representation, e.g., an arithmetic circuit of small size. We empha-
size that our framework completely separates secure computation of h from that
of g. Therefore, the level of differential privacy and utility that our noise gen-
eration protocol provides and the communication and round complexity of the
protocol are all independent of the complexity or functionality of g though being
dependent on the sensitivity.

A Novel Protocol for Discrete Laplace Noise Generation. As an instan-
tiation of h, we propose a function h such that h(s) follows a finite-range discrete
Laplace distribution if s is uniformly selected. It has two advantages over [17]: (1)
it can be represented as a constant-depth arithmetic circuit and (2) it always out-
puts an appropriate value. Hence, we can obtain a constant-round and error-free
protocol for sampling noise from the finite-range discrete Laplace distribution.
As a drawback, our protocol requires more communication complexity than [17].
Nevertheless, we show an example parameter setting in which the difference in
the communication complexity between [17] and ours is not significant. A more
detailed comparison is given in Sect. 6.1.

A Novel Protocol for Binomial Noise Generation. In addition, we con-
sider a function h such that the distribution of h(s) for uniformly selected s is
given by Z−N/2, where Z follows the binomial distribution of size N and param-
eter 1/2. To construct a protocol for h, we make use of pseudorandom secret
sharing [14], which enables the parties to locally compute shares of a pseudoran-
dom number using predistributed keys. At the cost of precommunication, our
protocol allows the parties to non-interactively obtain shares of binomial noise
and significantly reduces the communication complexity of [17]. As a drawback,
due to the use of pseudorandom functions, our protocol only satisfies the compu-
tational analogue of differential privacy [28]. Moreover, the mean squared error
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between the output of our protocol and the exact calculation result is
(
n
t

)
times

larger than that of [17]. Nevertheless, our protocol works in the client-server
model, in which the number n of servers is quite small, e.g., n = 3, while a lot of
inputs can be dealt with. In Sect. 6.2, we provide a more detailed comparison.

1.2 Related Work

Eigner et al. [19] present an architecture for computing a share of noise following
the Laplace distribution. Wu et al. [33] give a necessary and sufficient condition
for a protocol to securely realize a differentially private mechanism and con-
struct protocols for Gaussian and Laplace mechanisms. The protocols in [19,33]
make black-box use of MPC primitives for operations over real numbers [3,10].
However, [19,33] lack a rigorous analysis of the impact of the finite-precision
implementations on differential privacy, which is undesirable in that differen-
tially private mechanisms are vulnerable to the inexact computations [20,27].
On the other hand, our protocols evaluate arithmetic circuits over a prime field
and hence, we can rigorously analyze an achievable level of differential privacy.

The authors in [11] propose an efficient method to jointly generate many
biased bits and improve the amortized communication complexity of [17]. How-
ever, the method is based on oblivious data structures and is not directly appli-
cable to MPC protocols based on secret sharing.

There are two major models of MPC combined with differential privacy: the
central model and the local model. In the former, a trusted party aggregates all
the parties’ inputs, generates noise following a certain distribution, and publishes
the result perturbed by the noise. Our protocols can be regarded as solutions
to efficiently implementing central-model mechanisms without the trusted party.
In the local model, every party locally randomizes his input and sends it to a
designated party, who then collects the data and publishes the result. However,
local-model mechanisms require a careful analysis of accumulated noise and are
proposed only for a limited class of simple functions [1,18,32]. Thus, they do not
fit in our setting, where functions to compute are possibly much more complex.
It is also shown in [7,12] that the accuracy of noisy outputs is limited to some
extent in the local model. Although an intermediate model called the shuffled
model has been introduced recently [13], known mechanisms are still applicable
only for simple functions such as summation [5,13] and histograms [4].

2 Preliminaries

2.1 Notations

For n ∈ N, [n] denotes {z ∈ Z : 1 ≤ z ≤ n} and [0..n) denotes {z ∈ Z : 0 ≤
z ≤ n − 1} . A function f : N → R is negligible if for any c > 0, there exists
N ∈ N such that 0 ≤ f(λ) < 1/λc for any λ ≥ N . Let R and R′ be two random
variables with range U . We define the statistical distance SD(R,R′) between
R and R′ as SD(R,R′) = (1/2)

∑
u∈U |Pr [R = u] − Pr [R′ = u]|. It holds that
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SD((R1, R2), (R′
1, R

′
2)) ≤ SD(R1, R

′
1)+SD(R2, R

′
2) for random variables R1, R2,

R′
1, R′

2 and that SD(F (R), F (R′)) ≤ SD(R,R′) for any randomized function F .
If s is sampled from a probability distribution D, we write s ∼ D. If D is the
uniform distribution over a finite set S, we simply write s←$ S. For T ⊆ [n] and
a vector x ∈ Sn, we denote by xT ∈ S|T | the sub-vector obtained by restricting
the indices to T . We assume that q is an odd prime and identify the prime field
Zq of size q with {z ∈ Z : −q/2 < z < q/2}.

2.2 Secure Multiparty Computation

We briefly provide the security definition of MPC protocols only for n-input/1-
output deterministic functionalities. See [22] for a more general case of n-
input/n-output randomized functionalities. Assume that there are n parties each
of which holds an input xi, i ∈ [n] from a finite set Xi. Let Y be a finite set
and f :

∏
i∈[n] Xi → Y be a deterministic function. Let Π be a protocol between

the parties for computing f . We assume that an adversary is passive, that is,
a set T ⊆ [n] of corrupted parties reveals their internal information to the
adversary although they do not deviate from the protocol Π. For T ⊆ [n] and
x ∈ ∏

i∈[n] Xi, define ViewΠ
T (x) as the random variable containing the inputs

of the parties in T , their random inputs, and the messages including an output
received by them during the execution of Π with inputs x. We say that the
protocol Π t-securely computes f if there exists a probabilistic polynomial-time
(PPT) algorithm Sim such that for every T ⊆ [n] with |T | ≤ t, the distribution
of ViewΠ

T (x) is identical to that of Sim(T,xT , f(x)).

Secret Sharing. Let �a�i be the i-th share of the (t, n)-Shamir secret sharing
scheme [31] for a secret a ∈ Zq, where q > n, that is, �a�i = p(i) for a random
polynomial p of degree at most t such that p(0) = a. We simply write �a� if
the index i is clear from the context. In this paper, we always assume t < n/2.
Then, a protocol mult securely computes the multiplication of two shared secrets
[8,16]. Since the addition can be locally done, for any function g : Zn

q → Zq rep-
resented by an arithmetic circuit, there is a protocol Πg that enables the parties
to securely compute (�g(x)�i)i∈[n]. We measure the communication complexity
of a protocol Π based on secret sharing by the number Mult(Π) of invocations
of mult and measure the round complexity by the number of sequential rounds
of mult invocations since it is a dominant factor of the complexity.

Primitives. We explain several protocols for specific functions which are
constant-round independent of the number of inputs. See [6,15,29] for the details
and the exact round complexity of the protocols. A protocol mult∗ allows the
parties to obtain �

∏
i∈[�] ai� from �ai�, i ∈ [�] for ai ∈ Zq \ {0}. It has commu-

nication complexity equivalent to 5� + 1 invocations of mult. A protocol pre∨
securely computes � shares �∨j

k=1ak�, j ∈ [�] from �ak�, k ∈ [�] if q > 2�. The
communication complexity is 17�. When bi ∈ {0, 1}, i ∈ [�] are shared, a protocol



276 R. Eriguchi et al.

xor
∗ securely computes �⊕i∈[�]bi� with communication complexity 5�. By com-

puting the XOR of their local random bits, the parties realize the functionality
FBit for generating a uniform share of a uniform random bit. Another protocol
ran2 [15] realizes FBit with 2 invocations of mult but it fails with probability
q−1.

Pseudorandom Secret Sharing. We explain pseudorandom secret sharing
[14], which allows the parties to non-interactively share pseudorandom values in
Zq with predistributed keys.

A pseudorandom function [23] with length parameters s, � : N → N is a collec-
tion of functions {ψr : {0, 1}s(λ) → {0, 1}�(λ)}r∈{0,1}∗ , where {0, 1}∗ denotes the
set of all the bit strings of arbitrary length and λ is the bit length of r, such that
(efficient evaluation) ψr(a) can be computed in polynomial time from r ∈ {0, 1}λ

and a ∈ {0, 1}s(λ) and (pseudorandomness) for every PPT oracle machine M
which has access to outputs of a function on inputs of its choice, it holds that
|Pr

[
MψUλ (1λ) = 1

] − Pr
[
MFλ(1λ) = 1

]| = negl(λ), where Uλ ←$ {0, 1}λ and Fλ

is a uniformly selected map from {0, 1}s(λ) to {0, 1}�(λ).
Let A be the collection of all the subsets of n− t parties, i.e., A = {A ⊆ [n] :

|A| = n − t} and Ai = {A ∈ A : i ∈ A} for i ∈ [n]. Note that |A| =
(
n
t

)
and

|Ai| =
(
n−1

t

)
. For A ∈ A, let fA ∈ Zq[X] be the unique polynomial such that

fA(0) = 1, fA(i) = 0 for any i ∈ [n]\A, and deg(fA) = t. Assume that the parties
in A agree on a key rA ∈ {0, 1}λ and let a ∈ {0, 1}s(λ) be a public input. Each
party i ∈ [n] locally computes ri =

∑
A∈Ai

ψrA
(a)fA(i) by embedding {0, 1}�(λ)

into Zq. It can be verified that ri is the i-th share for
∑

A∈A ψrA
(a) ∈ Zq.

2.3 Differential Privacy

Two vectors x = (x1, . . . , xn),x′ = (x′
1, . . . , x

′
n) ∈ ∏

i∈[n] Xi are called T -
neighboring if there is exactly one index i ∈ [n]\T such that xi �= x′

i, and simply
called neighboring if they are ∅-neighboring. The sensitivity Δ of f :

∏
i∈[n] Xi →

R is defined as Δ = max{|f(x) − f(x′)| : x and x′ are neighboring}.
Let M be a randomized algorithm with domain

∏
i∈[n] Xi and range Y . We

say that M is (ε, δ)-differentially private if for all neighboring vectors x,x′ ∈∏
i∈[n] Xi and for every distinguisher D, it holds that

Pr [D(M(x)) = 1] ≤ exp(ε) · Pr [D(M(x′)) = 1] + δ.

Focusing on computationally bounded distinguishers, we obtain the computa-
tional analogue of differential privacy. Let λ be a security parameter. The algo-
rithm M is computationally ε-differentially private [28] if for all neighboring x,
x′ and for every PPT distinguisher D, it holds that

Pr [D(M(x)) = 1] ≤ exp(ε) · Pr [D(M(x′)) = 1] + negl(λ).

A protocol Π between n parties is called (t; ε, δ)-differentially private (resp.
computationally (t; ε)-differentially private) [7] if for any T ⊆ [n] of size at most
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t, the mechanism ViewΠ
T (·) is (ε, δ)-differentially private (resp. computationally

ε-differentially private) for any pair of T -neighboring vectors.
Since we mainly focus on integer data, we consider the discrete analogue of

the Laplace distribution DL(p). For 0 < p < 1, the probability distribution of
L ∼ DL(p) is Pr [L = k] = p|k|(1 − p)/(1 + p) for k ∈ Z [24]. Noise sampled
from DL(p) provide (ε, 0)-differential privacy for a function with sensitivity Δ
if p = exp(−ε/Δ) [21]. In Sect. 4, we show that a finite-range discrete Laplace
distribution can also provide differential privacy.

The binomial distribution is also useful to construct a differentially private
mechanism [2]. For N,M ∈ N and f :

∏
i∈[n] Xi → R with sensitivity Δ, consider

a mechanism MBin,N,M
f (x) = f(x) + (1/M) · (Z − N/2), where Z is a random

variable following Bin(N, 1/2), i.e., Pr [Z = k] =
(
N
k

)
2−N for k = 0, 1, . . . , N .

Suppose that N , M satisfy N/4 ≥ max{23 log(10/δ), 2ΔM} for some δ > 0.
Then MBin,N,M

f is (ε, δ)-differentially private for any ε such that

ε ≥ ε(δ,N,M,Δ) := Δ

(

c1(δ)
M√
N

+ c2(δ)
M

N

)

, (1)

where c1(δ) = O
(√

log δ−1
)

and c2(δ) = O (
(log δ−1)2

)
. Furthermore, for any

x ∈ ∏
i∈[n] Xi it holds that E

[
|MBin,N,M

f (x) − f(x)|2
]

= N/4M2.

3 A General Framework for Distributed Noise Generation

It is known that if a protocol t-securely realizes an (ε, δ)-differentially private
mechanism, then it is (t; ε, δ)-differentially private [7,33]. However, it is often
complicated to formally prove that a protocol securely realizes a given ran-
domized functionality. Instead, we decompose the mechanism into a function
to compute on the parties’ private inputs x and a function generating noise
from their random inputs s. Specifically, assume that the mechanism is repre-
sented as f(x; s) = g(x) + h(s) using some deterministic functions g : Zn

q → Zq,
h : Sn → Zq. Furthermore, assume that for any T ⊆ [n] of size at most t,
the mechanism f(·; s) for s←$ Sn satisfies (ε, δ)-differential privacy even when
the random inputs sT of the parties in T are fixed. Then, we show that the
adversary’s view during the execution of a protocol computing the deterministic
function f on x ∈ Z

n
q and s←$ Sn satisfies (ε, δ)-differential privacy.

Proposition 1. Let S be a finite set. Let g : Zn
q → Zq and h : Sn → Zq be

deterministic functions and define f(x; s) = g(x)+h(s) for x ∈ Z
n
q and s ∈ Sn.

Let Πg (resp. Πh) be a protocol which takes x ∈ Z
n
q (resp. s ∈ Sn) as inputs and

securely computes (�g(x)�i)i∈[n] (resp. (�h(s)�i)i∈[n]). Let T ⊆ [n] be any subset
of size t, x,x′ ∈ Z

n
q be any pair of T -neighboring vectors, and a ∈ St. Assume

that for any distinguisher D

Pr [D(xT , sT , f(x; s)) = 1 | sT = a ]
≤ exp(ε) · Pr [D(x′

T , sT , f(x′; s)) = 1 | sT = a ] + δ, (2)
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where the probabilities are taken over the randomness of D and the random choice
of s. Then the protocol Π (described in Fig. 1) t-securely computes f(x; s) and
if s is uniformly selected from Sn, it is (t; ε, δ)-differentially private.

Fig. 1. The protocol for computing a differentially private output

Proof. Let T ⊆ [n] be any subset of size t. The security of Πg, Πh and the
composition theorem [22] imply that there exists a simulator Sim such that the
distribution of ViewΠ

T (x; s) is the same as Sim(T,xT , sT , f(x; s)) for all fixed
x ∈ Z

n
q and s ∈ Sn. In particular, Π t-securely computes f(x; s).

We prove that Π is (t; ε, δ)-differentially private if s is uniformly selected
from Sn. Let x,x′ ∈ Z

n
q be any pair of T -neighboring vectors. First, from the

condition (2), we have that for any distinguisher D,

Pr [s←$ Sn : D(xT , sT , f(x; s)) = 1]

=
∑

a∈St

Pr [sT = a]Pr [D(xT , sT , f(x; s)) = 1 | sT = a ]

≤ exp(ε)
∑

a∈St

Pr [sT = a]Pr [D(x′
T , sT , f(x′; s)) = 1 | sT = a ] + δ

= exp(ε) · Pr [s←$ Sn : D(x′
T , sT , f(x′; s)) = 1] + δ. (3)

The condition (3) means that (xT , sT , f(x; s)) is (ε, δ)-differentially private if
s←$ Sn. Recall that ViewΠ

T (x; s) is identical to Sim(T,xT , sT , f(x; s)) for all
fixed x and s. Since differential privacy is immune to post-processing, ViewΠ

T (·; s)
with s←$ Sn is also (ε, δ)-differentially private. ��

If we only consider computationally bounded distinguishers, we obtain an
analogous result in the computational setting.

Proposition 2. Let λ be a security parameter and suppose that log q, log |S|, n ∈
poly(λ). Continuing with the notation in Proposition 1, assume that for any PPT
distinguisher D, it holds that

Pr [D(xT , sT , f(x; s)) = 1 | sT = a ]
≤ exp(ε) · Pr [D(x′

T , sT , f(x′; s)) = 1 | sT = a ] + negl(λ), (4)
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where the probabilities are taken over the randomness of D and the random choice
of s. Then the protocol Π t-securely computes f(x; s) in an information-theoretic
sense and if s is uniformly selected from Sn, then it is computationally (t; ε)-
differentially private.

In view of Propositions 1 and 2, a construction of differentially private pro-
tocols for an aggregate function g can be reduced to securely computing a deter-
ministic function h for which the condition (2) or (4) holds.

4 A Novel Protocol for Discrete Laplace Noise
Generation

In this section, we construct a protocol for securely sampling noise from a finite-
range discrete Laplace distribution. As we mentioned above, the discrete Laplace
distribution DL(p) can be used to construct a differentially private mechanism.
However, noise sampled from DL(p) takes an arbitrarily large integer, which is
inconvenient if data from a finite interval Zq are dealt with. Accordingly, we
introduce a finite-range distribution FDL(p,N) defined as

Pr [L = k] =

⎧
⎪⎨

⎪⎩

p|k|(1 − p)/(1 + p), if |k| < N,

pN/(1 + p), if |k| = N,

0, otherwise.

We show that FDL(p,N) can be used to make a mechanism differentially private.

Proposition 3. Let Δ be the sensitivity of a function f :
∏

i∈[n] Xi → Z and
set p = exp(−ε/Δ). Let N be a positive integer such that N ≥ Δ and pN (1 +
p−Δ)/(1 + p) ≤ δ. Define MFDL(p,N)

f (x) = f(x) + L for x ∈ ∏
i∈[n] Xi, where

L ∼ FDL(p,N). Then MFDL(p,N)
f is (ε, δ)-differentially private. Furthermore,

for any x ∈ ∏
i∈[n] Xi

E

[
|MFDL(p,N)

f (x) − f(x)|2
]

=
2p

(1 − p)2
− 2(2(1 − p)N + (1 + p))pN+1

(1 + p)(1 − p)2
.

Proof. We simply write M = MFDL(p,N)
f . It is straightforward to calculate the

mean squared error and we omit it here. Let x,x′ be neighboring vectors and
S ⊆ Z. Suppose that f(x) ≤ f(x′). Note that 0 ≤ f(x′) − f(x) ≤ Δ ≤ N .
Let S1 = {k ∈ S : f(x′) − N < k < f(x) + N} and S2 = S \ S1. It follows
from the definition of FDL(p,N) that Pr [M(x) ∈ S1] ≤ exp(ε)Pr [M(x′) ∈ S1].
Since f(x′) − f(x) ≤ Δ, it holds that Pr [M(x) ∈ S2] ≤ Pr [N − Δ ≤ L < N ] +
Pr [|L| = N ] ≤ δ. Therefore, we have Pr [M(x) ∈ S] ≤ exp(ε)Pr [M(x′) ∈ S]+δ.
A similar argument works when f(x) ≥ f(x′). ��
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4.1 The Bernoulli Distribution

We first show a protocol for sampling a biased bit that has statistical distance
at most 2−d from a Bernoulli random variable b ∼ Ber(α), i.e., Pr [b = 1] = α
and Pr [b = 0] = 1 − α. Let α be 0 < α < 1 and for � ∈ [d], α� be the �-th most
significant bit in the binary expansion of α. The protocol is based on the folklore
method: Generate d random bits u1, . . . , ud, compute the minimum index j such
that uj �= αj , and then output b = 1−uj . To realize it in the multiparty setting,
let q > 2d and h

Ber(α)
d : ({0, 1}d)n → Zq be a deterministic function defined by

h
Ber(α)
d ((si1, . . . , sid)i∈[n]) = 1 − uj , where u� = ⊕i∈[n]si� for � ∈ [d], ud+1 = 0,

and j is the smallest index such that uj �= αj (we set j = d + 1 if there is no
such index). Note that the statistical distance between Ber(α) and h

Ber(α)
d (s)

for s←$ ({0, 1}d)n is at most 2−d. The protocol Π
Ber(α)
d (described in Fig. 2) t-

securely computes a share of h
Ber(α)
d (s) and Mult(ΠBer(α)

d ) = 5nd+19d = O (nd).
Note that in Step 3, �u� ⊕ α�� can be locally computed from �u�� since α� is a
public parameter.

Fig. 2. The protocol for generating noise drawn from Ber(α)

4.2 The Discrete Laplace Distribution

We show a protocol which converts biased bits to noise following FDL(p,N). For
0 < p < 1, set p0 = (1−p)/(1+p) and p1 = 1−p. Define α0 = p0 and αi = p1 for
i ∈ [N −1]. If σ ←$ {−1,+1} and bi ∼ Ber(αi), i ∈ [0..N), then σ� ∼ FDL(p,N),
where � is the smallest index such that b� = 1 (we set � = N if there is no such
index). Indeed, Pr [σ� = 0] = p0, Pr [σ� = k] = (1/2)(1 − p0)(1 − p1)|k|−1p1 =
p|k|(1 − p)/(1 + p) if 0 < |k| < N , and Pr [σ� = k] = (1/2)(1 − p0)(1 − p1)N =
pN/(1 + p) if |k| = N . Let q > 2N and h

FDL(p,N)
d : ({0, 1}dN × {−1,+1})n →
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Zq be a function defined by h
FDL(p,N)
d (((s(i)j1 , . . . , s

(i)
jd )i∈[0..N), σj)j∈[n]) = σ�,

where σ =
∏

j∈[n] σj , bi = h
Ber(αi)
d ((s(i)j1 , . . . , s

(i)
jd )j∈[n]) for i ∈ [0..N), and

� is the smallest index such that b� = 1. The statistical distance between
FDL(p,N) and h

FDL(p,N)
d (s) for uniform random s is at most N2−d. The proto-

col Π
FDL(p,N)
d (described in Fig. 3) t-securely computes a share of h

FDL(p,N)
d (s)

and Mult(ΠFDL(p,N)
d ) = (5n + 19)Nd + 17N + 5n + 3 = O (Nd).

Fig. 3. The protocol for generating noise drawn from FDL(p, N)

Instantiating Πh in Proposition 1 with Π
FDL(p,N)
d , we obtain Theorem 1.

Theorem 1. Let d, N be parameters and S = {0, 1}dN × {−1,+1}. Let g :
Z

n
q → Zq be a deterministic function with sensitivity Δ. Let M = maxx |g(x)|

and p = exp(−ε/Δ). Assume that N ≥ Δ, q > 2N + 2M , and

pN · 1 + p−Δ

1 + p
+ N2−d(1 + exp(ε)) ≤ δ. (5)

Then, there is a protocol which t-securely computes g(x) + h
FDL(p,N)
d (s) for x ∈

Z
n
q and s ∈ Sn. Furthermore, if s←$ Sn, then it is (t; ε, δ)-differentially private.

The communication complexity is O (Mult(Πg) + ndN) multiplications.

Proof. We define f(x; s) = g(x) + h
FDL(p,N)
d (s) for x ∈ Z

n
q and s ∈ Sn. Let

δ0 = pN (1 + p−Δ)/(1 + p). For all neighboring vectors x,x′ and any U ⊆ Zq,

Pr [s←$ Sn : f(x; s) ∈ U ] ≤ Pr
[
MFDL(p,N)

g (x) ∈ U
]

+ N2−d

≤ exp(ε) · Pr
[
MFDL(p,N)

g (x′) ∈ U
]

+ δ0 + N2−d

≤ exp(ε) · Pr [s←$ Sn : f(x′; s) ∈ U ] + δ. (6)
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Observe that h
FDL(p,N)
d (((s(i)j1 , . . . , s

(i)
jd )i∈[0..N), σj)j∈[n]) only depends on σ =

∏
j∈[n] σj and u

(i)
� = ⊕j∈[n]s

(i)
j� for � ∈ [d] and i ∈ [0..N). In addition, for

any T ⊆ [n] with |T | ≤ t, σ (resp. u
(i)
� ) are both uniformly distributed on

{−1,+1} (resp. {0, 1}) even conditioned on {(s(i)j1 , . . . , s
(i)
jd )i∈[0..N) : j ∈ T} (resp.

{σj : j ∈ T}) being fixed. Therefore, the distribution of h
FDL(p,N)
d (s) induced

by s←$ Sn does not change even when the random inputs of the parties in
T are fixed. Therefore, together with the condition (6), we can see that the
condition (2) in Proposition 1 holds for f , from which Theorem 1 follows. ��

5 A Novel Protocol for Binomial Noise Generation

We provide a protocol which allows the parties to non-interactively obtain a share
of binomial noise. Let λ be a security parameter. We restrict ourselves to the
family {ψr : {0, 1}s(λ) → {0, 1}�(λ)}r∈{0,1}λ of pseudorandom functions with key
length of λ and simply write s = s(λ) and � = �(λ). In Sect. 2.2, we have defined
A and Ai for i ∈ [n] as A = {A ⊆ [n] : |A| = n − t} and Ai = {A ∈ A : i ∈ A}.
We assume that �|A| is even. Observe that for r ←$ {0, 1}λ, the number �r(a) of
1’s in ψr(a) ∈ {0, 1}� is supposed to follow Bin(�, 1/2).

By using pseudorandom secret sharing, we obtain a share of
∑

A∈A �rA
(a)

from predistributed keys rA. Specifically, we define S = {0, 1}λ·(n−1
t ),

U = {((rA,i)A∈Ai
)i∈[n] ∈ Sn : rA,i = rA,j for all i, j},

and UT = {sT ∈ St : s ∈ U} for T ⊆ [n] of size t. Note that we can augment
any u = ((rA)A∈Ai

)i∈T ∈ UT to s = ((rA)A∈Ai
)i∈[n] ∈ U such that u = sT

by appending rJ ∈ {0, 1}λ, where J = [n] \ T . Since s ∈ U can be written as
s = ((rA)A∈Ai

)i∈[n] for some rA ∈ {0, 1}λ, it is possible to define h : U → Zq

as h(s) =
∑

A∈A �rA
(a) − �|A|/2 for q > �|A|/2. The protocol Πh (described

in Fig. 4) non-interactively and hence t-securely computes a share of h(s) for
s ∈ U .

Fig. 4. The protocol for generating noise drawn from the binomial distribution
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Theorem 2. Let λ be a security parameter and assume a pseudorandom func-
tion {ψr : {0, 1}s → {0, 1}�}r∈{0,1}λ . Let M ∈ N, a ∈ {0, 1}s, δ ∈ λ−ω(1), and
ε ∈ O (log λ). Let g : Zn

q → Zq be a deterministic function with sensitivity Δ
and define Mg : Zn

q → Zq as (Mg)(x) = M · g(x). Assume that �|A| is even,
q > 2(M ·maxx |g(x)|+ �|A|), and ε ≥ ε(δ, �,M,Δ). Then, there is a protocol Π
(described in Fig. 5) which t-securely computes f(x; s) = g(x)+ (1/M) ·h(s) for
x ∈ Z

n
q and s ∈ U and if s←$ U , then it is computationally (t; ε)-differentially

private. The communication complexity is O (Mult(ΠMg)) multiplications.

Theorem 2 follows from Proposition 2 with the following two exceptions: the
parties run ΠMg rather than Πg and then divide the recovered secret Mg(x) +
h(s) by a public parameter M to avoid an arithmetic operation over R; and the
random inputs of the parties are supposed to be uniformly selected from U ⊆ Sn

rather than from Sn. For completeness, we formally describe the protocol Π.

Fig. 5. The protocol for computing a differentially private output based on the binomial
distribution

Proof (of Theorem 2). Fix a set T ⊆ [n] of t corrupted parties and let J =
[n] \ T ∈ A. The output of Π has the form of MBin,�|A|,M

g (x). However, the
adversary knows all but one keys rA, A �= J and the only noise unknown to
him is �rJ

(a). Therefore, a level of differential privacy that the adversary’s view
satisfies deteriorates to that of MBin,�,M

g .
More formally, we prove that Π is computationally (t; ε)-differentially private.

In view of Proposition 2, it is sufficient to show that f(·; s) is computationally
ε-differentially private even when the random inputs sT are fixed. Note that sT

includes all the components of s = ((rA)A∈Ai
)i∈[n] except rJ .

First, define a randomized function f̃J as f̃J(x;u) = fJ(x;u)+(1/M) · (�̃J −
�/2) for x ∈ Z

n
q and u = ((rA)A∈Ai

)i∈T ∈ UT , where fJ(x;u) = g(x) + (1/M) ·
∑

A∈A\{J} (�rA
(a) − �/2) and �̃J ∼ Bin(�, 1/2). In other words, f̃J is defined

by replacing pseudorandom binomial noise �rJ
(a) in f(x; s) with �̃J properly
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sampled from Bin(�, 1/2). For fixed u ∈ UT , f̃J(·;u) is equivalent to the (ε, δ)-
differentially private mechanism MBin,�,M

fJ (·;u) and hence for every distinguisher D,
for all T -neighboring vectors x,x′, and for every u ∈ UT ,

Pr
[
s←$ U : D(xT , sT , f̃J (x; sT )) = 1 | sT = u

]

≤ exp(ε) · Pr
[
s←$ U : D(x′

T , sT , f̃J (x′; sT )) = 1 | sT = u
]

+ δ. (7)

Next, we show that for any but fixed x ∈ Z
n
q and u = ((rA)A∈Ai

)i∈T ∈ UT ,
the distribution of f̃J(x;u) and that of f(x; ((rA)A∈Ai

)i∈[n]) = fJ(x;u)+(1/M)·
(�rJ

(a) − �/2) induced by rJ ←$ {0, 1}λ are computationally indistinguishable.
Assume otherwise that there are a PPT distinguisher D which can distinguish
(xT ,u, f(x; ((rA)A∈Ai

)i∈[n])) from (xT ,u, f̃J (x;u)) with non-negligible advan-
tage for some x ∈ Z

n
q and u = ((rA)A∈Ai

)i∈T ∈ UT . We construct a PPT oracle
machine Alg for {ψr : {0, 1}s → {0, 1}�}r∈{0,1}λ as follows. First, Alg invokes
the oracle to receive ξb ∈ {0, 1}�, and sets �b

J as the number of 1’s in ξb. Here,
the oracle flips a bit b←$ {0, 1} and sets ξb = ψrJ

(a) for rJ ←$ {0, 1}λ if b = 1
or else ξb = F (a) for a uniformly selected map F : {0, 1}s → {0, 1}�. Next, Alg
computes zb = fJ(x;u) + (1/M) · (

�b
J − �/2

)
. Note that z0 (resp. z1) has the

same distribution as f̃J (x;u) (resp. f(x; ((rA)A∈Ai
)i∈[n]), where rJ ←$ {0, 1}λ).

Then, Alg gives (xT ,u, zb) to D and receives a guess b′ ∈ {0, 1} from D. Finally,
it outputs b′. Then, Pr [b′ = b] − 1/2 is non-negligible, which contradicts the
indistinguishability of ψ. Therefore, together with the condition (7) applied to
a PPT distinguisher D, we can see that the condition (2) in Proposition 1 holds
for f since δ ∈ λ−ω(1) and ε ∈ O (log λ). This concludes the proof. ��

The parties have to agree on a tuple s = ((rA)A∈Ai
)i∈[n] of keys for the

pseudorandom function. In other words, they cannot select their random inputs
independent of the others. This problem is solved by obtaining a share of a
uniform random element via a replicated secret sharing scheme as in [14]. An
alternative solution is assuming a trusted party which provides the parties with
random keys ahead of the protocol execution.

Finally, we remark on the mean squared error. For fixed a ∈ {0, 1}s and
rA ←$ {0, 1}λ, �rA

(a) is supposed to follow Bin(�, 1/2). Thus, we suppose the
mean squared error between the output z of Π and g(x) is �|A|/4M2 =
�
(
n
t

)
/4M2.

6 Comparison

6.1 The Discrete Laplace Distribution

First, we compare our protocols with the one in [17], which draws noise from a
finite-range discrete Laplace distribution slightly different from ours. Technically,
let N be a power of 2 and L ∼ TDL(p,N) be the truncated discrete Laplace
distribution, i.e., Pr [L = k] = Cp|k|(1 − p)/(1 + p), −N < k < N , where C =
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(1 + p)/(1 + p − 2pN ) is a normalizing constant. As in Proposition 3, it can
be shown that TDL(p,N) provides (ε, δ)-differential privacy for a function with
sensitivity Δ if p = exp(−ε/Δ) and pN (p−Δ − 1)/(1 + p − 2pN ) ≤ δ. Due to
the lack of space, we only show the performance of the protocol [17]. See [17,
Section 4] or Appendix A.1 for the detailed description.

In Table 1, we do the comparison based on the MPC primitives given in
[15,29]. If we perform all the sub-protocols in parallel as much as possible, then
our protocol always produces a sample from FDL(p,N) in 7 rounds, which is
independent of a level of differential privacy. On the other hand, the protocol
[17] needs to evaluate a certain Boolean circuit for generating biased bits. The
authors of [30] propose such a circuit of size 7d−3 and depth 2�log d�+2 to sample
biased bits with statistical difference at most 2−d. Therefore, the total round
complexity is 2�log d� + 12 = O (log d), which is approximately proportional to
log log δ−1 since the statistical distance should be incorporated to δ.

Moreover, according to [11], the protocol [17] needs to discard a certain
bad sample in order to obtain noise correctly drawn from TDL(p,N), which
incurs the probability of failure (1 − p)/2. Since p = exp(−ε/Δ), that probabil-
ity depends only on the level of differential privacy, which cannot decrease no
matter how we choose other parameters q, N , and d. Thus, the only solution to
making it negligible with the same privacy budget is to run the protocol several
times.

As a drawback, the communication complexity and the statistical distance
are proportional to N in our protocol while they are to log N in [17]. The protocol
[17] evaluates the above Boolean circuit c = �log N� times and then invokes an
equality test to ensure that the output is not a bad sample. Thus, the communica-
tion complexity of [17] is (5n+7)cd+162 log q−3c+5n+5 = O (nd log N + log q),
where the equality test is instantiated with the protocol given in [29]. We remark
that it is possible to reduce the communication complexity of the protocol [17]
and ours by a multiplicative factor of n by generating random bits with ran2

rather than xor
∗ or mult

∗. Although that modification incurs the probability
of failure Ndq−1, we can make it arbitrarily small by choosing a large q.

To emphasize the advantage of our protocol, we provide an example parame-
ter setting. Let g be a function to compute with sensitivity Δ = 1, e.g., a counting
function g(x) = |{i ∈ [n] : xi ∈ I}| where I ⊆ Zq. We choose q = 261 − 1 and
δ = 2−40 and consider two privacy budgets ε = 0.5 and ε = 1. Since the number
of parties n is subject to change depending on applications, we do the compari-
son replacing each invocation of xor∗ and mult

∗ with ran2 so that the number
of multiplications does not depend on n. If ε = 0.5, then, choosing N = 75
and d = 50, our protocol and [17] both achieve (ε, δ)-differential privacy. The
round complexity of [17] is 2�log d� + 12 = 24 while ours only needs 7 rounds.
The number of multiplications of our protocol is at most 7 times as large as the
protocol of [17] (excluding multiplications necessary to evaluate g). Note that
since it fails with probability (1 − p)/2 ≈ 0.2, the latter protocol requires 1.25
times more multiplications on average. Similarly, if ε = 1, we can choose N = 30
and d = 50 to achieve (ε, δ)-differential privacy and then [17] needs 24 rounds.
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Our protocol requires roughly 2.7 times more multiplications but since [17] fails
with probability ≈ 0.3, the difference is reduced to 2.7 × 0.7 < 2 on average.

Table 1. Comparison of protocols sampling noise from finite-range discrete Laplace
distributions. d ∈ N is an arbitrarily chosen parameter.

Reference Communication Round Prob. failure Distribution Stat. distance

[17] O (nd log N + log q) O (log d) (1 − p)/2 TDL(p, N) 2−d log N

Ours O (ndN) O (1) 0 FDL(p, N) 2−dN

Finally, we compare our protocol with the ones in [19,33]. Our protocol only
performs secure arithmetic computations in Zq. The protocols in [19,33] make
black-box use of MPC primitives for complex operations over real numbers (e.g.,
square root, logarithm, and division). There is no rigorous analysis of the impact
of the finite-precision implementations on the level of differential privacy that the
protocols achieve. Moreover, our protocol exceeds these protocols in efficiency
since secure computation on real numbers is much more costly than on integers
in both terms of communication and round complexity [3].

6.2 The Binomial Distribution

As shown in Table 2, the first protocol in [17] needs to jointly generate � random
bits to obtain a share of (1/M)(Z − �/2), Z ∼ Bin(�, 1/2). The communication
complexity of the second protocol is still proportional to � although decreasing
the number of random bits by a multiplicative factor of n, which comes at a
cost: the achievable region of ε is more limited. In view of the condition (1), the
protocols in [17] require communication proportional to ε−2. See [17, Section 3]
or Appendix A.2 for the details. In our protocol, once keys for a pseudorandom
function are distributed, the parties can non-interactively compute a share of
noise following Bin(�m, 1/2) by using the keys m times (if overflow does not
occur).

As a drawback, the mean squared error between the output and g(x) is
(
n
t

)

times larger than [17]. Nevertheless, we should also consider the client-server
model for practical applications. Our protocol is available and even suitable for
this model since n corresponds to the number of servers and is typically small.

We provide an example parameter setting. Consider the client-server model
and set n = 3 and t = 1. Let g be a function to compute with sensitivity Δ = 1.
We choose q = 261 − 1 and a security parameter as λ = 128. We use the pseudo-
random function based on AES-128 {Enc(k, ·) : {0, 1}128 → {0, 1}128}k∈{0,1}128 .
Our protocol requires interaction only when distributing keys for the pseudo-
random function and hence just needs to communicate (n − t)

(
n
t

)
λ = 768 bits

independent of parameters regarding differential privacy. To compare it with
[17], we consider a privacy budget ε = 1 and set δ = 2−80 < λ− log λ ∈ λ−ω(1). To
achieve (ε, δ)-differential privacy, it is necessary to choose m and M such that



Efficient Noise Generation to Achieve Differential Privacy 287

ε ≥ ε(δ, 128m,M,Δ). For example, we choose m = 215 and to keep the mean
squared error �/4M2 as small as possible, we choose M = 79 as the maximum
number satisfying ε ≥ ε(δ, 128×215,M,Δ). Then, the numbers of multiplications
of [17] are both proportional to � = 128 × 215 = 222. Finally, the mean squared
error of [17] is �/4M2 ≈ 168 while that of our protocol is

(
n
t

)
�/4M2 ≈ 504.

Table 2. Comparison of protocols generating noise (1/M)(Z − �/2), Z ∼ Bin(�, 1/2).
We denote by Δ the sensitivity of a function to be perturbed. ΠBit is a protocol jointly
generating a uniform random bit.

Reference Communication Round Differential privacy MSE

[17] O (�Mult(ΠBit)) O (1) (ε, δ)-DP
for ε ≥ ε(δ, �, M, Δ)

�/4M2

[17] O (�/n) O (1) (ε, δ)-DP
for ε ≥ ε(δ, �(1 − t/n), M, Δ)

�/4M2

Ours O (1) O (1) Computational ε-DP
for ε ≥ ε(δ, �, M, Δ), where
δ ∈ λ−ω(1)

(n
t

)
�/4M2
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A Appendix

A.1 The Protocol for Discrete Laplace Noise Generation [17]

The authors of [17] show that sampling an integer g from the truncated geometric
distribution with support {z ∈ Z : 0 ≤ z < N} is reduced to generating log N
independent biased bits. They implicitly show the following lemma. Define Z≥c =
{z ∈ Z : z ≥ c} for c ∈ Z. Let 0 < p < 1 and ti = (1 + p−2i

)−1 for i ∈ Z≥0.

Lemma 1. Let Xi be the random variable with Ber(ti). Then G :=
∑

i∈Z≥0
Xi2i

has the geometric distribution Geo(p), i.e., Pr [G = g] = (1 − p)pg for g ≥ 0.

To obtain a concrete protocol, we provide the probability distribution of
the truncated sum of the Xi’s. Let c ∈ N and N = 2c. It follows from the
above lemma that

∑
i∈[0..c) Xi2i follows the truncated geometric distribution,

i.e., Pr
[∑

i∈[0..c) Xi2i = g
]

= D(1 − p)pg for g ∈ [0..N), where D = (1 − pN )−1.
Indeed, the lemma implies that for every finite set I ⊆ Z≥0,

Pr [Xi = 1 (∀i ∈ I) ∧ Xi = 0 (∀i ∈ (Z≥0 \ I))] = (1 − p)py(I),
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where we define y(I) =
∑

i∈I 2i. Let g ∈ [0..N) and I ⊆ [0..c) be such that
g = y(I).

Pr

⎡

⎣
∑

i∈[0..c)

Xi2i = g

⎤

⎦ = Pr [Xi = 1 (∀i ∈ I) ∧ Xi = 0 (∀i ∈ ([0..c) \ I))]

=
∑

J⊆Z≥c

(1 − p)py(I∪J)

= (1 − p)pg
∑

J⊆Z≥c

py(J).

Since
∑

g∈[0..N) Pr
[∑

i∈[0..c) Xi2i = g
]

= 1, we have
∑

J⊆Z≥c
py(J) =

(
∑

g∈[0..N)(1 − p)pg)−1 = D.
Then, according to [11], L := σG conditioned on (G, σ) �= (0,−1) follows

TDL(p,N) if σ ←$ {−1,+1} and G =
∑

i∈[0..c) Xi2i for Xi ∼ Ber(ti).
The protocol [17] evaluates a certain Boolean circuit to generate biased bits

Xi. It also needs to invoke an equality test protocol to verify (σ, g) �= (0,−1) and
hence it fails with probability Pr [(σ, g) = (0,−1)] = (1 − p)/2. The statistical
distance between TDL(p,N) and the output is at most 2−d log N .

A.2 The Protocol for Binomial Noise Generation [17]

First, the authors in [17] propose a protocol, in which the parties jointly � random
bits bk, k ∈ [�] and securely compute a share of (1/M) · (

∑
k∈[�] bk − �/2). For

a function with sensitivity Δ, the protocol achieves (ε, δ)-differential privacy for
ε ≥ ε(δ, �,M,Δ) and the mean squared error is given by �/4M2. The protocol
requires the communication complexity O (�Mult(ΠBit)) if the functionality FBit

is realized by a protocol ΠBit. As we mentioned in Sect. 2.2, if we implement ΠBit

with xor
∗ (resp. ran2), then Mult(ΠBit) is O (n) (resp. O (1)).

In addition, a protocol simultaneously flipping n bits is proposed in [17].
Technically, each party i ∈ [n] shares his local random bit si among the other
parties and then the parties obtain n shares �si�, i ∈ [n]. This can reduce the
communication complexity to O (�/n). However, since t�/n out of the � bits are
revealed to the adversary, the modified protocol is (ε, δ)-differentially private
only for ε ≥ ε(δ, �(1 − t/n),M,Δ).
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Abstract. Attacks exploiting speculative execution, known as Spectre
attacks, have gained substantial attention in the scientific community
and in industry with a broad range of defense techniques proposed. In
particular, in-software defenses for commodity systems attempt to leave
the program structure as is, but defuse every potential Spectre gadget
by, e.g., stopping the speculation, or limiting value ranges. While these
mitigations disrupt the program flow on every conditional branch, they
still contain every single conditional branch instruction.

In this paper, we show that one dimension of Spectre mitigations has
been overlooked entirely. We explore a novel principled Spectre mitiga-
tion that sits at the other end of the scale: the absence of conditional and
indirect branches. Our mitigation is based on automatically linearizing
the program flow through a special compiler pass, eliminating all condi-
tional and indirect branches. We show that our Spectre mitigation has
very clear security guarantees. We explore the feasibility of this unortho-
dox approach and evaluate its performance in comparison to the more
conservative approaches presented so far. We observe that the perfor-
mance overhead can be low, e.g., 5 %, for certain use cases, being on-par
with state-of-the-art mitigations, but very high for other use cases, e.g.,
and overhead factor of 1000. Our results demonstrate the feasibility of
Spectre defenses that eliminate branches and indicate good performance-
security trade-offs for Spectre defenses can be achieved by sticking to
neither of the extremes.

1 Introduction

Speculative execution is a significant factor in the performance of modern pro-
cessors. Instead of waiting for a branch decision or branch target to be archi-
tecturally determined, the processor takes an educated guess based on behavior
observed in the past. From a pipeline perspective, this linearizes the execution of
instructions as the branch decision is omitted in the speculative execution flow
and only subsequently validated. Spectre attacks [31] induce incorrect specula-
tive execution flows into a victim context by manipulating the branch predictors.
During this speculative execution, the attacker can make the victim access secrets
and encode them into the microarchitectural state. Using a side-channel attack,
e.g., Flush+Reload [54], the secrets can then be recovered.
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Previous countermeasures [11,12,36] either attempt to thwart successful
covert-channel transmission during speculation [27,28,53], abort the speculative
execution before secrets can be accessed [1,3,13,21,22,39,41,50], or ensure that
secrets cannot be accessed during speculative execution [43,44,56]. Amit et al.
[4] tried to increase the performance of indirect branches by rewriting them into
two direct branches. However, from the perspective of branches in a program,
all these countermeasures remain in the same range of the scale, namely all con-
ditional and indirect branches remain in the program, in some cases even with
additional branches added. This raises an important scientific question:

Can the (substantial) reduction of branches, in particular the elimination
of all vulnerable branches, be a viable Spectre mitigations? Can such Spectre
mitigations maintain a reasonable overhead in certain use cases?

In this paper, we answer both questions in the affirmative. To answer these
scientific questions, we explore a novel Spectre mitigation at the other end of the
scale: the elimination of all conditional and indirect branches. While this may
sound impractical at first, it has been used for years to implement cryptographic
algorithms in constant time [7]. We demonstrate the feasibility of this approach
with our new mitigation, Specfuscator. Specfuscator is based on the movfusca-
tor [14] tool that automatically linearizes the program flow through a special
compiler pass. In contrast to M/o/Vfuscator , we do not replace all operations,
but just control-flow manipulating instructions, effectively eliminating all condi-
tional branches. To improve the performance of M/o/Vfuscator , we bring back
ALU operations, the cmp instruction and exploit the x86 addressing mode. In
comparison to the M/o/Vfuscator we increase the runtime up to a factor of 50
and decrease the binary size by 30% and compile time up to 46%. We show that
our Spectre mitigation is a principled approach with respect to security, follow-
ing the simple argument that if there are no conditional or indirect branches, no
branches can be mispredicted.

For our evaluation we analyzed Specfuscator in comparison with a set of other
compilers: the related M/o/Vfuscator and LCC, a patched clang with lfence
protections on all conditional branches, and an unpatched clang without any
Spectre mitigations. We evaluate the performance of our unorthodox approach
and discover that the overhead can be as low as 5%, being on-par with state-of-
the-art mitigations, but also much higher, up to factor 1000, performing clearly
worse than state-of-the-art mitigations. Thus, for some use cases, the elimina-
tion of conditional and indirect branches is nearly as efficient as state-of-the-art
mitigations but with a stronger security argument. This indicates that the space
between the two extremes, all conditional and indirect branches and no con-
ditional and indirect branches, should receive more attention for the design of
future countermeasures.

Our key contributions are:

– We explore a previously unexplored mitigation space against Spectre: the
absence of conditional and indirect branches.

– We present a solution based on a linearized control-flow with very clear and
strong security guarantees.
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– We evaluate our approach and observe that the performance overhead can be
lower than state-of-the-art mitigations in some use cases, but also significantly
higher in others.

– Our results shed light on a new direction for performance-security trade-offs
for Spectre defenses.

The remainder of this paper is organized as follows. In Sect. 2, we provide back-
ground information. In Sect. 3, we discuss the landscape of existing Spectre
defenses and point out blank spots. In Sect. 4, we present Specfuscator, our
Spectre defense mechanism. In Sect. 5, we evaluate the performance and secu-
rity of Specfuscator. In Sect. 6, we discuss the context and implications of our
work. We conclude in Sect. 7.

2 Background

This section provides some background information about speculative execution
attacks and the internals of the M/o/Vfuscator .

2.1 Speculative Execution Attacks

Modern CPUs extensively use out-of-order execution and prediction mech-
anisms to increase performance. Speculative execution uses branch predic-
tions to advance the control flow speculatively. Branch prediction mechanisms
are implemented via different structures, such as the Branch History Buffer
(BHB) [8,31], the Branch Target Buffer (BTB) [16,31,33], the Pattern History
Table (PHT) [17,31], and the Return Stack Buffer (RSB) [17,32,34].

Mispredicted branches are reverted on the architectural level, but not on the
microarchitectural level [31]. Hence, code that should not have been executed
architecturally still leaves microarchitectural traces, e.g., in various caches. By
leveraging traditional side-channel attacks, these microarchitectural traces can
be brought into the architectural domain, potentially recovering data that was
not supposed to be accessed, i.e., secrets.

Kocher et al. [31] first discussed transient-execution attacks [12] using specu-
lative execution and demonstrated that conditional branches and indirect jumps
can be exploited to leak data. Subsequent work has then shown that the idea
can be extended to function returns [32,34] and store-to-load forwarding [20].
Canella et al. [12] then systematically analyzed the field and demonstrated that
the necessary mistraining can be done in the same and a different address space
due to some predictors being shared across hyperthreads. Additionally, they also
showed that many of the proposed countermeasures are ineffective and do not
target the root cause of the problem. While the cache has been predominantly
exploited for the transmission of the secret data [12,31,32,34], other channels
have also been shown to be effective, i.e., execution port contention [9].
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Fig. 1. Branch instructions typically split up the control flow. Constant-time crypto-
graphic algorithms avoid branches (left) and instead linearize the control flow (right),
e.g., square-and-always-multiply [15], turning the security-critical branches and basic
blocks into one large basic block. M/o/Vfuscator follows the same idea of linearizing
the control-flow and uses one main execution loop, turning the program into one large
basic block.

To mitigate all these attacks, various proposals have been made by industry
and academia. Canella et al. [11] analyzed the differences between countermea-
sures proposed by academia and by industry, highlighting that academia pro-
poses more radical countermeasures compared to industry. In general, the pro-
posed mitigations either require significant changes to the hardware [27,28,53],
require a developer to annotate secrets [19,40,44], introduce data dependen-
cies [13,39], or reduce the accuracy of timers [35,42,49,51].

2.2 M/o/Vfuscator

Turing completeness is a part of computability theory that describes a set of
rules or instructions that can be simulated on a single-taped Turing machine.
Dolan [48] showed that the x86 mov instruction is Turing-complete. Based on this
observation, Domas [14] invented the single-instruction compiler M/o/Vfuscator .
The M/o/Vfuscator patches the Little C compiler (LCC) to use an emitter that
only emits mov instructions. M/o/Vfuscator is an x86 32-bit compiler and also
only supports 32-bit arithmetic operations.

The compiled program runs in a virtual machine, which basically runs like
a Turing machine. The entire program is branch-free and thus executed as a
single basic block, leading to a linearized control flow graph. Figure 1 illustrates
the linearized control flow graph. Thus, the program is always executed from
start to end in a loop. To ensure the correctness of the program, a flag speci-
fies whether an instruction should compute on the target location or a dummy
discard location. All instructions that are not relevant for a specific iteration
are discarded using this discard location. Hence, although the instruction is exe-
cuted, it has no impact on the current behavior of the program. This technique
is the same that is used to ensure constant-time implementations of, e.g., cryp-
tographic algorithms [15].

Note that this is similar to constant-time cryptographic algorithms, e.g.,
square-and-always-multiply [15], the program executes both branches and, thus,
always runs the algorithm from start to end in a loop.
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Arithmetic operations, i.e., additions, multiplications, divisions, bitwise-
operations, are implemented using two-dimensional lookup tables. To save mem-
ory. 32-bit operations are split into two 16-bit operations, and, thus, only 16-bit
lookup tables are required. By exploiting the addressing modes of x86-mov, the
first mov looks up the row for the first operand, the second mov looks up the cor-
responding column for the second operand, and the value is reported as result.

M/o/Vfuscator handles internal jumps to specific parts of the code using
a target register. M/o/Vfuscator installs two signal handlers for SIGSEGV and
SIGILL to enable branching [14]. At the end of the program, an illegal instruc-
tion is emitted to trigger the SIGILL handler and jump back to the start of the
program. To perform external library calls, i.e., calling libc functions such as
printf, segmentation faults are used [14]. To adhere to the x86 calling conven-
tion, the function’s arguments are pushed onto the stack.

As the name indicates, M/o/Vfuscator can also be used as an obfuscation
technique. However, as Kirsch et al. [29] demonstrated, it is possible to deobfus-
cate this technique with taint analysis.

3 Blank Spots in the Spectre Defense Landscape

Most Spectre countermeasures attempt to break different phases of Spectre
attacks [11,12]. These phases are described in previous work as preparation,
misspeculation, access, encoding, leakage, and decoding.

Preparation. Preventing the preparation phase can often be seen as equivalent to
disabling performance optimizations in the CPU. By disabling either microarchi-
tectural states or speculation at all, an attacker is unable to prepare a Spectre
attack. While disabling speculation has been suggested as a mitigation [31],
modern CPUs do not support disabling speculative execution. Moreover, it can
be expected that disabling speculative execution results in a considerable slow-
down. Similarly, disabling the cache also has an unacceptable performance over-
head as every memory access has to be served from memory. Additionally, other
microarchitectural elements could be used as side channel in the absence of the
cache [9,12,45].

Misspeculation and Preventing Access. Most focus so far was on the main cause
of Spectre attacks, the misspeculation phase, or the transient access of secrets fol-
lowing the misspeculation. Intel, AMD, and ARM [3,5,23] prevent Spectre-BTB
and Spectre-RSB by restricting how an attacker can influence the predictors.
For Spectre-PHT, serializing instructions are recommended to stop speculation
at security-critical branches [23]. However, this means that branches have to be
identified and separately patched.

Furthermore, it could be that memory barrier instructions are not fully seri-
alizing [2]. To entirely protect an application, speculation barriers are required
for each branch that could be followed by cache fetches. Adding memory barriers
for each conditional branch can lead to runtime overheads of up to 440% [39].
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Additional to that performance overhead, Schwarz et al. [45] have shown that
speculation barriers for each branch do not suffice as other channels can be used
to leak data, such as the AVX unit or the TLB, as these barriers do not prevent
interaction with these microarchitectural elements.

Oleksenko et al. [39] introduced data dependencies to branch conditions and
the following instructions to force a stall if the branch cannot be decided yet.
Similarly, Carruth [13] proposed to use branchless code to check loads, ensuring
that the load is executed along a valid control-flow path. One pre-requisite for
this approach is that the hardware supports branchless and unpredicted condi-
tional updates of register values.

Fig. 2. Previous Spectre defenses were either not changing the number of conditional
branches, but possibly adding more (direct) branches to a program. The space of elim-
inating branches is largely unexplored.

Schwarz et al. [44] and Fustos et al. [19] propose to annotate secrets and prop-
agate these annotations to the CPU to ensure that secrets are inaccessible during
transient execution. Speculative taint tracking (STT) [56] uses light-weight taint
tracking to taint not yet committed data and delay instructions that use it. Sim-
ilarly, NDA [52] prevents the execution of potentially leaking instructions if they
depend on a not yet retired operation.

All of these mitigations keep the number of branches identical but ensure
that no leakage occurs by breaking the link between the misspeculation phase
and the subsequent access or encoding phases.

Other solutions attempt to add branches that are potentially less easy to
exploit [4]. Google proposed retpoline [50], a code sequence replacing indirect
branches with return instructions, to prevent Spectre-BTB. While retpoline also
adds more jumps to the program, these are direct jumps and, thus, likely unex-
ploitable. Hence, the total number of branches increases, although potentially
fewer are exploitable. Branco [10] proposed a probabilistic alternative to ret-
poline, called randpoline, which is compatible with Intel Control-flow Enforce-
ment Technology (CET). This alternative introduces a large number of indi-
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rect branches and randomly chooses one of them, reducing the chance that an
attacker can mistrain the actually executed branch.

Encoding, Leakage, and Decoding. In these phases, the secret was already
accessed transiently. Preventing exploitation in these phases would require ensur-
ing that no covert channel exists between the transient and the architectural
domain. However, the way modern CPUs work, it is unrealistic to assume that
covert channels can be entirely prevented. While proposals exist to limit the
resolution of timers [51] or to build microarchitectural shadow structures [27,53]
to squash the results on mispredictions and leave no microarchitectural traces
in the cache. However, these mitigations are typically incomplete [12].

Classification. While these defenses have different security properties, depending
on the phase they target, they have in common that specific branches are either
transformed into other branches, or that the flow from mispredicted branch to
leakage is interrupted. We classify the existing Spectre defenses, as illustrated
in Fig. 2. From this figure, it becomes apparent that most solutions sit in the same
range of keeping the number of branches identical, and some defenses increase
the number of branches.

Existing software-based countermeasures try to surgically modify conditional
branches or subsequent data access to prevent the exploitation of misspeculation.
However, as an alternative to preventing speculative execution of conditional
branches entirely [31], another possibility is to eliminate conditional branches.
In this work, we analyze this largely unexplored mitigation technique of removing
conditional branches, thus also eliminating the root cause of Spectre attacks.

4 Specfuscator

In this section, we introduce the design of Specfuscator in the first part. Then we
discuss the security guarantees of Specfuscator and outline the implementation.

4.1 Design of Specfuscator

Specfuscator is based on the work by Dolan [48] showing that the x86 mov instruc-
tion is Turing complete. Hence, it is always possible to transform a regular
application into an application that consists only of mov instructions, and thus
no conditional branches. This approach has been implemented by Domas [14]
as M/o/Vfuscator with the goal of obfuscating applications and making them
difficult to reverse engineer.

The main idea is always to execute both code paths of every conditional
branch, similar to the constant-time square-and-always-multiply algorithm for
RSA [15]. Per conditional branch, a flag decides whether the calculated results
are kept and committed to the program state, or discarded by specifying a
dummy location as the target. Such an approach is also considered secure for
implementing side-channel resilient cryptographic algorithms [15,38,55]. The
advantage of this approach is that it can be fully automated in the compiler.
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M/o/Vfuscator leverages the code generation of the LCC compiler but
replaces the emitter for single instructions by a special emitter, generating the
corresponding assembly code. M/o/Vfuscator labels all branches and uses a
software-emulated target register to decide which of the branches is currently
executed. If the execution flag is set, all operations are performed as specified in
the program code. Conversely, if the flag is not set, the results of the operations
are discarded, similar as square-and-always-multiply [15].

Branching is emulated using branch-free comparison using subtraction and
logical operations. Depending on the result of the comparison, the corresponding
flags (zero flag, signed flag, carry flag, and overflow flag) are set, and the target
location is selected. A flag specific to this approach is the execution flag that
can be changed by compare instructions. After disabling the execution flag, the
results of the subsequent instructions are stored to a scratch location. If the
instruction pointer (EIP) reaches the target basic block, the execution is enabled
again, and the results are again made architectural.

Similar to the square-and-always-multiply loop [15], the code is always exe-
cuted in its entirety in a loop. Hence, the execution speed suffers while secret-
dependent operations, secret-dependent branches, and secret-leaking misspecu-
lation are eliminated. This design leads to a linearization of the program flow.
Therefore, the CPU does not need to predict the outcome of branch instruc-
tions. If there are no branches in the program, there can be no mispredictions
and resulting pipeline stalls [25].

Fig. 3. Branching is handled via a target value for each basic block. If the target
is reached, the execution flag is toggled, and the results modify the program’s state.
Conversely, until the target does not match, the results are written to scratch locations.

While the mov-based approach is already secure against Spectre attacks,
it introduces a considerable performance overhead. Arithmetic operations are
implemented via extensive use of two-dimensional arithmetic lookup tables. For
instance, a 32-bit addition requires 50 x86 mov instructions, which use 16-bit
lookup tables. To increase the performance of Specfuscator, we do not solely rely
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on the mov instruction. As we only aim to prevent Spectre attacks, we do not
implement arithmetic operations using movs. Instead, we rely on the native x86
arithmetic instructions, as they cannot be exploited using Spectre. In addition,
we exploit the x86 addressing modes to operate directly in memory instead of
moving both operands into registers. This optimization saves one additional mov
instruction per memory operation.

Another instruction that is safe with respect to Specter is the cmp instruction.
Thus, Specfuscator directly uses the cmp instruction instead of a subtraction for
comparing two values. The required flag, e.g., the execution flag, is then set
via arithmetic and logic instructions. Figure 3 illustrates how Specfuscator emits
branch-free code using mov instructions.

The only jump instruction in Specfuscator is the jump from the end of the
program to the top of the execution loop. In M/o/Vfuscator , this was solved
using an illegal instruction and a corresponding exception handler. However,
this causes a considerable performance overhead and might even lead to mis-
speculation in the interrupt handler [46]. Hence, as a Spectre attack cannot
exploit a direct, unconditional jump, the illegal instruction can be replaced via
a direct jump to the top of the execution loop.

4.2 Security of Specfuscator

Specfuscator is a defense against Spectre attacks that exploit control-flow mis-
prediction, i.e., Spectre-PHT [31], Spectre-BTB [31], and Spectre-RSB [32,34],
as classified by Canella et al. [12]. Straightline Spectre [6] is a special case of
Spectre-BTB and Spectre-RSB, where the CPU speculatively skips a branch and
continue with the instruction directly after the branch. Another Spectre variant,
Spectre-STL [20], is a separate mechanism that relies on incorrect speculations
for store-to-load forwarding, i.e., it is a data-flow misprediction.

The idea of Specfuscator is that none of the control-flow mispredicting Spec-
tre variants (Spectre-PHT [31], Spectre-BTB [31], and Spectre-RSB [32,34],
including Straightline Spectre [6]), work if the corresponding control-flow modi-
fying instructions are not used at all. Specfuscator strictly avoids these instruc-
tions and only permits direct, unconditional control flow changes. As the only
emitted branch is the unconditional branch at the end of the program, adding a
memory fence after this jump prevents Straightline Spectre. Due to the uncondi-
tional nature of the branch, this memory fence is never executed architecturally,
and has therefore no performance impact. Hence, programs compiled with Spec-
fuscator, by design, cannot be susceptible to the above Spectre variants as the
corresponding instructions are not present in the binary. This is a very clear and
strong security guarantee that most other defenses cannot provide [12,31].

Specfuscator is a software-only solution and does not require hardware mod-
ifications like other proposed Spectre defense mechanisms [27,28,44]. Thus, it
can even work in environments where other mitigations cannot be applied, e.g.,
because lfence instructions are not serializing [2], or patches are unavailable for
other reasons.
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4.3 Implementation of Specfuscator

Specfuscator is a modification to the LCC C compiler [18]. The reason we chose
LCC and not gcc or clang is that we base the implementation of Specfuscator on
the open-source M/o/Vfuscator , as this compiler already generates a branch-free
binary based on the technique from Dolan [48]. M/o/Vfuscator itself is a patch
to the current version (September 2020) of LCC. However, we require several
custom changes, as outlined in Sect. 4.1. In contrast to M/o/Vfuscator , Specfus-
cator can use a broader range of native instructions without sacrificing security.
By relying on arithmetic and logic operations, as well as complex addressing
modes, the amount of mov instructions is reduced heavily, i.e., for the addition,
we now have 3 instructions instead of 50 mov instruction. For example, in a tiny
AES program, the number of instructions is reduced from 222 935 to 127 631,
i.e., a reduction of about 43%, when compiling with Specfuscator instead of
M/o/Vfuscator .

As all of our changes are in the code emitter of the compiler, this could also
be ported to a different compiler, such as clang. As Specfuscator is based on
M/o/Vfuscator , we can already adopt the control-flow-linearization code from
M/o/Vfuscator but also emit arithmetic and logic operations. Divisions and
modulo operations require additional handling, as they can cause floating-point
exceptions in case of a division by zero. We handle those special cases using
conditional mov (cmov) instructions to ensure that we do not introduce condi-
tional branches. The conditional mov instructions, e.g., cmov, are not affected by
Spectre, as they are never predicted [24].

For comparisons, we cannot merely emit the x86 instructions instead of the
mov-based constructs, as M/o/Vfuscator uses its own internal representation of
CPU flags to select whether the computation results of a branch are stored or
discarded. Hence, to ensure correct branching with e.g., , the cmp instruction,
we need to update the internal flags in a branch-free way. We achieve this by
transferring the CPU flags to an unused general-purpose register via the stack
and using binary masks to extract the required bits.

In total, we changed (added, removed, or replaced) 437 lines of code of
M/o/Vfuscator , which is about 10% of the M/o/Vfuscator codebase.

Fig. 4. Flush+Reload within a Specfuscator-compiled program works successfully as
intended.
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5 Evaluation

In this section, we first verify the security of Specfuscator by compiling and
executing Spectre-PHT, Spectre-BTB, and Spectre-RSB gadgets. Furthermore,
we evaluate the performance of Specfuscator and compare it to the original
M/o/Vfuscator , LCC, and a modified clang version, which emits lfences for
each conditional branch, and a basic clang compiler without Spectre mitiga-
tions activated. We compare each compiler on a set of benchmark programs and
compare the averaged runtime performance, binary size, and compile time. The
results of this evaluation are given in Table 1 and Table 2. Our test system was
equipped with Ubuntu 20.04 (5.4.0-42-lowlatency) running on an Intel i5-8250U
CPU.

5.1 Security Evaluation

We demonstrate that it is impossible to successfully use an existing Spectre
proof-of-concept attack on Specfuscator compiled code. To verify that the mis-
speculation is indeed prevented, we separately validate all other Spectre attack
steps. We add additional functionality to the compiled binaries to obtain accu-
rate time measurements with rdtsc and enable flushing of a virtual address using
the clflush instruction. This allows us to accurately verify the cache encoding
of the Spectre attack with a Flush+Reload side-channel.

We verify that the cache covert channel in a compiled binary works exactly
as in a regular Spectre attack by creating a histogram of cached and uncached
data. Figure 4 shows that it is still possible to distinguish between cached and
uncached data in a program compiled with Specfuscator. Therefore, cache-based
side-channel attacks are still possible in Specfuscator-compiled programs.

To validate whether Spectre is still possible, we use the 15 sample Spectre
gadgets from Kocher [30]. First, we evaluate that these gadgets indeed sucess-
fully show Spectre attacks. We compile them using the unmodified LCC and
execute each gadget 100 000 times. For all gadgets, we successfully leak data
using Spectre.

For the security evaluation, we compile all sample gadgets using Specfusca-
tor. We again execute each gadget 100 000 times on our test device, and check
whether the secret is leaked. As we do not observe any leakage on our test device
using any of the gadgets, we practically confirm that our mitigation that should
work in theory due to the absence of misspeculation, also works in practice.

In addition, we port a Spectre-BTB and Spectre-RSB proof-of-concept to 32-
bit and evaluate it on our unmitigated clang. Again, as expected, these proof-
of-concepts work on an unmitigated clang. When the programs are compiled
with Specfuscator, no indirect jumps, calls, or return instructions are emitted.
To experimentally show that Specfuscator indeed stops the leakage for these
attacks, we again compile them using our defense. We execute the proof-of-
concept implementations 100 000 times and do not observe any leakage for either
Spectre-BTB or Spectre-RSB.
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5.2 Performance Evaluation

For the evaluation, we extend LLVM 10.0.1 with a new compiler pass that runs
just before the final code is emitted. In this pass, we analyze every conditional
branch using the analyzeBranch function and insert an lfence instruction if
this instruction is not already present. To mitigate speculation on both sides of
a conditional branch, we also emit an lfence instruction in its fall-through basic
block if this code path is not already fenced. This compiler pass required changing
or adding 125 lines of code across 4 files. In addition to enabling our fencing pass,
we enable the retpoline mitigation for clang by adding the -mretpoline flag.
As a result, speculative execution is stopped for all conditional branches and
jumps, as e.g., , suggested by Intel [23].

For our evaluation, we compare different programs, including cryptographic
implementations and real-world applications [14]. We compile each program as
a 32-bit binary since our Specfuscator proof-of-concept only supports 32-bit.
However, while we showcase our compiler for this architecture, our approach is
generic and is equally applicable to other architectures as well.

We compile the same benchmark program in 5 different configurations. Each
test case is compiled with clang without any Spectre mitigations, clang with
lfences and retpoline active, the LCC, the unmodified M/o/Vfuscator , and
Specfuscator. To get stable benchmarking results, we fixed the CPU frequency
to 3.4 GHz and ran our test program on an isolated core.

Run Time
We use the runtime of the clang-compiled programs without mitigations as
a baseline to compute the runtime overhead. To measure the runtime of the
programs, we use the perf command-line tool. We run each test case 1000 times.
For the individual test cases, we observe standard deviations between 0.1% and,
for some cases, 3%. The maximum value of 3% was observed in the case of clang.
The reason for this higher standard deviation might be speculative execution.

As shown in Table 1, the runtime overhead factor strongly depends on the
different tasks being executed. We gained a runtime speedup in comparison to
M/o/Vfuscator by a runtime factor of up to 50. For our benchmark programs, we
observe that the LCC has a runtime overhead between 3% and an overhead factor
of 26 over clang. The overhead of M/o/Vfuscator is substantially higher, and
the overhead of Specfuscator is in between. We observe the highest performance
penalties in terms of runtime for a tiny program that calculates the square root of
2. Also, the modified clang reaches a maximum runtime overhead factor of 20.89.
The performance of M/o/Vfuscator and Specfuscator deteriorates, particularly
on programs where small amounts of code are executed a large number of times,
as the whole program has to be completely executed for each iteration.

We leave it as future work to further optimize Specfuscator optimizing the
way how branches are performed. Partial control flow linearization could be inte-
grated as compiler optimization with a similar approach proposed by Moll et al.
[37]. The partial control flow linearization improved the performance of the over-
all program by a factor of 146% [37]. Furthermore, we leave it as future work
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to extend Specfuscator to 64-bit architecture or integrating a similar approach
to LLVM. As LLVM has significantly better optimizations than LCC, as can
be seen in the benchmarks, porting Specfuscator to LLVM will also improve its
performance.

Table 1. Average runtime overhead factor of our benchmarks for the different compilers
compared to our baseline (clang). The baseline is given in milliseconds on the right for
the unmodified clang

Test program M/o/Vfuscator Specfuscator Clang (fences) LCC Clang (baseline)

aes 424.17 221.53 1.31 1.17 1.13ms

arcfour 36.86 5.18 1.01 1.14 0.81ms

base64 27.12 8.95 1.19 1.15 0.80ms

blowfish 129.41 40.79 1.26 1.14 1.10ms

des 1046.20 520.47 1.15 1.04 0.93ms

md2 85.57 62.73 1.07 1.20 0.82ms

md5 18.30 4.71 1.03 1.13 0.80ms

rot-13 2.20 1.46 1.02 1.24 0.76ms

arithmetic 1.25 1.05 1.05 1.03 0.96ms

crc32 7.80 3.45 1.24 1.17 0.88ms

hello 1.10 1.11 1.00 1.04 0.89ms

maze 310.03 88.98 1.10 1.13 0.97ms

mersenne 4.12 1.31 1.02 1.13 0.80ms

sqm 1.33 1.25 1.02 1.15 0.80ms

nqueens 319.84 234.46 1.99 4.99 1.89ms

prime 980.27 161.59 1.93 0.96 1.65ms

s2 46085.82 981.20 20.89 26.64 0.71ms

sudoku 656.91 149.69 2.15 1.17 1.13ms

In addition to the runtime, we evaluate the binary size and compile time of
the different compilers. For this purpose, we compile each program 1000 times
for our 5 compilers and measure the compilation time using the perf command-
line tool. Table 2 illustrates the averaged overhead factor in terms of binary size
and compilation time.

Compile-time
Table 2 lists the compile-time and the binary size of our benchmark programs. In
comparison to M/o/Vfuscator , we reduce the compile time by up to 46%. The
compile-time of M/o/Vfuscator and Specfuscator depends on a part in how many
instructions are needed to generate the assembler. Thus, with the use of fewer
instructions per operation, the compile-time is halved in most cases for Spec-
fuscator in comparison to the original M/o/Vfuscator . As the results of Table 2
show, the compile-time is about two times higher than with the clang compiler.
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For small programs, the compile-time appears to be relatively constant for the
M/o/Vfuscator and also Specfuscator. While this is not problematic for smaller
binaries, compiling large software projects such as browsers or web servers would
take substantial amounts of time with Specfuscator. We note that our approach
of eliminating all conditional branches is extreme. Still, it shows that solutions
that eliminate conditional branches are not infeasible, and less extreme solutions
in this direction could maintain higher performance levels.

Binary Size
Stripping the binary reduces the binary size by 50%, as it removes debugging
information. Hence, for a fair comparison, we strip all the binaries to only
compare the actual code footprint. Compared to M/o/Vfuscator , Specfuscator
reduces the binary size by roughly 30% This reduction was achieved by removing
most of the two-dimensional lookup tables used for arithmetic operations. The
binary size could additionally be reduced by decreasing the size of the virtual
stack, which is currently constant at 1.68 MB. As can be seen from Table 2, the
binary size is about 280 times larger for Specfuscator than for binaries com-
piled with clang and for M/o/Vfuscator even 398 times. Again, this overhead is
due to our extreme solution, but it shows that solutions eliminating conditional
branches are not infeasible. Surprisingly, the programs compiled with LCC are
smaller than the programs compiled with the unmodified clang.

6 Discussion

The goal of our paper is to clearly demonstrate the feasibility of branch reduc-
tion up to complete elimination as a Spectre mitigation. While we demonstrated
the feasibility, we also identified the limitations of our extreme approach. Due to
these limitations, we do not consider Specfuscator a real-world solution, but an
important contribution as an explorational study that yields interesting insights.
Eliminating all branches to reduce the susceptibility to Spectre has not been
explored so far. Our solution inherits the performance overheads of the underly-
ing compiler (LCC and its modification M/o/Vfuscator) that falls far behind the
state of the art performance-wise. The fact that it can still achieve on-par per-
formance for specific programs protected with state-of-the-art mitigations with
a state-of-the-art compiler shows that the elimination or reduction of branches is
a strategy to defeat Spectre that must be examined in more detail. In particular,
we see potential synergies with the compiler community that explored the ques-
tion of branch elimination in the past for performance reasons. For instance,
Moll et al. [37] developed a technique to partially linearize the program flow
by removing branches, improving performance by 146%. Exploring related tech-
niques, even if they incur a subtle performance overhead, may yield more efficient
Spectre mitigations in future compilers. Software-based solutions are especially
important as there is a lot of hardware without in-silicon fixes, and existing
software-workarounds are often expensive. While Intel recommends keeping the
number of branches as low as possible to achieve the highest possible runtime
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performance [25], actually reducing branches is a complex task. Although branch
elimination can boost the program’s performance, it might also be exploited, as
it has been demonstrated in the JavaScript engine V8 [26,47]. Another direction
of research is to investigate the susceptibility to control-flow hijacking attacks.
Future work should evaluate whether branch-less binaries, like those compiled
with Specfuscator, or branch-reduced binaries, could realistically mitigate such
attacks and, thus, provide control-flow integrity.

Table 2. Average compile time in ms and binary size in kB overhead factor for M/o/V-
fuscator , Specfuscator, and clang with active mitigations compared to clang without
active mitigations (rightmost column).

Test program M/o/Vfuscator Specfuscator Clang (fences) LCC Clang (baseline)

Time Size Time Size Time Size Time Size Time Size

hello 2.23 388.28 1.86 279.18 1.07 1.01 0.71 0.89 38.36ms 13.62 kB

maze 3.93 394.09 2.12 274.96 1.05 1.01 0.63 0.86 46.80ms 13.82 kB

mersenne 3.00 396.28 1.83 279.84 1.02 1.01 0.70 0.89 41.90ms 13.63 kB

nqueens 2.39 386.75 2.05 278.22 1.17 1.01 0.75 0.88 40.19ms 13.64 kB

prime 2.39 389.97 1.81 279.47 1.06 1.01 0.62 0.89 39.02ms 13.64 kB

s2 2.87 395.22 1.89 279.72 1.00 1.01 0.78 0.89 39.34ms 13.62 kB

sudoku 3.47 398.10 2.05 280.39 1.10 1.01 0.68 0.91 37.76ms 14.00 kB

aes 4.80 218.69 2.95 151.15 1.20 1.00 0.53 1.01 101.89ms 33.21 kB

7 Conclusion

Speculative execution attacks, known as Spectre attacks, have gained substantial
attention both in the scientific community and in industry with a broad range of
defense techniques proposed. In particular, in-software defenses for commodity
systems attempt to leave the program structure as is, but defuse every potential
Spectre gadget, e.g., by stopping the speculation, or limiting value ranges. While
these mitigations disrupt the program flow on every conditional branch, they still
contain every single conditional branch instruction. In this work, we explore a
new possibility of mitigating Spectre attacks by using a branch-free compiler.
Our mitigation is based on automatically linearizing the program flow through
a special compiler pass, eliminating all conditional and indirect branches. We
showed the security guarantees of this approach and evaluated the feasibility
by evaluating its performance in terms of its runtime. In addition, we discussed
the compile-time and the binary size of this approach. Furthermore, we verified
that existing Spectre-PHT, Spectre-BTB, and Spectre-RSB proof-of-concepts
compiled with Specfuscator do not leak secret data anymore. We observe that
the performance overhead can be very low, e.g., 5%, for specific use cases, being
on-par with state-of-the-art mitigations. However, we also observed very high
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overheads of factor 1000 for other use cases. Our results indicate that the best
performance-security trade-off for Spectre defenses can be achieved by sticking
to neither of the extremes.
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Abstract. In this paper, we provide a systematic analysis of the root
cause of the prefetching effect observed in previous works and show that
its attribution to a prefetching mechanism is incorrect in all previous
works, leading to incorrect conclusions and incomplete defenses. We show
that the root cause is speculative dereferencing of user-space registers in
the kernel. This new insight enables the first end-to-end Foreshadow
(L1TF) exploit targeting non-L1 data, despite Foreshadow mitigations
enabled, a novel technique to directly leak register values, and several
side-channel attacks. While the L1TF effect is mitigated on the most
recent Intel CPUs, all other attacks we present still work on all Intel
CPUs and on CPUs by other vendors previously believed to be unaf-
fected.

1 Introduction

For security reasons, operating systems hide physical addresses from user pro-
grams [34]. Hence, an attacker requiring this information has to leak it first, e.g.,
with the address-translation attack by Gruss et al. [17, §3.3 and §5]. It allows
user programs to fetch arbitrary kernel addresses into the cache and thereby to
resolve virtual to physical addresses. As a mitigation against e.g., the address-
translation attack, Gruss et al. [16,17] proposed the KAISER technique.

Other attacks observed and exploited similar prefetching effects. Melt-
down [41] practically leaks memory that is not in the L1 cache. Xiao et al.
[73] show that this relies on a prefetching effect that fetches data from the L3
cache into the L1 cache. However, Van Bulck et al. [67] observe no such effect
for Foreshadow.

We systematically analyze the root cause of the prefetching effect exploited
in these works. We show that, despite the sound approach of these papers, the
attribution of the root cause, i.e., why the kernel addresses are cached, is incor-
rect in all cases. The root cause is unrelated to software prefetch instructions or
hardware prefetching effects due to memory accesses and instead is caused by
speculative dereferencing of user-space registers in the kernel. While there are
many speculative code paths in the kernel, we focus on code paths with Spec-
tre [6,35] gadgets that can be reliably triggered on both Linux and Windows.
c© International Financial Cryptography Association 2021
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These new insights correct several wrong assumptions from previous works,
also leading to new attacks. Most significantly, the difference that Meltdown can
leak from L3 or main memory [41] but Foreshadow (L1TF) can only leak from
L1 [67, Appendix A], was never a limitation in practice. The same effect that
allowed Meltdown to leak data from L3, enables our slightly modified Foreshadow
attack to leak data from L3 as well, i.e., L1TF was in practice never restricted
to the L1 cache. Worse still, we show that for the same reason Foreshadow
mitigations [67,70] are still incomplete. We reveal that Foreshadow attacks are
unmitigated on many kernel versions even with all mitigations and even on the
most recent kernel versions. However, retpoline affects the success rate, but it is
only enabled on some kernel versions and some microarchitectures.

We present a new technique that uses dereferencing gadgets to directly leak
data without an encoding attack step. We show that we can leak data from regis-
ters, e.g., cryptographic key material, from SGX and that the assumptions in pre-
vious works were incorrect, making certain attacks only reproducible on kernels
susceptible to speculative dereferencing, including, e.g., results from Gruss et al.
[17, §3.3 and §5], Lipp et al. [41, §6.2], and Xiao et al. [73, §4-E]. This also
allowed us to improve the performance of address-translation attacks and to
mount them in JavaScript [17]. We demonstrate that the address-translation
attack also works on recent Intel CPUs with the latest hardware mitigations
with all mitigations enabled. Finally, we also demonstrate the attack on CPUs
previously believed to be unaffected by the prefetch address-translation attack,
i.e., ARM, IBM Power9, and AMD CPUs.

Contributions. The main contributions of this work are:

1. We discover an incorrect attribution of the root cause in previous works to
prefetching effects [17,41,73].

2. We show that the root cause is speculative execution, leaving CPUs from
other vendors equally affected and the effect exploitable from JavaScript.

3. We discover a novel way to exploit speculative dereferences, enabling direct
leakage data in registers.

4. We show that this effect, responsible for Meltdown from non-L1 data, can be
adapted to Foreshadow and show that Foreshadow attacks on data from the
L3 cache are possible, even with Foreshadow mitigations enabled.

Outline. Section 2 provides background. Section 3 analyzes the root cause.
Section 4 improves and extends the attacks. Section 5 presents cross-VM
data leakage. Section 6 presents a new leakage method. Section 7 presents a
JavaScript-based attack. Section 8 discusses implications. Section 9 concludes.

2 Background and Related Work

In this section, we provide relevant details regarding virtual memory, CPU
caches, Intel SGX, and transient execution attacks and defenses.
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Virtual Memory. In modern systems, each process has its own virtual address
space, divided into user and kernel space. Many operating systems map physical
memory directly into the kernel [30,39], e.g., to access paging structures. Thus,
every user page is mapped at least twice: in user space and in the kernel direct-
physical map. Access to virtual-to-physical address information requires root
privileges [34]. The prefetch address-translation attack [17, §3.3 and §5] obtains
the physical address for any user-space address via a side-channel attack.

Caches and Prefetching. Modern CPUs have multiple cache levels, hiding
latency of slower memory levels. Software prefetch instructions hint the CPU
that a memory address should already be fetched into the cache early to improve
performance. Intel and AMD x86 CPUs have 5 software prefetch* instructions.

Prefetching Attacks. Gruss et al. [17] observed that software prefetches appear
to succeed on inaccessible memory. Using this effect on the kernel direct-physical
map enables the user to fetch arbitrary physical memory into the cache. The
attacker guesses the physical address for a user-space address, tries to prefetch
the corresponding address in the kernel’s direct-physical map, and then uses
Flush+Reload [74] on the user-space address. On a cache hit, the guess was
correct. Hence, the attacker can determine the exact physical address for any
virtual address, re-enabling various mircorarchitectural attacks [32,43,50,61].

Intel SGX. Intel SGX is a trusted execution mechanism enabling the execution
of trusted code in a separate protected area called an enclave [26]. Although
enclave memory is mapped in the virtual address space of the host application,
the hardware prevents access to the code or data of the enclave from any source
other than the enclave code itself [27]. However, as has been shown in the past,
it is possible to exploit SGX via memory corruption [37,54], ransomware [59],
side-channel attacks [5,55], and transient-execution attacks [52,56,67,68].

Transient Execution. Modern CPUs execute instructions out of order to
improve performance and then retire in order from reorder buffers. Another
performance optimization, speculative execution, predicts control flow and data
flow for not-yet resolved conditional control- or data-flow changes. Intel CPUs
have several branch predictors [25], e.g., the Branch History Buffer (BHB) [3,35],
Branch Target Buffer (BTB) [12,35,38], Pattern History Table (PHT) [13,35],
and Return Stack Buffer (RSB) [13,36,42]. Instructions executed out-of-order or
speculatively but not architecturally are called transient instructions [41].

These transient instructions can have measurable side effects, e.g., modifica-
tion of TLB and cache state, that can be exploited to extract secrets in so-called
transient-execution attacks [6,28]. Spectre-type attacks [7,19,33,35,36,42,58]
exploit misspeculation in a victim context. By executing along the misspecu-
lated path, the victim inadvertently leaks information to the attacker. To mit-
igate Spectre-type attacks several mitigations were developed [24], such as ret-
poline [23], which replaces indirect jump instructions with ret instructions.

In Meltdown-type attacks [41], such as Foreshadow [67], an attacker delib-
erately accesses memory across isolation boundaries, which is possible due to
deferred permission checks in out-of-order execution. Foreshadow exploits a
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cleared present bit in the page table-entry to leak data from the L1 cache or
the line fill buffer [52,56]. A widely accepted mitigation is to flush the L1 caches
and line fill buffers upon context switches and to disable hyperthreading [22].

3 From Address-Translation Attack to Foreshadow-L3

In this section, we systematically analyze the properties of the address-
translation attack erroneously attributed to the software prefetch instruc-
tions [17, §3.3 and §5]. We identify the root cause to be unmitigated misspecu-
lation in the kernel, leading to a new Foreshadow-L3 attack that works despite
mitigations [67].

1 41 0f 18 06 prefetchnta (%r14) ; replace with nop for testing, r14 = direct phys. addr.
2 41 0f 18 1e prefetcht2 (%r14) ; replace with nop for testing, r14 = direct phys. addr.

Listing 1. Disassembly of the prefetching in the address-translation attack.

In the address-translation attack [17] the attacker tries to find a direct phys-
ical map address p̄ for a virtual address p. The attacker flushes the user-space
address p, and prefetches the inaccessible direct physical map address p̄. If
Flush+Reload [74] determines that p was reloaded via p̄, the physical address
of p is p̄ minus the known direct-physical-map offset. We measure the attack
performance in fetches per second, i.e., how often per second p was cached via p̄.

The prefetching component of the original attack’s proof-of-concept [20] runs
a loop, for (size_t i = 0; i < 3; ++i) { sched_yield(); prefetch(direct_phys_map_addr); } .
The compiled and disassembled code can be found in Listing 1. We extracted
the following hypotheses (H1–H5) from the original attack (cf. AppendixA for
quotes):

H1 the prefetch instruction (to instruct the prefetcher to prefetch);
H2 the value stored in the register used by the prefetch instruction (to indicate

which address the prefetcher should prefetch);
H3 the sched yield syscall (to give time to the prefetcher);
H4 the use of the userspace accessible bit (as kernel addresses could other-

wise not be translated in a user context);
H5 an Intel CPU – other CPU vendors are claimed to be unaffected.

We test each of the above hypotheses in this section.

3.1 H1: Prefetch Instruction Required

The first hypothesis is that the prefetch instruction is necessary for the address-
translation attack. We replace the prefetch instructions in the original code [20]
with same-size nops (cf. Listing 1). Surprisingly, we observe no change in the
number of cache fetches, i.e., we measure 60 cache fetches per second (i7-8700K,
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Ubuntu 18.10, kernel 4.15.0-55), without any prefetch instruction. We also
exclude the hardware prefetcher by disabling them via the model-specific register
0x1a4 [69] during the experiment. We still observe ≈60 cache fetches per second.

Documented prefetchers are not required for the address-translation attack.

3.2 H2: Values in Registers Required

The second hypothesis is that providing the direct-physical map address via the
register is necessary. The registers that must be used vary across kernel versions.
We identified the registers r12,r13,r14 (Ubuntu 18.10, kernel 4.18.0-17),
r9,r10 (Debian 8, kernel 4.19.28-2 and Kali Linux, kernel 5.3.9-1kali1) and
rdi,rdx (Linux Mint 19, kernel 4.15.0-52). Gruss et al. [17] used recompiled
binaries that used different registers for the kernel address (cf. AppendixA).

A referenced location is only fetched into the cache if the absolute virtual
address is stored in one of these registers.

We additionally verified that only the absolute virtual address causes this
effect. Any other addressing mode for the prefetch instruction does not leak.
By loading the address into most general-purpose registers, we observe leakage
across all Linux versions, even with KPTI enabled, meaning that the KAISER
technique [16] never protected against this attack. Instead, the implementation
merely changed the required registers, hiding the effect for a specific binary-
kernel combination. On an Intel Xeon Silver 4208 CPU with in-silicon patches
against Meltdown [41], Foreshadow [67], and ZombieLoad [56], we still observe
about 30 cache fetches per second on Ubuntu 19.04 (kernel 5.0.0-25). On Win-
dows 10 (build 1803.17134), which has no direct physical map, we fill all registers
with a kernel address and perform the syscall SwitchToThread. We observe ≈15
cache fetches per second for our kernel address.

3.3 H3: sched yield Required

The third hypothesis is that the sched yield syscall is required. We observe
that other syscalls e.g., gettid, expose a similar number of cache fetches.
This shows that sched yield is not required and can be replaced with other
syscalls. To test whether syscalls in the main attack loop are required, we run
a address-translation attack without context switches or interrupts and without
sched yield on an isolated core. Here, we do not observe any cache fetches
(i7-8700K, kernel 4.15.0-55) when running this attack for 10 h. However, when
inducing a large number of context switches using interrupts, we observe about
15 cache fetches per second if the process filling the registers gets interrupted con-
tinuously. These hits occur during speculative execution in the interrupt handler,
as we validated manually via code changes and fencing in interrupt handlers.

We conclude that the essential part is performing syscalls or interrupts while
specific registers are filled with an attacker-chosen address.
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1 ;<do_syscall_64+106> ; with retpoline
2 => 0xffffffff81802000: jmpq *%rax callq 0xffffffff8180200c
3 => 0xffffffff8180200c: mov %rax,(%rsp)
4 => 0xffffffff81802010: retq

Listing 2. The kernel performs indirect jumps, e.g., to syscall handlers. With retpo-
line [64], the kernel uses a retq instead of the indirect jump.

Fig. 1. The kernel speculatively dereferences the direct-physical map address.
Flush+Reload detects cache hits on the corresponding user-space address.

3.4 H4: userspace accessible Bit Required

The fourth hypothesis is that user-mapped kernel pages are required, i.e., access
is prevented via the userspace accessible bit. We constructed an experiment
where we allocate several pages of memory. We choose cache lines A and B
on different pages. In a loop, we dereference a register pointing to A and use
Flush+Reload to detect whether A was cached. In the last loop iteration, we
speculatively exchange the register value to point to either B or the direct-
physical map address of B. Hence, both the architectural and speculative deref-
erences happen at the same instruction pointer value and in the same regis-
ter. With a register-value-based hardware prefetcher, we would expect B to
be cached. When dereferencing the direct-physical-map address of B architec-
turally, B is usually cached after the loop. However, when we dereference the
register with its value speculatively changed from A to either B or the direct-
physical map address of B, B is never cached after the final run. In a second
experiment, we show that the effect originates from the kernel. While prefetching
direct-physical-map addresses works, user-space addresses are only fetched when
SMAP (supervisor-mode access prevention) is disabled. Thus, the root cause of
the address-translation attack adheres to SMAP.
Hence, we can conclude that the root cause is code execution in the kernel.

3.5 H5: Effect only on Intel CPUs

The fifth hypothesis is that the “prefetching” effect only occurs on Intel
CPUs. We run our experiments (cf. Sect. 3.4) on an AMD Ryzen Threadrip-
per 1920X (Ubuntu 17.10, kernel 4.13.0-46generic), an ARM Cortex-A57
(Ubuntu 16.04.6 LTS, kernel 4.4.38-tegra), and an IBM Power9 (Ubuntu
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18.04, kernel 4.15.0-29). On the AMD Ryzen Threadripper 1920X, we achieve
up to 20, on the Cortex-A57 up to 5, and on the IBM Power9 up to 15 speculative
fetches per second.

Any Spectre-susceptible CPU is also susceptible to speculative dereferencing.

3.6 Speculative Execution in the Kernel

From the previous analysis, we conclude that the leakage is due to speculative
execution in the kernel. While this might not be surprising with the knowl-
edge of Spectre, Spectre was only discovered one year after the original prefetch
paper [17] was published. We show that the primary leakage is caused by Spectre-
BTB-SA-IP (training in same address space, and in-place) [6].

1 movzbl (%rax,%rdi,1),%eax
2 <op> (%rcx,%rax,1),%dl
3 ; gadget in Linux kernel
4 98d4be: 0f b6 34 06 movzbl (%rsi,%rax,1),%esi
5 98d4c2: 45 01 3c b3 add %r15d,(%r11,%rsi,4)

Listing 3. If the attacker controls three register values, it is possible to leak arbitrary
kernel memory.

During a syscall, the kernel performs multiple indirect jumps (cf. Listing 2),
which are generally susceptible to Spectre-BTB-SA-IP. The address-translation
attack succeeds because misspeculated branch targets dereference registers with-
out sanitization. With retpoline, the kernel uses a retq instead of the indirect
jump to trap the speculative execution to a fixed branch. Thus, during specu-
lative execution, the CPU might use an incorrect prediction from the branch-
target buffer (BTB) and speculate into the wrong syscall while registers contain
attacker-chosen addresses (cf. Fig. 1). In the misspeculated syscall, registers con-
taining attacker-chosen addresses are used. On recent kernels (4.19 or newer), ret-
poline eliminates the leakage. We provide a full analysis of the sched yield gad-
get causing speculative dereferences in Appendix B. Even worse, cloud providers
still use older kernel versions (e.g., the first option on AWS at the time of writing
is Amazon Linux 2 AMI with kernel 4.14) where retpoline does not fully elim-
inate the leakage. On the other hand, recent systems such as Ice Lake do not
use retpoline anymore due to improved hardware mitigations, which unfortu-
nately have no effect on our speculative dereferencing attack. Hence, our attack
remains unmitigated on many systems, and is most importantly not mitigated
by KAISER (KPTI) [16], or LAZARUS [14] as claimed in previous works. The
Spectre-BTB-SA-IP leak from Listing 2 is only one of many, e.g., we still observe
≈15 speculative fetches per second on an i5-8250U (kernel 5.0.0-20) if we elim-
inate this specific leak. However, any prefetch gadget [6], based on PHT, BTB,
or RSB mispredictions, can be used for an address-translation attack [17] and
thus would also re-enable Foreshadow-VMM attacks [67,70]. Concurrent work
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showed that there are kernel gadgets to fetch data into the L1D cache in Xen [72]
and an artificial gadget was exploited by Stecklina for that purpose [63].

We also analyzed the interrupt handling in the Linux kernel version 4.19.0
and observed that the register values from r8–r15 are cleared but stored on the
stack and restored after the interrupt. In between, stack dereferences in mis-
speculated branches can still access these values. On recent Ice Lake processors,
retpoline is replaced by enhanced IBRS. Unfortunately, this is a security regres-
sion, re-enabling Spectre-BTB in-place attacks and, thus, moves our focus on a
set of previously overlooked gadgets, where the user only controls certain regis-
ter values in the transient domain. We measure the performance of our attack
by exploiting such a Spectre-BTB gadget in a kernel module and evaluate it on
our Ice Lake CPU. Listing 3 illustrates an eIBRS-bypassing Spectre-BTB gadget
containing only two instructions, where the attacker controls, e.g., three regis-
ters. The smallest eIBRS-bypassing Spectre-BTB gadget we found contains only
7 bytes.

We demonstrate that on Ice Lake, this regression re-enables transient leak-
age of kernel memory like the original Spectre attack paper described [35], i.e.,
measured by leaking a 1024 B secret key. We observe a completely noise-free
leakage rate of 30 B/s (n = 1000, σx̄ = 0.1429). By shifting the byte i.e., binary
searching via two consecutive cache lines, we then can recover the exact byte
value [35]. We analyzed the Linux kernel 5.4.0-48 (vmlinux binary) and looked
for similar opcodes and found a gadget at offset 0x984dbe (see Listing 3 line 3
and 4).

3.7 Meltdown-L3 and Foreshadow-L3

The speculative dereferencing was noticed but also misattributed to the
prefetcher in subsequent work. The Meltdown paper [41] reports that data is
fetched from L3 into L1 while mounting a Meltdown attack. Van Bulck et al.
[67] confirmed the effect for Meltdown but did not observe this prefetching effect
for Foreshadow. Based on this observation, further works also mentioned this
effect without analyzing it thoroughly [6,31,47,52]. Xiao et al. [73] state that a
Meltdown-US attack causes data to be repeatedly prefetched from L1 to L3 [73].

We used similar Meltdown-L3 setups as SpeechMiner [73] (kernel 4.4.0-
134 with boot flags nopti,nokaslr and Meltdown [41] (Ubuntu 16.10, kernel
4.8.0, no mitigations existed back then). In our Meltdown-L3 experiment, one
physical core constantly accesses a secret to ensure that the value stays in the
L3, as the L3 is shared across all physical cores. On a different physical core,
we run Meltdown on the direct-physical map. On recent Linux kernels with full
Spectre v2 mitigations implemented, we could not reproduce the result. With
the nospectre v2 flag, our Meltdown-L3 attack works again by triggering the
prefetch gadget in the kernel on the direct-physical map address. In the Speech-
Miner [73] and Meltdown [41] experiment, no mitigation (including retpoline)
eliminates the leakage fully. Without our new insights that the prefetching effect
is caused by speculative execution, it is almost inevitable to not misdesign these
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experiments, inevitably leading to incomplete or incorrect observations and con-
clusions on Meltdown and Foreshadow and their mitigations. We confirmed with
the authors that their experiment design was not robust to our new insight and
therefore lead to wrong conclusions. Foreshadow-L3, The same prefetching effect
can be used to perform Foreshadow [67]. If a secret is present in the L3 cache and
the direct-physical map address is dereferenced in the hypervisor kernel, data
can be fetched into the L1. This reenables Foreshadow even with Foreshadow
mitigations enabled. We demonstrate this attack in KVM in Sect. 5.

4 Improving the Leakage Rate

We can leverage our insights to increase the leakage by using syscalls other than
sched yield, and executing additional syscalls to mistrain the branch predictor.

Setup. We tested our attacks on an Intel i5-8250U (Linux kernel 4.15.0-52), an
i7-8700K (Linux kernel 4.15.0-55), an ARM Cortex-A57 (Linux kernel 4.4.38-
tegra), and an AMD Threadripper 1920X (Linux kernel 4.13.0-46). As retpoline
is not available on all machines, we run the tests without retpoline. By perform-
ing syscalls before filling the registers with the direct-physical map address, we
can mistrain the BTB, triggering the CPU to speculatively execute this syscall.
The mistraining analysis of sched yield can be seen in the extended version of
the paper [60].

Evaluation. We evaluated different syscalls for branch prediction mistraining
by executing a single syscall before and after filling the registers with the target
address. We observe that effects occur for different syscalls and both on AMD
and ARM CPUs, with similar success rates (extended version Appendix G) [60].
Alternating syscalls additionally mistrains the branch prediction and increases
the success rate, e.g., with syscalls like stat, sendto, or geteuid. However, not
every additional syscall increases the number of cache fetches. On recent Linux
kernels (version 5), we observe that the number of speculative cache fetches
decreases, due to a change in syscall handling. Our results show that the pipe
syscall much more reliably triggers speculative dereferencing (≥99.9%), but the
execution time of sched yield is much lower and thus despite the lower success
rate (around 66.4% in the most basic case) it yields a higher attack performance.

Capacity Measurement in a Cross-Core Covert Channel. We measure
the capacity of our attack in a covert channel by using the speculative derefer-
encing effect (‘1’-bit) or not (‘0’-bit). The receiver uses Flush+Reload to measure
whether the cache state of cache line dereferenced in the kernel. We evaluated
the covert channel on random data and across physical CPU cores. Our test
system was equipped with an Intel i7-6500U CPU Linux 4.15.0-52 with the
nospectre v2 boot flag. We achieved the highest capacity at a transmission
rate of 10 bit/s. At this rate, the standard error is, on average, 0.1%. This result
is comparable to related work in similar scenarios [50,71]. To achieve an error-
free transmission, error-correction techniques [43] can be used. I/O interrupts,
i.e., syncing the NVMe device, create additional speculative dereferences and
can thus further improve the capacity.
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5 Speculative Dereferences and Virtual Machines

In this section, we examine speculative dereferencing in virtual machines. We
demonstrate a successful end-to-end attack using interrupts from a virtual-
machine guest running under KVM on a Linux host [10]. We leak data (e.g.,
cryptographic keys) from other virtual machines and the hypervisor, like the
original Foreshadow attack. We do not observe any speculative dereferencing of
guest-controlled registers in Microsoft’s Hyper-V HyperClear Foreshadow miti-
gation which additionally uses retpoline, or on more recent kernel versions with
retpoline. We provide a thorough analysis of this negative result. However, the
attack succeeds even with the recommended Foreshadow mitigations enabled
and with kernel versions before 4.18 (e.g., as used by default on AWS Ama-
zon Linux 2 AMI) with all default mitigations enabled, i.e., including retpoline.
We investigate whether speculative dereferencing also exists in hypercalls. The
attacker targets a specific host-memory location where the host virtual address
and physical address are known but inaccessible.

Fig. 2. If a guest-chosen address is speculatively fetched into the cache during a hyper-
call or interrupt and not flushed before the virtual machine is resumed, the attacker
can perform a Foreshadow attack to leak the fetched data.

Foreshadow Attack on Virtualization Software. If an address from the
host is speculatively fetched into the L1 cache on a hypercall from the guest,
it has a similar speculative-dereferencing effect. With the speculative memory
access in the kernel, we can fetch arbitrary memory from L2, L3, or DRAM
into the L1 cache. Consequently, Foreshadow can be used on arbitrary memory
addresses provided the L1TF mitigations in use do not flush the entire L1 data
cache [63,65,72]. Figure 2 illustrates the attack using hypercalls or interrupts and
Foreshadow. The attacking guest loads a host virtual address into the registers
used as hypercall parameters and then performs hypercalls. If there is a prefetch-
ing gadget in the hypercall handler and the CPU misspeculates into this gadget,
the host virtual address is fetched into the cache. The attacker then performs a
Foreshadow attack and leaks the value from the loaded virtual address.

5.1 Foreshadow on Patched Linux KVM

Concurrent work showed that prefetching gadgets in the kernel, in combination
with L1TF, can be exploited on Xen and KVM [63,72]. The default setting on
Ubuntu 19.04 (kernel 5.0.0-20) is to only conditionally flush the L1 data cache
upon VM entry via KVM [65], which is also the case for Kali Linux (kernel
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5.3.9-1kali1). The L1 data cache is only flushed in nested VM entry scenarios
or in situations where data from the host might be leaked. Since Linux kernel
4.9.81, Linux’s KVM implementation clears all guest clobbered registers to
prevent speculative dereferencing [11]. In our attack, the guest fills all general-
purpose registers with direct-physical-map addresses from the host.

End-to-End Foreshadow Attack via Interrupts. In Sect. 3.3, we observed
that context switches triggered by interrupts can also cause speculative cache
fetches. We use the example from Sect. 3.3 to verify whether the “prefetch-
ing” effect can also be exploited from a virtualized environment. In this setup,
we virtualize Linux buildroot (kernel 4.16.18) on a Kali Linux host (kernel
5.3.9-1kali1) using qemu (4.2.0) with the KVM backend. In our experiment,
the guest constantly fills a register with a direct-physical-map address and per-
forms the sched yield syscall. We verify with Flush+Reload in a loop on the
corresponding host virtual address that the address is indeed cached. Hence,
we can successfully fetch arbitrary hypervisor addresses into the L1 cache on
kernel versions before the patch, i.e., with Foreshadow mitigations but incom-
plete Spectre-BTB mitigations. We observe about 25 speculative cache fetches
per minute using NVMe interrupts on our Debian machine. The attacker, run-
ning as a guest, can use this gadget to prefetch data into the L1. Since data is
now located in the L1, this reenables a Foreshadow attack [67], allowing guest-
to-host memory reads. 25 fetches per minute means that we can theoretically
leak up to 64 · 25 = 1600 bytes per minute (or 26.7 bytes per second) with a
Foreshadow attack despite mitigations in place. However, this requires a sophisti-
cated attacker who avoids context switches once the target cache line is cached.
We develop an end-to-end Foreshadow-L3 exploit that works despite enabled
Foreshadow mitigations. In this attack the host constantly performs encryptions
using a secret key on a physical core, which ensures it remains in the shared
L3 cache. We assign one isolated physical core, consisting of two hyperthreads,
to our virtual machine. In the virtual machine, the attacker fills all registers
on one logical core (hyperthread) and performs the Foreshadow attack on the
other logical core. Note that this is different from the original Foreshadow attack
where one hyperthread is controlled by the attacker and the sibling hyperthread
is used by the victim. Our scenario is more realistic, as the attacker controls both
hyperthreads, i.e., both hyperthreads are in the same trust domain. With this
proof-of-concept attack implementation, we are able to leak 7 bytes per minute
successfully1. Note that this can be optimized further, as the current proof-of-
concept produces context switches regardless of whether the cache line is cached
or not. Our attack clearly shows that the recommended Foreshadow mitigations
alone are not sufficient to mitigate Foreshadow attacks, and retpoline must be
enabled to fully mitigate our Foreshadow-L3 attack.

No Prefetching Gadget in Hypercalls in KVM. We track the register
values in hypercalls and validate whether the register values from the guest
system are speculatively fetched into the cache. We neither observe that the

1 Demonstration video can be found here: https://streamable.com/8ke5ub.

https://streamable.com/8ke5ub
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direct-physical-map address is still located in the registers nor that it is specula-
tively fetched into the cache. However, as was shown in concurrent work [63,72],
prefetch gadgets exist in the kernel that can be exploited to fetch data into the
cache, and these gadgets can be exploited using Foreshadow.

5.2 Negative Result: Foreshadow on Hyper-V HyperClear

We examined whether the same attack also works on Windows 10 (build
1803.17134), which includes the latest patch for Foreshadow. As on Linux, we
disabled retpoline and tried to fetch hypervisor addresses from guest systems
into the cache. Microsoft’s Hyper-V HyperClear Mitigation [45] for Foreshadow
claims to only flush the L1 data cache when switching between virtual cores.
Hence, it should be susceptible to the same basic attack we described at the
beginning of this section. For our experiment, the attacker passes a known vir-
tual address of a secret variable from the host operating system for all parameters
of a hypercall. However, we could not find any exploitable timing difference after
switching from the guest to the hypervisor. The extended version discusses the
negative result in Appendix F [60].

Fig. 3. Leaking the value of an x86 general-purpose register using Dereference Trap and
Flush+Reload on two different physical addresses. v0 to vn−1 represent the memory
mappings on one of the shared memory regions.

6 Leaking Values from SGX Registers

In this section, we present a novel method, Dereference Trap, to leak register
contents via speculative register dereference. Leaking the values of registers is
useful, e.g., to extract parts of keys from cryptographic operations.

6.1 Dereference Trap

The setup for Dereference Trap is similar as in Sect. 3.6. We exploit transient
code paths inside an SGX enclave that speculatively dereference a register con-
taining a secret value. Such a gadget is easily introduced in an enclave, e.g.,
when using polymorphism in C++. The extended version contains a minimal
example of such a gadget (Appendix C, Listing 5) [60]. However, there are also
many different causes for such gadgets [23], e.g., function pointers or (compiler-
generated) jump tables. The basic idea of Dereference Trap is to ensure that the
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entire virtual address space of the application is mapped. Thus, if a register con-
taining a secret is speculatively dereferenced, the corresponding virtual address
is cached. The attacker can detect which virtual address is cached and infer the
secret. However, it is infeasible to back every virtual address with unique physi-
cal pages and mount Flush+Reload on every cache line, as that takes 2 days on
a 4 GHz CPU [54].

Instead of mapping every page in the virtual address space to its own physical
pages, we only map 2 physical pages p1 and p2, as illustrated in Fig. 3. By
leveraging shared memory, we can map one physical page multiple times into the
virtual address space. The maximum number of mappings per page is 231 − 1,
which makes it possible to map 1/16th of the user-accessible virtual address
space. If we only consider 32-bit secrets, i.e., secrets which are stored in the lower
half of 64-bit registers, 220 mappings are sufficient. Out of these, the first 210

virtual addresses map to physical page p1 and the second 210 addresses map to
page p2. Consequently the majority of 32-bit values are now valid addresses that
either map to p1 or p2. Thus, after a 32-bit secret is speculatively dereferenced
inside the enclave, the attacker only needs to probe the 64 cache lines of each
of the two physical pages. A cache hit reveals the most-significant bit (bit 31)
of the secret as well as bits 6 to 11, which define the cache-line offset on the
page. To learn the remaining bits 12 to 30, we continue in a fashion akin to
binary-search. We unmap all mappings to p1 and p2 and create half as many
mappings as before. Again, half of the new mappings map to p1 and half of the
new mappings map to p2. From a cache hit in this setup, we can again learn
one bit of the secret. We can repeat these steps until all bits from bit 6 to 31
of the secret are known. As the granularity of Flush+Reload is one cache line,
we cannot leak the least-significant 6 bits of the secret. On our test system, we
recovered a 32-bit value (without the least-significant 6 bits) stored in a 64-bit
register within 15 min with Dereference Trap.

6.2 Generalization of Dereference Trap

Dereference Trap is a generic technique that applies to any scenario where the
attacker can set up the hardware and address space accordingly. Dereference
Trap applies to all Spectre variants. Many in-place Spectre-v1 gadgets that are
not the typical encoding array gadget are still entirely unprotected with no plans
to change this. For instance, Intel systems before Haswell and AMD systems
before Zen do not support SMAP, and more recent systems may have SMAP
disabled. On these systems, we can also mmap memory regions and the kernel will
dereference 32-bit values misinterpreted as pointers (into user space). Using this
technique the attacker can reliably leak a 32-bit secret which is speculatively
dereferenced by the kernel. Cryptographic implementations often store keys in
the lower 32 bits of 64bit registers (i.e., OpenSSL AES round key u32 *rk) [48].
Hence, these implementations might be susceptible to Dereference Trap. We
evaluated the same experiment on an Intel i5-8250U, ARM Cortex-A57, and
AMD ThreadRipper 1920X with the same result of 15 min to recover a 32-bit
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secret (without the least-significant 6 bits). Thus, retpoline and SMAP must
remain enabled to mitigate attacks like Dereference Trap.

7 Leaking Physical Addresses from JavaScript Using
WebAssembly

In this section, we present an attack that leaks the physical address (cache-
line granularity) of a JavaScript variable. This shows that the “prefetching”
effect is much simpler than described in the original paper [17], i.e., it does not
require native code execution. The only requirement for the environment is that
it can keep a 64-bit register filled with an attacker-controlled 64-bit value. In
contrast to the original paper’s attempt to use native code in browser, we create
a JavaScript-based attack to leak physical addresses from Javascript variables
and evaluate its performance in Firefox. We demonstrate that it is possible to
fill 64-bit registers with an attacker-controlled value via WebAssembly.

Attack Setup. JavaScript encodes numbers as 53-bit double-precision floating-
point values [46]. It is not possible to store a full 64-bit value into a register with
vanilla JavaScript. Hence, we leverage WebAssembly, a binary instruction format
which is precompiled for the JavaScript engine and not further optimized [66].
On our test system (i7-8550U, Debian 8, kernel 5.3.9-1kali1) registers r9 and
r10 are speculatively dereferenced in the kernel. Hence, we fill these registers
with a guessed direct-physical-map address of a variable. The WebAssembly
method load pointer (Appendix F [60]) takes two 32-bit values that are com-
bined into a 64-bit value and populated into as many registers as possible. To
trigger interrupts, we use web requests, as shown by Lipp et al. [40]. Our attack
leaks the direct-physical-map address of a JavaScript variable. The attack works
analogously to the native-code address-translation attack [17].

1. Guess a physical address p for the variable and compute the corresponding
direct-physical map address d(p).

2. Load d(p) into the required registers (load pointer) in an endless loop, e.g.,
using endless-loop slicing [40].

3. The kernel fetches d(p) into the cache when interrupted.
4. Use Evict+Reload on the target variable. On a cache hit, the physical address

guess p from Step 1 was correct. Otherwise, continue with the next guess.

Attack from Within Browsers. We mount an attack in an unmodified Fire-
fox 76.0 by injecting interrupts via web requests. We observe up to 2 specula-
tive fetches per hour. If the logical core running the code is constantly inter-
rupted, e.g., due to disk I/O, we achieve up to 1 speculative fetch per minute.
As this attack leaks parts of the physical and virtual address, it can be used
to implement various microarchitectural attacks [15,18,35,49,50,53,57]. Hence,
the address-translation attack is possible with JavaScript and WebAssembly,
without requiring the NaCl sandbox as in the original paper [17]. Upcoming
JavaScript extensions expose syscalls to JavaScript [8]. Hence, as the second part
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of our evaluation, we investigate whether a syscall-based attack would also yield
the same performance as in native code. To simulate the extension, we expose
the sched yield syscall to JavaScript. We observe the same performance of 20
speculative fetches per second with the syscall function.

Limitations of the Attack. We conclude that the bottleneck of this attack
is triggering syscalls. In particular, there is currently no way to directly per-
form a single syscall via Javascript in browsers without high overhead. We
traced the syscalls of Firefox using strace. We observed that syscalls such as
sched yield, getpid, stat, sendto are commonly performed upon window
events, e.g., opening and closing pop-ups or reading and writing events on the
JavaScript console. However, the registers r9 and r10 get overwritten before the
syscall is performed. Thus, whether the registers are speculatively dereferenced
while still containing the attacker-chosen values strongly depends on the engine’s
register allocation and on other syscalls performed. As Jangda et al. [29] stated,
not all registers are used in JIT-generated native code [29].

8 Discussion

The “prefetching” effect was first observed by Gruss et al. [17] in 2016. In May
2017, Jann Horn discovered that speculative execution can be exploited to leak
arbitrary data, later on published in the Spectre [35] paper. Our results indi-
cate that the address-translation attack was the first inadvertent exploitation
of speculative execution, albeit in a much weaker form where only metadata,
i.e., information about KASLR, is leaked rather than real data as in a full
Spectre attack. Even before the address-translation attack, speculative execu-
tion was well known [51] and documented [26] to cause cache hits on addresses
that are not architecturally accessed. Currently, the address-translation attack
and our variants are mitigated on both Linux and Windows using the retpoline
technique to avoid indirect branches. Another possibility upon a syscall is to
save user-space register values to memory, clear the registers to prevent specula-
tive dereferencing, and later restore the user-space values after execution of the
syscall. However, as has been observed in the interrupt handler, there might still
be some speculative cache accesses on values from the stack. The retpoline mit-
igation for Spectre-BTB introduces a large overhead for indirect branches. The
performance overhead can in some cases be up to 50% [62]. This is particularly
problematic in large scale systems, e.g., cloud data centers, that have to compen-
sate for the performance loss and increased energy consumption. Furthermore,
retpoline breaks CET and CFI technologies and might thus also be disabled [4].
As an alternative, randpoline [4] could be used to replace the mitigation with a
probabilistic one, again with an effect on Foreshadow mitigations. And indeed,
mitigating memory corruption vulnerabilities may be more important than mit-
igating Foreshadow in certain use cases. Cloud computing concepts that do not
rely on traditional isolation boundaries are already being explored [1,9,21,44].
On current CPUs, retpoline must remain enabled, which is not the default in
many cases. Other Spectre-BTB mitigations, including enhanced IBRS, do not
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mitigate our attack. On newer kernels for ARM Cortex-A CPUs, the branch pre-
diction results can be discarded, and on certain devices branch prediction can
be entirely disabled [2]. Our results suggest that these mechanisms are required
for context switches or interrupt handling. Additionally, the L1TF mitigations
must be applied on affected CPUs to prevent Foreshadow. Otherwise, we can
still fetch arbitrary hypervisor addresses into the cache. Finally, our attacks also
show that SGX enclaves must be compiled with the retpoline flag. Even with LVI
mitigations, this is currently not the default setting, and thus all SGX enclaves
are potentially susceptible to Dereference Trap.

9 Conclusion

We showed that the underlying root cause of prefetching effects was misat-
tributed in previous works [6,16,31,41,47,52,67] and speculative dereferencing
of a user-space register in the kernel actually causes the leakage. As a result, we
were able to mount a Foreshadow (L1TF) attack on data from the L3 cache,
even with the latest mitigations enabled. Furthermore, we were able to improve
the performance of the original attack, apply it to AMD, ARM, and IBM and
exploit the effect via JavaScript in browsers. Our novel technique, Dereference
Trap, leaks the values of registers used in SGX (or privileged contexts) via spec-
ulative dereferencing.
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A Extracting Hypotheses from Previous Works

The hypotheses are extracted from previous works as detailed in this section.
The footnotes for each hypothesis provide the exact part of the previous work
that we reference.

H1 the prefetch instruction (to instruct the prefetcher to prefetch);2

H2 the value stored in the register used by the prefetch instruction (to indicate
which address the prefetcher should prefetch);3

2 “Our attacks are based on weaknesses in the hardware design of prefetch instruc-
tions” [17].

3 “2. Prefetch (inaccessible) address p̄. 3. Reload p. [...] the prefetch of p̄ in step 2
leads to a cache hit in step 3 with a high probability.” [17] with emphasis added.
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H3 the sched yield syscall (to give time to the prefetcher);4

H4 the use of the userspace accessible bit (as kernel addresses could otherwise
not be translated in a user context);5

H5 an Intel CPU – the “prefetching” effect only occurs on Intel CPUs, and other
CPU vendors are not affected.6

The original paper also describes that “delays were introduced to lower the
pressure on the prefetcher” [17]. In fact, this was done via recompilation. Note
that recompilation with additional code inserted may have side effects such as
a different register allocation, which we find to be an important influence factor
to the attack.

B Actual Spectre V2 gadget in Linux kernel

We analyzed the Linux kernel 4.16.18 and used the GNU debugger (GDB) to
debug our kernel. As our target syscall we analyzed the path of the sched yield
syscall. We used the same experiment, which fills all general-purpose registers
with the corresponding DPM address, perform sched yield and verify the spec-
ulative dereference with Flush+Reload. We repeat this experiment 10 000 000
times. We analyzed each indirect branch in this code path and replaced the indi-
rect call/jump with a retpolined version. Furthermore, we analyzed all general-
purpose registers and traced their content if the DPM-address is still valid in
some registers. By systematically retpolining the indirect branches, we observed
that the indirect call current->sched class->yield task(rq); in the function
sys sched yield causes the main leakage. We set a breakpoint to this function
and observed that four general-purpose registers (%rcx,%rsi,%r8,%r9) still con-
tain the kernel address we set in our experiment.

In the function put prev task fair, the %rsi register is dereferenced. To
check whether this dereference cause the leakage, we add an lfence instruction
at the beginning of the function. We run the same experiment again and observe
almost no cache fetches on our address. The %rsi register is dereferenced in
line 48.
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Abstract. Sigfox is a popular communication and security protocol
which allows setting up low-power wide-area networks for the Inter-
net of Things. Currently, Sigfox networks operate in 72 countries, and
cover 1.3 billion people. In this paper, we make an extensive analysis
of the security mechanisms used to protect the radio interface in Sig-
fox. We describe news attacks against data authenticity, which is the
only mandatory security property in Sigfox. Namely we describe how
to replay frames, and how to compute forgeries. In addition, we high-
light a flaw in the (optional) data encryption procedure. Our attacks
do not exploit implementation or hardware bugs, nor do they imply a
physical access to any equipment (e.g., legitimate end-device). They rely
only on the peculiarities of the Sigfox security protocol. Our analysis is
supported by practical experiments made in interaction with the Sig-
fox back-end network. These experiments validate our findings. Finally,
we present efficient counter-measures which are likely straightforward to
implement.

Keywords: Sigfox · Security protocol · Internet of things · Low-power
wide-area network · Cryptanalysis

1 Introduction

1.1 Context

Sigfox is a communication system used in the Internet of Things (IoT). It allows
establishing a low-power wide-area (LPWA) network between a set of remote
end-devices and a central back-end network (see Sect. B, Fig. 3). The back-end
network, owned by the Sigfox company, is an intermediary between a service
provider and its fleet of end-devices (e.g., sensors, actuators). The messages sent
by an end-device is received on the Sigfox’s back-end network where they are
made available to the service provider. Conversely, the service provider can send
messages to its end-device through the back-end network managed by Sigfox.
Different kind of subscriptions are proposed by Sigfox, from the “One” subscrip-
tion (which allows 1–2 daily uplink messages, 0 downlink message), up to the
“Platinum” subscription (101–140 daily uplink messages, 4 downlink messages).
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The Sigfox system enables different services such as asset tracking, geoloca-
tion, sensitive site monitoring, smart home, smart metering, healthcare. Sigfox
uses free but regulated frequency bands (e.g., 868–869 MHz in Europe, 902-905
MHz in North America, 922–923 MHz in Japan and South Korea). Supplied
with an autonomous battery, a Sigfox end-device is supposed to communicate
through several kilometers. Its lifespan is expected to be up to five or ten years.
With respect to the radio specificities, Sigfox can be compared, up to some point,
to LoRaWAN [8,18] and NB-IoT.

Currently, Sigfox operates in more than 72 countries on all continents [15].
The multiple networks cover 1.3 billion people, and represent 56 million daily
messages from 17 million IoT devices.

1.2 Related Work

Prior to the public release of the official specification by Sigfox [16] several analy-
ses have been conducted based on practical experiments and reverse engineering.

Lifchitz [7] and Euchner [5] have observed that, since the frame’s counter cnt
is allowed to wrap around, the ability to replay clear uplink frames is “natural”
in Sigfox. Once the counter cnt reaches its highest value, it is set to 0. Hence
all previous frames become cryptographically valid anew. We note that such a
replay is also possible with downlink frames. Moreover, in Sect. 3.2, we explain
how the same can be done with encrypted downlink frames.

When an uplink frame is received by the back-end network, the latter verifies,
among other parameters, the frame’s counter with respect to an acceptance
interval. Euchner [5] and Coman, Malarski, Petersen, and Ruepp [1] describe two
denial of service (DoS) attacks. In the first scenario the adversary uses a previous
frame which counter belongs to the current acceptance interval, and is as high as
possible. Upon reception of this replayed frame (which is valid anew), the back-
end network takes its counter as the new reference to verify subsequent uplink
frames. Therefore, the frames sent by the legitimate end-device are discarded
until its counter exceeds the value used by the adversary. Depending on the type
of subscription, the duration of this DoS attack may be rather long (several days
up to several months). Coman et al. present a variant of Euchner’s attack, and
a second scenario. The latter is based on a previous definition of the acceptance
interval (which was static) used during the verification of the frame counter [9].
This attack is now thwarted by the use of an evolving interval (see the full version
of this paper [6]).

Euchner [5] observes that, since the MAC tag size may be low (down to 2
bytes), it may be possible to forge valid (clear) uplink frames. The complexity of
this attack is exponential in the tag size. In contrast, we describe in Sect. 3.1 an
attack against data authenticity, targeting clear and encrypted uplink frames,
which complexity is O(1).
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1.3 Contributions

In this paper we present new flaws and attacks that are practicable against
Sigfox, and describe counter-measures that are straightforward to implement.
More precisely, our contributions are the following.

New Attacks Against Sigfox. We present a flaw in the Sigfox encryption proce-
dure, and two news attack against Sigfox. These two attacks break data authen-
ticity.

The flaw in the encryption procedure allows to passively get access to the
plaintext data in a specific case when encryption is activated.

Regarding the attacks, we first explain how to replay previous downlink
encrypted frames to an end-device (even once encryption is deactivated). Then,
we describe how to forge a valid uplink frame (i.e., with a correct MAC tag) from
a genuine uplink frame. We describe how to forge such frames with encrypted
and clear frames. The complexity of this attack is O(1), and it allows deceiving
the back-end network.

The attacks that we propose do not exploit potential implementation or hard-
ware bugs. They do not imply a physical access to any equipment (in particular
a legitimate end-device). They are independent of the means used to protect
the secret parameters (e.g., a secure element in the end-device). These attacks
depend exclusively on the peculiarities of the Sigfox MAC and encryption func-
tions. The adversary needs only to act on the air interface (i.e., to eavesdrop on
legitimate frames, and to send the forged frame to the back-end network).

Table 1 summarises the different attacks presented in this paper.

Practical Experiments. We have validated the MAC tag forgeries that we
describe in two ways. First “offline”, with the librenard library developed by
Euchner [3], which implements the same cryptographic functions as a legitimate
Sigfox end-device. Secondly, we have made real-life experiments, and we have
observed that the forged frames have been accepted on the Sigfox back-end net-
work.

Efficient Counter-Measures. Finally, we present efficient counter-measures which
are likely straightforward to implement. They allow thwarting all the aforemen-
tioned attacks.

Table 1. New attacks against Sigfox. The context indicates if the frames are encrypted
(“ENC”) or not (“MAC only”). The direction indicates if the uplink frames (“UL”) or
the downlink frames (“DL”) are targeted.

Attack Security property Context Direction

MAC tag forgery (Sect. 3.1) Data authenticity MAC only, ENC UL

Frame replay (Sect. 3.2) Data authenticity ENC DL

Lack of encryption (Sect. 3.3) Data confidentiality ENC UL
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1.4 Responsible Disclosure

We reported our findings to Sigfox (August 19, 2020). Sigfox acknowledged
receipt of our paper. At the time of submitting the camera-ready version, and
despite new messages sent to Sigfox, we have received no further news.

2 Description of the Sigfox Security Protocol

On the radio interface, Sigfox provides data authenticity (mandatory) for the
uplink and downlink messages, and data confidentiality (optional). The security
mechanisms are based on the AES block cipher, and a 128-bit static symmetric
key called “Network Access Key” (NAK) shared between the end-device and the
back-end network.

A partial description of the security and cryptographic mechanisms used in
Sigfox can be found in the official specification [16]. To the best of our knowl-
edge, there exists no official specification describing the Sigfox encryption func-
tion which is publicly available. Pinault has presented this encryption function
[12]. We have corrected the latter through the reverse engineering of the X-
CUBE-SFOX package [19] done with the Ghidra tool [10]. Our findings have
been validated with practical experiments made in interaction with the back-
end network.

2.1 Frame Format

Uplink Frame. The format of an uplink frame (i.e., sent by the end-device to
the back-end network) is the following (length in bit)

ft (13)‖hdr (48)‖payload (0-96)‖mac (16-40)‖crc (16)

where hdr corresponds to

li (2)‖bf (1)‖rep (1)‖cnt (12)‖devid (32)

The frame type ft depends mainly on the nature of the frame (application,
control), and its length. The payload field carries the (optionally encrypted) data,
which size ranges from 0 to 12 bytes, or is 1-bit long (in such a case the data
is carried in the header hdr, and payload is empty). The field mac carries the
frame’s MAC tag (which length ranges from 2 to 5 bytes), and crc carries the
CRC tag.

In the hdr field, the parameter li is used to indicate the size of the MAC tag
(which is variable), or to carry the 1-bit data. The parameter bf indicates if a
downlink frame is expected in response to the uplink frame. rep is always set to
0. The parameter cnt is a frame counter, incremented each time a new uplink
frame is sent. Although, the length of the cnt field is 12 bits, the maximum value
of this parameter is 2i−1, i ∈ {7, . . . , 12}. When cnt reaches its maximum value,
it must be set to 0 (i.e., cnt wraps around). Presumably, i depends on the Sigfox
subscription (i.e., the maximum of allowed daily uplink frames). The parameter
devid corresponds to the end-device’s identifier (encoded in little endian format).
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Downlink Frame. The format of a downlink frame is the following (length in
bit)

ft (13)‖ecc (32)‖payload (64)‖mac (16)‖crc (8)

The frame type ft is constant. The parameter ecc is an error correction code
computed over payload‖mac‖crc. The (optionally encrypted) data is carried in
payload. The fields mac and crc carry respectively the frame’s MAC tag and CRC
tag.

2.2 Encryption Function

The format of encrypted and clear frames is the same. Encryption is
(de)activated on the back-end side, upon request of the end-device’s owner.
Encryption cannot be done on a per frame basis. That is, either all the frames
are encrypted or none. Then, the back-end acts accordingly. This implies in par-
ticular that, if encryption is activated, the downlink frames are also encrypted.

The encryption of a frame is made with AES-CTR. From the NAK key K,
and two 16-byte values V0, V1, an encryption key Ke and a value W for the
counter mode are computed.

The value Vb, b ∈ {0, 1}, is the concatenation of the bit b, followed by the
4-byte end-device’s identifier devid, and 95 zero bits:

V0 = 0‖devid‖0 · · · 0
V1 = 1‖devid‖0 · · · 0

The encryption key Ke and the value W are computed as

Ke = AES(K,V0)
W = AES(K,V1)

A counter ctr is computed by concatenating the first 104 bits of W , a 4-bit
direction value dir, the 1-byte counter rc, and the 12-bit frame counter cnt:

ctr = msb(W, 104)‖dir‖rc‖cnt

where msb denotes the most significant bits.
The parameter rc is an implicit counter which is incremented any time cnt

wraps around. The value dir indicates the direction: if uplink, then dir = 0,
otherwise dir = 1.

Let ptxt be some n-bit plaintext data (n ≤ 96) to be sent in a frame corre-
sponding to counter cnt. The encryption of ptxt is done as follows:

1. msk = msb(AES(Ke, ctr), n)
2. ctxt = msk ⊕ ptxt

The encrypted data ctxt is carried in the payload field.
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2.3 MAC Function

The message authentication code (MAC) is based on AES in CBC-MAC mode
with a null IV. The key used to compute a MAC tag is the static NAK key
K. The MAC function outputs a tag which length (ranging from 2 to 5 bytes)
depends on the size of the input data.

In order to get an input which length is a multiple of 16 bytes, the data
to be authenticated is padded with itself. For instance, if the data corresponds
to 7 bytes B0‖ · · · ‖B6, the input to the inner CBC-MAC computation is then
B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1. If the length of the data is a multiple of 16
bytes, then the data is unchanged.

Let data be a byte string. Let selfpad be the function that pads the input
byte string with itself, and outputs a byte string which length is a multiple of
16 bytes. A MAC tag t (carried in the field mac) is computed as follows:

1. ˜data = selfpad(data)
2. C = AES-CBC-MAC(K, ˜data)
3. t = msb(C, n)

with n ∈ {16, 24, 32, 40}.
The MAC tag of an uplink frame is computed with the following data as

input:

– hdr‖payload = li‖bf‖rep‖cnt‖devid‖payload if the Sigfox encryption function is
not used;

– rc‖hdr‖payload = rc‖li‖bf‖rep‖cnt‖devid‖payload if the Sigfox encryption func-
tion is used (then payload carries the encrypted data).

The MAC tag of a downlink frame is computed with the following data as
input (length in bit):

devid (32)‖lsb(cnt, 8)‖0b0000 (4)‖msb(cnt, 4)‖payload (64)‖msb(devid, 16)

where devid is encoded in little endian format, lsb denotes the least significant
bits, and 0b0000 corresponds to four 0 bits.

3 New Attacks Against Sigfox

In this section we present two new attacks against Sigfox, and highlight a flaw
in the encryption procedure.

The attacks that we present break data authenticity, and allow deceiving the
end-device or the back-end network. The first attack allows forging uplink (clear
or encrypted) frames. The second attack allows replaying downlink encrypted
frames.

3.1 MAC Tag Forgery

In this section we present a scenario that allows an adversary to forge valid
uplink frames (encrypted or not). This attack relies upon the fact that the data
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length in an uplink frame is variable, and also on the design of the Sigfox MAC
function. The complexity of this attack is O(1). We describe unconditional and
conditional forgeries. This attack scenario does not apply to downlink frames
because they all have the same fixed size.

We have experimentally validated the MAC tag forgeries first with the libre-
nard library provided by Euchner [3]. Secondly, we have validated the forgeries
with real-life experiments done in interaction with the back-end network.

Issue. The MAC tag is computed in CBC-MAC mode (with AES). This mode
is insecure for variable length inputs, and yet, in Sigfox, the data to be authen-
ticated in an uplink frame may have different sizes (in a downlink frame, the
length of the data is fixed to 8 bytes).

In order to pad the input data up to a multiple of 16 bytes, the data is padded
with itself. That is, if the input to the MAC function corresponds to seven
bytes m = B0‖ · · · ‖B6, the data in input to the inner CBC-MAC computation is
then B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1 (16 bytes). Now, if the input to the MAC
function corresponds to the following 14 bytes m′ = B0‖ · · · ‖B6‖B0‖ · · · ‖B6,
then, after padding, the data in input to the inner CBC-MAC computation is
B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1. That is, the same data as for m. Consequently,
the MAC tag of m′ is equal to that of m. This allows completion attacks against
the MAC function in Sigfox.

Due to the constraints that bind the data length, the MAC tag length, and
the value of the parameter li (cf. Table 2), not all kinds of modification are
possible. Nonetheless, several are doable.

Table 2. li values and MAC tag sizes for an uplink frame (source: [16])

data |hdr‖payload| (byte)
(clear frame)

|rc‖hdr‖payload| (byte)
(encrypted frame)

li |mac| (byte)

0b0 6 7 0b10 2

0b1 6 7 0b11 2

(empty) 6 7 0b00 2

1 byte 7 8

4 bytes 10 11

8 bytes 14 15

12 bytes 18 19

3 bytes 9 10 0b01 3

7 bytes 13 14

11 bytes 17 18

2 bytes 8 9 0b10 4

6 bytes 12 13

10 bytes 16 17

5 bytes 11 12 0b11 5

9 bytes 15 16
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Overview. The goal of the adversary is to forge an uplink frame with a valid
MAC tag. To do so, the adversary reuses an existing valid uplink frame. Such a
frame can be picked from the set of previous frames when they can be replayed
(this excludes an encrypted frame), or can be a fresh uplink frame eavesdropped
and blocked by the adversary (i.e., not received by the back-end network). In the
latter case, the frame used can be encrypted or not. There are two cases: when
the frame is encrypted and when it is not (clear frame). Table 3 summarises the
different forgeries that we present next.

Table 3. Summary of the forgeries for uplink frames. The “Cond.” field indicates if
some (probabilistic) condition must be fulfilled in order for the forgery to be possible.
The sizes are given in byte.

Type of frame Original frame Forged frame Cond (li, |mac|)
Clear |pld| = 1 pld′ = pld‖hdr‖pld |pld′| = 8 no (0b00, 2)

Clear |pld| = 2 pld′ = pld‖hdr‖pld |pld′| = 10 no (0b10, 4)

Clear |pld| = 6 pld′ = pld‖hdr[0 · · · 3] |pld′| = 10 no (0b10, 4)

Encrypted (empty) pld′ = rc‖hdr‖rc |pld′| = 8 no (0b00, 2)

Encrypted |pld| = 1 pld′ = pld‖rc‖hdr |pld′| = 8 yes (0b00, 2)

Encrypted |pld| = 4 pld′ = pld‖rc‖hdr[0 · · · 2] |pld′| = 8 yes (0b00, 2)

Encrypted |pld| = 5 pld′ = pld‖rc‖hdr[0 · · · 2] |pld′| = 9 no (0b11, 5)

Clear Frame. Let us consider first how the adversary can produce a forgery
from a non-encrypted uplink frame.

The sizes |hdr‖payload| ∈ {7, 8, 12} corresponding to |payload| ∈ {1, 2, 6} are
of interest to the adversary.

Type “clear 1”. Let us first consider a genuine frame

frame = ft‖hdr‖payload‖mac‖crc
= ft‖hdr‖pld‖mac‖crc

such that |payload| = |pld| = 1 byte (ft, hdr, etc., correspond respectively to the
current values of the parameters ft, hdr, etc.).

From frame, the adversary computes

frame′ = ft‖hdr‖payload‖mac‖crc
= ft′‖hdr′‖pld′‖mac′‖crc′

as follows:

1. hdr′ = hdr
2. pld′ = pld‖hdr‖pld (and |pld′| = 8 bytes)
3. The frame type ft′ is chosen in accordance with |pld′|.
4. mac′ = mac
5. The adversary computes crc′ from hdr′‖pld′‖mac′.
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Since |pld| = 1 byte, we have that (li, |mac|) = (0b00, 2) in frame. Since |pld′| =
8 bytes, (li, |mac|) in frame′ must be, and is indeed, equal to (0b00, 2) (because
hdr′ = hdr).

The MAC tag mac′ = mac is a valid tag for frame′. Indeed this tag is
valid for frame. This means that the data used as input to the inner CBC-MAC
computation for frame is (size in byte)

hdr (6)‖pld (1)‖hdr (6)‖pld (1)‖‖hdr[0 · · · 1] (2)

where hdr[0 · · · 1] indicates the two first bytes of hdr.
In turn, the data used as input to the inner CBC-MAC computation in order

to verify the MAC tag mac′ in frame′ is

hdr′ (6)‖pld′ (8)‖hdr′[0 · · · 1] (2)
=

hdr (6)‖pld (1)‖hdr (6)‖pld (1)‖‖hdr[0 · · · 1] (2)

Since the MAC tag is computed with the same key, and the same input data
in either case (frame and frame′), we have that mac′ = mac is a valid MAC
tag for frame′. Hence, frame′ is a valid uplink frame forged by the adversary.

Type “clear 2”. The same holds with a genuine frame frame =
ft‖hdr‖pld‖mac‖crc with |pld| = 2 bytes. The adversary forges a frame frame′

carrying a payload (size in byte)

pld′ (10) = pld (2)‖hdr (6)‖pld (2)

(with the corresponding frame type and CRC value). The frame frame′ is a valid
frame for the MAC tag mac′ = mac. Indeed, (li, |mac|) = (0b10, 4) in frame
and frame′ (because hdr′ = hdr), and

hdr′ (6)‖pld′ (10) = hdr (6)‖pld (2)‖hdr (6)‖pld (2)

This corresponds to the data in input to the inner CBC-MAC computation for
frame′ and frame.

Type “clear 6”. Another forgery is possible with an original frame frame =
ft‖hdr‖pld‖mac‖crc such that |pld| = 6 bytes. The adversary forges a frame
frame′ carrying a payload (size in byte)

pld′ (10) = pld (6)‖hdr[0 · · · 3] (4)

(with the corresponding frame type and CRC value). The frame frame′ is a valid
frame for the MAC tag mac′ = mac. Indeed, (li, |mac|) = (0b10, 4) in frame
and frame′, and

hdr′ (6)‖pld′ (10) = hdr (6)‖pld (6)‖hdr[0 · · · 3] (4)

which is the data in input to the inner CBC-MAC computation for frame′ and
frame.
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Encrypted Frame. Now let us consider how the adversary can produce a
forgery from an encrypted uplink frame.

Unconditional Forgeries. We present first two unconditional forgeries.

Type “encrypted 5”. Let us first consider a genuine encrypted frame

frame = ft‖hdr‖pld‖mac‖crc
with |pld| = 5 bytes. The MAC tag mac is computed with the following input
data to the inner CBC-MAC function (size in byte)

rc (1)‖hdr (6)‖pld (5)‖rc (1)‖hdr[0 · · · 2] (3)

where rc is the current value of the counter rc.
The adversary computes frame′ = ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ = hdr,

pld′ = pld‖rc‖hdr[0 · · · 2] (and |pld′| = 9 bytes), and mac′ = mac. The frame
type ft′ is chosen in accordance with |pld′|. The adversary computes crc′ from
hdr′‖pld′‖mac′.

In order to verify the MAC tag mac′, the data used as input to the inner
CBC-MAC function is

rc (1)‖hdr′ (6)‖pld′ (9) = rc (1)‖hdr (6)‖pld (5)‖rc (1)‖hdr[0 · · · 2] (3)

Moreover, (li, |mac|) = (0b11, 5) in frame and frame′. Therefore mac′ = mac
is a valid MAC tag for frame′. Hence frame′ is a valid encrypted frame forged
by the adversary.

Type “encrypted empty”. Let us consider an original empty encrypted frame
frame = ft‖hdr‖mac‖crc. In such a case (li, |mac|) = (0b00, 2), and the data
in input to the inner CBC-MAC function is (size in byte)

rc (1)‖hdr (6)‖rc (1)‖hdr (6)‖rc (1)‖hdr[0] (1)

The adversary computes frame′ = ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ = hdr,
and pld′ = rc‖hdr‖rc. The values ft′ and crc′ are computed in accordance with
the other fields of frame′. The payload pld′ is 8-byte long, which corresponds
also to (li, |mac|) = (0b00, 2).

The data used as input to the inner CBC-MAC function in order to verify
mac′ is

rc (1)‖hdr′ (6)‖pld′ (8)‖rc (1) = rc (1)‖hdr (6)‖rc (1)‖hdr (6)‖rc (1)‖rc (1)

Hence, mac′ = mac is a valid MAC tag for frame′ if hdr[0] = rc.
The first byte of the header hdr corresponds to (length in bit)

li (2)‖bf (1)‖rep (1)‖msb(cnt, 4)

Since frame carries no data, li = 0b00. The parameter bf can be equal to
0 (unidirectional procedure) or 1 (bidirectional procedure), and rep is always
equal to 0. Therefore rc = hdr[0] implies that
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rc
=

li bf rep msb(cnt, 4)
b7 b6 b5 b4 b3 b2 b1 b0

=
0 0 · 0 · · · ·

where cnt, li, bf , rep are respectively the current values of the message counter
cnt, the li, bf, and rep parameters in frame.

Therefore, the adversary can forge a valid frame frame′ with any original
frame frame which fulfils the following characteristics:

– frame carries an empty payload (i.e., li = 0b00), and
– cnt = j × 28 + i, and
– rc = bf × 25 + j,

with (i, j) ∈ {0, . . . , 255} × {0, . . . , 15}, and bf ∈ {0, 1}.
The number of such encrypted uplink frames that the adversary can forge for

a given end-device is at most 24 × 28 = 212 (bf takes only one value in {0, 1} for
each possible value rc‖cnt). This figure does not take into account the number
of times the counter cnt is reset, which multiplies in proportion the number of
usable uplink frames.

Conditional Forgeries. Now we describe two conditional forgeries.

Type “encrypted 1”. The first conditional possibility is the following. From a
genuine encrypted frame frame with |pld| = 1 byte, the adversary computes
frame′ = ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ = hdr, and pld′ = pld‖rc‖hdr.
The values ft′ and crc′ are computed in accordance with the other fields of
frame′. We have that |pld| = 1 byte and |pld′| = 8 bytes, which both correspond
to (li, |mac|) = (0b00, 2). The MAC tag mac in frame is computed with the
following input data to the inner CBC-MAC function (size in byte)

rc (1)‖hdr (6)‖pld (1)‖rc (1)‖hdr (6)‖pld (1)

The MAC tag mac′ in frame′ is verified with the following input data to the
inner CBC-MAC function

rc (1)‖hdr′ (6)‖pld′ (8)‖rc (1) = rc (1)‖hdr (6)‖pld (1)‖rc (1)‖hdr (6)‖rc (1)

Therefore, mac′ = mac is a valid MAC tag for frame′ if pld = rc. Since pld
corresponds to encrypted data, the probability of success in this case is roughly
2−8.

Type “encrypted 4”. From a genuine encrypted frame frame with |pld| = 4
bytes, the adversary computes frame′ = ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ =
hdr, and pld′ = pld‖rc‖hdr[0 · · · 2]. The values ft′ and crc′ are computed in
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accordance with the other fields of frame′. We have that |pld| = 4 bytes and
|pld′| = 8 bytes. Both cases correspond to (li, |mac|) = (0b00, 2). The MAC tag
mac in frame is computed with the following input data to the inner CBC-MAC
function

rc (1)‖hdr (6)‖pld (4)‖rc (1)‖hdr[0 · · · 3] (4)

The MAC tag mac′ in frame′ is verified with the following input data to the
inner CBC-MAC function (size in byte)

rc (1)‖hdr′ (6)‖pld′ (8)‖rc (1)
=

rc (1)‖hdr (6)‖pld (4)‖rc (1)‖hdr[0 · · · 2] (3)‖rc (1)

Therefore, mac′ = mac is a valid MAC tag for frame′ if rc = hdr[3] =
devid[1], where devid is the value of the (targeted) end-device’s identifier
(encoded in little endian format).

For each end-device, the adversary can forge as many uplink encrypted frame
as distinct values for cnt (unless rc wraps around). For instance, with respect to
the “Platinum” subscription, the number of forgeries is 212.

Other Types of Forgery. Other kinds of forgery are possible but with stronger
constraints (i.e., equality between two bit strings which length is higher than 8
bits), hence lower probability of success.

Experiments. We have validated the MAC tag forgeries that we describe in
two ways.

“Offline” Experiments. The librenard library, developed by Euchner [3], imple-
ments the Sigfox cryptographic functions (we have completed librenard in order
to support encryption). We have used librenard to successfully validate all the
MAC tag forgeries that we describe.

Real-life Experiments. Secondly, we have conducted experiments in real condi-
tions of use in interaction with the Sigfox back-end network. For each forgery
type, we have generated several genuine uplink (clear or encrypted) frames with
the NAK key corresponding to our legitimate end-device. From these frames, we
have computed forgeries (without the NAK key). Each forged frame has been
transmitted to the back-end network. The latter has accepted all the forged
frames.

The only forgery type that we have not been able to test in interaction with
the back-end network is the “encrypted 4” type (i.e., from a 4-byte genuine
encrypted payload). Indeed, in order for this forgery to be possible, it must hold
that rc = devid[1]. In order for rc to be equal to some value x, the counter cnt
must wrap around x times. That is, x × 212 uplink frames must be sent (for
a “Platinum” subscription with at most 140 daily uplink messages). This cor-
responds to x × 212/140 days at least. Given the devid value attributed to our
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end-device, this would have taken too long in order to reach the correspond-
ing value for rc. Nonetheless, we stress that even this forgery type has been
successfully validated with librenard.

Experiment Bench. The experiments have been done with a laptop Dell Latitude
E6430 running Debian 10.5 with the (completed) librenard library installed on
it. The radio communication has been managed with the module HackRF One
[11], and the renard-phy scripts from Euchner [4] (cf. Sect. A).

3.2 Frame Replay

As explained in previous analyses [5,7], Sigfox allows “naturally” frame replays
because the message counter cnt is rather short, and wraps around when it
reaches its maximum value. Nonetheless, when encryption is activated, an addi-
tional 8-bit counter rc is involved in the MAC tag computation of an uplink
frame. However, according to the Sigfox specification, the parameter rc is not
involved in the MAC tag computation of a downlink frame even when it is
encrypted (cf. [16, Section 4.3]). Consequently, downlink encrypted frames can
be replayed as well. In addition, such encrypted frames can be replayed even
if encryption is later deactivated. Indeed, the MAC tag is then valid (anew),
and the encrypted data will be accepted as clear data. In such a case, this may
lead the end-device to adopt an incoherent (possibly harmful) behaviour because
what is then taken as plaintext data is essentially random data.

According to Euchner [2], Sigfox claims that activating encryption thwarts
frame replays with the use of the implicit counter rc, which extends the frame’s
counter from 12 to 20 bits. We observe that the way downlink encrypted frames
are computed contradicts this argument raised by Sigfox.

3.3 Lack of Encryption

Variable length data can be transmitted in an uplink frame: 1 to 12 bytes, and 1
bit. If the length is 1-byte long at least, data is carried in the payload field. If the
data is 1-bit long (single-bit case), the payload field is empty, and data is carried
in the “length indicator” li field, which is located in the frame’s header. When
encryption is activated, data is encrypted if it is carried in the payload. However,
our experiments show that, in the single-bit case (i.e., empty payload, and 1-bit
data in the header hdr), data is not encrypted. Therefore, in the single-bit case
the plaintext data remains accessible to a passive eavesdropper. That is, in such
a case, Sigfox does not achieve the intended security level.

4 Counter-Measures

In this section we present counter-measures in order to thwart the attacks
described in Sect. 3. In addition, these counter-measures are also efficient against
attacks presented in previous analyses [1,5,7]. Table 4 summarises the different
counter-measures.
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Table 4. Proposed counter-measures

Attack Counter-measure

MAC tag forgery CMAC mode

Frame replay Extended (implicit) message counter

Lack of encryption Encryption

4.1 MAC Tag Forgery

The attack described in Sect. 3.1 is possible because the end-device uses the same
static NAK key, and the Sigfox MAC function is based on the CBC-MAC mode,
which is insecure for variable length inputs. This issue can be easily fixed. Instead
of using the CBC-MAC mode, the MAC function can rely upon the CMAC mode
[17]. CMAC is built upon the same underlying CBC operation as CBC-MAC but
is secure for variable length inputs.

4.2 Frame Replay

The frame replay presented in Sect. 3.2 is possible because the maximum value
for the cnt counter can be rather low. A simple way to fix this issue is to extend
this counter. To do so, we can use the rc counter. First we recommend that the
parameter rc be involved in the MAC tag computation in any case (i.e., be the
frame encrypted or not). That is, the input data to the Sigfox MAC function is
prepended with rc, and becomes

– for an uplink frame: rc‖hdr‖payload = rc‖li‖bf‖rep‖cnt‖devid‖payload;
– for a downlink frame:

• rc‖devid‖lsb(cnt, 8)‖0b0000‖msb(cnt, 4)‖payload‖msb(devid, 16), or
• lsb(rc, 4)‖devid‖lsb(cnt, 8)‖msb(rc, 4)‖msb(cnt, 4)‖payload‖msb(devid, 16).

Now we estimate how long the size of rc must be. Let us assume that the bit
length of cnt goes with the maximum amount c of daily uplink frames. That is, we
can have (|cnt|, c) = (12, 140) at most (“Platinum” subscription), or (|cnt|, c) =
(7, 2) at least (“One” subscription), but not (|cnt|, c) = (7, 140). Let n be the
lifespan of an end-device. Then, the maximum number of uplink messages an
end-device may send during its whole lifetime is n × c. Therefore we must have
2|rc|+|cnt| ≥ n × c. That is, |rc| ≥ log2 (n × c) − |cnt|. With n = 10 years, this
implies

– |rc| ≥ 7 if (|cnt|, c) = (12, 140),
– |rc| ≥ 6 if (|cnt|, c) = (7, 2).

The current size of rc (8 bits) seems then already sufficient. But this assumes
that the end-device respects the limitation in the number of daily uplink frames.
Yet, we can not exclude that an adversary succeed in forcing an end-device to
send uplink frames at will. That is, possibly at a frequency higher than c = 140
frames per day.
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Let v be the minimum time to transmit one uplink frame that an adversary
may impose to an end-device. The number of uplink frames is then at most n/v.
For instance, if n = 10 years and v = 112/600 second (corresponding to the
shortest uplink frame, and the highest allowed speed), then n/v < 231. In such
a case, |rc| = 31 − |cnt| ∈ {19, . . . , 24}.

Note that this counter-measure is also an efficient mitigation against previous
(clear) frame replay attacks [5,7], and DoS attacks [1,5] (which are also based
on the ability to replay frames).

4.3 Lack of Encryption

When encryption is activated, in the single-bit case (i.e., empty payload with
1-bit data in the frame’s header), data must be encrypted in the same way as
when data is carried in the payload field.

5 Conclusion

Sigfox is a communication and security protocol which allows setting up low-
power wide-area networks for the IoT. Currently, Sigfox operates in 72 countries
on all continents. The multiple networks cover 1.3 billion people, and represent
56 million daily messages from 17 million IoT devices.

In this paper we have made an extensive security analysis of the radio inter-
face in Sigfox. We have presented new attacks against Sigfox. First, we have
described how to replay downlink encrypted frames, and forge valid (encrypted
or clear) uplink frames. These attacks break data authenticity with complexity
O(1) (in contrast to previous attacks against Sigfox), and allow deceiving the
end-device or the back-end network.

We have validated the MAC tag forgeries that we describe with practical
real-life experiments made in interaction with the Sigfox back-end network.

In addition, we have presented a flaw that affects the encryption procedure,
and is detrimental to data confidentiality.

The attacks that we have described do not exploit potential implementation or
hardware bugs. They do not imply a physical access to any equipment (in partic-
ular a legitimate end-device). They depend exclusively on the peculiarities of the
Sigfox security protocol. The adversary needs only to act on the air interface.

Finally, we have presented efficient counter-measures which are likely straight-
forward to implement. They allow thwarting all the aforementioned attacks.

Acknowledgment. We thank Florian Euchner and Paul Pinault for their previous
work on Sigfox.

A Practical Experiments

Figure 2 corresponds to screen shots made, from top to bottom, of two forged
frames of type “clear 6” (the first original frame is made of 6 zero bytes, the
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second one of random bytes), and two forged frames of type “encrypted 5” (the
first original frame is made of 5 zero bytes, the second one of random bytes)
received on the back-end network. Table 5 lists an example of each forgery type
(Fig. 1).

Fig. 1. Experiment bench

Fig. 2. Screen shots of forged frames accepted by the Sigfox back-end network. From
top to bottom, the two pairs of frames correspond to the forgery types “clear 6” and
“encrypted 5”. For each forgery type, the pair of genuine frames corresponds respec-
tively to zero bytes and random bytes in the payload.
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Table 5. Samples of forged frames. If the uplink frame is encrypted, the data received
on the back-end is first decrypted, and then stored. The type “encrypted 4” has not
been tested in real-life experiments.

Forgery type

Genuine frame

Forged frame

Data stored on the back-end network

clear 1

08d0046895e410100f9b12ac8

6110046895e4101000046895e410100f9b1dff7

000046895e410100

clear 2

35f8049895e41010000b9a169493c11

94c8049895e410100008049895e41010000b9a169493657

00008049895e41010000

clear 6

611804c895e4101000000000000a749be547739

94c804c895e4101000000000000804c895ea749be5448f3

000000000000804c895e

encrypted empty

06b0001895e4101adcf6d5f

6110001895e4101000001895e410100adcfe183

81879dc719010339

encrypted 1

08d0014895e4101006ddc072e

6110014895e410100000014895e41016ddccbe0

731180c554618155

encrypted 4

[35f0001895e4101e20095ebbb465029]

[6110001895e4101e20095eb5e000189bb463b0d]

[00000000697f3bd5]

encrypted 5

611e063895e410182d8c8538ff49fb6d41c149e

94ce063895e410182d8c8538f00e06389f49fb6d41c4356

0000000000e4bd138d
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B Sigfox Architecture

Fig. 3. Sigfox architecture (source: [13])

C Sigfox Coverage in Several Geographic Areas

See (Fig. 4).
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(a) Europe

(b) South Africa (c) Taiwan, South Korea and Japan

Fig. 4. Sigfox coverage in several geographic areas (source: [14]). Actual deployments
appear in blue, ongoing deployments appear in purple. (Color figure online)
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Abstract. Terrorist fraud is an attack against distance bounding proto-
cols, whereby a malicious prover allows an adversary to authenticate on
their behalf without revealing their secret key. In this paper, we propose
new attack strategies that lead to successful terrorist frauds on proven-
secure protocols.

Keywords: Distance bounding · RFID authentication · Terrorist
fraud

1 Introduction

The problem of secure authentication is fundamental in cryptography, and con-
stitutes a basic building block for a wide range of applications. Authentication
is overwhelmingly performed by proving the knowledge of a secret key, typi-
cally embedded in a device such as a card. A major inconvenience with secret
key authentication is that, since we authenticate the secret key of a device (the
prover) rather than an individual, it can be difficult to guarantee that the correct
person is authenticated. This problem is at the root of relay attacks, whereby
an adversary passively relays the messages between a legitimate distant prover
and a verifier, effectively impersonating each of these parties to the other.

A countermeasure to relay attacks, distance bounding protocols [9], provides
the verifier with a way to estimate an upper bound for its respective distance to
the prover, based on the round-trip time of the messages.

The primary objective of distance bounding protocols is to combine authenti-
cation and relay attack protection. However, other threats are considered. Mafia
Fraud (MF), is a generalisation of relay attacks, in which a pair of adversaries
can not only passively relay the messages, but also actively forge, modify, or
delete messages, acting as a man-in-the-middle. In addition, distance bound-
ing protocols aim at resisting attempts by dishonest provers to make the verifier
believe that they are in close range when they are, in fact, far away. Such attacks
can be Distance Frauds (DF) when only the prover and a verifier are involved,
Distance Hijackings (DH) when honest provers are located near the verifier, or
Terrorist Frauds (TF) when an accomplice of the dishonest prover is located
near the verifier.
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In this paper, we propose novel views on terrorist fraud. In particular, we
present a new attack strategy based on unicast messages that enables terrorist
frauds on several proven secure protocols. In addition, we present a generic ter-
rorist fraud strategy, based on temper-proof clones of the prover, that effectively
affects all protocols of the litterature.

Distance Bounding and Terrorist Fraud. Among the 40+ published distance
bounding protocols protocols [3], most rely on a similar structure: the prover
and verifier agree on a response vector r. Then, in n timed rounds, the verifier
issues challenge, and receives a respons from the prover. The saga of terrorist
fraud resistance started with Desmedt’s seminal paper [12], where he described
how a terrorist (let us call her Alice) could enter a country if identities are verified
through an authentication scheme implemented in passports. The attack relies
on a third party, Bob, giving Alice his responses to the terminal’s challenges
in real time. Terrorist fraud resistance mechanisms were introduced by Bussard
and Bagga [11], and included in virtually all protocols that attempt to resist
terrorist fraud, e.g. [17] [19] [20]. The proposed solution relies on a fundamental
assumption: Bob does not want Alice to be able to impersonate him in
further sessions. Therefore, distance bounding protocols are considered to be
terrorist-fraud resistant if helping Alice to authenticate forces Bob to give her
his secret material. This design principle is illustrated in Fig. 1: the prover and
the verifier agree on a response two response vectors r0 and r1, such that the
prover’s key x can be retrieved from r0 and r1. During the timed exchanges, the
verifier issues n binary challenges, to which the prover replies either with a bit of
r0 or a bit of r1. In a terrorist fraud attempt, the timing measurements prevent
Alice from querrying Bob in real time, so that Alice needs to know both r0 and
r1, and therefore x, to authenticate succesfully.

Fig. 1. The classical countermeasure against terrorist fraud.

Recently, Ahmadhi [2] proposed a directional terrorist fraud against anony-
mous protocols such as SPADE [10] and TREAD [4], where the initial message
of the prover contains an encrypted session key. Ahmadhi proposed that Bob
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could send the encrypted session key to the verifier using a directional antenna,
effectively making this message unicast. This strategy prevents Alice from using
the session key in later authentication, and therefore, breaks the terrorist fraud
resistance of the protocols.

Our first attack is similar in nature, but uses directional antennas during the
timed exchanges rather than the for the initial messages, and works on most
distance bounding protocols of the litterature, rather than only the anonymous
protocols.

2 New Strategies for Terrorist Fraud

In this section, we present a novel attack strategy, which applies to most terror-
ist fraud resistant protocols having single-bit challenges and responses, including
(non-exhaustive list): FO [13], Hitomi [18], Swiss-knife [17], Proprox [20]. The
aforementioned protocols are prominent protocols, and to the exception of Hit-
omi, proven to be terrorist fraud resistant. We then present a generic terrorist
fraud startegy that applies to all but one protocol of the litterature.

2.1 Notations and Assumptions

In this session, we consider protocols using the terrorist fraud resistance mech-
anism of Fig. 1. We denote the challenge at round i ci, and the two possible
responses r0i , r

1
i . The secret key used during the challenge response exchanges is

denoted by xdb, and is such that r0i ⊕ r1i = xdbi, where xdbi is the ith bit of xdb.
The distinction between xdb and the actual secret key is introduced for the sake
of clarity: in most cases, they are identical, but in some protocols, xdb a session
key, or a second key.

In ome protocols, such as FO [13] or SPADE [10], not all key bits are necessary
to authenticate: the knowledge of n − t bits (with t a treshold) is sufficient (as
part of a mechanism for provable terrorist fraud resistance). This mechanism
does not deter our attack.

We assume that dishonest parties can use directional antennas to effectively
send unicast messages, such that only the intended target party receives the
message sent through this antenna. It is also crucial to our attack that the very
fact a message was sent (though the directional antenna) is undetectable by other
parties than the intending receiving party. We also assume that, when receiving
more than one response to a challenge, the verifier only keeps the first one
and discard the following responses as noise. Finally, we assume that dishonest
provers know the value of their key xdb (as usual in a terrorist fraud resistance
context), and that the secret keys follow a uniform distribution. In our analysis,
we omit the (negligible) advantage of the adversary against the primitives (e.g.,
PRF) used to generate the responses rj for the sake of readability.
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2.2 Our Attack

The key observation to our attack is the following: due to the uniform distribu-
tion of xdb, it holds that Pr[xdbi = 0] = 1

2 . Therefore, for half the rounds on
average, we have r0i ⊕ r1i = xdbi = 0, and thus, r0i = r1i . Let us denote the set of
these rounds by IEQ, and the other rounds by IDIFF . In other words, let

IEQ = {i : r0i = r1i , i ∈ [1;n]},

IDIFF = {i : r0i �= r1i , i ∈ [1;n]}
For the rounds in IEQ, Bob does not need the value of the challenge to

compute the correct response (since both are equal); he can therefore send his
response ri at an appropriate time for the verifier to receive ri within the time
bound. Furthermore, by using a directional antenna and careful timing, Bob can
calibrate his send in such a way that (1) the verifier receives Bob’s response before
receiving Alice’s, and (2) Alice does not receive Bob’s message, nor know that
Bob even sent a message. In our attack, Bob exploits these two points by giving
Alice the correct responses for the rounds in IDIFF , and random responses for
the rounds in IEQ. During the challenge response exchanges, depending on which
set the round belongs to, Bob either sends his response in the setting defined by
(1) and (2), or does nothing. More formally, our attack goes as follows:

1. Bob runs the untimed exchanges himself, sends a help bit-vector H to Alice,
and instruct her to send a response at each round using H;

2. During the timed challenge-response part of the protocol, at round i:
(a) If i ∈ IDIFF : Bob does nothing;
(b) If i ∈ IEQ: Bob sends the response ri = r0i = r1i to the verifier through a

directional antenna. Bob times his send so that the verifier receives Bob’s
message first, and ignores Alice’s message;

3. If the protocol has final message exchanges, Bob performs them.

If H permits Alice to send the correct responses for all rounds in IDIFF , then
the authentication is accepted. To have a valid terrorist fraud, we further need
to show that Alice does not obtain enough information to authenticate on her
own in further sessions. To that end, H needs to be chosen carefully.

The choice of H. The help vector H given by Bob to Alice must satisfy two
conditions for the attack to be valid: (1) it must contain sufficient information
for Alice to respond correctly to the rounds in IDIFF and (2) it must not contain
enough information for Alice to be able to extract Bob’s key with non negligible
probability. Remember that we make the assumption that Alice does not see
when Bob sends a message through the directional antenna: she does not know
to which rounds her response is overwritten by Bob.
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Strategy 1. A first choice is to give Alice exactly the set of responses she needs,
i.e., H = {(r0i , r

1
i ) : i ∈ IDIFF }. In this case, condition (1) is satisfied. One could

argue that condition (2) is also satisfied, as Alice only receives on average half
of the key bits (by computing r0 ⊕ r1), and would therefore need to guess the
remaining 2

n
2 bits to authenticate. However, in reality, the additional information

that the authentication succeeds is enough for Alice to make an educated guess
on the strategy employed by Bob, deduce that she received the responses to
IDIFF , and therefore guess that the remaining bits of xdb are 0.

Strategy 2. A natural way to fix strategy one would be to add random responses
to the help vector, i.e., give Alice the correct responses for the rounds in IDIFF ,
and two random bits for each round in IEQ. Under this strategy, by XOR-
ing r0 and r1, Alice obtains a bitstring xdb′ that has, on average, 75% of its
bits in common with xdb. For many protocols, this is enough to qualify as an
attack. However, protocols relying a backdoor mechanism for provable terrorist-
fraud resistance, such as FO, allow an adversary knowing a bitstring “close”
to the actual xdb, up to a predefined threshold, to authenticate. Therefore, if
the threshold is chosen to be approximately 75%, xdb′ is sufficient for Alice to
authenticate on her own with it: the attack is invalid.

Strategy 3. The downfall of Strategy 2 is that the noise vector provided for IEQ

still has a probability 1
2 of resulting in the correct bit of x for each round. To

counter that, we propose that Bob gives Alice H = {(r0i , r
0
i ⊕ 1) : i ∈ [1;n]}.

In other words, Bob gives Alice r0i and its complement, thus effectively leaking
no information about x in an information theoretic sense (remember that we
abstract away the advantage of Alice against the primitive used to generate r):
by XORing these two vectors, Alice obtains nothing but a string of 1s. On the
other hand, she does have all the necessary information to respond to the rounds
of IDIFF , where by definition, r1i = r0i ⊕ 1. Therefore, at the end of the session,
Alice is authenticated, but learnt no information about the value xdb.

Strategy 3 effectively counters backdoor mechanisms that permit to authen-
ticate with n − t bits of the secret: by XORing the two response vectors, Alice
obtains a string with hamming distance n

2 to the secret, i.e., the same as what a
random bitstring would have. Allowing a party holding such a string to bypass
authentication would therefore effectively grant access to outsiders.

Protocols That Resist our Attack. Notice that the protocols we mentioned so far
have a binary challenges and responses. To the best of our knowledge, among
the protocols that attempt to resist terrorist fraud, only a few m > 2-bit chal-
lenges/responses, the most prominent being:

– TDB [5]: TDB is a protocol that uses secret sharing as a means to defeat
terrorist fraud. In particular, for each round i, m > 2 different challenge values

are possible, and each reponse rji constitutes a share, such that
m−1⊕

j=0

rji = xi;

– SKI, DBopt [6] [7]: These protocols have variants with m > 2.
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In these protocols, the number of rounds in IEQ is lower than 50%, and our
attack does not apply directly. Therefore, protocols with m > 2 seem to effec-
tively prevent our attack. We suspect considering a noise resistance threshold
could make our attack feasible, but leave this analysis to future work.

In addition to these protocols, PUFDB [15], which relies on physically
uncloneable functions, and the protocols described in [16], which add random-
ized timings to DBopt, resist our attack. Finally, Poxy [1] uses two challenges,
one to select the response vector, and one that is XORed to the response, which
counters our strategies.

Our Attack Within Formal Models. There are two main families of formalisms
for terrorist fraud: DFKO [13] and BMV [8]. The main difference between these
two approaches is the number of times Alice recieves help. In DFKO, the key
of Bob must leak after a single authentication by Alice for the protocol to be
secure, whereas in BMV, Alice is allowed to be helped by Bob several times.
Interestingly, if Alice is helped several times, then our attack may not apply.

Assume Alice is helped by Bob not once, but n times, and she is aware of
Bob’s strategy. She can recover one bit of xdb in each session, by refusing to
answer the corresponding challenge. If the authentication is denied, she con-
cludes that Bob did not send a response, so that the corresponding key bit is 1;
otherwise, it is 0.

This strategy points to two unexplored areas in the terrorist fraud resistance
litterature: (1) Alice knowing/infering what strategy Bob is using, and (2) Alice
actively deviating from the instructions of Bob.

It is interesting to observe that, after so many years of intense scrutiny, some
aspects of terrorist fraud resistance are still left completely unexplored.

A Note on Practical Application of our Attack. Our attack relies on very strong
assumption, and is therefore probably unfeasible in short range distance bound-
ing such as contactless payment as of today. On the other hand, in applications
where the measured distances are larger, it may apply. Overall, the main interest
of this attack at the time being is theoretical, as it exhibits hidden spots that
are not considered in current formal models.

2.3 Attack of the Clones

Protocols that aim at being terrorist fraud resistant consider that provers have
access to their secret key. In fact, the very notion of terrorist-fraud needs white-
box access to provers to make sense. If the prover devices, for instance, payment
cards, are black-box, then Bob can not learn more information by querrying his
device than Alice could obtain by querrying it. Therefore, in a black-box context,
terrorist fraud adversaries are no stronger than mafia fraud adversaries, so that
considering terrorist fraud becomes irrelevant.

In applications where security is important, the devices are often black-
box. For instance, for payment applications, the cards are designed to be
temper-proof, and thwart attempts to recover the secret material they embbed.
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Arguably, in such applications, if a dishonest prover manages to extract their
secret key, them being able to perform a terorrist fraud is probably not the
biggest issue. On the other hand, for applications where security is less critical,
or on specific platforms such as smartphones, a dishonest participant may be
able to extract their secret material.

Let us now assume that Bob knows his secret key. In a terrorist fraud sce-
nario, Bob wants Alice to be able to authenticate, but not to impersonate him.
We argue that he can always do that, providing temper-proof devices exist, by
applying the following strategy, which we call “attack of the clones”:

1. Clone his device into a temper-proof oracle device
2. Give the oracle device to Alice
3. Let Alice authenticate, using the oracle device.

Of course, this strategy alone is not sufficient, as Alice would be able to use
the oracle device in further authentications. Therefore, we propose to include a
secure remote activation mechanism within the oracle device, such that it only
performs authentication when Bob decides to activate it. Furthermore, Bob can
include instruction within the oracle device’s algorithm, so that it erases its
memory after one successful authentication. In practice, what we call an oracle
device in this attack corresponds to the notion of one-time program [14]. We
argue that this constitutes a universal terrorist fraud attack, in that it applies to
all protocols the security of which only relies on cryptographic keys (as opposed
to using additional biometric verification, or physically uncloneable functions).
As such, to the best of our knowledge, only pufDB [15] resists this attack.

In essence, our attack amounts to an intricate way for Bob to lend his access
card to Alice, while making sure she only uses it once. We believe that this
type of simple strategies are too often overlooked in terrorist-fraud resistance
models. There are indeed protocols in which Bob can provide response vectors
to Alice without exposing his secret, which, in an ideal world, should not be
possible. However, forcing Bob to expose his secret if he choses to apply this
attack strategy does not seem to fix the problem.

3 Conclusion

In this paper, we present two attack strategies that circumvent formal models,
and permit to perform terrorist frauds on proven secure protocols. We discuss
blind spots in the terrorist fraud resistance litterature, in particular the possi-
bility that Alice deviates from the strategy Bob asked her to follow, in order to
extract more information. These new research directions show that, after more
than 25 years of research, our understanding and formalisms for terrorist fraud
resistance are still lacking. Including such considerations in formal models, and
integrating noise resistance in the analysis, is left to future work.
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Abstract. While email is the most ubiquitous and interoperable form
of online communication today, it was not conceived with strong security
guarantees, and the ensuing security enhancements are, by contrast, lack-
ing in both ubiquity and interoperability. This situation motivates our
research. We begin by identifying a variety of stakeholders who have an
interest in the current email system and in efforts to provide secure solu-
tions. We then use the tussle among stakeholders to explain the evolution
of fragmented secure email solutions undertaken by industry, academia,
and independent developers, and to draw the conclusion that a one-size-
fits-all solution is unlikely. We highlight that vulnerable users are not well
served by current solutions. We also account for the failure of PGP, and
argue secure messaging, while complementary, is not a fully substitutable
technology.

1 Introduction

Email has been called “probably the most valuable service on the Inter-
net” [14]. It has evolved over its 50-year history to become a pillar of seamless
interoperability—if you know someone’s email address, you can send email to
them [114] across a diverse range of desktop, mobile, and web client software. As
an indication of its near-universal acceptance, an email address is often required
to create online accounts and to make online purchases. As of 2020, there were
an estimated 4 billion users of email sending over 306 billion email messages per
day [120]. Despite its ubiquity, email was not created the security desirable for
its ensuing wide deployment.

Work to provide security for email, in various forms, has been ongoing for
over three decades. Early efforts focused on the confidentiality, authenticity, and
integrity of email messages, with efforts to develop PEM [96] leading to work
on S/MIME [119] and then, as a reaction, PGP [46]. However, as measured in
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Table 1. Stakeholders with an interest in email and secure email.

Stakeholder Description

Email Service Providers Organizations that provide email services to
industry and the public

Enterprise Organizations Large organizations in both government and
industry

Privacy Enthusiasts Users with strong privacy preferences who
believe email should offer strong protection
from corporate or government surveillance

Vulnerable Users Users who deal with strongly sensitive
information that could induce personal
safety risks, including journalists, dissidents,
whistleblowers, informants, and undercover
agents; we also include criminals as part of
this stakeholder (due to aligned goals,
despite ethical differences)

Secure Mailbox Providers Organizations that provide secure email
services to the public

Typical Users Users of standard, plaintext email services

Enforcement National security, intelligence, and law
enforcement

recent years, email is only sometimes transmitted over an encrypted connection,
with limited protection from passive network eavesdropping and active network
attacks [37,45,69,101]. Meanwhile, S/MIME has only seen limited uptake within
enterprises and experts are abandoning PGP.1 Greater attention has focused on
spam, malware, and phishing as they became problems for everyday users. While
spam filtering by many email providers has significantly improved, extensive
email archives are typically stored in plaintext and vulnerable to hacking, and
fraud through phishing and spear phishing remain problematic [123]. It is within
this context that we set out to systematically understand what went wrong
with email security, how email security can theoretically be improved, and how
tussling between stakeholders can lead to inaction.

Contributions and Methodology. To better understand the current state of affairs
and identify where future research and development efforts should focus, we con-
duct a stakeholder-based analysis of secure email systems. Our initial deliverable
was a framework to evaluate secure email systems (preserved in the full ver-
sion [25]), allowing us to map out the landscape of solutions and compare how
they satisfy a set of security, utility, deployability, and usability properties. Ensu-
ing discussion and review of this framework encouraged us to look specifically at
1 Including Phil Zimmermann [46], the creator of PGP; Moxie Marlinspike [99],

who called PGP a “glorious experiment that has run its course,” and Filippo Val-
sorda [148], who bemoans the challenges of maintaining long-term PGP keys.
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how the actions and interests of a set of stakeholders (Table 1) helps to explain
the history of failures and successes in secure email, leading to the current patch-
work of partial secure email solutions. Using this new orientation for the paper,
we systemize the academic literature on email, relevant IETF standards, indus-
try solutions and software projects. For each, we consider which stakeholder is
behind the proposal, determine how it furthers the goals of the stakeholder, and
infer how these goals compose with the goals of other stakeholders. This allows
us to identify incompatibilities, illustrate how different solutions have evolved to
meet their needs, and show which stakeholders are under-served.

While we did not follow a standard or formal methodology for identifying
research literature, our approach was as follows. We (i) examined the proceedings
of top ranked security, cryptography, and measurements venues; (ii) expanded
the research set by contemplating other work that was cited in the papers we
identified; and (iii) relied on our personal experience (which, for some, dates
back to the early 1990s) and our acquired knowledge of the literature. Similarly,
the stakeholder groups were extracted from the literature through experience
and discussion. It is likely that a different set of authors would end up with a
somewhat different set of papers and categorizations, but this seems to be true
of nearly all SoKs at top security venues.

Rise of Secure Instant Messaging. The relatively low level of adoption of secure
email is often contrasted with the wider success of secure messaging applications.
WhatsApp and Facebook Messenger have over a billion users, while iMessage,
Signal, Telegram, Line, and Viber have millions. The best of these provide for-
ward secrecy and message deniability [17,116] in addition to end-to-end encryp-
tion. Unger et al. [147] have an excellent systematization of secure messaging.
Yet, despite some calls to abandon secure email in favor of Signal [148], there
are important reasons to not give up on email. Email is an open system, in
contrast to messaging’s walled gardens, giving it fundamentally different uses,
often involving longer messages, archival, search, and attachments. There is no
indication email is going away anytime soon. As such, there is still an important
need to increase the security and privacy of email-based communication.

2 Preliminaries

A series of protocols are used to send email, transfer it from the sender’s email
provider to the recipient’s provider, and then retrieve it. Figure 1 shows the most
basic steps involved, in steps marked (1) through (3). When a user initiates
sending an email, their client may use SMTP [85] to submit the message to their
organization’s mail server (also called a mail transfer agent or MTA [29,71]). The
sender’s MTA uses DNS to locate the mail MTA for the recipient’s domain, then
uses SMTP to transfer the message. Finally, the recipient retrieves the message
from their own organization’s MTA, possibly using POP or IMAP. If either the
sender or receiver is using webmail, then step (1) or step (3) may use HTTPS
instead. Note also that the version of SMTP used to submit a message in step
(1) is modified from the version of SMTP used to transfer messages [55].



SoK: Securing Email—A Stakeholder-Based Analysis 363

Fig. 1. Overview of email operation and protocols. (1) Sending email generally uses
SMTP or HTTPS between a client and its mail server. (2) Delivery of email between
mail servers uses SMTP. (3) Receiving email generally uses POP, IMAP, or HTTPS.
(4) Any mail server receiving email may forward it to other servers. This happens when
a user asks to forward their email to a different account, or when a user sends to a
mailing list.

This sequence of events is complicated somewhat by additional features sup-
ported by email as shown in step (4). First, a receiving MTA can be configured
to forward email for a recipient on to another MTA; e.g., forwarding email from
bob@company.org to bob@gmail.com. This can repeat an arbitrary number of
times. Second, a destination email address may correspond to a mailing list
server which forwards the email to all subscribers on the list (a potentially large
number). This adds numerous other recipient MTAs to the process.

An email message itself consists of two parts: the envelope and the body. The
envelope contains SMTP commands that direct MTAs regarding how the mes-
sage should be delivered. In particular, the envelope specifies the sender’s email
address (MAIL FROM) and the recipient’s email address (RCPT TO). The message
body has a separate format, including the familiar From, To, CC, and Subject
header fields. Email clients generally display the sender’s email address shown
in the From header in the body, rather than the one in the SMTP envelope.

Why Email is Insecure. Every aspect of email was initially designed, specified,
and developed without foreseeing the need for security protection that would
later be recognized given how universal email has become. Security issues persist
today despite decades of work to fix them. The original designs of protocols
used to send, receive, and deliver email among clients and servers contained no
protections for integrity or confidentiality. All messages were transmitted in the
clear and could be intercepted and modified by anyone able to act as a man-in-
the-middle. The original specifications contain nothing that validates the MAIL
FROM command or prevents forgery of the From header. The ease of forging
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emails did nothing to inhibit the emergence of unsolicited email. Email never
easily faciliated network-level anonymity, message deniability, or untraceability.

3 Stakeholders

The premise of our systematization of knowledge is that understanding the tus-
sles among stakeholders are central to understanding why secure email lacks
a universal solution. We identified potential stakeholders through an extensive
period of analysis that included reviewing the research literature; reading online
posts, discussion threads, and news articles regarding secure email; and by look-
ing at press releases and features provided by secure email tools. We then care-
fully distilled the set to key stakeholders who: (1) reflect unique preferences, and
(2) are important to the history of research and development in this area (see
Table 1).

An example of a stakeholder that is not a key stakeholder within our frame-
work would be a company that produces client email software, as these companies
tend to reflect the preferences of their customers—customers that are already
key stakeholders like enterprise organizations, typical users, and privacy enthu-
siasts. Another example is government which is multifaceted. Many government
departments operate like enterprise organizations, while others are captured by
enforcement. But even within national security, law enforcement and intelligence
agents and assets themselves have the preferences of privacy enthusiasts or vul-
nerable users. In this section, we align various efforts toward secure email with
the appropriate stakeholders and in Sect. 4 discuss the trade-offs.

3.1 Email Service Providers

An email service (or mailbox) provider [29] is focused on retaining its customers
for business and personal use. Providers have adopted several technologies to
improve the security of email, including link encryption, domain authentication,
and sender authentication. Providers often require access to plaintext so they
can scan incoming emails for spam and malware. We review current and planned
efforts, the protection they offer, and assessments of their effectiveness.

Link Encryption. Providers have adopted methods for encrypting email while it
is in transit between MTAs or between an MTA and a client. Such ‘link’ encryp-
tion is designed to prevent eavesdropping and tampering by third parties that
may own untrusted routers along the path that email is being delivered [67], how-
ever messages are not protected from inspection or modification at each MTA.
While more privacy invasive than end-to-end encryption (encryption between
the email sender and recipient), link encryption enables providers to scan for
malicious email attachments, classify potential spam or phishing attacks, mod-
ify email tracking links, and provide other services.

Mail transferred with SMTP between MTAs is by default plaintext, and an
MTA can use the STARTTLS command [67] to negotiate an encrypted channel.
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However, an active adversary between the MTAs can corrupt or strip START-
TLS, downgrading the connection to plaintext [37]. A recent initiative (currently
called MTA-STS [98]) provides a way for an MTA to advertise a strict transport
security (STS) policy stating that they always require STARTTLS. The policy
is trusted on first use (TOFU) or authenticated using the certificate authority
(CA) system. Should DNSSEC become widely deployed, policies can be directly
advertised by the MTA in its DNS record [12,68]. Even with link encryption,
SMTP reveals significant metadata about email messages—some proposed mit-
igations have been drafted [95,143].

Recall that email client software most often uses IMAP (or the older POP3)
to retrieve mail and SMTP to send messages. STARTTLS is supported across
each of these protocols [111] and is often required by the mail server. Users of
webmail typically access their mail client using HTTPS. Under the link encryp-
tion paradigm, end users can ensure encryption to their mail server but have no
control over (or even visibility of) the use of encryption for the transport of their
emails.

Authentication. Consider the case when Alice receives an email from
bob@gmail.com. Domain authentication indicates that the email was sent by
a server authorized to send email from gmail.com, while sender authentica-
tion validates the user account bob@gmail.com originated the mail. The final
level of authentication is user authentication, which occurs when Alice ensures
that a human, such as Bob Smith owns the bob@gmail.com account. While
user authentication is ideal, it taps into a public key infrastructure that email
providers have avoided, settling instead for domain authentication, which has a
long history rooted in identifying spam and filtering malware [5,43,84,88].

Domain Authentication. The primary protocol for domain authentication is
DomainKeys Identified Mail (DKIM) [30,87]. The server originating email for a
particular domain will generate a digital signature key pair, advertise the public
key in the DNS record for the same domain, and sign all outbound email, with
the appropriate validation data added to a header field in the email. A well-
positioned adversary can modify a recipient’s retrieval of the public key from
DNS—DNSSEC can mitigate this threat [6]. DKIM signatures are fragile to any
modification to the message body or header fields.

Using the same principle of advertising through DNS records, Sender Pol-
icy Framework (SPF) [84] allows a domain to specify which IP addresses are
allowed to originate email for their domain, while Domain Message Authentica-
tion, Reporting, and Conformance (DMARC) [88] enables specification of which
services (DKIM, SPF) they support, along with a policy indicating what action
should be taken if authentication fails. DMARC has many additional features
around reporting misconfigurations and abuse, but importantly it also requires
identifier alignment. For SPF, this means that the domain in the envelope MAIL
FROM address (which is authenticated with SPF) must match the domain in the
From header field. For DKIM, this means that the domain used for signing must
match the domain in the From header field. This links the authentication or sig-
nature verification done by SPF and DKIM to the From address seen by the user.
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Security extensions like SPF and DKIM were developed at different times for
different purposes. DMARC is intended to cover gaps between SPF and DKIM.
Such a patchwork approach to security is often susceptible to vulnerabilities, par-
ticularly when the protocols are implemented across different client and server
software components that need to interoperate. A recent study on the composi-
tion of SPF, DKIM, and DMARC identifies 18 attack vectors and finds that all
tested mail providers and email clients were vulnerable to at least one [24].

Sender Authentication. There is no wide support for sender authentication. Most
mailbox providers do authenticate their users [66]. For example, if the sender is
using webmail, then she may authenticate by logging into her webmail account.
If the sender is using a desktop client, the mail domain can authenticate her with
SMTP Authentication, which provides several methods that enable the sender
to authenticate with the MTA by a username and password [139–141]. However,
the measures a domain uses to authenticate a sender are not communicated to
the recipient of an email message, nor can they be verified by the recipient.

Reducing the Fragility of Authentication. Authenticated Received Chain (ARC)
[5,77] extends email authentication to handle cases when messages are poten-
tially modified when being forwarded, such as by a mailing list. With ARC,
authentication checks are accumulated by forwarders in a message header
field [86] as well as a signature on the email as received (these header fields
are sealed with an additional signature by each forwarder, creating a chain).
The protocol is intended for broad use by all email handlers along a transmis-
sion path, not just perimeter MTAs, and it is designed to allow handlers to
safely extend the chain even if when they are certain they have not modified
the message. When all email handlers are trusted by the recipient, ARC enables
any modifications to the message to be attributed, and for DKIM, SPF, and
DMRAC results to be validated on the pre-modified message. However, a mali-
cious handler is not prevented from altering messages or removing ARC headers.

Mitigating Email Misuse. Mailbox providers have invested significant effort in
spam, phishing, and malware filtering. In the early 2010s, a successful malicious
email campaign might see a spammer employ a botnet of 3,000 compromised
machines to send 25 billion emails to 10 million addresses [75]. Each aspect of
the pipeline—from the compromised machines to the email list to the software
tools—might be sold by specialists [93], and the campaign itself is typically run
by third-party advertisers earning pay-per-click revenue for directing traffic to
a third-party site (e.g., storefronts for unregulated pharmaceuticals constitute
over a third of spam) [102].

Spam filtering has evolved from IP address blacklists to highly sophisticated
classifiers that examine content, meta-information including origin, user reports,
and protocol details such as SMTP header fingerprints [145]. Malware filtering
is often performed by comparing email attachments to signatures of known mal-
ware. Spammers use a variety of evasion techniques, including sending from the
IP addresses of malware-compromised computers [47], spoofing sender addresses,
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and encoding text as images. An esoteric proposal for spam prevention is requir-
ing the sender to compute a costly function to send an email [9,38]—an approach
that never caught on [90].

Measurement Studies of Adoption and Effectiveness. In 2015–2018, several
papers were published [37,45,69,73,101] that measured the level of adoption
and effectiveness of the encryption and domain authentication used by email
providers. The general picture they paint is that top email providers encrypt
messages with STARTTLS and use SPF and DKIM for authentication, but there
is a long tail of organizations that are lagging in deploying these mechanisms.
However, even when protection methods within email are deployed, they are
often compromised by insecure practices, such as acceptance of: self-signed cer-
tificates2 (when CA-signed certificates were expected), expired certificates, or
broken chains, all of which cause the validation of the certificate to fail. Email
traffic often uses weak cipher suites, weak cryptographic primitives and param-
eters, weak keys, or password authentication over unencrypted connections. Of
the techniques that rely on DNS, basic attacks such as DNS hijacking, dangling
DNS pointers [97], and modifying non-DNSSEC lookups can enable circumven-
tion. Stripping attacks can compromise STARTTLS, with Durumeric et al. [37]
illustrating how these attacks caused 20% of inbound Gmail messages to be sent
in cleartext for seven countries. Use of SPF is common, but enforcement is lim-
ited, and DNS records often are not protected with DNSSEC. There is little use
of DKIM, and few servers reject invalid DKIM signatures [45]. Many implemen-
tations also lack security indicators for communicating SPF/DKIM/DMARC
failures to users in a way that is effective at increasing secure behaviour [73].

As Mayer et al. [101] conclude, “the global email system provides some pro-
tection against passive eavesdropping, limited protection against unprivileged peer
message forgery, and no protection against active network-based attacks.”

3.2 Enterprise Organizations

Enterprises have overlapping interests with email service providers (like reducing
email misuse) but often prefer stronger (end-to-end) encryption and authentica-
tion, at least within their internal boundaries. Enterprises played a role in devel-
oping standards that could meet their needs, starting with PEM [11,78,82,83,96]
and leading to S/MIME [28,118,119]. Another issue that is highly relevant to
enterprises is mitigating carefully targeted social engineering attacks against its
employees, often conducted through email.

End-to-End Encryption and Authentication. The primary goals of PEM [11,78,
82,83,96] were end-to-end email security with confidentiality, data origin authen-
tication, connectionless integrity (order not preserved), non-repudiation with

2 With the advent of free domain certificates with Let’s Encrypt, it is possible that
more providers are using verifiable certificates since these measurements were con-
ducted in 2015–2016.
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proof of origin, and transparency to providers and to SMTP. PEM was dis-
tinguished by interoperability with non-PEM MTAs, and a hierarchical X.509
public key infrastructure (PKI) with revocation that largely precludes rogue cer-
tificate issues haunting later PKI systems. A contributing factor cited [113] in
PEM’s demise was its slow progress in evolving for Multipurpose Internet Mail
Extensions (MIME) [48], the standard for including attachments, multi-part
bodies, and non-ASCII character sets. Industry support moved to S/MIME,
while privacy advocates favored PGP (see Sect. 3.3) because it was free from the
restrictions imposed by PEM’s centralized and hierarchical organization.

S/MIME [118] is a standards suite for securing MIME data with both encryp-
tion and digital signatures. It was originally developed during the early 1990s by
RSA Data Security, then later adopted by the IETF, resulting in standards in
1999 [28,118,119]. S/MIME’s Cryptographic Message Syntax (CMS) [70] has
origins in PEM and PKCS. S/MIME has wide support on major platforms
and products [113, p.60–62]. S/MIME clients use certificate directories to look
up X.509v3 certificates.3 S/MIME does not mandate a hierarchy with a single
root certificate authority (CA) and any organization can act as an independent,
trusted root for its certificates—the most common usage today. Interoperability
between organizations is limited or non-existent.

Several works have examined usability deficiencies with S/MIME implemen-
tations, noting difficulties knowing which CAs to trust [81], difficulties with cer-
tificate management [49], and inconsistency in handling certificates [113, p.60–
67]. Automatically creating and distributing signing and encryption keys at
account creation is considered good practice [50].

Private Key Escrow. Enterprises often use private key escrow in conjunction
with S/MIME, which enables the organization to decrypt emails and scan for
spam, malware, fraud, and insider trading, as well as archiving messages for reg-
ulatory reasons and enabling recovery if a client loses its private key. The suit-
ability of S/MIME’s centralized certificate management for enterprises and gov-
ernment has led to large, but siloed, deployments [21]. Some providers simplify
S/MIME deployment using hosted S/MIME [62], where an enterprise uploads
user private keys to an email provider, and the provider automatically uses
S/MIME for some emails (e.g., to other users of the same provider). Encryption
in this case is only provider-to-provider rather than end-to-end.

As an alternative to S/MIME, some enterprise email solutions rely on
identity-based encryption (IBE) [138]. IBE uses a trusted server to store a mas-
ter private key and generate individual private keys for users. The trusted server
also advertises a master public key, which clients can use to derive a public key
for any email address. Users can validate their ownership of an email address
with the IBE server to retrieve their generated private key. IBE simplifies key
management for clients but leaves the IBE server with persistent access to each

3 Of note, S/MIME uses a supporting suite of certificate management protocols,
including RFC 5280 [28], which defines an IETF subset of X.509v3 certificates.
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user’s private key, and also substantially complicates revocation [16].4 Ruoti et
al. [128,130] integrated IBE into a webmail system, demonstrating how automat-
ing interactions with key management results in successful task completion and
positive user feedback.

Transparent Email Encryption. A distinct approach to making interactions with
PKI transparent to users is to layer encryption and signing below client software.
Levien et al. [94] places this functionality between the email client software
and the MTA, while Wolthusen [155] uses the operating system to intercept all
network traffic and then automatically apply email encryption. Currently, several
companies (e.g., Symantec) offer automated encryption of emails by intercepting
them as they traverse a corporate network.

Spear Phishing. Social engineering may be crafted as a generic attack but is
often a targeted attack against specific enterprise employees. The openness of
email enables direct contact with targets and an opportunity to mislead the
target through the content of the email, a spoofed or look-alike send address,
and/or a malicious file attachment [63,107]. As an illustration, the company
RSA was breached through a sophisticated attack that started with a targeted
email impersonating an employee and a corrupted spreadsheet attachment [123].
Employee training [20] and email filtering are important countermeasures, how-
ever spam filters are typically trained to detect bulk email delivery and classifying
bespoke spear phishing emails remains a challenge [89].

3.3 Privacy Enthusiasts

Privacy enthusiasts prefer end-to-end encrypted email to avoid government
surveillance or commercial use of their data generally. They differ from vulner-
able users (see Sect. 3.4) in that there is not an immediate personal safety risk
driving their usage of secure email. Privacy enthusiasts have historically favored
PGP, which was developed as “public key cryptography for the masses” and
“guerrilla cryptography” to counter authorities [160]. The difficulty with PGP
has always been finding a suitable alternative to the centralized trust model of
S/MIME.

End-to-End Encryption and Authentication. PGP’s history is a fascinating 25-
year tale of controversy, architectural zig-zags, name ambiguity, and patent dis-
putes, with changes in algorithms, formats and functionality; commercial vs.
non-commercial products; corporate brand ownership; and circumvention of U.S.

4 Revocation of a compromised private key can be supported by having versions of
the key. The result of obtaining an incorrect key version is comparable to obtaining
a compromised key. The trust model of IBE is tantamount to a trusted public key
server.
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crypto export controls.5 The current standard for the PGP message format is
OpenPGP [19,39], a patent-unencumbered variation. Despite evolving formats
or encryption algorithms, PGP enthusiasts until recently have largely remained
faithful to PGP’s distinguishing concepts:

• PGP key packets and lightweight certificates: PGP key packets hold
bare keys (public or private). Public keys are kept in lightweight certificates
(cf. [160]), which are not signed certificates in the X.509 sense, but instead
contain keys and a User ID (username and email address). To help client
software determine which keys to trust, PGP also includes transferable public
keys [19], which include one or more User ID packets each followed by zero
or more signature packets. The latter attest the signing party’s belief that the
public key belongs to the user denoted by the User ID. Users typically store
private keys on their local device, often encrypted with a password, though
hardware tokens are also available.

• PGP’s web of trust: The web of trust (WoT) is a model in which users
personally decide whether to trust public keys of other users, which may be
acquired through personal exchanges or from public servers, and which may
be endorsed by other users they explicitly designate to be trusted introduc-
ers [159].

• PGP key packet servers: Users publish their public key to either closed
or publicly accessible key packet servers, which contain a mapping of email
address to the public key. Clients query to locate the public key associated
with an email address.

Problems with PGP. PGP’s design around the web of trust has allowed quick
deployment in small groups without bureaucracy or costs of formal Certification
Authorities [103], but leads to other significant obstacles:

• Scalability beyond small groups: Zimmerman notes [160, p.23] that
“PGP was originally designed to handle small personal keyrings”. Scaling
PGP requires acquiring large numbers of keys, along with a manual trust
decision for each key, plus manual management of key storage and the key
lifecycle.

• Design failure to address revocation: Zimmermann writes [160, p.31],
“If your secret key is ever compromised...you just have to spread the word
and hope everyone hears about it”. PGP does have methods to revoke keys,
but distribution of these to others is ad hoc.

• Usability by non-technical users: Zimmerman [160, p.31] says “PGP is
for people who prefer to pack their own parachutes”. There is no system help
or recovery if users fail to back up their private key or forget their passphrase.
Furthermore, users must understand the nuances of generating and storing

5 PGP was distributed as freeware on the Internet in 1991, leading to an investigation
of Zimmermann by the United States Customs Office for allegedly violating U.S.
export laws. He published the PGP source code in book form in 1995 [158], and the
case was subsequently dropped in 1996 [91].
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keys, trusting public keys, endorsing a public key for other users, and desig-
nating others as trusted introducers. The poor usability of PGP has received
significant attention [126,153].

• Trust model mismatch: Zimmerman notes [160, p.25] that “PGP tends
to emphasize [an] organic decentralized non-institutional approach” reflecting
personal social interaction rather than organizational relationships. The PGP
web of trust was designed to model social interaction, rather than decision-
making processes in governments and large enterprises. It is thus not a one-
size-fits-all trust model.

Trust-on-First-Use (TOFU). An alternative to PGP’s web of trust is to exchange
keys in-band and have clients trust them on first use. This has been the sub-
ject of several research projects [51,100,125]. Since 2016, the developer com-
munity has been integrating TOFU into PGP implementations in the MailPile,
PEP [15], LEAP [143], and Autocrypt [8] projects. A common critique of TOFU
is that users cannot distinguish valid key changes from an attack. Recent work
by developers in the PEP and LEAP projects is aiming to address this problem
with additional methods to authenticate public encryption keys, such as using a
trusted public key server, auditing public key servers, and the fraught procedure
of asking the user to compare key fingerprints [33,72].

Public Key Servers and Logs. Another web of trust alternative—applicable to
(and aligned with) S/MIME’s trust model—is introducing a trusted public key
server. Recent work [7,129] showed that automated servers have high usability
when integrated into a PGP-based email system. Bai et al. [10] found users prefer
key servers to manual key exchange, even after being taught about the security
limitations of a key server.

A compromise between TOFU and a fully trusted server is to allow key
assertions from users but ensuring they are published publicly in untrusted logs,
allowing monitors to examine a history of all certificates or key packets that a
key server has made available for any entity [13,104,133]. This enables detection
of rogue keys and server equivocation.

Social Authentication. Another way to disseminate public keys is to associate
them with public social media accounts. The Keybase project6 helps users to post
a signed, cryptographic proof to their account, simultaneously demonstrating
ownership of a public key and ownership of the account. By aggregating proofs
across multiple social media accounts for the same person, a client can establish
evidence that ties a public key to an online persona, under the assumption
that it is unlikely that a person’s social media accounts are all compromised
simultaneously. The Confidante email system leverages Keybase for distribution
of encryption public keys, with a study finding it was usable for lawyers and
journalists [92].

6 https://keybase.io.

https://keybase.io
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Short-Lived Keys and Forward Secrecy. Schneier and Hall [136] explored the use
of short-term private keys to minimize the damage resulting from the compro-
mise of a private key. Brown and Laurie [18] discuss timeliness in destroying a
short-lived key and how short-lived keys complicate usability by requiring more
frequent key dissemination.

3.4 Vulnerable Users

Vulnerable users deal with strongly sensitive information that could induce per-
sonal safety risks. Using email from a malware-infected device is a primary con-
cern [22,64], as well as risks due to the design and common practices of email.

Pseudonymity. One concern for vulnerable users is the inability to forgo leaking
personally identifiable meta-information: i.e., unlink the contents of the email
from their true email address, their IP address, and/or the identity of their mail
server. Technically inclined vulnerable users generally opt for pseudonymity [60]
where more than one email sent from the same pseudonymous account can be
established as having the same origin, but no further information is known.

Historically, PEM accommodated anonymous users with persona certificates,
which could provide assurances of continuity of a pseudonymous user ID but
does not prevent network level traceability. Today, layered encryption is used
in which messages are routed through multiple non-colluding servers, with each
server unwrapping a layer of encryption until the message is delivered to its
destination, with the same happening for replies in reverse. This idea was cham-
pioned by the cypherpunk movement [109,110] and adapted to the email protocol
with remailers like mixminion and others [31,57–59]. Pseudonymity is realized
as indistinguishability from a set of plausible candidates—the set of other users
at the time of use [35]—which may be small, depending on the system and
circumstances.7

A simpler approach is to register a webmail account under a pseudonymous
email address, optionally using Tor [36] to access the mailbox. Satoshi Nakamoto,
the inventor of Bitcoin [108], corresponded over webmail for many months while
remaining anonymous.

Traceability, Deniability, and Ephemerality. Email senders for some time have
abused the browser-like features of modern email clients to determine when
recipients view an email, when a links are clicked, and (via third-party trackers)
what other collected information is known about the recipient [40]. Email service
provider interventions can interfere with domain authentication (DKIM).

Deniability considers a case where the recipient wants to authenticate the
sender, but the sender does not want the evidence to be convincing to anyone

7 To illustrate, a student emailed a bomb threat to Harvard’s administration via web-
mail accessed over Tor [36]. The suspect was found to be the only individual accessing
Tor on Harvard’s network at the time the email was sent—while strictly circumstan-
tial, the suspect confessed [61].
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else. Cryptographers have suggested new signature types [23,76,122] to provide
deniability, but these typically require trusted third parties and/or a robust PKI
and have near-zero deployment.

Once sent, a sender loses control over an email and the extent to which
its contents will be archived. In order to automate a shorter retention period,
emails might contain a link to the message body which is deposited with and
automatically deleted by a trusted service provider or a distributed network [54,
154].

3.5 Secure Mailbox Providers

A secure mailbox provider offers end-to-end encryption and authentication
between users of their service. Providers like ProtonMail [117], Hushmail [74],
and Tutanota [146] have millions of users combined. Users’ private keys are
password-protected client-side and then stored with the provider, preventing
provider access (assuming the password is strong [44]) while allowing cross-device
access. However, providers are trusted in other regards: inter-user encryption
and authentication is generally blackbox and not independently verifiable,8 and
the model relies on client-side scripting where malicious (first or third-party)
scripts would compromise security. Additional methods are needed to provide
code signing and privilege separation for JavaScript in the browser [106,149].
Generally, email sent to outside users are encrypted client-side with a one-time
use passphrase, deposited in message repository with an access link sent as the
original email (the passphrase is communicated between the sender and recipient
out-of-band).

A second approach is to use a browser extension to overlay signed and
encrypted email on an existing mailbox provider. Initiatives here include
automating PGP key management tasks (Mailvelope and FlowCrypt), provid-
ing automated S/MIME-based encryption and signing (Fossa Guard), encryption
with a symmetric key held by the service (Virtru), or encryption using a pass-
word shared out of band (SecureGmail). Google developed E2EMail to integrate
OpenPGP with Gmail in Chrome but the project has been inactive for several
years.

3.6 Typical Users

Some work has examined the question of why most people do not use encrypted
email. Renaud et al. [121] found support for four reasons for non-adoption—lack
of concern, misconceptions about threats, not perceiving a significant threat, and
not knowing how to protect themselves. An earlier survey of 400+ respondents
by Garfinkel et al. [50] found that half indicated they didn’t use encrypted email
because they didn’t know how, while the rest indicated they didn’t think it was
necessary, didn’t care, or thought the effort would be wasted. Other work reports

8 Fingerprint comparison is common with secure messaging applications, but the fea-
ture is often ignored by users [137].
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that users are unsure about when they would need secure email [127] and are
skeptical that any system can secure their information [32,131]. It is not clear
that users want to use digital signatures or encryption for daily, non-sensitive
messages [42,53]. Overall, work in this area demonstrates that usability is not
the only obstacle to adoption, and that users don’t perceive significant risk with
email, lack knowledge about effective ways to mitigate risk, and don’t have self-
confidence about their ability to effectively use secure systems.

The usable security and privacy community is increasingly utilizing new
approaches to address broader questions of adoption of security and privacy
practices. Users are often rational when making decisions about whether to fol-
low security advice; Herley [65] makes the case that users sometimes under-
stand risks better than security experts, that worst-case harm is not the same
as actual harm, and that user effort is not free. Sasse [135] has likewise warned
against scaring or bullying people into doing the “right” thing. As a result,
effort is being made to understand users’ mental models [41,80,152,157] when
they interact with secure software and using risk communication techniques to
better understand adoption or non-adoption of secure software [144,156], among
other methods.

3.7 Enforcement

We broaden the term enforcement to encompass police and law enforcement
agencies, as well as national security and intelligence services. Law enforcement
prioritizes access to plaintext communications, either through broad surveillance
or exceptional access such as with a warrant. This need for access to plaintext
communications has led to calls for so-called encryption back doors, leading to
regular debates on whether this is desirable or feasible. This debate originally sur-
faced in the U.S. in the 1990s concerning email and has been rekindled regularly,
now with greater emphasis on instant messaging which has seen better success
than email at deploying end-to-end encryption to regular users. Proponents cite
fears that widespread use of end-to-end encryption will enable criminals and ter-
rorists to “go dark” and evade law enforcement. In response, privacy advocates
decry growing mass surveillance, point to a history of abuses of wiretapping [34],
and suggest that market forces will ensure there is plenty of unencrypted data
for use by law enforcement regardless [52].

A 2015 paper from Abelson et al. [2] highlights risks of regulatory require-
ments in this area, reiterating many issues discussed in their earlier 1997
report [1]. Identified risks include reversing progress made in deploying forward
secrecy, leading to weaker privacy guarantees when keys are compromised; sub-
stantial increases to system complexity, making systems more likely to contain
exploitable flaws; and the concentration of value for targeted attacks. Their
report also highlights jurisdictional issues that create significant complexity in
a global Internet. More broadly, whenever service providers have access to keys
that can decrypt customer email, this allows plaintext to be revealed due to
incompetent or untrustworthy service providers, by disillusioned employees, by
government subpoena, or by regulatory coercion.
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4 Stakeholder Priorities

In the previous section, we aligned past efforts in securing email with their
appropriate stakeholders. In Table 2, we establish 17 priorities that are important
to at least one stakeholder. These priorities are a result of extensive discussion
among the authors using our literature review and current practices as evidence
for our ratings. The precise definition of each priority can be found in the full
version of this paper [25].

For each stakeholder, a given priority can be a high, low, or a non-priority. In
some cases, we rate a stakeholder as highly valuing partial support of a property.
We also identify several cases where a stakeholder has a high priority that the
property is not met, meaning it is antithetical to their goals. We lightly clustered
the stakeholders into three groups. Enforcement has unique priorities for the

Table 2. Stakeholder priorities.



376 J. Clark et al.

targets of their investigation; priorities are to backdoor completely confidential
and anonymous communication. The second cluster generally prioritizes utility
and deployability, while the third prefers security. We accept that the reader
may disagree with some rankings but believe the framework enables a useful
discussion of tradeoffs that are often otherwise glossed over.

We call particular attention to instances where a stakeholder strongly opposes
a property (marked ). One might think that no stakeholder would be opposed
to increase security, utility, deployability, or usability. However, enforcement
prefers a system where exceptional access is granted (S4), as do enterprises,
because analyzing plaintext is essential to their operation. (One could argue
that enforcement prefers when most traffic is not encrypted at all.) Enforce-
ment likewise prioritizes attribution and thus opposes sender pseudonymity (S7).
Vulnerable users are opposed to server-side content processing (T3) and sys-
tems that provide persistent access (T4) since they cannot trust their safety to
others.

There are several cases where we found disagreement within a stakeholder
group regarding the priority of a given property (marked ). An example
is preventing exceptional access to email (S4)—typical email users are divided
between those who advocate for government surveillance of email and who are
willing to accept government access to email on presentation of a warrant, and
those who strongly prefer end-to-end encryption that would prevent exceptional
access. Likewise, privacy enthusiasts are split on whether there is a high priority
on ensuring that private keys are accessible only to users (S3), with a minority
placing a high priority on this property but others accepting password-protected
cloud storage of a private key. Privacy enthusiasts are also split on whether
persistent access to email is a high priority (T4), along similar lines. Finally,
while many email service providers place a high priority on not being required
to deploy new email-related servers to support a given technology (D2), this is
likely not a high priority for larger providers. For example, large providers have
shown a willingness to adopt best practices such as STARTTLS and DKIM more
rapidly.

In several cases, stakeholders have a high priority for partial support of a
property but do not want it fully (or universally) supported (marked ).
All stakeholders, aside from enforcement, prefer that emails are protected from
eavesdropping by third parties (S1). However certain stakeholders want read
capabilities for some email. For example, an enterprise may want to run auto-
mated services on their employees’ plaintext emails—for security, compliance or
other reasons—but do not want the emails accessible in plaintext by anyone out-
side of the enterprise, or even anyone within the enterprise that is not a party
to the email. Similarly, enterprises and service providers may want the ability to
modify email messages (S2) to protect their users (remove malware or insert a
phishing warning) without disrupting message authentication. Users may want
this protection as well.

As a final example of partial support, secure mailbox providers offer users
the ability to control their own signing and encryption keys (S3) but balance this
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with some usability features. For example, storing password-protected decryp-
tion keys in the cloud allows users to check their email from new devices with-
out transferring their keys, while it limits the provider’s access to their users’
decryption keys. This is in contrast to a (normal) email service provider that,
if it supported encryption and signatures at all, would give customers the addi-
tional usability feature of backing up their private decryption keys, enabling key
recovery and the ability to read past encrypted emails. Note that private keys
for signing do not require backup as users can generate new ones, although the
old public signature keys should be maintained for verification of past emails (or
revoked if the signing key is stolen as opposed to lost).

Table 2 illustrates the reality that there are significant disagreements between
stakeholders in the secure email space and that no single solution will sat-
isfy them all. The strongest disagreements happen in columns where at least
one stakeholder fully supports a property (marked ) while another strongly
opposes it (marked ). The four high conflict properties are exceptional access
(S4), sender pseudonymity (S7), server-side content-processing (T3), and persis-
tent access (T4).

The conflict between enforcement and other stakeholders over exceptional
access (S4) and sender pseudonymity (S7) is well-known in both secure email
and other technical domains: web browsing, network traffic, server IP addresses
and locations, and payment systems. We emphasize again that the enforcement
stakeholder category captures enforcement’s preferences for the targets of their
investigations and actions, while the agents themselves are better aligned with
privacy enthusiasts, and agents could use (or create) vulnerable users through
their investigations.

High conflict also exists over server-side content-processing (T3) for spam,
malware filtering, classification, or automatic replies; and persistent access (T4)
which indicates that the user can recover their access and archive after losing
their authentication credentials. This conflict illustrates an important result:
some of the most fundamental disagreements occur over the utility properties
of a secure email system. Email service providers, typical users, and enterprise
organizations all place a high value on content processing and persistent access.
Yet, these are mostly low priorities for the other stakeholders and, in some cases,
antithetical to the principles held by vulnerable users who prioritize exclusive
access to their email with no backdoors. Even if it means managing a secret
value that only they know, they accept the risk of key loss being permanent.

The tussles among stakeholders help explain the history of how this space has
evolved. The needs of typical users are largely met by email service providers;
these two stakeholders disagree mainly on deployment properties that affect only
the service provider (D2, D3), along with a tussle over exceptional access (S4).
Privacy enthusiasts have a demonstrated history of highly valuing end-to-end
encryption (hence the development of PGP and person-to-person key exchange),
but it is not a priority for email service providers and typical users, and this
explains why it is not pursued more broadly. The needs of some enterprise orga-
nizations to deploy secure email explains why they often adopt S/MIME based
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products. They need encryption within the organization, plus escrow of private
keys and content processing. They also have the IT budget to provide a seamless
user experience.

Privacy enthusiasts overlap significantly with enterprise organizations, but
disagreements on private key storage (S3), server-side content processing (T3)
and persistent access (T4) make finding common ground difficult. Privacy enthu-
siasts also overlap with vulnerable users but vulnerable users will tolerate poor
usability and a lack of features to maximize security. To our knowledge, no major
commercial provider currently meets the needs of vulnerable users.

Most email service providers prioritize opportunistic encryption with TLS.
Secure email providers have emerged, with priorities that mostly match those
of privacy enthusiasts, some of whom may previously have used PGP-based
services. Some privacy enthusiasts would prefer the private key is only accessible
to themselves (S3), but due to the loss of grass-roots support for PGP, the only
apparent feasible alternative is password-protected keys used in secure webmail.
The services offered by secure email providers have supported vastly more users
of secure email than PGP ever did. However their business model naturally
means some deployment properties cannot be met, hence requiring users to use
new email software.

5 Further Discussion

After extensively reviewing the history of email, academic literature, and dis-
cussing stakeholder priorities, we highlight several critical points in understand-
ing the state of secure email today.

A One-Size-Fits-All Solution is Unlikely. It is clear from Table 2 that stakehold-
ers have conflicting priorities and that the needs of different stakeholders dictate
diverging solutions. As such, it is unlikely that any single secure email system
will be suitable for all users and their divergent use cases. Furthermore, no sin-
gle party controls the email ecosystem, and widespread deployment of secure
email needs cooperation of numerous stakeholders. No one stakeholder has the
capability to build (or the ability to demand) a secure email system that pro-
vides seamless interoperability for the billions of email users and supports email’s
many diverse uses. This means that even in the best case, with different solutions
being adopted by different parties, there will almost surely be interoperability
challenges that act as natural roadblocks and will require significant investment
to overcome, if this is even possible.

The PGP Web of Trust Remains Unsuccessful After 25 Years. The web of trust
that is central to the original design of PGP—including manual key exchange and
trusted introducers—has largely failed. Its use is generally limited to isolated,
small communities. Its appeal is that it allows quick, interoperable deployment
in small groups without bureaucracy or costs of formal Certification Authorities,
but in practice the downside is poor usability and lack of responsive revocation.
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Arguably, the resulting product indecision and non-interoperability has nega-
tively impacted the deployment of secure email in general.

Incremental Improvement is Still Possible. Most email users trust their mail-
box providers with plaintext email. While link encryption and domain authen-
tication are available, vulnerabilities to active attacks and a lack of adoption
leave email in transit subject to eavesdropping and message forgery. Providers
could create an interoperable hosted S/MIME standard to automate provider-
to-provider confidentiality and integrity, while still working within the threat
model of a trusted mailbox provider. Unlike end-to-end encryption, server-based
search, content-filtering, and persistent/portable mailbox access would be sup-
ported. Easy-to-deploy tools are needed to ensure the solution is not a barrier
to entry for small providers.

Secure Messaging is Only a Partial Answer. Messaging protocols are walled gar-
dens, allowing proprietary protocols that are interactive and supported by cen-
tral servers. This enables automated encryption for users, including automatic
key exchange via a trusted key server and automatic end-to-end encryption of
messages [147]. Using a trusted key server means that users may be unaware
of the security and usability tradeoffs they are making. Users of secure messag-
ing applications are typically only warned to check the encryption keys if they
change, and numerous studies have shown that these applications fail to help
users understand how to do this successfully [3,137,151]. Security experts rec-
ommend encrypting all messages, however some applications make encryption
optional, resulting in many users failing to turn encryption on [150].

Further, email’s open nature gives it fundamentally different uses than mes-
saging, including easily communicating with strangers, sending long, content-rich
messages, permanently archiving messages, searching past conversations, and
attaching files. While email’s additional features are part of the reason ubiq-
uitous end-to-end encryption is so elusive, they are also why email is likely to
continue to be a primary form of communication on the Internet for years to
come.

Vulnerable Users are Not Well Served. Aside from vulnerable users, every stake-
holder represents a class of user that has their needs met by at least one system
available today. Typical users are served by current offerings from email service
providers. Enterprises (and their employees) are served by corporate S/MIME,
which provides a combination of security, utility, and usability that matches their
priorities. Deployment cost are likely what hinders its broader adoption among
enterprises. Privacy enthusiasts are served by secure webmail services, with their
stronger emphasis on end-to-end encryption and good usability, while sacrificing
utility to meet these priorities. In contrast, there is no system that clearly serves
vulnerable users well. PGP is perhaps the best option, given its use by investiga-
tive journalists [124], but it does not meet all the security priorities of vulnerable
users. No system except for remailers provides sender pseudonymity, and these
do not typically meet other security properties important to vulnerable users.
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The small size and desire for anonymity among members of this stakeholder
group (journalists, dissidents, whistleblowers, survivors of violence, informants,
under-cover agents, and even criminals) does not lend itself to commercial solu-
tions, and volunteer organizations in this area have historically struggled.

6 Research and Development Directions

Improving the security of email is important to us. In this section, we briefly
outline several avenues for future research and development.

Interoperability. Interoperability among secure email systems is a complex topic.
Email evolved into an open system decades ago, allowing anybody to email any-
one else. Thus, a justifiable user expectation is that secure email should likewise
be open. However, we are far from achieving this today with secure mailbox
providers (recall Sect. 3.5), since the primary secure systems in use are walled
gardens, as either online services and/or dedicated software clients. Using stan-
dardized cryptographic suites is a small step but systems should also allow key
(and key server) discovery between services (e.g., ProtonMail-esque mailboxes
to enterprise S/MIME certificate directories).

Interoperability introduces challenging issues around privacy, spam, and
trust. Enterprises and providers are unwilling to expose the public keys of their
users to outside queries. Encrypted spam, and other kinds of malicious email,
can evade standard content filtering techniques that work on plaintext. Different
systems operate under different trust models. While the web has built a sys-
tem based on global trust, this requires only one-way trust of the web server,
whereas secure email involves two-way trust between individuals and organiza-
tions. Simply adopting the web’s CA trust model would be unlikely to yield a
workable system, given the challenges that remain still largely unsolved with
this model [26]. Technically a system based on a CA alternative (e.g., trust-on-
first-use) could interoperate with a different system (e.g., certificate directory)
but typical users are unlikely to comprehend the difference in trust even if com-
municated to them, and the entire system could end up with weakest link secu-
rity. Even if formats and protocols were universally agreed upon, it is not clear
whether interoperability is always desired or meaningful. Finally, opening any
system to interoperability means users will need help deciding which organiza-
tions or providers to trust to provide correct public keys. We argue it is both
infeasible and unnecessary to expect that every individual or organization can
be globally trusted by the others.

We advise future work on a much more limited goal of establishing trust
among communicating parties when they need it. Any individual user or orga-
nization has a relatively small set of other users or organizations that it needs
to trust. Developing infrastructure and protocols with this end in mind would
appear to be necessary to leverage any gains made in technical interoperability.
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Content Inspection on Encrypted Email. Another major problem for secure email
is coping with spam and malware. Even if interoperability was a solved prob-
lem, authentication of an email sender is not the same as authorization to send
email [14], and building a system that provides the former but not the latter sim-
ply means users will get authenticated spam and phishing emails. End-to-end
encryption systems without sufficient spam prevention for users are impractical,
since both email providers and users lack an incentive to use such a system.

One possibility is to try to work around this problem. A secure email client
could accept encrypted email only from regular or accepted contacts; rejecting
encrypted email from unapproved senders could serve as a viable substitute for
spam and malware filtering. Spam and malware could still be propagated by com-
promising accounts and spreading it to others who have approved those users,
but the attack surface would be significantly limited. However, email providers
are not likely to embrace such a system since it arguably offers less spam and
malware protection for users than current practice.

A better alternative might be to build secure email systems that allow for
server-side content processing even when private keys are only accessible to users.
One possibility is to develop improved methods for processing on data that is
encrypted [56,79,142]. Alternatively, clients could send encrypted email and a
decryption key to a trusted cloud computing environment [115,134], perhaps
based on trusted execution platforms where the email could be decrypted and
filtered for malware and spam. Likewise, a trusted computing environment could
be used for storing and searching archives. Another possibility is to move email
storage to edge devices owned by an end-user where content processing can be
performed, with encrypted backup in the cloud to provide fault tolerance and
portability.

Auditing Identity Providers. Providing an auditable certificate directory or key
server enables a system to provide a public key audit trail, responsive public key
revocation, and effortless public key verification. However, additional work is
needed to ensure such a system can meet its goals. For example, consider auditing
systems like Certificate Transparency and CONIKS [13,104,133]. When it is a
user’s personal public key that is audited in such a system, the system must
also then provide a usable method for users to monitor the public keys being
advertised. In the case that a client’s system notices that an unauthorized key is
advertised for them, the system needs a method for the user to whistleblow
and have the offending key revoked. Additionally, if the user’s own identity
provider has equivocated, then the user needs a method for being informed of
this in a trustworthy manner and then being guided on choosing a new identity
provider. If the identity provider is also their email provider, then they will also
need to choose a new email provider. These auditing systems are promising and
would benefit from further development and study to the point where we can be
confident that it will be easy for users to accomplish these tasks.

Increasing Trust. Recent work has shown that even with the proliferation of
secure messaging applications, there is still a gap in how users perceive the
effectiveness of security technology [4,32]. Users overestimate the capabilities of
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attackers and underestimate the strength of encryption technology, resulting in
a lack of trust in applications that claim to protect their privacy. It is debatable
whether this lack of trust is misplaced—the best cryptography cannot protect
against errors in implementations or breaches that expose data that is stored
unencrypted. Users have a healthy skepticism of general software and technology
when they pay attention to highly publicized security failures. This is further
complicated by ‘snake-oil’ security and encryption tools that do not offer concrete
benefits. Nevertheless, users are better off using encryption if they are going to
communicate sensitive data online. Thus, user lack of trust in encryption is a
major obstacle to overcome.

Trust is a longstanding challenge in computing [27]. Secure messaging is
only secure if you trust WhatsApp, for example, to exchange keys properly, or
if you know enough to verify exchanged keys manually, or if you trust your
messaging partners not to reveal the content of your messages. Yet the biggest
success to date in getting users to adopt secure communication—the use of
secure messaging applications—is not due to users choosing security or privacy
but because users migrate to applications with large user bases and convenient
functionality, which happen to use end-to-end encryption [4]. It is not clear how
email can follow the same path. Getting users to adopt secure email services may
require gains in user understanding of risks and trust in solutions that mitigate
those risks. The field of risk communication which has been used successfully for
many years in public health, may offer a path toward helping users understand
and cope with online security risks [112,156].

Removing Private Key Management Barriers. There are numerous open ques-
tions regarding how typical (non-enterprise) users [132] will manage the full key
life cycle, which includes private key storage, expiration, backup, and recov-
ery [105, §13.7]. These questions are complicated by issues such as whether to
use separate keys for encrypting email during transmission, as opposed to those
for long-term storage [21]. Storing keys in trusted hardware where they can-
not be exfiltrated solves some storage issues, but also requires users to create
backup hardware keys and revoke keys stored in lost or stolen devices. It is worth
noting that major browsers and operating systems now support synchronizing
passwords across user devices (under a user account with the provider), and one
part of solving key management problems may involve using similar techniques
to synchronize private keys.

Addressing Archive Vulnerability. One of the consequences of high-profile phish-
ing attacks in recent years has been the digital theft of the extensive information
stored in long-term email archives of various individuals, companies, and organi-
zations. It is ironic that the most active areas of research into securing email are
largely orthogonal to the email security issues reported in the news. While data
leaks might be categorized as a general data security issue, the way email prod-
ucts and architectures are designed (e.g., emails archived by default, mail servers
accessible by password) are inculpatory factors. Research on technical solutions,
revised social norms about email retention, and other approaches could be help-
ful in addressing this issue.
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7 Concluding Remarks

Deployment and adoption of end-to-end encrypted email continue to face many
technical challenges, particularly related to key management. Our analysis indi-
cates that conflicting interests among stakeholders explains the fragmented
nature of existing secure email solutions and the lack of widespread adoption.
This suggests it is time to acknowledge that a one-size-fits-all (i.e., for all tar-
get scenarios, environments, and user classes) solution or architecture will not
emerge. In particular, we find the strongest conflicts among stakeholders over
exceptional access, sender pseudonymity, server-side content-processing, and per-
sistent access (T4). In each case, at least one stakeholder strongly prioritizes one
of these properties while another strongly opposes it.

In this light, a significant barrier to progress is opposition to any new prod-
uct or service that does not meet one stakeholder’s particular needs, though
it works well for others. A path forward is to acknowledge the need for alter-
nate approaches and support advancement of alternatives in parallel. Divided
communities and differing visions can lead to paralysis if we insist on a single
solution, but it can also be a strength if we agree that multiple solutions can
co-exist.

Full Version. In the full version of this paper [25], we provide a detailed eval-
uation framework for secure email systems. Using the same properties as our
stakeholder analysis, we evaluate existing secure email systems. The definition
of each property is given, along with an explanation of how a given secure email
system is rated to have full support, partial support, or no support in terms of
meeting this property. This analysis shows how different secure email systems
line up with the needs of each stakeholder. Highlighting the properties that are
important to a stakeholder reveals which solutions serve them well or poorly.
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Abstract. We consider the problem of proving in zero knowledge that
an element of a public set satisfies a given property without disclosing
the element, i.e., for some u, “u ∈ S and P (u) holds”. This problem
arises in many applications (anonymous cryptocurrencies, credentials or
whitelists) where, for privacy or anonymity reasons, it is crucial to hide
certain data while ensuring properties of such data.

We design new modular and efficient constructions for this problem
through new commit-and-prove zero-knowledge systems for set member-
ship, i.e. schemes proving u ∈ S for a value u that is in a public commit-
ment cu. We also extend our results to support non-membership proofs,
i.e. proving u /∈ S. Being commit-and-prove, our solutions can act as
plug-and-play modules in statements of the form “u ∈ S and P (u) holds”
by combining our set (non-)membership systems with any other commit-
and-prove scheme for P (u). Also, they work with Pedersen commitments
over prime order groups which makes them compatible with popular sys-
tems such as Bulletproofs or Groth16.

We implemented our schemes as a software library, and tested experi-
mentally their performance. Compared to previous work that achieves
similar properties—the clever techniques combining zkSNARKs and
Merkle Trees in Zcash—our solutions offer more flexibility, shorter public
parameters and 3.7×–30× faster proving time for a set of size 264.

1 Introduction

The problem of proving set membership—that a given element x belongs to some
set S—arises in many applications, including governmental white-lists to prevent
terrorism or money-laundering, voting and anonymous credentials, among oth-
ers. More recently, this problem also appears at the heart of currency transfer
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and identity systems over blockchains. In this setting, parties can first publicly
commit to sets of data (through the blockchain itself) and then, by proving set
membership, can claim ownership of assets or existence of identity attributes,
while ensuring privacy.

A naive approach to check if an element is in a set is to go through all
its entries. The complexity of this approach, however, is unacceptable in many
scenarios. This is especially true for blockchains, where most of the parties (the
verifiers) should run quickly.

How to efficiently verify set membership then? Cryptographic accumulators
[5] provide a nice solution to this problem. They allow a set of elements to be
compressed into a short value (the accumulator) and to generate membership
proofs that are short and fast to verify. For security, they require that it should
be computationally infeasible to generate a false membership proof.

As of today, we can divide constructions for accumulators into three main cat-
egories: Merkle Trees [32]; RSA-based [3,7,11,28]; pairing-based [10,19,34,42].
Approaches based on Merkle Trees1 allow for short (i.e., O(1)) public param-
eters and accumulator values, whereas the witness for membership proofs is of
size log(n), where n is the size of the set. In RSA-based constructions (which
can be actually generalized to any group of unknown order [30], including class
groups) both the accumulator and the witness are each a single element in a
relatively large hidden-order group G,2 and thus of constant-size. Schemes that
use pairings in elliptic curves such as [10,34] offer small accumulators and small
witnesses (which can each be a single element of a prime order bilinear group,
e.g., 256 bits) but require large parameters (approximately O(n)) and a trusted
setup.

In anonymous cryptocurrencies, e.g. Zerocash [4] (but also in other applica-
tions such as Anonymous Credentials [14] and whitelists), we also require privacy.
That is, parties in the system would not want to disclose which element in the
set is being used to prove membership. Phrased differently, one desires to prove
that u ∈ S without revealing u, or: the proof should be zero-knowledge [24] for
u. As an example, in Zerocash users want to prove that a coin exists (i.e. belongs
to the set of previously sent coins) without revealing which coin it is that they
are spending.

In practice it is common that this privacy requirement goes beyond proving
membership. In fact, these applications often require proving further properties
about the accumulated elements, e.g., that for some element u in the set, property
P (u) holds. And this without leaking any more information about u other than
what is entailed by P . In other words, we desire zero-knowledge for the statement
R∗(S, u) := “u ∈ S and P (u)′′.

One way to solve the problem, as done in Zerocash, is to directly apply
general-purpose zero-knowledge proofs for R∗, e.g., [25,37]. This approach, how-

1 We can include under this class currently known lattice-based accumulators such as
[29,36].

2 The group G is typically Z
∗
N where N is an RSA modulus. The size of an element

in this group for a standard 128-bit security parameter is of 3072 bits.
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ever, tends to be expensive and ad-hoc. One question we aim to tackle is: how
to design a more efficient proof system for set membership relations that is also
modular?

Specifically, as observed in [12], the design of practical proof systems can
benefit from a more modular vision. A modular framework such as the one in
[12] not only allows for separation of concerns, but also increases reusability
and compatibility in a plug-and-play fashion: the same proof system is designed
once and can be reused for the same sub-problem regardless of the context;3 it
can be replaced with a component for the same sub-problem at any time. Also,
as [12] shows, this can have a positive impact on efficiency since designing a
special-purpose proof system for a specific relation can lead to significant opti-
mizations. Finally, this compositional approach can also be leveraged to build
general-purpose proof systems.

In this work we focus on applying this modular vision to designing succinct
zero-knowledge proofs for set membership. Following the abstract framework in
[12] we investigate how to apply commit-and-prove techniques [13] to our set-
ting. Our approach uses commitments for composability as follows. Consider an
efficient zero-knowledge proof system Π for property P (u). Let us also assume it
is commit-and-prove, i.e. the verifier can test P (u) by simply holding a commit-
ment c(u) to u. Such Π could be for example a commit-and-prove NIZK such
as Bulletproofs [8] or a commit-and-prove zkSNARK such as LegoGroth16 from
[12] that are able to operate on Pedersen commitments c(·) over elliptic curves.
In order to obtain a proof gadget for set membership, all one needs to design is
a commit-and-prove scheme for the relations “u ∈ S” where both u and S are
committed: u through c(u) and S through some other commitment for sets, such
as an accumulator.

Our main contribution is to propose a formalization of this approach and
new constructions of succinct zero-knowledge commit-and-prove systems for set
membership. In addition, as we detail later, we extend our results to capture
proofs of non-membership, i.e., to show that u /∈ S. For our constructions we
focus on designing schemes where c(u) is a Pedersen commitment in a prime
order group Gq. We focus on linking through Pedersen commitments as these
can be (re)used in some of the best state-of-the-art zero-knowledge proof sys-
tems for general-purpose relations that offer for example the shortest proofs and
verification time (see, e.g., [25] and its efficient commit-and-prove variant [12]),
or transparent setup and logarithmic-size proofs [8].

Before describing our results in more detail, we review existing solutions and
approaches to realize commit-and-prove zkSNARKs for set membership.

Existing Approaches for Proving Set Membership for Pedersen Com-
mitments. The accumulator of Nguyen [34], by the simple fact of having a suc-
cinct pairing-based verification equation, can be combined with standard zero-
knowledge proof techniques (e.g., Sigma protocols or the celebrated Groth-Sahai

3 For instance, one can plug a proof system for matrix product C = A ·B in any larger
context of computation involving matrix multiplication. This regardless of whether,
say, we then hash C or if A, B are in turn the output of a different computation.



396 D. Benarroch et al.

proofs [26]) to achieve a succinct system with reasonable proving and verifica-
tion time. The main drawbacks of [34], however, are the large public parameters
(i.e. requiring as many prime group elements as the elements in the set) and a
high cost for updating the accumulator, to add or remove elements (essentially
requiring to recompute the accumulator from scratch).

By using general-purpose zkSNARKs one can obtain a solution with
constant-size proofs based on Merkle Trees: prove that there exists a valid path
which connects a given leaf to the root; this requires proving correctness of
about log n hash function computations (e.g., SHA256). This solution yields a
constant-size proof and requires log n-size public parameters if one uses pre-
processing zkSNARKs such as [25,37]. On the other hand, often when proving
a relation such as R∗(S, u) := “u ∈ S and P (u)” the bulk of the work stems
from the set membership proof. This is the case in Zcash or Filecoin where the
predicate P (·) is sufficiently small.

Finally, another solution that admits constant-size public parameters and
proofs is the protocol of [11]. Specifically, Camenisch and Lysyanskaya showed
how to prove in zero-knowledge that an element u committed in a Pedersen
commitment over a prime order group Gq is a member of an RSA accumulator.
In principle this solution would fit the criteria of the gadget we are looking
for. Nonetheless, its concrete instantiations show a few limitations in terms of
efficiency and flexibility. The main problem is that, for its security to hold, we
need a prime order group (the commitment space) and the primes (the message
space) to be quite large, for example4 q > 2519. But having such a large prime
order group may be undesirable in practice for efficiency reasons. In fact the
group Gq is the one that is used to instantiate more proof systems that need to
interact and be linked with the Pedersen commitment.

1.1 Our Contributions

We investigate the problem of designing commit-and-prove zero-knowledge sys-
tems for set membership and non-membership that can be used in a modular way
and efficiently composed with other zero-knowledge proof systems for potentially
arbitrary relations. Our main results are the following.

First, building upon the view of recent works on composable proofs [2,12],
we define a formal framework for commit-and-prove zkSNARKs (CP-SNARKs)
for set (non-)membership. The main application of this framework is a compiler
that, given a CP-SNARK CPmem for set membership and any other CP-SNARK
CPR for a relation R, yields a CP-SNARK CP for the composed relation “u ∈
S∧∃ω : R(u, ω)”. As a further technical contribution, our framework extends the
one in [12] in order to work with commitments from multiple schemes (including
set commitments, e.g., accumulators).

Second, we propose new efficient constructions of CP-SNARKs for set mem-
bership and non-membership, in which elements of the accumulated set can be
4 More specifically: the elements of a set need to be prime numbers in a range (A, B)

such that q/2 > A2 − 1 > B · 22λst+2. If aiming at 128 bits of security level one can
meet this constraint by choosing for example A = 2259, B = 2260 and q > 2519.
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committed with a Pedersen commitment in a prime order group Gq—a setting
that, as argued before, is of practical relevance due to the widespread use of
these commitments and of proof systems that operate on them. In more detail,
we propose: four schemes (two for set membership and two for non-membership)
that enjoy constant-size public parameters and are based on RSA accumulators
for committing to sets, and a scheme over pairings that has public parameters
linear in the size of the set, but where the set can remain hidden.

Finally, we implement our solutions in a software library and experimentally
evaluate their performance; see below for details.

Like the recent works [2] and [12], our work can be seen as showing yet
another setting—set membership—where the efficiency of SNARKs can benefit
from a modular design.

RSA-Based Constructions. Our first scheme, a CP-SNARK for set mem-
bership based on RSA accumulators, supports a large domain for the set of
accumulated elements, represented by binary strings of a given length η. Our
second scheme, also based on RSA accumulators, supports elements that are
prime numbers of exactly μ bits (for a given μ). Neither scheme requires an
a-priori bound on the cardinality of the set. Both schemes improve the proof-of-
knowledge protocol by Camenisch and Lysyanskaya [11]: (i) we can work with a
prime order group Gq of “standard” size, e.g., 256 bits, whereas [11] needs a much
larger Gq (see above). We note that the size of Gq affects not only the efficiency
of the set membership protocol but also the efficiency of any other protocol that
needs to interact with commitments to alleged set members; (ii) we can support
flexible choices for the size of set elements. For instance, in the second scheme,
we could work with primes of about 50 or 80 bits,5 which in practice captures
virtually unbounded sets and can make the accumulator operations 4–5× faster
compared to using ≈ 256-bits primes as in [11].

Our main technical contribution here involves a new way to link a proof
of membership for RSA accumulators to a Pedersen commitment in a prime
order group, together with a careful analysis showing this can be secure under
parameters not requiring a larger prime order group (as in [11]). See Sect. 4 for
further details.

Pairing-Based Construction. Our pairing-based scheme for set membership
supports set elements in Zq, where q is the order of bilinear groups, while the sets
are arbitrary subsets of Zq of cardinality less than a fixed a-priori bound n. This
scheme has the disadvantage of having public parameters linear in n, but has
other advantages in comparison to previous schemes with a similar limitation
(and in comparison to the RSA-based schemes above): it supports commitments
to the set that are hiding and extractable; it works entirely in a single “group
setup”, that of the bilinear group Zq. The scheme is based on the EDRAX
Vector Commitment [15] for the set commitment combined with the verifiable

5 When prime representation is suitable for the application, distinct primes can be
generated without a hash fuction (e.g. even sequential primes).
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polynomial delegation scheme of zk-vSQL [41]. Our construction appears in the
full version [6].

Extensions to Set Non-membership. We propose extensions of both our
CP-SNARK framework and RSA constructions to deal with proving set non-
membership, namely proving in zero-knowledge that u /∈ S with respect to a
commitment c(u) and a committed set S. Our two RSA-based schemes for non-
membership have the same features as the analogous membership schemes men-
tioned above: the first scheme supports sets whose elements are strings of length
η, the second one supports elements that are prime numbers of μ bits, and both
work with elements committed using Pedersen in a prime order group and sets
committed with RSA accumulators. A byproduct of sharing the same param-
eters is that we can easily compose the set-membership and non-membership
schemes, via our framework, in order to prove statements like u ∈ S1 ∧ u /∈ S2.
Our technical contribution in the design of these schemes is a zero-knowledge
protocol for non-membership witnesses of RSA accumulators that is linked to
Pedersen commitments in prime order groups.

Implementation and Experiments. We have implemented our RSA-based6

schemes for membership and non-membership as a Rust library which is publicly
available [1]. Our library is implemented in a modular fashion to work with any
elliptic curve from libzexe [38] and Ristretto from curve25519-dalek [31]. This
choice enables everyone to easily and efficiently combine our CP-SNARKs in a
modular way with other CP-SNARKs implemented over these elliptic curves,
such as Bulletproofs [8] and LegoGroth16 [12].

We evaluated our RSA-based constructions and compared them against
highly optimized solutions based on Merkle Trees.7 Our schemes achieve sig-
nificantly better performance in proving time while slightly compromising on
proof size and verification time. Our implementation is fast, yet we have not
heavily optimized it and thus expect the results can be further improved. See
appendix for further details.

Our solutions supporting sets of arbitrary elements achieve a proving time
that is up to8 3.7× faster for set membership (309 ms vs. 1.14 s). and up to 7×
faster for set non-membership (325 ms vs. 2.28 s)9

Our solutions where set elements are large prime numbers (i.e., of 252-bit size)
offer even better results: our proving time is 4.5×–23.5× faster for membership
and 6.8×–36× faster for non-membership (depending on the depth of the Merkle
tree used in the comparison). We also show an optimization that, at the price

6 For the implementation we focused on schemes where the public parameters do not
depend on the set size; hence, we did not implement the pairing-based solutions.

7 For our experiments we consider Merkle Trees using Pedersen Hash over JubJub
[27].

8 We stress the proving time for our construction does not vary when the set grows.
On the other hand this time varies for solutions based on Merkle trees.

9 These ratios refer to a comparison against Interval Merkle Trees which require open-
ing two paths to prove non-membership. When compared against Sparse Merkle
Trees, our solutions show similar improvement ratios.
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Fig. 1. Set Membership benchmarks. The columns refer to prover time (Ptime), verifier
time (Vtime), size of the common reference string (|crs|), size of the proof (|Π|) and
memory consumed for the proof (Pmemory) respectively.

of achieving computational (instead of statistical) zero-knowledge, is 2x faster
(see full version). Sets of prime numbers can for example capture the case of
sets made of hiding commitments that are prime numbers. In Sect. 5 we discuss
how this can be relevant for a slight variant of the Zerocash protocol where
commitments can be made prime numbers.

In the table of Fig. 1 we show our benchmarks for our two schemes described
above(we benchmark the second for prime element of 252 and 63 bits resp.) and
for set membership proofs using Merkle trees of different depths-using Pedersen
and SHA256 hash functions resp.- and [25]. The details of the experiments are
in the full version [6].

Transparent Instantiations. In the full version of our paper, we generalize our
building blocks for RSA groups to any hidden-order group. As a consequence,
we obtain variants of our RSA-based schemes with transparent setup through
class groups and a transparent CP-NIZK such as Bulletproofs. Class groups
are more expensive than traditional RSA groups; in this setting we still obtain
performance (proving time 12 s; |Π| = 6.4 KB) outperforming other transpar-
ent solution for large Merkle trees, roughly 264 leaves (see [40, Fig. 5] which
summarizes performances of transparent SNARKs used to prove Merkle tree
computations using SHA256 as hash). These potential gains come at the price
of a relatively longer verification (compared to other solutions): 6.4 s.

1.2 Other Related Work

Ozdemir et al. [35] recently proposed a solution to scale operations on RSA
accumulators inside a SNARK. In particular, their approach scales when these
operations are batched (i.e., when proving membership of many elements at



400 D. Benarroch et al.

the same time); for example, they surpass a 220-large Merkle tree when proving
batches of at least 600 elements. This approach is attractive in settings where we
can delegate a large quantity of these checks to an untrusted server as there is a
high constant proving cost. In contrast, our approach can achieve faster proving
time than Merkle trees already for a single membership check. It is an interesting
open problem to adapt our techniques for modular set (non-)membership for the
case of batched membership while keeping the tested elements hidden.

1.3 Organization

We give basic definitions in Sect. 2. In Sect. 3 we formalize commit-and-prove
zkSNARKs for set membership, and then we describe our main constructions
based on RSA accumulators in Sect. 4. Finally, in Sect. 5 we discuss applications.
For lack of space, technical details, the RSA-based scheme for non-membership,
the pairing-based construction, and our experimental results are in the full ver-
sion of the paper [6].

2 Preliminaries

We recall basic cryptographic notions used by our schemes; details are in the
full version.

Type-Based Commitments. We shall use type-based commitments [20] which
allow one to commit to values from different domains under a single commit-
ment key. Through this notion we can formalize commit-and-prove NIZKs that
work with commitments from different groups and schemes. Here is a brief
description of the syntax: – Setup(1λ) → ck returns a commitment key ck; –
Commit(ck, t, u) → (c, o) produces a commitment/opening pair of type t for
value u; – VerCommit(ck, t, c, u, o) → b verifies that commitment c of type t
opens to value u given opening o, and accepts (b = 1) or rejects (b = 0). Secu-
rity properties of the scheme, i.e., binding—a commitment cannot be opened to
two different values—and hiding—commitment leaks nothing about the value it
opens to—should hold with respect to a certain type. In our constructions we
will assume two main types: tset, through which we can commit to a set (we can
think of a commitment of this type roughly as an accumulator for a set U) , and
telm through which we can commit to elements. In the remainder of this work
we will assume commitment schemes that are binding for both types tset and
telm, but hiding only for the latter: we should be able to hide specific committed
elements in a set but it is acceptable to leak the set itself. Given two commit-
ment schemes C and C′ respectively for types tset and telm, we denote by C • C′

the commitment scheme over both types tset and telm obtained by the natural
composition, i.e., a scheme able to commit to both sets and to elements in them.

Commit-and-Prove NIZKs. A commit-and-prove NIZK (CP-NIZK) is essen-
tially a non-interactive zero-knowledge argument for a specific family of relations
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augmented with a commitment opening verification. In a standard NIZK, a ver-
ifier would have access to a public input x and to a proof that a witness w
exists for that specific input, i.e. that R(x,w) holds for a fixed relation R. In a
CP-NIZK the public input also includes � commitments c1, . . . , c� to � “parts”
of the witness u1, . . . , u� (not necessarily disjoint). Informally, in a CP-NIZK for
relation R, the verifier is now checking the conjunction of two facts: (i) that the
original relation holds, i.e., R(x, u1, . . . , u�, ω), where ω is the non-committed
part of the witness; (ii) that for each j ∈ [�], cj opens to uj (with respect to the
type of cj).

We denote a CP-NIZK as a tuple of algorithms CP = (KeyGen,
Prove,VerProof) with the following explicit syntax for CP’s algorithms: –
KeyGen(ck, R) → crs := (ek, vk) produces a structured reference string (eval-
uation/verification key) for the CP version of R (NB: KeyGen takes as
input a commitment key generated by CS.Setup for a commitment scheme
CS). – Prove(ek, x, (cj)j∈[�], (uj)j∈[�], (oj)j∈[�], ω) → π produces a proof given
the public input, commitments, witness and their openings o1, . . . , o�. –
VerProof(vk, x, (cj)j∈[�], π) → b ∈ {0, 1} verifies a proof for a public input x and
commitments c1, . . . , c�. For security properties of CP-NIZKs, see the appendix.

CP-SNARKs. In brief, a CP-SNARK is a CP-NIZK that additionally satisfies
succinctness, i.e., the running time of VerProof is poly(λ + |x| + log |w|) and the
proof size is poly(λ + log |w|).

3 CP-SNARKs for Set Membership

In this section we discuss a specialization of CP-SNARKs for a specific NP
relation: membership of an element in a set;10 a similar formalization is possible
for non-membership as well. For formal details we refer to the full version of the
paper.

Set Membership Relations. Let Delm be some domain for set elements, and
let Dset ⊆ 2Delm be a set of possible sets over Delm. We define the set membership
relation Rmem : Dset × Delm as Rmem(U, u) = 1 ⇐⇒ u ∈ U .

CP-SNARKs for Set Membership. Intuitively, a commit-and-prove SNARK
for set membership allows one to commit to a set U and to an element u, and
then to prove in zero-knowledge that Rmem(U, u) = 1. If ComS∪elm is a type-
based commitment scheme that allows one to commit to either an element of
Delm (with type telm) or to a set of values of Delm (with type tset), then a CP-
SNARK for set membership is a zkSNARK for relation Rck

mem = (ck, Rmem), the
CP version of Rmem, such that Rck

mem(cU , cu, U, u, oU , ou) = 1 ⇐⇒ Rmem(U, u) =
1 ∧VerCommit(ck, tset, cU , U, oU ) = 1 ∧ VerCommit(ck, telm, cu, u, ou) = 1.
10 As discussed in the introduction, CP-SNARKs for set membership are a different

lens on accumulators that support (non-)membership proofs on committed values.
In the full version we formally construct a CP-SNARK for set membership from any
accumulator scheme that has a zero-knowledge proof for committed values. This
formalization captures existing schemes, such as [11] and [34].



402 D. Benarroch et al.

Notice that for the relation Rmem it is relevant for the proof system to be
succinct so that proofs can be at most polylogarithmic (or constant) in the size
of the set (that is part of the witness). This is why for set membership we are
mostly interested in designing CP-SNARKs.

4 CP-SNARKs for Set Membership with Short
Parameters

In this section we describe CP-SNARKs for set membership in which the ele-
ments of the sets can be committed using a Pedersen commitment scheme defined
in a prime order group, and the sets are committed using an RSA accumulator.
Since RSA accumulators are not extractable commitments, these schemes are
secure in a model where the commitment to the set is assumed to be checked at
least once, namely they are knowledge-sound with partial opening11 of the set
commitment.

A bit more in detail, we propose two CP-SNARKs. Our first scheme, called
MemCPRSA, works for set elements that are arbitrary strings of length η, i.e.,
Delm = {0, 1}η, and for sets that are any subset of Delm, i.e., Dset = 2Delm . Our
second scheme, MemCPRSAPrm, instead works for set elements that are prime
numbers of exactly μ bits, and for sets that are any subset of such prime numbers.
This second scheme is a simplified variant of the first one that requires more
structure on the set elements (they must be prime numbers). On the other hand
it is more efficient and thus preferable in those applications that can work with
prime elements.

An High-Level Overview of Our Constructions. We provide the main idea
behind our scheme, and to this end we use the simpler scheme MemCPRSAPrm in
which set elements are prime numbers in

(
2μ−1, 2μ

)
. The commitment to the set

P = {e1, . . . , en} is an RSA accumulator [3,5] that is defined as Acc = G
∏

ei∈P ei

for a random quadratic residue G ∈ QRN . The commitment to a set element
e is instead a Pedersen commitment ce = gehrq in a group Gq of prime order
q, where q is of ν bits and μ < ν. For public commitments Acc and ce, our
scheme allows to prove in zero-knowledge the knowledge of e committed in ce

such that e ∈ P and Acc = G
∏

ei∈P ei . A public coin protocol for this problem was
proposed by Camenisch and Lysyanskaya [11]. Their protocol however requires
various restrictions. For instance, the accumulator must work with at least 2λ-bit
long primes, which slows down accumulation time, and the prime order group
must be more than 4λ-bits (e.g., of 512 bits), which is undesirable for efficiency
reasons, especially if this prime order group is used to instantiate more proof
systems to create other proofs about the committed element. In our scheme the
goal is instead to keep the prime order group of “normal” size (say, 2λ bits),
so that it can be for example a prime order group in which we can efficiently
11 Briefly, this means the CP-SNARK extractor is not required to extract the set from

its commitment, as this is assumed to be opened by the adversary (see the full
version for a formal definition).
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instantiate another CP-SNARK that could be composed with our MemCPRSAPrm.
And we can also allow flexible choices of the primes size that can be tuned to
the application so that applications that work with moderately large sets can
benefit in efficiency.

A bit more technically: in [11] the accumulated primes lie in a pre-specified
interval: e ∈ (A,B). Their protocol can ensure that |e| < B2λz+λs+2, for the
(knowledge) extracted e. In order to ensure that e represents exactly one accu-
mulated element we need that B2λz+λs+2 < A2 − 1. We also need to ensure
that it is non-trivial (e = ±1); therefore, we move to a prime-order group and
prove the statement e 
= ±1 there (this also requires an equality proof “between
the two groups”). This results in the constraint A2 − 1 < q/2 (q: order of the
prime-order group) for proof of equality to hold, otherwise “collisions” attacks
may happen in the prime order group (more details about this issue are below).
Our observation is this: if we fix our primes to be of specific bit size (say μ)
and ensure this to the verifier, then (i) we wouldn’t need the 
= ±1 proof, and
(ii) we can eliminate the “collisions” so that we can adopt a smaller (and more
standard) prime-order group size; see below for the analysis. To ensure this we
apply a very cheap range proof (only 1-bit long) in the prime order group.

In order to achieve these goals, our idea to create a membership proof is to
compute the following:

– An accumulator membership witness W = G
∏

ei∈P\{e} ei , and an integer com-
mitment to e in the RSA group, Ce = GeHr.

– A ZK proof of knowledge (CPRoot) of a committed root for Acc, i.e. of (e,W )
such that W e = Acc and Ce = GeHr. This guarantees that Ce commits to
e ∈ Z accumulated in Acc (at this point, however, e may be a trivial root,
i.e., 1).

– A ZK proof CPmodEq that Ce and ce commit to the same value modulo q.
– A ZK proof CPRange that ce commits to an integer in the range

(
2μ−1, 2μ

)
.

From the combination of the above proofs we would like to conclude that the
integer committed in ce is in P . Without further restrictions, however, this may
not be the case; in particular, since for the value committed in Ce we do not
have a strict bound it may be that the integer committed in ce is another eq such
e = eq (mod q) but e 
= eq over the integers. In fact, the proof CPRoot does not
guarantee us that Ce commits to a single prime number e, but only that e divides∏

ei∈P ei, namely e might be a product of a few primes in P or the corresponding
negative value, while its residue modulo q may be some value that is not in the
set—what we call a “collision”. We solve this problem by taking in consideration
that eq is guaranteed by CPRange to be in

(
2μ−1, 2μ

)
and by enhancing CPRoot to

also prove a bound on e: roughly speaking |e| < 22λs+μ for a statistical security
parameter λs. Using this information we develop a careful analysis that bounds
the probability of such collisions for a malicious e (see Sect. 4.2 for additional
intuitions).

In the following section we describe the type-based commitment scheme sup-
ported by our CP-SNARK and the building blocks we use, and then we present
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the MemCPRSA CP-SNARK. The MemCPRSAPrm scheme and the instantiations
of our building blocks are in the appendix.

Remark 4.1. Although we describe our protocols for RSA groups, we generalize
them to work over any Hidden Order Group with slight modifications (see full
version).

4.1 Preliminaries and Building Blocks

Notation. Given a set U = {u1, . . . , un} ⊂ Z of cardinality n we denote com-
pactly with prodU :=

∏n
i=1 ui the product of all its elements. We use capital

letters for elements in an RSA group Z
∗
N , e.g., G,H ∈ Z

∗
N . Conversely, we use

small letters for elements in a prime order group Gq, e.g., g, h ∈ Gq. Following
this notation, we denote a commitment in a prime order group as c ∈ Gq, while
a commitment in an RSA group as C ∈ Z

∗
N .

Commitment Schemes. Our first CP-SNARK, called MemCPRSA, is for a
family of relations Rmem : Delm × Dset such that Delm = {0, 1}η, Dset = 2Delm ,
and for a type-based commitment scheme that is the canonical composition
SetComRSA • PedCom of the two commitment schemes given in Fig. 2. PedCom
is essentially a classical Pedersen commitment scheme in a group Gq of prime
order q such that q ∈ (2ν−1, 2ν) and η < ν.12 PedCom is used to commit to set
elements and its type is tq. SetComRSA is a (non-hiding) commitment scheme for
sets of η-bit strings, that is built as an RSA accumulator [3,5] to a set of μ-bit
primes, each derived from an η-bit string by a deterministic hash function Hprime :
{0, 1}η → Primes

(
2μ−1, 2μ

)
. SetComRSA is computationally binding under the

factoring assumption13 and the collision resistance of Hprime. Its type for sets is
tU .

Hashing to Primes. The problem of mapping arbitrary values to primes in a
collision-resistant manner has been studied in the past, see e.g., [9,17,23], and
in [21] a method to generate random primes is presented. Although the main
idea of our scheme would work with any instantiation of Hprime, for the goal of
significantly improving efficiency, our construction considers a specific class of
Hprime functions that work as follows. Let H : {0, 1}η × {0, 1}ι → {0, 1}μ−1 be
a collision-resistant function, and define Hprime(u) as the function that starting
with j = 0, looks for the first j ∈ [0, 2ι − 1] such that the integer represented by
the binary string 1|H(u, j) is prime. In case it reaches j = 2ι − 1 it failed to find
a prime and outputs ⊥.14.

12 The restriction η < ν is for simplicity; in the full version we discuss how to avoid it.
13 Here is why: finding two different sets of primes P, P ′, P �= P ′ such that GprodP =

Acc = GprodP ′ implies finding an integer α = prodP − prodP ′ �= 0 such that Gα = 1.
This is known to lead to an efficient algorithm for factoring N .

14 For specific instantiations of H, ι can be set so that ⊥ is returned with negligible
probability.
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Fig. 2. RSA Accumulator and Pedersen commitment schemes for MemCPRSA.

CP-NIZK for H Computation and PedCom. We use a CP-NIZK CPHashEq

for the relation RHashEq : {0, 1}μ × {0, 1}η × {0, 1}ι defined as

RHashEq(u1, u2, ω) = 1 ⇐⇒ u1 = (1|H(u2, ω))

and for the commitment scheme PedCom. Essentially, with this scheme one can
prove that two commitments ce and cu in Gq are such that ce = gehrq , cu =
guhru and there exists j such that e = (1|H(u, j)). In the security proof we
observe we do not have to prove all the iterations of H until finding j such that
(1|H(u, j)) = Hprime(u) is prime, which saves significantly on the complexity of
this CP-NIZK.

Integer Commitments. We use a scheme for committing to arbitrarily large
integer values in RSA groups introduced by Fujisaki and Okamoto [22] and
later improved in [18]. We briefly recall the commitment scheme. Let Z

∗
N be an

RSA group. The commitment key consists of two randomly chosen generators
G,H ∈ Z

∗
N ; to commit to any x ∈ Z one chooses randomly an r ←$ [1, N/2]

and computes C ← GxHr; the verifier checks whether or not C = ±GxHr.
This commitment is statistically hiding and computationally binding under the
hardness of factoring in Z

∗
N . Furthermore, a proof of knowledge of an opening

was presented in [18], its knowledge soundness was based on the strong RSA
assumption, and later found to be reducible to the plain RSA assumption in
[16]. We denote this commitment scheme as IntCom.

RSA Accumulators. As observed earlier, our commitment scheme for sets is an
RSA accumulator Acc computed on the set of primes P derived from U through
the map to primes, i.e., P := {Hprime(s)|s ∈ U}. In our construction we use
the accumulator’s feature for computing succinct membership witnesses, which
we recall works as follows. Given Acc = G

∏
ei∈P ei := GprodP , the membership

witness for ek is Wk = G
∏

ei∈P\{ek} ei , which can be verified by checking if W ek

k =
Acc.
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Argument of Knowledge of a Root. We make use of a zero-knowledge non-
interactive argument of knowledge of a root of a public RSA group element
Acc ∈ QRN . This NIZK argument is called CPRoot. More precisely, it takes in
an integer commitment to a e ∈ Z and then proves knowledge of an e-th root
of Acc, i.e., of W = Acc

1
e . More formally, CPRoot is a NIZK for the relation

RRoot : (Z∗
N ×QRN ×N)×(Z×Z×Z

∗
N ) defined as RRoot ((Ce,Acc, μ), (e, r,W )) = 1

iff Ce = ±GeHr mod N ∧ W e = Acc mod N ∧ |e| < 2λz+λs+μ+2 where λz and
λs are the statistical zero-knowledge and soundness security parameters respec-
tively of the protocol CPRoot. CPRoot is obtained by applying the Fiat-Shamir
transform to a public-coin protocol that we propose based on ideas from the
protocol of Camenisch and Lysysanskaya for proving knowledge of an accumu-
lated value [11]. In [11], the protocol ensures that the committed integer e is in
a specific range, different from 1 and positive. In our CPRoot protocol we instead
removed these constraints and isolated the portion of the protocol that only
proves knowledge of a root. We present the CPRoot protocol in the full version;
its interactive public coin version is knowledge sound under the RSA assumption
and statistical zero-knowledge.

Proof of Equality of Commitments in Z
∗
N and Gq. Our last building block,

called CPmodEq, proves in ZK that two commitments, a Pedersen commitment
in a prime order group and an integer commitment in an RSA group, open to
the same value modulo the prime order q = ord(G). This is a conjunction of a
classic Pedersen Σ-protocol and a proof of knowledge of opening of an integer
commitment [18], i.e. for the relation RmodEq ((Ce, ce), (e, eq, r, rq)) which is true
iff e = eq mod q ∧ Ce = ±GeHr mod N ∧ ce = geq mod qhrq mod q.

4.2 Our CP-SNARK MemCPRSA

We are now ready to present our CP-SNARK MemCPRSA for set membership.
The scheme is fully described in Fig. 3 and makes use of the building blocks
presented in the previous section.

The KeyGen algorithm takes as input the commitment key of Com1 and
a description of Rmem. It then samples a random generator H ←$QRN so that
(G,H) define a key for the integer commitment, and generates a CRS crsHashEq of
the CPHashEq CP-NIZK. The approach behind proof generation is similar to that
informally described at the beginning of Sect. 4 for the case when set elements
are prime numbers. In order to support sets U of arbitrary strings the main
differences are the following: (i) we use Hprime in order to derive a set of primes
P from U , (ii) given a commitment cu to an element u ∈ {0, 1}η, we commit
to e = Hprime(u) in ce; (iii) we use the previously mentioned ideas to prove that
ce commits to an element in P (that is correctly accumulated), except that we
replace the range proof πRange with a proof πHashEq that cu and ce commits to u
and e respectively, such that ∃j : e = (1|H(u, j)).

The correctness of MemCPRSA can be checked by inspection: essentially, it
follows from the correctness of all the building blocks and the condition that
η, μ < ν. For succinctness, we observe that the commitments CU , cu and all the
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Fig. 3. MemCPRSA CP-SNARK for set membership

three proofs have size that does not depend on the cardinality of the set U , which
is the only portion of the witness whose size is not fixed a-priori.

The requirements of security are slightly different according to the setting of
parameters as we will see below, so we state two separate theorems, one for each
case. Due to space restrictions, we provide a (semi-formal) proof intuition for
the first, while for the second we refer to the full version For ease of exposition
we let d = 1 + �λz+λs+2

μ �.
Theorem 4.1. Let PedCom, SetComRSA and IntCom be computationally binding
commitments, CPRoot, CPmodEq and CPHashEq be knowledge-sound NIZK argu-
ments, and assume that the Strong RSA assumption hold, and that H is collision
resistant. If dμ+2 ≤ ν, then MemCPRSA is knowledge-sound with partial opening
of the set commitments CU .

Theorem 4.2. Let PedCom, SetComRSA and IntCom be computationally binding
commitments, CPRoot, CPmodEq and CPHashEq be knowledge-sound NIZK argu-
ments, and assume that the Strong RSA assumption hold, and that H is collision
resistant. If dμ + 2 > ν, d = O(1) is a small constant, 2μ−ν ∈ negl(λ) and H
is modeled as a random oracle, then MemCPRSA is knowledge-sound with partial
opening of the set commitments CU .

Proof of Theorem 4.1. We provide an intuition about the security of our
construction. A formal proof appears in the full version of the paper.

Recall that the goal is to prove in ZK that cu is a commitment to an element
u ∈ {0, 1}η that is in a set U committed in CU . Intuitively, we obtain the security



408 D. Benarroch et al.

of our scheme from the conjunction of proofs for relations RRoot, RmodEq and
RHashEq: (i) πHashEq gives us that ce commits to eq = (1|H(u, j)) for some j and
for u committed in cu. (ii) πmodEq gives that Ce commits to an integer e such that
e mod q = eq is committed in ce. (iii) πRoot gives us that the integer e committed
in Ce divides prodP , where CU = GprodP with P = {Hprime(ui) : ui ∈ U}.

By combining these three facts we would like to conclude that eq ∈ P that,
together with πHashEq, should also guarantee u ∈ U . A first problem to analyze,
however, is that for e we do not have guarantees of a strict bound in

(
2μ−1, 2μ

)
;

so it may in principle occur that e = eq (mod q) but e 
= eq over the integers.
Indeed, the relation RRoot does not guarantee us that e is a single prime number,
but only that e divides the product of primes accumulated in CU . Assuming the
hardness of Strong RSA we may still have that e is the product of a few primes
in P or even is a negative integer. Consider the simple attack that could arise
from this: an adversary can find a product of primes from the set P , let it call
e, such that e = eq (mod q) but e 
= eq over the integers. Since e is a legitimate
product of members of P , the adversary can efficiently compute the e-th root of
CU and provide a valid πRoot proof. This is what we informally call a “collision”.
Another simple attack would be that an adversary takes a single prime e and
then commits to its opposite eq ← −e mod q in the prime order group. Again,
since e ∈ P the adversary can efficiently compute the e-th root of CU , W e = CU ,
and then the corresponding −e-th root of CU ,

(
W−1

)−e = CU . This is a second
type of attack to achieve a “collision”. With a careful analysis we show that with
appropriate parameters the probability that such collisions occur can be either
0 or negligible.

One key observation is that RRoot does guarantee a lower and an upper bound,
−2λz+λs+μ+2 and 2λz+λs+μ+2 respectively, for e committed in Ce. From these
bounds (and that e | prodP ) we get that an adversarial e can be the product of at
most d = 1 + �λz+λs+2

μ � primes in P (or their corresponding negative product).
Then, if 2dμ ≤ 2ν−2 < q, or dμ + 2 ≤ ν, we get that e < 2dμ < q. In case e > 0
and since q is prime, e = eq mod q ∧ e < q implies that e = eq over Z, namely no
collision can occur at all. In the other case e < 0 we have e > −2dμ and e = eq

(mod q) implies e = −q+eq < −2ν−1 +2μ < −2ν−1 +2ν−2 = −2ν−2. Therefore,
−2dμ < −2ν−2, a contradiction since we assumed dμ + 2 ≤ ν, so this type of
collision cannot happen.

If on the other hand we are in a parameters setting where dμ > ν −2, we give
a concrete bound on the probability that such collisions occur. More precisely,
for this case we need to assume that the integers returned by H are random, i.e.,
H is a random oracle, and we also use the implicit fact that RHashEq guarantees
that eq ∈ (

2μ−1, 2μ
)
. Then we give a concrete bound on the probability that the

product of d out of poly(λ) random integers lies in a specific range
(
2μ−1, 2μ

)
,

which turns out to be negligible when d is constant and 2μ−ν is negligible.

4.3 A CP-SNARK for Set Non-membership with Short Parameters

Here we describe two CP-SNARKs for set non-membership that work in a set-
ting identical to the one of Sect. 4. Namely, the set is committed using an RSA
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accumulator, and the element (that one wants to prove not to belong to the
set) is committed using a Pedersen commitment scheme. As in the previous
section, we propose two protocols for non-membership, called NonMemCPRSA

and NonMemCPRSAPrm, in complete analogy to MemCPRSA and MemCPRSAPrm.
In the former, the elements of the set are arbitrary bit-strings of length η,
Delm = {0, 1}η, while in the latter the elements are primes of length μ. The
schemes are fully described in the full version.

An High-Level Overview of the Constructions. The main idea of
NonMemCPRSA is similar to the one of the corresponding membership protocol,
MemCPRSA. It uses in the same modular way the modEq and HashEq protocols.
The only difference lies in the third protocol: instead of using Root it uses a new
protocol Coprime. In a similar manner, NonMemCPRSAPrm uses modEq, Range
and Coprime.

Let us explain the need of the Coprime protocol and what it does. First, recall
how a non-membership proof is computed in RSA Accumulators [28]. Let P be
a set of primes to be accumulated and prod the corresponding product. For any
prime element e /∈ P it holds that gcd(e, prod) = 1, while for any member e ∈ P
it is gcd(e, prod) = e 
= 1. Thus, proving that gcd(e, prod) = 1 would exhibit non-
membership of e in P . Recall, also, that using the extended Euclidean algorithm
one can efficiently compute coefficients (a, b) such that a·e+b·prod = gcd(e, prod).
A non-membership proof for an element e w.r.t. an accumulator Acc = Gprod

consists of a pair (D = Ga, b), where a, b are such that a · e + b · prod = 1.
The verification is DeAccb = G, which ensures that e and prod are coprime,
i.e. gcd(e, prod) = 1. Therefore, the goal of the Coprime protocol is to prove
knowledge of an element e committed in an integer commitment Ce that satisfies
this relation. A more formal definition of Coprime is given below.

Argument of Knowledge for a Coprime Element. We make use of a
non-interactive argument of knowledge of a non-membership witness of an ele-
ment such that the verification equation explained above holds. More formally
CPCoprime, is a NIZK for the relation: RCoprime : (Z∗

N ×QRN )× (Z×Z×QRN ×Z)
defined as
RCoprime ((Ce,Acc), (e, r,D, b)) = 1 iff

Ce = ±GeHr mod N ∧ DeAccb = G ∧ |e| < 2λz+λs+μ+2

An instantiation of a protocol for the above relation is in the full version.

5 Applications

As one can note, in our solutions the set of committed elements is public and not
hidden to the verifier. Nevertheless, our solutions can still capture applications
in which the “actual” data in the set is kept private. This is for example the
case of anonymous cryptocurrencies like Zerocash. In this scenario, the public set
of elements to be accumulated, U , is derived by creating a commitment to the
underlying data, X, e.g., u = COMM(x). To support this setting, we can use
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our solutions for arbitrary elements (so supporting virtually any commitment
scheme). Interestingly, though, we can also use our (more efficient) solution for
sets of primes if commitments are prime numbers. This can be done by using for
example the hash-to-prime method described in Sect. 4.1 or another method for
Pedersen commitments that we explain below in the context of Zerocash.

We now discuss concrete applications for which our constructions are suitable,
both for set-membership and set non-membership. Below we discuss applications
to Zerocash, financial identities, and Zerocoin; more applications to asset gover-
nance and anonymous broadcast can be found in the full version. In particular
all these are applications in which: (1) the prover time must be small; (2) the
size of the state (i.e.: the accumulator value and commitments) must be small
(potentially constant); (3) the verifier time should be small; and (4) the time to
update the accumulator—adding or deleting an element—should be fast. As we
discuss below, our RSA-based constructions are suitable candidate for settings
with these constraints.

Zerocash. Zerocash [4] is a UTXO-type (Unspent Transaction Output) cryp-
tocurrency protocol which extends Bitcoin with privacy-preserving (shielded)
transactions. When performing a shielded transaction users need to prove they
are spending an output note from a token they had previously received. Users
concerned with privacy should not reveal which note they are spending, else their
new transaction could be linked to the original note that contained the note com-
mitment. This would reveal information both to the public and the sender of the
initial transaction, and hence partially reveal the transaction graph. In order to
keep transactions unlinkable, the protocol uses zkSNARKs to prove a set mem-
bership relation, namely that a note commitment is in a publicly known set of
“usable” note commitments.

Zcash is a full-fledged digital currency using Zerocash as the underlying pro-
tocol. In its current deployment, Sapling [27], it employs Pedersen commitments
of the notes and makes a zero-knowledge set membership proof of these commit-
ments using a Pedersen-Hash-based Merkle tree approach. This is the part of
the protocol that can be replaced by one of our RSA-based solutions in order to
obtain a speedup in proving time. In particular, we could slightly modify the note
commitments in order to enable the use of our scheme MemCPRSAPrm for sets of
prime numbers, which gives the best efficiency. We can proceed as follows. Let
us recall that the note commitments are represented by their x coordinates in
the underlying elliptic curve group. We can then modify them so that the sender
chooses a blinding factor such that the commitment representation of a note is
a prime number, and we can add a consensus rule that enforces this check. With
this change, we can achieve a solution that is significantly more efficient than
that currently used in Zcash. Currently Zcash uses a Merkle Tree whose depth
is 32. In this setting, we would be able to reduce proving time of set-membership
from 1.12 s to 48.14 ms, trading it for larger proof sizes. We note that in this
application, the set-membership proof about u ∈ S is accompanied by another
predicate P (u). In the proof statement of the Zcash protocol, proving that P (u)
is satisfied takes considerably less time than the membership proof, hence this
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is why our solution would improve the overall proving time considerably, albeit
the proof having more components. Another interesting comment is that our
solution significantly reduces the size of the circuit, hence the need of a succinct
proof system is reduced and one may even consider instantiations with other
proof systems, such as Bulletproofs, that would offer transparency at the price
of larger proofs and verification time.

Zerocoin Vulnerability. Another specific application of our RSA-based con-
structions is that of solving the security vulnerability of the implementation of
the Zerocoin protocol [33] used in the Zcoin cryptocurrency [39]. The vulnera-
bility in a nutshell: when proving equality of values committed under the RSA
commitment and the prime-order group commitment, the equality may not hold
over the integers, and hence one could easily produce collisions in the prime order
group. Our work can provide different ways to solve this problem by generating
a proof of equality over the integers.
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Abstract. Given two ciphertexts generated with a public-key encryp-
tion scheme, the problem of plaintext equality consists in determining
whether the ciphertexts hold the same value. Similarly, the problem of
plaintext inequality consists in deciding whether they hold a different
value. Previous work has focused on building new schemes or extending
existing ones to include support for plaintext equality/inequality. We
propose generic and simple zero-knowledge proofs for both problems,
which can be instantiated with various schemes. First, we consider the
context where a prover with access to the secret key wants to convince
a verifier, who has access to the ciphertexts, on the equality/inequality
without revealing information about the plaintexts. We also consider the
case where the prover knows the encryption’s randomness instead of the
secret key. For plaintext equality, we also propose sigma protocols that
lead to non-interactive zero-knowledge proofs. To prove our protocols’
security, we formalize notions related to malleability in the context of
public-key encryption and provide definitions of their own interest.

Keywords: Public-key encryption · Generic plaintext equality ·
Generic plaintext inequality · Zero-knowledge proofs

1 Introduction

The problem of proving whether two given ciphertexts encrypt the same or dif-
ferent messages is known as plaintext equality (or inequality) proofs. Considering
public-key encryption (PKE), there are scenarios in which deciding equality can
easily be done. For instance, if both ciphertexts were generated using the same
key and the encryption scheme is deterministic or if access to a trusted third
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party, who knows the private key, is provided. However, in practical scenar-
ios, where a prover needs to convince a verifier of the equality or inequality of
plaintexts, require stronger guarantees (i.e., the verifier must learn no additional
information than the yes or no answer to the problem).

Well-known examples include the use of such proofs in voting protocols
[15,35,36], reputation systems [16,23] and cloud-based applications [34]. Addi-
tionally, protocols with broadcasting phases where one of the parties needs to
broadcast encrypted messages under different keys to several parties can also
benefit from these proofs. A less common example involves a client which needs
to regularly store encrypted information in a backup server (or in a distributed
database such as blockchain), while being able to convince any third party of min-
imal claims about it. Furthermore, in settings where online interaction between
the parties is not desirable or public verifiability is preferred, non-interactive
variants can also be very useful.

Sometimes equality or inequality proofs are used as subroutines and need to
be integrated with other software. Therefore, having flexible alternatives (e.g.,
without relying on specific constructions that require particular configurations
or specific hardware) is essential to overcome possible conflicts Thus, generic
protocols that can be implemented with different PKE schemes, making them
more flexible than their customized variants and more suitable to be integrated
into different settings, are proposed.

We focus on two-party protocols, where two ciphertexts and auxiliary inputs
are given. The prover attempts to convince a verifier on either the plaintext
equality or inequality of the ciphertexts. The prover and the verifier share a
common input consisting of a set of public keys and ciphertexts generated with
those keys. The prover also knows the corresponding set of secret keys or the
randomness used to encrypt the plaintexts. As previously mentioned, our aim is
to design generic plaintext equality or inequality protocols in this setting.

Contributions. Using randomization properties of PKE schemes, we build secure
generic zero-knowledge protocols from standard techniques. Our first contribu-
tion introduces different notions related to the concept of malleability in public-
key encryption and their formalization. To that end, we make a clear distinction
between how a ciphertext can be randomized (e.g. the ciphertext alone, the plain-
text message or concerning the corresponding key). As a result, we characterize
PKE schemes in terms of generic randomizable encryption properties, which we
use to build our protocols. Our second contribution is the construction of two
interactive zero-knowledge protocols, ΠPEQ and ΠPINEQ, for plaintext equality and
inequality. These protocols are secure against malicious verifiers. For each of
them we first present a weaker variant (ΠHPEQ and ΠHPINEQ respectively) which is
only secure against honest verifiers. The protocol ΠPEQ requires the PKE scheme
to allow the randomization of both, the ciphertext and the corresponding plain-
text message. In contrast, the protocol ΠPINEQ only requires the former one. Our
third contribution is plaintext equality protocols based on proofs of knowledge
of the secret key (protocols ΠMATCHPEQ and ΠSIGPEQ), or of the randomness used
for the encryption (protocol ΠRSPEQ). Either case admits non-interactive versions
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applying the Fiat-Shamir transform, but both require schemes with less common
properties. The schemes need to be key-randomizable or random coin decrypt-
able. We base our protocols on simple properties, making them independent of
a particular scheme and therefore generic. To support this claim, we list various
schemes indicating the relation with our definitions and protocols.

Finally, we also see an added value of our contributions in terms of serving as
a pedagogical tool to present zero-knowledge protocols (ZKP). Usual examples to
introduce ZKP are graph 3-coloring or graph isomorphism. Although such proto-
cols can be explained without requiring any advanced cryptographic knowledge,
they are not used in real-world applications. On the contrary, the protocols that
we present are very intuitive, can easily be explained without requiring advanced
cryptographic knowledge outside the concept of public key encryption, and are
also useful for real-world applications of ZKP. For this reason, we think our
protocols can serve as a convincing pedagogical example to explain ZKP to a
larger audience who has little mathematical background. With this in mind, as
a side contribution, we present a physical protocol using simple objects (boxes
and padlocks) to explain how our first proof of plaintext inequality works.

Related Work. Jakobsson et al. [26] introduced the concept of distributed plain-
text equality test (PETs), which allows n > 1 parties to determine whether two
ElGamal ciphertexts encrypt the same or different message without learning it,
but given knowledge of the secret key and assuming at least one of the parties is
honest. Very recently, McMurtry et al. [28] showed that several follow up works
based on the PET from [26] are flawed (because they use it as if no trusting
assumptions where needed), and showed how to fix it. Choi et al. [12] proposed
zero-knowledge equality/inequality proofs for boolean ElGamal ciphertexts with
knowledge of the secret key. In their work, the randomness used to produce the
two ciphertexts is required. Parkes et al. [30] proposed zero-knowledge equali-
ty/inequality proofs for Paillier ciphertexts given access to the randomness used
to produce the ciphertexts or access to the plaintexts. In [4], Blazy et al. intro-
duced a generic approach to prove a non-membership concerning some language
in non-interactive zero-knowledge. They showed how to prove plaintext inequal-
ity of two ElGamal ciphertexts, given that the prover knows the plaintext and
the randomness used to produce one of the ciphertexts. More recently, Blazy
et al. [5] introduced a generic technique for non-interactive zero-knowledge plain-
text equality/inequality proofs in which the prover is given two ciphertexts and
trapdoor information. In such a scenario, none of the parties has access to the
secret key nor the randomness used to produce the ciphertexts. While being
generic, those constructions [4,5] require a specific kind of zero-knowledge proofs.
More precisely, they need to build a zero-knowledge proof showing that a zero-
knowledge proof was computed honestly. While this design works elegantly with
pairing-based cryptography (as Groth-Sahai proofs [22] allows to prove in zero-
knowledge a pairing-product equation, while also being verifiable with a pairing
product equation), this often fails (or requires ad-hoc constructions that are far
from being efficient) in other settings. For example, when considering Schnorr
[37] proofs, the random oracle prevents any kind of chaining. Therefore, another
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design is required to allow such functionality. Extensions for PKE schemes such
that given a plaintext, a ciphertext and a public key, it is universally possi-
ble to check whether the ciphertext encrypts the plaintext under the key also
exists. Such an extension has been proposed by Canard et al. [9] under the
name of Plaintext Checkable Encryption. There are also different works propos-
ing schemes to support plaintext equality tests from user-specified authorization.
For instance, in [38], two users who have their keys can issue tokens to a proxy
to authorize it to perform the plaintext equality test for their ciphertexts. Yang
et al. [39] constructed a probabilistic scheme that allows anyone provided with
two ciphertexts to check if they encrypt the same message, considering that
the ciphertexts may not have been generated with the same key. They do this
achieving a weak form of ind-cca.

Previous work rests on specific constructions, which do not allow the scheme
to be separated from the protocol’s requirements. Our approach is different
because we first seek to define protocols independently of the scheme and then
to present, which are the necessary conditions for a scheme to instantiate them.
As a result and unlike prior work, we present many protocols which can be inte-
grated with existing pieces of software just as if they were templates allowing
one to switch from one scheme to another more easily. To compare the efficiency
of our protocols with custom variants, we discuss the case of ElGamal.

Outline. Section 2 provides the required background. Sect. 3 defines new notions
for generic randomizable encryption. In Sect. 4, we present generic interactive
protocols for both, plaintext equality and inequality. In Sect. 5, under different
assumptions, we present generic protocols for plaintext equality and discuss how
to define non-interactive versions in the random oracle model. Before concluding,
we discuss the efficiency of our protocols in Sect. 6.

2 Cryptographic Background

Definition 1 (Public-key encryption scheme [32]). A public-key encryption
(PKE) scheme Π = (KGen,Enc,Dec) is a triple of (possibly randomized) efficient
algorithms that verifies the following:

1. KGen(1k) is a p.p.t algorithm that on input the security parameter k, produces
a key pair (pk, sk).

2. Encpk(m; r) is a p.p.t algorithm that given a message m, a random coin r and
pk produces a ciphertext c.

3. Decsk(c) is a deterministic algorithm that given a ciphertext c and sk produces
a message m.

4. Correctness: The triple should be such that the following holds for every valid
message defined in the message space and every security parameter:

Pr
[
(pk, sk) $← KGen(1k) : Decsk(Encpk(m)) = m

]
= 1.
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By convention, we denote the set of the plaintexts (resp. public keys, random
coins, ciphertexts) by M (resp. K, R, C).

Definition 2 (Random Coin Decryptable PKE (RCD-PKE) [7]). A prob-
abilistic PKE scheme is Random Coin Decryptable if there exists a polynomial-
time algorithm CDec such that for any public key pk ∈ K, any m ∈ M, and any
random coin σ, the following equation holds: CDecσ(Encpk(m;σ), pk) = m.

For interactive machines P (the prover) and V (the verifier), we denote as in
[31] that 〈P(y),V(z)〉(x) is the random variable representing V’s output when
interacting with P on common input x, when the random input to each machine
is uniformly and independently chosen with z and y being auxiliary inputs. We
also denote a witness relation for a language L ∈ NP as RL and say that y is a
witness for the membership x ∈ L if (x, y) ∈ RL.

Definition 3 (Interactive Proof System [19,31]). Let εc, εs: N → [0, 1)
such that both are computable in poly(�)-time and εc(�) + εs(l) < 1 − poly(�)−1.
(P,V) is called an interactive proof system for the language L with completeness
and soundness errors εc and εs, if V is p.p.t and the following conditions hold:

– Completeness: For every x ∈ L there exists a (witness) string y such that for
every auxiliary input z ∈ {0, 1}∗ : Pr[〈P(y),V(z)〉(x) = 1] = 1 − εc(|x|).

– Soundness: For every x /∈ L, every interactive machine B, and every y, z ∈
{0, 1}∗ : Pr[〈B(y),V(z)〉(x) = 1] ≤ εs(|x|).

If εc ≡ 0, we say the system has perfect completeness. If the soundness condition
is required to hold only with respect to a computationally bounded prover B,
(P,V) is called an interactive argument system.

Definition 4 (Sigma protocol [24]). An interactive proof system (P,V) is
said to be a sigma protocol for the relation RL when it uses the following pattern:
P sends a commitment C, V sends a challenge b, P sends a response r after
which V accepts or rejects the proof, and the following requirement holds:

– Special soundness: There exists a polynomial-time algorithm E that given any
x and any pair of accepting transcripts (t, t′) = ((C, b, r), (C, b′, r′)) for x such
that b 	= b′ : Pr[y ← E(x, t, t′) : (x, y) ∈ RL] is overwhelming.

In [27], Lindell extends the definition of special soundness to proofs of knowl-
edge that are not sigma protocols. We now recall it using the formalism intro-
duced in [6], where t is a transcript of the protocol execution and s represents
the state of P∗ including its random tape.

Definition 5 (Statistical Witness-Extended Emulation [6]). An interac-
tive proof system (P,V) has statistical witness-extended emulation if for all
deterministic polynomial-time P∗, there exists an expected polynomial-time emu-
lator E such that for all interactive adversaries A:



420 O. Blazy et al.

Fig. 1. Experiments defining Hiding and Binding respectively.

Pr
[
(y, s) ← A(1k); t ← 〈P∗(y, s),V(y)〉; b ← A(t) : b = 1

] ≈

Pr

[
(y, s) ← A(1k); (t, x) ← E〈P∗(y,s),V(y)〉(y); b ← A(t) :
b = 1 and if t is accepting then (x, y) ∈ L

]

where the oracle called by E〈P∗(y,s),V(y)〉(y) permits rewinding to a specific point
and resuming with fresh randomness for the verifier from this point onwards.

Definition 6 (Zero-Knowledge [31]). An interactive proof system (P,V) is
zero-knowledge if for every p.p.t interactive machine V∗ there exists a proba-
bilistic expected polynomial-time algorithm S (called simulator) such that the
following two ensembles are computationally indistinguishable (when the distin-
guishing gap is a function in |x|) : {〈P(y),V∗(z)〉(x)}z∈{0,1}∗,x∈L for an arbi-
trary y ∈ RL(x) and {S(x, z)}z∈{0,1}∗,x∈L. That is, for every probabilistic algo-
rithm D running in time polynomial in the length of its first input, every poly-
nomial p, all (x, y) ∈ RL and all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that:
|Pr[D(x, z′, 〈P(y),V∗(z)〉(x)) = 1] − Pr[D(x, z′,S(x, z)) = 1]| < p(|x|)−1.

The term “perfect zero-knowledge” refers to proof systems where the two
ensembles are identically distributed. Furthermore, a weaker variant called Hon-
est Verifier Zero-Knowledge (HVZK) is usually considered as well. Only a single
verifier V = V∗ that always follows the protocol is assumed in this variant.

Definition 7 (Commitment Scheme). A non-interactive commitment
scheme Γ = (Setup,Commit,Open) on a message space M is a tuple that verifies:

1. ck ← Setup(1k) generates a commitment key ck.
2. ∀ m ∈ M : (c, d) ← Commitck(m) is the commitment/opening pair for m.
3. A commitment can be opened to m′ ∈ M ∪ ⊥ with m′ ← Open(c, d), where ⊥

is returned if c is not a valid commitment to any message.
4. Correctness : ∀ m ∈ M : Open(Commitck(m)) = m.

Commitment schemes are required to have two security properties: binding
and hiding. Binding states that it should be infeasible for any party to come
up with an opening that would reveal a different value than the one initially
committed. Hiding states that it should be infeasible for any party to reveal a
commitment without the corresponding opening. If a scheme is perfectly binding,
it can only be computationally hiding or the other way round.
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Definition 8 (Hiding and Binding). A commitment scheme Γ has the hiding
security property if the advantage of any p.p.t algorithm A = (A1,A2) defined
by AdvHiding

Γ,A (k) := 2· Pr
[
ExpHiding

Γ,A (k) ⇒ true
]

− 1 is negligible, where ExpHiding

Γ,A (k)
is the experiment shown in Fig. 1 (left side).

A commitment scheme Γ has the binding security property if the advantage
of any p.p.t algorithm A defined by AdvBinding

Γ,A (k) := Pr
[
ExpBinding

Γ,A (k) ⇒ true
]

− 1
is negligible, where ExpBinding

Γ,A (k) is the experiment shown in Fig. 1 (right side).

3 Generic Randomizable Encryption

In this section we propose several definitions to characterize the kinds of ran-
domizations that PKE schemes can support.

To begin with, we present a definition of re-randomizability [33], which has
also been introduced under different names or variants [10,18,21,25]. Unlike pre-
vious work, we include the notion of derandomizability , and omit the distinction
with universal re-randomizability from [33], which we consider implicit unless
otherwise said. Informally speaking, a scheme that is randomizable and deran-
domizable supports not only the generation of fresh ciphertexts but also the
“rollback” process. Furthermore, we will say that a scheme achieves perfect ran-
domizability when no adversary can distinguish between a fresh encryption of
the original message and a randomization of the ciphertext.

Definition 9 (Randomizable PKE scheme (Rand-PKE) [33]). Given a PKE
scheme Π = (KGen,Enc,Dec), we say that Π is randomizable if there exists a
polynomial-time algorithm Rand such that:

1. Rand takes c ∈ C, r ∈ R and returns c′ ∈ C.
2. ∀ (pk, sk) $← KGen(1k), r ∈ R and c ∈ C: Pr [Decsk(Rand(c, r)) = Decsk(c)] =

1.

Moreover, we say that Π is derandomizable if for any c ∈ C and r ∈ R, there
exists an efficiently computable r∗ such that: Pr [c = Rand(Rand(c, r), r∗)] = 1.

Definition 10 (Computational and perfect randomizability [33]). We
say that a Rand-PKE scheme is computationally randomizable if for any k,
(pk, sk) ← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any polynomial-
time distinguisher D, there exists a negligible function ε(·) such that:

∣∣∣∣∣∣
Pr

⎡
⎣

r′ $← R;
c′ ← Encpk(m; r′);
b ← D(pk, c, c′);

: b = 1

⎤
⎦ − Pr

⎡
⎣

r′ $← R;
c′ ← Rand(c, r′);
b ← D(pk, c, c′);

: b = 1

⎤
⎦

∣∣∣∣∣∣
≤ ε(k).

We say that the scheme is perfectly randomizable when ε(k) = 0.
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We now introduce the following definitions that specify how the random
coins used to produce fresh encryptions and randomizations can relate together.
We will say that a PKE scheme is strongly randomizable when it also supports
efficient algorithms to compute such relationship.

Definition 11 (Strong Randomizable PKE scheme). Given a PKE
scheme Π = (KGen,Enc,Dec), we say that Π is strongly randomizable if it
is a Rand-PKE and there exist a polynomial-time algorithm RandR such that:

1. RandR takes r and r′ ∈ R and returns r′′ ∈ R.
2. ∀ (pk, sk) $← KGen(1k), m ∈ M and r′′ ← RandR(r, r′), the following equation

holds: Rand(Encpk(m; r), r′) = Encpk(m; r′′).

Moreover, we say that Π is random-extractable if there exists a a polynomial-
time algorithm RandExt such that for any (r, r′, r′′) ∈ R3:

Pr [r = RandExt(r′, r′′) : r′′ ← RandR(r, r′)] = 1.

Definition 12 (Computational and perfect strong randomizability).
We say that a Rand-PKE scheme is computationally strongly randomizable if
for any k, (pk, sk) ← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any
polynomial-time distinguisher D, there exists a negligible function ε(·) such that:

∣∣∣∣∣∣∣∣
Pr

⎡
⎣

r′ $← R;
c′ ← Encpk(m; r′);
b ← D(pk, r, c, r′, c′);

: b = 1

⎤
⎦− Pr

⎡
⎢⎢⎣

r′′ $← R;
r′ ← RandR(r, r′′);
c′ ← Rand(c, r′′);
b ← D(pk, r, c, r′, c′);

: b = 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
≤ ε(k).

We say that the scheme is perfectly strongly randomizable when ε(k) = 0.

We now define the notions of message-randomizability and key-
randomizability . For message-randomizability, we consider three different algo-
rithms. The first one computes the plaintext’s randomization, the second com-
pute it on the ciphertext, and the third one computes the randomness given two
messages.

Definition 13 (Message-randomizable PKE scheme (MsgRand-PKE)).
Given a PKE scheme Π = (KGen,Enc,Dec), we say that Π is message-randomi-
zable if there exists a set RM and two polynomial-time algorithms MsgRandM
and MsgRandC such that:

1. MsgRandM takes m ∈ M, r ∈ RM and returns m′ ∈ M. Moreover, the
function fr : M ⇒ M defined by fr(m) = MsgRandM(m, r), is bijective.

2. MsgRandC takes c ∈ C, r ∈ RM and returns c′ ∈ C.
3. ∀ (pk, sk) $← KGen(1k), m ∈ M, r′ ∈ R, r ∈ RM and c = Enc(m; r′):

Pr [Decsk(MsgRandC(c, r)) = MsgRandM(m, r)] = 1.
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Moreover, we say that Π is message-derandomizable if for any m ∈ M and
r ∈ RM, there exists a unique efficiently computable r∗ such that:

Pr [m = MsgRandM(MsgRandM(m, r), r∗)] = 1.

Finally, we say that Π is message-random-extractable if there exists a p.p.t
algorithm MsgRandExt such that for any m ∈ M and r ∈ RM:

Pr [r = MsgRandExt(m,MsgRandM(m, r))] = 1.

Note that we require MsgRandM to be bijective. This property is implicity
required for the message-derandomizability. Indeed, if a randomized message can
be obtained using different messages but the same random, then it could also be
derandomized in several ways, which contradicts our definition.

Definition 14 (Computational and perfect message-randomizability).
We say that a MsgRand-PKE scheme is computationally message-randomizable
if for any k, (pk, sk) ← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any
polynomial-time distinguisher D, there exists a negligible function ε(·) such that:

∣∣∣∣∣∣
Pr

⎡
⎣

m′ $← M;
c′ ← Encpk(m′; r);
b ← D(pk, c, c′);

: b = 1

⎤
⎦− Pr

⎡
⎣
rm

$← RM;
c′ ← MsgRandC(c, rm);
b ← D(pk, c, c′);

: b = 1

⎤
⎦

∣∣∣∣∣∣
≤ ε(k).

We say that the scheme is perfectly message-randomizable when ε(k) = 0.

For key-randomizability, we consider three algorithms as well. The first one
randomizes the public key, the second one the secret key, and the third one
randomizes a ciphertext given a randomized public key.

Table 1. PKE schemes and their properties.

Perfect ZK ZKPoK

Scheme Security RCD Rand MsgRand KeyRand ΠPEQ ΠPINEQ ΠMATCHPEQ ΠSIGPEQ ΠRSPEQ

ElGamal [17] IND-CPA � � � � � � � � �
Paillier [29] IND-CPA � � � � � � �
GM [20] IND-CPA � � � � �
DEG [14] IND-CCA1 � � � � � � � � �
CS-lite [13] IND-CCA1 � � � � � �
DSCS [33] RCCA � � �

Definition 15 (Key-randomizable PKE scheme (KeyRand-PKE)). Given
a PKE scheme (KGen,Enc,Dec), we say that Π is key-randomizable if there
exists a set RK and three polynomial-time algorithms such that:
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1. KeyRandPk takes a public key pk, r ∈ RK and returns pk′.
2. KeyRandSk takes a secret key sk, r ∈ RK and returns sk′.
3. KeyRandC takes c ∈ C, r ∈ RK and returns c′ ∈ C.
4. ∀ (pk, sk) $← KGen(1k), m ∈ M, r ∈ R, rk ∈ RK and c = Enc(m; r):

Pr

[
(Decsk(c) = DecKeyRandSk(sk,rk)(KeyRandC(c, rk)))
∧(DecKeyRandSk(sk,rk)(EncKeyRandPk(pk,rk)(m; r)) = m)

]
= 1.

Moreover, we say that Π is key-derandomizable if for any secret key sk and
rk ∈ RK, there exists an efficiently computable r∗

k such that:

Pr [sk = KeyRandSk(KeyRandSk(sk, rk), r∗
k )] = 1.

Definition 16 (Computational and perfect key-randomizability). We
say that a KeyRand-PKE scheme is computationally key-randomizable if for any
k, (pk, sk) $← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any polynomial-
time distinguisher D, there exists a negligible function ε(·) such that:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣

(pk′, sk′) $← KGen(1k);
c′ ← Encpk′ (m; r);
b ← D(sk, pk, c′, sk′, pk′);

: b = 1

⎤

⎦ − Pr

⎡

⎢
⎢
⎢
⎢
⎣

rk
$← RK;

pk′ = KeyRandPk(pk, rk);
sk′ = KeyRandPk(sk, rk);
c′ = KeyRandC(c, rk);
b ← D(sk, pk, c′, sk′, pk′);

: b = 1

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε(k).

We say that the scheme is perfectly key-randomizable when ε(k) = 0.

In Table 1, we list some well-known PKE schemes and their relationship
with our definitions and protocols. We stress that although fully homomorphic
schemes such as those based on lattices could also be used to instantiate our
protocols, partial homomorphic properties presented in the scheme can be used
to implement the different algorithms as well. Nonetheless, as shown with the
DSCS scheme [33], we note that being partially homomorphic is not necessary
to achieve re-randomizability. We refer the reader to Appendix A for examples
of how our protocols can be instantiated with ElGamal and Paillier.

Fig. 2. One round of the protocol ΠHPINEQ (repeated k times).
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4 Interactive Protocols

This section presents protocols for proving plaintext equality and inequality
where the common input consists of a public key and two ciphertexts generated
with it. As private input, the prover will have the corresponding private key.
For plaintext inequality protocols we will require the scheme to be randomizable
whereas for plaintext equality we will also require it to be message-randomizable.

In both cases, we first introduce an HVZK variant, which we then modify to
achieve zero-knowledge in the presence of malicious verifiers. Complete security
proofs for all protocols in this work are given in the extended version [3].

4.1 Plaintext Inequality

Let us first introduce our protocol ΠHPINEQ (Fig. 2). It starts with the verifier
randomly choosing r

$← R and b ∈ {0, 1}. Then it computes c′
b ← Rand(cb, r)

and sends c′
b to the prover. At this stage, the prover receives a ciphertext that

cannot link without decryption to c0 or c1. Since the verifier is honest, the
prover either decrypts c′

b to m0 or m1 and can determine b and send it back to
the verifier. The verifier accepts if and only if it receives b as expected.

Theorem 1. Let Π be a PKE scheme, which is (computationally) randomiz-
able. If Π is used in ΠHPINEQ, then ΠHPINEQ is complete, computationally sound and
perfect HVZK.

The idea of this protocol can easily be explained to a large audiance replacing
the ciphertexts with closed boxes using a padlock. Consider two identical closed
boxes that contain a white card and a black card respectively. The prover has
a key that allows him to open both boxes, and wants to prove the verifier that
the boxes contains different things without revealing anything else. The verifier
secretly chooses one of the two boxes and challenges the prover to guess which
box he picked. The prover secretly opens the box and deduces which one it was
from the color of the card. He then tells the verifier which was the box and if
the verifier agrees, they repeat the protocol k times. If the two identical boxes
contain the same card, then the prover has no information about the box he
receives and fails one of the rounds with probability 1/2k.

Protocol ΠPINEQ (Fig. 3), is an amendment of ΠHPINEQ that uses a commitment
scheme. Without it, a malicious verifier could send a ciphertext that is not a
randomization of c0 or c1 and check whether it encrypts the same value. The
commitment scheme protects the prover from such verifiers. To this end, the
verifier first randomizes the ciphertext and then sends it to the prover, which
computes z and commits to the resulting value. Then, the verifier reveals the
randomness used at the first stage and the prover opens the commitment if and
only if these values are consistent with the ciphertext obtained from the verifier.
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Fig. 3. One round of the protocol ΠPINEQ (repeated k times).

Fig. 4. One round of the protocol ΠHPEQ (repeated k times).

Theorem 2. Let Π be a PKE scheme, which is perfectly strong randomizable
and derandomizable. Let Γ be a commitment scheme, which is computationally
binding and perfectly hiding. If Π and Γ are used in the protocol ΠPINEQ, then
ΠPINEQ is complete, computationally sound and perfect zero-knowledge.

4.2 Plaintext Equality

As before, we begin explaining our protocol ΠHPEQ (Fig. 4). First, the veri-
fier randomly chooses r ∈ R, rm ∈ RM and b ∈ {0, 1}. Then it computes
c′
b ← Rand(cb, r) and c′′

b ← MsgRandC(c′
b, rm) to send c′′

b to the prover. At this
stage, the prover receives a ciphertext that cannot be linked to c0 nor to c1. The
prover decrypts c′′

b obtaining a message m′, which corresponds to a message-
randomization of either the message decrypted by c0 or by c1. The prover com-
putes z = MsgRandExt(m′,m) and sends it to the verifier. The verifier accepts
if and only if z = rm. Since both ciphertexts, c0 and c1, belong to Encpk(m), the
prover can always compute z correctly. If this is not the case, then a cheating
prover can only correctly guess the bit b with probability at most 1/2.
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Fig. 5. One round of the protocol ΠPEQ (repeated k times).

Theorem 3. Let Π be a PKE scheme, which is (computationally) randomizable,
(computationally) message-randomizable and message-random-extractable. If Π
is the scheme used in ΠHPEQ, then ΠHPEQ is complete, computationally sound and
perfect HVZK.

Figure 5 shows our last variant, which makes use of a commitment scheme.
Without one, a malicious verifier could send a ciphertext c∗ for which he knows
the corresponding message m∗. Once z is received from the prover, the mali-
cious verifier will gain information about the relation of (m,m∗, z) and could
eventually compute m. By relying on the commitment scheme’s hiding property,
the prover first commits to the value z. Then, it checks whether the verifier has
correctly randomized the messages or not to open the commitment.

Theorem 4. Let Π be a PKE scheme, which is perfectly strong ran-
domizable and derandomizable, perfectly message-randomizable and message-
derandomizable and message-random-extractable. Let Γ be the commitment
scheme, which is computationally binding and perfectly hiding. If Π and Γ are
used in the protocol ΠPEQ, then ΠPEQ is complete, computationally sound and per-
fect zero-knowledge.

Note that in Theorems 2 and 4 zero-knowledge can be computational if the
randomization conditions are computational instead of perfect or if the commit-
ment scheme being used has only computational hiding.

5 ZKPoK for Plaintext Equality

We switch our attention to protocols that are Zero-Knowledge Proofs of Knowl-
edge (ZKPoK) for plaintext equality. In Sect. 5.1 we focus on ZKPoK of the
secret key whereas in Sect. 5.2 we focus on ZKPoK of the randomness used to
generate the ciphertexts. The application is not the same because if the prover
knows the secret key, the use case to consider is when the prover acts as a
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receiver of those ciphertexts. On the other hand, if the prover knows the ran-
domness used to generate the ciphertexts, the use case to consider is when the
prover acts as a sender. Finally, we outline how non-interactive variants can be
defined in Sect. 5.3.

Fig. 6. One round of the protocol ΠMATCHPEQ (repeated k times).

5.1 Protocols Based on Knowledge of the Secret Key

Protocols in this section additionally require the scheme to be key-randomizable.
We present a protocol called ΠMATCHPEQ (Fig. 6), which relies on a ZKP to prove
that the decryption of a given ciphertext matches a given message. Such proofs
are known for numerous encryption schemes (e.g., [14,17,20,29]). Then, we intro-
duce an auxiliary protocol called ΠMATCH (Fig. 7), that meets the requirement of
ΠMATCHPEQ (its a proof system for the above mentioned). We also present here
a third protocol called ΠSIGPEQ (Fig. 8) that merges the two previous ones. It
requires a randomizable, message-randomizable and key-randomizable scheme,
but it does not require any other protocol as a subroutine, which makes it more
efficient that ΠMATCHPEQ instantiated with ΠMATCH. An interesting additional prop-
erty of ΠMATCHPEQ and ΠSIGPEQ is that both can also be used to prove plaintext
equality of two ciphertexts encrypted under different keys.

In protocol ΠMATCHPEQ the prover sends two message-randomizations to the
verifier who then challenges it on these ciphertexts. If both ciphertexts encrypt
message-randomizations of the same message, then the prover can either prove
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that it correctly did the message-randomizations or that both ciphertexts encrypt
the same message.

Fig. 7. One round of the protocol ΠMATCH (repeated k times).

Theorem 5. Let Π be the PKE scheme used in ΠMATCHPEQ. If Π is perfectly
randomizable and derandomizable, perfectly message-randomizable and message-
derandomizable, and if the proof in step three is instantiated by a sigma protocol
that is correct, special sound, and perfectly zero-knowledge, then ΠMATCHPEQ is com-
plete, has statistical witness-extended emulation, and perfect zero-knowledge.

For ΠMATCH, we consider a setting in which the verifier has access to the pk,
the ciphertext c, the message m and challenges the prover to prove that c is an
encryption of m. This protocol’s intuition is that if the scheme is randomizable
and key-randomizable, the prover can generate a new ciphertext for the same
massage but under different keys. The verifier is then allowed to check that 1)
the prover can generate a new ciphertext c′′ which decrypts to the same message
and 2) by decrypting c′′ to m conclude that the original ciphertext c is also an
encryption of m.

Theorem 6. Let Π be the PKE scheme used in ΠMATCH. If Π is perfectly random-
izable, perfectly key-randomizable and key-derandomizable, then ΠMATCH is com-
plete, special sound, and perfect zero-knowledge.

To conclude this section, we present the protocol ΠSIGPEQ, a sigma protocol
for plaintext equality of two ciphertexts built upon the previous ones. In this
protocol, the prover performs a message-randomization on the ciphertexts and a
key-randomization to obtain new ciphertexts. These ciphertexts decrypt to the
same message m′ but under a different key. Once the prover sends the public
keys and the new ciphertexts to the verifier, the verifier challenges the prover.
The intuition behind the challenge is that if the two ciphertexts obtained by
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Fig. 8. One round of the protocol ΠSIGPEQ (repeated k times).

the verifier are message-randomizations of the same message, then the prover
should be able to provide either the corresponding secret key to confirm it or
the randomness used to verify the procedure. This protocol is more efficient
because it requires exactly k rounds, while ΠMATCHPEQ requires k rounds times the
number of rounds of ΠMATCH.

Theorem 7. Let Π be the PKE scheme used in ΠSIGPEQ. If Π is perfectly ran-
domizable, perfectly message-randomizable and perfectly key-randomizable, then
ΠSIGPEQ is complete, special sound, and perfect zero-knowledge.

5.2 Protocols Based on Knowledge of the Encryption Randomness

Based on the previous ideas, we present in this section the protocol ΠRSPEQ, which
requires the PKE scheme to be random coin decryptable, strong randomizable
and message-randomizable. The intuition behind this protocol (Fig. 9) is the
same as in ΠSIGPEQ; the verifier challenges the prover to either provide the ran-
domizers or to allow it to check the procedure.

Theorem 8. Let Π be the PKE scheme used in ΠRSPEQ. If Π is perfectly
strong randomizable, random-extractable, perfectly message-randomizable and
random coin decryptable, then ΠRSPEQ is complete, special sound, and perfect zero-
knowledge.
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Fig. 9. One round of the protocol ΠRSPEQ (repeated k times).

5.3 Non-interactive Variants

Considering that sigma protocols are invariant under parallel composition, for
protocols ΠSIGPEQ and ΠRSPEQ, one can apply the strong Fiat-Shamir transforma-
tion [2] and obtain a Non-Interactive Zero-Knowledge Proof, which is secure in
the random oracle model. In other words, the prover should generate k commit-
ments (r1, ..., rk), calculate c ∈ {0, 1}k ← H(r1||r2...rk||public parameters), and
finally compute the responses zi for all ri using the i-th bit of c. This way, the
soundness error (1/2) is amplified to 1/2k.

6 Efficiency

In order to compare the efficiency of our protocols with custom ones, we provide
here an efficiency analysis and implementation details using ElGamal.

Comparison with Custom Variants. Our generic ptotocols ΠPEQ, ΠRSPEQ, and ΠPINEQ

are perfect zero-knowledge and do not rely on the random oracle model. We
compare the efficiency of our protocols with the best (as far as we know) custom
protocols for ElGamal that achieve the same security properties. Note that more
efficient protocols exist under weaker hypothesis: HVZK proofs can be done
using Shnorr-like protocols [37], non-interactive protocols can be done in the
random oracle model replacing the challenge by the hash of the commitment,
and non-interactive but computationaly zero-knowlege proofs can be done using
the Groth-Sahai construction from pairings [22].

Proving the equality of two ElGamal plaintexts (m1,m2) given two cipher-
texts c1 = Encpk(m1; r1) = (gr1 , pkr1m1) and c2 = Encpk(m2; r2) = (gr2 , pkr2m2)
is equivalent to prove that (gα, gr1−r2 , gα(r1−r2)) is a Diffie-Hellman tuple, which
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Table 2. Number of exp. and rounds for plaintext equality/inequality proofs.

Equality proofs Inequality proofs

Using [11] ΠPEQ ΠRSPEQ Using [8] ΠPINEQ

Prover 2 6 4 6 6

Verifier 2 4 4 4 4

Rounds 3 4 3 3 4

Table 3. Running times in ms for different protocols using ElGamal.

Protocol ΠHPEQ ΠPEQ ΠHPINEQ ΠPINEQ ΠRSPEQ ΠSIGPEQ

Avg. time 27.47 70.31 26.13 68.75 62.12 112.98

Deviation 0.21 1.28 0.15 0.6 2.06 3.70

can be efficiently done with the Chaum-Pedersen protocol [11] (using either the
secret key or the randomness as the witness). Similarly, proving the inequality of
the two plaintexts is equivalent to prove that (gα, gr1−r2 , gα(r1−r2)m1/m2) is not
a Diffie-Hellman tuple, which can be efficiently done with the Camenisch-Shoup
protocol [8]. These protocols must be repeated k times for a security param-
eter k, like ours. Table 2 gives the number of exponentiations (the dominant
operation in all the considered protocols) and rounds for a single run of each
protocol. This comparison suggests that our generic protocols’ cost is reasonable
for perfect zero-knowledge protocols in the standard model.

Implementation. We implemented the protocols ΠHPEQ, ΠPEQ, ΠHPINEQ, ΠPINEQ, ΠRSPEQ

and ΠSIGPEQ in Rust using the dalek library [1]. Although the implementation was
done for academic purposes and simulating the interaction between a prover and
a verifier (it is not production-ready), it serves to demonstrate the practicality
of our protocols. More in detail, we show on Table 3 the average running times
using a regular laptop (Macbook Pro from 2015) with no extra optimizations
and considering a security parameter of 128. Therefore, the times shown consist
of 128 repetitions for each protocol run so to achieve the desired soundness error.
This information was gathered using the external crate bencher .

7 Conclusion

We characterized malleability in terms of randomizability, message-randomiza-
bility and key-randomizability for public-key encryption. Based on those notions,
we defined and presented interactive and non-interactive zero-knowledge proto-
cols for plaintext equality and inequality. As a result, we obtained generic pro-
tocols that can be instantiated with different encryption schemes. We provided
examples of PKE schemes, which have different properties and that are secure
under different security models to support the claim. As future work, we first
want to design non-interactive protocols for plaintext inequality. We also would
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like to propose protocols that do not require k rounds from a generic encryption
scheme. Another idea is to construct generic “plaintext inequality test” to prove
that the ciphertext’s plaintext is smaller or greater than another plaintext.

Acknowledgements. We would like to thank Travis Mayberry for his useful sugges-
tions and comments to improve this work. Olivier Blazy was supported by the French
ANR Project IDFIX (ANR-16-CE39-004). The European Commission partially sup-
ported Octavio Perez Kempner’s work as part of the CUREX project (H2020-SC1-FA-
DTS-2018-1 under grant agreement No 826404).

A Instantiation

Based on the literature review, we found that ElGamal and Paillier were the
most used schemes to implement plaintext equality/inequality proofs. For this
reason, we present here examples of how to instantiate a subset of our protocols
using these schemes

Let us first note that PKE schemes whose set of random coins and messages
are cyclic groups (G1, ∗) and (G2, ∗) with identity elements e1 and e2 and which
are homomorphic for ∗ (i.e. Enc(m, r) ∗ Enc(m′, r′) = Enc(m ∗ m′, r ∗ r′)), are
randomizable and message-randomizable. To randomize a ciphertext Enc(m, r)
with r′ one can compute Enc(m, r)∗Enc(e1, r′) = Enc(m, r∗r′), and to randomize
the plaintext with m′ one can compute Enc(m, r) ∗Enc(m′, e2) = Enc(m ∗m′, r).
We show that ElGamal and Pailler verify this property. Considering two ElGamal
ciphertexts (gr1 , pkr1 · m1) and (gr2 , pkr2 · m2), we define the operation ∗ as
(gr1 , pkr ·m1)∗(gr2 , pkr ·m2) = (gr1 ·gr2 , pkr1 ·m1 ·pkr2 ·m2) = (g(r1+r2), pk(r1+r2) ·
(m1 · m2)). Considering two Pailler ciphertexts ((1 + n)m1 · rn

1 mod n2) and
((1+n)m2 · rn

2 mod n2), we define the operation ∗ as ((1+n)m1 · rn
1 mod n2) ∗

((1+n)m2 · rn
2 mod n2) = ((1+n)m1 · rn

1 · (1+n)m2 · rn
2 mod n2) = ((1+n)m1 ·

(1 + n)m2 · rn
1 · rn

2 mod n2) = ((1 + n)(m1+m2) · (r1 · r2)n mod n2). It follows
that ElGamal and Pailler can instantiate the protocols ΠPEQ, ΠPINEQ and ΠRSPEQ.
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Abstract. We define a new primitive that we call a somewhere statis-
tically binding (SSB) commitment scheme, which is a generalization of
dual-mode commitments but has similarities with SSB hash functions
(Hubacek and Wichs, ITCS 2015) without local opening. In (existing)
SSB hash functions, one can compute a hash of a vector v that is sta-
tistically binding in one coordinate of v. Meanwhile, in SSB commit-
ment schemes, a commitment of a vector v is statistically binding in
some coordinates of v and is statistically hiding in the other coordinates.
The set of indices where binding holds is predetermined but known only
to the commitment key generator. We show that the primitive can be
instantiated by generalizing the succinct Extended Multi-Pedersen com-
mitment scheme (González et al., Asiacrypt 2015). We further introduce
the notion of functional SSB commitment schemes and, importantly, use
it to get an efficient quasi-adaptive NIZK for arithmetic circuits and
efficient oblivious database queries.

Keywords: Commitment scheme · Oblivious transfer · QA-NIZK ·
SSB

1 Introduction

Commitment schemes are one of the most useful primitives in cryptography. In
essence, a commitment to a value binds the value to the commitment, but hides
the value from other parties. Commitment schemes are naturally used in zero-
knowledge proofs, where one often proves statements about a committed value
while keeping the value hidden. For instance, to complete a digital transaction a
party may need to prove he has available funds in his account without actually
revealing his exact balance. Such proofs on committed values are very efficient
due to Bulletproofs [4], and are used in many privacy-preserving cryptocurrency
designs such as Mimblewimble [19,35] and Quisquis [18].

Dual-mode commitment schemes [6,9,10] are an interesting variant where
the commitment key can be set up in one of two modes: binding or hiding.
In the binding mode, the commitment can only be opened to one valid value.
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Meanwhile, in the hiding mode, a commitment hides the committed value even
to unbounded adversaries. For this definition to make sense, one should not be
able to guess which mode is being used based on the commitment key, i.e., the
commitment key hides the mode. Dual-mode commitments are an essential tool
in Groth-Sahai proofs [28] which is a framework for constructing non-interactive
zero-knowledge (NIZK) proofs for algebraic relations.

In the case of committing to a vector, the two modes of a dual-mode com-
mitment can be seen to be two extremes: the commitment is either binding in all
positions in the vector, or in none of them. A natural way to generalize the notion
would be to have multiple modes of commitment, specifying that the commit-
ment is binding in some positions in the vector of values. A similar generalization
for hash functions is known as somewhere statistically binding hash [29,33], in
which one can compute a hash of a vector v such that the computed hash is
statistically binding in one coordinate of v.

A generalization of dual-mode commitments would lead to interesting appli-
cations in NIZK arguments. In a typical zero-knowledge succinct argument of
knowledge (zk-SNARK) for Circuit-SAT [11,20,26,32], the prover commits to
the witness (i.e., all the inputs to a circuit), and the proof of (knowledge) sound-
ness involves using a non-falsifiable assumption to extract the whole committed
vector which is then used to check each gate to establish where exactly the prover
cheated; based on the knowledge of the witness one then breaks a computational
assumption. One can get a more efficient extraction under falsifiable assump-
tions if the commitment was binding only on the values corresponding to the
inputs and outputs of a specific gate: one then only needs to check the extracted
values against a randomly chosen gate. As a caveat, the technique will lead to a
security loss linear in the number of gates.

In fact, the above extraction technique has been done before [12,25] using
a generalization of the Pedersen commitment scheme called Extended Multi-
Pedersen [23,24] and resulting in efficient NIZK arguments under falsifiable
assumptions. However, the above results are not zk-SNARKs: they are quasi-
adaptive NIZK (QA-NIZK) arguments which means the CRS may depend on
the relation, and while the argument is succinct, the commitment is not.1 More-
over, previous work did not formalize which properties of a commitment scheme
would be required to enable efficient NIZK arguments.

In the above construction, we need a succinct somewhere statistically binding
property that guarantees that the chosen coordinate is statistically binding while
the remaining coordinates can be computationally binding. On the other hand, to
get zero-knowledge, the commitment needs to be almost-everywhere statistically
hiding, that is, computationally hiding at the chosen coordinate, and statistically
hiding at any other coordinates. We also need index-set hiding, which means an
adversary that is given the commitment key does not know which particular
coordinate is statistically binding.

1 One cannot construct zk-SNARKs in a black-box way from falsifiable assump-
tions [21], hence any black-box construction from falsifiable assumptions will not
be fully succinct.
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Our Contributions. Formalizing the properties of the Extended Multi-
Pedersen (EMP) commitment scheme [23,24], we define a somewhere statistically
binding (SSB) commitment scheme to n-dimensional vectors. In the commitment
key generation phase of an SSB commitment scheme one chooses an index-set
S ⊆ [1 .. n] of size at most q ≤ n and defines a commitment key ck that depends
on n, q and S. A commitment to an n-dimensional vector x will be statisti-
cally binding and extractable at coordinates indexed by S and perfectly hiding
at all other coordinates. Moreover, commitment keys corresponding to any two
index-sets S1 and S2 of size at most q must be computationally indistinguishable.
Thus, an SSB commitment scheme is required to be SSB, somewhere statistically
extractable (SSE), almost everywhere statistically hiding (AESH), and index-set
hiding (ISH). An SSB commitment scheme generalizes dual-mode commitment
schemes (where n = q = 1 and |S| ∈ {0, 1} determines the mode) and the EMP
commitment scheme (where q = 1 and n is arbitrary).

In Sect. 4, we define algebraic commitment schemes (ACS), where the com-
mitments keys are matrices. We prove that the distribution of key matrices
defines which properties of SSB commitments hold in each coordinate and show
that these commitments are suitable for working with QA-NIZK arguments.
This is because they behave like linear maps and the properties of SSB com-
mitments can be expressed in terms of membership to linear subspaces. Next,
we generalize the EMP commitment scheme to work with arbitrary values of q.
Importantly, a single EMP commitment consists of q + 1 group elements and is
thus succinct given small q. We prove that EMP satisfies the mentioned security
requirements under a standard Matrix DDH assumption [16].

In Sect. 5, we define functional SSB commitments, which are statistically
binding on some components that are outputs of some functions S = {fi}i

where |S| ≤ q. It is a generalization of SSB commitments, where the extracted
values are the result of some linear functions of the committed values, instead of
the values themselves. We show that results which hold for SSB commitments
also naturally hold for functional SSB commitments. The notion of functional
SSB commitments for families of linear functions was already used indirectly
in prior work [12]; however, they were not formally defined and their security
properties were not analyzed. We also see that a minor modification of EMP
works as a functional SSB commitment if we consider only linear functions.

We provide some applications of functional SSB commitments. In Sect. 6.1
we propose a novel (but natural) application that we call oblivious database
queries (ODQ), where a sender has a private database x and a receiver wants to
query the database to learn f1(x), . . . , fq(x) without revealing the functions fi.
In Sect. 6.2 we present a QA-NIZK for Square Arithmetic Programs (SAP, [27])
that follows a similar strategy to prior work [12] but can be used for arithmetic
circuit satisfiability instead of Boolean circuit satisfiability. Our QA-NIZK has
comparable efficiency and also under falsifiable assumptions.

Relation to Other Primitives. The SSB requirement makes the EMP com-
mitment scheme look similar to SSB hash functions [29,33], but there are obvi-
ous differences. SSB hash has the local opening property, where the committer
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can efficiently open just one coordinate of the committed vector, but SSB com-
mitments do not2. Meanwhile, we need hiding while SSB hash does not. This
is, intuitively, a natural distinction and corresponds to the difference between
collision-resistant hash families and statistically hiding commitment schemes.
Also, we allow ck to be long, but require commitments to be succinct.

SSB commitments are directly related to two-message oblivious transfer (OT)
protocols as defined in [1]. Essentially, SSB commitments are non-interactive
analogs of such protocols: the commitment key corresponds to the first OT mes-
sage ot1 and the commitment corresponds to the second OT message ot2. Impor-
tantly, while in OT, the ot1 generator is always untrusted, in our applications,
it is sufficient to consider a trusted ck generator. This allows for more efficient
constructions.

We discuss the relation to existing primitives in more detail in the full version
of our paper [17].

2 Preliminaries

For a set S, let P(S) denote the power set (i.e., the set of subsets) of S, and
let P(S, q) denote the set of q-size subsets of S. For an n-dimensional vector
α and i ∈ [1 .. n], let αi be its ith coefficient. Let ei be the ith unit vector of
implicitly understood dimension. For a tuple S = (σ1, . . . , σq) with σi < σi+1,
let αS = (ασ1 , . . . , ασq

). Let α∅ be the empty string.
Let PPT denote probabilistic polynomial-time and let λ ∈ N be the security

parameter. All adversaries will be stateful. Let RNDλ(A) denote the random tape
of the algorithm A for a fixed λ. We denote by negl(λ) an arbitrary negligible
function, and by poly(λ) an arbitrary polynomial function. Functions f, g are
negligibly close, denoted f ≈λ g, if |f − g| = negl(λ). Distribution families
D0 = {D0

λ}λ and D1 = {D1
λ}λ are computationally indistinguishable, if ∀ PPT

A, Pr[x ←$D0
λ : A(x) = 1] ≈λ Pr[x ←$D1

λ : A(x) = 1].

2.1 Bilinear Groups

In the case of groups, we will use additive notation together with the bracket
notation [16], that is, for ι ∈ {1, 2, T} we define [a]ι := a[1]ι, where [1]ι is a
fixed generator of the group Gι. A bilinear group generator Pgen(1λ) returns
(p,G1,G2,GT , ê, [1]1, [1]2), where p (a large prime) is the order of cyclic Abelian
groups G1, G2, and GT . Moreover, ê : G1 × G2 → GT is an efficient non-
degenerate bilinear pairing, such that ê([a]1, [b]2) = [ab]T . Denote [a]1[b]2 :=
ê([a]1, [b]2), and [1]T := [1]1[1]2. We use matrix-vector notation freely, writing
say [M1]1[M2]2 = [M1M2]T for any compatible matrices M1 and M2.

We use F -extraction notation to mean extraction of the function F . E.g., if
F is exponentiation then we have [·]ι-extraction, where we extract elements in
2 The properties of SSB and local opening are orthogonal: it is possible to construct

efficient SSB hashes without local opening [33] and efficient vector commitments [5,
31] (which have a local opening) without the SSB property.
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the group Gι. Several of our cryptographic primitives have their own parameter
generator Pgen. In all concrete instantiations of the primitives, we instantiate
Pgen with the bilinear group generator, which is then denoted Pgenbg.

The Matrix DDH (MDDH) Assumption. Let �, k ∈ N, with � ≥ k, be
small constants. Let p be a large prime. Following [16], we call D�k a matrix
distribution if it outputs, in polynomial time, matrices A in Z

�×k
p of full rank k.

We denote Dk+1,k by Dk. Let U�k denote the uniform distribution over Z
�×k
p .

Let Pgen be as before, and let ι ∈ {1, 2}. D�k-MDDH Gι
[16] holds relative to

Pgen, if ∀ PPT A, Advmddh
A,D�k,ι,Pgen(λ) := |ε0A(λ) − ε1A(λ)| ≈λ 0, where

εβ
A(λ) := Pr

[
p ← Pgen(1λ);A ←$D�k; w ←$Z

k
p;

y0 ←$Z
�
p;y1 ← Aw : A(p, [A,yβ ]ι) = 1

]
.

Common distributions for the MDDH assumption are Uk := Uk+1,k and the
linear distribution Lk over A =

(
A ′

1 ... 1

)
, where A′ ∈ Z

k×k
p is a diagonal matrix

with a′
ii ←$Zp.

2.2 Quasi-Adaptive NIZK

A quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proof [30] enables
one to prove membership in a language defined by a relation Rρ, which is deter-
mined by some parameter ρ sampled from a distribution Dgk. A distribution Dgk

is witness-sampleable if there exists an efficient algorithm that samples (ρ, ωρ)
from a distribution Dpar

gk such that ρ is distributed according to Dgk, and mem-
bership of ρ in the parameter language Lpar can be efficiently verified by using
this witness ωρ.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations Rgk = {Rρ}ρ∈sup(Dgk) with parameters sampled from a distri-
bution Dgk over associated parameter language Lpar, if there exists a probabilistic
polynomial time simulator (S1,S2), such that for all non-uniform PPT adver-
saries A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr
[
gk ← K0(1λ); ρ ← Dgk; crs ← K1(gk, ρ); (x,w) ← A1(gk, crs);
π ← P(crs, x, w) : V(crs, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr
[
gk ← K0(1λ); ρ ← Dgk;
crs ← K1(gk, ρ); (x, π) ← A2(gk, crs)

:
V(crs, x, π) = 1 and

¬(∃w : Rρ(x,w))

]
≈ 0.

Computational Strong Quasi-Adaptive Soundness:

Pr
[
gk ← K0(1λ); (ρ, ωρ) ← Dpar

gk ; crs ← K1(gk, ρ);
(x, π) ← A2(gk, crs, ωρ) : V(crs, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0.
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Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← K0(1λ); ρ ← Dgk; crs ← K1(gk, ρ) : AP(crs,·,·)
3 (gk, crs) = 1]

= Pr[gk ← K0(1λ); ρ ← Dgk; (crs, τ) ← S1(gk, ρ) : AS(crs,τ,·,·)
3 (gk, crs) = 1]

where (i) P(crs, ·, ·) emulates the actual prover. It takes input (x,w) and
outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥. (ii) S(crs, τ, ·, ·) is
an oracle that takes input (x,w). It outputs a simulated proof S2(crs, τ, x) if
(x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We assume that crs contains an encoding of ρ, which is thus available to V.

3 SSB Commitment Schemes

In an SSB commitment scheme, the commitment key (i.e., the CRS) depends on
n, q, and an index-set S ⊆ [1 .. n] of cardinality ≤ q (in the case of Groth-Sahai
commitments [28], n = q = 1 while in the current paper n = poly(λ) and q ≥ 1 is
a small constant). At coordinates described by S, an SSB commitment scheme
must be statistically binding and F -extractable [2] for a well-chosen function F ,
while at all other coordinates it must be statistically hiding and trapdoor. More-
over, it must be index-set hiding, i.e., commitment keys corresponding to any
two index-sets S1 and S2 of size ≤ q must be computationally indistinguishable.

The Groth-Sahai commitments correspond to a bimodal setting where either
all coefficients are statistically hiding or statistically binding, and these two
extremes are indistinguishable. SSB commitments correspond to a more fine-
grained multimodal setting where some ≤ q coefficients are statistically binding
and other coefficients are statistically hiding, and all possible selections of sta-
tistically binding coefficients are mutually indistinguishable. Our terminology is
inspired by [29,33] who defined SSB hashing; however, the consideration of the
hiding property makes the case of SSB commitments sufficiently different.

3.1 Formalization and Definitions

An F -extractable SSB commitment scheme COM = (Pgen,KC,Com,
tdOpen,ExtF ) consists of the following polynomial-time algorithms:

Parameter generation: Pgen(1λ) returns parameters p (e.g., description of a
bilinear group).

Commitment key generation: for parameters p, n ∈ poly(λ), q ∈ [1 .. n],
and a tuple S ⊆ [1 .. n] with |S| ≤ q, KC(p, n, q,S) outputs a commitment
key ck and a trapdoor td = (ek, tk) consisting of an extraction key ek, and a
trapdoor key tk. Also, ck implicitly specifies p, n, q, the message space MSP, the
randomizer space RSP, the extraction space ESP, and the commitment space
CSP, such that F (MSP) ⊆ ESP. For invalid input, KC outputs (ck, td) = (⊥,⊥).

Commitment: for p ∈ Pgen(1λ), ck �= ⊥, a message x ∈ MSPn, and a random-
izer r ∈ RSP, Com(ck;x; r) outputs a commitment c ∈ CSP.
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Table 1. Properties of an SSB commitment scheme

Abbreviation Property Definition

ISH Index-set hiding The commitment key reveals
nothing about the index-set S

SSB Somewhere statistically binding A commitment to x statistically
binds the values xS

AESH Almost everywhere statistically hiding The commitment is statistically
hiding in the indices outside the
set S

F -SSE Somewhere statistical F -extractability Given a commitment to x and the
extraction key, one can extract
the values F (xS)

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ [1 .. n] with |S| ≤ q, (ck, (ek, tk)) ∈
KC(p, n, q,S), two messages x0,x1 ∈ MSPn, and a randomizer r0 ∈ RSP,
tdOpen(p, tk;x0, r0,x1) returns a randomizer r1 ∈ RSP.

Extraction: for p ∈ Pgen(1λ), S = (σ1, . . . , σ|S|) ⊆ [1 .. n] with 1 ≤ |S| ≤ q,
(ck, (ek, tk)) ∈ KC(p, n, q,S), F : MSP → ESP and c ∈ CSP, ExtF (p, ek; c)
returns a tuple (yσ1 , . . . , yσ|S|) ∈ ESP|S|. We allow F to depend on p.

Note that SSB commitment schemes are non-interactive and work in the CRS
model; the latter is needed to achieve trapdoor opening and extractability. With
the current definition, perfect completeness is straightforward: to verify that C is
a commitment of x with randomizer r, one just recomputes C ′ ← Com(ck;x; r)
and checks whether C = C ′.

An F -extractable SSB commitment scheme COM is secure if it satisfies the
following security requirements. (See Table 1 for a brief summary.)

Index-Set Hiding (ISH): ∀λ, PPT A, n ∈ poly(λ), q ∈ [1 .. n],
AdvishA,COM,n,q(λ) := 2 · |εishA,COM,n,q(λ) − 1/2| ≈λ 0, where εishA,COM,n,q(λ) :=

Pr

[
p ← Pgen(1λ); (S0, S1) ← A(p, n, q) s.t. ∀i ∈ {0, 1}, Si ⊆ [1 .. n] ∧ |Si| ≤ q;

β ←$ {0, 1}; (ckβ , tdβ) ← KC(p, n, q, Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly(λ),
q ∈ [1 .. n], AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

⎡
⎢⎣
p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td) ← KC(p, n, q,S); (x0,x1, r0, r1) ← A(ck) :
x0,S �= x1,S ;Com(ck;x0; r0) = Com(ck;x1; r1)

⎤
⎥⎦ .

COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q(λ) = 0.
Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded adversary

A, n ∈ poly(λ), q ∈ [1 .. n], AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ) − 1/2| ≈λ 0,
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where εaeshA,COM,n,q(λ) :=

Pr

⎡
⎢⎣
p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td) ← KC(p, n, q,S); (x0,x1) ← A(ck) s.t. x0,S = x1,S ;
β ←$ {0, 1}; r ←$ RSP : A(Com(ck;xβ ; r)) = β

⎤
⎥⎦ .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0.
If A is PPT, COM is almost everywhere computationally hiding (AECH).

Somewhere Statistical F -Extractability (F -SSE): ∀λ, n ∈ poly(λ), q ∈
[1 .. n], S = (σ1, . . . , σ|S|) with |S| ≤ q, (ck, (ek, tk)) ← KC(p, n, q,S), and
PPT A, AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) �= (F (xσ1), . . . , F (xσ|S|))

] ≈λ 0.

Additionally, an SSB commitment scheme can but does not have to be trapdoor.

Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly(λ), q ∈
[1 .. n], and unbounded A, AdvaestA,COM,n,q(λ) ≈λ 0, where AdvaestA,COM,n,q(λ) =

Pr

⎡
⎢⎣
p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;

(ck, td = (ek, tk)) ← KC(p, n, q,S); (x0, r0,x1) ← A(ck) s.t. x0,S = x1,S ;

r1 ← tdOpen(p, tk;x0, r0,x1) : Com(ck;x0; r0) �= Com(ck;x1; r1)

⎤
⎥⎦ .

It is almost everywhere perfect trapdoor (AEPT) if AdvaestCOM,n,q(λ) = 0.

It is important to consider the case |S| ≤ q instead of only |S| = q. For example,
when q = n, the perfectly binding (PB) commitment key (|S| = n) has to be
indistinguishable from the perfectly hiding (PH) commitment key (|S| = 0).
Moreover, in the applications to construct QA-NIZK argument systems [12,23,
24], one should not be able to distinguish between the cases |S| = 0 and |S| = q.

F -extractability [2] allows one to model the situation where xi ∈ Zp but
we can only extract the corresponding bracketed value [xi]ι ∈ Gι; similar lim-
ited extractability is satisfied say by the Groth-Sahai commitment scheme for
scalars [28]. Note that in this case, F depends on p. Interestingly, extractability
implies SSB, see the full version of the paper for a proof [17].

Lemma 1 (F -SSE & F is injective ⇒ SSB). Let COM be an SSB commit-
ment scheme. Fix n and q. Assume F is injective. For all PPT A, there exists
a PPT B such that AdvssbA,COM,n,q(λ) ≤ 2 · AdvsseB,F,COM,n,q(λ).

If q = 0 then AESH is equal to the standard statistical hiding (SH) require-
ment, and AEST is equal to the standard statistical trapdoor requirement. If
q = n then SSB is equal to the standard statistical binding (SB) requirement,
and F -SSE is equal to the standard statistical F -extractability requirement. We
will show that any secure SSB commitment scheme must also be computationally
hiding and binding in the following sense.
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Computational Binding (CB): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], where
AdvcbA,COM,n,q(λ) :=

Pr

⎡
⎢⎣
p ← Pgen(1λ);S ← A(p, n, q) : S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td) ← KC(p, n, q,S); (x0,x1, r0, r1) ← A(ck)
s.t. x0 �= x1;Com(ck;x0; r0) = Com(ck;x1; r1)

⎤
⎥⎦ ≈λ 0 .

Computational Hiding (CH): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n],
AdvchA,COM,n,q(λ) := 2 · |εchA,COM,n,q(λ) − 1/2| ≈λ 0, where εchA,COM,n,q(λ) :=

Pr

⎡
⎢⎣
p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td) ← KC(p, n, q,S); (x0,x1) ← A(ck);β ←$ {0, 1};
r ←$ RSP : A(Com(ck;xβ ; r)) = β

⎤
⎥⎦ .

Theorem 1. Let COM be an SSB commitment scheme. Fix n and q.

(i) (ISH + SSB ⇒ CB) For all PPT A, there exist PPT B1 and unbounded B2,
such that AdvcbA,COM,n,q(λ) ≤ AdvishB1,COM,n,q(λ)+n/(q−4 ·AdvishB1,COM,n,q(λ)) ·
AdvssbB2,COM,n,q(λ).

(ii) (ISH + AESH ⇒ CH) For all PPT A, there exist PPT B1 and unbounded
B2, such that AdvchA,COM,n,q(λ) ≤ AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ).

The full proof of this theorem is deferred to the full version [17].

4 Constructing SSB Commitment Schemes

In this section we generalize the notion of algebraic commitment schemes to
general matrix distributions. We show that they work nicely with QA-NIZK
arguments and that certain matrix distributions give us an SSB commitment
scheme. We focus on the particular case of EMP in Sect. 4.2, where we propose
a general version of EMP and prove that it is an SSB commitment scheme.

4.1 Algebraic Commitment Schemes

Ràfols and Silva [36] defined the notion of algebraic commitment schemes
(ACSs), where the commitment keys are matrices, already used implicitly in
other works [7,8]. Since they behave like linear maps, it is very natural to work
with them. We give a more general definition in the following where the matrices
are sampled from general distributions.

Definition 1. Let ι ∈ {1, 2}, and let n,m, k be small integers. Let D1 be a
distribution of matrices from G

k×n
ι and let D2 be a distribution of matrices from

G
k×m
ι . A commitment scheme COM is a (D1,D2)-algebraic commitment scheme

(ACS) for vectors in Z
n
p , if for commitment key ck = [U1,U2]ι ←$D1 × D2 the

commitment of a vector x ∈ Z
n
p is computed as a linear map of x and randomness

r ←$Z
m
p , i.e., Comck(x, r) := [U1]ιx + [U2]ιr ∈ G

k
ι .



Somewhere Statistically Binding Commitment Schemes with Applications 445

Ràfols and Silva mention that given different commitment key matrices, their
distributions are computationally indistinguishable under the MDDH assump-
tion, and each concrete distribution defines which coordinates of the commit-
ments are SB or SH. We prove in the full version [17] that it also gives a charac-
terization of the coordinates of the key matrices for the different SSB properties
(AECH, ISH, SPB, SPE) based on linear dependency. In the full version, we also
prove that to extract n elements from an ACS we need at least n + 1 rows.

4.2 The EMP Commitment Scheme

Extended Multi-Pedersen (EMP) [23,24] is a variant of the standard vector Ped-
ersen commitment scheme [34]. In this section, we will depict a general version of
the EMP commitment scheme3 in group G. We redefine EMP by using a division
of the generator matrix g as a product of two matrices R and M ; this repre-
sentation results in very short security proofs for EMP. To simplify notation, we
will write Ext instead of Ext[·]. We use a distribution Dp,n,S

q+1 that outputs n + 1
vectors g(i), such that if i ∈ S ′ = S ∪ {n + 1} then g(i) is distributed uniformly
over Z

q+1
p , and otherwise g(i) is a random scalar multiple of g(n+1).4

Definition 2. Let p = p(λ), n = poly(λ), and let q ≤ n be a small positive
integer. Let S ⊆ [1 .. n] with |S| ≤ q. Then the distribution Dp,n,S

q+1 is defined
as the first part of Dgen(p, n,S, q) in Fig. 1 (i.e., just g, without the associated
extraction key or trapdoor).

Note that [24] uses a distribution Dq+1,k instead of the uniform distribution
Uq+1 over Z

q+1
p , which means that taking a larger k gives a weaker security

assumption but with worse efficiency. Our version of EMP also works with a
general distribution, but for ease of presentation we only use Uq+1.

Fig. 1. Generating Dp,n,S
q+1 , with associated extraction key R and trapdoor tk

3 González et al. [24] mostly considered the case q = 1; they also did not formalize its
security by using notions like ISH.

4 We add +1 to the dimension (e.g., q + 1) to accommodate the randomizer in EMP.
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Fig. 2. The EMP commitment scheme COM

Example 1. In the Groth-Sahai commitment scheme, n = q = 1, so Dgen first
samples R = ( r11 r12

r21 r22 ) ←$Z
2×2
p . If S = {1} then M = ( 1 0

0 1 ) and g = RM =
( r11 r12

r21 r22 ). On the other hand, if S = ∅ then M =
(

0 0
δ1 1

)
and g = RM =(

δ1r12 r12
δ1r22 r22

)
for δ1 ←$Zp.

Consider the case n = 3, q = 2, and S = {3}. Then

M =
(

0 0 1 0
0 0 0 0
δ1 δ2 0 1

)
, g = RM =

(
δ1r13 δ2r13 r11 r13
δ1r23 δ2r23 r21 r23
δ1r33 δ2r33 r31 r33

)
, for δ1, δ2 ←$Zp,R ←$Z

3×3
p .

The following lemma shows that distributions [Dp,n,S
q+1 ] for different sets S are

indistinguishable under the MDDH assumption. See the full version [17] for a
proof.

Lemma 2. Let ι ∈ {1, 2}. Let p = p(λ) be created by Pgen(1λ), n = poly(λ),
and let q ≤ n be a positive integer. Let S ⊆ [1 .. n] with |S| ≤ q. The distribution
families D0 := {[Dp,n,S

q+1 ]}λ and D1 := {[Dp,n,∅
q+1 ]}λ are computationally indistin-

guishable under the Uq+1-MDDHGι
assumption relative to Pgen: for any PPT

A, there exists a PPT B, such that AdvindistA,D0,D1(λ) ≤ |S| · Advmddh
B,Uq+1,Pgen(λ).

We define EMP in Fig. 2. We claim that it is indeed an SSB commitment
scheme in the following Theorem, see the full version for a proof.

Theorem 2. Let Pgenbg be a bilinear group generator. Fix λ, n, and q. The
EMP commitment scheme is (i) ISH under the U(q+1)×(n+1)-MDDHGι

assump-
tion, (ii) F -SSE for F = [·] (thus, F depends on p), (iii) AEPT, (iv) SPB, (v)
AEPH, (vi) CB and CH under the U(q+1)×(n+1)-MDDHGι

assumption.

Alternative Constructions. One can also construct a SSB commitment from
any IND-CPA secure cryptosystem if both the message space and the random-
ness space are additively homomorphic, i.e., Encpk(m1; r1) + Encpk(m2; r2) =
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Encpk(m1+m2; r1+ r2) for any public key pk, messages m1,m2 and randomness
r1, r2 ∈ R. For simplicity, consider the case when q = 1 and the i-th index is bind-
ing. We can set ck = (pk, c := (Encpk(ei,1; r1), . . . ,Encpk(ei,n; rn)), tk = sk where
ei is the i-th unit vector. In order to commit to x, we compute c·x+Encpk(0; r) =
Encpk(xi, r +

∑n
i=1 ri) for r ←$R. Now, ISH follows directly from the IND-CPA

security, SSB and F-SSE follow from the correctness of the cryptosystem, and
AESH follows since Encpk(xi, r +

∑n
i=1 ri) only depends on xi. However, we

obtain a less efficient construction than EMP. E.g., if we instantiate with lifted
Elgamal we would have a commitment size of 2q group elements, whereas EMP
has q + 1.

The above is similar to the technique of obtaining 2-message oblivious trans-
fer (OT) from additively homomorphic cryptosystems [1] and this is no coin-
cidence. SSB commitments can indeed be constructed from OT, and we can
conversely construct OT from SSB commitments. Hence there are various alter-
native constructions of SSB, but in this paper we concentrate on EMP due to
the applications we are interested in. See the full version for more details.

5 Functional SSB Commitments

We generalize the notion of SSB commitments from being statistically binding on
an index-set S ⊆ [1 .. n] to being statistically binding on outputs of the functions
{fi}q

i=1 from some function family F . We construct a functional SSB commit-
ment scheme for the case when F is the set of linear functions. In particular, this
covers functions fj(x) = xj and hence we also have the index-set functionality
of EMP commitment.

In our definition, given a family of functions F we require that the com-
mitment key ck will hide the functions {fi}q

i=1 ⊂ F and given a commitment
Com(ck;x; r) and an extraction key ek it is possible to F -extract fi(x) for
i ∈ [1 .. q], i.e. if F is the exponentiation function in the group, [fi(x)]ι. The
commitment uniquely determines the outputs of the functions (due to the SSB
property) and commitments to messages which produce equal function outputs
are statistically indistinguishable (due to the AESH property). Our definition is
similar to Döttling et al.’s [13] definition for trapdoor hash functions for a family
of predicates F .

Definition of Functional SSB. An F -extractable functional SSB commitment
scheme COM = (Pgen,KC,Com, tdOpen,ExtF ) for a function family F follows
the definitions of SSB commitments in Sect. 3.1, but with the following changes:
(i) S is now a set of functions rather than a set of indices. (ISH then becomes
function-set hiding (FSH)). (ii) For S = {fi}q

i=1 ⊆ F and vector x we redefine
xS := (f1(x), . . . , fq(x)). The complete definitions are given in the the full ver-
sion [17]. Relations that hold between properties of SSB commitments also hold
for functional SSB commitments; the proofs are very similar.
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Fig. 3. Functional SSB commitment for linear functions

Linear EMP. We construct a functional SSB commitment for a family of linear
functions. Our construction follows the ideas in [12] which only dealt with some
concrete functions and never formalized the ideas.

We represent q linear functions by a matrix M ∈ Z
q×n
p where each row con-

tains coefficients of one function. From a commitment to vector x ∈ Z
n
p , our con-

struction allows to extract [Mx]ι. In particular, if we take M = (ei1 | . . . |eiq
)�

where eij
∈ Z

n
p is the ijth unit vector, then [Mx]ι = [xi1 , . . . , xiq

]�ι . A detailed
construction is given in Fig. 3.

We want to note that the matrix [M ]ι is extended into one row to place the
randomness vector � and one column to place the randomizator of the commit-
ment, r, to perfectly hide the secret vector x when we extract. Concretely, in
the extraction phase we obtain

[
M 0
�ᵀ 1

]
ι
[ x

r ]ι =
[

M x
�ᵀx+r

]
ι

from multiplying the
commitment by the inverse matrix of R. The first q rows contain the functions
of x in the group that we want and the last component contains a combination
of x with � that is completely masked by r.

Moreover, if we take an ACS (Definition 1), the commitment key is ck =
[U1,U2]ι ∈ G

(q+1)×n
ι ×G

(q+1)×1
ι , which is optimal size for extraction in q coor-

dinates, as proven in the full version [17]. The main differences with the EMP
construction in Sect. 4.2 is that in EMP M is a matrix in reduced row eche-
lon form (with multiples of the column vector (0, . . . , 0, 1)T possibly inserted in
between). We prove security of linear EMP in the full version.

6 Applications of Functional SSB Commitments

We present three applications of functional SSB commitments. In Sect. 6.1 we
have two straightforward applications for linear EMP commitments: Oblivious
Database Queries (ODQ) and Oblivious Linear Function Evaluation (OLE) [14,
15,22]. OLE allows the receiver to learn f(x) where x is the receiver’s private
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vector and f is the sender’s private linear function. ODQ essentially switches
the roles of receiver and sender: the receiver wants to learn f(x) where x is the
sender’s private database and f is the receiver’s linear query function. In Sect. 6.2
we present a new QA-NIZK argument for SAP relations that uses linear EMP
commitments as a technical tool in the security proof.

6.1 ODQ and OLE

A very straight-forward application of linear EMP is oblivious database queries
(ODQ). We consider a scenario where the sender knows a private database x
and the receiver knows a set of private linear functions fi(X1, . . . , Xn) = bi +∑n

j=1 ai,jXj for i ∈ [1 .. q] that he wants to evaluate on that database.
Our ODQ protocol works as follows:

– Receiver defines matrices A = (aij) ∈ Z
q×n
p , B = diag(b1, . . . , bq) ∈ Z

q×q
p ,

and M = (A | B) ∈ Z
q×(n+q)
p . Following the KC algorithm it creates the

commitment key ck, the extraction key ek, and sends ck to the sender.
– Sender has x ∈ Z

n
p and ck as input. It sets x′ = ( x

1q ), picks random r ←$Zp

and sends COM = ck
(

x′
r

)
to the receiver.

– Receiver extracts [M · x′] from COM using the Ext algorithm with ek.

Privacy and Correctness. We follow privacy and correctness definitions pro-
posed by Döttling et al. [13] (see Sect. 5.1 of their paper for full definitions). From
the SSE property we know that the receiver can recover [M ( x

1q )]ι = [Ax + b]ι
and thus correctness holds. Receiver’s (computational) privacy follows directly
from the FSH property, that is, any two function-sets of size at most q are
indistinguishable. Sender’s privacy is defined through simulatability of the pro-
tocol transcript given only receiver’s input M and receiver’s output [Mx′] to
the simulator. Simulatability is slightly stronger than the AEPH property but
still holds for linear EMP. As a first message, the simulator can generate ck
with M and store R. An honestly computed second message has the form
[R
(

M 0
rᵀ 1

)
]
(

x′
r

)
= R

[
M x′

x′r�+r

]
and therefore we can simulate it by sampling

r∗ ←$Zp and computing R
(

[M x′]
r∗

)
. Thus sender’s privacy also holds.

Efficiency. We define download rate as the ratio between output size and
sender’s message and total rate as the ratio between output size and total tran-
script size. The total rate of our protocol is |[Mx′]|/(|ck| + |COM|) = q/((n +
q + 2)(q + 1)). However, we achieve very good download rate |[Mx′]|/|COM| =
q/(q + 1) which tends to 1. This is similar to Döttling et al. [13] where they
achieve an optimal download rate but sub-optimal total rate.

OLE. We can achieve OLE in a very similar way. Suppose that now the sender
has a function f(X1, . . . , Xn) = b+

∑n
i=1 aiXi and the receiver has x. Then the



450 P. Fauzi et al.

receiver can send a commitment key with M = (x1, . . . , xn, 1) and the sender
responds with a commitment to (a1, . . . , an, b). The receiver extracts to obtain
[f(x)]ι. The proof is identical to the ODQ case. However, the resulting OLE is
less efficient with download rate 1/2 and total rate 1/(2n + 4).

6.2 QA-NIZK Argument for Quadratic Equations

We present a QA-NIZK argument which uses linear EMP commitments as an
important technical tool in the security proof, inspired by Daza et al. [12] who
presented a commit-and-prove QA-NIZK argument for Square Span Programs
(SSP, [11]) which can be used to encode the Boolean circuit satisfiability lan-
guage. Their construction uses a specific setting of linear EMP commitments
without explicitly formalizing it. Our QA-NIZK is for Square Arithmetic Pro-
grams (SAP) [27] which can be used to encode the arithmetic circuit satisfiability
language, has roughly the same complexity as the argument in [12] and follows
a similar overall strategy. However, we use linear EMP commitments as a black-
box and thus have a more compact and clear presentation.

A rough intuition of our commit-and-prove QA-NIZK is as follows. The state-
ment of our language LSAP,ck contains a linear-length perfectly binding (and [·]1-
extractable) commitment [c]1 of the SAP witness. Note that the commitment
is only computed once but can be reused for many different SAP relations. For
simplicity, we use ElGamal encryption in this role and the commitment key ck
as a parameter of the language. The argument itself is succinct and contains the
following elements:

– a succinct SNARK-type argument [V,H,W ]1, [V ]2 for the SAP relation,
– a succinct linear EMP commitment [c̃]2 that commits to the SAP witness

and to the randomness of the SNARK,
– a succinct linear subspace argument bls [23] that shows that commitments

open to consistent values (see bls argument below). I.e., it guarantees that
the opening of [c]1 is also used in the SNARK and in [c̃]2.

Below, we go over some of the technical background and then finally present
our QA-NIZK argument for SAP.

Perfectly Binding Commitment. We use ElGamal encryption as our per-
fectly binding commitment. In particular, the commitment key is ck = [u]1 =
[1, u]�1 where u ←$Zp and Comck(a ∈ Z

n
p ; r ∈ Z

n
p ) = [c]1 := ([r]1, [a]1 + r[u]1).

In matrix form [ci]1 = ai[e2]1 + ri[u]1. To [·]1-extract the message, we can sim-
ply decrypt each individual ciphertext, that is [ai]1 = [ci,2]1 − u[ci,1]1 where
[ci]1 = [ci,1, ci,2]�1 .

Square Arithmetic Program (SAP). A square arithmetic program is a tuple
SAP = (p, n, d,V ∈ Z

n×d
p ,W ∈ Z

n×d
p ). We define a commit-and-prove language

for SAP as the following language with n variables and d quadratic equations
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LSAP,ck =

⎧⎨
⎩ [c]1 ∈ G

2n
1

∃a, r ∈ Z
n
p : [c]1 = Comck(a, r)∧{(

a�vj

)2 − a�wj = 0
}d

j=1

⎫⎬
⎭

where Comck is a perfectly binding commitment scheme, vj is j-th column of
the matrix V and wj is the j-th column of the matrix W .

SNARK for SAP. Let χ1, . . . , χd ∈ Zp be unique interpolation points. We
define

v(X) =
n∑

i=1

aivi(X), w(X) =
n∑

i=1

aiwi(X) (1)

where vi(X), wi(X) are polynomials of degree less than d such that vi(χj) = vij

and wi(χj) = −wij . Moreover, let us define p(X) = v(X)2 − w(X) and t(X) =∏d
j=1(X − χj). We have that p(χj) = (a�vj)2 − a�wj and thus the j-th SAP

equation is satisfied exactly when χj is a root of p(X). In particular, when all
interpolation points are roots of p(X), then t(X) divides p(X) and all the SAP
equations are satisfied.

We can use these polynomial representations to construct a SNARK. Our
CRS will contain {[si

]
1,2

}d
i=1 where s ←$Zp is a secret point. The prover will

compute [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1 and [H]1 = [H(s)]1 where V (X) =
v(X) + δvt(X), W (X) = w(X) + δwt(X), and H(X) = (V (X)2 − W (X))/t(X).
Elements δv and δw are picked randomly to hide the witness. The verifier checks
that the equation [V ]1[V ]2 − [W ]1[1]2 = [H]1[t(s)]2 is satisfied. Intuitively, we
can use this to show that t(X) divides P (X) := V (X)2 −W (X). It is easy to see
that if t(X) | P (X) then also t(X) | p(X) and thus the SAP relation is satisfied.

BLS Argument. As a subargument, we use a QA-NIZK argument for mem-
bership in linear spaces (Kbls,Pbls,Vbls) defined in [23] for the bilateral linear
subspace (bls) language L[N 1]1,[N 2]2 := {([x]1, [y]2) | ∃w ∈ Z

t
p : x = N1w ∧ y =

N2w} for N1 ∈ Z
n×t
p , N2 ∈ Z

m×t
p . We use it to prove that commitments

in different groups open to the same value. It has perfect completeness, strong
quasi-adaptive soundness under the SKerMDH assumption, and perfect zero-
knowledge. The proof size is 2 elements in G1 and 2 elements in G2. We refer
the reader to the original paper for more details. We leave it as an open question
if the slightly more efficient construction by Ràfols and Silva [36] can be used.

New Target Assumption. The q-target strong Diffie-Hellman (q-TSDH)
assumption [3] says that given {[si

]
1,2

}q
i=1 for a random s, it is computationally

hard to find [ν]T = [1/(s − r)]T for any r ∈ Zp. We generalize this assumption
and intuitively say that it is hard to compute [ν]T = [c/(s − r)]T where r ∈ Zp

and c is a constant independent of s. In order to satisfy the latter requirement,
we include a challenge value [z]2 and let the adversary additionally output [c]1
and [c′]2 such that zc = c′. Intuitively, then c cannot depend on si since other-
wise c′ should depend on zsi which is not a part of the challenge. For technical
reasons, c in our assumption has a slightly more structured form β2

1 − β2.
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Definition 3 (q-SATSDH). The q-Square Arithmetic Target Strong Diffie-
Hellman assumption holds relative to Pgen, if ∀ PPT adversaries A,

Pr

⎡
⎢⎣
p ← Pgen(1λ); s, z ←$Zp;(
r, [β1, β2]1, [β̃1, β̃2]2, [ν]T

)
← A(p, {[si

]
1,2

}q
i=1, [z]2

)
:

β̃1 = zβ1 ∧ β̃2 = zβ2 ∧ β2
1 �= β2 ∧ ν = β2

1−β2
s−r

⎤
⎥⎦ ≈λ 0.

In the full version, we show that SATSDH is a falsifiable assumption and
that assuming a certain (previously known) knowledge assumption, SATSDH and
TSDH are equivalent. Alternatively, it is also possible to prove that SATSDH is
secure in the generic group model.

QA-NIZK Argument Scheme. Given n, d ∈ N we construct a QA-NIZK
argument for LSAP,ck.

– K0(λ) returns p ← Pgen(1λ).
– Dp(n, d) returns a commitment key ck = [u]1 = [1, u]�1 where u ←$Zp.
– K1(p, n, d, ck) picks s ←$Zp, then sets qv = 4, n′ = n + 1, M = 0 ∈
Z

qv×n′
p (i.e., Sv = ∅) and generates a linear EMP key ck′ = [K]2 ←

KC2(p, n′, qv,M) ∈ G
5×(n+2)
2 . Finally, it runs (crsbls, tdbls) ← Kbls([N1]1 ∈

G
(2n+2)×(2n+3)
1 , [N2]2 ∈ G

5×(2n+3)
2 ) for

[N1]1 =

⎡
⎢⎢⎢⎢⎢⎣

e2

. . .
e2

u
. . .

u

0

v1(s) . . . vn(s)
w1(s) . . . wn(s)

0 t(s) 0 0
0 t(s) 0

⎤
⎥⎥⎥⎥⎥⎦
1

,

[N2]2 =
[

v1(s) . . . vn(s)
K(1) . . . K(n) 0

t(s) 0 0
K(n+1) 0 K(n+2)

]
2

.

Return the CRS crs = (p, ck, ck′, {[si
]
1,2

}d
i=1, crsbls) with trapdoor (s, tdbls).

– The prover P receives an input (crs, ([c]1,V,W), (a, r)). Let vi(X) and
wi(X) be the interpolation polynomials at some points {χj}j for the i-th col-
umn of V and W respectively for i ∈ [1 .. n], and set t(X) =

∏d
i=j(X − χj).

The prover picks δv, δw, rv ←$Zp and defines:

V (X) :=
∑n

i=1 aivi(X) + δvt(X), W (X) :=
∑n

i=1 aiwi(X) + δwt(X)
P (X) := V (X)2 − W (X) H(X) := P (X)/t(X) (2)

The prover computes group elements [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1,
[H]1 = [H(s)]1 and a linear EMP commitment [c̃]2 = Com(ck′; (a, δv), rv).
The prover also computes a bls argument ψ for the statement xbls :=

([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
� ∈ Im

(
[N1]1
[N2]2

)
with witness (a, r, δv, δw, rv)

� ∈

Z
2n+3
p . Finally, it outputs the argument π :=

(
[H]1 , [V ]1,2 , [W ]1 , [c̃]2, ψ

)
.
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– The verifier V with input (crs, [c]1,V,W, π) returns 1 iff [V ]1[V ]2 −
[W ]1[1]2 = [H]1[t(s)]2 and Vbls(crsbls, xbls, ψ) = 1.

SSB Functionality in the Security Proof. The security proof of the argu-
ment uses similar techniques as [12] but simplified because we rely on the prop-
erties of SSB commitments. Intuitively, in the security reduction we need to
compute some elements of the form [

∑
i aiyi]2 where (a1, . . . , an) is the witness

and [y1, . . . , yn]2 are elements that can be computed from the challenge of some
falsifiable assumption or public elements. The actual reduction requires us to
extract multiple such linear combinations.

If an adversary wins the soundness game, its argument passes verification but
at least one SAP equation does not hold. In the security proof, the soundness
game is first changed by randomly picking one of the SAP equations

(
a�vj∗

)2−
a�wj∗ = 0 for some j∗ ∈ [1 .. d]. To complete the proof, we have to check
the equation and break a computational assumption. For the former, since our
perfectly binding commitment is only [·]1-extractable, we can at best extract [ai]1
which is not enough to check the j∗-th equation, even if vj∗ and wj∗ are public.
We need a square of a, so it suffices to extract

∑
[ai]2vj∗,i in G2 and prove the

equation in the target group. For the latter, we break the d-SATSDH assumption
that is a version of the d-TSDH (Target Strong Diffie-Hellman) assumption [3]
with some extra elements that are linear combinations of the witness.

Next, we switch the EMP commitment key that is in perfectly hiding mode in
the honest proof (S = ∅) to the mode that encodes the functions f(a1, . . . , an) =∑

i ai[yi]2 that we need. Then, from [c̃]2 we can extract [
∑

i aivj∗,i]2, and so check
the equation in GT , and also the linear combinations to break the assumption.

The FSH property guarantees that the adversary cannot learn the index j∗

and thus the j∗-th SAP equation is not satisfied with probability ≥ 1/d. The
[·]2-SSE property allows us to extract some linear combinations of the claimed
witness and break the d-SATSDH assumption. Zero-knowledge is straightfor-
wardly guaranteed by the AEPH property. The full security proof and more
intuition of it are deferred to the full version.

Efficiency. The proof size in the original construction in [12] is 4 elements in
G1 and 6 elements in G2, while our construction’s proof size is 5 elements in G1

and 8 elements in G2.
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Abstract. Due to the simplicity and performance of zk-SNARKs
they are widely used in real-world cryptographic protocols, including
blockchain and smart contract systems. Simulation Extractability (SE)
is a necessary security property for a NIZK argument to achieve Univer-
sal Composability (UC), a common requirement for such protocols. Most
of the works that investigate SE focus on its strong variant which implies
proof non-malleability. In this work we investigate a relaxed weaker
notion, that allows proof randomization, while guaranteeing statement
non-malleability, which we argue to be a more natural security property.
First, we show that it is already achievable by Groth16, arguably the
most efficient and widely deployed SNARK nowadays. Second, we show
that because of this, Groth16 can be efficiently transformed into a black-
box weakly SE NIZK, which is sufficient for UC protocols.

To support the second claim, we present and compare two practical
constructions, both of which strike different performance tradeoffs:

– Int-Groth16 makes use of a known transformation that encrypts the
witness inside the SNARK circuit. We instantiate this transforma-
tion with an efficient SNARK-friendly encryption scheme.

– Ext-Groth16 is based on the SAVER encryption scheme (Lee et al.)
that plugs the encrypted witness directly into the verification equa-
tion, externally to the circuit. We prove that Ext-Groth16 is black-
box weakly SE and, contrary to Int-Groth16, that its proofs are fully
randomizable.

Keywords: zk-SNARKs · Simulation extractability · UC security

1 Introduction

Succinct non-interactive arguments of knowledge (SNARK) have revolutionized
the deployment of zero-knowledge proofs, particularly in the blockchain and
cryptographic currency space [BCG+14,KMS+16,KKK20,BCG+20,SBG+19].
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The ready availability of cryptographic libraries implementing SNARKs has also
inspired numerous other applications [NT16,DFKP16]1.

Due to its exceptional performance and simplicity, currently the most widely
deployed SNARK is Groth16 [Gro16]. In this work, we consider an important
perspective on security analysis of Groth16, namely the limits of its malleability
(and non-malleability). The lack of study in this direction is surprising consider-
ing the importance of non-malleability in distributed settings such as blockchain
and the popularity of Groth16 for practical applications.

Arguably, the strongest extraction and non-malleability property for SNARK
systems is simulation-extractability (SE) [Sah99,DDO+01], a security notion
that extends knowledge-soundness (KS) by giving the adversary access to the
simulation oracle. One of the important properties of this notion is that its
straight-line extractable, black-box variant is necessary to achieve universally
composable (UC) security [Can01] for non-interactive zero-knowledge (NIZK)
proof systems, as shown by [CLOS02,GOS06,Gro06]. This is an important prac-
tical concern since applications employing SNARKs often use the UC frame-
work due to its flexibility and expressive power [KMS+16,KKKZ19,KKK20].
Moreover, SE is needed in game-hopping style proofs [Sho04] in which one
game hop introduces the simulator and a subsequent game hop relies on extrac-
tion [KMS+16,CDD17].

Simulation-extractability comes in two flavors: the adversary against the
stronger flavor is required to produce a proof that differs from any simulated
proof that the adversary obtained from the simulator. In this work, we focus
on the weaker flavor [KZM+15], that allows for a limited malleability of proofs
but requires the adversary to produce a proof for a statement that differs from
any of the statements queried from the simulator. Weak SE and strong SE of
proof systems are in analogy to chosen message attack (CMA) and strong CMA
unforgeability of signatures.

Another important parameter of a SE notion is whether it supports white-box
(WB) or black-box (BB) extraction. A well-known impossibility result [GW11]
states that SNARKs cannot be proven secure under falsifiable assumptions. In
practice, the non-falsifiability of the assumptions used for SNARKs comes from
their white-box nature; that is, they imply some knowledge of the adversary’s
internals. This prevents proving black-box extraction (and black-box SE), which
requires extracting from the adversary only using its “input/output” interface.
Since precisely this notion is required for UC security, in practice compilers lifting
zk-SNARKs to black-box SE are used [KZM+15,AB19,Bag19], and, crucially,
their efficiency can benefit from a stronger (white-box) property of the input
SNARK as we show in this work.

Although black-box strong SE is sometimes a desirable property, (black-box)
weak SE is sufficient for many UC applications, for instance in Hawk [KMS+16],
as argued in [KZM+15]. Hawk uses SE NIZKs directly as a raw primitive
(without employing a functionality), and it suggests to use a non-succinct
strong SE NIZK, since no other candidates were known at that time. Kosba

1 See also the application chapter of [ZKP19].



Another Look at Extraction and Randomization of Groth’s zk-SNARK 459

et al. [KZM+15] point out that a weak SE NIZK can be used instead. We also
note that weak SE is sufficient for the SNARKs to signatures of knowledge (SoK)
compiler of [GM17] that embeds a hash of the message into the statement proven.
Thus applications employing SoK, such as [BMRS20], can also benefit from our
work. Note that in weak SE it is the statement rather than the proof that cannot
be mauled. The resulting SoK satisfies CMA unforgeability.

Our Contributions. Our results are twofold. First, we show that Groth16,
as described in the literature and deployed in practical applications, is already
white-box weak SE.

Surprisingly, this was not known before. Proof malleability was noted
by [GM17] as an obstacle for proving the strong SE property for Groth16, which
resulted in them constructing a new non-malleable SNARK. Allowing proof ran-
domization in the definition resolves the issue differently by proving a security
property for the original system that lies in strength between knowledge sound-
ness and strong SE. Additionally, we show that only a specific type of proof
malleability is possible and that rerandomized proofs have the same distribution
as fresh proofs of the same statement. We show in the algebraic group model
(that we state as an assumption) that the extractor can either obtain the witness
or point to the unique simulated proof that was randomized to obtain the proof
produced by the adversary. Thus, even if the adversary queries multiple proofs
for the same statement, it cannot combine them into a new proof of the same
statement, which is the main technical challenge in proving white-box weak SE.

As our second contribution, we give two optimized constructions for black-
box weak SE: Int-Groth16 and Ext-Groth16. Int-Groth16 is based on the (strong)
WB-to-BB SE compiler of [Bag19]. It adds a public key of a cryptosystem to the
CRS and a ciphertext containing encryption of the witness to the proof. It then
employs a SNARK to prove an extended statement to ensure that the witness is
correctly encrypted. We show that this compiler can be used for weak WB-to-
BB conversion, and therefore instantiated with the more efficient Groth16.2 We
optimize the encryption scheme and employ a SNARK-friendly variant of ElGa-
mal with randomness reuse [Kur02]. A noteworthy technical detail is that the
witness needs to be mapped to SNARK-friendly elliptic curve points. The down-
side of this construction is that even state-of-the-art SNARK-friendly public-key
operations incur a substantial overhead in the circuit size.

Ext-Groth16 uses a verifiable encryption technique of Lee et al. [LCKO19]
to overcome this limitation. We again encrypt the witness, but with a differ-
ent encryption scheme in which resulting ciphertexts enter Groth16 verification
equation directly and thus have almost no effect on the circuit structure. To
show Ext-Groth16 secure, we need to directly prove black-box weak simulation-
extractability, which we do by a reduction to white-box weak SE of Groth16.
The main technical challenge is, again, to show which transformations exactly
are available to the adversary. Additionally, we prove that the zero-knowledge

2 In fact, even weak simulation soundness without extractability is sufficient for the
compiler.
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property of Ext-Groth16 can rely on the standard Decisional Diffie-Hellman
assumption rather than the novel assumption stated in [LCKO19].

To compare the efficiency of these two constructions, we estimate CRS and
proof size, prover time, and verifier time as a function of the encrypted witness
size. Our results show that both constructions have low overhead compared to
the commonly used generic transformations. In particular, Ext-Groth16 leads to
almost no increase in CRS size and prover time, while resulting in slightly bigger
proofs and verification time.

Related Work. Simulation-extractability is relevant for both CRS-based
and Random-Oracle (RO) based NIZKs. Faust et al. [FKMV12] show that
NIZKs obtained from Σ-protocols using the Fiat-Shamir heuristic satisfy
simulation-extractability in the RO model. In this work we focus on simulation-
extractability of CRS-based NIZKs, and on the Groth16 SNARK in particular.

White-Box Constructions. White-box SE SNARKs have been discovered only
recently. Groth and Maller [GM17] presented the first construction in 2017,
targeting the language of Square Arithmetic Programs (SAPs). They also proved
a lower bound of three group elements for the proof size and two verification
equations for all non-interactive linear proof (NILP) based SNARKs, which
covers many previously known pairing-based SNARKs. Weak SE allows us to go
below this bound with a single verification equation.

Bowe and Gabizon [BG18] give a RO-based variant of Groth16 for Quadratic
Arithmetic Programs (QAPs) that is simulation-extractable, and has five group
elements and two verification equations. Lipmaa [Lip19] presents a different
technique that allows to construct SE SNARKs for QAP and the three other
arithmetization techniques from the QAP family (namely, SAP, SSP, and QSP).
Kim, Lee, and Oh [KLO19] present a SE SNARK for QAP with three elements
but just a single verification equation, avoiding the lower bound of Groth and
Maller by using a RO in addition to a knowledge extraction assumptions and a
CRS. Recently, Baghery, Pindado, and Ràfols [BPR20] revised Bowe and Gabi-
zon’s construction [BG18] and presented a new variation which saves 1 paring in
the verification, and gets rid of the RO at the cost of a collision-resistant hash
function.

Black-Box Transformations. A generic transformation that makes ordinary
NIZKs black-box SE has been known at least since [DDO+01]. Along this direc-
tion, Kosba et al. [KZM+15] extend, analyse, and optimize this transforma-
tion technique—they present three transformations; two of which build weak SE
NIZKs, while the third builds a strong SE NIZKs. Atapoor and Baghery [AB19]
adapt Kosba et al.’s work directly to Groth16 and evaluate the efficiency of the
resulting strong SE argument. Baghery [Bag19] analyses a transformation from
white-box SE to black-box SE, and instantiates it with the strong SE SNARK by
Groth and Maller. We show that this technique also works for lifting white-box
weak SE to black-box weak SE. Other generic transformations take into account
CRS subversion and updatability [ARS20,BS20].
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2 Preliminaries

Notation. We denote the security parameter by λ ∈ N. We say that a function
f : N → R is negligible, if for a big enough λ, f < 1/p(λ) for all polynomials
p(λ). We write g(λ) = negl(λ) to mean that g is some negligible function. For a
distribution X we denote random sampling by x

$←− X, and when this notation
is used with a finite set S, x

$←− S denotes uniform sampling from S. We write
vectors in bold, and write a · b for the inner product of two vectors a and b.

When working with polynomials, we generally use upper case letters for inde-
terminates as X,Y,Δ,Xγ , and lower case for concrete values x, y, δ, γ. We use
vector notation to denote a list of formal variables, so for X = X1, . . . , Xn, we
write P (X) ∈ F[X1 . . . Xn] = F[X] for a polynomial in these variables, and for
a x ∈ F

n, P (x) will denote the polynomial evaluation P (x1 . . . xn).
PPT stands for (uniform) probabilistic polynomial-time. An execution tran-

script transP of an algorithm P contains P’s private coins, inputs and outputs,
including interactions with any oracles that it is provided with. Having access
to transP implies white-box access to P.

Bilinear Groups. Let (G1,G2,GT , e(·, ·), p) be a Type III3 bilinear group of
prime order p with generators G,H, and e(G,H) for the three groups respec-
tively. The pairing e : G1 ×G2 → GT is a bilinear map. We will write G1,
G2, and GT additively. It will be convenient to use square brackets notation
to represent group elements by specifying their exponents: [a]ι � [a]Gι. We
will denote the (exponent-level) pairing for the square brackets notation as
[a]1 • [b]2 � e([a]G, [b]H). When a is a vector of values ai ∈ Zp, we will overload
the square brackets notation, and denote a vector of [ai]ι by [a]ι. In the same
way we will overload [{a, b, c, . . .}]ι = {[a]ι, [b]ι, [c]ι, . . .} for sets. When set or
vector A contains elements from several groups, we will denote it by combining
all the group indices in the subscript, e.g. [A]1,2,T if A contains elements from
all the three groups.

Circuit Form and Quadratic Arithmetic Programs (QAP). Let R be
a relation for an NP language L, such that (φ,w) ∈ R ⇔ φ ∈ L. When R is
implemented as an arithmetic circuit C, we assume it to be of the following form.
The input wires are split into: l public input wires corresponding to φ1, . . . , φl,
and lw private input wires, corresponding to w1, . . . , wlw . We denote the total
number of wires by m, and thus the remaining m − l − lw wires are called
intermediate—they can be computed from φ and w.

A quadratic arithmetic program (QAP, [GGPR13]) for the circuit C con-
sists of the quotient polynomial t(x) of degree n, and three sets of polynomi-
als {ui(X)}m

i=0, {vi(X)}m
i=0 and {wi(X)}m

i=0 of degree n − 1. A particular QAP

3 Asymmetric, with G1 �= G2 and without any efficiently computable nontrivial homo-
morphism in either direction between G1 and G2, according to the classification of
[GPS06].
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assignment {ai}m
i=0 contains assignments to the circuit wires, and a0 = 1 is a

fixed parameter. We will refer to the sets {φi} ∪ {wi} and {ai} interchangeably
when there is no risk of confusion, with φ0 corresponding to a0. The assign-
ment {ai} satisfies the QAP if and only if (

∑m
i=0 aiui(X))(

∑m
i=0 aivi(X)) −

(
∑m

i=0 aiwi(X)) = h(X)t(X) for some h(X) of degree n−2. That is, t(x) divides
the left hand side of the equation.

As QAP relations are defined over a finite field that determines suitable
bilinear groups, they need to be compatible with the desired security level λ.
Our asymptotic security notions are all quantified over λ-compatible relations
Rλ. In practice SNARK systems use very specific pre-defined groups for a fixed
security level. For these reasons we elide most of these details in our formal
modelling and typically write R instead of Rλ.

Algebraic Modelling and Assumptions. Following [FKL18,Lip19], we say
that the algorithm A is algebraic, if there is a way to represent any group ele-
ment it returns using elements it has seen before, specifically as a linear com-
bination of these elements with known (extracted) coefficients. Security against
algebraic adversaries can be formalized either as a standard model white-box
knowledge-extraction assumption [BV98,PV05,Lip19], or by defining a separate
cryptograpic model as done in the algebraic group model (AGM) [FKL18]. We
are following the extraction assumption style from [Lip19], without consider-
ing the stronger hashed version that additionally allows A to sample random
elements in G without knowing their exponents.

Definition 1 (Algebraic Algorithm, [Lip19]). A PPT algorithm A is alge-
braic with respect to a cyclic group Gι of prime order p, if there exists a polyno-
mial time extractor X alg

A returning a coefficients matrix K, such that for all m
and all efficiently sampleable distributions D over (Z∗

p)
m,

Pr
[
σ

$←− Dλ;e $←− A([σ]ι);K ← X alg
A (transA) : e �= [Kσ]ι

]
= negl(λ).

It is easy to see how this definition extends to the asymmetric bilinear groups
(X alg

A should return K with m1+m2 rows, and (e1 e2)T =
[
K(σ1 σ2)T

]
1,2

), and
to the case when A obtains elements from an oracle (transA captures commu-
nication with it). That means that in the soundness and knowledge soundness
games, an algebraic adversary A gets only CRS elements as an input, and in the
simulation-based definitions A additionally sees the simulated proof elements.

In proofs with algebraic adversaries, we use the following variant of the dis-
crete logarithm assumption [FKL18].

Definition 2 ((q1, q2)-Discrete Logarithm Assumption). Let (G1,G2, ·,
·, p) be a Type III bilinear group. We say that (q1, q2)-dlog holds if for all PPT
A,

Pr
[
x

$←− Z
∗
p; z

$←− A([x, . . . , xq1 ]1, [x, . . . , xq2 ]2) : x = z
]

= negl(λ).
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Non-interactive Zero-Knowledge Arguments. We introduce security
notions for non-interactive zero-knowledge (NIZK) arguments that we use
throughout the paper. In particular, we define proof rerandomization and differ-
ent flavors of simulation-extractability. In the following, NIZK denotes a tuple of
efficient algorithms (Setup,Prove,Verify,Sim) unless specified otherwise.

Weak simulation extractability (SE) is an extension of knowledge soundness
where adversary can query simulated proofs (even for false statements) and
finally has to come up with a statement and a proof for which an extractor cannot
recover a witness. Moreover, the statement cannot be any of the statements
queried from the oracle. First, we give a definition for white-box version which
allows there to be a different extractor for each adversary.

Definition 3 (White-box Weak Simulation-Extractability, [KZM+15]).
We say that NIZK is white-box weak SE if for any PPT adversary A there exists
a polynomial time extractor XA such that for Rλ,

Pr
[

(σ, τ) ← Setup(Rλ); (φ, π) ← ASσ ,τ (σ);
w ← XA(transA) :

Verify(σ, φ, π) = 1∧
(φ,w) /∈ Rλ ∧ φ /∈ Q

]

= negl(λ),

where Sσ ,τ (φ) is a simulator oracle that calls Sim(σ, τ, φ) internally, and also
records φ into Q.

The important distinction between this notion and strong SE lies in the last
condition in the security game. Strong SE requires (φ, π) /∈ Q, where S records
pairs of queried instances and simulated proofs. If NIZK is randomizable, A
can just pass re-randomized simulated proof for an instance it does not know
a witness of and win the strong SE game. This is forbidden, thus the strong
SE scheme must be non-malleable. Honest proofs are also non-randomizable,
otherwise zero-knowledge would not hold. Weak SE relaxes this non-malleability
requirement by allowing to produce π′ �= π for the simulated (and thus also real)
proof π.

The black-box variant of weak SE specifies the existence of a single extractor
that works for all adversaries.

Definition 4 (Black-box Weak Simulation-Extractability, [KZM+15]).
We say that NIZK = (Setup,Prove,Verify,Sim,Ext) is black-box weak SE if for
any PPT adversary A and Rλ,

Pr
[

(σ, τ, τext) ← Setup(Rλ);
(φ, π) ← ASσ ,τ (σ);w ← Ext(σ, τext, φ, π) :

Verify(σ, φ, π) = 1∧
(φ,w) /∈ Rλ ∧ φ /∈ Q

]

= negl(λ),

where Sσ ,τ (φ) is a simulator oracle that calls Sim(σ, τ, φ) internally, and also
records φ into Q.

Proof malleability can also be a beneficial security property. We call the
proof system for the relation R randomizable or proof malleable, if there exists a
(non-trivial) PPT procedure Rand such that Pr[Verify(σ, φ,Rand(π))] = 1 for all
honestly generated proofs π for σ and φ. The notion of proof rerandomization
we use is similar to [BCC+09] and the ciphertext rerandomization in [LCKO19]:
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Definition 5 (Proof Rerandomization). A proof system is rerandomizable
with respect to relation Rλ and randomization transformation Rand, if for all
(φ,w) ∈ Rλ, all σ output by Setup(Rλ) and all π such that Verify(σ, φ, π) = 1:
{Prove(σ, φ, w)}λ = {Rand(σ, φ, π)}λ, where the randomness is over the random
variables used in Prove and Rand.

We elide standard definitions of knowledge soundness (KS), zero-knowledge,
and a weaker simulation-soundness notion that is only used by our compiler
in Sect. 4.1 (it is obtained by removing the extractor from SE, similarly to the
distinction between KS and soundness).

3 White-Box Weak SE and Randomizability of Groth16

In this section, we show that Groth16 is white-box weakly simulation extractable,
which to our knowledge is the first SNARK construction that is proved to (only)
achieve this notion. Additionally, we provide some facts about randomization of
Groth16. We start by recalling Groth16 in Fig. 1.

Fig. 1. Groth16 zk-SNARK with simulation and randomization procedures.
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White-Box Weak SE. Our proof is in the AGM and relies on the same hard-
ness assumptions ((q1, q2)-discrete logarithm) as Groth16 knowledge soundness.
Additionally we require a form of linear independence from QAP polynomials—a
similar requirement was used for square arithmetic programs in [GM17].

Theorem 1. Assume that {ui(x)}l
i=0 are linearly independent and

Span {ui(x)}l
i=0 ∩ Span {ui(x)}m

i=l+1 = ∅. Then Groth16 achieves weak white-box
SE against algebraic adversaries under the (2n − 1, n − 1)-dlog assumption.

Proof (Sketch). The proof splits in two branches—we show that either A uses
simulated elements, and in this case it can only use them for a single simulation
query k, or it does not use them at all. In particular, this implies that A cannot
combine several elements from different queries algebraically for the π it submits.
We then argue that the non-simulation case reduces to knowledge soundness,
and in the simulation case we show that A supplies φ that is equal to one of the
simulated instances, which proves that A reuses a simulated proof, potentially
randomized. An interesting detail not captured in the weak SE definition is
that not only can we decide whether the proof π′ provided by algebraic A is a
modification of the simulated proof π queried before in the simulation case, but
we can pinpoint which exact simulated proof it was derived from. More details
are provided in the full version [BKSV20]. ��

Transforming the Proof. It is known that Groth16 has malleable proofs. It
is not hard to extend this statement to show that Groth16 is rerandomizable,
that is its output of Rand is indistinguishable from honest proofs, even if Rand
is applied to maliciously generated (but verifiable) proofs.

Theorem 2. Groth16 zk-SNARK is rerandomizable4 with respect to the ran-
domization transformation Rand presented in Fig. 1.

Proof. In a nutshell, the proof elements a and b output by Rand are random and
independent of each other; and the verification equation fixes a unique c based
on a, b,σ,φ. As before, more details are provided in the full version [BKSV20].

��
Together with white-box weak SE forbidding instance malleability, and per-

fect ZK, Theorem 2 implies that randomization is equivalent to any other way
to transform the honest (or simulated) proofs. But this does not give an explicit
algebraic characterization of the transformation—that is, we do not know if there
is any other way to create an honest proof, or any other way to rerandomize it
(that would produce the same distribution). One of the interesting properties of
the proof of Theorem1 is that it can be extended to show that Rand is the only
algebraic transformation possible, which we present as an independent result.
We also show that the most-general algebraic form of the honest generation
procedure has at most three random “axes”, any two of which are required for
perfect zero-knowledge.
4 This property has been observed before, for example in [LCKO19] in a similar con-

text.
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Observation 1. The only form of algebraic transformation on Groth16 proofs
that is possible without violating its verification equation is the randomization
procedure Rand(σ, π = (a, b, c); r1, r2), where r1, r2 are chosen by the adversary.

4 Black-Box Weak SE

We study two approaches to achieve black-box weak SE by encrypting the wit-
ness. The first construction Int-Groth16 integrates ciphertexts directly to the rela-
tion, and the second construction Ext-Groth16 proves the correctness of cipher-
texts with external techniques.

4.1 Black-Box Weak SE with Internal Encryption

First, we describe a generic transformation for achieving black-box weak SE. We
let the prover encrypt the witness w with a IND-CPA secure cryptosystem and
then use a weak simulation sound NIZK (e.g., Groth16) to prove the relation

R′ � {((φ, pk, c), (w, r)) : (φ,w) ∈ R ∧ c = Enc(pk, w; r)},

where φ is the statement the prover wants to prove and R is the corresponding
relation. Since we make the public key pk a part of the reference string, it will
be possible to black-box extract the witness from the ciphertext. Full details of
the construction can be seen in Fig. 2.

Fig. 2. The construction for black-box weak SE NIZK where NIZK′ = (Setup′,
Prove′,Verify′, Sim′) is a weak simulation sound NIZK and (KGen,Enc,Dec) is a IND-
CPA secure cryptosystem.

This transformation was first analyzed in [Bag19], where it was shown to lift
a white-box strong SE NIZK to a black-box strong SE. Below we sketch a proof
that it also lifts a weak simulation sound NIZK to a black-box weak SE NIZK.
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Theorem 3. Let NIZK′ = (Setup′,Prove′,Verify′,Sim′) be a complete, weak sim-
ulation sound, and computational zero-knowledge non-interactive proof system
and (KGen,Enc,Dec) an IND-CPA secure cryptosystem. Then the NIZK con-
struction in Fig. 2 is complete, black-box weak SE, and computational zero-
knowledge.

Proof (sketch). Completeness of NIZK follows from the completeness of NIZK′

and correctness of the cryptosystem. Computational zero-knowledge holds since
Enc(pk, 0) is computationally indistinguishable from Enc(pk, w) and since NIZK′

already has computational zero-knowledge. Finally, suppose that there exists a
PPT adversary A that can break black-box weak SE of NIZK. We can easily con-
struct a PPT adversary B that can break weak simulation soundness of NIZK′.
B gets σ′ as an input and generates pk itself. Now B can run A(σ′ ∪ pk) inter-
nally and whenever A makes a simulation query φ, B makes a simulation query
(φ, pk, c = Enc(pk, 0)) and gets back a proof π′ which allows him to send (c, π′)
to A. Finally, A outputs (φ∗, (c∗, π∗)) such that φ∗ has not been queried and
either φ∗ is an invalid statement or c does not encrypt the correct witness. Now
B can output ((φ∗, c∗), π∗) which will break weak simulation soundness. ��

We can obtain good efficiency if we instantiate the above construction by
taking Groth16 as NIZK′ and by using vector ElGamal as a cryptosystem (see
the full version for details). We call this instantiation Int-Groth16. In Sect. 5 we
discuss further optimization of this construction.

Corollary 1. Int-Groth16 is a complete, black-box weak SE, and computational
zero-knowledge NIZK argument.

4.2 Black-Box Weak SE with External Encryption

The disadvantage of the previous construction is that one needs to encode the
extended relation as an arithmetic circuit, that is shown, e.g. in Hawk, to result
in a considerably larger public parameters and a slower prover. Thus, we pro-
pose a second construction Ext-Groth16 which is closely based on the SAVER
cryptosystem [LCKO19] which in a sense gives ciphertexts as a public input to
Groth16. Having the encryption outside of the circuit allows us to have smaller
circuit overhead which results in smaller CRS size and higher prover efficiency.
As before, proof size is linear, and is dominated by the size of the encrypted wit-
ness (this is inevitable for black-box constructions, as discussed before [GW11]).
The formal description is presented on Fig. 3. Roughly speaking, we reinstanti-
ate SAVER, but also prove that the construction is black-box weak simulation
extractable. Additionally we re-prove computational zero-knowledge under the
weaker and more standard DDH assumption.

Technical Details. As Ext-Groth16 is based on SAVER, we point out the impor-
tant ways it is different from Groth16. First, we extend the CRS with the pk
elements, similarly to how it is done in Int-Groth16 (since pk uses Groth16 trap-
doors, it changes the security proof). Second, Groth16 itself is modified: while
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Fig. 3. Ext-Groth16: the black-box-extractable SAVER-inspired variant of Groth16. The
relation R must assert that inputs on witness input wires l . . . l + lw are small enough
to be efficiently decryptable. qi(x) and yi(x) are as for Groth16, e.g. in Fig. 1.

constructing the proof, element c has an additional coefficient, that is needed to
balance out ciphertext randomness.

Crucially, Ext-Groth16 cannot achieve black-box strong SE, because it is proof
malleable (and rerandomizable). First, the rerandomization of embedded Groth16
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still works, because it does not interfere with the “ciphertext randomness can-
celling term” of c. Second, ciphertexts are also rerandomizable: we can replace
r with r + r′ additively in all ci, in ψ and c (as shown in Fig. 3).

Another important distinction is that in order for the decryption to work
efficiently (since it relies on solving discrete logarithm), plaintexts should be
small enough. This is critical to guarantee the extraction—to prevent A from
creating un-extractable proofs, we require the circuit itself to make range-checks
on plaintext values. We account for the circuit growth in our efficiency evaluation,
but in this section we assume the circuit transformation to be an implicit part
of the construction, since this suffices for our security analysis.

Finally, we estimate the resulting performance parameters of Ext-Groth16.
Construction CRS size (omitting constants) is (m + 2n + 2lw) G1, and (n + lw)
G2. Proof size is (lw +4) G1 and 1 G2, so lw +2 times more G1 than in Groth16.
Prover time is (omitting constants) (m + 3n − l + 2lw) E1 and n E2. Verifier
time is l E1 and (lw + 5) P , so lw + 2 pairings more than in Groth16.

Security. We give a direct proof for the security of Ext-Groth16, as opposed to
relying on the security of a transformation as for Int-Groth16. We prove compu-
tational zero-knowledge under the standard DDH assumption, as compared to
a decisional polynomial assumption introduced and used in SAVER. The weak
SE proof is structurally similar to the proof of Theorem1: that is, we show that
either A reuses a simulated proof (potentially randomizing it), or it does not use
simulated data at all, and in that case we can extract the witness. The crucial
difference now is that extractor Ext is black-box and operates by decrypting the
ciphertext. The proof of the following theorem is deferred to [BKSV20].

Theorem 4. The Ext-Groth16 NIZK argument in Fig. 3 achieves perfect com-
pleteness; computational zero-knowledge under the DDH assumption; and black-
box weak SE against algebraic adversaries under linear independence of U =
{ui(X)}l+lw

i=0 , and span independence between U and rest of ui(X).

Lemma 1. The Ext-Groth16 NIZK is rerandomizable with Rand in Fig. 3.

Proof. Follows directly from rerandomizability of SAVER in [LCKO19]. ��

5 Performance

In this section, we evaluate the efficiency of Int-Groth16 and Ext-Groth16. First,
in Table 1, we give a high-level comparison of Groth16 and (the most efficient)
C∅C∅ black-box SE transformation [KZM+15, Section 4]. It shows the asymp-
totic dependence of the performance metrics on the witness size lw and the
blow-up of the QAP size due to the use of cryptographic primitives for the trans-
formation. Enclw denotes an encryption scheme with sufficiently large plaintext
size to encrypt the witness. We note that even for Ext-Groth16 a small circuit
modification is required, and therefore m grows by 2lw bits, and n grows by
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lw; additionally, lw wires for Ext-Groth16 have 6 times less capacity than for
Int-Groth16 and C0C0. Clearly, in Table 1, an overhead of C∅C∅ in CRS size
and prover time is strictly bigger than in both constructions we suggest, due to
the use of PRF and commitment scheme, and Ext-Groth16 encryption overhead
(thus proof size and verification time) is bigger than in first two transformations
because of the expansion factor.

Table 1. A comparison of Groth16 with the overhead of C∅C∅ framework and our
constructions. Constants are omitted in the case of CRS size and prover’s computation.
G1 and G2: group elements, E: exponentiations and P : pairings. lw is the number of
secret input wires. e(lw) = |Enclw |, c(lw) = e(lw)+|Com|+|Prf|, where |Op| denotes the
number of constraints required for the operation Op ∈ {Enclw ,Com,Prf}. ei(lw), ci(lw)
denote an additional increase in input wires (counted in m, but not in n). ke is Enc
expansion factor, can be assumed ≤2. The highlighted cells indicate the best efficiency.
Top-level parentheses between expressions and units are omitted for better readability.

Construction Security CRS Proof Prover Verifier

Groth16, Sect. 3
KS, Weak

WB-SE

m + 2n G1

n G2

2 G1

1 G2

m + 3n − l E1

n E2

l E1

3 P

Groth16 + [KZM+15]
Weak

BB-SE

+ 3c(lw) + ci(lw) G1

+ c(lw) G2

+ kelw G1

+ 4c(lw) + ci(lw) − O(lw) E1

+ c(lw) E2

+ kelw E1

Int-Groth16, Sect. 4.1
Weak

BB-SE

+ 3e(lw) + ei(lw) G1

+ e(lw) G2

+ kelw G1

+ 4e(lw) + ei(lw) − O(lw) E1

+ e(lw) E2

+ kelw E1

Ext-Groth16, Sect. 4.2
Weak

BB-SE

+ 36lw G1

+ 12lw G2

+ 6lw + 2 G1

+ 42lw E1

+ 12lw E2

+ 6lw + 2 P

We also estimate the concrete performance of our two black-box construc-
tions, along the same four performance parameters defined in Table 2, as depend-
ing on the bit-size of the encrypted witness. For both NIZKs we will use a 255-bit
BLS12-381 curve, defined over a 381 bit prime field. Let us assume that witness
size is Bw bits, and it is provided in bit-decomposed form in the original circuit.
We aim to optimize proof size, which is important for SNARKs, and thus will
only consider encrypting secret inputs at the maximum possible capacity (e.g. we
do not encrypt individual bits); the two approaches have different block capaci-
ties, so the number of plaintext (and ciphertext) blocks is different in both cases.
For Int-Groth16, block size is 248 bits, where the 6 remaining bits are reserved
for Koblitz [Kob87] message embedding padding. For Ext-Groth16 we split the
plaintext in 43-bit blocks, thus assuming that we can solve 43-bit discrete log-
arithm for black-box extraction. This explains Ext-Groth16 expansion factor of
6 = 248/43�. We base our circuit design estimates, which are especially rele-
vant to Int-Groth16, on zcash implementation, description of which is provided
in [HBHW20] (Section “Circuit Design”).

Due to space limits, we cover the concrete performance estimation and anal-
ysis in [BKSV20].
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Table 2. Overhead comparison of our constructions over plain Groth16. GJ stands for
bit-size of an encoded JubJub point, and Gi is the size of an encoded BLS12-381 point.
Highlighted cells indicate efficiency improvement.

Construction CRS Proof Prover Verifier

Int-Groth16
3286 + 16.4Bw G1

1010 + 5.1Bw G2

(⌈Bw
248

⌉
+ 1

)
G

J +Bw
4296 + 21.6Bw E1

1010 + 5.1Bw E2

3
⌈Bw
248

⌉
E1

Ext-Groth16
0.14Bw G1

0.05Bw G2

(⌈Bw
43

⌉
+ 2

)
G1

0.16Bw E1

0.05Bw E2

(⌈Bw
43

⌉
+ 2

)
P

Performance Comparison. Our estimates, summarized in Table 2, suggest
that both constructions are quite efficient practically. Ext-Groth16 achieves better
prover time and CRS size at the expense of slightly bigger proofs and verification
time. CRS size and prover time of Ext-Groth16 incur a very small overhead, and
are asymptotically much smaller than the same numbers for Int-Groth16, giving
almost a 100–135× performance gain. Hence, we focus our detailed analyses on
the proof size and verifier time:

1. Proof size. Assuming that encoded BLS12-381 G1 takes 381 bits, and that
JubJub point GJ takes 256 bits, Int-Groth16 overhead is

(⌈
Bw

248

⌉
+1

)
256+Bw ≈

2.03Bw + 256 bits, and for Ext-Groth16 it is
(⌈

Bw

43

⌉
+ 2

)
381 ≈ 8.86Bw + 762

bits. Asymptotically, Int-Groth16 proof size is ×4.4 times smaller.
2. Verifier time. To compare the increase in exponentiations in Int-Groth16 with

the increase in pairings in Ext-Groth16, we use the estimation that micro
benchmarks ([AB19, Fig. 2], also consistent with [FLSZ17, Table 3] for BN-
254) show pairings to be approximately N = 35 times slower than processing
one element of a multi-exponentiation. Thus, the verification overhead of
Int-Groth16 is small for practical witnesses, e.g. 1600 · 3/248 ≈ 20 wires for
encrypting 200 bytes, comparing to tens of thousands circuit constraints. The
overhead of Ext-Groth16 therefore is about 70× more than for Int-Groth16,
although for real-world witnesses it takes less than just a few tens milliseconds,
and becomes immaterial for bigger public input sizes.

6 Conclusion and Future Work

We prove two important theorems about [Gro16] and [LCKO19] enabling the
composable analysis of provable secure protocols. We conjecture that both our
white-box and black-box results generalize to other SNARKs. In fact, we first
showed white-box weak SE in a modification of [GM17] with the second equation
removed. We decided to focus on Groth16 as the most important SNARK in this
family to give a targeted proof and performance analysis. Besides improving
performance, we expect weak SE and proof randomization to also have positive
cryptographic applications that would be impossible with strong SE—just as for
Groth-Sahai proofs [GS08,BCC+09].
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Abstract. We provide a modified version of the Ligero sublinear zero
knowledge proof system for arithmetic circuits provided by Ames et
al. (CCS ’17). Our modification “BooLigero” tailors Ligero for use in
Boolean circuits to achieve a significant improvement in proof size.
Although the original Ligero system could be used for Boolean circuits,
Ligero generally requires allocating an entire field element to represent a
single bit on a wire in a Boolean circuit. In contrast, our system performs
operations over words of bits, allowing a proof size savings of between
O((log |F|)1/4) and O((log |F|)1/2) compared to Ligero, where F is the
field that leads to the optimal proof size in original Ligero. We achieve
improvements in proof size of approximately 1.1–1.6x for SHA-2 and 1.7–
2.8x for SHA-3. In addition to checking constraints of standard Boolean
operations such as AND, XOR, and NOT over words, BooLigero also
supports several other constraints such as multiplication in GF(2w), bit
masking, testing for zero bits, bit rearrangement within and across words,
and bitwise outer product. Most of these techniques batch very efficiently,
with only a constant overhead regardless of how many constraints of the
same type are tested. Like Ligero, our construction requires no trusted
setup and no computational assumptions, which is ideal for blockchain
applications. It is plausibly post-quantum secure in the standard model.
Furthermore, it is public-coin, perfect honest-verifier zero knowledge,
and can be made non-interactive in the random oracle model using the
Fiat-Shamir transform.

1 Introduction

Zero knowledge proofs and arguments have become the backbone of modern
cryptography. In addition to their uses in building other cryptographic primitives
such as signatures, multiparty computation (MPC), and identification schemes,
they play a pivotal role in the design of anonymous and privacy-preserving cryp-
tocurrencies [4,15,27,32].

Since Kilian’s seminal work on probabilistically checkable proofs [28], their
interactive version [26], and their generalization into interactive oracle proofs [7],
many zero knowledge argument systems have been created from such proofs. In
this work, we focus on and improve Ligero [1], a protocol that achieves a balance
between proof size and prover runtime.
c© International Financial Cryptography Association 2021
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1.1 Our Contributions

This paper makes three contributions.

BooLigero: Ligero for Boolean Circuits. In this paper, we present
BooLigero, an improvement to Ligero tailored for Boolean circuits. Our method
allows us to utilize the “full” field element and store log |F| bits of the witness
per element, rather than storing only a single bit per (larger) field element and
enforcing an additional constraint as is required in Ligero. We can utilize the full
field for XOR and NOT operations; for AND we can use

√
log |F| bits of the field

element. This buys us an improvement in the proof size between O((log |F|)1/4)
and O((log |F|)1/2) compared to original Ligero, depending on the proportion of
ANDs in the circuit. The prover and verifier runtime should not change much
compared to original Ligero. We do this while maintaining Ligero’s properties of
being public coin, perfect honest-verifier zero knowledge, amenability to the Fiat-
Shamir heuristic, being plausibly post-quantum secure in the standard model,
and requiring no trusted setup.

Efficient Zero-Checking and Bit-Pattern Constraint Tests. In Ligero, the
witness is encoded, and constraints are checked by ensuring that the prover’s
claims are consistent with parts of the encoded witness that were randomly
chosen by the verifier. We add the ability to reveal masked elements of the
witness directly, in such a way that the verifier may check properties on the
masked elements that will enable them to test properties of other hidden witness
elements. Tests with a certain kind of linearity are extremely efficient, requiring
only a constant overhead in the number of witness elements to test arbitrarily
many instances of the property on existing variables. This enables us to test
properties that would normally be difficult to test while representing many bits
per word, such as testing whether certain bits are zero, or testing bit “patterns”
such as masking and shifting. We can also use these to build range tests. These
tests may be helpful in frameworks outside BooLigero as well.

Concrete 1.1–2.8x Improvement Over Ligero. We evaluate our perfor-
mance on the hash functions SHA-3 and SHA-2, which are common benchmarks
and have particular appeal to the cryptocurrency community. We achieve a 1.7–
2.8x improvement over Ligero for Merkle trees of SHA-3 from 21 to 215 leaves.
Our circuit for SHA-3 utilizes one of our specialized tests to perform the bit-
rotation step of the SHA-3 main loop. For SHA-2, we achieve a 1.1–1.6x improve-
ment over Ligero for Merkle trees from 21 to 215 leaves. Note that this is in spite
of the fact that SHA-2 uses some addition modulo 232 operations, which Ligero
supports directly and BooLigero does not.

1.2 Related Work

In general, zero knowledge proofs are evaluated for performance on three metrics:
proof/argument size, prover runtime, and verifier runtime. There is a spectrum
of zero-knowledge proof/argument systems.
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On one extreme of the spectrum, large, fast proofs construct ZK proofs from
various flavors of MPC: the garbled-circuit based approach of ZKGC [25] (with
improvements from [29]) or approaches that use the GMW [19] paradigm (e.g.
[24], improved in [18] and [11]). All of these are fairly quick to compute, but they
incur a linear proof size (except the very recent work of [37], which cannot be
made non-interactive, and is therefore not usable in most blockchain scenarios).

On the other extreme, we have “succinct” sublinear-size arguments. The
smallest arguments are constant size, but generally suffer from two problems
– assumptions and trusted setup. Many of these arguments use unfalsifiable
assumptions (e.g., [5,8,13,16,20,30,33]) and this is inherent at a certain level
[17]. Others require a trusted setup step performed by a central authority or
a trusted committee operating a costly multiparty computation (e.g. [4,5,9,12,
14,16,20,21,31,33,38]), both being undesirable or even unacceptable in many
financial use cases.

In the middle, there exist transparent protocols that achieve sublinear (but
not constant) size without the need for trusted setup. A number of these pro-
tocols use assumptions that render them vulnerable to quantum attacks (e.g.
[10,23,34,36]). There are three different approaches to sublinear transparent
protocols without trusted setup that are plausibly post-quantum secure: Ligero
[1], Stark [3], and Aurora [6].

Compared to Ligero and BooLigero, Stark’s proof size is asymptotically
smaller (O(log2 s) instead of O(

√
s) for circuit size s), but concretely larger

for circuits smaller than approximately 106 gates, as shown in [36]. Its prover
runtime is more expensive than Ligero’s both asymptotically by a log s factor,
and is also concretely longer. For circuits with repeated sub-circuits, Stark has
significantly improved verifier runtime, but there is no asymptotic difference for
circuits without this property.

Aurora [6] also has a significantly smaller proof size than Ligero and
BooLigero (O(log2 s) instead of O(

√
s)) and the same asymptotic prover and

verifier runtime. However, its interactive version has a O(log s) round complexity
compared to Ligero and BooLigero’s O(1), and its prover runtime is concretely
higher than Ligero’s. Moreover, without a certain unproven conjecture involving
Reed-Solomon codes, it becomes much less efficient (see discussion in [34]).

2 Preliminaries

Notation. We use F to refer to a finite field, and GF(2w) to refer to a finite
field with order 2w. We also often use w to refer to the “word size” and refer to
elements of GF(2w) as “w-words” when we use their w-bit representations.

For operations, we use ⊕ for bitwise XOR and & for bitwise AND, over bits
or w-words depending on context. We use ∗ to denote Galois field multiplication,
and · for element-wise multiplication of vectors.

Bit indexing, denoted with square brackets, always begins at 1. Bitstrings
are always shown in big endian. Thus, if x = 0001, then x[1] = 1 is the least
significant bit of x.



BooLigero: Improved Sublinear Zero Knowledge Proofs for Boolean Circuits 479

Zero Knowledge IOPs. A ZKIOP is an interactive oracle proof (IOP) [7] that
is additionally zero-knowledge. Let P and V be probabilistic polynomial-time
interactive Turing machines. An interactive oracle protocol between P and V
occurs over several rounds. P reads messages sent by V fully, but V queries
random parts of P’s message rather than reading them entirely. At the end, V
either accepts or rejects. Let 〈P(x,w),V(x)〉 refer to the output of V(x) when
executing an interactive oracle protocol with P(x,w). Let R be a relation for
language L so that (x,w) ∈ R if w is a witness for x’s membership in L.

Definition 1 (Zero knowledge interactive oracle proof). 〈P,V〉 is a zero
knowledge interactive oracle proof system for R with soundness error δ if:

– Completeness: For any (x,w) ∈ R, 〈P(x,w),V(x)〉 = 1.
– Soundness: If x /∈ L, then for all P∗, Pr[〈P∗,V(x)〉 = 1] ≤ δ
– Perfect honest-verifier zero knowledge: Let ViewV(P,V, x, w) be the view of V

upon completion of 〈P(x,w),V(x)〉. The protocol is perfect honest-verifier zero
knowledge if there exists a probabilistic poly time simulator S such that for all
(x,w), the distribution of S(x) equals the distribution of ViewV(P,V, x, w).

The IOPs we deal with in this paper are also public-coin, meaning that V’s
messages to P are always chosen randomly from a known distribution, and V’s
queries to P depend only on messages that have already occurred and that P
has seen. Zero knowledge IOPs can be converted to zero knowledge arguments
in a standard way using the Fiat-Shamir transform [7].

3 Ligero Background

In this section we provide relevant background from [1].

Proof Size of Ligero. Ligero [1] is a zero-knowledge argument that achieves
O(

√
s) proof size, where s is the size of the verification circuit.

Ligero encodes the witness using an Interleaved Reed-Solomon code, which
can be considered an m-vector of Reed-Solomon (RS) codewords. Each RS code-
word can itself be considered a vector of n elements which encode � unencoded
elements, for n = O(�). Thus, the overall interleaved Reed-Solomon code can be
considered an m × n matrix encoding m × � variables.

Ligero achieves O(
√

s) proof size by being clever about how the verifier checks
constraints on this matrix. Roughly speaking, the communication will consist
of some (linear combinations of) rows and some columns of the matrix, with
simplified complexity O(n + m). Thus, one can balance m against � and set
both1 to O(

√
s) to achieve a proof size of O(

√
s).

We let L = RSF,n,k,η be a Reed-Solomon code with minimal distance. Lm

refers to the interleaved code, which has codewords that are simply m codewords
of L. Lm is best understood as a matrix where the m rows are L-codewords. The
details of interleaved Reed-Solomon codes as they relate to Ligero are provided
in the full version [22], but they should not be necessary to understand this
paper.
1 Actually, m is set to O(

√
s/κ) and � is set to O(

√
sκ), where κ is a security parameter.
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Tests in Ligero. As a zero-knowledge IPCP between the prover P and verifier
V, the prover begins by encoding its witness as a Lm codeword – an m × n
matrix encoding m × � variables in the witness. Ligero creates three tests for
constraints over this matrix: Test-Interleaved ([1] Sect. 4.1), Test-Linear-
Constraints-IRS ([1] Sect. 4.2), and Test-Quadratic-Constraints-IRS ([1]
Sect. 4.3). Each of these tests consists of two phases:

1. Oracle phase: P creates an oracle to the Lm-encoded witness (possibly with
some additional info).

2. Interactive testing phase: P and V interact with each other. P sends
some linear combinations of rows of the matrix. V makes queries to the oracle
to obtain columns of the Lm codeword (without receiving any L codeword
“rows” fully). After the interaction, V checks whether the linear combinations
given to it by P match the columns it queried, and either accepts or rejects.

When used as a zero-knowledge argument (instead of a ZKIPCP), the oracle
is replaced with a commitment. Before the interactive testing phase, P commits
to all columns of its encoded witness as the leaves of a Merkle tree that uses
a statistically hiding commitment scheme. To make the proof non-interactive,
the verifier’s messages can be replaced with a random oracle call on the prover’s
messages up to that point.

Boolean Circuits in Ligero. Ligero is presented for arithmetic circuits over a
prime field. It is possible to use Ligero for a Boolean circuit as well, but this has
two downsides.

The first downside is that one must use an entire field element to represent
a single bit. This causes a blowup of log |F| in the number of witness elements,
which causes a blowup of O(

√
log |F|) in the proof size.

How small of a field can we use? There is a minimum requirement that |F| ≥
�+n ([1] §5.3), which is required so that there are sufficient evaluation points for
L. Furthermore, if the field gets too small, one must repeat the protocol several
times in order to achieve the desired soundness. At very small field sizes, the
costs of the commitments (log s times a constant hash output length) also start
growing in comparison to the rest of the proof. Concretely, testing out different
field sizes for Boolean circuits on the order of 106 to 109 gates tends to yield
optimal field sizes of about 14–20 bits. This suggests that there is approximately
a 3.7–4.4x gain to be had by packing the bits efficiently.

The second downside is that this costs additional constraints. First, each
extended witness element e must be proven to be 0 or 1 by adding a quadratic
constraint that e2 − e = 0. Second, XOR and AND are also both quadratic
constraints: the constraint e1 + e2 = a0 + 2 · a1, along with bit constraints on all
variables, enforce that a0 is the XOR of e1 and e2, and that a1 is the AND of e1
and e2. Computing only one or the other necessitates the creation of a dummy
variable for the other, and enforcing bit constraints on all. Hence, the number
of constraints is twice the maximum number of AND and XOR gates combined.

Unlike linear constraints, which can be evaluated using only an encoding
of the witness itself, evaluating quadratic constraints like x ∗ y = z requires
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providing encodings of x, y, and z, separately from (but related to) the encoding
of the witness itself. Although the number of quadratic constraints will asymp-
totically be O(s), this suggests that there may be concrete room for improvement
by reducing the number of quadratic constraints.

4 BooLigero Techniques

We make one minor change and two major changes to Ligero [1], which we
described in Sect. 3.

The minor change is that we use GF(2w) instead of the prime field GF(p).
Ligero’s methods work for any finite field, where addition and multiplication
now use operations in the new field. Since we are still using Interleaved Reed-
Solomon codes, we can directly reuse Ligero’s Test-Interleaved, Test-Linear-
Constraints-IRS, and Test-Quadratic-Constraints-IRS. The latter two
now test bitwise XOR/NOT constraints and GF(2w) multiplication rather than
arithmetic addition and multiplication. We lose the ability to natively check lin-
ear arithmetic constraints in mod 2w, but we gain the ability to cheaply check
XORs. We can still check linear arithmetic constraints in power-of-two moduli
by building an adder out of the constraint tests we have.

The following two larger changes to Ligero are the focus of our work:

Change 1: Additional constraint tests that reveal variables directly. We add a
number of tests for additional constraints. These new tests operate differently
than the Ligero tests, and in fact the new tests rely on the Ligero tests in order
to check linear and quadratic constraints. In the new tests, the prover modifies
and extends the witness with additional variables, some of which are based on a
“challenge” sent by the verifier. As part of the proof oracle, the prover sends some
(masked) elements of the witness to the verifier directly, and the verifier must
check to see whether the revealed elements have a certain property. These tests
can be nested inside other tests – e.g., our Test-And-Constraints procedure
involves invoking Test-Pattern-Zeros-Constraints, as described in Sect. 4.3.

Most of our tests use only linear constraints and cost O(κ) (a security param-
eter) in the proof size, independent of the circuit size and the number of con-
straints. Our Test-And-Constraints involves adding approximately 3

√
wN

hidden variables, where N is the number of AND gates. This is still an improve-
ment over the approximately wN added elements that are required to represent
wN Boolean wires in plain Ligero. We describe our constraint tests in Sect. 4.3.

Change 2: Two oracles/rounds of commitment. Unlike original Ligero, many
of the tests we add require verifier input in order to choose which constraints
we will check – generally, the verifier will pick a random linear combination of
the variables to use in constraints. However, for this to be sound, the original
variables must already have been available in an oracle (or been committed to).
This necessitates splitting the proof oracle in two: one that presents an encoding
of the “original” witness, and one that is parameterized by the verifier’s random
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choices and returns an encoding of the added variables. We call the first oracle
the “initial oracle” and the second the “response oracle”. Thus, whereas Ligero
had two phases of procedures – the oracle phase and the interactive testing
phase – we have four: initial phase (creation of initial witness to be provided as
oracle or commitment), challenge phase (verifier sends random bits as challenge),
response phase (creation of witness extension to be provided as a second oracle
or commitment), and the interactive testing phase We describe each of these
phases in Sect. 4.1. This process is based on the circuit sampling idea of [2].

4.1 Test Procedures

In original Ligero, each test consists of an oracle and an interactive test procedure
which will ensure that the oracle is valid. In our protocol, each test consists of
two oracles, separated by a verifier challenge, and followed by an interactive test
procedure. The second oracle is the response to the challenge. We describe each
of our constraint test procedures in four phases:

1. Initial phase: P adds elements to the witness, encodes it, and provides the
encoding as the first proof oracle.

2. Challenge phase: V sends random bits to P, which will be required to
generate the second proof oracle.

3. Response phase: Based on the bits received in the challenge, P adds more
elements to the witness, and adds additional constraints. P encodes the exten-
sions to the witness, and provides the encoding (which can be combined with
the first oracle’s output) as well as the revealed variables.

4. Interactive testing phase: P and V run an interactive testing protocol.
At the end, V has acceptance criteria for determining whether to accept or
reject the proof. Our tests augment the original Ligero acceptance criteria
with additional checks on properties of the revealed variables.

In slightly more detail, the variables in the witness consist of:

– v0 original variables
– v1 added hidden variables in the initial phase
– v2 added hidden variables in the response phase
– v3 added revealed variables in the response phase

P and V first set �, m1, m2, and m3 so that �m1 ≥ v0 + v1, �m2 ≥ v2, and
�m3 ≥ v3. P creates the initial witness encoding Uw1 ∈ Lm1 from the v0 original
variables and v1 added hidden variables in the initial phase, and sets this as
the initial oracle. After receiving V’s challenge, it creates the response witness
encoding Uw2 ∈ Lm2 from the v2 newly added hidden variables. As in original
Ligero, it also creates encodings Ux, Uy, and Uz ∈ Lm′

needed for testing
quadratic constraints (where m′ is set so that m′� is at least the number of
quadratic constraints). P sets the response oracle as the vertical concatenation
of Uw2 , Ux, Uy, Uz, along with all revealed variables in the clear.

When doing the interactive testing phase, P also creates Uw3 ∈ Lm3 which
contains the revealed variables added in the response phase. During this phase,
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P treats its witness encoding Uw as the vertical concatenation of Uw1 , Uw2 , and
Uw3 . The verifier will do the same with the revealed variables.

Our new BooLigero tests rely on executing the interactive testing phase of
Ligero tests on Uw. (The encodings of x, y, and z needed for Test-Quadratic-
Constraints-IRS are also built relative to the full w.) They also add additional
linear and quadratic constraints to be tested in this way. These tests may be
useful in frameworks outside BooLigero as well.

Adding Linear Constraints. Ligero’s Test-Linear-Constraints-IRS checks
whether an encoding of a secret vector x is a solution to linear equation Ax = b,
where A is a public matrix and b is a public vector. In the context of testing the
protocol in a full circuit, x is the witness vector, b is the all 0s vector, and A is
set so that the jth row of Ax equals in1 + in2 −out, where the jth addition gate
in the circuit computes out = in1 + in2. To add an additional linear constraint,
we simply add an additional row to A along with an additional element to b.
Doing so does not affect the proof size.

Adding Quadratic Constraints. Ligero’s Test-Quadratic-Constraints-IRS
tests whether encodings of vectors x, y, z meet the condition that x ·y+a ·z = b,
where · represents element-wise multiplication in F. When using the protocol
for testing a circuit, the x, y, z vectors are built so that their jth entries
are in1, in2, out, where the jth multiplication gate in the circuit computes
out = in1 ∗ in2. These vectors are constructed in a public way from the wit-
ness, i.e. P and V both construct Px such that x = Pxw. Unlike the linear
constraint test, separate encodings of x, y, and z must be provided to the ver-
ifier; thus, increasing the number of quadratic constraints increases the proof
size.

4.2 Testing Linear Operations that Yield Zero Over Bits

We first define a useful class of tests that can be batched very efficiently.
Let �1 and �2 be positive integers, and let t1 = �1w and t2 = �2w. Let

T ∈ {0, 1}t2×t1 be a public t2 × t1 binary matrix. Then T defines a test on
x ∈ {0, 1}t1 which checks whether Tx = �0, where �0 is of length t2.

To incorporate this into Ligero, we observe that one can represent a vector
of Ligero variables x ∈ GF(2w)�1 as a vector in {0, 1}t1 of t1 = �1w bits. Adding
two variables in one of these representations exactly corresponds to adding the
variables in the other representation. So, we abuse notation and treat the vector
x ∈ GF(2w)�1 as vector in GF(2)t1 .

Observe that, given a ∈ {0, 1}t1 (which can also be represented by a vector in
GF(2w)�1) such that Ta = �0, this implies that T (x+a) = �0 if and only if Tx = �0.
In the full protocol, rather than guaranteeing that Ta will be 0, we will write a
test that will check whether both Ta and Tx are 0 simultaneously. To achieve
privacy, we blind any Ligero variables we wish to test with T . P will generate
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a random a subject to the constraint that Ta = �0 and then open the variable
(x + a) directly to the verifier, who can independently check that T (x + a) = �0.
Figure 1 shows a construction for a perfect zero-knowledge protocol between P
and V to test T for a batch of N variables with low soundness error. Observe
that the communication complexity for this batched test of N �1-tuples is only
the size of one tuple: �1 elements of GF(2w). Note that it is also independent of
t2; it depends only on t1 and w.

We will embed this construction into BooLigero to test properties discussed
in Sect. 4.3, such as rearranging bits in a “pattern,” checking whether certain
bits are zero, or both at the same time.

Fig. 1. Test construction for any binary matrix T

Note that the test itself is not sound without the additional tests provided
by Ligero – the soundness of the main part of the test depends on the revealed
variables being well-formed. We ensure that the all variables are well-formed
by using Test-Linear-Constraints-IRS and Test-Interleaved, and ensuring
that the initial elements are provided in an oracle (or committed to) before
receiving the challenge. Note also that sometimes T itself will reveal certain
information about x – for example, that x is 0 at certain bit locations. But the
protocol will not reveal anything about x other than the fact that Tx = �0, which
is already true if P is honest.

Lemma 1. (Security of Test-T ). The protocol described in Fig. 1 is complete,
perfect zero-knowledge, and has soundness error 1/2κ + δ1 + δ2, where δ1 is the
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soundness error of Test-Linear-Constraints-IRS and δ2 is the soundness
error of Test-Interleaved.

The proof is given in the full version [22].

4.3 New Constraint Tests

In this section, we describe our added tests for BooLigero. Each of these
calls one of the original Ligero tests Test-Linear-Constraints-IRS or Test-
Quadratic-Constraints-IRS. The later tests additionally call on the earlier
BooLigero tests as well.

Properties Tested by Test-T . We proceed to name two useful properties (and
their conjunction) that can be tested using the construction from the previous
section. As described in the previous section, they can test the property on
arbitrarily many input variables for only a constant overhead over the cost of
the variables themselves. Since we will reuse them later, we name each of these
special cases of Test-T .

– Test-Zeros-Constraints: This tests whether particular bit locations in the
input are 0. Let Z ⊆ [t2] be a set of indices to be zero-tested. Formally, let
TZ be a square matrix with 1s on the diagonal for indices in Z, and 0 for all
other elements. Observe that TZx = �0 if and only if x is 0 at the Z indices.

– Test-Pattern-Constraints: We informally define a “pattern” as a relation-
ship between between (ti = t1 − t2) “input bits” and t2 “output bits.” The
pattern property enforces that each “output bit” is an XOR of some subset
of the input bits. In general, pattern matrices Tπ are defined as a matrix that
is a concatenation between a matrix π ∈ {0, 1}t2×ti and a t2 × t2 identity
matrix. Several useful functions can be defined as patterns:

• Masking. Suppose we wished to show in Ligero that x&μ = y for some
public mask μ, for Ligero variables x, y ∈ GF(2w)�2 and mask μ ∈ {0, 1}t2 .
Let M be the t2-square matrix with μ comprising the diagonal and zeros
elsewhere. Then we can test whether x&μ = y using the pattern Tμ =
[ M | I ], because:

[
M I

] [
x
y

]
= �0

which, for diagonal matrix M , implies that Mx = y.
• Even parity. Suppose we wished to show that y ∈ GF(2w) is the parity of

x ∈ GF(2w)�1−1. This can be tested by checking that
⎡

⎢
⎣

. . . . .
.

· · · 0 · · · I
1 · · · 1

⎤

⎥
⎦

[
x
y

]
= �0

which will check that the least significant bit of y equals a sum of all bits
of x. Even-parity can be batch-tested by using Zeros, testing the parity
of many variables simultaneously.
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– Test-Pattern-Zeros-Constraints: Notice that a Zeros test can be per-
formed on the same revealed values as a pattern test, if the blinding variables
are chosen to meet both constraints. We will often perform these tests on the
same revealed variables to save space.

Bitwise AND Test. Next, we describe our test for bitwise AND. Note that AND
cannot be tested using the method in the previous section, since it is not a
linear operation. Instead, we write a new test that calls Test-Pattern-Zeros-
Constraints.

As a first step, one way to test AND would be to fully bit-decompose our
single w-bit element into w elements each representing a single bit. This would
let us use quadratic constraints directly to show AND constraints. However,
doing so is expensive. This method would yield roughly the same proof size as
original Ligero, since it uses an entire w-bit element to represent a single bit.
Instead, we exploit the nature of Galois field arithmetic to compute the AND of
w0 = �√w� bits simultaneously in a w-bit element using a GF multiplication.
We then use our Pattern test to convert between the original variables and the
w1 decomposed variables, where w1 is the minimum integer such that w0w1 ≥ w.
Each of these w1 “split” variables contains w0 bits of the original element (except
the last, which may contain fewer if w0  |w).

Suppose we have elements x, y ∈ GF(2w), and want to find z = x&y. We start
by using a Pattern to split x into w1 variables x̂1, . . . , x̂w1 , and to split y into w1

variables ŷ1, . . . , ŷw1 . First, consider the x variables. Each split variable x̂h will
consist of w0 chunks of w0 bits each. (Recall that by construction w2

0 ≤ w.) The
least significant bit of each chunk will be a bit of x, and all other bits will be 0.
This is illustrated in Eq. 2. The y variables will be split differently: each ŷh will
consist of a single chunk of w0 bits from y, starting with the least significant bit.
This is shown in Eq. 3.

We then set ẑh = x̂h ∗ ŷh. The effect of multiplying x̂h by ŷh is that the chunk
of w0 bits in ŷh is “copied” to each of the w0 chunks of output for which the
corresponding chunk of x̂h was 1. Thus, in order to figure out which bits were
shared between x and y, we go to the kth bit of the kth chunk of ẑh. This will
equal the kth bit of ŷh times the LSB of the kth chunk of x̂h. This is shown in
Eq. 4. Recomposing from the ẑh variables back to z by using Pattern once again,
we have exactly computed the bitwise AND of x and y.

Figure 2 shows an example of how to split (x, y, z), where z = x&y. The full
Test-And-Constraints procedure is shown in Fig. 3. The patterns πx, πy, and
πz, described formally in Fig. 3 step 1(d).

Lemma 2. (Security of Test-And-Constraints ). The protocol described in
Fig. 3 is complete, perfect zero-knowledge, and has soundness error 3(1/2κ) +
δ1 + δ2 + δ3, where δ1 is the soundness error of Test-Quadratic-Constraints-
IRS, δ2 is the soundness error of Test-Linear-Constraints-IRS, and δ3 is
the soundness error of Test-Interleaved.

A full proof of security for the test is shown in §A. Additionally, the ẑ vari-
ables can be used to compute bitwise outer product if desired.
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Fig. 2. Example variable splits for Test-And-Constraints for w = 5, w0 = 2, w1 = 3.
Pattern constraints enforce the relationship between x and x̂, and similar for y and z.
The ẑ variables are related to x̂ and ŷ via a quadratic constraint.

In the full version [22] we show how to do cheap range tests for power-of-two
ranges, and how to build an adder and use it to perform non-power-of-two range
tests. Our full modifications to the protocol from [1] are shown in Fig. 4.

5 Performance

We primarily evaluate our proof on its size compared to original Ligero, since
our asymptotic prover and verifier runtime should be the same as Ligero. Recall
that a proof for a Boolean circuit in original Ligero requires using an entire
field element to represent a single bit value on a wire. Like original Ligero, the
parameters for BooLigero can be set so that the proof size is O(

√
s) elements,

where s is the circuit size. If the field size in Ligero is b = �logF� bits, then
we would expect BooLigero to save a factor of O(

√
b) in the proof size. For

example, if a Ligero proof used a field with 18 bits, we would expect a
√

18 ≈ 4.2x
improvement in the BooLigero proof size. For AND gates we require w1 ≈ √

w
variables to compute the AND of a single w-bit variable. If the Ligero and
BooLigero field sizes require the same number of bits to represent, BooLigero will
use only

√
b fewer variables, a proof size improvement of O(b1/4) for AND-heavy

circuits. We also add a small constant up-front cost for the revealed variables.

Determining the Size of the Extended Witness and Proof. If the verification
circuit C consists of only XOR gates, NOT gates, and Galois field multiplications,
then the size of the witness w is simply the number of wires in C, which we call
v0 as described in Sect. 4.1. If C contains ANDs, or uses any other BooLigero
test (e.g. using Test-Pattern-Constraints to perform a bit shift), then w is
augmented with the (v1+v2 hidden and v3 revealed) variables described in Sect.
4.3. The combined proof oracle becomes an Lm encoding of the v0 + v1 + v2
hidden variables in the witness, plus the v3 revealed variables in the clear. Once
the extended witness is created, the process of choosing the parameters proceeds
in the same way as original Ligero: the number of rows m is balanced against the
number of variables per row � to achieve sublinear proof size. For more details,
see [1] Sect. 5. In the non-interactive version of BooLigero, the Merkle path part
of the proof is doubled since the initial and response variables were committed
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Fig. 3. Witness modification procedure and costs for Test-And-Constraints
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Fig. 4. ZKIOP of [1] with our modifications shown in blue. (Color figure online)
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to separately. We computed the parameters using our own optimizer written in
SciPy and validated them with an optimizer obtained from [35].

5.1 Concrete Results

For both SHA-2 and SHA-3, we evaluate our proof sizes compared to Ligero
on proving membership in the list captured by a Merkle tree. For a Merkle
tree with M leaves, (2M − 1) hash computations are done. This has become a
common benchmark for evaluating the scalability of zero-knowledge proofs to
larger predicates.

SHA-3. SHA-3 only uses bit operations, so there is no special benefit from
using an arithmetic system. Both BooLigero and Ligero may do the wordwise
rotations for free; they can be achieved by re-indexing constraints for the next
step. Ligero can do the bitwise rotations for free (since each variable represents
only a single bit), but in BooLigero we must write the additional variable and
use Test-Pattern-Constraints to enforce the constraint. Using SHA-3 as the
hash function in a Merkle tree, each invocation of the hash function consists of
a single call to the f-function (Fig. 5).

Fig. 5. BooLigero and Ligero absolute and relative proof sizes for SHA-3 Merkle trees

SHA-2. SHA-2 contains a mixture of Boolean operations and mod-232 addition.
Although the SHA-2 circuit used in [1] was not provided, we reconstruct a similar
circuit using the same techniques. As described in [1], Ligero computes modular
addition by using a dummy variable. Our SHA-2 circuit for original Ligero tracks
16 32-bit variables (11 main variables plus 5 dummy variables) throughout 64
iterations of the SHA-2 loop.

BooLigero prefers a different strategy. Although we can compute mod-232

addition in BooLigero by implementing an adder, it turns out that a standard
135840-wire Boolean circuit for SHA-2 leads to a smaller proof size since it uses
far fewer ANDs (Fig. 6).
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Fig. 6. BooLigero and Ligero absolute and relative proof sizes for SHA-2 Merkle trees

Acknowledgments. The authors graciously thank Muthu Venkitasubramaniam for
providing us with a parameter optimizer [35], and the anonymous reviewers for their
insightful comments. The second author is supported by a Google PhD Fellowship.
The third author is supported by the DARPA SIEVE program under Agreement
No. HR00112020021 and the National Science Foundation under Grants No. 1414119,
1718135, 1801564, and 1931714.

A Proofs of Lemmas

Proof. (Security of Test-And-Constraints). We must show that Test-And-
Constraints is complete, zero-knowledge, and sound up to error 3(1/2κ) +
δ1 + δ2 + δ3, where δ1 is the soundness error of Test-Quadratic-Constraints-
IRS, δ2 is the soundness error of Test-Linear-Constraints-IRS, and δ3 is the
soundness error of Test-Interleaved.

Completeness: If P is honest, then all variables are well-formed. We must
show that following the process described in step 1(b) of Fig. 3 will lead to
computing bitwise AND. Elements in GF(2w) are polynomials over GF(2) of
degree at most (w−1), and multiplication in GF(2w) is polynomial multiplication
modulo an irreversible polynomial. As in step 1(a), let w0 = �√w�. Fix i ∈ [N ].

By construction, the polynomial representations of all ŷi,h variables (for h ∈
[w1]) have degree at most w0 − 1. They can be written as

∑w0−1
k=0 ckvk, where v

is the polynomial variable and c is the coefficient (either 0 or 1).
The x̂i,h variables are of the form

∑w0−1
k=0 dkvkw0 (using d as the coefficient).

Thus, if we multiply x̂i,h ∗ ŷi,h, the result can be written as:
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ẑi,h = x̂i,h ∗ ŷi,h =

(
w0−1∑

k=0

dkvkw0

) (
w0−1∑

k=0

ckvk

)

= d0

(
w0−1∑

k=0

ckvk

)

+ d1

(
w0−1∑

k=0

ckvw0+k

)

+ . . . + dw0−1

(
w0−1∑

k=0

ckv(w0−1)w0+k

)

=
(
d0c0v

0 + . . . + d0cw0−1v
w0−1)

+
(
d1c0v

w0 + . . . + d1cw0−1v
2w0−1)

+ . . . +
(
dw0−1c0v

(w0−1)w0 + . . . + dw0−1cw0−1v
w2

0−1
)

=

w2
0−1∑

k=0

d�k/w0�c(k mod w0)v
k

First, notice that the degree of this polynomial is at most w2
0 − 1, so by

construction, this polynomial will not need to be reduced modulo the irreducible
polynomial. Next, notice that the coefficient ek of vk can be written as ek =
d�k/w0�c(k mod w0). But the c and d coefficients correspond to the bits of x̂i,h

and ŷi,h, which in turn correspond to the bits of xi and yi. So if we wish to
know the AND of ck′ and dk′ , we can look at the coefficient of vk, for the k
for which k′ = �k/w0� = (k mod w0), This will occur at k = k′w0 + k′. Thus,
each ẑi,h can be used to find the AND of w0 bits. For k′ ∈ {0, . . . , w0 − 1}, bit
ẑi,h[1 + k′ + k′w0] is the AND of x̂i,h[1 + w0k

′] and ŷi,h[1 + k′].
Zooming back out to zi, we find that each bit of zi can be found as zi[k] =

ẑi,� k+1
w0

�[1+((k−1) mod w0)+w0((k−1) mod w0)]. Since the ẑi,h variables were
formed correctly from the x̂i,h and ŷi,h variables, which were formed correctly
from xi and yi, zi will be the AND of xi and yi for all i ∈ [N ], as desired.

Zero-knowledge: Deferred to full version [22].
Soundness: Suppose P is cheating, that is, there is at least one (xi, yi, zi)

triple for which zi = xi&yi. Without loss of generality, let i = 1 be an index on
which the prover cheats.

If the Ligero matrix is not well-formed, Test-Interleaved will fail with prob-
ability at least 1 − δ3; we assume this is not the case for the rest of the proof.

If z1 = x1&y1, then one of the following must be true:

1. There exists an h ∈ [w1] for which ẑ1,h = x̂1,h ∗ ŷ1,h.
2. The x̂1,h variables were not properly formed from x1. That is,

Tπx
[x1, x̂1,1, . . . , x̂1,w1 , x1]⊥ = �0. The same may be true for Tπy

on the y
variables, or Tπz

on the z variables.

If the former is true, then Test-Quadratic-Constraints-IRS will fail with
probability at least 1 − δ1. If the latter is true, then either Test-Linear-
Constraints-IRS will fail with probability at least 1 − δ2, or the pattern-
checking part of Test-Pattern-Zeros-Constraints for Rx will fail with prob-
ability at most 1/2κ. Similarly for Ry and Rz. Thus, by a Union bound, the
overall protocol has soundness error 3(1/2κ) + δ1 + δ2 + δ3 over the verifier’s
coins.
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Abstract. Non-interactive zero-knowledge proofs, and more specifically
succinct non-interactive zero-knowledge arguments (zk-SNARKs), have
been proven to be the “Swiss army knife” of the blockchain and dis-
tributed ledger space, with a variety of applications in privacy, interop-
erability and scalability. Many commonly used SNARK systems rely on a
structured reference string, the secure generation of which turns out to be
their Achilles heel: If the randomness used for the generation is known,
the soundness of the proof system can be broken with devastating conse-
quences for the underlying blockchain system that utilises them. In this
work we describe and analyse, for the first time, a blockchain mecha-
nism that produces a secure SRS with the characteristic that security is
shown under comparable conditions to the blockchain protocol itself. Our
mechanism makes use of the recent discovery of updateable structured
reference strings to perform this secure generation in a fully distributed
manner. In this way, the SRS emanates from the normal operation of the
blockchain protocol itself without the need of additional security assump-
tions or off-chain computation and/or verification. We provide concrete
guidelines for the parameterisation of this setup which allows for the
completion of a secure setup in a reasonable period of time. We also pro-
vide an incentive scheme that, when paired with the update mechanism,
properly incentivises participants into contributing to secure reference
string generation.

1 Introduction

In the domain of distributed ledgers, non-interactive zero-knowledge proofs have
many interesting applications. In particular, they have been successfully used
to introduce privacy into these inherently public peer-to-peer systems. Most
notably, Zerocash [2] demonstrates their usefulness in the creation of private
currencies. Beyond this, there are numerous suggestions [21,25,29] to apply the
same technology to smart contracts for increased privacy. Beyond privacy, other
applications of zero knowledge include blockchain interoperability, e.g., [17], and
scalability, e.g., [9].

For the practical efficiency of these designs, two things are paramount: The
succinctness of proofs, and the speed of verifying these proofs. The distributed

c© International Financial Cryptography Association 2021
N. Borisov and C. Diaz (Eds.): FC 2021, LNCS 12674, pp. 497–514, 2021.
https://doi.org/10.1007/978-3-662-64322-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64322-8_24&domain=pdf
https://doi.org/10.1007/978-3-662-64322-8_24


498 T. Kerber et al.

nature of the ledgers mandates that a large number of users store and verify each
proof made, rendering many zero-knowledge proof systems not fit for purpose.

Research into so-called zk-SNARKs [18–20,26,27] aims at optimising exactly
these features, with proof sizes typically under a kilobyte, and verification times
in the milliseconds. It is a well-known fact that non-interactive zero-knowledge
requires some shared randomness, or a common reference string. For many suc-
cinct systems [18–20,26,27], a stronger property is necessary: Not only is a shared
random value needed, but it must adhere to a specific structure. Such structured
reference strings (or SRS) typically consist of related group elements: gxi for all
i ∈ Zn, for instance.

The obvious way of sampling such a reference string from public randomness
reveals the exponents used – and knowledge of these values breaks the sound-
ness of the proof system itself. To make matters worse, the security of these
systems typically relies (among others) on knowledge of exponent assumptions,
which state that to create group elements related in such a way requires knowing
the underlying exponents and hence any SRS sampler will have to “know” the
exponents used and be trusted to erase them, becoming effectively a single point
of failure for the underlying system. While secure multi-party computation can
be, and has been, used to reduce the trust placed on such a setup process [31],
the selection of the participants for the secure computation and the verification
of the generation of the SRS by the MPC protocol retain an element of central-
isation. Using an MPC setup remains a controversial element in the setup of a
decentralised system that requires SNARKs.

Recent work has found succinct zero-knowledge proof systems with updateable
reference strings [19,26]. In these systems, given a reference string, it is possible
to produce an updated reference string, such that knowing the trapdoor of the
new string requires both knowing the trapdoor of the old string, and knowing
the randomness used in the update. [19] conjectured that a blockchain protocol
may be used to securely generate such a reference string. Nevertheless, the exact
blockchain mechanism that produces the SRS and the description of the security
guarantees it can offer has, so far, remained elusive.

1.1 Our Contributions

In this work we describe and analyse, for the first time, a blockchain mechanism
that produces a secure SRS with the characteristic that security is shown for
similar conditions under which the blockchain protocol is proven to be secure.
Notably different, we make implicit use of secure erasure, and require honest
majority only during a specific initialisation period. The SRS then emanates
from the normal operation of the blockchain protocol itself without the need of
additional security assumptions or off-chain computation and/or verification.

We rely primarily on the chain quality property of “Nakamoto-style” ledgers
[14] – distributed ledgers in which a randomised process selects which user may
append a block to an already established chain. Such ledgers rely on an honest
majority of hashing power (or some other resource) – and can be shown to
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guarantee a chain quality property which suggests that any sufficiently long
chain segment will have some blocks created by an honest user, cf. [14,15,28].

Our construction, described in Sect. 3 integrates reference string updates into
the block creation process, but we face additional difficulties due to update calcu-
lation being a computationally heavy operation (albeit, contrary to brute-force
hashing, useful). The issues arising from this are two fold. Firstly, an adver-
sarial party can take shortcuts by supplying a low amount of entropy in their
updates, and try to utilise this additional mining power to subvert the reference
string which potentially has a large benefit for the adversary. Secondly, even
non-colluding rational block creators may be incentivised to use bad random-
ness which would reduce or remove any security benefits of the updates. Our
work addresses both of these issues.

We prove formally that our mechanism produces a secure reference string
in the full version of this paper [22, Appendix F] by providing an analysis in
the universal composition framework [10]. Furthermore, the full version of this
paper [22, Section 4] demonstrates via experimental analysis how to concretely
parameterise a proof-of-work ledger to ensure that an adversary which takes
shortcuts (while honest users do not) will still fail in subverting the reference
string. The concrete results provided in our experimental section can be used to
inform the selection of parameters in order to run our reference string generation
mechanism in live blockchain systems.

We further introduce an incentive scheme in Sect. 4, which ensures that ratio-
nal participants in the protocol, who intend to maximise their profits, will avoid
low-entropy attacks. In short, the incentive mechanism mandates that a ran-
dom fraction of update contributors in the final chain will be asked to reveal
their trapdoor, which will be verified to be the output of a random oracle by
the underlying ledger rules. Only if a user can demonstrate that their update
is indeed random do they receive a suitably determined reward for their effort.
Careful choice of the reward assignment enables us to demonstrate that rational
participants will utilise high entropy exponents, thus contributing to the SRS
computation.

1.2 Related Work

Beyond the obvious relation to the works introducing updateable reference
strings in [19,26] (most notably Sonic [26], which we follow closely in our instan-
tiation in the full version of this paper [22, Appendix A]), there have been
attempts of practically answering the question of how to securely generate ref-
erence strings. These have been in a setting where the string is not updateable.

Notably [5] describes the mechanism used by Sprout, the first version of
Zcash, during the initial setup of the cryptocurrency’s SRS. It uses multi-party
computation to generate a reference string, with a root of trust on the ini-
tial group of people participating. Due to performance constraints on the MPC
protocol, the set of parties participating is relatively small, although only the
honesty of a single participating party is required.
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For the Sapling version of Zcash, a different approach was used when their ref-
erence string was replaced (due to an upgrade of the zero-knowledge statement,
and proof system used). Their second CRS generation mechanism, described
in [6] uses a multiple-phase round-robin mechanism to generate a reference string
for Groth’s zk-SNARK [18]. They utilise a random beacon to ensure the uniform
distribution of the result, and a coordinator to perform deterministic auxiliary
computations.

A great deal of work has also gone into the design of non-interactive zero-
knowledge which does not require structure in it’s references, such as DARK [8],
STARKs [1], and Bulletproofs [7]. While these pose a promising alternative
which does not require the techniques used in this work, leveraging updatabil-
ity of reference strings may permit greater efficiency without additional security
assumptions, and may be useful in instantiating generic constructions, such as
the polynomial commitments-based Halo Infinite [3].

2 Updateable Structured Reference Strings

While updateable structured reference strings (uSRSs) are modelled in the works
we are building on [26, Section 3.2], we model their security in the setting of
universal composability (UC) [10]. Here, a uSRS is a reference string with an
underlying trapdoor τ , which has had a structure function S imposed on it. S(τ)
is the reference string itself, while τ is not revealed to the adversary. In the full
version of this paper [22, Appendix A], we prove that Sonic [26] (with small mod-
ifications for extraction, as described in Subsect. 2.2), satisfies all the properties
we require in this section. Our main proof is independent of the Sonic protocol
however, and applies to any updateable reference string scheme satisfying the
properties laid out in the rest of this section.

2.1 Standard Requirements

A uSRS scheme S consists of a trapdoor domain T , an initial trapdoor τ0, a
set P of permissible (and invertible) permutations over T (i.e. bijective func-
tions whose domain and codomain is T ), and a structure function S with the
domain T . We require P to include the identity function id, and to be closed
under function composition: ∀p1, p2 ∈ P : p1 ◦ p2 ∈ P . An efficient permu-
tation lifting † should exist, such that for any permutation p ∈ P and τ ∈ T ,
p†(S(τ)) = S(p(τ)). Finally, there must exist algorithms ρ ← ProveUpd(S(τ), p)
and b ← VerifyUpd(S(τ), ρ, S(p(τ))) for creating and verifying update proofs
respectively. The format of these update proofs is not specified, however the
following constraints must be met:

1. Correctness. Applying an honestly generated update proof will verify: ∀p ∈
P, τ ∈ T : VerifyUpd(S(τ), ProveUpd(S(τ), p), S(p(τ))).

2. Structure preservation. Applying any valid update is equivalent to apply-
ing some permutation p ∈ P on the trapdoor: ∀ρ, τ, srs′ : VerifyUpd(S(τ),
ρ, srs′) =⇒ ∃p ∈ P : srs′ = S(p(τ)).
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3. Update uniformity. Applying a random permutation is equivalent to select-
ing a new random trapdoor: Let D be the uniform distribution over T , and for
all τ ∈ T , let Dτ be the uniform distribution over the multiset { p(τ) | p ∈ P }.
Then ∀τ ∈ T : D = Dτ .

We define a corresponding UC functionality FuSRS, which provides a refer-
ence string S(p(τH)), which the adversary can influence by providing the per-
mutation p ∈ P , given only S(τH) as input, for a randomly sampled τH ∈ T .

Functionality uSRS

The updateable structured reference string functionality uSRS allows the ad-
versary to update a reference string by applying a permutation from a set of
permissible permutations P .

The functionality is parameterised by a trapdoor domain T , a structure func-
tion S, and a set of permissible permutations P over T .

State variables and initialisation values.

Variable Description

τ := The honest part of the trapdoor
τ := The trapdoor

When receiving a message from

if τ = then let τ
R

T

return S(τ )

When receiving a message srs from a party φ

query with (permute, φ) and receive the reply p
if τ = then

assert p P τ
let τ p(τ )

return S(τ)

We believe this functionality to be of independent interest, and it is not
explicitly tied to our implementation. Notably, while we use a distributed ledger
as a weak form of a broadcast channel, other broadcasts can be considered
without modification to this functionality. While, as presented, the functionality
does not dictate any specific usage, we conjecture that when parameterised with
an appropriate structure function and permutation set it can be used to securely
instantiate updateable SRS-based SNARKs, such as Sonic [26], Marlin [11], or
Plonk [13]. Due to the UC setting, this would require additional lifting to enable
UC knowledge extraction, such as that of C∅C∅ [24].

2.2 Simulation Requirements

In addition to the basic properties of correctness, structure preservation, and
update uniformity, any simulator wishing to help realise FuSRS via updates will
need to have access to two additional properties:
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1. Update proof simulation. From an initial SRS S(τ) for which the sim-
ulator knows the trapdoor, it can produce a valid update to any (cor-
rectly structured) SRS. Formally: ∃Sρ∀τ1, τ2 ∈ T : VerifyUpd(S(τ1),
Sρ(τ1, S(τ2)), S(τ2)), where Sρ is a PPT algorithm.

2. Permutation extraction. The simulator must be capable of extracting the
permutation p underlying any valid adversarial update proof.

The most natural method to achieve permutation extraction would be using
white-box extractors, as the updates themselves typically rely on some form
of knowledge assumption, such as knowledge-of-exponent. However, white-box
extractors cannot be used in UC proofs. Instead, we will assume that the update
proof is proven to correspond to a specific trapdoor through a lower-level NIZK.
Crucially, this lower-level NIZK should not require a structured reference string,
and rely only on a common random string, or a random oracle. Fortunately,
it is not subject to stringent efficiency requirements as the full version of this
paper [22, Section 4] demonstrates.

Specifically, we assume that the basic update proof ρ is a statement in a
NIZK relation R where the witness is an encoding of the corresponding permu-
tation p. We require each update proof to have one and only one corresponding
permutation, formally expressed by requiring R to be a bijection. This results
in a straightforward modification to the ProveUpd and VerifyUpd algorithms
that permits the extraction of the underlying permutations even in the UC set-
ting: ProveUpd also creates a NIZK proof π of (ρ, p), and returns (ρ, π), While
VerifyUpd returns true only if this newly embedded NIZK proof also verifies.

The addition of this NIZK trivially preserves all security properties including
correctness, due to the definition of R:

Definition 1. A uSRS scheme is permutation extractable if the relation

R := {(ProveUpd(S(τ), p), p) | τ ∈ T, p ∈ P}
is a bijection, and in NP.

We show in [22, Appendix A] that the relation required for the case of
Sonic [26] can be efficiently constructed, and leave the question of how to achieve
extraction without the reliance on a further NIZK to future work.

3 Building uSRS from Chain Quality

This section shows how to securely initialise a uSRS using a distributed ledger
by requiring block creators to perform updates on an evolving uSRS during
an initial setup period. After waiting for agreement on the final uSRS, it can
be safely used. To formally model this approach, we discuss the ideal and real
worlds used in our simulation proof. Both worlds have access to a ledger, however
the ideal world’s ledger is independent of the reference string (which is instead
provided by the independent FuSRS functionality), while the real world’s ledger
is programmed to generate it using updates.
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3.1 High-Level Overview

This basic premise of this paper relies on Nakamoto-style ledgers’ basic means
of operation: Different users can extend a chain of blocks if they can satisfy some
condition, with this condition being associated with a type of hardness which
ensures attackers are limited in the number of extensions they can perform.
Given such a structure, we associate a uSRS update with each block prior to
a time δ1. This time is selected such that the security properties of the ledger
ensure at least one of the blocks is honest in each competitive chain at this point.

In our modelling, we construct this from a ledger functionality with an addi-
tional leadership state, which is derived from information miners embed in their
blocks. Specifically for our case, these encode uSRS updates. We leave this suffi-
ciently general to allow other uses as well. The basic idea is to show that a ledger
which performs uSRS updates in its leadership state is equivalent to one which
doesn’t, but is accompanied by the FuSRS functionality. They make up our real
and ideal worlds respectively. After time δ1, users wait a further time period δ2
until common prefix ensures that all parties agree on the reference string.

While ledger functionalities are often treated as global, our approach effec-
tively constructs one ledger from another – the ledger is not a dependency of
our protocol, but a component. In this context, globality is irrelevant, as the
environment already has direct access to the functionality. We expect protocols
building on the ledger to use it in a global fashion, however. The same is not
true for the uSRS – most usages will likely rely on the simulator being able to
extract its trapdoor.

3.2 Our Ledger Abstraction

Our construction of the updateable structured reference string functionality
relies heavily on the properties of common prefix, chain quality, and chain growth
defined in the “Bitcoin backbone” analysis by Garay et al. [14], for Nakamoto-
style consensus algorithms. Despite our use in the section title, we make use of
all three properties, not just that of chain quality. We emphasise chain quality, as
it is the property central to ensuring an honest update has occurred. We briefly
and informally restate the three properties:

– Common prefix. Given the current chains Π1 and Π2 of two parties, and
removing k blocks from the first, it is a prefix of the second: Π

�k
1 ≺ Π2.

– Chain quality. For any party’s current chain Π, any consecutive l blocks in
this chain will include μ blocks created by an honest party.

– Chain growth. If a party’s chain is of length c, then s time slots later, it
will be at least of length c + γ.

These parameters determine the length of the two phases of our protocol. In the
first phase, we construct the reference string itself from the liveness parameter
(assuming μ ≥ 1), and in the second phase, we wait until this reference string
has propagated to all users. The length of the first phase is at least δ1 ≥ �lγ−1�s,
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and that of the second at least δ2 ≥ �kγ−1�s. Combined, they make up the total
uSRS generation delay δ ≥ (�lγ−1� + �kγ−1�)s.

We assume a ledger which guarantees the backbone properties. While we do
not prove any specific existing proof-of-work ledger (or those based on a different
leader-selection mechanism) formally UC-realise this specific formalisation, we
argue all ledgers with “Nakamoto-style” (as opposed to BFT-style) consensus do
so.. Both ledger and argument are presented in the full version of this paper [22,
Appendix B]. Our functionality further depends on a global clock Gclock, defined
in [22, Appendix E.1]. For the purposes of this paper, it is sufficient that this
is a beacon providing monotonically increasing values representing the current
time to any party requesting them.

In addition to this, we assume each block created can contain additional
information, provided by its creator (the “miner”), which can be aggregated to
construct a “leader state”. Each created block is associated with an update a, and
the ledger is parameterised by two procedures, Gen, and Apply, which describe
the honest selection of updates, and the semantics of updates respectively. Look-
ing forward, these utilise ProveUpd and VerifyUpd internally, although the for-
malism is sufficiently general to allow usage of the leader state for other, parallel
purposes. The exact parameters differ in our ideal and real world, with the
ideal world “hiding” the uSRS updates. Additionally, the real world adds time-
sensitivity: It does nothing to the SRS after the setup period. Gen is randomised,
takes a leader state σ and the current time t as inputs, and produces an update
a. Apply takes a leader state σ, an update a, and an update time t, and returns
a successor state σ′: σ′ = Apply(σ, (a, t)). For a chain, the leader state may be
computed by sequentially applying all updates in the chain, starting from an
initial state ∅.

The adversary controls when and which party creates a new block, as well as
the transactions each new block contains (provided it does not violate the back-
bone properties). For transactions created by a corrupted party, the adversary
can further control the block’s timestamp (within the reasonable limits of not
being in the future, and being after the previous block), and the desired update
a itself. For honest parties updates, Gen is used instead.
The UC interfaces our ledger provides are:

– submit. Submitting new transactions for the ledger.
– read. Reading the confirmed sequence of transactions.
– projection. Reading the current chain’s sequence of (potentially uncon-

firmed) transactions.
– leader-state. Reading the confirmed leader state.
– advance. The adversary switches a party to a longer chain.
– extend. The adversary instructs a party to create a block.

While this ledger abstraction is not the focus of this paper, we believe it to be of
independent interest in cases where finer control over miner’s actions, or better
access to the competing chains is desired.
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3.3 The Ideal World

Our ideal world consists of two functionalities, composed in parallel (by which
we mean: the environment may address either, and they do not interact). The
first is a variant of FuSRS, with the modification that it cannot be addressed
by honest parties before δ time slots have passed. Formally, this modification is
made with a wrapper functionality Wdelay(F, δ), described in [22, Appendix E.4].

The second is the Nakamoto-style ledger functionality, parameterised with
arbitrary leader-state generation and application procedures which are also par-
tially used in the hybrid world: Gen = GenIdeal and Apply = ApplyIdeal, and
the following ledger parameters:

1. A common prefix parameter k.
2. Chain quality parameters μ and l.
3. Chain growth parameters γ and s.

Formally then, our ideal world consists of the pair (Wdelay(δ, FuSRS), F ideal
nakLedger),

as well as the global functionality Gclock.

3.4 The Hybrid World

In our hybrid world, we use a uSRS scheme S, with algorithms ProveUpd,
VerifyUpd, the structure function S, permissible permutations P , permutation
lifting †, initial trapdoor τ0. The hybrid world consists of a separate Nakamoto-
style ledger F real

nakLedger, a NIZK functionality FR
NIZK, and the global clock Gclock.

The ledger is then parameterised by the same chain parameters as those in the
ideal world, and the following leader-state procedures:

procedure Apply((srs, σideal), ((srs′, ρ, π, aideal), t))
if srs = ∅ then let srs ← S(τ0)
if t ≤ δ1 ∧ VerifyUpd(srs, ρ, srs′) then

send (verify, ρ, π) to FR
NIZK and receive the reply b

if b then
let srs ← srs′

return (srs, ApplyIdeal(σideal, aideal, t))
procedure Gen((srs, σideal), t)

if t > δ1 then
return (ε, ε, ε, GenIdeal(σideal, t))

else
let p

R←− P ; ρ ← ProveUpd(srs, p)
send (prove, ρ, p) to FR

NIZK and receive the reply π
return (p†(srs), ρ, π, GenIdeal(σideal, t))

Note that these parameterising algorithms use FR
NIZK, and are therefore the

reason the ledger depends on this hybrid functionality.
Key here is that once a block is received after the initial chain quality period,

any reference string update it may declare is no longer carried out – at this point
the uSRS is not necessarily stable, as the chain may still be reorganised, but
should not change for this particular chain. Further, these procedures always
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mimic the ideal-world behaviour, extending it rather than replacing it. This
demonstrates the composability of allowing block leaders to produce updates:
One system using updates for security does not impact other parallel uses of the
leadership state.

There is little additional work to be done to UC-emulate the ideal-world
behaviour, besides ensuring that queries are routed appropriately, especially
how the reference string is queried in the hybrid world. We describe this with a
small “adaptor” protocol in the full version of this paper [22, Appendix C],
ledger-adaptor. This forwards most queries, and treats uSRS queries as
querying the appropriate part of the leader state after time δ, and by ignor-
ing them before. Formally, our real world consists of the global clock Gclock, and
the system ledger-adaptor(δ, F real

nakLedger(FR
NIZK)).

3.5 Alternative Usage of Gclock

In both worlds, Gclock is used to determine the cutoff point after which the
reference string is deemed secure. A simple alternative to this usage of the clock
is to instead rely on the length of the chain for this purpose. We did not make
this choice as it complicates the ideal world: The delay wrapper would have to
communicate with the ideal world ledger, and query it for the length of parties’
chains. We do not regard a clock as a significant additional assumption, however
little of the remainder of this paper differs if chain lengths are used instead. Even
in this case, a clock is present to guarantee liveness, although it is used only to
constrain the adversary.

3.6 UC Emulation

Our security is derived through UC-emulation, stated in the following theorem:

Theorem 1. For any updateable reference string scheme S, satisfying correct-
ness, structure preservation, update uniformity, update simulation with Sρ, and
permutation extraction, ledger-adaptor (in the (F real

nakLedger, FR
NIZK)-hybrid

world, parameterised as in Subsect. 3.4) UC-emulates the pair of functionalities
(F ideal

nakLedger, Wdelay(δ, FuSRS)), parameterised as in Subsect. 3.3, in the presence
of the global clock functionality Gclock, with the simulator Sledger-adaptor.

A full security proof and simulator may be found in the full version of this
paper [22, Appendix F & D].

4 Low-Entropy Update Mitigation

While our analysis indicates that in a Byzantine, honest majority setting, our
protocol produces a trustworthy reference string, it also asks participants to
dedicate computational resources to updates. It follows that in a rational setting,
players need to be properly incentivised to follow the protocol. We emphasise
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that the rational setting is not the focus of this paper, and optimistically, in a
setting where the majority of miners are rational and a small fraction honest, the
few honest blocks are sufficient to eliminate the issue described in this section.

For Sonic, a protocol deviation exists that breaks the security of the reference
string: By choosing the exponent in a specific low-entropy fashion, (e.g., y = 2l)
the computation of the update, which primarily relies on repeated squaring, can
be done significantly faster. More generally, some permutations in P may be more
efficiently computable. In more detail, instead of using a random permutation p,
a specific choice is made that eases the computation of srs′ – in the most extreme
case, for any uSRS scheme, the update for p = id is trivial.

4.1 Proposed Construction

In order to facilitate a mitigation for this class of attacks, we will need to assume
an additional property of the underlying ledger, in particular it must provide a
“resettable” randomness beacon: With each advance operation (where adver-
sary must be restricted in how often it may do such advance queries), a random
beacon value is sampled in a variable bcn and is associated with the correspond-
ing block. Beacons of this kind are often easily available, for instance by hashing
the proof-of-work [4], and are inherent in many proof-of-stake designs. Prior
work [12] demonstrates that such beacon values allow for the adversary to bias
them only by “resetting” it at most a certain number of times, say t, before
they are fixed by entering the ledger’s confirmed state, with the exact value of t
depending on the chain parameters.

We can then amend Gen to derive its random values from the random oracle,
by sending the query (bcn, nonce) to FRO, where nonce is a randomly selected
nonce, and bcn is the previous block’s beacon value. The response is used to
index the set of trapdoor permutations P , choosing the result p, and the nonce
is stored by miners locally, and kept private. We adapt the Phase 1 period δ1 so
that at least l′ := l(1 − θ)−1 + c blocks will be produced, where θ and c are new
security parameters (to be discussed below). Next, after Phase 2 ends, we can
be sure that the beacon value associated with the end of Phase 1 has been reset
at most t times.

We extract from bcn l′ biased coins, each with probability θ. For each block,
if the corresponding coin is 1, it is required to reveal its randomness within a
period of time at least as long as the liveness parameter. Specifically, a party
which created one of the selected blocks may reveal its nonce. If its update
matches this nonce, the party receives an additional reward of value R times the
standard block reward.

While this requires a stricter chain quality property, with the ledger func-
tionality instead enforcing that one of these l non-opened updates are honest,
we sketch why this property still holds in the next section.
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4.2 Security Intuition

Consider now a rational miner with hashing power α. We know that, at best,
using an underlying blockchain like Bitcoin, the relative rewards such a miner
may expect are at most α/(1 − α) in expectation; this assumes a selfish mining
strategy that wins all network races against the other rational participants. Now
consider a miner who uses low entropy exponents to save on computational power
on created blocks and, as a result, boosts their hashing power α to an increased
relative hashing power of α′ > α. The attacker can further try to influence the
blockchain by forking and selectively disclosing blocks which has the effect of
resetting the bcn value to a preferred one. To see that the impact of this is
minimal, we prove the following lemma.

Lemma 1. Consider a mapping ρ → {0, 1}l′ that generates l′ independent
biased coin flips, each with probability θ, when ρ is uniformly selected. Con-
sider any fixed n ≤ l′ positions and suppose an adversary gets to choose any one
out of t independent draws of the mapping’s random input with the intention to
increase the number of successes in the n positions. The probability of obtaining
more than n(1 + ε)θ successes is exp(−Ω(ε2θn) + ln t).

Proof. In case t = 1, result follows from a Chernoff bound on the event E defined
as obtaining more than n(1 + ε)θ successes, and has probability exp(−Ω(ε2θn)).
Given that each reset is an independent draw of the same experiment, by apply-
ing a union bound we obtain the lemma’s statement. ��

The optimal strategy of a miner utilising low-entropy attacks is to minimise
the number of blocks of other miners are chosen, to increase its relative reward.
Lemma 1 demonstrates that at most a factor of (1+ ε)−1 damage can be done in
this way. Regardless of whether a miner utilises low-entropy attacks or not, their
optimal strategy beyond this is selfish mining, in the low-entropy attack mining
in expectation l′α′/(1 − α′) blocks [14]. A rational miner utilising low-entropy
attacks will not gain any additional rewards, while a miner not doing so will
gain at least l′α/(1−α)(1+ε)−1θR rewards from revealing their randomness, by
Lemma 1. It follows that for a rational miner, this strategy can be advantageous
to plain selfish mining only in case:

α′

1 − α′ > (1 + θ(1 + ε)−1R) α

1 − α

If we assume a miner can increase their effective hash rate by a factor of c,
using low-entropy exponents, then their advantage in the low entropy case is
α′ = αc/(αc + β), where β = 1 − α is the relative mining power of all other
miners. If follows that the miner benefits if and only if:

αc
αc+β · αc+β

β > (1 + θ(1 + ε)−1R) α
β

⇐⇒ c > 1 + θ(1 + ε)−1R

If we adopt a sufficiently large intended time interval between blocks it is possible
to bound the relative savings of a selfish miner using low-entropy exponents;
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following the parameterisation of the full version’s simulation [22, Section 4.2],
if a selfish miner using such exponents can improve their hashing power by at
most a multiplicative factor c then we can mitigate such attack by setting R to
(c − 1)/(θ(1 + ε)−1).

5 Discussion

While the clean generation of a new reference string from a ledger protocol is
itself useful, real-world situations are likely to be more complex. In this section
we discuss practical adjustments that may be made.

5.1 Upgrading Reference Strings

As distributed ledgers are typically long-lived, and may well outlive any reference
string used within it – or have been running before a reference string was needed.
Indeed, the Zcash protocol has seen upgrades in its reference string. A reference
string being replaced with a new one is innocuous without further context, how-
ever it is important to consider how they are usually used in zero-knowledge
proofs. If the proof they are used in is stateless, upgrading from an insecure to a
secure reference string behaves as one may naively expect: It ensures that after
the upgrade, security properties hold.

In the example of Zcash, which runs a variant of the Zerocash [2] protocol,
the situation is more muddy. Zerocash makes stateful zero-knowledge proofs.
Suppose a user is sceptical of the security of the initial setup – and there is good
reason to be [30] – but is convinced the second reference string is secure. Is such
a user able to use Zcash with confidence in its security?

Had Zcash not had safeguards in place, the answer would be no. While the
protocol may operate as intended currently, and the user can be convinced of
that, due to the stateful nature of the proofs, the user cannot be convinced
of the correctness of this state. The Zcash cryptocurrency did employ similar
safeguards to those we outline below. We stress the importance of such here, as
not every project may have the same foresight.

Specifically, for a Zerocash-based system, an original reference string’s back-
door could have been used to create mismatched transactions, and to effectively
“mint” large coins illicitly. This process is undetectable at the time, and the
minted coins would persist across a reference string upgrade. Our fictitious user
may therefore be rightfully suspicious as to the value of any coins he is sold –
they may be a part of an almost infinite pool!

Such an attack, once carried out (especially against a currency) is hard to
recover from – it is impossible to identify “legitimate” owners of the currency,
even if the private transaction history were deanonymised, and the culprit identi-
fied. The culprit may have traded whatever he created already. Simply invalidat-
ing the transaction would therefore harm those he traded with, not himself. In
an extreme case, if he traded one-to-one with legitimate owners of the currency,
he would succeed in effectively stealing the honest users funds. If such an attack
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is identified, the community has two unfortunate options: Annul the funds of
potentially legitimate users, or accept a potentially large amount of inflation.

We may assume a less grim scenario however: Suppose we are reasonably
confident in the security of our old reference string, but we are more confident of
the new one. Is it possible to convince users that we have genuinely upgraded our
security? We suggest the usage of a type of firewalling property. Such properties
are common in the domain of cross-chain transfers [17], and are designed to
prevent a catastrophic failure on one chain damaging another.

For monetary transfers, the firewall would guarantee an upper-bound of funds
was not exceeded. Proving the firewall property is preserved is easy if a small
loss of privacy is accepted – each private coin being re-minted before it can be
used after the upgrade, during which time its value must be declared. Assuming
everything operates fine, and the firewall property is not violated, users interact-
ing with the post-firewall state can be confident as to the upper bound of funds
available. Further, attacks on the system can be identified: If an attacker mints
too many coins, eventually the firewall property will be violated, indicating that
too many coins were in circulation – bringing the question of how to handle this
situation with it. We believe that a firewall property does however give peace of
mind to users of the system, and is a practical means to assuage concerns about
the security of a system which once had a questionable reference string.

In Zcash, a soft form of such firewalling is available, in that funds are split
across several “pools”, each of which uses a different proving mechanism. The
total value of each pool can be observed, and values under zero would be consid-
ered a cause for alarm, and rejected. Zcash use the terminology “turnstiles” [32],
and no attacks have been observed through them.

A further consideration for live systems is that as the full version’s simu-
lation [22, Section 4.2] shows, the time required strongly depends on the fre-
quency between blocks. This may conflict with other considerations for select-
ing the block time – a potential solution for this is to only perform updates
on “superblocks”: blocks which meet a higher proof-of-work (or other selection
mechanism) criteria than usual.

5.2 The Root of Trust

An important question for all protocols in the distributed ledger setting is
whether a user entering the system at some point during its runtime can be
convinced to trust in its security. Early proof-of-stake protocols, such as [23],
did poorly at this, and were subject to “stake-bleeding” attacks [16] for instance
– effectively meaning new users could not safely join the network.

For reference strings, if a newly joining user is prepared to accept that the
honest majority assumption holds, they may trust the security of the reference
string, as per Theorem 1. There is a curious difference to the security of the
consensus protocol however: to trust the consensus – at least for proof-of-work
based protocols – it is most important to trust a current honest majority, as
these protocols are assumed to be able to recover from dishonest majorities at
some point in their past. The security of the reference string on the other hand
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only relies on assuming honest majority during the initial δ time units. This may
become an issue if a large period of time passes – why should someone trust the
intentions of users during a different age?

In practice, it may make sense to “refresh” a reference string regularly to
renew faith in it. It is tempting to instead continuously perform updates, however
as noted in Subsect. 5.1, this does not necessarily increase faith in a stateful
system, although is can remove the “historical” part from the honest majority
requirement when used with stateless proofs.

Most subversion attacks are detectable – they require lengthy forks which
are unlikely to occur during a legitimate execution. In an optimistic case, where
no attack is attempted, this may provide an additional level of confirmation: if
there are no widespread claims of large forks during the initial setup, then the
reference string is likely secure (barring large-scale out-of-band censorship). A
flip side to this is that it may be a lot easier to sow doubt, however, as there is
no way to prove this: A malicious actor could create a fork long after the initial
setup, and claim that it is evidence of an attack to undermine the credibility of
the system.

5.3 Applications to Non-updateable SNARKs

Updateable SNARK schemes have two distinct advantages which our protocol
makes use of: First, they have an explicit update procedure which allows a party
φ to replace a reference string whose security depends on some assumption A,
with one whose security depends on A ∨ (φ is honest). Second, they can survive
with a partially biased reference string, a fact which we don’t use directly in this
paper, however the functionality FuSRS we provide permits rejection sampling,
encoding it into the ideal world.

The lack of an update algorithm can be resolved for some zk-SNARKs, such
as [18], by the existence of a weaker property: In two phases, the reference
string can be constructed with (potentially different) parties performing round-
robin updates (also group exponentiations) in each phase. This approach is also
detailed in [6], and it implies a natural translation to our protocol, in which the
first phase is replaced with two phases of the same length, performing the first
and second phase updates respectively.

The security of partially biased references strings has not been sufficiently
analysed for non-updateable SNARKs, however this weakness can be mitigated.
Following [6], it is possible to use a pure random beacon (as opposed to the reset-
table one used in Sect. 4) to create a “pure” reference string from the “impure”
one presented so far. To sketch the design: The random beacon would be queried
after time δ, and the randomness used to select a trapdoor permutation over the
reference string. This would then be applied by each party independently, arriv-
ing at the same – randomly distributed – reference string.

As this is not required for updateable SRS schemes, we did not perform this
analysis in depth. However the approach to the simulation would be to perform
the SRS generation identically, and then program the random beacon to invert
all permutations applied to the honest reference string. Since this includes the
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one honest permutation applied on every honest update, this is indistinguishable
from a random value to the adversary. It is worth noting that the requirement
of a random beacon is on the stronger side of requirements, especially as it
should itself not allow adversarial influence to provide the desired advantage.
Approaches using block hashes for randomness introduce exactly the limited
influence which we are attempting to remove!
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