
Chapter 16
Major Technology 10: Artificial
Intelligence (AI) in Virtual Product
Creation

Executive Summary

This chapter deals with the following topics:

• Basics and advanced techniques of Artificial Intelligence in Virtual Product
Creation (VPC)

• Providing insight into how engineers benefit from using Artificial Intelligence
(AI) technologies in VPC

• Describing functioning, benefits, and limitations of AI technologies in VPC
practice.

Quick Reader Orientation and Motivation

The intention of this chapter is:

• to give an overview of AI technology in Virtual Product Creation as driver and
enablers for Digital Transformation in engineering

• to present AI technology as part of Virtual Product Creation from a practitioner’s
point of view to analyze the need and usefulness for day-to-day industrial work
practice

• to give instructions on how to use AI technology
• to explain models, frameworks, and digital representations that help to grasp the

internal working modes of AI technology in Virtual Product Creation.

Artificial Intelligence (AI) is not a new concept or technology. It first appeared in
the 1950s, when several scientists came together with the dream to build machines
as intelligent as humans. Afterwards, this field has experienced several hype cycles,
including the so-called AIWinters, in which many research organization and compa-
nies failed to deliver their extravagant promises [1]. In the 80ties and 90ties of last
century a wide variety of rule- and knowledge-based AI systems have already been
introduced in industrial engineering work and in technical system operations (e.g. as
part of damage analysis tools or engineering assistant systems in design synthesis). In
the 2010s, the term of AI rose again, especially the sub-field ofmachine learning, due
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to the development of next generation of computing power (e.g. Graphics Processing
Unit (GPU), Clouding Computing, etc.), the increased amount and variety of data
and the advances in algorithms, especially in Deep Learning (e.g. Artificial Neural
Networks). Before delving into the definition of Artificial Intelligence, the definition
of intelligence will be hereinafter introduced.

16.1 What is Intelligence? What is Artificial Intelligence?

Intelligence can be defined in many ways and that is why it may be controversial to
try to find a unique comprehensive definition of the term [2]. From the perspective
of psychologists, intelligence can be defined as the ability to solve problems, to
create products that bring values within cultural settings [3]. From the perspective
of AI researchers, it can be defined as the ability to process information properly
in a certain environment. In order to define the criteria for an appropriate definition
of intelligence, it is required that information is processed by corresponding experts
[4].

Accordingly, AI owns a significant variety of subfields, ranging from general
(learning) to specific tasks. Such as playing GO, writing lyrics, face detection, self-
driving cars, diagnosing diseases, etc. Figure 16.1 [1] illustrates eight definitions

Fig. 16.1 Artificial intelligence explanation, organized into four categories [1]
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Fig. 16.2 Categories of AI based on [1]

of AI, divided into two dimensions. The above definitions are about thinking and
reasoning, whereas the ones below are about behavior. Definitions in the left column
measure success of AI according to how they are similar to human behavior, whereas
the ones on the right column concern about the ideal performance of AI systems,
called rationality [1].

Research about AI has the initial objective to build machines that could help to
improve our understanding of intelligence. The technologies of AI can be broadly
divided into the following types [5, 6]:

• Knowledge-based systems: explicit modeling with words and symbols
• Computational intelligence: implicit modeling with numerical techniques.

With the renewed rise of AI in the 2010s, terms such as are Machine Learning,
Deep Learning and Neural Networks also increased in popularity. However, AI
is a much broader concept and consists of many more subfields than these ones.
Figure 16.2 illustrates different categories of AI.

16.2 Knowledge-Based Systems and Their Application
in Industry

Knowledge-based systems are designed to answer complex questions within specific
domains. They include techniques such as rule-based, model-based and case-based
reasoning. They were among the first forms of AI and remain in a major position
until now. In the simplest case, knowledge-based systems contain three modules:
knowledge base, inference engine and user interface (as in Fig. 16.3). In knowledge
base, the declarative description of problems is stored, e.g. some rules, facts and
relationships, without the details about how or when to apply them. These details
exist in inference engine. Since knowledge is explicitly described in knowledge base,
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Fig. 16.3 The main components of a knowledge-based system [5]

rather than implicitly embedded in the structure of a program, domain experts can
relatively easy update knowledge without any programming skills [5]. An example
that displays the problem explicitly is “If the pressure is high and the release valve is
closed, then the release valve is stuck” [6] On the other hand, the way an inference
engine uses knowledge base is similar to the way a conventional program calls a data
file [5].

Expert system is one type of knowledge-based system, which is designed to inte-
grate the expertise into a specific domain, such as medical diagnoses and technical
diagnoses. It is intended to act as a human consultant that could offer answers
according to their domain expertise. Normally, the user interacts with the expert
system by describing the problem through dialogues. Then the expert system offers
answers, suggestions, or recommendations. Typically, the expert system shall be able
to justify the current line of inquiry and explain the reasoning of conclusion, and this
is the function of explanation module in Fig. 16.3 [5].

Knowledge based systems are one of the first AI applications created. In 1969,
a program called DENDRAL [7] was initiated by Ed Feigenbaum, Bruce Buchanan
and Joshua Lederberg, with the purpose to deduce molecular structure using infor-
mation provided by amass spectrometer. It was also the first expert system, written in
programing language LISP,1 which automated decision making and problem solving
processes for chemists. It reached significant success at that time, since it clearly sepa-
rated rule-based knowledge from reasoning component, which mapped knowledge
from a general form to special forms, like cookbook recipes [5].With lessons learned
fromDENDRAl and the objective to prove, themethodology of expert systems could

1 LISP: short for List Processing, a favored programming language for artificial intelligence, which
is based on lambda calculus. Works good for computation associated problems.
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also be applied to other sort of human expertise like MYCIN, which was developed
by Ed Feigenbaum, Bruch Buchanan and Dr. Edward Shortliffe to diagnose blood
infection. MYCIN was able to perform as well as some experts, and even better than
junior doctors. With the growth of applications of expert systems with the aim of
facing real world problems, different representation and reasoning languages were
developed, e.g. Prolog2 [5].

With the success of commercial expert systems, there was an AI boom during
1980s and 1990s in which companies invested millions to billions of dollars in
building expert systems, vision systems, software and hardware to implement AI
systems. This success raised great optimism for AI, but only for applications for
specific narrow domains. Applications for more broad-based representations of
human intelligence were still difficult to achieve [8]. Typical rule and knowledge-
based AI applications (“first generation AI industrial applications”) were introduced
to support the following tasks and application fields back then and are still effective
today:

• Failure and damage analysis and explanation (reasoning).
• Model design synthesis and concept classification.
• Design knowledge templates to support design automation.
• Checking routines in engineering design and release as well as in technical system

maintenance and overhaul.
• Business case calculation, cost estimation and financial assessment.

16.3 Machine Learning—The Most Widely Used AI
Subfield in Industry

In this sub-chapter, the author focuses on Machine Learning, since it is currently
the most widely used category of AI in industry. However, before approaching this
topic further, some basic Machine Learning (ML) terminologies are in the following
explained:

• Attribute [8]: also known as an independent variable or feature, which describes
an observation (e.g. height, color, etc.). Generally, attributes are divided into the
following two types:

– Categorical: discrete values, which can be divided into two subtypes: nominal,
in which there is no ordering between the values, such as last names and colors;
ordinal, in which there exists an ordering, such as low, medium or high.

– Continuous (quantitative): subset of real numbers, which means there is
measureable difference between values.

2 Prolog: a logic programming language, which is widely used in artificial intelligence and
computational linguistics. It works well for rule-based logical queries.
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• Hyperparameter: a high-level property of an AI model, which decides the
learning rate and complexity of the model.

• Model [8]: also known as classifier, it is a structure or interpretation, which
summarizes or partially summarizes a set of data, for description or prediction
purpose. The result of most AI algorithms is such kind of models.

• Knowledge discovery [8]: the process to identify valid, novel, potential, useful
and understandable patterns in data. This concept was first used in “Advances in
Knowledge Discovery and Data Mining”, 1996, by Fayyad et al. [9].

• Training data: the subset of data, which is used to observe, to learn and to train
a model.

• Test data: the subset of data that is used to test the performance of a model after
the model has been trained with training data and validated with validation data.

• Validation data: the subset of data apart from the training data, which is used to
adjust the hyperparameters of a model.

Learning is the process in which the AI System is able to improve its performance
on future tasks after making observations about the world [1]. Machine Learning is
a subfield of AI that became an extremely popular term in the last decade. It is the
science to get computers/programs to learn from experiences rather than program-
ming with specific rules. A detailed definition from Tom Mitchell reads as follows
[10]:

A computer program is said to learn from experience Ewith respect to some class
of tasks Tand performance measure Pif its performance at tasks in T, as measured
by P, improves with experience E.

This definition of Machine Learning also defines the general guidelines to start
any new projects in this field: before starting anyMachine Learning project, the task
(objective) T, the performance measure P and the experience E should be defined.

According to different learning styles,Machine Learning (ML) could be grouped
into the following four types:

1. Supervised learning: the training data fed to the algorithm is labeled, i.e. the
samples aremarked or augmented with ameaningful tag which represents infor-
mation. The algorithm learns the relationship (a function), whichmaps the given
input data to the given output data [1]. According to the output types, super-
vised learning can further be grouped into regression and classification prob-
lems. In regression problems, the output is a continuous numerical value, such
as ‘weight’ of a constructive part. For instance, in the absence of an analytical
equation, if the radius of a part is 4.9 cm and the weight is predicted to be
200 g, then 200 g is the output of a Machine Learning system. Figure 16.4a
illustrates a regression problem. In classification problems, the output is one of
the labels/categories of the input dataset. Figure 16.4b illustrates a classification
problem.

2. Unsupervised learning: the training data fed into the algorithms is unlabeled,
i.e. no additional information exists for the samples.Algorithms learn the pattern
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Fig. 16.4 Supervised learning

in the training data without being given an explicit output and model the under-
lying structure or distribution in the data. According to the output types, unsuper-
vised learning can be divided into clustering and association tasks. In clustering
tasks, the main focus is to detect potential useful clusters of the input sample [1].
Figure 16.5 is an illustration of a clustering problem. In association tasks, the
main focus is to discover rules which describe the large amount of the training
data.

3. Semi-supervised learning: In practice, the differences between supervised and
unsupervised learning are not so obvious. In semi-supervised learning, the input
is a mixture of labeled and (a lot of) unlabeled data. And even the labeled data
may not be 100% correct [1]. Unlabeled data is easier to acquire, compared
with labeled data, and the labels may require support from experts or special
devices/software.

The most common application about semi-supervised learning is the photo
hosting services, such as Google Photos and Apple iOS Photo Stream: when
photos are uploaded to the service, it automatically recognizes that the same

Fig. 16.5 Unsupervised
learning—clustering
problem
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Fig. 16.6 The agent-environment interaction in reinforcement learning based on [12]

person A appears in photo #1, #3, #5 and person B in photo #2, #4, #6. This is
also an unsupervised learning problem—clustering. If the system is informed
about who these persons are, just bymeans of being labeled in one of the photos,
then the system is able to name everyone in every photo. The same applies if
pictures are taken from cracks of mechanical structures and certain types of
them are categorized towards certain types of failures such as coating hairline
crack, full surface crack or substantial (volumetric) fracture.

4. Reinforcement learning: the learning system makes observations in an envi-
ronment, takes actions and in return, receives rewards. The learning system
must learn the best strategy by itself by maximizing the rewards, this is called
a policy. A policy describes what action the agent should choose in a given
situation [11]. When there is no sufficient training data or the only way to learn
about the environment is to interact with it (i.e. the ideal state is not clear), then
reinforcement learning could play the biggest role. Figure 16.6 is an illustration
of the agent-environment interaction of reinforcement learning.

A simple example is a robot (agent), which applies reinforcement learning to
learn towalk in a casewhen there exist two routes in front, a routeAwith fire and
another route B with water. It firstly observes the environment and constructs
its own representation of the environment (state), then it takes an action. If it
chooses route A, it will get burned (next state) and will get negative reward.
Then, it knows it should take fewer actions that lead to such a result (updating
policy). On the other hand, if it chooses route B, it will get positive reward and it
knows it should take more actions that lead to the result in the future. The robot
will repeat the process until it finds a policy (what to react to under different
circumstances), which maximizes the rewards.

Similarly, in manufacturing, the Japanese company Fanuc [13] has applied rein-
forcement learning to improve the efficiency and precision of industrial robots. A
robot learns to train itself by picking up objects (actions) while capturing video
footage of the process. After every success or failure, it records how the object
looked like and all the relevant features, which are the state of the process. The robot
gets a positive reward when it puts the parts into the correct container; otherwise, it
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gets a negative reward. The goal is to come up with a policy which tells the robot,
which kind of part should be put into which container.

16.3.1 Deep Learning

Deep Learning is a subset of machine learning, which can also be divided into
the learning types of unsupervised, supervised, semi-supervised and reinforcement
learning. Themajor difference between standardmachine learning and deep learning
is that in standard machine learning the training data is described by a set of fixed-
length features or attributes, whereas the features or attributes are to be extracted
from the raw input data in deep learning. In other words, deep learning can process
a large amount of data and at the same time requires less data preprocessing time.
This is accomplished by utilizing one to many interconnected layers (hidden layers)
of calculators, an input layer and an output layer, which form a basic structure of
neural network (Fig. 16.7). This architecture is inspired by the brain, which is why
the calculators are also known as ‘neurons’.

The input layer of a neural network processes a large amount of raw input data.
Then the hidden layer(s) in between learn(s) to increase the details of input features.
The output layer is responsible for making a determination about the input data and
afterwards, when the neural network is applied to new input data, it will make a
prediction based on what it has learned. For instance, in order to recognize if the
same person has appeared in the new picture.

Fig. 16.7 A simple architecture of neural network
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16.3.2 Standard Process for Machine Learning Projects

Machine Learning itself is just a core step of the complete methodology to deal with
AI projects.Without a deep understanding of the existing problem and available data,
it is difficult to achieve the objectives.

With the promotion of Industrie 4.0, comprehensive data is collected in compa-
nies within connected machines and systems. According to the Wissenschaftliche
Gesellschaft für Produktionstechnik (WGP) in 2019 [14], the innovation and compet-
itiveness of manufacturing companies is based to a large extent on the technological
knowledge of engineering processes, machines and systems. The key question is how
to link the knowledge with the new development of AI systematically and method-
ically in order to increase the efficiency and added value of processes, machines
and plants in addition to the value creation in engineering [14]. There are in general
two kinds of approaches to apply AI in the area of engineering: data-driven and
process-driven.

For the data-driven approach, companies first collect a large amount of data by
applying data analytics to find useful information from it. This relies more on an
information technology perspective, which does not require much knowledge with
respect to engineering processes. The disadvantage is that normally the collected
data is not gathered consequently to existing engineering processes. Therefore, only
limited possibilities to get valuable information from the data with respect to the
specific engineering process steps are available [14].

The process-driven approach is generally aimed at monitoring, controlling or
optimizing the process. It highly depends on the type of steps, the machines, the
environment, the material and the people involved in the process. Therefore, in order
to answer the questions of which data are needed and how to collect such data,
an extensive knowledge on the domain is required and such knowledge has a high
influence on the results of the AI project. Compared to the data-driven approach,
the process-driven approach systematically extracts more valuable knowledge from
engineering processes [14]. In Fig. 16.8, a newvalue creation potential is shown in the
form of ‘sensorisation’. The learned model can be applied to optimize the complex
process, to evaluate the reliability of results and to improve the visualization the
results for better decision making [14].

Cross-Industry Standard Process for Data Mining (CRISP-DM) [16] is the most
popular model designed to orient researchers for a standardAI Project. It fits for both,
data-driven and process-driven approaches, which are alreadymentioned above. The

Fig. 16.8 Production technical process-driven approach to apply machine learning [14, 15]
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Fig. 16.9 The six phases of the CRISP-DM process [16]

value of CRISP-DM lies in that it involves data science steps that range from business
needs to deployment and indicate how interactive the process is. CRISP-DM (see
Fig. 16.9) in general describes six phases:

Business understanding: this step begins with an enterprise/industrial or
academic need for learning new knowledge or improving current processes. Then
the objective is defined, followed by assessing the current situation that needs tech-
nical/process knowledge. Afterwards, a plan for finding such knowledge is defined,
such as how to collect data, analyze and report data. And then it will be transformed
into the objective of the AI project [17]. For example, an automotive company wants
to improve the quality and efficiency of constructive design work in CAD system
by developing a CAD assistant system. Goals such as “According to the engineers’
current design work, what are the next best features to be used?” “What kind of
parameters should be chosen?” are needed.

Data understanding: after a clear description of the problem, the relevant data
should be identified and collected. This is followed by exploration and quality assess-
ment of the data [17]. For instance, in CAD systems, there are log files which record
the used command (feature) combined with parameters and default geometries.
According to the logged history, the design behavior can be learned by means of
AI algorithms.
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Data preparation: the purpose of this step is to select and clean the required data
for better quality. This includes: integration, filtering of outliers, filling the missing
values, etc. Besides, the selected data may also have different formats [17]. For
instance, the CAD system log files need to be converted to a readable format for AI
algorithms, e.g. csv. The feature name sequences need to be converted to integers in
order to fit AI algorithms.

Modeling: depending on the problem, the appropriatemodeling techniqueswill be
selected. Different techniques could be applied in this step, results will be compared
and the most appropriate technique will be decided. In the example of CAD assis-
tant system, algorithms like Random Forest3 and Multilayer Perceptron (MLP)4

are applied and compared in the beginning, and MLP is chosen due to a better
performance.

Evaluation: the results of modeling need to fit the business purpose and should
be evaluated in context of business success criteria. In this step, an interaction of
data analyst, business analyst or (virtual) engineering experts and decision makers
is mandatory [17]. For instance, for evaluation of the CAD assistant system, design
engineers, data analysts and managers get involved to assess the degree to which the
model meets the business objectives.

Deployment: the results of modeling will be distributed as a usable representation
and integrated in an organization process/system. In the example of a CAD assistant
system, it is integrated into a CAD system such as Siemens NX or Dassault Système
CATIA as a plugin and running in parallel with it. The performance will not be
mutually affected.

16.4 (Big) Data in Product Lifecycle Management

To achieve better performance inProduct LifecycleManagement (PLM) [18]with the
support of Big Data and Artificial Intelligence, it is necessary to clarify which type
of data sets are involved in which phase of the lifecycle of a given product, machine
(both represent technical systems) or service. Generally, the product lifecycle could
be divided into: Begin of Life (BOL), Middle of Life (MOL) and the End of Life
(EOL) [9]. In BOL, the product concept is generated, designed and physically tested
and its production is being prepared. In MOL, products are produced, distributed,
used and maintained by customers or engineers. In EOL, products are prepared for
re-use and/or recycled by manufactures or disposed by customers [19, 20].

Begin of life, BOL: According to Jun et al. [20], the most essential steps involved
in BOL are: market analysis, product design and production preparation. In phase

3 The algorithm Random Forest is based on a combination of decision trees. To classify a data
sample, each decision tree provides a classification result for the input data. Random Forest then
collects the results from each decision tree and choose the most voted one as the prediction result
[18].
4 Multilayer Perceptron (MLP) is the simplest neural network, sometimes also referred to a
feedforward Artificial Neural Network.
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market analysis, the target is to meet customers demand. There exist a variety of
data formats, e.g. comments on blogs, videos that customers upload on the Internet,
websites in which customers mark their purchasing behaviors. Besides, the informa-
tion fromMOL and EOL, for instance, customers’ complaints and sales performance
of similar products can also contribute to provide the goals for product design [19].

In the phase of product design/development and manufacturing engineering,
the data involved can be the descriptions of needs, requirements, description of
specific product functions, detailed design specifications—e.g. drawings or product
configurations, the accurate programming codes for the automation of manufac-
turing equipment, and all kinds of technical parameters. Furthermore, the mainte-
nance and failure information from MOL, like the records of breakdowns and root
causes can also contribute to efficient and reliable product design [19] as part of
“feedback-to-design”.

Mid of life, MoL: In the middle of the product lifecycle, the product exists in
its final form. The main issues and influence factors can come from production and
from service [19].

In the production phase, while some data might be stable, other data are dynamic
and change along the phase of product manufacturing. The data from product design
will be regarded as standards for production processes and operation, and data from
monitoring and testing of products are used to checkwhether all standards are reached
and met [19].

In the logistics phase, warehouse management and transportation need efficient
decision strategies to solve complex issues. Based on the order information, here
considered as input data, the manufactures are able to find optimal arrangements.
One of the main tasks along this line is to transfer order information into intelligent
arrangement within a global view and supply chain network [19].

In the utility phase, customers operate products based on the information fromuser
manuals or from heuristic knowledge. In this process, product status information are
generated and potentially transferred back to manufactures: traditionally, for most of
the products in field usage only failure modes are recorded, nowadays, due to internet
technologies, the actual (positive) use data become decisive for new business models
of manufactures during the utility phase. In addition, the field usage information
is monitored and recorded to provide guidance for the product maintenance [19].
In the maintenance phase, by combining maintenance supporting information with
product status information generated from utility phase, faults can be predicted and
prevented. The adjusted maintenance plan with root causes and solutions is taken
into account as output data during this phase [19].

End of Life, EoL: In the end phase of product lifecycle, lots of decisions have to
be made regarding EOL product re-use (or partial re-use), recycle or disposal. With
the help of data from MOL the following decisions can be supported: maintenance
history information, product status information and usage environment information,
the degradation status and calculation of remaining value of individual components.
The purpose in EOL is to maximize values of products. Depending on the status of
the product, suitable options such as recycle, re-use, remanufacturing, and disposal
should be decided [19].
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16.5 Internet of Things

The majority of current industrial products are mechatronic. With the evolution of
micro embedded devices and software within mechatronic products, their intelligent
capabilities, such as autonomy, real-time interaction, self-organization, etc. and the
capabilities to communicate and network with other products have been improved.
This type of product is now defined as ‘cyber-physical systems (CPS)’ [21].

The term “Internet of Things (IoT)” was first suggested by Kevin Ashton [22] in
1999. At that time, he viewed Radio-frequency identification (RFID) as the essential
to the internet of things. Literally, IoT means “…all about physical items talking
to each other …” [23]. Nowadays, IoT carries a much broader designation since
the term IoT is oftentimes also referred as a term to describe daily used gadgets
and objects with internet connection such as TVs, smart watches, cellphones, ovens,
refrigerators, cars, etc. All of them, however, handle data sets created by sensors in
those objects and gadgets of daily live as well as in machines of smart factories.

Making products ‘smart’ means connecting and sharing data between them. On
the other hand, it means capturing the huge amount of data, ingest, process it and then
mine it as the business requires. Enabled by IoT,CPScould not only communicate and
network with each other, but are also capable to perform a required functionality by
integrating the available internet services. These products are called ‘Smart Products’
[21].

There are many design challenges faced by the developer and engineers of smart
products. Among many issues, such as availability of internet, the IoT is entirely
dependent on the development of Wireless Sensor Networks (WSN) and Radio
Frequency Identification Devices (RFID). Mukhopadhyay [23] has summarized the
many challenges of IoT as follows:

• Availability of Internet everywhere and at no cost
• Security issues
• Low-cost smart sensing system development
• Energy
• Computational ability
• Scalability
• Fault Tolerance
• Power Consumption.

In 2014, a framework of CPS was proposed by Lee et al. [24], which provides
a guideline for applying CPS to industrial use cases. This architecture consists of 5
“C”-levels:

• Connection: this level consists of properly selecting sensors and data sources,
transferring protocols, and seamlessly transferring data to the central server [25].

• Conversion: in this level, intelligent algorithms and datamining techniques can be
applied to various raw data to extract valuable information, which is also known as
features inmostMachineLearningprojects. Then the calculated information along
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with other machine state data is being sent through Ethernet or Wi-Fi Network to
a cloud server, in which the information is managed and stored [25].

• Cyber: information from every connected machine will be gathered and analyzed
in this level. The results of the analytics provides machines with self-comparison
ability—performance of the individualmachine can be compared and rated among
the fleet [24] and with historical information of similar machines to predict the
future behavior of this machine.

• Cognition: in this level, the acquired knowledge is presented as comparative
information as well as individual machine status to experts, in order to support
better decision making. Therefore, information visualization techniques such as
graphics, tables are necessary to transfer the acquired knowledge completely [24].

• Configuration: this level acts as the feedback from cyber space to physical space.
It applies the corrective and preventive decisions that have previously been made
to the cognition level to the monitored system [24].

Case study: Cyber-physical system-based smart machine

So far, the application of AI based algorithms have become popular in real physical
application cases, such as in manufacturing. The following case study of the “sawing
material” example explains the approach and the appropriate measures which are
necessary to apply the five “C”-level approach of Lee. Manufacturing processes start
with sawing rawmaterials into designed sizes, therefore, speed and quality of sawing
affect the whole production. Errors in sawing will propagate to the following steps
and further affect the quality of product. Accurate sawing requires slowly cut but
since it will affect the productivity of the production, an optimal balance between
quality and speed need to be achieved [25].

In the connection level, data is collected from sensors and controller signals.
Data, such as vibration, acoustic emission, temperature, blade speed, cutting time
and blade height, etc., provide working status of each machine and will be processed
in the industrial computer connected to each machine [25].

In the conversion level, the industrial computer performs feature extraction and
data preparation. For instance, frequency domain features such as RMS (Root Mean
Square), kurtosis, frequency band energy percentage, etc. are extracted from vibra-
tion and acoustic signals. At this stage, however, it is crucial to use manufacturing
processing know-how and process knowledge (compare Fig. 7.10.8). Calculated
features together with machine state data are sent throughWi-Fi network or Ethernet
to the cloud server for storage and management [25].

In the cyber level, an adaptive clustering method [26] is performed on the cloud
server to segment the historical performance of blades into discrete working regimes
based on the difference of features comparing to normal baseline and local noise
distribution. The clustering method (see explanations to unsupervised learning and
Fig. 16.5) then compares the current features with the baseline and historical working
regimes and identifies the appropriate cluster to match with the current working
condition. If no appropriate cluster is found, a new cluster is generated [25].
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Fig. 16.10 The vision and levels of design assistance systems atDaimler (based onDaimler internal
project material)

In the cognition and configuration level, decisions will be made based on the
health information of each connected machine, which is visualized by Web or iOS-
based user interface. For instance, for a new blade, a higher cutting speed will be
chosen for high productivity without affecting the quality of production. After a
certain amount of degradation, a more moderate cutting should be applied to ensure
production quality [25]. Please refer to Chap. 20 for more details on “Internet of
Things (IoT)”, especially with regards to “Industrie 4.0”.

16.6 Example of a Virtual Product Creation AI Application

Industry leaders have recognized the widespread of digitalization. Instead of been
changed by the digital wave, many companies have decided to react to changes and
be a game changer by implementing new technologies supported by agile working
methods.AI is definitely oneof the promising technologieswhichhelps companies on
the way to digital transformation. And it has a place in the future of Computer-Aided
Design (CAD), as one AI example in Virtual Product Creation.

Recently, Daimler AG has developed a design assistant system—NeuroCAD5

with the objective to support CAD Data construction in Siemens NX CAD System
bymeans of Artificial Neural Networks, which are a sub-discipline of Artificial Intel-
ligence. Similar to the five levels of autonomous driving, the vision of NeuroCAD
is to enable highly automated design (see Fig. 16.10). There exist three assistance
systems components of NeuroCAD: the (design) feature assistant, the structure assis-
tant and the parameter assistant. Meanwhile, NeuroCAD has reached the capability
to partially automate the CAD design work, which goes beyond the “high end
template based” design automation approach from the first and second decade of
this millennium.

5 NeuroCAD is a separate program which runs in parallel with Siemens NX. The performance will
not be influenced mutually.
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16.6.1 The Main Function Description

This sub-chapter explains the main functional elements of the design assistance
system NeuroCAD, which employs a range of AI elements.

Feature assistant: this first functional element learns the typical command
sequences (NX functionalities) and then supports design engineers by selecting the
next best commands in NX by suggesting the three most likely commands the user
could use next (as shown in Fig. 16.11). Each click will recall the corresponding
command in NX. If all suggested commands are not appropriate, the user can still
choose commands directly in NX. Feature Assistant in this case, provides only
suggestions as part of design assistance instead of automating the design work.

Structure assistant: the second functional element is the traditional feature-based
modelling (compare the sub-chapter “Feature based Modeling”, part of the Chap. 7
“Computer Aided Design—CAD”). The CAD System (in this case Siemens NX)
keeps the history of each command (feature) with the used parameters and the default
geometries in a structure tree as part of the traditional CSG basedmodeling paradigm
(compare Chap. 7 “Computer Aided Design – CAD”).

Each feature can be modified later and all subsequent features of the design will
be recalculated. These geometry construction features build high interconnectivity
of data. It is difficult to master the complexity if the data is not further structured.
Designers thus use ‘Feature Group’ function in NX to group the features applied to a
specific geometry. Some typical constructive commands will be repeated with vari-
ants. Thus, the creation and extension of similar components can be suggested by
using the historical logs and AI technology. The Structure Assistant can support
in such a case: it makes suggestions during the creation of feature groups and
recommends the appropriate feature groups based on the position of part in the
Part-Navigator.

Fig. 16.11 Feature Assistant: by learning from historical NX command sequence, the next best 3
commands are predicted and displayed in confidence level from high to low (on the right side)
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Fig. 16.12 Structure Assistant: by learning from information about part (e.g. part number, position
of part in structure list and its corresponding feature set), the next best structure names are predicted
and displayed on the right side

The structure assistant uses a dictionary with around 3000 terms from CAD data
construction process in Daimler AG. As shown in Fig. 16.12, based on the structure
level of part, part number and the assigned feature set of the part, the first prediction
list—Sickenbild (bead layout), Lastpfad (load path), Cliploecher (clip holes), etc. is
provided. Regardless of the prediction list, the names can also be filtered by entering
the first letters of the word. For instance, when ‘ves’ is entered, then only the names
start with ‘ves’ will be listed.

Parameter assistant: for different features, the third functional element, the
parameter assistant, suggests the meaningful initialization values, based on the data
from the start-part information and the name of Feature Group. For instance, for a
feature CYCS (Absolute Coordinate System), the given input will designate:

(Part Number), (Name of feature group).



16.6 Example of a Virtual Product Creation AI Application 399

The suggested coordinate value will be given in the following form:

(X, Y, Z).

Together with the feature assistant and the structure assistant, the parameter assistant
makes the contribution to simplify daily design work and to offer the possibility of
semi-automating design work.

16.6.2 Best Practice

NeuroCAD has learned the features from more than 21,000 CAD parts (with around
2.8 million features) and was widely rolled-out in thousands of workstations within
Daimler AG. The current version (beginning of 2020) has reached 92% accuracy.6

There will also be a mobile version in the future.
The development and deployment of NeuroCAD has been supported by Agile

Software Development Methods [27] which will become the norm in continuous
DEVS/OPS (Development & Operation) type of Engineering of the future following
three essential paradigms:

• Individuality and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation responding to change over

following a plan.

The NeuroCAD team has provided some best practices when implementing AI in
industry:

Think big, start small. NeuroCAD has the vision to enable high-automated CAD
design. Instead of startingwith several functions in the beginning, they divide this big
vision into small realistic problems and start with the one with high data availability.
Implementation time of the first prototype takes only 2.5 months, with one person
with 100% capacity and 3 persons with 20% capacity. Building quick prototypes
will help earning the confidence from stakeholders in the early phase and thus it will
very important to the success of the project.

Involve stakeholders from the beginning onwards. As already introduced in sub-
chapter “Standard process for Machine Learning projects”, a deep understanding of
the existing problemand available data is an essential step in anAI project. In the kick-
off phase, theNeuroCAD teamorganizes severalworkshops to communicatewith key
users and to deeply understand their potential challenges during the implementation
phase. This ensures that the final digital product is delivered according to the actual
business needs.

In-house development. Many companies tend to hire external consultants or
developers and SW-coders to deploy new technologies. This will be difficult or at

6 It is assessed based on the correctness of the top 3 recommendations from feature assistant.
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least challenging for AI projects, since the first challenge they encounter will be the
data access problem. Yet, today’s companies have oftentimes not found an internal
policy and security way to open their data repositories for outside SW-development
companies. Besides, the lack of enterprise’s own knowledge will also be a barrier
during the implementation process. Therefore, the development team of NeuroCAD
at Daimler all stems from inside the company, with a high degree of programming
skills and knowledge of AI. The team was supported by SCRUM method and Speed
Coach, one local team without bureaucratic organization, and constantly exchanged
experiences with local AI experts within the company. This ensures not only the high
development speed, but also the fully utilized existing enterprise knowledge. In other
circumstances, however, especially in smaller and medium sized companies, where
such critical in-house skills are not available or cannot be mobilized easily, outside
help from research institutes and SW companies are necessary and useful.
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