
1Introduction

The quest for a fundamental theory of all elementary particles and their interactions
has been one of the most fascinating scientific endeavors during the past century.
One of the main guiding principles in the construction of the ever more refined
theories of high energy physics has been the systematic use of symmetry principles.
They form the basic language in terms of which the Poincaré invariant quantum field
theory based on the gauge group SU(3) × SU(2) × U(1) we now call the Standard
Model (SM) is formulated.

Among the many interesting ideas for physics beyond the Standard Model,
the most fruitful one has arguably been the introduction of the concept of super-
symmetry, i.e., a symmetry between bosonic and fermionic degrees of freedom.
Indeed, supersymmetric extensions of the Standard Model have been put forward
as possible solutions to the hierarchy problem, though the simplest models are
challenged by current Large Hadron Collider results; they improve the unification of
the three StandardModel gauge couplings at the Grand Unified Theory (GUT) scale,
MGUT ∼= 2 × 1016GeV; and they might provide interesting dark matter candidates.

The one missing major player in these constructions, however, is the gravitational
interaction with its elegant geometric description in terms of Einstein’s general
theory of relativity. Combining the principles of supersymmetrywith gravity defines
what is called supergravity, the topic of these lecture notes. As we now briefly
explain, the idea of supergravity has many other intriguing applications in various
areas of particle physics, cosmology, string theory, and mathematics that go far
beyond the simple desire to marry supersymmetry with gravity and can serve as
separate motivations to study supergravity theories.
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4 1 Introduction

1.1 TheMany Facets of Supergravity

Supergravity as a Gauge Theory of Supersymmetry
Supersymmetric field theories in rigid Minkowski spacetime feature supersymmetry
as a global (or “rigid”) symmetry. In view of the success of local gauge invariances
in the Standard Model, it is natural to try to promote supersymmetry likewise to a
local gauge symmetry. This leads directly to supergravity, and in fact this was the
way supergravitywas first constructed. Supergravity theories can hence equivalently
be defined as the gauge theories of supersymmetry.

Just as for an ordinary Yang–Mills symmetry, the gauging of supersymmetry
requires the introduction of a suitable gauge field that transforms into the spacetime
derivative of the infinitesimal symmetry parameter:

δgauge(gauge field) = ∂μ(gauge parameter) + . . . (1.1)

In supersymmetry, the symmetry parameter is a spinorial quantity, εα , with α being
a spinor index. The supersymmetry gauge field is therefore not a vector field as
in ordinary Yang–Mills theories but a vector-spinor field, ψμα . On-shell (and for
unbroken supersymmetry), this field propagates two helicity ±3/2 states, whereas
off-shell it also contains states with helicity ±1/2 (just as an ordinary gauge field,
Aμ, contains helicities ±1 on-shell, but off-shell also two states with helicity 0).

We will see later that supersymmetry further implies that the graviton, gμν , and
the supersymmetry gauge field, ψμα , sit in the same supersymmetry multiplet, the
supergravity multiplet, so that local realizations of supersymmetry necessarily need
to include gravity, which explains the name supergravity. Being the superpartner of
the graviton, ψμα is called the gravitino.

Extended Supergravity and Unification
In extended supergravity theories withN ≥ 2 supersymmetries, the supermultiplet
of the graviton contains N gravitini but also fields with spin ≤ 1. Extended
supersymmetry can thus interpolate between the graviton and ordinary gauge fields,
thereby leading to some sort of unification of the interactions mediated by these
fields. For N > 2, the supergravity multiplet also contains spin 1/2 particles, and
one may wonder whether sufficiently extended supergravity could even provide a
unified theory of all interactions and matter particles. The attempts in this direction
culminated in the construction of the maximally extended N = 8 supergravity
with the maximally possible compact gauge group SO(8) by de Wit and Nicolai
in 1982 [1]. Unfortunately, this and other extended supergravity theories generally
suffer from the problem that the corresponding gauge interactions are non-chiral, in
contrast to what we see in the electroweak sector of the Standard Model. Moreover,
the SO(8) gauge group studied in [1] is too small to accommodate the Standard
Model gauge group SU(3) × SU(2) × U(1) as a subgroup, and the theory also
has a very large negative cosmological constant. Although unification via extended
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supergravity theories has not met with phenomenological success, the study of many
extended supergravity theories in the early 1980s has proven to be a very valuable
resource for many modern theoretical developments, notably in string theory; see
below.

Better Behavior of Ultraviolet Divergencies
Another interesting motivation for studying supergravity is the better behavior of
ultraviolet divergencies of its corresponding quantum theory in comparison with
ordinary general relativity (GR). In the quantization of GR, one can remove the
potential on-shell one-loop divergencies by field redefinitions. However, there is
an ultraviolet (UV) divergence at two loops which cannot be removed [2, 3], and
if matter fields are added, divergencies can appear already at one loop. However,
if the matter content is consistent with supersymmetry, the situation improves
again. It is even still under debate at the time of this writing whether maximally
supersymmetric gravity in four dimensions is divergent or not. Recent calculations
show that divergencies inN = 8 supergravity do not show up before five loops [4]
and current consensus is that the first counterterm appears at seven loops, though it
is still possible that its coefficient is vanishing [5]. The study of the UV properties
ofN = 8 supergravity and its connections with amplitudes inN = 4 super Yang–
Mills theory is presently a very active research area, and new techniques developed
for their computation are now used in a much wider context.

Phenomenology
Whereas the lack of chiral gauge interactions precludes any direct use of extended
supersymmetry and supergravity for phenomenological applications, N = 1
supergravity theories are phenomenologically very interesting and could resolve
some issues in globally supersymmetric extensions of the Standard Model. For
instance:

• Supergravity can remove the large tree-level cosmological constant of sponta-
neously broken rigid supersymmetry.

• Supergravity suggests new mechanisms of supersymmetry breaking and their
transmission to the Standard Model sector.

• When supersymmetry is broken in supergravity, the goldstino is “eaten” by the
gravitino, which provides one way of explaining why the goldstino has not been
seen.

Supergravity can also have important implications for the dark matter sector or early
universe cosmology, as we will also explain later.

Supergravity as an Effective Theory of String Theory
While supergravity theories are in general not renormalizable, they do arise as the
low-energy effective actions of (super)string theory, the best viable candidate for a
consistent unified quantum theory of gravity and all gauge interactions. From this
point of view, supergravity forms the interface between string theory and most of
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its potentially observable low-energy phenomena, with its non-renormalizability
no longer being an issue. Moreover, even as the infrared limit of string theory,
supergravity with all its non-linear interactions still captures some of the non-
perturbative properties of string theory, which would hardly be accessible via the
conventional world sheet conformal field theory approach. For instance, string
theory is not only a theory of strings but also contains other extended objects
such as D-branes or other solitonic p-branes. Some of these objects first arose as
solutions of supergravity models, and the supergravity perspective has often given
interesting insights into their physics. Similarly, various duality symmetries have
been first, or better, understood by looking at the effective supergravity theories and
their solutions. Often when different compactifications lead to the same low-energy
spectra and vacua, one may uncover some new underlying symmetry of the higher
dimensional theories.

The Gauge/Gravity Correspondence
One of the biggest revolutions in our understanding of string theory came from
the observation that certain string models on curved spaces can be dual to non-
gravitating (often conformal) gauge field theories: this is the gauge/gravity cor-
respondence or anti-de Sitter/conformal field theory (AdS/CFT) correspondence
[6, 7]. The weak coupling limit of string models, i.e., supergravity, is then an
important tool to compute quantities that are related to the strong coupling regime
in the dual field theory. A special role in this correspondence is played by
gauged supergravity,1 because global symmetries in the CFT become local in the
corresponding supergravity model.

Geometry
Supergravity solutions that preserve some of the supersymmetry of the action are
particularly interesting also from a mathematical point of view. For one thing
this is due to the circumstance that supersymmetric solutions often satisfy first-
order differential equations, which in general are much easier to solve than the
usual second-order field equations of non-supersymmetric solutions. These first-
order differential equations define Killing spinors, which prove to be a powerful
concept in different areas of mathematics. The supersymmetric compactification
backgrounds of string or M-theory, for example, define compactification manifolds
with interesting mathematical structures such as restricted holonomy groups or spe-
cial types of gauge bundles, which are consequences of the corresponding Killing
spinor equations. But also the spaces of fluctuations about such compactification
backgrounds carry non-trivial geometric structures that result in various interesting
scalar field geometries or “moduli spaces” in the dimensionally reduced field
theories, such as, e.g., Kähler, special Kähler, or quaternionic Kähler geometries, or
various types of coset spaces (see later chapters). Various cascades of dimensional

1 Gauged supergravity refers to supergravity theories that contain also non-trivial conventional
gauge interactions, as we will see in Chap. 9.
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reductions then reveal unexpected mathematical relations between different classes
of restricted geometries that would have been difficult to obtain or even suspect
otherwise.

Fake Supergravity
As a final motivation, we would like to mention the concept of fake supergravity
[8, 9]. Fake supergravity describes classes of solutions (e.g., domain walls or
black holes) of non-supersymmetric gravity theories for which the second-order
field equations can be rewritten in a first-order form that resembles the Killing
spinor equations of genuine supergravity theories. This is especially useful for
the discussion of the stability of these gravity solutions, as it allows the use of
the Nester–Witten argument [10] in a large class of theories without the usual
consistency requirements and limitations imposed by actual supersymmetry. In this
same framework, also cosmological solutions may be under better control [11].

1.2 Plan of the Lectures

Clearly, the present lecture notes cannot cover all the above topics and applications
in full detail. Instead, their purpose is to give a survey of the basic ingredients needed
to construct a supergravity action and to discuss its physical implications (mainly
for particle physics), without introducing too much technical formalism or spending
too much time on the many possible applications. Another focus will be on the
differences between globally supersymmetric theories and supergravity, so that the
reader may better understand what really needs supergravity and what can already
be implemented in a globally supersymmetric theory without gravity.

More explicitly, the outline of the lecture notes is as follows: In the first part,
which consists of Chaps. 1–4, we work our way toward the construction of the
simplest possible supergravity theory in four dimensions, namely, pure 4D,N = 1
supergravity. To this end, we first introduce our spinor conventions in the remainder
of Chap. 1 and then explain, in Chap. 2, how the requirement of local supersymmetry
naturally leads to the inclusion of the graviton supermultiplet. In Chap. 2, we also
motivate the form of the supergravity action and the supersymmetry transformation
laws. In order to write these down properly, we review spinors in curved spacetime
and the vierbein formulation of general relativity in Chap. 3. Chapter 4 then is
devoted to the detailed discussion of pure 4D, N = 1 supergravity with and
without a cosmological constant and gives the complete proof of its invariance under
local supersymmetry. In these first chapters, we work out all the details and often
show pedantically all the steps necessary for this construction. The serious reader is
recommended to go through this material in full detail, as it greatly contributes to
developing a good intuition that will also be helpful for the remaining chapters.

In the second part of the book, we describe how the minimal supergravity
sector discussed in Part I can be coupled to matter multiplets and what the
implications of these matter couplings for phenomenology are. To this end, we
first discuss matter couplings in global supersymmetry in Chap. 5 and then explain,
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in Chap. 6, the differences that arise when supergravity and local supersymmetry
are introduced. Various consequences of supergravity for the phenomenology of
particle physics and cosmology are explored in Chap. 7. In these chapters, we
emphasize in particular the differences between rigid and local supersymmetry, both
at a formal/mathematical and at a physical level.

In the third part of the book, the presentation will be more formal, and we will
discuss a number of more advanced topics. In Chap. 8, we introduce the concept of
electric-magnetic duality and show how its interplay with the R-symmetry group
essentially fixes the geometrical structures encountered in models with extended
supersymmetry, detailing especially the case of N = 2 theories. We then give, in
Chap. 9, a brief but modern introduction to gauged supergravity models, which are
playing a prominent role in many interesting recent developments in string theory.
Special emphasis will be given here to the case of N = 8 gauged supergravity.
Finally, we conclude with some remarks on higher-dimensional theories and the
relations between these models and four-dimensional gauged supergravities in
Chap. 10.

We used a number of references throughout the lectures, mainly to point to
some additional sources of information on the discussed topics. There are obviously
already many very good reviews on various aspects of supergravity theories, which
we used as inspiration to prepare these lectures; some of them are [12–29]. Also,
very good complementary recent references on supergravity are [30, 31].

1.3 A Quick Guide Through Our Spinor Conventions

Before we embark on our journey through the world of supergravity theories, we
briefly summarize the 4D spinor conventions used in this book.2 For a generic
treatment of spinors in any spacetime dimension, see appendix 10.A. Very good
references are also [18, 32].

Assuming an orthonormal set of basis vectors, ea , of Minkowski space
(a, b, . . . = 0, 1, 2, 3), the Minkowski metric with our choice of signature is

ηab = diag(−1,+1,+1,+1). (1.2)

The generators of Lorentz transformations are denoted by Mab = −Mba when they
are taken as anti-Hermitian generators or asMab = −iMab when they are taken as
Hermitian generators and satisfy the Lorentz algebra so(1, 3),

[Mab,Mcd ] = −2 ηc[aMb]d + 2 ηd[aMb]c (1.3)

2 Throughout the book, it is understood that c = 1 and h̄ = 1.
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In these notes, symmetrization () and antisymmetrization [] are always taken
with weight one, i.e., (ab) = 1/2(ab + ba), [ab] = 1/2(ab − ba), etc.

A spinor representation is a representation of the above Lorentz algebra that
does not integrate to an ordinary (i.e., “single-valued”) representation of the
corresponding Lorentz group. Instead, it gives rise only to a “double-valued”
representation of the Lorentz group in the sense that spatial rotations by 2π give
minus the identity.

Mathematically, this is possible because the Lorentz group3 is not simply
connected but contains closed loops that cannot be continuously contracted to a
point. The universal covering group of the Lorentz group is a group that is locally
isomorphic to the Lorentz group but with a different global structure such that all
closed curves are fully contractible. Spinor representations are then equivalently
described as single-valued representations of this universal covering group that
project to double-valued representations of the Lorentz group itself. The universal
covering group of the 4D Lorentz group happens to be isomorphic to SL(2,C), the
group of unimodular complex (2 × 2) matrices.

In four dimensions, there are two commonly used notations for spinor represen-
tations: the two-component spinor notation and the four-component spinor notation.
The two-component spinor notation is based on the abovementioned accidental
isomorphism between the universal cover of the 4D Lorentz group and SL(2,C),
which does not have a direct analogue in a generic spacetime dimension. The
four-component spinor notation, by contrast, readily generalizes to any spacetime
dimension and is based on the notion of Clifford algebras and gamma matrices.

In this book, we will use the four-component spinor formalism, because it is
more common in the supergravity literature. The two-component spinor notation,
on the other hand, is frequently used in texts on global supersymmetry, so we briefly
include it here as well to facilitate the translation of one formalism into the other.

1.3.1 Two-Component Spinors

The group SL(2,C) has two equivalence classes of irreducible two-dimensional
complex representations, corresponding to the defining representation of SL(2,C)

and its complex conjugate representation. These two representations are the minimal
spinor representations of the 4D Lorentz group and are often denoted by (1/2, 0) and
(0, 1/2) or by dotted and undotted two-component spinors, λA and χ ∗̇

A
. The Lorentz

3 The full isometry group O(1, 3) of 4D Minkowski spacetime decomposes into four disconnected
components. In this book, we mean by Lorentz group only the component, SO(1, 3)0, of Lorentz
transformations that are continuously connected to the identity element. This subgroup is often
called the “proper orthochronous Lorentz group”.
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group generators, Mab, act on these via representation matrices that can be chosen
as

(1/2, 0) : ρ(Mab) = −1

4
(σaσ b − σbσa) (1.4)

(0, 1/2) : ρ∗(Mab) = e

[
−1

4
(σ aσb − σbσa)

]
e−1, (1.5)

where σi = −σ i (i = 1, 2, 3) are the Pauli matrices, σ0 = σ 0 = 12, and

e ≡
(

0 1
−1 0

)
. (1.6)

That (1.5) is indeed the complex conjugate of (1.4) follows from the identity
e−1σμe = σμ∗ = σμT .

The matrix e is an invariant of SL(2,C) in the sense that

AT eA = e ∀A ∈ SL(2,C), (1.7)

which implies that quantities such as λT eω are Lorentz invariant products of two
spinors λA and ωA. This is often written as λAωA or λAωA using suitable raising
and lowering conventions for spinor indices with the matrix e.

All finite-dimensional irreducible representations of SL(2,C) can be obtained
from symmetrized tensor products of these elementary building blocks, often
denoted by (n/2,m/2), where n and m count the (1/2, 0) and (0, 1/2) factors,
respectively. For (m + n) =even/odd, these describe single-/double-valued repre-
sentations of the Lorentz group, corresponding to bosons/fermions.

1.3.2 Four-Component Spinors

The above two-component spinor formalism has many nice features and, as already
mentioned, is frequently used in the literature on global supersymmetry. In these
lectures, however, we will use four-component spinors instead, as these are more
standard in the four-dimensional supergravity and particle phenomenology literature
and generalize easily to other spacetime dimensions.

More precisely, we will use four-component Majorana spinors to describe all
fermions in 4D. Majorana spinors satisfy a reality condition (see below) and natu-
rally describe fermions that are gauge invariant or transform in real representations
of the gauge group. This is true in particular for the gauge-invariant gravitino,4

the superpartner of the graviton, but also for the gaugini, the superpartners of the

4 As we will discuss later, an exception to this gauge invariance of the gravitino arises in the
presence of Fayet–Iliopoulos terms in N = 1 supergravity. These terms require a gauging of
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gauge bosons, which (before spontaneous symmetry breaking) always transform in
the adjoint and hence a real representation of the gauge group. Fermions that sit in
N = 1 chiral multiplets, on the other hand, may have chiral gauge interactions and
hence may sit in complex gauge group representations. While these fermions can
be nicely described by two-component spinors, they may equally well be described
in terms of the chiral components of different sets of four-component Majorana
spinors, as we will do in this book.

1.3.2.1 Dirac Spinors
A general four-component Dirac spinor, ψα (α = 1, . . . , 4), has four complex
components and corresponds to a direct sum of two two-component spinors of the
form (1/2, 0) ⊕ (0, 1/2), i.e., it combines one undotted two-component spinor, λA,
and one dotted spinor, χ ∗̇

A
. A very convenient way to do so is to define

ψ =
(

e · χ∗
λ

)
, (1.8)

so that the Lorentz generators are represented by the manifestly reducible matrices

Σab =
(

eρ∗(Mab)e
−1 0

0 ρ(Mab)

)
. (1.9)

The (4 × 4) matrices Σab can conveniently be expressed in terms of Dirac gamma
matrices,

γa =
(

0 iσa

iσa 0

)
, (1.10)

so that

Σab = 1

4
[γa, γb]. (1.11)

The gamma matrices defined above satisfy the Clifford algebra

{γa, γb} = 2 ηab 14. (1.12)

As one easily verifies, these Clifford algebra relations already imply the Lorentz
algebra commutation relations for the matrices Σab if one uses (1.11) as their
definition. From this point of view, the particular expression (1.9) is just a special
case that corresponds to the particular representation (1.10) of the Clifford algebra

the R-symmetry group, under which also the gravitino is charged, but these theories are often
anomalous.
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(1.12). This representation (1.10) is called the Weyl representation, and its main
virtue is that the Lorentz generators assume the block diagonal form (1.9), making
their reducibility manifest.5 However, there are infinitely many other irreducible
representations of (1.12) that one could also use; apart from theWeyl representation,
the most common representations are the Dirac representation and the Majorana
representation.6 Fortunately, all these representations are equivalent to the Weyl
representation, and we rarely will make use of particular representations. For
convenience, however, we will always assume “friendly” representations whose
defining properties are

γ
†
0 = −γ0 (1.13)

γ
†
i = +γi (1.14)

γ T
a = ±γa, (1.15)

where the last equation means that each gamma matrix is either symmetric or
antisymmetric. The Weyl, Dirac, and Majorana representations are obviously all
friendly representations.

An important object in the following will be the completely antisymmetrized
products of several gamma matrices,

γa1...ap ≡ γ[a1γa2 . . . γap], (1.16)

where, as usual, the antisymmetrization involves a prefactor 1/p!, so that, e.g.,
γab = 1/2[γa, γb], etc. Note that the Clifford relation (1.12) implies

γa1a2...ap =
{

γa1γa2 . . . γap if all ai are different
0 otherwise

(1.17)

The 16 matrices γM = {14, γa, γab, γabc, γabcd} are linearly independent and form
a basis of the complex (4 × 4) matrices.

As we have seen, an irreducible representation of the Clifford algebra (1.12)
induces a spinor representation (1.11) of the Lorentz group. This is true in
any spacetime dimension, which makes the Clifford algebra approach to spinor
representations so useful for higher-dimensional supergravity theories. As was
stressed in footnote 5, however, the Lorentz algebra representations obtained in

5 Note that the Weyl representation is irreducible as a representation of the Clifford algebra (1.12).
It is only the induced representation Σab of the Lorentz algebra that is reducible.

6 The Dirac representation corresponds to γ0 = iσ3 ⊗ 12 ≡
(

i12 0
0 −i12

)
, γi = σ2 ⊗ σi , and the

Majorana representation is given by γ0 = iσ2 ⊗ σ3, γ1 = −σ1 ⊗ 12, γ2 = σ2 ⊗ σ2, γ3 = σ3 ⊗ 12,
but they are not really needed for this book.
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this way are in general not irreducible, even if the underlying Clifford algebra
representation is irreducible.

For supersymmetry, it is convenient to work with minimal representations of
the Lorentz group, as these typically correspond also to the minimal amount of
supersymmetry one can have in the respective spacetime dimension. There are
essentially two ways to reduce the number of degrees of freedom of a Clifford alge-
bra spinor so as to obtain irreducible representations (irreps) of the corresponding
Lorentz algebra. One possibility is to impose a chirality condition, which leads to
Weyl spinors, and the other one is to impose a reality condition, which leads to
Majorana spinors.7 This is not always possible in every spacetime dimension: The
Weyl condition can only be imposed in even dimensions, whereas the possibility
to impose a Majorana condition shows a somewhat more complicated dependence
on the spacetime dimension, as we will see in Chap. 10. Moreover, the Weyl and
Majorana condition can often not be imposed simultaneously. For the moment, we
restrict ourselves to four spacetime dimensions, where one can impose a Weyl or a
Majorana condition, but not both of them at the same time.

1.3.2.2 TheWeyl Condition
TheWeyl condition projects out the part of a spinor that has a particular handedness.
It is imposed with the γ5 matrix:

γ5 ≡ γ 5 ≡ −iγ 0γ 1γ 2γ 3 = +iγ0γ1γ2γ3. (1.18)

The Clifford algebra (1.12) implies

(γ5)
2 = 14 (1.19)

{γ5, γa} = 0 ⇒ [γ5,Σab] = 0 (1.20)

so that the chirality projectors

PL ≡ 1

2

(
1 + γ 5

)
, PR ≡ 1

2

(
1 − γ 5

)
, (1.21)

can be used to define left- and right-handed spinors.

ψL ≡ PLψ, ψR ≡ PRψ. (Weyl condition) (1.22)

7 Note that imposing aWeyl orMajorana condition in 4D does not necessitate the use of theWeyl or
theMajorana representation of the gamma matrices. The Weyl condition just takes on a particularly
simple form in the Weyl representation, and the Majorana condition leads to a particularly simple
result in the Majorana representation. We usually do not make use of these simplified forms and
write down the conditions in a covariant way.
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Because of (1.20), this projection is consistent with Lorentz covariance, and left-
and right-handed spinors form separate representations of the Lorentz group. In the
Weyl representation, γ5 = σ3⊗12, i.e., the left- and right-handed spinors, are simply
the upper or lower two components of ψ as in (1.8). Note that γ 5ψL = ψL, while
γ 5ψR = −ψR .

In a friendly representation, γ0γ
†
a γ0 = γa ⇒ Σ

†
abγ0 = −γ0Σab, and the Dirac

conjugate of a general four-component spinor is defined by

ψ ≡ iψ†γ 0 = −iψ†γ0 (1.23)

so that bilinears such as ψχ are Lorentz invariant.
In a friendly representation, we also have that γ †

5 = γ5, and hence P
†
L,R = PL,R .

Moreover PLγ0 = γ0PR and PRγ0 = γ0PL, and this implies

ψR = ψPL, and ψL = ψPR, (1.24)

where

ψR ≡ (PRψ) = −i(PRψ)†γ0. (1.25)

Because of this we will often write

ψL ≡ ψPL = ψR, ψR ≡ ψPR = ψL. (1.26)

The matrix γ5 also enters a number of very useful duality relations between the
antisymmetrized products of gamma matrices, as the reader is asked to verify in
Exercise 1.1.

1.3.2.3 TheMajorana Condition
The Majorana condition is a reality condition that can be written as

ψ∗ = Bψ, (Majorana condition) (1.27)

with some matrix B. This condition is self-consistent (i.e., ψ∗∗ = ψ) and Lorentz
covariant if B satisfies

B∗B = 14, γ ∗
a = BγaB

−1 ⇒ Σ∗
abB = BΣab. (1.28)

In the Weyl basis (1.10), one can choose

B =
(

0 e

−e 0

)
, (1.29)
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so that a Majorana spinor would be of the form (1.8), but with λ = χ . From this
we see that a Majorana spinor describes the same number of independent degrees of
freedom as a Weyl spinor.

Another equivalent, but for many purposes more convenient, way to write the
Majorana condition is via the charge conjugation matrix, C, which satisfies

CT = −C, γ T
a = −CγaC

−1. (1.30)

In a friendly representation, one can moreover choose C such that it also satisfies

C−1 = −C = C†. (1.31)

In terms of C, the charge conjugate spinor is defined as

ψc = Cψ
T = iCγ 0T ψ∗ (1.32)

and a Majorana spinor is defined as

ψc = ψ. (alternative form of Majorana condition) (1.33)

This is equivalent to (1.27) if we identify

B = (i Cγ T
0 )−1, (1.34)

so that, in terms of B, charge conjugation reads

ψc = B−1ψ∗. (1.35)

The advantage of C is that for a Majorana spinor the Dirac conjugate can be
written as

ψ = ψT C. (1.36)

Notice that using (1.30) one finds the symmetry properties

CT = −C, (Cγ abc)T = −(Cγ abc), (Cγ abcd)T = −(Cγ abcd),

(Cγ a)T = (Cγ a), (Cγ ab)T = (Cγ ab).

(1.37)

For anti-commutingMajorana spinors, this then implies

ψ1Mψ2 =
⎧⎨
⎩

+ψ2Mψ1 for M = 14, γabc, γabcd

−ψ2Mψ1 for M = γa, γab

(1.38)
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Unless stated otherwise, we will, in the following, always use anti-commuting
Majorana spinors but often also take in addition the chiral projections ψL and ψR

of these Majorana spinors, which therefore are not independent.
More specifically, we have, in our conventions,

(ψL)c = ψR, (ψR)c = ψL. (1.39)

To show this, we use

B−1γ ∗
5 = −γ5B

−1 ⇔ B−1P ∗
L = PRB−1 (1.40)

so that

(ψL)c = (PLψ)c = B−1P ∗
Lψ∗ = PRB−1ψ∗ = PRψc = PRψ = ψR. (1.41)

Note that (1.39) implies that ψR is no longer a Majorana spinor, because that
would require (ψR)c being equal to ψR . Thus, in 4D, a four-component spinor
cannot be simultaneously chiral and Majorana. Nevertheless, it makes sense to talk
about the projection ψR or ψL of a given Majorana spinor ψ .

From the definition of γ5 and (1.30), one also gets

Cγ5 = γ T
5 C ⇔ CPL = PT

L C (1.42)

so that for a Majorana spinor ψ ,

ψL = ψPL = ψT CPL = ψT PT
L C = (ψL)T C (1.43)

even thoughψL is not Majorana. From this we can obtain more symmetry properties
for the chiral projections that are very similar to those for the Majorana spinors
themselves,

χLψL = χT
L CψL = −ψT

L CT χL = ψLχL,

χLγ aψR = −ψRγ aχL, χLγ abψL = −ψLγ abχL

χLγ abcψR = ψRγ abcχL.

(1.44)

We also note that under charge conjugation

(γa)
c = γa, (γ5)

c = −γ5, (1.45)

in the sense that (γ aψ)c = γ aψc , etc.
In all the subsequent formulae, the Hermitian conjugate,+h.c., of a field operator

is denoted with a superscript ∗, whereas the superscript † is reserved for matrix
expressions when in addition to Hermitian conjugation also a transposition of the
matrix is involved. On ordinary complex numbers and classical fields, the Hermitian
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conjugation acts as complex conjugation, where, however, the order of anti-
commuting spinor fields is exchanged to mimic the effect of Hermitian conjugation
on the corresponding quantum fields. This results in a minus sign when the original
spinor order is restored. Fortunately, the effect of this Hermitian conjugation can
simply be obtained by writing down the charge conjugate expression with all the
rules obtained so far, including (1.45), but without exchanging the order of the
spinors.

As an example, we show (ψLγ aχR)∗ = (ψLγ aχR)c = ψRγ aχL:

(ψLγ aχR)∗ = (ψT
L Cγ aχR)∗ = −ψ

†
LC∗γ a∗χ∗

R = −ψ
†
LC∗γ a∗B(χR)c

= −ψ
†
LC∗Bγ aχL. (1.46)

Inserting (1.34), C∗ = C, and (γ 0T )−1 = −C(γ 0)−1C−1 = −C−1(γ 0)−1C, this
becomes

(ψLγ aχR)∗ = −iψ
†
L(γ 0)−1γ aχL = ψL γ aχL = ψRγ aχL = (ψL)c(γ a)c(χR)c

= (ψLγ aχR)c, (1.47)

where in the second equation we used (γ 0)−1 = −γ 0, which follows from (γ 0)2 =
−14.

In the following, we will often need to rewrite three or four Fermi terms to
complete our analysis of the supersymmetry properties of an action, and hence Fierz
identities will be extremely useful. We list here the main ones for two spinors:

ψRχR = −1

2
χRψR PR + 1

8
χRγabψR γ ab PR, (1.48)

ψRχL = −1

2
χLγ aψR γa PL, (1.49)

where for the sake of clarity we explicitly left the projectors on the right hand side.
In the rest of these lectures, we will also often make use of spinor one-forms

ψ = dxμψμ. Exchanging such spinor one-forms then leads to an additional minus
sign from the anti-commutativity of the wedge product, and hence we have

ψR ∧ ψR = −1

8
ψR ∧ γabψR γ ab PR, (1.50)

ψR ∧ ψL = 1

2
ψL ∧ γ aψR γa PL, (1.51)
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where now ψL ∧ ψL = 0 because of (1.44) and the wedge product. A crucial
consequence is the cyclic identity:

γ aψL ∧ ψL ∧ γaψR = 0. (1.52)

1.3.3 Susy Algebra in Four Dimensions

Using the conventions described so far, the N = 1 supersymmetry algebra in four
dimensions has the following form:

{Q, Q̄} = −2iγ a Pa,

[Pa,Q] = 0,

[Mab,Q] = i

2
γabQ,

[R,Q] = i γ5Q,

[Pa,Pb] = 0,

[Pa,Mbc] = −2i ηa[bPc],

[Mab,Mcd ] = 2i ηc[aMb]d − 2i ηd[aMb]c.

(1.53)

Here, Q is the supersymmetry generator described by a Majorana spinor; Mab

and Pa denote, respectively, the usual generators of Lorentz transformations and
spacetime translations; and R is the U(1) internal R-symmetry generator. In (1.53),
we used Hermitian generatorsPa andMab. Just as in (1.3), we will sometimes also
use their anti-Hermitian counterparts,

Pa = i Pa, Mab = i Mab (1.54)

when this is more convenient. Note that, for simplicity, we have not included internal
bosonic symmetry generators other than the R-symmetry, as they commute with the
above generators.

Exercises

1.1. Using the totally antisymmetric epsilon tensor with

ε0123 = 1, (1.55)
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check the duality relations

γ abc = i εabcdγdγ5, i γaγ5 = 1

3!εabcdγ bcd ,

γ abcd = −i εabcdγ5, i γ5 = 1

4!εabcdγ abcd,

γ ab = i

2
εabcdγcdγ5.

(1.56)

1.2. Verify that Mab = 1

2
γab satisfies [Mab,Mcd ] = −2 ηc[aMb]d + 2 ηd[aMb]c.

1.3. Using just the Clifford algebra (1.12) in an arbitrary representation and the
definition (1.11) of Σab, compute the rotation matrix R(θ) = eθΣ12

for a rotation in
the (1, 2)-plane by a finite angle θ and read off from your result that R(2π) = −1,
i.e., that Σab is indeed a spinor representation.
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