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Abstract. In blockchain systems, the lack of established identity man-
agement processes pose a problem for applications requiring smart con-
tract owners to be authenticated. One issue that previously proposed
solutions face is the accumulation of a critical mass of trusted data
that makes the system usable. In this work, we propose an identity
assertion and verification framework for Ethereum that overcomes this
bootstrapping problem. It achieves this by leveraging TLS certificates,
which are part of the established infrastructure that is commonly used for
authenticating internet connections. We design and implement an TLS
certificate-based authentication framework whose key features are the
smart contract-based validation and storage of certificates and address-
identity bindings. Looking at the current TLS ecosystem, we find that a
large share of all domain certificates is issued by a small number of inter-
mediate and root certificates. Therefore, we decide to store and maintain
certificates in one smart contract to minimize processing costs. The eval-
uation of our prototype implementation shows that the associated cost of
our system is within a feasible operating range, with the costs of submit-
ting a new certificate currently averaging around $1.81 and the cost of
creating an address-identity binding averaging around $1.32. Our system
is a pragmatic and, most importantly, quickly bootstrapped method for
an identity assertion and verification framework for Ethereum.

Keywords: Blockchain · Authentication · Smart contracts ·
Ethereum · Certificates

1 Introduction

The world wide web relies on public key infrastructures (PKI) to reliably identify
and authenticate remote communication partners, enabling the Internet as we
know it. The Domain Name System (DNS) allows users to identify and direct
their requests to the respective party behind a domain name (e.g., example.org)
[22]. TLS/SSL-certificates1, which are distributed securely through the TLS-
PKI, map public cryptographic keys to these domains names to enhance the
1 Often, the terms TLS and SSL are used interchangeably. In this paper, we only use

the term TLS.
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communication by ensuring the privacy and integrity of messages as well as con-
firming that a user is talking to the intended party [27]. In contrast, blockchain
networks, such as Bitcoin [24] or Ethereum [32], do not currently offer a well-
established identity management system with human-friendly names. The native
decentralized identity management solely depends on private and public key
pairs registered on the blockchain2. While this prevents malicious parties from
directly interfering with transactions, it does not facilitate the authentication of
the counter party, as the public key is not mapped to a real-world identity.

Efforts to bridge this gap currently focus on establishing new identity man-
agement solutions which are guided by the blockchain core principles of decen-
tralization and trustlessness: No party should be required to solely run the sys-
tem or be able to interfere with its operation. A well-known example for such a
system is Ethereum Name Service (ENS) [15]. ENS allows for the decentralized
registration of domain names with the top level domain .eth to be used within
the Ethereum blockchain. However, such newly-established and decentralized
systems face huge bootstrapping issues.

Bootstrapping is a serious issue for these projects, as they face lack of adop-
tion from two distinct groups: users and service providers, e.g. companies. First,
enterprises need to support these upcoming standards and integrate them in
their applications and wallets. Second, users need to install and use these wal-
lets, understand the functionality, and recognize the implications of these specific
standards. Both groups are hesitant to invest their time and money in these sys-
tems as long as it lacks adoption of the respective counterpart.

For that reason, we explore and evaluate the mirroring of existing, estab-
lished PKIs and their certificates (alongside unique attributes such as a name)
to blockchain networks. We rely on a two-fold approach:

1. Set up an on-chain structure to insert and verify the validity of the certificates
managed in the PKI, resulting in the existence of trustworthy certificates and
their attributes in the blockchain, and

2. enable the signature verification of these certificates, such that statements
signed by the private key of these certificates can be verified on chain.

This system allows us to verify on-chain statements3 made with certificates
that bind the respective unique attribute of the certificate to a smart contract or
Externally Owned Account (EOA). Afterwards, third party smart contracts can
verify whether the binding is valid and commence interactions with the account.

Several different PKIs are suitable for investigation in our work. Therefore,
we allow the usage of any PKI that supports X.509 certificates [7]. In this paper,
we evaluate our approach with the broadly used TLS public key infrastructure.
Certificates issued via the TLS PKI are bound to fully qualified domain names
(FQDNs) as unique attributes. This allows us to bind a smart contracts to
FQDNs. As 98% of all website visits rely on TLS [11], bootstrapping issues are
eased.
2 Often, a subset of the hash of the public key is used, e.g., 0x42Ff4fa0...89024.
3 We refer to these statements as endorsements. The definition follows in Sect. 2.
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In this work, we investigate two questions:

– How can naming attributes of existing PKIs be leveraged in a on-chain
blockchain context?

– What are the constraints of leveraging existing PKIs in a blockchain environ-
ment?

The paper is organized as follows: Sect. 2 introduces the key concepts of the
design and architecture of the on-chain PKI verification system. In Sect. 3, we
discuss the suitability of the TLS PKI and evaluate key metrics of the system
such as costs and fulfillment of the requirements. In Sect. 4 we compare our
approach to related work and conclude the paper in Sect. 5.

We refer readers who are not familiar with the TLS ecosystem to [27] and
readers who are not familiar with blockchain technology and Ethereum to [4,25]
for background information on these topics.

2 System Design and Architecture

The aim of our system is to enable users or smart contracts to verify that an
Ethereum account (an EOA or a smart contract) is assigned the name attribute
of a X.509 certificate. Trusted root certificate authorities sign (indirectly via
intermediary certificates when applicable) domain certificates, which we after-
ward use to create signatures that allow us to verify the assignment of an account
to a domain. To verify that such an assignment is created and is valid on-chain,
we require several components in our system: First, endorsements (Sect. 2.1)
contain details about the assignment of an account to a name attribute. The
on-chain certificate database (Sect. 2.2) ensures the validity of newly added
root-, intermediary- or server-certificates. The on-chain endorsement database
(Sect. 2.3) checks the attribution as well as context-dependent properties of the
respective certificates such as time or trusted root certificates4.

2.1 Endorsement

We define the endorsement of an Ethereum address as the signature of the
address value together with optional associated data. An endorsement indicates
that the endorser claims to own the address, i.e., that they receive ingoing funds,
control outgoing funds, vouch for data associated with the address, and are the
originator of outgoing transactions. Endorsements need to present some kind
of liability and make only sense in scenarios where an adversary cannot gain
advantage by signing an address they do not control.

To standardize the endorsement and avoid misuse, we specify the format and
content of endorsements. This means the endorsements must be unambiguous.
In particular, endorsements need to meet the following requirements:

4 We provide the option to define the set of trusted issuers to keep the system open
and flexible for any other X.509-based PKI.
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– An endorsement issued for one Ethereum address may not be reused for
another Ethereum address because otherwise malicious parties could imper-
sonate the owner of the TLS certificate.

– It must be clear to which web domain an address is linked, as otherwise no
clear attribution is available. The situation when this is unclear might arise
when a certificate is issued for multiple web domains.

– It must be possible to identify the domain certificate with which the endorse-
ment was created in order to retrieve the public key and to check the validity
and revocation status of the certificate.

– It should be possible for the issuer to specify an expiration date of the endorse-
ment, as a service provider might decide to offer a service only for a specific
amount of time.

An endorsement comprises a signature and an associated claim. The signature
is computed over the hash of the claim. The claim contains the address account
addr, the web domain IDdomain, the unique certificate identifier IDcert, and the
optional expiration date dateexp. We informally characterize the claim C in (1)
and the endorsement E in (2).

C = {addr|IDdomain|IDcert|dateexp} (1)

E = {C, sign(hash(C), keypriv)} (2)

2.2 On-Chain X.509 Certificate Storage and Validation

There is no absolute truth on the validity of TLS certificates as different entities
might trust different root certificate authorities. Therefore, we need to design a
mechanism that allows TLS certificate validation solely based on user preferences
and in the context of the Ethereum blockchain. Only if this is possible, we can
later validate endorsements on-chain.

To remove any dependency on external systems, the information that is
required for certification validation needs to reside on-chain. We call this app-
roach mirroring (a part of) the TLS PKI to Ethereum. The information that is
required to validate a certificate is the whole certificate chain from server to
root certificate, the set of trust anchors as defined by the verifier, and the
validation procedures.

The validation procedure for X.509 certificates can be implemented and
offered on-chain as an Ethereum library. It is a security-critical component, needs
to be carefully implemented, and the source code needs to be openly available
to be trusted by users. As the set of trust anchors is specific to the verifier, each
contract that acts as verifier needs to declare their own set.

Due to the nature of the TLS-PKI (which we further evaluate in Sect. 3) we
store certificate chains in one central contract. Previously added certificates need
to be stored only once. Additionally, if the validity of a certificate and its chain
is asserted by the database when it is submitted and only valid certificates are
accepted, the validation of the certificate needs to be performed only once and
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can be shared by multiple server certificates. When verifiers are interested in the
validity of an endorsement, they are not required to verify the certificate chain
again.

A difficulty with the migration approach is the assertion of the revocation
status of certificates. Both common revocation mechanisms, namely Certifi-
cate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP)
responses, are documents that are valid for a certain time period and are com-
monly signed with the issuer private key and can consequently be verified on-
chain. The idea is that the database entries of certificates can be updated with
the current corresponding revocation information. This needs to be repeated
while the certificate is valid and the validity period of the revocation status
information expires. If a certificate is revoked, its status cannot be changed any-
more.

In the following, we describe the CRUD (create, read, update, delete) oper-
ations for certificates stored on the certificate database contract.

Create. Certificates are submitted to the database one-by-one. Anyone can
submit certificates. Before a certificate is stored, it is confirmed that it is valid.
This check is performed in accordance to RFC 5280 [7]. As the signature of
the certificate needs to be verified, the certificate must either be a self-signed
certificate or the certificate’s issuer’s certificate must already be stored in
the database. The validity period of the certificate must not be expired. If
the certificate validation is successful, the relevant information is retrieved
from the certificate and stored in the database. This includes a pointer to the
entry of the issuer certificate; in the case of self-signed certificates, it is the
certificate itself. The revocation status information is set to unknown. If the
certificate validation is not successful, the certificate is rejected.
Any self-signed certificate with valid format and content can be added to the
database and subsequently act as trust anchor. This enables anyone to create
and maintain their own application-specific PKI.

Read. Certificate information can be retrieved from the database with a unique
certificate identifier. The certificate chain can be retrieved thanks to the point-
ers that refer to the issuer of each certificate.

Update. The only information that can be updated is the revocation status of
certificates. For this purpose, either the CRL or the OCSP response corre-
sponding to a certificate can be submitted. The submitted information is only
used to update the revocation status information if it is valid and signed by
the certificate’s issuer. For the CRL, the certificate status is considered as not
revoked when its serial number is not contained in the CRL and considered
as revoked when it is contained. For OCSP responses, the certificate status
is updated to the status that is contained in the response. In both cases,
information about the time of the last update and the expiry date are stored.
Once a certificate is marked as revoked in the database, the state cannot be
reversed to unknown or not revoked.
Other certificate attributes cannot be updated in the database as all informa-
tion reflects the information of the submitted certificate. If altered information
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is required, a newly issued certificate must be submitted with a new unique
certificate identifier.

Delete. Once submitted, certificates cannot be deleted. This is because other
certificates and endorsements may rely on this certificate and their validity
and revocation status cannot be verified sufficiently if certificates and their
chain of trust are missing.

2.3 On-Chain Endorsement Validation

To make a decision on trust based on an account endorsement, the verifier relies
on three components: 1) The validity of the signer certificate including its
chain, the validity of the signature in the endorsement, and the verifier’s
trusted root authorities. The verifier can define its own set of trusted roots,
if they want to rely on alternative X.509 based PKIs. We also need to take into
account the context, especially the time of the verification. Both certificates and
endorsements contain information about their expiry.

The validity of the signer certificate and its chain is ensured by the on-
chain certificate storage (see Sect. 2.2) which a potential verifier relies on. As
the endorsement itself links to the respective certificate, the certificate and its
public key can be obtained cost-efficiently. The verifier only needs to verify that
the certificate is present in the database, that the root certificate is part of
the previously defined trusted roots, that the validity period has not expired,
and that the certificate has not been revoked. These operations are significantly
cheaper than performing the full validation for a certificate chain.

The validity of the endorsement follows a similar approach: Upon retrieval
of the public key of the respective certificate, the verifier is able to check if
the private key of the respective certificate actually created the signature in
the endorsement. Again, they need to validate that the validity period has not
expired and that the endorsement has not been revoked. As this signature ver-
ification is an expensive operation in blockchains, we further propose a central
database for endorsements to execute these operations only once.

Endorsement Database. In addition to the certificate database, we propose a
central database for storing endorsements. Besides the cost-reduction of verifying
endorsements, providing a central database empowers verifiers to proactively
and conveniently search for endorsements. Such a database query can have two
distinct goals: The verifier might either be interested whether and by whom a
specific Ethereum address was endorsed or whether there exist endorsements for
a specific web domain. In addition, a central data base facilitates the revocation
of endorsements. Another advantage is that the endorsement can be validated
upon submission, subsequent parties interested in the endorsement do not need
to perform the validation again.

The external-endorsement database provides the following functionality:

Create. An endorsement E, as defined in Sect. 2.1, is submitted to the database.
The validation procedure retrieves the certificate with the certificate ID
IDcert, checks that the certificate is issued for the web domain IDdomain,
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and obtains the public key keypub. If the endorsement’s signature is valid and
not expired, the endorsement it stored in the database.

Read. Endorsements can be retrieved with addr or IDdomain as key. As mul-
tiple endorsements per account or web domain may exist, the query returns
a set of endorsements. The querying party is responsible for checking the
endorsements for one that is signed by a certificate whose root certificate
they trust.

Update. Endorsements themselves are immutable information. The only asso-
ciated information that may change is the revocation status. If the original
issuer of an endorsement wants to revoke it, they sign the respective infor-
mation and store it with the endorsement.

Delete. Unexpired endorsements may not be deleted from the database. Some
applications might also accept expired endorsements, therefore, expired
endorsements should not be deleted while it is allowed to do so. However,
if an endorsement was revoked, the revocation information should persist.

Revocation of Endorsements. External endorsements can be revoked by
updating their revocation flag. For this purpose, the corresponding certificate
owner can create a “revocation signature” which has the following format:

R = sign(hash(addr|IDdomain|dateexp|0xFF ), keypriv) (3)

This revocation information is submitted to the endorsement database. The
smart contract verifies the correctness of the provided signature and, if the sig-
nature is valid, marks the endorsement as revoked. Again, a previously revoked
endorsement (similar to certificates) can never be valid again. A new endorse-
ment has to be created.

3 Evaluation and Discussion

To assess our system in the context of the TLS-PKI, we first need to understand
the structure and organization of the TLS certificate hierarchy. This PKI is a
well established system which is omnipresent in today’s world wide web. Since
2013, over 3.7 billion certificates have been logged in Certificate Transparency
[18]. As this enormous data set is not really accessible5, we use certificate data
provided by Censys [8]. Censys provides a database of certificates that can be
conveniently queried online. We define two subsets of certificates: Subset S1

contains all root, intermediary, and domain certificates that (1) belong to a
commonly trusted certificate chain6 (2) were added to Censys before the 21st

of April 2020 and (3) expire after this date. In total, 204,166,070 certificates
fulfill these requirements. Subset S2 contains the domain certificates of the top
5 Assuming conservatively 1500 bytes per certificate, this data set would amount

roughly to 5 Tebibyte.
6 We use the Mozilla NSS root store: https://www.mozilla.org/en-US/about/

governance/policies/security-group/certs/, accessed 09/05/2020.

https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
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1,000 most visited websites7. After eliminating invalid, expired and duplicate
certificates and certificates with an invalid trust path, S2 contains 869 unique
domain certificates. We use S1 for a general understanding of the TLS ecosystem
(Sect. 3.1 and use S2 to test and evaluate compatibility (Sect. 3.2) and costs of
our system (Sect. 3.3). Afterwards, we discuss security implications of our system
in Sect. 3.4.

3.1 TLS-PKI Structure

Out of the 204,166,070 certificates in S1, 3,345 are certificate authority (CA)
certificates, 204,162,724 are domain certificates, and one certificate is of version
X.509 v1 and does therefore not include this information. We define a level-x
certificate as a certificate where the shortest trusted path to the root certificate
contains x certificates. In S1, 153 certificates are level-1 certificates (meaning that
153 certificates are in the root store), 2,387 are level-2 certificates, 203,838,127
are level-3-certificates, 325,196 are level-4 certificates, and a negligible number
of 207 are level-5 certificates. This means that the most common structure for
chains of trust is “domain certificate – intermediate certificate – root certificate”.
There are no certificates that are level 6 or higher.

It can be expected that each CA certificate is responsible for issuing and
maintaining a significant amount of certificates. To find out whether there are
differences regarding the number of certificates depending on one CA certificate,
we examine S1 in a bottom-up approach: We group domain certificates by their
issuer and count the number of certificates in each group. From the cardinality of
the groups, we can derive the number of intermediate and ultimately the number
of root certificates required to cover a certain percentage of domain certificates.

At first, we take a look at intermediate certificates that issue domain cer-
tificates and order them by how many valid certificates they issued. The by far
most prevalent issuer of domain certificates is “Let’s Encrypt Authority X3”,
the currently active intermediate for Let’s Encrypt with 123,826,849 issued cer-
tificates, a share of over 60%. The top five intermediates together cover over 91%
of domain certificates, eight intermediates are required for 95% and 26 for 99%.

Of course, these numbers do not represent the total numbers of CA certifi-
cates required to cover the domain certificates as we must take root certificates
and, in case of chains containing more than three certificates, additional interme-
diate certificates in account. A first look at the data shows that root certificates
do not scale quite as well as the intermediate certificates: The top six inter-
mediate certificates are all signed by unique roots. This means that in total,
2 × 6 = 12 CA certificates are required to cover 93% of certificates. A share of
98% of certificates can be covered by 37 CA certificates, divided in 24 level-2
(intermediate) certificates and 13 level-1 (root) certificates.

The numbers show that it is possible to validate the vast majority of domain
certificates even when only a small subset of existing root and intermediate cer-
tificates are available. Centralizing the validation and storage of certificates takes

7 https://www.alexa.com/topsites, accessed 09/05/2020.

https://www.alexa.com/topsites
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advantage of this property. The addition of a new certificate only requires the
validation of the certificate itself instead of its whole chain if the respective CA
certificates already reside in the system. A decentralized approach, where certifi-
cate chains are stored and validated by independent smart contracts, cannot take
advantage of this. Asymptotically, adding a domain certificate incurs the cost
of validating one domain certificate for the centralized approach, while it incurs
the cost of validating one root, one intermediate, and one domain certificate in
the decentralized approach.

3.2 Compatibility

To test the compatibility of our prototype Solidity implementation8 of our system
and to measure its performance with real and commonly used certificates, we
rely on data set S2. Out of this set, we remove certificates whose certificate
chain contains signatures that are using algorithms not yet supported by our
implementation, such as ECDSA or SHA-384. Our final testing set is comprised
of 576 certificates that serve 660 different domains, in addition to 47 intermediate
and 21 root certificates that are required for valid trust chains. This means that
our testing set contains 644 certificates in total.

We create a fresh instance of our system and consecutively add all root,
intermediate, and domain certificates. All certificates are accepted as valid and
added to the database. This complies with the desired behavior, as we have
only included valid certificates in this test data set. Furthermore, none of the
certificates contains a critical extension that our validation routine does not
support (as we describe in Sect. 3.4). Considering the nature of our data set,
this is a good indicator that special critical extensions are uncommon for TLS
certificates and that our implementation is compatible with most certificates.

3.3 Costs and Performance

The usage cost in form of transaction fees of the Ethereum smart contract is
an important factor to the success and viability of our system and demand
cost-efficiency especially for the verifier. To gain a perspective on the cost to
be expected, we once again consider the modified data set S2 from Sect. 3.2.
Although we outline related in Sect. 4, comparative approaches for gas costs
remain complex, as the feature set of our proposed solution does not directly
compare to other currently existing systems.

Certificates. We submit all certificates in this set with one certificate per
transaction. Figure 1 displays the observed gas usage by transaction, grouped
by root, intermediate, and domain certificates. Table 1 displays the concrete

8 An implementation of our prototype is available in [10]. The implementation cur-
rently supports the cryptographic algorithms RSA, SHA-1, and SHA-256.



424 U. Gallersdörfer et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·106

Root

Intermediate

Domain

Gas used

Fig. 1. Amount of gas used for the submission of root, intermediate, and domain
certificates in the data set S2. The graph displays the minimum, median, and maximum
value and the first and third quartile of each set.

Table 1. Minimal, first quartile, median, third quartile, and maximum cost of certifi-
cate submission in gas usage, ether, and US dollar.

Root certificate Intermediate certificate Domain certificate

Gas Ether $ Gas Ether $ Gas Ether $

Min 705,035 0.0078 1.60 750,584 0.0083 1.70 544,777 0.0060 1.23

1st 770,455 0.0086 1.77 762,129 0.0085 1.75 733,073 0.0081 1.66

Med 1,105,114 0.0123 2.53 783,324 0.0087 1.79 793,954 0.0088 1.81

3rd 1,170,981 0.0130 2.67 832,031 0.0092 1.89 903,813 0.0100 2.06

Max 1,537,513 0.0171 3.52 1,233,724 0.0137 2.82 4,503,213 0.0500 10.3

numbers for gas usage, ether and USD cost by transaction9. We observe the
following results: The median value of the root certificates is the highest. We
conclude that this is the case because the majority of root certificate is self-signed
using SHA-1, whose computation on Ethereum costs significantly more than
SHA-256. The cost for intermediate certificates is quite homogeneous, with some
outliers that are signed using SHA-1. For domain certificates the submission cost
differs significantly. As domain certificates are commonly issued using the up-
to-date SHA-256, the choice of algorithm is not the source of this circumstance.
Instead, the reason of this occurrence is the size of domain certificates, especially
the number of subject alternative names it specifies. The larger a certificate, the
more it costs to parse and validate it, and the larger the SAN field, the more
gas is payed for writing it to storage. The most costly certificate specifies 225
subject alternative names.

In Sect. 3.1, we showed that by adding 13 root and 24 intermediate certifi-
cates, we can cover 98% of all certificates. Calculating with an average gas usage

9 We assume a gas fee of 11.1 Gwei and a conversion rate of 206 US dollar per ether,
as observed on the 30th of April 2020 on https://coinmarketcap.com.

https://coinmarketcap.com
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of 1,041,580 for submitting a root certificate and 825,926 for submitting an inter-
mediate certificate, an initial investment of (1,041,580 · 13) + (825,926 · 24) =
33,362,764 gas (equivalent to $75.60) would mean that afterwards 98% of all cur-
rent certificates can be added and only incur the cost for the domain certificate
submission.

Endorsements. The cost of adding an endorsement does not fluctuate as much
as for certificates as the only one signature algorithm is used (RSA-SHA256) and
endorsements are constant in size except for the length of the domain name. For
submitting an endorsement to the external database, we measure a cost of around
577,219 gas ($1.32).

3.4 Security Considerations

The security of our system relies on three pillars: (i) the implementation of
the certificate validation routine and the databases, (ii) the integrity of the
TLS system and its certificate authorities, and (iii) the ability of users to map
domain names to real-world identities. We briefly discuss these three aspects in
this section.

Security of the Certificate and Endorsement Frameworks. We utilized
a smart contract engineering process [28] and purposefully designed and imple-
mented our system in a way that does not give one or a number of entities
privileges for the system. Once the system is deployed, it is an immutable piece
of code. On the one side, this means that our system cannot be subject to any
kind of censorship and cannot be influenced by an authorized party. On the other
side, this means that errors and vulnerabilities cannot be patched. Therefore,
the system must be crafted cautiously.

In the past, the validation of TLS certificates has been a troublesome topic:
Many TLS certificate verifier applications have been shown to have critical flaws
that lead to invalid certificates being accepted. We aim to minimize the possi-
bility of such critical flaws with two methods. Firstly, we keep the capability of
our validation routine purposefully small and support only the most important
extension types. Less functionality means less surface for errors and attack vec-
tors. Secondly, we make sure that our implementation does not repeat mistakes
that were made in the past [1,6,21]. However, this is no guarantee for correctness
and in the future, code audits, further testing, and possibly formal verification
should be performed before the system is deployed.

Security of the TLS Ecosystem. In the past, the TLS PKI has been under
criticism as all trust is transferred to CAs, which makes them a single point of
failure, and CA misbehavior has not been unobserved in the past. However, as
the TLS system is widely adopted and “too big to fail”, in the past a lot of
considerations have been made to improve its security. For example, with the
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introduction of CT [18], a large step has been made towards the transparency
of the TLS PKI and the issuance processes of CAs. It is no longer possible for
a CA to issue a fraudulent certificate undetected. Furthermore, due to its wide
deployment, the TLS ecosystem has been thoroughly investigated by security
researchers in the past and in the present. A system that is set-up newly does
not profit from these efforts but still requires trust anchors for bootstrapping
and endorsing identity information.

Mapping Domain Names to Real-World Identities. The foundational
assumption of using TLS certificates for an authentication framework is that
domain names can be linked reliably to real-world identities. This assumes that
users have the ability and knowledge to connect a domain name to an organiza-
tion or person and vice versa. Usually, this is the case as users have experience
with using domain names on the internet and as domain names are constructed
to be human-friendly, for example by consisting of the company name.

One threat to this approach is typosquatting, the intentional registration of
slight misspelling of well-known domain names [30]. While these domains are
often used to display advertisements on the web [23], they pose a risk to our
system. An attacker might use a typosquatting domain and trick users into
using their similar domain or count on users accidentally misspelling a domain.
However, we deem the chance of mistyping or misreading an Ethereum address
higher and the use of domain names as identifying information more reliable.

4 Related Work

In this section we introduce previous work and ongoing efforts with goals or
approaches similar to ours. In Subsect. 4.1 we briefly describe several proposals
that aim to improve certain properties of PKIs by relying on blockchain tech-
nology. We discuss the Ethereum Name Service in Subsect. 4.2.

4.1 Blockchain-Based PKI Solutions

There exist numerous proposals to integrate blockchains and existing PKI infras-
tructure. However, the focus of these approaches is not to provide identity solu-
tions for blockchain applications, but to leverage the blockchain for improving
the properties of (the TLS) PKI. These works are nevertheless relevant as migrat-
ing part of the PKI on-chain for Internet purposes has the side effect using the
information for on-chain authentication as information is readily available. Giv-
ing an overview of all research that has been done in this field is out of the scope
of this paper, so we focus on approaches that target Ethereum or Ethereum-like
blockchains and include CAs for issuing certificates. Various other approaches
[2,3,9,12,26,29,31] do not include CAs in their design and introduce web-of-
trust like solutions instead, which means the incompatibility with existing pro-
tocols does not solve the inherent bootstrapping problem, or they rely on newly
designed blockchains.
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CBPKI [16] is a proposal for a cloud blockchain-based public key infrastruc-
ture where stateless CAs residing in the cloud are combined with certificate
information stored on a blockchain. The approach does not fit our requirements
as only the certificate hash is stored on-chain, but not relevant information such
as the subject name or the public key, and as it relies on CAs adapting to it and
issuing a new type of certificate. CertChain [5], a decentralized and tamper-proof
tool for auditing certificates, does not meet our requirements as it is built on a
new certificate format, an adapted implementation of Ethereum, and a new type
of CAs that also act as miners in the blockchain network. Instant Karma PKI
(IKP) [19] is a smart contract-based incentivization platform aiming to prevent
fraudulent issuing of TLS certificates: Clients can define policies concerning cer-
tificates issued for their domain and CAs can sell insurance against misbehavior.
IKP focuses strongly on improving the security of the TLS ecosystem, but does
not align with our goals as certificates are not presented to the blockchain unless
they are fraudulent and CAs have to take significant action to make the system
work. A blockchain-based PKI management framework is presented in [33]. CAs
create smart contracts corresponding to store information about the issuance
and revocation of certificates. When a verifier receives a certificate, they refer to
the smart contract and verify that the hash is contained, that the certificate is
not revoked, and that the chain of trust is valid. Just as the approaches before,
this proposal relies on proactive CAs. Additionally, a new certificate format is
required and only the certificate hash is stored on-chain, which is not sufficient
for an on-chain authentication framework. Kubilay et al. introduce CertLedger,
a PKI system with the intention of shifting trust from CAs to the blockchain
and providing certificate and revocation transparency [17]. CertLedger manages
the validation, storing and revocation of certificates. Clients do not validate
certificates or maintain their own root store any longer, they simply refer to
CertLedger for certificate-related information. In addition, CertLedger provides
a transparent revocation system and allows owners of certificates – not just the
issuers – to revoke them. While this proposal fulfills many of our goals, it does
not allow open participation: The set of trusted CAs is defined by CertLedger
board and all validation decisions are made depending on it. This means that
(i) the CertLedger board needs to be fully trusted by clients, (ii) clients cannot
distrust individual CAs, and (iii) clients cannot add root certificates for specific
applications.

4.2 Ethereum Name Service

Ethereum Name Service (ENS) was launched in 2017 and aims to provide a
decentralized way to address blockchain resources in a human-friendly way [15]
by resolving human-readable names to Ethereum addresses. ENS is curated
by the Ethereum Foundation and is described in three Ethereum Improve-
ment Proposals: EIP-137, EIP-162, and EIP-181 [13,14,20]. ENS names are
dot-separated hierarchical names called domains; currently, the only supported
top-level domain (TLD) is “.eth”. TLDs are owned by smart contracts called
registrars. The owner of a domain can create subdomains and transfer the own-
ership of the subdomains to other parties.
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The ENS architecture consists of two central components: Registries and
resolvers. As “.eth” is currently the only supported TLD, there exists one reg-
istry. The “.eth”.registry is currently controlled by a 4-of-7 multisig. It is planned
to transfer control to a decentralized account in the future [4]. A registry con-
tains a list of all its subdomains and its respective owners, resolvers, and cache
expiration. All Ethereum accounts that support the relevant standards can be
the owner of a domain. Resolvers are responsible for translating the domain to
an actual Ethereum address.

Once ENS is established, it is a cost-efficient and decentralized system pro-
viding human-readable identities to Ethereum addresses. One problem, however,
remains: Domain ownership can be acquired through auctions and the highest
bidder wins. This means that ENS domain names cannot be intuitively mapped
to real-world identities. Furthermore, there is no judicial system in place which
would allow to redistribute individual domains, for example in the case of imper-
sonation. The decentralization of ENS and the inability to e.g., recover lost
domains can be considered as a second nature to blockchain-based applications,
however make real-world adoption difficult.

5 Conclusion and Future Work

In this work, we present the conceptual idea, design, and evaluation of a TLS-
certificate-based authentication framework for Ethereum. In our framework,
identities can be asserted and verified based on TLS certificates that are sub-
mitted to and validated by a central database. Identity owners that want to link
their identity to an Ethereum account can create endorsements. An endorse-
ment links information about the account address and the domain name, and
contains a signature that was created with the certificate’s private key and con-
firms the identity binding. Subsequently, users can obtain this endorsement to
authenticate Ethereum accounts they aim to interact with.

The great strength of our system is that it overcomes the bootstrapping prob-
lem: Any identity owner can submit their certificate and endorsement without
depending on other stakeholders. Under the assumption that certificate authori-
ties are trusted, we can leverage a massive amount of verifiable/verified identity
information that is readily available. However, we also acknowledge that our
system comes with drawbacks: The TLS system is considered fragmented and
not secure enough by some researchers, our system enables authentication only
for certificate owners, the on-chain validation of TLS certificates is costly, and
storing certificate information increases the size of the Ethereum blockchain.
However, we believe that solutions or mitigations can be found to lower the
negative impact of these drawbacks. Overall, our framework serves as a prag-
matic and feasible approach to establish a system for the identity assertion and
verification on Ethereum in a timely manner.

One main goal of future work should be to investigate whether a TLS-
certificate-based authentication framework can be used in combination with
an identity management system or naming service developed specifically for
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Ethereum. A combination of the approaches could utilize the strengths of both:
The certificate-based approach can boost the bootstrapping phase of the sys-
tem. The information acquired in the bootstrapping phase can then be used to
populate the system with further, certificate-independent information. The aim
is to make the system gradually independent from the TLS ecosystem, thereby
improving the security of the framework.
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