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Abstract. This study applies the Caginalp and Balenovic (1999) model
for asset flow dynamics to fully collateralized stablecoins. The analysis
provides novel insights on how trend-reversion and reactions to peg devi-
ations work together to keep stablecoin prices close to the price they
are targeting. A fixed-effects panel regression indicates that the model’s
abstraction of trading motivations indeed fits stablecoin price processes
well. The results convey first indication that theoretic stablecoin mod-
els might benefit from modeling price dynamics to switch between two
market regimes: one for day-to-day price formation and limited arbitrage
activity; and one for extraordinary market situations.

Keywords: Stablecoins · Arbitrage · Price formation

1 Introduction

Stablecoins are being increasingly adopted as bridge to trade traditional cryp-
tocurrencies [3,8,38,45], marketed as medium-of-exchange for decentralized
finance and smart contracts [39,40] and have recently been approved by US
regulators as payment method for federally chartered banks [1]. Increasing prac-
tical relevance fosters the demand for understanding economic properties of such
instruments. The majority of projects simply tokenize the asset their tokens are
stabilized against (e.g. the USD, EUR or gold) or store a third asset in the
respective amount [43]. Assuming that traders trust governance, collateral and
technology, and their trust is justified, there is little room for disagreement on
the token’s fundamental values. If there were any structured deviation, efficient-
market theorists might argue that market participants would seize the resulting
opportunity of arbitrage, closing the gap [26].1 Stablecoin prices would then

1 In a strict sense, arbitrage opportunities can be defined as “investment strategy that
guarantees a positive payoff in some contingency with no possibility of a negative
payoff and with no net investment” [25, p.57]. In this paper the term is used in a
wider sense, describing the trader’s perceptions.
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merely reflect the value of the collateral and random noise. If, however, price
adjustments are restricted by incomplete arbitrage, interesting patterns might
emerge that reflect the trader’s decisions [10,22]. This paper explores and quan-
tifies such dynamics.

My empiric approach is based on a recent theoretical approach from asset
pricing literature proposed first in [18] and refined by [14] which opens up asset
pricing to dynamic systems modeling known from thermodynamic physics. In
the following, the latter will be called the “Caginalp and Balenovic (1999) asset
flow” (CBAF ) approach. In a nutshell, the authors model price determination by
abstracting trading decisions as flows from asset-to-cash and vice versa. As such,
traders are abstracted as being driven by price trends and the deviation of the
asset’s market price from its fundamental value. Exploring theoretic approaches
to the instability of price processes, a first application to the field of cryptocur-
rencies has been attempted by [12]. Applying the CBAF model to stablecoin
arbitrage promises to offer a convincing model for the interplay of trend follow-
ing and peg deviations. In contrast to most models for cryptocurrency pricing,
the above model requires few assumptions.2 Exploring early trading data for 11
fully collateralized stablecoins, this study evaluates the appropriateness of the
intuitive trader abstraction adopted by the CBAF approach and offers insights
into stablecoin price dynamics in general. My empirical setup couples variables
approximating trend-following with a measure for peg deviations in a dynamic
coin-fixed-effects (coin-FE) panel data regression. The study engages in rigorous
robustness checking by testing the models for the influence of seasonal dum-
mies, interaction terms for the direction of trends, sign of peg deviations and
different parameters in data preprocessing. I find a striking difference between
results being based on data with—and without outlier treatment even for merely
truncating price changes exceeding 5 standard deviations. For data including
extreme price changes, the CBAF model approximates price formation well.
Deviations from the peg and trend following are strong determinants of com-
ing price changes. For outlier-free data, however, the effects seem to blend in
with other price-determinants (the stablecoin’s token supply and Bitcoin’s price
volatility). This result indicates that apart from very few occasions arbitrage
activity is weak. This poses the questions, whether costs of arbitrage might be
prohibitive high except for extreme but rare market situations. It might be con-
sidered to model price formation by switching between two regimes: a first one
offering profits for large trades towards the peg, and a second one being charac-
terized by limited levels of arbitrage activity.

The paper is organized as follows: Sect. 2 outlines related work, Sect. 3 intro-
duces the theoretic backgrounds of arbitrage and the CBAF model, Sect. 4 dis-
cusses data and econometric approach. Sect. 5 describes the results and Sect. 6
concludes the study.

2 Compared with, for example, game-theoretic approaches [13] and consumer demand
models [2,4,7].
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2 Related Work

Studies investigating the asset class and its manifestations include [19,23,41,43]
and [11]. The user perception in the adoption of stablecoins has been studied
in [32], while [5] analyzed the suitability of stablecoins as save-haven invest-
ment. The relation between cryptocurrency prices and stablecoin trading has
been focused on by [3,8,45] and [27]. Adopting a risk-oriented approach, [33,34]
and [35] suggest theoretic models to study stability and resilience of stable-
coins. While the latter focuses on extreme events, [38] not only offers a theoretic
model for day-to-day arbitrage but also provides, to my knowledge, the first
extensive empirical analysis of the drivers of stablecoin prices. This paper differs
in perspective and econometric approach: Instead of peg deviations, this paper
analyzes price processes and tests the CBAF model for applicability. While [38]
relies on an auto-regressive distributed lag model with a rich database, however,
just for Tether, this paper adopts a dynamic coin-FE panel data regression on
market data for 11 stablecoins.

3 Stablecoin Arbitrage and the CBAF Model

Stablecoin arbitrage uses primary and secondary markets [38]. On the primary
market, coins are created and redeemed against collateral with the issuer. On
the secondary market, stablecoins are traded against fiat and cryptocurrencies.
If market prices deviate from the peg, arbitrage traders might decide to either
trade against peg deviations directly on the secondary market or involve the
stablecoin issuer. In the first case, arbitrage traders simply trade towards the
peg. They would buy when prices are below—and sell when prices are above the
peg. In the second case, abstracting from technical details,3 arbitrage traders
would purchase coins from the markets and redeem them with the issuer when
prices are below the peg. When prices are above the peg, traders would first
create coins with the issuer and subsequently sell them on secondary markets.

TheCBAF approach as presented in [14] models traders as switching from cash
to asset or vice versa with a certain probability k. Variable k is modeled to include
motivations based on past price changes ζ1 and the market discount relative to the
asset’s fundamental value ζ2. These components are modeled using the trader’s
memory with respect to price trends and deviations from fundamental values (c1
and c2) and their focus on these two respective components (q1 and q2). Core com-
ponent of ζ1 is the relative price trend f(τ) = 1

P (τ)
dP (τ)

dτ over period τ on time

scale τ0. ζ2 is constructed around deviations g(τ) = Pa(τ)−P (τ)
P (τ) of market price

P (τ) from fundamental value Pa. Thus, the two components can be expressed as

ζ1(t) = q1c1

∫ t

−∞
e

−(t−τ)
c1 ·f(τ) dτ (1)

ζ2(t) = q2c2

∫ t

−∞
e

−(t−τ)
c2 · g(τ) dτ. (2)

3 Models for more complex stablecoins can be found e.g. in [33] and [34].
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Limiting k to values between 0 and 1, k is constructed as k = 1
2 + tanh(ζ1+ζ2)

2 .
For ζ1 and ζ2 equal to zero, the probability of flows from cash to asset and vice
versa are thus equally likely. Demand D and supply S of the asset are modeled
using k and the fraction already invested into the asset B. Their relation can be
expressed as D = k(1 − B) and S = (1 − k)B and thus D

S = k
1−k

1−B
B . Prices P

are assumed to change logarithmic with excess demand, leading to

1
P

dP

dt
= δ · log

(D

S
− 1

)
= δ · log

( k

1 − k

1 − B

B

)
(3)

with δ representing an amplitude that scales with time. For a deeper discussion
of the model and its applications see [14,16,17,44] and [12]. While this paper
will not be offering estimates for the individual parameters, the study gathers
evidence supporting the basic intuition of the model: Under the efficient market
hypothesis, fluctuations of P (t) around the peg, assumed to equal Pa, would
merely be random.4 Obviously, in this case, neither of the two components ought
to be reflected in market data of stablecoins. If, however, evidence of ζ1 or ζ2 is
present, it is of considerable interest to understand how the two components are
jointly driving stablecoin prices.

4 Data and Econometric Approach

The following paragraphs will discuss data preprocessing and the economic app-
roach for testing the applicability of the CBAF model.

Data was gathered from www.coingecko.com. Similar to www.coinmarketcap.
de the data provider currently crawls 382 cryptocurrency exchanges but offers
hourly data over a well-documented API for free.5 The full dataset comprises 19
cryptocurrencies. The sample includes projects that are listed at www.coingecko.
com, promise stability of their exchange rates in their whitepapers and collat-
eralize their tokens to at least 100%. The study considers designs that use the
asset-pegged-to as collateral but also includes tokens that use a third asset, often
a crypto-asset, in a quantity reflecting at least full collateralization. Some of the
19 cryptocurrencies are quite young and immature. Shallow markets with low
volumes and few trades per measurement period might in part be driven by
market microstructure effects which could lead to biased regressions. To reduce
noise, this study thus excludes months for that the stablecoin shows a market
capitalization of under USD 10 m or daily trading volumes of under USD 1 m.
Coins have been dropped completely if the remaining dataset included less then
24 · 31 hourly observations. This restricted the dataset to 11 stablecoins with
767 to 16970 trading hours leading to 101,243 observations in total. Table 6
of Appendix 7.3 in the full paper shows that the results hold as well if mar-
ket capitalization thresholds of USD 100 m and USD 5 m—and thresholds for
4 This study assumes that traders rightfully trust in the peg as a correct estimate of

the tokens fundamental value. This fails when doubts about the stablecoins collateral
or security arise.

5 As of 2020-08-17.

www.coingecko.com
www.coinmarketcap.de
www.coinmarketcap.de
www.coingecko.com
www.coingecko.com
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daily trading volumes of USD 50 m and USD 50k are chosen. To understand
the effect of extreme values on the estimated models, price changes diverging
over 5 standard deviations (SD) from the mean have been truncated. Table 1 in
Appendix B gives an overview over cutoff points and the relative and absolute
number of classified outliers. The threshold was chosen deliberately high to cor-
rect only the most extreme values. Such might have a disproportionate effect on
ordinary-least-squares (OLS) regression results [6]. To make the estimated coeffi-
cients comparable, all variables apart from the dummies have been standardized
based on Z-scores Xstand = X−μ(X)

σ(X) , with mean μ(·) and standard deviation
σ(·). To verify the applicability of the CBAF model, a linear panel regression
in conjunction with squared and cubed trend variables to model nonlinear rela-
tionships has been applied to exchange-traded funds [17] and stocks [15]. Now
this framework is applied to stablecoins by adjusting it slightly to the character-
istics of the dataset and adding a variety of robustness checks. Traditional linear
modeling might fail to pick up the complex relations in price formation. In con-
trast to linear models, polynomials allow for very strong negative (positive) past
returns to induce positive (negative) bounce-back effects. Mixing up relations
between strong and weak price changes, simple auto-regressive price regressions
abstaining from the above step might miss potential information on prices. As
a remedy, following [15] and [17], this study includes variables to the power into
a fixed-effects panel data approach.6 To capture price trends, in accordance to
[15], this paper uses a simple weighted aggregation of past price changes. The
prior might be expressed using prices P and smoothing factor s over a look-back
window d as

Tt =
1∑d

k=1 esk

d∑
k=1

(Pt−k+1 − Pt−k

Pt−k
· esk

)
. (4)

The smoothing term ensures that older observations of variable changes are
entering the sum with lower weights (s = −0.25 and d = 10). Trends in prices
have been shown to explain variation in future returns for cryptocurrencies in
[20,30] and [28]. To calculate the distance D of market price P from the peg Pa,
simply Dt = Pt − Pa,t is formed. As control variables the token supply and Bit-
coin’s price-volatility are used. Controlling for the volatility of the second and
third largest traditional cryptocurrencies by trading volume (Ether and Rip-
ple) or for the Ethereum Gas price turned out to yield insignificant coefficients.
Regressions are formed denominating cryptocurrency price changes as ΔP , the
trend as T and peg deviations as D. Moreover ΔS and ΔV BTC are the first
differences of token supply and Bitcoin’s price-volatility respectively. Dummy
variables include seasonal ones (Zhour

t , Z
day
t , Zmonth

t ) and others that account for
the sign of the peg deviation (ZD>0

t ) and the direction of the trend (ZT>0
t ).

The unobserved coin effect is denominated as ai while bt gives the unobserved

6 Robustness against multicollinearity among the regressors is ensured by checking
the respective Variance Inflation Factors (VIF) (compare Appendix 7.2 Table 3 of
the full paper).
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time effect and the remaining residual errors are given as uit. A parsimonious
base-line regression can thus be based on unobserved-effects equation

ΔPi,t+1 =β2Ti,t + β3T
2
i,t + β4T

3
i,t + β5Di,t + β3D

2
i,t + β4D

3
i,t

+ β5ΔSi,t + β6ΔV BTC + ai + bt + uit, (5)

while the full general regression is based on

ΔPi,t+1 =β2Ti,t + β3T
2
i,t + β4T

3
i,t + β5Di,t + β6D

2
i,t + β7D

3
i,t

+ β8ΔSi,t + β9ΔV BTC
i,t + Zhour

t + Z
day
t + Zmonth

t + β10Ti,t · ZT>0
t (6)

+β11Ti,t · ZD>0
t + β12Di,t · ZD>0

t + β13Di,t · ZT>0
t + ai + bt + uit,

where t is the time- and i the coin index.
While two-way fixed-effects regression are applied to eliminate time and

entity effects in the original framework [15,17], recent research indicates that
this approach might lead to mostly uninterpretable coefficients [29,36] and biased
inferences in most general applications [31]. This study thus settles on eliminat-
ing ai by coin-fixed-effects but models common time effects by including seasonal
dummies and control variables. Treatment of the Nickel bias and other issues
related to panel data regressions with long time series dimensions (e.g. het-
eroskedasticity, non-stationarity and serial correlation) are treated in line with
state-of-the-art approaches. For more information refer to Appendix A.

5 Results

Table 1 supplies estimates of the coefficients given in Eq. 4. As suggested by
the applied asset pricing theory, not only current deviations from the peg but
also price trends show significant relations with the coming hour’s price change.
Also, the adopted nonlinear regression framework has proven useful. Most of the
variables that are raised to the second and third power show high significance
and our models explain roughly 20% of the variance in the one-hour-ahead price
changes.
7 However, coefficient estimates vary with the way outliers are treated. For the
model based on data for which no outlier treatment has been implemented (com-
pare Column 1 Table 1), the polynomial of significant coefficients for the esti-
mated price change is Δ̂P t+1 = −0.160Dt+0.085D2

t −0.417D3
t . This polynomial

is displayed in Fig. 1, which relates peg deviations and trends to the coming hours
price change. Even relative small peg deviations are associated with moderate
price changes. Large peg deviations, however, precede extreme price changes
forcefully driving prices back to the peg. The coefficients related to price trends
display nonlinearity as well and form Δ̂P t+1 = −0.266Dt +0.178D3

t . Weak price
trends seem to be reverted, while stronger ones lead to trend following. In other

7 Price changes are infamously noisy [9]. Regressing daily order flows on price changes
for Tether [38] arrive at R-squares up to 13%.
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Table 1. Coin-FE regression based on Eq. 4.

Dependent variable:

ΔPt+1

(1) (2)

Dt −0.160∗∗∗(0.008) −0.259∗∗∗(0.008)

D2
t 0.085∗∗∗(0.027) 0.046∗∗∗(0.006)

D3
t −0.417∗∗∗(0.046) 0.056∗∗(0.023)

Tt −0.266∗∗∗(0.009) −0.184∗∗∗(0.005)

T 2
t −0.009(0.023) −0.005(0.008)

T 3
t 0.178∗∗∗(0.053) −0.011(0.037)

ΔSt 0.208∗∗∗(0.077) 0.394∗∗∗(0.144)

ΔV BTC
t −0.070(0.050) −0.308∗∗∗(0.089)

Observations 101,243 101,243

R2 0.200 0.198

Adjusted R2 0.200 0.198

F Statistic 3,162.209∗∗∗ 3,123.468∗∗∗

(df = 8; 101224)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Variable denominations are given in Sect. 4 under Eq. 4.
Column (1) for untreated- and column (2) for outlier free
data. Standard errors given in brackets.

Fig. 1. Coefficient interplay for untreated
data

Fig. 2. Coefficient interplay for outlier-
free data

words, series of consecutive strong price changes of the same direction are pro-
longed. This might be a result of consecutive hours of price jumps after large devi-
ations. In comparison to price trends, but also all other tested variables, the joint
influence of the coefficients for peg deviations seems be the largest by far. Their
influence is roughly symmetric for positive and negative price deviations. For the
model based on data for which price changes in excess of 5 SD have been trun-
cated (Column 2 of Table 1), the joint estimated effect of price trends and peg



On Stablecoin Price Processes and Arbitrage 131

deviations on coming price changes is displayed in Fig. 2. For peg deviations, the
polynomial of significant coefficients is Δ̂P t+1 = −0.259Dt +0.046D2

t +0.056D3
t

with roots roughly at −2.6, 0 and 1.8. The effect of smaller peg deviations is
in line with expectations: The relation of peg deviations and the coming price
change is positive for −2.6 ≤ D ≤ 0 and negative for 0 ≤ D ≤ 1.8 and would
thus lead to mean-reverting prices. For positive deviations D > 1.8 and nega-
tive deviations D < −2.6, however, signs turn and peg deviations are associated
with price changes leading away from the peg. The reason for this seemingly
counter-intuitive result might be that the majority (95.37%) of observed price
changes lie within the 2 SD displayed in Figs. 1 and 2. Rather than avoiding
rare but large errors from outliers, the coefficients seem to be optimized to fit
smaller fluctuations around the peg. Not only the results for peg deviations—but
also price trends differ. The latter, estimated based on outlier free data, show a
linear, negative relation to coming price changes. In other words, series of price
changes of equal sign revert soon. The size of the coefficients for trend and peg
deviations are relatively low, though. For instance, a peg deviation of 2 SD in
negative direction is associated merely with an increase in prices of 0.1 SD. A
negative price trend of 1 SD is associated with an increase of prices of around
0.2 SD. Arbitrage is estimated to have a very limited effect in the outlier-free
dataset. With coefficients of 0.394 and −0.308 respectively, the change in token
supply and the change in the Bitcoin’s price volatility seem to be equally impor-
tant price determinants, at least. This contrast is surprising, given that they
are caused by the truncation of merely 363 of 101243 observations. Table 2 of
Appendix B gives coefficients for the same model but complemented by dummy
representations accounting for hours, weekdays, months as well as interaction
terms for the sign of the peg deviation and the direction of the price trend. The
results differ only negligibly.

6 Conclusion

The stark contrast of the importance of peg deviations in the fitted models
with—and without outlier treatment is striking. For data including extreme
price changes, peg deviations and trend dynamics seem to approximate price
formation well. For stablecoins, the intuitive CBAF approach to model trader
behavior might thus be seen as a good approximation for the determinants of
price changes. For outlier-free data, however, the effects seem to blend in with
other price-determinants. The above results pose the question of whether sta-
blecoin markets might not best be modeled as switching between a first regime
characterized by limited arbitrage, and a second one setting in when markets
promise sufficient profits for large trades towards the peg. While the most obvi-
ous candidate for explaining such results might be costs of arbitrage, at least
short-term variation of the Ethereum Gas price turned out to yield insignificant
coefficients when adopted as control variable. Future research might employ coin-
tegration analysis capable of unvailing also longterm relationships.
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A Robustness

The dataset applied in this study combines 11 timeseries of differing lengths
and might thus be described as an unbalanced timeseries panel. While a large
T dimension is generally beneficial, simple panel data approaches might be mis-
specified. A first issue is serial correlation. In most financial time series prior
realizations affect coming ones. Including lagged data might thus be useful to
capture serial correlation in the data - this is usually referred to as dynamic
panel modeling. Instead of including lagged data explicitly, in this study, the
trend variable is carrying auto-regressive information.Using simple fixed-effects
models jointly with lagged variables, however, induces the so-called Nickell bias
as the lagged variable causes endogeneity in the regressors [42]. As argued by [21,
p.163], including fixed-effects into dynamic specifications of panel data regres-
sions, even for simple OLS estimates, can mitigate the issue to some degree.
Their coefficients, however, are still seriously biased for small T . In our case,
including coin-fixed-effects and considering that T is very large, Nickell’s bias
should be negligible.8 There are other issues known from time-series analysis,
though. [46] warned about relying on the above for inference for non-stationary
data (which might lead to spurious regression results) and suggested to check the
error term for heteroskedasticity, serial correlation and nonnormality. To counter
this problem, this study ensures stationarity using the Levin-Lin-Chu unit root
test [37]. As the test does not reject the presence of a unit root for token supply
and volatility, we take first differences of these variables.

As discussed earlier, we apply coin-FE panel regressions based on simple
OLS-estimation. As a consequence, several assumptions are to be ensured. Resid-
uals ought to display a mean of zero and be free of heteroscedasticity, cross-
sectional, and serial correlation. Breusch-Pagan Lagrange Multiplier tests and
Pesaran cross-sectional dependence tests are used to test for cross-sectional
dependence in the residuals. Additionally, Student’s t-tests have been applied
to check the residuals for a mean of zero. Breusch-Godfrey/Wooldridge tests
have been applied to test for serial correlation. Breusch-Pagan tests are used
for detecting heteroskedasticity. While a deviation from zero for the residuals
is strongly rejected, unfortunately, the remaining tests reveal heteroscedasticity,
serial, and also cross-sectional correlation. In other words, residuals are showing
variance clusters and are depending on their own- and even lags across coins. As
a consequence, the simple OLS estimator is biased. To still draw robust infer-
ences from the estimated model, spacial correlation consistent (SCC) estimators
introduced in [24] are used. The approach adapts Newey-West estimators to
the panel setting and leads to robust standard errors even in the presence of
heteroscedasticity and cross-sectional and serial correlation.

For tables and further details on the above robustness checks, please refer to
the full paper.

8 In fact, following [46], the bias for the fixed-effects estimator approaches zero with
rate 1/T.



On Stablecoin Price Processes and Arbitrage 133

B Tables

Table 1. Outliers.

Cutoff Outliers as defined by cutoff in percent
(in Std. Dev.) N %

1 18839 18.6
2 4686 4.63
3 1563 1.54
4 683 0.67
5 363 0.36
Fraction of data classified as outliers.

Table 2. Coin-FE regression.

Dependent variable: ΔPt+1

(1) (2)

Dt −0.111∗∗∗(0.010) −0.230∗∗∗(0.014)

D2
t 0.089∗∗∗(0.027) 0.047∗∗∗(0.007)

D3
t −0.472∗∗∗(0.047) 0.032(0.025)

Tt −0.248∗∗∗(0.012) −0.180∗∗∗(0.009)

T 2
t −0.010(0.023) −0.006(0.009)

T 3
t 0.162∗∗∗(0.054) −0.015(0.038)

ΔSt 0.202∗∗∗(0.074) 0.392∗∗∗(0.142)

ΔV BTC
t −0.063(0.051) −0.304∗∗∗(0.089)

Zhour
t −0.0003(0.0003) −0.0003(0.001)

Z
day
t −0.0002(0.0003) −0.001(0.001)

Zmonth
t −0.003∗∗∗(0.0003) −0.006∗∗∗(0.001)

D · ZD>0
t −0.018∗∗∗(0.002) −0.006(0.009)

D · ZT>0
t −0.003∗∗(0.001) −0.011(0.007)

T · ZD>0
t 0.003∗∗∗(0.001) −0.005(0.008)

T · ZT>0
t 0.0001(0.001) 0.009(0.007)

Adjusted R2 0.208 0.199

F Statistic 1,769.824∗∗∗ 1,681.830∗∗∗

(df = 15; 101217)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
This table gives the results of a coin-FE regression for the
full model specified in Eq. 4. Column (1) for untreated-
and column (2) for outlier free data. Coefficient’s standard
errors given in brackets.
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