
Demystifying Pythia: A Survey
of ChainLink Oracles Usage on Ethereum

Mudabbir Kaleem(B) and Weidong Shi

University of Houston, Houston, TX, USA
{mkaleem,wshi3}@uh.edu

Abstract. Smart contracts are dependent on oracle systems for their
adoption and usability. We perform an empirical study of oracle systems’
usage trends and adoption metrics to provide better insight into the
health of the smart contract ecosystem. We collect ChainLink usage data
on the Ethereum network using a modified Ethereum client and running
a full node. We analyze the collected data and present our findings and
insights surrounding the usage trends, adoption metrics, oracle pricing
and service quality associated with ChainLink on the Ethereum network.
We infer that ChainLink’s usage and growth are dominated by the DeFi
ecosystem and for its demand for decentralized price feeds.

Keywords: Oracles · DeFi · Smart contracts · Blockchain ·
Ethereum · ChainLink

1 Introduction

Since the launch of the Ethereum [3] network in 2015, smart contracts [16] have
become one of the central features of blockchain-based systems. Although ini-
tially limited in usage to token control and on-chain data access, smart con-
tracts today are rapidly expanding their domain of applications [12] due to the
availability of oracles [2]. Oracles provide the interface between the blockchain’s
isolated execution environment and external off-chain data sources, enabling
smart contracts to retrieve and post real-world data and events. Consequently,
the potential utility and future mass adoption of smart contract platforms is
inextricably tied to the oracle service providers within the ecosystem.

Bearing that in mind, the motivation of this study was to survey oracle usage
in the smart contract ecosystem. Currently, different projects like ChainLink [10],
Provable [15] and Augur [14] are offering third party oracle services to smart con-
tracts. These projects have adapted a decentralized approach for collecting and
aggregating oracle data, thereby addressing “the oracle problem” [9] of hav-
ing centralized points of failures in blockchain environments. For our survey,
we target ChainLink, which evidently captures the majority share of the oracle
middleware market at the time of writing. To establish this, we surveyed the top
forty DeFi projects by market capitalization [8] and found all among them which
had a use case for external oracles to be using ChainLink except two projects.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 115–123, 2021.
https://doi.org/10.1007/978-3-662-63958-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_10&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_10


116 M. Kaleem and W. Shi

ChainLink provides a comprehensive list of their project integrations on their
website [7] and it includes major DeFi projects such as Aave, Ampleforth, Chiliz,
Polygon, Kyber Network and 0x among others. Although ChainLink provides its
oracle services over multiple chains, we concern our study with ChainLink oracle
usage on Ethereum since it is the most widely adopted smart contract platform
at this time. We believe that ChainLink oracle usage on Ethereum represents
the significant bulk of oracle traffic on smart contract platforms. Our study finds
that Chainlink’s growth and usage is strongly centered around the DeFi ecosys-
tem where a few projects have been responsible for most of the oracle service
traffic for price feeds. We also show that Chainlink’s price feeds feature has seen
a steady growth since its inception whereas the external API feature has seen
negligible traffic. The oracle traffic statistics and trends provided by this survey
can be used to gauge the adoption and health of the smart contract ecosystem
in general. At the time of writing, we are not aware of any other formal study
providing oracle usage insights in the smart contract environment.

2 ChainLink Overview

ChainLink is an oracle service provider for smart contracts that is currently live
on three platforms: Ethereum, Binance Chain and the Matic Network. Chain-
Link went live in May 2019 and is currently the most popular oracle service
provider for smart contracts. ChainLink maintains a decentralized oracle net-
work and aggregates data from multiple oracle nodes on the network to provide
data feeds that do not rely on a single oracle node or data source [4]. ChainLink
employs an ERC-20 and ERC-677 compliant token called LINK which is used by
oracle consumers to pay the oracle nodes for data provision. ChainLink currently
provides three features for consumer smart contracts on the Ethereum mainnet.

Price Feeds: are a ChainLink feature to provide different market prices and
conversion rates data in the blockchain environment for usage by smart contracts.
ChainLink achieves this by having a decentralized price feed for each of these
data points, which is fed price data through multiple oracle nodes using different
sources. This is implemented by having an aggregator contract for each feed on-
chain which is fed data by multiple oracle nodes through their interface contracts.
The feed aggregator contract then aggregates all the nodes’ answers to provide a
final answer to any consumer contract via public Solidity functions. Consumers
of the price feeds data call these aggregator contracts when the data is desired.
The ChainLink documentation lists the aggregator contract addresses for the
available price feeds [5]. The price feeds are sponsored by various projects and
currently available for public usage without any LINK token charge.

External APIs: is a ChainLink feature that allows smart contracts in the
blockchain environment to perform external API calls through ChainLink oracle
nodes. These API calls can be HTTP Get Requests on the web or other APIs



Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 117

provided by the oracle node for different use cases. ChainLink API requests are
currently handled 1:1 by an oracle and ChainLink currently does not provide
decentralization benefits by default for API calls although a user might imple-
ment it on their own. The consumers of ChainLink’s API feature have to pay
their request servicing oracle node in LINK tokens for the service. The cost varies
depending on the node and the nature of the request but is around 0.1 LINK on
average and the highest being 1 LINK at the time of writing. Commonly used
public API endpoints are available as “jobs” in ChainLink which allows user to
only specify the job ID and not having to specify the URL, format etc. This
makes the consumer side code more succinct and the implementation easier.

Verifiable Random Numbers (VRF): is a ChainLink feature to provide
verifiable random number generation functionality on-chain. ChainLink achieves
this by having off-chain random number verifier contracts which verify the ran-
domness of the number generated by an oracle node in response to a consumer
request. VRF feature allows for provable random numbers, which protects the
consumer from attacks even if the node servicing the request has been compro-
mised.

3 Study Design

3.1 Data Collection

For both the Price Feeds and the External APIs we collected data from the
launch of ChainLink mainnet in May 2019 up till the end of October 2020
(Ethereum block 11167816). The VRF feature data was not collected and is
not part of this study since it only went live at the end of October 2020 and the
resulting data was insufficient for a formal study.

Modified Ethereum Client: For collecting the Price Feed usage data, we
looked at the price feed addresses available on the ChainLink website [5]. There
were 88 price feed addresses at the time of writing which are proxy aggregator
addresses. ChainLink has also, since its launch, made upgrades to the aggregator
contracts. The current version of aggregators are labeled as v3. We used the
wayback machine web archives [17] to retrieve old aggregator addresses and had
a total of 169 addresses for our study (88 v3, 80 v2, 1 v1). The ChainLink team
also later provided us with historical addresses which we used to verify our list.
For capturing the price feed data we could not use the Web3 API since all price
feed consumer requests were direct calls or “internal transactions”. Hence we
modified the Golang Ethereum client code to log data when internal function
calls were made to these 169 addresses. We captured the block number, calling
address, opcode, value and input data parameters for these internal calls to these
addresses and stored them in a local MySQL database.



118 M. Kaleem and W. Shi

Ethereum Full Node and Web3: For collecting data related to ChainLink
API usage we used the Web3 API with an Ethereum full node that we ran locally.
ChainLink implements the API feature using the CallAndTransfer() functional-
ity of the ERC-677 token standard. Every time a consumer requests an oracle,
it generates a ChainlinkRequest event and sends the LINK to the oracle node
along with data describing the API to fetch, the job ID, the format of the output,
the callback address and function which the oracle must respond to and other
data if required. The oracle node interface contract generates an OracleRequest
event upon receiving the LINK and data and the external node listens to this
event. It responds with the result after some time and makes a transaction to
the callback function with the data response. The consumer contract then raises
a ChainlinkFulfilled event. We use the Web3 APIs to capture these events and
extract the required data which includes: the block number of the request, the
requesting address, the oracle node requested, the job ID specified, the callback
function and address provided, the LINK token paid, the ChainLink request ID,
the request transactions hash, any additional data provided, the response block
number, the response and the response transaction hash. We store the results in
our local MySQL database for all such oracle service request-response cycles on
ChainLink.

We used Etherscan [11] to verify various samples of our collected data to
ensure that our data collection process was performed correctly.

3.2 Study Objectives

The study was aimed at providing insights into the usage of ChainLink oracles
on Ethereum. For this purpose we looked at the following five aspects:

– Oracle usage trends and demographics
– Oracle Adoption
– Oracle Pricing
– Oracle Servicing Delays

4 Results

4.1 Usage Trends and Demographics

After the data collection was completed and the required data was populated
into our MySQL server, we had the quantitative information summarized in
Table 1. A total of 2,717,049 API requests were made to Oracles during the
entire duration of our study and in total 2,409,074 price feed calls were made
to ChainLink’s public price feed contracts for fetching the market place data.
Although the numbers appear encouraging at first sight, upon further investi-
gation, we found that 99.75% of API requests to ChainLink oracle nodes were
made by ChainLink price feed aggregator addresses themselves. This is because
prior to the v3 aggregator release in August 2020 [6], all price feed aggregator
contracts made API requests to oracle nodes to fetch prices. After removing these



Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 119

API requests, we are only left with 6634 API requests performed on ChainLink
for the entire 18 month period! We also see that the number of distinct users
that made use of these features is very low.

Next, we present a list of the most popular price feeds based on their share
of the historical price-feed traffic in Fig. 1. We also present the corresponding
consumer projects/contracts of these price feeds ordered by their share of the his-
torical price-feed traffic. To get the corresponding projects/contracts, we grouped
the most regular consumer addresses (Top 26 addresses, which represent more
than 90% of all price-feed traffic) by their public tags available on Etherscan [11].
Our results show that Synthetix [1], which is a blockchain-based derivatives trad-
ing platform, is responsible for more than 47% of the historic price feed traffic.
If we subtract ChainLink’s internal traffic from the numbers, Sythetix’s share of
the historical price feed traffic rises to 75%.

Table 1. Price Feeds and API: collected data summary.

Feature Total
requests

Excluding
ChainLink
internal
requests

Distinct
Caller/consumer
addresses

Distinct Callee
addresses (price-
feeds/oracle
nodes)

Price Feeds 2409074 N/A 294 129

External APIs 2717049 6634 271 159

Fig. 1. Leaderboards: price feeds attracting the most traffic and projects generating
the most price feed traffic.

4.2 Oracle Adaption in the Market

To study ChainLink oracles’ adaption trends in the market, we look at the
historical data for the average number of price-feed and API requests made to
ChainLink oracles per month Fig. 2. Plotting the data, we can see that the price-
feed feature appears to be far more popular among users and has been rapidly



120 M. Kaleem and W. Shi

Fig. 2. Number of price feed and API requests on ChainLink by month.

gaining more traffic volume. The API feature does not appear to have a large
demand among the users. We believe that this can be attributed to the fact
that most projects and use-cases are able to fulfill their data needs using the
ChainLink provided price feeds and do not have to employ a custom API. We
also show in Fig. 3 that ChainLink has continuously increased the number of
price feeds being offered to users. The increase in price feed offerings has kept
up with the increase in adaption as evidenced in these figures. In contrast to the
price-feeds, Oracle nodes have not seen a marked increase in the variety of API
calls and jobs being requested.

Fig. 3. Number of distinct price feeds serviced and active oracles by month.

4.3 Oracle Pricing

ChainLink is currently providing the price feeds feature to all smart contract
users on the Ethereum chain without cost. These price feeds are sponsored by
various blockchain projects using these feeds in their contracts. A user does
need to pay an Oracle node in LINK token if they make a direct API request.
The current cost of ChainLink API usage varies and can be as high as 1 LINK
depending on the oracle and the data being requested. We look at the historical
price paid for running a single API request in Fig. 4. We also look at the historical
average income which the data providing oracle nodes from these requests. We
see the average LINK paid for oracle requests on ChainLink is increasing of



Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 121

late, and that coupled with the increase in the LINK token price is bound to
discourage the use of oracle APIs for trivial use cases.

4.4 Oracle Servicing Delays

Different smart contract use cases require their oracle service requests to be
processed within a time constraint. For the wide adoption of smart contracts,
it is essential that the oracle system is able to service time-critical requests.
We analyze our available API data in Fig. 5 to determine the historical average
delay experience on ChainLink API requests. Due to a small number of outliers,
the average obtained was around six hundred blocks. After filtering out these
outliers and only keeping the requests that were serviced within one hundred
blocks, we obtained the data shown in our figures. We can see that for ChainLink
oracles most API requests are serviced within the next four to five blocks with
the historical average block delay being close to four Ethereum blocks which
corresponds to roughly one minute.

Fig. 4. Average cost of a single API request and the average fees collected in LINK by
oracle nodes.

Fig. 5. Average response time and response time distribution for API requests.



122 M. Kaleem and W. Shi

5 Analysis and Conclusion

Based on our analysis of the collected data, we obtained the following important
insights regarding Chainlink usage on Ethereum in particular and the trends for
Oracle systems in general:

– The number of individual users of the ChainLink platform is not very high.
Currently, it is mostly being used by DeFi(Decentralized Finance) projects
and applications to provide market prices to its contracts. This is perhaps
indicative of a trend in the smart contract ecosystem in general.

– Currently, a single DeFi project, Synthetix has been responsible for almost
75% of the historic price-feed traffic in the ChainLink network (given that we
ignore ChainLink’s self-generated traffic). Synthetix uses various commodity
and currency ratio feeds on ChainLink which are among the feeds that have
serviced the most traffic. This dominance of Synthetix related traffic might
fade with ChainLink increasingly integrating with new projects.

– The data shows that there is currently not a big market of people wanting
to use oracles to connect smart contracts to the external world for trivial use
cases. Whether it is the genuine lack of market demand for these applications
or whether high Ethereum gas prices and ChainLink API fees discourage
people from doing so will require further investigation.

– While ChainLink’s API feature has not seen increased use with the rise of
DeFi, ChainLink’s price feeds have seen increasing usage since the project’s
launch. ChainLink has also managed to provide an increasing variety of price
feeds to cater to the demands of new DeFi projects integrating with Chain-
Link.

– The rising average API cost seen on the network might be attributed to the
increased LINK token price which forces people to only make Oracle API
usage for non-trivial cases.

– The average response time of ChainLink’s API feature is seen to remain steady
between 4 and 5 blocks which might not be good enough for time-sensitive
applications.

In conclusion, at the time of this study, the ChainLink ecosystem on the
Ethereum network appears to be driven purely by DeFi’s demand for decentral-
ized market price feeds [13]. In the coming future, it would be interesting to see
if Oracle platforms like ChainLink take initiatives to attract other segments of
users or tailor themselves more towards fulfilling the needs of the growing DeFi
market.

Acknowledgements. The authors warmly thank the ChainLink team for sharing
historical price feed addresses with us for cross-verification.

References

1. Synthetix (2019). https://www.synthetix.io

https://www.synthetix.io


Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 123

2. Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.: Trustworthy blockchain
oracles: review, comparison, and open research challenges. IEEE Access 8, 85675–
85685 (2020)

3. Buterin, V., et al.: Ethereum: a next-generation smart contract and decentralized
application platform (2014). https://github.com/ethereum/wiki/wiki

4. ChainLink: Chainlink developer documentation. https://docs.chain.link
5. ChainLink: Ethereum price feeds. https://docs.chain.link/docs/ethereum-

addresses
6. ChainLink: Developer communications, August 2020. https://docs.chain.link/

docs/developer-communications
7. ChainLink: Ecosystem, March 2021. https://chainlinkecosystem.com/ecosystem
8. Coinmarketcap: DeFi category, March 2021. https://coinmarketcap.com/defi
9. Egberts, A.: The oracle problem-an analysis of how blockchain oracles undermine

the advantages of decentralized ledger systems (2017)
10. Ellis, S., Juels, A., Nazarov, S.: Chainlink: a decentralized oracle network (2017).

https://link.smartcontract.com/whitepaper
11. Etherscan: The Ethereum block explorer (2017)
12. Kehrli, J.: Blockchain 2.0-from bitcoin transactions to smart contract appli-

cations. Niceideas, November 2016. https://www.niceideas.ch/roller2/badtrash/
entry/blockchain-2-0-frombitcoin

13. Liu, B., Szalachowski, P., Zhou, J.: A first look into DeFi oracles. arXiv preprint
arXiv:2005.04377 (2020)

14. Peterson, J., Krug, J., Zoltu, M., Williams, A.K., Alexander, S.: Augur: a decen-
tralized oracle and prediction market platform (2019)

15. Provable. https://provable.xyz. Accessed 10 Sept 2020
16. Szabo, N.: Formalizing and securing relationships on public networks. First Monday

(1997)
17. Wayback Machine: The internet archive. https://archive.org/web/

https://github.com/ethereum/wiki/wiki
https://docs.chain.link
https://docs.chain.link/docs/ethereum-addresses
https://docs.chain.link/docs/ethereum-addresses
https://docs.chain.link/docs/developer-communications
https://docs.chain.link/docs/developer-communications
https://chainlinkecosystem.com/ecosystem
https://coinmarketcap.com/defi
https://link.smartcontract.com/whitepaper
https://www.niceideas.ch/roller2/badtrash/entry/blockchain-2-0-frombitcoin
https://www.niceideas.ch/roller2/badtrash/entry/blockchain-2-0-frombitcoin
http://arxiv.org/abs/2005.04377
https://provable.xyz
https://archive.org/web/

	Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum
	1 Introduction
	2 ChainLink Overview
	3 Study Design
	3.1 Data Collection
	3.2 Study Objectives

	4 Results
	4.1 Usage Trends and Demographics
	4.2 Oracle Adaption in the Market
	4.3 Oracle Pricing
	4.4 Oracle Servicing Delays

	5 Analysis and Conclusion
	References




