
Risk Framework for Bitcoin Custody
Operation with the Revault Protocol

Jacob Swambo1,2(B) and Antoine Poinsot2

1 Department of Informatics, King’s College London, London, England
jacob.swambo@kcl.ac.uk

2 WizardSardine, Lisboa, Portugal
darosior@protonmail.com

Abstract. Our contributions with this paper are twofold. First, we elu-
cidate the methodological requirements for a risk framework of custodial
operations and argue for the value of this type of risk model as comple-
mentary with cryptographic and blockchain security models. Second, we
present a risk model in the form of a library of attack-trees for Revault
– an open-source custody protocol. The model can be used by organisa-
tions as a risk quantification framework for a thorough security analysis
in their specific deployment context. Our work exemplifies an approach
that can be used independent of which custody protocol is being consid-
ered, including complex protocols with multiple stakeholders and active
defence infrastructure.

1 Introduction

While mainstream acceptance of Bitcoin as an asset appears to be increasing,
advanced tools and methods for secure custody of bitcoins are slow to develop.
Bitcoin custody encompasses the protection of assets through software, hard-
ware, and operational processes. The foundation of Bitcoin custody is key-
management, a well understood topic in the academic literature and in prac-
tice. However, Bitcoin custody, in particular multi-stakeholder custody, involves
human processes, communication protocols, network monitoring and response
systems, software, hardware and physical security environments. Given a secure
cryptographic layer, there are still vulnerabilities introduced at the application
layer by software developers, at the hardware layer throughout the supply chain,
and at the operations layer by users. Without adequate risk management frame-
works for custodial operations, Bitcoin users are likely to suffer unexpected losses
whether they self-custody funds or employ a third-party custodian.

Open-source custody protocols are emerging [5,25,38,39] and are a critical
ecosystem component for improving security standards. If a custody protocol
stands to public scrutiny and offers a high-level of security without relying on
proprietary processes, users, insurance companies and regulators can have more
confidence in it. The emerging custody protocols are trying to reconcile the
needs of traditional businesses and banking with Bitcoin’s novel identity-less and
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-662-63958-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_1&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_1

4 J. Swambo and A. Poinsot

irreversible transaction properties. A lack of available and accepted open-source
custody protocols means that organisations are heavily relying on third-party
custodians, or deploying their own custody protocol.

We propose an attack modelling technique as the basis for a risk frame-
work for Bitcoin custody operations, using the Revault protocol1 as a case-study
[4,25]. While the process of model construction is intensive, the resultant frame-
work is extensible and modular and some of its components can be re-used
with different custody protocols. It is intended to be readily comprehensible,
and, given sufficient validation, the framework can be used by any organisation
intending to deploy Revault to better understand their risk posture.

Risk quantification frameworks address several ecosystem problems. Organ-
isations that control bitcoins or other digital assets need accurate models to
engage in realistic risk-management. The complexity of custodial risks leaves
insurance companies guessing rather than systematically estimating when pric-
ing their insurance offerings or assessing particular solutions for digital custody.
Finally, emerging regulatory standards for custody [9,26] are simple and fail to
capture advanced custody architectures or enable context-specific risk analyses
that acknowledge the full security environment of a custody operation.

The remainder of this paper is structured as follows. Section 2 summarises the
components and processes of the Revault protocol. Section 3 discusses our eval-
uation criteria for an operational risk framework, and introduces the attack-tree
formalism on which our risk model is based. Section 4 presents our operational
risk model for Revault. Section 5 concludes this paper.

2 Overview of Revault Custody Protocol

Revault is a multi-party custody protocol that distinguishes between stakehold-
ers and fund managers. The primary protection for funds is a high-threshold
multi-signature Script controlled by the stakeholders. The day-to-day opera-
tional overhead of fund management is simplified by enabling portions of funds
to be delegated to fund managers. Stakeholders define spending policies in-line
with traditional controls of expenses, and have automated servers to enforce
their policies. In addition, a deterrent is withheld by each stakeholder to mitigate
incentives to physically threaten the stakeholders. To achieve this, Revault makes
use of sets of pre-signed transactions coupled with an active defence mechanism
for detecting and responding to attempted theft transactions. In the following,
we will outline the components of the Revault architecture, the transaction set,
the stakeholders’ routine signing process and the managers’ spend process. Refer
to [4] for the detailed specification of the open-source protocol.

1 Specifically, the version identified as 609b40dda07155abe5cd4a5af77fc2211d11fbc1
which can be found on the open-source repository hosted on Github [4].

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 5

2.1 Revault Architecture Components

Each stakeholder and manager has a hardware security module (HSM) to manage
their private keys and generate signatures for transactions. A backup of private
keys is stored for each HSM in a separate protected physical environment.

Fig. 1. Diagram of the transaction (Tx) set structure in the Revault protocol. An
Unspent-transaction-output (UTxO) is created by a preceding Tx and is consumed by
an input in a proceeding Tx.

Each stakeholder and manager uses a wallet software to track their co-owned
bitcoins, craft transactions, store transaction signatures and communicate with
each other through a coordinator. The coordinator is a proxy server that sim-
plifies communication for the multi-party wallet. All communication uses Noise
KK encrypted and authenticated channels [33].

Stakeholders each have one or more watchtower, an online server that enforces
the stakeholder’s spending policy limitations. Stakeholders each have an anti-
replay oracle server.

2.2 Revault Transaction Set

The use of hierarchical deterministic wallets means that each participant in
the Revault protocol has a tree of public and private keys [41]. To discuss
ownership of bitcoins, we refer to a generalisation of a locking Script, called
a descriptor. The wallet will have multiple addresses that correspond to a single
abstracted descriptor. Funds are deposited into the multi-party wallet through
a Deposit transaction (Tx) output that pays to the deposit descriptor, describ-
ing N−signatories locking Scripts derived from the stakeholders’ (stk) extended
public keys (xpub). In descriptors language formalisation [2] it is defined as:

6 J. Swambo and A. Poinsot

thresh(N, stk_1_xpub, stk_2_xpub, ..., stk_N_xpub)

The set of transactions prepared with stakeholders’ wallets and signed using
their hardware security modules (HSM) include the Emergency Tx, Unvault Tx,
Unvault-Emergency Tx and Cancel Tx. The managers can only prepare and sign
a Spend Tx type. Figure 1 depicts these transactions and the essential unspent-
transaction-outputs (UTxOs) they create or consume.

An Emergency Tx locks funds to an emergency descriptor which is unspeci-
fied by the Revault protocol and is kept private among stakeholders. The descrip-
tor must however be harder to unlock than the deposit descriptor. This is the
deterrent for physical threats to the stakeholders.

An Unvault Tx consumes the deposit UTxO and creates an unvault UTxO
locked to the unvault descriptor,

or(thresh(N, stk_1_xpub, stk_2_xpub, ..., stk_N_xpub),
and(thresh(K, man_1_xpub, ..., man_M_xpub),

and(thresh(N, oracle_1_xpub, ..., oracle_N_xpub),
older(X)))),

that is redeemable by either the N stakeholders or the M managers (man) along
with N automated anti-replay oracles after X blocks.

A Cancel Tx consumes the unvault UTxO and creates a new deposit UTxO.
The watchtowers’ role is to broadcast the Cancel Tx if a fraudulent spend
attempt is detected (either through an unauthorised attempt at broadcasting
an Unvault Tx or if a Spend Tx does not abide by the spending policy). The
time-lock gives watchtowers X blocks worth of time to broadcast a Cancel Tx.
An Unvault-Emergency Tx consumes the unvault UTxO and locks funds to the
emergency descriptor. It has the same purpose as the Emergency Tx, only it
consumes the unvault UTxO rather than the deposit UTxO. A Spend Tx is
used by managers to pay to external addresses.

2.3 Stakeholders’ Signing Routine

Stakeholders’ wallets routinely check for new deposits and each one triggers a
signing routine. Figure 2 shows the connections and message types for an exam-
ple Revault deployment enacting the signing routine. The wallet crafts an Emer-
gency Tx and requests the stakeholder to sign it using their HSM. The stake-
holder will verify the emergency descriptor on the HSM before authorising the
signature generation2. The wallet then connects to the coordinator to push its
signature and will fetch other stakeholders’ signatures.

Optionally, stakeholders may also sign the Cancel, Unvault-Emergency, and
Unvault Txs to securely delegate funds to the managers. In this case the signing

2 This feature is not available with current HSMs, but integrating compatibility
with descriptors (along with other security features) would improve the human-
verification component of HSM security and is being discussed on the bitcoin-dev
mailing list [24].

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 7

Fig. 2. Data flow diagram for the communication of the stakeholders’ signing routine
with an example Revault deployment. There are three stakeholders (S) who each have
one or two watchtowers (WT). There are two managers (M) and a coordinator. Signa-
ture messages, signature requests and watchtower acknowledgements (ACK) are only
shown once per connection type but apply to each connection of that type (e.g. there
is {← signature, → ACK} between each WT and S).

process is the same but is carried out in two steps: first, the signatures for the
Cancel and Unvault-Emergency Txs are exchanged with the other stakeholders
through the coordinator and then shared with the watchtower(s), and only then
are the Unvault Tx signatures shared with managers.

2.4 Managers’ Spending Process

Most spending policies cannot be inferred from the Unvault Tx alone and so the
Spend Tx must be known to the watchtower to validate an unvaulting attempt. In
these cases the Spend Tx must be advertised to the watchtowers before unvault-
ing, otherwise it will be cancelled. The anti-replay oracle is required to avoid the
Spend Tx being modified by the managers after the unvault time-lock expires
and thus by-passing enforcement of the watchtowers’ spending policies.

Any manager can initiate a spend. Figure 3 depicts the spend process. The
initiator creates a Spend Tx, verifies and signs it using their HSM and passes
it back to the wallet in the partially-signed Bitcoin Tx (PSBT) format [10].
It’s exchanged with a sufficient threshold of the other managers to add their
signatures and hand it back to the initiator. The initiator requests a signature
from each of the anti-replay oracles and pushes the fully-signed Spend Tx to
the coordinator. The initiator broadcasts the Unvault Tx, triggering a lookup
from the watchtowers to the coordinator for the Spend Tx. If the Spend Tx is

8 J. Swambo and A. Poinsot

valid according to all of the watchtowers policies and none of them cancel this
unvaulting attempt, the manager waits X blocks and broadcasts the Spend Tx.

If, during the unvaulting process, there’s a significant increase in the fee-
level required for a Spend Tx to be mined, a manager needs to bump the fee.
Managers use a dedicated single-party fee wallet for this. Similarly, watchtowers
use a fee wallet in the case there is high demand for block space to bump the
fee for Cancel or emergency Txs.

Fig. 3. Data flow diagram for the communication of the managers’ spend process. In
this example there are two managers (M), three anti-replay oracles (O), five watch-
towers (WT) and a coordinator. A Partially-signed Bitcoin Tx (PSBT) is exchanged
among managers and between a manager and the anti-replay oracles. A fully signed
SpendTx is shared with the WTs through the coordinator.

3 Methodology

To see where this research fits in to the big picture, consider the key life-cycle
of a custodial operation. There are three phases; initialization, operation, and
termination. Initialization is where wallet and communication keys are gener-
ated, where software integrity is verified, hardware security modules are checked,
and relevant public information is shared among participants. Operation encom-
passes the active fund management. Termination is the phase wherein the wallet
is de-commissioned and all sensitive information destroyed. Initialization and
termination are out of scope for this paper. Our risk model covers the oper-
ations phase. In the following we present our rationale for our chosen attack
modeling formalism and explain how this can be used as a risk framework.

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 9

3.1 Operational Security Models

A framework for high-level risk analyses for the integration of custody into a
multi-stakeholder context has not yet been presented. To-date the literature
has focused primarily on cryptographic security modeling, dealing with low-
level risks associated with cryptographic primitives, key-management protocols,
HSMs and single-party wallets. The underlying cryptographic security is funda-
mental but should be complemented by an operational security model, which
is much more likely to be the domain where participants create vulnerabilities
for an attacker. Advanced custody protocols that use multi-layer access control
with both static and active defences for insider and external attackers demand
a whole-system approach to security analysis.

We present now several requirements for our modelling formalism: a) the
ability to represent complex processes with numerous components and sequential
events; b) supports qualitative risk analysis; c) supports automated quantitative
methods for multi-attribute risk analysis; d) readily comprehensible and visual
models that are more amenable to open-source intelligence; and e) extensible
and modular models to support differential analysis and re-use of modules.

The two most popular attack modeling techniques in cyber-security literature
are attack-trees and attack graphs [23]. In short, tools for attack graphs tend
to produce graphs that aren’t readily comprehensible due to the complexity of
real-world attack scenarios [14]. That is, attack graphs don’t scale well [35]. On
the other hand, attack-trees seem to meet all of our requirements, at least when
considered with the right structure and semantics (as described in Sect. 3.2) and
thus we construct our risk model using this formalism.

While a statement such as ‘our custody solution is based on an m−of−n
security model’ can entail a lot for simple multi-signature custody protocols, it
doesn’t capture the reality nearly as well as our proposed methodology would.
It is certainly not sufficient for a more complex custody protocol like Revault.
What is the physical environment for those n private keys? Are any of those keys
online? Are there key backups and, if so, what protections are in place for these?
Too much depends on the broader security environment of a custody protocol
for it to be left without scrutiny.

Application threat modelling has been used to harden the Revault proto-
col throughout both its theoretical development and implementation. For each
application process (spend, routine signing, emergency, revault) a component-by-
component and connection-by-connection analysis has been carried out to deter-
mine the consequences of outages, data tampering, component corruption, etc.,
and has resulted in the design specification [4] and the transaction flow threat
model [25]. The application threat modeling approach is complementary and
has informed us in enumerating the risks presented with the attack-trees. How-
ever, in contrast to attack-trees, it lacks a semantic structure which is amenable
for automated risk quantification and thus isn’t suitable as the basis of a risk
framework.

10 J. Swambo and A. Poinsot

3.2 Attack-Tree Formalism

The risk model is presented using the formalism of attack-trees [6,36,40]. Attack-
trees have an attack at their root, and branches that capture alternate (OR) and
complementary (AND) attack pathways comprised of intermediate attack goals
as non-leaf nodes and basic attack steps as leaf nodes. As in numerous other
works [11,18,22,27–29], we extend the basic attack-tree to support sequential
conjunction of branches (SAND) allowing us to model an attack where some
sub-tree of an attack pathway has to occur before and in addition to another
sub-tree. For brevity we depict our attack-trees as nested lists. The logical gates
(OR, AND, SAND) shown with each node apply to the next node at the same
depth. This means that at any given depth, a node with a SAND gate occurs
before other nodes that are shown below it. Some aspects of the system are
built to be resilient to attack and failure through redundancy. For example, an
attacker needs to compromise all stakeholders’ private keys to steal funds locked
to the deposit descriptor. To be concise, rather than having several copies of the
same sub-tree we write (X times) to note that the sub-tree has to happen X
times. During an analysis, these sub-trees should be considered as X separate
AND sub-trees, since they are contextually different (corresponding to different
participants, remote and physical environments).

We provide a set of attack-trees, capturing prominent risks that have been
enumerated primarily by considering tangible and intangible assets. Tangible
assets (bitcoins) are distinguished by the access control structures determined
by the set of descriptors. We consider operational privacy and business continuity
as intangible assets.

Our work here is focused on security, rather than safety. In principle, the
same methodology could be extended to an integrated security-safety model by
constructing attack-fault-trees [22]. Another common extension to the attack-
tree formalism is to include countermeasures, producing attack-defence-trees [16,
19]. The benefit of our modular modelling technique is that it enables future
work to integrate these extensions and re-use results from this work. Hence, we
prioritise constructing a strong foundation based only on attacks, and aim to
incrementally improve on the model presented as new intelligence emerges.

3.3 On Risk Analysis

Our purpose in constructing the risk model presented in Sect. 4 is to provide a
framework to support both qualitative and quantitative risk analyses for specific
deployment instances of Revault custody. By determining costs, likelihoods, and
other attributes for risks associated with custodial processes, an organisation can
perform a differential analysis of countermeasures until their risk-tolerance is sat-
isfied. An explicit framework not only helps an organisation deploying Revault
with risk-management but could form a standard by which insurance companies
and regulators consider specific deployments. As with any model of complex real-
ity, attack-trees are imperfect and cannot capture every possible attack pathway,
but the alternative—complete ignorance—is not better.

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 11

To perform a context-specific risk analysis, a set of estimates are made (using
in-house empirical data, public research, and expert opinion) for each basic
attack step on different attributes such as monetary cost, execution time, or
likelihood. With that, a bottom-up procedure (from leaf nodes to the root) is
used to compute aggregated attributes. Bayesian methods can be used to update
prior estimates with more refined values as new data sources emerge. The process
for generating estimates is critical and should be considered with care. In-depth
research-based practical guidance on this topic is given by D. W. Hubbard and
R. Seiersen in [17]. Given specific contextual information, estimations can be
improved by further decomposing basic attack steps (e.g. ‘steal keys backup’)
into multiple steps (e.g. ‘bribe manager to determine backup location’ SAND
‘break into safe’). If a basic attack step has a highly uncertain estimate, then
further decomposition into more explicit steps can be beneficial. On the other
hand, decomposing into quantities that are more speculative than the first could
compound uncertainty rather than reducing it.

Various methods for analysis can be used to compute aggregated attributes
for attack-trees. Kordy et al. gave an overview [20]. Our purpose here is to pro-
vide the framework on which to perform analyses rather than to provide a specific
analysis. We have not performed a comprehensive evaluation of analysis meth-
ods, but offer some suggestions based on a comparison in [21]. Two methods that
support evaluating the attributes of cost, probability, and time are stochastic-
model checking [22] and game-theoretic analysis [16]. Whichever methods are
used must appropriately capture the constraints of our model (including SAND
gates) and should be automated to enable rapid attribute-based queries for secu-
rity metrics such as; the expected attack pay-off for the most likely attack, or
the possible attack pathways given a budget of $10,000.

Our approach to constructing the risk model is centered on assets since these
are clearly distinguished through Bitcoin descriptors, as continuity of a custodial
process, or as operational privacy. However, when performing the risk analysis
it can be insightful to consider attacker personas [37]: a crime syndicate; an
opportunistic burglar; a nation state; a business competitor; or even an insider.
If the organisation understands any of these personas well (arguably they should
especially understand their competitors and employees) they can reduce the
uncertainty in their aggregate risk estimates for these scenarios. Attacker-profiles
are a useful way to prune attack-trees [21].

4 Risk Model

We have constructed the risk model with several assumptions that limit the scope
of the analysis to the operational aspects of custody. Known risks from other
protocol and environment dependencies that are discussed in other works should
be considered as complementary but are, for the purpose of clarity, assumed to
be benign here. First, we assume that the Bitcoin network is functional, realis-
ing its live-ness and availability properties [7,8,12,13,32]. We assume that there
is significant hash-rate to prevent blockchain reorganisations of a depth higher

12 J. Swambo and A. Poinsot

than the Unvault Tx’s relative lock-time. Next, we assume that Revault’s Tx
model is robust; with scripts that realise the access control structures we expect,
without unintended consequences from Tx malleability and network propagation
issues as described in [25]. We assume the initialization process was secure and
safe; private keys and backups were correctly and confidentially constructed for
each participant, software and hardware integrity were verified, relevant public
key information for both the wallet and communication was shared among par-
ticipants leading to a correct configuration for the wallet clients, watchtowers,
anti-replay oracles and the coordinator. We assume that Revault’s communica-
tion security model as described in [4] is robust. That is, where messages need to
be authenticated or confidential, they are. We assume that the software devel-
opment life-cycle of Revault is secure, such that any deployment is using an
implementation that adheres to the protocol specification. Finally, we assume
that entities constructing Deposit Txs don’t succumb to a man-in-the-middle
attack. That is, they lock funds to the deposit descriptor rather than to an
attacker’s address.

4.1 Common Attack Sub-Trees

These attack sub-trees are common to different attacks on Revault, and a, b, c,
d, e, f and g are likely to be common to attacks on other custody protocols.

a : Compromise a participant (stakeholder or manager)
1 : Coerce participant (OR)
2 : Corrupt participant

Coercion and insider threats from corrupt participants must be considered. Legal
defences for malicious employee behaviour can be effective deterrents here.

b : Compromise a participant’s (stakeholder’s or manager’s) HSM
1 : Physical attack of HSM (OR)

1.1 : Determine location of participant’s HSM (SAND)
1.2 : Access the physical security environment of the participant’s HSM

(SAND)
1.3 : Exfiltrate keys (either on premise or after stealing it) (OR)
1.4 : By-pass PIN and make the HSM sign a malicious chosen message

2 : Remote attack of HSM (OR)
2.1 : Compromise a device that is then connected to the HSM (SAND)

2.1.1 : (see g) Compromise the participant’s wallet software (OR)
2.1.2 : Trick participant into connecting their HSM to a compromised

device via social engineering
2.2 : Exploit a firmware vulnerability (OR)
2.3 : Trick participant into compromising their own HSM with the user

interface of the compromised device
3 : (see a) Compromise a participant

c : Compromise a participant’s (stakeholder’s or manager’s) keys backup
1 : Physical Attack (OR)

1.1 : Determine location of the keys backup (SAND)

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 13

1.1.1 : Watch the participant between the custody initialization and
the start of operations (OR)

1.1.2 : Watch the participant during a backup check (OR)
1.2 : Access the physical security environment of the keys backup (SAND)
1.3 : Depending on backup format, steal or copy it

2 : (see a) Compromise a participant

d : Compromise a server (watchtower, anti-replay oracle, or coordinator)
1 : Remote attack (OR)

1.1 : Exploit a software vulnerability (OR)
1.1.1 : Determine the public interfaces of the server (SAND)
1.1.2 : Exploit a vulnerability on one of the softwares listening on

these interfaces
1.2 : Exploit a human vulnerability (e.g. trick participant into performing

a malicious update)
2 : Physical attack (OR)

2.1 : Determine server’s location (SAND)
2.2 : Access the physical security environment of the server (SAND)

3 : (see a) Compromise the participant managing the server

An attacker who successfully completes d for a watchtower will be able to steal
funds from the watchtower’s fee wallet and will be able to force an emergency sce-
nario by broadcasting all Emergency and Unvault-Emergency Txs it has stored.
They can also prevent broadcast of a Cancel Tx from this watchtower either
passively (ACK the secure storage of the signature to the stakeholder, but then
drop the signature) or actively.

e : Shutdown a watchtower
1 : Physical attack on the watchtower (OR)

1.1 : Determine watchtower’s location (SAND)
1.2 : Sever the internet connection to the building in which the watchtower

is located (OR)
1.3 : Sever the power-line connection to the building in which the watch-

tower is located (OR)
1.4 : Access the physical security of the watchtower and un-plug the machine

2 : Remote attack on the watchtower
2.1 : Determine public interfaces of watchtower (SAND)
2.2 : Denial of Service attack through one of the public interfaces (OR)
2.3 : Eclipse attack on the watchtower’s Bitcoin node [15] (OR)

2.3.1 : Slowly force de-synchronisation of watchtower with the true
block height by delaying block propagation [34] (OR)

2.3.2 : Prevent outgoing propagation of Cancel or Emergency Txs
2.4 : Denial of Service attack on the fee-bumping UTxOs pool—not enough

funds to pay competitive fees (OR)

f : Get signature from participant to unlock UTxO for Theft Tx
1 : (see a) Compromise a participant (OR)
2 : (see b) Compromise participant’s HSM (OR)
3 : (see c) Compromise participant’s keys backup

14 J. Swambo and A. Poinsot

g : Compromise a participant’s wallet
1 : Physical attack (OR)

1.1 : Locate participant’s device (SAND)
1.2 : Access physical security environment of participant’s device

2 : Remote attack (OR)
2.1 : Determine public interfaces of device (SAND)
2.2 : Exploit a vulnerability

3 : (see a) Compromise participant

Participant’s wallet devices are expected to be used for day-to-day activities.
With many vulnerabilities to exploit, the likelihood of success for g is high.

h : Determine the locking Script for a deposit or unvault UTxO (Witness
Script)

1 : (see g) Compromise any participant’s wallet (OR)
2 : (see d) Compromise a watchtower (OR)
3 : (see d) Compromise an anti-replay oracle

Deposit and unvault descriptors are deterministic, but public keys are needed to
derive UTxO locking Scripts. These are stored by all wallets, watchtowers and
anti-replay oracles.

i : Satisfy an input in a Theft Tx that consumes an identified deposit UTxO
or unvault UTxO (through N−of−N)

1 : (see h) Determine the UTxO locking Script (Witness Script) (SAND)
2 : Prevent the relevant Emergency Tx from being broadcast until the Theft Tx

is confirmed (where A + B = N) (AND)
2.1 : (see d) Compromise a watchtower (A times)
2.2 : (see e) Shutdown a watchtower (B times)
2.3 : (see g) Compromise stakeholder’s wallet (N times)

3 : (see f) Get signature from a stakeholder to unlock UTxO for Theft Tx (N
times)

j : Satisfy an input in a Theft Tx that consumes an identified unvault
UTxO (through K−of−M , anti-replay oracles and time-lock)

1 : (see h) Determine the UTxO locking Script (Witness Script) (SAND)
2 : Receive signatures for Theft Tx from all N anti-replay oracles (AND)

2.1 : Compromise a manager’s private communication keys and the set of
anti-replay oracles’ public communication keys (OR)
2.1.1 : (see g) Compromise a manager’s wallet (OR)
2.1.2 : (see a) Compromise a manager

2.2 : (see d) Compromise the anti-replay oracle
3 : (see f) Get signature from a manager to unlock UTxO for Theft Tx (K

times)

k : Satisfy an input in a Theft Tx that consumes an identified emergency
UTxO

1 : Determine the emergency descriptor policy (SAND)
2 : Satisfy the emergency descriptor’s locking conditions (may include waiting

for time-locks, giving sufficient signatures, giving hash pre-images, etc.)

The details of the emergency descriptor are intentionally not specified with the
Revault protocol, except that it is more difficult to access than the deposit
descriptor. Stakeholders may compartmentalise and distribute the descriptor
information to afford its privacy some resilience to attack.

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 15

4.2 Attack-Trees

The following attack-trees are the foundation for an operational risk framework
for Revault.

A : Compromise privacy of the custody operation (determine the set of
public UTxOs)

1 : (see d) Compromise any of the servers (OR)
2 : (see a) Compromise a participant (OR)
3 : (see g) Compromise a participant’s wallet (OR)
4 : Traffic analysis of connections between servers and/or wallets (OR)
5 : Blockchain analysis

Without privacy support for advanced descriptors (such as by using MuSig2 [30]
or MuSig-DN [31] if the proposed Taproot [1] upgrade is activated by the Bitcoin
network) Revault’s operational privacy is brittle.

B : Broadcast Theft Tx(s) that consume all deposit UTxOs
1 : (see A) Determine D, the set of deposit UTxOs (SAND)
2 : (see h) Determine the locking Script for deposit UTxO (|D| times)
3 : (see i) Satisfy an input in a Theft Tx that consumes an identified deposit

UTxO (|D| times)

A Theft Tx that consumes all available deposit UTxOs would be catastrophic
since this comprises the majority of funds. We recommend a defence wherein
each stakeholder is equipped with a panic button that is directly connected to
their watchtower or dedicated emergency service. When triggered, all the signed
Emergency and Unvault-Emergency Txs are broadcast, negating the pay-off for
an attacker and thus acting as a deterrent.

C : Broadcast Theft Tx(s) that consume as many available unvault UTxOs
as watchtower spending policies permit

1 : Determine spending constraints of all watchtowers’ policies (SAND)
1.1 : (see a) Compromise a participant (OR)
1.2 : (see g) Compromise a manager’s wallet
1.3 : (see d) Compromise a watchtower (N times)

2 : Determine U , the set of available unvault UTxOs (SAND)
2.1 : (see A) Compromise privacy of the custody operation (determine the

set of public UTxOs) (SAND)
2.2 : (see h) Determine the locking Script for unvault UTxO (|U| times)

3 : (see i OR j) Satisfy an input in a Theft Tx that consumes an identified
unvault UTxO (|U| times)

C can be avoided if watchtowers have a white-list of addresses that Spend Txs
can pay to.

D : Broadcast Theft Tx(s) that consume all available unvault UTxOs, by-
passing watchtowers’ spending policies

1 : Prevent watchtower from broadcasting Cancel or Unvault-Emergency Txs
before Theft Tx is confirmed (N times SAND)

16 J. Swambo and A. Poinsot

1.1 : (see d) Compromise a watchtower (OR)
1.2 : (see e) Shutdown a watchtower

2 : Determine U , the set of available unvault UTxOs (SAND)
2.1 : (see A) Compromise privacy of the custody operation (determine the

set of public UTxOs) (SAND)
2.2 : (see h) Determine the locking Script for unvault UTxO (|U| times)

3 : (see i OR j) Satisfy an input in a Theft Tx that consumes an identified
unvault UTxO (|U| times)

E : Broadcast a Theft Tx that by-passes watchtowers’ spending policies
1 : Determine U , the set of available unvault UTxOs (SAND)

1.1 : (see A) Compromise privacy of the custody operation (determine the
set of public UTxOs) (SAND)

1.2 : (see h) Determine the locking Script for unvault UTxO (|U| times)
2 : (see f) Get signature from a manager to unlock U ⊆ U , a subset of available

unvault UTxOs for a valid Spend Tx (K times)
3 : (see i OR j) Satisfy an input in a Theft Tx that consumes an identified

unvault UTxO (|U | times)
4 : (see d) Compromise an anti-replay oracle to get a signature for the valid

Spend Tx which consumes U , the UTxOs (N times SAND)
5 : Advertise the valid Spend Tx to the watchtowers through the coordinator

(SAND)
6 : Broadcast all Unvault Txs that the valid Spend Tx depends on and wait for

the time-lock to expire

F : Force emergency scenario
1 : Broadcast the full set of signed Emergency and Unvault-emergency transac-

tions
1.1 : (see d) Compromise a watchtower (OR)
1.2 : (see a) Compromise a stakeholder

The emergency deterrent results in better security from the most egregious phys-
ical threats to participants (particularly stakeholders who control the majority of
funds) but also in a fragility to the continuity of operations that could be abused
by an attacker. Attacks that rely on E may seek a pay-off other than fund theft,
such as damaging the reputation of the organisation for having down-time and
taking a leveraged bet on the likely market consequences. However, forced down-
time attacks through power or internet outages or detainment of personnel are
prevalent threats for organisations who aren’t deploying Revault. In any case,
with this risk model the consequence of not using an emergency deterrent can
be considered by performing an analysis with pruned attack-trees.

G : Broadcast a Theft Tx which consumes all available UTxOs locked to
the emergency descriptor

1 : (see F) Force an emergency scenario (SAND)
2 : Determine E , the set of available emergency UTxOs (SAND)

2.1 : (see A) Compromise privacy of the custody operation (determine the
set of public UTxOs)

3 : (see k) Satisfy an input in a Theft Tx that consumes an identified emergency
UTxO (|E| times)

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 17

H : Broadcast a Theft Tx which spends from a manager’s fee wallet
1 : (see g) Compromise a manager’s wallet

While this is a relatively simple attack, the fee wallet will never hold a significant
portion of bitcoins and is considered external to the custody protocol.

I : Prevent Emergency, Unvault-Emergency, and Cancel Tx valid signature
exchange

1 : 1 of N stakeholders doesn’t sign (OR)
1.1 : Prevent stakeholder from accessing their HSM (OR)
1.2 : Prevent stakeholder from accessing their wallet (OR)
1.3 : (see a) Compromise a stakeholder

2 : Shutdown coordinator (OR)
3 : (see e) Shutdown a watchtower (N times) (OR)
4 : Blockchain re-organization and Deposit Tx outpoint malleation.

J : Prevent Unvault Tx signature exchange
1 : 1 of N stakeholders doesn’t sign (OR)

1.1 : Prevent stakeholder from accessing their HSM (OR)
1.2 : Prevent stakeholder from accessing their wallet software (OR)
1.3 : (see a) Compromise a stakeholder

2 : Shutdown coordinator (OR)
3 : Prevent all managers from accessing their wallet software

K : Prevent managers from broadcasting a Spend Tx
1 : Prevent managers from signing the Spend transaction (OR)

1.1 : (see d) Compromise an anti-replay oracle (OR)
1.2 : Prevent sufficient threshold of managers from signing the Spend Tx

(where A + B + C = M − K + 1) (OR)
1.2.1 : (see a) Compromise a manager (A times)
1.2.2 : Prevent manager from accessing their HSM (B times)
1.2.3 : Prevent manager from accessing their wallet software (C times)

2 : Force broadcast of Cancel Tx (OR)
2.1 : (see d) Compromise a watchtower

3 : Prevent broadcast of Unvault Tx
3.1 : High demand for block space making the Unvault Tx not profitable to

mine.3

3.2 : (see g) Compromise manager’s wallet (M times)

5 Conclusion

The rise of Bitcoin has led to a new commercial ecosystem, with market
exchanges enabling its sale and purchase, companies and financial institutions
offering secure custody services, and insurance brokers and underwriters will-
ing to insure individuals, exchanges and custodians against loss or theft of their
assets . In this paper we first posit that a methodology to better understand risks

3 Manager’s fee-bumping wallet can not cover this until a network policy such as
Package Relay [3] is implemented.

18 J. Swambo and A. Poinsot

in custodial operations is needed, something complementary to understanding
blockchain and cryptographic security. We put forth requirements of the mod-
elling technique and propose attack-trees as a formalism which satisfies those
requirements. We exemplify the approach by presenting a library of attack-trees
constructed for a multi-party custody protocol called Revault and explain how
this framework can be used as a basis for risk-management in custodial oper-
ations. The next steps for this work are to: construct a set of defences to the
prominent risks and incorporate them into the model; and to determine or build
a suitable tool for automating computations for a specific analysis.

Acknowledgements. We thank Professor McBurney (King’s College London), Kevin
Laoec (WizardSardine) for insightful conversations and for reviewing the text.

Funding Information. Funding is gratefully acknowledged under a UK EPSRC-

funded GTA Award through King’s College London and from WizardSardine.

References

1. (Bitcoin Improvement Proposal) Taproot: SegWit version 1 spending rules.
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki. Accessed 29
Jan 2021

2. Output Script Descriptors: a language for abstracting out the spending conditions
of a Bitcoin transaction output. https://github.com/bitcoin/bitcoin/blob/master/
doc/descriptors.md. Accessed 26 Jan 2021

3. Package Relay design questions for the Bitcoin P2P network. https://github.com/
bitcoin/bitcoin/issues/14895. Accessed 29 Jan 2021

4. Practical Revault: A specification for the initialization and operation of the Revault
custody protocol. https://github.com/re-vault/practical-revault

5. Glacier design document (2017). https://glacierprotocol.org/assets/design-doc-v0.
9-beta.pdf. Accessed 10 Jan 2021

6. Amoroso, E.G.: Fundamentals of Computer Security Technology. Prentice-Hall Inc,
Hoboken (1994)

7. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

8. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment, vol. 10401 LNCS (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

9. Capital Markets and Technology Association: Digital Assets Custody Standard
(2020). https://www.cmta.ch/content/272/cmta-digital-assets-custody-standard-
v1-public-consultation.pdf. Accessed 10 Jan 2021

10. Chow, A.: Partially signed bitcoin transaction format (2017). https://github.com/
bitcoin/bips/blob/master/bip-0174.mediawiki. Accessed 18 May 2020

11. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,
R.: Attack Trees for Practical Security Assessment: Ranking of Attack Scenarios
with ADTool 2.0. vol. 9826, pp. 159–162 (2016). https://doi.org/10.1007/978-3-
319-43425-4 10

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://github.com/bitcoin/bitcoin/issues/14895
https://github.com/bitcoin/bitcoin/issues/14895
https://github.com/re-vault/practical-revault
https://glacierprotocol.org/assets/design-doc-v0.9-beta.pdf
https://glacierprotocol.org/assets/design-doc-v0.9-beta.pdf
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://www.cmta.ch/content/272/cmta-digital-assets-custody-standard-v1-public-consultation.pdf
https://www.cmta.ch/content/272/cmta-digital-assets-custody-standard-v1-public-consultation.pdf
https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki
https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-3-319-43425-4_10

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 19

12. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9057, pp.
281–310 (2015). https://doi.org/10.1007/978-3-662-46803-6 10

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

14. Haque, M.S.: An evolutionary approach of attack graphs and attack trees: a survey
of attack modeling (2017)

15. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-
to-peer network. In: 24th USENIX Security Symposium (USENIX Security 15),
pp. 129–144. USENIX Association, Washington, D.C. August 2015. https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman

16. Hermanns, H., Krämer, J., Krcál, J., Stoelinga, M.: The value of attack-defence
diagrams, vol. 9635, pp. 163–185 (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

17. Hubbard, D.W., Seiersen, R.: How to Measure Anything in Cybersecurity Risk
(2016)

18. Jhawar, R., Kordy, B., Mauw, S., Radomirovic, S., Trujillo-Rasua, R.: Attack Trees
with Sequential Conjunction. CoRR abs/1503.02261 (2015). http://arxiv.org/abs/
1503.02261

19. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Foundations of attack-
defense trees, vol. 6561, pp. 80–95 (2010). https://doi.org/10.1007/978-3-642-
19751-2 6

20. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13 (2013).
https://doi.org/10.1016/j.cosrev.2014.07.001

21. Kumar, R.: Truth or Dare: Quantitative security risk analysis using attack trees.
Ph.D. thesis (2018). https://doi.org/10.3990/1.9789036546256

22. Kumar, R., Stoelinga, M.: Quantitative Security and Safety Analysis with Attack-
Fault Trees (2017). https://doi.org/10.1109/HASE.2017.12

23. Lallie, H., Debattista, K., Bal, J.: A review of attack graph and attack tree visual
syntax in cyber security. Comput. Sci. Rev. 35, 100219 (2020). https://doi.org/10.
1016/j.cosrev.2019.100219

24. Loaec, K.: Hardware wallets and “advanced” Bitcoin features (2021). https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018352.html. Accessed
19 Jan 2021

25. Loaec, K., Poinsot, A.: Revault: a multi-party Bicoin vault architecture (2020).
https://github.com/re-vault/practical-revault/blob/master/revault.pdf

26. Sato, M., Shimaoka, M., Nakajima, H.: General Security Considerations for Cryp-
toassets Custodians (2019). https://tools.ietf.org/html/draft-vcgtf-crypto-assets-
security-considerations-05

27. Maynard, P., Mclaughlin, K., Sezer, S.: Modelling Duqu 2.0 Malware using Attack
Trees with Sequential Conjunction, pp. 465–472 (2016). https://doi.org/10.5220/
0005745704650472

28. Maynard, P., McLaughlin, K., Sezer, S.: Decomposition and sequential-AND anal-
ysis of known cyber-attacks on critical infrastructure control systems. J. Cyberse-
curity 6(1) (2020). https://doi.org/10.1093/cybsec/tyaa020

29. Nguyen, H.N., Bryans, J., Shaikh, S.: Attack Defense Trees with Sequential Con-
junction. IEEE (2019)

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
http://arxiv.org/abs/1503.02261
http://arxiv.org/abs/1503.02261
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.3990/1.9789036546256
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1016/j.cosrev.2019.100219
https://doi.org/10.1016/j.cosrev.2019.100219
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018352.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018352.html
https://github.com/re-vault/practical-revault/blob/master/revault.pdf
https://tools.ietf.org/html/draft-vcgtf-crypto-assets-security-considerations-05
https://tools.ietf.org/html/draft-vcgtf-crypto-assets-security-considerations-05
https://doi.org/10.5220/0005745704650472
https://doi.org/10.5220/0005745704650472
https://doi.org/10.1093/cybsec/tyaa020

20 J. Swambo and A. Poinsot

30. Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round Schnorr multi-
signatures. Cryptology ePrint Archive, Report 2020/1261 (2020). https://eprint.
iacr.org/2020/1261

31. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. Cryptology ePrint Archive, Report 2020/1057
(2020). https://eprint.iacr.org/2020/1057

32. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

33. Perrin, T.: The Noise Protocol Framework (2018). https://noiseprotocol.org/noise.
pdf. Accessed 19 Jan 2021

34. Riard, A., Naumenko, G.: Time-dilation attacks on the lightning network (2020)
35. Schmitz, C., Sekulla, A., Pape, S.: Asset-Centric Analysis and Visualisation of

Attack Trees, pp. 45–64 (2020). https://doi.org/10.1007/978-3-030-62230-5 3
36. Schneier, B.: Attack Trees (1999). https://www.schneier.com/academic/archives/

1999/12/attack trees.html. Accessed 12 Jan 2021
37. Shostack, A.: Threat Modeling: Designing for Security (2014)
38. Square: Subzero (2020). https://subzero.readthedocs.io/en/master/. Accessed 19

Jan 2020
39. Swambo, J., Hommel, S., McElrath, B., Bishop, B.: Custody protocols using bitcoin

vaults (2020). https://arxiv.org/abs/2005.11776. Accessed 10 Jan 2021
40. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th

National Computer Security Conference (1991)
41. Wuille, P.: Hierarchical deterministic wallets (2012). https://github.com/bitcoin/

bips/blob/master/bip-0032.mediawiki. Accessed 18 May 2020

https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1057
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://doi.org/10.1007/978-3-030-62230-5_3
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://subzero.readthedocs.io/en/master/
https://arxiv.org/abs/2005.11776
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	Risk Framework for Bitcoin Custody Operation with the Revault Protocol
	1 Introduction
	2 Overview of Revault Custody Protocol
	2.1 Revault Architecture Components
	2.2 Revault Transaction Set
	2.3 Stakeholders' Signing Routine
	2.4 Managers' Spending Process

	3 Methodology
	3.1 Operational Security Models
	3.2 Attack-Tree Formalism
	3.3 On Risk Analysis

	4 Risk Model
	4.1 Common Attack Sub-Trees
	4.2 Attack-Trees

	5 Conclusion
	References

