
Matthew Bernhard · Andrea Bracciali ·
Lewis Gudgeon · Thomas Haines ·
Ariah Klages-Mundt · Shin’ichiro Matsuo ·
Daniel Perez · Massimiliano Sala ·
Sam Werner (Eds.)

LN
CS

 1
26

76 Financial Cryptography
and Data Security
FC 2021 International Workshops

CoDecFin, DeFi, VOTING, and WTSC
Virtual Event, March 5, 2021
Revised Selected Papers

Lecture Notes in Computer Science 12676

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Matthew Bernhard · Andrea Bracciali ·
Lewis Gudgeon · Thomas Haines ·
Ariah Klages-Mundt · Shin’ichiro Matsuo ·
Daniel Perez ·Massimiliano Sala ·
Sam Werner (Eds.)

Financial Cryptography
and Data Security
FC 2021 International Workshops

CoDecFin, DeFi, VOTING, and WTSC
Virtual Event, March 5, 2021
Revised Selected Papers

Editors
Matthew Bernhard
University of Michigan–Ann Arbor
Ann Arbor, MI, USA

Lewis Gudgeon
Imperial College London
London, UK

Ariah Klages-Mundt
Ithaca College
Ithaca, USA

Daniel Perez
Imperial College London
London, UK

Sam Werner
Imperial College London
London, UK

Andrea Bracciali
Computer Science and Mathematics
Stirling University
Stirling, UK

Thomas Haines
Norwegian University of Science
and Technology
Trondheim, Norway

Shin’ichiro Matsuo
Department of Computer Science
Georgetown University
Washington, WA, USA

Massimiliano Sala
Dipartimento di Matematica
University of Trento
Trento, Trento, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-63957-3 ISBN 978-3-662-63958-0 (eBook)
https://doi.org/10.1007/978-3-662-63958-0

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part
of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://orcid.org/0000-0003-1451-9260
https://orcid.org/0000-0002-7266-5146
https://doi.org/10.1007/978-3-662-63958-0

CoDecFin 2021 Preface

The Second Workshop on Coordination of Decentralized Finance (CoDecFin 2021)
took place in conjunction with Financial Cryptography and Data Security 2021 on
March 5, 2021. The CoDecFin workshop is focused on multi-disciplinary issues regard-
ing technologies and operations of decentralized finance based on permissionless
blockchain.

From an academic point of view, security and privacy protection are some of
the leading research streams. The Financial Cryptography conference discusses these
research challenges. On the other hand, other stakeholders than cryptographers and
blockchain engineers have different interests in these characteristics of blockchain
technology. For example, regulators face difficulty in tracing transactions in terms of anti-
money laundering (AML) against privacy-enhancing crypto-assets. Another example is
consumer protection in the case of cyberattacks on crypto-asset custodians. Blockchain
business entities sometimes start their business before maturing technology, but the
technology and operations are not transparent to regulators and consumers. The main
problem is a lack of communication among stakeholders of the decentralized finance
ecosystem. TheG20 discussed the issue of insufficient communication among stakehold-
ers in 2019. It concluded that there is an essential need for multi-stakeholder discussion
among engineers, regulators, business entities, and operators based on the neutrality of
academia.

The CoDecFin workshop was initiated in 2020 to facilitate such multi-stakeholder
discussion in a neutral academic environment. The goals of CoDecFin were to have
common understandings of technology and regulatory goals and to discuss essential
issues of blockchain technology faced by all stakeholders mentioned above. It was a
historic workshop because we could involve regulators and engineers in the discussion
at the Financial Cryptography conference.

CoDecFin 2021 consisted of three parts: a keynote talk, presentations by all stake-
holders, and roundtable discussions. The keynote talk by Peter Van Balkenburgh dis-
cussed “Your Right to DeFi”. The presentations were selected based on the peer-review
process. The topics included DeFi risks, AML/KYC, and privacy. As this workshop was
held right after the Financial Crimes Enforcement Network (FinCEN) proposed a new
draft regulation on AML/KYC and the treatment of un-hosted wallets, the AML/KYC
and privacy session focused on the issues related to this proposal. In the third part, we
invited panelists fromall stakeholders, including blockchain businesses, regulators, engi-
neers, and academia, on the AML/KYC session issues to join the roundtable discussions.
Presentations and discussions are included as papers of this proceedings.

May 2021 Shin’ichiro Matsuo

CoDecFin 2021 Organization

Workshop Chair

Shin’ichiro Matsuo Georgetown University, NTT Research, and
BSafe.network, USA

Program Committee

Julien Bringer Kallistech, France
Joaquin Garcia-Alfaro Telecom SudParis, France
Arthur Gervais Imperial College London, UK
Byron Gibson Stanford Center for Blockchain Research, USA
Feng Chen University of British Columbia, Canada
Shin’ichiro Matsuo (Chair) Georgetown University, NTT Research, and

BSafe.network, USA
Steven Nam Stanford Journal of Blockchain Law & Policy, USA
Michele Benedetto Neitz Golden Gate University, USA
Roman Danziger Pavlov SafeStead Inc., USA
Robert Schwentker DLT Education and BSafe.network, USA
Yonatan Sompolinsky The Hebrew University of Jerusalema and DAGlabs,

Israel
Shigeya Suzuki Keio University
Ryosuke Ushida JFSA and Georgetown University, USA
Robert Wardrop University of Cambridge, UK
Pindar Wong BSafe.network, Hong Kong
Aaron Wright Cardozo School of Law, USA
Anton Yemelyanov Base58 Association, Canada
Aviv Zohar The Hebrew University of Jerusalem, Israel

DeFi 2021 Preface

These proceedings collect the papers accepted at the First Workshop on Decentralized
Finance (DeFi 2021 - http://fc21.ifca.ai/defi/), held in association with the Financial
Cryptography and Data Security 2021 conference (FC 2021) on March 5, 2021.

The focus of theDeFiworkshop series is decentralized finance, a blockchain powered
peer-to-peer financial system. This first workshop coincided with the early fruition of
DeFi, and sought to solicit contributions fromboth academia and industrywhich focussed
on addressing fundamental, timely, and important questions at the centre of DeFi.

This first workshop received 40 submissions, of which 22 were accepted either as a
short paper (9) or as a talk (13). All of the short papers and a subset of the talks, as précis,
appear in these proceedings. Overall, the organizers were extremely impressed by the
quality of submissions received and were delighted by the strong attendance and lively
discussion during the workshop. The workshop was conducted online as a result of the
COVID-19 pandemic, but we look forward to future years where it can be conducted in
person.

In addition to talks pertaining to submissions we had a guest speaker, Raphael Auer,
from the Bank for International Settlements, and we would like to thank him for his talk.
The workshop closed with a panel, featuring Tarun Chitra (Gauntlet), Robert Leshner
(Compound), AndrewMiller (University of Illinois at Urbana-Champaign), and Jeremy
Musighi (Balancer), which covered a wide range of topics from privacy in DeFi to the
role of auditors. We would like to sincerely thank the panelists for taking part and for
the lively discussion

The Organizing Committee would like to extend sincere thanks to all those who
submitted their work, the Program Committee for their careful work, and all those
who participated in the workshop. In addition, we would like to extend our thanks to
KevinMcCurley and KayMcKelly, for their seamless organization of the online support
needed to conduct this event virtually, and Rafael Hirschfeld for his flawless support,
organization, and encouragement of this first workshop.

June 2021 Lewis Gudgeon
Ariah Klages-Mundt

Daniel Perez
Sam Werner

http://fc21.ifca.ai/defi/

DeFi 2021 Organization

Workshop Chairs

Lewis Gudgeon Imperial College London, UK
Ariah Klages-Mundt Cornell University, USA
Daniel Perez Imperial College London, UK
Sam Werner Imperial College London, UK

Program Committee

Cuneyt Akcora University of Manitoba, Canada
Raphael Auer Bank for International Settlements, Switzerland
Tarun Chitra Gauntlet Networks, USA
Martin Florian Humboldt-Universität zu Berlin
Dominik Harz Imperial College London, UK
William Knottenbelt Imperial College London, UK
Jiasun Li George Mason University, USA
Benjamin Livshits Imperial College London and Brave Software, UK
Jun-You Liu Cornell University, USA
Patrick McCorry anydot, UK
Andrew Miller University of Illinois at Urbana-Champaign, USA
Andreea Minca Cornell University, USA
Daniel Moroz Harvard University, USA
David Parkes Harvard University, USA
Julien Prat CNRS, France
Tim Roughgarden Columbia University, USA
Alexei Zamyatin Imperial College London, UK
Fan Zhang Chainlink, USA

VOTING 2021 Preface

VOTING 2021 marks the 6th Workshop on Advances in Secure Electronic Voting
associated with the Financial Cryptography and Data Security 2021 conference (FC
2021) held virtually due to the COVID-19 pandemic on March 5, 2021.

This year’s workshop received 14 papers with 7 accepted. We are grateful for our
Program Committee for their time and effort, and especially their flexibility when we
extended the submission deadline.We also thank the authors of all submitted papers, and
especially the presenters for joining the workshop online despite the ongoing COVID-
19 crisis. We are also grateful to Ray Hirschfeld, Sergi Delgado Segura, and IFCA for
organizing all the logistics of the event and the FC workshop chairs for their continued
support of VOTING. For VOTING 2022 the tradition of staggered chairs is continued
with Thomas Haines and Aleks Essex serving as program chairs.

April 2021 Matthew Bernhard
Thomas Haines

VOTING 2021 Organization

Program Chairs

Matthew Bernhard VotingWorks, USA
Thomas Haines Norwegian University of Science and Technology,

Norway

Program Committee

Roberto Araujo Universidade Federal do Pará, Brazil
Josh Benaloh Microsoft Research, USA
Jeremy Clark Concordia University, Canada
Chris Culnane Independent Researcher, UK
Constantin Dragan University of Surrey, UK
Jeremy Epstein SRI International, USA
Aleksander Essex Western University, Canada
Kristian Gjøsteen Norwegian University of Science and Technology
Rajeev Gore The Australian National University, Australia
Rolf Haenni Bern University of Applied Sciences, Switzerland
Reto Koenig Bern University of Applied Sciences, Switzerland
Ralf Kuesters University of Stuttgart, Germany
Oksana Kulyk IT University of Copenhagen, Denmark
Olivier Pereira Université catholique de Louvain, Belgium
Peter Rønne University of Luxembourg, Luxembourg
Peter Y. A. Ryan University of Luxembourg, Luxembourg
Steve Schneider University of Surrey, UK
Carsten Schuermann IT University of Copenhagen, Denmark
Philip Stark University of California, Berkeley, USA
Vanessa Teague Thinking Cybersecurity, Australia
Poorvi Vora The George Washington University, USA
Dan Wallach Rice University, USA

WTSC 2021 Preface

These proceedings collect the papers accepted at the Fifth Workshop on Trusted
Smart Contracts (WTSC21 - http://fc21.ifca.ai/wtsc/) associated with the Financial
Cryptography and Data Security 2021 conference (FC 2021).

The WTSC series focuses on smart contracts, i.e., self-enforcing agreements in the
form of executable programs, and other decentralized applications that are deployed to,
and run on top of, (specialized) blockchains. These technologies introduce a novel pro-
gramming framework and execution environment, which, together with the supporting
blockchain technologies, carry unanswered and challenging research questions. Mul-
tidisciplinary and multifactorial aspects affect correctness, safety, privacy, authentica-
tion, efficiency, sustainability, resilience, and trust in smart contracts and decentralized
applications.

WTSCaims to address the scientific foundations of Trusted Smart Contract engineer-
ing, i.e., the development of contracts that enjoy someverifiable “correctness” properties,
and to discuss open problems, proposed solutions, and the vision on future develop-
ments amongst a research community that is growing around these themes and brings
together users, practitioners, industry, institutions, and academia. This was reflected in
themultidisciplinary ProgramCommittee (PC) of this fifth edition ofWTSC, comprising
members from companies, universities, and research institutions from several countries
worldwide, who kindly accepted to support the event. The association with FC 2021
provided, once again, an ideal context for our workshop.

This year’s edition of WTSC received 30 submissions by about 90 authors, con-
firming a growing trend and increased interest. Given the high quality of submission,
16 papers were accepted after double-blind peer review. Thanks to the generous effort
by the PC, each paper received an average of 3.3 reviews, providing constructive feed-
back to authors. Papers revised after the discussion at the workshop are collected in the
present volume. These analyze the current state of the art of smart contracts and their
development. Important aspects that were discussed at the workshop included secu-
rity and verification, attacks’ analysis, scalability, relationships of smart contracts and
consensus, and privacy-preserving applications. An emerging theme received a lot of
attention: decentralized finance (DeFi). Apart from the contributed talks, we had a final
roundtable on DeFi jointly with the 2nd Workshop on Coordination of Decentralized
Finance (CoDecFin 2021).

Generally speaking, the presentations made a full day of interesting talks and dis-
cussion. More detailed video presentations are made available online on a dedicated
YouTube channel1 that can be reached from theworkshop’s web page. Following our tra-
dition of excellent invited speakers (Buterin, Breitman, Gutmann, Mishra, Artamonov,
Grigg), our workshop started with a beautiful presentation by Darren Tapp, leading
scientist in the cryptocurrency community DASH.

1 https://www.youtube.com/watch?v=MvGnPhpkNlM&list=PL_aN0fSJkEsoopkLAivp89w5hH
dF19W0A.

http://fc21.ifca.ai/wtsc/
https://www.youtube.com/watch?v=MvGnPhpkNlM&list=PL_aN0fSJkEsoopkLAivp89w5hHdF19W0A

xviii WTSC 2021 Preface

This year’s editionwas planned to take place inGranada, Spain, onMarch 5, 2021, but
was held online due to the COVID-19 pandemic. Although we missed direct interaction
a lot, we believe the community enjoyed the online presentations and discussions.

WTSC 2021’s chairs would like to thank everyone for their usual, and this year extra,
effort and valuable contributions: authors, Program Committee members and reviewers,
and participants, as well as the support by IFCA, FC 2021 committees, Kevin McCurley
and Kay McKelly for the online framework to run the conference, and Ray Hirschfeld
for the usual exceptional organization of the event.

May 2021 Andrea Bracciali
Massimiliano Sala

WTSC 2021 Organization

Workshop Chairs

Andrea Bracciali University of Stirling, UK
Massimiliano Sala University of Trento, Italy

Program Committee

Monika di Angelo Vienna University of Technology, Austria
Igor Artamonov Ethereum Classic, UK
Daniel Augot Inria, France
Surya Bakshi University of Illinois, USA
Fadi Barbara University of Turin, Italy
Massimo Bartoletti University of Cagliari, Italy
Stefano Bistarelli University of Perugia, Italy
Christina Boura Versailles Saint-Quentin-en-Yvelines University,

France
Andrea Bracciali University of Stirling, UK
Daniel Broby Strathclyde University, UK
James Chapman IOHK, UK
Martin Chapman King’s College London, UK
Alexander Denzler Lucerne University of Applied Sciences and Arts,

Switzerland
Nicola Dimitri University of Siena, Italy
Nadia Fabrizio Cefriel, Italy
Murdoch Gabbay Heriot-Watt University, UK
Oliver Giudice Banca d’Italia, Italy
Davide Grossi University of Groningen, The Netherlands
Yoichi Hirai brainbot technologies AG, Denmark
Lars R. Knudsen Technical University of Denmark, Denmark
Ioannis Kounelis Joint Research Centre, European Commission, Italy
Pascal Lafourcade University of Clermont Auvergne, France
Andrew Lewis-Pye London School of Economics, UK
Carsten Maple University of Warwick, UK
Michele Marchesi University of Cagliari, Italy
Fabio Martinelli IIT-CNR, Italy
Luca Mazzola Lucerne University of Applied Sciences and Arts,

Switzerland
Sihem Mesnager University of Paris 8 Vincennes-Saint-Denis, France
Philippe Meyer Avaloq, Switzerland
Bud Mishra New York University, USA

xx WTSC 2021 Organization

Carlos Molina-Jimenez University of Cambridge, UK
Massimo Morini Banca IMI, Italy
Immaculate Motsi-Omoijiade University of Warwick, UK
Alex Norta Tallin University of Technology, Estonia
Akira Otsuka Institute of Information Security, Japan
Federico Pintore University of Oxford, UK
Massimiliano Sala University of Trento, Italy
Jason Teutsch Truebit, USA
Roberto Tonelli University of Cagliari, Italy
Luca Viganò University of Verona, Italy
Philip Wadler University of Edinburgh, UK
Yilei Wang Qufu Normal University, China
Tim Weingärtner Hochschule Lucerne, Switzerland
Ales Zamuda University of Maribor, Slovenia
Santiago Zanella-Beguelin Microsoft, UK
Dionysis Zindros University of Athens, Greece

Contents

CoDecFin – DeFi Risks

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 3
Jacob Swambo and Antoine Poinsot

Regulatory Considerations on Centralized Aspects of DeFi Managed
by DAOs . 21

Ryosuke Ushida and James Angel

CoDecFin – AML/KYC and Privacy

Collaborative Deanonymization . 39
Patrik Keller, Martin Florian, and Rainer Böhme

Re: FinCEN Docket Number FINCEN-2020-0020; RIN 1506-AB47;
Requirements for Certain Transactions Involving Convertible Virtual
Currency or Digital Assets . 47

Ryan Taylor

Analyzing FinCEN’s Proposed Regulation Relating to AML and KYC
Laws . 54

Aaron Wright and Sachin Meier

DeFi – Protocol Design

Optimal Fees for Geometric Mean Market Makers . 65
Alex Evans, Guillermo Angeris, and Tarun Chitra

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 80
W. Gawlikowicz, B. Mannerings, T. Rudolph, and D. Šiška

Understand Volatility of Algorithmic Stablecoin: Modeling, Verification
and Empirical Analysis . 97

Wenqi Zhao, Hui Li, and Yuming Yuan

Measuring Asset Composability as a Proxy for DeFi Integration 109
Victor von Wachter, Johannes Rude Jensen, and Omri Ross

xxii Contents

Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 115
Mudabbir Kaleem and Weidong Shi

On Stablecoin Price Processes and Arbitrage . 124
Ingolf Gunnar Anton Pernice

Red-Black Coins: Dai Without Liquidations . 136
Mehdi Salehi, Jeremy Clark, and Mohammad Mannan

DeFi – Formal Attack Analysis

Formal Analysis of Composable DeFi Protocols . 149
Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu

How to Exploit a DeFi Project . 162
Xinyuan Sun, Shaokai Lin, Vilhelm Sjöberg, and Jay Jie

DeFi – Economics and Regulation

DeFi as an Information Aggregator . 171
Jiasun Li

A Game-Theoretic Analysis of Cross-ledger Swaps with Packetized
Payments . 177

Alevtina Dubovitskaya, Damien Ackerer, and Jiahua Xu

DeFi – MEV and Illicit Activity

Wendy Grows Up: More Order Fairness . 191
Klaus Kursawe

Measuring Illicit Activity in DeFi: The Case of Ethereum 197
Jiasun Li, Foteini Baldimtsi, Joao P. Brandao, Maurice Kugler,
Rafeh Hulays, Eric Showers, Zain Ali, and Joseph Chang

DeFi – Order Routing and Formal Methods

Global Order Routing on Exchange Networks . 207
Vincent Danos, Hamza El Khalloufi, and Julien Prat

Towards a Theory of Decentralized Finance . 227
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente

Contents xxiii

Voting

Auditing Hamiltonian Elections . 235
Michelle Blom, Philip B. Stark, Peter J. Stuckey, Vanessa Teague,
and Damjan Vukcevic

Cast-as-Intended: A Formal Definition and Case Studies . 251
Peter B. Rønne, Peter Y. A. Ryan, and Ben Smyth

Mobile Voting – Still Too Risky? . 263
Sven Heiberg, Kristjan Krips, and Jan Willemson

New Standards for E-Voting Systems: Reflections on Source Code
Examinations . 279

Thomas Haines and Peter Roenne

Post-quantum Online Voting Scheme . 290
Guillaume Kaim, Sébastien Canard, Adeline Roux-Langlois,
and Jacques Traoré

Short Paper: Ballot Secrecy for Liquid Democracy . 306
Mahdi Nejadgholi, Nan Yang, and Jeremy Clark

Shorter Lattice-Based Zero-Knowledge Proofs for the Correctness
of a Shuffle . 315

Javier Herranz, Ramiro Martínez, and Manuel Sánchez

WTSC – Security and Verification

On-Chain Smart Contract Verification over Tendermint . 333
Luca Olivieri, Fausto Spoto, and Fabio Tagliaferro

Publicly Verifiable and Secrecy Preserving Periodic Auctions 348
Hisham S. Galal and Amr M. Youssef

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 364
Łukasz Mazurek

Absentia: Secure Multiparty Computation on Ethereum . 381
Didem Demirag and Jeremy Clark

Empirical Analysis of On-chain Voting with Smart Contracts 397
Robert Muth and Florian Tschorsch

xxiv Contents

WTSC – Foundations

Mirroring Public Key Infrastructures to Blockchains for On-Chain
Authentication . 415

Ulrich Gallersdörfer, Friederike Groschupp, and Florian Matthes

Reactive Key-Loss Protection in Blockchains . 431
Sam Blackshear, Konstantinos Chalkias, Panagiotis Chatzigiannis,
Riyaz Faizullabhoy, Irakliy Khaburzaniya, Eleftherios Kokoris Kogias,
Joshua Lind, David Wong, and Tim Zakian

Merkle Trees Optimized for Stateless Clients in Bitcoin . 451
Bolton Bailey and Suryanarayana Sankagiri

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 467
Dionysis Zindros

Privacy-Preserving Resource Sharing Using Permissioned Blockchains:
(The Case of Smart Neighbourhood) . 482

Sepideh Avizheh, Mahmudun Nabi, Saoreen Rahman, Setareh Sharifian,
and Reihaneh Safavi-Naini

WWTSC – Attacks’ Analysis

SoK: Algorithmic Incentive Manipulation Attacks on Permissionless PoW
Cryptocurrencies . 507

Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary,
Ittay Eyal, Peter Gaži, Sarah Meiklejohn, and Edgar Weippl

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies . . . 533
Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary,
Ittay Eyal, Peter Gaži, Sarah Meiklejohn, and Edgar Weippl

WTSC – DeFi and Tokens

SoK: Lending Pools in Decentralized Finance . 553
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente

Standardized Crypto-Loans on the Cardano Blockchain . 579
Dmytro Kondratiuk, Pablo Lamela Seijas, Alexander Nemish,
and Simon Thompson

Fairness in ERC Token Markets: A Case Study of CryptoKitties 595
Kentaro Sako, Shin’ichiro Matsuo, and Sachin Meier

Contents xxv

Coins, Covid, Keynes and K-Shaped Recovery . 611
Pepi Martinez, William Huang, and Bud Mishra

Author Index . 629

CoDecFin – DeFi Risks

Risk Framework for Bitcoin Custody
Operation with the Revault Protocol

Jacob Swambo1,2(B) and Antoine Poinsot2

1 Department of Informatics, King’s College London, London, England
jacob.swambo@kcl.ac.uk

2 WizardSardine, Lisboa, Portugal
darosior@protonmail.com

Abstract. Our contributions with this paper are twofold. First, we elu-
cidate the methodological requirements for a risk framework of custodial
operations and argue for the value of this type of risk model as comple-
mentary with cryptographic and blockchain security models. Second, we
present a risk model in the form of a library of attack-trees for Revault
– an open-source custody protocol. The model can be used by organisa-
tions as a risk quantification framework for a thorough security analysis
in their specific deployment context. Our work exemplifies an approach
that can be used independent of which custody protocol is being consid-
ered, including complex protocols with multiple stakeholders and active
defence infrastructure.

1 Introduction

While mainstream acceptance of Bitcoin as an asset appears to be increasing,
advanced tools and methods for secure custody of bitcoins are slow to develop.
Bitcoin custody encompasses the protection of assets through software, hard-
ware, and operational processes. The foundation of Bitcoin custody is key-
management, a well understood topic in the academic literature and in prac-
tice. However, Bitcoin custody, in particular multi-stakeholder custody, involves
human processes, communication protocols, network monitoring and response
systems, software, hardware and physical security environments. Given a secure
cryptographic layer, there are still vulnerabilities introduced at the application
layer by software developers, at the hardware layer throughout the supply chain,
and at the operations layer by users. Without adequate risk management frame-
works for custodial operations, Bitcoin users are likely to suffer unexpected losses
whether they self-custody funds or employ a third-party custodian.

Open-source custody protocols are emerging [5,25,38,39] and are a critical
ecosystem component for improving security standards. If a custody protocol
stands to public scrutiny and offers a high-level of security without relying on
proprietary processes, users, insurance companies and regulators can have more
confidence in it. The emerging custody protocols are trying to reconcile the
needs of traditional businesses and banking with Bitcoin’s novel identity-less and
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-662-63958-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_1&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_1

4 J. Swambo and A. Poinsot

irreversible transaction properties. A lack of available and accepted open-source
custody protocols means that organisations are heavily relying on third-party
custodians, or deploying their own custody protocol.

We propose an attack modelling technique as the basis for a risk frame-
work for Bitcoin custody operations, using the Revault protocol1 as a case-study
[4,25]. While the process of model construction is intensive, the resultant frame-
work is extensible and modular and some of its components can be re-used
with different custody protocols. It is intended to be readily comprehensible,
and, given sufficient validation, the framework can be used by any organisation
intending to deploy Revault to better understand their risk posture.

Risk quantification frameworks address several ecosystem problems. Organ-
isations that control bitcoins or other digital assets need accurate models to
engage in realistic risk-management. The complexity of custodial risks leaves
insurance companies guessing rather than systematically estimating when pric-
ing their insurance offerings or assessing particular solutions for digital custody.
Finally, emerging regulatory standards for custody [9,26] are simple and fail to
capture advanced custody architectures or enable context-specific risk analyses
that acknowledge the full security environment of a custody operation.

The remainder of this paper is structured as follows. Section 2 summarises the
components and processes of the Revault protocol. Section 3 discusses our eval-
uation criteria for an operational risk framework, and introduces the attack-tree
formalism on which our risk model is based. Section 4 presents our operational
risk model for Revault. Section 5 concludes this paper.

2 Overview of Revault Custody Protocol

Revault is a multi-party custody protocol that distinguishes between stakehold-
ers and fund managers. The primary protection for funds is a high-threshold
multi-signature Script controlled by the stakeholders. The day-to-day opera-
tional overhead of fund management is simplified by enabling portions of funds
to be delegated to fund managers. Stakeholders define spending policies in-line
with traditional controls of expenses, and have automated servers to enforce
their policies. In addition, a deterrent is withheld by each stakeholder to mitigate
incentives to physically threaten the stakeholders. To achieve this, Revault makes
use of sets of pre-signed transactions coupled with an active defence mechanism
for detecting and responding to attempted theft transactions. In the following,
we will outline the components of the Revault architecture, the transaction set,
the stakeholders’ routine signing process and the managers’ spend process. Refer
to [4] for the detailed specification of the open-source protocol.

1 Specifically, the version identified as 609b40dda07155abe5cd4a5af77fc2211d11fbc1
which can be found on the open-source repository hosted on Github [4].

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 5

2.1 Revault Architecture Components

Each stakeholder and manager has a hardware security module (HSM) to manage
their private keys and generate signatures for transactions. A backup of private
keys is stored for each HSM in a separate protected physical environment.

Fig. 1. Diagram of the transaction (Tx) set structure in the Revault protocol. An
Unspent-transaction-output (UTxO) is created by a preceding Tx and is consumed by
an input in a proceeding Tx.

Each stakeholder and manager uses a wallet software to track their co-owned
bitcoins, craft transactions, store transaction signatures and communicate with
each other through a coordinator. The coordinator is a proxy server that sim-
plifies communication for the multi-party wallet. All communication uses Noise
KK encrypted and authenticated channels [33].

Stakeholders each have one or more watchtower, an online server that enforces
the stakeholder’s spending policy limitations. Stakeholders each have an anti-
replay oracle server.

2.2 Revault Transaction Set

The use of hierarchical deterministic wallets means that each participant in
the Revault protocol has a tree of public and private keys [41]. To discuss
ownership of bitcoins, we refer to a generalisation of a locking Script, called
a descriptor. The wallet will have multiple addresses that correspond to a single
abstracted descriptor. Funds are deposited into the multi-party wallet through
a Deposit transaction (Tx) output that pays to the deposit descriptor, describ-
ing N−signatories locking Scripts derived from the stakeholders’ (stk) extended
public keys (xpub). In descriptors language formalisation [2] it is defined as:

6 J. Swambo and A. Poinsot

thresh(N, stk_1_xpub, stk_2_xpub, ..., stk_N_xpub)

The set of transactions prepared with stakeholders’ wallets and signed using
their hardware security modules (HSM) include the Emergency Tx, Unvault Tx,
Unvault-Emergency Tx and Cancel Tx. The managers can only prepare and sign
a Spend Tx type. Figure 1 depicts these transactions and the essential unspent-
transaction-outputs (UTxOs) they create or consume.

An Emergency Tx locks funds to an emergency descriptor which is unspeci-
fied by the Revault protocol and is kept private among stakeholders. The descrip-
tor must however be harder to unlock than the deposit descriptor. This is the
deterrent for physical threats to the stakeholders.

An Unvault Tx consumes the deposit UTxO and creates an unvault UTxO
locked to the unvault descriptor,

or(thresh(N, stk_1_xpub, stk_2_xpub, ..., stk_N_xpub),
and(thresh(K, man_1_xpub, ..., man_M_xpub),

and(thresh(N, oracle_1_xpub, ..., oracle_N_xpub),
older(X)))),

that is redeemable by either the N stakeholders or the M managers (man) along
with N automated anti-replay oracles after X blocks.

A Cancel Tx consumes the unvault UTxO and creates a new deposit UTxO.
The watchtowers’ role is to broadcast the Cancel Tx if a fraudulent spend
attempt is detected (either through an unauthorised attempt at broadcasting
an Unvault Tx or if a Spend Tx does not abide by the spending policy). The
time-lock gives watchtowers X blocks worth of time to broadcast a Cancel Tx.
An Unvault-Emergency Tx consumes the unvault UTxO and locks funds to the
emergency descriptor. It has the same purpose as the Emergency Tx, only it
consumes the unvault UTxO rather than the deposit UTxO. A Spend Tx is
used by managers to pay to external addresses.

2.3 Stakeholders’ Signing Routine

Stakeholders’ wallets routinely check for new deposits and each one triggers a
signing routine. Figure 2 shows the connections and message types for an exam-
ple Revault deployment enacting the signing routine. The wallet crafts an Emer-
gency Tx and requests the stakeholder to sign it using their HSM. The stake-
holder will verify the emergency descriptor on the HSM before authorising the
signature generation2. The wallet then connects to the coordinator to push its
signature and will fetch other stakeholders’ signatures.

Optionally, stakeholders may also sign the Cancel, Unvault-Emergency, and
Unvault Txs to securely delegate funds to the managers. In this case the signing

2 This feature is not available with current HSMs, but integrating compatibility
with descriptors (along with other security features) would improve the human-
verification component of HSM security and is being discussed on the bitcoin-dev
mailing list [24].

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 7

Fig. 2. Data flow diagram for the communication of the stakeholders’ signing routine
with an example Revault deployment. There are three stakeholders (S) who each have
one or two watchtowers (WT). There are two managers (M) and a coordinator. Signa-
ture messages, signature requests and watchtower acknowledgements (ACK) are only
shown once per connection type but apply to each connection of that type (e.g. there
is {← signature, → ACK} between each WT and S).

process is the same but is carried out in two steps: first, the signatures for the
Cancel and Unvault-Emergency Txs are exchanged with the other stakeholders
through the coordinator and then shared with the watchtower(s), and only then
are the Unvault Tx signatures shared with managers.

2.4 Managers’ Spending Process

Most spending policies cannot be inferred from the Unvault Tx alone and so the
Spend Tx must be known to the watchtower to validate an unvaulting attempt. In
these cases the Spend Tx must be advertised to the watchtowers before unvault-
ing, otherwise it will be cancelled. The anti-replay oracle is required to avoid the
Spend Tx being modified by the managers after the unvault time-lock expires
and thus by-passing enforcement of the watchtowers’ spending policies.

Any manager can initiate a spend. Figure 3 depicts the spend process. The
initiator creates a Spend Tx, verifies and signs it using their HSM and passes
it back to the wallet in the partially-signed Bitcoin Tx (PSBT) format [10].
It’s exchanged with a sufficient threshold of the other managers to add their
signatures and hand it back to the initiator. The initiator requests a signature
from each of the anti-replay oracles and pushes the fully-signed Spend Tx to
the coordinator. The initiator broadcasts the Unvault Tx, triggering a lookup
from the watchtowers to the coordinator for the Spend Tx. If the Spend Tx is

8 J. Swambo and A. Poinsot

valid according to all of the watchtowers policies and none of them cancel this
unvaulting attempt, the manager waits X blocks and broadcasts the Spend Tx.

If, during the unvaulting process, there’s a significant increase in the fee-
level required for a Spend Tx to be mined, a manager needs to bump the fee.
Managers use a dedicated single-party fee wallet for this. Similarly, watchtowers
use a fee wallet in the case there is high demand for block space to bump the
fee for Cancel or emergency Txs.

Fig. 3. Data flow diagram for the communication of the managers’ spend process. In
this example there are two managers (M), three anti-replay oracles (O), five watch-
towers (WT) and a coordinator. A Partially-signed Bitcoin Tx (PSBT) is exchanged
among managers and between a manager and the anti-replay oracles. A fully signed
SpendTx is shared with the WTs through the coordinator.

3 Methodology

To see where this research fits in to the big picture, consider the key life-cycle
of a custodial operation. There are three phases; initialization, operation, and
termination. Initialization is where wallet and communication keys are gener-
ated, where software integrity is verified, hardware security modules are checked,
and relevant public information is shared among participants. Operation encom-
passes the active fund management. Termination is the phase wherein the wallet
is de-commissioned and all sensitive information destroyed. Initialization and
termination are out of scope for this paper. Our risk model covers the oper-
ations phase. In the following we present our rationale for our chosen attack
modeling formalism and explain how this can be used as a risk framework.

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 9

3.1 Operational Security Models

A framework for high-level risk analyses for the integration of custody into a
multi-stakeholder context has not yet been presented. To-date the literature
has focused primarily on cryptographic security modeling, dealing with low-
level risks associated with cryptographic primitives, key-management protocols,
HSMs and single-party wallets. The underlying cryptographic security is funda-
mental but should be complemented by an operational security model, which
is much more likely to be the domain where participants create vulnerabilities
for an attacker. Advanced custody protocols that use multi-layer access control
with both static and active defences for insider and external attackers demand
a whole-system approach to security analysis.

We present now several requirements for our modelling formalism: a) the
ability to represent complex processes with numerous components and sequential
events; b) supports qualitative risk analysis; c) supports automated quantitative
methods for multi-attribute risk analysis; d) readily comprehensible and visual
models that are more amenable to open-source intelligence; and e) extensible
and modular models to support differential analysis and re-use of modules.

The two most popular attack modeling techniques in cyber-security literature
are attack-trees and attack graphs [23]. In short, tools for attack graphs tend
to produce graphs that aren’t readily comprehensible due to the complexity of
real-world attack scenarios [14]. That is, attack graphs don’t scale well [35]. On
the other hand, attack-trees seem to meet all of our requirements, at least when
considered with the right structure and semantics (as described in Sect. 3.2) and
thus we construct our risk model using this formalism.

While a statement such as ‘our custody solution is based on an m−of−n
security model’ can entail a lot for simple multi-signature custody protocols, it
doesn’t capture the reality nearly as well as our proposed methodology would.
It is certainly not sufficient for a more complex custody protocol like Revault.
What is the physical environment for those n private keys? Are any of those keys
online? Are there key backups and, if so, what protections are in place for these?
Too much depends on the broader security environment of a custody protocol
for it to be left without scrutiny.

Application threat modelling has been used to harden the Revault proto-
col throughout both its theoretical development and implementation. For each
application process (spend, routine signing, emergency, revault) a component-by-
component and connection-by-connection analysis has been carried out to deter-
mine the consequences of outages, data tampering, component corruption, etc.,
and has resulted in the design specification [4] and the transaction flow threat
model [25]. The application threat modeling approach is complementary and
has informed us in enumerating the risks presented with the attack-trees. How-
ever, in contrast to attack-trees, it lacks a semantic structure which is amenable
for automated risk quantification and thus isn’t suitable as the basis of a risk
framework.

10 J. Swambo and A. Poinsot

3.2 Attack-Tree Formalism

The risk model is presented using the formalism of attack-trees [6,36,40]. Attack-
trees have an attack at their root, and branches that capture alternate (OR) and
complementary (AND) attack pathways comprised of intermediate attack goals
as non-leaf nodes and basic attack steps as leaf nodes. As in numerous other
works [11,18,22,27–29], we extend the basic attack-tree to support sequential
conjunction of branches (SAND) allowing us to model an attack where some
sub-tree of an attack pathway has to occur before and in addition to another
sub-tree. For brevity we depict our attack-trees as nested lists. The logical gates
(OR, AND, SAND) shown with each node apply to the next node at the same
depth. This means that at any given depth, a node with a SAND gate occurs
before other nodes that are shown below it. Some aspects of the system are
built to be resilient to attack and failure through redundancy. For example, an
attacker needs to compromise all stakeholders’ private keys to steal funds locked
to the deposit descriptor. To be concise, rather than having several copies of the
same sub-tree we write (X times) to note that the sub-tree has to happen X
times. During an analysis, these sub-trees should be considered as X separate
AND sub-trees, since they are contextually different (corresponding to different
participants, remote and physical environments).

We provide a set of attack-trees, capturing prominent risks that have been
enumerated primarily by considering tangible and intangible assets. Tangible
assets (bitcoins) are distinguished by the access control structures determined
by the set of descriptors. We consider operational privacy and business continuity
as intangible assets.

Our work here is focused on security, rather than safety. In principle, the
same methodology could be extended to an integrated security-safety model by
constructing attack-fault-trees [22]. Another common extension to the attack-
tree formalism is to include countermeasures, producing attack-defence-trees [16,
19]. The benefit of our modular modelling technique is that it enables future
work to integrate these extensions and re-use results from this work. Hence, we
prioritise constructing a strong foundation based only on attacks, and aim to
incrementally improve on the model presented as new intelligence emerges.

3.3 On Risk Analysis

Our purpose in constructing the risk model presented in Sect. 4 is to provide a
framework to support both qualitative and quantitative risk analyses for specific
deployment instances of Revault custody. By determining costs, likelihoods, and
other attributes for risks associated with custodial processes, an organisation can
perform a differential analysis of countermeasures until their risk-tolerance is sat-
isfied. An explicit framework not only helps an organisation deploying Revault
with risk-management but could form a standard by which insurance companies
and regulators consider specific deployments. As with any model of complex real-
ity, attack-trees are imperfect and cannot capture every possible attack pathway,
but the alternative—complete ignorance—is not better.

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 11

To perform a context-specific risk analysis, a set of estimates are made (using
in-house empirical data, public research, and expert opinion) for each basic
attack step on different attributes such as monetary cost, execution time, or
likelihood. With that, a bottom-up procedure (from leaf nodes to the root) is
used to compute aggregated attributes. Bayesian methods can be used to update
prior estimates with more refined values as new data sources emerge. The process
for generating estimates is critical and should be considered with care. In-depth
research-based practical guidance on this topic is given by D. W. Hubbard and
R. Seiersen in [17]. Given specific contextual information, estimations can be
improved by further decomposing basic attack steps (e.g. ‘steal keys backup’)
into multiple steps (e.g. ‘bribe manager to determine backup location’ SAND
‘break into safe’). If a basic attack step has a highly uncertain estimate, then
further decomposition into more explicit steps can be beneficial. On the other
hand, decomposing into quantities that are more speculative than the first could
compound uncertainty rather than reducing it.

Various methods for analysis can be used to compute aggregated attributes
for attack-trees. Kordy et al. gave an overview [20]. Our purpose here is to pro-
vide the framework on which to perform analyses rather than to provide a specific
analysis. We have not performed a comprehensive evaluation of analysis meth-
ods, but offer some suggestions based on a comparison in [21]. Two methods that
support evaluating the attributes of cost, probability, and time are stochastic-
model checking [22] and game-theoretic analysis [16]. Whichever methods are
used must appropriately capture the constraints of our model (including SAND
gates) and should be automated to enable rapid attribute-based queries for secu-
rity metrics such as; the expected attack pay-off for the most likely attack, or
the possible attack pathways given a budget of $10,000.

Our approach to constructing the risk model is centered on assets since these
are clearly distinguished through Bitcoin descriptors, as continuity of a custodial
process, or as operational privacy. However, when performing the risk analysis
it can be insightful to consider attacker personas [37]: a crime syndicate; an
opportunistic burglar; a nation state; a business competitor; or even an insider.
If the organisation understands any of these personas well (arguably they should
especially understand their competitors and employees) they can reduce the
uncertainty in their aggregate risk estimates for these scenarios. Attacker-profiles
are a useful way to prune attack-trees [21].

4 Risk Model

We have constructed the risk model with several assumptions that limit the scope
of the analysis to the operational aspects of custody. Known risks from other
protocol and environment dependencies that are discussed in other works should
be considered as complementary but are, for the purpose of clarity, assumed to
be benign here. First, we assume that the Bitcoin network is functional, realis-
ing its live-ness and availability properties [7,8,12,13,32]. We assume that there
is significant hash-rate to prevent blockchain reorganisations of a depth higher

12 J. Swambo and A. Poinsot

than the Unvault Tx’s relative lock-time. Next, we assume that Revault’s Tx
model is robust; with scripts that realise the access control structures we expect,
without unintended consequences from Tx malleability and network propagation
issues as described in [25]. We assume the initialization process was secure and
safe; private keys and backups were correctly and confidentially constructed for
each participant, software and hardware integrity were verified, relevant public
key information for both the wallet and communication was shared among par-
ticipants leading to a correct configuration for the wallet clients, watchtowers,
anti-replay oracles and the coordinator. We assume that Revault’s communica-
tion security model as described in [4] is robust. That is, where messages need to
be authenticated or confidential, they are. We assume that the software devel-
opment life-cycle of Revault is secure, such that any deployment is using an
implementation that adheres to the protocol specification. Finally, we assume
that entities constructing Deposit Txs don’t succumb to a man-in-the-middle
attack. That is, they lock funds to the deposit descriptor rather than to an
attacker’s address.

4.1 Common Attack Sub-Trees

These attack sub-trees are common to different attacks on Revault, and a, b, c,
d, e, f and g are likely to be common to attacks on other custody protocols.

a : Compromise a participant (stakeholder or manager)
1 : Coerce participant (OR)
2 : Corrupt participant

Coercion and insider threats from corrupt participants must be considered. Legal
defences for malicious employee behaviour can be effective deterrents here.

b : Compromise a participant’s (stakeholder’s or manager’s) HSM
1 : Physical attack of HSM (OR)

1.1 : Determine location of participant’s HSM (SAND)
1.2 : Access the physical security environment of the participant’s HSM

(SAND)
1.3 : Exfiltrate keys (either on premise or after stealing it) (OR)
1.4 : By-pass PIN and make the HSM sign a malicious chosen message

2 : Remote attack of HSM (OR)
2.1 : Compromise a device that is then connected to the HSM (SAND)

2.1.1 : (see g) Compromise the participant’s wallet software (OR)
2.1.2 : Trick participant into connecting their HSM to a compromised

device via social engineering
2.2 : Exploit a firmware vulnerability (OR)
2.3 : Trick participant into compromising their own HSM with the user

interface of the compromised device
3 : (see a) Compromise a participant

c : Compromise a participant’s (stakeholder’s or manager’s) keys backup
1 : Physical Attack (OR)

1.1 : Determine location of the keys backup (SAND)

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 13

1.1.1 : Watch the participant between the custody initialization and
the start of operations (OR)

1.1.2 : Watch the participant during a backup check (OR)
1.2 : Access the physical security environment of the keys backup (SAND)
1.3 : Depending on backup format, steal or copy it

2 : (see a) Compromise a participant

d : Compromise a server (watchtower, anti-replay oracle, or coordinator)
1 : Remote attack (OR)

1.1 : Exploit a software vulnerability (OR)
1.1.1 : Determine the public interfaces of the server (SAND)
1.1.2 : Exploit a vulnerability on one of the softwares listening on

these interfaces
1.2 : Exploit a human vulnerability (e.g. trick participant into performing

a malicious update)
2 : Physical attack (OR)

2.1 : Determine server’s location (SAND)
2.2 : Access the physical security environment of the server (SAND)

3 : (see a) Compromise the participant managing the server

An attacker who successfully completes d for a watchtower will be able to steal
funds from the watchtower’s fee wallet and will be able to force an emergency sce-
nario by broadcasting all Emergency and Unvault-Emergency Txs it has stored.
They can also prevent broadcast of a Cancel Tx from this watchtower either
passively (ACK the secure storage of the signature to the stakeholder, but then
drop the signature) or actively.

e : Shutdown a watchtower
1 : Physical attack on the watchtower (OR)

1.1 : Determine watchtower’s location (SAND)
1.2 : Sever the internet connection to the building in which the watchtower

is located (OR)
1.3 : Sever the power-line connection to the building in which the watch-

tower is located (OR)
1.4 : Access the physical security of the watchtower and un-plug the machine

2 : Remote attack on the watchtower
2.1 : Determine public interfaces of watchtower (SAND)
2.2 : Denial of Service attack through one of the public interfaces (OR)
2.3 : Eclipse attack on the watchtower’s Bitcoin node [15] (OR)

2.3.1 : Slowly force de-synchronisation of watchtower with the true
block height by delaying block propagation [34] (OR)

2.3.2 : Prevent outgoing propagation of Cancel or Emergency Txs
2.4 : Denial of Service attack on the fee-bumping UTxOs pool—not enough

funds to pay competitive fees (OR)

f : Get signature from participant to unlock UTxO for Theft Tx
1 : (see a) Compromise a participant (OR)
2 : (see b) Compromise participant’s HSM (OR)
3 : (see c) Compromise participant’s keys backup

14 J. Swambo and A. Poinsot

g : Compromise a participant’s wallet
1 : Physical attack (OR)

1.1 : Locate participant’s device (SAND)
1.2 : Access physical security environment of participant’s device

2 : Remote attack (OR)
2.1 : Determine public interfaces of device (SAND)
2.2 : Exploit a vulnerability

3 : (see a) Compromise participant

Participant’s wallet devices are expected to be used for day-to-day activities.
With many vulnerabilities to exploit, the likelihood of success for g is high.

h : Determine the locking Script for a deposit or unvault UTxO (Witness
Script)

1 : (see g) Compromise any participant’s wallet (OR)
2 : (see d) Compromise a watchtower (OR)
3 : (see d) Compromise an anti-replay oracle

Deposit and unvault descriptors are deterministic, but public keys are needed to
derive UTxO locking Scripts. These are stored by all wallets, watchtowers and
anti-replay oracles.

i : Satisfy an input in a Theft Tx that consumes an identified deposit UTxO
or unvault UTxO (through N−of−N)

1 : (see h) Determine the UTxO locking Script (Witness Script) (SAND)
2 : Prevent the relevant Emergency Tx from being broadcast until the Theft Tx

is confirmed (where A + B = N) (AND)
2.1 : (see d) Compromise a watchtower (A times)
2.2 : (see e) Shutdown a watchtower (B times)
2.3 : (see g) Compromise stakeholder’s wallet (N times)

3 : (see f) Get signature from a stakeholder to unlock UTxO for Theft Tx (N
times)

j : Satisfy an input in a Theft Tx that consumes an identified unvault
UTxO (through K−of−M , anti-replay oracles and time-lock)

1 : (see h) Determine the UTxO locking Script (Witness Script) (SAND)
2 : Receive signatures for Theft Tx from all N anti-replay oracles (AND)

2.1 : Compromise a manager’s private communication keys and the set of
anti-replay oracles’ public communication keys (OR)
2.1.1 : (see g) Compromise a manager’s wallet (OR)
2.1.2 : (see a) Compromise a manager

2.2 : (see d) Compromise the anti-replay oracle
3 : (see f) Get signature from a manager to unlock UTxO for Theft Tx (K

times)

k : Satisfy an input in a Theft Tx that consumes an identified emergency
UTxO

1 : Determine the emergency descriptor policy (SAND)
2 : Satisfy the emergency descriptor’s locking conditions (may include waiting

for time-locks, giving sufficient signatures, giving hash pre-images, etc.)

The details of the emergency descriptor are intentionally not specified with the
Revault protocol, except that it is more difficult to access than the deposit
descriptor. Stakeholders may compartmentalise and distribute the descriptor
information to afford its privacy some resilience to attack.

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 15

4.2 Attack-Trees

The following attack-trees are the foundation for an operational risk framework
for Revault.

A : Compromise privacy of the custody operation (determine the set of
public UTxOs)

1 : (see d) Compromise any of the servers (OR)
2 : (see a) Compromise a participant (OR)
3 : (see g) Compromise a participant’s wallet (OR)
4 : Traffic analysis of connections between servers and/or wallets (OR)
5 : Blockchain analysis

Without privacy support for advanced descriptors (such as by using MuSig2 [30]
or MuSig-DN [31] if the proposed Taproot [1] upgrade is activated by the Bitcoin
network) Revault’s operational privacy is brittle.

B : Broadcast Theft Tx(s) that consume all deposit UTxOs
1 : (see A) Determine D, the set of deposit UTxOs (SAND)
2 : (see h) Determine the locking Script for deposit UTxO (|D| times)
3 : (see i) Satisfy an input in a Theft Tx that consumes an identified deposit

UTxO (|D| times)

A Theft Tx that consumes all available deposit UTxOs would be catastrophic
since this comprises the majority of funds. We recommend a defence wherein
each stakeholder is equipped with a panic button that is directly connected to
their watchtower or dedicated emergency service. When triggered, all the signed
Emergency and Unvault-Emergency Txs are broadcast, negating the pay-off for
an attacker and thus acting as a deterrent.

C : Broadcast Theft Tx(s) that consume as many available unvault UTxOs
as watchtower spending policies permit

1 : Determine spending constraints of all watchtowers’ policies (SAND)
1.1 : (see a) Compromise a participant (OR)
1.2 : (see g) Compromise a manager’s wallet
1.3 : (see d) Compromise a watchtower (N times)

2 : Determine U , the set of available unvault UTxOs (SAND)
2.1 : (see A) Compromise privacy of the custody operation (determine the

set of public UTxOs) (SAND)
2.2 : (see h) Determine the locking Script for unvault UTxO (|U| times)

3 : (see i OR j) Satisfy an input in a Theft Tx that consumes an identified
unvault UTxO (|U| times)

C can be avoided if watchtowers have a white-list of addresses that Spend Txs
can pay to.

D : Broadcast Theft Tx(s) that consume all available unvault UTxOs, by-
passing watchtowers’ spending policies

1 : Prevent watchtower from broadcasting Cancel or Unvault-Emergency Txs
before Theft Tx is confirmed (N times SAND)

16 J. Swambo and A. Poinsot

1.1 : (see d) Compromise a watchtower (OR)
1.2 : (see e) Shutdown a watchtower

2 : Determine U , the set of available unvault UTxOs (SAND)
2.1 : (see A) Compromise privacy of the custody operation (determine the

set of public UTxOs) (SAND)
2.2 : (see h) Determine the locking Script for unvault UTxO (|U| times)

3 : (see i OR j) Satisfy an input in a Theft Tx that consumes an identified
unvault UTxO (|U| times)

E : Broadcast a Theft Tx that by-passes watchtowers’ spending policies
1 : Determine U , the set of available unvault UTxOs (SAND)

1.1 : (see A) Compromise privacy of the custody operation (determine the
set of public UTxOs) (SAND)

1.2 : (see h) Determine the locking Script for unvault UTxO (|U| times)
2 : (see f) Get signature from a manager to unlock U ⊆ U , a subset of available

unvault UTxOs for a valid Spend Tx (K times)
3 : (see i OR j) Satisfy an input in a Theft Tx that consumes an identified

unvault UTxO (|U | times)
4 : (see d) Compromise an anti-replay oracle to get a signature for the valid

Spend Tx which consumes U , the UTxOs (N times SAND)
5 : Advertise the valid Spend Tx to the watchtowers through the coordinator

(SAND)
6 : Broadcast all Unvault Txs that the valid Spend Tx depends on and wait for

the time-lock to expire

F : Force emergency scenario
1 : Broadcast the full set of signed Emergency and Unvault-emergency transac-

tions
1.1 : (see d) Compromise a watchtower (OR)
1.2 : (see a) Compromise a stakeholder

The emergency deterrent results in better security from the most egregious phys-
ical threats to participants (particularly stakeholders who control the majority of
funds) but also in a fragility to the continuity of operations that could be abused
by an attacker. Attacks that rely on E may seek a pay-off other than fund theft,
such as damaging the reputation of the organisation for having down-time and
taking a leveraged bet on the likely market consequences. However, forced down-
time attacks through power or internet outages or detainment of personnel are
prevalent threats for organisations who aren’t deploying Revault. In any case,
with this risk model the consequence of not using an emergency deterrent can
be considered by performing an analysis with pruned attack-trees.

G : Broadcast a Theft Tx which consumes all available UTxOs locked to
the emergency descriptor

1 : (see F) Force an emergency scenario (SAND)
2 : Determine E , the set of available emergency UTxOs (SAND)

2.1 : (see A) Compromise privacy of the custody operation (determine the
set of public UTxOs)

3 : (see k) Satisfy an input in a Theft Tx that consumes an identified emergency
UTxO (|E| times)

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 17

H : Broadcast a Theft Tx which spends from a manager’s fee wallet
1 : (see g) Compromise a manager’s wallet

While this is a relatively simple attack, the fee wallet will never hold a significant
portion of bitcoins and is considered external to the custody protocol.

I : Prevent Emergency, Unvault-Emergency, and Cancel Tx valid signature
exchange

1 : 1 of N stakeholders doesn’t sign (OR)
1.1 : Prevent stakeholder from accessing their HSM (OR)
1.2 : Prevent stakeholder from accessing their wallet (OR)
1.3 : (see a) Compromise a stakeholder

2 : Shutdown coordinator (OR)
3 : (see e) Shutdown a watchtower (N times) (OR)
4 : Blockchain re-organization and Deposit Tx outpoint malleation.

J : Prevent Unvault Tx signature exchange
1 : 1 of N stakeholders doesn’t sign (OR)

1.1 : Prevent stakeholder from accessing their HSM (OR)
1.2 : Prevent stakeholder from accessing their wallet software (OR)
1.3 : (see a) Compromise a stakeholder

2 : Shutdown coordinator (OR)
3 : Prevent all managers from accessing their wallet software

K : Prevent managers from broadcasting a Spend Tx
1 : Prevent managers from signing the Spend transaction (OR)

1.1 : (see d) Compromise an anti-replay oracle (OR)
1.2 : Prevent sufficient threshold of managers from signing the Spend Tx

(where A + B + C = M − K + 1) (OR)
1.2.1 : (see a) Compromise a manager (A times)
1.2.2 : Prevent manager from accessing their HSM (B times)
1.2.3 : Prevent manager from accessing their wallet software (C times)

2 : Force broadcast of Cancel Tx (OR)
2.1 : (see d) Compromise a watchtower

3 : Prevent broadcast of Unvault Tx
3.1 : High demand for block space making the Unvault Tx not profitable to

mine.3

3.2 : (see g) Compromise manager’s wallet (M times)

5 Conclusion

The rise of Bitcoin has led to a new commercial ecosystem, with market
exchanges enabling its sale and purchase, companies and financial institutions
offering secure custody services, and insurance brokers and underwriters will-
ing to insure individuals, exchanges and custodians against loss or theft of their
assets . In this paper we first posit that a methodology to better understand risks

3 Manager’s fee-bumping wallet can not cover this until a network policy such as
Package Relay [3] is implemented.

18 J. Swambo and A. Poinsot

in custodial operations is needed, something complementary to understanding
blockchain and cryptographic security. We put forth requirements of the mod-
elling technique and propose attack-trees as a formalism which satisfies those
requirements. We exemplify the approach by presenting a library of attack-trees
constructed for a multi-party custody protocol called Revault and explain how
this framework can be used as a basis for risk-management in custodial oper-
ations. The next steps for this work are to: construct a set of defences to the
prominent risks and incorporate them into the model; and to determine or build
a suitable tool for automating computations for a specific analysis.

Acknowledgements. We thank Professor McBurney (King’s College London), Kevin
Laoec (WizardSardine) for insightful conversations and for reviewing the text.

Funding Information. Funding is gratefully acknowledged under a UK EPSRC-

funded GTA Award through King’s College London and from WizardSardine.

References

1. (Bitcoin Improvement Proposal) Taproot: SegWit version 1 spending rules.
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki. Accessed 29
Jan 2021

2. Output Script Descriptors: a language for abstracting out the spending conditions
of a Bitcoin transaction output. https://github.com/bitcoin/bitcoin/blob/master/
doc/descriptors.md. Accessed 26 Jan 2021

3. Package Relay design questions for the Bitcoin P2P network. https://github.com/
bitcoin/bitcoin/issues/14895. Accessed 29 Jan 2021

4. Practical Revault: A specification for the initialization and operation of the Revault
custody protocol. https://github.com/re-vault/practical-revault

5. Glacier design document (2017). https://glacierprotocol.org/assets/design-doc-v0.
9-beta.pdf. Accessed 10 Jan 2021

6. Amoroso, E.G.: Fundamentals of Computer Security Technology. Prentice-Hall Inc,
Hoboken (1994)

7. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

8. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment, vol. 10401 LNCS (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

9. Capital Markets and Technology Association: Digital Assets Custody Standard
(2020). https://www.cmta.ch/content/272/cmta-digital-assets-custody-standard-
v1-public-consultation.pdf. Accessed 10 Jan 2021

10. Chow, A.: Partially signed bitcoin transaction format (2017). https://github.com/
bitcoin/bips/blob/master/bip-0174.mediawiki. Accessed 18 May 2020

11. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,
R.: Attack Trees for Practical Security Assessment: Ranking of Attack Scenarios
with ADTool 2.0. vol. 9826, pp. 159–162 (2016). https://doi.org/10.1007/978-3-
319-43425-4 10

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://github.com/bitcoin/bitcoin/issues/14895
https://github.com/bitcoin/bitcoin/issues/14895
https://github.com/re-vault/practical-revault
https://glacierprotocol.org/assets/design-doc-v0.9-beta.pdf
https://glacierprotocol.org/assets/design-doc-v0.9-beta.pdf
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://www.cmta.ch/content/272/cmta-digital-assets-custody-standard-v1-public-consultation.pdf
https://www.cmta.ch/content/272/cmta-digital-assets-custody-standard-v1-public-consultation.pdf
https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki
https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-3-319-43425-4_10

Risk Framework for Bitcoin Custody Operation with the Revault Protocol 19

12. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9057, pp.
281–310 (2015). https://doi.org/10.1007/978-3-662-46803-6 10

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

14. Haque, M.S.: An evolutionary approach of attack graphs and attack trees: a survey
of attack modeling (2017)

15. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-
to-peer network. In: 24th USENIX Security Symposium (USENIX Security 15),
pp. 129–144. USENIX Association, Washington, D.C. August 2015. https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman

16. Hermanns, H., Krämer, J., Krcál, J., Stoelinga, M.: The value of attack-defence
diagrams, vol. 9635, pp. 163–185 (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

17. Hubbard, D.W., Seiersen, R.: How to Measure Anything in Cybersecurity Risk
(2016)

18. Jhawar, R., Kordy, B., Mauw, S., Radomirovic, S., Trujillo-Rasua, R.: Attack Trees
with Sequential Conjunction. CoRR abs/1503.02261 (2015). http://arxiv.org/abs/
1503.02261

19. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Foundations of attack-
defense trees, vol. 6561, pp. 80–95 (2010). https://doi.org/10.1007/978-3-642-
19751-2 6

20. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13 (2013).
https://doi.org/10.1016/j.cosrev.2014.07.001

21. Kumar, R.: Truth or Dare: Quantitative security risk analysis using attack trees.
Ph.D. thesis (2018). https://doi.org/10.3990/1.9789036546256

22. Kumar, R., Stoelinga, M.: Quantitative Security and Safety Analysis with Attack-
Fault Trees (2017). https://doi.org/10.1109/HASE.2017.12

23. Lallie, H., Debattista, K., Bal, J.: A review of attack graph and attack tree visual
syntax in cyber security. Comput. Sci. Rev. 35, 100219 (2020). https://doi.org/10.
1016/j.cosrev.2019.100219

24. Loaec, K.: Hardware wallets and “advanced” Bitcoin features (2021). https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018352.html. Accessed
19 Jan 2021

25. Loaec, K., Poinsot, A.: Revault: a multi-party Bicoin vault architecture (2020).
https://github.com/re-vault/practical-revault/blob/master/revault.pdf

26. Sato, M., Shimaoka, M., Nakajima, H.: General Security Considerations for Cryp-
toassets Custodians (2019). https://tools.ietf.org/html/draft-vcgtf-crypto-assets-
security-considerations-05

27. Maynard, P., Mclaughlin, K., Sezer, S.: Modelling Duqu 2.0 Malware using Attack
Trees with Sequential Conjunction, pp. 465–472 (2016). https://doi.org/10.5220/
0005745704650472

28. Maynard, P., McLaughlin, K., Sezer, S.: Decomposition and sequential-AND anal-
ysis of known cyber-attacks on critical infrastructure control systems. J. Cyberse-
curity 6(1) (2020). https://doi.org/10.1093/cybsec/tyaa020

29. Nguyen, H.N., Bryans, J., Shaikh, S.: Attack Defense Trees with Sequential Con-
junction. IEEE (2019)

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
http://arxiv.org/abs/1503.02261
http://arxiv.org/abs/1503.02261
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.3990/1.9789036546256
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1016/j.cosrev.2019.100219
https://doi.org/10.1016/j.cosrev.2019.100219
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018352.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018352.html
https://github.com/re-vault/practical-revault/blob/master/revault.pdf
https://tools.ietf.org/html/draft-vcgtf-crypto-assets-security-considerations-05
https://tools.ietf.org/html/draft-vcgtf-crypto-assets-security-considerations-05
https://doi.org/10.5220/0005745704650472
https://doi.org/10.5220/0005745704650472
https://doi.org/10.1093/cybsec/tyaa020

20 J. Swambo and A. Poinsot

30. Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round Schnorr multi-
signatures. Cryptology ePrint Archive, Report 2020/1261 (2020). https://eprint.
iacr.org/2020/1261

31. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. Cryptology ePrint Archive, Report 2020/1057
(2020). https://eprint.iacr.org/2020/1057

32. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

33. Perrin, T.: The Noise Protocol Framework (2018). https://noiseprotocol.org/noise.
pdf. Accessed 19 Jan 2021

34. Riard, A., Naumenko, G.: Time-dilation attacks on the lightning network (2020)
35. Schmitz, C., Sekulla, A., Pape, S.: Asset-Centric Analysis and Visualisation of

Attack Trees, pp. 45–64 (2020). https://doi.org/10.1007/978-3-030-62230-5 3
36. Schneier, B.: Attack Trees (1999). https://www.schneier.com/academic/archives/

1999/12/attack trees.html. Accessed 12 Jan 2021
37. Shostack, A.: Threat Modeling: Designing for Security (2014)
38. Square: Subzero (2020). https://subzero.readthedocs.io/en/master/. Accessed 19

Jan 2020
39. Swambo, J., Hommel, S., McElrath, B., Bishop, B.: Custody protocols using bitcoin

vaults (2020). https://arxiv.org/abs/2005.11776. Accessed 10 Jan 2021
40. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th

National Computer Security Conference (1991)
41. Wuille, P.: Hierarchical deterministic wallets (2012). https://github.com/bitcoin/

bips/blob/master/bip-0032.mediawiki. Accessed 18 May 2020

https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1057
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://doi.org/10.1007/978-3-030-62230-5_3
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://subzero.readthedocs.io/en/master/
https://arxiv.org/abs/2005.11776
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Regulatory Considerations on Centralized
Aspects of DeFi Managed by DAOs

Ryosuke Ushida1,2 and James Angel2(B)

1 Financial Services Agency Japan, Tokyo, Japan
2 Georgetown University, Washington, D.C., USA

{ru64,angelj}@georgetown.edu

Abstract. This paper focuses on the centralized governance mecha-
nisms of decentralized finance (DeFi) projects managed by Distributed
Autonomous Organizations (DAOs) and discusses regulatory considera-
tions. Unlike highly decentralized ecosystems such as Bitcoin, the degree
of decentralization varies among DeFi projects. Centralized aspects such
as concentrated ownership of governance tokens and admin keys have
significant implications on their governance. Concerns include decision-
making concentration risk and poor alignment of interests among stake-
holders. From a regulatory viewpoint, centralized aspects could make
it easier for regulators to impose requirements and therefore increase
compliance costs. This might drive the DeFi community to seek further
decentralization to avoid regulatory burdens. We conclude that the DeFi
ecosystem should learn from the experience of both Internet governance
as a partially decentralized system and from traditional corporate gov-
ernance.

Keywords: Blockchain · DeFi · DAO · Decentralized financial
system · Corporate governance · Regulation · On-chain governance ·
Off-chain governance · Governance token

1 Introduction

1.1 Background and Terminology

Decentralized Finance (DeFi), which generally refers to a decentralized form of
financial applications executed by smart contracts on a public blockchain, is pro-
liferating from $660M in TVL (Total Value Locked) in early 2020 to $14.5B at
the end of December 2020. A wide range of financial products is available without
KYC (Know Your Customers), including crypto-asset exchange, lending, deriva-
tives, insurance, and decentralized stablecoins. In 2019, the Financial Stability
Board [2] defined decentralized financial technology as “Technologies that have
the potential to reduce or eliminate the need for one or more intermediaries or
centralised processes in the provision of financial services” and defined financial
systems as “new financial system that decentralized financial technology could
bring”. On the other hand, there is no widely-accepted definition of DeFi and
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 21–36, 2021.
https://doi.org/10.1007/978-3-662-63958-0 2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_2&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_2

22 R. Ushida and J. Angel

Fig. 1. Terminology

the word seems to be used arbitrarily for marketing and other purposes. In this
paper, we define DeFi as a “financial application that could consist of a part of
a decentralized financial system”. While underlying blockchain platforms such
as Bitcoin and Ethereum could be categorized as DeFi in a broad sense, our
analysis focuses on smart contract-based applications on such platforms. DeFi
protocols are often developed and managed by so-called DAOs, Decentralized
Autonomous Organizations. Although the DAO is also not strictly defined, we
use Chohan’s [15] definition: “an organization represented by rules encoded as a
computer program that is transparent, controlled by the organization members
and not influenced by a centralized entity.” Typical DAOs include The DAO
(2016), MakerDAO, and KyberDAO.

The degree of decentralization varies from one DeFi project to another, and
many of them are quite centralized, especially in the bootstrapping stage. For
example, specific individuals or groups have the authority to change the proto-
col or freeze locked assets. To mitigate the Single Point of Failure (SPoF) risk
caused by dependence on such trusted parties, many communities are heading
for bottom-up, decentralized governance by transferring management authority
of the protocol to the DAO through on-chain voting. Given the incessant hacking
incidents and increasing attention from regulatory authorities, the sound devel-
opment of governance of the entire ecosystem is indispensable if they look ahead
to mass adoption beyond niche use cases.

1.2 Related Works

The governance issues of decentralized financial systems are attracting many
researchers’ attention. Some explore to build sound governance of decentral-
ized financial systems in light of the Internet governance lessons. De Filippi
and Wright [5] discuss the applicability of the four regulatory tools (i.e., Law,
Market, Norm, and Architecture/Code) in cyberspace proposed by Lessig [9] to
control activities in decentralized financial systems. Takanashi et al. [14] points

Regulatory Considerations on Centralized Aspects 23

out the importance of developing an architecture/code that harmonizes with
law/regulations, aligns with social norms, and is competitive in the market.

Another point of discussion is the comparison with corporate governance.
Hacker [6] argues that complexity-induced uncertainty could be reduced, and
stability and order could be strengthened by adapting a corporate governance
framework to blockchain-based organizations. Blemus and Guegan [1] analyzes
the opportunities and risks posed by tokenization and distributed ledger tech-
nology from the perspective of corporate governance. They raised issues related
to the responsibility for decision-making by DAOs, which have no management
team or board of directors and are determined by token holders without legal
framework applicable to DAOs.

Corporate governance and Internet governance are very different in terms of
the attributes of governance targets. Nabilou [10] argues that it is misleading to
draw parallels between the highly decentralized governance of Bitcoin and cor-
porate governance. On the other hand, Collomb and De Filippi [3] point out that
“The DAO”, the first DAO initiative that ended in hacking in 2016, was designed
to mimic and improve on corporate governance, and the problems caused was
rooted in the fact that The DAO was run like traditional corporations. Consider-
ing the centralized aspects of the current DeFi applications, an extensive analysis
should be conducted from both Internet and corporate governance viewpoints
with particular attention to the regulatory implications. However, the ecosystem
is fast changing and there is no sufficient academic discussion on it.

1.3 Contributions

This paper has two contributions to the ongoing governance discussion about
decentralized financial systems and DeFi. First, we identify and discuss key fac-
tors that affects the governance of individual DeFi project managed by DAO and
the DeFi ecosystem based on the existing works related to Internet and corpo-
rate governance. An emphasis is placed on the difference between decentralized
finance with and without DAO and how the centralized aspect of incorporat-
ing DAO could affect the governance mechanism of the overall system. Second,
we discuss regulatory considerations on the centralized elements of the ongoing
DeFi projects/ecosystem for regulators and policymakers to develop a better
regulatory framework for its sustainable development.

2 Governance of DeFi Managed by DAO

This chapter elaborates on factors affecting the governance of individual DeFi
projects, followed by the analysis of ecosystem governance. We stress the impor-
tance of understanding dynamic interactions among individual DeFi and the
ecosystem at large. In many DeFi projects, relevant protocols are often man-
aged by DAOs, with the community voting on critical decisions such as param-
eter changes and emergency response. In assessing the governance of the DAO-
centered systems, it is vital to consider the direct participants in the project and

24 R. Ushida and J. Angel

the interrelationships among a wide range of relevant stakeholders in the whole
DeFi ecosystem.

2.1 Corporate and Internet Governance as Dual Reference Points

Overall, a DeFi ecosystem is a complex structure composed of several elements
and stakeholders, including:

– Individual DeFi projects managed by DAOs
– A public blockchain, including scaling solutions, as an underlying platform
– DeFi integrators such as oracle providers and custody solution providers
– DeFi aggregators and curators
– DAO software as a service such as Aragon DAO and OpenLaw
– Centralized financial service providers such as centralized exchanges
– Multiple DeFi ecosystems (i.e., Ethereum, EOS, Polkadot, etc.)

Several researchers indicate the usefulness of analyzing the DAO-based decen-
tralized financial systems from corporate governance perspective. Among others,
Hacker [6] argues that token-based venture capital often looks more like compa-
nies with principals (i.e., investors) and agents (i.e., managers) than open-source
networks. He also mentions that many for-profit token applications share many
characteristics with corporations and investment funds, rather than open-source
networks. He also observes that token issuance could serve as an alternative way
to funding entrepreneurial projects. Also, Kondova and Barba [8] pinpoints that
OECD principles [11] on disclosure and transparency and DAO governance share
similarities in the decision-making process. In a highly decentralized system such
as Bitcoin, corporate governance, which assumes a centralized organization and
typically discusses the principal-agency problems and the separation of owner-
ship and management, may not necessarily be applicable. However, there could
be a good applicability to the ongoing DeFi projects, which have multiple cen-
tralized aspects. In addition, to assess the significance of the factors as means of
control in the “apparently” decentralized system, we discuss from the viewpoints
of law, market, norm, and architecture presented by Lessig [9] as four regulatory
tools in cyberspace and extended by De Filippi and Wright [5] and Takanashi et
al. [14] to apply the framework in the decentralized financial system.

2.2 Individual DeFi Project Governance

A DeFi project typically consists of protocols (i.e., single or a set of smart con-
tracts on the underlying public blockchain), foundation/developer team, ini-
tial investors, token holders, and a variety of types of users such as liquidity
providers, lenders and borrowers. There is no “one-size-fits-all” solution as each
DeFi project varies greatly in many ways such as decision-making mechanism,
protocol upgradability, attributes of tokens and types of financial applications.
A couple of factors likely influence the governance of many DeFi projects with
DAOs. In this section, we elaborate on governance factors that would constrain
the activities in the projects to discuss the regulatory implications in the follow-
ing chapter.

Regulatory Considerations on Centralized Aspects 25

2.2.1 On-Chain Voting by Governance Token Holders
In order to promote decentralized decision-making, more and more projects are
adopting token-based governance. This community-driven bottom-up, decentral-
ized mechanism could eliminate or mitigate the concentration risk of control by
certain parties such as the developer team. Tokens can be designed in a vari-
ety of ways. Some tokens have not only voting rights and rights to create and
submit proposals, but also the rights to receive a portion of the cash flow gen-
erated by the protocol. Some can be also used for specific purposes as utility
tokens. In this paper, we define a governance token as a token that has a voting
right for decision-making which influences the project, regardless of whether it
has other rights/functions or not. Hacker [6] argues that token-based systems
provide a clear designation of competences and procedures that breaks up the
informal power structures and presents an opportunity to distribute power in a
fairer and more transparent way. However, in “The DAO” case, the SEC [13]
points out the limited influence of the token holders in decision making. While
a “DAO Token” holder was given certain voting rights and ownership rights,
the Curators, a group of individuals selected by The DAO’s developer and a
German company “Slock.it”, have broad discretion in making investment pro-
posals. Besides, proposals by token holders had to be reviewed by the Curators
before they were voted on. As such, the structure was significantly centralized
in favor of the Curators and Slock.it. Token-based voting is just a part of the
decision-making process in the existing DeFi projects, and its authority can be
restrictive depending on the token design and governance process. Regarding the
viewpoint of architecture/code, token holders’ degree of control largely depends
on the upgradability of the deployed smart contracts.

The distribution of governance tokens is another important issue in assessing
the influence of minority token holders on decision making. Governance tokens
are distributed in a variety of ways. Some tokens, such as Maker’s MKR, are
distributed by a specific party, such as a foundation, to early investors and
adopters in the form of private sales. Others, such as Compound’s COMP1 and
Uniswap’s UNI2, are distributed as rewards or compensations for locking up a
certain amount of crypto-assets into a relevant smart contract, which is generally
called “liquidity mining”. In the case of Uniswap, about 18% is distributed to
investors, 21.2% to team members and future employees, 0.7% to team advisors,
and the remaining 60% to community members such as liquidity providers over a
four-year period. It should be noted that the timing, methods of distribution and
distribution ratio are arbitrarily decided by a specific entity in many projects
and a large number of voting rights are often granted to particular groups or
individuals, the implication of which will be discussed in detail in the following
chapter. This is not unlike the super-voting shares often retained by the founders
of companies.

1 https://medium.com/compound-finance/expanding-compound-governance-
ce13fcd4fe36.

2 https://uniswap.org/blog/uni/.

https://medium.com/compound-finance/expanding-compound-governance-ce13fcd4fe36
https://medium.com/compound-finance/expanding-compound-governance-ce13fcd4fe36
https://uniswap.org/blog/uni/

26 R. Ushida and J. Angel

In terms of the effectiveness and validity of decision-making, the turn-out
ratio is an important metric to assess whether token-based voting functions
appropriately. Blemus and Gregan argues that decentralized governance is based
on the idea of a flat hierarchy, with token holders devoting sufficient time to par-
ticipate and vote in the community’s best interests. In this regard, many DeFi
projects are struggling to attract adequate attention from token holders. In the
case of the MakerDAO, only 32 voters participated in the emergency voting
following the liquidation failure in March 2020, and one address accounted for
more than 50% of the total votes. Mechanisms to increase the participation
ratio include delegation mechanisms, quadratic voting, and improved UX/UI.
Further analysis and experimentation are required to justify the token-based
voting system as an appropriate decision-making process for sustainable com-
munity development.

From the market mechanism perspective, governance token holders are incen-
tivized to act to maximize their economic benefits. They generally benefit from
the capital gain (i.e., appreciation of the token values in the secondary market)
and income gain (e.g., distribution from the trading fees generated by the pro-
tocol). One concern is that they might prioritize their short-term interests and
ruin the long-term development of the project. This is more likely if they have
substantial control over the protocol and it is easy to exit by selling the token.
For example, some token holders might vote for burning vast amounts of gover-
nance tokens and/or increase the distribution ratio of the generated incomes to
the stakeholders without engaging in the discussion about long-term strategy.
They would expect to benefit from an increase in the token value in the short
term while they sell the tokens before deterioration. As Hirschman [7] argues,
the easier exit is, the less likely “voice”, or voting right, will be used.

2.2.2 Code Is Law/Governance Minimization
Blockchain and smart contract code is written in a formalized language and,
unlike law and regulations that leave room for discretion, only actions that follow
the rules set in the code are allowed. When the code is adopted as the primary
constraint tool, little changes are made to the blockchain protocol except for
technical maintenance. The ecosystem is built by relying solely on the original
code to minimize human intervention via an on-chain or off-chain governance
process. As mentioned in the previous section, the institutionalization of a spe-
cific governance process has the risk that the ecosystem could be captured by
certain groups such as governance token holders. The ecosystem could be dam-
aged by token holders’ behavior that does not align with the incentive of others.
In this regard, relying solely on the code could assure certain neutrality that
mitigates the risks of SPoFs of specific entities. In a community with a norm
that values this neutrality, a code-centric ecosystem will be created, and De Fil-
ippi and Loveluck [4] discuss that many in the blockchain community tend to
believe that individuals and organizations cannot be trusted and social interac-
tions should be managed solely by computer code.

Regulatory Considerations on Centralized Aspects 27

On the other hand, as De Filippi et al. points out, a formalized rule is eas-
ily gamed or exploited by malicious actors. Computer code lacks the flexibility
needed to respond to edge cases, such as hacking due to bugs or vulnerabilities
in the code, or to comply with incessantly changing regulatory requirements.
Zamfir [16], one of Ethereum’s core developers, claims that the concept of gover-
nance minimization is based on a naive interpretation of how the code interacts
with the existing legal system and stands by off-chain governance to intervene
to resolve disputes. While computer code is certainly one of the powerful con-
straints, it is important to position it appropriately in interactions with other
constraints such as law and social norms.

2.2.3 Off-Chain Consensus by Community
In the case of the Bitcoin ecosystem, Nabilou [10] describes that “various actors
such as mining pools, node operators, users, developers, exchanges, custodians
and wallet providers, and eventually the media and advocacy groups have their
say and they ultimately decide over critical governance issues either by reaching
a consensus or by forking”. While some researchers like Nabilou acclaim that
their existing governance arrangements have been largely successful in dealing
with Bitcoin’s major crises, others including Hacker [6] criticize the lack of proper
governance mechanism, especially for protocol update for dispute resolution by
pointing out that, as an example, the Github repository is maintained by a small
group of developers and unpredictability in changes to the protocol result from
the lack of an institutionalized process to accommodate dissent from a wide
range of stakeholders. The Etherum community, which also does not have a
formal governance process such as an on-chain voting mechanism, resorted to an
off-chain consensus when they decided to undo the mess caused by “The DAO”
hack via a controversial hard fork. Many researchers question the transparency
of the undocumented decision-making process and the validity of the judgment.
Conversely, Zamfir [16] is opposed to excessively institutionalized governance
such as on-chain voting as it could force the community to choose what is against
the social norm of the community captured by specific governing forces such
as governments, corporates or cartel of specific groups of the community. It
is worth noting that law and its potential enforcement could primarily affect
the community’s decision against the rule of code, as some of the community
members would notice the increased attention from authorities.

Off-chain governance mechanisms are put in place even in DeFi projects
incorporating token voting systems. The community usually spends quite some
time discussing before proceeding to the formal on-chain voting process on their
discussion fora such as Discord and website managed by foundation or developer
team. Furthermore, some DeFi projects such as MakerDAO have implemented
the ability to upgrade the protocol in emergencies without going through the

28 R. Ushida and J. Angel

possibly time-consuming voting processes3. What needs to be considered in
designing governance mechanisms is to strike a better balance between trans-
parency and security that fits the project’s long-term goal in considering the
distinct benefits and risks that on-chain/off-chain governance could bring.

2.2.4 Legal Compliance/Avoidance
One of the differentiating factors among DeFi projects could be the willingness
of the community to comply or circumvent the existing legal framework applied
to financial services in each jurisdiction. At present, it seems that the primary
value proposition of many DeFi is not complying with regulatory requirements
such as KYC/AML (Know Your Customer/Anti Money Laundering rules). This
purportedly “democratizes” the financial services for financial inclusion while
protecting users from the threat of government actions such as taxation and
expropriation. In light of growing concerns and scrutiny from regulatory author-
ities, some of the DeFi projects might choose to further decentralize the project
by, for example, dispersing the governance token ownership, anonymizing the
developer and community members, or voiding administrative functions to lessen
the control points that could be captured by regulators4.

On the contrary, others might choose to closely work with regulators and
other stakeholders outside of the blockchain ecosystem to ensure legal certainty.
For that sake, whether or not it should be called “DeFi”, they could choose to
increase the centralized aspects of the DeFi project to be able to meet regulatory
requirements in an effective manner as traditional organizations usually do. One
example is Nexus Mutual, a P2P discretionary mutual on Ethereum offering a
blockchain-based solution to cover against smart contract failure such as “The
DAO” hack. It was established as a company limited in the UK and has received
approval by the Financial Conduct Authority. KYC/AML requirements must be
fulfilled to become a member of the community and the membership gives legal
rights to the assets of the mutual. Residents in some jurisdictions are not able
to become a member due to relevant local regulations5. Another eye-catching
initiative is OpenLaw’s LAO, a Limited Liability Autonomous Organization that
enables its members to invest in Ethereum ventures projects and generate a profit
in a legally compliant manner6. The LAO is an LLC (Limited Liability Company)
set up in Delaware and it harnesses smart contracts to handle mechanics related
to voting, funding, and allocation of collected funds. It intends to ensure legal

3 Maker has a dark fix mechanism for handling critical vulnerabilities in the protocol
where the trust to its specialist team is required, which has never happened as of
the end of 2021 [Source: Presentation at BGIN https://www.youtube.com/watch?
v=cD717AuLLJo].

4 SEC charged the founder of EtherDelta with operating an unregistered exchange in
November 2018. SEC points out the concentration of power to the founder exampled
by his exclusive access to the private key for the “administrator account”.

5 https://nexusmutual.gitbook.io/docs/welcome/use-cases.
6 https://medium.com/openlawofficial/the-lao-a-for-profit-limited-liability-

autonomous-organization-9eae89c9669c.

https://www.youtube.com/watch?v=cD717AuLLJo
https://www.youtube.com/watch?v=cD717AuLLJo
https://nexusmutual.gitbook.io/docs/welcome/use-cases
https://medium.com/openlawofficial/the-lao-a-for-profit-limited-liability-autonomous-organization-9eae89c9669c
https://medium.com/openlawofficial/the-lao-a-for-profit-limited-liability-autonomous-organization-9eae89c9669c

Regulatory Considerations on Centralized Aspects 29

certainty, limit the members’ liability, and streamline complex tax issues. Similar
example is the Flamingo, an NFT (Non fungible token)-focused DAO organized
as a Delaware LLC that aims to explore emerging investment opportunities for
ownable, blockchain-based assets.

In general, there exists a trade-off between regulatory compliance and open-
ness of the project. In the case of the LAO, the maximum number of members
is limited to 99, the minimum investment is 120 ETH, and the membership is
limited to 9% or for 1,080 ETH. The Flamingo also limits its membership to
accredited investors capped at a maximum of 100. Such limitations could curve
some of the key value propositions of DeFi, such as composability upheld by
its permissionless nature, while paving the way to mass adoption in comply-
ing with social requirements. It should be noted that they might need to meet
not only securities regulation but also other regulatory requirements regard-
ing AML/KYC and financial stability, which could further increase compliance
costs.

2.3 Ecosystem Governance

Hacker [6] pinpoints that governance is generally recognized as a system that
forms coordination between different actors. The BCBS [12] stated that the
“primary objective of corporate governance for banks should be safeguarding
stakeholders’ interest in conformity with public interest on a sustainable basis,
and shareholders’ interest would be secondary to depositors’ interest.” Consider-
ing that complex financial products are being offered by DeFi protocols interact-
ing with each other, regardless of the degree of decentralization, it is necessary
to take into account the inter-relationships with diverse, relevant stakeholders
to align what the DeFi ecosystem would achieve with public interests. In the
following, we analyze the interactions with stakeholders that are considered to
be particularly important in evaluating the ecosystem governance.

2.3.1 Interdependent DeFi Protocols
The DeFi ecosystem is often described as “money Legos” for its philosophical
nature of composability, enabling a DeFi protocol to interact with other smart
contracts deployed on the same or interoperable blockchain without any permis-
sions or contracts. For instance, a DEX aggregator 1inch.exchange7 offers the
best exchange rate by discovering the efficient swapping routes across a bunch
of DEXs on Ethereum, such as Uniswap and Aave. While the open and flexible
nature would be competitive advantages against traditional financial services,
inadequate security considerations result in a number of hacking incidents, as
shown in the previous chapter. A quintessential example is the hack against a
decentralized lending and margin lending platform bZx in February 2020. The
attacker exploited its collateral pool by taking advantage of so-called flash loans,
a technique that combines a complicated set of actions including lending, pool-
ing and selling of tokens in just a single transaction. The hacker used dydx,
7 https://1inch-exchange.medium.com/.

https://1inch-exchange.medium.com/

30 R. Ushida and J. Angel

Compound, Uniswap and Kyber network protocols in the first attack and stole
$350,000 followed by the $600,000 loss in the second attack after bZx’s team
updated its protocol using their admin keys after the initial attack8. The loss
was compensated as the community happened to have enough resources for com-
pensation, but the ecosystem should make clear who is responsible for what with
legal certainties to brace for future incidents and dispute resolutions among DeFi
projects and other stakeholders. In a simplified on-chain voting system, the opin-
ions of different stakeholders are not reflected in the decision-making process,
and there is a risk of decisions being made that are biased towards the inter-
ests of token holders. From the banking governance point of view, as BCBS [12]
points out, what matters is having the right level of authority, responsibility,
accountability, checks and balances among stakeholders. At present, there seems
no agreement among stakeholders for the division of responsibilities and no mech-
anism is put in place to align the interests among stakeholders and fulfill obli-
gations to the outside world. The way of making clear the responsibilities could
be a smart contract-based agreement between protocols utilizing the tools such
as OpenLaw, which creates and executes legal agreements on blockchain9.

2.3.2 Underlying Blockchain Layer
When DeFi protocols are deployed on a blockchain, the security, scalability,
native tokens, and governance of the infrastructure layer have a critical impact
on the DeFi projects in respective ways. The expansion of the DeFi ecosystem
frequently drives Gas prices due to the lack of scalability of Ethereum, and the
high volatility of ETH often leads to collateral shortfall and liquidation failures.10

Conversely, a single DeFi project could significantly affect the underlying layer
as The DAO hack ended up in a hard fork of Ethereum to undo the fraudulent
transactions. While a tremendous amount of effort is poured into addressing the
scalability issues such as 2nd layer solutions and Sharding, the outcomes remain
to be seen. Security and governance considerations need to be thoroughly dis-
cussed to mitigate the risks that could emerge from the resulting consequences,
such as the migration of DeFi projects to the alternative layer. Some governance
arrangements should be in place to fill the potential gaps between the blockchain
and application layers, examples of which include having regular calls among core
developers, working together to build a solution in critical need for the ecosys-
tem such as digital identity, and sharing common financial resources to align the
interest of each party.

2.3.3 Existing Financial System
The border between the DeFi and centralized finance is likely to become vague
going forward. It is demonstrated by the fact that centralized exchanges such
8 https://blog.coinbase.com/around-the-block-analysis-on-the-bzx-attack-defi-

vulnerabilities-the-state-of-debit-cards-in-1289f7f77137.
9 https://media.consensys.net/introducing-openlaw-7a2ea410138b.

10 https://blog.makerdao.com/the-market-collapse-of-march-12-2020-how-it-
impacted-makerdao/.

https://blog.coinbase.com/around-the-block-analysis-on-the-bzx-attack-defi-vulnerabilities-the-state-of-debit-cards-in-1289f7f77137
https://blog.coinbase.com/around-the-block-analysis-on-the-bzx-attack-defi-vulnerabilities-the-state-of-debit-cards-in-1289f7f77137
https://media.consensys.net/introducing-openlaw-7a2ea410138b
https://blog.makerdao.com/the-market-collapse-of-march-12-2020-how-it-impacted-makerdao/
https://blog.makerdao.com/the-market-collapse-of-march-12-2020-how-it-impacted-makerdao/

Regulatory Considerations on Centralized Aspects 31

Fig. 2. DeFi governance overview

as Binance and FTX are active to list a wide range of DeFi tokens, including
governance tokens, and by the re-centralization of some DeFi projects described
in paragraph 2.2.4. An example of the DeFi and centralized finance interac-
tion is Set Protocol, which automatically rebalances the tokenized assets based
on customizable algorithmic strategy by tapping liquidity of almost anywhere,
including DEXs and centralized exchanges and crypto OTC trading desks. Some
governance arrangement should be established between the parties. The division
of responsibilities between the decentralized and centralized organizations via
smart contract agreement might benefit both if the division of roles fit for each
economic purpose and legal requirements are adequately satisfied.

2.3.4 Other Governance Factors
In addition to the above, there exist several factors that should be considered in
ecosystem governance. One of the most decisive factors is the governments and
regulators, which will be discussed in detail in the next chapter. Besides, oracle
governance is critical as many DeFi protocols rely on it as a price feeder. Further-
more, a variety of types of integrators and aggregators such as wallet providers,
DEX aggregators also play an important role in this ecosystem. Digging deeper
into these issues is an important research topic for the future.

3 Regulatory Considerations on Centralized Aspects

In this chapter, we demonstrate the multifaceted centralized aspects of the DeFi
projects analyze regulatory implications on them.

32 R. Ushida and J. Angel

3.1 Admin Keys

Some DeFi projects have a specific party with administrative authorities to mod-
ify the protocol by its discretion via private keys called admin keys. The existence
of such centralized functions might be accepted by its community members in
its bootstrapping stage as it could help facilitate the growth of the community
through swift and justifiable updates by the administrators who are strongly
committed to the project, such as the initial developer team. Indeed, we saw
cases, such as Compound, which issued governance tokens to transfer the author-
ity from admin key holders to token holders as the community grows. On the
other hand, some protocols do not have admin keys from the beginning, such
as Maker and Uniswap. Taking as an example of the bZx hack discussed in
2.2.1, it could be argued that the bZx developer team was able to fix the bug
in a relatively timely manner because they had an admin key. As such, it is
not necessarily a bad thing to hold an admin key. However, many projects make
only ambiguous statements about the existence and management of such private
keys, and even those who claim to be managing them properly have no verifica-
tion at all. These custody risks are difficult to verify even with external audits,
and participants of the ecosystem need to trust the key holders. It would be
necessary to follow the security management standards such as ISO/TR 23576
from the operational security perspective. The administrators should strive for
appropriate lifecycle management of private keys and transparent information
disclosure. In addition, it should be pointed out that the admin key may act as
a backdoor and threaten the security of the entire system.

3.1.1 Regulatory Considerations
The admin keys and their holders could be one of the control points for reg-
ulators as Takanashi et al. [14] argues that backdoor “could facilitate nearly
perfect oversight from the government within the network”. SEC [13] refers to
the fact that eleven “high profile” individuals are selected “as holders of The
DAO’s Curator “Multisig” (or “private key”)” in its investigation report. The
EtherDelta examined in 2.1.4 is another proof that regulatory bodies take the
admin keys seriously to assess whether the developer is liable for the unlawful
financial service provision via smart contracts. If regulators are able to iden-
tify the admin key holders, the regulators might ask them to take necessary
actions such as freezing of stolen tokens in case of theft or money laundering.
As an example, when crypto assets were stolen from the hot wallet of a central-
ized exchange KuCoin, some ERC-20 token issuers such as USDT and Ocean
(government tokens) restricted token movement by administrator’s judgement.
Though it is not clear whether there was an order or request from the authori-
ties, it is conceivable that the authorities will take similar enforcement actions
against future incidents. Moreover, depending on the type of financial product
offered, authorities might require the admin key holders to comply with same
regulations that existing financial institutions providing comparable services are
required to abide by.

Regulatory Considerations on Centralized Aspects 33

Taking a step further, the authorities may decide that uncontrollable projects
are unacceptable in order to achieve their regulatory objectives and demand that
the adoption of admin keys be required at the launch of the protocol despite the
effectiveness of its enforceability. In the early 1990s, the United States National
Security Agency (NSA) intended to force telecom companies to adopt a chipset
with a backdoor called the Clipper chip so that law enforcement authorities
could decode the intercepted voice and data transmissions. The attempt failed
due to strong opposition from cryptographers and related groups, but it should
be kept in mind that some authorities could have a strong motivation to have
control over the protocol, as exemplified by the recent discussion on restricting
end-to-end encryption. Since the admin key encompasses issues such as custody
risk, as pointed out in the previous paragraph, both developers and authorities
should at least conduct in-depth risk assessment analysis before making critical
decisions.

3.2 Governance Token Holders

Blemus and Gregan [1] argue that one of the purposes of distributed gover-
nance is to minimize the risk of “tyranny of the majority”. However, regarding
the degree of concentration of decision-making, governance tokens could work
towards increasing the concentration of control over the protocols. Observing
the DeFi ecosystem, in many projects, the majority of the governance token is
held by the developer team or early investors such as venture capital. For exam-
ple, 40% of Uniswap’s UNI is going to distribute to the inner members such as
initial investors and developers, as seen in 2.1.1. Community members usually
receive the token via retrospective distribution or as a reward for adding liquid-
ity to the protocol pool. Still, many holders only hold a minority portion of the
stake and play only a limited role in governance voting. As a result, large token
holders occupy a dominant position in decision-making. It should also be noted
that voting rights are often concentrated in specific holders through delegation
function.

3.2.1 Regulatory Considerations
One of the major regulatory issues is the applicability of governance tokens as
securities. While the holders of some governance tokens are entitled to receive a
part of the fee income generated by the protocol, others have only voting rights
and do not have the right to the treasury of the protocol directly. However, in
many protocols, a portion of the tokens is burned as the cash flow to the protocol
increases, which is equivalent to a share buyback in the case of ordinary stocks,
and can be considered to have the same economic function as dividend. Collomb
et al. argue that regulators should assess not only the original nature or function
of the tokens being issued but also the underlying motivations of both token
issuers and investors, as well as the risks that investors may incur in purchasing
these tokens. Given the assumptions that token holders’ primary motivation is
capital and income gains that would be realized from the growth of the DeFi

34 R. Ushida and J. Angel

projects, it is conceivable that some of them are regarded as a kind of securities or
investment contracts, especially for those that have specific centralized party to
manage the protocol, though it needs to be examined in the context of the legal
framework of relevant jurisdictions. As an example, the SEC [13] has concluded
that The DAO token was a security at the time of the issuance, and charged
Ripple Labs Inc. and two of its executives alleging that they raised over $1.3
billion through an unregistered, ongoing digital asset securities offering11.

Given the similarity of the governance tokens to securities, disclosure require-
ments should be well considered, particularly for the minor token holder protec-
tion. In corporate governance, many jurisdictions have put various institutional
frameworks in place, such as a requirement to submit statements of large-volume
holdings, to mitigate the dominance by large investor regulation to protect
minority shareholders’ interest. While such regulatory frameworks are not in
place as of now, some projects such as Nexus Mutua implement specific voting
rules to curve the strong voting power of large holders by, as an example, limiting
the maximum voting rights to 5% of the total voting rights. However, this kind
of arrangement could also raise concerns about fairness among shareholders.

Another consideration is concerning the possibility of token-based voting
mechanisms being captured by authorities. It is conceivable that the authorities
could hold a large number of tokens and intervene in the DeFi community’s
decision-making.

3.3 Other Centralized Factors

3.3.1 Collateral
Even if the DeFi protocol itself is highly decentralized, there are cases where
assets accepted as collateral or locked in its pools are managed in a central-
ized manner. Maker community decided to add the USDC, custodial stablecoins
backed by US dollars, as one of the collateral assets in March 2020 to increase
the pool’s liquidity after the liquidation failure incidents12. As a US corporation,
Circle manages the USDC. Enforcement officials may demand the company to
freeze the USDC used as a collateral of Dai, a stablecoin issued by Maker pro-
tocol, to stop illegal financial transactions. Also, if the Maker community could
intervene in the decision via on-chain voting, the voters against the request from
authorities could have legal responsibilities. If there is no generally agreed extent
of liability of voters, the token holders might choose not to join the voting to
avoid getting involved into the complicated situation.

3.3.2 Aggregator
The need for aggregation services is growing as the DeFi ecosystem expands.
DEX aggregators enable users to access multiple liquidity pools and offer the best
trading price as explained in 2.3.1. Yearn Finance provides lending aggregation

11 https://www.sec.gov/news/press-release/2020-338.
12 https://forum.makerdao.com/t/proposal-for-collateral-onboarding-of-usdc/1588.

https://www.sec.gov/news/press-release/2020-338
https://forum.makerdao.com/t/proposal-for-collateral-onboarding-of-usdc/1588

Regulatory Considerations on Centralized Aspects 35

by which interest accrual process is optimized by shifting deposited funds auto-
matically between lending pools such as Compound and AAVE. Yearn Finance
also helps users to maximize their profit making via liquidity mining or yield
firming. Whereas aggregators are yet another protocol like many other DeFi
protocols and often do not custody the user’s assets, it could be a point of cen-
tralization when a lot of users rely on the aggregation services and access the
user-friendly front interface. The operators of the website might be deemed liable
if it is evident that illegal activities are facilitated by the aggregation protocols.

3.3.3 Legal Entity
Chohan [15] discusses the legal indeterminacy of DAO and raises concern about
the unlimited liability of the DAO participants if it is structured in the form
of a general partnership as opposed to a corporation. As discussed in 2.2.4,
legal arrangements lower the risks to investors in starting a business by mak-
ing the investors have limited liability. Note that this freedom from liability is
not affected by how shareholders vote. In addition, legal entity would be neces-
sary to manage intellectual property rights of the community and to deal with
jurisdictional-wise issues such as tax issues.

4 Conclusion and Future Works

There is no need to reinvent the wheel of governance. Whether it is Internet
governance or corporate governance, useful mechanisms should be adopted in
the DeFi ecosystem. Given the different degrees of decentralization of ongoing
projects, the hybrid approach might hit the target. However, it is worth men-
tioning that it does not mean that we should ignore the existing governance
arrangements already in place in the community. It should be also noted that
the DeFi ecosystem is rapidly changing and each project seems to be explor-
ing various directions toward further decentralization or re-centralization, which
would affects the enforceability of regulation. This would make it much more dif-
ficult for regulators to properly assess the risk and implement tailored, risk-based
regulatory approaches. Whereas this paper provides an overview of the gover-
nance mechanism and regulatory implications, an in-depth analysis should be
done in consideration of complicated elements such as jurisdictional regulatory
gaps and privacy-enhancing technologies. Besides, salient features of DeFi such
as transparency should be examined from corporate governance point of view.
It is also necessary to delve into the governance of organizations that are more
similar to DAO, such as cooperative financial institutions. Since there is a wide
range of issues to be discussed and solved, which neither the DeFi ecosystem
participants nor the authorities alone could not sufficiently address, a multi-
stakeholder approach should be taken to pave the way for the wider application
of innovative financial products for social goods.

References

1. Blemus, S., Guegan, D.: Initial crypto-asset offerings (ICOs), tokenization and
corporate governance (2019)

36 R. Ushida and J. Angel

2. Financial Stability Board: Decentralised financial technologies: report on financial
stability, regulatory and governance implications (2019). https://www.fsb.org/wp-
content/uploads/P060619.pdf

3. Collomb, A., de Filippi, P., Sok, K.: Blockchain technology and financial regulation:
a risk-based approach to the regulation of ICOs. Eur. J. Risk Regul. 10(2), 263–314
(2019)

4. De Filippi, P., Loveluck, B.: The invisible politics of bitcoin: governance crisis of a
decentralized infrastructure. Internet Policy Rev. 5, 09 (2016)

5. De Filippi, P., Wright, A.: Blockchain and the Law: The Rule of Code. Harvard
University Press, Cambridge (2018)

6. Hacker, P.: Corporate Governance for Complex Cryptocurrencies? A Framework
for Stability and Decision Making in Blockchain-Based Organizations, pp. 140–166.
Oxford University Press, Oxford (2017)

7. Hirschman, A.O.: Exit, Voice, and Loyalty: Responses to Decline in Firms, Orga-
nizations, and States (1972)

8. Kondova, G., Barba, R.: Governance of decentralized autonomous organizations.
J. Mod. Account. Auditing 15, 406–411 (2019)

9. Lessig, L.: Code and Other Laws of Cyberspace. Basic Books, New York (1999)
10. Nabilou, H.: Bitcoin governance as a decentralized financial market infrastructure

(2020)
11. OECD. G20/OECD Principles of Corporate Governance (2015)
12. Basel Committee on Banking Supervision: Corporate governance principles for

banks (2015). https://www.bis.org/bcbs/publ/d328.pdf
13. U.S. Securities and Exchange Commission: Report of investigation pursuant to

section 21(a) of the securities exchange act of 1934: The dao (2017). https://www.
sec.gov/litigation/investreport/34-81207.pdf

14. Takanashi, Y., Matsuo, S., Burger, E., Sullivan, C., Miller, J., Sato, H.: Call for
multi-stakeholder communication to establish a governance mechanism for the
emerging blockchain-based financial ecosystem, part 1 of 2. Stanford J. Blockchain
Law Policy (2020)

15. WChohan, U.W.: The decentralized autonomous organization and governance
issues. J. Cyber Policy 1–7 (2017)

16. Zamfir, V.: Against Szabo’s law, for a new crypto legal system (2019).
https://medium.com/cryptolawreview/against-szabos-law-for-a-new-crypto-
legal-system-d00d0f3d3827

https://www.fsb.org/wp-content/uploads/P060619.pdf
https://www.fsb.org/wp-content/uploads/P060619.pdf
https://www.bis.org/bcbs/publ/d328.pdf
https://www.sec.gov/litigation/investreport/34-81207.pdf
https://www.sec.gov/litigation/investreport/34-81207.pdf
https://medium.com/cryptolawreview/against-szabos-law-for-a-new-crypto-legal-system-d00d0f3d3827
https://medium.com/cryptolawreview/against-szabos-law-for-a-new-crypto-legal-system-d00d0f3d3827

CoDecFin – AML/KYC and Privacy

Collaborative Deanonymization

Patrik Keller1(B), Martin Florian2, and Rainer Böhme1

1 University of Innsbruck, Innsbruck, Austria
{patrik.keller,rainer.boehme}@uibk.ac.at

2 Weizenbaum Institute, Humboldt University of Berlin, Berlin, Germany
martin.florian@hu-berlin.de

Abstract. Privacy-seeking cryptocurrency users rely on anonymization
techniques like CoinJoin and ring transactions. By using such technolo-
gies benign users potentially provide anonymity to bad actors. We pro-
pose overlay protocols to resolve the tension between anonymity and
accountability in a peer-to-peer manner. Cryptocurrencies can adopt
this approach to enable prosecution of publicly recognized crimes. We
illustrate how the protocols could apply to Monero rings and CoinJoin
transactions in Bitcoin.

1 Introduction

“Anonymity loves company.” [6] It is well-established that anonymity is co-
created by the members of an anonymity set, who share the same intention and
employ technical systems and protocols to make them appear indistinguishable
to outside observers [16]. Inherently, benign members seeking privacy assist bad
actors avoiding law enforcement.

Previously, the tension between privacy and law enforcement has been stud-
ied for mixes in communication networks [4,5,11]. The proposed solutions rely on
putting backdoors into systems or the supporting cryptography, such that desig-
nated parties can revoke the anonymity in justified cases. Access to the backdoor
is made transparent, which holds law enforcement accountable and impedes mass
surveillance. With the advent of privacy-hardened cryptocurrencies, the tension
is instantiated for money flows. While backdoors seem technically feasible, it is
unlikely that they can be sustained in decentralized systems, whose raison d’être
is the rejection of privileged parties with special access rights.

Another, more widely acceptable idea to combat money laundering specif-
ically are threshold schemes. Small payments would enjoy unlinkability while
larger transactions require identification or are traceable by design [10,19]. The
downsides of this approach include the need to agree on a threshold and, more
importantly, it would require strong identities in order to prevent “smurfing”
attacks, which split a large sum into many small payments.

We explore a different approach. In many cases, the parties forming the
anonymity set can retain some private information, which can help deanonymize
other members of the set. Collaborative deanonymization means that some par-
ties, henceforth called witnesses, share information on request for the purpose
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 39–46, 2021.
https://doi.org/10.1007/978-3-662-63958-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_3&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_3

40 P. Keller et al.

suspicious
cash-out

suspects

Fig. 1. Example entity graph of 7 ring-type transactions, m = 2. Dots are entities,
arrows denote possible payments. Observe the exponential growth of suspects.

of solving a crime. In a nutshell, law enforcement publicly shares information
requests for specific crimes. Then users check whether they are involved, decide
whether the crime should be prosecuted, and potentially reveal private informa-
tion to support deanonymization.

We argue that this approach is compatible with the peer-to-peer spirit of
decentralized systems because every witness decides if she supports the investi-
gation or not. This limits the method to felonies that are universally disapproved,
such as extortion (ransomware) or the financing of child sexual abuse. For the
method to be effective, it is not required that every witness collaborates. Every
collaborating witness reduces the search space. Law enforcement might leverage
a range of incentives to induce collaboration: alibi, altruism, bounties, and—in
justified cases—force (e. g., seizure and use of a private key). Unlike traffic or
blockchain analyses, collaborative deanonymization does not scale, hence the risk
of secret mass surveillance is small. Moreover, as search requests are announced
publicly, law enforcement can be held accountable. The very fact that anonymity
is conditional can deter crime.

In the following we develop a scenario (Sect. 2), formulate desiderata, and
sketch overlay protocols (Sects. 3 and 4) that enable collaborative deanonymiza-
tion of two relevant privacy techniques, CoinJoin and Monero rings, without
changing the target systems. Section 5 concludes.

2 Scenario and Model

Consider a scenario where a law enforcement agency (LEA) identifies a suspicious
cash-out from a cryptocurrency address. The objective of an investigation is to
find an identifiable source, i. e., backtracking. After employing known blockchain
analysis methods, like state-of-the-art clustering [8], the LEA obtains an entity
graph where backtracking is ambiguous only due to mixing transactions.

We model such transactions as collections of m inputs and n outputs. The
LEA has no information about the relation.1 Without loss of generality, we

1 Conversely, if the LEA has some information (e. g. due to non-uniformly valued
inputs and outputs), it can partition the transaction and proceed as described.

Collaborative Deanonymization 41

assume that each output of a transaction is funded by exactly one input. Back-
tracking links the entity associated with the targeted t-th output to the entity
of the funding input. Between transactions, each input references exactly one
output of a previous transaction.

general

m n

join-type

ψ(1)
ψ(2)

ψ(m)

1
2

m

...
...

ring-type

1
2

m

σ

...

We consider two of the most relevant types of mixing transactions: join-
type as used in CoinJoin [12] and ring-type as used in Monero [7]. Join-type
transactions are formed collaboratively by m parties, potentially facilitated by
an intermediary such as JoinMarket [13]. We model this using m inputs, each
funding a distinct output (n = m). A join-type transaction can then be expressed
as a permutation ψ on {1, . . . , m}. The LEA’s problem is to find the funding
input ψ(t) of the t-th output. In practice, CoinJoin transactions vary in size. A
study estimates the modal value of inputs for CoinJoins on Bitcoin at m = 3 [13].
Transactions with m > 10 are rare.2

In contrast to join-type transactions, ring-type transactions can be formed
without the cooperation of other entities. Moreover, a ring-type transaction does
not spend all outputs referenced on its input side. In our simplified model, ring
transactions have m inputs and a single output (n = t = 1). The LEA’s goal
is to learn the true input σ.3 At the time of writing, the Monero reference
implementation fixes the number of inputs to m = 11.

For both types of mixing transactions, the anonymity of the participants is
based on the observer’s uncertainty about ψ and σ, respectively. If multiple mix-
ing transactions are cascaded, the number of possible funding sources (suspects)
increases exponentially in the number of layers (see Fig. 1). We propose proto-
cols that allow the LEA to reduce the number of suspects in collaboration with
a subset of the involved parties.

3 Collaborative Backtracking

We assume an authenticated one-way communication channel from the LEA to
the protocol participants. The LEA uses this channel to announce inquiries on
targeted transaction outputs. Each inquiry conveys enough information so that
a potential witness can decide whether she supports the request, i. e., whether
she approves prosecution of the specific case, or not.

We further assume an unauthenticated but confidential communication chan-
nel from the witnesses to the LEA and, for group testimonies, communication
2 A CoinJoin with m = 100 made headlines in June 2019: https://www.coindesk.com/

bitcoin-users-perform-what-might-be-the-largest-coinjoin-ever.
3 We depart from Monero’s terminology, which calls an entire ring “input.”.

https://www.coindesk.com/bitcoin-users-perform-what-might-be-the-largest-coinjoin-ever
https://www.coindesk.com/bitcoin-users-perform-what-might-be-the-largest-coinjoin-ever

42 P. Keller et al.

channels between the witnesses. Witnesses willing to support an inquiry use these
channels to give testimonies that facilitate backtracking for a single transaction.

3.1 Individual Testimony

An individual testimony is a protocol between a single witness and the LEA. It
results in ruling out one of the possible inputs. Formally speaking, the witness
associated with the i-th input should prove that ψ(t) �= i or σ �= i, respectively.

For join-type transactions, the witness can testify by signing a challenge with
the private keys belonging to the i-th input and the j-th output (obviously t �= j).

Ring-type transactions hide the true input using traceable ring signatures [7].
By design, these ring signatures reveal attempts to spend an input more than
once. The spending of an input yields a transaction-independent key image that
must be included in a valid signature—transactions attempting to spend the
same input will contain identical key images [17]. Let o be the output of a
preceding transaction that links the witness to the suspicious transaction T .
The witness prepares a phantom transaction T ′ for the LEA. It has one input
referencing o and one output. The output could be invalid in order to avoid
accidental inclusion in the blockchain. For example, T ′ could spend more funds
than available in o. Crucially, the phantom transaction unambiguously spends o.
If the key image associated with T ′ is different to the key image of T , it must
hold that i �= σ.

3.2 Group Testimony

The LEA is interested in a single input to output relationship, but it learns one
relationship per individual testimony. Group testimonies can avoid this unnec-
essary privacy loss. Multiple witnesses controlling the set of inputs S collabora-
tively testify ψ(t) �∈ S or σ �∈ S, while maintaining their anonymity within S.

For join-type transactions, this can be realized by signing a challenge with
all 2 · |S| private keys belonging to the witnesses’ inputs and outputs. In the best
case, all m − 1 witnesses cooperate (S = {1, . . . , m} \ {t}) and identify the true
suspect. If |S| < m witnesses participate in the protocol, for example because
private keys are deleted or witnesses unreachable, the search space is reduced
to m − |S| suspects. Join-type group testimonies retain S as the anonymity set
of witnesses. Cases where S = {1, . . . , m} \ {t} minimize the anonymity loss for
witnesses when testifying that ψ(t) /∈ S.

For ring-type transactions, it is possible to implement group testimonies with
the construction of a provably spent set [18,20]. For example, each cooperating
witness can individually form a new transaction T ′ like for an individual tes-
timony, however this time referencing not only its own input but all inputs S
of cooperating witnesses. Given |S| transactions that all have the same set of
inputs S and yet differing key images, the LEA gains evidence that σ �∈ S. If an
output o referenced by an input i ∈ S is unspent at the time of the testimony,
the respective witness can achieve an anonymity set of S for o by referencing

Collaborative Deanonymization 43

all S when spending o. Conversely, if o has already been spent in a transaction
T ′′ with input set S′′, the anonymity set of the witness reduces to S ∩ S′′.

Notably, each of the cooperative protocols can be executed jointly for multiple
mixing transactions. This testifies that the owners of S (now generalized to the
enumeration of all inputs in all transactions involved) initiated none of these
transactions. This approach is especially interesting for ring-type transactions,
as larger S increase the overlap with the anonymity sets of outputs that have
already been spent elsewhere.

3.3 Dealing with the Risk of False Testimonies

A general question is how much confidence the LEA can place in the testimonies.
This calls for a closer look at how collaborative deanonymization can fail, and
in the worst case produce false or misleading evidence. We observe crucial dif-
ferences between join-type and ring-type transactions.

Monero stores σ on the blockchain, however in encrypted form. This should
reduce the risk of false testimonies to the security of the cryptography used, even
if private keys are leaked or stolen.

By contrast, CoinJoin does not commit ψ to the blockchain. Even compu-
tationally unbounded observers cannot decide about the relation. The resulting
deniability bears a risk of false testimonies. For example, if the perpetrator has
access to the private keys of a witness, he could obtain a false alibi by signing
a false input–output relation. If the victim among the witnesses does not par-
ticipate in the collaborative deanonymization, she is falsely accused. If she does
participate, the LEA receives two conflicting statements. This concentrates the
suspicion on both the perpetrator and the victim, hence perpetrators have little
to gain from false statements—unless their victims are unavailable.

The sketched situation highlights that parties engaging in CoinJoins might
be exposed to physical risks under collaborative deanonymization. A potential
direction of research is to modify the protocols used for CoinJoin formation in
such a way that ψ is committed to the blockchain at the time of the transaction.
This would obviate false accusations and reduce the incentives to attack other
witnesses. The key question to answer is under which conditions what part of ψ
should be revealable. For example, should every party commit to one relation
individually? Would a threshold scheme make sense? Moreover, it would be
desirable to make the commitment coercion-resistant. Otherwise, the risk could
reappear at the time of the CoinJoin formation, rather than be mitigated.

Another approach for increasing the credibility of testimonies could be based
on witnesses proving that addresses belong to the same wallet, e. g., if their
wallet generates addresses deterministically from a common secret. It is an open
question how such a proof can efficiently be completed without revealing more
information about the wallet than necessary.

44 P. Keller et al.

4 Forward Tracking

A variant of the scenario presented in Sect. 2 is forward tracking. Here, the LEA
has identified a suspicious origin and wishes to trace the money flow to its
(current) destination or until it hits a known cash-out point. We sketch how our
approach can be adapted to this case.

4.1 Testimonies for Forward Tracking

Due to the symmetry of join-type transactions, the backtracking protocols
(Sect. 3) can be repurposed for forward tracking. Since ψ is bijective, testimonies
which rule out assignments of ψ also rule out assignments of ψ−1.

Ring-type transactions are less straightforward. The protocols given in Sect. 3
enable collaborating witnesses to testify that a set of inputs S does not contain
the funding input for a given transaction T , i. e., σ /∈ S. For the case of forward
tracking, they must instead prove that only one specific suspicious input s is not
a funding input, i. e., σ �= s. Individual witnesses can accomplish this by creat-
ing a phantom transaction T ′, which include all but the suspicious input s. As T ′

and T share the same funding input i, they will produce identical key images. By
comparing the key images of T and T ′, the LEA can verify that σ �= s without
learning i.

4.2 Blacklisting and Cover Transactions

Forward tracking is related to transaction blacklisting previously proposed (and
controversially debated) as a regulatory instrument [2,15]. Specifically the “poi-
son” policy [14], where taint of a single input is propagated to all outputs,
mimics the proliferation of a priori suspicion. An interesting question is whether
the threat of blacklisting can foster collaboration. For example, the propagation
policy could terminate at whitelisted transactions after sufficient evidence has
been collected to disambiguate the entity graph (for forward and backtracking).

Forward tracking on Monero rings comes with two caveats. First, it might
be hard to decide about when to terminate (unsuccessfully), because it is often
unknown whether a given output has been spent at all. Second, the method
is susceptible to cover transactions placed by a perpetrator. Such transactions
reference the investigated money flow in order to increase the search space and
with it the number of witnesses needed.

Blacklisting might be a defense against this behavior because it would devalue
the funds in cover transactions and thus raise the cost of creating them. However,
the effectiveness of this method as well as other defenses are open research ques-
tions. We note that backtracking is not affected by the threat of cover transactions
because funding transactions cannot be added after the spending transaction.

5 Conclusion and Outlook

We have outlined a novel way to investigate criminal money flows in cryptocur-
rencies even if the perpetrators use anonymization techniques. Our approach

Collaborative Deanonymization 45

requires collaboration of witnesses, which keeps the method costly enough to
prevent mass surveillance or the prosecution of petty crimes. Specifically, we
have given protocols for backtracking and forward tracking of CoinJoin transac-
tions in Bitcoin as well as Monero rings. Several techniques ensure that the infor-
mation shared with law enforcement can be limited to the necessary minimum.
The new risk of false accusations has been discussed. A general consequence of
collaborative deanonymization is that old private keys remain sensitive even if
they do not control any funds anymore.

We shall also pinpoint future work. Obviously, the protocols for secure testi-
monies need to be further developed and their properties formalized and proven.
A proof-of-concept implementation for the most relevant types of mixing trans-
actions could demonstrate the practicality of our approach. Whether and under
which condition LEAs can deploy collaborative deanonymization, must be sub-
ject of more interdisciplinary work with legal scholars. Adapting the approach
to less common types of mixing transactions (see for instance Table 1 of [9] for
an overview) would help to complete the picture.

The topic also lends itself to economic studies. One could investigate the
incentives of witnesses to collaborate, presumably with cooperative game the-
ory [3]. In addition, potential knock-on effects on the participation in mixing
transactions call for a model in the tradition of competitive game theory [1].

Two broader technical directions are to explore collaborative deanonymiza-
tion for anonymous communication systems, and to research deniable privacy
techniques, which could protect potential witnesses from any pressure to testify
or release deanonymizing information.

In summary, collaborative deanonymization appears not only under-resear-
ched, but also under-estimated for its potential to balance the conflicting goals
of privacy and law enforcement in future digital currency systems. This short
paper sets out to make a case for this promising tool.

Acknowledgements. We thank our colleagues Michael Fröwis, Malte Möser, Tim
Ruffing, and a number of anonymous reviewers for helpful discussions of earlier versions
of this work. Rainer Böhme’s and Patrik Keller’s work on this topic is supported by
the Austrian FFG’s KIRAS programme under project VIRTCRIME.

References

1. Abramova, S., Schöttle, P., Böhme, R.: Mixing coins of different quality: a game-
theoretic approach. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp.
280–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 18

2. Anderson, R., Shumailov, I., Ahmed, M.: Making bitcoin legal. In: Matyáš, V.,
Švenda, P., Stajano, F., Christianson, B., Anderson, J. (eds.) Security Protocols
2018. LNCS, vol. 11286, pp. 243–253. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03251-7 29

3. Arce, D.G., Böhme, R.: Pricing anonymity. In: Meiklejohn, S., Sako, K. (eds.) FC
2018. LNCS, vol. 10957, pp. 349–368. Springer, Heidelberg (2018). https://doi.org/
10.1007/978-3-662-58387-6 19

https://doi.org/10.1007/978-3-319-70278-0_18
https://doi.org/10.1007/978-3-030-03251-7_29
https://doi.org/10.1007/978-3-030-03251-7_29
https://doi.org/10.1007/978-3-662-58387-6_19
https://doi.org/10.1007/978-3-662-58387-6_19

46 P. Keller et al.

4. Backes, M., Clark, J., Kate, A., Simeonovski, M., Druschel, P.: BackRef: account-
ability in anonymous communication networks. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 380–400. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07536-5 23

5. Claessens, J., Dı́az, C., Goemans, C., Dumortier, J., Preneel, B., Vandewalle, J.:
Revocable anonymous access to the Internet? Internet Res. 13(4), 242–258 (2003)

6. Dingledine, R., Mathewson, N.: Anonymity loves company: usability and the net-
work effect. In: Workshop on the Economics of Information Security (2006)

7. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8 13

8. Goldfeder, S., Kalodner, H., Reisman, D., Narayanan, A.: When the cookie
meets the blockchain: privacy risks of web payments via cryptocurrencies. Privacy
Enhancing Technol. 4, 179–199 (2018)

9. Heilman, E., AlShenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
an untrusted bitcoin-compatible anonymous payment hub. In: Network and Dis-
tributed System Security Symposium. Internet Society (2017)

10. Jarecki, S., Shmatikov, V.: Probabilistic escrow of financial transactions with
cumulative threshold disclosure. In: Patrick, A.S., Yung, M. (eds.) FC 2005.
LNCS, vol. 3570, pp. 172–187. Springer, Heidelberg (2005). https://doi.org/10.
1007/11507840 17

11. Köpsell, S., Wendolsky, R., Federrath, H.: Revocable anonymity. In: Müller, G.
(ed.) ETRICS 2006. LNCS, vol. 3995, pp. 206–220. Springer, Heidelberg (2006).
https://doi.org/10.1007/11766155 15

12. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Forum post (2013)
13. Möser, M., Böhme, R.: Join me on a market for anonymity. In: Workshop on the

Economics of Information Security (2016)
14. Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of bitcoin transactions.

In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol.
8438, pp. 16–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44774-1 2

15. Möser, M., Narayanan, A.: Effective cryptocurrency regulation through blacklist-
ing. Preprint (2019)

16. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity —
a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44702-4 1

17. van Saberhagen, N.: CryptoNote v2.0. Whitepaper (2013)
18. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D.: Monero ring attack: recreating zero

mixin transaction effect. In: Trust, Security And Privacy In Computing And Com-
munications, pp. 1196–1201. IEEE (2018)

19. Wüst, K., Kostiainen, K., Čapkun, V., Čapkun, S.: PRCash: fast, private and reg-
ulated transactions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 158–178. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32101-7 11

20. Yu, Z., Au, M.H., Yu, J., Yang, R., Xu, Q., Lau, W.F.: New empirical traceability
analysis of CryptoNote-style blockchains. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 133–149. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32101-7 9

https://doi.org/10.1007/978-3-319-07536-5_23
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/11507840_17
https://doi.org/10.1007/11507840_17
https://doi.org/10.1007/11766155_15
https://doi.org/10.1007/978-3-662-44774-1_2
https://doi.org/10.1007/978-3-662-44774-1_2
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1007/978-3-030-32101-7_9
https://doi.org/10.1007/978-3-030-32101-7_9

Re: FinCEN Docket Number
FINCEN-2020-0020; RIN 1506-AB47;
Requirements for Certain Transactions
Involving Convertible Virtual Currency

or Digital Assets

Ryan Taylor(B)

Dash Core Group, Scottsdale, USA
ryan@dash.org

Abstract. Dash is NOT an anonymity-enhanced cryptocurrency.

Keywords: Blockchain · KYC · AML · Compliance · Information
security · Regulation awareness · Anonymity-enhanced
cryptocurrency · AEC · FinCEN

1 Introduction

Dash Core Group (“DCG”) appreciates the opportunity to submit this letter for
consideration by the Financial Crimes Enforcement Network (“FinCEN”) with
respect to the Notice of Proposed Rulemaking (“NPR”), published on December
23, 2020, titled “Requirements for Certain Transactions Involving Convertible
Virtual Currency or Digital Assets” See 85 FR 83840.

We offer this letter for a very specific purpose. The NPR describes at length
the government’s concerns that certain segments of the convertible virtual cur-
rency (“CVC”) market create an illicit finance threat. In particular, the NPR’s
background section identifies anonymity-enhanced cryptocurrencies (“AECs”)
as a money laundering risk, and specifically names the Dash cryptocurrency as
an AEC “that inhibit[s] investigators’ ability both to identify transaction activ-
ity involving blockchain data and to attribute this activity to illicit activity
conducted by natural persons” 85 FR 83844.

This characterization of the Dash cryptocurrency is wrong. It mis-
understands how the Dash cryptocurrency works. It ignores public
statements by neutral third party experts- including the prominent
blockchain analysis company Chainalysis, which the U.S. government
itself often uses in its investigations-that transactions involving the
Dash cryptocurrency can be both identified and attributed. And this
characterization is having a material, negative impact on the Dash
network’s operations, as cryptocurrency exchanges around the world

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 47–53, 2021.
https://doi.org/10.1007/978-3-662-63958-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_4&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_4

48 R. Taylor

have begun delisting the Dash cryptocurrency based on the U.S. gov-
ernment’s repeated (and mistaken) assertions that Dash is a money
laundering risk.

DCG strongly opposes the use of cryptocurrencies for illicit purposes. Indeed,
we have worked productively with law enforcement agents when they have
approached us to advance their legitimate investigations. Moreover, we met with
officials at FinCEN in June 2020 to describe how the Dash network works, and
why any characterization of the Dash cryptocurrency as a money laundering
risk is flawed. Nonetheless, the mis-characterization of Dash in official U.S. gov-
ernment documents continues. This arbitrary and capricious state of affairs is
unacceptable, and it is significantly impacting the Dash network’s operations.
We respectfully ask you to strike any reference to Dash in any future
iterations of (or documents relating to) this Rule.

2 Dash Is Not an Anonymity-Enhanced Cryptocurrency

Dash is a leading cryptocurrency network focused on payments.1 A fork of Bit-
coin’s code, the Dash network is a user-operated network whose most typical
use case is as digital cash for everyday transactions. Payments are near-instant,
easy, and secure; users can purchase goods at thousands of merchants, and can
trade Dash at major exchanges and brokers around the world.

We should emphasize the most important point upfront: Dash’s network,
just like Bitcoin’s, features a transparent, auditable blockchain that
does not have any hidden addresses or hidden transaction details. All
transactions list the complete set of inputs, outputs, addresses, and
amounts.

We are, accordingly, at a loss for why official U.S. government documents
continue to mislabel Dash as an AEC that is routinely used as a vehicle for
money laundering and other illicit activity.2 Most likely, those who view Dash
as a money laundering risk are basing their assumptions on old (and flawed)
information. It is true that Dash’s founder-who is no longer associated with
the project, and has not been for almost four years-announced, shortly after
1 DCG is distinct from the Dash network, and is one of the many entities serving

that network. DCG is the largest software development organization for the Dash
network and is primarily tasked with development of the protocol. We also engage in
business development and marketing efforts that benefit the network. Other software
development teams independent of DCG also perform work for the network.

2 In addition to FinCEN’s NPR, the U.S. Department of Justice recently issued an
influential report that publicly (and erroneously) named Dash as an AEC that
employs “non-public or private blockchains that make it more difficult to trace or
to attribute transactions,” “may undermine the AML/CFT controls used to detect
suspicious activity by MSBs and other financial institutions, and may limit or even
negate a business’s ability to conduct AML/CFT checks on customer activity and
to satisfy B[ank] S[ecrecy] A[ct] requirements.” U.S. Department of Justice, Cryp-
tocurrency Enforcement Framework (Oct. 2020) at 4, 41, available at: https://www.
justice.gov/ag/page/file/1326061/download.

https://www.justice.gov/ag/page/file/1326061/download
https://www.justice.gov/ag/page/file/1326061/download

Re: FinCEN Docket Number FINCEN-2020-0020 49

Dash’s launch in 2014, an initial focus on enhancing the pseudonymity of Bit-
coin through an implementation of CoinJoin, and rebranded the coin (which
then was called Xcoin) as “Darkcoin.” This early decision branded Dash in a
negative light and encouraged sensational press coverage depicting Dash as a
cryptocurrency that facilitated illegal activities. Since mid-2014, however, the
project focus has pivoted significantly. The coin was renamed “Dash” in March
2015 to reflect the network’s new focus on providing its users with payment
speed and efficiency (rather than privacy/anonymity), as embodied in its popular
“InstantSend” feature. Speed, efficiency, and a superior user experience remain
Dash’s focus, but unfortunately the coin’s legacy privacy/anonymity reputation
lingers, particularly in the media.3

As we explained to representatives of FinCEN in June 2020, Dash is not
an AEC because its privacy feature is simply a branded implementation of
non-custodial CoinJoin, a privacy- enhancing technique that adds complexity
to transactions that can be performed on any transparent blockchain. That is,
unlike many other privacy solutions, CoinJoin transactions do not require any
modifications to the Bitcoin protocol upon which Dash is based.

Notably, third-party experts agree with our assessment. For example,
Chainalysis, a reputable company that both FinCEN and the Department of
Justice use to combat money laundering, terrorist financing, and other illicit
cryptocurrency uses, issued a statement (without any prompting from us) when,
in mid-2020, it launched coverage of Dash. As Chainalysis declared:

“We just launched support for two notable cryptocurrencies in Chainalysis
Reactor and KYT (Know Your Transaction): Dash and Zcash. As two of the
most popular so-called “privacy coins”-cryptocurrencies with privacy enhancing
features encoded into their protocols-they account for over 1.5 billion of reported
daily trading volume.

You may be wondering how Chainalysis products could support privacy coins.
Isn’t the whole purpose of privacy coins to make transactions impossible to trace?

That’s an oversimplification, in that it misunderstands both the privacy fea-
tures coins like Dash and Zcash offer and how users actually utilize those features
in everyday transactions.”4

The statement goes on to explain that Dash’s “most notable privacy modifi-
cation [from Bitcoin] is its PrivateSend functionality.” PrivateSend is “a branded
implementation of the CoinJoin protocol . . . as a way to obscure the origin of

3 For example, the popular Investopedia website lists Dash as the “#3” “privacy-
oriented cryptocurrency,” whose “PrivateSend feature” supposedly “obscur[es] the
origin of your funds”-though the website does acknowledge that certain settings allow
for users “to remain within their countries’ regulatory standards.” Investopedia,
“Six Private Cryptocurrencies,” available at: https://www.investopedia.com/tech/
five-most-private-cryptocurrencies/ (last updated Dec. 24, 2020). For the reasons
expressed in this letter, Investopedia’s characterization is mistaken. We address the
“PrivateSend” feature later in the text of this letter.

4 Chainalysis, “Introducing Investigation and Compliance Support for Dash
and Zcash,” June 8, 2020, available at: https://blog.chainalysis.com/reports/
introducing-chainalysis-investigation-compliance-support-dash-zcash.

https://www.investopedia.com/tech/five-most-private-cryptocurrencies/
https://www.investopedia.com/tech/five-most-private-cryptocurrencies/
https://blog.chainalysis.com/reports/introducing-chainalysis-investigation-compliance-support-dash-zcash
https://blog.chainalysis.com/reports/introducing-chainalysis-investigation-compliance-support-dash-zcash

50 R. Taylor

funds.” (As Chainalysis notes, however, “PrivateSend is optional,” and “Dash
transactions are unmixed by default.”) The statement then describes how Pri-
vateSend works from a technical perspective; the key takeaway point is this:
“It’s possible to perform mixing transactions that are functionally identical to
PrivateSend on other technologically similar cryptocurrencies. This means from
a technical standpoint, Dash’s privacy functionality is no greater than Bitcoin’s,
making the label of ‘privacy coin’ a misnomer for Dash. In fact, independent
wallet softwares provide more advanced forms of CoinJoin that are being used
with major cryptocurrencies not labeled as privacy coins, such as Bitcoin, Bit-
coin Cash, and Litecoin.”5 In other words, according to Chainalysis-the same
company that the U.S. Department of Justice has publicly lauded on multi-
ple occasions as a trusted private sector partner in the fight against illicit uses
of cryptocurrency6 -Dash’s privacy features make it no harder, and in certain
circumstances easier, to trace than Bitcoin. And, of course, no knowledgeable
person would suggest that the use of Bitcoin raises insuperable challenges to law
enforcement to confront and address the public safety and national security risks
outlined in the NPR.

In an effort to demonstrate the similarities between the “digital trails” left
by transactions conducted using Dash and those using Bitcoin, DCG in May
2019 took the initiative to conduct “PrivateSend” transactions on the Bitcoin
network, and compared them to transactions using Dash. Here are links to the
Bitcoin “PrivateSend” transactions.7

And here are links to the Dash “PrivateSend” transactions8

Each transaction block includes 20 publicly-displayed input and output
addresses, and reflects identical transaction amounts. The blocks are identical in
the information they reveal and there is absolutely no distinction between them!

In sum, Dash is a transparent, analyzable blockchain indistinguishable from
Bitcoin in its functionality. Dash’s PrivateSend feature is simply a branded
implementation of non- custodial CoinJoin available on most public blockchains.

5 Id. (emphasis added).
6 See, e.g., U.S. Dep’t of Justice, Press Release, “United States Files A Civil

Action To Forfeit Cryptocurrency Valued At Over One Billion U.S. Dol-
lars,” Nov. 5, 2020, available at: https://www.justice.gov/usao-ndca/pr/united-
states-files-civil-action-forfeit-cryptocurrency-valued-over-one-billion-us (thanking
Chainalysis by name); U.S. Dep’t of Justice, Press Release, “Global Dis-
ruption of Three Terror Finance Cyber-Enabled Campaigns,” Aug. 13,
2020, available at: https://www.justice.gov/opa/pr/global-disruption-three-terror-
finance-cyber-enabled-campaigns (same); U.S. Dep’t of Justice, Press Release,
“Three Individuals Charged For Alleged Roles In Twitter Hack,” July 31, 2020, avail-
able at: https://www.justice.gov/usao-ndca/pr/three-individuals-charged-alleged-
roles-twitter-hack.

7 See Bitcoin Transaction through PrivateSend: https://btc.cryptoid.info/btc/tx.dws?
2e9aa4e7c7aa704055adc7ce396533164a097515189a30f1e9c8fa73b21dc174.html.

8 See links to Dash PrivateSend transactions for comparison to Bitcoin
“PrivateSend” transactions here at: https://chainz.cryptoid.info/dash/tx.dws?
a8656b7655c14445c652d8e5e27a6155e8a39aa792f99210607437737999a945.html.

https://www.justice.gov/usao-ndca/pr/united-states-files-civil-action-forfeit-cryptocurrency-valued-over-one-billion-us
https://www.justice.gov/usao-ndca/pr/united-states-files-civil-action-forfeit-cryptocurrency-valued-over-one-billion-us
https://www.justice.gov/opa/pr/global-disruption-three-terror-finance-cyber-enabled-campaigns
https://www.justice.gov/opa/pr/global-disruption-three-terror-finance-cyber-enabled-campaigns
https://www.justice.gov/usao-ndca/pr/three-individuals-charged-alleged-roles-twitter-hack
https://www.justice.gov/usao-ndca/pr/three-individuals-charged-alleged-roles-twitter-hack
https://btc.cryptoid.info/btc/tx.dws?2e9aa4e7c7aa704055adc7ce396533164a097515189a30f1e9c8fa73b21dc174.html
https://btc.cryptoid.info/btc/tx.dws?2e9aa4e7c7aa704055adc7ce396533164a097515189a30f1e9c8fa73b21dc174.html
https://chainz.cryptoid.info/dash/tx.dws?a8656b7655c14445c652d8e5e27a6155e8a39aa792f99210607437737999a945.html
https://chainz.cryptoid.info/dash/tx.dws?a8656b7655c14445c652d8e5e27a6155e8a39aa792f99210607437737999a945.html

Re: FinCEN Docket Number FINCEN-2020-0020 51

All transaction inputs, outputs, addresses, and amounts are fully visible on the
Dash blockchain for all transactions.

Of course, none of this is news to FinCEN; we covered these points in detail
during our June 2020 meeting with nearly a dozen representatives across the
agency’s various divisions. Unfortunately, we have heard nothing from FinCEN
since then. Instead, despite clear evidence to the contrary, the agency appears
to have adopted the plainly erroneous view that Dash represents a money laun-
dering risk.

3 Dash Is Rarely, if Ever, Used for Illicit Activities or in
Connection with Darknet Marketplaces

Not only is Dash a transparent, analyzable blockchain indistinguishable from
Bitcoin in its functionality; it actually poses a lower risk than Bitcoin when it
comes to illicit usage. First, there is no evidence that Dash is used for illicit
purposes. In a recent Rand Corporation analysis of DarkWeb cryptocurrency
usage, for example, Dash accounted for only 0.05% of identified cryptocurrency
wallets9.

Second, Dash does not support advanced forms of CoinJoin such as Chau-
mian CoinJoin, which is present on the Bitcoin network. Finally, Dash does not
support off- chain transactions that are not auditable on-chain. To reiterate the
point once again: All transaction inputs, outputs, addresses, and amounts are
fully visible on the Dash blockchain for all transactions.

4 The U.S. Government’s Mischaracterization of Dash
has had a Significant, Material, and Adverse Impact

The public naming and shaming of Dash as an AEC (or “privacy coin”) in
FinCEN’s NPR (as well as earlier in the fall of 2020 in the Department of
Justice’s “Cryptocurrency Enforcement Framework”) has had a hugely negative
impact on the project. This impact is real, and it has affected multiple aspects
of our users, DCG’s business, and the individuals involved in the project.

9 See Erik Silfversten, et al., Exploring the use of Zcash cryptocurrency for illicit or
criminal purposes,” Rand Corp., 2020, at 23 (Fig. 3.7), available at: https://www.
rand.org/pubs/research reports/RR4418.html. As this report observes, “[S]ome
commentators believe that due to their privacy enhancing features, altcoins such
as Zcash (as well as Monero, Dash and Litecoin) represent notable competitors for
Bitcoin with illicit users on the dark web.” Id. at 12. The report concludes, however,
that “little empirical evidence or research exists in support of this claim.” Id. While
we would disagree with the ill-informed commentators referenced in the report, who
believe, without evidence, that Dash is an “altcoin” whose users tend towards crim-
inality, we concur fully with the report’s assessment that the use of Dash on illicit
darknet marketplaces is negligible.

https://www.rand.org/pubs/research_reports/RR4418.html
https://www.rand.org/pubs/research_reports/RR4418.html

52 R. Taylor

First, regulators around the world look to the United States as a regulatory
leader in the innovative space of cryptocurrencies. As the U.S. government con-
tinues to perpetuate a false narrative that Dash is a privacy coin that poses an
unacceptable money laundering risk, other countries are following its lead with-
out independently corroborating its conclusions or conducting primary research
into the issue. Specifically, Canada’s FINTRAC, in December 2020, leveraged
the U.S. Department of Justice report to define Dash as a privacy coin, stating
that the use of Dash indicates a heightened risk of money laundering or terrorist
financing-language that is eerily similar to DOJ’s.10

In addition, we have in recent weeks received inquiries from regulators from
other countries to whom DCG has taken the time to explain our optional pri-
vacy feature. The regulators are asking DCG to comment on the categorization
of Dash as an AEC, when we specifically presented materials to them demon-
strating why Dash is not an AEC. With their off-the-cuff (mis)characterizations
of Dash, both FinCEN and the DOJ have undermined detailed, time- consum-
ing facts and arguments DCG has conveyed to regulators outside of the United
States, thereby sowing confusion.

Second, the categorization has had a significant negative business impact on
Dash. We have learned that cryptocurrency exchanges that currently list or are
considering listing Dash are now reviewing their policies to ensure that they
are in compliance with the U.S. government’s regulatory guidance. Apparently,
relying on DOJ’s and FinCEN’s recent pronouncements, a number of exchanges
have taken the additional step of delisting Dash in order to “derisk” themselves.
For example, on January 1, 2021, Bittrex, one of the world’s leading cryptocur-
rency exchanges, announced that it would delist Dash as of January 15, 2021.11

No official explanation was given, but public reporting suggests that Bittrex’s
action is part of a broader trend wherein “exchanges around the world have been
moving to delist coins that seek to preserve the privacy of their users as a way
to be compliant with know-your-customer (KYC) and anti-money laundering
(AML) regulations that are spreading around the world.”12

Completely overlooked in all of this is the fact that Dash is not a “privacy
coin,” and that its use is perfectly compatible with KYC and AML regulations.
Meanwhile, it is Dash’s users and the members of its network who are left holding
the bag for the U.S. government’s mistake: for example, Dash’s price immediately
dropped by approximately 15% on news of its Bittrex delisting.

10 Financial Transactions and Reports Analysis Centre of Canada (FINTRAC),
“Money laundering and terrorist financing indicators—Virtual currency trans-
actions,” Dec. 2020, available at: https://www.fintrac-canafe.gc.ca/guidance-
directives/transaction-operation/indicators-indicateurs/vc mltf-eng.

11 Nasdaq, “Bittrex to Delist ‘Privacy Coins’ Monero, Dash and Zcash,” Jan.
1, 2021, available at: https://www.nasdaq.com/articles/bittrex-to-delist-privacy-
coins-monero-dash-and-zcash-2021-01-01; see also Bittrex, “Pending Market
Removals 01/15/21,” Jan. 1, 2021, available at: https://bittrex.zendesk.com/hc/en-
us/articles/360054393492-Pending-Market-Removals-01-15-21.

12 Id.

https://www.fintrac-canafe.gc.ca/guidance-directives/transaction-operation/indicators-indicateurs/vc_mltf-eng
https://www.fintrac-canafe.gc.ca/guidance-directives/transaction-operation/indicators-indicateurs/vc_mltf-eng
https://www.nasdaq.com/articles/bittrex-to-delist-privacy-coins-monero-dash-and-zcash-2021-01-01
https://www.nasdaq.com/articles/bittrex-to-delist-privacy-coins-monero-dash-and-zcash-2021-01-01
https://bittrex.zendesk.com/hc/en-us/articles/360054393492-Pending-Market-Removals-01-15-21
https://bittrex.zendesk.com/hc/en-us/articles/360054393492-Pending-Market-Removals-01-15-21

Re: FinCEN Docket Number FINCEN-2020-0020 53

Finally, individuals associated with the Dash project have incurred signifi-
cant reputational risk and harm as a result of the U.S. government’s continued
(mis)characterization of the Dash cryptocurrency. Compliance departments at
certain financial institutions have interpreted the FinCEN and DOJ statements
to mean that being associated with DCG indicates “high-risk activity that is
indicative of possible criminal conduct . . . ” We have learned that traditional
bank account openings have been refused on the basis of a person’s association
with Dash-again, as a direct and express result of FinCEN’s and DOJ’s false
characterization. These impacts are affecting all DCG members, to the extent
employees and subcontractors of Dash have the option of receiving their salary
in Dash cryptocurrency. Of course, as the recent news from Bittrex simply con-
firms, FinCEN’s (and DOJ’s) misinformed, off-the-cuff references to Dash as a
money laundering risk in official U.S. government documents may lead to addi-
tional significant repercussions for DCG members, as mere association with a
project deemed to support illicit purposes could (and, by all indications, likely
will) lead to further unjustified blacklisting within the United States, and around
the world.

5 Conclusion

DCG strongly objects to FinCEN’s inclusion of Dash in the NPR as an AEC
that poses a law enforcement and national security threat. It is unacceptable to
reference Dash in this light, especially where we have-

– proactively reached out to FinCEN to describe how the Dash cryptocurrency
works;

– where reputable third parties (with whom we have no connection) have inde-
pendently confirmed our points;

– where there is no evidence that Dash is actually used in illicit ways;
– where we have received no clarification from FinCEN as to why the agency

believes Dash to be an AEC, and where it has never articulated a response
to our fact-based arguments.

Meanwhile, we continue to suffer real (and possibly irreversible) harm as a
result of the U.S. government’s actions.

DCG is available to resolve any questions and is happy to continue to engage
with FinCEN. But we respectfully ask you to act quickly. There is simply no
justification for the U.S. government’s continued behavior in labelling the Dash
cryptocurrency an AEC. Until the definitional issue is resolved, please remove
any and all references to Dash in the pending Rule (and in any materials sur-
rounding it).

Analyzing FinCEN’s Proposed Regulation
Relating to AML and KYC Laws

Aaron Wright1(B) and Sachin Meier2

1 Cardozo Law, Yeshiva University, New York City, USA
aaron.wright@yu.edu

2 Georgetown University, Washington DC, USA

Keywords: FinCEN · Anti-money laundering · Financial crimes ·
NPRM · Privacy · Bitcoin · Cryptocurrency

1 Introduction

Questions related to anti-money laundering (AML) have pervaded policy con-
versations around blockchain technology for years. At their core, blockchains
enable the rapid exchange of value, whether Bitcoin or other blockchain-
based tokens, without the need to provide additional identity related infor-
mation. With blockchains, value flows across the internet nearly as seamlessly
as email and the technology is accessible to anyone with an Internet connec-
tion. Users of blockchain technology can remain pseudonymous, raising vexing
questions related to the manner in which existing AML and related know-your-
customer (KYC) compliance regimes should apply to this emerging technological
ecosystem.

AML/KYC-related concerns have been long anticipated by proponents of
technology involving strong cryptography, such as blockchains. For example, as
far back as 1988, early cypherpunk and researchers Timothy May noted in his
“Crypto Anarchist Manifesto” that “[t]he State will of course try to slow or halt
the spread of . . . technology [involving strong cryptography], citing national
security concerns, use of the technology by drug dealers and tax evaders, and
fears of societal disintegration” [1].

As even acknowledged by May, however, “many of these concerns will be
valid” [1]. Blockchains create opportunities for technologists to reimagine and
improve existing financial systems and its underlying infrastructure. At the same
time, they create risks for abuse and misuse.

As the value of digital assets has exploded over the past several years, gov-
ernments around the globe have begun to increasingly grapple with the question
as to how AML/KYC rules should apply to blockchain technology. One of the
latest attempts at this question was put forward for public comment by the
United States Financial Crimes Enforcement Network (FinCEN), on December
18, 2020, through a notice of proposed rulemaking (the Proposal) along with
a short set of FAQs regarding proposed requirements for certain transactions

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 54–62, 2021.
https://doi.org/10.1007/978-3-662-63958-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_5&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_5

Analyzing FinCEN’s Proposed Regulation Relating to AML and KYC Laws 55

involving convertible virtual currencies (CVC) or digital assets with legal tender
status (LTDA).

As discussed below, under the Proposal, if adopted, banks and money service
businesses (MSBs) would be required to submit reports, keep records, and verify
the identity of customers participating in transactions above certain thresholds
involving blockchain-based wallets1 not hosted by a financial institution (often
referred to as “unhosted wallets”) or wallets hosted by a financial institution in
certain jurisdictions identified by FinCEN.2

The purpose of this paper is to provide an overview of FinCEN’s latest pro-
posal, outline public comments to this proposal, as well as to highlight certain
legal challenges that the Proposal may face if it is adopted in its current form.

2 Overview of FinCEN Proposal

FinCEN is no stranger to grappling with questions relating to digital assets
and cryptocurrencies. Starting in 2019, FinCEN issued guidance consolidating
regulations, rulings, and prior guidance about digital assets and MSBs under
the Bank Secrecy Act. FinCEN has also released an advisory to assist financial
institutions in identifying and reporting suspicious activity or criminal use of
cryptocurrencies.

The latest proposed rulemaking states that it was created in response to per-
ceived concerns related to criminal actors’ use of–and the national security risks
posed by–certain digital asset-related transactions, involving assets on public per-
missionless blockchains. FinCEN cited concern that digital assets were being used
to “facilitate international terrorist financing, weapons proliferation, sanctions
evasion, and transnational money laundering as well as to buy and sell controlled
substances, stolen and fraudulent identification documents and access devices,
counterfeit goods, malware and other computer hacking tools, firearms, and toxic
chemicals,” and engage in ransomware attacks. FinCEN also stated a secondary

1 A “wallet” allows a user to store, send, and receive cryptocurrency.
2 The Proposal was made pursuant to the Bank Secrecy Act (BSA) and the proposed
reporting and recordkeeping rules are similar to the rules for transactions in currency
and for bank wire transfers, respectively. Relying on the Administrative Procedure
Act’s exemption from the 60-day comment period, FinCEN originally provided 15
days for public comment, or until January 4, 2021. However, FinCEN noted that it
will endeavor to consider any material comments received after the deadline as well.
On January 15, FinCEN extended the comment period for an additional 15 days for
comments on the proposed reporting requirements, and for 45 days for comments on
the requirement to report counterparty information and the recordkeeping require-
ments. In so doing, FinCEN noted the volume of comments received, as well as the
enactment of the Anti-Money Laundering Act of 2020 (Division F) of Public Law
116-283 (AML Act), which amended 31 USC § 5312(a)(3), the definition of “mon-
etary instruments” in the BSA, on which FinCEN proposes to rely in determining
that CVC/LTDA are monetary instruments.

56 A. Wright and S. Meier

goal for the Proposal to establish controls to protect US national security from var-
ious state-sponsored threats, including state-sponsored ransomware and cyberse-
curity attacks, sanctions evasion, and the financing of global terrorism.

The proposed reporting requirement applies to CVC and LTDA transactions
between a bank or MSB and a counterparty where: (1) the transaction exceeds
$10,000 in value and (2) the counterparty uses an unhosted or otherwise cov-
ered wallet. The Proposal defines “otherwise covered” wallets as those held at
a financial institution that is not subject to the BSA and is located in a foreign
jurisdiction identified by FinCEN as a jurisdiction of primary money laundering
concern, including Burma, Iran, and North Korea.

Transactions between hosted wallets and transactions where the counterparty
wallet is hosted by a foreign financial institution, except for a foreign financial
institution in a jurisdiction listed on the Foreign Jurisdictions List, would be
exempt from the requirements. FinCEN plans to issue a value transaction report
form similar to, but distinct from, the existing currency transaction reporting
(CTR) form that will require the reporting of information on the filer, transac-
tion, hosted wallet customer, and each counterparty. Pursuant to the Proposal,
banks and MSBs will have 15 days from the date on which a reportable transac-
tion occurs to file a report with FinCEN. The Proposal also includes an aggre-
gation requirement if the financial institution has knowledge that a transaction
is one of multiple CVC/LTDA transactions involving a single person within a
24-h period that aggregate to value in or value out of greater than $10,000.

In its January notice extending the comment period, FinCEN reiterated that
it is not modifying the regulatory definition of “monetary instruments” or oth-
erwise altering existing BSA regulatory requirements applicable to “monetary
instruments” in FinCEN’s regulations, including the existing CTR requirement
and the existing transportation of currency or monetary instruments reporting
requirement.

2.1 Recordkeeping and Verification Requirement

If implemented, the Proposal would require banks and MSBs to keep records
of a customer’s CVC or LTDA transactions and counterparties, and verify the
identity of their customers, if a counterparty uses an unhosted or otherwise
covered wallet and the transaction is greater than $3,000. They would also be
required to verify the identity of the person accessing the customer’s account,
which may be someone conducting a transaction on the customer’s behalf.

Consistent with a bank’s or MSB’s AML/CFT program, a bank or MSB
would need to establish risk-based procedures for verifying their hosted wallet
customer’s identity that are sufficient to enable the bank or MSB to form a
reasonable belief that it knows the true identity of its customer. For example,
financial institutions should check FinCEN for the registration of a counterparty
that purports to be a regulated MSB and for foreign financial institutions, and
“would need to apply reasonable, risk-based, documented procedures to confirm
that the foreign financial institution is complying with registration or similar
requirements that apply to financial institutions in the foreign jurisdiction.”

Analyzing FinCEN’s Proposed Regulation Relating to AML and KYC Laws 57

In addition, banks and MSBs would be expected to incorporate policies tai-
lored to their respective business models should a bank or MSB be unable to
obtain the required information, such as by terminating its customer’s account in
appropriate circumstances. The proposed recordkeeping and verification require-
ments would not apply to transactions between hosted wallets (except for other-
wise covered wallets). Such transactions are already covered under existing AML
requirements.

Unlike other recordkeeping requirements, the recordkeeping requirement in
the Proposal would require the electronic retention of information based on the
fact that such recordkeeping is the practical way in which businesses engaged in
CVC or LTDA transactions are likely to track their data and the most efficient
form in which data can be provided to law enforcement and national security
authorities. Furthermore, the information must be retrievable by the bank or
MSB by reference to the name or account number of its customer, or the name
of its customer’s counterparty.

2.2 Additional Data Collection

Under the Proposal, FinCEN expects that banks and MSBs would be able to
employ a single set of information collection and verification procedures to satisfy
both the reporting and the recordkeeping requirements. The data to be collected
would include the following:

– The name and address of the financial institution’s customer
– The type of CVC or LTDA used in the transaction
– The amount of CVC or LTDA in the transaction
– The time of the transaction
– The transaction hash
– The assessed value of the transaction, in US dollars, based on the prevailing

exchange rate at the time of the transaction
– Any payment instructions received from the financial institution’s customer
– The name and physical address of each counterparty to the transaction of the

financial institution’s customer
– Other counterparty information the secretary of the US Department of the

Treasury may prescribe as mandatory on the reporting form for transactions
subject to reporting pursuant to Sect. 1010.316(b)

– Any other information that uniquely identifies the transaction, the accounts,
and, to the extent reasonably available, the parties involved

– Any form relating to the transaction that is completed or signed by the finan-
cial institution’s customer

Notably, the Proposal does not impact direct peer-to-peer (P2P) digital
assets or other blockchain-based transactions; rather, it only imposes a reporting
and recordkeeping burden on banks and MSBs. However, the requirement will
indirectly affect all users of unhosted wallets that engage in any transactions
with banks and MSBs, which will be required to gather information from such
users in order to comply with the new rule.

58 A. Wright and S. Meier

FinCEN has said that these new reports will allow law enforcement agen-
cies to protect national security by more quickly and accurately tracking money
flows to identify and stop terrorist attacks, drug and human trafficking, and
cybercrime. However, there are questions as to whether the rule as written will
accomplish these goals when parties generally set up a new wallet even for trans-
actions that are fully compliant with the law. This can make the records kept
and reported essentially useless with regard to tracking patterns of money flows
to identify and stop bad actors.

3 Analysis of Public Comments

During the comment period, FinCEN received a number of public comments
in response to the Proposal, despite a truncated notice and comment period.
Roughly 7,500 people and entities submitted comments, the most FinCEN has
received on any proposed rulemaking. The comments constitute nearly 70% of
all comments FinCEN has received on all rule-makings since 2008 combined. An
overwhelming majority of the comments published by members of the blockchain
technology industry and individuals strongly opposed to the proposed regulation.
Comments poured in from companies, software developers, advocacy groups, and
individuals around the globe.

3.1 Institutional Responses

Several well-established institutions provided lengthy comments opposing the
Proposal. Organizations at the forefront of the blockchain technology sector, such
as Square, River Financial, Coinbase, and Fidelity Digital Assets pushed back
against the proposed rulemaking, often highlighting the burdens of increased
regulation and accompanying data collection. They also questioned whether the
regulation would achieve its stated objective, given a concern that the Proposal
failed to account for the technical operation of a blockchain. As pointed out by
several institutions and blockchain experts, public blockchain-based wallets are
nothing more than an address, raising complex questions related to ownership
and control.

In addition, several institutions, including River Financial and Square
Crypto, argued that the heightened compliance requirements created a risk that
well intentioned individuals off of regulated exchanges and brokerages and onto
newer, more user friendly decentralized platforms, due to cost, privacy concerns,
or simple ease of use.

The number of users of blockchain-based decentralized finance (DeFi) ser-
vices, such as decentralized exchanges (DEXs) is expanding. And, the Proposal’s
additional compliance requirements existing and new users of blockchain tech-
nology to migrate over to these newer services. Additional compliance increases
the cost of these services and degrades the user experience, creating a motivation
for users to migrate to potentially harder to regulate decentralized platforms.

Analyzing FinCEN’s Proposed Regulation Relating to AML and KYC Laws 59

New DeFi protocols such as Uniswap and Sushiswap enable seamless peer-
to-peer exchanges in as little as a few clicks. These platforms are permissionless
and do not currently incorporate any AML/KYC-related compliance. Volumes
on these platforms have grown considerably over the past six months and are
beginning to rival centralized exchanges. If regulation creates impediments to the
use of centralized exchanges, users could increasingly migrate to these alternative
services.

Alternatively, Bitcoin and other digital assets are easy to self-custody, giving
customers the power to abandon regulated platforms, if regulatory requirements
grow too cumbersome. As a result, the Proposal if implemented, will do “very
little to stop bad actors, who face only the minor inconvenience of moving funds
to a ‘rule-compliant’ wallet before moving them again.”

3.2 Blockchain Developers

Concern was not raised solely by established institutions. The technologists pio-
neering and driving the responsible development of blockchain technology raised
passionate objections to the Proposal. For example, Matt Corallo, a contribu-
tor to Bitcoin Core3 and an employee of Square Crypto, raised several points
about technical difficulties in implementing this rule, due to the inner workings of
blockchain tech. For example, the Proposal requires the collection of additional
information, but blockchains “do not include built-in mechanisms for banks or
other forms of money services businesses to easily retrieve information like names
and physical addresses. Due to these limitations, “[t]he only practical way in
which a regulated entity could retrieve the counterparty information” would be
to “force users to input that information directly when making a transaction.”

3.3 Individuals

Users and enthusiasts of blockchain technology submitted the bulk of the public
comments, offering comments of varying length and focus. As with institutions
and developers, an overwhelming majority of individual responses objected to
the Proposal, due to the:

– Burden of compliance
– Data collection and security

3 Bitcoin Core is the reference implementation for Bitcoin. It is the source code which
contains the consensus parameters and rules that define the Bitcoin protocol. Nodes
run Bitcoin Core software in order to participate in the Bitcoin network. Read more
about Bitcoin Core here: https://river.com/learn/what-is-bitcoin-core/.

https://river.com/learn/what-is-bitcoin-core/

60 A. Wright and S. Meier

– Inefficacy of Regulation, and the
– Short comment period4

4 Potential Legal Challenges

As highlighted in several public comments, the Proposal may face significant
legal challenge in the United States on substantive grounds. The Proposal
arguably violates the Fourth Amendment and may fail to comply with interna-
tional privacy standards by giving the US government access to sensitive financial
data beyond what is contemplated by the regulation.

The proposed regulation requires that MSBs collect identifying information
associated with wallet addresses and report that information to the government
for transactions over a certain threshold. But when the government learns the
identity associated with a particular blockchain-based wallet, it also gains the
ability to learn the identity associated with all transactions for that address
(which are publicly viewable on a given blockchain), even when the amounts of
those transactions are far below the Proposal’s contemplated reporting thresh-
old. While the identity associated with the counterparties to those other transac-
tions may not always be known, the government’s database may well also contain
that information because of the breadth of the proposed regulation. This could
deanonymize all transactions on a blockchain, encroaching financial privacy.

In addition, any data collected by FinCEN could become a honeypot of
information that tempts bad actors, or those who might misuse it beyond its
original intended use. Indeed, thousands of FinCEN’s own files were recently
exposed to the public, raising questions as to FinCEN’s security protocols. If
sensitive data relating to blockchain users was made available to ill intentioned
actors, blockchain users could face cybersecurity hacks, thefts, or other intrusions
on financial privacy.

4.1 Fourth Amendment Concerns

The proposed regulation arguably violates the Fourth Amendment’s protections
for individual privacy. Historically, courts in the US have held that consumers
lose their privacy rights in the data they entrust with third parties under the
“third party doctrine”. However, courts increasingly have become skeptical of
these pre-digital decisions, reflecting evolving societal norms around privacy
expectations.

4 Institutions and individuals also complained about FinCEN’s unusually short and
poorly timed comment period. Coinbase published an entire comment solely dedi-
cated to this issue, and requested that FinCEN extend the comment period to the
traditional 60-day timespan. FinCEN initially released the 72-page Proposal in late
December, such that the comment period would take place across Christmas Eve,
Christmas Day, New Year’s Eve, and New Year’s Day. This circumstance provided
minimal time for companies to digest the Proposal and formulate a proper, compre-
hensive response to the many flaws of the Proposal.

Analyzing FinCEN’s Proposed Regulation Relating to AML and KYC Laws 61

For example, the Supreme Court has begun to narrow the US’s approach
to the third-party doctrine, going so far as to note that “it may be neces-
sary to reconsider the premise that an individual has no reasonable expecta-
tion of privacy in information voluntarily disclosed to third parties” [4]. Indeed,
in California Bankers Association v. Shultz, the Supreme Court noted that,
“[f]inancial transactions can reveal much about a person’s activities, associa-
tions, and beliefs. At some point, governmental intrusion upon these areas would
implicate legitimate expectations of privacy” [5].

Due to the public and traceable nature of public blockchain, the Proposal
runs the risk of dramatically increasing the scope of the government’s knowledge
about US blockchain user’s financial privacy, potentially raising Fourth Amend-
ment concerns.

4.2 International Privacy Concerns

The expanded reach of the proposed regulation likely will create new tensions
with existing privacy and data protection law outside the United States. As
noted above, obtaining the identity of the owner of a wallet often provides suf-
ficient information to identify the wallet owner’s previous transactional records,
enabling the holder of this information to glean a greater range of informa-
tion about the private lives and financial habits of the individuals or entities
concerned.

Due to the nature of a blockchain, the contemplated disclosures would enable
the government to gain access to a wider set of financial data, more than the
identity of a given wallet’s owner. Government access to such broad ranging
financial data may trigger legal safeguards under international and foreign laws,
which may require independent judicial authorization or the only permit the
collection of such information with judicial consent, additional notifications, or
other requirements.

The current proposal does not outline how this regulation would seek to
resolve such potential conflicts of law between the United States and other juris-
dictions. Without such clarity, there is a risk that the enforcement of these
broader regulations would lead to legal challenges in Europe and elsewhere cre-
ating further legal uncertainty.

5 Conclusion

FinCEN’s Proposal aims to limit criminal and other socially undesirable activ-
ity through additional disclosure and reporting, in an attempt to create more
reliable and trustworthy marketplaces where both blockchain technologists and
existing entities can participate. However, as reflected in public comments, these
additional requirements create practical challenges, due to the nature of the tech-
nology and the increased cost of compliance–both for covered entities and users.
The Proposal may also face legal scrutiny in the US, given the potential breath
of data collection available, and may create tensions with privacy and other data

62 A. Wright and S. Meier

collection laws of other jurisdictions, requiring either further harmonization or
creating a patchwork approach for entities operating globally.

Even if these practical and legal challenges are somehow addressed, users
may choose to rely on more decentralized and emerging DeFi alternatives, due
to simple ease of use, creating even more challenging regulatory concerns that
would require an alternative approach to regulation. At the end, there would be
a hard-to-navigate patchwork of legal rules and regulations that would not be
consistent across different blockchain-related projects, companies, and use cases.

References

1. May, T.: The Crypto Anarchist Manifesto. https://www.activism.net/cypherpunk/
crypto-anarchy.html

2. Scheiber, N., Flitter, E.: Banks Suspected Illegal Activity, but Processed Big Trans-
actions Anyway, New York Times (2020). Available at https://www.nytimes.com/
2020/09/20/business/fincen-banks-suspicious-activity-reports-buzzfeed.html

3. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (2008)

4. US v. Jones, 565 U.S. 400, 132 S. Ct. 945, 181 L. Ed. 2d 911 (2012)
5. California Bankers Assn. v. Shultz, 416 U.S. 21, 94 S. Ct. 1494, 39 L. Ed. 2d 812

(1974)

https://www.activism.net/cypherpunk/crypto-anarchy.html
https://www.activism.net/cypherpunk/crypto-anarchy.html
https://www.nytimes.com/2020/09/20/business/fincen-banks-suspicious-activity-reports-buzzfeed.html
https://www.nytimes.com/2020/09/20/business/fincen-banks-suspicious-activity-reports-buzzfeed.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

DeFi – Protocol Design

Optimal Fees for Geometric Mean
Market Makers

Alex Evans1(B), Guillermo Angeris2, and Tarun Chitra3

1 Bain Capital, Boston, MA 02116, USA
aevans@baincapital.com

2 Stanford University, Stanford, CA 94305, USA
angeris@stanford.edu

3 Gauntlet Network, New York, NY 11201, USA
tarun@gauntlet.network

Abstract. Constant Function Market Makers (CFMMs) are a family
of automated market makers that enable censorship-resistant decentral-
ized exchange on public blockchains. Arbitrage trades have been shown
to align the prices reported by CFMMs with those of external mar-
kets. These trades impose costs on Liquidity Providers (LPs) who supply
reserves to CFMMs. Trading fees have been proposed as a mechanism
for compensating LPs for arbitrage losses. However, large fees reduce
the accuracy of the prices reported by CFMMs and can cause reserves to
deviate from desirable asset compositions. CFMM designers are therefore
faced with the problem of how to optimally select fees to attract liquidity.
We develop a framework for determining the value to LPs of supplying
liquidity to a CFMM with fees when the underlying process follows a
general diffusion. Focusing on a popular class of CFMMs which we call
Geometric Mean Market Makers (G3Ms), our approach also allows one to
select optimal fees for maximizing LP value. We illustrate our methodol-
ogy by showing that an LP with mean-variance utility will prefer a G3M
over all alternative trading strategies as fees approach zero.

1 Introduction

Constant Function Market Makers (CFMMs) [2] are a family of automated mar-
ket makers that enable censorship-resistant decentralized exchange on public
blockchains. In CFMMs, Liquidity Providers (LPs) supply assets (reserves) to
an on-chain smart contract. The smart contract makes reserves available for
swaps, executing a trade only if it preserves some function of reserves, known
as ‘the invariant.’ For example, Uniswap [1] only permits trades that preserve
the product of reserves (the product of reserve quantities must be the same
before and after a trade). Similarly, Balancer only permits trades that preserve
the weighted geometric mean of reserves. LPs are entitled to a pro-rata share of
the CFMM’s reserves, as well as any trading fees that the CFMM collects. As
of this writing, CFMMs have attracted billions of dollars worth of reserves and
trade over $1 Billion worth of cryptocurrency daily [12]. The rapid growth in
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 65–79, 2021.
https://doi.org/10.1007/978-3-662-63958-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_6&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_6

66 A. Evans et al.

the value deposited in CFMMs has allowed these protocols to regularly compete
with established centralized exchanges on the basis of liquidity [6]. At the same
time, this growth has raised questions of efficiency, including how to optimally
utilize reserves and how to select parameters for attracting liquidity and trading
volume.

Under fairly general conditions, the prices reported by CFMMs have been
shown to closely track those of external, more liquid markets [2]. Because the
price reported by a CFMM is a function of reserves, this “oracle” property
requires an arbitrageur to maximize profit by adjusting reserves to align the
CFMM’s price with that of the external market. Because reserves are adjusted
in response to price changes on the external market, the asset composition that
Liquidity Providers (LPs) are entitled to is continually rebalanced. Protocols
such as Balancer take advantage of this property to offer LPs payoffs that resem-
ble constant-mix portfolios [16]. While LPs may benefit from rebalancing their
portfolio to a target allocation, they also bear the cost of arbitrage transac-
tions. In response, most CFMMs charge fees for incoming trades. However, fees
make arbitrage less profitable, leading to only partial adjustment of reserves in
response to price changes. This allows asset compositions to stray further from
their desired allocations and reduces the accuracy of the prices reported by the
CFMM. As a result, fees may in fact reduce the value LPs receive in certain
cases. Given these trade-offs, CFMM designers are faced with the problem of
how to assess the impact of fees on LP value and how to select optimal fees for
attracting liquidity.

Our analysis focuses on Geometric Mean Market Makers (G3Ms), which
include most popular CFMMs used in practice, including Uniswap, Sushiswap
and Balancer [1,16]. G3Ms require that the reserves of the CFMM before and
after each trade must have the same (weighted) geometric mean. As a by-product
of arbitrage, the proportion of value deposited in the constant-mean CFMM for
a given asset closely tracks the weight applied to the asset when calculating the
weighted geometric mean [16]. This property resembles a constant-mix portfo-
lio and simplifies the analysis of Liquidity Provider (LP) returns. G3Ms allow
us to model weight dynamics directly in the presence of fees. It has recently
been shown that G3Ms can replicate a wide variety of trading strategies, includ-
ing options payouts, using dynamic weights [13]. Our analysis therefore extends
naturally to a large class of LP payouts that can be represented by G3Ms.

Prior Work. Prior work on LP returns in CFMMs has primarily focused on the
case where no fees are charged. In [13], it is shown LPs in G3Ms with no fees
underperform equivalent constant-mix portfolios due to arbitrage. However, the
case with fees is more involved as path independence is typically not satisfied.
This question was addressed in [18] for the case of a Uniswap LP seeking to
maximize the growth rate of wealth when the underlying price process follows a
geometric Brownian motion. This model assumes a particular functional form of
the fee and shows that LPs can generate positive geometric growth with any non-
zero fee provided that the mean and volatility are bounded in a suitable manner.
The result holds for the specific case where the objective of the LP is to maximize

Optimal Fees for Geometric Mean Market Makers 67

the expected logarithm of reserve value when the underlying price process follows
a geometric Brownian motion with certain mean and volatility constants. Our
approach extends this setting to general diffusions and LP objective functions.

A separate line of work has applied conventional microstructure models to
the problem of LP profitability, positing a game between LPs and informed
traders to estimate profitability conditions for Uniswap [5]. This framework is
generalized to arbitrary CFMMs in [3], where it is shown that the curvature of
the CFMM’s trading function can be used to bound LP profitability. Our results
apply to the case where the trader has perfect information and extracts risk-free
profit at the expense of the LP. We show that there are general conditions under
which the effect of arbitrage on the LP’s value function approaches zero for small
fees.

Optimal Control and Portfolio Optimization. While constant-mix portfolios pro-
duce excess growth due to rebalancing, no-fee G3Ms have been shown to divert
this growth to arbitrageurs in order to incentivize continual rebalancing [13].
While arbitrage losses are limited by increasing the fee that the G3M charges,
this also limits the amount of rebalancing that arbitrageurs are incentivized to
perform. We seek to formalize the impact of this trade-off on the value LPs
receive from the G3M.

The problem of optimal portfolio selection in continuous time is well-studied
in financial optimization, starting with the classical investment-consumption of
Merton [17]. There are numerous extensions to the classical model that incorpo-
rate the impact of proportional transaction costs [7,11,15]. In this setting, it is
shown that the optimal investment policy involves a no-trade region around the
optimal portfolio weight [8–10]. In a G3M, an LP does not have direct control
over reserves and relies on an arbitrageur for rebalancing reserves to the target
asset proportions. It is shown in [4] that the arbitrageur takes no action inside
a no-arbitrage interval around the desired weight. However, the cost to the LP
at the boundary is not proportional to the dollar value of rebalancing required.

The passive nature of LP rebalancing and non-proportional costs complicate
the problem of optimal portfolio strategies for G3Ms. Classical rebalancing [15]
assumes that the portfolio holder actively trades to adjust their portfolio weights.
Unlike traditional portfolio optimization, G3M arbitrageurs adjust the portfolio
with the aim of extracting a profit at the expense of LPs. In this work, we
provide a solution to this problem by explicitly modeling the arbitrage costs
incurred at the boundary of the no-trade region for different levels of the fee.
Our approach is inspired by the stochastic control problems used in traditional
portfolio optimization. These methods are often used in reinforcement learning,
portfolio analysis, and recently in decentralized finance (DeFi) [14].

Summary. We study the value to LPs of contributing capital to a G3M with
fees. We consider the dynamics of the portfolio proportions as a function of time
and fees assuming arbitrageurs trade against the CFMM to maximize profit. We
show that the proportion of G3M value held in a given asset fluctuates freely
within an interval where arbitrage is unprofitable. If the state variable exits this

68 A. Evans et al.

interval, an arbitrage opportunity arises to return it a point in the interior of
the interval. We explicitly calculate the cost of this adjustment and show that
it vanishes to first order when the state process has continuous sample paths.
The observation allows one to compute the value to the LP for a given choice
of fee by solving a differential equation subject to two conditions that hold at
the boundary of the no-arbitrage interval. We illustrate this approach for the
specific example of maximizing mean-variance utility for a geometric Brownian
motion and demonstrate how to optimize the resulting value.

2 Problem Description

In the arbitrage game, we have two players, each of whom trades in a two-
asset economy: the liquidity provider, who is interested in minimizing some
penalty function depending on the portfolio weights and an arbitrageur who
trades against the liquidity provider’s assets (and therefore, as a side effect,
changes the portfolio weight).

Penalty Function. We will define the penalty function φ : R → R∪{+∞} which
depends on the portfolio weight w ∈ [0, 1] for a given coin. The penalty function
maps the weight to a liquidity provider’s loss; i.e., we can view the function φ
as the ‘tracking error’ common in the control literature. We will assume that φ
has a minimizer w� ∈ [0, 1] such that φ(w�) ≤ φ(w) for all w ∈ [0, 1].

Portfolio Weight Dynamics. The portfolio weight is, in general, a stochastic
process that evolves in time, which we will write as wt ∈ [0, 1] at time t. We
will assume a discretization in time, with steps of size h > 0 and later recover
continuous results by taking the appropriate limits, such that t = 0, h, 2h,
In this case, we will assume a basic model with increments given by

ξt(w, h) = a(w)h + b(w)εt

√
h, t = 0, h, . . . ,

where εt ∼ {±1} with equal probability. (For example, if a(w) = 0 and b(w) = 1
for any w, then as h ↓ 0 we have that

∑τ/h
n=1 ξnh converges weakly to a standard

Brownian motion over time τ .) Then, the dynamics of the weights will be given
by some function F : R × R → R:

wt+h = F (wt, ξt(wt, h)), t = 0, h, . . . ,

where F is a function that models the arbitrage dynamics; i.e., the arbitrageur
sees a change in the portfolio weight of ξt and performs arbitrage which results
in some new weight wt+h. We will often abuse notation slightly by writing ξt

instead of ξt(wt, h) to improve readability.
As a side note, we will be very informal regarding different types of conver-

gence in the presentation and will freely switch expectations, limits, and deriva-
tives, along with assuming that all functions are ‘nice enough.’ While we will
mostly work with the discrete approximations, some limits taken at the end will
require justification—a reader familiar with stochastic processes and basic anal-
ysis should be able to insert the corresponding theorems as necessary, but we
will not discuss them further.

Optimal Fees for Geometric Mean Market Makers 69

Arbitrage Loss and Total Expected Loss. By definition, the arbitrageur is guar-
anteed nonnegative profit at every time t by exploiting the change in portfolio
weights from time t to t+h. We can (conversely) view this as a penalty incurred
by the LP which we will call the adjustment cost, defined by a nonnegative func-
tion C : R×R → R+. A simple interpretation for C(wt, ξt) ≥ 0 is that it is the
cost at time t, incurred by the LP, for adjusting the would-be portfolio weights
wt + ξt to some different weight wt+h.

This lets us write the expected loss for a liquidity provider, starting at weight
w ∈ [0, 1]:

J(w) = E

[∞∑

n=0

e−nhr(φ(wnh)h + C(wnh, ξnh))
∣
∣
∣
∣ w0 = w

]

, (1)

where wt+h = F (wt, ξt). Here, r is the continuous discounting rate, such that
e−rt is the amount discounted at time t.

A (Tight) Lower Bound. A simple lower bound on the expected loss J comes
from the fact that φ(wnh) ≥ φ(w�), by definition of φ(w�), and C(wnh, ξnh) ≥ 0
by definition of the adjustment cost C, which implies that the expected loss is
bounded from below by:

J(w) ≥
∞∑

n=0

e−nhrφ(w�)h.

If φ is normalized such that φ(w�) = 0 (this can be done without loss of generality
by replacing φ(w) with φ(w) − φ(w�)), this simplifies to:

J(w) ≥ 0.

The remainder of the paper shows that, in fact, this simple bound becomes
asymptotically tight as the fees approach, but do not equal, zero. (We will see
soon how such fees connect to the problem.) This would immediately imply that
the liquidity provider’s losses are minimized by reducing the fees as much as
possible, while ensuring they are not zero.

No-Fee Interval. In general, CFMMs have a no-fee interval (which is a function
of the fees) where no possible weight adjustment is profitable for arbitrageurs [2,
4]. For most CFMMs, and, more specifically, for the G3Ms we study here, the
no-fee interval [wD, wU] ⊆ [0, 1] has nonempty interior when the fee is nonzero;
i.e., wD < wU . This condition implies that, if the portfolio weight wt lies in the
interior of the interval, any vanishingly small change will not be adjusted and
incurs no losses. More formally, if wD < wt < wU , then

wt+h = F (wt, ξt) = wt + ξt and C(wt, ξt) = 0, (2)

for all h small enough, since ξt ∼ O(h1/2) by definition. We will show this is true
for all G3Ms in Sect. 3.

70 A. Evans et al.

Differential Equation Limit. While (1) is a complete description of our problem,
it is in general not easy to analyze directly. On the other hand, in a similar way
to dynamic programming, we can write J(wt) in terms of the current cost at
time t plus a discounted expectation of J(wt+h) given wt:

J(w) = φ(w)h + E[C(w, ξt) | wt = w] + e−rh E[J(wt+h) | wt = w].

By rearranging and dividing both sides by h, we find that

e−rh E
[
J(wt+h) − J(w)

h

∣
∣
∣
∣ wt = w

]

+ φ(w) (3)

+
E[C(w, ξt) | wt = w]

h
− 1 − e−rh

h
J(w) = 0.

Note that, if w lies in the interior of the no-arbitrage integral, wD < w < wU ,
then the limit as h ↓ 0 implies that C(w, ξt)/h = 0, since ξt ↓ 0 and C(w, ξt) = 0
for all ξt small enough, from (2). Similarly, since wt+h = wt + ξt for all ξt small
enough, we have

lim
h↓0

E
[
J(wt+h) − J(w)

h

∣
∣
∣
∣ wt = w

]

= a(w)J ′(w) +
b(w)2

2
J ′′(w),

which follows from Taylor expanding J(wt+h) = J(w + ξt) into its linear and
quadratic terms, as ξt is on the order of h1/2, and taking the corresponding
expectation. This means that the final limit of (3) as h ↓ 0, is the following
differential equation:

a(w)J ′(w) +
b2(w)

2
J ′′(w) + φ(w) − rJ(w) = 0, (4)

whenever wD < w < wU . In order to solve this differential equation, we will also
need appropriate boundary conditions which will depend on the specifics of the
CFMM we are considering. In our case, we will show that

J ′(wD) = J ′(wU) = 0, (5)

is satisfied.

3 Fees for G3Ms

In this section, we will provide a specific application of the framework provided
in Sect. 2 in order to show that a G3M with appropriately chosen weights will
always have an optimal fee that is as small as possible without being zero.

Optimal Fees for Geometric Mean Market Makers 71

Constant Function Market Makers. A constant function market maker is defined
by its reserves Rα(t) of coin α and Rβ(t) of coin β at time t. Traders can trade
with the CFMM (and therefore liquidity providers’ funds) by proposing a trade
Δα ≥ 0 of coin α and Δβ ≤ 0 of coin β to the CFMM. The trade is accepted if
the CFMM’s trading function defined by ψ : R+ × R+ → R satisfies

ψ(Rα(t) + γ2Δα, Rβ(t) + Δβ) = ψ(Rα(t), Rβ(t)).

(i.e., it is ‘kept constant.’) Here (1 − γ) is the fee, which must satisfy 0 < γ ≤ 1.
If, instead, we wish to trade Δα ≤ 0 for Δβ ≥ 0, we would instead switch the
fee to the incoming coin β, i.e., the trade is accepted if

ψ(Rα(t) + Δα, Rβ(t) + γ1Δβ) = ψ(Rα(t), Rβ(t)).

If the trade (Δα,Δβ) satisfies either equation, then the CFMM takes Δα from
the trader (if Δα ≥ 0, otherwise it pays out Δα) and pays out Δβ ≥ 0 (as
before), updating its reserves to

Rα(t + h) = Rα(t) + Δα and Rβ(t + h) = Rβ(t) + Δβ .

For more information on CFMMs see, e.g., [2].
In the special case of G3Ms, which is the case we consider in the remainder

of the paper, we have the specific trading function:

ψ(Rα, Rβ) = R1−θ
α Rθ

β ,

where 0 < θ < 1 is called the weight parameter. We derive explicit formulas for
wU , wD and the adjustment costs in this case in Appendix § A.

Portfolio Value and Weight. The definition of the portfolio value of liquidity
providers for the CFMM is the total present market value of reserves. If asset β
has some market value S(t) at time t, then the portfolio value is given by

Rα(t) + S(t)Rβ ,

and the portfolio weight (of coin β) of the liquidity providers is defined as

wt =
Rβ(t)S(t)

Rα(t) + Rβ(t)S(t)
.

In other words, wt is the total proportion of wealth allocated to asset β with
respect to the complete porfolio.

Price Process. We will compute the optimal fees when the price of the risky
asset follows

S(t + h) = S(t)
[
(μ − r)h + σεt

√
h
]
, (6)

where εt ∼ {±1} is uniform and μ, r and σ are constants that represent the
growth rate, discounting rate, and volatility, respectively. (We will later take
h ↓ 0 such that S(t) converges to a geometric Brownian motion.)

72 A. Evans et al.

When no adjustments occur by the arbitrageur, there is no trade performed
and so Rα(t) = Rα and Rβ(t) = Rβ are constant from t to t + h. So, the
corresponding dynamics of wt can be derived in the limit of small h:

wt+h − wt = wt(1 − wt)(μ − r − wtσ
2)h + wt(1 − wt)σεt

√
h + O(h3/2). (7)

Through a discrete approximation, we prove the boundary conditions (5) for
these weight dynamics in Appendix § B.

Penalty Function. We assume the penalty function is given by

φ(wt) =
1
2
λσ2(wt − w∗)2 (8)

for some constant w∗. This functional form is used in [15] and conforms with
the assumption that LP has mean-variance preferences over rates of return to
wealth with risk aversion parameter λ. In particular, we note that this expression
generalizes the setting considered in [18] where one seeks to maximize the growth
rate of LP wealth. To see this, note the expected logarithm of wealth satisfies

1
T

E[ln(W (T)/W (0)] =
1
T

∫ T

0

(ws(μ − r) − 1
2
σ2ws)ds.

Through a standard procedure, this expectation can be shown to be maximized
by fixing w∗ = μ−r

σ2 . Substituting this value when taking the difference between
the growth rate at w∗ and w,

[(μ − r)w∗ − 1
2
σ2(w∗)2]dt − [(μ − r)wt − 1

2
σ2w2

t]dt =
1
2
σ2(w − w∗)2dt,

which (8) for the special case of λ = 1.

Approximation. We consider the case when wt ≈ w∗ which will provide a close
approximation for small fees. When this is true, we can approximate (7) by

wt+h − wt = wtah + wtbdεt

√
h,

where
a = (1 − w∗)(μ − r − w∗σ2), b = (1 − w∗)σ.

The equation in (4) simplifies to Euler-Cauchy form and has an explicit solution
given in [15],

J(w, γ1, γ2) =
1
2
λσ2

[
w2

r − 2a − b2
− 2ww∗

r − a
+

(w∗)2

r

]

+ C1w
z1 + C2w

z2 . (9)

where

z1 =
b2

2 − a +
√

(a − b2

2)2 + 2b2r

b2
, z2 =

b2

2 − a −
√

(a − b2

2)2 + 2b2r

b2

Optimal Fees for Geometric Mean Market Makers 73

Determining Optimal Values. Note that (4) and (5) will hold for all values of γ1
and γ2. For the optimal values, we show in Sect. C that

J11 (wU , γ1, γ2) = J11 (wD, γ1, γ2) = 0. (10)

Using the conditions in (5) and (10), we will determine the values of the coeffi-
cients C1, C2 in (9) as well as the optimal values for γ1 and γ2. One can check
that the (numerical) maxima happen when γ1 and γ2 both approach 1 (zero fee).
However, the system of equations has no solution as C1 and C2 are undefined
for γ1 = γ2 = 1. Taking the limit as (γ1, γ2) → (1−, 1−), one can show that
J(w, γ1, γ2) approaches zero, implying that no cost is incurred relative to the
optimal strategy (Fig. 1).

Fig. 1. Cost function for J(w�) when the LP seeks to minimize the penalty on the rate
of wealth growth (λ = 1) and fees are equal regardless of trading direction γ = γ1 =
γ2. We plot different mean-variance pairs that each satisfy w� = 1

2
. Higher volatility

increases the relative cost incurred for higher values of the fee, for every choice J(w�)
is brought close to zero as the fee approaches zero (while the function is not continuous
at γ = 1)

4 Conclusion

Fees are a critical component of LP value in CFMMs. Fees offset the cost of
arbitrage, but also reduce the extent of rebalancing performed. We formalize
this trade-off through a control-inspired approach that allows us to explicitly
derive a solution for LP value for given fee choices. This solution also allows
us to make the optimal choice of fees for maximizing value for the LP. In the
example where the LP faces a quadratic tracking error for asset prices following
geometric Brownian motion, we show that costs are minimized as fees approach
zero. Our result applies to all G3Ms and allows one to derive results for general
LP objective functions when the underlying asset price dynamics are governed
by a continuous process.

74 A. Evans et al.

A G3M Arbitrage Results

When the arbitrageur adds reserves of the risky asset, we have the following
constant geometric mean formula,

(Rα − Δα)1−θ(Rβ + γ1Δβ)θ = R1−θ
α Rθ

β .

Solving for Δβ ,

Δβ =
1
γ1

Rβ

((
Rα

Rα − Δα

) 1−θ
θ

− 1

)

The aribtrageur’s problem is therefore

maximize Δα − S(t)
1
γ1

Rβ

((
Rα

Rα − Δα

) 1−θ
θ

− 1

)

subject to Δα ≥ 0

(11)

As in [4], we note that the unconstrained maxima are those where the derivative
of (11) is zero. This happens when

Δα = Rα −
(

1 − θ

γ1θ
S(t)RβR

1−θ
θ

α

)θ

. (12)

This implies

Δβ =
(

θ

1 − θ

Rα

S(t)

)1−θ (
Rβ

γ1

)θ

− Rβ

γ1
.

Substituting this back into the objective of (11) and simplifying, we get that the
total arbitrage profit for the trader

Rα − 1
θθ(1 − θ)1−θ

R1−θ
α

(
S(t)Rβ

γ1

)θ

+
S(t)Rβ

γ1

Scaling to total LP wealth S(t)Rβ + Rα,

Cd = (1 − w(t)) − 1
θθ(1 − θ)1−θ

(
w(t)
γ1

)θ

(1 − w(t))1−θ +
w(t)
γ1

, (13)

where w(t) = S(t)Rβ

S(t)Rβ+Rα
, the fraction of LP wealth in the risky asset prior to

rebalancing. No-arbitrage requires that Δ ≤ 0 in (12), which implies

w(t) ≥ γ1θ

1 − θ + γ1θ
= wD

After this adjustment, the quantities are updated to Rα �→ Rα − Δα and Rβ �→
Rβ + Δβ . The weight after the adjustment is given by

wd(t) =
(Rβ + Δβ)S

(Rβ + Δβ)S + Rα − Δα

Optimal Fees for Geometric Mean Market Makers 75

Which we can rewrite as

wd(t) =
1 + γθ

1

(
1−θ

θ
w(t)

1−w(t)

)1−θ

(1 − γ−1
1)

1
θ + γθ

1

(
1−θ

θ
w(t)

1−w(t)

)1−θ

(1 − γ−1
1)

(14)

When adding units of the numéraire in exchange for the risky asset, the constant
geometric mean gives

(Rα + γ2Δα)1−θ(Rβ − Δβ)θ = R1−θ
α Rθ

β .

Through a similar procedure, it is possible to show

Cu =
1
γ2

(1 − w(t)) − 1
θθ(1 − θ)1−θ

(
1
γ2

(1 − w(t))
)1−θ

w(t)θ + w(t), (15)

and
w(t) ≤ θ

γ2(1 − θ) + θ
.

The weight after the adjustment is given by

wu(t) =
1

1
θ +

(
γ2

1−θ
θ

)1−θ
(

1−w(t)
w(t)

)θ

(1 − γ−1
2)

.

B Proof of Boundary Conditions

We proceed by a discrete approximation of the problem and derive the associated
boundary conditions at the limit. Analogous to [8,9], we divide time into discrete
intervals of length τ and state into steps of size ξ. In what follows, we will
approximate the weight variable in a slightly different way, but will still recover
(3) at the limit; here, for each i, we will have

wi+1 − wi = ξ.

We approximate the unadjusted weight process with a random walk. Starting
from wi, the next step after τ units of time have passed will be wi−1, with prob-
ability p, and wi+1, with probability q = 1 − p. If we suppose these probabilities
satisfy

awiτ = qξ + p(−ξ),

then this implies

p =
1
2
(1 − awiτ/ξ), q =

1
2
(1 + awiτ/ξ).

The variance is given by

b2w2
i τ = q(ξ − awiτ)2 + p(ξ + awiτ)2 = ξ2 − a2w2

i τ2.

76 A. Evans et al.

Keeping only the leading term, b2w2
i τ = ξ2, and taking the limit as τ and ξ tend

to zero, we recover the process in (3). From §A, we have the boundaries of the
no-arbitrage interval,

γ1w
∗

1 − w∗ + γ1w∗ = wD,
w∗

γ2(1 − w∗) + w∗ = wU .

The random walk proceeds unadjusted on the states i = D + 1, .., U − 1. If the
process is at D and takes a step to the right, again no arbitrage adjustment
occurs. If, however, the process moves to D − 1, then arbitrage instantaneously
adjusts the weight to wd in (14). At i = D the next step will be wD+1, with
probability p, and wd with probability q = 1−p. Similarly, at the upper boundary,
we will have wU−1 with probability p, and wu, with probability q = 1 − p.
Therefore, at the boundary point wU , we have

J(wU) = f(wU)τ + e−rτpJ(wU−1) + e−rτqJ(wu(ξ)) − qCu(ξ),

where

Cu(ξ) =
1
γ2

(1 − wU − ξ) − (1 − wU − ξ)1−w∗

γ2(w∗)w∗(1 − w∗)1−w∗ (wU + ξ)w∗
+ wU + ξ, (16)

and
wu(ξ) =

1
1

w∗ +
(
γ2

1−w∗
w∗

)1−w∗ (
1−WU −ξ

WU+ξ

)w∗

(1 − γ−1
2)

.

Rearranging terms and multiplying by erτ

erτJ(wU) − pJ(wU−1) − qJ(wu(ξ)) = erτf(wU)τ − erτqCu(ξ)).

Expanding on the right side and noting that τ is o(ξ),

τ [1 + rτ + o(τ)]f(wU) − 1
2
(1 + aξ/(wUb2))[1 + rτ + o(τ)]Cu(ξ))

= −1
2
(1 + aξ/(wUb2))Cu(ξ)) + o(ξ).

Expanding on the left side,

[1 + rτ + o(τ)]J(wU) − p[J(wU) − J1(wU)ξ + o(ξ)] + qJ(wu(ξ))
= q[J(wU) − J(wu(ξ))] + pJ1(wU) + o(ξ)

=
1
2
(1 + aξ/(wUb2))[J(wU) − J(wu(ξ))] +

1
2
(1 − aξ/(wUb2))J1(wU)ξ + o(ξ)

=
1
2

(

[J(wU) − J(wu(ξ))] +
aξ

wUb2
[J(wU) − J(wu(ξ))] + J1(wU)ξ

)

+ o(ξ).

Next, we divide both sides by ξ and take the limit as ξ tends to zero. From (16),
one can check that

CU (ξ) =
(γ2(1 − w�) − w)3

2γ2
2(1 − w�)w�

ξ2 + o(ξ2)

Optimal Fees for Geometric Mean Market Makers 77

Therefore, the right-hand side is zero. For the left-hand side, noting that wu(0) =
wU we have

lim
ξ→0

1
2

[

[J(wU) − J(wu(ξ))] +
aξ

wUb2
[J(wU) − J(wu(ξ))] + J1(wU)ξ + o(ξ)

]

= lim
ξ→0

1
2

[
J(wU) − J(wu(ξ))

ξ
+ J1(wU)

]

By the Mean Value Theorem, there exists ζ ∈ (wU , wu(ξ)) such that

lim
ξ→0

1
2

[
J(wU) − J(wu(ξ))

ξ
+ J1(wU)

]

= lim
ξ→0

1
2

[
J1(ζ)[wU − wu(ξ))]

ξ
+ J1(wU)

]

= lim
ξ→0

1
2

[

−J1(ζ)[w′
u(0)ξ + o(ξ))]

ξ
+

1
2
J1(wU)

]

=
1
2
J1(wU)(1 − w′

u(0))

=
γ2(1 − w∗) − w∗

2γ2
J1(wU)

Noting γ2(1−w∗)−w∗

2γ2
is non-zero and finite for 0 < γ2 ≤ 1 completes the proof of

(5). For γ2 = 0, the boundary condition does not apply as no adjustment occurs
and this holds for all w > wD = 0. The proof for the lower boundary is similar.

C Optimality Conditions

Substituting the boundary condition (5) into the general solution (9) we have

J1(wU , γ1, γ2) =
1
2
λσ2

[
2wU

r − 2a − b2
− 2w∗

r − a

]

+ C1z1w
z1−1
U + C2z2w

z2−1
U .

Taking the derivative with respect to γ1

J12(wU , γ1, γ2) =
∂C1

∂γ1
z1w

z1−1
U +

∂C2

∂γ1
z2w

z2−1
U = 0.

We note that for b �= 0 and r > 0, z1 and z2 will have opposite signs. Since wz1−q

and wz2−q are positive, we conclude that ∂C1
∂γ1

and ∂C2
∂γ1

have the same sign. So,

J2(w, γ1, γ2) =
∂C1

∂γ1
wz1 +

∂C2

∂γ1
wz2 .

Again wz1 and wz2 are positive and the derivatives have the same sign. This
implies that changing γ1 either increases or decreases the total cost for all values
of w. The first-order condition for optimality is therefore J2(w, γ1, γ2) = 0. We
conclude that

∂C1

∂γ2
=

∂C2

∂γ2
= 0.

78 A. Evans et al.

Taking the derivative of (5) with respect to γ1 gives

J12(wD, γ1, γ2) = 0
∂C1

∂γ1
z1w

z1−1
D +

∂C2

∂γ1
z2w

z2−1
D +

w∗(1 − w∗)
(1 + (γ1 − 1)w∗)2

[C1z1(z1 − 1)wz1−2
D 2C2z2(z2 − 1)wz2−2

D +
λσ2

r − 2a − b2
] = 0

w∗(1 − w∗)
(1 + (γ1 − 1)w∗)2

J11(wD, γ1, γ2) = 0,

which gives the desired result for the second derivative at the lower boundary.
The proof is identical for the upper boundary.

References

1. Adams, H.: Uniswap whitepaper. Technical report (2018)
2. Angeris, G., Chitra, T.: Improved price oracles: constant function market mak-

ers. In: Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, AFT 2020, pp. 80–91. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3419614.3423251. https://doi-org.stanford.
idm.oclc.org/10.1145/3419614.3423251

3. Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? Curvature
and market making. arXiv preprint arXiv:2012.08040 (2020)

4. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of uniswap
markets. Cryptoeconomic Syst. J. (2019, to appear)

5. Aoyagi, J.: Lazy liquidity in automated market making. Available at SSRN 3674178
(2020)

6. Cermak, L.: Uniswap’s monthly trade volume exceeded coinbase’s in september,
October 2020. https://www.theblockcrypto.com/linked/79775/uniswap-coinbase-
monthly-volume-september

7. Davis, M.H.A., Norman, A.R.: Portfolio selection with transaction costs. Math.
Oper. Res. 15(4), 676–713 (1990). https://EconPapers.repec.org/RePEc:inm:
ormoor:v:15:y:1990:i:4:p:676--713

8. Dixit, A.: The Art of Smooth Pasting. Fundamentals of pure and applied eco-
nomics. Harwood Academic Publishers (1993). https://books.google.com/books?
id=nmoUDNfYK2sC

9. Dixit, A.: A simplified treatment of the theory of optimal regulation of Brownian
motion. J. Econ. Dyn. Control 15(4), 657–673 (1991)

10. Dumas, B.: Super contact and related optimality conditions. J. Econ. Dyn. Con-
trol 15(4), 675–685 (1991). https://EconPapers.repec.org/RePEc:eee:dyncon:v:15:
y:1991:i:4:p:675--685

11. Dumas, B., Luciano, E.: An exact solution to a dynamic portfolio choice problem
under transactions costs. J. Financ. 46(2), 577–95 (1991). https://EconPapers.
repec.org/RePEc:bla:jfinan:v:46:y:1991:i:2:p:577--95

12. Dune: Dune analytics decentralized exchange dashboard
(2020). https://explore.duneanalytics.com/public/dashboards/
c87JEtVi2GlyIZHQOR02NsfyJV48eaKEQSiKplJ7

https://doi.org/10.1145/3419614.3423251
https://doi-org.stanford.idm.oclc.org/10.1145/3419614.3423251
https://doi-org.stanford.idm.oclc.org/10.1145/3419614.3423251
http://arxiv.org/abs/2012.08040
https://www.theblockcrypto.com/linked/79775/uniswap-coinbase-monthly-volume-september
https://www.theblockcrypto.com/linked/79775/uniswap-coinbase-monthly-volume-september
https://EconPapers.repec.org/RePEc:inm:ormoor:v:15:y:1990:i:4:p:676--713
https://EconPapers.repec.org/RePEc:inm:ormoor:v:15:y:1990:i:4:p:676--713
https://books.google.com/books?id=nmoUDNfYK2sC
https://books.google.com/books?id=nmoUDNfYK2sC
https://EconPapers.repec.org/RePEc:eee:dyncon:v:15:y:1991:i:4:p:675--685
https://EconPapers.repec.org/RePEc:eee:dyncon:v:15:y:1991:i:4:p:675--685
https://EconPapers.repec.org/RePEc:bla:jfinan:v:46:y:1991:i:2:p:577--95
https://EconPapers.repec.org/RePEc:bla:jfinan:v:46:y:1991:i:2:p:577--95
https://explore.duneanalytics.com/public/dashboards/c87JEtVi2GlyIZHQOR02NsfyJV48eaKEQSiKplJ7
https://explore.duneanalytics.com/public/dashboards/c87JEtVi2GlyIZHQOR02NsfyJV48eaKEQSiKplJ7

Optimal Fees for Geometric Mean Market Makers 79

13. Evans, A.: Liquidity provider returns in geometric mean markets. arXiv preprint
arXiv:2006.08806 (2020)

14. Kao, H.T., Chitra, T.: Feedback control as a new primitive for DeFi (2020).
https://medium.com/gauntlet-networks/feedback-control-as-a-new-primitive-for-
defi-27b493f25b1

15. Leland, H.E.: Optimal portfolio management with transactions costs and capital
gains taxes. Working Paper RPF-290, IBER, UC Berkeley, December 1999. SSRN:
https://ssrn.com/abstract=206871

16. Martinelli, F., Mushegian, N.: Balancer: A non-custodial portfolio manager, liq-
uidity provider, and price sensor (2019)

17. Merton, R.: Lifetime portfolio selection under uncertainty: the continuous-time
case. Rev. Econ. Stat. 51(3), 247–57 (1969). https://EconPapers.repec.org/RePEc:
tpr:restat:v:51:y:1969:i:3:p:247--57

18. Tassy, M., White, D.: Growth rate of a liquidity provider’s wealth in xy = c auto-
mated market makers, November 2020. https://math.dartmouth.edu/∼mtassy/
articles/AMM returns.pdf

http://arxiv.org/abs/2006.08806
https://medium.com/gauntlet-networks/feedback-control-as-a-new-primitive-for-defi-27b493f25b1
https://medium.com/gauntlet-networks/feedback-control-as-a-new-primitive-for-defi-27b493f25b1
https://ssrn.com/abstract=206871
https://EconPapers.repec.org/RePEc:tpr:restat:v:51:y:1969:i:3:p:247--57
https://EconPapers.repec.org/RePEc:tpr:restat:v:51:y:1969:i:3:p:247--57
https://math.dartmouth.edu/~mtassy/articles/AMM_returns.pdf
https://math.dartmouth.edu/~mtassy/articles/AMM_returns.pdf

Market Based Mechanisms
for Incentivising Exchange Liquidity

Provision

W. Gawlikowicz1(B), B. Mannerings1, T. Rudolph1, and D. Šǐska1,2

1 Vega Protocol, Gibraltar, UK
2 School of Mathematics, University of Edinburgh, Edinburgh, Scotland

Abstract. A key problem for order book exchanges is how to attract liq-
uidity providers and retain their support in all market conditions. This
is commonly approached through individual business agreements with
market makers whereby a bespoke contract is negotiated for specific
obligations and rewards. Such approaches require a central intermedi-
ary that profits from liquidity provision to administer, and typically fail
to align the incentives of exchanges and liquidity providers as markets
grow. This is costly, slow, and scalability is limited by the exchange’s
resources, contacts, and expertise.

This paper develops mechanisms for creating open, automated and
scalable liquidity markets. We describe formal methods to quantify liq-
uidity and discuss various approaches to determine its price. In so doing,
we introduce a novel way to structure liquidity commitments, along
with a mechanism based on a financial bond with penalties for under-
provision to maximise market makers’ adherence to their obligations.
We also investigate mechanisms to allocate rewards derived from trad-
ing fees between market makers, so as to incentivise desirable-but-risky
behaviours such as market creation and early commitment of liquidity.
We complement this work with several agent based simulations exploring
the proposed mechanisms.

1 Introduction

Since the advent of electronic computers in the last century, more and more
aspects of running a financial exchange have been automated. Indeed, for most
of us the idea of keeping a limit order book1 by hand seems absurd. Additionally,
more and more of the actual trading, including market making2, is carried out
algorithmically, confirming what Black wrote some fifty years ago [1].

However, there are aspects of financial exchanges that have so far eluded full
automation. In particular the contractual relationship between exchanges and
1 A record of outstanding buy and sell orders set to trade at a specified (or better)

price. Once the prices (and volumes) of buy and sell orders match a trade is generated
and the associated orders get removed from the book).

2 The act of supplying both buy and sell prices to the market with the intention of
making a profit on the price difference.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 80–96, 2021.
https://doi.org/10.1007/978-3-662-63958-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_7&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_7

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 81

market makers still relies on bespoke legal agreements [10]. This reduces the pool
of liquidity available to compete for the provision of market making as a service
and increases the cost of running the exchange. Both of these in turn decrease
the efficiency of the market (the exchange needs to collect higher fees to cover
these costs).

If the whole mechanism of the exchange is automated (it is all software)
then a significant portion of its revenue (generated by charging fees for trading)
should be split between two types of participants: those running the software
(operators) and those providing liquidity (market makers). Determining the rel-
ative apportioning of incentives between market makers should take into account
the value that their specific provision of liquidity has provided, both in terms of
its timing, competitiveness, and longevity.

1.1 Motivation

A key problem for exchanges is attracting and rewarding liquidity providers.
The entrenched model is to establish business partnerships with market makers,
and negotiate obligations (provision of order book volume at some bid/ask) and
rewards; typically in the form of fee rebates [12]. It has been shown that such
direct liquidity incentives can be highly effective in boosting liquidity, especially
for new and small cap markets [11,14,15], as well as following exogenous price
shocks [13].

These relationships are governed by business contracts making them a non-
scalable and expensive solution limited by the business development capacity
of the exchange. Construction of such contracts is non-trivial as they need to
comply with market regulations and be build so as to not distort incentives for
other market participants which would be counterproductive as far as improving
liquidity is concerned [16].

Furthermore, these agreements are typically non-transferable, have limited
responsiveness to market conditions and do not align the incentives of own-
ers/operators of a market and liquidity providers [10]. This is particularly notice-
able in the case where market makers (akin to early venture in a startup) invest
resources into bootstrapping a new market’s liquidity, yet typically gain no
explicit benefit from the market’s commercial success.

This paper develops mechanisms for creating automated and scalable liquidity
markets. We describe various price determination methods for liquidity provision
and how to divide rewards between market makers so as to incentivise desirable
behaviours such as early commitment of liquidity to a market. We further outline
various ways to measure liquidity provision on an order book, and in so doing
introduce a novel way to structure liquidity obligations, along with an automated
financial method for penalising market makers who fail to meet the obligations.

We have built our framework assuming that attracting liquidity is occurring
in a competitive environment where each market (for a single financial prod-
uct) is competing with other markets to attract liquidity supply. To put it in
a different way, each liquidity provider has the choice of markets to which they
supply liquidity and are therefore going to rationally select markets that reward

82 W. Gawlikowicz et al.

them more highly. We also assume that each market may have multiple market
makers and that the rewards are derived from the all fee income paid by traders
of that market.

To optimally incentivise liquidity providers it is essential to understand
the value, to a given market, of liquidity provision on an order book. The
authors know of no established way to do this and this paper explores mul-
tiple approaches. Black [1] defines a liquid market as one that is both contin-
uous and efficient. Intuitively, these characteristics increase when order book
volume is supplied closer to the “true market price”. This paper develops var-
ious approaches to evaluating relative liquidity profiles on an order book. We
extend this to consider various levers that may be tailored according to a mar-
ket’s liquidity requirements, e.g. firmness, valuing long term provision, etc.

It is crucial to note that there are at least two classes of markets that one
should consider: spot markets and derivatives3 markets (by the latter we mean
any markets that allow trading on margin, e.g. short positions). For a spot
market, liquidity is important in attracting business, efficient price discovery
and aiding information flows. However, a market that allows margin trading
needs to also protect itself against potentially insolvent participants. See e.g. [7,
Section 6]. One of the key parts of the protection is the ability to close out an
insolvent participant while protecting the position of their counterparty. In order
to be able to do this there must be sufficient volume on the order book to execute
such a trade (albeit possibly at a loss). Thus for a derivatives market, sufficient
liquidity provision is key for safe operation.

1.2 Literature Review

Existing academic research on liquidity focuses on modelling the impact of infor-
mation flow and interactions between market participants on order book com-
position.

Grossman and Stiglitz [3] model a market consisting of a risk-free asset with
a known, constant return and a risky asset with a return modelled as a sum of
two random variables, one of which can be observed at a fixed cost. There are
two types of agents in the market: informed traders who choose to incur the
cost to reduce variance of the risky asset as observed by them, and uninformed
traders who make decisions solely based on observed prices. Furthermore, the
agents observe returns realised by the other market players and decide if they
want to switch from being informed to uninformed or vice versa. In [3], the
authors have shown that, for a special case of agents with constant absolute
risk-aversion utility functions and normally distributed random variables, the
equilibrium price distribution exists and can be calculated, and that a number
of conjectures that they have formulated can be shown formally. These relate
to the impact of the information content of the system on the market price and
traded volumes.

3 Financial instruments deriving their value from the future value of other financial
assets.

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 83

Kyle [4] prescribes a similar type of market with one notable addition -
market maker is modelled as a separate type of agent. The market is modelled
as a sequence of two step auctions. In the first step, informed trader submits the
market order with the quantity based on private observation of the liquidation
value of the asset and own trading history. Uninformed traders submit market
orders that are uncorrelated with that of the informed agent or own trading
history. In the second step, market maker sets prices conditional on quantities
traded by other market participants such that the market clears. Market maker
is unable to distinguish between the two other types of traders. Market making
is assumed to be perfectly competitive - market maker chooses a pricing rule
such that the expected profit is zero. The authors in [4] show that a pricing rule
linear in the observed traded quantities is optimal and leads to the existence of
the equilibrium price. One of the measures of liquidity that the authors consider
is the market depth - the order flow required to move a price by one unit of
measure. They show that it’s proportional to the ratio of quantity traded by
uninformed traders to the value of the information held by the informed traders.

Glosten and Milgrom [5] model interaction between price asymmetry, the size
of the bid-ask spread and the volumes traded. The model assumes that market
maker sets a single bid and a single ask price per unit of stock. Once the prices
are set one of the traders arrives at the market at a random time and decides
whether to buy or sell one unit, or do nothing. The market maker is then free to
revise the prices and the process continues. Like in the models described above,
there are both informed and uninformed traders in the market. All agents are
assumed to be risk-neutral. Additionally, market maker is perfectly competitive
and incurs no transaction costs - expected profit from each trade is zero. The
authors in [5] show that even with the above assumptions the bid-ask spread
still arises under their model as a purely informational phenomenon. The bid
prices will decrease and ask prices will increase as the proportion of informed
traders increases. Moreover, the authors were able to derive a bound on the size
of the spread and show that there can be occasions when all trading ceases as
no uniformed traders are willing to trade in the presence of too much insider
information. Lastly, it’s been shown that on average the spread in the model
decreases as the traded volume increases.

While the above academic publications were important stepping stones in
the analysis of market liquidity, they do not offer any explicit solution to the
problem that we’re trying to solve.

The recent rise of DeFi, decentralised financial system based on blockchain
technology placing a lot of emphasis on interoperability between its various com-
ponents and encapsulating market mechanics in clear-cut rules and governance
actions, seems to offer a fertile ground for rethinking and formalising liquidity
incentives found in traditional markets.

Gudgeon et al. [17] analyse protocols for loanable funds, namely Compound,
Aave and dYdX. These protocols provide overcollateralised loans between vari-
ous cryptoassets. The protocols use interest rate models to programmatically set
lending and borrowing rates so as to balance the demand between the two. Part

84 W. Gawlikowicz et al.

of the spread between borrowing and lending rates is set aside for periods of
market stress, whereas the rest is kept in profit. Authors have shown that peri-
ods of illiquidity are common and often happen simultaneously in the protocols
considered. The liquidity reserves can often be unbalanced since it’s not uncom-
mon for just a few accounts to control majority of protocol’s funds. Authors
also point to some evidence of market inefficiency suggesting that agents are
not necessarily responding optimally to the interest rate incentives. While these
protocols remain popular and fulfill an important function within the broader
DeFi ecosystem, the liquidity incentives that they rely on are not fit for adop-
tion in more general, order book based markets. It has also been shown that
combination of large amount of debt maintained within a lending protocol with
periods of low liquidity can relatively quickly lead to the insolvency of the proto-
col further implying that market mechanisms employed by those protocols likely
do not offer a robust alternative to the existing financial system [18].

An interesting approach towards rationalising and automating liquidity pro-
vision has been put forward by Hummingbot [8].

The authors propose a liquidity marketplace built around the Spread Density
Function. The liquidity buyer specifies a monotonically decreasing function ρ(s)
of spread supported on [0, smax], where smax is the maximum spread at which
rewards for market makers will still be provided. Additionally, the total monthly
budget B and number of seconds T defining the frequency with which order
book snapshots will be taken get specified.

The total payout available per snapshot is then:

b :=
B · T · 12

365.25 · 24 · 3600
.

The sum of weighted orders per snapshot is given by W :=
∑

|s|<smax
νsρ(s),

where νs is the aggregate volume of all orders at the spread level s. The payout
for market maker m at that spread level is then

Rs,m := b
νs,mρ(s)

W
.

The total compensation for market maker m per snapshot is thus given by

bm :=
∑

|s|<smax

Rs,m.

The approach outlined above provides clear rules for interaction between mar-
ket makers and exchanges and as such is a noteworthy innovation. While the
frequent order book sampling and market making reward attribution addresses
the problem of market makers withdrawing liquidity at times of high volatil-
ity to some extent, it does not fully preclude it. As already mentioned, while
it may be an acceptable, albeit undesirable state of affairs for spot exchanges,
it is potentially fatal for derivatives exchanges which rely on liquidity for their
risk management measures. Thus, we proceed with our analysis of the liquidity
provision problem and ways addressing it.

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 85

2 Dynamic Liquidity Rewards

The goal is to set up a market mechanism that optimises the amount of liquidity
provision such that liquidity incentives increase when liquidity is under-supplied,
and decrease when there is sufficient liquidity in the market. Markets are assumed
to potentially have multiple market makers, each of whom can decide which
market to supply liquidity to. The mechanism is based on rewards and penalties
outlined below.

Market makers are rewarded from the revenue derived by an exchange
through the fees charged on trades. Typically both sides of a trade are charged
a fee and then rebates are given to market makers if they are involved in the
trade. This fee amount is usually expressed in either basis points (bps) or as
a percentage of the trade’s notional value4 at the point of trade. One way or
another, the fee has cash value and the amount can be split between various
participants to motivate desired behaviour.

A spot exchange will highly value market makers who are involved in trades.
Hence the mechanism should reward limit orders that are hit resulting in a trade.
This rewards market makers for the competitiveness of their pricing.

An exchange allowing margin trading (derivatives exchange) will rely on liq-
uidity depth5 for closing out delinquent traders. Thus it will choose to reward
providing guaranteed liquidity at all times, based on an appropriate measure,
see Sect. 4.

While legal contracts can be used to enforce the obligations, we propose an
economic approach where market makers commit a financial bond (or stake) for
providing liquidity, which is slashed if they fail to meet their liquidity obligations.
The size of the stake will imply a level of liquidity provision commitment.

These commitments may be to provide prices and/or to respond to prices
on the order book. For example, a market maker may be required to maintain
an amount of volume, proportional to their stake bid and offered within 15% of
the best bid/offer/mid price for 85% of the time. In some illiquid markets, the
market makers may be required to simply respond to a price placed on the order
book with an appropriately competitive counter price.

Here we propose to first fix a measure of liquidity λ - see Sect. 4 for details.
A market maker committing to provide the liquidity level λcommitted will then
have to deposit a bond (stake) with the exchange typically calculated as

S = λcommtited · scaling constant ,

where the scaling constant will depend on the liquidity measure and the market
in question.

The exchange will then fix a time period τ which could be anything from
several seconds to hours or days. If at any time during that period volume of
limit orders provided by the market maker results in liquidity λprovided which
is lower than λcommitted a penalty will be applied to market makers’ stake. A
4 Total value of the position.
5 Order book volume at different price levels around the mid-price.

86 W. Gawlikowicz et al.

number of reasonable penalisation strategies can be devised based on the specific
market. Typically the penalty should be a fraction of the stake

Penalty = Penalty fraction · S

with 0 < Penalty fraction < 1.
Compliance could be further assured by requiring liquidity providers to sub-

mit a set of pegged orders6 with relative weightings per each order book side.
These orders would then get automatically deployed in case the orders manually
maintained by a given liquidity provider do not fulfil the liquidity commitment
λcommitted. The volumes of those orders would be set so that the commitment
is met. Weightings set by the liquidity provider would be taken into account
to give them a degree of control over the resulting order structure. It will also
be impacted by the choice of liquidity measure discounting (requiring higher
volume) orders that provide less liquidity in that measure (e.g. orders placed
far away from the mid price). If the margin account maintained by a liquidity
provider is insufficient to support those orders the bond account balance can be
used to cover the shortfall (with the appropriate penalty applied).

The overall income from trading on a given market at an instant of time is
the volume at the time multiplied by the trading fee. Market makers will choose
to participate (commit a bond and provide liquidity) if the share of the return
they are getting is sufficient reward for the capital they are contributing and risk
they are taking. In what we are proposing, the market makers are rewarded by
obtaining a fraction of the entire fee income. Thus to increase their income they
would like to increase the fee or increase the traded volume. However an increase
in fee is likely to lead to a decrease in volume and vice versa. We see that the key
is then to allow the market makers to jointly set the fee at an appropriate level.
It is also clear that different market makers are likely going to have different
opinions on what the appropriate level is.

2.1 Voting Based Mechanism

Each market maker can submit their desired fee: fi for i = 1, . . . , n with n the
number of market makers. Each market maker also has a stake committed Si

(with the resulting liquidity commitment λcommitted
i = Si/scaling constant).

The trading fee is then a simple weighted average

f =
1
S

N∑

i=1

fi · Si ,

where S is the total committed stake i.e. S =
∑n

i=1 Si.

6 Pegged order has its priced derived from a reference price and an offset, e.g. and
order to buy at two ticks from the mid price. The price gets updated each time the
reference price moves.

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 87

2.2 Radical Market Method

Upon inception of a market there is only one market maker, providing stake Sold

and setting the market fee fold. During each time period τ the fee either stays
as before, or if another market maker chooses to enter the market by providing
an additional stake ΔS, then we have Snew = Sold + ΔS and the fee is adjusted
as

fnew =
Snew − ΔS

Snew
· fold.

A possible stake and fee evolution is given in Table 1. A more complete agent
based simulation is provided in Sect. 3.1.

Table 1. Possible fee evolution responding to stake in the radical market method.

Period index Added stake Total stake Fee

1 100 100 1%

2 0 100 1%

3 100 200 0.5%

4 300 500 0.2%

5 −200 300 0.33%

6 −200 100 1.0%

7 −50 50 2%

2.3 Offer Stack Meeting Liquidity Demand

Let us start by trying to estimate liquidity demand in a given market. The
simplest way to do this is to consider recent trading activity. One could, for
instance, use a moving weighted average of volume of recent trades.

However, lack of trading should not necessarily be equated with low liq-
uidity demand. Markets that have very wide pricing (and no trading) may be
demonstrating a need for more competitive liquidity provision, since that which
is provided is not priced where the demand is.

In the case of derivatives markets, the open interest captures the potential
size of defaulting positions that the exchange is bearing at a point in time. The
exchange may require immediate access to liquidity in order to close out traders
when they approach a risk of bankruptcy. Hence, in this situation, open interest
can be taken as an estimate of liquidity demand. Again there is a problem: a
derivative market with no open interest doesn’t necessarily imply that there is no
demand for liquidity. However, if the aim of the exchange in attracting liquidity
is primarily to mitigate risk then this may be a very reasonable measure.

Once the liquidity demand has been established, we then have the following
relationship

Liquidity demand −→ Required committed liquidity −→ Required market making stake.

88 W. Gawlikowicz et al.

Translating required committed liquidity into required stake is just a multipli-
cation using scaling factor. We propose that translating “liquidity demand” (in
whichever measure) into “required committed liquidity” is best achieved via an
affine transformation:

λrequired := Required committed liquidity = Scaling factor ·Liquidity demand+Additive factor.

The n different market makers now submit bids with stake and proposed fee:
(Si, fi). Assume we have sorted so that they are increasing in fi (so f1 is the
lowest offered trading fee, fn the highest). Since stake can be directly translated
into committed liquidity we may view this also as (λcommitted

i , fi). Let us define

λcumulative
k :=

k∑

i=1

λcommitted
i , k = 1, . . . , n .

The market trading fee is then set by first calculating k∗ := min{k = 1, . . . , n :
λrequired ≤ λcumulative

k } and then taking the fee to be f = fk∗ . In other words:
we take the liquidity offers of the market makers willing to provide the most
competitive trading fees, then we start adding up their committed liquidity and
the trading fee is that proposed by the market maker whose committed liquidity
meets or just exceeds the required liquidity.

The liquidity demand can also be used to only allow liquidity providers to
reduce their stake if doing so would not cause λcumulative

n < λrequired. If on the
other hand the liquidity demand were to rise so as to exceed the liquidity supplied
by all active liquidity providers the market could be put into temporary auction
mode. During the auction mode new orders will still be accepted, but no trades
would get generated. Once enough additional stake gets committed to the market
the auction would uncross generating trades from orders with overlapping bid
and ask prices at a price that would maximise the traded volume.

2.4 Distributing Fees

We have mentioned earlier that the trading fees should be distributed between
those providing the market infrastructure (operators) and those who provide
liquidity (market makers). Since creating a new liquid market where there was
none before is typically expensive, the market makers who provide liquidity since
inception should receive higher rewards than those who join a liquid and success-
ful venture. On the other hand, having more market making capital committed
is generally a good thing (it may drive down fees, and it will increase market
resilience). So late entrants need to be incentivised to join.

Time-Based Weighting. Hence we propose that the share of fees going to
various market makers so that each market maker i = 1, . . . , n gets proportion
pi given by

pi :=
φ(t − Ti) · Si∑n

j=1 φ(t − Tj) · Sj
,

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 89

where t is the current time,7 Si is the stake committed by a market maker i at
time Ti (in the past) and where s �→ φ(s) is a bounded, increasing function of
time e.g. logistic

φ(s) =
1

1 + e−k·(s−s0)
.

Here k fixes the steepness of the curve and s0 the time it takes to go from 0
the midpoint value of 1

2 . The reason to take a bounded function is to make sure
that late entrants will, eventually, be assigned enough weight. If we allowed an
unbounded function then the late entrants will never catch-up with the early
ones - and so they will not have any incentive to join.

Figure 1 shows the resulting fee split between four market makers staking the
same overall amount in annual, semi-annual, quarterly and monthly arrears over
the course of one year. The example uses a logistic function with parameters
k = 8, s0 = 0.5.

Fig. 1. Fee split for a 1y market with k = 8, s0 = 0.5 and four market makers following
different staking schedules.

Equity-Like Market Share. Alternatively, fees could be split based on some
measure of market’s value over time. This might have the added benefit of
rewarding liquidity providers not only for joining early, but also for joining at
times of lower market value.

Assume all market maker fees are collected in a separate account and peri-
odically distributed among all liquidity providers. Define the “equity” liquidity
provider i holds in the period m as:

Equityi(m) = Si · market value proxy(tm)
market value proxy(t0)

,

where tm is the time corresponding to the end of period m, t0 is the time when
liquidity provider i posted their stake and:

market value proxy(tm) = max(
n∑

j=1

Sj , factor · traded value in period m).

7 We write a difference in our notation but could in principle count time using various
conventions e.g. ignoring periods when a market is shut.

90 W. Gawlikowicz et al.

The share of the market maker fees accrued in period m is distributed between
the eligible liquidity providers as:

Equity sharei(m) =
Equityi(m)

∑n
j=1 Equityj(m)

.

3 Agent Based Models

We now consider two different agent-based models. One model, in Sect. 3.1, mod-
els a mechanism where the trading fee increases if both agents want to decrease
their commitment and conversely the trading fee decreases if both agents are
willing to increase their bonded commitment. The other model, in Sect. 3.2,
models liquidity demand.

It is worth noting that for either of the models we cannot compute Nash equi-
librium explicitly and so we resort to numerical approximation. In this paper we
employ the “Method of Successive Approximations” to solve the control problem
each agent is solving, see [2]. This is based on the Pontryiagin’s optimality prin-
ciple. A different numerical method can be based on the Bellman/HJB equation,
see [6] and [9].

3.1 Two Competing Market Makers in a Single Market - Not
Modelling Liquidity Demand

We have two agents and each has different beliefs about the market, which
is captured by the volume response function V i, i = 1, 2. We have (f, S) �→
V i(f, S) where f ∈ (0, 1) denotes the trading fee and S ∈ (0,∞) is the total
market making stake committed to the market. We assume that S �→ V i(f, S)
is increasing for every f (the more stake on a market the more volume it can
support) while f �→ V i(f, S) is monotone decreasing (higher fee leads to less
trading volume).

The market makers share the income from trading proportionally to their
stake size. For a period of time dt this is given by fV (f, S) dt. Using Si to
denote the stake of market maker (MM) i she obtains Si

S1+S2 fV (f, S) dt in that
time period. On the other hand, they have to maintain liquidity above a certain
level and if they fail they are penalised by the amount σi

λSi. The other cost
would be the cost of capital, which can easily be included, but we omit it for
brevity. Finally the market maker is penalised (with δ > 0 small) by δ|αi|2 with
αi denoting how quickly they change their stake. At first sight this might look
strange but it promotes predictability for other participants, since it prevents
the MM from pulling out liquidity immediately.

The MM i adjusts their stake at rate αi
t and the trading fee is determined

by the enthusiasm of MMs to increase their stake - the more they increase the
stake the more the fee decreases:

dS1
t = γSα1

t dt , dS2
t = γSα2

t dt and dft = −γf (α1
t + α2

t) dt. (1)

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 91

The optimisation problem agent i is solving is to maximise

J i(f, S1, S2, αi, αj,∗) =
∫ T

0

[
Si

S1
t + S2

t

ft V i(ft, S
1
t + S2

t) − σi
λ Si

t

]

dt.

over all (admissible) strategies αi = (αi
t) with the strategy of the other

agent assumed to be fixed (and optimal for the other agent). Please refer to
Appendix B.18 for the outline of the solution to the problem.

Simulation Results: To run a simulation we need to choose the volume response
function, the details can be found in the IPython notebook9. Figure 2 displays
this function for agents 1 and 2. Agent 2 assumes the same response but higher
maximum trading volume.

Fig. 2. The function (f, S) �→ f V 1(f, S) (left) and (f, S) �→ f V 2(f, S) (right).

To test, we create a setting where Agent 1 is staking a market but she thinks
that there won’t be too much trading (for whatever reason) while Agent 2 starts
with almost no stake but has much higher belief in the volume. What we see is
that Agent 1 reduces her stake (which on its own would lead to an increase in
fees) but Agent 2 increases her stake aggressively, so overall the fees fall. The
results are in Fig. 3.

Fig. 3. Fees and stake evolution (left) and agents’ actions evolution (right).

8 Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract id=3651085.
9 Available at: https://github.com/vegaprotocol/research/.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3651085
https://github.com/vegaprotocol/research/tree/master/notebooks/papers/liquidity
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3651085
https://github.com/vegaprotocol/research/

92 W. Gawlikowicz et al.

3.2 Multiple Competing Market Makers - Basic Liquidity Demand
Model

We will have i = 1, . . . , N market makers. Each market maker uses two controls:
θi

t =
[
αi,f

t , αi,S
t

]
which fix the speed of change in their desired fee and stake

respectively:
df i

t = αi,f
t dt and dSi

t = αi,S
t dt.

We fix constants κD > 0 (volume response to liquidity demand), κf > 0 (volume
response to fee level) and LD∗

F > 0 (market liquidity demand). The trading
volume in the market evolves as

dVt = κD

(

LD∗
F − Vt

S̄t

)

Vtdt − κfL(f̄t)Vtdt, V0 = v0,

where S̄t =
∑N

i=1 Si
t and where L(f) = 1

1+exp(−(f−FPmid))
is a logistic function

determining the fee level from f̄t. Let us now look at how f̄t is calculated. First
we sort f i

t from smallest to largest (we use π to denote the sorting permutation)
: f

π(1)
t ≤ f

π(2)
t ≤ · · · ≤ f

π(N)
t . We calculate the cumulative stake corresponding

to market makers providing fees, sorted from smallest to largest:

Ci
t :=

i∑

j=1

S
π(j)
t .

We check the index of the last market maker providing commitment needed to
meet current liquidity demand:

i∗ := max
{

i = 1, . . . , N : κCCi ≤ Vt

S̄t

}

.

Finally we set

f̄t :=
i∗+1∑

j=1

f
π(i)
t

S
π(i)
t

Ci∗+1
.

This matches the mechanism described in Sect. 2.3. Please refer to Appendix B.210

for details and to Fig. 4 for results.

10 Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract id=3651085.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3651085
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3651085

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 93

Fig. 4. Fees and stake evolution (left) and agents’ actions evolution (right).

4 Measuring Liquidity Provision

In this section we consider a possible way of measuring liquidity. An alternative
method is proposed in Appendix A(See footnote 10)

Limit Order Book Description

At any time, the state of orders on the order book can be described in terms
of the volume V (t, p) of orders waiting at price level p on a grid with mesh size
given by the “tick” size θ. When time is fixed or plays no role then we will write
simply V (p). Following the usual convention we will use negative volumes (i.e.
V < 0) for buy orders and positive volumes for sell orders. The best bid price
(best buy offer) is sb(V) := max{p > 0, V (p) < 0}. The best ask price (best
sell offer) is sa(V) := min{p > 0, V (p) > 0}. We will assume that 0 < sb(V) <
sa(V) < ∞. This give the mid price S = 1

2

(
sa(V) + sb(V)

)
and the bid-ask

spread sa(V) − sb(V).
We can also take an alternative but related view which describes the order

book as volume U at a distance x from the mid-price so that

U(x) = V (S + x).

If the tick-size θ is small then we can also adopt a continuous approximation to
the order book which is now described in terms of density v = v(p) given by

v(p) ≈ V (p)
θ

and u(x) = v(S + x).

Note that we assume that p ∈ (−∞,∞) as on some order books p would not be
a price but instead for example a bond yield which can be negative.

Probabilistically Weighted Volume

A simplest possible measure of liquidity would be to calculate
∫ ∞

−∞ |u(x)| dx i.e.
to sum up the entire volume on the book. The problem with this naive approach

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3651085

94 W. Gawlikowicz et al.

is that it counts equally all the volume regardless of how far away from the mid
price it is.

Let us assume that we have a stochastic model for the mid price at a future
time τ > 0, denoted Sτ , which provides us with the probability density for Sτ .
Let us denote the density by fS = fS(x). Then we could measure the order book
liquidity (or equivalently the liquidity amount provided by a single participant)
as

λ(u) :=
∫ ∞

−∞
|u(x)|fS(x) dx.

This could however report high liquidity even if there were e.g. only sell orders
on the book. A more sensible measure of order book liquidity is thus

λ(u) := min
(∫ 0

−∞
|u(x)|fS(x) dx,

∫ ∞

0

|u(x)|fS(x) dx

)

. (2)

On a market where at a certain (large and unlikely) price movement triggers an
auction11 one may only wish to account for volume that is not as far away as
to trigger an auction. Specifically if xmin < 0 and xmax > 0 are the levels that
trigger the auction then

λ(u) := min
(∫ 0

xmin

|u(x)|fS(x) dx,

∫ xmax

0

|u(x)|fS(x) dx

)

. (3)

Notice that as long as at two points x and x′ we have fS(x) = fS(x′) then
equal volume at x and x′ provides equal amount of liquidity according to this
measure, regardless of the distance of x and x′ from the mid. This is coun-
terintuitive to most peoples’ understanding of liquidity and hence most likely
undesirable. To rectify this let us write FS for the cumulative density function12

and let

pS(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞

x

fS(y) dy = 1 − FS(x) , if x > 0,

∫ x

−∞
fS(y) dy = FS(x) , if x ≤ 0.

A moment reflection reveals that pS(x) is the probability that volume at point
x traded at the next time step τ (according to the model given by fS). Thus
another reasonable way to measure liquidity is

λ(u) := min
(∫ 0

xmin

|u(x)|pS(x) dx,

∫ xmax

0

|u(x)|pS(x) dx

)

. (4)

11 When market is in auction trades are no longer generated as soon as there’s a match
in price between a buy and sell order, instead orders keep getting added to the order
book, possibly resulting in a crossed state - an overlap between bids and offers -
until the auction concludes and associated trades are generated so as to maximise
the traded volume (subject to additional rules should a few price levels result in the
same maximum volume).

12 i.e. FS(x) =
∫ x

−∞ fS(y) dy.

Market Based Mechanisms for Incentivising Exchange Liquidity Provision 95

Liquidity Across Time

Since market-makers are to be rewarded for providing liquidity we must have
a way of considering how the liquidity available exists over time. There are
two basic ways to see this. First is to consider the average liquidity provided
by a participant over a time interval [0, T]: 1

T

∫ T

0
λ(ut) dt. This allows market

makers to completely withdraw liquidity for brief periods and compensate by
providing more during calm periods. This will generally be undesirable from the
point of view of the exchange. The other is the minimum liquidity provided:
mint∈[0,T] λ(ut).

5 Conclusion

We have reviewed existing approaches to measuring liquidity, its impact on mar-
ket efficiency and established ways of incentivising it which spanned both tradi-
tional finance and the emerging DeFi system.

The main contribution of this paper is to propose market-based, scalable
mechanism for building liquidity provision incentives into the exchange mechan-
ics that can be fully automated. This is particularly useful for derivatives
exchanges due to its ability to guarantee a predefined level of liquidity irrespec-
tive of market conditions and behaviour of other market participants. Finally,
we used agent-based models to simulate some of the mechanisms we proposed.
They demonstrate that the intuition used to design the mechanisms is correct
and the design leads to the desired outcomes.

References

1. Black, F.: Toward a fully automated stock exchange. Financ. Anal. J. 27(4), 28–
35+44 (1971)

2. Chernousko, F.L., Lyubushin, A.A.: Method of successive approximations for solu-
tion of optimal control problems. Optimal Control Appl. Methods 3, 101–114
(1982)

3. Grossman, S.J., Stiglitz, J.E.: On the impossibility of informationally efficient mar-
kets. Am. Econ. Rev. 70(3), 393–408 (1980)

4. Kyle, A.S.: Continuous auctions and insider trading. Econometrica 53(6), 1315–
1335 (1985)

5. Glosten, L.R., Milgrom, P.R.: Bid, ask and transaction prices in a specialist market
with heterogeneously informed traders. J. Financ. Econ. 14, 71–100 (1985)

6. Gyöngy, I., Šǐska, D.: On finite-difference approximations for normalized Bellman
equations. Appl. Math. Optim. 60(3), 297–339 (2009)

7. Danezis, G., Hrycyszyn, D., Mannerings, B., Rudolph, T., Šǐska, D.: Vega Protocol:
a liquidity incentivising trading protocol for smart financial products. Vega research
paper (2018)

8. Feng, M., Bhat, R., Las Marias, C.P.: Liquidity Mining: A marketplace-based app-
roach to market maker compensation, Hummingbot research paper (2019)

96 W. Gawlikowicz et al.

9. Kerimkulov, B., Šǐska, D., Szpruch, L.: Exponential convergence and stability of
Howards’s policy improvement algorithm for controlled diffusions. SIAM J. Control
Optim. 58(3), 1314–1340 (2020)

10. Dolgopolov, S.: Linking the securities market structure and capital formation:
incentives for market makers? Univ. Pennsylvania J. Bus. Law 16(1), 1–56 (2013)

11. Clapham, B., Gomber, P., Lausen, J., Panz, S.: Liquidity provider incentives in
fragmented securities markets. J. Empir. Financ. 60, 16–38 (2021)

12. Malinova, K., Park, A.: Subsidizing liquidity: the impact of make/take fees on
market quality. J. Financ. 70(2), 509–536 (2015)

13. Das, S.: The effects of market-making on price dynamics. In: Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems,
vol. 2, pp. 887–894 (2008)

14. Menkveld, A., Wang, T.: How do designated market makers create value for small-
caps? J. Financ. Markets 16(3), 571–603 (2011)

15. Venkataraman, K., Waisburd, A.C.: The value of the designated market maker. J.
Financ. Quant. Anal. 42(3), 735–758 (2007)

16. Calzolari, G., Denicolò, V.: Exclusive contracts and market dominance. Am. Econ.
Rev. 105(11), 3321–3351 (2015)

17. Gudgeon, L., Werner, S.M., Perez, D., Knottenbelt, W.J.: DeFi protocols for
loanable funds: interest rates, liquidity and market efficiency. arXiv:2006.13922v3
(2020)

18. Gudgeon, L., Perez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis. arXiv:2002.08099v2 (2020)

http://arxiv.org/abs/2006.13922v3
http://arxiv.org/abs/2002.08099v2

Understand Volatility of Algorithmic
Stablecoin: Modeling, Verification

and Empirical Analysis

Wenqi Zhao(B), Hui Li, and Yuming Yuan

Huobi Research, Hainan, China
{zhaowenqi,lihui0729,yuanyuming}@huobi.com

Abstract. An algorithmic stablecoin is a type of cryptocurrency man-
aged by algorithms (i.e., smart contracts) to dynamically minimize the
volatility of its price relative to a specific form of asset, e.g., US dollar. As
algorithmic stablecoins have been growing rapidly in recent years, they
become much more volatile than expected. In this paper, we took a deep
dive into the core of algorithmic stablecoins and shared our answer to two
fundamental research questions, i.e., Are algorithmic stablecoins volatile
by design? Are they volatile in practice? Specifically, we introduced an
in-depth study on three popular types of algorithmic stablecoins and
developed a modeling framework to formalize their key design protocols.
Through formal verification, the framework can identify critical condi-
tions under which stablecoins might become volatile. Furthermore, we
performed a systematic empirical analysis on real transaction activities
of the Basis Cash stablecoin to relate theoretical possibilities to mar-
ket observations. Lastly, we highlighted key design decisions for future
development of algorithmic stablecoins.

Keywords: Stablecoins · Modeling framework · Empirical analysis

1 Introduction

As cryptocurrencies on blockchain are notoriously known as volatile, i.e., Their
prices often fluctuate rapidly, stablecoins are proposed to peg their value to some
external assets, e.g., US dollar. In contrast to “unstable” cryptocurrencies, e.g.,
Bitcoin [19], Ethereum [24], a stablecoin is able to minimize the volatility of
its price relative to the pegged asset based on different mechanisms. The most
common kind of stablecoins is backed-stablecoin, i.e., The value of a stablecoin
is backed by external assets, e.g., commodity, fiat money or cryptocurrency as
collateral. For example, the USDC stablecoin is backed by US dollar [5]. Unlike
backed-stablecoins, algorithmic stablecoins, which are commonly not backed by
other assets, have been gaining an increasing level of popularity in recent years
due to the capability to stabilize its price via decentralized algorithms (i.e.,
smart contract) without degrading too much capital efficiency. In general, this

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 97–108, 2021.
https://doi.org/10.1007/978-3-662-63958-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_8&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_8

98 W. Zhao et al.

is realized by controlling the money supply of algorithmic stablecoins, which is
similar to printing and destroying money in central banks. In this paper, we
mainly focus on algorithmic stablecoins and will use the term interchangeably
with “stablecoin” (Backed-stablecoins are not the main target in this work.).

Assuming that a stablecoin is pegged to US dollar, a smart contract is
designed to dynamically manage its supply to minimize price volatility. We sim-
ply explain the algorithm as follows and will further the discussion later. When
the price of the stablecoin exceeds one US dollar, the contract “produces” more
coins and distributes them to the market. As a result, the price of the stablecoin
should accordingly drop. In cases where the price of the stablecoin is lower than
one US dollar, the smart contract decreases the supply of it in order to grad-
ually lift its price back to one dollar. In practice, the aforementioned general
algorithm can be instantiated by different models to achieve a more robust con-
trol over stablecoins. While many interesting research attempts aim at inventing
such models, there is relatively little study on the other side, i.e., Do they really
work?

In this paper, we described a fundamental analysis on the volatility of algo-
rithmic stablecoins, both theoretically and empirically. Our attempt of this study
is to answer two fundamental research questions, which are:

Research Question 1: Are algorithmic stablecoins volatile by design?
Research Question 2: Are algorithmic stablecoins volatile in practice?

Our goal of the analysis described in this paper is to provide a more com-
prehensive understanding on the protocols of stablecoins (at both design and
implementation level) with a specific focus on their volatility, which we believe
is critical in the optimization of existing stablecoins and creation of potential
future designs. We summarize our main contributions as follows.

– We introduced an in-depth protocol analysis on the designs of three popu-
lar types of algorithmic stablecoins. Moreover, we developed a general for-
mal modeling and verification framework for stablecoins, which can be used
to identify specific hidden criteria under which stablecoins might become
volatile.

– We further conducted a systematic empirical study of the Basis Cash sta-
blecoin based on real transaction activities on Ethereum and managed to
relate theoretical possibilities (that stablecoins might be volatile) to market
observations (unexpected volatile prices) between Dec 2020 to Jan 2021.

Paper Organization. The rest of the paper is organized as follows. Section 2
gives a systematic introduction of algorithmic stablecoins. Section 3 presents
a formal modeling and verification framework designed for understanding and
analyzing the volatility of algorithmic stablecoins in general. Furthermore, Sect. 4
describes an empirical study on one popular project and explains important
observations based on real market transactions. In Sect. 5, we discuss related
works in the literature and Sect. 6 concludes the whole paper.

Understand Volatility of Algorithmic Stablecoin 99

2 Background

We classify algorithmic stablecoins into three categories, i.e., rebase-style,
seigniorage share and partial-collateral. In this section, we briefly explain key
designs of all three types of stablecoins with popular projects as examples.

$1BAC

BAS

BAB

BAC

BAC

supply+

supply-

$1AMPL

supply+

supply-

AMPL

AMPL

Expansion

Contrac�on

Fig. 1. The algorithmic stablecoins of Ampleforth and Basis Cash.

2.1 Rebase (Ampleforth)

The rebase-style stablecoins manage price-elastic ERC20 tokens, i.e., The total
supply of a stablecoin is non-fixed and adjusted adaptively on a routine basis.
More specifically, the adjustment is automatically realized via the “rebase” pro-
cess, which gradually stabilize the price of a target stablecoin near a specific
peg, e.g., one US dollar. We use Ampleforth [1] as an example for illustration,
as shown in the left part of Fig. 1.

By design, the rebasing of Ampleforth is activated at 2am UTC on a
daily basis. At the time of rebase, new coins are minted and distributed to all
accounts proportionally based on their corresponding balances when the price
of Ampleforth is higher than its peg. Given that the price of Ampleforth is
$1.2 with its peg to be $1 (i.e., 20% relate to peg), an account with 100 coins is
rebased to own 120. On the other hand, holding coins might be automatically
proportionally burned when the price falls below the peg.

2.2 Seigniorage Share (Basis Cash)

The seigniorage share model for algorithmic stablecoins commonly introduces
two types of cryptocurrencies, i.e., coins as a stablecoin and shares as owner-
ship of seigniorage. In principle, shares are used to increase the supply of coins
when the price of a coin is above its intended peg. In addition to these two
cryptocurrencies, seigniorage-style stablecoins often issue a redeemable bond as
an incentive for buyers when the price goes down below the peg. We use the
Basis Cash [2] stablecoin for further explanation, as shown in the right part of
Fig. 1. Basis Cash introduces three types of cryptocurrencies:

– BAC. BAC is the stablecoin and issued by the Basis Cash with a peg of $1.

100 W. Zhao et al.

– BAS. BAS stands for Basis Shares, which is a seigniorage ERC20 token and
provides inflationary gains of BAC. The design purpose of BAS is to prevent
the price of BAC from going too high via dynamically increasing its supply.
Currently, BAS can be earned via participating in yield farming, i.e., deposit
liquidity in decentralized finance platforms (e.g., Uniswap [6]).

– BAB. BAB refers to Basis Bond whose price Pbab is mathematically determined
by the price of BAC Pbac , i.e., Pbab = (Pbac)2. Particularly, BAB offers an
incentive for holders to earn BAB in a cost-effective way. The design purpose
behind is to push BAC back to one dollar when its price falls below $1.

The general protocol of Basis Cash is designed to stabilize the price of BAC
via adaptively controlling the supply of it. This is realized based on the two key
mechanisms, i.e., expansion and contraction, respectively. We simply describe
the processes as below.

Expansion. The mechanism of expansion aims at increasing the supply of BAC
in order to stabilize its price when it rises over the one dollar peg. In the design
of Basis Cash, expansion is automatically activated in two settings. First, BAC
will be minted and distributed as a reward to BAS holders. That said, for anyone
who owns a specific amount of BAS, the expansion process proportionally assigns
new BAC to his or her account. In the second case, owners of BAB are allowed to
redeem BAC with their BAB at a 1:1 price, which also result in a quantity growth
of BAC. Due to the increased supply in both situations, the expansion is expected
to gradually make the price of BAC to decrease.

Contraction. In contrast to the process of expansion, contraction is designed to
shrink the supply of BAC. To this end, an incentive is introduced in Basis Cash
to encourage buyers to exchange BAB with BAC when the price of BAC is below
one dollar. In the particular situation, one BAC is guaranteed to generate more
than one BAB based on their price dependency as aforementioned. Moreover,
the protocol of Basis Cash ensures that a specific amount of BAB is able to
redeem the same amount of BAC when the price of BAC grows above $1 and
required conditions are met. Based on the design of contraction, th price of BAC
is anticipated not to fall too far from its peg. Compared to the design of rebase-
style algorithmic stablecoins, the contraction mechanism of seigniorage share
ones is commonly optional rather than automatically enforced. As shown in the
right part of Fig. 1, the two dashed lines indicate that investors are allowed to
participate in the contraction phase, or not.

2.3 Partial-Collateral (Frax)

In contrast to the two types of algorithmic stablecoins, an emerging class called
fractional-algorithmic protocol is recently proposed as a combination of fully-
collateral and fully-algorithmic ones. Compared to existing collateral-style sta-
blecoins, e.g., DAI, partial-collateral protocols introduce less custodial risks and
avoid over-collateralization. On the other hand, it is designed to enforce a rel-
atively tight peg with higher level of stability than purely algorithmic designs.
We use the Frax project [4] below for illustration.

Understand Volatility of Algorithmic Stablecoin 101

Particularly, Frax is the first attempt to implement the partial-collateral pro-
tocol of stablecoins. It introduces a two-token system, i.e., FRAX as a stablecoin
pegged to $1 and FXS as a governance token, respectively. A collateral ratio
0 ≤ r ≤ 1 is dynamically determined very hour with a step of 0.25% in the
protocol to control at what percentage of peg the collateral is required to take
to stabilize the value of FRAX. In cases where r = 0.5, $0.5 must be in other types
of stablecoins as collateral to mint a new FRAX. It becomes fully collateral when
r = 1.0 and a pure algorithmic stablecoin if r = 0.

The collateral ratio r is 1.0 at genesis. In principle, minting a specific amount
n of FRAX involves placing n×r of the value as collateral and burning n× (1−r)
of the value with FXS. As the price goes above its peg, the protocol provides the
incentive for investors to mint new FRAX. Accordingly, the increased supply of
FRAX is expected to gradually enforce the price to decrease. In cases where the
price falls below the peg, the protocol allows investors to swap a combination
of collateral and FXS valued $1 with a single FRAX whose value is lower than $1.
Such incentives can potentially produce FRAX purchases and rise its price as well.

3 Modeling and Verification

3.1 Modeling of Stablecoin

We highlighted a formal modeling framework M for stablecoins. More formally,
M := 〈P, E , C,S,B,X〉 is a network consisting of six types of timed automata [7],
each of which is a tuple Q := 〈S, s0,X,A, T, I, Sn〉. S is the finite set of states.
s0 ∈ S is the initial state. X is a set of non-negative real numbers as clock
variables. Sn ⊆ S is a set of accepting states. A is a set of actions and I is a
set of invariants assigned to states. Given that Φ is constraint function, T ⊆
S × Φ(X) × 2X × A × S is a collection of state transitions 〈s, a, g,R, s′〉, where
s and s′ are source and destination states, a is an action, g is the condition to
enable the transition and R is the set of clocks to be reset.

Moreover, M provides communication through four classes of synchronized
channels Ω := {ωe, ωc, ωx, ωu}. Specifically, ωe and ωc are designed to trigger
expansion and contraction procedures. ωx simulates market trading activities
and generates a new price of stablecoin. ωu synchronizes updates between E ,
C and X . Particularly, we presented a formal model of Basis Cash in Fig. 2.
The framework is general to other types of stablecoins. Due to page limits, we
selected Basis Cash because it manifests a typical model and was one of the
most popular markets at the time of writing.

– P models the main protocol with five states, i.e., initial state, Pre Expansion
and Expanded states when price is above the peg, Pre Contraction and
Contracted states when price is below the peg. The channels of expand (ωe)
and contract (ωc) are activated on two transitions to enable the processes
of expansion and contraction.

– E automata defines a process with a clock t and three states. E responds to
expansion requests from P. An expanding transition is executed to grow the

102 W. Zhao et al.

(a) Protocol P (b) Expansion E (c) Contraction C

(d) Seller S (e) Buyer B (f) DEX X

Fig. 2. Timed automata model of Basis Cash stablecoin.

supply of stablecoins (i.e., global variable N bac). The transition is allowed if
t is at an expansion point (e.g., 24:00 UTC). For Basis Cash, E creates two
expansion transitions and synchronizes with X via the update channel (ωu).

– C automata abstracts the contraction process. Similar to E , a transition is pro-
vided to refine the decrease of supply via updating a global variable. Another
transition is designed to model that the supply stays unchanged (investors
can choose not to swap BAB with BAC).

– S and B are designed to model the behavior of sellers and buyers in an
exchange. They generate random trading requests through the ωx channel.

– X introduces an abstract model of decentralized exchanges (DEX) with auto-
matic market making (AMM), e.g., Uniswap [6]. X defines Sell and Buy
states to indicate whether it is a buyer’s market (i.e., more sellers than buy-
ers) or seller’s market (the other way around). New prices are computed based
on AMM and its pool of stablecoins.

3.2 Formal Verification

We further highlight important formal specifications to define stability properties
(or non-volatility) of stablecoins with temporal logic [21]. Specifically, stability
(non-volatility) is specified through the following two properties (A and G are
quantifiers, i.e., for all paths and for all states of a path in the state space [21]).

AG (P.Expanded ∧ E .Updated) =⇒ !X .Buy (expansion-validity)

AG (P.Contracted ∧ C.Updated) =⇒ !X .Sell (contraction-validity)

Understand Volatility of Algorithmic Stablecoin 103

Protocol Expansion DEX Buyer

Init

Pre_Expansion

: expand

Expanded Expanded

: update

Updated

Updated

Init

: amm

Buy

X

Init

BAC
increased

Demand
increased

(a) Expansion validity

Protocol Contraction DEX Seller

Init

Pre_Contraction

: contract

Contracted Contracted

: update

Updated

Updated

Init

: amm

Sell

X

BAC
unchanged

Init

(b) Contraction validity

Fig. 3. Counter-examples on non-volatility properties of Basis Cash stablecoin.

Specifications of Stability (Non-Volatility). Two properties are specified as
in expansion-validity and contraction-validity to formalize the resilience against
price fluctuation (with Basis Cash as an example). As formalized by expansion-
validity, in cases where P is at state Expansion and E is at Updated (i.e.,
expansion has been enforced), X must not stay at the state of Buy for the
price to fall, i.e., buyer’s market. Similarly, when P is at Contraction and C is
at Updated, X must not be at the state of Sell, i.e., seller’s market.

Counter-Example Analysis. We verified the model of Basis Cash with the
Uppaal model checker for timed automata [16]. Figure 3 shows two counter-
examples of the stability properties, i.e., conditions under which Basis Cash
might become volatile. Figure 3a describes a trading scenario where expansion
validity is violated. Specifically, a demand growth of BAC occurs when the expan-
sion process is started to mint and distribute new stablecoins. As a result,
DEX goes to the state of Buy instead of Sell to trigger a counter-example. In
terms of contraction-validity, Fig. 3b demonstrates another potential volatility
of Basis Cash. When the price of BAC goes down below its peg, the contraction
allows investors to swap BAB with BAC. However, in cases where the swap does
not happen therefore supply of BAC stays unchanged, the contraction-validity is
violated since DEX goes to the state of Sell instead of Buy as expected.

4 Empirical Analysis

Based on the formal modeling and verification of Basis Cash, we now describe
an empirical analysis with real market observations, as shown in Fig. 4. More
specifically, the empirical analysis was based on data at the time of writing
from Dune Analytics [3]. We open-sourced all the data-retrieving queries at
https://explore.duneanalytics.com/dashboard/winky.

Normal Cases. The first pair of figures, i.e., Fig. 4a and 4b, shows two cases
where expansion and contraction worked well to stabilize the price of BAC.

104 W. Zhao et al.

(a) Effective expansion

(b) Effective contraction

(c) Broken expansion

(d) Broken contraction

(e) Cause of broken expansion

(f) Cause of broken contraction

Fig. 4. Empirical analysis of Basis Cash. Unit: 10 million. (Color figure online)

Understand Volatility of Algorithmic Stablecoin 105

As highlighted in Fig. 4a, as new BAC were minted (indicated by the green hump
in the shaded area), its price gradually went down (blue line). Similarly, as a
number of BAC were burned (indicated by the purple line) for contraction in
Fig. 4b, its price started to rise. Such normal cases perfectly satisfied the design
intent of Basis Cash and are different instances of traversing the state space as
modeled in Fig. 2.

Broken Expansion. Unfortunately, Basis Cash might manifest an abnormal
market as alarmed in Fig. 3 where the price of BAC becomes highly volatile. In
our preliminary analysis, we found that such possibilities became real activities.
Specifically, Fig. 4c and 4e have explained a broken expansion as inferred in
Sect. 3.2 on Dec 14 and 15, 2020. In Fig. 4c, the expansion started at 00:00 with
a collection of new BAC minted (green hump). However, its price increased in 7 h
from $1.35 to $1.56 (Dec 14) and from $1.62 to $1.76 (Dec 15) instead of sticking
to the peg, which amounted to a total growth of 15.72% and 8.40%. Based on
Fig. 4e, the broken expansion was attributed to a rapid increase of demand as
marked in Fig. 4e (brown line). As a measurement of purchase divided by sales,
the brown line stayed above 1 in the most of the time. That said, there were
more buyers of BAC in the market than sellers. Back at that time, i.e., a relatively
early stage of Basis Cash, yield-farming on BAC-DAI was very popular and led
to a extremely high yield rate. Consequently, the demand of BAC was rapidly
lifted even at an expansion point. Furthermore, the popularity of BAC was also
reflected by the fact that 92% of the newly minted BAC on Dec 14, 2020 went to
the yield-farming pool within 2 h after expansion (purple line in Fig. 4e).

Broken Contraction. In further, the potential volatility due to broken con-
traction was also confirmed in Fig. 4d and 4f. From Jan 11, 2021 to the time
of writing, the price of BAC has been staying below its one US dollar peg as
displayed in Fig. 4d despite that entries of contraction were continuously open
during that period. That said, the mechanism of contraction failed to pull BAC
back to or slightly over its peg price. The reason behind was the low participa-
tion in contraction at that time, i.e., Many investors were unwilling to burn BAC
for BAB due to the fear that they might never be able to redeem. As shown in
Fig. 4f, the number of burned BAC (purple humps in the specific shaded area)
during that period was much smaller than several days ago.

Design Decisions. Based on the aforementioned empirical analysis, we sum-
marize two high-level important design decisions for algorithmic stablecoins in
the future, especially for those adopting a similar design of Basis Cash.

– Compared to the design of extraction or similar mechanism where the supply
of an algorithmic stablecoin goes up, the design of contraction is fundamen-
tally more important and challenging. This is because cryptocurrencies are
naturally easier to fall than rise. Therefore, a robust design of contraction
should be well incentivized with investors’ fear and reluctance taken into
consideration.

– As two of the important parameters in algorithmic stablecoins, the quantity
and cycle of intervention, i.e., by how much adjustment an algorithm should

106 W. Zhao et al.

enforce and how frequent it needs to be triggered, might be potential improve-
ments in the future. While a strong intervention might drive the stablecoin
into another polar, a subtle one is probably ineffective. Similar balance is
also required when it comes to the cycle of an algorithmic intervention. More
reliable and flexible models are highly desired in this context.

5 Related Work

Stablecoins are cryptocurrencies with computing economic designs to achieve a
relative stable market value and purchasing capability as well. Research on sta-
blecoins have been attracting both economic and computer science researchers
in recent years. Saito et al. proposed to stabilize blockchain cryptocurrencies
via automatically controlling their supply to absorb both positive and negative
demand shocks [22]. From the view of economics, Iwamura et al. suggested a
new monetary policy for cryptocurrencies to stabilize their values [14]. Cagi-
nalp et al. argued that existing valuation frameworks were not compatible with
cryptocurrencies which hold no underlying value thus new models were needed
to the design of stablecoins [11]. To further develop this idea, they proposed a
model of cryptocurrencies based on asset flow equations and investigated their
stability with different parameterized configurations [10]. The resulting system
was able to provide linear stability under specific market conditions. In the
context of algorithmic stablecoins, Ametrano described a preliminary design in
2014 called Hayek Money which has been implemented by many projects nowa-
days [8]. In this specific design, price stability is achieved by dynamically rebasing
the amount of cryptocurrency. A new paradigm was introduced to control the
number of money units in all digital wallets instead of making each unit change
its value. To further avoid unanticipated fluctuation of cryptocurrency prices,
Sams designed seigniorage shares to include an elastic supply rule which adjusts
the quantity of coins adaptively according to the changes of market value [23].
Compared to cryptocurrencies like Bitcoin whose supply growth is determined
in advance, such scheme is more resilient against the intrinsic uncertainty of
cryptocurrencies.

Design review and classification of stablecoins were al discussed in sev-
eral research papers and industry reports [9,12,13,15,17,18,20]. Pernice et al.
explored the landscape of stablecoins by proposing a taxonomy based on three
types of collateralization, i.e., direct, proxy and self-collateralization [20]. They
further highlighted important implications and open questions based on the cur-
rent development of stablecoins. From the viewpoint as decentralized payment
systems, Mita et al. presented a similar discussion where stablecoins were cate-
gorized based on different types of collateral and intervention [17]. They pointed
out that although algorithmic stablecoins introduced decentralization, they were
weakly standardized to become practical payment tools. Moin et al. decomposed
stablecoins in the literature into important building blocks [18]. They analyzed
pros and cons of different designs and identified potential future trends as well.
Klages et al. characterized stablecoins based on their functional risks related
with incentive security and economic stability [15].

Understand Volatility of Algorithmic Stablecoin 107

6 Conclusion

In this paper, we presented an in-depth theoretical and empirical analysis on the
volatility of algorithmic stablecoins. We highlighted a formal modeling frame-
work for stablecoins to identified important market criteria under which they
might become volatile. Moreover, we related our theoretical findings to transac-
tion activities on stablecoins via a further empirical analysis with real market
data. Empirical results showed that potential possibilities predicted in the pro-
posed model were confirmed in practice. Lastly, we highlighted important design
decisions for the future development of stablecoin. All data used in this work are
available at https://explore.duneanalytics.com/dashboard/winky.

References

1. Ampleforth. https://www.ampleforth.org/ (2021)
2. Basis Cash. https://basis.cash/ (2021)
3. Dune Analytics. https://duneanalytics.com/ (2021)
4. Frax. https://frax.finance/ (2021)
5. Tether. http://tether.to (2021)
6. Uniswap. http://uniswap.io (2021)
7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
8. Ametrano, F.M.: Hayek money: the cryptocurrency price stability solution. Avail-

able at SSRN 2425270 (2016)
9. Bullmann, D., Klemm, J., Pinna, A.: In search for stability in crypto-assets: are

stablecoins the solution? ECB Occasional Paper (230) (2019)
10. Caginalp, C.: A dynamical systems approach to cryptocurrency stability. arXiv

preprint arXiv:1805.03143 (2018)
11. Caginalp, C., Caginalp, G.: Opinion: Valuation, liquidity price, and stability of

cryptocurrencies. Proc. Nat. Acad. Sci. 115(6), 1131–1134 (2018)
12. Clark, J., Demirag, D., Moosavi, S.: SoK: demystifying stablecoins. Available at

SSRN 3466371 (2019)
13. Hileman, G.: State of stablecoins (2019). Available at SSRN (2019)
14. Iwamura, M., Kitamura, Y., Matsumoto, T., Saito, K.: Can we stabilize the price

of a cryptocurrency?: Understanding the design of bitcoin and its potential to
compete with central bank money. Hitotsubashi J. Econ. 60, 41–60 (2019)

15. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., Minca, A.: Stablecoins 2.0:
economic foundations and risk-based models. In: Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pp. 59–79 (2020)

16. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

17. Mita, M., Ito, K., Ohsawa, S., Tanaka, H.: What is stablecoin?: A survey on price
stabilization mechanisms for decentralized payment systems. In: 2019 8th Inter-
national Congress on Advanced Applied Informatics (IIAI-AAI), pp. 60–66. IEEE
(2019)

18. Moin, A., Sekniqi, K., Sirer, E.G.: SoK: a classification framework for stablecoin
designs. In: Financial Cryptography (2020)

19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Tech. rep, Manubot
(2019)

https://www.ampleforth.org/
https://basis.cash/
https://duneanalytics.com/
https://frax.finance/
http://tether.to
http://uniswap.io
http://arxiv.org/abs/1805.03143

108 W. Zhao et al.

20. Pernice, I.G., Henningsen, S., Proskalovich, R., Florian, M., Elendner, H., Scheuer-
mann, B.: Monetary stabilization in cryptocurrencies-design approaches and open
questions. In: 2019 Crypto Valley Conference on Blockchain Technology (CVCBT),
pp. 47–59. IEEE (2019)

21. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57. IEEE (1977)

22. Saito, K., Iwamura, M.: How to make a digital currency on a blockchain stable.
Future Gener. Comput. Syst. 100, 58–69 (2019)

23. Sams, R.: A note on cryptocurrency stabilisation: seigniorage shares. Brave New
Coin, pp. 1–8 (2015)

24. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

Measuring Asset Composability
as a Proxy for DeFi Integration

Victor von Wachter1(B), Johannes Rude Jensen1,2, and Omri Ross1,2

1 University of Copenhagen, Copenhagen, Denmark
victor.vonwachter@di.ku.dk

2 eToroX Labs, Copenhagen, Denmark

Abstract. Decentralized financial (DeFi) applications on the Ethereum
blockchain are highly interoperable because they share a single state
in a deterministic computational environment. Stakeholders can deposit
claims on assets, referred to as ‘liquidity shares’, across applications pro-
ducing effects equivalent to rehypothecation in traditional financial sys-
tems. We seek to understand the degree to which this practice may con-
tribute to financial integration on Ethereum by examining transactions
in ‘composed’ derivatives for the assets DAI, USDC, USDT, ETH and
tokenized BTC for the full set of 344.8 million Ethereum transactions
computed in 2020. We identify a salient trend for ‘composing’ assets in
multiple sequential generations of derivatives and comment on potential
systemic implications for the Ethereum network.

Keywords: DeFi · Blockchain · Asset composability · Integration risks

1 Introduction

Smart contracts on the Ethereum blockchain share a single state in a determin-
istic execution environment [1], a feature which introduces a high level of inter-
operalility between decentralized financial (DeFi) applications. This novelty has
thus far, resulted in a rich ecosystem of financial applications, primarily lead by
borrowing/lending money markets [2,3] and constant function market makers
(CFMM) [4,5]. At the time of writing, crypto assets valued in excess of $39
billion is managed by some 751 DeFi applications on the Ethereum blockchain.

From the consumers’ perspective, interoperability between financial appli-
cations is a desirable feature, resulting in a vibrant and highly competitive
marketplace of increasingly exotic financial products. Yet, if left unsupervised,
interoperability between liquidity reserves may lead to dependencies amongst
applications, as techniques equivalent to the practice of rehypothecation in the
traditional financial system [6] become normalized.

When allocating assets to a CFMM such as Uniswap, Curve or Balancer,
liquidity providers receive ‘liquidity provider shares’ (LP shares) [7] redeemable

1 defipulse.com, as of 31st Jan 2020.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 109–114, 2021.
https://doi.org/10.1007/978-3-662-63958-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_9&domain=pdf
http://defipulse.com/
https://doi.org/10.1007/978-3-662-63958-0_9

110 V. von Wachter et al.

for a proportional share of the liquidity pool with the unrealized returns of the
position. LP shares are typically computed as transferable, fungible tokens which
has led to the emergence of new secondary markets in which applications offer
liquidity and lending pools for LP shares themselves. Supplying LP shares to
these pools results in the issuance of meta LP shares. This process is, in some
cases, repeated recursively as stakeholders seek to maximize yield or functionality
across a diverse set of applications. While LP shares are often treated by market
participants as simple IOUs, they do in fact represent a complex payout function,
as shown in the literature by [7,8]. Further complicating matters, the practice
of ‘yield farming’, i.e. allocating assets across DeFi applications to maximize
returns [9], has introduced a competitive environment in which applications seek
to attract additional liquidity by rewarding LP shareholders with ‘governance
tokens’ [10].

We approach Ethereum as a financial ecosystem with structural properties
comparable to those of a single market [11,12]. For this work, we examine the
degree to which a crypto asset can be utilized in a sequence of increasingly com-
plex ‘wrapping’ operations, guiding our research question: Can we measure assets
composability as a proxy for financial integration on the Ethereum Blockchain?
Informed by the process proposed by [13], we measure the degree to which crypto
assets in smart contracts may contribute towards effects equivalent to finan-
cial integration on the Ethereum blockchain. We approach transaction data on
Ethereum with an asset oriented perspective, in contrast to previous studies of
financial activity on Ethereum, sorting by addresses [13] or applications [14].

2 Method

We measure asset composability by identifying the number of derivatives pro-
duced from an initial root asset I. We extend work presented in [13] by proposing
an algorithm for unwrapping crypto assets. The algorithm builds a tree struc-
ture of derivatives from the initial asset I (Fig. 1). We measure the distance δ

to the initial asset δA =
∑N

i=0 |wi| as a proxy for the degree to which an asset
contributes towards integration on Ethereum. That is, the sum of relevant wrap-
ping operations, where w := (w1, . . . , wn) is the vector of all adjustments for the
composed asset A.

In the example (Fig. 1), an asset is allocated to a CFMM liquidity pool,
triggering the issuance of the corresponding LP shares. At this point, we consider
the initial asset as wrapped once, resulting in a distance of 1. Subsequently
allocating the LP share to another application would trigger the issuance of
another LP share, which amounts to a distance of δ = 2. We target five popular
crypto assets: DAI, USDT, USDC, ETH, and tokenized BTC2 for the duration
of 2020 (Table 1). Collectively, the selected assets amounted to over 70% of the
2 Bitcoin (BTC) is a non-native asset on Ethereum, represented by ‘wrapped bitcoin’

locked on the original blockchain. We compile the three largest representations of
Bitcoin on Ethereum into a single category, assigning the category an initial distance
of one.

Measuring Asset Composability as a Proxy for DeFi Integration 111

Fig. 1. Method and exemplary asset tree structure for USDC

total value administered within DeFi applications (see Footnote 1) at the end of
the sample period.

3 Results

We find derivatives of the five initial assets among all 344.8 million Ethereum
transactions in 2020 (block #9193266 to #11565018). For each initial asset we
compare the number of transactions in the ‘plain’ version of the asset, against
the number of transactions in its derivatives (Fig. 2).

For the first 6 months plain DAI transfers amounted between 82%–91% (blue)
of all DAI asset transfers and composed DAI with δ = 1 amounted between 9%–
18% (orange) respectively. The data indicates a clear trend towards increasingly
complex wrapping operations peaking in the third quarter of 2020, a period
colloquially referred to as ‘DeFi Summer‘ due to a high volume of governance
tokens issued at the time [10]. The tendency is especially salient in ‘DAI’, for
which to up to 84% of all transactions involved a ‘wrapped’ derivative of the
initial asset. Curiously, the asset with the largest market cap on Ethereum,

112 V. von Wachter et al.

Table 1. Transactions of plain asset and composed versions during 2020

Asset Txs on Ethereum Txs of composed version

DAI 4,149,654 1,033,674

USDT 64,956,383 687,705

USDC 7,053,402 1,167,163

WETH 21,187,823 919,165

BTC (wBTC, renBTC, sBTC) 658,035 193,394

Fig. 2. Asset composability of popular Ethereum assets during 2020 (Color figure
online)

USDT, appears to be the least popular with an insignificant 687,705 transactions
in ‘wrapped’ derivatives, compared to 64,956,383 transactions in the plain asset.

Measuring Asset Composability as a Proxy for DeFi Integration 113

4 Discussion and Conclusion

Computing fractional ownership claims in a deterministic, single state environ-
ment introduces a large set of new opportunities for innovation in the financial
sector. Because transactions on permissionless blockchains, such as Ethereum,
settles atomically, the role for central clearing counterparties in mitigating coun-
terparty risk is largely mitigated for simple transactions. Yet, to date, little is
understood about the systemic implications of the design of these applications
and how novel concepts like LP shares, may exacerbate the impact of shocks
triggered by exploits [15,16].

A quantifiable approach to the study of financial integration on the Ethereum
net-work will facilitate a better understanding how shocks travel through tightly
inter-connected webs of DeFi applications, which may provide guidance towards
promoting resilience and protecting investors against systemic risk. In this work,
we present initial indicators by examining the degree to which transactions in
‘wrapped’ derivatives of an asset, representing increasingly complex payout func-
tions, may offer an indication of the degree of financial integration on the net-
work. We position this contribution within the broader literature on the quan-
tification of ‘composability risk’ for the DeFi ecosystem, a critical gap raised
by [6].

To provide actionable insights for market participants and regulators, this
and future studies must expand the scope by considering all relevant factors for
the transmission of shocks, including smart-contract design and default risk for
the individual DeFi application.

References

1. Antonopoulos, A., Wood, G.: Mastering Ethereum: Building Smart Contracts and
DApps. O’Reilly Media, Sebastopol (2018)

2. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: Lending Pools in Decentral-
ized Finance (2020). http://arxiv.org/abs/2012.13230

3. Kao, H.-T., Chitra, T., Chiang, R., Morrow Gauntlet, J.: An Analysis of the Market
Risk to Participants in the Compound Protocol (2019). https://scfab.github.io/
2020/FAB2020 p5.pdf

4. Angeris, G., Kao, H.-T., Chiang, R., Noyes, C., Chitra, T.: An Analysis of Uniswap
Markets (2019). http://arxiv.org/abs/1911.03380

5. Angeris, G., Chitra, T.: Improved Price Oracles: Constant Function Market Makers
(2020). https://arxiv.org/abs/2003.10001

6. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knotten-
belt, W.J.: SoK: Decentralized Finance (DeFi) (2021). https://arxiv.org/abs/2101.
08778

7. Evans, A.: Liquidity Provider Returns in Geometric Mean Markets (2020). https://
arxiv.org/abs/2006.08806

http://arxiv.org/abs/2012.13230
https://scfab.github.io/2020/FAB2020_p5.pdf
https://scfab.github.io/2020/FAB2020_p5.pdf
http://arxiv.org/abs/1911.03380
https://arxiv.org/abs/2003.10001
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2006.08806
https://arxiv.org/abs/2006.08806

114 V. von Wachter et al.

8. Jensen, J.R., Pourpouneh, M., Nielsen, K., Ross, O.: The Homogeneous Properties
of Automated Market Makers (2021). https://www.ssrn.com/abstract=3807820

9. Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? Curvature
and market making (2020). https://arxiv.org/abs/2012.08040

10. von Wachter, V., Jensen, J.R., Ross, O.: How Decentralized is the Governance
of Blockchain-based Finance? Empirical Evidence from four Governance Token
Distributions (2020). https://arxiv.org/abs/2102.10096

11. Castiglionesi, F., Feriozzi, F., Lorenzoni, G.: Financial integration and liquidity
crises. Manag. Sci. 65(3), 955–975 (2019). https://doi.org/10.1287/mnsc.2017.2841

12. Somin, S., Altshuler, Y., Gordon, G., ‘Sandy’ Pentland, A., Shmueli, E.: Network
dynamics of a financial ecosystem. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/
10.1038/s41598-020-61346-y

13. Nadler, M., Schär, F.: Decentralized Finance, Centralized Ownership? An Iterative
Mapping Process to Measure Protocol Token Distribution (2020). http://arxiv.
org/abs/2012.09306

14. Tolmach, P., Li, Y., Lin, S.-W., Liu, Y.: Formal Analysis of Composable DeFi
Protocols (2021). https://arxiv.org/abs/2103.00540

15. Wright, T.: (2020). https://cointelegraph.com/news/akropolis-defi-protocol-
paused-as-hackers-get-away-with-2m-in-dai. Accessed 20 Dec 2020

16. Turley, C.: (2020). https://defirate.com/imbtc-uniswap-hack/. Accessed 20 Dec
2020

https://www.ssrn.com/abstract=3807820
https://arxiv.org/abs/2012.08040
https://arxiv.org/abs/2102.10096
https://doi.org/10.1287/mnsc.2017.2841
https://doi.org/10.1038/s41598-020-61346-y
https://doi.org/10.1038/s41598-020-61346-y
http://arxiv.org/abs/2012.09306
http://arxiv.org/abs/2012.09306
https://arxiv.org/abs/2103.00540
https://cointelegraph.com/news/akropolis-defi-protocol-paused-as-hackers-get-away-with-2m-in-dai
https://cointelegraph.com/news/akropolis-defi-protocol-paused-as-hackers-get-away-with-2m-in-dai
https://defirate.com/imbtc-uniswap-hack/

Demystifying Pythia: A Survey
of ChainLink Oracles Usage on Ethereum

Mudabbir Kaleem(B) and Weidong Shi

University of Houston, Houston, TX, USA
{mkaleem,wshi3}@uh.edu

Abstract. Smart contracts are dependent on oracle systems for their
adoption and usability. We perform an empirical study of oracle systems’
usage trends and adoption metrics to provide better insight into the
health of the smart contract ecosystem. We collect ChainLink usage data
on the Ethereum network using a modified Ethereum client and running
a full node. We analyze the collected data and present our findings and
insights surrounding the usage trends, adoption metrics, oracle pricing
and service quality associated with ChainLink on the Ethereum network.
We infer that ChainLink’s usage and growth are dominated by the DeFi
ecosystem and for its demand for decentralized price feeds.

Keywords: Oracles · DeFi · Smart contracts · Blockchain ·
Ethereum · ChainLink

1 Introduction

Since the launch of the Ethereum [3] network in 2015, smart contracts [16] have
become one of the central features of blockchain-based systems. Although ini-
tially limited in usage to token control and on-chain data access, smart con-
tracts today are rapidly expanding their domain of applications [12] due to the
availability of oracles [2]. Oracles provide the interface between the blockchain’s
isolated execution environment and external off-chain data sources, enabling
smart contracts to retrieve and post real-world data and events. Consequently,
the potential utility and future mass adoption of smart contract platforms is
inextricably tied to the oracle service providers within the ecosystem.

Bearing that in mind, the motivation of this study was to survey oracle usage
in the smart contract ecosystem. Currently, different projects like ChainLink [10],
Provable [15] and Augur [14] are offering third party oracle services to smart con-
tracts. These projects have adapted a decentralized approach for collecting and
aggregating oracle data, thereby addressing “the oracle problem” [9] of hav-
ing centralized points of failures in blockchain environments. For our survey,
we target ChainLink, which evidently captures the majority share of the oracle
middleware market at the time of writing. To establish this, we surveyed the top
forty DeFi projects by market capitalization [8] and found all among them which
had a use case for external oracles to be using ChainLink except two projects.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 115–123, 2021.
https://doi.org/10.1007/978-3-662-63958-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_10&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_10

116 M. Kaleem and W. Shi

ChainLink provides a comprehensive list of their project integrations on their
website [7] and it includes major DeFi projects such as Aave, Ampleforth, Chiliz,
Polygon, Kyber Network and 0x among others. Although ChainLink provides its
oracle services over multiple chains, we concern our study with ChainLink oracle
usage on Ethereum since it is the most widely adopted smart contract platform
at this time. We believe that ChainLink oracle usage on Ethereum represents
the significant bulk of oracle traffic on smart contract platforms. Our study finds
that Chainlink’s growth and usage is strongly centered around the DeFi ecosys-
tem where a few projects have been responsible for most of the oracle service
traffic for price feeds. We also show that Chainlink’s price feeds feature has seen
a steady growth since its inception whereas the external API feature has seen
negligible traffic. The oracle traffic statistics and trends provided by this survey
can be used to gauge the adoption and health of the smart contract ecosystem
in general. At the time of writing, we are not aware of any other formal study
providing oracle usage insights in the smart contract environment.

2 ChainLink Overview

ChainLink is an oracle service provider for smart contracts that is currently live
on three platforms: Ethereum, Binance Chain and the Matic Network. Chain-
Link went live in May 2019 and is currently the most popular oracle service
provider for smart contracts. ChainLink maintains a decentralized oracle net-
work and aggregates data from multiple oracle nodes on the network to provide
data feeds that do not rely on a single oracle node or data source [4]. ChainLink
employs an ERC-20 and ERC-677 compliant token called LINK which is used by
oracle consumers to pay the oracle nodes for data provision. ChainLink currently
provides three features for consumer smart contracts on the Ethereum mainnet.

Price Feeds: are a ChainLink feature to provide different market prices and
conversion rates data in the blockchain environment for usage by smart contracts.
ChainLink achieves this by having a decentralized price feed for each of these
data points, which is fed price data through multiple oracle nodes using different
sources. This is implemented by having an aggregator contract for each feed on-
chain which is fed data by multiple oracle nodes through their interface contracts.
The feed aggregator contract then aggregates all the nodes’ answers to provide a
final answer to any consumer contract via public Solidity functions. Consumers
of the price feeds data call these aggregator contracts when the data is desired.
The ChainLink documentation lists the aggregator contract addresses for the
available price feeds [5]. The price feeds are sponsored by various projects and
currently available for public usage without any LINK token charge.

External APIs: is a ChainLink feature that allows smart contracts in the
blockchain environment to perform external API calls through ChainLink oracle
nodes. These API calls can be HTTP Get Requests on the web or other APIs

Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 117

provided by the oracle node for different use cases. ChainLink API requests are
currently handled 1:1 by an oracle and ChainLink currently does not provide
decentralization benefits by default for API calls although a user might imple-
ment it on their own. The consumers of ChainLink’s API feature have to pay
their request servicing oracle node in LINK tokens for the service. The cost varies
depending on the node and the nature of the request but is around 0.1 LINK on
average and the highest being 1 LINK at the time of writing. Commonly used
public API endpoints are available as “jobs” in ChainLink which allows user to
only specify the job ID and not having to specify the URL, format etc. This
makes the consumer side code more succinct and the implementation easier.

Verifiable Random Numbers (VRF): is a ChainLink feature to provide
verifiable random number generation functionality on-chain. ChainLink achieves
this by having off-chain random number verifier contracts which verify the ran-
domness of the number generated by an oracle node in response to a consumer
request. VRF feature allows for provable random numbers, which protects the
consumer from attacks even if the node servicing the request has been compro-
mised.

3 Study Design

3.1 Data Collection

For both the Price Feeds and the External APIs we collected data from the
launch of ChainLink mainnet in May 2019 up till the end of October 2020
(Ethereum block 11167816). The VRF feature data was not collected and is
not part of this study since it only went live at the end of October 2020 and the
resulting data was insufficient for a formal study.

Modified Ethereum Client: For collecting the Price Feed usage data, we
looked at the price feed addresses available on the ChainLink website [5]. There
were 88 price feed addresses at the time of writing which are proxy aggregator
addresses. ChainLink has also, since its launch, made upgrades to the aggregator
contracts. The current version of aggregators are labeled as v3. We used the
wayback machine web archives [17] to retrieve old aggregator addresses and had
a total of 169 addresses for our study (88 v3, 80 v2, 1 v1). The ChainLink team
also later provided us with historical addresses which we used to verify our list.
For capturing the price feed data we could not use the Web3 API since all price
feed consumer requests were direct calls or “internal transactions”. Hence we
modified the Golang Ethereum client code to log data when internal function
calls were made to these 169 addresses. We captured the block number, calling
address, opcode, value and input data parameters for these internal calls to these
addresses and stored them in a local MySQL database.

118 M. Kaleem and W. Shi

Ethereum Full Node and Web3: For collecting data related to ChainLink
API usage we used the Web3 API with an Ethereum full node that we ran locally.
ChainLink implements the API feature using the CallAndTransfer() functional-
ity of the ERC-677 token standard. Every time a consumer requests an oracle,
it generates a ChainlinkRequest event and sends the LINK to the oracle node
along with data describing the API to fetch, the job ID, the format of the output,
the callback address and function which the oracle must respond to and other
data if required. The oracle node interface contract generates an OracleRequest
event upon receiving the LINK and data and the external node listens to this
event. It responds with the result after some time and makes a transaction to
the callback function with the data response. The consumer contract then raises
a ChainlinkFulfilled event. We use the Web3 APIs to capture these events and
extract the required data which includes: the block number of the request, the
requesting address, the oracle node requested, the job ID specified, the callback
function and address provided, the LINK token paid, the ChainLink request ID,
the request transactions hash, any additional data provided, the response block
number, the response and the response transaction hash. We store the results in
our local MySQL database for all such oracle service request-response cycles on
ChainLink.

We used Etherscan [11] to verify various samples of our collected data to
ensure that our data collection process was performed correctly.

3.2 Study Objectives

The study was aimed at providing insights into the usage of ChainLink oracles
on Ethereum. For this purpose we looked at the following five aspects:

– Oracle usage trends and demographics
– Oracle Adoption
– Oracle Pricing
– Oracle Servicing Delays

4 Results

4.1 Usage Trends and Demographics

After the data collection was completed and the required data was populated
into our MySQL server, we had the quantitative information summarized in
Table 1. A total of 2,717,049 API requests were made to Oracles during the
entire duration of our study and in total 2,409,074 price feed calls were made
to ChainLink’s public price feed contracts for fetching the market place data.
Although the numbers appear encouraging at first sight, upon further investi-
gation, we found that 99.75% of API requests to ChainLink oracle nodes were
made by ChainLink price feed aggregator addresses themselves. This is because
prior to the v3 aggregator release in August 2020 [6], all price feed aggregator
contracts made API requests to oracle nodes to fetch prices. After removing these

Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 119

API requests, we are only left with 6634 API requests performed on ChainLink
for the entire 18 month period! We also see that the number of distinct users
that made use of these features is very low.

Next, we present a list of the most popular price feeds based on their share
of the historical price-feed traffic in Fig. 1. We also present the corresponding
consumer projects/contracts of these price feeds ordered by their share of the his-
torical price-feed traffic. To get the corresponding projects/contracts, we grouped
the most regular consumer addresses (Top 26 addresses, which represent more
than 90% of all price-feed traffic) by their public tags available on Etherscan [11].
Our results show that Synthetix [1], which is a blockchain-based derivatives trad-
ing platform, is responsible for more than 47% of the historic price feed traffic.
If we subtract ChainLink’s internal traffic from the numbers, Sythetix’s share of
the historical price feed traffic rises to 75%.

Table 1. Price Feeds and API: collected data summary.

Feature Total
requests

Excluding
ChainLink
internal
requests

Distinct
Caller/consumer
addresses

Distinct Callee
addresses (price-
feeds/oracle
nodes)

Price Feeds 2409074 N/A 294 129

External APIs 2717049 6634 271 159

Fig. 1. Leaderboards: price feeds attracting the most traffic and projects generating
the most price feed traffic.

4.2 Oracle Adaption in the Market

To study ChainLink oracles’ adaption trends in the market, we look at the
historical data for the average number of price-feed and API requests made to
ChainLink oracles per month Fig. 2. Plotting the data, we can see that the price-
feed feature appears to be far more popular among users and has been rapidly

120 M. Kaleem and W. Shi

Fig. 2. Number of price feed and API requests on ChainLink by month.

gaining more traffic volume. The API feature does not appear to have a large
demand among the users. We believe that this can be attributed to the fact
that most projects and use-cases are able to fulfill their data needs using the
ChainLink provided price feeds and do not have to employ a custom API. We
also show in Fig. 3 that ChainLink has continuously increased the number of
price feeds being offered to users. The increase in price feed offerings has kept
up with the increase in adaption as evidenced in these figures. In contrast to the
price-feeds, Oracle nodes have not seen a marked increase in the variety of API
calls and jobs being requested.

Fig. 3. Number of distinct price feeds serviced and active oracles by month.

4.3 Oracle Pricing

ChainLink is currently providing the price feeds feature to all smart contract
users on the Ethereum chain without cost. These price feeds are sponsored by
various blockchain projects using these feeds in their contracts. A user does
need to pay an Oracle node in LINK token if they make a direct API request.
The current cost of ChainLink API usage varies and can be as high as 1 LINK
depending on the oracle and the data being requested. We look at the historical
price paid for running a single API request in Fig. 4. We also look at the historical
average income which the data providing oracle nodes from these requests. We
see the average LINK paid for oracle requests on ChainLink is increasing of

Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 121

late, and that coupled with the increase in the LINK token price is bound to
discourage the use of oracle APIs for trivial use cases.

4.4 Oracle Servicing Delays

Different smart contract use cases require their oracle service requests to be
processed within a time constraint. For the wide adoption of smart contracts,
it is essential that the oracle system is able to service time-critical requests.
We analyze our available API data in Fig. 5 to determine the historical average
delay experience on ChainLink API requests. Due to a small number of outliers,
the average obtained was around six hundred blocks. After filtering out these
outliers and only keeping the requests that were serviced within one hundred
blocks, we obtained the data shown in our figures. We can see that for ChainLink
oracles most API requests are serviced within the next four to five blocks with
the historical average block delay being close to four Ethereum blocks which
corresponds to roughly one minute.

Fig. 4. Average cost of a single API request and the average fees collected in LINK by
oracle nodes.

Fig. 5. Average response time and response time distribution for API requests.

122 M. Kaleem and W. Shi

5 Analysis and Conclusion

Based on our analysis of the collected data, we obtained the following important
insights regarding Chainlink usage on Ethereum in particular and the trends for
Oracle systems in general:

– The number of individual users of the ChainLink platform is not very high.
Currently, it is mostly being used by DeFi(Decentralized Finance) projects
and applications to provide market prices to its contracts. This is perhaps
indicative of a trend in the smart contract ecosystem in general.

– Currently, a single DeFi project, Synthetix has been responsible for almost
75% of the historic price-feed traffic in the ChainLink network (given that we
ignore ChainLink’s self-generated traffic). Synthetix uses various commodity
and currency ratio feeds on ChainLink which are among the feeds that have
serviced the most traffic. This dominance of Synthetix related traffic might
fade with ChainLink increasingly integrating with new projects.

– The data shows that there is currently not a big market of people wanting
to use oracles to connect smart contracts to the external world for trivial use
cases. Whether it is the genuine lack of market demand for these applications
or whether high Ethereum gas prices and ChainLink API fees discourage
people from doing so will require further investigation.

– While ChainLink’s API feature has not seen increased use with the rise of
DeFi, ChainLink’s price feeds have seen increasing usage since the project’s
launch. ChainLink has also managed to provide an increasing variety of price
feeds to cater to the demands of new DeFi projects integrating with Chain-
Link.

– The rising average API cost seen on the network might be attributed to the
increased LINK token price which forces people to only make Oracle API
usage for non-trivial cases.

– The average response time of ChainLink’s API feature is seen to remain steady
between 4 and 5 blocks which might not be good enough for time-sensitive
applications.

In conclusion, at the time of this study, the ChainLink ecosystem on the
Ethereum network appears to be driven purely by DeFi’s demand for decentral-
ized market price feeds [13]. In the coming future, it would be interesting to see
if Oracle platforms like ChainLink take initiatives to attract other segments of
users or tailor themselves more towards fulfilling the needs of the growing DeFi
market.

Acknowledgements. The authors warmly thank the ChainLink team for sharing
historical price feed addresses with us for cross-verification.

References

1. Synthetix (2019). https://www.synthetix.io

https://www.synthetix.io

Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum 123

2. Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.: Trustworthy blockchain
oracles: review, comparison, and open research challenges. IEEE Access 8, 85675–
85685 (2020)

3. Buterin, V., et al.: Ethereum: a next-generation smart contract and decentralized
application platform (2014). https://github.com/ethereum/wiki/wiki

4. ChainLink: Chainlink developer documentation. https://docs.chain.link
5. ChainLink: Ethereum price feeds. https://docs.chain.link/docs/ethereum-

addresses
6. ChainLink: Developer communications, August 2020. https://docs.chain.link/

docs/developer-communications
7. ChainLink: Ecosystem, March 2021. https://chainlinkecosystem.com/ecosystem
8. Coinmarketcap: DeFi category, March 2021. https://coinmarketcap.com/defi
9. Egberts, A.: The oracle problem-an analysis of how blockchain oracles undermine

the advantages of decentralized ledger systems (2017)
10. Ellis, S., Juels, A., Nazarov, S.: Chainlink: a decentralized oracle network (2017).

https://link.smartcontract.com/whitepaper
11. Etherscan: The Ethereum block explorer (2017)
12. Kehrli, J.: Blockchain 2.0-from bitcoin transactions to smart contract appli-

cations. Niceideas, November 2016. https://www.niceideas.ch/roller2/badtrash/
entry/blockchain-2-0-frombitcoin

13. Liu, B., Szalachowski, P., Zhou, J.: A first look into DeFi oracles. arXiv preprint
arXiv:2005.04377 (2020)

14. Peterson, J., Krug, J., Zoltu, M., Williams, A.K., Alexander, S.: Augur: a decen-
tralized oracle and prediction market platform (2019)

15. Provable. https://provable.xyz. Accessed 10 Sept 2020
16. Szabo, N.: Formalizing and securing relationships on public networks. First Monday

(1997)
17. Wayback Machine: The internet archive. https://archive.org/web/

https://github.com/ethereum/wiki/wiki
https://docs.chain.link
https://docs.chain.link/docs/ethereum-addresses
https://docs.chain.link/docs/ethereum-addresses
https://docs.chain.link/docs/developer-communications
https://docs.chain.link/docs/developer-communications
https://chainlinkecosystem.com/ecosystem
https://coinmarketcap.com/defi
https://link.smartcontract.com/whitepaper
https://www.niceideas.ch/roller2/badtrash/entry/blockchain-2-0-frombitcoin
https://www.niceideas.ch/roller2/badtrash/entry/blockchain-2-0-frombitcoin
http://arxiv.org/abs/2005.04377
https://provable.xyz
https://archive.org/web/

On Stablecoin Price Processes
and Arbitrage

Ingolf Gunnar Anton Pernice(B)

Weizenbaum Institute, 10623 Berlin, Germany
ingolf.ga.pernice@hu-berlin.de

Abstract. This study applies the Caginalp and Balenovic (1999) model
for asset flow dynamics to fully collateralized stablecoins. The analysis
provides novel insights on how trend-reversion and reactions to peg devi-
ations work together to keep stablecoin prices close to the price they
are targeting. A fixed-effects panel regression indicates that the model’s
abstraction of trading motivations indeed fits stablecoin price processes
well. The results convey first indication that theoretic stablecoin mod-
els might benefit from modeling price dynamics to switch between two
market regimes: one for day-to-day price formation and limited arbitrage
activity; and one for extraordinary market situations.

Keywords: Stablecoins · Arbitrage · Price formation

1 Introduction

Stablecoins are being increasingly adopted as bridge to trade traditional cryp-
tocurrencies [3,8,38,45], marketed as medium-of-exchange for decentralized
finance and smart contracts [39,40] and have recently been approved by US
regulators as payment method for federally chartered banks [1]. Increasing prac-
tical relevance fosters the demand for understanding economic properties of such
instruments. The majority of projects simply tokenize the asset their tokens are
stabilized against (e.g. the USD, EUR or gold) or store a third asset in the
respective amount [43]. Assuming that traders trust governance, collateral and
technology, and their trust is justified, there is little room for disagreement on
the token’s fundamental values. If there were any structured deviation, efficient-
market theorists might argue that market participants would seize the resulting
opportunity of arbitrage, closing the gap [26].1 Stablecoin prices would then

1 In a strict sense, arbitrage opportunities can be defined as “investment strategy that
guarantees a positive payoff in some contingency with no possibility of a negative
payoff and with no net investment” [25, p.57]. In this paper the term is used in a
wider sense, describing the trader’s perceptions.

I thank Gunduz Caginalp for his invaluable input and enlightening conversations. I
also thank Martin Florian and Anna Almosova for their constructive feedback.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 124–135, 2021.
https://doi.org/10.1007/978-3-662-63958-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_11&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_11

On Stablecoin Price Processes and Arbitrage 125

merely reflect the value of the collateral and random noise. If, however, price
adjustments are restricted by incomplete arbitrage, interesting patterns might
emerge that reflect the trader’s decisions [10,22]. This paper explores and quan-
tifies such dynamics.

My empiric approach is based on a recent theoretical approach from asset
pricing literature proposed first in [18] and refined by [14] which opens up asset
pricing to dynamic systems modeling known from thermodynamic physics. In
the following, the latter will be called the “Caginalp and Balenovic (1999) asset
flow” (CBAF) approach. In a nutshell, the authors model price determination by
abstracting trading decisions as flows from asset-to-cash and vice versa. As such,
traders are abstracted as being driven by price trends and the deviation of the
asset’s market price from its fundamental value. Exploring theoretic approaches
to the instability of price processes, a first application to the field of cryptocur-
rencies has been attempted by [12]. Applying the CBAF model to stablecoin
arbitrage promises to offer a convincing model for the interplay of trend follow-
ing and peg deviations. In contrast to most models for cryptocurrency pricing,
the above model requires few assumptions.2 Exploring early trading data for 11
fully collateralized stablecoins, this study evaluates the appropriateness of the
intuitive trader abstraction adopted by the CBAF approach and offers insights
into stablecoin price dynamics in general. My empirical setup couples variables
approximating trend-following with a measure for peg deviations in a dynamic
coin-fixed-effects (coin-FE) panel data regression. The study engages in rigorous
robustness checking by testing the models for the influence of seasonal dum-
mies, interaction terms for the direction of trends, sign of peg deviations and
different parameters in data preprocessing. I find a striking difference between
results being based on data with—and without outlier treatment even for merely
truncating price changes exceeding 5 standard deviations. For data including
extreme price changes, the CBAF model approximates price formation well.
Deviations from the peg and trend following are strong determinants of com-
ing price changes. For outlier-free data, however, the effects seem to blend in
with other price-determinants (the stablecoin’s token supply and Bitcoin’s price
volatility). This result indicates that apart from very few occasions arbitrage
activity is weak. This poses the questions, whether costs of arbitrage might be
prohibitive high except for extreme but rare market situations. It might be con-
sidered to model price formation by switching between two regimes: a first one
offering profits for large trades towards the peg, and a second one being charac-
terized by limited levels of arbitrage activity.

The paper is organized as follows: Sect. 2 outlines related work, Sect. 3 intro-
duces the theoretic backgrounds of arbitrage and the CBAF model, Sect. 4 dis-
cusses data and econometric approach. Sect. 5 describes the results and Sect. 6
concludes the study.

2 Compared with, for example, game-theoretic approaches [13] and consumer demand
models [2,4,7].

126 I. G. A. Pernice

2 Related Work

Studies investigating the asset class and its manifestations include [19,23,41,43]
and [11]. The user perception in the adoption of stablecoins has been studied
in [32], while [5] analyzed the suitability of stablecoins as save-haven invest-
ment. The relation between cryptocurrency prices and stablecoin trading has
been focused on by [3,8,45] and [27]. Adopting a risk-oriented approach, [33,34]
and [35] suggest theoretic models to study stability and resilience of stable-
coins. While the latter focuses on extreme events, [38] not only offers a theoretic
model for day-to-day arbitrage but also provides, to my knowledge, the first
extensive empirical analysis of the drivers of stablecoin prices. This paper differs
in perspective and econometric approach: Instead of peg deviations, this paper
analyzes price processes and tests the CBAF model for applicability. While [38]
relies on an auto-regressive distributed lag model with a rich database, however,
just for Tether, this paper adopts a dynamic coin-FE panel data regression on
market data for 11 stablecoins.

3 Stablecoin Arbitrage and the CBAF Model

Stablecoin arbitrage uses primary and secondary markets [38]. On the primary
market, coins are created and redeemed against collateral with the issuer. On
the secondary market, stablecoins are traded against fiat and cryptocurrencies.
If market prices deviate from the peg, arbitrage traders might decide to either
trade against peg deviations directly on the secondary market or involve the
stablecoin issuer. In the first case, arbitrage traders simply trade towards the
peg. They would buy when prices are below—and sell when prices are above the
peg. In the second case, abstracting from technical details,3 arbitrage traders
would purchase coins from the markets and redeem them with the issuer when
prices are below the peg. When prices are above the peg, traders would first
create coins with the issuer and subsequently sell them on secondary markets.

TheCBAF approach as presented in [14] models traders as switching from cash
to asset or vice versa with a certain probability k. Variable k is modeled to include
motivations based on past price changes ζ1 and the market discount relative to the
asset’s fundamental value ζ2. These components are modeled using the trader’s
memory with respect to price trends and deviations from fundamental values (c1
and c2) and their focus on these two respective components (q1 and q2). Core com-
ponent of ζ1 is the relative price trend f(τ) = 1

P (τ)
dP (τ)

dτ over period τ on time

scale τ0. ζ2 is constructed around deviations g(τ) = Pa(τ)−P (τ)
P (τ) of market price

P (τ) from fundamental value Pa. Thus, the two components can be expressed as

ζ1(t) = q1c1

∫ t

−∞
e

−(t−τ)
c1 ·f(τ) dτ (1)

ζ2(t) = q2c2

∫ t

−∞
e

−(t−τ)
c2 · g(τ) dτ. (2)

3 Models for more complex stablecoins can be found e.g. in [33] and [34].

On Stablecoin Price Processes and Arbitrage 127

Limiting k to values between 0 and 1, k is constructed as k = 1
2 + tanh(ζ1+ζ2)

2 .
For ζ1 and ζ2 equal to zero, the probability of flows from cash to asset and vice
versa are thus equally likely. Demand D and supply S of the asset are modeled
using k and the fraction already invested into the asset B. Their relation can be
expressed as D = k(1 − B) and S = (1 − k)B and thus D

S = k
1−k

1−B
B . Prices P

are assumed to change logarithmic with excess demand, leading to

1
P

dP

dt
= δ · log

(D

S
− 1

)
= δ · log

(k

1 − k

1 − B

B

)
(3)

with δ representing an amplitude that scales with time. For a deeper discussion
of the model and its applications see [14,16,17,44] and [12]. While this paper
will not be offering estimates for the individual parameters, the study gathers
evidence supporting the basic intuition of the model: Under the efficient market
hypothesis, fluctuations of P (t) around the peg, assumed to equal Pa, would
merely be random.4 Obviously, in this case, neither of the two components ought
to be reflected in market data of stablecoins. If, however, evidence of ζ1 or ζ2 is
present, it is of considerable interest to understand how the two components are
jointly driving stablecoin prices.

4 Data and Econometric Approach

The following paragraphs will discuss data preprocessing and the economic app-
roach for testing the applicability of the CBAF model.

Data was gathered from www.coingecko.com. Similar to www.coinmarketcap.
de the data provider currently crawls 382 cryptocurrency exchanges but offers
hourly data over a well-documented API for free.5 The full dataset comprises 19
cryptocurrencies. The sample includes projects that are listed at www.coingecko.
com, promise stability of their exchange rates in their whitepapers and collat-
eralize their tokens to at least 100%. The study considers designs that use the
asset-pegged-to as collateral but also includes tokens that use a third asset, often
a crypto-asset, in a quantity reflecting at least full collateralization. Some of the
19 cryptocurrencies are quite young and immature. Shallow markets with low
volumes and few trades per measurement period might in part be driven by
market microstructure effects which could lead to biased regressions. To reduce
noise, this study thus excludes months for that the stablecoin shows a market
capitalization of under USD 10 m or daily trading volumes of under USD 1 m.
Coins have been dropped completely if the remaining dataset included less then
24 · 31 hourly observations. This restricted the dataset to 11 stablecoins with
767 to 16970 trading hours leading to 101,243 observations in total. Table 6
of Appendix 7.3 in the full paper shows that the results hold as well if mar-
ket capitalization thresholds of USD 100 m and USD 5 m—and thresholds for
4 This study assumes that traders rightfully trust in the peg as a correct estimate of

the tokens fundamental value. This fails when doubts about the stablecoins collateral
or security arise.

5 As of 2020-08-17.

www.coingecko.com
www.coinmarketcap.de
www.coinmarketcap.de
www.coingecko.com
www.coingecko.com

128 I. G. A. Pernice

daily trading volumes of USD 50 m and USD 50k are chosen. To understand
the effect of extreme values on the estimated models, price changes diverging
over 5 standard deviations (SD) from the mean have been truncated. Table 1 in
Appendix B gives an overview over cutoff points and the relative and absolute
number of classified outliers. The threshold was chosen deliberately high to cor-
rect only the most extreme values. Such might have a disproportionate effect on
ordinary-least-squares (OLS) regression results [6]. To make the estimated coeffi-
cients comparable, all variables apart from the dummies have been standardized
based on Z-scores Xstand = X−μ(X)

σ(X) , with mean μ(·) and standard deviation
σ(·). To verify the applicability of the CBAF model, a linear panel regression
in conjunction with squared and cubed trend variables to model nonlinear rela-
tionships has been applied to exchange-traded funds [17] and stocks [15]. Now
this framework is applied to stablecoins by adjusting it slightly to the character-
istics of the dataset and adding a variety of robustness checks. Traditional linear
modeling might fail to pick up the complex relations in price formation. In con-
trast to linear models, polynomials allow for very strong negative (positive) past
returns to induce positive (negative) bounce-back effects. Mixing up relations
between strong and weak price changes, simple auto-regressive price regressions
abstaining from the above step might miss potential information on prices. As
a remedy, following [15] and [17], this study includes variables to the power into
a fixed-effects panel data approach.6 To capture price trends, in accordance to
[15], this paper uses a simple weighted aggregation of past price changes. The
prior might be expressed using prices P and smoothing factor s over a look-back
window d as

Tt =
1∑d

k=1 esk

d∑
k=1

(Pt−k+1 − Pt−k

Pt−k
· esk

)
. (4)

The smoothing term ensures that older observations of variable changes are
entering the sum with lower weights (s = −0.25 and d = 10). Trends in prices
have been shown to explain variation in future returns for cryptocurrencies in
[20,30] and [28]. To calculate the distance D of market price P from the peg Pa,
simply Dt = Pt − Pa,t is formed. As control variables the token supply and Bit-
coin’s price-volatility are used. Controlling for the volatility of the second and
third largest traditional cryptocurrencies by trading volume (Ether and Rip-
ple) or for the Ethereum Gas price turned out to yield insignificant coefficients.
Regressions are formed denominating cryptocurrency price changes as ΔP , the
trend as T and peg deviations as D. Moreover ΔS and ΔV BTC are the first
differences of token supply and Bitcoin’s price-volatility respectively. Dummy
variables include seasonal ones (Zhour

t , Z
day
t , Zmonth

t) and others that account for
the sign of the peg deviation (ZD>0

t) and the direction of the trend (ZT>0
t).

The unobserved coin effect is denominated as ai while bt gives the unobserved

6 Robustness against multicollinearity among the regressors is ensured by checking
the respective Variance Inflation Factors (VIF) (compare Appendix 7.2 Table 3 of
the full paper).

On Stablecoin Price Processes and Arbitrage 129

time effect and the remaining residual errors are given as uit. A parsimonious
base-line regression can thus be based on unobserved-effects equation

ΔPi,t+1 =β2Ti,t + β3T
2
i,t + β4T

3
i,t + β5Di,t + β3D

2
i,t + β4D

3
i,t

+ β5ΔSi,t + β6ΔV BTC + ai + bt + uit, (5)

while the full general regression is based on

ΔPi,t+1 =β2Ti,t + β3T
2
i,t + β4T

3
i,t + β5Di,t + β6D

2
i,t + β7D

3
i,t

+ β8ΔSi,t + β9ΔV BTC
i,t + Zhour

t + Z
day
t + Zmonth

t + β10Ti,t · ZT>0
t (6)

+β11Ti,t · ZD>0
t + β12Di,t · ZD>0

t + β13Di,t · ZT>0
t + ai + bt + uit,

where t is the time- and i the coin index.
While two-way fixed-effects regression are applied to eliminate time and

entity effects in the original framework [15,17], recent research indicates that
this approach might lead to mostly uninterpretable coefficients [29,36] and biased
inferences in most general applications [31]. This study thus settles on eliminat-
ing ai by coin-fixed-effects but models common time effects by including seasonal
dummies and control variables. Treatment of the Nickel bias and other issues
related to panel data regressions with long time series dimensions (e.g. het-
eroskedasticity, non-stationarity and serial correlation) are treated in line with
state-of-the-art approaches. For more information refer to Appendix A.

5 Results

Table 1 supplies estimates of the coefficients given in Eq. 4. As suggested by
the applied asset pricing theory, not only current deviations from the peg but
also price trends show significant relations with the coming hour’s price change.
Also, the adopted nonlinear regression framework has proven useful. Most of the
variables that are raised to the second and third power show high significance
and our models explain roughly 20% of the variance in the one-hour-ahead price
changes.
7 However, coefficient estimates vary with the way outliers are treated. For the
model based on data for which no outlier treatment has been implemented (com-
pare Column 1 Table 1), the polynomial of significant coefficients for the esti-
mated price change is Δ̂P t+1 = −0.160Dt+0.085D2

t −0.417D3
t . This polynomial

is displayed in Fig. 1, which relates peg deviations and trends to the coming hours
price change. Even relative small peg deviations are associated with moderate
price changes. Large peg deviations, however, precede extreme price changes
forcefully driving prices back to the peg. The coefficients related to price trends
display nonlinearity as well and form Δ̂P t+1 = −0.266Dt +0.178D3

t . Weak price
trends seem to be reverted, while stronger ones lead to trend following. In other

7 Price changes are infamously noisy [9]. Regressing daily order flows on price changes
for Tether [38] arrive at R-squares up to 13%.

130 I. G. A. Pernice

Table 1. Coin-FE regression based on Eq. 4.

Dependent variable:

ΔPt+1

(1) (2)

Dt −0.160∗∗∗(0.008) −0.259∗∗∗(0.008)

D2
t 0.085∗∗∗(0.027) 0.046∗∗∗(0.006)

D3
t −0.417∗∗∗(0.046) 0.056∗∗(0.023)

Tt −0.266∗∗∗(0.009) −0.184∗∗∗(0.005)

T 2
t −0.009(0.023) −0.005(0.008)

T 3
t 0.178∗∗∗(0.053) −0.011(0.037)

ΔSt 0.208∗∗∗(0.077) 0.394∗∗∗(0.144)

ΔV BTC
t −0.070(0.050) −0.308∗∗∗(0.089)

Observations 101,243 101,243

R2 0.200 0.198

Adjusted R2 0.200 0.198

F Statistic 3,162.209∗∗∗ 3,123.468∗∗∗

(df = 8; 101224)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Variable denominations are given in Sect. 4 under Eq. 4.
Column (1) for untreated- and column (2) for outlier free
data. Standard errors given in brackets.

Fig. 1. Coefficient interplay for untreated
data

Fig. 2. Coefficient interplay for outlier-
free data

words, series of consecutive strong price changes of the same direction are pro-
longed. This might be a result of consecutive hours of price jumps after large devi-
ations. In comparison to price trends, but also all other tested variables, the joint
influence of the coefficients for peg deviations seems be the largest by far. Their
influence is roughly symmetric for positive and negative price deviations. For the
model based on data for which price changes in excess of 5 SD have been trun-
cated (Column 2 of Table 1), the joint estimated effect of price trends and peg

On Stablecoin Price Processes and Arbitrage 131

deviations on coming price changes is displayed in Fig. 2. For peg deviations, the
polynomial of significant coefficients is Δ̂P t+1 = −0.259Dt +0.046D2

t +0.056D3
t

with roots roughly at −2.6, 0 and 1.8. The effect of smaller peg deviations is
in line with expectations: The relation of peg deviations and the coming price
change is positive for −2.6 ≤ D ≤ 0 and negative for 0 ≤ D ≤ 1.8 and would
thus lead to mean-reverting prices. For positive deviations D > 1.8 and nega-
tive deviations D < −2.6, however, signs turn and peg deviations are associated
with price changes leading away from the peg. The reason for this seemingly
counter-intuitive result might be that the majority (95.37%) of observed price
changes lie within the 2 SD displayed in Figs. 1 and 2. Rather than avoiding
rare but large errors from outliers, the coefficients seem to be optimized to fit
smaller fluctuations around the peg. Not only the results for peg deviations—but
also price trends differ. The latter, estimated based on outlier free data, show a
linear, negative relation to coming price changes. In other words, series of price
changes of equal sign revert soon. The size of the coefficients for trend and peg
deviations are relatively low, though. For instance, a peg deviation of 2 SD in
negative direction is associated merely with an increase in prices of 0.1 SD. A
negative price trend of 1 SD is associated with an increase of prices of around
0.2 SD. Arbitrage is estimated to have a very limited effect in the outlier-free
dataset. With coefficients of 0.394 and −0.308 respectively, the change in token
supply and the change in the Bitcoin’s price volatility seem to be equally impor-
tant price determinants, at least. This contrast is surprising, given that they
are caused by the truncation of merely 363 of 101243 observations. Table 2 of
Appendix B gives coefficients for the same model but complemented by dummy
representations accounting for hours, weekdays, months as well as interaction
terms for the sign of the peg deviation and the direction of the price trend. The
results differ only negligibly.

6 Conclusion

The stark contrast of the importance of peg deviations in the fitted models
with—and without outlier treatment is striking. For data including extreme
price changes, peg deviations and trend dynamics seem to approximate price
formation well. For stablecoins, the intuitive CBAF approach to model trader
behavior might thus be seen as a good approximation for the determinants of
price changes. For outlier-free data, however, the effects seem to blend in with
other price-determinants. The above results pose the question of whether sta-
blecoin markets might not best be modeled as switching between a first regime
characterized by limited arbitrage, and a second one setting in when markets
promise sufficient profits for large trades towards the peg. While the most obvi-
ous candidate for explaining such results might be costs of arbitrage, at least
short-term variation of the Ethereum Gas price turned out to yield insignificant
coefficients when adopted as control variable. Future research might employ coin-
tegration analysis capable of unvailing also longterm relationships.

132 I. G. A. Pernice

A Robustness

The dataset applied in this study combines 11 timeseries of differing lengths
and might thus be described as an unbalanced timeseries panel. While a large
T dimension is generally beneficial, simple panel data approaches might be mis-
specified. A first issue is serial correlation. In most financial time series prior
realizations affect coming ones. Including lagged data might thus be useful to
capture serial correlation in the data - this is usually referred to as dynamic
panel modeling. Instead of including lagged data explicitly, in this study, the
trend variable is carrying auto-regressive information.Using simple fixed-effects
models jointly with lagged variables, however, induces the so-called Nickell bias
as the lagged variable causes endogeneity in the regressors [42]. As argued by [21,
p.163], including fixed-effects into dynamic specifications of panel data regres-
sions, even for simple OLS estimates, can mitigate the issue to some degree.
Their coefficients, however, are still seriously biased for small T . In our case,
including coin-fixed-effects and considering that T is very large, Nickell’s bias
should be negligible.8 There are other issues known from time-series analysis,
though. [46] warned about relying on the above for inference for non-stationary
data (which might lead to spurious regression results) and suggested to check the
error term for heteroskedasticity, serial correlation and nonnormality. To counter
this problem, this study ensures stationarity using the Levin-Lin-Chu unit root
test [37]. As the test does not reject the presence of a unit root for token supply
and volatility, we take first differences of these variables.

As discussed earlier, we apply coin-FE panel regressions based on simple
OLS-estimation. As a consequence, several assumptions are to be ensured. Resid-
uals ought to display a mean of zero and be free of heteroscedasticity, cross-
sectional, and serial correlation. Breusch-Pagan Lagrange Multiplier tests and
Pesaran cross-sectional dependence tests are used to test for cross-sectional
dependence in the residuals. Additionally, Student’s t-tests have been applied
to check the residuals for a mean of zero. Breusch-Godfrey/Wooldridge tests
have been applied to test for serial correlation. Breusch-Pagan tests are used
for detecting heteroskedasticity. While a deviation from zero for the residuals
is strongly rejected, unfortunately, the remaining tests reveal heteroscedasticity,
serial, and also cross-sectional correlation. In other words, residuals are showing
variance clusters and are depending on their own- and even lags across coins. As
a consequence, the simple OLS estimator is biased. To still draw robust infer-
ences from the estimated model, spacial correlation consistent (SCC) estimators
introduced in [24] are used. The approach adapts Newey-West estimators to
the panel setting and leads to robust standard errors even in the presence of
heteroscedasticity and cross-sectional and serial correlation.

For tables and further details on the above robustness checks, please refer to
the full paper.

8 In fact, following [46], the bias for the fixed-effects estimator approaches zero with
rate 1/T.

On Stablecoin Price Processes and Arbitrage 133

B Tables

Table 1. Outliers.

Cutoff Outliers as defined by cutoff in percent
(in Std. Dev.) N %

1 18839 18.6
2 4686 4.63
3 1563 1.54
4 683 0.67
5 363 0.36
Fraction of data classified as outliers.

Table 2. Coin-FE regression.

Dependent variable: ΔPt+1

(1) (2)

Dt −0.111∗∗∗(0.010) −0.230∗∗∗(0.014)

D2
t 0.089∗∗∗(0.027) 0.047∗∗∗(0.007)

D3
t −0.472∗∗∗(0.047) 0.032(0.025)

Tt −0.248∗∗∗(0.012) −0.180∗∗∗(0.009)

T 2
t −0.010(0.023) −0.006(0.009)

T 3
t 0.162∗∗∗(0.054) −0.015(0.038)

ΔSt 0.202∗∗∗(0.074) 0.392∗∗∗(0.142)

ΔV BTC
t −0.063(0.051) −0.304∗∗∗(0.089)

Zhour
t −0.0003(0.0003) −0.0003(0.001)

Z
day
t −0.0002(0.0003) −0.001(0.001)

Zmonth
t −0.003∗∗∗(0.0003) −0.006∗∗∗(0.001)

D · ZD>0
t −0.018∗∗∗(0.002) −0.006(0.009)

D · ZT>0
t −0.003∗∗(0.001) −0.011(0.007)

T · ZD>0
t 0.003∗∗∗(0.001) −0.005(0.008)

T · ZT>0
t 0.0001(0.001) 0.009(0.007)

Adjusted R2 0.208 0.199

F Statistic 1,769.824∗∗∗ 1,681.830∗∗∗

(df = 15; 101217)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
This table gives the results of a coin-FE regression for the
full model specified in Eq. 4. Column (1) for untreated-
and column (2) for outlier free data. Coefficient’s standard
errors given in brackets.

134 I. G. A. Pernice

References

1. Federally chartered banks and thrifts may participate in independent node verifi-
cation networks and use stablecoins for payment activities. https://www.occ.gov/
news-issuances/news-releases/2021/nr-occ-2021-2.html. Accessed 7 Jan 2021

2. Almosova, A.: A monetary model of blockchain (2018)
3. Ante, L., Fiedler, I., Strehle, E.: The influence of stablecoin issuances on cryp-

tocurrency markets. Finance Res. Lett. 41, 101867 (2020)
4. Athey, S., Parashkevov, I., Sarukkai, V., Xia, J.: Bitcoin pricing, adoption, and

usage: theory and evidence (2016)
5. Baumöhl, E., Vyrost, T.: Stablecoins as a crypto safe haven? Not all of them!

(2020)
6. Belsley, D.A., Kuh, E., Welsch, R.E.: Regression Diagnostics: Identifying Influential

Data and Sources of Collinearity, vol. 571. John Wiley & Sons (2005)
7. Biais, B., Bisiere, C., Bouvard, M., Casamatta, C., Menkveld, A.J.: Equilibrium

bitcoin pricing. Available at SSRN (2018)
8. Bianchi, D., Iacopini, M., Rossini, L.: Stablecoins and cryptocurrency returns: evi-

dence from large Bayesian vars. Available at SSRN (2020)
9. Black, F.: Noise. J. Finance 41(3), 528–543 (1986)

10. Britten-Jones, M., Neuberger, A.: Arbitrage pricing with incomplete markets.
Appl. Math. Finance 3(4), 347–363 (1996)

11. Bullmann, D., Klemm, J., Pinna, A.: In search for stability in crypto-assets: are
stablecoins the solution? ECB Occasional Paper (230) (2019)

12. Caginalp, C.: A dynamical systems approach to cryptocurrency stability. arXiv
preprint arXiv:1805.03143 (2018)

13. Caginalp, C., Caginalp, G.: Establishing cryptocurrency equilibria through game
theory. Mathematics (AIMS), Forthcoming (2019)

14. Caginalp, G., Balenovich, D.: Asset flow and momentum: deterministic and
stochastic equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357(1758),
2119–2133 (1999)

15. Caginalp, G., Desantis, M.: Stock price dynamics: nonlinear trend, volume, volatil-
ity, resistance and money supply. Quant. Finance 11(6), 849–861 (2011)

16. Caginalp, G., DeSantis, M.: Nonlinear price dynamics of s&p 100 stocks. Physica
A Statist. Mech. Appl. 547, 122067 (2019)

17. Caginalp, G., DeSantis, M., Sayrak, A.: The nonlinear price dynamics of us equity
ETFs. J. Econometrics 183(2), 193–201 (2014)

18. Caginalp, G., Ermentrout, G.: A kinetic thermodynamics approach to the psychol-
ogy of fluctuations in financial markets. Appl. Math. Lett. 3(4), 17–19 (1990)

19. Clark, J., Demirag, D., Moosavi, S.: SoK: demystifying stablecoins. Available at
SSRN 3466371 (2019)

20. Corbet, S., Eraslan, V., Lucey, B., Sensoy, A.: The effectiveness of technical trading
rules in cryptocurrency markets. Finance Res. Lett. 31, 32–37 (2019)

21. Croissant, Y., Millo, G., et al.: Panel data econometrics with R. Wiley Online
Library (2019)

22. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer (2006).
https://doi.org/10.1007/978-3-540-31299-4

23. Dell’Erba, M.: Stablecoins in cryptoeconomics from initial coin offerings to central
bank digital currencies. NYUJ Legis. & Pub. Pol’y 22, 1 (2019)

24. Driscoll, J.C., Kraay, A.C.: Consistent covariance matrix estimation with spatially
dependent panel data. Rev. Econ. Statist. 80(4), 549–560 (1998)

https://www.occ.gov/news-issuances/news-releases/2021/nr-occ-2021-2.html
https://www.occ.gov/news-issuances/news-releases/2021/nr-occ-2021-2.html
http://arxiv.org/abs/1805.03143
https://doi.org/10.1007/978-3-540-31299-4

On Stablecoin Price Processes and Arbitrage 135

25. Deutsch, H.-P., Beinker, M.W.: Arbitrage. In: Derivatives and Internal Models.
FCMS, pp. 97–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22899-6 6

26. Fama, E.F.: Random walks in stock market prices. Financ. Anal. J. 51(1), 75–80
(1995)

27. Griffin, J.M., Shams, A.: Is bitcoin really untethered? J. Finance 75(4), 1913–1964
(2020)

28. Grobys, K., Ahmed, S., Sapkota, N.: Technical trading rules in the cryptocurrency
market. Finance Res. Lett. 32, 101396 (2020)

29. Hill, T.D., Davis, A.P., Roos, J.M., French, M.T.: Limitations of fixed-effects mod-
els for panel data. Sociol. Perspect. 63(3), 357–369 (2020)

30. Hudson, R., Urquhart, A.: Technical trading and cryptocurrencies. Ann. Oper.
Res. 297(1), 191–220 (2019). https://doi.org/10.1007/s10479-019-03357-1

31. Imai, K., Kim, I.S.: On the use of two-way fixed effects regression models for causal
inference with panel data. Harvard University, Unpublished paper (2019)

32. Kimmerl, J.: Understanding users’ perception on the adoption of stablecoins-the
libra case. In: PACIS, p. 187 (2020)

33. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., Minca, A.: Stablecoins 2.0:
economic foundations and risk-based models. In: Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pp. 59–79 (2020)

34. Klages-Mundt, A., Minca, A.: (in) stability for the blockchain: Deleveraging spirals
and stablecoin attacks. arXiv preprint arXiv:1906.02152 (2019)

35. Klages-Mundt, A., Minca, A.: While stability lasts: a stochastic model of stable-
coins. arXiv preprint arXiv:2004.01304 (2020)

36. Kropko, J., Kubinec, R.: Why the two-way fixed effects model is difficult to inter-
pret, and what to do about it. Available at SSRN 3062619 (2018)

37. Levin, A., Lin, C.F., Chu, C.S.J.: Unit root tests in panel data: asymptotic and
finite-sample properties. J. Econometrics 108(1), 1–24 (2002)

38. Lyons, R.K., Viswanath-Natraj, G.: What keeps stablecoins stable? Tech. rep,
National Bureau of Economic Research (2020)

39. Misc.: Centre whitepaper. https://www.centre.io/pdfs/centre-whitepaper.pdf. vis-
ited on 30 Nov 2018

40. Misc.: Stably whitepaper. https://s3.ca-central-1.amazonaws.com/stably-public-
documents/whitepapers/Stably+Whitepaper+v6.pdf (2018). Visited on 16 July
2018

41. Moin, A., Sekniqi, K., Sirer, E.G.: SoK: a classification framework for stablecoin
designs. In: Financial Cryptography (2020)

42. Nickell, S.: Biases in dynamic models with fixed effects. Econometrica J. Econo-
metric Soc. 46, 1417–1426 (1981)

43. Pernice, I.G., Henningsen, S., Proskalovich, R., Florian, M., Elendner, H., Scheuer-
mann, B.: Monetary stabilization in cryptocurrencies-design approaches and open
questions. In: 2019 Crypto Valley Conference on Blockchain Technology (CVCBT),
pp. 47–59. IEEE (2019)

44. Porter, D.P., Smith, V.L.: Stock market bubbles in the laboratory. Appl. Math.
Finance 1(2), 111–128 (1994)

45. Wang, G.J., Ma, X.Y., Wu, H.Y.: Are stablecoins truly diversifiers, hedges, or safe
havens against traditional cryptocurrencies as their name suggests? Res. Int. Bus.
Finance 54, 101225 (2020)

46. Wooldridge, J.M.: Introductory econometrics: a modern approach. Nelson Educa-
tion (2016)

https://doi.org/10.1007/978-3-030-22899-6_6
https://doi.org/10.1007/978-3-030-22899-6_6
https://doi.org/10.1007/s10479-019-03357-1
http://arxiv.org/abs/1906.02152
http://arxiv.org/abs/2004.01304
https://www.centre.io/pdfs/centre-whitepaper.pdf
https://s3.ca-central-1.amazonaws.com/stably-public-documents/whitepapers/Stably+Whitepaper+v6.pdf
https://s3.ca-central-1.amazonaws.com/stably-public-documents/whitepapers/Stably+Whitepaper+v6.pdf

Red-Black Coins: Dai Without
Liquidations

Mehdi Salehi(B), Jeremy Clark, and Mohammad Mannan

Concordia University, Montreal, Canada

Abstract. A number of Ethereum projects for stablecoins and synthetic
assets use the same core mechanism for fixing the price of an asset. In this
paper, we distil this shared approach into a primitive we call red-black
coins. We use a model to demonstrate the primitive’s financial character-
istics and to reason about how it should be priced. Real world projects
do not use the red-black coin primitive in isolation but lay on other
mechanisms and features to provide fungibility and to reduce exposure
to price drops. One mechanism is called liquidation, however liquidation
is hard to analyze as it relies on human behaviour and could produce
unintended economic consequences. Therefore we additionally develop
a design landscape for extending the red-black coin primitives and put
forward a research agenda for alternatives to liquidation.

1 Introductory Remarks

Cryptocurrencies like Bitcoin (BTC) and Ether (ETH) are marked by extreme
volatility in price relative to the US dollar (USD). As decentralized finance
(DeFi) services mature on Ethereum, a critical component to their success is
letting users choose between holding ETH and holding a stablecoin that targets
USD (or some other metric of stability) in price.

Some stablecoins work like a hypothetical vending machine [3]: Alice deposits
two ‘coins’ from a volatile currency (e.g., a cryptocurrency like ETH) into the
machine and it returns to her two new coins—a ‘black’ coin that is stable and a
‘red’ coin that is even more volatile in price than the original coins Alice put in.
Together, the red and black coins are equal in value to the two input coins. The
machine cannot reduce overall price volatility, but it can push volatility from
the black coin onto the red coin.

Consider the following example of such a stability mechanism. An asset is
chosen that is considered stable by definition (e.g., the US dollar). The vending
machine is implemented as a decentralized app (DApp; a.k.a., smart contract)
on a blockchain (e.g., Ethereum). Alice deposits an amount of ETH worth $1.50
USD into the DApp. The DApp references a trusted oracle service for the current
ETH/USD exchange rate to enforce this. The DApp holds the ETH as a deposit
for future redemption, and returns to Alice a red coin and a black coin (e.g., as
ERC-20 tokens). Alice can sell one or both coins. In the future, the owner of the
black coin can redeem it for ETH from the DApp, and receive the equivalent
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 136–145, 2021.
https://doi.org/10.1007/978-3-662-63958-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_12&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_12

Red-Black Coins: Dai Without Liquidations 137

of $1.00 USD. This assumes the initial deposit of $1.50 USD worth of ETH is
still worth at least $1.00 USD at redemption time—if not, the black coin owner
receives all of the collateral. The red coin holder receives any remaining ETH
after the black coin holder is paid.

The key idea is that the black coin will nearly always be worth the equivalent
of $1.00 USD. This is true when ETH/USD increases in value, stays the same,
or declines moderately. Only if it declines significantly does the black coin start
to experience volatility in price—its redemption value will decrease at the same
rate as ETH/USD itself. For the red coin, the redemption value increases and
decreases as ETH/USD itself increases and decreases, however the gains and
losses are amplified. This is an overview; we return to these details below.

Synthetic Assets. The red-black coin primitive can be generalized to produce
black coins that match the price of any financial asset, not just a currency like
the USD, simply by changing the price that the oracle references. For example, a
black coin for one share of the company Apple (APPL) would use an ETH/APPL
price feed (possibly constructed by bridging ETH/USD and APPL/USD prices)
and otherwise be exactly the same. These black coins are “synthetic assets”
because they expose the holder to the price movements of the asset but do not
afford the holder any other benefits of holding the financial instrument (e.g.,
shareholder votes or dividends for equities; physical delivery for futures; or the
ability to settle a loan, or option contract on the asset). What a red coin repre-
sents in this example is less natural than for a stablecoin: it is a bet that ETH
will increase in price faster than APPL.

Relation to Dai. At the time of writing, the stablecoin Dai has (i) a market cap
of $800M (the largest of all non-centralized stablecoins); (ii) its parent service,
Maker, locks $1.2B worth of ETH (the third largest DeFi service, and the largest
stablecoin); and (iii) it is the most supplied and most borrowed asset on the DeFi
lending service Compound.1 Dai uses the red-black coin primitive—black coins
are called Dai and a red coin is a Vault (née collateralized debt position or CDP).
However the system is immensely more complicated because it adds a number
of features that the basic red-black coin primitive lacks: (1) interchangeability
(fungibility) of black coins across multiple producers, (2) a liquidation process
to incentivize red coin holders to increase the collateralized ETH as ETH/USD
declines or face an auction that automatically settles a red-black pair, and (3) fees
to balance supply/demand of black and red coins that are adjustable through a
distributed governance. Other projects built on the red-black primitive (for both
stablecoins and synthetic assets) include Synthetix’s sUSD,2 Kava’s USDX,3

UMA,4 and BitUSD.5

1 https://compound.finance/markets.
2 https://docs.synthetix.io/litepaper/.
3 https://www.kava.io/.
4 https://docs.umaproject.org/.
5 https://github.com/bitshares.

https://compound.finance/markets
https://docs.synthetix.io/litepaper/
https://www.kava.io/
https://docs.umaproject.org/
https://github.com/bitshares

138 M. Salehi et al.

Liquidations. The worst-case scenario for a red-black coin is a decline in the value
of ETH/USD. As a primitive, red-black coins simply force the holders to take on
this risk. By contrast, liquidations are the main preventative mechanism used by
full-fledged systems like Dai. Liquidations are controversial: many vault holders
have lost ETH due to liquidations, they require special monitoring tools (e.g.,
DeFiSaver.com), any analysis includes assumptions about how humans behave
and how fast market actions can be taken, and maligned incentives (e.g., return
DAI for ETH when ETH/DAI is in decline) can lead to economic crises and de-
leveraging spirals [5,9]. Liquidations failed Dai on Ethereum’s “Black Thursday”
event in March 2020 and required a bail-out. In this paper, red-black coins can
be thought of as “Dai without liquidations”. Since liquidations have a downside,
it is important to weigh these against what they contribute. To understand what
they contribute, we must first thoroughly understand red-black coins and their
shortcomings. Further it might be possible that liquidations are not the best tool
to address any shortcomings—we consider alternatives in Sect. 3.

1.1 Contributions and Related Work

We reference some financial instruments and terminology throughout the paper;
we refer the reader elsewhere for full explanations of these [6]. Several system-
ization of knowledge papers cover stablecoins [3,7,10,11]. Our notion of a red-
black coin is inspired by the ‘indirectly-backed’ classification from [3] and they
are categorized as ‘non-custodial’ stablecoins with ‘exogenous collateral’ [7]. The
stability mechanism is often described as allowing a user to ‘borrow’ USD from
themselves using their ETH as collateral [10,11]. We find this framing less intu-
itive than one of a simple derivative contract [3]. None of the SoKs provide
modelling of the stability mechanism in this paper, and instead focus on sur-
veying several different types of stablecoins. Maker is considered a decentralized
finance (DeFi) project and it (and other DeFi projects) has been studied from
orthogonal angles including attacks/measurements on governance and oracles,
attacks using flash loans, and modelling liquidity crises [4,5,7,9,12].

In this paper, we isolate and study the red-black coin primitive to better
understand its characteristics, which seems prudent before analyzing more com-
plex systems. We use the ETH price model from [5] to model how risky red
and black coins are under different scenarios. We then examine the necessity of
the extra infrastructure projects like what Maker adds to the red-black coins—
precisely what does the added complexity (e.g., stability fees, liquidation, global
shutdown, etc.) achieve and what are the design alternatives for the same func-
tionality? We assume that the market for red and black coins are perfectly liquid
to have a simple model to analyze. Others have explored the effect of supply and
demand and the possibility of market collapse due to the feedback effects on
liquidity and volatility from deleveraging effects during crises [8,9]. The key dif-
ference is these other works consider liquidations to be an inherent building block
in their analysis, whereas we study an even simpler stablecoin without liquida-
tions to better understand the parameters of what liquidations are supposed to

Red-Black Coins: Dai Without Liquidations 139

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) A red coin, a black
coin, and ETH equivalent to
$0.50.

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0 Black Coin

Red Coin

ETH ($0.50)

ETH ($1.50)

Portfolio

(b) A red coin, ETH equivalent to $1.50, and
a portfolio of a red coin and $0.94.

Fig. 1. Redemption value in USD (y-axis) as the price of ETH (x-axis) changes. (Color
figure online)

provide (and critically consider if these provisions could be better provider by
alternative mechanisms).

In addition to our work, there are other stablecoins that issue one stablecoin
and one volatile coin but provide stability through a different mechanism, such
as algorithmically expanding and contracting supply [14]. Cao et al. frame their
stablecoin as a financial instrument and use traditional option theory models to
analyze their system [2].

2 Financial Characteristics

In this section, we answer questions about the financial characteristics of the
red-black primitive. Consider a black coin that targets $1 USD when 1 ETH is
$381.56 USD, and the DApp holds 0.00393126 ETH (worth $1.5 USD). Assume
for now that (i) a red-black coin is a (non-fungible) contract between two individ-
uals, (ii) it has a fixed maturity date, and (iii) no one intervenes when ETH/USD
declines enough that black coins starts to lose value (no liquidations). Figure 1(a)
shows how much a black coin is worth (y-axis) as the price of ETH varies (x-
axis). The starting point ($381.56 USD) is marked and if the price of ETH
increases (rightward), the black coin is always worth $1. If the value of ETH
decreases (leftward), the black coin is still stable until the value of ETH hits
$254.37 (marked)—at this point, 0.00393126 ETH starts to become worth less
than $1 and the black coin ‘breaks the buck.’

Figure 1(a) also shows the redemption value of a red coin. When created, a
red coin is redeemable for $0.50 USD. A user with $0.50 USD can choose between
purchasing a red coin or purchasing ETH (also shown). In both cases, the user
profits when ETH increases and loses when ETH decreases in price. However the
slope of red coin is greater. This indicates it is a leveraged position in ETH.

2.1 How Much Should You Pay for a Black Coin?

Consider a black coin that is purchased today when ETH is $381.56 USD. How
much will it be worth in 100 days? In most future worlds, the black coin will

140 M. Salehi et al.

20 40 60 80 100

500

1000

1500

2000

(a) Price of ETH in USD (y-axis)
over number of days (x-axis).

200 400 600 800 1000

(b) Histogram of final price of ETH
in USD (x-axis).

Fig. 2. ETH/USD Monte Carlo simulation results.

be worth $1. In some future worlds (when ETH is worth less than $254.37), the
black coin will break the buck. But even here, it takes a ‘haircut’ on value as
opposed to being worthless (e.g., it can be redeemed for, say, $0.90).

The average value of a black coin for different possible outcomes can be esti-
mated if we have a statistical model for ETH price movements. In finance, many
statistical models have been proposed for many assets. Pricing ETH remains an
open research problem. Until future research from the finance community advo-
cates for the most appropriate model, we will sketch in some concrete numbers
using Geometric Brownian Motion (GBM), which underlies the Black-Scholes
model for pricing options [1] and has been used for ETH in other work [5].
We omit the details of the model itself (covered in nearly every financial text-
book [15]). We fit the model to the historical ‘closing’ prices of ETH for 1000
days prior to 18 Sept 20206 and obtain μ = 0.000744754 (an upward drift in
price over time) and σ = 0.0524172 (a measure of volatility). If we simulate
the next 100 days using Monte Carlo, we obtain the results in Fig. 2. For the
parameters of this example, the average value of the black coin is $0.94 USD
at the maturity date. Our model can be adjusted for the initial price, over-
collateralization ratio (Sect. 2.2), and days until redemption. It is available in
Python and Mathematica.7

As shown in Fig. 2(b), the expected return is log-normal. When we model
more than 100 days, the variance increases and the average redemption value of
a black coin decreases: $0.94 USD after 100 days, $0.85 USD after 200 days, and
$0.80 after 1 year. This does not mean the black coin is worth less over time, it
means the risk it falls out-of-the-money increases the more time you give it.

2.2 Why Would You Want a Red Coin?

While a stablecoin has utility to the holder, it is less clear what the utility of a red
coin is. A red coin is a leveraged position in ETH, which means that both gains
and losses are amplified—compare the slope of the red coin value with a $0.50
6 CoinGecko API: https://api.coingecko.com.
7 GitHub: https://github.com/GreatSoshiant/Monte-Carlo/tree/master/Code.

https://api.coingecko.com
https://github.com/GreatSoshiant/Monte-Carlo/tree/master/Code

Red-Black Coins: Dai Without Liquidations 141

ETH investment at the same starting point ($381.56 USD) in Fig. 1(a). Lever-
age is popular with investors. Investing in a red coin is equivalent to investing
$0.50 along with borrowing 2 × $0.50 in ETH (i.e., 3:1 leverage). If the over-
collateralization ratio is decreased from 1.50 to 1.10, then leverage for the red
coin increases to 11:1. However, the black coin becomes riskier and its 100-day
average value drops from $0.94 to $0.86. For a $2.00 collateralization, red coin
leverage is 2:1, and the black coin average value is $0.98.

Speculators seek out red coins but what about a user that wants to hold
ETH without any leverage? She seemingly has no interest in red (or black)
coins. Consider two scenarios: (a) she holds $1.50 worth of ETH; and (b) she
takes her $1.50 worth of ETH, issues and sells a black coin (e.g., for $0.97 USD),
and holds the red coin. She actually has a small portfolio of a red coin and close
to $1 USD. The redemption value of (a) and (b) are depicted in Fig. 1(b), along
with the red coin by itself. The portfolio is actually an attractive investment—
she has ‘insurance’ against catastrophic loss during a devaluation of ETH for a
small fixed ‘fee’—the $0.03 USD difference between what she received for the
black coin ($0.94) and what the DApp pays out to the black coin holder ($1.00).
Additionally, she produced a stable black coin, which has external benefit to the
decentralized economy.

3 Research Agenda: Extending Red-Black Coins

Red-black coins are primitives. Before deploying them, other aspects of
their design should to be considered. Design decisions include the matu-
rity/redemption policy, how to make black and red coins fungible, and inter-
ventions to prevent the black coin from breaking the buck. One path through
the decision tree leads to a design like Dai, however there are many other deci-
sions that could result in very different stablecoins that have not been thoroughly
explored by academics or the DeFi community to our knowledge. We do not pro-
pose a specific alternative but see our contribution as setting a research agenda.

3.1 Fungibility

Assume Alice creates a red/black coin, selling the red coin to Carol. Later, Bob
creates a red/black coin, selling the red coin to David. Alice’s black coin is not
identical to Bob’s black coin. Because they were created at different times, the
ETH/USD exchange rate is different, and thus the amount of collateral in ETH
in the DApp will be different. The more collateral, the more a black coin is worth
(recall Sect. 2.2). Such coins are not interchangeable or fungible which adds effort
to valuation and exchange.

One design option is to (1) forgo fungibility and have each coin pair be its
own individual contract between two counter-parties (a.k.a., over-the-counter
(OTC) contracts). This is the difference between, say, a forward and futures
contract [6]. A second option is to (2) pool the collateral of the red coins so
that each black coin is a claim against the pool. A pool can be unfair: the losses

142 M. Salehi et al.

are democratized to all black coin holders. When pooled, Alice might obtain a
black coin before an ETH/USD price bubble; all the black coins issued during
the rising bubble are backed by significantly less collateral and when the bubble
bursts (consider the case that it reverts to the pre-bubble price), the pool could
become under-collateralized, impacting Alice. Had Alice used an OTC contract
instead, her red coin would acquire and lose value with the bubble but not be
under-collaterialized after bursting.

A third option is to additionally offer (3) red coin fungibility. Since red
coins have variable collateral (based on when they were created), two conditions
need to be added to its transfer function: (i) red coins with less than a specified
collateral are not transferable, and (ii) red coins with more than the specified
collateral will transfer the surplus to the seller’s address while transferring it.
While this is not possible with vaults in Dai currently, it seems feasible to add.

3.2 Redemption

A policy for redeeming the collateralized ETH is the next design decision. Note
that the DApp can autonomously distribute the collateral without the participa-
tion of the red or black coin holder, however someone needs to trigger a function
call against the DApp to finalize the process.

Red-black coins could (1) mature on a pre-specified date (e.g., the first
day of a specified month). At any given time, red/black coins in circulation would
have one of a few different expiration dates, while still allowing some degree of
fungibility. Coin holders would shorten or extend their coins by trading for a
coin with a different maturity date. This is precisely how futures mature [6], and
yTokens are based on the same principle [13]. After maturity, the DApp would
lock all transfer functions and only allow withdrawal by the coin holders. The
first to ask for a withdrawal would trigger the DApp to look up the ETH/USD
price as of the maturity date and split the collateral accordingly.

Alternatively, red-black coins could be redeemed at any time (2) on demand
by the black coin holder, or (3) red coin holder, (4) either, or (5) both.
Options (in the US style) work on the principal of (2) or (3) [6,15]. Allowing
either to redeem is unlike anything we could find in traditional finance—we
speculate it would add uncertainty without any clear gain. Requiring both to
agree to redemption could be done by agreement, or (consistent with futures
contracts [6]), a red coin holder could acquire a (fungible) black coin and redeem
the (netted-out) pair.

3.3 Under-Collateralization

When the ETH/USD exchange rate drops enough that under-collateralization is
possible, the system could (1) do nothing and let the black coin holder price
the risk of this into the coin. If the design attempts further mitigation, the DApp
could operate like a margin trading account and require red coin holders to top-
up their collateral. If they do not, it is (2) liquidated (e.g., sold by auction for
black coins). The challenge is incentivizing users to sell USD-pegged black coins

Red-Black Coins: Dai Without Liquidations 143

for ETH when ETH/USD is in decline (a counter-cyclic investment). In Dai,
because collateral is pooled, liquidation is essential because under-collateralized
red coins hurt all black coin holders. When collateral is not pooled, liquidation
is useless for black coin holders because both ETH and black coins decrease in
value at the same rate (recall Fig. 1) so it is simpler to do nothing.

Liquidation does not incentivize topped-up collateral unless it is accompa-
nied by a (3) punishment (otherwise red coin holders might try to buy their
liquidated assets from themselves at a discount). Beyond charging a fee, a stable-
coin system might also withhold rewards (some systems used a secondary token
for providing governance and providing rewards) or block red coin transfers until
collateral is restored. In traditional financial markets, it is also the case that a
trader’s margin is inadequate to settle their account, they are still legally liable
for the difference. A stablecoin accompanied by a (4) reputation system could
mandate that red coin holders settle any obligation, however the potential loses
for a red coin holder becomes unbound. A different approach is to obtain (5)
insurance or financial coverage for the event of a decline in ETH/USD. This
could be actual insurance, whether decentralized or from a traditional brokerage,
or an offsetting financial investment that hedges the currency exchange risk.

The last approach is (6) bail out any losses through sales of a secondary
token. This was used recently by Maker for Dai holders when its normal pro-
cedures of (2) and (3) were not adequate for dealing with a sharp, unexpected
decline in the price of ETH on 12 March 2020 (‘black Thursday’). While the
auction was successful and recollateralized the pool, it cannot be guaranteed
that minting new tokens will be adequate for offsetting any incurred debt. This
event also exposed the lack of understanding and underestimation of risk by
many vault (i.e., red coin) holders who faced losses under (3), and raises the
question of whether a system should be designed that is more forgiving to red
coin holders in turbulent markets.

3.4 Autonomy

A design based on the red-black coin primitive that is OTC and does not liq-
uidate is entirely autonomous. It can be instantiated in a DApp and operate
without human intervention. While black coins are price-stable under most mar-
ket conditions, traders who are time-sensitive may forgo obtaining a good price in
order to trade quickly. This particularly is influential for stablecoins which pro-
vide a low-friction avenue in and out of speculative positions on the price of ETH.
Since red and black coins are issued in the same proportion, supply/demand
imbalances between them could also add volatility to the black coin price. This
could potentially be addressed in the design.

A non-interventionist approach would let the red and black coin price (1)
float freely. This avoids adding complexity to the design—in fact, a design goal
might be to design a system that traders can easily understand and grasp the
risk of. This could thwart potential lawsuits, such as a recent class action suit

144 M. Salehi et al.

against Dai.8 An alternative is to further stabilize prices by (2) setting rates
and fees at various points in the system. For example, if black coin holders
can redeem at any time, a fee could be charged to the black coin holder and
paid to the red coin holder. If redemption requires both a red and black coin,
the fee could be collected by the DApp. This principle is used by central banks
for targeting interest rates, and is used in Maker to control the spot market for
Dai. It is a struggle to set fees in the context of a decentralized and autonomous
organization—while allowing decisions to be voted on is a first step, it does
not guarantee that token holders are independent, informed, and not unduly
influenced by the ‘expert’ recommendations.

4 Concluding Remarks

In this paper, we distil complex stablecoin systems into one of their core prim-
itives, the red-black coin and provide a detailed study of its characteristics and
possible extensions. It would be useful to have research results on the most
suitable financial model for the ETH/USD price rate (e.g., drift-diffusion or
GARCH) for us to use in work like this paper. Future work could also exam-
ine the benefits of building a Dai alternative, still based on red-black coins but
using different design parameters. Two examples that seem interesting are: (a)
a more understandable system that reduces the amount of intervention, and (b)
a system with fungible red coins that can be traded freely. Finally, while our
paper answers the question of how much you should pay for a black coin, the
analysis is much more complicated for Dai—with pooled collateral, liquidation,
and bailouts, Dai is less risky than a simple black coin but the risk that these
countermeasures systemically fail is not zero.

Acknowledgements. We thank the reviewers who helped to improve our paper.
J. Clark acknowledges support for this research project from the National Sciences
and Engineering Research Council (NSERC), Raymond Chabot Grant Thornton,
and Catallaxy Industrial Research Chair in Blockchain Technologies, and the AMF
(Autorité des Marchés Financiers). J. Clark and M. Mannan further acknowledge
NSERC funding through Discovery Grants.

References

1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit.
Econ. 81(3) (1973)

2. Cao, Y., Dai, M., Kou, S., Li, L., Yang, C.: Designing stable coins. Technical report,
Duo Network Whitepaper (2018)

3. Clark, J., Demirag, D., Moosavi, S.: Demystifying stablecoins. Commun. ACM. 63
(2020)

4. Gu, W., Raghuvanshi, A., Boneh, D.: Empirical measurements on pricing oracles
and decentralized governance for stablecoins. In: Cryptoeconomic Systems (2020)

8 https://www.coindesk.com/28m-makerdao-class-action-lawsuit-arbitration.

https://www.coindesk.com/28m-makerdao-class-action-lawsuit-arbitration

Red-Black Coins: Dai Without Liquidations 145

5. Gudgeon, L., Perez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis. In: CVCBT (2020)

6. Harris, L.: Trading and Exchanges: market Microstructure for Practitioners.
Oxford (2003)

7. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., Minca, A.: Stablecoins 2.0:
Economic foundations and risk-based models. In: Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pp. 59–79 (2020)

8. Klages-Mundt, A., Minca, A.: (In) stability for the blockchain: Deleveraging spirals
and stablecoin attacks. arXiv preprint arXiv:1906.02152 (2019)

9. Klages-Mundt, A., Minca, A.: While stability lasts: a stochastic model of stable-
coins. Technical report, arXiv (2020)

10. Moin, A., Sekniqi, K., Sirer, E.G.: SoK: a classification framework for stablecoin
designs. In: Financial Cryptography (2020)

11. Pernice, I.G.A., Henningsen, S., Proskalovich, R., Florian, M., Elendner, H.: Mon-
etary stabilization in cryptocurrencies: Design approaches and open questions. In:
CVCBT (2019)

12. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
flash loans for fun and profit. Technical report, arXiv:2003.03810v2 (2020)

13. Robinson, D., Niemerg, A.: The yield protocol: on-chain lending with interest rate
discovery. Technical report, Yield.is, April 2020

14. Sams, R.: A note on cryptocurrency stabilisation: Seigniorage shares (2015)
15. Seydel, R.U.: Tools for Computational Finance, 4th edn. Springer, Heidelberg

(2009). https://doi.org/10.1007/978-3-540-92929-1

http://arxiv.org/abs/1906.02152
http://arxiv.org/abs/2003.03810v2
https://doi.org/10.1007/978-3-540-92929-1

DeFi – Formal Attack Analysis

Formal Analysis of Composable DeFi
Protocols

Palina Tolmach1,2(B), Yi Li2, Shang-Wei Lin2, and Yang Liu2

1 Institute of High Performance Computing, Agency for Science,
Technology and Research, Singapore, Singapore

2 Nanyang Technological University, Singapore, Singapore
{palina001,yi li,shang-wei.lin,yangliu}@ntu.edu.sg

Abstract. Decentralized finance (DeFi) has become one of the most
successful applications of blockchain and smart contracts. The DeFi
ecosystem enables a wide range of crypto-financial activities, while the
underlying smart contracts often contain bugs, with many vulnerabilities
arising from the unforeseen consequences of composing DeFi protocols
together. In this paper, we propose a formal process-algebraic technique
that models DeFi protocols in a compositional manner to allow for effi-
cient property verification. We also conduct a case study to demonstrate
the proposed approach in analyzing the composition of two interacting
DeFi protocols, namely, Curve and Compound. Finally, we discuss how
the proposed modeling and verification approach can be used to analyze
financial and security properties of interest.

1 Introduction

With more than $12 billions currently locked inside, decentralized finance (DeFi)
becomes one of the most prominent applications of the blockchain technology [10].
DeFi protocols implement various financial applications, including analogs of
traditional-finance use cases, such as lending [21], exchange [4,12], investment [2],
etc. These protocols give users access to digital assets, e.g., tokens, and expose
them to the cryptocurrency market. As an example, stablecoins are cryptocur-
rencies providing minimum volatility by pegging their prices to fiat money, real-
world commodity, or a more “stable” cryptocurrency, such as ETH [29].

At the same time, billions of dollars stored in DeFi stimulate the invention
of new security attacks. Unlike other smart contracts applications, the security
of DeFi protocols can be compromised by not only software vulnerabilities but
also unforeseen movements in the cryptocurrency market or arbitrage and spec-
ulation opportunities. For example, an attacker drained $2M of funds from the
(twice audited) Akropolis DeFi platform [14] through a well-studied reentrancy
vulnerability [15,27,35]. As another example, in March 2020, the network con-
gestion caused by market instability led to major disruptions and losses in some
of DeFi protocols during the events of so-called “Black Thursday” [31].

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 149–161, 2021.
https://doi.org/10.1007/978-3-662-63958-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_13&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_13

150 P. Tolmach et al.

A distinctive feature of DeFi applications is their similarity to the pieces
of so-called Money Legos [40]. In other words, the design of DeFi protocols
often facilitates interoperability between them including the support of tokens
issued by different DeFi platforms. While the composability of DeFi applica-
tions enables the construction of a decentralized financial ecosystem, integra-
tions between protocols contribute to the creation of new attack vectors. For
example, a recent attack on the Harvest yield aggregation protocol [1] was made
possible due to its dependence on the prices reported by the Curve decentralized
exchange protocol [12]. By performing a $17M trade in Curve, the attacker could
indirectly manipulate the price of tokens in Harvest, obtaining $24M of protocol
funds [13]. An established way to rigorously verify correctness of safety-critical
systems, including smart contracts, is to employ formal analysis [43]. In the field
of DeFi, security audits often involve formal analysis, but usually focusing only
on the verification of individual protocols. Yet, the “money-lego” structure of the
DeFi ecosystem demands compositional analysis, which allows reasoning about
the possible interplay between DeFi protocols and their impact on each other.

To model and analyze the behaviors of composable DeFi protocols, we formu-
late general formal models of components of DeFi protocols, particularly, tokens
and pools. Based on their actual implementations, we develop process-algebraic
models of two widely used DeFi protocols: a decentralized exchange—Curve
Finance [12], and a lending protocol—Compound [21]. In addition, we formally
model the behavior of the USDC stablecoin. Using the developed model, we
formally verify some of the (already stated) relevant properties of the proto-
cols under consideration. Finally, we formulate safety and correctness properties
that are expected to hold throughout the interactions between the considered
protocols.

2 Background

In this section, we provide necessary background for the rest of the paper.

2.1 DeFi Protocols

We consider two common types of DeFi protocols: decentralized exchanges (DEX)
and protocols for loanable funds (PLF), a.k.a. lending protocols.

Decentralized Exchanges. DEX is one of the first and most popular DeFi appli-
cations. While a centralized exchange has to match a seller with a specific buyer,
a typical DEX uses smart contracts to execute trades asynchronously [5,11]. A
pool, implemented using smart contracts, stores the reserves of two or more types
of tokens and automatically determines the exchange rate between these tokens.

A common way to determine the exchange rate between assets within a
DEX pool is by maintaining a constant-product and/or constant-sum invariant
between the values of the tokens contained in the pool. Essentially, the invariant
implies that if a user trades t1 for t2, the price of t1 in the pool goes down, while

Formal Analysis of Composable DeFi Protocols 151

the price of t2 increases. This model, therefore, provides an arbitrage opportunity
for the users of DEXes, encouraging them to deposit or sell tokens of type t2 at
a higher price, which thereby restores the balance between tokens.

Lending Protocols. PLFs [17,30] rely on smart contracts to mediate token lend-
ing and borrowing. Different from DEXes, lending pools collect assets of (usually)
one token type from liquidity providers. In return, the depositors are given pool
tokens with the value constantly increasing from the interest fees paid by bor-
rowers. The interest rate for borrowers depends on a chosen interest rate model
and is usually decided by the utilization rate—the ratio between the supply and
demand of the pool. To protect a protocol from the cryptocurrency volatility, the
borrower is also supposed to supply a collateral (e.g., in ETH or a stablecoin)
that is bigger than the amount of borrowed funds by at least a collateralization
ratio.

2.2 Formal Modeling and Verification

Communicating Sequential Process (CSP) [18] is a formal language for describing
patterns of interaction for concurrent systems [34]. A CSP model contains a set
of synchronized or interleaving processes, each of which consists of a sequence of
ordered events. For instance, a process P , with an event a followed by another
event b, can be written as “P = a → b”. Multiple processes can be composed
either sequentially or in parallel. Sequential composition of two processes P and
Q (denoted by P ; Q) acts as P first, and acts as Q upon the termination of
P . The two processes can also be composed in parallel and synchronized on an
event X (P | [X] | Q), or asynchronously (P ||| Q). Finally, a process Q can
interrupt another process P when event e happens (P � e → Q). The detailed
syntax are summarized as follows.

P := STOP | SKIP | e → P | P � P
| P � P | P ||| P | P | [X] | P | P \ X
| P ; P | if b then P else P | P � P

CSP# [28,38] is an extension to CSP with embedding of data operations. CSP#
combines high-level compositional operators from process algebra with program-
like codes, which makes the language much more expressive. The models and
properties specified in CSP# can be checked using Process Analysis Toolkit
(PAT) [28,36,37], which is a framework for specification, simulation, and verifi-
cation of concurrent and real-time systems. PAT supports event-based composi-
tional models and efficient LTL model checking with various fairness assumptions.
Model checking [9] is widely used to verify state-transition systems of one or sev-
eral interacting smart contracts against a temporal logic specification [39]. In
this work, we use the model checker of PAT to verify the properties of individual
and interacting DeFi protocols, as described in Sect. 4.

One unique feature of PAT is that it allows users to define static functions
and data types as C# libraries. These user-defined C# libraries are built as

152 P. Tolmach et al.

DLL files and are loaded during execution, which compensates for the common
deficiencies of model checkers on complex data operations and data types. We
utilize this capability and implement complex mathematical computations under-
lying the token price calculation in C#. Finally, the translation from high-level
smart contract programming languages, such as Vyper and Solidity, to C# is
straightforward.

3 Methodology

To reason about a system of interconnected protocols, we use a process-algebraic
approach to model various components of the DeFi ecosystem. First, we formally
define the main components of DeFi applications along with the environment
models. Then, we model two widely used Ethereum DeFi protocols and their
interactions using CSP#, by translating the major smart contract functions
into CSP, in a similar fashion to some of the previous work [22,33].

3.1 Protocol Formal Modeling

In this section, we propose formal definitions for the two key constituents of
lending and exchange DeFi protocols: token and pool.1 The behaviors of the
aforementioned objects can be formalized as state transition systems, and we
focus on their states here.

We model the states of users, smart contracts and the environment variables
(e.g., block.number) as global variables in the CSP# model. Functions, on the
other hand, are translated into processes. Inspired by [6], we assume a set of
blockchain users (U) and a set of tokens (T). Tokens are programmable assets
managed by smart contracts [8]. The majority of tokens used in DeFi protocols,
except the native platform cryptocurrency ETH, are implemented in the form of
a contract conforming to the ERC20 standard [41]. ERC20 regulates the devel-
opment of fungible tokens by specifying the interface of the corresponding smart
contract, i.e., public functions and events that it should emit during executions.
In accordance with the standard, we define tokens in Definition 1.

Definition 1 (Token). A token t ∈ T is a tuple (U,TS ,B ,A,F), where U is
a set of users, TS ∈ Z�0 is the total supply, B : U �→ Z�0 is the mapping from
users to their token balances, A : U × U �→ Z�0 specifies the allowances, i.e.,
amounts of token that a user is allowed to spend from another user’s balance,
and F is the set of state-changing functions modifying the state of the token.

Given a token t ∈ T, we use t .TS to denote its total supply and t .A to
denote its allowances, and so on. The balance invariant of t satisfies the formula:
t .TS =

∑
u∈U

t .B(u). F includes functions changing the values of A, B , and TS ,
e.g., approve(), transfer(), transferFrom(), mint(), burn(), etc. Figure 1
demonstrates a partial implementation of the state of the USDC token in a

Formal Analysis of Composable DeFi Protocols 153

Fig. 1. USDC token state implementation in CSP#.

Fig. 2. CSP# process for the add liquidity() function of a Curve pool.

model with N participants. Formally, the state of a user account u is the set of
balances of tokens in the user’s possession, i.e., {t .B(u) | u ∈ U and t ∈ T}.

Definition 2 specifies pools, which are smart contracts used to aggregate a
number of tokens.

Definition 2 (Pool). A pool P is a tuple (TP ,T
R
P ,FP), where TP ⊂ T is a

set of pool tokens of P,2 T
R
P ⊂ T is a set of liquidity tokens supported by P, and

FP is a set of functions {(TP × T
R
P) �→ (TP × T

R
P)}i changing the state of P.

Depending on the protocol application, liquidity tokens T
R
P ⊂ T are used

to facilitate decentralized token exchange, lending, investments, or other DeFi
use cases. Liquidity pools in DEX usually hold liquidity in two or more types of
tokens [3,4,12], while lending protocol [21] or yield aggregator [2] pools typically
accept a single type of token as input. In both cases, the users depositing tokens
(a.k.a. liquidity providers) receive a certain amount of pool tokens (TP), which
represent user’s share and can be used to redeem the deposit with the earned
interests from the pool. FP is a set of functions that can change the state of
a pool. Figure 2 illustrates the process-algebraic encoding of a state-changing
function that implements adding liquidity to a pool from the Curve protocol.
To mimic the atomic transaction execution model in Ethereum, we mark state-
changing processes as atomic, so that their executions cannot be interrupted by
an interleaving.

3.2 Protocol Composition

Now, we illustrate how interactions between users and DeFi protocols (user-
protocol) as well as interactions among different protocols (protocol-protocol) can
1 Depending on the application, pools are also referred to as markets, vaults, or pairs.
2 Most of the pools in DeFi support a single pool token.

154 P. Tolmach et al.

be modeled formally. In both cases, the initiator of a transaction sends a certain
amount of tokens to a receiving DeFi protocol and/or receives some tokens from
it in return.

In the case of user-protocol interaction, we model the behavior of a user by a
sequential composition (denoted by ‘;’) of one or more processes. These processes
correspond to the public state-changing functions of DeFi protocols and tokens
invoked by the user. For example, the behavior of a depositor in Curve (i.e.,
Curve Depositor) is demonstrated in Fig. 3.

Fig. 3. The implementation of Curve depositor behavior in CSP#.

The subject system is then modeled by an interleaving (denoted by ‘|||’) of
such user processes. For instance, Fig. 4 shows the depositor, exchanger, and
borrower processes composed asynchronously, which simulates possible state
changes in interacting protocols caused by concurrently acting users. The pro-
cesses simulating state-changing functions are atomic, i.e., executing without
interruption so that the interleaving between user processes can only happen
after a state-changing process is finished. We simulate the block mining using a
process that increases the value of the block number variable.

Fig. 4. The analyzed user composition.

The protocol-protocol interactions in DeFi smart contracts are external calls
to a function of another protocol. Following a similar approach, we model smart
contract functions with external calls to other DeFi applications and token
contracts as an atomic sequential composition of corresponding processes. The
sequential composition of two processes ensures that the former process has to
finish before the latter can start, so that the model operates similarly as the
execution of internal transactions in blockchain. The CSP# representation of a
function that implements adding liquidity to a pool of the Curve DeFi proto-
col is shown in Fig. 2. The communication among users, tokens, and different
protocols is simulated via shared global variables, such as token balances shown
in Fig. 1.

Formal Analysis of Composable DeFi Protocols 155

Fig. 5. A scheme of token transfers between Curve Compound pool participants.

4 Evaluation

In this section, we evaluate our modeling approach by checking a set of relevant
properties on Compound pool of the Curve DEX3 using PAT and report on
the results of property verification. We performed the evaluation on a virtual
machine with Windows 10, 8 GB RAM and 1 CPU core, using PAT version 3.5.0.
The virtual machine is running on MacOS Catalina v.10.15.7, 32 GB RAM and
2 GHz quad-core Intel Core i5 processor.

The Curve Compound pool allows trading between a pair of stablecoins:
USDC and DAI. Under the hood, the Curve pool transfers its USDC and DAI
to a lending platform Compound, in exchange for the corresponding Compound’s
pool tokens—cUSDC and cDAI. cUSDC and cDAI are, therefore, used for all
the operations within the Curve Compound pool. Figure 5 outlines the process
of adding liquidity to the Curve Compound pool: 1 a liquidity provider sends
USDC and/or DAI to the pool; 2 Curve supplies the received USDC to the
USDC Compound pool and 3 receives an appropriate amount of cUSDC in
return; 4 - 5 the same process is repeated for DAI/cDAI; 6 the user receives
a certain amount of cCrv—a pool token of the Curve Compound pool.

State-changing actions of interest include providing and removing liquidity in
both Curve and Compound, exchanging tokens in Curve, and taking/repaying a
loan in Compound. In this paper, we mostly concentrate on the operations that
involve USDC: in our model, a liquidity provider on Curve adds and withdraws
liquidity in USDC, while Compound depositors and borrowers also perform the
corresponding actions with the USDC Compound pool. To model slippage and
front-running that can occur in the pool of a DEX, the token exchanges between
cUSDC and cDAI in Curve can happen in both directions. We assume that
the modeled trading activity reflects the possible changes in the USDC/DAI
exchange rate, which we do not explicitly consider otherwise. In addition, since
we focus on the operations involving the USDC stablecoin, we simplify the imple-
mentation of DAI to basic ERC20 functionality and do not consider the underly-
3 https://www.curve.fi/compound.

https://www.curve.fi/compound

156 P. Tolmach et al.

Table 1. A summary of verified properties.

ing stabilizing mechanism implemented by MakerDAO. We modeled pools and
tokens by manually translating their source code written in Solidity or Vyper
to CSP# and C# languages supported by PAT. While the translation between
high-level languages (e.g., Solidity/C#) is straightforward, data operations and
programming constructs supported by CSP# also facilitate translation to a mod-
eling language. The source code of the model can be found in a repository:
https://github.com/polinatolmach/DeFi-csp-models/.

Based on the defined model, we formulated and verified properties for tokens,
individual DEX and lending DeFi applications as well as their composition. LTL
formulae and verification results for the properties are demonstrated in Table 1.
The first property in Table 1 is the Balance Invariant [39]—an important prop-
erty related to tokens, which we verify for all the tokens involved in the modeled
composition: stablecoins (USDC and DAI) and pool tokens (cCrv, cUSDC, etc.).
Property (2) in Table 1 is a token-related requirement for a composition of pro-
tocols stating that the positively-valued tokens should never produce zero tokens
(Proportional Token Exchange) [7]. We verified that this requirement holds for
all pairs of tokens involved in the process of adding liquidity to the Curve Com-
pound pool (Fig. 5).

Among the properties of individual protocols, our model allows verification of
the exchange rate of the pool token in Compound being non-decreasing, meaning
that a liquidity provider always receives a guaranteed interest on her deposit
(Property (3) in Table 1). For a liquidity provider on Compound, we additionally
checked whether her profit from providing and then redeeming liquidity can only
be non-negative (Property (4) in Table 1). While this requirement holds under
normal conditions, it does fail in the event of overutilization, i.e., if the pool does
not have enough liquidity to repay the depositor. To model overutilization, we
defined a user who borrows all the available liquidity from the Compound pool.
For simplicity, we omited the collateralization requirements in our model—each
loan is assumed to be collateralized using the token that is not considered in the
current model (e.g., ETH). Although the simplifications assumed in our model

https://github.com/polinatolmach/DeFi-csp-models/

Formal Analysis of Composable DeFi Protocols 157

allow reaching overutilization easier than it is in reality, it remains one of the
main risks associated with lending protocols [6].

Overutilization in a Compound pool causes a violation of an analogous prop-
erty defined for a Curve liquidity provider, showing the potentially harmful
effects of composability. In other words, the users of both Compound and Curve
are not always able to redeem their original deposit back. Considering that a
liquidity provider in a DEX can legitimately suffer losses from the impermanent
loss, the property (5) in Table 1 requires the loss to be bounded by a certain
value, which we set to 20% of the original deposit. This requirement can also
be violated in an anticipated way due to front-running and slippage caused by
massive trades made by other users. The violations of both properties are iden-
tified by PAT in sub-second time. Being an on-the-fly model checker, PAT stops
constructing and exploring the state space after detecting the violation, which
explains the time discrepancy between the verification of properties (1)–(3) and
(4), (5). For both violated properties, the reachability analysis in PAT also helps
identify the maximum possible losses and profits for both Curve and Compound
depositors. Finally, we confirmed the violation of properties on a locally deployed
Ethereum network, assuming the same set of simplifications to smart contracts
as in the model.

The performed evaluation demonstrates the suitability of applying process
algebra CSP for modeling concurrently acting users and DeFi protocols on
blockchain. The results also confirm that model checking can automatically
reveal undesirable conditions in the operation of a single DeFi protocol or a
composition of those. However, with expanding the composition of modeled users
and protocols, the number of states grows exponentially. To combat the state
explosion problem, we consider utilizing techniques from the area of composi-
tional verification, such as assume-guarantee reasoning [23–25], which we leave
for future work.

5 Related Work

The analysis of DeFi protocols is a relatively new field. The existing works
often focus on specific types of DeFi protocols or investigate abnormal behaviors
observed in the wild. For example, Liu and Szalachowski explored the usage of
oracles in four major DeFi platforms [26], revealing the operational issues inher-
ent in oracles and common deviations between the real and reported prices.

A number of articles analyze the attack vectors that involve a flash loan [16,
32], while Wang et al. [42] proposed a framework that allows the identification
and classification of flash loan transactions. Their technique is able to detect
speculative usage of flash loans and other potentially harmful behaviors.

Several studies explore the operation and properties of DeFi lending proto-
cols [6,17,19,30]. Kao et al. [19] utilized agent-based simulations to analyze the
market risks faced by the Compound lending protocol users. Stress-tests were
performed to demonstrate the scalability of the protocol on a larger borrow size
under reasonably volatile conditions. Formal models of lending protocols and

158 P. Tolmach et al.

their pools were formulated in two recent publications [6,30]. Bartoletti et al. [6]
also formulated the fundamental properties of lending pools and typical ways of
their interaction with other DeFi protocols. Meanwhile, Perez et al. [30] utilized
the abstract formal model of Compound to explore the possibility of liquidations
of undercollateralized positions. Different from the discussed publications, this
paper formulates a more general formal model of a pool, which can be used to
formalize both lending and DEX protocols.

In addition, Klages-Mundt et al. [20] proposed a framework for modeling
and classifying stablecoins. The authors also formulated and examined the risks
associated with stablecoins and their use in the DeFi ecosystem. The formal
model of a token considered in this paper is of a higher level and does not cover
its underlying economical mechanism.

Finally, a recent publication by Bernardi et al. [7] proposed a set of invari-
ants that are relevant for individual DeFi protocols, including DEXes and lending
platforms. While our study involves verification of some of the invariants pro-
posed in this article, we further extend them to the system of interacting DeFi
protocols.

6 Conclusion and Future Work

In this paper, we proposed formal definitions for the main components of DeFi
protocols and an approach to model their implementations and interactions in
a process-algebraic modeling language. We demonstrated how model checking
can automatically verify correctness properties for a composition of DeFi proto-
cols and tokens. The proposed technique successfully identifies the DeFi-specific
conditions that cause the violations of these properties.

As future work, we plan to enrich the models to account for functionality
related to liquidity-mining and governance mechanisms in the considered DeFi
protocols. We would also like to extend the set of properties to cover both security
vulnerabilities and the cryptoeconomical aspects of DeFi executions. Finally, to
address the state explosion problem, we plan to integrate techniques from the
area of compositional verification.

Acknowledgements. This research is partially supported by the Ministry of Educa-
tion, Singapore, under its Academic Research Fund Tier 1 (Award No. 2018-T1-002-
069) and Tier 2 (Award No. MOE2018-T2-1-068), and by the National Research Foun-
dation, Singapore, and the Energy Market Authority, under its Energy Programme
(EP Award No. NRF2017EWT-EP003-023). Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not
reflect the views of National Research Foundation, Singapore and the Energy Market
Authority.

Formal Analysis of Composable DeFi Protocols 159

References

1. Harvest Finance (2020). https://harvest.finance/. Accessed 12 Oct 2020
2. Introduction to Yearn - yearn.finance (2020). https://docs.yearn.finance/. Accessed

12 Nov 2020
3. Whitepaper - Balancer (2020). https://balancer.finance/whitepaper/. Accessed 12

Oct 2020
4. Adams, H., Zinsmeister, N., Robinson, D.: Uniswap v2 Core Whitepaper (2020).

https://uniswap.org/whitepaper.pdf. Accessed 12 Oct 2020
5. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of uniswap

markets (2020). https://arxiv.org/abs/1911.03380
6. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SOK: lending pools in decentral-

ized finance (2020). https://arxiv.org/abs/2012.13230
7. Bernardi, T., et al.: WIP: finding bugs automatically in smart contracts

with parameterized invariants (2020). https://www.certora.com/pubs/sbc2020.
pdf. Accessed 14 July 2020

8. Chen, W., Zhang, T., Chen, Z., Zheng, Z., Lu, Y.: Traveling the token world: a
graph analysis of Ethereum ERC20 token ecosystem. In: Proceedings of The Web
Conference 2020. WWW 2020, pp. 1411–1421. ACM (2020). https://doi.org/10.
1145/3366423.3380215

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

10. Coingape: DeFi success story continues as TVL peaks yet again; hits $12
billion (2020). https://coinmarketcap.com/ru/headlines/news/defi-success-story-
continues-as-tvl-peaks-yet-again-hits-12-billion. Accessed 18 Nov 2020

11. Daian, P., et al.: Flash boys 2.0: Frontrunning, transaction reordering, and con-
sensus instability in decentralized exchanges (2019). https://arxiv.org/abs/1904.
05234

12. Egorov, M.: StableSwap - efficient mechanism for Stablecoin liquidity — Curve. fi
Whitepaper (2020). https://www.curve.fi/stableswap-paper.pdf. Accessed 18 Nov
18 2020

13. Finance, H.: Harvest Flashloan Economic Attack Post-Mortem (2020). https://
medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-
3cf900d65217. Accessed 18 Nov 2020

14. Foxley, W.: DeFi project Akropolis drained of $2m in DAI (2020). https://www.
coindesk.com/defi-project-akropolis-token-pool-drained. Accessed 14 Nov 2020

15. Grossman, S., et al.: Online detection of effectively callback free objects with appli-
cations to smart contracts. Proc. ACM Program. Lang. pp. 1–28 (2017). https://
doi.org/10.1145/3158136

16. Gudgeon, L., Perez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis (2020). https://arxiv.org/abs/2002.08099

17. Gudgeon, L., Werner, S.M., Perez, D., Knottenbelt, W.J.: DeFi protocols for loan-
able funds: interest rates, liquidity and market efficiency (2020). https://arxiv.org/
abs/2006.13922

18. Hoare, C.A.R.: Communicating Sequential Processes. International Series on Com-
puter Science, Prentice-Hall (1985)

19. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An Analysis of the Market Risk
to Participants in the Compound Protocol (2020). https://scfab.github.io/2020/
FAB2020 p5.pdf. Accessed 18 Nov 2020

https://harvest.finance/
https://docs.yearn.finance/
https://balancer.finance/whitepaper/
https://uniswap.org/whitepaper.pdf
https://arxiv.org/abs/1911.03380
https://arxiv.org/abs/2012.13230
https://www.certora.com/pubs/sbc2020.pdf
https://www.certora.com/pubs/sbc2020.pdf
https://doi.org/10.1145/3366423.3380215
https://doi.org/10.1145/3366423.3380215
https://coinmarketcap.com/ru/headlines/news/defi-success-story-continues-as-tvl-peaks-yet-again-hits-12-billion
https://coinmarketcap.com/ru/headlines/news/defi-success-story-continues-as-tvl-peaks-yet-again-hits-12-billion
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/1904.05234
https://www.curve.fi/stableswap-paper.pdf
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://www.coindesk.com/defi-project-akropolis-token-pool-drained
https://www.coindesk.com/defi-project-akropolis-token-pool-drained
https://doi.org/10.1145/3158136
https://doi.org/10.1145/3158136
https://arxiv.org/abs/2002.08099
https://arxiv.org/abs/2006.13922
https://arxiv.org/abs/2006.13922
https://scfab.github.io/2020/FAB2020_p5.pdf
https://scfab.github.io/2020/FAB2020_p5.pdf

160 P. Tolmach et al.

20. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., Minca, A.: Stablecoins 2.0. In:
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
October 2020. https://doi.org/10.1145/3419614.3423261

21. Leshner, R., Hayes, G.: Compound: The Money Market Protocol — Whitepa-
per (2020). https://compound.finance/documents/Compound.Whitepaper.pdf.
Accessed 18 Nov 2020

22. Li, X., Su, C., Xiong, Y., Huang, W., Wang, W.: Formal verification of BNB smart
contract. In: Proceedings of the BIGCOM, pp. 74–78, August 2019. https://doi.
org/10.1109/BIGCOM.2019.00021

23. Lin, S., Andre, E., Liu, Y., Sun, J., Dong, J.: Learning assumptions for compo-
sitional verification of timed systems. IEEE Trans. Software Eng. (02), 137–153
(2014). https://doi.org/10.1109/TSE.2013.57

24. Lin, S.-W., Liu, Y., Sun, J., Dong, J.S., André, É.: Automatic compositional verifi-
cation of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 272–276. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9 24

25. Lin, S.W., Sun, J., Nguyen, T.K., Liu, Y., Dong, J.S.: Interpolation guided com-
positional verification. In: Proceedings of the 30th IEEE/ACM International Con-
ference on Automated Software Engineering. ASE 2015, pp. 65–74. IEEE Press
(2015). https://doi.org/10.1109/ASE.2015.33

26. Liu, B., Szalachowski, P.: A first look into DeFi oracles (2020). https://arxiv.org/
abs/2005.04377

27. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.: ReGuard: finding reen-
trancy bugs in smart contracts. In: Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceedings, pp. 65–68. ACM (2018).
https://doi.org/10.1145/3183440.3183495

28. Liu, Y., Sun, J., Dong, J.S.: Pat 3: An extensible architecture for building multi-
domain model checkers. In: 2011 IEEE 22nd International Symposium on Software
Reliability Engineering, pp. 190–199 (2011). https://doi.org/10.1109/ISSRE.2011.
19

29. Moin, A., Sirer, E.G., Sekniqi, K.: A classification framework for stablecoin designs
(2019). https://arxiv.org/abs/1910.10098

30. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: DeFi on a knife-edge
(2020). https://arxiv.org/abs/2009.13235

31. Pulse, D.: DeFi status report post-black thursday (2020). https://defipulse.com/
blog/defi-status-report-black-thursday. Accessed 18 Nov 2020

32. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
flash loans for fun and profit (2020). https://arxiv.org/abs/2003.03810

33. Qu, M., Huang, X., Chen, X., Wang, Y., Ma, X., Liu, D.: Formal verification of
smart contracts from the perspective of concurrency. In: Qiu, M. (ed.) SmartBlock
2018. LNCS, vol. 11373, pp. 32–43. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-05764-0 4

34. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997).
iSBN 0-13-674409-5

35. Samreen, N., Alalfi, M.H.: Reentrancy vulnerability identification in Ethereum
smart contracts. In: 2020 IEEE International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 22–29 (2020). https://doi.org/10.1109/
IWBOSE50093.2020.9050260

36. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

https://doi.org/10.1145/3419614.3423261
https://compound.finance/documents/Compound.Whitepaper.pdf
https://doi.org/10.1109/BIGCOM.2019.00021
https://doi.org/10.1109/BIGCOM.2019.00021
https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1007/978-3-642-32759-9_24
https://doi.org/10.1007/978-3-642-32759-9_24
https://doi.org/10.1109/ASE.2015.33
https://arxiv.org/abs/2005.04377
https://arxiv.org/abs/2005.04377
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1109/ISSRE.2011.19
https://doi.org/10.1109/ISSRE.2011.19
https://arxiv.org/abs/1910.10098
https://arxiv.org/abs/2009.13235
https://defipulse.com/blog/defi-status-report-black-thursday
https://defipulse.com/blog/defi-status-report-black-thursday
https://arxiv.org/abs/2003.03810
https://doi.org/10.1007/978-3-030-05764-0_4
https://doi.org/10.1007/978-3-030-05764-0_4
https://doi.org/10.1109/IWBOSE50093.2020.9050260
https://doi.org/10.1109/IWBOSE50093.2020.9050260
https://doi.org/10.1007/978-3-642-02658-4_59

Formal Analysis of Composable DeFi Protocols 161

37. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a pro-
cess analysis toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol.
17, pp. 307–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88479-8 22

38. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs
for system modeling and verification. In: Proceedings of the 2009 Third IEEE
International Symposium on Theoretical Aspects of Software Engineering, pp. 127–
135 (2009). https://doi.org/10.1109/TASE.2009.32

39. Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Comput. Surv. 54(7), 38 p. (2021). Article no.
148. https://doi.org/10.1145/3464421

40. Totle: Building with Money Legos (2020). https://medium.com/totle/building-
with-money-legos-ab63a58ae764. Accessed 17 Nov 2020

41. Vogelsteller, F., Buterin, V.: ERC-20 token standard (2015). https://eips.ethereum.
org/EIPS/eip-20. Accessed 14 July 2020

42. Wang, D., et al.: Towards understanding flash loan and its applications in DeFi
ecosystem (2020). https://arxiv.org/abs/2010.12252

43. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 1–36 (2009). https://doi.org/10.1145/
1592434.1592436

https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1109/TASE.2009.32
https://doi.org/10.1145/3464421
https://medium.com/totle/building-with-money-legos-ab63a58ae764
https://medium.com/totle/building-with-money-legos-ab63a58ae764
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://arxiv.org/abs/2010.12252
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436

How to Exploit a DeFi Project

Xinyuan Sun1(B), Shaokai Lin2, Vilhelm Sjöberg1, and Jay Jie1

1 CertiK, New York, NY 10018, USA
{sxysun,vilhelm.sjoberg,jay.jie}@certik.io

2 University of California, Berkeley, Berkeley, CA 94720, USA
shaokai@berkeley.edu

Abstract. The growing adoption of decentralized finance poses new
security risks, as designing increasingly complex financial models is error-
prone. We have witnessed numerous DeFi projects hacked (for tens of
millions of dollars) because of unsound liquidation conditions, asset pric-
ing, or position management, etc. To address these issues, we present a
systematic way of finding vulnerabilities in DeFi projects based on auto-
matically extracting financial models from smart contracts and reasoning
about them symbolically using either a model checker or an interactive
theorem prover. Specifically, we (i) formalized the concept of soundness
in the financial model of a DeFi project which captures an interesting
class of exploits (flash-loan attacks), and (ii) built a domain-specific lan-
guage to automatically extract models from smart contracts and search
possible exploits or prove their soundness. To demonstrate the capability
of our approach, we model variants of most DeFi projects with a TVL
(total value locked) larger than 20M USD (totaling about 8B USD TVL)
and check their soundness. The result showed that we can automatically
find both previous exploits and potential new flaws in DeFi.

Keywords: Decentralized finance · Model checking · Formal
verification

1 Overview

In the past year, there have been so many decentralized finance project breaches
to the point that million-dollar hacks don’t make the news anymore. We reviewed
31 exploit incidents happened to DeFi in 2020 and found that they in total
caused a capital loss of 315.95M USD (Appendix A, Table 1), with the highest
attack resulting 50M USD of lost funds. The inability to find and prevent those
hacks resulted from the complexity of the DeFi “money Lego”—we not only
have to consider contract implementation correctness but also, more importantly,
the soundness of interleaved financial models. To quote an experienced auditor:
“If you go into a DEX audit without a full understanding of how options or
derivatives work, you are probably going about it all wrong.”

Challenges. To systematically study DeFi exploits, we face two challenges:

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 162–167, 2021.
https://doi.org/10.1007/978-3-662-63958-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_14&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_14

How to Exploit a DeFi Project 163

(i) We lack a classification of past financial security-related exploits on DeFi
projects. Earlier attack vectors like re-entrancy or access control only concern
simple semantics, and other functional correctness related hacks are well defined
with respect to the specifications. However, there has been little work in the
formalization of a DeFi exploit. People often argue if some exploit is a hack or
an arbitrage, especially in communities where decentralization is valued (smart
contract code is deemed as law for every trader to follow).

(ii) From the 31 DeFi attacks we studied, we found that 20 of them con-
cern high-level financial model details (e.g., token bonding curve economics,
AMM’s self-balancing mechanism, etc.,) hidden in the footnotes of the project
whitepaper or, worse, tens of thousands of lines of smart contract codes. The
complex nature of DeFi protocols makes it infeasible for us to reason directly
about the implementation. The truth is, current smart contract security solu-
tions [3–5,10] like pattern-based vulnerability matching or SMT-based verifica-
tion, though well-studied, are not tailored to formally reason about assets and
derivatives.

Attack Patterns. To address challenge (i), we studied 31 past “attacks”1 on
DeFi projects and found that they fall into three categories: unsound financial
models, arbitrages, or insecure implementations. The arbitrage case is unavoid-
able as arbitrage is necessary for decentralized exchanges to align their prices
with the real market price. The best thing we can do is to write a community
arbitrage bot on-chain and distribute revenue to liquidity providers (who are
usually losing money in arbitrage actions). If we consider priority gas auctions
where miners extract the most value with a consensus-level advantage, then
there is no way to stop this kind of “attacks” unless we devise a fairer auction
mechanism [1]. Furthermore, arbitrage has the smallest impact out of the three
categories in Table.1, with an average of 70k USD weekly profit and about 4M
USD gain over one year [12], consisting less than 2% of the total capital loss.
Insecure implementations of smart contracts (e.g., re-entrancy caused by inclu-
sion of ERC777 tokens [6]) are already well-addressed by previous work [3–5,10].
While these attacks can be caught by existing tools, they still happened because
some projects didn’t go through a proper audit, so these kind of attacks are
more of an engineering problem.

Scope. In this work we focus on unsound financial models, that is, we limit our
scope to exploits where the attacker can mint, hold or burn assets (tokens, or
positions representing a certain amount of token) at the expense of everyday
traders and liquidity provider’s interests, thus damaging the entire ecosystem’s
health. We emphasize on damaging the entire ecosystem’s health because in
cases like arbitrage or high slippage, reasonably-knowledgeable users should take
responsibility for their own bad trades, while in a financial model flaw situation,
the attacker can profit off users even if no one makes mistakes (even though some
people might argue that by using flash-loans to manipulate the spot market for
greater income in the derivatives constitutes an hack but is a necessary evil to

1 see appendix A.

164 X. Sun et al.

Fig. 1. DeFi exploit trends in 2020.

cool the market down by deleveraging). From Fig. 1, we can see that financial
models have been consistently attacked more than insecure implementations all
year, but exploits related to them only started to contribute a dominant amount
of capital losses since August, reaching a 66.48% at the end of year. This demon-
strates that financial model exploits has been increasingly more damaging than
insecure implementation exploits due to the mass adoption of DeFi since sum-
mer 2020. By reasonably-knowledgeable, we mean having knowledge of common
sense finance. For example, users know that they can make a profit by arbi-
traging different spot prices at different exchanges, or that when using a self-
balancing automated market maker, they should trade with the optimal price
calculated from the reserves. But a reasonably-knowledgeable user would not be
expected to know things that require detailed analysis of DeFi, e.g., that they can
profit from manipulation of token inflation models using some exchanges’ trad-
ing mechanism [11]. Additionally, we say a user is maximally-rational if they are
reasonably-knowledgeable and rational, i.e., they trade in a way that maximizes
their profits using their reasonable amount of knowledge. For example, if there
is a spot arbitrage opportunity created by their own trades, they will arbitrage
within the same transaction as their initial trade to front-run everybody else.
Another example would be taking liquidation reward of an under-collaterized
debt position on lending platforms (e.g., Compound).

Soundness. Formally, we model DeFi exploits in a model checking fashion. We
say that the application starts with an initial state s0 and transition functions
F = {f1, f2 . . . fn}, each abstracted from an actual state changing function in the
project’s smart contracts (e.g., borrow from AAVE [9]). If a state sj is derivable
from a state si by at most m arbitrary transactions which each can involve
up to n contract calls, we write si ⇒m,n sj . Note that each of the n contract
calls within one transaction have a single caller, sequential execution semantics
and deterministic ordering, while the m transactions have a non-deterministic
ordering (decided by miners). If in those m transactions and n contract calls
all users are maximally-rational, we write the transition relation as ⇒R m,n. We
define a state si as consistent if the state is the result of a series of interactions
between multiple maximally-rational traders. Intuitively, consistent states can
be understood as a state where spot and futures price of every trading pair is
uniform across all DEXs and CEXs within a reasonable bound (e.g., less than
the transaction fees). We say there is a hack of the financial model in a DeFi
project if there exists such si, a consistent state derivable from the initial state

How to Exploit a DeFi Project 165

s0 by relation ⇒∗,∗, from where the attacker can take an arbitrary amount of
interleaved (across different transactions) contract calls and reach a state sj
where the asset of the attacker at sj is strictly greater than his/her asset at si
while everybody else acts maximally-rationally. Therefore, we define the ideal-
soundness of a DeFi project as the absence of a hack: ¬∃si, sj , h, s.t.s0 ⇒∗,∗
si → consistent(si) → si ⇒R ∗,∗ sj → Ξ(h, si) < Ξ(h, sj), where Ξ(h, si) is the
total value of address h’s capital denoted in ETH, if liquidated, at state si.

k-soundness. The ideal-soundness property is infeasible to express or check (for
limitations of current automated reasoning techniques) in reality. For example,
what kind of knowledge is reasonable for a DeFi user to be assumed to know
is disputed, and the maximally-rational constraint on relation ⇒R m,n is hard
to express. Therefore, we make three refinements to the previous definition: (1)
we limit transaction transition from the sound state si to one, i.e., ⇒R 1,∗, so
that no other users can interact with the contract except for the attacker. This
means everyone is trivially maximally-rational as they do not operate. (Equiv-
alently, you can imagine this as only considering “flash loan”-style attacks, in
the sense that every operation within a flash-loan is deterministic and packed
into one transaction). (2) we further limit the number of possible contract calls
within that one transaction on si to a finite number k, i.e., ⇒R 1,k. This enables
us to use bounded model checking to traverse the state space symbolically so
that we can prove there are no possible exploits within k steps. (3) we drop
the requirement that state si has to be derivable from the initial state and we
arbitrarily start from a state si with concrete values generated under the con-
straint consistent. Altogether, we define this changed property as k-soundness.
We say a DeFi project is k-sound with respect to si if and only if given a concrete
contract state si that is consistent, there exists no address that can statically
(symbolically) find a way to increase its total asset within k interactions with
the contract: ¬∃sj , h, s.t.consistent(si) → si ⇒R 1,k sj → Ξ(h, si) < Ξ(h, sj).

Model Extraction. We address challenge (ii) by providing a domain specific
language to model assets in DeFi projects. We built the DSL using DeepSEA [8],
which can automatically extract the financial model we annotated into (1) the
UCLID5 [7] model checker and check for k-soundness, or (2) compile it to a
Coq specification so that we can prove stronger correctness like ideal-soundness
by manually. To make future usage easier, we provide a decentralized finance
model library written in our DSL that covers all popular services (liquidity farm-
ing, interest-bearing tokens, automated market makers, etc.). Moreover, since
DeepSEA has a certified compiler backend, we can emit executable EVM/eWasm
code for those asset-related functions after verifying their correctness. In the
future, we could also extend the model checker into checking liveness properties
like eventual governance to prevent failures like yam.finance [2].

Case Study. We used our language to model a past attack2 of the bZx project
which happened because of an incorrect liquidation check (the short position
hacker opened did not liquidate despite under-collateralization). Specifically, we
2 the bZx attack on Feb.15th, 2020, shown in appendix A.

166 X. Sun et al.

wrote simplified versions of the bZx and Uniswap contracts in DeepSEA and our
DSL automatically extracted them into UCLID5 models, we checked against k-
soundness (k = 5 in our setup) of the contract and it successfully gave us the
exploit pattern.

Acknowledgement. We would like to acknowledge the contribution of many col-
leagues on various related projects at CertiK, especially Ronghui Gu, Dan She, Jialiang
Chang, Junhong Chen and Zhaozhong Ni.

A Past Exploits on DeFi Projects

Table 1. Exploits on DeFi projects happened in 2020

Platform Attack type1 Reason Loss2 Date

bZx financial model liquidation check 830k 2020.2.15

bZx financial model oracle synchronization 642k 2020.2.18

Uniswap insecure implementation ERC777 re-entrancy 220k 2020.4.18

Lendf.Me insecure implementation ERC777 re-entrancy 24.7M 2020.4.22

Hegic financial model frozen funds 29k 2020.4.23

Bancor insecure implementation access control 131.9k 2020.6.19

Atomic Loans insecure implementation front-running N/A 2020.6.24

Balancer financial model deflation model 500k 2020.6.29

Balancer financial model reserve synchronization 2.7k 2020.6.29

Synthetix financial model oracle synchronization 30M 2019.6.30

VETH insecure implementation access control 900k 2020.7.1

Uniswap BZRX arbitrage bonding curve 531k 2020.7.14

Opyn financial model option exercise 371k 2020.8.4

Uniswap & Curve arbitrage spot arbitrage 43k 2020.8.10

NUGS financial model token inflation N/A 2020.8.12

Yam.finance financial model token inflation 60M 2020.8.12

SYFI financial model exchange rate 250k 2020.9.10

bZx insecure implementation double dipping 8M 2020.9.14

Soda financial model loan liquidation 160k 2020.9.20

Eminence financial model burning mechanism 15M 2020.9.29

Harvest.finance financial model interest model 33.8M 2020.10.26

Akropolis insecure implementation re-entrancy 20M 2020.11.12

Value DeFI financial model oracle manipulation 7.4M 2020.11.14

Cheese Bank financial model oracle manipulation 3.3M 2020.11.16

OUSD insecure implementation re-entrancy 7M 2020.11.17

88mph financial model token burning N/A 2020.11.19

Pickle.finance insecure implementation whitelist 20M 2020.11.22

Compound financial model oracle manipulation N/A 2020.11.26

Pickle.finance insecure implementation whitelist 20M 2020.11.22

Sushiswap financial model token conversion 15k 2020.11.30

Saffron Finance financial model frozen funds 50M 2020.11.30

Warp finance financial model oracle manipulation 7.7M 2020.12.18

Cover Protocol insecure implementation outdated cache 4.4M 2020.12.28

total N/A N/A 315.95M N/A

1 We do not include centralization issues (rug pulls)
2 Capital loss calculated using corresponding cryptocurrencies’ prices at time of exploit

How to Exploit a DeFi Project 167

References

1. Daian, P., et al.: Flash boys 2.0: Frontrunning, transaction reordering, and consen-
sus instability in decentralized exchanges. arXiv preprint arXiv:1904.05234 (2019)

2. Georgiev, G.: Yam finance crashes over 90%, founder admits his failure (2020).
https://cryptopotato.com/yam-finance-crashes-over-90-founder-admits-his-
failure/

3. Hajdu, Á., Jovanović, D.: Solc-verify: a modular verifier for solidity smart contracts.
arXiv preprint arXiv:1907.04262 (2019)

4. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

5. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: Verx:
Safety verification of smart contracts. Security and Privacy 2020 (2019)

6. Riley, D.: $25m in cryptocurrency stolen in hack of lendf.me and uniswap (2020).
https://siliconangle.com/2020/04/19/25m-cryptocurrency-stolen-hack-lendf-
uniswap/

7. Seshia, S.A., Subramanyan, P.: Uclid 5: Integrating modeling, verification, synthe-
sis and learning. In: 2018 16th ACM/IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE). pp. 1–10, October 2018.
https://doi.org/10.1109/MEMCOD.2018.8556946

8. Sjöberg, V., Sang, Y., Weng, S.c., Shao, Z.: Deepsea: a language for certified system
software. In: Proceedings of the ACM on Programming Languages 3(OOPSLA),
pp. 1–27 (2019)

9. Team, A.: Aave developers doc (2020). https://docs.aave.com/developers/
10. Wang, Yuepeng, et al.: Formal verification of workflow policies for smart contracts

in azure blockchain. In: Chakraborty, Supratik, Navas, Jorge A.. (eds.) VSTTE
2019. LNCS, vol. 12031, pp. 87–106. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-41600-3 7

11. Williams, M.: Rising defi protocol balancer loses $500,000 to hacker in pool
exploit (updated) (2020). https://www.bitcoininsider.org/article/89413/rising-
defi-protocol-balancer-loses-500000-hacker-pool-exploit-updated

12. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time discovery
of profit-generating transactions in defi protocols. arXiv preprint arXiv:2103.02228
(2021)

http://arxiv.org/abs/1904.05234
https://cryptopotato.com/yam-finance-crashes-over-90-founder-admits-his-failure/
https://cryptopotato.com/yam-finance-crashes-over-90-founder-admits-his-failure/
http://arxiv.org/abs/1907.04262
https://siliconangle.com/2020/04/19/25m-cryptocurrency-stolen-hack-lendf-uniswap/
https://siliconangle.com/2020/04/19/25m-cryptocurrency-stolen-hack-lendf-uniswap/
https://doi.org/10.1109/MEMCOD.2018.8556946
https://docs.aave.com/developers/
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-41600-3_7
https://www.bitcoininsider.org/article/89413/rising-defi-protocol-balancer-loses-500000-hacker-pool-exploit-updated
https://www.bitcoininsider.org/article/89413/rising-defi-protocol-balancer-loses-500000-hacker-pool-exploit-updated
http://arxiv.org/abs/2103.02228

DeFi – Economics and Regulation

DeFi as an Information Aggregator

Jiasun Li(B)

George Mason University, Fairfax, VA 22030, USA
jli29@gmu.edu

https://sites.google.com/site/jiasunlihome/

Abstract. This paper aims to draw attention to the information aggre-
gation role of DeFi, which has not received as much attention in commu-
nity discussions as many other DeFi topics yet. A study in this direction
seems important, however, given that DeFi intends to rebuild financial
markets based on smart contracts, while a large literature in financial
economics has studied information aggregation via the market. In those
papers, investors submit demand schedules for a risky asset during the
trading process: Equilibrium trading quantities are contingent on the
realized price, which is an implicit function of all investors’ information,
determined by market clearing. Similarly, when agents with dispersed
private information interact in a more general setting, they may also
want to have their actions contingent on others’, as the aggregate action
profile in equilibrium is also an implicit function of everyone’s informa-
tion. For example, investors in a risky project may want to have individ-
ual investment amounts contingent on their total investment amount. A
well-designed smart contract that appropriately divides payoffs may thus
induce contingent actions that efficiently use the aggregated information,
leading to efficient allocations. Therefore, DeFi may improve the infor-
mation aggregation role of financial markets, in addition to streamlining
operations or cutting out the middle-man.

1 Introduction

There have been many efforts in recent years to replicate traditional financial
market functionalities via smart contracts, commonly known as decentralized
finance (DeFi). Much of the focus has been on streamlining the operational
processes or “cutting out the middle-man”. What seems to be missing from
community discussions, however, is the informational role of DeFi (and smart
contracts in general).

On the contrary, the information role of market prices has long been high-
lighted in the finance and economics literature. For example, that market price
can aggregate information is the central pillar of the celebrated efficient market
hypothesis [1] and rational expectation theory in financial economics [2,3] (and
more generally [4,5], etc.), as well as the discussion on the role of the market
economy in general [6,7]. Given that DeFi attempts to replicate traditional mar-
ket functionalities, it is timely to ask whether, and if so, how can smart contracts

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 171–176, 2021.
https://doi.org/10.1007/978-3-662-63958-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_15&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_15

172 J. Li

play a similar information aggregating role. Furthermore, since the celebrated
“invisible hand” argument for markets only works under no informational fric-
tions or externalities, can smart contracts further improve the allocational effi-
ciency of traditional market functions?

This paper provides a positive answer, inspired by recent theoretical find-
ings in economics [8]. In short, using smart contracts to execute “contingent
actions” (conditional on actions of other people in the market) aggregates dis-
persed private information among market participants, just like price aggregates
information in familiar discussions on market efficiency and rational expectation.
In other words, smart contracts could significantly expand the applicability of
the “invisible hand” argument and improve both informational and allocative
efficiency over existing market solutions. This perspective points out a role smart
contracts could play which has so far been largely neglected. This paper thus
attempts to draw the community’s attention to this potentially important role
of DeFi.

To better understand the argument above, we first briefly review the role
of traditional financial markets. Generally speaking, financial markets have at
least two major functions: First, to improve allocations (e.g. transfer of assets
from sellers with lower valuations to buyers with higher valuations); Second, to
aggregate information (since everyone’s trading behavior is a function of his/her
own private information, the equilibrium market price, which by itself is a func-
tion of all agents’ trading behaviors, is thus in turn a function of all agents’
information).

Typically, in a market with relatively small frictions, the above two market
functions tend to perform well. Nevertheless, when externalities are present (for
example, if one market participant has monopoly power), market allocations are
often not optimal. In such scenarios, forces outside the market are often needed to
correct the externalities (such as the introduction of taxes). Smart contracts may
be able to do better than the market because 1) regarding allocations, one may
be able to make the allocations by smart contracts directly integrate both market
allocations and external corrections; 2) regarding how investors can benefit from
information aggregation, note that in classic finance discussions on how market
prices aggregate information, say, Grossman and Stiglitz’s rational expectations
model [3], investors submit a series of limit orders at different prices so that their
specific transactions are functions of the final market price. Because the price
itself integrates all market participants’ information, investors can make their
specific transactions benefit from other market participants’ overall information
through a series of limit orders. Smart contracts, which allows investors to make
decisions directly contingent on others’ actions (rather than indirectly through
the price), are thus expected to achieve a similar goal.

The intuitive reasoning above hints that smart contracts may correct exter-
nalities in traditional finance markets and substitute the information aggregation
function of the equilibrium market price. Formally, the next section proves that
a well-designed smart contract can produce a Pareto optimal equilibrium out-
come under fairly general conditions. In this way, the smart contract enables the
well-known invisible hand to obtain a wider reach.

DeFi as an Information Aggregator 173

2 Analytical Results

We consider an economy with n agents who represent some market participants.
Each agent i ∈ {1, · · · , n} has a utility function ui(·) and a private signal si of
a random state variable ω. We assume u′

i(·) > 0, u′′
i (·) < 0, u′

i(−∞) → +∞,
u′

i(+∞) → 0, and (ω̃, s̃) follows a general joint distribution. There is a pro-
duction technology characterized by a profit function π(ω,

∑n
i=1 yj) where yi is

agent i’s choice of action and ∂
∂Y π(ω, Y) > 0. For example, the joint invest-

ment from a group of n investors in a constant-return-to-scale project has ω
being the project’s net return, yi being i’s amount of dollar investment, and
π(ω,

∑n
i=1 yj) = ω × ∑n

i=1 yj . We first define contingent actions:

Definition 1 (contingent action). Agent i’s contingent action yi(si, {yj}j �=i)
is defined as a mapping from i’s private signal si and others’ actions {yj}j �=i to
i’s own action yi.

We can interpret contingent actions as generalizations of demand schedules in a
market economy, which are mappings from prices to one’s actions, to a broader
game theoretical setting. When agents are allowed to choose contingent actions,
we have the following result:

Proposition 2. In general, ∃ a contract (an ex ante profit division rule among
all agents) under which an equilibrium of contingent actions has an interim
Pareto optimal outcome.1

Proof. We first note an observation that will be useful later in the proof:

∀k �= i,
∂

∂yk
π(ω, {yj}n

j=1) =
∂

∂yi
π(ω, {yj}n

j=1). (1)

An interim Pareto optimal allocation is characterized by the solution to the
problem faced by a planner who knows the entire signal profile s and specifies
actions {y∗

j (s)}n
j=1 and allocations

{
qi

(
ω, {yj}n

j=1

)}n

i=1
to maximize some social

welfare function. That is,

{y∗
j (s)}n

j=1 = arg max
{yj}n

j=1

E

[
n∑

i=1

ai(ω̃, s) · ui(qi(ω̃, {yj}n
j=1))

∣∣∣∣∣s
]

(interim efficiency), (2)

where {ai(ω̃, s)}n
i=1 are Pareto weights and ∀(ω, {yj}n

j=1),
{
qi

(
ω, {yj}n

j=1

)}n

i=1
are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{
qi

(
ω, {yj}n

j=1

)}n

i=1
= arg max

{qi}n
i=1

n∑

i=1

ai(ω, s) · ui(qi(ω, {yj}n
j=1)) (ex post efficiency), (3)

n∑

i=1

qi(ω, {yj}n
j=1) = π(ω, {yj}n

j=1) (feasibility). (4)

1 By “in general”, we exclude ill-behaved utility/profit functions and distributions
under which either the equilibrium or the Pareto optimal allocation for a given set
of Pareto weights does not uniquely exist.

174 J. Li

We are interested in interim Pareto optimal allocations where Pareto weights
do not depend on realized states and signals, that is, {ai(ω̃, s)}n

i=1 = {ai}n
i=1.

We proceed by first characterizing
{
qi(ω, {yj}n

j=1)
}n

j=1
for a given

(ω, {yj}n
j=1). Denote the Lagrangian multiplier of (4) as L(ω, {yj}n

j=1), then
∀i ∈ {1, · · · , n},

qi(ω, {yj}n
j=1) = (u′

i)
−1(

L(ω, {yj}n
j=1)

ai
), (5)

where (u′
i)

−1 denotes the inverse function of u′
i, and L(ω, {yj}n

j=1) is implicitly
defined by

n∑

i=1

(u′
i)

−1(
L(ω, {yj}n

j=1)
ai

) = π(ω, {yj}n
j=1). (6)

Plug (4) and (5) into the FOC of (2) with respect to yk, we get

E

[

L(ω, {yj}n
j=1)

∂

∂yk
π(ω̃, {yj}n

j=1)
∣
∣
∣
∣s

]

= 0.

Thus for a given signal profile s, the first-best action profile {y∗
j (s)}n

j=1 is char-
acterized by a set of n equations: ∀ k ∈ {1, · · · , n},

E[L(ω̃, {y∗
j (s)}n

j=1)

⎛
⎜⎝ n∑

i=1

1
ai

u′′
i ((u′

i)
−1(

L(ω̃,{y∗
j (s)}n

j=1)

ai
))

⎞
⎟⎠ ∂

∂yk
L(ω̃, {y∗

j (s)}n
j=1)|s] = 0. (7)

Equilibrium. We proceed to characterize the equilibrium under a contract that
gives Qi(ω, {yj}n

j=1) ≡ (u′
i)

−1(L(ω,{yj}n
j=1)

ai
) to agent i. By (6) we have that

∀r and {yj}n
j=1,

∑n
i=1 Qi(ω, {yj}n

j=1) = π(ω, {yj}n
j=1), therefore {Qi}n

i=1 is a
feasible allocation.

Agent i’s contingent action yi(si, {yj}j �=i) = arg maxyi
E

[
ui(Qi(r̃, {yj}n

j=1))

|{yj}j �=i, si] = arg maxyi
E

[
ui((u′

i)
−1(L(ω,{yj}n

j=1)

ai
))

∣
∣
∣{yj}j �=i, si

]
, and FOC gives

that at equilibrium

E

⎡

⎣L(ω, {yj}n
j=1)

1
a2
i

u′′
i ((u′

i)−1(
L(ω,{yj}n

j=1))

ai
)

∂

∂yi
L(ω, {yj}n

j=1)

∣
∣
∣
∣
∣
∣
{yj}j �=i, si

⎤

⎦ = 0.

(8)
By (1), ∀k �= i, ∂

∂yk
π(ω, {yj}n

j=1) = ∂
∂yi

π(ω, {yj}n
j=1), taking partial deriva-

tives on both sides of (6) gives that ∀k �= i, ∂
∂yk

L(ω, {yj}n
j=1) = ∂

∂yi
L(ω, {yj}n

j=1).
Plug in (8) we get

E

⎡

⎣L(ω, {yj}n
j=1)

1
a2
i

u′′
i ((u′

i)−1(
L(ω,{yj}n

j=1))

ai
)

∂

∂yk
L(ω, {yj}n

j=1)

∣
∣
∣
∣
∣
∣
{yj}j �=i, si

⎤

⎦ = 0.

(9)

DeFi as an Information Aggregator 175

FOCs for different agent i-s gives n equations like (9). Multiple each by ai and
sum over, we get that the equilibrium is characterized by a set of n equations:
∀k ∈ {1, · · · , n},

E

⎡
⎢⎣L(ω, {yj}n

j=1)
n∑

i=1

⎛
⎜⎝ 1

ai

u′′
i ((u′

i)
−1(

L(ω,{yj}n
j=1))

ai
)

⎞
⎟⎠ ∂

∂yk
L(ω, {yj}n

j=1)

∣∣∣∣∣∣∣{yj}j �=i, si

⎤
⎥⎦ = 0.

(10)

Since the n equations together pin down the solution {ŷj(s)}n
j=1, the expectations

in (10) is effectively conditional on s. Then compared to the equation set of (7),
it is immediately that as long as (7) has a unique solution, the equilibrium and
Pareto optimal action profiles {ŷj(s)}n

j=1 and {y∗
j (s)}n

j=1 must be identical.

Further Discussions. Implementing contingent actions à la Proposition 2
requires infrastructures to simultaneously 1) accommodate contingency plans, 2)
enforce commitments to chosen decisions, and 3) ensure mutually best responses.
To this end, smart contracts, which accommodate all three requirements par-
ticularly well, may come in handy: As computer codes executing pre-specified
“if-then” logic, they fulfill Requirement 1 by definition. Running on immutable
blockchains (Requirement 2), they enjoy “atomic” executions, that is, they allow
executions of related operations to “either all occur or all abort”. Hence, a set
of contingent actions can be programmed to iterate toward equilibrium and be
taken only when all optimization conditions are met (Requirement 3).

While Bitcoin’s Script supports limited smart contract functionalities,
Ethereum popularized general-use smart contracts that can act as “legal per-
sons” to send and receive transactions under pre-programmed conditions. Many
new blockchains also support smart contracts (e.g. Facebook’s Diem via its Move
language). Given these technological advancements, our information aggregation
perspective may open the door to inspiring more future applications beyond
replicating traditional financial market functions.

On the other hand, despite rapid growth, smart contract applications
are still in their early days right now, with many likely suboptimal speci-
fications. Our theory may thus also guide their further improvements. For
example, over the past couple of years, smart contracts have enabled token
sales, many of which effectively implement crowdfunding with the interme-
diary platforms replaced by smart contracts. These applications as well as
more general investment settings can readily use our suggested contracts to
improve capital allocation, thanks to smart contracts’ programming flexibility
and low deployment cost. Separately, there have also been many discussions
on decentralized autonomous organizations (DAOs), which envision to organize
businesses as “nexus of smart contracts” in an apparent reference to the “nexus
of contracts” theory of the firm [9]. The general results from Proposition 2 may
offer guidance on this front.

That said, for our theory to reach its full potential, we still need a few tech-
nological breakthroughs in smart contracts. First, we look for solutions to trust-
lessly bring off-chain data onto the blockchain (i.e. the so-called oracle problem).

https://libra.org/en-US/
https://en.wikipedia.org/wiki/Decentralized_autonomous_organization
https://medium.com/@teexofficial/what-are-oracles-smart-contracts-the-oracle-problem-911f16821b53

176 J. Li

While there are partial solutions for some specific settings (e.g. Chainlink),
general-purpose oracles are still under active research. We also look for fur-
ther optimizations on gas costs for smart contract executions, especially if we
implement our Proposition 2 with iterations. Finally, smart contract integrity is
another area that calls for improvements to prevent bugs such as those seen in
the hack of the first decentralized autonomous organization (commonly know as
The DAO) that led to Ethereum’s fork.

References

1. Fama, E.F.: Efficient capital markets: a review of theory and empirical work*. J.
Fin. 25(2), 383–417 (1970)

2. Grossman, S.: On the efficiency of competitive stock markets where trades have
diverse information. J. Fin. 31(2), 573–585 (1976)

3. Grossman, S.J., Stiglitz, J.E.: On the impossibility of informationally efficient mar-
kets. Am. Econ. Rev. 70(3), 393–408 (1980)

4. Lucas, R.E.: Expectations and the neutrality of money. J. Econ. Theory 4(2), 103–
124 (1972)

5. Lucas, R.E., Jr.: Econometric policy evaluation: a critique. In: Carnegie-Rochester
Conference Series on Public Policy, vol. 1, pp. 19–46. North-Holland (1976)

6. Hayek, F.: The Road to Serfdom. University of Chicago Press and Routledge Press
(1944)

7. Hayek, F.: The use of knowledge in society. Am. Econ. Rev. 35(4), 519–30 (1945)
8. Li, J.: Information aggregation via contracting. SSRN 3682883 (2020)
9. Alchian, A.A., Demsetz, H.: Production, information costs, and economic organiza-

tion. Am. Econ. Rev. 62, 777–795 (1972)

https://chain.link/

A Game-Theoretic Analysis
of Cross-ledger Swaps with Packetized

Payments

Alevtina Dubovitskaya1,2(B) , Damien Ackerer3 , and Jiahua Xu4,5

1 Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
alevtina.dubovitskaya@hslu.ch

2 Swisscom, Bern, Switzerland
3 Covario, Zug, Switzerland
damien.ackerer@covar.io

4 UCL Centre for Blockchain Technologies, London, UK
jiahua.xu@ucl.ac.uk

5 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract. We propose a game-theoretic framework to study the out-
comes of packetized payments, a cross-ledger transaction protocol, with
strategic and possibly malicious agents. We derive the transaction failure
rate and demonstrate that without disciplinary mechanisms, packetized
payments are likely to be incomplete. Our analysis suggests that col-
lateral deposits can prevent malicious agents from taking advantage of
the protocol. We further infer that the deposit amount should depend
on the underlying asset price volatility or that it should be dynamically
adjusted as the price changes.

Keywords: Blockchain · Packetized payments · Atomic swaps

1 Introduction

1.1 Background

HTLCs. Hashed Time Lock Contracts (HTLCs) have been recently proposed [3]
to achieve atomicity of a cross-ledger transaction without any connections
between the ledgers, and are often employed in decentralized exchanges (DEX)1

to complete peer-to-peer exchange [1,6].
An atomic swap with HTLCs starts with one transactional agent, say Alice,

randomly generating a secret key. Alice then locks her asset in an HTLC that
will transfer the asset to her counterparty, say Bob, upon verification of the
secret key. Bob subsequently locks his asset in an HTLC that will transfer the
asset to Alice upon verification of the same secret key. The swap completes

1 Cross-ledger DEX protocols are not to be confused with DEX protocols operated
within one chain, such as automated market makers (AMM) on Ethereum [16].

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 177–187, 2021.
https://doi.org/10.1007/978-3-662-63958-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_16&domain=pdf
http://orcid.org/0000-0002-9669-1250
http://orcid.org/0000-0002-3408-2185
http://orcid.org/0000-0002-3993-5263
https://doi.org/10.1007/978-3-662-63958-0_16

178 A. Dubovitskaya et al.

when Alice unlocks Bob’s asset with the secret key generated by herself, which
simultaneously exposes the secret key, allowing Bob to also unlock Alice’s asset.
Should Alice fail to unlock Bob’s asset with her secret key, the two HTLCs will
respectively send the locked asset to their original owners when the time locks
expire.

One problem of HTLCs is that they create a free option for Alice, who can
ultimately choose when and whether or not to expose the secret key, thus delay-
ing the completion of the swap or even causing it to fail. Bob also has the option
not to lock his asset, which leads to blocking of Alice’s funds for nothing [15].

Packetized Payments (PP). Robinson [12] underlines the aforementioned
problems associated with HTLCs, and proposes an alternative approach for
cross-ledger atomic swaps: packetized payments (PP). Originally developed as
part of the Interledger Protocol [5] named Hyperledger Quilt,2 a cross-ledger swap
with packetized payments is conducted with a series of alternating transactions.

First, the total asset amounts to be traded are split into N “economically-
insignificant” amounts (Fig. 1a Step A). Next, these small portions of assets will
be sent on one and then on another blockchain sequentially: Steps B and C are
to be repeated N times in order to complete the transaction.

Note that, at each iteration, the protocol may require the agent to match
and extend the previous transfer such that the agents are alternately exposed
to counterparty risk (Fig. 1b). Otherwise, the payment initiator would have to
agree to always bear the risk of abandonment from the other agent. If one agent
behaves maliciously and does not execute the transfer when it is his or her turn,
the counterparty loses only a fraction of the asset they would be willing to trade.
Therefore, PP caps the amount of assets that can be lost at a fraction of the asset
determined at Step A and prevents the whole amount of assets being blocked
for a long period of time. It also prevents a potential loss of the whole amount
of assets, while requiring only simple transfer transactions.

1.2 Contribution

Our framework builds on finite extensive-form games with imperfect informa-
tion [9], where the only known unknown information is the counterparty’s type,
which can be either honest or malicious. We study agents’ strategies and derive
preference parameter conditions consistent with their actions. We also derive the
transaction failure rate as a function of the percentages of honest and malicious
agents.

We show that in a swap game with packetized payments, it is impossible
to enforce malicious agents to complete the transaction without an additional
disciplinary mechanism. We illustrate that the “biased” preferences of agents
for completed transactions have to be economically large, which motivates the
necessity of alternative contracting mechanisms such as collateral deposits. Still,

2 https://github.com/hyperledger/quilt.

https://github.com/hyperledger/quilt

Game-Theoretic Analysis of Packetized Payments 179

Fig. 1. Packetized payment (PP) schemas.

we infer that the initial collateral amount should depend on the asset price
volatility, or that it should be dynamically adjusted as the asset price fluctuates.
As the first cross-chain packetized payment protocol Hyperledger Quilt is yet
to be launched and empirical evidence is absent, our work provides the first
simulation result that can facilitate further development of the protocol.

We focus on packetized payments, yet our approach can be extended to other
cross-ledger transaction protocols.

2 A Game-Theoretic Analysis

2.1 Framework

Two agents, Alice and Bob, or a and b, want to exchange one unit of asset 1,
say one Altcoin, from a for some units of asset 2, say Tether (USDT), from b.
We assume that asset 2 is the reference asset in which the agents value their
goods. We denote Pt the time-t price of asset 1 expressed in units of asset 2,
for example the price of one Altcoin in USDT. We assume for simplicity that
there is no interest rate or coin staking, meaning that the asset quantities do not
increase by themselves whenever locked in a special wallet or account. Therefore,
only the price of asset 1 is stochastic in our framework.

There are three possible times t at which the agents may take actions: 0, 1,
and 2. The price dynamics of asset 1 is given by

Pt = Pt−1 ± δ (1)

for t = 1, 2 with equal probability of up and down moves, for some initial price
P0 > 0 and some constant δ > 0 such that δ ≤ P0

2 so that the price remains non-
negative during the game. Note that the asset price is a martingale, that is the

180 A. Dubovitskaya et al.

expected value of next period’s price is equal to the current price, E [Pt | Pt−1] =
Pt−1 for t = 1, 2.

There are three types of actions that the agents may take: continue c, wait
w, and stop s. If an agent plays s then the game is over and the transaction
fails. If an agent plays w then one time period passes and the price changes. If
an agent plays c then either it is the other agent’s turn, or the transaction is
completed. The agents take actions sequentially and the set of possible actions
at a particular instant depends on the history of previous actions.

We assume that the agents are strategic and aim to maximize their interests
which is a function of two terms: the financial profit resulting from the asset
price change, and the transaction success. Indeed, transaction failures typically
have a negative economic impact on agents by delaying further trade actions,
and increasing the exposure to price risk. We assume that there are two types of
agents: the honest or high type h, and the malicious or low type l. We formalize
the two types in the following definition.

Definition 1 (Agent types). An agent of type h, namely honest, always
chooses to play continue c. An agent of type l, namely malicious, satisfies the
parameter condition αi,l = 0 for i = a, b.

We model the agent incentives using a utility function as follows:

U(i, j) = αi,jX + βiXY (2)

for any agent i ∈ {a, b} of type j ∈ {h, l}, and where X = 1 indicates transaction
success and X = −1 transaction failure, and Y is the profit and loss resulting
from the asset price change and transfer. The constant αi,j ≥ 0 measures the
extent to which an agent is willing to complete the transaction. For example, if
αi,j is large then the agent will most likely prefer to complete the transaction
despite an adverse price change. We set βb = 1 and βa = −1 modeling the
agent’s opposite exposures to price changes. Note that if the transaction fails,
that is X = −1, then Alice is positively exposed to Y because asset 1 was not
transferred to Bob as βaX = 1 in this case.

In Sect. 2.2, we derive the optimal strategy of the malicious agent, and the
conditions on αi,h such that an agent is willingly honest.

We denote μi the fraction of honest agents i and, thus, 1 − μi the fraction of
malicious agents i for i ∈ {a, b}. The agents meet at random, and each does not
know whether the other agent is malicious or not. Furthermore, the agents have
full information about their environments. We write E [X | Y] the expected value
of the variable X given the history of actions and other possible refinements Y.
We write T (i) the type of agent i, for example Ta = h means that Alice is
honest. We denote A(j,H) the best response, or action taken, by an agent of
type j following the history H, which is defined as the action maximizing their
expected utility.

Note that Alice and Bob must take into account the likelihood that they can
be trading with either a malicious or an honest agent. For example, the expected
utility of a type j Bob conditioned on the history of actions H is given by

Game-Theoretic Analysis of Packetized Payments 181

Table 1. Summary of notations

Notation Description

a and b Alice and Bob

h and l Honest and malicious

c, w, and s Actions: continue, wait, and stop

Ti Agent i type

μi Honest agent i percentage, P[Ti = h]

A(j,H) Agent type j action after H
X Swap success (1) or failure (−1)

Y Financial profit and loss

αi,j Agent preference parameter for swap success

βi βa = −1 and βb = 1 indicate the asset price exposure direction

Pt Time-t price of asset 1 denominated in asset 2

δ One-period price change of asset 1 denominated in asset 2

E [U(b, j) | H] =μaE [U(b, j) | H, Ta = h]
+ (1 − μa)E [U(b, j) | H, Ta = l]

where E [U(b, j) | H, Ta = l] denotes the expected utility of type j Bob under the
assumption that Alice is malicious, and so on.

We use brackets to denote the history of actions, for examples {∅} for
no action taken and {c, w, c} for continue–wait–continue actions. Which agent
played a particular action and whose turn it is to play next will be clear from
the game descriptions. Notations are summarized in Table 1.

2.2 A Short Packetized Payment Game

Packetized payments split the transaction into small transfers where each agent
exposed herself or himself to a one-way transfer alternately. At any point in time,
one agent may decide not to transfer furthermore and stop the transaction. As
a consequence, the variable Y depends on the exit time and is given by

Yn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 n = 0,
n
N Ptn − n−1

N P0 n is odd and 0 < n ≤ N
n−1
N Ptn − n

N P0 n is even and 0 < n ≤ N

Ptn − P0 n = N + 1

(3)

where the subscript n indicates the current step of the transaction, 1
N is the

granularity amount of the PP, and tn indicates the time at which the n-th step
takes place.

For clarity of exposition, we study a swap performed in 3 payment trans-
actions in total so that tn = n for n = 0, 1, 2 (see Fig. 2a). Still, this setup is
sufficient to illustrate the functioning of packetized payments.

182 A. Dubovitskaya et al.

(a) 3-step PP schema

s

cwc

s

wc

s

Alice Bob Alice

(b) Sequence of actions (◦: root node)

Fig. 2. Match-and-extend PP in 3 steps

The sequence of actions for the packetized payment game are described in
Fig. 2b. In summary, Alice transfers half of the asset to Bob, then Bob makes the
whole P0 payment, and finally Alice transfers the remaining half of the asset.
The agents can only decide to continue c or stop s. However, when an agent
continues, i.e. plays c, we assume that the transaction also waits, i.e. plays w,
for a short time period over which the asset price changes. Note that the game
resembles the centipede game from [13], however there are important differences:
the agents have partial information, and the payoffs are stochastic. Indeed, each
agent does not know the other agent type, honest or malicious, and the payoff
they get depends on the asset price which is stochastic.

Remark 1. We assumed that Bob matches Alice’s payment of 1
N and sends an

additional 1
N payment at the same time (match and extend). This is a fairer

mechanism as the agents alternately expose themselves to a loss of 1
N . Indeed,

the alternative would be to let Bob only match while Alice initiates all the
payments. This would however result in Alice being the only one exposed to
counterparty risk and would require 2N transfers instead of N + 1.

The first and striking result is that malicious agents, either Bob or Alice,
will never complete the transaction. Indeed, there is no incentive for an agent
who only cares about its financial profit to complete the transaction, as shown
in Proposition 1. All proofs can be found in Appendix.

Proposition 1 (Malicious Alice and Bob). We have that A(l, {c, w}) = s
and A(l, {c, w, c, w}) = s.

From this result we can also infer the percentage of failed transactions.

Game-Theoretic Analysis of Packetized Payments 183

Corollary 1 (Transaction failure probability). Assuming that both mali-
cious and honest agents participate in the transaction, then the percentage of
incomplete transactions is 1 − μbμa.

As it is always best for the malicious type to stop, the transaction will only be
completed if the two agents are honest. We derive a necessary condition so that
Bob is honest and continues the transaction.

Proposition 2 (Honest Bob). Assume that Alice of either type plays c at the
initial step. Then Bob is honest if and only if

μa >
2P0

4αb,h + P0 − δ

Note that this result holds only if Bob did not update his prior that Alice is
honest with probability μa, which is the case when both Alice types play c at step
0. We observe that if the price is more volatile, meaning larger δ, then a larger
fraction of honest a agents is required. Interestingly, even with no price movement
δ = 0 and only honest a agents, we see that Bob’s preference parameter for a
completed transaction must be fairly large in value, αb,h > P0

4 .
We now derive conditions necessary for Alice to be honest.

Proposition 3 (Honest Alice). Alice is honest if and only if

αa,h >
P0 + 2δ

4
and μb >

P0

4αa,h + P0
. (4)

We see that the conditions for Alice to be honest are more stringent than for
Bob even in a setup without any malicious agents, that is when μa = μb = 1.
Notably if the percentage of honest Bob becomes very small, μb → 0, then there
cannot exist any honest Alice unless αa,h → +∞.

3 Discussion

Our game-theoretic analysis shows that there is no incentive for malicious agents
to complete a PP transaction. As a consequence, the transaction failure rate
should be large and the economic incentive for agents to behave honestly would
need to be enormous. Importantly, a malicious agent can enter multiple PP
transactions in parallel with different counterparties for larger profits.

From a practical perspective, PPs are relatively simple, but require many
transfers, whose total cost is therefore uncertain. Lightning networks [11] can
be employed for micropayments needed for packetized payments without incur-
ring high transaction fees. However, this reintroduces the problem of the assets
being locked and, in this case, in the form of collateral deposit on the escrow
accounts of each agent on each blockchain: Alice and Bob will need to create two
micropayment channels, one on top of each blockchain, and lock the collateral on
each channel. In addition, if an honest agent does not receive a payment from a

184 A. Dubovitskaya et al.

counterparty, and is willing to close the micropayment channel, the funds on the
escrow account will be blocked for a certain blockchain-specific period of time [7].
It is also worth noticing that there may be small delays between transfers for
network validation, which in turn lead to price fluctuations, as described in the
PP game. Importantly, PPs cannot be used to exchange non-fungible assets such
as CryptoKitties3 or “digital twins” of physical goods [12].

3.1 Collateral Deposit

Using collateral deposits to reduce the risk of agents exposed to adverse behav-
ior of other agents is not new. For example, applying collateral to disincen-
tivize aborting a fair exchange has been discussed in works on rational fair
exchange [14]. Zamyatin et al. [17] suggest using collateral at least equal to
the assets locked on the blockchain for a trade. They also propose overcollat-
eralization and a liquidation mechanism to mitigate extreme price fluctuations
for short- and long-term cross-ledger transactions. While this ensures that eco-
nomically rational agents have no incentive to misbehave, a disadvantage of this
solution is that if an agent would like to transfer all their assets of one kind, they
will be obliged to execute multiple transactions, each with an amount (approxi-
mately) equal to a half of the amount of the asset they currently possess.

Based on the proposed game-theoretic model, it can be shown that a marginal
amount of collateral is sufficient to prevent agents from behaving maliciously. We
modify the frameworks of Sect. 2 so as to require agents to place collateral which
will be lost if they exit the transaction without completing it. The following
Proposition shows that this extinguishes malicious behaviors in our framework.

Proposition 4 (PP with collateral). Assume that Bob places a collateral
larger than P0+δ

2 , and Alice places a collateral larger than P0+2δ
2 , then it is opti-

mal for malicious agents to continue the transaction in the packetized payment
game described in Sect. 2.2.

Two relevant observations can be made for real-world applications. First,
both expressions for the minimum collateral requirement involve the term δ
which suggests that collateral demand should be a function of the asset price
volatility, which is known to be time varying. Second, for the packetized payment,
the initial collateral involves the fractional transfer value P0

2 , or Ptn

N in general,
which suggests that the collateral requirement can be small, with N large, but
should be adjusted dynamically as the asset price changes. Indeed, the price can
vary up or down to P0 ± Nδ in extreme scenarios, but will in general fluctuate
significantly less.

3.2 Reputation Mechanism

We have always assumed that an agent cannot predict the strategy of their
counterparty ex-ante as the agent types, malicious or honest, are not observable.
3 https://www.cryptokitties.co/.

https://www.cryptokitties.co/

Game-Theoretic Analysis of Packetized Payments 185

However, in reality, if an agent trades regularly with another agent that it can
identify, or if an agent has some information on the previous behavior of another
agent, then a self-selected agent matching can occur instead of a random one.

In principle, as all the transactions executed on a ledger can generally be
seen, the transaction history of an agent can be analyzed to build his or her
reputation. However, computation of such reputation value is problematic in a
case of permissionless blockchains for several reasons. First, an agent can create
multiple accounts and attempt to preserve their anonymity. Even though de-
anonymization is possible [2], one cannot guarantee a perfect mapping between
one user and all his or her transactions, in the case of multiple accounts. Second,
it may not always be possible to distinguish a cross-ledger transaction from a
single-chain transaction. However, if these two challenges are addressed, thanks
to the book-keeping property [4] and immutability of a ledger, using a reputation
mechanism can complement existing protocols.

4 Conclusion and Future Work

We introduce a game-theoretic approach to model agent behaviors in cross-
ledger transactions with packetized payments. We derive conditions for agents
to behave honestly or maliciously, as well as different measures of economic
and transaction success. We propose to dynamically compute and adjust the
collateral amounts in order to enforce honest behaviors among agents, and we
discussed the implementation challenges of reputation systems as a disciplinary
mechanism.

An important observation is that trustless cross-ledger swap protocols should
use disciplinary mechanisms such as collateral deposit. The implementation, cost,
performance, and complexity of various protocols on permissionless blockchains
supporting smart contracts – e.g. Ethereum, EOS, Tezos [10], and Neo [8] – thus
merit future research.

Appendix

Most of the arguments in the proofs below follow the hypothesis that an agent
always takes the actions which maximize their expected utility, taking into
account future and possibly adversarial actions from the other agent. We always
describe the key conditions (inequalities) to be verified but provide limited details
on the derivations as they can be long and tedious.

Proof of Proposition 1. At time 2 if Ta = l, then Alice loses P2
2 in utility by

playing c instead of s. Similarly, at time 1 if Tb = l, then Bob gets P1
2 in utility

by playing s whereas he expects to receive E [U(b, l) | {c, c}] = μa(P1 − P0) +
(1−μa)(P1

2 −P0) if he plays c. We have E [U(b, l) | {c, c}] < P1
2 since δ < P0

2 and
μa ≤ 1, hence a malicious Bob plays s.

Proof of Corollary 1. The transaction succeeds only if Alice and Bob are honest
which happens with probability P[Ta = Tb = h] = μaμb.

186 A. Dubovitskaya et al.

Proof of Proposition 2. We have E [U(b, h) | {c, w, c}] = μa(P1−P0+αb,h)+(1−
μa)(−αb,h + P1

2 − P0) and E [U(b, h) | {c, w, s}] = −αb,h + P1
2 . We obtain that

A(b, {c, w}) = c by taking P1 = P0 − δ.

Proof of Proposition 3. We have A(h, {c, w, c, w}) = c if and only if αa,h +
P0 − P2 > −αa,h + P0 − P2

2 which is equivalent to αa,h > P0+2δ
4 . Then, with

A(h, {c, w, c, w}) = c, we have that E [U(a, h) | {c}] = μbαa,h +(1−μb)(−αa,h −
P0
2) and E [U(a, h) | {s}] = −αa,h. Therefore, for agent a to be honest it must

also be that μb > P0
4αa,h+P0

.

Proof of Proposition 4. This is immediate as malicious agents would never be
able to make any profit by exiting prematurely the transaction.

References

1. Decred-compatible cross-chain atomic swapping (2018). https://github.com/
decred/atomicswap/

2. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin P2P network. In: The ACM Conference on Computer and Communications
Security, pp. 15–29. ACM (2014). https://doi.org/10.1145/2660267.2660379

3. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, pp. 245–254. ACM, Association for
Computing Machinery, July 2018. https://doi.org/10.1145/3212734.3212736

4. Ibañez, J.I., Bayer, C.N., Tasca, P., Xu, J.: REA, triple-entry accounting and
blockchain: converging paths to shared ledger systems. SSRN Electron. J. (2021).
https://doi.org/10.2139/ssrn.3602207

5. Interledger: Interledger Protocol (2020). https://interledger.org/rfcs/0027-
interledger-protocol-4/

6. Komodo: Komodo’s Atomic-Swap Powered, Decentralized Exchange: Barterdex
(2021). https://docs.komodoplatform.com/whitepaper/chapter6.html

7. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

8. Neo: Neo White Paper (2020). https://docs.neo.org/docs/en-us/basic/whitepaper.
html

9. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

10. Perez, D., Xu, J., Livshits, B.: Revisiting transactional statistics of high-scalability
blockchains. In: The ACM Internet Measurement Conference, pp. 535–550, October
2020. https://dl.acm.org/doi/10.1145/3419394.3423628

11. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

12. Robinson, D.: HTLCs considered harmful. In: Stanford Blockchain Con-
ference (2019). http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/
2019/htlcs-considered-harmful/

13. Rosenthal, R.W.: Games of perfect information, predatory pricing and the chain-
store paradox. J. Econ. Theory 25(1), 92–100 (1981). https://linkinghub.elsevier.
com/retrieve/pii/0022053181900181

https://github.com/decred/atomicswap/
https://github.com/decred/atomicswap/
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.2139/ssrn.3602207
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://docs.komodoplatform.com/whitepaper/chapter6.html
https://docs.neo.org/docs/en-us/basic/whitepaper.html
https://docs.neo.org/docs/en-us/basic/whitepaper.html
https://dl.acm.org/doi/10.1145/3419394.3423628
http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
https://linkinghub.elsevier.com/retrieve/pii/0022053181900181
https://linkinghub.elsevier.com/retrieve/pii/0022053181900181

Game-Theoretic Analysis of Packetized Payments 187

14. Syverson, P.: Weakly secret bit commitment: applications to lotteries and fair
exchange. In: The 11th IEEE Computer Security Foundations Workshop, pp. 2–13.
IEEE Computing Society (1998). http://ieeexplore.ieee.org/document/683149/

15. Xu, J., Ackerer, D., Dubovitskaya, A.: A game-theoretic analysis of cross-chain
atomic swaps with HTLCs. In: IEEE 41st International Conference on Distributed
Computing Systems (ICDCS) (2021)

16. Xu, J., Vavryk, N., Paruch, K., Cousaert, S.: SoK: decentralized exchanges (DEX)
with automated market maker (AMM) protocols, March 2021. http://arxiv.org/
abs/2103.12732

17. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.:
XCLAIM: trustless, interoperable, cryptocurrency-backed assets. In: IEEE Sym-
posium on Security and Privacy, pp. 193–210. IEEE, May 2019. https://ieeexplore.
ieee.org/document/8835387/

http://ieeexplore.ieee.org/document/683149/
http://arxiv.org/abs/2103.12732
http://arxiv.org/abs/2103.12732
https://ieeexplore.ieee.org/document/8835387/
https://ieeexplore.ieee.org/document/8835387/

DeFi – MEV and Illicit Activity

Wendy Grows Up: More Order Fairness

Klaus Kursawe(B)

Vega Protocol, RUE Antoine Carteret 3, 1202 Geneve, CH, Switzerland
klaus@vega.xyz

Abstract. Transaction order related issues such as MEV (Miner
Extractable Value) and frontrunning in blockchain networks stemming
from the ability of validators to reorder transactions. This can not only
extract a tax on honest users, but also skew the validator economy by
making it harder to control financial inactivation of validators, and might
even lead to regulatory issues. We present a pre-protocol that allows a
blockchain application to combine different forms of order fairness with
causal order to prevent such issues on the level of the blockchain, and
that can be combined with various blockchain implementations.

1 Introduction

In recent years, blockchain applications have increased in complexity and utility,
allowing more advanced financial tools such as exchanges and trading markets to
be decentralized, thus highlighting new challenges for consensus protocols. Espe-
cially, it is no longer sufficient for a consensus layer protocols to only guarantee
consistency of the blockchain. While additional requirements have been investi-
gated in the past – for example causal order or censorship resilience – very little
attention has been given to the fairness of the order of events, making it possi-
ble to execute frontrunning or rushing attacks. Several such attacks have been
observed in the wild already, with more issues to be expected with increasingly
sophisticated usecases. Some blockchains attempt to make such attacks some-
what harder, for example through special protection for the leader, rapid leader
change [1] or a completely leaderless approach [3], while others can be easily
manipulated by a single corrupt validator or a well targeted denial of service
attack.

In a previous paper [5], we introduced Wendy, a pre-protocol to blockchains
that can assure fairness. We now present further development of Wendy.

• The protocol is now divided into a framework and the fairness enforcement.
The definition of fairness, as well as some assumptions on the adversary
strength, are affecting only the fairness enforcement part. Thus, the frame-
work can work with several different definitions of fairness, and easily switch
between them as well as using different definitions of fairness for different
applications or markets on the same blockchain. This approach also makes it
easier to analyse properties of a new fairness definition, as the analysis can
focus on a small part of the overall protocol.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 191–196, 2021.
https://doi.org/10.1007/978-3-662-63958-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_17&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_17

192 K. Kursawe

• We integrated the possibility to combine the order fairness with commit and
reveal, which means that commit and reveal schemes can rely on the order
fairness to reveal at an earlier point in time.

• We have built an implementation of Wendy running on a simulated network
and blockchain. This now allows us to provide first numbers on the perfor-
mance overhead caused by Wendy, and can be used to test different fairness
definitions.

The aim of Wendy is to integrate with many existing blockchains without sig-
nificant change or non-standard assumption on the blockchain implementation.
The main requirement is that there is some set of parties (resp. validators) known
to each other through which fairness is defined. This comes naturally to most
voting based protocols, while longest-chain based protocols with an undefined
set of participants will need to use a mixed model approach to be compatible
with our model, as done for example in finality gadgets [2].

2 The Framework Protocol

Wendy focuses on block order fairness, i.e., if a transaction t1 is required to
precede another transaction t2, Wendy guarantees that t1 is in the same or an
earlier block than t2. The exact order is then implemented by a post-protocol
given the data Wendy provides with a transaction.

We allow for the underlying blockchain can be a multi-purpose chain, where
not all transactions necessarily need to be fair to each other (or follow the same
fairness rules with respect to each other). To this end, all transactions have one
(or several labels). Each label has its own fairness definition, and transactions
that do not share a label do not affect each other. Transactions can also be
unlabeled, in which case they bypass Wendy altogether. We also allow a label to
define conditions that can switch to another definition of fairness. This could be
temporary – e.g., to break a loop or resolve a deadlock, or a more permanent,
coordinated switch, e.g. to adapt to network load.

Clients can send transactions to a single validator, or to several (or all) of
them. While Wendy does assure that all transactions gets seen by all validators,
this can of course only be guaranteed if at least one honest party is aware of the
transaction – a client who sends a transaction only to one validator that then
turns out to be malicious can not expect any guarantees.

Finally, the framework combines causal order (commit and reveal) [3,6] with
order fairness. For the scope of this paper, we assume that a causality mechanism
- i.e., the ability of client to threshold-encrypt transactions, and of validators to
generate and reveal appropriate decryption shares. Due to the fairness properties
of Wendy, the shares can be revealed at an earlier state, namely, once a newly
generated transaction cannot front-run the revealed one due to the fairness rules.
This is especially useful for a non-finalizing blockchain, as Wendy can assure that
order properties hold in every possible fork.

Wendy Grows Up: More Order Fairness 193

Pre-Protocol Wendy for protocol instance ID
All voting parties:

let i be the counter of incoming transactions, starting at 0.
on receiving a transaction or vote message do

if the transaction in the message is (weakly) revealable, and marked for (weak)
causality,

multicast the decryption share of the request to all participants if that
hasn’t already happened

if the message contains a transaction t̂ ,
if the transaction is labeled for no fairness, add it to D and Q
else send the message (”VOTE”,ID,b,i, timestamp(t̂),H(t̂),t̂) to all

parties, where i is the sequence number of that request
add t̂ to U

on receiving a valid delivered block B from the underlying blockchain do
put all elements from B into D and remove them from U and Q
postprocess B

All potential leaders:
on receiving a vote message with a correct sequence number or changing U do

for all transactions t ∈ U , set Bt to {t}
while for any Bt = ∅ any transaction t t blocks a transaction t ∈ Bt

add t to Bt

end while
for all t for which no transaction in Bt is blocked,

add Bt to the Q, validated by all signed votes for requests in Bt

add all t ∈ Bt to D, and remove them from all sets Bx and U
if a fairness-switch condition for label l is satisfied

Switch to the appropriate new definition for fairness
Add the proof of the switch condition to the next block
Recompute all Bx

There are three core functions to the protocol that define both what is con-
sidered fair and impose most of the model. For the ease of description, we assume
here that validators postpone out of sequence votes, i.e., if a vote with sequence
number s is accepted, all votes with sequence numbers smaller than s have been
seen.

3 Fairness Functions

To illustrate the functions, we use the concept of block-order fairness, i.e., if all
honest parties see tx1 before tx2, then tx1 must be in the same or an earlier block
than tx2 (and, where decidable, scheduled before tx2 in the post-processing).

isBlocked(tx)
The function isBlocked (tx) identifies if it is possible that a so-far-unknown
transaction might be scheduled with priority to tx. If this is the case, tx cannot
be consumed by the blockchain. A transaction usually is blocked due to missing
votes from other validators concerning transactions may have priority over tx.

194 K. Kursawe

In the order-fairness definition, tx is blocked if it has received t or less votes;
this implies that it is still possible that n − t votes come in that report to have
seen a transaction before tx that currently has not been seen.

depends(tx1, tx2)
This function determines if tx2 might have priority over tx1, i.e., if (assuming
all still missing votes are worst case for tx1, by the fairness rules tx2 must come
in an earlier or the same block as tx1. We also say that tx2 is blocked by tx1.

In the order fairness model, tx1 is not blocked by tx2 if there are t + 1 votes
reporting tx1 before tx2, i.e., at least one honest party saw tx1 before tx2.

isRevealable(tx1)
A transaction is revealable, if, given the current information, it blocks all newly
generated transactions. It is weakly revealable, if it is not blocked, and cannot be
blocked by any newly generated transaction. For simplicity, we assume a t + 1
threshold here; if we have an n−t threshold, a transaction may become revealable
at an earlier stage, at the price of a slightly more complicated analysis.

In the block order fairness, a transaction is revealable if it has been voted on
by all parties or finalized.

Efficient Computeability. We assume that, in the chosen model of the fair-
ness function (i.e., taking into account byzantine failures and asynchrony), all
information to compute the three fairness functions will be both measurable
securely and available ’soon’, or trigger a switch in fairness definitions. The
precise definition of soon is not trivial [3] and out of scope for this paper.

Loop Freeness. Ideally, a fairness rule does not create loops, i.e., a scenario
where both t1 depends on t2 and t2 depends on t1. However, the framework
can handle loops relatively well by putting the entire loop into one block and
letting the application sort out what to do with it.

Efficient Termination. Efficient termination requires transactions to be deliv-
ered ‘soon’. This would be violated by the possibility of unlimited sized fair-
ness loops [4,5], or because the fairness function requires input that it does not
get through byzantine behavior or the network asynchrony. To mitigate this,
Wendy allows to switch the fairness definition if a predefined condition arises
- this could be measured by the number of blocked transaction, transaction
waiting time, etc.

Monotony. Monotony essentially means that once a transaction is unblocked,
it stays unblocked. A fairness function that lacks monotony is not reliably
implementable, as a transaction can be finalized in a block based on available
information, and afterwards a transaction is seen that would get precedence
over it. Nevertheless, it can make sense to have a non-monotonous fairness
function. For example, if the fairness function wants to prioritize by paid fees,
it is always possible that a currently unseen transaction offers more fees than
any transaction that a validator has seen so far. In this case, it does make
sense for a validator to make a ‘best-effort’ attempt.

Wendy Grows Up: More Order Fairness 195

4 Other Example Fairness Definitions

4.1 Timed Order Fairness

All parties have local (not necessarily synchronized) clocks. If there is a time τ
such that all honest parties see tx1 before τ and tx2 after τ , then tx1 must be
scheduled before tx2.

A transaction tx is blocked, if less than t+1 valid votes are received. Now
one honest party has reported all transactions it saw up to tx. Any unknown
transaction will get a bigger timestamp from it and thus cannot have precedence.

Consider a time τ ′ such that at least one honest party saw tx before and one
after τ ′. Let’s call that tau(tx). A transaction tx1 does not depend on tx2, if
tau(tx1) < tau(tx2). If tx2 had to be scheduled before tx1 by above rule, then
its tau value would have to be smaller.

A transaction tx is revealable, if n parties have reported tx as well as a
transaction with a timestamp larger than the maximum of the timestamps on
tx. Thus, the maximal timestamp on tx is the τ w.r.t to any new transaction.

A transaction tx is weakly revealable, if t+1 valid votes have arrived for tx
This means tx is no longer blocked, and it is not possible anymore that any other
vote gets precedence

4.2 Capitalist Fairness with Social Security

For each block, schedule the highest paying known transactions at the time the
block is prepared. Transactions get a bonus for waiting, so no transaction needs
to wait forever.

A transaction tx is blocked, if less than t + 1 valid votes are received.
Let f(tx) be the fee paid for transaction tx and w(tx) the number of blocks

tx waited since being unblocked. A transaction tx1 depends on tx2, if t+1 valid
votes have arrived for tx1 and tx2, and f(tx2) ∗ 1.1w(tx2) > f(tx1) ∗ 1.1w(tx1)

The blocking function is the minimum delay after which it is assured that an
honest party received a transaction. The dependency function sorts all unblocked
transactions by paid fee, while applying a multiplier for waiting transactions.

As the dependency function lacks the monotony property, a transaction tx
can only be is (weakly) revealable once it is finalized.

5 Implementation Notes

The primary performance impact of Wendy is that some transaction are delayed
through going through the protocol, and thus end up in a later block than they
would otherwise. In our simulations, the main factor (relatively independent of
the fairness definition) is the additional delay to gather the input from a set
of validators to evaluate the fairness rules. The ratio of delayed transactions is
roughly the ration of message transmission time to block-delivery time - thus,
Wendy will have a measurable impact on very low latency blockchains, and be

196 K. Kursawe

almost unnoticeable on slower ones like Ethereum. An additional factor is the
increased communication ans computation; however, the impact of this highly
depends on how much validators are already on their limit, and thus can’t be
quantified in a generic way.

References

1. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR
http://arxiv.org/abs/1807.04938 (2018)

2. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR http://arxiv.
org/abs/1710.09437 (2017)

3. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

4. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-Fairness for Byzantine Consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 16.
https://eprint.iacr.org/2020/269

5. Kursawe, K.: Wendy, the good little fairness widget: achieving order fairness for
blockchains. In: AFT 2020: 2nd ACM Conference on Advances in Financial Tech-
nologies, 21–23 October, 2020, pp. 25–36. ACM (2020). https://doi.org/10.1145/
3419614.3423263

6. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Trans. Pro-
gram. Lang. Syst. 16(3), 986–1009 (1994) https://doi.org/10.1145/177492.177745

http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/978-3-030-56877-1_16
https://eprint.iacr.org/2020/269
https://doi.org/10.1145/3419614.3423263
https://doi.org/10.1145/3419614.3423263
https://doi.org/10.1145/177492.177745

Measuring Illicit Activity in DeFi:
The Case of Ethereum

Jiasun Li1, Foteini Baldimtsi1(B), Joao P. Brandao1, Maurice Kugler1,
Rafeh Hulays2, Eric Showers2, Zain Ali1, and Joseph Chang1

1 George Mason University, Fairfax, USA
foteini@gmu.edu

2 Blockchain Intelligence Group, Vancouver, Canada

Abstract. We analyze the magnitude of illicit activities in the Ethereum
ecosystem. Using proprietary labeling data from the Blockchain Intel-
ligence Group (BIG), we investigate the characteristics of a number
of “malicious” Ethereum addresses. We first calculate the total num-
ber of transactions involving these addresses and the total amount of
funds transferred through them, and then characterize smart contract
addresses for ERC-20 tokens or DeFi applications, that the malicious
addresses interact with. Finally, we apply machine learning techniques
to identify additional “malicious” addresses by conducting a network
clustering analysis within all Ethereum addresses from transactional rela-
tionships with the initial set of malicious addresses.

1 Introduction

Since the introduction of Bitcoin [1], the first cryptocurrency back in 2008, there
has been an explosive growth in the number of circulating cryptocurrencies. By
2020, more than 2000 different cryptocurrencies [2] have made up an estimated
market capitalization of more than $900 billion [3]. These cryptocurrencies form
one of the largest unregulated markets in the world, and there has been a widely-
held impression that cryptocurrencies serve as havens for criminals, used either
as a medium of exchange for illicit goods or as a means of hiding the source of
(i.e., laundering) dirty money. However, calculating the actual volume of illicit
activities in the cryptocurrency space remains a difficult research question.

A recent study focused on Bitcoin estimates that approximately one-quarter
of Bitcoin users are involved in illegal activity [4]. The authors find that Bitcoin
users who are involved in illegal activities differ from other users in several char-
acteristics: illegal users tend to incur more frequent yet smaller transactions,
and tend to repeatedly transact with a small set of counterparties. Despite a
high number of transactions, illegal users tend to hold less bitcoin, consistent
with the risk they face in having their bitcoin holdings seized by authorities.
Users are more likely to be involved in illegal activities when there are many
darknet marketplaces in operation [5], few shadow coins in existence, and imme-
diately following darknet marketplaces seizures or scams [6]. Finally, users are
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 197–203, 2021.
https://doi.org/10.1007/978-3-662-63958-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_18&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_18

198 J. Li et al.

more likely to be involved in illegal activity if they use “mixing services” or
“tumblers” [7] to conceal their identity.

Although [4] presents an interesting analysis on the state of illicit activities
in Bitcoin, the rest of the cryptocurrencies space, especially the emerging DeFi
universe that is built on smart contracts and their potential use for illegal activ-
ity [8], remains unexplored. In order to bridge this gap, we are looking at other
cryptocurrencies and DeFi systems.

Our research thus focuses on the following question:

To what extent are illicit activities present among cryptocurrencies other
than Bitcoin, as well as smart contract applications?

In this work, we start by investigating Ethereum (the second largest cryp-
tocurrency which has a market capitalization of over USD 120 billion as of Jan-
uary 2021). Given the rich characteristics of Ethereum (which comes equipped
with a smart contract functionality as opposed to Bitcoin), we wish to explore
the illicit activity done on the system and also look at the special cases of smart
contracts and ERC-20 tokens.

2 Ethereum Basics

Ethereum is a blockchain system that was proposed by Vitalik Buterin in 2013 [9]
and became available in 2015. Similar to Bitcoin, Ethereum operates as a cryp-
tocurrency but it’s main philosophy goes beyond typical cryptocurrency trans-
actions as it allows developers to build and store new applications (or else smart
contracts on the blockchain.

Ethereum Blockchain Architecture. The Ethereum blockchain, similar to most
blockchain systems, consists of blocks which are linked to each other via the
use of cryptographic hash functions. Miners collect and validate user transac-
tions and group them in blocks that are included in the blockchain and are paid
for their effort via transaction fees. Participants decide on the current view of
the blockchain (i.e. which are the included blocks/transactions and in which
sequence) via a consensus mechanism. Currently, similar to Bitcoin, Ethereum
employs a proof-of-work based consensus mechanism, which allows easy partic-
ipation to the consensus mechanism while avoiding sybil attacks by using the
computational power of participants to weight their power in the consensus vot-
ing process. Ethereum is projected to move to a different consensus mechanism,
called proof-of-stake, in 2021.

Accounts and Transactions. Ethereum’s transaction structure is account based
(as opposed to Bitcoin’s UTXO/transaction based model) which is very similar
to a traditional banking system. The native cryptocurrency token is called ether
(ETH). An Ethereum account is a 20-byte address which stores the state of
ownership of ether tokens. As described in Ethereum’s whitepaper [9], an account
contains four fields: (1) a nonce (counter of how many transactions this account

Measuring Illicit Activity in DeFi: The Case of Ethereum 199

has created/sent), (2) the account’s current ether balance, (3) the account’s
contract code, if present and (4) the account’s storage (empty by default). In
practice, there exist two types of Ethereum accounts: “regular” accounts (or else
externally owned accounts) which are free to create, are used for transactions of
ETH and they are controlled by the owner of the private key that corresponds
to the account address; and, “contract” accounts controlled by code as we will
explain in more details below.

A transaction between regular accounts includes: the address of the recipient,
a digital signature from the sender (authorizing the transfer), the amount of
ETH to be transferred and some auxiliary information such as fee information
and optional data.

Smart Contracts. As explained above, smart contracts are a type of Ethereum
accounts. One can simply think of smart contracts as a piece of software code
that runs on the Ethereum blockchain. Every smart contract, consists of a piece
of code (its functions) and data (its state) and also has a balance, i.e. can send
transactions over the network. The main characteristic of smart contracts is that
they’re not controlled by a user, instead they are deployed to the network and
run as programmed. Regular accounts can interact with a smart contract by
submitting transactions that execute a function defined on the smart contract.

3 Our Methodology

To quantify illicit activities on Ethereum we identify a set of addresses/
transactions that have been marked as “malicious” using an initial set of labeled
Ethereum addresses, graciously provided to us by the Blockchain Intelligence
Group (BIG)1, which we refer to as our original malicious set (MS). We then
analyze how this set interacts with the rest of all Ethereum addresses via a
network clustering analysis explained below.

Since the original data from BIG contains detailed labeling flags for all
addresses, in order to determine MS, we need to ask what types of labels charac-
terize illicit activities? In collaboration with BIG and based on previous work [4]
we focus on a number of flags that involve scams, phishing attacks, and darknet
transactions. Table 1 provides detailed descriptions of these labels.

We obtain a total of 3559 addresses marked as malicious under the flag
descriptions given above. Of these 3559 addresses only 2628 appear in the
Ethereum blockchain. The remaining ones are addresses that are known to be
malicious, but do not have any funds transferred to them. For instance, an
address might have been posted in a known scam, but no funds were ever trans-
ferred to it, so it will not actually appear on the blockchain.

Given the set of malicious addresses described above, we go through the
entire Ethereum blockchain database between July 2015 and December 2020
to analyze illicit behaviors. Specifically, we looked at blocks in the Ethereum

1 https://blockchaingroup.io/.

https://blockchaingroup.io/

200 J. Li et al.

Table 1. Flag description

Label/flag Description

scam An activity that is associated with a fraudulent or
deceptive act

phishing A type of scam in which a user is tricked into
revealing personal or confidential information which
the scammer can use illicitly

github-darklist GitHub is a platform that allows developers to host
and version control their code using git

seen on paste bin The paste bin allows users to share information in
plain text

exchange client An address controlled by the client of an exchange

seen on dark web The dark web is defined as “the portion of the
Internet that is intentionally hidden from search
engines, uses masked IP addresses, and is accessible
only with a special web browser

hack parity perpetrator Parity Wallet was breached which allowed hackers to
steal cryptocurrencies

seen on dark market A transaction associated with or using mixing and
tumbling services, suggesting an intent to obscure
the flow of illicit funds between known wallet
addresses and darknet marketplaces

blockchain between Tue May 26 16:23:22 2020 UTC. The first block on database
was mined on Thu Jul 30 15:26:13 2015 UTC.

As of December 2020, the malicious set (MS) currently owns 326,443.71 Eth.
Table 2 presents a number of summary statistics. The first row counts (a) how
many transactions have been done by the malicious set (MS), (b) what was the
total value of these transactions (in both Ether and USD - using the conversion
rate of January 13th 2021), and (c) the total number of receiving addresses (i.e.
with how many addresses has the malicious set interacted with). Since certain
Ethereum transactions are “regular” ones, i.e. spending ether only, while others
are token-transfers or more generally transactions to trigger smart contract state
updates, the 2nd and 3rd rows look at “regular” transactions originating from
the malicious set (MS) and token transfers, respectively. Rows 4–6 focus on
transactions within the malicious set (i.e. both sending and receiving address are
in MS) and rows 7–9 are the complementary set, i.e. transactions from MS to non
MS addresses. Finally, rows 10–12 look at the number of ERC-20 transactions
within the malicious set.

4 Robustness: Expanding the Malicious Set

Beyond analyzing MS, we further conduct a network clustering analysis to iden-
tify whether additional Ethereum addresses should be marked as malicious. Fol-

Measuring Illicit Activity in DeFi: The Case of Ethereum 201

Table 2. Statistics of malicious addresses

Statistics detail Transaction (tx) Value (Eth) Value (USD) Addresses

Total out from MS 370,553 1,314,539.20 1,410,316,526.11 183,502

Total out from MS with
Eth

341,635 1,314,539.20 1,410,316,526.11 182,046

Total out from MS as
token transfers

28,918 0 0 1,513

Total out from MS to MS 1347 221,566.95 237,710,317.98 347

Total out from MS to MS
with Eth

908 221,566.95 237,710,317.98 336

Total out from MS to MS
as token transfers

439 0 0 16

Total out from MS to
non-MS

369,206 1,092,972.25 1,172,606,208.14 183,155

Total out from MS to
non-MS with Eth

340,727 1,092,972.25 1,172,606,208.14 181,710

Total out from MS to
non-MS as token
transfers

28,479 0 0 1497

Total out ERC-20 from
MS

13,714 - - 35,210

Total out ERC-20 from
MS to MS

3,428 - - 111

Total out ERC-20 from
MS to non-MS

10,286 - - 35,099

lowing [4] we further exploit the Ethereum transaction network to identify poten-
tially malicious users. The underlying assumption works as follows: If a set S of
users are known to be involved in illicit activity given the flags provided by BIG,
a user X that trades exclusively or predominantly with users in S is likely to also
be involved in illicit activity. Similarly, a user Y that trades predominantly with
users that are not in S is likely to be a compliant user. This intuition drives the
classification of users into compliant and illicit on the basis of their transaction
partners.

More formally, the method we apply is a network cluster analysis algorithm
that takes as inputs the set of users (“nodes” in network terminology) and the
trades between users (“edges” or “links” in network terminology). The output of
the algorithm is an assignment of users to groups such that the “modularity” of
the groups (density of links within groups and sparsity of links between groups) is
maximized. The method labels a user as illicit (compliant) if the disproportionate
share of their transactions is with members of the illicit (compliant) group. The
method does not assume that users only engage in either compliant or illicit
activity—users can do both. Therefore, there will be some trades between the
compliant and illicit groups.

202 J. Li et al.

We apply the same methodology as in [4]: a variant of the smart local moving
(SLM) algorithm developed by [10], adapted to our specific application. The
algorithm’s name (“smart moving”) comes from the fact that the algorithm
finds the underlying group structure in the network by moving nodes from one
group to another, if such a move improves the model fit. Applied to our data,
the algorithm is as follows:

– Step 1: Assign all the flagged illicit users to the illicit group and all of the
remaining users to the compliant group.

– Step 2: Loop through each user, performing the following operation on each:
• If the user disproportionately transacts with members of the user’s cur-

rently assigned group, then leave the user in that group;
• Otherwise, move the user to the other group (if the user is assigned to

the illicit group, move the user to compliant group, and vice versa).
– Step 3: Repeat Step 2 until, in a complete loop through all users, no user

switches between groups. At that point the assignment to groups is stable
and ensures that each member trades disproportionately with other members
of the same group.

Due to the iterative nature of the algorithm, not all of the “flagged” illicit
users will necessarily remain in the illicit group. For example, it is possible that
some of the users that had been flagged by BIG but were mainly using ether for
compliant purposes. This will be recognized by the algorithm in Step 2 and the
user will be moved to the compliant group.

The resulting malicious set after the expansion algorithm is 23,638 addresses
and converged after 2 iterations. An interesting finding is that although the
malicious set grew by a lot, the total amount of ETH in outgoing transactions
was only marginally increased to reach 1,316,153.44 ETH.

5 Conclusion

The goal of this paper is to spark some discussion on what quantifies as illicit
activity on Ethereum and other DeFi systems and how can we possibly detect
and analyze it. We present our original set of findings for the case of Ethereum
and discuss our observations.

Acknowledgements. The GMU authors of this paper were supported by a US
Department of Homeland Security award #205187 through the Criminal Investiga-
tions and Network Analysis Center (CINA).

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, vol. 2012, p. 28
(2008). https://bitcointalk.org/index.php?topic=321228.0

2. Coinmarket (2019). https://coinmarketcap.com/all/views/all/

https://bitcointalk.org/index.php?topic=321228.0
https://coinmarketcap.com/all/views/all/

Measuring Illicit Activity in DeFi: The Case of Ethereum 203

3. Coincodex - crypto market overview (2019). https://coincodex.com/market-
overview/

4. Foley, S., Karlsen, J.R., Putniņš, T.J.: Sex, drugs, and bitcoin: how much illegal
activity is financed through cryptocurrencies? Rev. Financ. Stud. 32(5), 1798–1853
(2019)

5. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: Proceedings of the 22nd International Conference on World
Wide Web, WWW 2013, pp. 213–224 (2013)

6. Buskirk, J., Naicker, S., Roxburgh, A., Bruno, R., Burns, L.: Who sells what?
Country specific differences in substance availability on the agora dark net mar-
ketplace. Int. J. Drug Policy 35, 16–23 (2016)

7. Bestmixer (2019). https://bestmixer.io/en
8. Juels, A., Kosba, A., Shi, E.: The ring of Gyges: investigating the future of crim-

inal smart contracts. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 283–295 (2016)

9. Buterin, V.: Ethereum whitepaper (2015)
10. Waltman, L., van Eck, N.J.: A smart local moving algorithm for large-scale

modularity-based community detection. Eur. Phys. J. B 86(11), 1–14 (2013).
https://doi.org/10.1140/epjb/e2013-40829-0

https://coincodex.com/market-overview/
https://coincodex.com/market-overview/
https://bestmixer.io/en
https://doi.org/10.1140/epjb/e2013-40829-0

DeFi – Order Routing and Formal
Methods

Global Order Routing on Exchange
Networks

Vincent Danos1(B), Hamza El Khalloufi1, and Julien Prat2

1 CNRS, DI ENS, PSL-ENS, INRIA, Paris, France
2 CNRS, CREST, École Polytechnique, Barcelona, Spain

Abstract. We propose an abstract notion of networks of exchanges with
an eye to modelling the global money market of DeFi (decentralised
finance). We formalise routing and arbitrage on such networks as convex
optimisation problems. We provide bounds with closed formulas in the
specific case of Uniswap-like automated markets and a restricted form
of cyclic arbitrage. We compute the associated lower bounds on actual
data derived from the Ethereum blockchain.

1 Introduction

The global money market of DeFi (decentralised finance) allows traders to
exchange assets represented by ERC20 tokens on the Ethereum blockchain. Each
money market on a specific pair of tokens A/B can be seen as a 2-sided platform
where liquidity providers transact with liquidity consumers. There are several
implementations of such platforms. Some use the traditional form of the limit
order book [1], but most use the so-called constant function automated market
makers (e.g. Uniswap v2 [2]) which compute prices algorithmically as a function
of their current reserves in A and B. The intense competition for liquidity and
high clonability of the said platforms has given rise to a dense and complex
network (a tiny subgraph of which is shown in Fig. 5). Prior academic work on
such networks [3,4] focusses on local questions, with the exception of the recent
Ref. [6] which looks at cyclic arbitrage (about which more later). Our contribu-
tion explores two global questions centred on liquidity consumers (also known
as takers or traders).

The first question is routing: eg “Here I have a 100 ETH, how should I best
convert them to DAIs”. Unsurprisingly, direct routes may not always be best, and
convex combination of routes may dominate any particular path. Figure 1 gives
an actual example of routing a 100 ETH in order to maximise the amount of
DAIs obtained. One sees that the order is split among 7 distinct money markets.

The second question is arbitrage (aka price consistency): eg in a given state
of the network “Is there any way I can chain operations leading to certain non-
zero profit”. We define in this paper a class of convex optimisation problems
which encompasses both the global routing problem and the arbitrage problem.
We show that problems in this class always have solutions. We also show that
optimal arbitrage eliminates price inconsistencies. One can construe this result
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 207–226, 2021.
https://doi.org/10.1007/978-3-662-63958-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_19&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_19

208 V. Danos et al.

WETH

USDC DAI

WETH

WETH

WETH

WETH

WETH

WETH

uni

sushi

balancer

balancer

balancer

2/3 * 3/4

2/3 * 1/5

2/3 * 1/20

1/3 * 1/20

1/3 * 1/5

1/3 * 3/4

curve

DAI

DAI

DAI

USDC

USDC

USDC

DAI

Fig. 1. A transfer plan using 7 distinct money markets (blue edges). Notice that a
third of the original 100 ETH travels through an indirect path. (Color figure online)

as saying that the global network ‘learns’ a consistent set of prices under optimal
arbitrage.

For both questions we introduce tractable sub-problems. Specifically, we
demonstrate that arbitraging along cycles, while sub-optimal in general can be
efficiently tested and solved. This leads to computationally cheap lower bounds
on profit. For Uniswap price functions, we derive a closed formula to compute the
maximal extractible profit on any given cycle. Putting the two results together
(cyclic arbitrage detection and explicit max profit), we look at actual Ethereum
data and efficiently find lower bounds for several arbitrage opportunities. For
routing we introduce the convex subproblem where one restricts to convex com-
binations of a given set of independent paths. It is possible to derive a simple
algorithm for optimal convex combinations of Uniswap price functions, which is
of independent interest and that we will publish elsewhere.

2 Prices, Plans, Profits

Many price functions have been considered to define prices in algorithmic
exchanges. We will use the specific Uniswap function (defined right below) to
obtain closed form solutions for cyclic arbitrage. Up to that point all our devel-
opment is generic and relies only on the following abstract definition.

Definition 1. A price function is a map f : R+ → R+ such that f(0) = 0, f is
monotonically increasing, strictly concave, bounded, and continuous.

We also sometimes suppose our price functions are differentiable. It will be
clear when we do.

The requirements encapsulated in Definition 1 are natural for prices: f(0) = 0
means one gets nothing for nothing, increasing means one gets more for more,

Global Order Routing on Exchange Networks 209

concave means returns decrease, and boundedness expresses the fact that liquid-
ity reserves are finite.

Notice that a (half) order-book on an A/B pair -ie a price-sorted list of
discrete offers (pi, Vi) where Vi is an amount of Bs and pi the unit price to
pay in A to take that offer- also defines a price function. It just happens to
be piecewise affine (hence is not everywhere differentiable). Boundedness holds
whether liquidity is provided via an order book or a constant function market-
maker.

A simple example of price function is the Uniswap one. For an A/B pair it
reads:

f(x) := [B](γx)/(γx + [A]) (1)

where [A], [B] > 0 are the local reserves (or pools) in tokens A and B. The γ
parameter is such that 0 ≤ 1 − γ < 1, and 1 − γ represents the fee extracted by
the liquidity providers for every transaction. It is easy to see that 0 ≤ f(x) < [B].
Hence a Uniswap pair never pays out more than the reserve however small.1 This
function satisfies all the requirements of a price function as defined above. The
dual price function which specifies how many As one gets for a given amount of
Bs is obtained simply by exchanging the roles of [A], [B] (not to be confused
with f−1 which specifies how many As one needs to spend to obtain a given
amount of Bs).

The reserves [A], [B] are modified by every transaction and therefore induce
a modification of the price function -also known as the price impact of the
transaction.2

The class of price functions is closed under: sum, composition, pre- and post-
composition by positive scalar multiplication.

Definition 2. An exchange network consists of:

– an undirected multi-graph G = (V, E), without loops
– a fixed chosen orientation for each edge e in E
– a family of price functions (fe; e ∈ E)

We write s(e), t(e) ∈ V for the source and target of an edge e. Hence both s and
t have type E → V ; and for A ∈ V , s−1(A) is the set of edges emanating from
A, while t−1(A) is the set of edges pointing to A.

Given φ = e1, . . . , en a simple path in G, set:

fφ = fen
◦ · · · ◦ fe1

fφ is a price function (by composition). The path has to be simple, else the
first visit to an edge may change the reserves, and the second one will find an
1 Actually one could redefine f as f(x) = f(∞)(xf ′(0))/(xf ′(0)+f(∞)) as f(∞) = [B]

the total reserve in [B], and f ′(0) = γ[B]/[A] the marginal price of A in B.
2 One could call the Uniswap price function a ‘price state machine’ as it defines a price

function for every state of its internal reserves.

210 V. Danos et al.

updated price function. In this paper, we only rarely consider specific update
mechanisms, and almost always work with a given fixed state of the network of
abstract price functions.

An example of such a structure is a snapshot of the Uniswap network. Nodes
are ERC20s, edges are pairs with a chosen orientation. The level of reserves in
each pair determines the price function fe. In reality, the graph part also changes
slowly as new nodes and pairs are added.

We now define our main object of interest:

Definition 3. A transfer plan τ is an element of the standard cone E → R+
(hence convex). The support of τ is the subset of E where τ is non-zero.

For each e, τ(e) ≥ 0 specifies the amount of s(e) injected in the price function
fe.

There are implicit restrictions in Definition 3 which are worth discussing. We
do not consider sliced orders, i.e. repeated swaps on the same directed edge. It
is known for constant function aMMs that slicing leads to sub-optimal plans [3].
Also, we do not consider backtracking, i.e. transfer plans where an underly-
ing edge is used twice with opposite orientations. This is because each edge is
directed.3 Finally, we do not incorporate in our notion of transfer plan the very
real possibility which DeFi agents have, namely to modify the reserves (eg by
depositing or withdrawing liquidity in the various pools of aMMs) and therefore
the price functions while trading. It seems unlikely that backtracking or liquidity
modifications could improve transfer plans relative to the objectives given below,
but it remains to be seen.

A plan τ translates directly in a concrete Ethereum transaction. Because of
the existence of flash loans, at least for most liquid tokens, the order in which
each elementary swaps are performed is irrelevant. We neglect in this model gas
costs and flash loan fees.

Given (G, f) we can now define the profit map Ψ which maps a transfer plan
(an E-vector), to its resulting balance (a V -vector):

Definition 4. The profit map Ψ : RE
+ → R

V derives from the data as follows:

Ψ(τ)(A) := Ψ+(τ)(A) − Ψ−(τ)(A)

Ψ+(τ)(A) :=
∑

e∈t−1(A)
fe(τ(e))

Ψ−(τ)(A) :=
∑

e′∈s−1(A)
τ(e′)

The first component Ψ+(τ)(A) is the amount of A returned by τ , while the
second Ψ−(τ)(A) is the amount of A invested by τ . The difference Ψ(τ)(A) is
the balance change of A as a result of executing τ -ie the profit (which can be
negative!).
3 To express backtracking plans and allow sequences of swaps on e with alternating

orientations, one could use the larger cone of finite sequences E → ∑
n
R

n
+.

Global Order Routing on Exchange Networks 211

We see that:

– Ψ+()(A) is concave, non-decreasing, bounded, differentiable (if edges are);
it is only increasing and strictly concave in those components τe such that
t(e) = A.

– Ψ−()(A) is a linear function R
E
+ → R+;

– Ψ()(A) is a concave function bounded above by
∑

e∈t−1(A) fe(∞) (sum of
A’s liquidities available in the network) and Ψ(0E) = 0V .

Say a node A is:

– a source in τ if Ψ+(τ)(A) = 0, Ψ−(τ)(A) > 0,
– a sink if Ψ+(τ)(A) > 0, Ψ−(τ)(A) = 0,
– an intermediate if Ψ+(τ)(A) = Ψ−(τ)(A) > 0.

For differentiable price functions we can compute Ψ ’s Jacobian:

Ψ(τ + h)(A) − Ψ(τ)(A) =
∑

e∈t−1(A)
(hef ′

e(τ(e)) + o(he)) −
∑

e′∈s−1(A)
he′

So the Jacobian matrix of Ψ of dimension V × E is:

JΨ(τ)(A, e) =

⎧
⎨

⎩

f ′
e(τ(e)) if e ∈ t−1(A)

−1 if e ∈ s−1(A)
0 else

(Note that as G is loopless, no e is both in s−1(A) and t−1(A).)
As said, a transfer plan also has a side effect (here a monoid action) on the

price functions which we denote by fe �→τ τ(e) · fe; that is to say if fe is the
price function of edge e, and the amount τ(e) is injected in e, we write τ(e) · fe

for the new price function. We also write more generally τ · Ψ for the new profit
function induced by the execution of plan τ . We leave this action implicit and
just ask that it verifies the no-slicing property:

Ψ(τ1 + τ2) ≥ Ψ(τ1) + τ1 · Ψ(τ2)

This inequality expresses the fact that no profit can be made by simply slicing a
plan in two parts. It is easy to see that Uniswap price functions satisfy no-slicing,
and, therefore, so do profit functions derived from Uniswap price functions.

We can represent some of the plans defined above in a more diagrammatic
way. Figure 1 (retrieved from the 1inch price aggregator web site) gave an exam-
ple with a unique source ETH and unique sink DAI and one intermediate node
USDC (with zero balance). The plan τ invests at ETH and collects the returns
at DAI: Ψ−(τ)(ETH) = x, Ψ+(τ)(ETH) = 0; Ψ−(τ)(DAI) = 0, Ψ+(τ)(DAI) = y;
y can be computed as the composite function of x indicated by the diagram.

Diagrams are convenient ways to represent those plans that have only sources,
sinks, and intermediates. Every diagram gives rise to a plan. Not every plan is a
diagram, but with respect to some of the objectives functions presented in the
next section, optimal ones will be.

212 V. Danos et al.

3 Orders, Routes, Arbitrage

We define now a number of convex problems for transfer plans in standard
form [5, §4.2.1]. In each case we ask whether the problem is feasible and has a
bounded objective function. At the end of the section, we prove the existence
of solutions for these problems (provided they are feasible). As profit functions
are not strictly concave in all coordinates, the solutions may not be unique in
general.

3.1 Smart Order Routing

Recall the routing question in the introduction: “what is the maximum amount
of DAI I can get for 100ETH using all aMMs and dexes available?”

This question can be recast as the forward routing problem with A 	= B,
a ∈ R+:

sor(a : A, B) =
max Ψ(τ)(B)
with Ψ(τ)(A) ≥ −a

Ψ(τ)(C) ≥ 0, C 	= A, B
(2)

For a plan to satisfy the constraints (aka be feasible), it should not cost more
than a : A (but could invest more), and have non-negative balance for Cs which
are neither A nor B. The zero plan 0E satisfies the constraints, so the problem
is feasible.

An optimal τ will have Ψ(τ)(A) = −a, iff A and B are connected in G. One
says the constraint is active in this case. Indeed, pick any path φ from A to
B in G, if there is some unspent A in τ , i.e. Ψ(τ)(A) > −a one can push the
remainder a′ > 0 through φ to obtain fφ(a′) > 0 additional Bs. Conversely, if
there is no possible way to use some A to get some B, the amount of A spent is
indifferent. Likewise, the C constraints will be active for optimum τ if connected
to B.

We also see that for the routing problem to be sensible, there must be a
compatibility with the orientation of G in the sense that directed paths must
exist between inputs and outputs of the problem. Else the problem is degenerate.

As the user may have several types of tokens on hand, it makes senses to
generalise the above allowing for multiple inputs (but still one output):

sor(a1 : A1, . . . , an : An, B) =
max Ψ(τ)(B)
with Ψ(τ)(Ai) ≥ −ai

Ψ(τ)(C) ≥ 0, C 	= Ai, B
(3)

What about the inverse question “what is the minimum amount of ETH I
need to spend to get 100DAI?”. This question can also recast as the backward
routing problem with A 	= B, with b ∈ R+:

sor(A, b : B) =
max Ψ(τ)(A)
with Ψ(τ)(B) ≥ b

Ψ(τ)(C) ≥ 0, C 	= A, B
(4)

Global Order Routing on Exchange Networks 213

A feasible plan is one that pays ≥ b tokens of type B and has positive balance
on all Cs. Differently from the forward problem, the backward feasibility set
may be empty. Suppose the only edge in G joins A to B and b > fe(∞). No
matter how much money one injects on the A side, it will never obtain b. If the
feasibility set is not empty, an optimum plan will strive to minimise the expense
in A. Note that Ψ(τ)(A) will be negative at optimum, unless there is an arbitrage
opportunity (which user could take, see below).

So far the objectives only concern one output. To generalise to multi-output
plans, we can set a reference price p ∈ R

V
+ and use it to scalarise the problem [5,

§4.7.4].
For a ∈ R+, ψ0 ≤ 0V , we define:

sor(p, a : A) =
max 〈p, Ψ(τ)〉
with Ψ−(τ)(A) ≤ a

Ψ(τ) ≥ ψ0

(5)

Here a feasible plan must invest no more than a : A, and respect an overall
budget limit ψ0. Hence there is always the zero plan.

3.2 Arbitrage

On to the price consistency problem:

arb(A) = max Ψ(τ)(A)
with Ψ(τ) ≥ 0 (6)

A feasible plan is any that results in a non-negative balance for all tokens. It
is feasible as 0E satisfies constraints. The optimal value will therefore also be
non-negative. Of course the interesting question is qualitatively whether there
is a non-zero solution, and quantitatively how to compute it. As above one can
prove that any solution will activate the constraints Ψ(τ)(B) = 0 for B 	= A.

As in the routing problem, one can scalarise the multi-output version of this
problem by maximising 〈p, Ψ(τ)〉 under the free-lunch constraint Ψ(τ) ≥ 0V .

Assuming that Ψ satisfies no-slicing:

Proposition 1. The arbitrage problem (6) is idempotent.

Proof: Let τ�
1 , τ�

2 be two successive optimal plans. We compute:

Ψ(τ�
1 + τ�

2) ≥nsl Ψ(τ�
1) + τ�

1 · Ψ(τ�
2) ≥ 0

where recall τ · Ψ is the profit function after the execution of τ . The sum τ�
1 + τ�

2
represents the fused plan. The first inequality is the no slicing condition defined
earlier (joining orders on the same edge is always better). By definition, both
terms on the rhs of this inequality are positive, and, therefore, so is the lhs. In
other words τ�

1 + τ�
2 is feasible. It also follows that Ψ(τ�

1 + τ�
2) ≥ Ψ(τ�

1), and,
therefore, by optimality of τ�

1 , it must be that τ�
2 = 0. �

In the differentiable case it is enough to look near the zero plan to detect
non-zero arbitrage.

214 V. Danos et al.

Proposition 2. There is a non-zero solution to the arbitrage problem iff there
exists ε ≥ 0E, such that JΨ(0)(ε) ≥ 0 with at least one coordinate JΨ(0)(ε)(A) >
0.

Proof: The if part is clear. The only if part follows from the fact that Ψ is
concave. To see this pick a τ (not necessarily optimal) such that Ψ(τ)(A) > 0,
and choose t ∈ (0, 1):

Ψ(tτ) = Ψ((1 − t)0E + tτ) ≥ (1 − t)Ψ(0E) + tΨ(τ) = tΨ(τ)

where we use the fact that Ψ is concave (in each argument) and Ψ(0E) = 0V .
By definition of the Jacobian:

Ψ(tτ) = JΨ(0)(tτ) + o(‖t‖1)

It follows that for t > 0 small enough, JΨ(0)(ε)(A) > 0, with ε = tτ . �
The criterion implies that at least one εe > 0. Keep in mind that the arbitrage

may be very small (see lower bound examples later). The criterion says nothing
about its magnitude; it merely gives a direction ε in the cone of plans in which
to look for one.

Using the expression obtained earlier for J(Ψ), we can rephrase the criterion
as follows:

Corollary 1. Problem (6) has a non-zero solution iff there is ε ∈ R
E
+ such that

for all A ∈ V :
∑

e∈t−1(A)
f ′

e(0)εe ≥
∑

e′∈s−1(A)
εe′

and for at least one A the inequality is strict.

For concrete price functions such as Uniswap’s with derivatives at zero which
are 0-homogenous in the reserves, a rescaling of these reserves by a positive
coefficient leaves the criterion invariant.

3.3 Existence

Except for problem (5), problems considered so far have the following form:

max h(Ψ(τ))
with Ψ(τ) ≥ ψ0

(7)

with h : RV → R a continuous function, ψ0 ≤ 0V .

Proposition 3. The feasible set C = {τ | Ψ(τ) ≥ ψ0} of problem (7) is compact
and non-empty in R

E
+; therefore problem (7) has solutions.

Global Order Routing on Exchange Networks 215

Proof:
First C is non-empty as 0E is in C.
Second C = ∩AΨ(τ)(A)−1[ψ0(A), ∞) is closed in R

E
+, as Ψ(τ)(A) is continu-

ous.
Suppose C is not bounded. Pick a sequence τn ∈ C such that ‖τn‖∞ ≥ n, and

en ∈ E such that ‖τn‖∞ = τn(en). As E is finite, there must a subsequence of en

which is constant and equal to some e0 with source A. Let τ ′
m be the associated

subsequence of plans. By construction τ ′
m(e0) → ∞.

For general reasons, we have:

Ψ(τ)(A) ≤
∑

E
fe(∞) − τ(e0)

hence Ψ(τ ′
m)(A) → −∞ which contradicts the budget constraint Ψ(τ)(A) ≥

ψ0(A).
As h ◦ Ψ is continuous, the second point follows. �

4 Lower Bounds

The problems considered in the preceding section may have solutions, but the
proof hardly tells us how to find them. In this section, we add new feasibility
constraints and derive simpler and tractable subproblems which will give lower
bounds to the original ones.

In the appendix we further specialise to Uniswap’s price functions and obtain
closed formulas.

4.1 Routing on Independent Paths

Let us return to the forward routing problem with source A and target B. Fix
(φi; 0 ≤ i < n) a family of independent paths in G from A to B with underlying
edge and node sets E′ ⊆ E, V ′ ⊆ V , and strictly concave price functions.

We restrict the forward A/B routing problem (2) by restricting plans to
have their support included in E′. This subproblem is again convex, evidently.
All nodes C ∈ V ′\{A, B} have non-negative balance by definition, but we
have noticed already that optimal solutions of the original problem satisfy
Ψ(τ�)(C) = 0 (Cs are intermediates). This leads us to an alternative and equiv-
alent formulation of the subproblem:

sor(a : A, φ1, . . . , φn) := max
∑

i fφi
(tia)

with (ti) ∈ Δn
(8)

with Δn the simplex of dimension n−1, where n is the number of support paths.
The quantity ti represents the fraction of the original budget a allocated to path
φi.

Write Ψ̂a(t) :=
∑

i φi(tia) for the new objective function.

216 V. Danos et al.

For any convex combination u + v = 1, u, v > 0:

Ψ̂a(u(t1, . . . , tn) + v(s1, . . . , sn)) =
∑

i
fφi

((uti + vsi)a)

=
∑

i
fφi

(utia + vsia)

≥
∑

i
ufφi

(tia) +
∑

i
vfφi

(sia)

= u
∑

i
fφi

(tia) + v
∑

i
fφi

(sia)

= uΨ̂a(t1, . . . , tn) + vΨ̂a(s1, . . . , sn)

hence Ψ̂a is strictly concave, as the φis are.
We have proved that for any choice of a family of paths:

Proposition 4. The restricted forward routing problem (8) has a unique solu-
tion t�; moreover, its optimum is a lower bound to that of the unrestricted forward
routing problem (2).

Not every plan can be expressed as a sum of independent paths. There seems
to be a natural intermediate and possibly tractable subproblem, where one max-
imises over diagrams. This is a larger subproblem as is evident from the example
Fig. 1 which is not a sum of independent paths (because of the last USDC/DAI
leg). Extending this proposition to diagrams would improve the lower bound.
However, it is unclear how to do this as diagrams (say with one source, and one
sink) do not form a convex subset of the plans.

4.2 Arbitraging Simple Cycles

Let us return to the arbitrage problem (6) with source A. Similarly to the routing
problem, we restrict the arbitrage one. Specifically, we ask for plans which are
supported by a given simple cycle going through A. The restricted problem is
still convex as are all subproblems based on restriction on the support. Also, it is
clear that the original problem has solutions that are not supported by a cycle,
so this approach will only provide lower bounds, in general.

Let φ be a directed cycle in G. One needs only to direct edges in the cycle
all in one direction or the other. As constraints will be active for solutions of the
subproblem, we have an alternative and equivalent formulation:

arb(a : A, φ) := max fφ(a) − a
with a ∈ R+

(9)

Note that fφ(a) − a is the profit function associated to the unique plan τ with
τ(e) = a for the only edge e in φ with source A, which induces a zero profit at
every other node of the cycle.

The only optimisation variable is now a. As fφ is a strictly concave price
function:

Proposition 5. The cyclic arb subproblem has a unique solution (possibly triv-
ial).

Global Order Routing on Exchange Networks 217

The arbitrage criterion simplifies to:

Proposition 6. The cyclic arbitrage problem (9) has a non-zero solution iff:

f ′
φ(0) =

∏
e∈φ

f ′
e(0) > 1

Using the argument of the proof of Proposition 2, one can show that the set of
as such that fφ(a) ≥ a is a compact interval of the form [0, a0]. The solution is
somewhere in between and is non-trivial iff 0 < a0.

5 Cyclic Arbitrage: The Uniswap Case

Consider again the Uniswap graph, where nodes are ERC20 tokens, edges are
pairs of reserve pools with fees 0 ≤ 1−γ � 1 (possibly different in each direction).
As above the reserves of an A/B edge are written [A], [B] and we define the
ratio ρAB = [B]/[A] -so that the marginal price of A in B is γABρAB .

5.1 Closed Formulas for Arbitrage

To simplify notations we consider triangular cycles on tokens A, B and C.
We have a profitable triangular arbitrage if:

a0
Swap−−−→ b

Swap−−−→ c
Swap−−−→ a1, with a0 < a1

We can specialise the arbitrage criterion of the main text as follows:

Lemma 1. (cyclic arbitrage): A triangular cycle is arbitrage-free iff:

γABγBCγCA ≤ ρABρBCρCA ≤ (γABγBCγCA)−1 (10)

Although we have already proven this result, it is instructive to redo the proof
in this special case, as composition of Uniswap price functions can be computed
explicitely. Specifically, we have:

a1 = ρCA
ρCBρBA

γCAγBCγAB

1
a0

+ ρCBρBA

γCAγBC [A]AB
+ ρCB

γCA[B]BC
+ 1

[C]CA

To have a non-zero arbitrage we need to have a0 < a1:

a1 = ρCA
ρCBρBA

γCAγBCγAB

1
a0

+ ρCBρBA

γCAγBC [A]AB
+ ρCB

γCA[B]BC
+ 1

[C]CA

> a0

Equivalently:

0 < a0 <
γABγBCγCAρABρBCρCA − 1

γAB

[A]AB
+ γBCγABρAB

[B]BC
+ γCAγBCγABρABρBC

[C]CA

which can always be achieved by choosing a0 small enough, provided
γABγBCγCAρABρBCρCA > 1, and the conclusion follows. �

218 V. Danos et al.

One sees that arbitrage can only exist in one orientation of the cycle.
In case of no fees, (γAB = γBC = γCA = 1), in order for the triangular cycle

to be arbitrage-free, we need to have ρABρBCρCA = 1, meaning that the product
of marginal prices should be equal to 1. In the presence of fees the no-arbitrage
zone is ‘thicker’ so to speak.

The explicit calculation shows that the arbitrage condition itself is homoge-
neous (invariant under a rescaling of the reserves). Next, we compute the max
extractable profit and will se that the actual reserve sizes do matter (Fig. 2).

(a) In red arbitrageable cycles among all existing cycles.

(b) Isolated arbitrageable cycles.

Fig. 2. Example of arbitrageable cycles in Uniswap. (Color figure online)

Proposition 7. In case of the existence of a triangular arbitrage, we obtain the
following:

Global Order Routing on Exchange Networks 219

– The optimal input a∗
0 that maximises the arbitrage profit is:

max
a0

(a1 − a0) = max
a0

(γCAγBCγABρABρBCρCAa0
(γAB

[A]AB
+ γBCγABρAB

[B]BC
+ γCAγBCγABρABρBC

[C]CA
)a0 + 1 − a0)

a∗
0 =

√
γCAγBCγABρABρBCρCA − 1

γAB

[A]AB
+ γBCγABρAB

[B]BC
+ γCAγBCγABρABρBC

[C]CA

(11)

– The optimal output a∗
1 that maximises the arbitrage profit obtained from

this arbitrage operation is:

a∗
1 =

γCAγBCγABρABρBCρCA − √
γCAγBCγABρABρBCρCA

γAB

[A]AB
+ γBCγABρAB

[B]BC
+ γCAγBCγABρABρBC

[C]CA

(12)

– The maximum profit obtained from this arbitrage operation is:

Profit∗ = a∗
1 − a∗

0 =
(√γCAγBCγABρABρBCρCA − 1)2

γAB

[A]AB
+ γBCγABρAB

[B]BC
+ γCAγBCγABρABρBC

[C]CA

(13)

The above results can be obtained by straightforward computations. There
are few things worth observing. If one rescales each reserves by a coefficient
λ ≥ 0, the arbitrage profit is also multiplied by the same coefficient. In other
words the max arbitrage profit is homogeneous of degree 1 in the size of the
reserves.

Closed formulas for max profit for Uniswap price functions give explicit lower
bounds on optimal values for the corresponding original problems. One would
also think that lifting solutions of the subproblems may give good initialisers to
the original ones.

If there is an arbitrage, the arbitrageur can choose to start from any origin
of the cycle. One may wonder whether the relative variation of the arbitrageur’s
portfolio depends on this choice.

Proposition 8. If the external prices of the tokens present in the cycle do not
change before and after the execution, then the maximum profit is independent
from the origin.

Proof: We position ourselves from an arbitrageur perspective. We suppose as
above that the cycle is a triangle to simplify the notations. We also suppose that
the arbitrageur possesses in her/his portfolio a sufficient quantities of tokens A,
B and C, greater than a∗

0, b∗
0 and c∗

0 respectively. Initially, we also assume the
existence of an external liquid market where the arbitrageur can exchange its
tokens against a reference token R (it can be euros or a stable coin for example).

We suppose the existence of arbitrage, let X be one of A, B, C, x∗
0 the

optimal input quantity that maximises the arbitrage profit and pX
R the price of

X in R.
We can express the value in R of the portfolio part containing X before and

after the arbitrage execution (V X
0R and V X

1R respectively), as follows:

V X
R0 = x∗

0pX
R0 and V X

R1 = x∗
1pX

R1

220 V. Danos et al.

The percentage variation in the value of the portfolio part containing X is given
by:

Δ = V X
1R − V X

0R

V X
0R

= x∗
1

x∗
0

πpX
R

− 1

where πpX
R

:= pX
R1

/pX
R0

measures the change of price of X before and after the
arbitrage.

From the preceding proposition we have:

x∗
1

x∗
0

=
γCAγBCγABρABρBCρCA − √

γCAγBCγABρABρBCρCA√
γCAγBCγABρABρBCρCA − 1

Hence we can derive explicitly the relative change in wealth of the optimal arbi-
trageur:

Δ = √
γABγBCγCAρABρBCρCAπpX

R
− 1

which is positive if pX
R1

≥ pX
R0

, and, if prices stay the same, is indeed independent
of the choice of the origin X. �

5.2 Some Empirical Results

As of the 15th of December 2020, Uniswap contained 26139 pairs (WETH being
connected to more than 12365 tokens) and more than 965 triangular cycles.
We analyzed the data obtained from Etherum blockchain from block 11299400
to 11360599 (from 21/11/2020 to 30/11/2020) for the 200 most liquid pairs.
We selected 11 triangular cycles that generated the maximum profits per block
during this period on Uniswap:

[WETH, AKRO, USDC]
[WETH, DAI, HEGIC]
[WETH, sUSD, BASED]
[WETH, USDC, TOMOE]
[WETH, DAI, USDC]
[WETH, DAI, USDT]
[USDT, USDC, TOMOE]
[WETH, USDT, TOMOE]
[WETH, USDT, USDC]
[WETH, WBTC, USDC]
[WETH, USDT, YFV]

For each block we look for arbitrageable triangular cycles. Once detected, we
compute the maximum profit per cycle and per block during the whole period.
We plot the maximum profit (measured in USD) per block for each of the 11
selected triangular cycles. One can see that some of the optimal arbitrage profits

Global Order Routing on Exchange Networks 221

disappear instantly (i.e. have a one block life time). Others last longer. A key
difference with Ref. [6] is coverage. Their data covers Uniswapv2 for a much
longer larger period of time and does not look for prediction of cyclic arbitrage
on restricted set of tokens, as we do, but for detection thereof. And indeed, their
findings show larger actual profits than the potential ones which our small scale
data experiment predicts (Figs. 3 and 4).

(a) [WETH, AKRO, USDC]. (b) [WETH, DAI, HEGIC].

(c) [WETH, sUSD, BASED]. (d) [WETH, USDC, TOMOE].

(e) [WETH, DAI, USDC]. (f) [WETH, DAI, USDT].

Fig. 3. Maximum profit (USD) per cycle and per block.

222 V. Danos et al.

(a) [USDT, USDC, TOMOE]. (b) [WETH, USDT, TOMOE].

(c) [WETH, USDT, USDC]. (d) [WETH, USDT, YFV].

(e) [WETH, WBTC, USDC].

Fig. 4. Maximum profit (USD) per cycle and per block.

6 Conclusions

We have represented a class of global routing problems on networks of money
markets as convex optimisation problems on a suitable domain of transfer plans.
We have shown that feasible problems in this class have solutions (maybe not
unique). We have also built tractable subproblems which allow one to find effi-
ciently lower bounds to the original problems.

Preliminary data analysis shows the presence of non-trivial cyclic arbitrage
opportunities (see appendix), and a fortiori general ones. There is also evidence of
substantial gains from non-trivial routing (Fig. 1). So there is undeniably a practi-
cal interest in solving exactly or approximately, and efficiently, these global prob-
lems. All the more so if liquidity continues to fragment in DeFi, increasing the
complexity of optimal routing. Substantial liquidity migrations on DeFi’s money
markets have happened, and it is unclear if and when liquidity will aggregate.

One limitation of our approach is that the problems before and after exe-
cuting a given plan are related but here we do not exploit that information.
So there is room for designing on-line versions of the above problems of which
the amortised cost could be vastly improved - compared to resolving anew the
problem at each update. A minimal way to exploit that relation would be to
use a former optimum as initial data for a new gradient descent on the updated
problem.

Global Order Routing on Exchange Networks 223

Also we have ignored gas fees as well as the uncertainty generated by the
asynchrony inherent on blockchain-based smart contracts: the state of the world
at the time the problem is solved, may be very different from the state at the time
the corresponding instructions are executed. It would be interesting to include
both aspects of this uncertainty (gas costs and asynchrony) in the problem for
more robustness.

Acknowledgments. The authors wish to thank Saad Bouhoud, Ayman Elyahmidi,
and Vincent Bernardoff for data-related discussions, and for sharing code to obtain the
relevant Uniswap data from an Ethereum node. The authors also wish to thank Jérôme
de Tychey for numerous interesting discussions on the matters of this paper, and Ye
Wang and co-authors for sharing an early version of their paper on cyclic arbitrage [6].

A The Uniswap Graph

Figure 5 proposes a view of the global Uniswap money market [2] restricted the
top 64 ERC20 tokens and their 283 Uniswap pairs. It is worth stressing that

WETH

USDC

USDT

DAI

PAX

REN

BNT

BAT

WBTC

SNX

NMR

LINK

HEX

CEL

MKR

AMPL

ZRX

TRB

MANA

KNC

REP

TUSD

SNT

MCO

SLP

UMA

BAND

LRC

RSR

RENBTC

CRO

OMG

XYO

CHI

NEST

HUSD

COMP

SXP

BAL

CETH

YFI

YFII

OKB

HT

DIA

CRV

HEDG

BUSD

BASIC

SUSHI

PAY

FARM

ZLWGHST

UNI

VALUE

AAVE

USDK

MUSE LAND

KP3R

CP3R

AXN BLW

Fig. 5. The top 64 ERC20s (in market cap) and their pairs on Uniswapv2: there is an
edge between two nodes if there exists a Uniswap pair between them (Nov 2020).

224 V. Danos et al.

the actual graph of interest for routing and arbitrage is far more complex as
it includes many more automated market makers (sometimes with considerable
liquidity) as well as other forms of decentralised exchanges.

B Some Empirical Results

As of the 15th of December 2020, Uniswap contained 26139 pairs (WETH being
connected to more than 12365 tokens) and more than 965 triangular cycles.
We analyzed the data obtained from Etherum blockchain from block 11299400
to 11360599 (from 21/11/2020 to 30/11/2020) for the 200 most liquid pairs.
We selected 11 triangular cycles that generated the maximum profits per block
during this period on Uniswap (Fig. 6):

[WETH, AKRO, USDC]
[WETH, DAI, HEGIC]
[WETH, sUSD, BASED]
[WETH, USDC, TOMOE]
[WETH, DAI, USDC]
[WETH, DAI, USDT]
[USDT, USDC, TOMOE]
[WETH, USDT, TOMOE]
[WETH, USDT, USDC]
[WETH, WBTC, USDC]
[WETH, USDT, YFV]

Global Order Routing on Exchange Networks 225

(a) [WETH, AKRO, USDC]. (b) [WETH, DAI, HEGIC].

(c) [WETH, sUSD, BASED]. (d) [WETH, USDC, TOMOE].

(e) [WETH, DAI, USDC]. (f) [WETH, DAI, USDT].

Fig. 6. Maximum profit (USD) per cycle and per block.

For each block we look for arbitrageable triangular cycles. Once detected, we
compute the maximum profit per cycle and per block during the whole period.
We plot in Fig. 7 the maximum profit (measured in USD) per block for each of
the 11 selected triangular cycles. One can see that some of the optimal arbitrage
profits disappear instantly (i.e. have a one block life time). Others last longer.

226 V. Danos et al.

(a) [USDT, USDC, TOMOE]. (b) [WETH, USDT, TOMOE].

(c) [WETH, USDT, USDC]. (d) [WETH, USDT, YFV].

(e) [WETH, WBTC, USDC].

Fig. 7. Maximum profit (USD) per cycle and per block.

References

1. Abergel, F., Jedidi, A.: A mathematical approach to order book modeling. Int. J.
Theor. Appl. Finance 16(05), 1350025 (2013)

2. Adams, H., Zinsmeister, N., Robinson, D.: Uniswap v2 core, March 2020
3. Angeris, G., Kao, H.-T., Chiang, R., Noyes, C., Chitra, T.: An analysis of uniswap

markets. Cryptoecon. Syst. J. 1, 1 (2019)
4. Angeris, G., Chitra, T.: Improved price oracles: constant function market makers.

arXiv preprint arXiv:2003.10001, June 2020
5. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press

(2004)
6. Wang, Y., et al.: Cyclic arbitrage in decentralized exchange markets. In: Presented

at the 1st Workshop on Decentralized Finance (DeFi) (2021)

http://arxiv.org/abs/2003.10001

Towards a Theory of Decentralized
Finance

Massimo Bartoletti1, James Hsin-yu Chiang2(B), and Alberto Lluch Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

jchi@dtu.dk

Abstract. Decentralized Finance (DeFi) has brought about decen-
tralized applications which allow untrusted users to lend, borrow and
exchange crypto-assets. Many of such applications fulfill the role of
markets or market makers, featuring complex, highly parametric incen-
tive mechanisms to equilibrate interest rates and prices. This complex-
ity makes the behaviour of DeFi applications difficult to understand:
indeed, ill-designed incentive mechanisms could potentially lead to emer-
gent unwanted behaviours. We argue that theories, techniques and tools
rooted in formal methods can provide useful instruments to better under-
stand, specify and analyze DeFi systems. We summarize in this paper
our first steps towards a theory of DeFi based on formal methods, and
we overview the open challenges and opportunities for formal methods
in DeFi.

1 DeFi Archetypes and Their Formalization

The emergence of permissionless, public blockchains has given birth to an entire
ecosystem of crypto-tokens representing digital assets and derivatives. Facilitated
and accelerated by smart contracts and standardized token interfaces [1], these
so-called decentralized finance (DeFi) applications promise an open alternative
to the traditional financial system. Prior foundational research in the domain of
DeFi has been thoroughly summarized in [24].

To study properties emerging from the interaction between users and DeFi
applications, we have initiated our line of research towards a theory of DeFi
by focusing on the identification of archetypal DeFi applications and on the
development of executable specifications for them, based on manual inspection
of the underlying implementations of mainstream implementations. Our formal
specifications encompass (abstractions of) the underlying economic incentive
mechanisms [5,15,16] and pave the way towards a generalized theory of DeFi
archetypes and their interactions, which may be intractable from analysis at
the implementation level alone. These executable semantics represents a first
step towards domain-specific languages for decentralized finance, where DeFi
contracts are composed from formally specified primitives and thus exhibit well-
defined, analyzable behaviour inferred from the language semantics. The main

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 227–232, 2021.
https://doi.org/10.1007/978-3-662-63958-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_20&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_20

228 M. Bartoletti et al.

archetypes we have considered so far are Lending Pools (LPs) [7] and Automatic
Market Makers (AMMs) [8].

Lending Pools. Lending pools are decentralized applications which allow mutu-
ally untrusted users to lend and borrow crypto-assets. In [7], we formalize all
interactions between users and LPs, thereby providing a complete specification
for the economic functionality of LPs. Our model allows to formally state and
specify fundamental properties of LPs, like e.g. correct accounting of minted
tokens and preservation of the supply of deposited tokens, which are crucial to
ensure consistency in exchange and distribution of tokens enabled by LPs. Fur-
thermore, our model allows one to reason about rational agents, which are incen-
tivized to liquidate loans in return for discounted collateral or perform deposits
immediately prior to interest accrual. We also provide solid arguments for the
design of incentives of LPs, for example by formally proving that depositors
can potentially redeem more tokens than they deposited, and by identifying the
conditions under which redeems are not possible. In this regard, we formalize
notions of utilization safety, which represents a utility trade-off between bor-
row and redeem actions, moderated by a dynamic interest rate. In LPs, loans
are secured by collateral: yet, there exist LP states in which the borrower is
no longer incentivized to return loan should the agent’s collateralization drop
below a certain threshold. We formally characterize such collateral-safe states.
Finally, we exploit both notions of safety to illustrate attacks on utilization and
collateralization, aimed at undermining the incentive mechanisms of LPs.

Automatic Market Makers. Automatic market makers allow users to
exchange units of different types of crypto-assets, without the need to find a
counter-party. In [8], we develop a theory for AMMs, specifying their possible
interactions and their economic mechanisms. One of the results we provide is a
concurrency theory for AMM actions. In particular, we show that sequences of
deposit and redeem actions can be ordered interchangeably, resulting in observa-
tionally equivalent AMM states. We prove fundamental preservation properties
for our AMM specification, like e.g. the preservation of deposited token supplies,
and token liquidity, which ensures that deposited tokens cannot be frozen in
an AMM application. Furthermore, we introduce a formal notion of incentive-
consistency : AMM’s rely on a dynamic exchange rate governed by a so-called
trading invariant. Notably, we formalize the key incentive mechanism, the arbi-
trage game, for all trading invariants which are incentive-consistent, thus facili-
tating formal analysis of AMM behaviour which can be generalized beyond the
mainstream constant-product AMMs.

2 Next Steps, Challenges and Opportunities

The identification and formalization of DeFi archetypes is only the first step
towards a general theory of DeFi. There are many steps ahead, and new avenues
for future research, full of challenges and opportunities. We discuss some of
them, focusing mostly on issues that arise when considering DeFi ecosystems

Towards a Theory of Decentralized Finance 229

as composed by a set of collaboration or competing agents, interacting through
possibly separate contract execution environments enabled by miners, who may
have transaction ordering privileges and their own goals.

Agent Strategies. The formal methods toolbox provides a plethora of speci-
fication tools and languages to specify systems composed of concurrent actors
[21,25]. In order to formally analyze the emergent behaviour of such a system,
a specification of all user strategies must be defined or synthesised. Here we dis-
tinguish between rational strategies, which are risk-free actions increasing the
user’s net wealth and strategies which are speculative, driven by an agent’s expec-
tation of a future system state which is not guaranteed: attempting a liquidation
action, for example, is a rational strategy as the actor will obtain collateral at
a discounted rate or at worst, fail to execute any action at all if the transaction
fails. On the other hand, depositing funds in a LP is speculative, as it is based
on an expectation of future interest, regulated by future actions of borrowers
and depositors.

Whereas there appears to be a clear path towards formal specification
of rational strategies in DeFi systems, the specification of speculative agent
behaviour in DeFi remains an open question. For individual DeFi archetypes,
agent-based models have been proposed [2,17] with a focus on rational behaviour,
yet the specification of economically speculative strategies in a wider, composi-
tion of DeFi application remains an open research challenge.

Classical agent-based models from economic disciplines feature specifica-
tion techniques of economically (speculative) agent behaviour: here, we also
observe that stochastic model checking tools from formal methods are increas-
ingly deployed [22] in the economic research community and suggest that stochas-
tic model checking of agent-based models of DeFi systems may provide a path
forward towards the automatic analysis of agent strategies.

A Model of Transaction Concurrency. Actions performed in DeFi systems
are generally not concurrent: this is observable with AMMs, for example, where
an actor with transaction ordering privileges can benefit from ordering its own
transaction before and after that of the victim [18,26]. More generally, the ability
of miners to extract value beyond transaction fees from specific sequences of
DeFi interactions has been denoted miner-extractable-value (MEV) [13]. Thus,
a formal model of a DeFi system composed by different DeFi applications must
also feature a notion of incentive-consistent action sequences in the presence of
rational agents with transaction ordering privileges.

Such analysis is further complicated by atomic chains of transactions, such
as those obtained by nested contract calls in Ethereum. Here, the sequencing of
individual actions within the call-chain is determined by the authorizing user:
this can result in DeFi exploits amplified by flash loans [10,19,23]. As transac-
tions, call-chains must also exhibit consistency with miner transaction ordering
incentives: here, we note a lack of formal models to integrate call-chain semantics
with formal models of MEV.

A model of transaction ordering may ultimately facilitate the automated
analysis of a DeFi system specification, given that it narrows the set of valid

230 M. Bartoletti et al.

interaction sequences. Given sufficiently specified agent strategies, such a theory
may pave the way towards novel model checking techniques in DeFi.

Cryptographic Protocol Composition. Cryptographic protocols play an
increasingly central role in DeFi systems, as they allow DeFi applications to
keep private selected parts of the application state: public execution introduces
incentives (MEV) which challenge DeFi security, but the public execution of
user actions also compromises privacy. The popularity of crypto-asset mixers
[4] powered by ZK-SNARK proofs on the Ethereum blockchain foreshadows
the emergence of privacy-focused DeFi applications, which in turn, may open
new approaches to mitigate MEV. Private order-matching has been proposed
with multi-party-computation techniques [11], and we foresee similar techniques
for DeFi applications. Furthermore, advanced cryptographic protocols improve
scalability: many DeFi applications have migrated to ZK-rollups [3] in order to
absorb the increased user demand on the Ethereum blockchain.

For the secure composition of cryptographic protocols deployed for both
privacy and scalability, the formal methods community may contribute both
classical information flow [12] analysis techniques and cryptographic protocol
composition analysis [14]: as a multitude of privacy-focused and scalable appli-
cations are composed in a single system, we highlight the formal analysis of safe
cryptographic protocol composition in DeFi as an new research frontier.

Domain-Specific Languages. Since the analysis of security aspects of DeFi
applications will invariably involve specifications of agents and miners, higher
abstractions of DeFi specification will arguably be of interest to the DeFi and
formal methods communities. Domain-specific languages with formal semantics
(e.g. [6,9,20]) provide suitable specification means for such abstractions. More-
over, they fulfill two purposes: firstly, they enable formal reasoning and security
proofs. Secondly, DeFi-specific languages can provide built-in security guaran-
tees, given a foundational theory of the underlying DeFi system.

3 Concluding Remarks

We thank the organizing committee of the first edition of the DeFi workshop
for the fruitful exchange of research ideas on the topic of decentralized finance
and encourage the DeFi community to join us in extending the formal methods
toolkit in addressing the open security challenges in decentralized finance present
today and those emerging on the horizon.

Acknowledgements. The second author is supported by the PhD School of DTU
Compute. The third author is partially supported by the EU H2020-SU-ICT-03-2018
Project No. 830929 CyberSec4Europe (cybersec4europe.eu).

References

1. ERC-20 token standard (2015). https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-20.md

https://www.cybersec4europe.eu
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

Towards a Theory of Decentralized Finance 231

2. Uniswap oracle template (2020). https://github.com/Uniswap/uniswap-
v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/
examples/ExampleOracleSimple.sol

3. Starkware (2021). https://starkware.co/
4. Tornado (2021). https://tornado.cash/
5. Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? Curvature

and market making. arXiv preprint arXiv:2012.08040 (2020)
6. Arusoaie, A.: Certifying findel derivatives for blockchain. J. Logical Algebraic

Methods Program. 121 (2021). https://doi.org/10.1016/j.jlamp.2021.100665
7. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: lending pools in decentral-

ized finance. In: 5th Workshop on Trusted Smart Contracts (2021). (to appear).
https://arxiv.org/abs/2012.13230

8. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of automated market
makers in defi. arXiv preprint arXiv:2102.11350 (2021)

9. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. ACM
CCS (2018). https://doi.org/10.1145/3243734.3243795

10. Cao, Y., Zou, C., Cheng, X.: Flashot: a snapshot of flash loan attack on DeFi
ecosystem. arXiv preprint arXiv:2102.00626 (2021)

11. Baum, C., David, B., Frederiksen, T.: P2DEX: privacy-preserving decentralized
cryptocurrency exchange. Cryptology ePrint Archive, Report 2021/283 (2021).
https://eprint.iacr.org/2021/283

12. Cecchetti, E., Yao, S., Ni, H., Myers, A.C.: Compositional security for reentrant
applications. arXiv preprint arXiv:2103.08577 (2021)

13. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

14. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

15. Evans, A., Angeris, G., Chitra, T.: Optimal fees for geometric mean market makers
(2021). https://web.stanford.edu/∼guillean/papers/g3m-optimal-fee.pdf

16. Gudgeon, L., Werner, S., Perez, D., Knottenbelt, W.J.: Defi protocols for loan-
able funds: interest rates, liquidity and market efficiency. In: ACM Conference on
Advances in Financial Technologies, pp. 92–112 (2020). https://doi.org/10.1145/
3419614.3423254

17. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An analysis of the market risk to
participants in the compound protocol. https://scfab.github.io/2020/FAB2020 p5.
pdf

18. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark
is the forest? (2021). https://arxiv.org/pdf/2101.05511

19. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
flash loans for fun and profit. In: Financial Cryptography (2021). (to appear).
https://arxiv.org/pdf/2003.03810

20. Lamela Seijas, P., Thompson, S.: Marlowe: financial contracts on blockchain. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 356–375.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 27

21. Tolmach, P., Li, Y., Lin, S.W., Liu, Y.: Formal analysis of composable DeFi pro-
tocols. In: 1st Workshop on Decentralized Finance (2021). (to appear). https://
arxiv.org/abs/2103.00540

22. Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Automated and dis-
tributed statistical analysis of economic agent-based models. arXiv preprint
arXiv:2102.05405 (2021)

https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://starkware.co/
https://tornado.cash/
http://arxiv.org/abs/2012.08040
https://doi.org/10.1016/j.jlamp.2021.100665
https://arxiv.org/abs/2012.13230
http://arxiv.org/abs/2102.11350
https://doi.org/10.1145/3243734.3243795
http://arxiv.org/abs/2102.00626
https://eprint.iacr.org/2021/283
http://arxiv.org/abs/2103.08577
https://doi.org/10.1109/SP40000.2020.00040
https://web.stanford.edu/~guillean/papers/g3m-optimal-fee.pdf
https://doi.org/10.1145/3419614.3423254
https://doi.org/10.1145/3419614.3423254
https://scfab.github.io/2020/FAB2020_p5.pdf
https://scfab.github.io/2020/FAB2020_p5.pdf
https://arxiv.org/pdf/2101.05511
https://arxiv.org/pdf/2003.03810
https://doi.org/10.1007/978-3-030-03427-6_27
https://arxiv.org/abs/2103.00540
https://arxiv.org/abs/2103.00540
http://arxiv.org/abs/2102.05405

232 M. Bartoletti et al.

23. Wang, D., et al.: Towards understanding flash loan and its applications in DeFi
ecosystem. arXiv preprint arXiv:2010.12252 (2020)

24. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: SoK: decentralized finance (DeFi) (2021)

25. Zhao, W., Li, H., Yuan, Y.: (2021). (to appear). https://arxiv.org/abs/2101.08423
26. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on

decentralized on-chain exchanges. arXiv preprint arXiv:2009.14021 (2020)

http://arxiv.org/abs/2010.12252
https://arxiv.org/abs/2101.08423
http://arxiv.org/abs/2009.14021

Voting

Auditing Hamiltonian Elections

Michelle Blom1 , Philip B. Stark2 , Peter J. Stuckey3 ,
Vanessa Teague4(B) , and Damjan Vukcevic5,6

1 School of Computing and Information Systems, University of Melbourne,
Parkville, Australia

michelle.blom@unimelb.edu.au
2 Department of Statistics, University of California, Berkeley, USA

3 Department of Data Science and AI, Monash University, Clayton, Australia
4 Thinking Cybersecurity Pty. Ltd., Melbourne, Australia

vanessa@thinkingcybersecurity.com
5 School of Mathematics and Statistics, University of Melbourne, Parkville, Australia

6 Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia

Abstract. Presidential primaries are a critical part of the United States
Presidential electoral process, since they are used to select the candi-
dates in the Presidential election. While methods differ by state and
party, many primaries involve proportional delegate allocation using the
so-called Hamilton method. In this paper we show how to conduct risk-
limiting audits for delegate allocation elections using variants of the
Hamilton method where the viability of candidates is determined either
by a plurality vote or using instant runoff voting. Experiments on real-
world elections show that we can audit primary elections to high confi-
dence (small risk limits) usually at low cost.

1 Introduction

Presidential primary elections are a critical part of the United States electoral
process, since they are used to select the final candidates contesting the Presi-
dential election for each of the major parties. For that reason it is important that
the result of these primaries be trustworthy. While the method used for primary
elections differs by party and state, the majority of such elections use delegate
allocation by proportional representation, the so-called Hamilton method, named
after its inventor, Alexander Hamilton.

Risk-limiting audits (RLAs) [9] require a durable, trustworthy record of the
votes, typically paper ballots marked by hand, kept demonstrably secure. RLAs
end in one of two ways: either they produce strong evidence that the reported
winners really won, or they result in a full manual tabulation of the paper records.
If a RLA leads to a full manual tabulation, the outcome of the tabulation replaces
the original reported outcome if they differ, thus correcting the reported outcome
(if the paper trail is trustworthy). The probability that a RLA fails to correct
a reported outcome that is incorrect before that outcome becomes official is
bounded by a “risk limit.” An RLA with a risk limit of 1%, for example, has at

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 235–250, 2021.
https://doi.org/10.1007/978-3-662-63958-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_21&domain=pdf
http://orcid.org/0000-0002-0459-9917
http://orcid.org/0000-0002-3771-9604
http://orcid.org/0000-0003-2186-0459
http://orcid.org/0000-0003-2648-2565
http://orcid.org/0000-0001-7780-9586
https://doi.org/10.1007/978-3-662-63958-0_21

236 M. Blom et al.

most a 1% chance of failing to correct a reported election outcome that is wrong;
equivalently, it has at least a 99% chance of correcting the reported outcome if
it is wrong. RLAs are becoming the de-facto standard for post-election audits.
They are required by statute in Colorado, Nevada, Rhode Island, and Virginia,1

for some government elections (not primaries which are party elections), and have
been piloted in over a dozen US states and Denmark. They are recommended by
the US National Academies of Science, Engineering, and Medicine and endorsed
by the American Statistical Association. Risk-limiting audits of limited scope
have begun to be applied to US primary elections; our methods here would
allow RLAs of the full elections.

In this paper we describe the first method that we are aware of for conducting
an RLA for delegate allocation by proportional representation elections, which
we call Hamiltonian elections. In addition to primary elections in some states
in the USA, this type of election is used in Russia, Ukraine, Tunisia, Taiwan,
Namibia and Hong Kong. We do so by adapting auditing methods designed for
plurality and instant runoff voting (IRV) elections for auditing the viability of
candidates, and generating a new kind of audit for proportional allocation.

A delegate allocation election by proportional representation is a complex
form of election. Rather than simply electing candidates, the result of the election
is to assign some number of delegates to some of the candidates. In the first stage
of the election, the process determines the subset of candidates that are eligible
or viable (for Democratic primaries, candidates need to receive at least 15% of
the vote). In the second step, delegates are awarded to these viable candidates in
approximate proportion to their vote. An RLA must determine the correctness
of both the set of viable candidates and the number of delegates assigned to each
viable candidate.

The first stage of the election uses either simple plurality voting, where each
ballot is a vote for at most one candidate, or IRV, where each ballot is a ranking
of some or all candidates. In IRV, candidates with the fewest first-choice ranks
are eliminated and each ballot that ranked them first is reassigned to the next
most-preferred ranked candidate on that ballot.

There is considerable work on both comparison audits and ballot-polling
audits for plurality elections [6,11], but few for more complex election types. Sar-
wate et al. [8] consider IRV and some other preferential elections. Kroll et al. [5]
show how to audit the overall US electoral college outcome, but not the alloca-
tion of individual delegates. Stark and Teague [12] devise audits for the D’Hondt
method for proportional representation, which is related to but distinct from
Hamiltonian methods. Blom et al. [2,3] describe efficient audits for IRV. As far
as we know, there is no other auditing method for Hamiltonian Elections, nor
any that combines a proportional representation method with IRV.

1 Virginia’s audit does not take place until after the outcome is certified, so it cannot
limit the risk that an incorrect reported outcome will become final: technically, it is
not a RLA.

Auditing Hamiltonian Elections 237

Candidate Votes Proportion
Ann 57,532 76.1%
Bob 15,630 20.6%
Cal 1,600 2.1%
Dee 846 1.1%
Total Votes 75,608 100.0%

Candidate Votes Proportion
Ann 57,532 78.6%
Bob 15,630 21.4%
Qualified Votes 73,162 100.0%

)b()a(

Fig. 1. (a) Votes and (b) Qualified Votes in a Hamiltonian election with plurality-based
exclusion.

2 Hamiltonian Elections

We have a set of n candidates C, a set of cast ballots2 B, and a number of
delegates D to be awarded to the candidates based on the votes. The Hamilton
or largest remainder method, invented by Alexander Hamilton in 1792, allocates
the delegates in approximate proportion to the votes the candidates received.

In a pure Hamiltonian election, also known as the Hamilton method, delegates
are directly allocated based on the proportion of the vote. But most delegate
elections use some form of exclusion of some candidates before the delegates are
apportioned.

A Hamiltonian election with exclusion first determines which candidates in
C are viable—eligible to be awarded one or more delegates. Typically, exclusion
involves a plurality vote. Each ballot is a vote for at most one candidate. If a
candidate receives a threshold proportion τ of the valid votes, the candidate
is considered viable.3 The votes cast for viable candidates are referred to as
qualified votes. The qualified votes are used to allocate delegates, as described
later in this section.

Example 1. Consider an example Hamiltonian election with exclusion with
4 candidates, Ann, Bob, Cal, and Dee and a viability threshold of τ = 15%.
Figure 1(a) shows the tally of votes for each candidate, and the percentage of
the overall vote that each candidate received. Ann and Bob received more than
15% of the vote and are viable candidates.

For elections with many candidates, a plurality exclusion might eliminate
all of them. In an instant-runoff Hamiltonian election the viable candidates
are determined by a form of IRV. Each ballot is now a partial ranking of the
candidates, and the viable candidates are determined as follows:

1. Initialize the set of candidates. Each ballot is put in the pile for the candidate
ranked highest on that ballot.

2 We do not distinguish between ballots and ballot cards; in general, ballots consist
of one or more cards, of which at most one contains any given contest.

3 There are more complicated alternate rules for the case where no candidate reaches
τ ; we do not consider this case here.

238 M. Blom et al.

2. If every (remaining) candidate has � τ of the votes in their pile, we finish the
candidate selection process. All of these remaining candidates are viable.

3. Otherwise, the candidate with the lowest tally (fewest ballots in their pile) is
eliminated, and each of their ballots is moved to the pile of the next ranked
remaining candidate on the ballot. A ballot is exhausted if all further candi-
dates mentioned on the ballot have already been eliminated.

4. We then return to step 2.

Example 2. Consider an instant-runoff Hamiltonian election with the same four
candidates as Example 1, the same threshold, and 50,000 ballots with ranking
[A,D,C,B] (that is, Ann followed by Dee, then Cal, then Bob), 9,630 of [B,C],
6,000 of [C,B], 1,600 of [C], 7,532 of [D,A,C], and 846 of [D,C]. The IRV election
proceeds as follows. In the first round Cal has the lowest tally, 7,600 votes, which
is 10.052% of the total vote, and hence less than 15%. Cal is eliminated: the 6,000
ballots [C,B] are transferred to Bob, and the 1,600 ballots [C] are exhausted
(removed from consideration). In the next round Dee has the lowest tally, 8,378
votes which is 11.080%, so Dee is eliminated. The 7,632 [D,A,C] ballots are
transferred to Ann, and the remaining 836 [D,C] ballots are exhausted. In the
final round, Bob has the lowest tally, 20.672% of the vote, and the process ends
since this is greater than 15%. The election is summarized in Fig. 2.

Round 1 Round 2 Final Result
Cand. Ballot Number Prop. Ballot Number Prop. Ballot Number Prop.
Ann [A,D,C,B] 50,000 66.1% [A,D,C,B] 50,000 66.1% [A,D,C,B] 50,000

[D,A,C] 7,532 76.1%
Bob [B,C] 9,630 12.7% [B,C] 9,630 [B,C] 9,630

[C,B] 6,000 20.7% [C,B] 6,000 20.7%
Cal [C,B] 6,000 — —

[C] 1,600 10.1% — — — —
Dee [D,A,C] 7,532 [D,A,C] 7,532 —

[D,C] 846 11.1% [D,C] 846 11.1% — —
Total 75,608 100.0% 73,738 98.6% 73,162 96.8%

Fig. 2. IRV election for four candidates showing the elimination of first Cal, and then
Dee, and the final round results.

The second stage in the process is to assign delegates to candidates on the
basis of their tallies. We first compute, for each viable candidate c, the proportion
of the qualified votes in their tally, pc. Recall that we refer to ballots belonging
to viable candidates as qualified votes. We denote the number of qualified votes
as Q. In the context of IRV, ballots are qualified if they end up in the tally of a
viable candidate. Non-qualified ballots result from exhaustion: every candidate
in the ballot ranking has been eliminated (is non-viable). Where a plurality
contest determines viability, all votes for a viable candidate are qualified.

We denote the set of viable candidates as V. Delegates are awarded to viable
candidates as follows:

Auditing Hamiltonian Elections 239

1. We compute for each viable candidate c their delegate quota, qc = D × pc
where pc is the proportion of the qualified vote given to c (their final tally
divided by Q).

2. We assign ic = �qc� delegates to each candidate c ∈ V.
3. At this stage, there are r = D − ∑

c∈V ic remaining delegates to assign.
We assign these delegates to the r candidates with the largest value of the
remainder qc − ic. One delegate is given to each of these r candidates.

4. At this stage, each viable candidate c has received ac total delegates, where
ac is qc rounded either up or down.

Example 3. The end result of Examples 1 and 2 is the same. The qualified vote
is Q = 73, 162. The proportions of the qualified vote in viable candidates’ tallies
are: pAnn = 0.786; and pBob = 0.214. Assuming there are D = 5 delegates to
allocate, we find qAnn = 3.932 and qBob = 1.068. We initially allocate 3 delegates
to Ann and 1 to Bob. By comparing the remainders 0.932 and 0.068, we allocate
the last delegate to Ann. So aAnn = 4 and aBob = 1.

3 Auditing Fundamentals

A risk-limiting audit is a statistical test of the hypothesis that the reported
outcome is incorrect. (In the current context, the reported outcome is the number
of delegates finally awarded to each candidate.) If that hypothesis is not rejected,
there is a full hand tabulation, which reveals the true outcome. If that differs
from the reported outcome, it replaces the reported outcome. The significance
level of the test is called the risk limit. A risk-limiting audit of a trustworthy
paper trail of votes limits the risk that an incorrect electoral outcome will go
uncorrected.

Two common building blocks for audits are to compare manual interpre-
tation of randomly selected ballots or groups of ballots with how the voting
system interpreted them (a comparison audit [10]), and to use only the manual
interpretation of the randomly selected ballots (a ballot-polling audit [7]). Bal-
lot polling requires less infrastructure (some voting systems do not generate or
cannot export the data required for a comparison audit) but generally requires
inspecting more ballots.

Recent work [11] shows that audits of most social choice functions can be
reduced to checking a set of assertions. If all the assertions are true, the reported
election outcome is correct. Each assertion is checked by conducting a hypothesis
test of its logical negation. To reject the hypothesis that the negation is true is
to conclude that the assertion is true. Each hypothesis is tested using a statistic
calculated from the audit data. Larger values of the statistic are unlikely if the
corresponding assertion is false. If the statistic takes a sufficiently large value,
that is statistical evidence that the assertion is true, because such a large value
would be very unlikely if the assertion were false. The statistic is generally cali-
brated to give sequentially valid tests of the assertions, meaning that the sample
of ballots can be expanded at will and the statistic can be recomputed from the

240 M. Blom et al.

expanded sample, while controlling the probability of erroneously concluding
that the assertion is true if the assertion is in fact false.

The initial sample size is generally chosen so that there is a reasonable chance
that the audit will terminate without examining additional ballots if the reported
results are approximately correct. If the initial sample does not give sufficiently
strong evidence that all the assertions are correct, the sample is augmented and
the condition is checked again.4 The sample continues to expand until either all
the assertions have been confirmed5 or the sample contains every ballot, and the
correct result is therefore known. At any point during the audit, the auditor can
choose to conduct a full manual tabulation. If the audit leads to a full manual
tabulation, the outcome of that tabulation replaces the reported outcome if they
differ.

The basic assertions for Hamiltonian elections are:

(Super/sub) majority p > t, where p is the proportion of ballots that satisfy
some condition (usually the condition is that the ballot has a vote for a
particular candidate) among ballots that meet some validity condition, and t
is a proportion in (0, 1].

Pairwise majority pA > pB, where pA and pB are the proportions of ballots
that meet two mutually exclusive conditions A and B, among ballots that
meet some validity condition. (Typically, among the ballots that contain a
valid vote, A is a ballot with a vote for one candidate, and B is a ballot with
a vote for a different candidate).

Pairwise difference pA > pB + d, where pA and pB are the proportions of
ballots that meet two mutually exclusive conditions among ballots that meet
some validity condition, and d is a constant in the range (−1, 1). This is a
new form of assertion not previously used, that extends pairwise majority
assertions. It is necessary for auditing delegate assignment in Hamiltonian
elections.

In the SHANGRLA approach to RLAs [11], each assertion is transformed
into a canonical form: the mean of an assorter (which assigns each ballot a
nonnegative, bounded number) is greater than 1/2. The value the assorter assigns
to a ballot is generally a function of the votes on that ballot and others and the
voting system’s interpretation of the votes on that ballot and others.

For majority assertions, a ballot that satisfies the condition is assigned the
value 1/(2t); a valid ballot that does not satisfy the condition is assigned the
value 0; and an invalid ballot is assigned the value 1/2. For pairwise majority
assertions, a ballot for class A counts as 1 and a ballot for class B counts as 0.
Ballots that fall outside both classes count as 1/2.

4 For sequentially valid test statistics, the sample can be augmented at will; for other
methods, there may be an escalation schedule prescribing a sequence of sample sizes
before conducting a full manual tabulation.

5 In other words, the hypothesis that the assertion is false has been rejected at a
sufficiently small significance level.

Auditing Hamiltonian Elections 241

For pairwise difference assertions, we define the assorter g which assigns ballot
b the value:

g(b) ≡

⎧
⎪⎪⎨

⎪⎪⎩

1/(1 + d), b has a vote of class A
0, b has a vote of class B
1/(2(1 + d)), b has a valid vote in the contest that is not in A or B
1/2, b does not have a valid vote in the contest.

Let ḡ be the mean of g over the ballots. We have that 0 � g(b) � 1/(1 + d),
and ḡ > 1/2 iff pA > pB + d. When d = 0 this reduces to the pairwise majority
assorter if the “valid” category is the same.

The margin m of an assertion a is equal to 2 times the mean of its assorter
(when applied to all ballots B) minus 1. An assertion with a smaller margin will
be harder to audit than an assertion with a larger margin.

3.1 Estimating Sample Size and Risk

The sample size required to confirm an assertion depends on the sampling design
and the auditing strategy (e.g., sampling individual ballots or batches of ballots,
using ballot polling or comparison); the “risk-measuring function” (see [11]); and
the accuracy of the tally, among other things. Because it depends on what the
sample reveals, it is random.

There is some flexibility in selecting a set of assertions to confirm IRV contests
[1], so the set can be chosen to minimize a measure of the anticipated workload.
We will estimate the workload on the assumption that the assertion is true but
the reported tallies are not exactly correct. We will use the expected sample size
as a measure of workload.6

Our auditing approach is applicable to any style of auditing. The workload,
given a set of assertions, varies depending on the style of audit (e.g., ballot-
level comparison, batch-level comparison, ballot-polling, or a combination of
those) and the sampling design (e.g., with or without replacement, Bernoulli,
stratified or not, weighted or not). For the purpose of illustration, in the examples
and experiments in this paper, we assume that the audit will be a ballot-level
comparison audit using sampling with replacement.

Because the sample is drawn with replacement, the same ballot can be drawn
more than once. Given an assertion a, let ASN(a, α) denote the expected number
of draws required to verify a to risk limit α, and if A is a set of assertions,
let ASN(A, α) denote the expected number of draws required to verify every
assertion a in A to risk limit α. ASN depends on several factors: the risk limit
α; the expected rate of errors (discrepancies) between paper ballots and their
electronic records of various signs and magnitudes (in the context of comparison
auditing); and the margins of the assertions.

6 One might instead seek to minimize a quantile of the sample size or some other
function of the distribution of sample size, for instance, to account for fixed costs for
retrieving and opening a batch of ballots and per-ballot and per-contest costs.

242 M. Blom et al.

We estimate ASN(A, α) by simulation. We simulate the sampling of ballots,
one at a time.7 An “overstatement” error is introduced with a pre-specified
probability e. If the sample reveals one or more overstatements, the measured
risk (i.e., the P -value of the hypothesis that the assertion is false) increases by an
amount that depends on margin m. Otherwise, the measured risk decreases by
an amount that depends on m. We continue to sample ballots until the measured
risk falls below α or until every ballot has been manually reviewed, in which case
the outcome based on the manual interpretations replaces the original reported
results. We take the median of the number of ballots sampled over N simulations
as an estimate of ASN(A, α). Inaccuracy of this estimate affects whether the
selected assertions result in the smallest expected workload, but does not affect
the risk limit. For the examples and experiments in this paper, we use e = 0.002
(equivalent to 2 errors per 1,000 ballots), N = 20, and a risk limit of 5%.

4 Auditing Viability

The first stage of the election identifies the viable candidates. We introduce
notation for the assertions we will use to audit viability, as follows:

– Viable(c, E, t): Candidate c has at least proportion t of the vote after the
candidates in set E have been eliminated. This amounts to a simple majority
assertion pc > t after candidates in E are eliminated.

– NonViable(c, E, t): Candidate c has less than proportion t of the vote after
candidates E have been eliminated. This amounts to a simple majority asser-
tion p̄c > 1 − t where p̄c is the proportion of valid votes for candidates other
than c after candidates E are eliminated.

– IRV (c, c′, E): Candidate c has more votes than candidate c′ after candidates
E have been eliminated. This amounts to a pairwise majority assertion.

If the first stage is a plurality vote, E ≡ ∅: the elimination in the first stage only
occurs for IRV .

Consider an election E = 〈C,B, τ〉 with candidates C, cast ballots B, and
viability threshold τ (τ = 0.15 for the primary elections we will examine). The
outcome of this election is a set of viable candidates, V ⊆ C, together with, in the
case of instant runoff Hamiltonian elections, a sequence of eliminated candidates,
π. To check that the set of candidates reported to be viable really are the viable
candidates, we test assertions that rule out all other possibilities. Consider the
subset V ′ ⊆ C, where V ′
= V. We can demonstrate that V ′ is not the true set of
viable candidates by showing that some candidate c ∈ V ′ does not belong there.
We can also rule out V ′ as an outcome by showing that there is a candidate
c /∈ V ′ that does in fact belong in the viable set. We aim to find the ‘least effort’
set of assertions A that, if shown to hold in a risk-limiting audit, confirm that
(i) each candidate in V is viable, and (ii) no candidate c′ /∈ V is viable.
7 The procedure used to calculate the ASN for an assertion with margin m is available

in the public repositories https://github.com/michelleblom/primaries and https://
github.com/pbstark/SHANGRLA.

https://github.com/michelleblom/primaries
https://github.com/pbstark/SHANGRLA
https://github.com/pbstark/SHANGRLA

Auditing Hamiltonian Elections 243

4.1 Viability: Plurality Hamiltonian Elections

For each viable candidate v ∈ V we need to verify the assertion Viable(v, ∅, τ).
For each non-viable candidate n ∈ C\V we need to verify the assertion
NonViable(n, ∅, τ). Let A be the union of these two sets of assertions. Note
that A rules out any other set of viable candidates V ′
= V.

Example 4. To audit the first stage of the election of Example 1, we verify
the assertions A = {Viable(Ann, ∅, 0.15), Viable(Bob, ∅, 0.15), NonViable(Cal,
∅, 0.15), NonViable(Dee, ∅, 0.15)}. The margins associated with these assertions
are 4.073, 0.378, 0.152, and 0.163, respectively. The expected number of ballots
we need to compare to the corresponding cast vote records to audit these asser-
tions, assuming an overstatement error rate of 0.002 and a risk limit of α = 5%,
are, respectively 1, 17, 46, and 42. The overall ASN for the audit is 46 ballots.

4.2 Viability: Instant-Runoff Hamiltonian Elections

Efficient RLAs for IRV have been devised only recently [1]. To audit the first
stage of an IRV Hamiltonian election we must eliminate the possibility that a
different set of candidates is viable. This means that we need to look at every
other set of candidates, and propose an assertion that will show that set is not
viable.

In contrast to auditing a simple IRV election, where there are |C| − 1 poten-
tial winners other than the reported winner, a Hamiltonian election typically
has many more. Let M = �1/τ� be the maximum possible number of viable
candidates. The number of possible winner sets O is

O ≡
(|C|

M

)

+
(|C|

M − 1

)

+ · · · +
(|C|

1

)

.

We can show that a subset of candidates V ′ is not the set of viable candidates
in a number of ways:

– we could show that the tally of at least one c ∈ V ′ does not reach the required
threshold assuming all candidates not mentioned in V ′ have been eliminated

– we could show that there is a candidate c′ /∈ V ′ that is viable on the basis of
their first preferences, so any potential set of viable candidates must include
c′

– we could show that the unmentioned candidates could not have been elimi-
nated in a sequence that would result in V ′.

Reducing the Set of Subsets. While there are many possible alternate win-
ner sets V ′, we can rule out many of these easily. We examine the assertions
Viable(w, ∅, τ) for any candidate w ∈ C who had more than the proportion τ of
the vote initially. This assertion will be easy to verify, as long as the proportion
is not too close to τ . This assertion rules out any subset V ′ where w
∈ V ′. Let
W be the set of candidates where this assertion is expected to hold.

244 M. Blom et al.

Next we examine the assertions NonViable(l, C \ W \ {l}, τ) for those can-
didates l who are not mentioned in at least τ of the ballots, when all but the
definite winners W and l are eliminated. In this case candidate l can never reach
τ proportion of the votes. Again this assertion is easy to verify as long as the
proportion of such votes is not close to τ . This assertion removes any subset V ′

where l ∈ V ′. Let L be the set of candidates where this assertion is expected to
hold.

We collect together A = {Viable(w, ∅, τ) | w ∈ W} ∪ {NonViable(l, C \ W \
{l}, τ) | l ∈ L}. If these assertions hold, we only need to consider subsets of
viable candidates V = {V ′ ⊆ C | W ⊆ V ′,V ′ ∩ L = ∅} \ {V}. There are only |V|
subsets to further examine, where

|V| =
(|C \ W \ L|

M − |W|
)

+ · · · +
(|C \ W \ L|

1

)

− 1

Selecting Assertions for the Remaining Subsets. We now need to select
a set of assertions that rule out any alternate set of viable candidates V ′ ∈ V.
To form these assertions, we visualise the space of alternate election outcomes
as a tree. We use a branch-and-bound algorithm to find a set of assertions that,
if true, will prune (invalidate) all branches of this tree. At the top level of this
tree is a node for each possible V ′ ∈ V. Each node defines an (initially empty)
sequence of candidate eliminations, π, and a set of viable candidates, V ′. These
nodes form a frontier, F .

Our algorithm maintains a lower bound LB on the estimated auditing effort
(EAE) required to invalidate all alternate election outcomes, initially setting
LB = 0. For each node n = (∅,V ′) in F , we consider the set of assertions
that could invalidate the outcome that it represents. Two kinds of assertion are
considered at this point:

– Viable(c′,L, t) for each candidate c′ ∈ C that does not appear in V ′, and whose
first preference tally exceeds t proportion of the vote when only candidates
in L are eliminated;

– NonViable(c, C \ V ′, t) for each candidate c ∈ V ′ whose tally, if all candidates
c′ ∈ C \ V ′ have been eliminated, falls below t proportion of the vote.

We assign to n the assertion a from this set with the smallest EAE (EAE[n] =
ASN ({a}, α) where we use the method for estimating ASN previously described.
If no such assertion can be formed for n, we give n an EAE of ∞, EAE[n] = ∞.
We then select the node in F with the highest EAE to expand.

To expand a node n = (π,V ′), we consider the set of candidates in C that do
not currently appear in π or V ′. We denote this set of ‘unmentioned’ candidates,
U . For each candidate c′ ∈ U , we form a child of n in which c′ is appended to the
front of π. For instance, the node ([c′],V ′) represents an outcome in which c′ is
the last candidate to be eliminated, after which all remaining candidates, c ∈ V ′,
have at least t = T proportion of the cast votes. All unmentioned candidates are
assumed to have been eliminated, in some order, before c′. For each newly created

Auditing Hamiltonian Elections 245

node, we look for an assertion that could invalidate the corresponding outcome.
Two kinds of assertion are considered to rule out an outcome n′ = ([c′|π′],V ′):

– Viable(c′,U \ {c′}, t) for each candidate c′ ∈ U that has at least t proportion
of the vote in the context where candidates U \ {c′} have been eliminated.
Candidate c′ thus cannot have been eliminated at this point;

– IRV (c′, c,U \ {c′}) for each candidate c′ ∈ U that has a higher tally than
some candidate c ∈ π′ ∪V ′ in the context where candidates U \{c′} have been
eliminated. Candidate c′ thus cannot have been eliminated at this point.

We assign to each child of n the assertion a from this set with the smallest
ASN({a}, α), and replace n on our frontier with its children. If neither of the
above two types of assertion can be created for a given child of n, the child is
labelled with an EAE of ∞ (EAE[n′] = ∞). We continue to expand nodes in this
fashion until we reach a leaf node, l = (π,V ′), where π∪V ′ = C (all candidates are
mentioned either in the elimination sequence π or in the viable set V ′). We assign
to l an invalidating assertion of the above two kinds, if possible. We consider all
the nodes in the branch that l sits on, and select the node nb associated with
the least cost assertion a. We add a to our set of assertions to audit A, prune nb

and all of its descendants from the tree, and update our lower bound on audit
cost LB to max(LB, EAE[a]). We then look at all nodes on our frontier that can
be pruned with an assertion that has an EAE � LB. We add those assertions to
A, and prune the nodes from the frontier. The algorithm stops when the frontier
is empty. If we discover a branch whose best assertion has an EAE of ∞, the
algorithm stops in failure—indicating that a full manual count of the election is
required.

This branch-and-bound algorithm is a variation of that described by [1,4] for
generating an audit specification for an IRV election. It has been altered for the
context where the ultimate outcome is a set of winning candidates—the viable
candidates—and not one winner, left standing after all others are eliminated.

5 Auditing Delegate Assignment

The Hamilton method for proportional representation is used to assign dele-
gates to viable candidates. It might appear that auditing the Hamilton method
requires checking some delicate results, for instance, whether candidate A
received at least 2 delegate quotas when candidate A actually received 2.001
delegate quotas. However, this is not necessary, because candidate A can receive
2 delegates without having at least 2 delegate quotas. For example, if A receives
1.999 quotas A may still end up with 2 delegates. Our auditing method avoids
checking such things.

The audit instead examines all pairs of viable candidates, including those
receiving no delegates. For each pair of viable candidates n and m we check
whether (qn − (an − 1)) < 1 + (qm − (am − 1)) which requires that the quota of
n is not 1 more than the quota for m, after removing all received delegates but

246 M. Blom et al.

the last. This can be equivalently rewritten as

pm > pn +
am − an − 1

D
, n,m ∈ V, n
= m. (1)

In the case that qm was rounded up and qn was rounded down, this captures that
the remainder for m was greater than the remainder for n: pmD − (am − 1) >
pnD − an.

We show that if the delegates are wrong with respect to the true votes, then
one of these assertions is violated.

Theorem 1. Suppose the number of assigned delegates ac to each viable delegate
c is incorrect, then one of the assertions of Eq. 1 will be violated.

Proof. Suppose a′
c is the true number of delegates that should have been awarded

to each candidate c. Since
∑

c∈V ac = D and
∑

c∈V a′
c = D, and they differ, there

must be at least one candidate m ∈ V, where am � a′
m+1, who was awarded too

many delegates, and at least one n ∈ V, where an � a′
n − 1, who was awarded

too few.
Since a′

m is the true number of delegates awarded to m we know that the
(true) proportion of the vote for m, pm, must be (a) pmD < a′

m � am − 1 if m
was rounded up or (b) pmD < a′

m + 1 � am if m was rounded down. Similarly,
since a′

n is the true number of delegates awarded to n we know that either (c)
pnD � a′

n − 1 � an if n was rounded up, or (d) pnD � a′
n � an + 1 if n was

rounded down.
If we add these two inequalities for combinations (a)+(c) or (b)+(d) we get

pmD +an < pnD +am −1. For the combination (a)+(d) we get pmD +an +1 <
pnD + am − 1. Any of these cause the assertion pm > pn + am−an−1

D to be
falsified. For the last case (b)+(c) we need a stricter comparison, which we
obtain by comparing the remainders. Since m was rounded down and n was
rounded up, we know that remainder for m was less than the remainder for
n, i.e., pmD − a′

m < pnD − (a′
n − 1). Hence pmD < pnD + a′

m − (a′
n − 1) �

pnD + (am − 1) − an. Again the assertion pm > pn + am−an−1
D is falsified. ��

Example 5. Consider the delegate allocation of Example 3. Recall that the pro-
portions of the qualified vote are pAnn = 0.7836 and pBob = 0.2136. We audit
that pAnn < pBob + 4/5 and pBob < pAnn − 2/5. These facts require much less
work to prove, than for example auditing that pBob > 1/5. The margins associ-
ated with the above pairwise difference assertions are 1.1 and 0.12, respectively.
Assuming an error rate of 0.002, and a risk limit of α = 5%, the ASNs associated
with these assertions are 5, and 59, ballots.

6 Experiments

We consider the set of Hamiltonian elections conducted as part of the selection
process for the 2020 Democratic National Convention (DNC) presidential nom-
inee. Most of these primaries determine candidate viability via a plurality vote.

Auditing Hamiltonian Elections 247

Several states, including Wyoming and Alaska, use IRV. We estimate the number
of ballots we would need to check in a comparison audit of these primaries. For
each of these primaries, we audit the viability of candidates on the basis of the
statewide vote, and that each viable candidate deserved the delegates that were
awarded to them. We consider only the delegates that are awarded on the basis
of statewide vote totals (PLEO8 and at-large) as these are readily available.9 In
each proportional DNC primary, viable candidates must attain at least 15% of
the total votes cast.

The full code used to generate the assertions for each DNC primary, and
estimate the ASN for each audit, is located at:

https://github.com/michelleblom/primaries

Table 1 reports the expected number of ballot samples required to perform
three levels of audit in each plurality and IRV-based primary conducted for the
2020 DNC.10 Level 1 checks only that the reportedly viable candidates have
at least 15% of the vote, and all other candidates do not. Level 2 checks can-
didate viability and that each viable candidate c, with ac allocated delegates,
deserved at least ac − 1 of them. We introduce this level because, as the table
shows, sometimes the complete auditing of the final delegate counts is difficult.
Level 3 checks candidate viability and that each viable candidate deserved all
of their allocated delegates. The assertions required to check the allocation of a
candidate’s final delegate are the hardest to audit.

Of the primaries in Table 1, Maine (ME), New Hampshire (NH), Washington
(WA), Texas (TX), Idaho (ID), Massachusetts (MA), California (CA), and Min-
nesota (MN), were considered to be close with differences of less than 10% in
the statewide vote between the two leading candidates. In Maine, the difference
in the statewide vote for Biden and Sanders was less than 1% of the cast vote.
Auditing the Maine primary, however, is expected to require only a sample of
189 ballots. The Rhode Island (RI) primary, in contrast, requires a full manual
recount. In RI, Sanders narrowly falls below the 15% threshold with 14.93% of
the vote to Biden’s 76.67%. The margins that determine the complexity of these
audits are the extent to which a candidates’ vote falls below or exceeds the rel-
evant threshold, and the relative size of the remainders in candidates’ delegate
quotas as a proportion of the number of delegates available.

Table 2 contrasts several of the hardest primaries of Table 1 to audit with
some of the easiest. We record, for each of these primaries: the number of at-large
delegates being awarded; the delegate quotas computed for each viable candi-
date; the difference between the decimal portion of these quotas (the remainder)

8 Party Leaders and Elected Officials.
9 Data for plurality-based primaries was obtained from www.thegreenpapers.com/P20.

Data for IRV-based primaries we consider was provided by the relevant state-level
Democrats.

10 A small number of DNC 2020 primaries that did not use proportional allocation of
delegates were not considered, in addition to those for which we could not obtain
data.

https://github.com/michelleblom/primaries
www.thegreenpapers.com/P20

248 M. Blom et al.

Table 1. Estimated sample size required to audit viability and delegate distribution
(PLEO and at-large) in all proportional (plurality or IRV-based) DNC primaries in
2020 for which data was available. Levels 1, 2, and 3 audit candidate viability, that
each viable candidate deserved almost all of their allocated delegates, and that they
deserved all of their delegates, respectively. An error rate of 0.002 (an expectation of
1 error per 1,000 ballots) was used in the estimation of sample sizes. The symbol ‘–’
indicates that a full recount is required. The number of candidates (|C|) and total
number of cast ballots (|B|) is stated for each election.

Plurality-based primaries

State |C| |B| ASN (α = 5%) State |C| |B| ASN (α = 5%)

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

AL 15 452,093 182 182 1,352 NC 16 1,332,382 350 350 808

AR 18 229,122 121 121 1,154 NE 4 164,582 925 925 925

AZ 12 536,509 71 71 120 NH 34 298,377 104 104 155

CA 21 5,784,364 395 1,258 3,187,080 NJ 3 958,202 4,514 4,515 4,514

CO 13 960,128 42 42 – NM 7 247,880 1,812 1,812 1,812

CT 4 260,750 174 174 174 NY 11 752,515 56 731 486,495

DC 5 110,688 334 334 334 OH 11 894,383 61 334 –

DE 3 91,682 80 80 80 OK 14 304,281 649 649 649

FL 16 1,739,214 91 208 766 OR 5 618,711 111 111 191

GA 12 1,086,729 107 218 218 PA 3 1,595,508 48 167 642

ID 14 1,323,509 143 143 143 PR 11 7,022 412 412 412

IL 12 1,674,133 44 140 620 RI 7 103,982 – – –

IN 9 474,800 391 391 391 SC 12 539,263 165 165 34,546

KY 11 537,905 209 209 209 SD 2 52,661 13 13 216

LA 14 267,286 79 98 98 TN 16 516,250 235 235 1,203

MA 18 1,417,498 185 185 832 TX 17 2,094,428 1,282 1,282 2,133

MD 15 1,050,773 83 170 170 UT 15 220,582 262 262 781

ME 13 205,937 189 189 189 VA 14 1,323,509 143 204 1,309

MI 16 1,587,679 57 118 – VT 17 158,032 289 289 508

MN 16 744,198 309 309 6,195 WA 15 1,558,776 103 127 617

MO 23 666,112 44 130 – WI 14 925,065 44 144 878

MS 10 274,391 – – – WV 12 187,482 213 213 213

MT 4 149,973 5,159 5,159 5,159

IRV-based primaries

AK 9 19,811 88 88 88 WY 9 15,428 66 87 452

divided by the number of available delegates; and the estimated auditing effort
(ASN) for the primary. For the first four primaries in the table, the last awarded
at-large delegate is the hardest to audit.

The use of IRV for determining candidate viability does not make a Hamilto-
nian election more difficult to audit. While more assertions are created to audit
an IRV-based primary, the difficulty of any audit is based on the cost (ballot
samples required) of its most expensive assertion. Since all assertions are tested

Auditing Hamiltonian Elections 249

on each ballot examined, the principle cost is retrieving the correct ballot. The
audit specifications generated for the Wyoming and Alaskan primaries contain 78
and 89 assertions, respectively. The number of assertions formed for a plurality-
based primary is proportional to the number of candidates. NH, involving the
most candidates at 34, has 48 assertions to audit.

Table 2. Hard (top) and relatively easy (bottom) primaries for which to audit the
last assigned at-large delegate to each candidate. The number of at-large delegates D;
the delegate quotas for Biden and Sanders; and the difference between the remainder
of their quotas (divided by D) is reported, since this corresponds to the tightness of
Eq. (1).

State D Quotas Rem. ASN

Biden Sanders Diff./D

CA 90 50.688 39.312 0.004 3.2×106

MO 15 9.524 5.476 0.003 –

NY 61 47.629 13.371 0.004 486,495

SC 12 8.533 3.467 0.006 34,546

ME 5 2.050 1.993 0.19 189

AZ 14 8.010 5.990 0.07 120

OR 13 9.948 3.052 0.07 191

The computational cost of generating these audit specifications is not signifi-
cant. On a machine with an Intel Xeon Platinum 8176 chip (2.1 GHz), and 1 TB
of RAM, the generation of an audit specification for Wyoming and Alaska takes
0.3 s and 0.4 s, respectively. The time required to generate an audit for each of
the plurality-based primaries in Table 1 ranges from 0.2 ms to 0.24 s (and 0.03 s
on average).

7 Conclusion

We provide an effective method for auditing delegate allocation by proportional
representation (the Hamilton method), the first we know of for elections of this
kind. Usually the audit only requires examining a small number of ballots. This
could be used for primary elections in the USA and other elections in Russia,
Ukraine, Tunisia, Taiwan, Namibia and Hong Kong.

We provide a version suitable for Democratic primaries in Alaska, Hawaii,
Kansas, and Wyoming, which use a modified form where viability is decided
using IRV.

To audit these elections we defined a new assertion for pairwise differences
and corresponding assorter, which may be useful for auditing other methods.

250 M. Blom et al.

References

1. Blom, M., Stuckey, P.J., Teague, V.J.: Ballot-polling risk limiting audits for IRV
elections. In: Krimmer, R., Volkamer, M., Cortier, V., Goré, R., Hapsara, M.,
Serdült, U., Duenas-Cid, D. (eds.) E-Vote-ID 2018. LNCS, vol. 11143, pp. 17–34.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00419-4 2

2. Blom, M., Stuckey, P.J., Teague, V.J.: Computing the Margin of Victory in pref-
erential parliamentary elections. In: Krimmer, R., Volkamer, M., Cortier, V.,
Goré, R., Hapsara, M., Serdült, U., Duenas-Cid, D. (eds.) E-Vote-ID 2018. LNCS,
vol. 11143, pp. 1–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00419-4 1

3. Blom, M., Teague, V., Stuckey, P.J., Tidhar, R.: Efficient computation of exact IRV
margins. In: European Conference on Artificial Intelligence (ECAI), pp. 480–488
(2016)

4. Blom, M.L., Stuckey, P.J., Teague, V.: Risk-limiting audits for IRV elections. CoRR
abs/1903.08804 (2019). http://arxiv.org/abs/1903.08804

5. Kroll, J.A., Halderman, J.A., Felten, E.W.: Efficiently auditing multi-level elec-
tions. In: Krimmer, R., Volkamer, M. (eds.) Proceedings of Electronic Voting 2014
(EVOTE 2014), pp. 93–101. TUT Press (2014)

6. Lindeman, M., Stark, P.: A gentle introduction to risk-limiting audits. IEEE Secur.
Priv. 10, 42–49 (2012)

7. Lindeman, M., Stark, P., Yates, V.: BRAVO: ballot-polling risk-limiting audits to
verify outcomes. In: Proceedings of the 2011 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (EVT/WOTE 2011). USENIX (2012)

8. Sarwate, A., Checkoway, S., Shacham, H.: Risk-limiting audits and the margin of
victory in nonplurality elections. Politics Policy 3(3), 29–64 (2013)

9. Stark, P.: Conservative statistical post-election audits. Annals of Applied Statistics
(2008)

10. Stark, P.: Super-simple simultaneous single-ballot risk-limiting audits. In: Proceed-
ings of the 2010 Electronic Voting Technology Workshop/Workshop on Trustwor-
thy Elections (EVT/WOTE 2010). USENIX (2010)

11. Stark, P.B.: Sets of half-average nulls generate risk-limiting audits: Shangrla. In:
Bernhard, M., Bracciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B.,
Sala, M. (eds.) Financial Cryptography and Data Security, pp. 319–336. Springer
International Publishing, Cham (2020)

12. Stark, P.B., Teague, V.: Verifiable European elections: risk-limiting audits for
D’Hondt and its relatives. USENIX J. Election Technol. Syst. (JETS) 1(3), 18–39
(2014). https://www.usenix.org/jets/issues/0301/stark

https://doi.org/10.1007/978-3-030-00419-4_2
https://doi.org/10.1007/978-3-030-00419-4_1
https://doi.org/10.1007/978-3-030-00419-4_1
http://arxiv.org/abs/1903.08804
https://www.usenix.org/jets/issues/0301/stark

Cast-as-Intended: A Formal Definition
and Case Studies

Peter B. Rønne(B), Peter Y. A. Ryan, and Ben Smyth

DCS & Interdisciplinary Centre for Security, Reliability and Trust,

Esch-sur-Alzette, Luxembourg

Abstract. Verifiable voting systems allow voters to check whether their
ballot is correctly recorded (individual verifiability) and allow anyone to
check whether votes expressed in recorded ballots are correctly counted
(universal verifiability). This suffices to ensure that honest voters’ votes
are correctly counted, assuming ballots are properly generated.

Achieving ballot assurance, i.e., assuring each voter that their vote is
correctly encoded inside their ballot, whilst ensuring privacy, is a chal-
lenging aspect of voting system design. This assurance property is known
as cast-as-intended. Unlike many properties of voting systems, it has yet
to be formalised. We provide the first formal definition and apply our
definition to MarkPledge, Prêt à Voter, Selene, ThreeBallot, and schemes
based upon Benaloh challenges.

1 Introduction

End-to-end Verifiable (E2E V) voting systems produce evidence of correct opera-
tion: Cast ballots (which contain the vote in encrypted or encoded form) are pub-
lished on a public bulletin board (ledger), so voters can check whether their ballot
is collected (individual verifiability), and tallies are coupled with proofs, so any-
one can check whether votes expressed in collected ballots are correctly counted
(universal verifiability). By additionally providing means to check whether votes
are correctly encoded in ballots, we achieve end-to-end verifiability. This is not
yet enough to guarantee that the outcome is correct, for this we need extra mea-
sures such as eligibility verifiablity to prevent ballot stuffing and clash attacks1

etc., but this is beyond the scope of this paper.
For many end-to-end verifiability systems (but not all, e.g., [29,30]), ballots

are constructed using cryptographic operations, which are typically beyond the
mathematical capabilities of even the most studious scholar. Moreover, assurance
of correct encoding has to be provided without undermining privacy. Arguably,
providing ballot assurance, in the face of coercion threats, is the most challenging
aspect of End-to-end verifiability. Nonetheless, various ingenious methods have
been devised to provide voters with suitable, non-transferable assurance.

One notion of checking whether ballots correctly encode votes is known as
cast-as-intended (aka ballot assurance).
1 Where more than one voter gets assigned the same ballot.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 251–262, 2021.
https://doi.org/10.1007/978-3-662-63958-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_22&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_22

252 P. B. Rønne et al.

– Cast-as-intended. A voter can check whether their ballot correctly expresses
their vote.

Discussion of cast-as-intended originates from Chaum [7,8] and was taken further
by Neff [27], Adida & Neff [1], and Benaloh [3,4]. Yet, formal study of cast-
as-intended is limited: Unlike other properties of voting systems, a definition
of cast-as-intended has yet to be formalised. (Cf. the rich literature on formal
definitions of verifiability [10,18,20–22,24,36,38,39] and privacy [5,6,11,13,15,
16,20,21,25,26,34,37,40].). Here, we formalise cast-as-intended as a game in the
computational model of cryptography, thus filling a gap in the literature.

In this paper we consider two categories of End-to-End Verifiable voting
system: conventional, wherein each voter checks that a protected ballot2 that
represents their vote, typically an encryption of their vote, appears on the bul-
letin board, and tracker-based, where each voter checks their (plaintext) vote
appears in the election outcome, using a private tracker. Examples of the former
include Prêt à Voter, Helios, and Belenios. Examples of the latter, Selene [32] and
sElect [23]. Cast-as-intended is achieved very differently across these categories,
so we apply our definition to examples in each. In the first category, voters cast
ballots that are encryptions of their votes and tallies should correspond votes
embedded in those ballots. Since voters cannot compute ciphertexts, they rely
on a device or process to encrypt. Assuring the voter that the resulting ballot
correctly encodes their vote without undermining privacy, and in a manner that
is usable and understandable, is highly non-trivial, and various techniques have
been presented in the literature.

The second category provides verifiability in a more direct and transparent
fashion: the voter is able to identify their (plaintext) vote in the tally. In fact,
such systems provide tallied as intended verification and, in contrast to the
conventional schemes, cast as intended is not strictly necessary. Some subtleties
nonetheless remain. For example, each voter should be assured that their tracker
is unique. We discuss the details later.

For conventional voting systems, in contrast to tracker-based schemes, it is
essential that the voter be able to verify that their vote is correctly embedded in
the ballot. This is typically achieved via some form of cut-and-choose mechanism:
the device is required to commit to one or more encryptions of the voter’s vote
and all but one of these are randomly selected then audited to confirm that the
correct vote was encoded. The remaining, non-audited ballot can then be cast.

Benaloh proposed a mechanism, in effect a sequential cut-and-choose, to pro-
vide such assurance [3, §4.2]: A voter inputs a vote into a device, the device
computes an encryption of the vote, and commits to the resulting ciphertext,
by printing the ciphertext or digitally signing it, for instance. Next, the voter
chooses to audit or cast the ciphertext. For the former, if auditing fails, the voter
should raise an alarm, otherwise (auditing succeeds), the audit or cast process
repeats, until the voter chooses to cast.

Auditing typically reveals coins used to construct ciphertexts, enabling
ciphertext reconstruction, which suffices to convince a voter that their ballot
2 To use Rivest’s terminology.

Cast-as-Intended: A Formal Definition and Case Studies 253

expresses their vote, assuming they can reconstruct the ciphertext themselves
(using a system they trust) or a trusted third party can. Thus, cast-as-intended
can be unconditionally achieved, assuming perfect correctness of the underlying
encryption scheme.

Reliance on a trusted system or trusted third party to perform ballot audits
may seem disingenuous; after all, trust is contrary to the goal of verifiability.
However, ciphertexts can be reconstructed by multiple systems, third parties, or
both, thereby removing the need to trust any individual device or service.

Most schemes that reveal coins do not allow audited ballots to be cast,
to avoid compromising receipt-freeness. (A notable exception is Neff’s Mark-
Pledge [28].) A consequence of this observation is that ballot assurance is prob-
abilistic rather than deterministic.

Sidebar 1. Preliminaries: Games and notation
Games are probabilistic algorithms that output booleans. An adversary wins a game
by causing it to output true (�) and the adversary’s success in a game Exp(·), denoted
Succ(Exp(·)), is the probability that the adversary wins, i.e., Succ(Exp(·)) = Pr[Exp(·) =
�]. Adversaries are stateful, i.e., information persists across invocations of an adversary
in a game.
We let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and coins r, and we let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where coins
r are chosen uniformly at random from the coin space of algorithm A. Moreover, we
let x ← T denote assignment of T to x, and we write (x1, . . . , x|T |) ← T for x ← T ;
x1 ← x[1]; . . . ; x|T | ← x[|T |], when T is a vector.

2 Security Definition

For schemes in the conventional category, cast-as-intended requires ballots be
correctly constructed. For many schemes, correct ballot construction simply
requires computing a valid encryption of the vote, with respect to the public
key of the tabulation process. For universally-verifiable voting systems, it fol-
lows that if a voter’s ballot correctly encodes the voter’s vote, and that ballot is
correctly tallied, then the voter’s vote will be correctly included in the tally.

We formalise cast-as-intended in the syntax proposed by Smyth, Frink &
Clarkson [38]: Construction is defined by a probabilistic polynomial-time algo-
rithm Vote, wherein

Vote takes as input a public key pk , a voter’s vote v, some number of candi-
dates nc, and a security parameter κ, and outputs a ballot b or error symbol ⊥,
where vote v should be selected from a sequence 1, . . . ,nc of candidates.

Universal verifiability assures us that votes expressed in ballots constructed using
algorithm Vote will be correctly counted, and cast-as-intended enables voters to
check that their vote is expressed in a ballot constructed using algorithm Vote.

254 P. B. Rønne et al.

Ballot construction differs between systems. In some cases, the ballot may be
generated by software on the voter’s computer. Other cases may be more elab-
orate, e.g., Prêt à Voter involves authorities generating and distributing blank
two-column paper ballots, and voters physically marking their selections before
discarding the left column. Yet further systems (e.g., code-voting, PunchScan,
Scantegrity, and PGD) encode votes by means other than encryption, using
material from an initialisation phase. For example, in code voting, a correspon-
dence between vote options and codes is committed in print on the code sheets,
and this should be consistent with the mapping of codes to votes that is com-
mitted to the bulletin board. Some verifiable schemes even avoid cryptography,
e.g., Randell/Ryan [29] and ThreeBallot [30].

Formalising cast-as-intended involves defining what it means for a ballot to
be correctly constructed and the means to verify this, which can be captured
as a game that challenges an adversary to achieve the opposite: To dupe a
voter into believing their ballot encodes their vote, when it does not. We model
ballot construction as an algorithm A parametrised by a public key pk , some
number of candidates nc, and a security parameter κ, and we model the voter
as an algorithm V that takes a vote v and a distinct security parameter κ̂ as
input. The latter security parameter determines the probability of breaking cast-
as-intended, whereas the former determines the probability of breaking other
security properties, such as individual and universal verifiability. We use distinct
security parameters, because the complexity of algorithm V should be upper-
bounded by the capability of a voter’s mind, whereas algorithm A should be
computable by machine.

The system is assumed to be adversarial and, to achieve cast-as-intended,
some trustworthy device is also required. (Alternatively, a multitude of devices
may be used, only one of which need be trustworthy.) We model such a device
as an algorithm T that takes the same parameters as algorithm A. Hence, ballot
construction is modelled by the computation b ← VT ,A(v, κ̂), where algorithm
T is parameterised by pk , nc, and κ. If cast-as-intended is achieved, then such
computations should result in a ballot b = Vote(pk , v,nc, κ; r) for some coins r
or the error symbol ⊥ (representing a voter detecting malice), which leads to
our security definition (Definition 1). In that definition, we extend algorithm A
with the capabilities of a malicious administrator that defines the public key,
the voter’s vote, and the number of candidates, when parametrised by security
parameters κ and κ̂.

Definition 1 (Cast-as-intended). Let V, T , Vote, and A be probabilistic pol-
ynomial-time algorithms, κ and κ̂ be security parameters, and Cast-As-Intended
be the following game.

Cast-As-Intended(V, T ,Vote,A, κ, κ̂)
= (pk , v,nc) ← A(κ, κ̂)
b ← VT (pk ,nc,κ),A(v, κ̂)
return ∀r . b �= Vote(pk , v,nc, κ; r) ∧ b �= ⊥ ∧ 1 ≤ v ≤ nc

Cast-as-Intended: A Formal Definition and Case Studies 255

We say V, T ,Vote satisfies δ(κ̂)-cast-as-intended, if for all probabilistic
polynomial-time adversaries A, there exists a function δ and for all secu-
rity parameters κ and κ̂, we have Succ(Cast-As-Intended(V, T ,Vote,A, κ, κ̂)) ≤
δ(κ̂) + negl(κ).

An adversary A that wins Cast-As-Intended is able to identify a strategy, includ-
ing choosing a public key pk , a vote v, and a number of candidates nc, such that
a voter V will be deceived into casting a ballot b that does not express their vote
v. That is, winning signifies an attack against cast-as-intended.

An election scheme satisfying cast-as-intended guarantees that a voter can
check whether their ballot is an output of algorithm Vote, parametrised with
their vote v along with public key pk , number of candidates nc, and security
parameter κ, for some coins r. Supposing universal verifiability, a voter can
check whether the election outcome corresponds to votes expressed in tallied
ballots.

Our definition assumes that each voter performs verification steps correctly.
Beyond the definition’s scope, we must consider the practicality of voters cor-
rectly performing verification. Thus, even when a voting system satisfies cast-as-
intended, that system may still be vulnerable to attacks arising from voter error
or negligence (possibly attacker induced).

Let us finally remark on an important point, namely, that the definition
depends crucially on the protocol description for the honest voter V. If we have
a protocol that always aborts the casting, then this would reduce the adversary’s
advantage to zero and we would claim it satisfies cast-as-intended. Hence, we also
require a soundness condition asserting that V should only abort if the ballot is
ill-formed, or more exactly, that this should only occur with bounded probability:
We assume that V only aborts when indeed she has detected the b is ill-formed.
In practice, whether we can check if a voter is maliciously aborting enters into
the territory of dispute resolution.

3 Examples

3.1 Prêt à Voter

(a)

Obelix
Idefix
Asterix
Panoramix

7304944

(b)
X

7304944

Fig. 1. Prêt à Voter ballot (a) and receipt (b) for vote “Idefix”

256 P. B. Rønne et al.

In Prêt à Voter [9] the voter gets a ballot with a left and right hand side (see
Fig. 1). The candidates are listed in plaintext in a random order on the left hand
side (LHS) and this order is embedded cryptographically in a value on the right
hand side (RHS). In the privacy of the booth, the voter marks their selection
on the right hand side against the candidate(s) as indicated on the LHS. Once
they have made their mark(s) they detach and destroy the LHS, i.e. removes
the plaintext list of candidates, thus concealing the selection and creating the
receipt.

The universal verifiability of the scheme will afterwards guarantee that the
vote is processed according to the encrypted order. The ballot is thus correctly
constructed, if the encrypted candidate order on the RHS matches the one dis-
played in plaintext on the LHS. To check this the voter can perform ballot audits
to verify this, but cannot verify the actual cast ballot. Additionally, ballots can
be randomly audited by observers. Note that for Prêt à Voter ballot auditing
can be delegated and is entirely privacy preserving and indeed dispute resolving.

Let us first consider the case where voters are instructed to choose κ̂ ballots
and audit all of these but one. In a worst case scenario, the adversary is able to
inject a chosen number of maliciously created ballots into this selection κ̂ ballots.
The adversary obtains the best advantage by injecting precisely one ballot and
wins if this is used for vote-casting, i.e. PAdv succ = 1/κ̂, i.e. δ ≥ 1/κ̂.

We can also consider the case, where a voter audits a ballot with a probability
p. We further assume that the probability that a ballot is audited by observers
is q. We then find

PAdv succ = (1 − q) · (1 − p).

Using the arguments for Benaloh challenges below, this also holds if the voter
audits multiple times with the same probability.

Here we are assuming that the random audits are unpredictable and that
chain-of-custody of the set of ballot forms is guaranteed, i.e. fake ballot forms
cannot be injected after the observer audits are performed. In fact, observer
audits can be performed before, during and after voting, so this assumption is
quite mild.

3.2 Benaloh

Let us now make a simplified analysis of Benaloh challenges. We ignore all infor-
mation that could be leaked by the vote choice used by the voter. Let us assume
that the voter has fixed probability in each round to audit. We can argue that
this makes sense since the voter obtains no other knowledge during the Benaloh
challenge process to influence the probability, and we ignore vote choices. For
the adversary, we will also assume he has a fixed probability in each round.
Let pi denote the probability of the voter doing an audit in round i and qi the
probability that the adversary changes a vote in this round.

The probability that the adversary is successful is obtained by sum of the
probabilities that he is successful in round i which is the probability that the

Cast-as-Intended: A Formal Definition and Case Studies 257

voter challenges all earlier rounds, that the adversary was honest in all of these,
and then he cheated in round i. That is

PAdv succ =
∞∑

i=1

p1 · · · pi−1(1 − q1) · · · (1 − qi−1)(1 − pi)qi.

We only aim to make a simplified analysis and we do this by assuming that
the probabilities will not depend on the rounds. For the voter this could happen
if we specify to the voter to make an audit with a certain probability. Then we
get

PAdv succ =
∞∑

i=1

pi−1(1 − q)i−1(1 − p)q =
(1 − p)q

1 − p(1 − q)
.

This function is increasing in cheat probability q. Thus if the adversary wants
to maximise this, he chooses q = 1 i.e. to always cheat. The winning probability
is then

PAdv succ = 1 − p,

corresponding to the probability that the voter casts in the first round. That is
we have δ ≥ 1−p. Note that the average number of challenge rounds in the vote
casting is 1/(1 − p) (without an adversary present). Abusing notation, we thus
have that δ ≥ 1/κ̂ where κ̂ is the number of challenge rounds.

Note however, that if the voter is not prescribed a certain audit probability
p and doesn’t care about the effort of doing the audits, then PAdv succ is a
decreasing function in p i.e. the voter would choose p ≈ 1, i.e. to almost always
audit. A full analysis should be done via game theory, see also [12].

3.3 MarkPledge

MarkPledge [27], is of particular interest in the context of cast-as-intended as it
provides assurance of correctness of the ballot that is actually cast. This is in
contrast to cut-and-choose style ballot assurance, e.g. Benaloh challenges, where
an audited ballot cannot be cast.

At a very high level, MarkPlegde involves the voter interacting with a device
in the booth to perform an interactive zero-knowledge proof of correctness of the
ballot. In essence, this proof serves to convince the voter that a 1 is encrypted
against the candidate of choice and a transcript of this proof is printed on the
receipt. As part of this interactive ZK proof, the voter provides a random chal-
lenge, e.g. a string of k digits.

This alone would not of course be receipt-free, so the chosen vote is masked by
the device constructing fake ZK proof transcripts that an encryption of 1 against
the other candidates. The device also provides a ZK proof that there is exactly
one encryption of 1 and the other encryptions are of 0. Anyone later seeing the
receipt cannot distinguish the real and fake proofs and hence cannot identify
which candidate was selected. Only the voter will know for which candidate
they executed the real, interactive proof.

258 P. B. Rønne et al.

During tabulation, the candidates with an encryption of zero are weeded out,
exploiting the homomorphic properties of the encryption, leaving just those with
the encryption of 1.

The ballot assurance provided by MarkPledge is therefore dependent on the
size of the challenge space. So if the challenges are strings of k∗ digits, we get a
bound on the chance of the device being about to cheat the voter of p = 1/10k∗

.

3.4 ThreeBallot

In the ThreeBallot scheme by Rivest [30] a voter distributes their vote intent
over three ballots. The scheme is interesting in this context as it does not employ
cryptography, and voter can tell directly whether the (three)ballot is correctly
constructed. We will also assume here that mechanisms are in place to ensure
that the (three)ballot is well formed, i.e. obeys the rules (two votes for the chosen
candidate and one for the others).

The ballots contain unique serial numbers. These are sent to a Bulletin Board,
but the voter chooses one of the single ballots and gets a copy of it. The voter’s
choice of which of the three ballots should be concealed from the system. At
home, the voter checks that the single ballot with the corresponding serial num-
ber appears online and that the partial vote choice in that ballot is correctly
stored.

Note that this example is special since this verification step is also a stored-
as-cast verification. With a malicous authority involved the serial numbers might
not be unique, and could give rise to clash attacks. In this case it is not really
meaningful to say that the displayed ballot is the voters ballot, since it will be
assigned to one or more voters. However, in the scope of cast-as-intended, we
will focus on a single voter setting, and leave such problems to other parts of
verifiability.

If we assume that the voter chooses the receipt slip uniformly at random and
the adversary is unaware of this choice, then the adversary can try to change one
single ballot of three, and will succeed with an undetected change of the ballot
with probability 2/3. Thus δ ≥ 2/3

Table 1. The different cast-as-intended protocols and their respective cast-as-intended
δ-value. κ̂1 = (1 − p) · (1 − q), κ̂2 = (1 − p). We also note if the verification checks, or
parts thereof, are delegable.

Scheme Prêt à Voter Benaloh MarkPledge ThreeBallot Selene

δ 1/κ̂1 1/κ̂2 1/10κ̂ 2/3 0

Delegable ✓ ✓ ✗ ✓ ✗

Cast-as-Intended: A Formal Definition and Case Studies 259

4 Tracker-Based Schemes

Ryan, Rønne, & Iovino recently [32] introduced an orthogonal approach in which
the cast-as-intended is first established after tallying. For traditional voting sys-
tems, voters perform a cast-as-intended check to ensure their ballot correctly
expresses their vote, an individual-verifiability check to ensure their ballot is
collected, and a universal-verifiability check to ensure their vote is counted. By
comparison, Ryan, Rønne, & Iovino propose that voters simply check whether
their plaintext vote is present in the tally, using a private tracker—the stan-
dard early cast-as-intended and individual-verifiability checks are not necessary;
a more direct, more transparent form of verification is achieved. Voting systems
Selene [32] and sElect [23] achieve this new form of tracker-based verifiabil-
ity, with the main difference being that Selene first releases the tracker to the
voter after tallying to provide coercion-mitigation - the voter can equivocate the
tracker to a tracker for another vote.

4.1 Example: Selene

Selene, [32] is an example of a tracker-based verifiable scheme in which the voter
can confirm directly that their vote is included in the tally. The mechanism can
be applied to various forms of e-voting schemes [2,17,31,33], has been studied
formally [19,42], and has been studied from a usability viewpoint [14,41]. In
Selene the voters hold secret trapdoor keys. After the end of election and after
the tally has been made public, the voters will receive an cryptographic term,
called the alpha term. This is combined with a public beta term which is available
on the bulletin board to form an ElGamal encryption of the tracker under the
voter’s trapdoor key. The voter can now decrypt this to retrieve their tracker.
The tracker is then used to check the plaintext vote on the final tally board.

The authorities could send a fake alpha term to the voter, however, as is
proven in [32] the chance of such an alpha term opening to an existing tracker
is negligible assuming that the authorities do not know the voter’s trapdoor
key and under a computational assumption (hardness of computing gx2

given
gx without knowing x). Thus if the voter’s trapdoor key is not leaked and the
computational assumption holds, then δ is negligible. This presupposes that the
proofs and verifiable computations on the bulletin board are verified, which can
be done by the voter herself, or any third party.

In a tracker based scheme, traditional cast-as-intended and individual- and
universal-verifiable checks are all bundled into a single tallied-as-cast check.

5 Outlook

Verifiability has emerged as a means to ensure integrity of elections. Several
aspects of verifiability have been identified: well studied notions of individual-
and universal-verifiability, and the seemingly less well understood notion of cast-
as-intended. We propose the first formal definition of cast-as-intended, closing

260 P. B. Rønne et al.

a gap in the literature and enabling analysis of systems purporting to achieve
cast-as-intended.

Future work could flesh out and make more rigorous the arguments we sketch
for MarkPledge, Prêt à Voter, Selene, ThreeBallot, and schemes based upon
Benaloh challenges. Other voting systems could also be analysed, e.g., Pretty
Good Democracy and Bingo Voting. It would also be interesting to analyse any
relation between cast-as-intended and dispute resolution, privacy during ballot
construction, or both. Perhaps most importantly: A suitable security notion to
bridge the gap between individual verifiability and cast-as-intended should be
sought, see also [35] which points out that individual- and universal-verifiability
plus cast-as-intended does not yield end-to-end verifiable voting systems, e.g.
clash attacks are not captured. It would also be interesting to see to which
extent trust can be removed from the cast-as-intended verification [18].

Another interesting future path is to relate the parameter κ̂ more tightly to
usability in order to compare the achieved level of security to the amount and
complexity of user-interaction required. We already did a preliminary attempt
of this with the values shown in Table 1 where κ̂ represents the number of inter-
actions or the number of digits a voter needs to handle, but comparing and
understanding the usability, especially across systems, will require actual user
studies.

Acknowledgements. This work received financial support from the Luxembourg
National Research Fund (FNR) under the PolLux/CORE project STV (12685695)
and the FNR CORE project EquiVox (13643617).

References

1. Adida, B., Andrew Neff, C.: Ballot casting assurance. In: EVT 2006: Electronic
Voting Technology Workshop. USENIX Association (2006)

2. Alsadi, M., Schneider, S.: Verify my vote: voter experience. In: E-Vote-ID 2020, p.
280 (2020)

3. Benaloh, J.: Simple verifiable elections. In: EVT 2006: Electronic Voting Technol-
ogy Workshop. USENIX Association (2006)

4. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
EVT 2007: Electronic Voting Technology Workshop. USENIX Association (2007)

5. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a com-
prehensive analysis of game-based ballot privacy definitions. In: S&P 2015: 36th
Security and Privacy Symposium, pp. 499–516. IEEE Computer Society (2015)

6. Blanchet, B., Smyth, B.: Automated reasoning for equivalences in the applied pi
calculus with barriers. J. Comput. Secur. 26(3), 367–422 (2018)

7. Chaum, D.: Secret-ballot receipts and transparent integrity. Better and less-costly
electronic voting at polling places. IEEE S&P 4 (2004)

8. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Pri-
vacy 2(1), 38–47 (2004)

9. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 8

https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8

Cast-as-Intended: A Formal Definition and Case Studies 261

10. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: S&P 2016: 37th IEEE Symposium on Security
and Privacy, pp. 779–798. IEEE Computer Society (2016)

11. Cremers, C., Hirschi, L.: Improving automated symbolic analysis for e-voting pro-
tocols: a method based on sufficient conditions for ballot secrecy. arXiv, Report
1709.00194, September 2017

12. Culnane, C., Teague, V.: Strategies for voter-initiated election audits. In: Zhu,
Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS,
vol. 9996, pp. 235–247. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47413-7 14

13. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

14. Distler, V., Zollinger, M.-L., Lallemand, C., Rønne, P.B., Ryan, P.Y.A., Koenig,
V.: Security - visible, yet unseen? In: Brewster, S.A., Fitzpatrick, G., Cox, A.L.,
Kostakos, V., (eds.) Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI 2019, Glasgow, Scotland, UK, 04–09 May 2019, p. 605.
ACM (2019)

15. Fraser, A., Quaglia, E.A., Smyth, B.: A critique of game-based definitions of
receipt-freeness for voting. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS,
vol. 11821, pp. 189–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-31919-9 11

16. Haines, T., Smyth, B.: Surveying definitions of coercion resistance. Cryptology
ePrint Archive, Report 2019/822 (2020)

17. Iovino, V., Rial, A., Rønne, P.B., Ryan, P.Y.A.: Using selene to verify your vote
in JCJ. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 385–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 24

18. Iovino, V., Rial, A., Rønne, P.B., Ryan, P.Y.A.: Universal unconditional verifia-
bility in e-voting without trusted parties. In: 33rd IEEE Computer Security Foun-
dations Symposium, CSF 2020, Boston, MA, USA, 22–26 June 2020, pp. 33–48.
IEEE (2020)

19. Jamroga, W., Knapik, M., Kurpiewski, D.: Model checking the SELENE e-voting
protocol in multi-agent logics. In: Krimmer, R., et al. (eds.) E-Vote-ID 2018. LNCS,
vol. 11143, pp. 100–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00419-4 7

20. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp.
37–63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

21. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

22. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15497-3 24

23. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: a lightweight verifiable
remote voting system. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF), pp. 341–354. IEEE (2016)

24. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS 2010: 17th ACM Conference on Computer and Communi-
cations Security, pp. 526–535. ACM Press (2010)

https://doi.org/10.1007/978-3-319-47413-7_14
https://doi.org/10.1007/978-3-319-47413-7_14
https://doi.org/10.1007/978-3-030-31919-9_11
https://doi.org/10.1007/978-3-030-31919-9_11
https://doi.org/10.1007/978-3-319-70278-0_24
https://doi.org/10.1007/978-3-030-00419-4_7
https://doi.org/10.1007/978-3-030-00419-4_7
https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-642-15497-3_24

262 P. B. Rønne et al.

25. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. J. Comput. Secur. 20(6), 709–764 (2012)

26. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

27. Andrew Neff, C.: Practical high certainty intent verification for encrypted votes.
Unpublished manuscript (2004)

28. Andrew Neff, C.: Practical high certainty intent verification for encrypted votes
(2004)

29. Randell, B., Ryan, P.Y.A.: Voting technologies and trust. IEEE Secur. Privacy
4(5), 50–56 (2006)

30. Rivest, R.L.: The threeballot voting system (2006)
31. Rønne, P.B., Ryan, P.Y.A., Zollinger, M.-L.: Electryo, in-person voting with trans-

parent voter verifiability and eligibility verifiability. In: E-Vote-ID 2018, p. 147
(2018)

32. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

33. Sallal, M., et al.: Augmenting an internet voting system with selene verifiability
using permissioned distributed ledger. In: 40th IEEE International Conference on
Distributed Computing Systems, ICDCS 2020, Singapore, 29 November–1 Decem-
ber 2020, pp. 1167–1168. IEEE (2020)

34. Smyth, B.: Ballot secrecy: security definition, sufficient conditions, and analysis of
Helios. Cryptology ePrint Archive, Report 2015/942 (2018)

35. Smyth, B.: Mind the gap: individual- and universal-verifiability plus cast-as-
intended don’t yield verifiable voting systems. Technical Report 2020/1054, Cryp-
tology ePrint Archive (2020)

36. Smyth, B.: Surveying global verifiability. Inf. Process. Lett. 163, 106000 (2020)
37. Smyth, B., Bernhard, D.: Ballot secrecy and ballot independence coincide. In:

Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
463–480. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6 26

38. Smyth, B., Frink, S., Clarkson, M.R.: Election verifiability: cryptographic defi-
nitions and an analysis of Helios and JCJ. Cryptology ePrint Archive, Report
2015/233 (2017)

39. Smyth, B., Ryan, M., Kremer, S., Kourjieh, M.: Towards automatic analysis of
election verifiability properties. In: Armando, A., Lowe, G. (eds.) ARSPA-WITS
2010. LNCS, vol. 6186, pp. 146–163. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16074-5 11

40. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 411–428. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 22

41. Zollinger, M.-L., Distler, V., Roenne, P., Ryan, P., Lallemand, C., Vincent, K.:
How mental models align with security mechanisms, user experience design for
e-voting (2019)

42. Zollinger, M.-L., Rønne, P.B., Ryan, P.Y.A.: Short paper: mechanized proofs of
verifiability and privacy in a paper-based e-voting scheme. In: Bernhard, M., et al.
(eds.) FC 2020. LNCS, vol. 12063, pp. 310–318. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-54455-3 22

https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/978-3-642-40203-6_26
https://doi.org/10.1007/978-3-642-40203-6_26
https://doi.org/10.1007/978-3-642-16074-5_11
https://doi.org/10.1007/978-3-642-16074-5_11
https://doi.org/10.1007/978-3-642-14623-7_22
https://doi.org/10.1007/978-3-030-54455-3_22
https://doi.org/10.1007/978-3-030-54455-3_22

Mobile Voting – Still Too Risky?

Sven Heiberg1, Kristjan Krips2,3, and Jan Willemson3,4(B)

1 Smartmatic-Cybernetica Centre of Excellence for Internet Voting, Tartu, Estonia
2 Institute of Computer Science, University of Tartu, Tartu, Estonia

3 Cybernetica, Tartu, Estonia
4 Software Technology and Applications Competence Center, Tartu, Estonia

Abstract. This paper studies the challenges of creating a mobile device
based voting client. We discuss the issues related to standalone and
mobile browser based voting applications. In both cases we discuss the
problems of vote privacy, integrity and voting channel availability. We
conclude that neither of the options can currently achieve the level of
security PC-based voting clients can provide, with the attack surface
being larger in the case of mobile browser based voting application.

1 Introduction

Voting is the core method of delegating public power in modern democratic
societies. However, in the contemporary increasingly mobile world, relying only
on polling stations to vote is less and less of an option.

Physical polling station based elections were put into a completely new light
due to the SARS-CoV-2 virus outbreak in early 2020 when it suddenly became
strongly non-recommended for people to gather in small spaces. For example,
there were local elections in France on March 15th which were held under a
severe risk of spreading the virus [4]. A straightforward alternative is postal
voting (that was heavily used e.g. in 2020 US presidential elections).

History of postal voting goes back a long time. Voters in the Swiss canton
of St. Gallen are reported as having sent their ballots via mail as early as 1673;
however, postal voting became more widely used only in late 19th/early 20th
century [17]. Still, this method is not perfect. It is hard to remotely authenticate
the voter, reliability of postal services varies a lot across the world, there are
no good measures against vote selling, etc. Even the international postal service
can have severe disruptions as illustrated by the US Postal service temporarily
stopping its service to 102 countries during the pandemic in spring 20201. Thus,
it is important to study alternatives for remote voting.

Recent decades have given us fast development in both computerized net-
works and strong electronic identification mechanisms. These together lay a foun-
dation for vote casting over Internet. And indeed, this approach has been tried

1 https://newjerseyglobe.com/campaigns/with-102-countries-not-receiving-mail-
from-u-s-military-and-overseas-voters-might-not-get-primary-election-ballots/.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 263–278, 2021.
https://doi.org/10.1007/978-3-662-63958-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_23&domain=pdf
http://orcid.org/0000-0002-6290-2099
https://newjerseyglobe.com/campaigns/with-102-countries-not-receiving-mail-from-u-s-military-and-overseas-voters-might-not-get-primary-election-ballots/
https://newjerseyglobe.com/campaigns/with-102-countries-not-receiving-mail-from-u-s-military-and-overseas-voters-might-not-get-primary-election-ballots/
https://doi.org/10.1007/978-3-662-63958-0_23

264 S. Heiberg et al.

out in several parts of the World (e.g. Estonia, Norway, Switzerland, Australia,
etc.) using either a PC- or browser-based voting client software.

In addition, mobile technology has been used in several countries for the
purposes of democratic inclusion (e.g. campaigning and polling) since early
2000s [12]. The rise in mobile platforms usage has put forward a natural question
whether casting votes from mobile devices would be a viable option.

For example, in a number of African countries more people have mobile
phones than access to continuous electric supply [27]. At the same time, long
distances and poor transportation make remote voting a necessity in order to
achieve universal suffrage. Thus, the options for mobile voting have been studied
in Africa for a decade already [6,7,15]. However, the security issues of smart-
phone based voting clients haven’t gotten much attention by the research com-
munity.

The paper is organised as follows. Section 2 gives an overview of the used
methodology. Next, Sect. 3, describes the issues of browser based voting. It is
followed by Sect. 4, which highlights the issues faced by a standalone voting appli-
cation on the two most popular mobile platforms – iOS and Android. Finally,
Sect. 5 offers some discussion and conclusions.

2 Methodology

Voting software has to adhere to the security principles of the corresponding
election system and jurisdiction. As a result, the list of requirements set for the
elections varies a bit between different authors and sources (see e.g. [3,10,21,25]).

In this paper we concentrate on the client side security of remote electronic
voting, hence we will focus on the following subset of general requirements.

1. Vote privacy is a measure to guarantee the freedom of choice.
2. Vote integrity in our setting means that the vote should reach the (digital)

ballot box in a way that corresponds to the voter’s real preference.
3. Availability means that voters should have access to the voting methods

and channels to guarantee both uniformity and generality of elections.

Some aspects remain outside of the scope of the current paper, most notably
tally integrity and verifiability issues. Eligibility verification and guaranteeing
uniformity are typically solved via voter authentication, and this is a vast area of
research on its own. Due to space limitations, we also leave mobile authentication
out of scope of the current paper.

To further focus our field of interest, we will concentrate on solutions where
the mobile device is used to directly implement the standard voting workflow
including proving eligibility, presenting the candidates, recording the voter pref-
erence, submitting it and presenting any information required for individual
verification of the vote. Under the hood, the voting software must also perform
security-related operations like establishing authenticated, secrecy-and-integrity-
protected channel to the server, protecting the vote from manipulation etc.

Mobile Voting - Still Too Risky? 265

We note that in our setting, the voting application participates in the crypto-
graphic protocol as a voter’s tool to cast her preference as a vote, and to submit
it into the digital ballot-box. This is different from e.g. code voting [11], where
the voting application is a mere transparent transportation channel of anony-
mous pre-encrypted data. As a consequence, the client application learns both
voter’s identity and her preferences, and is in the position to change the vote.
This problem can be mitigated by the voting protocol providing verifiability.

Given these limitations, we study two main alternative architectural solutions
– implementing the voting client based on a browser platform, or as a standalone
mobile application. In both cases, we will take a more detailed look at how the
three main requirements identified above can be satisfied, and what are the
residual risks given today’s level of mobile platforms and their security features.

3 Issues with Browser Based Voting

We consider the voting application to be implemented as a dynamic webpage
using HTML, JavaScript and CSS. The application is deployed to a web server
and the URL is published. Voters use browsers of their choice to visit the web-
page.

Browser is responsible for downloading the application files and creating a
representation of the Document Object Model (DOM), which is made avail-
able to JavaScript via standardised APIs. In the voting workflow, the voter’s
actions activate JavaScript implementation of the protocol, which affect the
DOM, changing what is rendered to the voter. The voting application is exe-
cuted in the browser context and has limited access to the system level APIs.

While standalone applications can be analysed relative to the OS they are
running on, web applications are not tied to a single platform. Thus, the security
and privacy aspects of both mobile and desktop browsers have to be reviewed.

Usability. In the context of voting, the lack of screen size creates challenges
for designing the user interface. For example, a desktop browser may display the
full list of candidates, while a mobile version can not. Thus, a question arises
which candidates should have the advantage of being displayed first.

The limitations on screen size have prevented mobile browsers from fully
adapting some standard functionalities of their desktop counterparts. For exam-
ple, it is common for mobile browsers to optimize the way how URL and URL bar
are displayed. In addition, mobile browsers usually do not allow the users to view
detailed information about the TLS connection. Such optimizations increase the
risk of voters being tricked by a phishing website.

Mobile Browser Issues. Distributing the voting client as a standard web
application has the potential to simplify deployment to both desktop and mobile
platforms, unify user interface, and provide an option for easy hot-fixing. At the
same time, this introduces a middleman (browser) between the voting application
and the operating system, vastly increasing the attack surface.

266 S. Heiberg et al.

Luo, Nikiforakis et al. published two longitudinal studies on security features
of mobile browsers [19,20]. They showed that, in general, mobile browsers lag
behind their desktop counterparts in the adoption of new security features.

Thus, web applications used via mobile browsers are more vulnerable to a
variety of attacks (e.g. phishing, malicious scripts, etc.). In the context of mobile
voting this may create issues related with both ballot privacy and ballot integrity.

3.1 Privacy

Sandboxing. The voting application has to be isolated from other web pages
and third party software. Browsers isolate content from different origins with
the help of Same-Origin Policy (SOP). However, vulnerabilities can be used to
bypass SOP2. Thus, some desktop browsers provide additional sandboxing by
launching different web sites in different processes. Google Chrome does this
since version 67 by relying on Site Isolation, which provides protection against
multiple classes of attacks [23]. This feature was added to Android based Google
Chrome for devices that have at least 2 GB of RAM, but it only works on web
sites where users enter passwords3. While Firefox does not yet have a similar
functionality, a project to add the feature is ongoing4.

Even the extra measures do not provide absolute isolation. For example, mali-
cious browser extensions could violate ballot privacy by reading page contents,
as described in Sect. 3.2.

Telemetry. A 2020 report by Leith gave an overview of the telemetry main-
stream browsers send back to the vendor or third parties [18]. The compari-
son showed that Brave Browser did the best when considering user’s privacy,
while Microsoft Edge and Yandex Browser were in the opposite end of the scale.
Chrome, Firefox and Safari all sent information about the query that was typed
to the URL bar to their respective vendors.

Google Chrome, Firefox and Safari rely on Google’s Safe Browsing service
to identify phishing sites and malware, while Microsoft Edge relies on Microsoft
Defender SmartScreen for the same features. While Google’s Safe Browsing uses
k-anonymity mechanism and local filtering, Microsoft’s SmartScreen uses local
filtering only for top traffic sites and known phishing sites. The rest of the URL-s
are sent to be analysed by the SmartScreen service5.

In the context of voting, even the leakage of indirect information about the
voting habits of users may cause security issues. This kind of information could
be used in coercion attacks to detect whether a voter has abstained or re-voted.

Metadata about voters’ behaviour is also visible to Internet service and DNS
providers. Such data could be used to list eligible voters who abstain from voting.
The list could be used for targeted attacks in order to submit votes on behalf of
2 https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Same+Origin+Policy+bypass.
3 https://www.chromium.org/Home/chromium-security/site-isolation.
4 https://wiki.mozilla.org/Project Fission.
5 https://docs.microsoft.com/en-us/microsoft-edge/privacy-whitepaper.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Same+Origin+Policy+bypass
https://www.chromium.org/Home/chromium-security/site-isolation
https://wiki.mozilla.org/Project_Fission
https://docs.microsoft.com/en-us/microsoft-edge/privacy-whitepaper

Mobile Voting - Still Too Risky? 267

the abstained voters. This threat could be mitigated if all eligible voters would
get notifications when a vote has been submitted on their behalf. However, such
notifications would have organisational and privacy issues of their own.

Man-in-the-Middle Attacks. Real world examples show that TLS is often the
only defensive measure that protects submitted ballots [2]. In case of a standalone
voting application, the TLS certificate of the voting server can be pinned, i.e. the
application can be built to accept a limited set of certificates. To bypass pinning,
either the application or the operating system would have to be modified.

Mainstream browsers no longer support HTTP Public Key Pinning (HPKP).
As a replacement, it is recommended to rely on Certificate Transparency (CT)6

and DNS Certificate Authority Authorization (CAA)7. However, CT is not
mandatory for locally issued certificates.

Thus, there is no straightforward way for pinning certificates for a browser
based voting application. This makes it difficult to prevent man-in-the-middle
(MITM) attacks by corporate middleboxes and anti-viruses that monitor the
messages exchanged inside TLS sessions. A study published in 2017 found that
such interception rate is in the range of 4–11% [5]. In 2019, Cloudflare reported
that this rate has significantly increased since the 2017 study was published8.

TLS traffic is often monitored via a local MITM approach, affecting the
security guarantees provided by HTTPS [5]. Thus, in addition to the privacy
risks, there are also risks to the integrity of the vote.

A voter is also able to set up a proxy to intercept and modify API calls. Thus,
when designing API-s, it should be assumed that the queries may be intercepted.

3.2 Integrity

One of the main issues with online voting is the untrustworthiness of voter’s
device, which can affect the integrity of the ballot. The risks are even higher
when votes are cast through a web application. Browsers introduce an extra
layer that has to be protected in addition to the rest of the operating system.

Fortunately, security of mainstream browsers has improved over the
years [19]. While zero-day vulnerabilities can not be ruled out, delivering patches
to the end users is easy due to the browsers getting automatic updates either
directly from the vendors or via the operating system. This holds both for main-
stream desktop browsers and for mobile browsers running on iOS and Android.

Web Application Integrity. While the identity of a website can be verified
by inspecting its certificate, there is no assurance that the web content dis-
tributed by the server is the one that was deployed by the election organizer.
There are no straightforward ways for voters to verify integrity of the JavaScript

6 https://tools.ietf.org/html/rfc6962.
7 https://tools.ietf.org/html/rfc8659.
8 https://blog.cloudflare.com/monsters-in-the-middleboxes/.

https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc8659
https://blog.cloudflare.com/monsters-in-the-middleboxes/

268 S. Heiberg et al.

code. However, there are some mechanisms that provide partial solutions to the
problem.

Scytl has proposed a tool (wraudit) to remotely verify that a proper web-
application is distributed by the web server [24]. However, it does not prevent
local tampering, and the voter can still access a tampered with web application.

W3C recommendation of Subresource Integrity (SRI)9 defines a checksum-
based mechanism by which user agents may verify that a fetched resource has
been delivered without unexpected manipulation. However, SRI does not protect
against tampering caused by a compromised web server or a MITM attack.

Cross-Origin Resource Sharing (CORS)10 allows web servers to tell browsers
which resources can be shared cross-origin. A voting server could inform browsers
that it only accepts requests from the official voting web page. This would pre-
vent a fake voting application from sending messages to the real back-end. The
restriction could be circumvented by also using a fake back-end, either by prox-
ying queries to the true back-end or disenfranchising voters completely.

Browser Extensions. Browser behaviour can be modified by extensions that
may be able to interfere with web applications’ control flow and visuals. Most
mobile browsers do not support extensions, but there are a few exceptions11.

Extensions can both read and modify the content of websites via DOM.
There are some methods to ensure DOM integrity12, but this far they are still
experimental.

The current permission model for mainstream browsers allows extensions to
ask for far-reaching access. When installing an extension, the user has to either
accept the requested permissions, or retract from installing it altogether. While
Firefox does not allow to turn off permissions, Google Chrome lets the user to
configure on which web sites certain permissions may be used. However, the
option may not be available for extensions installed using an enterprise policy.

Firefox extensions can ask the permission to “Access your data for all web-
sites” and with other permissions it is also possible to change the content on
selected pages. A Google Chrome extension can ask for a permission to “Read
and change all your data on the websites you visit”.

The latter has significant side-effects for browser based voting applications.
It is a non-trivial task to protect the integrity and privacy of the ballot while a
browser has been augmented with extensions. To mitigate the implied risks, the
voter would have to make sure that browser extensions would not have access to
the content on the vote casting website. This is infeasible for an average user.

9 https://www.w3.org/TR/SRI/.
10 https://fetch.spec.whatwg.org/.
11 The Android version of Firefox supports extensions and there exist third-party

mobile browsers (e.g. Kiwi) that support Google Chrome extensions.
12 https://toreini.github.io/projects/domtegrity.html.

https://www.w3.org/TR/SRI/
https://fetch.spec.whatwg.org/
https://toreini.github.io/projects/domtegrity.html

Mobile Voting - Still Too Risky? 269

3.3 Availability

It is common for vendors to bundle browsers with their devices. This results in
tens of browsers being used only by a small fraction of users.

Additionally, it was recently shown by Kondracki et al. that data saving
browsers can affect both privacy and integrity of the transmitted content [16].
However, only some of these browsers intercepted TLS connections. This illus-
trates the need for separately validating browsers that can be used for voting.

On the other hand, monitoring the security of all marginally used browsers
is not realistic. Thus, in the context of voting, supporting only a limited number
of browsers seems unavoidable. At the same time, correctly detecting a browser
on server-side is not 100% reliable as browsers may lie about their identity.

Authenticity of the Voting Application. A voter would have to check the
TLS certificate of the web site to validate its authenticity. However, it may not
be possible to view the full certificate on mobile browsers. By testing multiple
browsers on Android and iOS (Google Chrome, Firefox, Brave, Microsoft Edge,
UC Browser, Samsung Browser, Opera Mini/Touch, Safari), we discovered that
only Google Chrome, Brave and Samsung Browser running on Android display
detailed information about the certificate. Google Chrome on iOS and Firefox
on Android allowed the user to only view the issuer of the certificate. The rest of
the tested browsers only displayed a padlock icon on the URL bar. As it is trivial
to get a valid TLS certificate for one’s own domain, relying on the padlock icon
can create a false sense of security about the website’s trustworthiness [8].

URL Bar Visibility. Browsers on smartphones are optimised to increase the
available screen area and thus limit the information displayed on the URL bar.
We tested multiple browsers on Android and iOS (Google Chrome, Firefox,
Brave, Microsoft Edge, UC Browser, Samsung Browser, Opera Mini/Touch,
Safari) to see how their URL bar behaves.

It turned out that there is no common behaviour in this respect. Most of the
tested browsers hide the URL bar while scrolling or changing page orientation.
Only the iOS version of Chrome always displayed at least part of the URL.

It has been observed that some mobile browsers have issues with displaying
long URL-s [20], which can be abused by phishing attacks. To prevent confusion,
browsers should always display the domain name of the visited web site. Our
testing revealed that Safari, Firefox, Edge, Opera Touch and UC Browser on iOS
prioritize subdomains when using vertical layout as illustrated in Fig. 1. Testing
the same layout in Android showed that Google Chrome, Firefox and Samsung
Browser display the domain name of the visited website, while Microsoft’s Edge,
Opera Mini, UC Browser and Brave prioritize the left side of the URL. Surpris-
ingly, UC Browser on Android showed the title of the web page instead of the
URL, thereby making phishing attacks trivial, see Fig. 1.

270 S. Heiberg et al.

(a) Microsoft Edge (iOS) (b) Microsoft Edge (Android)

(c) Opera Touch (iOS) (d) Opera Mini (Android)

(e) UC Browser (iOS) (f) UC Browser (Android)

(g) Firefox (iOS) (h) Brave (Android)

(i) Safari (iOS) (j) UC Browser (Android) – screenshot
is taken while visiting paypal.com

Fig. 1. URL bars of mobile browsers that do not display the domain of the website.
The screenshots were taken in June 2020.

Such behaviour can be exploited by running targeted phishing campaigns to
trick voters into using a fake voting website. A successful attack could reveal
how these voters vote. It may also allow an attacker to block or change the vote
that is going to be cast, or interfere with the vote verification processes.

4 Issues with a Standalone Voting Application

The main alternative to the browser-based approach is to have a standalone
mobile application as a voting client. In this Section we will identify the main
issues that can be caused by running a voting client in either iOS or Android.

In the following we assume that a standalone voting application is imple-
mented as a native executable application, packaged for the given platform and
distributed via the mainstream appstore. Thus, the applications are distributed
as digitally signed packages (APK in Android, IPA in iOS).

Both Android and iOS applications are executed as isolated processes on the
OS level; tampering with these processes requires system level access. The OS
level APIs give fine-grained control over the voting application development and
enable e.g. certificate pinning for TLS connections.

Mobile Voting - Still Too Risky? 271

Usability. A standalone application can use slightly more screen area compared
to a browser, but still has the issue of being unable to display the full list of
candidates. In addition, smartphone applications are used in portrait mode by
default, whereas PC based applications are mostly used in landscape mode.

Users interact with smartphone applications via tapping and gestures, which
are not precise actions. Thus, the relative size of the UI elements has to be bigger
compared to desktop applications. Therefore, complex interactions presented in a
single view on a PC need to be restructured into multiple views for smartphones.

4.1 Privacy

Sandboxing. To protect the integrity and secrecy of the ballot, the voting
application should be isolated from non-system software. Such behaviour can
be provided by sandboxes isolating applications from each other. Unfortunately,
relying just on a sandbox is insufficient as malware with root access can influence
it.

Android and iOS sandbox all user installed applications while setting restric-
tions to getting root access. As a result, non-rooted mobile applications can not
significantly influence or monitor execution of the voting application.

Android isolates applications in the kernel level by assigning a unique user
ID to each application and running them in separate processes13. In addition,
SELinux is used to enforce mandatory access control over Android processes.

iOS application sandbox is built on top of a mandatory access control sys-
tem [29]. Contrarily to Android, regular applications do not run as separate
users, instead they are executed as a user named mobile, while system pro-
cesses can run as root. iOS applications are isolated into chroot style jails, such
that each application is only able to access its own directory and has limited
access to system resources. While jailbreaking does not automatically disable
the application sandbox, it breaks the security model by allowing applications
to get root access and thereby influence other applications [29].

Third-Party Applications. Privacy issues can also be caused by side-channel
leakages from legitimate applications. For example, it is common for Android
applications to silently request the list of other installed applications [26]. This
is usually done by the advertisement libraries by using an official Android API.

Information about the voting or vote verification app can be abused by an
attacker. When a user has not installed a voting application, an attacker may
attempt to cast a vote on voter’s behalf with a lower risk of the voter getting
a potential “You have already voted” message. In case an attacker can predict
which voters do not verify their votes, it is possible to run targeted vote manip-
ulation attacks without the risk of being caught by verification.

Another Android specific risk is non-removable bloatware pre-installed into
the device by the vendor. The risks of pre-installed applications were recently

13 https://source.android.com/security/features.

https://source.android.com/security/features

272 S. Heiberg et al.

studied by Gamba et al. by gathering 424,584 unique firmware samples [9]. They
found that 74% of the non-public pre-installed applications did not get security
updates, and 41% were not patched for at least 5 years. They also stated that
bloatware poses a threat to user’s privacy as it often contains third-party libraries
and custom permissions, which are not explained to the users.

Man-in-the-Middle Attacks. We mentioned in Sect. 3.1 that MITM attacks
pose a threat to the voting systems that rely on TLS to protect ballots [2]. How-
ever, in iOS and Android such attacks can be mitigated by certificate pinning.

In order to bypass certificate pinning in iOS, the device has to be jailbro-
ken [29]. The common way to bypass pinning is to use the tool SSL Kill Switch
2, which patches the API that is used for certificate validation14.

Before Android 7, third-party VPN applications often violated user’s pri-
vacy [13]. Once an Android application had requested the BIND VPN SERVICE
permission, it was able to break sandboxing and redirect the traffic of other appli-
cations. There were also examples of VPN applications doing TLS-interception.

However, since the release of Android 7, root access is required to add new
root certificates that are trusted system-wide15. After that change, malicious
TLS interception become significantly more difficult on Android devices.

4.2 Integrity

Risks somewhat similar to installing third party extensions to browsers (see
Sect. 3.2) also occur on the OS level where third party apps can be installed.
However, special attention is needed for applications that run in root privileges.

Rooting and Malicious Applications. Applications running with root access
are a potential threat for the voting application. First, such malware can influ-
ence how other programs behave and thereby either drop or modify the ballot.
Second, by getting access to the voter’s credentials, it could cast a vote on behalf
of her. Third, by intercepting information, ballot privacy could be violated.

iOS has strict rules for installing applications, allowing installation only from
Apple’s App Store. This restriction can be bypassed by acquiring superuser
credentials on the device (jailbreaking). However, jailbreaking is non-trivial and
may not be available for all iOS versions.

In Android, getting root access is easier. However, rooting is not even nec-
essary in order to install third party application stores and applications on an
Android device. Third party application stores, in turn, have fewer restrictions
for uploading applications and provide a good distribution channel for malware.

On desktop platforms, anti-virus software can detect some types of malware.
Anti-virus-like solutions also exist for Android and iOS, but ironically, their
capabilities are limited as both of the OSes sandbox applications quite strictly.
14 https://github.com/nabla-c0d3/ssl-kill-switch2.
15 https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.

html.

https://github.com/nabla-c0d3/ssl-kill-switch2
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html

Mobile Voting - Still Too Risky? 273

A safer execution environment could be provided for the voting application
by not supporting rooted devices. While various heuristics can be used to detect
rooting, they are generally easy to circumvent [14]. Due to the threat of malware,
absolute ballot privacy can not be guaranteed unless code voting is used [11].
However, that would significantly complicate the voting process for the voters.

Update Policy and Legacy Operating Systems. Android’s update policy
differentiates it from the other mainstream OSes. There is a problem of issuing
software updates due to multiple dependencies between the software vendor,
device manufacturers and the chip producer. Additionally, the business model of
many device manufacturers is built around short product lifetime. As a result,
updates and security patches are delayed or not available at all for many devices.

The situation with Android update policy has slightly improved during the
last few years due to the separation of hardware specific code from the rest of
Android16 and introduction of the Android Enterprise Recommended program17.
The former makes it easier for the vendors to create updates, but it does not
force devices to be updated. The latter gives vendors the option to assign a
special label to the devices which are guaranteed to get regular security patches.

A significant percentage of Android devices run old Android versions that
contain severe vulnerabilities. While it would be preferable not to offer voting
software for such devices, in practice this is not possible (iOS devices without
jailbreaks being available being an exception). When an official voting applica-
tion is not offered, it is still possible to create an independent voting client that
follows the official API to communicate with the back-end server. The API can
be found either from the documentation or by reverse engineering the official
voting application as demonstrated e.g. for Voatz [28].

Authenticity and Integrity of the Voting Application. On desktop plat-
forms, the voting application can in principle be distributed via an unreliable
channel as the integrity and authenticity of the application can be verified post-
transit. It can be done by relying on checksums or signatures, given that the
information about how to verify is distributed over reliable channels. Windows
and macOS automatically verify integrity of the signed binaries at the load time.

Android applications have to be signed before being distributed through
Google Play Store. While the signature binds an application along with its
updated versions to a certain key, it does not give assurance about the iden-
tity of the application developer as the signature can be issued with a self-signed
certificate18. In addition, Android supports legacy signature schemes to pro-
vide backward compatibility. A recent study by Yoshida et al. showed that apps
signed using MD5 and 512-bit RSA can still be found on Google Play Store [30].

16 https://source.android.com/devices/architecture#hidl.
17 https://www.android.com/enterprise/recommended/.
18 https://source.android.com/security/apksigning.

https://source.android.com/devices/architecture#hidl
https://www.android.com/enterprise/recommended/
https://source.android.com/security/apksigning

274 S. Heiberg et al.

Android allows new applications signed with APK Signature scheme v2 (or
v3) to use RSA1024, although stronger alternatives are supported19. However,
as RSA1024 provides only 80-bit security level, it is no longer recommended
for even mid-term applications; at least RSA3072 should be used instead [1].
Unfortunately, the issues with weak signatures do not seem to disappear as
applications uploaded to Google Play Store must be signed with a key that is
valid at least until October 22nd 2033.20 While key rotation functionality was
added to APK Signature scheme v3 in August 2018,21 it does not resolve issues
with older signature schemes. There is no straightforward way to replace the
signing key of an application that is signed with an older signature scheme22.

iOS applications have to be signed with a developer key certified by Apple.
The digital identity used for signing must be available through keychain. The
macOS certificate assistant tool allows for requesting certificates with RSA
(bitlengths 2048 to 8192) and ECC (bitlengths 256 to 521) keys.

4.3 Availability

On desktop platforms, the easiest solution to distribute an application is to
allow it to be downloaded directly from its web page. In case of mobile platforms,
installing apps from non-official sources is either impossible or not recommended
due to security concerns. Thus, an official voting application would have to be
distributed via the application store, but this can cause unexpected side-effects.

There is a risk of installing a bogus voting application as the app stores are
not able to identify and remove all copycat applications. Counterfeit applications
exist both in Google Play and in Apple’s App Store23. A recent study analysed
1.2 million Google Play applications and detected 49,608 that were similar to
one of the top 10,000 most popular applications in Google Play Store [22]. The
potential counterfeits were scanned by VirusTotal and out of these, 2040 were
classified to be malicious by at least 5 independent antivirus tools.

It should not be possible for third parties to issue updates for the voting appli-
cation. However, Google is promoting an app signing functionality that allows
application developers to out-source handling of the signing key to Google.24

Although the developer can also use an upload key, this can be reset by Google.
Thus, when releasing an official voting application, the signing key must not be
disclosed to third parties and such functionality must not be used.

Additional risk lies in the limited control over the distribution channel. The
application stores decide which applications to host and thus it is not guaranteed
that a voting application is accepted in time. Similar problems may arise in case
a hot-fix is needed due to a reported bug or vulnerability.
19 https://source.android.com/security/apksigning/v2.
20 https://developer.android.com/studio/publish/app-signing.
21 https://source.android.com/security/apksigning/v3.
22 http://support.google.com/googleplay/android-developer/answer/9842756.
23 https://www.nytimes.com/2016/11/07/technology/more-iphone-fake-retail-apps-

before-holidays.html.
24 https://developer.android.com/studio/publish/app-signing.

https://source.android.com/security/apksigning/v2
https://developer.android.com/studio/publish/app-signing
https://source.android.com/security/apksigning/v3
http://support.google.com/googleplay/android-developer/answer/9842756
https://www.nytimes.com/2016/11/07/technology/more-iphone-fake-retail-apps-before-holidays.html
https://www.nytimes.com/2016/11/07/technology/more-iphone-fake-retail-apps-before-holidays.html
https://developer.android.com/studio/publish/app-signing

Mobile Voting - Still Too Risky? 275

Another aspect that may need to be considered is the leakage of app store
profiles of voters who have downloaded the voting application. When a mali-
cious actor gets access to such information, it may be possible to conduct tar-
geted attacks against eligible voters who have not installed a voting application
similarly to the attacks described in Sects. 3.1 and 4.1.

5 Discussion, Conclusions and Future Work

Several recent developments like increased migration and SARS-CoV-2 virus
spreading have increased the motivation to introduce options for remote voting.
There are two main alternatives for absentee ballot delivery – postal system and
Internet – with both having their benefits and shortcomings.

In case remote voting is implemented via Internet, the main candidates for
the voting client platform are PCs and mobile devices. This paper focused on
the latter option, giving an overview of the arising issues in two main scenarios –
browser based and standalone voting application on mobile platforms. Although
mobile platforms are becoming more mature, they still have several shortcomings
when considering them for remote electronic voting.

Firstly, there are a lot of legacy OS versions around that the vendors have
no incentive to update, particularly in case of Android. However, in order to
provide the voting option for a significant part of the electorate, there would be
pressure to also support out-of date mobile OSes.

Second, smaller screen size makes it necessary to display only part of the
content. This is a challenge from both the voting application UI and security
point of view (as e.g. certificates and URLs can be displayed only partly).

When considering browser-based voting client as an alternative to a stan-
dalone app, one has to take into account that browsers extend the attack surface
significantly. Mobile browsers also lag behind their PC counterparts in adoption
of new security features. There is no standard way for users to check the integrity
of web applications, and browser behaviour can be easily changed by third-party
extensions that the users install without giving it much consideration.

As many of the shortcomings do not affect only voting, but have impact on
a much wider variety of use cases, they can be expected to be fixed over time. It
will be interesting to re-assess the situation in a few years to see if the situation
will have been improved.

There are also several areas that remained outside of the scope of current
paper and are left as subject for further research.

Voter authentication is likely to differ between desktop and mobile platforms.
Smartphones tend to have relatively high quality cameras and the integration of
fingerprint readers is becoming more widespread. As a negative side, it is difficult
to interface a smartphone with a smart card based electronic identity solution.
In addition, the mobile device itself is often used as a second authentication
factor, which may exclude some authentication methods.

276 S. Heiberg et al.

When running cryptographic protocols, access to high-quality randomness
is important. While cryptographically strong random number generators are
increasingly available on mobile platforms, their usability by mobile browsers
still requires future research.

Acknowledgements. This paper has been supported by the Estonian Research
Council under the grant number PRG920 and European Regional Development Fund
through the grant number EU48684 and EXCITE centre of excellence. The authors
are grateful to the Estonian Information System Authority and State Electoral Office
for their support to the research process.

References

1. Abdalla, M., et al.: Algorithms, key size and protocols report. Tech.
rep. ECRYPT CSA (2018). https://www.ecrypt.eu.org/csa/documents/D5.4-
FinalAlgKeySizeProt.pdf

2. Cardillo, A., Essex, A.: The threat of SSL/TLS stripping to online voting. Proc.
E-Vote-ID 2018, 35–50 (2018)

3. Cetinkaya, O.: Analysis of security requirements for cryptographic voting protocols
(extended abstract). In: Proceedings ARES 2008, pp. 1451–1456. IEEE Computer
Society (2008)

4. Corbet, S.: France Holds Local Elections Despite COVID-19 Outbreak Fears. Time,
March 2020. https://time.com/5803469/france-local-elections-coronavirus/

5. Durumeric, Z., et al.: The security impact of HTTPS interception. In: Proceedings
of NDSS 2017. The Internet Society (2017)

6. Eilu, E., Baguma, R.: Designing reality Fit M-voting. In: Proceedings of the 7th
International Conference on Theory and Practice of Electronic Governance. ICE-
GOV 2013, pp. 326–329. ACM (2013)

7. Ekong, U.O., Ekong, V.: M-voting: a panacea for enhanced e-participation. Asian
J. Inf. Technol. 9(2), 111–116 (2010)

8. Felt, A.P., et al.: Rethinking connection security indicators. In: Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016), Denver, CO, pp. 1–14. USENIX
Association, June 2016. https://www.usenix.org/conference/soups2016/technical-
sessions/presentation/porter-felt

9. Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N.: An
analysis of pre-installed android software. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 197–213, May 2020

10. Heiberg, S., Willemson, J.: Modeling threats of a voting method. In: Design, Devel-
opment, and Use of Secure Electronic Voting Systems, pp. 128–148. IGI Global
(2014)

11. Helbach, J., Schwenk, J.: Secure internet voting with code sheets. In: Alkassar,
A., Volkamer, M. (eds.) Vote-ID 2007. LNCS, vol. 4896, pp. 166–177. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77493-8 15

12. Hermanns, H.: Mobile democracy: mobile phones as democratic tools. Politics
28(2), 74–82 (2008)

13. Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kâafar, M.A., Paxson, V.: An
analysis of the privacy and security risks of android VPN permission-enabled apps.
Proc. IMC 2016, 349–364 (2016)

https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://time.com/5803469/france-local-elections-coronavirus/
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/porter-felt
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/porter-felt
https://doi.org/10.1007/978-3-540-77493-8_15

Mobile Voting - Still Too Risky? 277

14. Kellner, A., Horlboge, M., Rieck, K., Wressnegger, C.: False sense of security: a
study on the effectivity of jailbreak detection in banking apps. In: Proceedings of
IEEE EuroS&P 2019, pp. 1–14. IEEE (2019)

15. Kogeda, O.P., Mpekoa, N.: Model for a mobile phone voting system for South
Africa. In: Proceedings of 15th Annual Conference on World Wide Web Applica-
tions, Cape Town, South Africa (2013)

16. Kondracki, B., Aliyeva, A., Egele, M., Polakis, J., Nikiforakis, N.: Meddling mid-
dlemen: empirical analysis of the risks of data-saving mobile browsers. In: 2020
IEEE S&P, pp. 1678–1692. IEEE, May 2020

17. Krimmer, R.: The evolution of e-voting: why voting technology is used and how it
affects democracy. Ph.D. thesis, Tallinn University of Technology (2012)

18. Leith, D.J.: Web browser privacy: what do browsers say when they phone home?
(2020), SCSS Technical Report, 24th February 2020

19. Luo, M., Laperdrix, P., Honarmand, N., Nikiforakis, N.: Time does not heal all
wounds: a longitudinal analysis of security-mechanism support in mobile browsers.
In: Proceedings of NDSS 2019. The Internet Society (2019)

20. Luo, M., Starov, O., Honarmand, N., Nikiforakis, N.: Hindsight: understanding
the evolution of UI vulnerabilities in mobile browsers. In: Proceedings of the 2017
ACM CCS, CCS 2017, pp. 149–162. ACM (2017)

21. Mitrou, L., Gritzalis, D., Katsikas, S.K.: Revisiting legal and regulatory require-
ments for secure e-voting. In: Ghonaimy, A., El-Hadidi, M.T., Aslan, H.K. (eds.)
Security in the Information Society: Visions and Perspectives, IFIP TC11 17th

International Conference on Information Security (SEC2002), 7–9 May 2002, Cairo,
Egypt. IFIP Conference Proceedings, vol. 214, pp. 469–480. Kluwer (2002)

22. Rajasegaran, J., Karunanayake, N., Gunathillake, A., Seneviratne, S., Jourjon, G.:
A multi-modal neural embeddings approach for detecting mobile counterfeit apps.
In: The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, 13–17
May 2019, pp. 3165–3171. ACM (2019)

23. Reis, C., Moshchuk, A., Oskov, N.: Site isolation: process separation for web sites
within the browser. In: 28th USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, pp. 1661–1678. USENIX Association, August 2019. https://www.
usenix.org/conference/usenixsecurity19/presentation/reis

24. Salvador, D., Cucurull, J., Julià, P.: wraudit: a tool to transparently monitor web
resources’ integrity. In: Groza, A., Prasath, R. (eds.) MIKE 2018. LNCS (LNAI),
vol. 11308, pp. 239–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-05918-7 21

25. Schryen, G.: Security aspects of internet voting. In: 37th Hawaii International Con-
ference on System Sciences (HICSS-37 2004), CD-ROM/Abstracts Proceedings,
5–8 January 2004, Big Island, HI, USA. IEEE Computer Society (2004)

26. Scoccia, G.L., Kanj, I., Malavolta, I., Razavi, K.: Leave my apps alone! a study
on how android developers access installed apps on user’s device. In: Proceedings
of the 7th IEEE/ACM International Conference on Mobile Software Engineering
and Systems (2020). http://www.ivanomalavolta.com/files/papers/MOBILESoft
iam 2020.pdf

27. Shapshak, T.: Africa not just a mobile-first continent - it’s mobile only (2012),
CNN Business. https://edition.cnn.com/2012/10/04/tech/mobile/africa-mobile-
opinion/index.html

28. Specter, M.A., Koppel, J., Weitzner, D.: The Ballot is Busted Before the
Blockchain: A Security Analysis of Voatz, the First Internet Voting Application
Used in US Federal Elections (2020)

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://doi.org/10.1007/978-3-030-05918-7_21
https://doi.org/10.1007/978-3-030-05918-7_21
http://www.ivanomalavolta.com/files/papers/MOBILESoft_iam_2020.pdf
http://www.ivanomalavolta.com/files/papers/MOBILESoft_iam_2020.pdf
https://edition.cnn.com/2012/10/04/tech/mobile/africa-mobile-opinion/index.html
https://edition.cnn.com/2012/10/04/tech/mobile/africa-mobile-opinion/index.html

278 S. Heiberg et al.

29. Thiel, D.: iOS Application Security: The Definitive Guide for Hackers and Devel-
opers. No Starch Press (2016). https://nostarch.com/iossecurity

30. Yoshida, K., Imai, H., Serizawa, N., Mori, T., Kanaoka, A.: Understanding the
origins of weak cryptographic algorithms used for signing android apps. J. Inf.
Process. 27, 593–602 (2019)

https://nostarch.com/iossecurity

New Standards for E-Voting Systems:
Reflections on Source Code Examinations

Thomas Haines1(B) and Peter Roenne2

1 Norwegian University of Science and Technology, Trondheim, Norway
thomas.haines@ntnu.no

2 Université du Luxembourg, Luxembourg, Luxembourg
peter.roenne@uni.lu

Abstract. There is a difference between a system having no known
attacks and the system being secure—as cryptographers know all too
well. Once we begin talking about the implementations of systems this
issue becomes even more prominent since the amount of material which
needs to be scrutinised skyrockets. Historically, lack of transparency and
low standards for e-voting system implementations have resulted in a
culture where open source code is seen as a gold standard; however, this
ignores the issue of the comprehensibility of that code.

In this work we make concrete empirical recommendations based on
our, and others, experiences and findings from examining the source
code of e-voting systems. We highlight that any solution used for signif-
icant elections should be well designed, carefully analysed, deftly built,
accurately documented and expertly maintained. Until e-voting system
implementations are clear, comprehensible, and open to public scrutiny
security standards are unlikely to improve.

Keywords: Voting · Implementation · Standards

1 Introduction

The theoretical foundations of verifiable electronic voting are fairly mature.
Simple schemes such as Helios [Adi08], using homomorphic tallying, are well-
known and theoretically easy to construct. Helios and other end-to-end verifi-
able schemes draw on a number of techniques to make the election software-
independent [Riv08]. The idea of software-independence is that system should
produce evidence which shows the election result was correct regardless of any
flaws in the software used during the election. However, the term is perhaps
slightly misleading because there is still a fundamental reliance on the software
that checks the evidence.

We are now seeing small but critical bugs in the implementation of even
theoretical simple schemes. For instance, the Swiss Post system contained many
components which were broken despite extensive review [HLPT20]. This is the
tip of the proverbial iceberg in terms of failures and issues in allegedly end-to-
end verifiable systems; other examples have included the iVote system [HT15]
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 279–289, 2021.
https://doi.org/10.1007/978-3-662-63958-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_24&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_24

280 T. Haines and P. Roenne

deployed in the Australian state of New South Wales, the e-voting system used
in national elections in Estonia [SFD+14], the Moscow voting system [GG20],
and the issues with Voatz [SKW20] and Democracy Live [SH20].

The reason that these bugs slipped through varies but in many cases it is due
to their nature. These bugs are not standard programming bugs which might be
caught by standard best practice techniques. Rather, the code does not correctly
capture the logical flow of the cryptographic protocol—possibly undermining
the security guarantees which the cryptographic primitives were supposed to
provide. Compounding these issues is that many of the bugs were present in the
specification as well as the code. The bugs that we know of, were revealed when
the systems were open sourced and experts in the field were able to examine the
source. However, in none of these cases did the experts suggest that the list of
bugs they found was exhaustive.

There is work underway to construct verifiers for e-voting schemes which are
machine checked to be cryptographically secure [HGT19,HGS21]. However, these
approaches cover only the publicly verifiable aspects of integrity. For deployed
schemes we wish to ensure, in addition to universal verifiability, that the source
code follows best practice and does not allow any obvious privacy attacks. The
privacy of the deployed scheme is far more brittle than integrity and far harder
to check. While we may hope that in future the code used to run elections has
been machine checked to have many of the security properties we want, that day
seems far off.

In this work we will discuss our, and others, experiences with examining the
source code of deployed systems. We highlight problems with the processes which
hampered the inspection of the systems. Based on these problems we highlight
key recommendations; following these recommendations seems essential to allow
the meaningful scrutiny of deployed systems.

1.1 The Problem

The aim of experts examining a system is not to find bugs but rather
to ascertain that the system is reasonable free of bugs. While at present
there is no issue with finding bugs the later aim—as we have noted—is rarely,
if ever, achieved. In this paper we will discuss what steps vendors and election
management bodies can take to enable better scrutiny of their systems.

Many of the lessons we will draw in this paper are related to those recently
drawn by Haenni et al. [HDKL20]. However, the CHVote system they refer to
was built from the ground up for a specific election system which is somewhat
unusual; most vendors reuse their code in several different systems. The result
of this is that several of the lessons we draw, while satisfied by CHVote, are not
mentioned by Haenni et al.

Though we only use a single case study in the paper, the recommendations
made in Sect. 3 are based on the authors’ experiences in examining over a dozen
different e-voting schemes, including:

– The iVote system used in the Australian states of New South Wales and
Western Australia.

New Standards for E-Voting Systems 281

– The SwissPost system used in Switzerland.
– The CHVote system from Switzerland.
– The Helios system used by the International Association for Cryptologic

Research.
– The Zeus system by GRNET.
– The Verify My Vote by the University of Surrey.
– The EVACS system used in the Australian Capital Territory.
– The STARVote system used in Travis county Texas.
– The UniCrypt system by the Bern University of Applied Sciences.
– The Verificatum Mixnet used in several systems.
– The ElectionGuard library by Microsoft.
– The vVote system used in the Australian state of Victoria.

In addition we draw upon the findings of other with respect to the following
system:

– The Civitas system.
– The Norwegian system.

We will for each recommendation give an example of something that went
wrong in practice when the recommendation was not followed and in many places
also include a positive example. The examples are drawn partial from our own
experience and partial from the experiences of others.

1.2 Outline of the Paper

By now, we have hopefully convinced the reader of the need to change the status
quo if secure electronic voting is to be realised. We will in Sect. 2 take a case
study of one particular flaw in the Scytl JavaScript ElGamal implementation.
This flaw is not exploitable in the context of the system in which the JavaScript
library is deployed; nevertheless, it will help us to demonstrate the gap between
exploitable bugs and a system which is clearly reasonable free of bugs. In Sect. 3
we will provide recommendations on that concrete steps vendors and election
management bodies should take before concluding in Sect. 4.

2 The Case Study

We will now give a case study which highlights the difficulties of examining sys-
tems. As we have already hinted, a major obstacle in examining system is the
time constraints in relation to the complexity of the system; in general, the sim-
pler the system the better. One common problem with deployed systems is that
sub-components do not achieve clear security properties. This leaves reviewers
chasing potential attacks throughout the system. In many cases, reviewers are
unable to find an attack which will not be detected but given the degree of mal-
leability the flaws in the sub-components allow, it is not possible to check that
no such attack exists.

We have deliberately chosen a case study where a sub-component did not
satisfy the claimed security but which did not break the overall system. We did
this to emphasise the importance of clear and correct claims and documentation.

282 T. Haines and P. Roenne

2.1 Introduction

In February 2020, we were given access to the released source code repository
of the iVote system from the Australian state of New South Wales. The system
is developed by the state electoral commission in collaboration with the ven-
dor Scytl. The released documents include very little documentation and large
amounts of code. In the recommendations below, we will talk about several
problems with this repository but in this section we will focus on one particular
flaw.

The encryption scheme ElGamal is commonly used in electronic voting pro-
tocols, including iVote, to provide privacy for the votes. ElGamal relies on a
hardness assumption called the Decisional Diffie–Hellman problem which holds
only for certain parameters of the system; in addition, the messages must be of
the correct form (in the correct subgroup). If the parameters are chosen incor-
rectly or the messages are not of the correct form, then privacy of the votes is
impacted.

Ensuring the messages are of the correct form can either be done at the
application level or at the level of the crypto library. In response to our initial
disclosures, Scytl indicated that they intend the checks to be performed at the
application level; which they are. In examining the Scytl crypto library called
cryptolib, we discovered incorrectly implemented checks that claim to ensure
that the message was of the correct form. The result of which was that the code
appeared to be making these checks without any actual security guarantees being
achieved.

Scytl’s claim that these checks belong at the application layer not in cryptolib
seems inconsistent with the presence of such checks in cryptolib. It is problematic
when reviewers find mistakes in the system and are expected to ignore them
because they do not break the system in its current configuration, especially
when this happens at the library level which is likely to be reused.

Summary of Details

– The method newZpGroupElement in cryptolib-js-mathematical service.js
marks elements as belonging to the correct subgroup without checking.

– The method encrypt in cryptolib-js-elgamal encrypter.js checks that the mes-
sage is marked as being in the correct subgroup but does not check that it
is.

– These two flaws mean that, despite appearances, no checks that the messages
belong to the message space are done before encrypting.

– These flaws do not appear to directly impact the privacy of iVote since the
ivote-javascript-client-api follows the specification and maps the messages into
the message space.

2.2 Background

iVote uses ElGamal encryption over the group of quadratic residues modulo a
safe prime p. This group is of prime order q where p = 2q + 1. Care must be

New Standards for E-Voting Systems 283

taken that both ciphertexts and messages belong to this group and not just the
integers modulo p otherwise the semantic security of ElGamal will be broken.

ZpGroupElement. The library stores values using a class called ZpGroupEle-
ment which has three values:

p: The modulus of the Zp subgroup to which this Zp element belongs.
q: The order of the Zp subgroup to which this Zp group element belongs.
value: The value of the group element.

NewZpGroupElement. The method newZpGroupElement in the cryptolib-
js-mathematical service.js is responsible for converting a BigInteger (or JSON)
into a ZpGroupElement. In the case of a BigInteger, it performs the following
three checks:

– That p is positive and greater than 3.
– That q is positive and less than p.
– That the value of the element is positive and less than p.

Having completed these checks it creates a ZpGroupElement (new ZpGroupEle-
ment(p, q, value)) which is marked as belonging to the subgroup of order q.

Problem. The checks suffice to ensure the value is in the multiplicative subgroup
of Zp but do not suffice to ensure that it belongs to the subgroup of order q.

Encrypt. The method encrypt in cryptolib-js-elgamal encrypter.js creates the
ElGamal ciphertexts. Before it does this, it runs checkEncryptionData which in
turn calls validator.checkZpGroupElements passing the group as a parameter.
This function, which is defined in cryptolib-js-elgamal input-validator.js says

“@param Zpsubgroup [group] Optional parameter pertaining to a Zp sub-
group. If this option is provided, the modulus and order of the element
will be checked against those of the group.”

As we have noted the group is passed so the documentation says that the
order of the element will be checked. The method then checks that the value q
of the ZpGroupElement matches the value q of the group, but the order of the
group element is not checked.

Problem. When they are created, all elements are marked as belonging to the
subgroup without check, which makes the subgroup check meaningless.

2.3 Case Study Recommendation

There are two distinct solutions to the highlighted flaw in the case study.

284 T. Haines and P. Roenne

Alternative A. The first solution is to remove the claims and incorrectly imple-
mented checks from cryptolib which would align the code with the Scytl’s claim
that such checks belong at the application layer. At the very least the code needs
to be clearly documented to reflect the fact that the checks do not provide the
guarantees they claim.

Alternative B. The second solution is to correctly implement the checks. For
example, for a message x check that:

1. 1 ≤ x ≤ p
2. xq mod p = 1

We note that there are more efficient ways to perform the check for quadratic
residues using the Legendre symbol.

Summary. As we have stated, the problems above do not break the privacy of
iVote because the application only calls the library on messages which are in the
correct group.

The specific issues raised in this case study are related to a larger issue;
the code of e-voting systems, and the applications in which they are used, are
inadequately documented. Looking at the interactions of various academics with
e-voting vendors, a trend can be observed from the vendors response to vulnera-
bility discourses; they (at least from the public’s perspective) retroactively define
the security goals and in some cases engage in punitive measures which stifle pub-
lic transparency. An important area of future improvement for e-voting vendors
is to clearly document their code and specifications so that those examining
system are aware of the intent.

3 Recommendations

To ensure e-voting systems are secure it is important the vendors and election
management bodies engage with researches in an open, transparent and collabo-
rative process. Below we give concrete recommendations of how this needs to be
reflected in the process, documentation, and source code. We have split our rec-
ommendations into groups based on what phase of the project they correspond
to. In practice most systems are developed in an agile not waterfall process but
the phases will anyway serve as a convenient structure.

3.1 Design and Analysis Phase

1. Clear claims: The documentation accompanying the system should be clear
about what security properties the system—and its sub-components—claim to
achieve.

Clear claims are absolutely paramount to a transparent system. Claims of
security which rapidly degrade into a very patchy set of trust assumptions as
attacks are noticed are of little use when building secure systems.

New Standards for E-Voting Systems 285

Designing the system so that sub-components and phases of the protocol
claim (and provide) clear security properties allows designers and examiners to
structure their thinking. Further, it helps to ensure malicious behaviour is caught
early.

Positive Example: The clear and high standards in Switzerland meant the bugs
in the SwissPost system were clearly understood as failing to provide adequate
security. Further, the presence of some many bugs at such a late stage revealed
the inadequacy in the proceeding review processes. Switzerland has now refined
its process to designing and reviewing system.

Negative Example: In contrast the lack of security requirements in many other
countries such as Australia and Canada allows much weaker systems to operate.

2. Thorough documentation: The documentation—and source code
comments—should be comprehensive, clear, correct and consistent.

Most of the systems include vast quantities of codes. A clear description of
the protocol and intended functionality is crucial to understanding the system.
One best practice for this, which was highlighted by the CHVote project, is the
use of Pseudocode in the documentation.

Positive Example: The CHVote project1 provides thorough documentation
including pseudocode algorithms for its protocol. This allows programmers to
more accurately implement the protocol and has allowed many examiners to
notify the designers of major and minor findings.

Negative Example: In response to V. Teague’s recent disclosures on mis-
takes in Sigma protocols in the iVote system, the vendor responded with a long
response.2 The response relies on saying that the mistakes do not matter because
of how the protocol is realised, however, the details of the protocol used in the
document are missing in the public documentation.

3.2 Build Phase

3. Minimality: The source code provided should be minimal; it should contain
only code related to the system under review.

This issue is very important since more code takes longer to scrutinise. In
addition, the more irrelevant code contained in the code base, the harder it is
to understand the intended flow. While we understand the difficult in releasing
only the code that is used, rather than the entirety of the supporting libraries,
it seems some progress in this direction is required to achieve security.

Negative Example: The Swiss Post system included a broken implementation
of a disjunctive Schnorr proof [HLPT20] despite no such proof being needed by
the system in violation of minimalism.
1 https://eprint.iacr.org/2017/325.pdf.
2 https://www.scytl.com/wp-content/uploads/2019/11/Scytl response-

VT NSW iVote Oct2019.pdf.

https://eprint.iacr.org/2017/325.pdf
https://www.scytl.com/wp-content/uploads/2019/11/Scytl_response-_VT_NSW_iVote_Oct2019.pdf
https://www.scytl.com/wp-content/uploads/2019/11/Scytl_response-_VT_NSW_iVote_Oct2019.pdf

286 T. Haines and P. Roenne

4. Buildable: The released source code should be easy to build. Preferable it
should come with a configuration using a standard tool, such as Maven. The
system should not depend on proprietary libraries which have not been released.

Examining and testing the system is best done not only by looking at the
code but also by running it. In some cases the system is not buildable because
it is incomplete in which case it is not possible to even look a the code.

Negative Example: The source code released for the iVote system is not build-
able and indeed at certain key points the cryptographic code relies on proprietary
libraries which have not been open sourced.

5. Executable: The system, once built, should be executable. The intended
execution flow of the code should be clear either from the documentation or
tests.

Particularly in JavaScript, methods can be heavily overloaded and do very
different things based upon the type of input they receive. This makes it very
hard to ascertain if the code behaves correctly on the input it is given during
execution.

Negative Example: The Swiss Post system was not easily executable which
significantly delayed the researchers examining the system.

6. Exportable: It should be possible to export test vectors into a well defined
format for testing with an independent verifier.

While most systems support some form of export, many only export the
information which is strictly necessary. Zero-knowledge proofs by design are
incredible brittle to mistakes which makes debugging hard. We recommend sys-
tems to also include a complete export, including (at least some) intermediary
values, which would form a better test vector.

Positive Example: The ElectionGuard system by Microsoft includes a refer-
ence implementation with a utility to run demo elections and export the resulting
data. The resulting data is exported as a valid JSON file in a well defined format.

Negative Example: The election system used in the Estonian national election
implements a custom hash function (based on SHA256) for use in its proofs.
Including the challenge in the test vectors would ease the difficulties in assessing
why an independent verifier was failing.

7. Consistent documentation and source: The source code and the docu-
mentation should correspond to each other.

As already elaborated, the review time is substantially increased by high
levels of inconstancy in the source and documentation.

Negative Example: The ElectionGuard system’s specification3 required a
group which was incompatible with the original reference implementation. We
note that the original reference implementation was depreciated on the 15th of
June 2020.

3 https://github.com/microsoft/electionguard.

https://github.com/microsoft/electionguard

New Standards for E-Voting Systems 287

3.3 Maintain Phase

8. Regularly Updated: The open source variant of the system should be
regularly updated so that experts can check that previous bugs are correctly
fixed.

Most e-voting systems are regular updated with new features and patches.
Every change may break the security of the system or fail to properly patch the
intended vulnerability.

Negative Example: While Scytl has said they will fix the issue with the decryp-
tion proofs in iVote (that V. Teague discovered), at the time of writing the issue
is still present in the semi-public repository. This prevents experts from checking
the validity of the fix.4

9. Minimal restrictions on disclosure: The restrictions on the disclosure of
vulnerabilities should be minimal.

The infrequency with which e-voting systems are used means vulnerability
disclosure has difference incentives than in other areas. If a system is not being
used nor is about to be used than why should disclosure be limited at all? On
the other hand, if an election is running, or about to run, the parties involved
have–in many cases–a very limited legally mandated time-frame to challenge the
election result and withholding disclosure through that periods seems ethically
dubious at best.

Negative Example: Prominent experts were offered access to the iVote system
in Australia under an agreement which forbade them from disclosing vulnerabil-
ities publicly for five years; they understandable declined to sign the agreement.
The agreement has since been updated to restrict disclosure for 45 days which
has resulted in much greater engagement.

4 Conclusion

In this paper we have discussed how the flaws in the code and documentation
of systems opened to scrutiny by e-voting vendors and election management
prevents meaningful analysis. We have given a case study from the iVote system
which demonstrates that scrutineers are expected to overlook flaws in the code
and documentation; cryptographic code which does not meets its security claims
should not be included even if it does not break the current configuration.

Based on this and other experiences we provide 9 recommendations to ven-
dors and election management bodies which would enable better scrutiny of
e-voting systems:

1. Clear claims: Make clear claims about the security of the system

4 A previous version of this paper erroneously claimed that an incorrect fix had been
implemented in the semi-public repository; no fix has been implemented in the repos-
itory.

288 T. Haines and P. Roenne

2. Thorough documentation: Provide comprehensive, clear, correct and consis-
tent documentation

3. Minimality: The source code should be minimal and only contain code rele-
vant to the system under review

4. Buildable: The source code should be easily buildable
5. Executable: The built system should be executable
6. Exportable: It should be possible to export test vectors for independent ver-

ification
7. Consistent documentation and source: The documentation should correspond

to the source code
8. Regularly Updated: The open source system should be updated regularly to

reflect the fixes of previously found bugs
9. Minimal restrictions on disclosure: Avoid long vulnerability disclosure times

All of our recommendations seem obvious but are still regularly violated in prac-
tice. We hope that by providing them in a single resource, it will help to serve
as a checklist for vendors and election management bodies.

Acknowledgements. This work was supported by the Luxembourg National
Research Fund (FNR) and the Research Council of Norway for the joint project SUR-
CVS.

Disclaimer. This paper contains praises and critiques of the actions taken by a num-

ber of different e-voting vendors. Our evaluations are given for the purpose of clarifying

what ought to be done; these examples are not intended to single out any particular

vendor nor to suggest that all vendors exhibit all the issues discussed.

References

[Adi08] Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C.,
(ed.) USENIX Security Symposium, pp. 335–348. USENIX Association
(2008)

[GG20] Gaudry, P., Golovnev, A.: Breaking the encryption scheme of the Moscow
internet voting system. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 32–49. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-51280-4 3

[HDKL20] Haenni, R., Dubuis, E., Koenig, R.E., Locher, P.: CHVote: sixteen best
practices and lessons learned. In: Krimmer, R., et al. (eds.) E-Vote-ID 2020.
LNCS, vol. 12455, pp. 95–111. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60347-2 7

[HGS21] Haines, T., Goré, R., Sharma, B.: Did you mix me? Formally verifying
verifiable mix nets in voting. In: 2021 IEEE Symposium on Security and
Privacy, SP 2021, San Jose, CA, USA, 23–27 May 2021. IEEE (2021)

[HGT19] Haines, T., Goré, R., Tiwari, M.: Verified verifiers for verifying elections. In:
ACM Conference on Computer and Communications Security, pp. 685–702.
ACM (2019)

https://doi.org/10.1007/978-3-030-51280-4_3
https://doi.org/10.1007/978-3-030-51280-4_3
https://doi.org/10.1007/978-3-030-60347-2_7
https://doi.org/10.1007/978-3-030-60347-2_7

New Standards for E-Voting Systems 289

[HLPT20] Haines, T., Jamie Lewis, S., Pereira, O., Teague, V.: How not to prove your
election outcome. In: Oprea, A., Shacham, H. (eds.) 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Jose, CA, USA, 17–21 May 2020,
pp. 784–800. IEEE (2020)

[HT15] Halderman, J.A., Teague, V.: The New South Wales iVote system: secu-
rity failures and verification flaws in a live online election. In: Haenni, R.,
Koenig, R.E., Wikström, D. (eds.) VOTELID 2015. LNCS, vol. 9269, pp.
35–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22270-
7 3

[Riv08] Rivest, R.L.: On the notion of ’software independence’ in voting systems.
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1881), 3759–3767 (2008)

[SFD+14] Springall, D., et al.: Security analysis of the Estonian internet voting sys-
tem. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 703–715. ACM (2014)

[SH20] Specter, M., Halderman, J.: Security analysis of the democracy live online
voting system (2020)

[SKW20] Specter, M.A., Koppel, J., Weitzner, D.J.: The ballot is busted before the
blockchain: a security analysis of voatz, the first internet voting application
used in U.S. federal elections. In: USENIX Security Symposium, pp. 1535–
1553. USENIX Association (2020)

https://doi.org/10.1007/978-3-319-22270-7_3
https://doi.org/10.1007/978-3-319-22270-7_3

Post-quantum Online Voting Scheme

Guillaume Kaim1,2, Sébastien Canard1, Adeline Roux-Langlois2,
and Jacques Traoré1(B)

1 Orange Labs, Applied Crypto Group, Caen, France
jacques.traore@orange.com

2 Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. We propose a new post-quantum online voting scheme whose
security relies on lattice assumptions. Compared to the state-of-the-art,
our work does not make use of homomorphic primitives nor mix-nets,
that are more traditional ways to build electronic voting protocols. The
main reason is that zero-knowledge proofs, mandatory in the two afore-
mentioned frameworks, are far to be as efficient as in “classical” cryp-
tography, leading us to explore other approaches.

We rather base our work on a framework introduced by Fujioka et
al. at Auscrypt 1992 that makes use of a blind signature scheme as the
main building block. We depart however from this seminal work by allow-
ing threshold issuance of blind signatures (to prevent ballot stuffing by
malicious authorities) and by using a threshold post-quantum public key
encryption scheme (rather than a commitment scheme) to allow voters
to “vote and go” and to prevent “partial results”. We instantiate all
the required primitives with lattice-based constructions leading to the
first online voting scheme that simultaneously provides post-quantum
public verifiability and everlasting privacy (information-theoretic ballot
anonymity). Another advantage of our protocol is that it can, contrary
to recent proposals, efficiently handle elections with multiple candidates
or with complex ballots (and not only referendums or single member plu-
rality voting) without weakening the whole voting protocol by increasing
the parameters size as with previous post-quantum voting schemes.

1 Introduction

The notion of online voting is appealing since the emergence of remote commu-
nications. However until now, there is no online voting protocol that fulfills all
the properties (security, efficiency ...) required for such a sensitive topic. Still
there exists some interesting constructions that have been used in real-world
elections such as Votopia [KKLA01] or Helios [Adi08] which was trialed during
student elections, for example in Princeton and the Catholic University of Lou-
vain. The International Association of Cryptographic Researcher (IACR) also
adopted Helios to elect its Board.

In this work we investigate the construction of a post-quantum online voting
system built from a framework introduced by Fujioka et al. in Auscrypt 1992,
which mainly relies on the well-known cryptographic primitive called a blind
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 290–305, 2021.
https://doi.org/10.1007/978-3-662-63958-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_25&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_25

Post-quantum Online Voting Scheme 291

signature scheme. This framework contrasts from the current trend that makes
use of homomorphic encryption, or mix-nets system to improve the efficiency of
the tallying phase in addition to offer strong verifiability and privacy properties
thanks to zero-knowledge proofs. However in post-quantum settings, a lack of
efficiency of some of the primitives used in the two frameworks cited above lead us
to investigate on new options for a practical online voting protocol. Indeed since
the groundbreaking work of Shor [Sho97], we know that the arrival of quantum
computers will harm most of the current cryptosystem used in practice, this
is why it is important to replace them with quantum resistant constructions,
among them lattice-based cryptography seems to be the most promising.

Post-Quantum Constructions. To the best of our knowledge, there exists
only 2 post-quantum constructions, both built from lattice-based primitives.
The first scheme is based on fully-homomorphic encryption by Chillotti et al.
[CGGI16]. The second one uses zero-knowledge proofs on top of homomorphic
commitments by del Pino et al. [dPLNS17].

Concerning the scheme of Chillotti et al. [CGGI16], the key idea is that they
get rid of the zero-knowledge proofs that are inefficient in lattice-based settings.
Indeed, their work is inspired by the online voting protocol of Helios [Adi08]
which however requires zero-knowledge proofs to allow the voters to prove that
their ballots are correctly formed, but also to permit the tally authority to prove
that the result of the election is correct. In a nutshell, [CGGI16] uses a fully-
homomorphic encryption scheme to replace the zero-knowledge proofs on the
voter’s side, while they use publicly verifiable ciphertext trapdoors to overcome
the absence of zero-knowledge proofs on the authority side. However, using fully-
homomorphic encryption makes the resulting voting scheme quite inefficient as
pointed by del Pino et al. [dPLNS17]. This problem of efficiency may explains
why implementations for the [CGGI16] scheme are lacking.

Concerning the construction of del Pino et al. [dPLNS17], the most important
difference is that they make use zero-knowledge proofs contrary to [CGGI16]. In
fact, the study of lattice-based zero-knowledge proofs has been intensive in the
past five years with several advances in particular regarding their efficiency. This
allows them to rely on a construction that makes a trade-off between efficiency
and security. In short, their construction focuses on the Fiat-Shamir framework
of [Lyu12], in order to prove the knowledge of the multiple of a short element
instead of the element itself. In addition to the zero-knowledge primitive, they
use a commitment scheme that benefits of an additive homomorphic property,
which is very appealing in the online voting context. Finally, as said above, they
provided an implementation of their voting scheme, that permits to analyze the
efficiency of their construction in a real-world scenario. Indeed, generating and
casting ballot is about 8.5 ms, and the time needed on the authority side as well
as for the verification step takes about 0.15 s. However, their implementation
only considers two candidates, while if we want to add more candidates, the
globals parameters get bigger. Indeed, for 2k possible candidates, the number of
proofs needed is multiplied by a factor k, then the size of the vote increases from
a logarithmic factor in the number of candidates.

292 G. Kaim et al.

Framework of Fujioka et al. and Adaptations. We base our construction
on the framework of Fujioka et al. [FOO92] (FOO). In such framework, the
anonymity is granted by a cryptographic primitive called blind signature, while
everyone can verify that the outcome of the election is correct since all the
elements that are necessary to the tally are made public at the end of the election.
Blind signatures allow a user to obtain a signature on a message by interacting
with a signing authority. At the end of the protocol, the authority has never seen
the message and is not able to link a signature to the interactions that led to
this signature. Therefore, the main building blocks of this framework are a blind
signature scheme and a commitment scheme. The first one allows to preserve
the anonymity of each voter, a requirement that is mandatory for any election,
while it forbids voters from voting twice. The commitment scheme prevents any
partial result to leak before the end of the election.

Concretely to generate his vote, any voter begins by computing a commit-
ment of its voting choice, in order to conceal it from other voters until the end
of the election. Then, he authenticates to the voting authority in order to obtain
a blind signature on the commitment of his vote. Both the commitment and the
(blind) signature constitute the voter’s ballot which is then sent to the Bulletin
Board (BB) via here again a perfectly anonymous channel. The later only stores
signed ballots and discard invalid ones (i.e. either ballot that are not signed or
ballot with an invalid signature). At the end of the election, all the voters have to
open their commitment (they have to reveal their voting option and the random
value used to generate the commitment), and to send both values (voting choice
and random value) to the BB. However thanks to the blindness property and the
use of a perfectly anonymous channel, the anonymity is preserved since no one
will be able to link a signed ballot to the voter who requested the corresponding
signature (and therefore no one will be able to link a voter to his vote). Finally
anyone can tally the result of the election, by counting the votes and verifying
the validity of the blind signatures associated to the opened commitments.

The FOO voting scheme suffers from several major drawbacks. The main one
is that all voters have to participate to the ballot counting process, having to open
their commitment at the end of the election: their scheme is not “vote and go”
and would be unsuitable for real-life elections. Worse, the blind signature private
key is held by a single authority who could easily stuff the BB by generating as
many blind signatures (meaning valid but illegitimate ballots) as he wishes.

Our Contribution. Our main contribution is a new post-quantum online vot-
ing scheme whose security relies on lattice assumptions. Compared to the state-
of-the-art, our work does not make use of homomorphic primitives nor zero-
knowledge proofs of knowledge, that are more traditional ways to build electronic
voting protocols. One interest of our construction is also that its efficiency does
not depend on the number of candidates considered. Our construction can in
particular handle complex ballots and could be used for example for preference
voting or for elections with multiple candidates or voting options (for instance
to select the most valuable players of a tournament as Votopia [KKLA01] did).

Post-quantum Online Voting Scheme 293

Our scheme uses of the FOO framework, with two main modifications.

– First, we use an encryption scheme instead of a commitment scheme so that
the voting choices are now encrypted. At the end of the election, the decryp-
tion key will be made public so that anyone can decrypt the ballots and com-
pute the election’s result. With such modification, voters won’t have to come
back at the end of the election to open their commitment. Moreover, thanks
to the indistinguishability property of the encryption scheme, the votes will
remain hidden until the end of the election.

– Second, we transform the encryption and the blind signature schemes into
threshold variants which allows to share the secret key between several author-
ities. Indeed the private key of the blind signature scheme is given to a single
authority in [FOO92], who could generate as many ballots as he wants and
stuff the Bulletin Board with them. The same problem would arise for the
encryption scheme if we give the private decryption key to a single authority.
It means that if the authority owning this private decryption key is corrupted,
then he can get partial results by decrypting the ciphertexts before the end
of the election, which is not desirable for most elections.

We then instantiate the needed building blocks in the lattice setting. We first
chose to use the ring version of Dual-Regev [GPV08,LPR13] as our encryption
scheme. The threshold transformation we considered turns it into a slight version
of a threshold encryption scheme. Indeed, we just need to avoid that the secret
key is given to a single authority, then only the key generation mechanism is
impacted. The idea is that at the end of the election, at least a threshold of T
authorities publish their shares, so that anyone can reconstruct the whole private
key and decrypt the ciphertexts of the valid ballots included in the bulletin board.

We then use the lattice-based blind signature scheme given in [BCE+20] that
we also adapt as a threshold variant. This second transformation is heavier, since
the whole blind signature protocol is impacted. We start by using the result of
Bendlin et al. [BKP13] that exhibits a generic transformation of a trapdoor based
signature scheme [MP12] into a threshold variant1. Since the security of this
transformation is proven using the universally composable (UC) model [Can01],
then by composability our threshold variant remains secure. The two operations
on the signer’s part (the commitment and the signing step) are finally done in a
threshold way by communicating with, at least, t signing authorities. We would
like to emphasize that a recent paper [HKLN20] pointed out several issues in the
one-more unforgeability proofs of previous lattice-based blind signature schemes.
It leads to the fact that one-more unforgeability of [BCE+20] is only conjectured,
while it proposes a better efficiency than the construction of [HKLN20].
1 The basic threshold transformation of [BKP13] makes use of a trusted setup. A

variant without such trusted setup is also given but needs the use of non-mature
multilinear maps [GGH13]. In practice, it is not suitable to have an authority owning
the complete secret keys, as implied by the trusted setup. However we would like
to emphasize that the parameters of a voting scheme can be set a long time before
election day and then we decided to focus on the operations performed by voters
and the authority on the election day.

294 G. Kaim et al.

2 Preliminaries

Notation. The vectors are written in bold lower-case letters, and matrices in
bold upper-case letters. The euclidean norm of a vector is denoted by ‖b‖, and
the norm of a matrix ‖T‖ = maxi‖ti‖, where the ti’s are its column vectors.
We denote by D a distribution over some countable support S and x ←↩ D the
choice of x following the distribution D.

2.1 Lattices

We define a m-dimensional full rank lattice Λ as a discrete additive subgroup
of Rm. A lattice is the set of all integer combinations of some linearly independent
basis vector B = {b1, . . . ,bm} ∈ R

n×m: Λ(B) = {∑m
i=1 zibi, zi ∈ Z}.

We consider n a power of two, such that the polynomial ring R = Z[x]/(xn + 1)
is isomorphic to the integer lattice Z

n. Then a polynomial f =
∑n−1

i=0 fix
i in R

corresponds to the integer vector of its coefficients (f0, . . . , fn−1) in Z
n. The

notation norm of a polynomial ‖f‖ means that we consider the norm of its
coefficient vector, and as for the integer, the norm of a vector of polynomial
‖f‖ = maxi‖fi‖. For the rest of the paper we will work with polynomials over R,
or Rq = R/qR = Zq[x]/(xn + 1), where q is a prime verifying q = 1 (mod 2n).

Computational Problems. We consider Ring-SIS, a variant of the Short Integer
Solution problem (SIS), proven to be at least as hard as the Shortest Independent
Vectors Problem (SIVP) problem on ideal lattices [LM06,PR06].

Definition 1 (Ring-SISq,m,β). Given a = (a1, . . . , am)T ∈ Rm
q a vector of m

uniformly random polynomials, find a non-zero vector of small polynomials x =
(x1, . . . , xm)T ∈ Rm such that fa(x) =

∑m
i=1 ai ·xi = 0 mod q and 0 < ‖x‖ � β.

We also define Ring-LWE that is similar to the Learning With Errors problem
(LWE) [Reg05] but on a polynomial ring:

Definition 2 (Ring-LWEq,DR,αq,m). Given a uniformly chosen vector a ∈ Rm
q

and a polynomial b = a·s+e mod q, with s ←$ Rq and e ← DRm,αq, the search
Ring-LWE problem asks to find s. The decisional version asks to distinguish if
a pair (a,b) ∈ Rm

q × Rm
q has been generated from the uniform distribution on

Rm
q × Rm

q or if it has been generated as a Ring-LWE sample (a,b = a · s + e).

Gaussian Distribution. The Gaussian function of center c ∈ R
n and width

parameter σ is defined as ρσ,c(x) = exp(−π ‖x−c‖2

σ2), for all x ∈ R
n. A posi-

tive definite covariance matrix is defined as Σ = BBT : ρ√
Σ,c = exp(−π(x −

c)T Σ−1(x−c)). The discrete Gaussian distribution over a lattice Λ is defined as
DΛ,σ,c(x) = ρσ,c(x)

ρσ,c(Λ) where ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). The vectors sampled from
DΛ,σ are short with overwhelming probability.

Lemma 1 ([Ban93], lemma 1.5). For any lattice Λ ⊆ R
n, σ > 0 and c ∈ R

n,
we have Prx←↩DΛ,σ,c [‖x − c‖ � √

nσ] � 1 − 2−Ω(n).

Post-quantum Online Voting Scheme 295

Trapdoors. As introduced in [Ajt96] and widespread in [GPV08], a trapdoor for
A ∈ Z

n×m
q is a short basis of the lattice Λ⊥

q (A) := {v ∈ Z
m such that Av =

0 mod q}. A trapdoor allows to sample short Gaussian vectors solutions to the
Inhomogeneous Small Integer Solution (ISIS) problem: Av = x mod q with x ∈
Z

n
q . This technique is called Preimage Sampling. In this work we make use of

the trapdoor construction of [MP12]. Construction. In [MP12], the construction
of the gadget-based trapdoor uses a gadget vector g = (1, 2, 4, . . . , 2k−1)T ∈
Rk

q , with k = �log2 q�, takes as input the modulus q, the Gaussian parameter τ ,
and an optional a′ ∈ Rm−k

q and h ∈ Rq. If no a′ is given it is chosen uniformly
in Rm−k

q and if no h is given, h = 1. The construction outputs a matrix a =
(a′T ‖hg − a′T T)T with T ∈ R(m−k)×k its trapdoor associated to the tag h,
generated as a Gaussian of parameter τ .

Preimage Sampling. The construction given in [MP12] enables the use of the
PreSample algorithm. Given a ∈ Rm

q , such algorithm computes a short vector
solution v ∈ Rm of a Ring-SIS problem fa(v) =

∑m
i=1 ai ·vi = 0 mod q, available

only thanks to a trapdoor T ∈ R(m−k)×k
q for a.

Hash Function. We use the hash function family developed in [LM06], denoted
H(Rq,m). Let Rq be a ring and m � 1 a positive integer. The hash function
ha : Rm

q → Rq for a ∈ Rm
q is defined as: x
→ 〈a,x〉 =

∑m−1
i=0 ai · xi.

Definition 3 (inspired by [Rüc10], definition 2.1). Let D ⊂ R, the collision
problem Col(H(Rq,m),D) asks to find a distinct pair (x,x′) ∈ Dm × Dm such
that h(x) = h(x′) for h ← H(Rq,m).

Rejection Sampling. The construction of blind signature we consider, makes a
significant use of the rejection sampling technique from [Lyu12]. Such rejection
sampling is used in the case we have a distribution depending on a secret we
want to hide. The main idea is to “reject” the elements of this distribution using
a distribution probability not depending on the related secret. In case we can
not perform any rejection sampling, the following lemma also allows to hide the
center of a gaussian distribution.

Lemma 2 ([GKPV10], Lemma 3). Let v ∈ R be arbitrary. The statistical
distance between the distributions DR,σ and DR,σ,v is at most ‖v‖

σ .

2.2 Online Voting Definition and Security Properties

We now give the definition of an online voting system, first talking about entities.

– First we get a set of N eligible voters Vi for i ∈ [N].
– We also need a set of p authorities Aj for j ∈ [p], that will share the private

election keys.
– Finally we need a bulletin board BB, that will collect the (valid) ballots cast

by the voters. At the end of the election, the valid ballots will be tallied.

296 G. Kaim et al.

We take as a basis the definition of an online voting protocol by Cortier et
al. [CGGI14]. However, we voluntarily omit the credential phase, in which eligible
voters obtain their voting credentials. We also modify some parts to manage the
fact that our online voting framework needs interactiveness between voters and
authorities.

Security. We discuss the security properties a secure online voting protocol
should fulfill. Concerning correctness, we fit in with the definition of [CGGI14].
The idea is that a genuinely generated ballot is always accepted into the bulletin
board, and for an election where all parties behave honestly, the result of the
tally always corresponds to the votes cast by the voters.

The verifiability property is a fundamental security property needed in
online voting schemes which has been the subject of several papers in the voting
literature (see [CGK+16]). However, we also rely on the verifiability property
introduced in [CGGI14]. Before describing it, we would like to emphasize that
we only consider “partial tallying online voting protocols”, which means that
the tallying phase is not performed in a single computation, but each ballot is
open separately, then the resulting tally is computed step by step. Verifiability
asks the tallying result to be consistent with the votes cast by honest voters.

Vote secrecy is another fundamental security property. It asks that the voting
choice of a voter remains private during and after the end of the election. In our
definition, called ballot anonymity we depart from the classical ballot privacy
requirement, that has been the subject of an intensive research (summarized in
[BCG+15]). Indeed in our online voting protocol, each ballot will be anonymous,
that is, it does not identify the voter who casts it. This contrasts with most of
other voting protocols, where each ballot is directly linked to the voter who casts
it, leading to the fact that in the tally procedure each individual ballot could
not be open (or decrypt) otherwise this would leak for whom a voter voted.
Our ballot anonymity requirement is very close to the privacy property defined
in [KR05]. A voting protocol satisfies our ballot anonymity requirement if an
attacker cannot link a ballot to the voter who casts it.

3 Our Construction

In this section, we first briefly recall the main tools that we are using: blind
signature schemes and the ring version of the dual Regev encryption scheme.
Then, we transform them in a distributed variant where the private key is shared
among several authorities using the result from Bendlin et al. [BKP13]. Finally,
we present our scheme and discuss its security.

3.1 Cryptographic Primitives

Blind Signatures. We first recall the blind signature described in [BCE+20].

– Setup. We consider the polynomial ring Rq = Zq[X]/(Xn +1). Two families
of hash functions are necessary in this protocol, first a generic one H ←$

Post-quantum Online Voting Scheme 297

H(1n) : {0, 1}∗ → R2 (modelled as a random oracle), and a second one on
the specific ring Rq, typically h ←$ H(Rq,m) as defined in the preliminaries.
Table 1 shows up the different sizes of the parameters: n is a power of 2, in
order to have the polynomial Xn + 1 irreducible, m ensures the worst-case
to average case reduction of the scheme. The others parameters are set such
that the rejection sampling and security arguments work.

– Key Generation. The key generation algorithm BS.Keygen(1n) selects a
secret key s ∈ Rm

3 and a vector of polynomial a = (a′T ‖hg − a′T Ta)T ∈ Rm
q ,

along with a trapdoor Ta on a, such that the hash function ha ∈ H(Rq,m) is
built with this polynomial vector a. Finally the public key p = ha(s) is made
public. BS.Keygen(1n) outputs sk = (s,Ta), pk = (p,a).

– Signature. The interactive blind signature protocol
BS.Sign(Signer(s,Ta),User(p,M)) is composed of 3 exchanges:

• The signer generates y ←↩ Dm
R,σ and sends x = ha(y) to the user.

• The user generates two ephemeral vectors t1 ←↩ DR,α, t2 ←↩ Dm
R,β , such

that if ‖t2‖ > t
√

n · m · β it generates a fresh t2 ←↩ Dm
R,β until the test

succeeds. He then generates the hashing values e = H(x−p·t1−ha(t2),M)
and e∗ = e − t1 and applies the rejection sampling test on e∗. If this test
passes, it sends e∗ and otherwise, it restarts this whole step.

• The signer generates the signature z∗ = e∗ · s + y, it applies the rejection
sampling test and sends z∗ if the test passes and uses its trapdoor Ta

to generate a presample on e∗ · p + x with parameter σ if not. Finally if
‖z∗‖ > t

√
n · m · σ it generates fresh z∗ with its trapdoor until this test

passes. He sends z∗ to the user.
The user computes z = z∗ − t2 and outputs the blind signature (M, (z, e)).

– Verification. The verification procedure BS.Verif(p,M, (z, e)) outputs 1
iff ‖z‖ � D and H(ha(z) − p · e,M) = e.

Encryption Scheme. Concerning the encryption scheme, we use the Dual-
Regev encryption scheme [GPV08,LPR13] on a polynomial ring Rq. However,
any post-quantum encryption scheme would fit into our voting protocol.

– Setup. The set-up algorithm PK.Setup chooses integers n,m, q and two real
α, β such that the dual-Regev encryption scheme on the polynomial rings is
secure (see [LPR13]).

Table 1. Parameters of [BCE+20].

Parameter Value Asymptotic

n Power of 2 –

m �log q� + 1 Ω(log n)

γ nα O(n
√

n)

α ω(k
√
logn) O(

√
n)

β 2ω(log n)σ
√

n O(n3 2ω(log n))

σ ω((n
√

nα)
√
log n) O(n2√

n)

D t
√

n · m(β + σ) O(n3√
n 2ω(log n))

q � 4mn
√

n log(n)D.prime Θ(n6 2ω(log n))

298 G. Kaim et al.

– KeyGen. The Key generation algorithm PK.KeyGen(1n) starts by sampling
s ←↩ DRm,α, a ←$ Rm

q uniformly at random and computes u = aT s ∈ Rm
q .

It outputs (ek,mk) where ek = s ∈ Rm
q is the secret key and mk = (a, u) ∈

Rm
q × Rq is the public key.

– Encrypt. Given a message m ∈ R2, and a public key mk, the encryption
algorithm PK.Encrypt(m,mk) chooses a vector v ∈ Rq uniformly at random,
and outputs the ciphertext (b = av + e, c = u · v + e′ + �q/2�m) ∈ Rm

q × Rq

where e ←↩ DRm,β , e′ ←↩ DR,β .
– Decrypt. Given a ciphertext (b, c) ∈ Rm

q ×Rq and a private key ek = s ∈ Rm
q ,

PK.Decrypt((b, c), ek) computes μ = c − bT s = −eT · s + e′ + �q/2�m. To
recover the message m, it suffices to look after each coordinate of μ, if the
i-th coordinate is closer to 0 than to �q/2� then the i-th bit of m is equal to
0 and 1 otherwise.

3.2 Threshold Functionalities

Threshold Tools and Variants. In the original version of a blind signature
scheme, there is only one signer who could easily, in the context of online voting,
stuff the Bulletin Board by adding as many valid (but illegitimate) ballots as he
wishes. We therefore transform it into a threshold one, using the generic trans-
formation of a trapdoor based signature scheme with strong trapdoor of [MP12],
into a threshold trapdoor based signature scheme by [BKP13]. The construction
of [BKP13] is built on the integer ring Zq, but the blind signature of [BCE+20]
relies on polynomial ring Rq. However the strong trapdoor construction can be
adapted to this ring setting [MP12], and the Shamir secret sharing [Sha79] still
works on this type of rings. Then the whole construction of [BKP13] can be
adapted to the polynomial ring setting.

As our transformation is applied on a blind signature scheme and not on a
signature scheme, we have several modifications to provide. The signer’s part
of the blind signature is composed of two steps. At first, it has to generate a
commitment, which one can be transformed in a threshold manner using Shamir
secret sharing and a trusted setup to share a Gaussian vector. The second step
consists in a classic “Fiat-Shamir with abort” signature, which can easily be
transformed into a threshold one by means of homomorphic properties of the
Shamir secret sharing. In case of abort, the signer performs a GPV-like signature
which is a generic signature scheme and can be transformed using the generic
transformation of [BKP13] into a threshold scheme.

The proofs of the various protocols from [BKP13] are realized in the UC
model [Can01], so that we just have to plug the threshold functionalities into
the blind signature scheme, to obtain, by composability, a secure threshold vari-
ant of the blind signature scheme. Below we describe the two main protocols,
which are the KeyGen and the SampleZ protocol. Moreover we choose to give
an informal description of the functionalities involved for these two protocols.
The full construction can be found in the paper of [BKP13].

We consider p authorities, such that a threshold of t authorities is mandatory
to execute the various functions developed below. Let a′ ∈ Rm−k

q be a uniformly

Post-quantum Online Voting Scheme 299

distributed vector of polynomial and T ∈ R(m−k)×k
q be a Gaussian-distributed

matrix. Let {[T]i}i∈[p] be the shares of the polynomial matrix T. Let us denote
by a1 = a′T · T mod q and a = [a′|a1].

– FBlind: This functionality takes as input shares of an arbitrary value x and
output fresh shares [x]i of this same value.

– FSampZ: This functionality takes as input dimensions h × d and a gaussian
variance z. It outputs shares [Z]i of a gaussian distributed matrix Z ← Dh×d

z .
– Threshold KeyGen protocol: The KeyGen protocol is realised in the FBlind,

FSampZ model. On input the tuple (a′, h∗ ∈ Rq, z ∈ Z), each party i does:
1. call FSampZ((m − k) × k, z), then receive [T]i;
2. call FBlind(−a′T [T]i) , then receive [a1]i;
3. broadcast [a1]i and reconstruct a1 = a′T · T mod q from other shares;
4. output a = [a′|h∗ · g + a1] as the public key and [T]i as the private key

of the authority i.
– FGadget: It takes as input a coset value v ∈ Rq and outputs shares [u]i ∈ Rk

of a gaussian distributed polynomial vector such that gT · u = v.
– FCorrect: This functionality generates for each j ∈ [k] and v ∈ Rq queues Qj,v

of at least B values in each queue, that will allow the signer to perform at
least B pre-image of each vector v ∈ Rq. Each queue Qj,v is composed by
using the gadget functionality developed above and the shares [T]i of the

trapdoor such that each authority gets a share of yj,v =
[
T
I

]

(ej ⊗ zj,v) for

zj,v ∈ Λ⊥
v (gT), with ej the vector composed of 0 elements except the j-th

coordinate which is equal to 1.
Then, in the sampling algorithm of [MP12], when we have to correct a per-
turbation to get a correct sample for a given syndrom v ∈ Rq, the authorities
recover a value in the corresponding queue Qj,v1 , · · · , Qj,vn

.
– FPerturb: The perturb algorithm in the threshold setting, is the same as in the

standard setting, but the perturbation vector is then shared between the p
authorities using the functionality FSampZ. then it takes as inputs a dimension
h × d and a gaussian parameter z, it outputs [P]i with P ← Dh×d

z .

SampleZ Protocol. Using FPerturb and FCorrect defined above (threshold coun-
terparts of the steps composing the Preimage sampling protocol introduced
in [MP12]), the SampleZ protocol generates a presample in the same way, but
with the threshold variants of the subalgorithms perturb and correct.

Threshold Variants of Our Building Blocks. Using the above tools, we now
give the modifications we need to provide a threshold variant of both the encryp-
tion scheme (PK.KeyGen to TBS.KeyGen) and the blind signature primitive
of [BCE+20] (BS.KeyGen and BS.Sign to TBS.KeyGen and TBS.Sign resp.).

– TPK.KeyGen(1n, 1p). It generates s ←↩ DRm,α as the secret key in a dis-
tributed way using the FSampZ algorithm, such that each authority Ai, i ∈ [p]
gets a share [s]i. Concerning the public key, it chooses a ←$ Rm

q uniformly at

300 G. Kaim et al.

random. Finally each authority computes and reveals [u]i = aT [s]i ∈ Rm
q , i ∈

[p] such that u can be recovered and output publicly. The secret keys are then
the elements [ek]i = [s]i ∈ Rm

q , i ∈ [p] and the public key is composed of the
pair mk = (a, u) ∈ Rm

q × Rq, it outputs (ek,mk).
– TBS.KeyGen(1n, 1p). TBS.KeyGen generates a public polynomial vector a

with a trapdoor T using a trapdoor generation algorithm in a distributed
way using the Threshold Keygen protocol described above. It then generates
a random polynomial vector s ∈ Rm

3 with its image by the hash function
such that p = ha(s). Concerning s, the algorithm FSampZ is executed by each
authority, in order to obtain [s]i, i ∈ [p], they each then have to broadcast
their public part a · [s]i, i ∈ [p] to recover and output the public key p. Finally
the algorithm outputs the public key pk = (p,a) and the private key share
[sk]i = ([T]i, [s]i), i ∈ [p] to each authority Ai, i ∈ [p].

– TBS.Sign({(Ai([sk]i))}i∈T ,V(pk,M)). Considering a set of T signing
authorities Ai, i ∈ [T], the signature algorithm is the same as the one in
[BCE+20] from the user’s side. Concerning the signer’s view, firstly the
commitment y is generated in a distributed manner using the algorithm
FSampZ, such that the authorities get a share [y]i and distributively output
the corresponding element x = ha(y) in the same way as it was done in the
TBS.KeyGen algorithm for the pair (s,p). Concerning the signing step, from
the signer’s view, the first attempt of signature, which is a Fiat-Shamir like
signature [Lyu12], is performed between the authorities thanks to the homo-
morphic property of the Shamir secret sharing, while the GPV-like [GPV08]
signature generation is performed in a threshold manner using the SampZ
protocol. Finally, the algorithm outputs the signature σ = (M, e, z).

3.3 Our Scheme

As explained above, we chose to modify the [FOO92] framework in order to let
voters “Vote and go” and to prevent ballot stuffing by a malicious authority.
Instead of committing to their voting choices, voter will have to encrypt them
using the public election key. At the end of the election, the decryption key will
be disclosed so that anyone will be able to decrypt the ballots and compute
the result of the election. To avoid fraud by a malicious authority, we transform
the underlying encryption and blind signature schemes considered into threshold
variants, so that the corresponding private keys would be shared among several
authorities and not a single one.

Considering these modifications of the [FOO92] framework, we describe the
complete online voting protocol that we build from the above cryptographic
primitives. First, a setup phase generates the parameters of the protocol, includ-
ing the private and public keys of the used cryptographic schemes. Next the
voting phase is composed of two steps: the voter first encrypts his voting option
(using the public election key) and then interacts with (at least) t voting author-
ities to obtain a blind signature on his ciphertext. His ballot b is composed of
the ciphertext c of his voting choice v along with a (blind) signature σ on c such
that b = (c, σ). The Bulletin Board accepts the ballot if σ is a valid signature

Post-quantum Online Voting Scheme 301

on c and discards it otherwise. In the counting phase, the tallying authorities
reveal their share of the private encryption key, so that anyone can recover the
corresponding decryption key and decrypt the ballots (the ciphertexts c) to com-
pute the result of the election. Auditing the election is easy. For this purpose, an
interested voter first has to check that all the ballots collected by the Bulletin
Board are valid (i.e. that the signatures σ are valid) and that the decryption key
published by the talliers is correct (i.e., corresponds to the public election key).
He then has to decrypt all the ballots using the decryption key and computes
the result of the election just as the talliers did.
• Setup(1n, 1p, 1N). This algorithm has to generate two pairs of secret/public
keys, one pair for the encryption scheme and another one for the blind signa-
ture scheme. Moreover these keys have to be generated in a threshold manner,
for a number p of authorities, with a threshold number of t. Let us denote by
(sk, pk) ← BS.KeyGen(1n) and (ek,mk) ← PK.KeyGen(1n), and by [sk]i

(resp [ek]i) the shares of the private blind signature key (resp encryption key).
Then the setup algorithms outputs pk = (pk,mk) and sk = ([sk]i, [ek]i)i∈[p].
• Vote(Vi(v,pk),Aj([sk]j)j∈T). The voting phase is split in two steps. First, the
voter Vi encrypts his vote v ∈ {0, 1}∗ in c = PK.encrypt(v,mk) in an offline
phase. Then in an online phase, he is first authenticated (to check whether
he is an eligible voter who has not yet requested a blind signature from the
voting authorities). The protocol aborts if the authentication failed or if the voter
already requested a blind signature. He then interacts with voting authorities
Aj to get a blind signature σ = BS.Sign({Aj([sk]j)}j∈T,Vi(pk, c)), with T a
set of authorities of size at least t. Finally the voter outputs (σ, c) as his ballot
and casts it, anonymously, into the bulletin board BB.
• Validate(b, pk). On input a ballot b = (σ, c), anyone can check its validity by
performing the verification algorithm of the blind signature BS.Verify(pk, c, σ),
it outputs 0 if the blind signature verification fails and 1 otherwise.
• Box(BB, b). It takes as input the current state of the bulletin board BB,
along with a ballot b. It first checks the validity of b by performing the algo-
rithm described above: Validate(b, pk). It updates BB ← BB ∪ {b} if Validate
outputs 1 and remains unchanged if it outputs 0.
• Tally(BB, pk, Ej([ek]j)j∈[p]). At the end of the election, at least t (the thresh-
old) authorities (Ej)j∈[t] holding the shares of the decryption key ek reveal pub-
licly their share ([ek]j)j∈t, such that anyone can rebuild the decryption key ek.
Then for each ballot (σ, c) ∈ BB, anyone can decrypt c and retrieve the vote
v = PK.decrypt(c, ek) of each voter, after verifying that BS.Verify(σ, pk) = 1.
Then he/she can tally and outputs the result r, which corresponds to the out-
come of the election r = {vi}i∈k with k � N the number of voters that output
a valid ballot.
• Verify(BB, r, ek). This algorithm is straightforward. Since the decryption
secret key ek is made public (and since anyone can check that it corresponds to
the public election key), anyone can check the validity of the result by decrypt-
ing all the ciphertexts c contained in valid ballots (σ, c) ∈ BB (i.e., with a valid
blind signature σ) and tally them to compare to the announced result r.

302 G. Kaim et al.

3.4 Security of Our Scheme

Theorem 1 (Correctness). Since the blind signature and public key encryp-
tion schemes are correct, then our online voting scheme is correct.

Proof. According to our definition, our voting protocol is correct if a ballot gen-
erated by an honest voter is accepted with overwhelming probability by the BB,
and if the result of an election where every party behaves honestly, corresponds
to the votes cast by voters. The first condition is fulfilled since the blind signa-
ture scheme used to authenticate valid ballots is correct. The second condition is
verified since the encryption scheme satisfies the correctness requirement. Since
our voting protocol satisfies both conditions it is therefore correct.

Theorem 2 (Verifiability). Using a strong authentication scheme and a one-
more unforgeable blind signature scheme, our voting scheme is verifiable.

Sketch of Proof. To win the game, the attacker has either to (1) impersonate an
honest voter or (2) cast more valid votes (let say nC + 1) than the number nC

of corrupted users. (1) would mean that he has successfully broken the strong
authentication scheme used by voters to authenticate to Voting Authorities.
(2) would mean that the attacker could generate more valid blind signatures
than requested (therefore breaking the one-more unforgeability of the threshold
blind signature scheme) or that there exists more dishonest voting authorities
than assumed (which could generate as many valid but illegitimate-ballots as
they wish). Furthermore, he can not cheat after the end of the election, since
the election’s tally is made public. We further notice that the tally can not give
two different results for two iterations of the Tally algorithm since the decryption
mechanism and the blind signature verification algorithm are both deterministic.

Theorem 3 (Ballot anonymity). Our voting scheme provides perfect
(information-theoretic) ballot anonymity.

Sketch of Proof. In the ballot anonymity game, an attacker A∗ chooses two
honest voters V0 and V1 and two voting options v0 and v1. It then interacts with
V0 and V1 who then cast, using a perfectly anonymous channel, two ballots bc

(on v0) and b1−c (on v1). A∗ has to identify which voter outputs which ballot. We
then have to prove that the attacker A∗ has a negligible advantage (compared
to random guessing) to win. In our protocol, each ballot does not include any
information about the identity of each voter, since the encryption and blind
signature schemes are performed only on the voting choices v0 and v1. As our
blind signature scheme provides perfect blindness and since we assumed that
ballots are cast via a perfectly anonymous channel, A∗ cannot find c better
than random guessing. Therefore, provided that ballots are cast via a perfectly
anonymous channel, our voting protocol provides perfect ballot anonymity.

Partial Results. The encryption scheme prevents any partial result to leak.
Indeed the decryption key is shared among several authorities, which cannot
open the ballots without at least t shares of it. Then as long as p− t+1 of them
remain honest, the ballots cannot be opened before the end of the election.

Post-quantum Online Voting Scheme 303

4 Conclusion

In this paper we presented a new practical lattice-based online voting system.
In contrast to traditional schemes, our protocol does not rely on homomorphic
aggregation or mix-nets and does not make use of zero-knowledge proofs, which
have previously been the main issue in the post-quantum setting. Instead, our
scheme extends on an idea first introduced at Auscrypt’92, where the security
is (among others) achieved through a blind signature scheme. Compared to the
state-of-the art in post-quantum online voting, our system supports complex
ballots and provides stronger privacy guarantees (namely everlasting privacy
thanks to the perfect blindness provided by the blind signature scheme we used).
In a future version of this work, we plan to implement our protocol and present
benchmarks of its computational runtime and to develop the intuitive security
analysis presented here, using rigorous definitions and formal proofs.

Acknowledgement. The authors wants to thank the anonymous reviewers for their
useful comments. This work has been supported by the European Union H2020
PROMETHEUS Innovation Program Grant 780701.

References

[Adi08] Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Sym-
posium, pp. 335–348. USENIX Association (2008)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108. ACM (1996)

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers. Math. Ann. 296(4), 625–636 (1993)

[BCE+20] Bouaziz-Ermann, S., Canard, S., Eberhart, G., Kaim, G., Roux-Langlois,
A., Traoré, J.: Lattice-based (partially) blind signature without restart.
IACR Cryptology ePrint Archive 2020:260 (2020)

[BCG+15] Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a
comprehensive analysis of game-based ballot privacy definitions. In: IEEE
Symposium on Security and Privacy, pp. 499–516. IEEE Computer Society
(2015)

[BKP13] Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor:
threshold protocols for signatures and (H)IBE. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
218–236. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38980-1 14

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

[CGGI14] Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability
for Helios under weaker trust assumptions. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 327–344. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11212-1 19

[CGGI16] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic
LWE based E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS,
vol. 9606, pp. 245–265. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29360-8 16

https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-319-29360-8_16

304 G. Kaim et al.

[CGK+16] Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: SoK: ver-
ifiability notions for e-voting protocols. In: IEEE Symposium on Security
and Privacy, pp. 779–798. IEEE Computer Society (2016)

[dPLNS17] del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-
safe voting from lattices. In: ACM Conference on Computer and Commu-
nications Security, pp. 1565–1581. ACM (2017)

[FOO92] Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for
large scale elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992.
LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-57220-1 66

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 1

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: ICS, pp. 230–240. Tsinghua
University Press (2010)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

[HKLN20] Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures,
revisited. IACR Cryptology ePrint Archive, 2020:769 (2020)

[KKLA01] Kim, K., Kim, J., Lee, B., Ahn, G.: Experimental design of worldwide
internet voting system using PKI. In: SSGRR 2001 (2001)

[KR05] Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the
applied pi calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
186–200. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31987-0 14

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 13

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 3

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 43

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 8

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93. ACM (2005)

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8

Post-quantum Online Voting Scheme 305

[Rüc10] Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 24

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–
1509 (1997)

https://doi.org/10.1007/978-3-642-17373-8_24

Short Paper: Ballot Secrecy for Liquid
Democracy

Mahdi Nejadgholi, Nan Yang, and Jeremy Clark(B)

Concordia University, Montreal, Canada
j.clark@concordia.ca

Abstract. Certain advances in election technology, such as online vot-
ing, promise to reduce the administrative overhead of running an elec-
tion. This has breathed new life into the idea of direct democracy, where
voters play a more active role in setting legislation. However it is antici-
pated that a steady stream of referendums would generate voter fatigue.
To combat this fatigue, voters could be allowed to delegate their votes to
other (more knowledgeable) voters. This idea is old but has been recently
reinvented under the name liquid democracy. In this paper, we consider
how ballot secrecy should be defined for liquid democracy. We first show
that a natural definition of full secrecy leads to several undesirable out-
comes. We then show that these are very difficult to address without
enabling voter coercion and vote buying. The purpose of the paper is
not to affirm liquid democracy; rather, it is to raise awareness of unseen
complexity hiding under our initial presumption that liquid democracy
could effortlessly support a secret ballot.

1 Introductory Remarks

A liquid democracy voting system allows each voter the option of delegating
their vote to another voter. This helps offload the burden of informing yourself
about every issue and position at stake. While it can be used in any election, it
is well-suited in direct forms of democracy, where many or all issues are put to a
referendum. In liquid democracy, if Alice and Bob delegate to Carol, Carol’s vote
carries the weight of three voters. The defining feature of liquid democracy is that
Carol can in turn delegate to David. If David votes directly, he can effectively
cast four ballots (his own, Carol’s, Alice’s, and Bob’s) in addition to whatever
other delegations he has received. In this paper, we note several challenges in
defining ballot secrecy for liquid democracy.

2 Preliminaries

2.1 Systems of Democracy

Consider a nation-state where legislation is set through a process of voting on
bills. A common system is representative democracy where citizens (or legal res-
idents) elect a parliamentary member to represent their region and vote on bills.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 306–314, 2021.
https://doi.org/10.1007/978-3-662-63958-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_26&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_26

Short Paper: Ballot Secrecy for Liquid Democracy 307

In a system based on direct democracy, citizens would vote on the bills them-
selves. A critical issue with direct democracy is voter fatigue. Given the large
number and wide variety of bills, it is difficult for voters to inform themselves
on every issue and cast meaningful votes.

One solution to voter fatigue is allowing voters to delegate their votes to some-
one else (a proxy). Proxy voting is a general term that includes cases where: (a)
the voter directs the proxy how to vote, and (b) the voter lets the proxy decide
how to vote. Clearly, voter fatigue is only addressed by (b) and not (a). Systems
of type (b) are called delegative democracy. While forms of delegative democracy
have been discussed for centuries, liquid democracy is a re-branding of it that
has become popular since the late 2000s [3]. We resist calling liquid democracy
a ‘silicon valley’ invention because its early popularity stemmed from Europe,
however it has been embraced and amplified by a similar demographic of young
technologists. These technologists already advocate for more direct democracy.
Complimentary tools include: online voting, which reduces the friction of con-
ducting frequent elections; random sample voting, a competing solution to voter
fatigue [1,6]; and blockchain technology (like liquid democracy, proposed in the
2000s), a technological platform for decentralized computation. Liquid democ-
racy is suggested as a governance mechanism for decentralized organizations in
the Ethereum whitepaper [4]. Note that experts argue that blockchain offers
more hype than merit in the specific case of voting technology for governmental
elections [21,22].

Liquid democracy’s pseudonymous inventor Sayke maintains that liquid
democracy is distinct from delegative democracy. For example, in liquid democ-
racy, a voter could delegate to a set of other voters and have the system cast a
ballot in favour of the plurality of opinions [24]. This has been analyzed as state-
ment voting in the literature [27]. However all notable software implementations
of liquid democracy are limited to delegations only, and that is what we study
in this paper.

2.2 Past Experiments and Uses

The open-source Liquid Feedback [2] system is likely the best-known Liquid
Democracy implementation. It was used by Germany’s Pirate Party by 1̃5K
members in 2013 [18]. It is still used by Italy’s MoVimento 5 Stelle (M5S); a
party which received 25% of Italy’s parliament seats in 2013. Liquid Feedback
is an open vote system and does not implement a secret ballot. Further, despite
offering the feature, data from its main trials find less than 5% of voters actually
delegated their votes in practice [23].

Google Votes was an experimental implementation of liquid democracy used
internally by Google from 2012–2015 through its Google+ social network [15].
The uses were relatively non-significant (e.g., decisions on the Mountain View
Microkitchen food fair in California, or the GoogleServe logo). Like Liquid Feed-
back, there is no ballot secrecy in Google Votes (in fact, voters can do ‘biased
sharing’ by advertising their vote and obtaining delegations on it). Only 3.6% of
voters delegated.

308 M. Nejadgholi et al.

Low profile examples include LiquidFriesland for voting on municipal initia-
tives (less than 30 average voters for each initiative) [9], and Civicracy whose
pilot study for a school council fell through [14]. For more abandoned or unfin-
ished liquid democracy projects, see Paulin’s retrospective [23].

Academic contributions from the computer science (and security) community
include a coercion-resistant proxy voting scheme [20] that issues voters fake
credentials. A second paper introduces statement voting, an end-to-end verifiable
voting system that implements a generalization of liquid democracy but does
not address coercion [27]. Both of these designs implement full ballot secrecy
(all votes and delegations are protected). Our paper illustrates several ways in
which this level of secrecy is undesirable; unfortunately, relaxing it tends to create
coercion issues. This idea is extended for governing decentralized applications
running on blockchain technologies like Ethereum [26]. Another blockchain-based
solution proposes an efficient algorithm for self-tallying, cycle-resistant liquid
democracy for Ethereum, however, the authors do not consider vote secrecy [10].
Another work considers increasing participation in an open liquid democracy
system without ballot secrecy [19].

Last, a series of papers from Ford (the most recent and representative work
is [11]) dives deeply into different design parameters of liquid democracy, and
critically analyzes them. The Ford paper considers many different aspects, tech-
nical and social, while our paper does a deep dive on one specific issue: ballot
secrecy. Even so, we identify some specific overlaps in Subsect. 4.3.

3 Assumptions

We are interested in what liquid democracy would look like for a governmen-
tal election. Most of the systems mentioned in Subsect. 2.2 were developed for
transparent, open vote elections with a rolling tally (i.e., realtime updates). It
is difficult to imagine all the election law changes that would pave the road for
liquid democracy, but we assume two basic principles of elections would still
be required: ballot secrecy, and an announcement of the final result only at the
conclusion of the election. We also make the following assumptions about a hypo-
thetical liquid democracy system for governmental elections and referendums:

• Referendums. Liquid democracy could be used for either elections of indi-
viduals or referendums on issues. For simplicity, we will refer to referendums
throughout the rest of this paper but it is not without loss of generality.

• Online. We assume the referendum is conducted with online voting. Online
voting is incredibly problematic from a security perspective, but we will
assume that the system has end-to-end verification (E2E), mitigates the
untrusted platform problem (cf. [5,25]), and provides some basic coercion-
resistance (cf. [7,8,12,17])—however we will revisit the degree to which such
coercion resistance protection is even possible.

• Phases. We assume the referendum is conducted in two phases. In phase 1,
voters can delegate their votes, change their delegation, or remove their dele-
gation. Phase 1 might happen over the course of weeks or months depending

Short Paper: Ballot Secrecy for Liquid Democracy 309

Table 1. Issues with a full secrecy ballot and proposed features to solve them. In this
paper, we evaluate the privacy consequences of these features.

Issue Proposed feature

Delegation cycle Real-time cycle detection

Unexpected delegations Expose incoming weight

Unaccountable or non-responsive delegates Expose voting action

on the lead-up time to the referendum. In phase 2, voters can cast their bal-
lots, and can no longer delegate or change their delegation. A voter that has
delegated in phase 1 can still vote in phase 2 and this action overrides their
delegation. We will refer to phase 1 as the delegation phase and phase 2 as
the voting phase.

• Multi-Referendums. In the case of multiple concurrent referendums, we
assume that the delegation phase is on-going but for each specific referen-
dum, the delegation status will freeze at a certain announced time as that
referendum moves into the voting stage.

4 Ballot Secrecy for Liquid Democracy

Full Secrecy and Its Shortcomings.
The most natural definition of ballot secrecy for a liquid democracy election
is to hide everything except the final tally [20,27]. This includes all votes and
all delegations. This approach could however lead to one of three unintended
consequences, recapped in Table 1 and explored in each of the following sections
of the paper.

4.1 Delegation Cycles

A delegation cycle occurs when Alice delegates to Bob and Bob delegates to
Alice (or any longer chain that cycles back to the initial voter). If ballots are
secret, there is no directly way for Alice and Bob to discover the cycle within
the system. It is important to note that delegation cycles can form without any
voter behaving maliciously. If they do not discover the cycle out-of-band, their
votes will not be counted. This issue is mentioned without solution by Zhang
and Zhou1 who use full ballot secrecy for their cryptographic design [27].

A straight-forward solution is to offer an ‘oracle’ in the design that would
either (a) answer any voter’s query of whether their own vote is in a cycle or
not, or (b) prevent a voter from delegating to another voter if that delegation
forms a cycle by displaying a failure message to the voter. By the term ‘oracle,’
we assume this information would be made available only to the voter (or more

1 Authors’ note: at our suggestion.

310 M. Nejadgholi et al.

precisely, would only be convincing to the voter and could not be convincingly
shown to a coercer; cf. designated verifier signatures and proofs [16]).

Consequences for Ballot Secrecy. The security issue with either of these oracles
is that their inclusion breaks the coercion-resistance of the system. Assume that
Mallory, a coercer or vote buyer, uses undue influence to convince Alice to dele-
gate to her. She can check compliance (at any time) by delegating her own vote
to Alice and confirming that it forms a cycle. If it does not, Alice did not comply.
Alice can try to rush Mallory and undelegate at the last minute, or overwrite
the delegation by casting a ballot. In both cases, the coercion evasion strategy is
akin to a voting system that lets you vote as many times as you want (revoting or
multiple cast). The same simple coercion techniques, such as Mallory retaining
Alice’s voter ID card, can also thwart these defences in liquid democracy.

Potential Mitigations. A variant on the fake credential design pattern—used in
many coercion-resistant voting systems [7,8,17], including proxy voting [20]—
could be applied here. In these systems, if Alice is coerced, she can make up a
fake credential (or have prepared one in advance) to give to the adversary that
operates exactly like her real voting credential. During tallying, all votes cast
with fake credentials are obliviously removed. This design pattern can work for
liquid democracy except that Alice needs to create a fake identity or persona that
can create delegations that are seen by the delegates and are indistinguishable
from real identities. One straightforward composition with existing protocols is
to consider public keys as identities. Alice can convincingly lie about what public
key she registered as her real identity. She use fake keys to cast fake votes or
create fake delegations. While this solves the delegation cycle problem by pro-
viding a coercion resistance mechanism that is not thwarted by the introduction
of a cycle detection oracle, two issues remain: (1) how to cryptographically real-
ize the cycle detection oracle (we do not solve that problem here; this paper is
about ideal functionalities), and (2) it does not solve the two additional issues
that follow.

4.2 Unexpected Delegations

It seems natural that Alice would like to know if others have delegated to her.
For example, knowing that she has a large number of delegations could increase
her efforts in informing herself and completing the task of voting. Very popular
delegates could find themselves the target of individualized attacks (cybersecu-
rity or otherwise) to modify their vote or to prevent them from voting. First, it
seems sensible that serving as a delegate should be opt-in, and that voters who
do not want delegations can remain as default voters. A second design feature
could offer to each voter an oracle service that reports the number of voters who
have delegated to them (incoming weight oracle).

Short Paper: Ballot Secrecy for Liquid Democracy 311

Consequences for Ballot Secrecy. Like the cycle-detection oracle, the incoming
weight oracle can be used for coercion. Consider Mallory influencing Alice to
delegate her vote to her. She checks the incoming weight oracle before and after
the purported delegation, which should increase by one delegation, to ensure
Alice’s compliance.

Potential Mitigations. Weights could be given in ranges and/or with noise added
to thwart coercion, however this requires further attention. For instance, if a
single delegation (e.g., Alice’s delegation is Mallory’s 100th) moves the incoming
weight from one range (e.g., 10–99) to the next highest range (e.g., 100–999), it
can be used for coercion. While noise can provide provable ‘differential privacy’
when used once, liquid democracy allows the coercer to dynamically add/remove
weights and re-query the oracle as many times as she likes, taking statistics over
all the results.

The fake persona design pattern suggested for cycle detection can be used
to thwart coercion, however it defeats the original goal of providing Alice with
a sense of her ballot’s weight—while a number can be displayed, there is telling
if it consists of real or fake delegations. Delegates can be easily misled in terms
of the number of delegations they are actually receiving. Were the design to use
both noisy counts and fake personas, providing the coercer with a mechanism to
add/remove any number of fake delegations makes it more difficult to disguise
the count.

4.3 Unaccountable Delegates

It could be argued that when a voter delegates, there is absolute trust in the del-
egate. With a secret ballot, if the delegate fails to vote, or purposefully misleads
its delegators as to how it will vote, there is no way to hold them accountable.
This issue and its consequence for coercion-resistance is already explored by
Ford [11], however we include it for completeness.

A voting action oracle could be introduced to let voters see the full delegation
path to the final vote (Google Votes [15]). Or more simply, the design could
make all delegate votes (and further delegations) public information along with
the tally (Ford [11]).

Consequences for Ballot Secrecy. As pointed out by Ford, adding accountability
harms coercion resistance. If Mallory apply undue influence on Alice, she can
have Alice opt-in as a delegate, delegate her own vote to Alice, instruct Alice on
how to vote, and then use the voting action oracle to learn if Alice complied.

Potential Mitigations. In the fake persona design pattern, Alice could create a
fake identity and give it to Mallory for delegation. First, note that this situation
is different from the earlier coercion example in cycle detection. There, Alice was

312 M. Nejadgholi et al.

a voter and Mallory was the delegate. Here Alice is the delegate and Mallory is
the voter. If fake personas can be created by voters and delegates equally, then
the coercion issue here is solved.

However there are good reasons why voters might be allowed to create fake
identities, but once a voter opts into becoming a delegate, they can no longer
create fake identities. Consider an attack where Mallory becomes a high profile
celebrity for having a certain political ideology. In reality, she actually holds a
different ideology. If she amasses a large number of delegations from supporters
of her fake public ideology, she could decide to cast all the votes in favour of her
real ideology, or simply not vote at all—both actions harm the support of her
fake public ideology. However if a voting action oracle is provided, both actions
will get her caught.

Instead, she could give out a fake identity for other voters to delegate to.
She could vote for her fake public ideology using this fake identity to satisfy
the voters. In the end, all the votes would be canceled during tallying but the
cancelation is done without revealing which votes are being cancelled—therefore,
she could avoid getting caught and do this attack indefinitely. For this reason,
we consider this issue an open research problem.

5 Concluding Remarks

The problem of defining ballot secrecy for liquid democracy presents a set of
four desirable properties with no obvious way of achieving them all: (1) coercion
resistance, (2) no cycles, (3) knowledge of incoming weight, and (4) accountabil-
ity for delegates. Full ballot secrecy alone does not provide any of these [27].
Fake personas have been applied to achieve (1) [20], however we show it can
provide both (1) and (2) with a cycle detection oracle.

An alternative to liquid democracy comes close to providing all of (2)–(4).
The idea is to restructure the election into multiple rounds. In the first round,
voters can only vote directly for issues. In the subsequent rounds, voters can
delegate to any voter who has already voted in a prior round (names will be made
public) or they can vote directly. This system cannot have cycles by definition
(which would require a voter to delegate to someone who has not voted yet).
It sidesteps the impact of a delegate receiving a large number of delegations as
the delegations are collected only after a ballot is already cast. It is impossible
to delegate to someone who will not vote, however it is still possible to delegate
to someone who will vote differently from their public political views, leaving
the voter with no knowledge or recourse. Finally, if (1) is achieved using fake
personas, a malicious delegate could collect delegations using a fake persona
knowing these votes will all be discarded during tallying.

A prerequisite to designing an end-to-end verifiable voting system is deciding
how the system should operate; more formally captured by defining its ideal
functionality. Debates have been had over ideal functionalities for simple first-
past-the-post schemes [13] (e.g., should only the winner be declared, or should
the final tally of votes be declared?). In this paper, we informally discuss what

Short Paper: Ballot Secrecy for Liquid Democracy 313

the ideal functionality of a liquid democracy system should be, particularly as it
relates to ballot secrecy. We hope to have demonstrated that it is not a simple
or obvious choice, but rather it is an important research question to consider
before proposing new designs in this space.

Acknowledgements. We thank the reviewers who helped to improve our paper.
J. Clark acknowledges support for this research project from (i) the National Sci-
ences and Engineering Research Council (NSERC), Raymond Chabot Grant Thornton,
and Catallaxy Industrial Research Chair in Blockchain Technologies, and (ii) NSERC
through a Discovery Grant.

References

1. Basin, D., Radomirovic, S., Schmid, L.: Alethea: A provably secure random sample
voting protocol. In: IEEE CSF (2018)

2. Behrens, J., Kistner, A., Nitsche, A., Swierczek, B.: The Principles of LiquidFeed-
back. Interaktive Demokratie, Berlin (2014)

3. Behrens, J.: The origins of liquid democracy. Liquid Democracy J. 5 (2017)
4. Buterin, V.: Ethereum whitepaper. Technical report, Online (2013)
5. Chaum, D.: SureVote: technical overview. In: WOTE (2001)
6. Chaum, D.: Random-sample voting (2012). Online
7. Clark, J., Hengartner, U.: Selections: Internet voting with over-the-shoulder

coercion-resistance. In: FC (2011)
8. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.

In: IEEE Symposium on Security and Privacy, pp. 354–368 (2008)
9. Eisel, S.: Liquidfriesland - ein gescheitertes experiment. https://internet

unddemokratie.wordpress.com/2014/05/22/liquidfriesland-ein-gescheitertes-
experiment/. Accessed May 2014

10. Fan, X., Li, P., Zeng, Y., Zhou, X.: Implement liquid democracy on Ethereum: a
fast algorithm for realtime self-tally voting system. CoRR abs/1911.08774 (2019).
http://arxiv.org/abs/1911.08774

11. Ford, B.: A liquid perspective on democratic choice. arXiv:2003.12393 [cs.CY]
(2018)

12. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.A.: Caveat coercitor: coercion-
evidence in electronic voting. In: IEEE Symposium on Security and Privacy (2013)

13. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24852-1 4

14. Hainisch, R., Paulin, A.: Civicracy: establishing a competent and responsible
council of representatives based on liquid democracy. In: 2016 Conference for E-
Democracy and Open Government (CeDEM), pp. 10–16 (2016). https://doi.org/
10.1109/CeDEM.2016.27

15. Hardt, S., Lopes, L.R.: Google votes: a liquid democracy experiment on a corporate
social network (2015)

16. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

https://internetunddemokratie.wordpress.com/2014/05/22/liquidfriesland-ein-gescheitertes-experiment/
https://internetunddemokratie.wordpress.com/2014/05/22/liquidfriesland-ein-gescheitertes-experiment/
https://internetunddemokratie.wordpress.com/2014/05/22/liquidfriesland-ein-gescheitertes-experiment/
http://arxiv.org/abs/1911.08774
http://arxiv.org/abs/2003.12393
https://arxiv.org/abs/2003.12393
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1109/CeDEM.2016.27
https://doi.org/10.1109/CeDEM.2016.27
https://doi.org/10.1007/3-540-68339-9_13

314 M. Nejadgholi et al.

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp.
37–63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

18. Kling, C.C., Kunegis, J., Hartmann, H., Strohmaier, M., Staab, S.: Voting
behaviour and power in online democracy: a study of LiquidFeedback in Germany’s
pirate party. http://arxiv.org/abs/1503.07723

19. Kotsialou, G., Riley, L.: Incentivising participation in liquid democracy with
breadth-first delegation. arXiv:1811.03710 [cs, econ] (February 2019)

20. Kulyk, O., Neumann, S., Marky, K., Budurushi, J., Volkamer, M.: Coercion-
resistant proxy voting. Comput. Secur. 71, 88–99 (2017)

21. Nasser, Y., Okoye, C., Clark, J., Ryan, P.Y.A.: Blockchains and voting: somewhere
between hype and a panacea (2017). Online

22. Park, S., Specter, M., Narula, N., Rivest, R.L.: Going from bad to worse: from
internet voting to blockchain voting (2020). Online

23. Paulin, A.: An overview of ten years of liquid democracy research. In: The 21st
Annual International Conference on Digital Government Research (2020)

24. Sayke: Liquid democracy is not delegative democracy (2006). Blog post
25. Zagórski, F., Carback, R., Chaum, D., Clark, J., Essex, A., Vora, P.L.: Remotegrity:

design and use of an end-to-end verifiable remote voting system. In: ACNS (2013)
26. Zhang, B., Oliynykov, R., Balogun, H.: A treasury system for cryptocurrencies:

enabling better collaborative intelligence. In: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, 24–27
February 2019. The Internet Society (2019)

27. Zhang, B., Zhou, H.-S.: Statement voting. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 667–685. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32101-7 38

https://doi.org/10.1007/978-3-642-12980-3_2
http://arxiv.org/abs/1503.07723
http://arxiv.org/abs/1811.03710
https://doi.org/10.1007/978-3-030-32101-7_38
https://doi.org/10.1007/978-3-030-32101-7_38

Shorter Lattice-Based Zero-Knowledge
Proofs for the Correctness of a Shuffle

Javier Herranz(B), Ramiro Mart́ınez, and Manuel Sánchez

Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain

{javier.herranz,ramiro.martinez}@upc.edu

Abstract. In an electronic voting procedure, mixing networks are used
to ensure anonymity of the casted votes. Each node of the network re-
encrypts the input list of ciphertexts and randomly permutes it in a
process named shuffle, and must prove (in zero-knowledge) that the pro-
cess was applied honestly. To maintain security of such a process in a
post-quantum scenario, new proofs are based on different mathemati-
cal assumptions, such as lattice-based problems. Nonetheless, the best
lattice-based protocols to ensure verifiable shuffling have linear commu-
nication complexity on N , the number of shuffled ciphertexts.

In this paper we propose the first sub-linear (on N) post-quantum
zero-knowledge argument for the correctness of a shuffle, for which we
have mainly used two ideas: arithmetic circuit satisfiability results from
[6] and Beneš networks to model a permutation of N elements. The
achieved communication complexity of our protocol with respect to N
is O(

√
N log2(N)), but we will also highlight its dependency on other

important parameters of the underlying lattice ingredients.

Keywords: Electronic voting · Verifiable shuffle · Lattice-based
cryptography · Zero-knowledge

1 Introduction

E-voting has already been used in real political elections in Norway, Estonia,
Switzerland and Australia, among other countries. It could provide voters with
the ability to cast votes from anywhere, aid voters with disabilities to cast their
votes autonomously, reduce the logistic costs of an election, obtain accurate
vote counts faster and in general improve the flexibility of democratic processes.
However we can only take advantage of these benefits if the election system is
publicly trusted, for which it has to satisfy strong security requirements.

Two key requirements of e-voting are privacy and verifiability. On the one
hand each individual voting option has to remain secret, and only the final tally
should be revealed. This is usually addressed encrypting votes with an election
public key, whose associated secret key is only known by the electoral board and
used for the tally. On the other hand, verifiability ensures the integrity of the

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 315–329, 2021.
https://doi.org/10.1007/978-3-662-63958-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_27&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_27

316 J. Herranz et al.

election. It should be guaranteed that the final result has not been manipulated
and corresponds to the options chosen by eligible voters. Whenever a voter wants
to remotely cast an encrypted vote she digitally signs it before sending it to the
voting server, that verifies the electronic signature before adding it to a virtual
ballot box that will be published in a so called Bulletin Board, enabling everyone
to verify that tallied votes come, with a one to one correspondence, from eligible
voters. Systems that allow anyone to verify the integrity of the election using only
public information without requiring additional interaction are called universally
verifiable.

At this point we have an apparent contradiction, as the link established by
the signature between the voter and its encrypted vote seems to prevent the
desired level of privacy. A solution called mixing networks (or mix-nets) was
presented by Chaum in its seminal paper [16] and is currently adopted by all
previously mentioned actual elections. A mix-net is composed of a set of mixing
nodes (or mix-nodes) that consecutively permute and re-encrypt/decrypt the
output of the previous mix-node. This operation is called a shuffle. As long
as one of these nodes is honest and keeps its permutation secret it should be
infeasible to link the identity of the voter that signed one of the input encrypted
votes with its value decrypted from the output of the mix-net, thus achieving
privacy again. Verifiability can be enforced asking the mix-nodes to publish a
zero-knowledge proof of well behaviour, in this case proving that they know a
permutation and the randomness used such that their respective output is just a
permuted re-encryption of its input, without leaking any additional information.

Since the first universally verifiable mix-net was presented by Sako and Kilian
in 1995 [32] many proposals have been published with different kinds of improve-
ments, that will be discussed in detail in the following Subsect. 1.1. However there
is still one important issue that has to be addressed, all schemes that guarantee
universal verifiability publishing proofs of a shuffle in a Bulletin Board need to
ensure the long term security of the information that is being published. This
is particularly important as many constructions base their privacy on hardness
assumptions about problems such as the Discrete Logarithm problem, that is
known to be efficiently solvable by a quantum computer using Shor’s algorithm
[33]. Even if powerful enough quantum computers are not available now, an
adversary could keep this public information until he has the ability to break
the security with a quantum computer in the near future. Voting data is specially
sensitive information that should remain secret in the long term, while it might
still have political and personal implications. Therefore post-quantum hardness
assumptions that are believed to hold even against a quantum computer should
be used, such as the ones employed by lattice-based, code-based, multivariate
polynomials or hash-based cryptography.

The main goal of this article is to present the first post-quantum proof of a
shuffle with sub-linear size in the number of inputs, that could be used to build
secure mix-nets, guaranteeing long term privacy even in a quantum computing
era.

Shorter Lattice-Based Zero-Knowledge Proofs 317

1.1 State of the Art

The structure of a proof of a shuffle heavily depends on the choice of a way
of representing a permutation. A great variety of approaches appear in the
literature, from applying permutation matrices [21,22,26,35,37], permutation
networks [2,3], showing two sets are equal if they are both roots of the same
polynomial [7,24,25,31] or using general arithmetic circuits [13]. Most of the
work, from the very beginning [1,30], focuses on reducing the size of the proofs
for different scenarios. A comprehensive study of mix-nets and proofs of shuffles
can be found in [27].

However only a handful of post-quantum e-voting proposals have been
recently published. Del Pino et al. presented EVOLVE in [19], which uses a
somewhat homomorphic encryption scheme to add together several ballots before
decrypting them. This alternative can only work with elections where the result
can be represented as the addition of individual votes, but it can not implement
write-ins, that are easily handled by mix-nets. The same limitation applies to the
recent work [10], which proposes an elegant way of solving some security issues in
[19]. Gjøsteen and Strand also propose the use of fully homomorphic encryption
to construct a decryption circuit in [23], but while theoretically interesting it is
still far from efficient. The recent work in [5] proposes a practical post-quantum
e-voting protocol, but under a very strong trust (perhaps unrealistic) assump-
tion: the shuffle entity has no access to the channels used by voters to cast their
votes in the ballot box.

Regarding post-quantum mixnets, the universally verifiable mix-nets of Costa
et al. and Strand [17,18,34] are both quite impractical, either because of the use
of fully homomorphic encryption or because correctness proofs have linear (in N)
size, with large constants. The only quantum-safe practical mix-net we are aware
of is [11] by Boyen et al., based on a different model that only allows verification
by a (temporarily trusted) auditor, making it not universally verifiable.

The construction of an efficient post-quantum universally verifiable mix-net
is still an open problem. In this paper we provide a significant step presenting
the first such protocol, to shuffle N ciphertexts, with proofs of sub-linear size in
N .

A key ingredient for our protocol is the zero-knowledge proof of satisfiability
of an arithmetic circuit presented in [6] (and recently improved/generalized in
[9]). These proofs achieve post-quantum security properties by using techniques
from lattice-based cryptography, and the size of the proofs is sub-linear in the

number of gates M of the arithmetic circuit, since it is O(
√

M log3(M)) (in the
protocol in [6]). When the soundness property of a zero-knowledge system is sat-
isfied computationally (assuming the hardness of some underlying mathematical
problem) then people often refer to such proofs as arguments of knowledge. The
proofs in [6,9] and consequently the proof for the correctness of a shuffle that
we present in this paper are indeed arguments of knowledge, but we use both
proofs and arguments to refer to them.

318 J. Herranz et al.

1.2 Arithmetic Circuits for Shuffles

The idea is to use the powerful result of [6], to prove in zero-knowledge that
a shuffle (re-encryption and permutation) has been correctly performed. Let
L = {C1, . . . , CN} be the input list of N ciphertexts for the shuffling node; he
is assumed to re-encrypt each ciphertext, which leads to L′ = {C ′

1, . . . , C
′
N} and

then to apply a permutation ρ to the list L′, which leads to L′′ = {D1, . . . , DN},
where Di = C ′

ρ(i), for each i = 1, . . . , N . The list L′′ is made public, so the
two lists L and L′′ are available to the verifier of the zero-knowledge proof of a
correct shuffle.

In the case of RLWE-based ciphertexts, the re-encryption step L → L′ can
be easily expressed as an arithmetic circuit, where some secret input wires cor-
respond to the (small) random elements used to re-encrypt each ciphertext. The
number of gates of this first sub-circuit is O(N). The challenge is now to express
the permutation step, that is the statement that list L′′ is a permutation of list
L′, as an arithmetic circuit with a small enough number of gates. Our solution is
to consider the Beneš network that corresponds to that permutation; the circuit
that expresses such Beneš network takes as input the N ciphertexts in L′ along
with a bit b ∈ {0, 1} for each internal 2-in 2-out gate of the Beneš network,
indicating if the two input wires must be switched or not, in the output of that
gate. The final output of the circuit must be the list of N ciphertexts in L′′. The
number of gates of such a circuit is O(N log(N)).

1.3 Our Results

We detail how RLWE ciphertexts must be produced and re-encrypted so that
shuffling nodes must prove, in particular, that the noise introduced when re-
encrypting each ciphertext is small enough (and thus, in the tally phase, there
will not be errors in the decryption of the final ciphertexts). This fact, along with
the correct execution of the re-encryption algorithm and the correct execution of
a permutation expressed by a Beneš network, constitute the arithmetic circuit
to which we apply the results in [6,9]. Since the number of gates of the circuit
is M ∈ O(N log(N)), the result is a zero-knowledge proof that a shuffle of N
ciphertexts has been correctly applied, with post-quantum security based on the
hardness of well-known lattice problems, and with size sub-linear on N .

1.4 Organization

In Sect. 2 we review some ingredients of our protocol: RLWE encryption, lattice-
based zero-knowledge proofs of satisfiability of arithmetic circuits and Beneš net-
works. Then in Sect. 3 we propose our protocol, by first describing the arithmetic
circuit that represents a shuffle of N RLWE ciphertexts, and then by applying to
this circuit the construction in [6]. We analyze our protocol in Sect. 4, in terms
of efficiency and security.

Shorter Lattice-Based Zero-Knowledge Proofs 319

2 Preliminaries

2.1 Ideal Lattices: RLWE Problems and Public Key Encryption

Ideal lattices can be seen as ideals in the polynomial ring R = Z[X]/ 〈f(X)〉,
where the polynomial f(X) = Xn+fnXn−1+ · · ·+f2X+f1 ∈ Z[X]. Usually, for
real cryptographic applications, we will set n a power of 2 and f(X) = Xn + 1
and we will consider the quotient ring Rq = R/qR = Zq[X]/ 〈Xn + 1〉 since this
setting provides several advantages from an implementation point of view.

Let n and q be integers, R = Z[X]/ 〈f(X)〉 with deg(f) = n and Rq =
R/qR. Let χσ be a discrete probability distribution over R (usually a Gaussian
distribution) with parameter σ and a secret polynomial s ∈ Rq.

Definition 1 (Ring Learning With Errors Distribution). The RLWE dis-
tribution Ls,χ over Rq × Rq is sampled by choosing a

R← Rq, e
R← χσ and out-

putting (a, b = a · s + emod q).

Definition 2 (Search-RLWE Problem). Given m independent samples
(ai, bi)

R← Ls,χ for a fixed uniformly random s, find s.

Definition 3 (Decision-RLWE Problem). Given m independent samples
(ai, bi), decide whether these samples are distributed according to Ls,χσ

for a
fixed uniformly random s; or according to a uniform distribution over Rq × Rq.

Hardness of RLWE comes for large enough choices of q. Solving certain
instantiations of Search-RLWE is as hard as quantumly solving an approximate
Shortest Vector Problem on an ideal lattice.

The problem remains to be hard when the secret s is chosen from the error
distribution instead of uniformly at random (see [4] for the reduction).

RLWE Encryption Scheme. This scheme, first proposed by Lyubashevsky,
Peikert and Regev in [29], works as follows:

Definition 4 (RLWE encryption scheme). We consider the ring Rq =
Zq[X]/ 〈Xn + 1〉 with n a power of 2 and q a prime. Messages are strings of
n bits encoded as a polynomial in Rq. An error distribution χ must be chosen,
producing “small” elements of Rq.

– Gen(1λ): Compute suitable n and q according to λ. Choose a
R← Rq and

small s, e
R← χ. Output sk = s and pk = (a, b = a · s + e) ∈ Rq × Rq.

– Enc(pk, z, r, e1, e2): To encrypt a message z ∈ {0, 1}n we view it as an ele-
ment in Rq by using its bits as the 0-1 coefficients of a polynomial. Then we

choose small elements r, e1, e2
R← χ and output (u, v) = (r · a + e1, b · r + e2 +⌊

q
2

⌉
z) ∈ Rq × Rq

320 J. Herranz et al.

– Dec(sk, (u, v)): Compute:

v − u · s = b · r + e2 +
⌊q

2

⌉
z − (r · a + e1) · s

= (a · s + e) · r + e2 +
⌊q

2

⌉
z − r · a · s − e1 · s

= a · s · r + e · r + e2 +
⌊q

2

⌉
z − r · a · s − e1 · s

= (e · r − e1 · s + e2) +
⌊q

2

⌉
z

≈
⌊q

2

⌉
z

It has been proved that the RLWE encryption scheme is IND-CPA secure,
assuming the hardness of RLWE problems [29]. The usual choice for the error
distribution χ consists in running n independent instances (one for each com-
ponent, if we see elements of Rq as vectors in (Zq)n) of a discrete Gaussian
distribution, centered at 0 and with parameter σ, in Zq.

In this paper we consider truncated Gaussian distributions: we fix a posi-
tive integer k̂ and we check that the output of the Gaussian falls in the set
{−k̂σ, . . . ,−1, 0, 1, . . . , k̂σ}; if this is not the case, we reject this sample and do
a new one. The statistical distance between the resulting truncated distribution
over Rq and the non-truncated Gaussian distribution over Rq can be bounded by
n·e−k̂2/2 (see for instance [28]). If we take n, k̂ such that this value is negligible in
the security parameter, then we can safely use truncated Gaussian distributions
with the same parameters (q, n, σ) which are considered secure when discrete
Gaussian are employed.

The choices of q and σ determine if the encryption scheme works properly:
they must be chosen to ensure that all the coefficients of e · r − e1 · s + e2 can
be upper-bounded by less than q

4 , in this way the message z is recovered by
rounding each coefficient of v − u · s to 0 or

⌊
q
2

⌉
, whichever is closest modulo

q. Also, this scheme allows to define a new algorithm Re-Enc to re-encrypt
previously encrypted data. This algorithm works as follows:

– Re-Enc(pk, (u, v), r′, e′
1, e

′
2): To re-encrypt a message z encrypted as (u, v)

we choose small r′, e′
1, e

′
2

R← χσ and output the pair

(u′, v′) = (u, v) + Enc(pk, 0, r′, e′
1, e

′
2) ∈ Rq × Rq.

Notice that every time we re-encrypt a ciphertext the norm of its noise might
grow, and therefore only a limited number of re-encryptions are allowed. Param-
eters have to be chosen so that the encryption scheme supports at least as many
re-encryptions as the number of mix-nodes of the mix-net (which is known in
advance). Given that this number is typically a fixed small quantity this require-
ment is usually already satisfied and has no real impact on the parameter selec-
tion.

Shorter Lattice-Based Zero-Knowledge Proofs 321

2.2 Zero-Knowledge Arguments for the Satisfiability of Arithmetic
Circuits

An arithmetic circuit over a field Zq is a directed acyclic graph whose vertices
are called gates and edges are called wires. Gates of in-degree 0 are called input
gates and usually are associated to variables or constants. The remaining gates
are either multiplication gates or addition gates.

The general idea of the protocol presented by Baum et al. [6] to prove the
satisfiability of an arithmetic circuit over Zq is summarized below:

1. the first idea is to arrange the O(M) wire values of the circuit into a (more
or less square) matrix with O(

√
M) rows and O(

√
M) columns;

2. using an appropriate lattice-based homomorphic commitment scheme (with
outputs being vectors of elements in ZQ for some prime number Q >> q),
one commit to each row of the above-mentioned matrix;

3. using techniques from [8], one reduces the satisfiability of the arithmetic cir-
cuit to the satisfiability of linear-algebraic statements over committed matri-
ces;

4. the last step consists in using a new zero-knowledge proof, designed by them-
selves, to prove the satisfiability of such algebraic statements (products and
additions of matrices) in an efficient way, with the proofs being as short as
possible.

Authors of [6] show a possible way of choosing the parameters of the lat-
tice, the commitment scheme and the dimensions of the matrix so that the
global protocol to prove satisfiability of the arithmetic circuit has communi-

cation complexity O(
√

M log3(M) log(Q)). The protocol involves 9 rounds of
interaction between the prover and the verifier. The security (including compu-
tational soundness) is based on the hardness of both the Short Integer Solution
(SIS) and the Learning With Errors (LWE) problems. For the security proof to
be valid, they need Q ≈ q5.

2.3 Beneš Networks

We will use as a model a permutation network called Beneš network proposed
by Abraham Waksman in [36]. The use of Beneš networks is not new in cryp-
tography, as early results from Masayuki Abe [2] already considered these con-
structions to apply them to mix-nets. Nevertheless, the asymptotic cost of these
solutions were usually worse than others, and they were considered inefficient.
In this paper we see that the recent advances in the area of zero-knowledge
proofs/arguments for satisfiability of arithmetic circuits may give a new oppor-
tunity to this kind of constructions.

Formally, a permutation network is an acyclic graph with N inputs and N
outputs where vertices have in-degree and out-degree equal to 2. These vertices
are called switch gates and each of them has a special input b ∈ {0, 1}, which
indicates if the two inputs are switched or if they remain in the same order (see
Fig. 1).

322 J. Herranz et al.

Fig. 1. Switch gate

Beneš networks are constructed recursively. A 2 × 2 Beneš network is just
a switch gate, and it is trivial that a switch gate models every permutation of
2 elements, namely the identity if b = 0 and a switch if b = 1. Now we can
construct a 2k × 2k network using two 2k−1 × 2k−1 Beneš sub-networks and 2k

switch gates, that will be able to perform whichever permutation of 2k elements.
An easy induction yields that for N = 2k, to craft an N ×N network we will

need 2 log2(N) − 1 stages of N/2 switch gates each, therefore an O(N log(N))
amount of switch gates. Beneš networks easily model any of the N ! permutations
without deadlocks (i.e. for each wire only travels one value). Besides, Beneš
networks can be extended to arbitrary sizes, and not just powers of 2 [15].

One could imagine that to perform the permutation the prover could just
choose the switch bit of each gate uniformly at random from {0, 1}, and let the
circuit apply the resulting permutation. This will not be correct, since in a shuffle
every permutation of N elements must have the same probability to appear. The
random choosing of the bits implies that some permutation will appear more
often than others, so the choice is not uniform, as shown in [3]. Therefore, if
we denote by SN the set of permutations of N elements, the prover must first
choose π

R← SN , and then run an algorithm to set the bits accordingly. These
algorithms are called routing algorithms and have a best known complexity of
O(N log(N)), such as [14], so it does not affect the asymptotic complexity of the
prover.

3 The Proposed Protocol

3.1 The Circuit that Encodes a Shuffle

A shuffling node receives as input a list of N ciphertexts L = {C1, . . . , CN}.
He first re-encrypts each ciphertext Ci = (ui, vi) using the protocol C ′

i =
(u′

i, v
′
i) ← Re-Enc(pk, (ui, vi), r′

i, e
′
1,i, e

′
2,i), which leads to an intermediate list

L′ = {C ′
1, . . . , C

′
N}, and then he applies a random permutation ρ ∈ SN to L′,

which leads to L′′ = {D1, . . . , DN}, where Di = C ′
ρ(i), for each i = 1, . . . , N . The

list L′′ is the output of the whole shuffling process (along with the correctness
proof that we will describe in this section).

The shuffling node computes the Beneš network that represents the secret
permutation ρ, that is, an assignment b1, b2, . . . , bK of bits for each of the K
switch gates of the network, where b� ∈ {0, 1}, for all � = 1, . . . ,K.

Shorter Lattice-Based Zero-Knowledge Proofs 323

Note that we separate the shuffling in two well-differentiated parts/circuits,
one for the re-encryption and one for the permutation. An alternative solution
(used for instance in [12]) would be to add a re-randomization step in each switch
gate of the Beneš network. However, the size of the global circuit for the shuffle is
smaller with our solution: it contains less re-randomization/re-encryption gates,
O(N) than the O(N log N) re-randomization gates that would be required in
this alternative solution.

All the elements involved in the encryption scheme are polynomials in the
ring Rq of degree at most n−1, so we see each element as a tuple of n elements in
the field Zq underlying the arithmetic circuit that we will consider. For instance,
ui ↔ (ui,0, . . . , ui,n−1).

The public inputs of the arithmetic circuit are (the Zq components of) the N
ciphertexts in L = {C1, . . . , CN} and the N ciphertexts in L′′ = {D1, . . . , DN}.
So, counting elements in the field Zq of the circuit, we have 4nN public inputs.

The secret inputs of the arithmetic circuit are:

(i) (The Zq components of) the N triples of noise (r′
i, e

′
1,i, e

′
2,i) used to re-encrypt

each ciphertext Ci, which means 3nN elements in Zq,
(ii) The K bits b1, . . . , bK for the K switching gates of the Beneš network; we

recall that K ∈ O(N log(N)).

What does our circuit Cshuffle do? Essentially, three different things:

1. Check that the components of the noise are small; for instance, if
r′
i ↔ (r′

i,0, . . . , r
′
i,n−1), then the circuit needs to check that r′

i,j ∈
{−k̂σ, . . . ,−1, 0, 1, . . . , k̂σ} ⊂ Zq, for all j = 0, . . . , n − 1. This checking is
encoded as the arithmetic circuit equality (r′

i,j + k̂σ) · . . . · (r′
i,j + 1) · r′

i,j ·
(r′

i,j − 1) · . . . · (r′
i,j − k̂σ) = 0, in Zq. Since this has to be done for each

i = 1, . . . , N , each j = 0, . . . , n − 1 and each element in the noise triple, we
have a circuit with 6k̂σnN gates. If some checking fails, the arithmetic circuit
is not satisfied.

2. Check that each secret input b� is a bit, that is, check that b� · (1 − b�) = 0 in
Zq, for all � = 1, . . . ,K. These circuits consist of 2K ∈ O(N log(N)) gates. If
some checking fails, the arithmetic circuit is not satisfied.

3. Check that the Beneš network, when applied to the result of re-encrypting
the ciphertexts in L, produces the ciphertexts in L′′. This consists in two
phases, one for re-encryption and one for permutation:
(a) re-encryption circuit: each re-encryption C ′

i = (u′
i, v

′
i) ← Re-Enc(pk,

(ui, vi), r′
i, e

′
1,i, e

′
2,i) essentially consists in doing two polynomial multi-

plications and two polynomial additions, in the ring Rq. If we imple-
ment these operations with the classical method, this means O(n2) gates
for each re-encryption, as an arithmetic circuit over Zq. The complex-
ity of this circuit can be slightly improved when multiplying polynomi-
als if we use Karatsuba’s algorithm. Notice that this would imply that
the output is the product of the polynomials over Zq[X], which has (at
most) 2n − 1 monomials. We can reduce this resulting polynomial into

324 J. Herranz et al.

Rq = Zq[X]/ 〈Xn + 1〉 again with n − 1 subtractions, since Xn = −1.
In this case, if the polynomials have degree a power of 2, the number of
integer multiplications becomes O(nlog2 3).

(b) permutation circuit: the same permutation must be applied to all the n
components of each of the two elements (u′

i, v
′
i) of a re-encrypted cipher-

text C ′
i. Inside the Beneš network, each switch gate, with bit input

b ∈ {0, 1}, couple of inputs (u1, u2) ∈ (Zq)2 and couple of outputs
(v1, v2) ∈ (Zq)2, just consists in applying the following operation

v1 = (1 − b) · u1 + b · u2 mod q
v2 = (1 − b) · u2 + b · u1 mod q

Therefore, the number of gates of the arithmetic circuit for the global
Beneš network is 12nK ∈ O(nN log(N)).

The outputs of these two phases are then compared with the list L′′. If all
the elements are equal, then the arithmetic circuit is satisfied.

The number M of gates of the complete arithmetic circuit Cshuffle is thus

M ∈ O
(

N ·
(
nk̂σ + nlog2 3 + n log(N)

))

3.2 Non-interactive Proof of Circuit Satisfiability, with Fiat-Shamir

The proof of satisfiability of an arithmetic circuit in [6] is an interactive protocol
between the prover (the shuffling node, in our case) and a verifier. The protocol
consists in 9 rounds of communication. The amount of information exchanged
between the prover and the verifier is O(

√
M log(M)) elements of ZQ, where

Q ≈ q5, for an arithmetic circuit with M gates operating in the field Zq.
In our setting of producing a publicly verifiable proof of correctness of a

shuffle, interaction is not permitted: the shuffling node must produce a proof π
without interacting with the (possibly unknown, yet) verifier.

The standard way of transforming such an interactive protocol into a non-
interactive one is to use the Fiat-Shamir paradigm: the challenges sent from the
verifier to the prover are replaced with values that are computed by the own
prover, applying a secure hash function to the statement of the proof and the
values exchanged in the previous rounds of communication. The length of the
resulting proof π is thus equivalent to the amount of information exchanged in
the interactive version; in our case, π contains O(

√
M log(M)) elements of ZQ.

We emphasize here that relaying in the Fiat-Shamir transformation makes
the protocol secure in the ROM, but not in the QROM (that allows oracle queries
to be in quantum superposition). This is a common choice in the literature as, at
the moment, there has been no natural scheme proven secure in the ROM based
on a quantum-safe problem that has later been proven insecure in the QROM.
Very recent results have shown how, provided some additional constrains are
satisfied, some generic schemes proven secure in the ROM are also secure in the
QROM (see [20] and references therein).

Shorter Lattice-Based Zero-Knowledge Proofs 325

3.3 The Resulting Protocol

All in all, our proposed protocol to prove the correctness of a shuffle works as
follows. The public input of the shuffling node is a list L = {(ui, vi)} of N
ciphertexts. The node then

1. Chooses noise elements (r′
i, e

′
1,i, e

′
2,i) using the truncated Gaussian dis-

tribution over Rq, and computes re-encryptions C ′
i = (u′

i, v
′
i) ←

Re-Enc(pk, (ui, vi), r′
i, e

′
1,i, e

′
2,i), for i = 1, . . . , N ,

2. Chooses at random a permutation ρ for the set {1, 2, . . . , N} and defines
Di = C ′

ρ(i), for each i = 1, . . . , N ,
3. Finds the bit assignment, {b�}1≤�≤K , for the switch gates of the Beneš net-

work that correspond to permutation ρ,
4. Uses the non-interactive (Fiat-Shamir) version of the satisfiability proof of an

arithmetic circuit to compute a proof π for circuit Cshuffle.

The shuffling node publishes the list L′′ = {D1, . . . , DN} of shuffled cipher-
texts along with the proof π. Any verifier can take the lists L and L′′ and verify
the correctness of the non-interactive zero-knowledge proof π.

4 Analysis: Efficiency, Security and Possible
Improvements

4.1 Complexity Analysis and Possible Choices of Parameters

The goal of this paper was to design a protocol to prove the correctness of a
shuffle of N ciphertexts, with post-quantum security and communication com-
plexity lower than O(N). The protocol proposed in the previous section achieves
this goal.

Regarding communication complexity, the size of the resulting proofs is

O(
√

M log3(M) log(Q)), where Q is a prime number for the commitments
needed in the construction of [6], roughly Q ≈ q5 and M is the number of
gates of the shuffle circuit:

M ∈ O
(

N ·
(
nk̂σ + nlog2 3 + n log(N)

))

Therefore, the dependency of the size of a proof on the number N of shuffled
ciphertexts is sub-linear, in the order O(log2(N)

√
N). On the other hand, there

are other parameters to be taken into account: the dimension n of the underlying
ideal lattice and also the values k̂ and σ related to the truncated Gaussian
distribution used to produce the (re-encrypted) ciphertexts have an impact on
the size of a proof π.

Two possible configurations for these parameters, for a security level of 128
bits, could be

– n = 128 = 27, q = 4099 ≈ 212 (and thus Q ≈ 260), k̃ = 14, σ = 27

326 J. Herranz et al.

– n = 512 = 29, , q = 1048583 ≈ 220 (and thus Q ≈ 2100), k̃ = 14, σ = 6

The length of the proofs in the new protocol starts improving over previous
proposals (with linear dependency on N) once N gets big numbers, e.g. one
million ciphertexts. For smaller numbers of ciphertexts, i.e. in small elections, the
result of our new protocol does not significantly improve over existing solutions.

Possible Improvements. The results in [6] for the zero-knowledge argu-
ment of satisfiability of an arithmetic circuit have been improved and gen-
eralized in [9]. Authors of this last work give a protocol, for each pos-
itive integer d ≥ 1, where the communication complexity is essentially
O

(
log Q · M

1
d+1 · (d3λ log2(M)dλ2)

)
. The result in [6] can be seen as the par-

ticular case d = 1 of the result in [9].
The improvement on the communication complexity with respect to M comes

at the cost of a worse (bigger) value needed for the big prime number Q. Roughly
speaking, Q = O(q4+d) is required.

Our protocol for the proof of a shuffle can be instantiated by using this zero-
knowledge argument, to prove the satisfiability of the shuffle circuit described in
Subsect. 3.1. The result are shorter proofs: each time we increase d by one unit,
we increase the size of the proof by a factor of log(q), but we decrease the size of
the proof by a more significant factor: from d = 1 to d = 2, by a factor O(M1/6),
from d = 1 to d = 3 by a factor O(M1/4), etc.

The idea is thus to take the number of votes in the election (i.e. the number
N of ciphertexts to be shuffled) and then find a secure configuration for the
lattice parameters (q, n, σ, k̂) and a suitable value for d in order to minimize the
size of the produced proofs of a correct shuffle.

4.2 Security Analysis

The security of our proof of correctness of a shuffle follows from the security
properties of the zero-knowledge proof systems for arithmetic circuits in [6,9]. On
the one hand, the zero-knowledge property of the proof systems implies that an
execution of the proof of a shuffle protocol does not leak any information about
the secret witness, that is about the randomness employed to re-encrypt each
input ciphertext and about the permutation that has been applied (through the
corresponding Beneš network) to the list of re-encrypted ciphertexts. Therefore,
the proof of a shuffle enjoys privacy.

On the other hand, the (computational) soundness property of the proof
systems implies that each accepted execution of the proof of a shuffle protocol
must have been produced by a prover (a shuffling node) who knows a valid
witness for the considered circuit. In the circuit that we have considered in our
protocol, this ensures that:

(i) The noise used for re-encryption is small enough, satisfying the same bound
as the truncated Gaussian distribution, because each coefficient of the noise
polynomials belongs to the set {−k̂σ, . . . ,−1, 0, 1, . . . , k̂σ};

Shorter Lattice-Based Zero-Knowledge Proofs 327

(ii) The bits for the Beneš network are actually bits, bi ∈ {0, 1}, and so a permu-
tation is applied to the list of re-encrypted ciphertexts.

Therefore, if a dishonest shuffling node wants to fool the election by including
false ciphertexts (not coming from a real shuffling of the input ciphertexts) or by
adding too much noise to the ciphertexts (in such a way that the final decryption
of the encrypted votes, in the tally phase, leads to decryption errors), the proof of
correctness of his shuffling will not be accepted, and so this dishonest behaviour
will be detected.

Of course, a dishonest shuffling node can use a non-random permutation
(for instance, the identity) and can impose all the re-encryption noise to be 0,
in such a way that his input list of ciphertexts is exactly equal to the output
list of ciphertexts. Such a behaviour can never be avoided, but once again, we
insist that the general assumption is that at least one of the shuffling nodes is
honest and performs a correct shuffling (re-encryption and permutation), which
is enough to provide anonymity to the election.

Putting together the assumptions for the security of the encryption scheme
and the assumptions for the security of the proof systems in [6,9], we conclude
that our proposed protocol to prove the correctness of a shuffle is secure under
the assumption that the SIS and the RLWE problems are hard.

Acknowledgements. The work is partially supported by the Spanish Ministerio de
Ciencia e Innovación (MICINN), under Project PID2019-109379RB-I00 and by the
European Union PROMETHEUS project (Horizon 2020 Research and Innovation Pro-
gram, grant 780701).

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144

2. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999). https://doi.org/10.1007/978-3-540-48000-6 21

3. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44586-2 23

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

5. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T., Tunge, T.: Lattice-based proof
of shuffle and applications to electronic voting. In: Paterson K.G. (eds) Topics in
Cryptology – CT-RSA 2021. CT-RSA 2021. LNCS, vol. 12704. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75539-3 10

6. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

https://doi.org/10.1007/BFb0054144
https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1007/3-540-44586-2_23
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-030-75539-3_10
https://doi.org/10.1007/978-3-319-96881-0_23

328 J. Herranz et al.

7. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

9. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 16

10. Boyen, X., Haines, T., Mueller, J.: Epoque: practical end-to-end verifiable post-
quantum-secure e-voting. To appear in the Proceedings of IEEE EuroS&P 2021
Cryptology ePrint Archive, Report 2021/304 (2021). https://eprint.iacr.org/2021/
304

11. Boyen, X., Haines, T., Müller, J.: A verifiable and practical lattice-based decryption
mix net with external auditing. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020. LNCS, vol. 12309, pp. 336–356. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59013-0 17

12. Boyle, E., Klein, S., Rosen, A., Segev, G.: Securing Abe’s mix-net against malicious
verifiers via witness indistinguishability. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 274–291. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 15

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 21–23 May 2018, pp. 315–334.
IEEE Computer Society Press (2018)

14. Chakrabarty, A., Collier, M., Mukhopadhyay, S.: Matrix-based nonblocking routing
algorithm for Beneš networks. In: 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns, pp. 551–556 (2009)

15. Chang, C., Melhem, R.: Arbitrary size Benes networks. Parallel Process. Lett. 07,
05 (1997)

16. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

17. Costa, N., Mart́ınez, R., Morillo, P.: Proof of a shuffle for lattice-based cryptog-
raphy. In: Lipmaa, H., Mitrokotsa, A., Matulevivcius, R. (eds.) NordSec 2017.
LNCS, vol. 10674, pp. 280–296. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70290-2 17

18. Costa, N., Mart́ınez, R., Morillo, P.: Lattice-based proof of a shuffle. In: Brac-
ciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol.
11599, pp. 330–346. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43725-1 23

19. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe vot-
ing from lattices. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, Dallas, TX, USA, 31 October–2 November 2017, pp. 1565–1581.
ACM Press (2017)

20. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round Fiat-Shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 21

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1_16
https://eprint.iacr.org/2021/304
https://eprint.iacr.org/2021/304
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1007/978-3-319-98113-0_15
https://doi.org/10.1007/978-3-319-98113-0_15
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21

Shorter Lattice-Based Zero-Knowledge Proofs 329

21. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 88(1), 172–188 (2005)

22. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 22

23. Gjøsteen, K., Strand, M.: A roadmap to fully homomorphic elections: stronger
security, better verifiability. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol.
10323, pp. 404–418. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 25

24. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36288-6 11

25. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 22

26. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71677-8 25

27. Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: 2020 IEEE 33rd
Computer Security Foundations Symposium (CSF), pp. 49–64 (2020)

28. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 1–35 (2013)

30. Markus, J., Ari, J.: Millimix: Mixing in small batches. Technical report (1999)
31. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In:

Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, Philadelphia, PA, USA, 5–8
November 2001, pp. 116–125. ACM Press (2001)

32. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X 32

33. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

34. Strand, M.: A verifiable shuffle for the GSW cryptosystem. In: Zohar, A., et al.
(eds.) FC 2018. LNCS, vol. 10958, pp. 165–180. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-662-58820-8 12

35. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

36. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
37. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González

Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02620-1 28

https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-71677-8_25
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-02620-1_28

WTSC – Security and Verification

On-Chain Smart Contract Verification
over Tendermint

Luca Olivieri1,2(B) , Fausto Spoto1 , and Fabio Tagliaferro1

1 Dipartimento di Informatica, Università di Verona, Verona, Italy
{luca.olivieri,fausto.spoto,fabio.tagliaferro}@univr.it

2 Corvallis S.r.l, Padova, Italy

Abstract. Smart contracts are computer code that runs in blockchain
and expresses the rules of an agreement among parties. A bug in their
code has major consequences, such as rule violations and security attacks.
Smart contracts are immutable and cannot be easily replaced to patch a
bug. To overcome these problems, there exist automatic static analyzers
that find bugs before smart contracts are installed in blockchain. How-
ever, this off-chain verification is optional : programmers are not forced
to use it. This paper defines on-chain verification instead, that occurs
inside the same blockchain nodes, when the code of smart contracts is
installed. It acts as a mandatory entry filter that bans code that does
not abide to the verification rules, that are consequently part of the con-
sensus rules of the blockchain. Thus, an improvement in on-chain veri-
fication entails a consensus update of the network. This paper provides
an implementation of on-chain verification for smart contracts written
in the Takamaka subset of Java, running as a Tendermint application. It
shows that on-chain verification works, reporting actual experiments.

Keywords: Smart contract · Software verification · Program
analysis · Blockchain · Tendermint

1 Introduction

Blockchain is a distributed ledger that replicates data in a peer-to-peer network
of nodes. Transactions are ledger updates, digitally signed by the users. The
nodes of the network collect broadcasted transactions into a growing cryptogra-
phically-linked chain of blocks. They execute a consensus algorithm to agree
on the ledger evolution. Once consensus is achieved, it is hard, or impossible,
to withdraw transactions from the blockchain. In this sense, blockchains are
immutable. Smart contracts specify rules and effects of transactions and can be
either built-in or given as custom code installed inside the same blockchain.

Bitcoin [1,9], in 2008, was the first popular blockchain implementation. It is a
peer-to-peer electronic cash system that stores and transmits value in a currency

Work supported by FSE – Regione del Veneto: DGR N. 1463/2019, Innovazione e
ricerca per un Veneto più competitivo – Assegni di ricerca anno 2019.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 333–347, 2021.
https://doi.org/10.1007/978-3-662-63958-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_28&domain=pdf
http://orcid.org/0000-0001-8074-8980
http://orcid.org/0000-0003-2973-0384
http://orcid.org/0000-0002-5904-8768
https://doi.org/10.1007/978-3-662-63958-0_28

334 L. Olivieri et al.

called bitcoin, using a Proof of Work (PoW) consensus algorithm. A Turing-
incomplete low-level language specifies Bitcoin’s transactions. It can be seen as
a limited scripting language for smart contracts. In 2013, Ethereum [2,4] intro-
duced a Turing-complete bytecode for smart contracts, for developing decentral-
ized applications. Ethereum smart contracts can be programmed in high-level
languages, with Solidity being the most popular one, and run on the Ethereum
virtual machine. Ethereum uses PoW but is currently switching to Proof of
Stake (PoS), a consensus algorithm with reduced resource consumption [12].
The Tendermint protocol [8] provides a generic and customizable infrastructure
for networking and consensus through PoS, with a pseudo-random election of
the validator node for the next block. Network participants who want to become
validators freeze a certain amount of stake, that acts as an economic incentive
that dissuades from validating or creating fraudulent transactions. If the network
detects a fraudulent transaction, the culprit loses part of its stake and the right
to act as a validator. Tendermint’s protocol tolerates up to 1

3 of misbehaving
nodes. Tendermint leaves the notion of transaction unspecified: programmers
can develop an application layer for Tendermint, that specifies which transac-
tions exist and which is their semantics. The application layer can be written in
any programming language and can be an actual environment for the execution
of Turing-complete smart contracts, similarly to Ethereum.

Not surprisingly, Turing-completeness for smart contracts introduces the risk
of all sort of bugs [3,11]. Since smart contracts deal with money and cannot
be replaced, it is paramount to install only correct code in blockchain. Thus,
there exist many analyzers that verify smart contracts before they get installed
in blockchain. For instance, https://mythx.io is an analysis service for Solidity
that uses symbolic analysis to detect software vulnerabilities. Echidna [7] uses a
fuzzing approach to find a sequence of transactions that violates a given property.
Slither [6] uses data-flow and taint analysis to find potential issues. Furthermore,
there are companies that provide code audit services, using both automatic tools
and human investigation. A limit of these tools and procedures is that they are
optional and external to the blockchain (hence off-chain): the latter does not
actively protect itself against the deployment of bugged or dangerous code.

This paper makes the following contributions:

– It defines on-chain code verification, where the nodes of the blockchain ver-
ify the code being deployed. That is, the same network, internally, runs a
mandatory code verification step and rejects code that does not pass it. As
a consequence, on-chain verification is a defensive, proactive technique that
guarantees that all code executed in blockchain has been successfully verified.

– It describes an actual implementation of a blockchain with on-chain verifica-
tion, built as a Tendermint application that runs smart contracts written in
the Takamaka subset of Java [14]. Note that we have used Tendermint as a
third-party tool over which we integrate our code. Nothing has been changed
in Tendermint. Our code includes 26 on-chain checks, that mostly verify the
correct use of Takamaka’s primitives and code annotations and the use of a
deterministic subset of Java [15].

https://mythx.io

On-Chain Smart Contract Verification over Tendermint 335

Fig. 1. High-level architecture of an application running on Tendermint Core and per-
forming on-chain verification.

– It describes a lazy re-verification approach that copes with the evolution of the
code verification rules. Namely, on-chain verification is part of code deploy-
ment transactions, hence its rules are consensus rules whose evolution requires
a network update. Moreover, code previously successfully verified with old ver-
ification rules might fail to pass new verification rules. The implementation
of this last contribution is not available yet.

This paper is organized as follows. Section 2 defines a general architecture for
on-chain code verification. Section 3 describes our implementation of on-chain
verification, over Tendermint, and shows an on-chain check. Section 4 reports
experiments with our implementation and describes how readers and reviewers
can validate them. Section 5 shows how the blockchain can cope with the evo-
lution of code verification rules. Section 6 comments on limitations, related and
future work.

2 On-Chain Code Verification

This section defines the architecture of a blockchain node with on-chain code
verification, built over Tendermint. Following Fig. 1, it consists of three layers:

Networking: discovers and connects nodes with each other, propagates requests
for transactions and collects their responses from other nodes.

Consensus: compares and approves/rejects the responses obtained by executing
the requests on the nodes.

Application: specifies which requests are valid, how their responses are com-
puted and how the application’s state consequently evolves.

Tendermint Core is an implementation of networking and consensus, without any
application layer (its distribution includes a few toy applications, irrelevant for
our purposes). Programmers develop their own application layer and plug it into
Tendermint Core via its Application BlockChain Interface (ABCI). Tendermint
Core replicates the application state on each machine of the network.

336 L. Olivieri et al.

Fig. 2. Tendermint Core and a Tendermint application, with their respective databases.

Figure 2 shows a more detailed picture of Tendermint Core and of an appli-
cation connected through its ABCI. It shows that Tendermint Core keeps the
blocks of the blockchain in its own database, that needn’t be the same used to
hold the application’s state. The latter holds, for instance, the code of the smart
contracts installed in blockchain and the value of their state variables. Tender-
mint Core needs only the hash of the application state, for consensus, to ensure
that all nodes have reached the same application state.

One can define the application state as a map σ from the hash of the requests
that the blockchain has executed to the responses that have been computed for
them. The application state contains the full responses, but only the hash of
the requests. Hence, it can be implemented as a Merkle-Patricia trie. The full
requests are contained in the database of blocks of Tendermint Core instead,
since they are needed to replay the transactions in all nodes of the network.

On-chain code verification requires a code verification module (Fig. 1). This
is part of the application layer, since it contributes to the execution of the
application-specific requests for code installation in blockchain. Assume that
a request , whose hash is requesth, reaches the blockchain, requiring to install, in
blockchain, the code of some smart contracts, reported inside request .

Figure 3 shows the sequence diagram for the execution of request . Namely,
Tendermint Core routes request through networking and consensus up to the
application, that uses its verification module to either approve or reject the
code. If approved, the application includes the code in a response and updates
its state σ with a new binding: σ(requesth) = response. The hash requesth is an
immutable, machine-independent reference to this code, used later to instantiate

On-Chain Smart Contract Verification over Tendermint 337

Fig. 3. Sequence diagram for code verification and installation in blockchain.

and execute smart contracts. If the code is rejected, instead, the application state
is expanded with a failure response, that does not contain any code.

Figure 4 reports an example of application state evolution. It reports the
requests in full, for readability, but remember that only the hash of the requests
is kept in the application state. Figure 4(a) shows the application state after the
execution of a code installation request for which verification succeeds. The code
is Java bytecode, packaged into a jar, i.e., a zipped container of Java bytecode.
The response contains the same jar (i.e., the same code as the request1). In terms
of Java, the hash of the request is the classpath of subsequent code executions.
Figure 4(b) reports, instead, a request whose code fails to verify. The response
does not include any code installed in blockchain. This shows that the verification
rules are part of the consensus rules that determine which code installation
request is valid and which must be rejected instead (Fig. 4(a) and (b)). Hence
they must be the same in every node of the network and must be deterministic.

On-chain verification performs code verification statically, only once, when
the code is installed in blockchain. For instance, Fig. 4(c) shows a subsequent
request that asks to instantiate a smart contract whose code has been installed
by the request in Fig. 4(a). The request in Fig. 4(c) uses the hash of the request in
Fig. 4(a) as its classpath and contains the parameters for calling the constructor
of the smart contract. The execution of the request runs that constructor, with-
out code verification: it has been already performed in Fig. 4(a). The immutable
reference hash of request#0 is used later to refer to the new smart contract

1 The response might also contain an instrumentation of the code, as it is the case for
the Java subset for programming smart contracts called Takamaka, that we use in
our implementation. This is irrelevant here and we refer the interested reader to [14].

338 L. Olivieri et al.

Fig. 4. The evolution of the application state during a sequence of requests.

instance2. The state of the new smart contract is reported in the response as
a set of updates, that is, instance fields modified during the execution of the
request, including those of the smart contract instance hash of request#0 that
has been created in blockchain. Finally, Fig. 4(d) shows the execution of a request
asking to call a method on the instance of smart contract hash of request#0. This
last request refers to both the classpath and the target instance smart contract.
Its execution, in general, modifies some instance fields of objects in blockchain,
that are reported as updates in its response. This last request does not verify
the code either, since it is not a code installation request.

The rules of on-chain verification are part of the consensus rules of the
blockchain, since they determine if the response of a request to install code
in the blockchain is successful or failed. Hence, they determine the evolution of
the state of the application layer and its hash, that is reported in the blocks
of the underlying Tendermint blockchain, that uses it for consensus. This is the

2 The index #0 refers to the first object created during the execution of a request.
In general, a request can instantiate many objects, depending on the code that it
executes. For simplicity, this example assumes that only one has been instantiated.

On-Chain Smart Contract Verification over Tendermint 339

standard way of working for Tendermint. Hence, all nodes must use the same
verification rules. Nodes that use different rules will be automatically excluded
from the Tendermint blockchain.

3 Implementation

We have implemented on-chain verification for smart contracts written in the
Takamaka subset of Java [14] (the lazy re-verification technique of Sect. 5 is still
under development and we leave it for future work). The goal of Takamaka is to
write smart contracts in a well-known programming language, leveraging exper-
tise and existing mature development tools. The application layer of Takamaka is
a state machine (the Tendermint application in Fig. 2) that executes transactions
from request to response. Requests can specify the addition of a jar in the perma-
nent state of the application, or the execution of a constructor, or of an instance
or static method of code previously installed in the state. Responses include the
effects of the transaction, as a set of field updates (see Fig. 4). Updates can be
computed since the jar of the Java code is instrumented before being installed in
blockchain, with extra code that keeps track of the affected fields of objects [14].
Determinism is ensured since only a deterministic subset of Java is allowed,
restricted to a deterministic API of the Java library [15]. The state machine of
Takamaka is implemented in Java and runs on a standard Java virtual machine.
The state is kept in a Merkle-Patricia trie that implements a map from hash of
requests to their corresponding response (Fig. 4). This trie is kept in the Xodus
transactional database by JetBrains3.

The verification module is implemented as a sequence of checks performed
on methods and classes. Since the request of installing new code in blockchain
contains the compiled bytecode only, such checks run at Java bytecode level, by
using the BCEL library for Java bytecode manipulation4. The source code is
simply not available in blockchain. Currently, Takamaka’s on-chain verification
performs 26 checks on every jar that gets installed in blockchain. They must all
pass, or otherwise the jar will be rejected. Figure 5 describes some of them.

We show a specific example of check now. It verifies that method caller() is
used in the right context. That method corresponds to msg.sender in Solidity:
it allows programmers to get a reference to the contract that called a method or
constructor X.

The method caller() can be used inside the code of X only if X satisfies
two constraints5:

1. X is annotated as @FromContract(class), for some class;
2. the invocation of caller() occurs on this.

3 https://github.com/JetBrains/xodus.
4 https://commons.apache.org/proper/commons-bcel.
5 @FromContract and, later, @Payable are Java annotations, that is, a mechanism for

adding metadata information to source and compiled code. They are irrelevant for
the code executor, but can be used by code analysis and instrumentation tools.

https://github.com/JetBrains/xodus
https://commons.apache.org/proper/commons-bcel

340 L. Olivieri et al.

Fig. 5. Some of the 26 on-chain verifications currently performed by Takamaka.

The rationale of constraint 1 is that @FromContract(class) guarantees that X
can only be called from a contract of type class, or subclass, or from an external
wallet whose paying account has type class, or subclass. Hence the caller exists.
For instance, the following contract stores its creator in field owner. The use of
caller() is correct here, since it occurs inside a @FromContract constructor:

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

public class C1 extends Contract {

private C1 owner;

public @FromContract(C1.class) C1() {

owner = (C1) caller(); // ok

}

}

On-Chain Smart Contract Verification over Tendermint 341

Instead, it is incorrect to invoke caller() in a method or constructor not
annotated as @FromContract, since its caller is not necessarily a contract and
caller() would be meaningless in that case:

import io.takamaka.code.lang.Contract;

public class C2 extends Contract {

public void m() {

... = caller(); // error at deployment time

}

}

The reason of constraint 2 is that its violation lets one access the caller of
other contracts, with possible logical inconsistencies and security issues. For the
same reason, the use of tx.origin is normally an antipattern in Solidity (see
Tx.origin Authentication in [2]). Constraint 2 holds in classes C1 and C2 above,
but is violated below:

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

public class C3 extends Contract {

private C3 owner;

public @FromContract(C3.class) C3() {

owner = (C3) caller(); // ok

}

public @FromContract void m() {

... owner.caller() ...; // error at deployment-time

}

}

Figure 6 reports our implementation of a check that verifies if a method
satisfies constraints 1 and 2 above. The code has been simplified for readability:
its complete version can be found in the repository of the distribution of our
implementation of the runtime of Takamaka (see Sect. 4). Full understanding of
the code in Fig. 6 requires knowledge about Java bytecode and BCEL, which is
outside the scope of this paper. Nevertheless, it is possible to understand the
structure of the code: the constructor of the check scans the stream of Java
bytecode instructions of the method (instructions()), filters those that call
a method named caller that returns a contract, and checks two conditions
for each of them (with the two if’s inside the forEach): the method must be
annotated as FromContract (constraint 1 above) and the invocation must be
immediately preceded by an aload 0 bytecode instruction. The latter is Java
bytecode for pushing this on the stack, as receiver of the call to caller()
(constraint 2 above). If any of the if’s is satisfied, an issue is generated, which
will later reject the installation of the code in blockchain.

342 L. Olivieri et al.

Fig. 6. The on-chain check for a correct use of caller().

4 Experiments

We have implemented our on-chain verification for the Takamaka subset of
Java, inside its runtime that works as a Tendermint application. It is an actual
blockchain running on Tendermint, that can be programmed with smart con-
tracts written in Java. Our implementation is part of a larger project, called
Hotmoka, whose long-term goal is to use the Takamaka language for program-
ming both blockchains and IoT devices. We have created three scripts that
request to install in blockchain the examples from Sect. 3. We have also cre-
ated a test that installs a smart contract and uses it to run many transactions,
to check the scalability of the technique and evaluate the difference when on-
chain verification is on or off. Readers who want to run the experiments and
inspect the results can download the code6 and follow the instructions in the
WTSC21.txt. That repository contains also the code of the 26 checks of on-chain
verification (including that in Fig. 6).

6 git clone --branch wtsc21 https://github.com/Hotmoka/hotmoka.git.

On-Chain Smart Contract Verification over Tendermint 343

The first experiment starts a blockchain of a single node and runs a script
that connects to the node and installs a jar containing class C1 from Sec. 3. The
result is successful:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C1 in the node... done (on-chain verification succeeded)

C1.jar installed at address ee848b5bc7fd8283ab01b5977970e71f548...

The subsequent experiment installs C2 instead. The attempt to install the code
in blockchain will fail since on-chain verification fails:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C2 in the node...

Exception in thread "main" io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException: C2.java:8

caller() can only be used inside a @FromContract method or constructor

The third experiment performs the same operation with class C3. This attempt
will fail since on-chain verification fails:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C3 in the node...

Exception in thread "main" io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException: C3.java:14

caller() can only be called on "this"

In order to evaluate the scalability of our technique, we have created a smart
contract that creates and funds a pool of 500 externally-owned accounts and
allows one to determine which is the richest among them (has highest balance).
We have written a JUnit test that installs that smart contract in blockchain
and uses it to create and fund the 500 accounts, execute 1, 000 random money
transfers between them and ask for the richest. This process is repeated ten
times. The execution time of this test is 158.19 s on our machine (Intel Core i3-
4150, 16 GB of RAM, running Ubuntu Linux 20.04.1). In total (including code
installation and account creation) the test runs 10, 020 transactions, that is, it
performs 63.34 transactions per second. By turning on-chain verification off, the
same test runs in 156.95 s, that is, it performs 63.84 transactions per second.
These numbers have been computed as an average over five executions of the
test. This shows that on-chain verification increases the execution time of the
test by only 0.79%.

5 Evolution of Code Verification

This section shows that a change in the verification rules requires to re-verify all
code installed in blockchain and that this can be performed lazily, on-demand.

344 L. Olivieri et al.

Section 2 stated that code verification is only performed when code is
installed in blockchain. However, that is true only under the unrealistic assump-
tion that the verification module never changes. In practice, that module will be
updated eventually, to include new verification rules or to improve the precision
of already existing rules. When a new version is deployed, it becomes necessary
to update all nodes to that version (or at least all validators), or otherwise con-
sensus might be lost. A change in the verification rules, if deployed on a subset
of the network only, entails that the updated nodes might accept a request that
the non-updated nodes might reject instead, or vice versa.

All approaches to a network update can be used here. The novelty, however,
is that some code that was successfully verified with the previous version of the
verification module might be rejected with its current version, or vice versa.
Hence, there must be a mechanism that enforces that the execution of some
code in blockchain occurs only if that code passes the current verification rules.
Conceptually, this means that an update of the verification module triggers a re-
verification of all code previously successfully installed in blockchain. In practice,
this cannot be performed, since it would be extremely expensive and would hang
the nodes for a long time. Our solution, that we are going to describe, is to lazily
re-verify the code on-demand, when it is asked to run. This amortizes the cost
of re-verification. Moreover, [10] shows that only 0.05% of all contracts installed
in Ethereum are involved in 80% of the transactions. Hence, a lazy approach
avoids the re-verification of code that might actually never run again.

In order to implement this lazy re-verification approach, we expand the
information in the response of a successful code installation request (Fig. 4(a)).
Namely, together with the installed code, response is enriched with a numeri-
cal tag τ(response), i.e., the version of the verification module that has been
used to verify the code inside response. The sequence diagram in Fig. 7 shows
the workflow for lazy code re-verification. Assume that a request arrives, that
requires to run code referred with the hash requesth of a previous, success-
ful code installation request (as in Fig. 4(c) and (d)). The node finds out that
σ(requesth) = response has a verification tag τ(response) and compares it with
the current version τ of the verification module. There are two possibilities:

1. τ = τ(response): the code was verified with the current version of the verifi-
cation module, it does not need re-verification and can be run immediately;

2. τ > τ(response): the code was verified with an old version of the verification
module; it must be re-verified before being run.

In the second case, the node verifies the code again, using the current version
τ of the verification module. This is possible since response includes that code
(Fig. 4(a)). A new response response ′ will be computed (successful, having τ as
verification module version, or failed) and the application state is updated as
σ(requesth) = response ′. The use of requesth in future requests will not re-verify
the code, until a newer version of the verification module is installed. The update
is possible since it occurs in the state, not in the blockchain, whose blocks are
immutable.

On-Chain Smart Contract Verification over Tendermint 345

Fig. 7. Sequence diagram for lazy code re-verification.

It is important to note that response ′ might state that reverification failed,
because the old code passed the previous verification rules but not the new ones.
In that case, the execution of the code will fail, since its classpath is not valid
anymore. This means that a smart contract might work today, but might stop
working tomorrow, if updated verification rules reject its code. In theory, the
converse is also possible: the same contract might be reactivated after tomor-
row, if another change in the verification rules replaces a failed response with
a successful response. However, we have decided to forbid this second scenario,
since it might be surprising for users.

6 Discussion

To our knowledge, this paper defines and implements the first on-chain code
verification for smart contracts, that allows the same blockchain to reject the
code that does not pass a set of verification rules. From this point of view, the
technique is related to continuous integration, that builds and deploys code only
if it passes all compilation and testing requirements. The main difference is that
smart contracts cannot be replaced or debugged once installed in blockchain.

Some blockchains, such as Ethereum, apply a notion of transparency [10],
that lets one store in blockchain the source code of the smart contracts, to guar-
antee that it actually compiles into their bytecode. But this is only an optional
technique that ensures that bytecode and source code match: no code verification
is applied.

The specific technique for updating the consensus rules of a network, after
a change in the verification rules (Sect. 5), is orthogonal to our work. In Cos-
mos, the government module supports such an update, with (dis-)incentives

346 L. Olivieri et al.

to minimize misconduct within the participants. Polkadot delegates updates to
periodic referendums among stakeholders7. Algorand [5] triggers an update if a
large majority of block proposers declare to be ready for that.

On-chain verification must be efficient, in order not to block the nodes of the
network. Our experiments (Sect. 4) show that the time of analysis is largely dom-
inated by the time of block creation, also because smart contracts are typically
small. Nevertheless, the on-chain application of powerful static analyses, such as
those currently running, for instance, on Java desktop applications [13], seems
challenging. On-chain verification must be understood as a mandatory, defensive
verification technique, rather than as a replacement for off-chain verification.

In Sect. 5, a change of the verification rules triggers the re-verification of code
already in blockchain. This might not be the best choice, since it might disable
some smart contracts already in blockchain and lock their funds. Moreover, a
change of the verification rules might be opposed by a large number of users, if
it affects some highly popular contract. Future work will investigate linguistic
primitives and programming patterns that allow funds to be unlocked or specify
that some contract should not be re-verified after a verification rules change.

References

1. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies, 2nd
edn. O’Reilly (2017)

2. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and Dapps. O’Reilly (2018)

3. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

4. Buterin, V.: Ethereum Whitepaper (2013). Available at https://ethereum.org/en/
whitepaper/

5. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

6. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: 2nd International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB@ICSE 2019), Montreal, QC, Canada, May 2019,
pp. 8–15. IEEE/ACM (2019)

7. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable, and
fast fuzzing for smart contracts. In: 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2020), USA, July 2020, pp. 557–560.
ACM (2020)

8. Kwon, J.: Tendermint: consensus without mining. Available at https://tendermint.
com/static/docs/tendermint.pdf (2014)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Available at https://
bitcoin.org/bitcoin.pdf (2008)

10. Oliva, G.A., Hassan, A.E., Jiang, Z.M.: An exploratory study of smart contracts in
the ethereum blockchain platform. Empirical Softw. Eng. 25(3), 1864–1904 (2020)

7 See https://wiki.polkadot.network/docs/en/learn-governance.

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://wiki.polkadot.network/docs/en/learn-governance

On-Chain Smart Contract Verification over Tendermint 347

11. Popper, N.: A hacking of more than $50 Million dashes hopes in the world of virtual
currency. The New York Times, 18 June 2016

12. Sedlmeir, J., Buhl, H.U., Fridgen, G., Keller, R.: The energy consumption of
blockchain technology: beyond myth. Bus. Inf. Syst. Eng. 62(6), 599–608 (2020)

13. Spoto, F.: The Julia static analyzer for java. In: Rival, X. (ed.) SAS 2016. LNCS,
vol. 9837, pp. 39–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7 3

14. Spoto, F.: A java framework for smart contracts. In: Bracciali, A., Clark, J., Pin-
tore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 122–137.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 10

15. Spoto, F.: Enforcing determinism of java smart contracts. In: Bernhard, M., et al.
(eds.) FC 2020. LNCS, vol. 12063, pp. 568–583. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-54455-3 40

https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-030-43725-1_10
https://doi.org/10.1007/978-3-030-54455-3_40
https://doi.org/10.1007/978-3-030-54455-3_40

Publicly Verifiable and Secrecy
Preserving Periodic Auctions

Hisham S. Galal(B) and Amr M. Youssef

Concordia Institute for Information Systems Engineering, Concordia University,
Montréal, Quebéc, Canada

{h galal,youssef}@ciise.concordia.ca

Abstract. In lit markets, all the information about bids and offers in
the order book is visible to the public. With this transparency, traders
can discover prices and adjust their strategies accordingly. On the other
hand, submitting a bulk order by a financial institution will have a signif-
icant impact on the market price. Therefore, financial institutions prefer
trading on dark pools, which hide order books, to avoid potential losses
from negative market impact. However, the lack of transparency hurts
price discovery, results in poor execution of trades, and promotes illicit
behaviors such as front-running. Hence, several financial regulations have
limited trading on dark pools. Subsequently, periodic auctions, which
are considered regulation-compliant alternatives to dark pools, have wit-
nessed a surge in trading volumes. Unfortunately, similar to dark pools,
there are no guarantees that the operators will neither exploit their exclu-
sive access to the order book nor incorrectly compute the market-clearing
price. In this paper, we build a publicly verifiable and secrecy preserving
periodic auction protocol to address these challenges. We utilize aggre-
gate Bulletproofs to prove the ordering on a vector of commitments. To
alleviate the burden on traders’ computation resources and achieve pub-
lic verifiability, the protocol delegates the verification of the operator’s
work to a smart contract. We evaluate the protocol’s performance, and
the results show that it is practical and feasible to deploy.

Keywords: Periodic auction · Zero-knowledge arguments · Blockchain

1 Introduction

Investors use financial exchanges to trade equities and securities. Generally, an
exchange is a continuous double-sided auction between buyers and sellers [1].
It records all outstanding limit orders in an order book. A limit order consists
of a unit price, a quantity of an asset, and a direction to indicate whether it is
a bid by a buyer or an offer by a seller. If the order book is transparent and
accessible to the public, the exchange is known as a Lit market. On the contrary,
a dark pool, which is favored by financial institutions, is an exchange that hides
its order book from traders [1].

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 348–363, 2021.
https://doi.org/10.1007/978-3-662-63958-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_29&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_29

Publicly Verifiable and Secrecy Preserving Periodic Auctions 349

To understand the main benefit of dark pools, it is worth considering the
problem institutional investors face in lit markets. Suppose that Bob is an insti-
tutional investor who uses a lit market to buy one million USD worth of an
arbitrary asset. The sellers will notice Bob’s bid. Hence, they anticipate the
increased demand and react by moving their offers to higher prices so that they
can gain higher revenue. As a result, Bob will have a hard time trying to fill
his order. Thus, he has to either accept the loss in buying the full volume at
higher prices, or divide the quantity into smaller batches and buy at different
prices. Although the latter approach may seem better, it still incurs high fees
and commissions paid to the exchange. Therefore, it is much more convenient
for Bob to trade on a dark pool where the market impact will be minimal.

While dark pools provide a better trading platform for financial institutions,
they have several issues. Most importantly, they hurt price discovery and put
traders on other exchanges at a disadvantage. Furthermore, the lack of trans-
parency could result in poor execution of trades or abuses such as front-running.
Conflicts of interest are also a possibility since the operator could trade against
pool clients. The U.S. Securities and Exchange Commission has found numerous
violations and fined some dark pool operators [2–4]. Accordingly, several recent
financial regulations, such as Europe’s MiFID-II [5], call for limiting trades on
dark pools. Interestingly, post enforcing MiFID-II, periodic auctions, which are
considered regulation-compliant alternatives to dark pools, have witnessed a
surge in the size of executed trading volumes.

In periodic auctions, the operator matches orders periodically, rather than
continuously. Initially, traders submit orders privately to the operator. The sub-
mission phase ends at a random time. Next, the operator determines the market
clearing price (MCP) and market clearing volume (MCV). Essentially, traders
trust the operator to correctly calculate these values since they do not have
access to the order book. To counter-balance this trust, regulators must audit
the operator’s work to reveal malicious behavior. However, the audit process is
prohibitively expensive, and it might also be infrequent.

One way to remove trust requirements and reduce costly audits is to utilize
the blockchain technology. Clearly, with the advent of the blockchain and Bitcoin
[6], mutually distrusting parties can finally make transactions without relying
on a trusted third party. Furthermore, complex types of transactions beyond
simple payment transfers have quickly emerged due to the rich capabilities of
smart contracts on blockchains such as Ethereum [7]. Smart contracts are pieces
of data and code deployed on the blockchain. The consensus layer ensures that
they execute precisely as their code dictates. Hence, a smart contract can act
as a public trusted judge that resolves disputes and verifies the correctness of
transactions.

350 H. S. Galal and A. M. Youssef

The contributions in this paper are summarized below:

1. We build a protocol to prove that the committed values for a given vector of
commitments are in descending order.

2. We utilize the above protocols to build a publicly verifiable and secrecy pre-
serving periodic auction protocol.

3. We implemented a basic prototype to assess the protocol’s performance, and
released its source code on Github1.

2 Related Work

Thrope and Parkes [1] proposed a protocol for continuous double-sided auctions.
Initially, each trader sends a price, a quantity, and a direction encrypted by the
operator’s public key of a homomorphic encryption scheme to a bulletin board.
Then, the operator decrypts the orders and tries to match them. Once a match is
found, the operator executes the matched orders and publishes them in history.
The main drawback of this protocol is its heavy computation burden on the
operator since it requires ranking all orders and generating proofs of correctness
after the execution of every matched order.

Jutla [8] presented a secure five-party computation protocol for periodic auc-
tions. A small number of brokers and a regulatory authority run the protocol.
The auction starts with traders sending limit orders to brokers. Next, brokers
run the protocol to find MCP and settle matched orders. In each round of this
protocol, the regulatory authority must audit extensive computation to ensure
the correctness of MCP, which renders the protocol impractical.

Galal and Youssef [9–11] proposed three constructions to build sealed-bid
auctions on Ethereum. In the first construction, they utilize Pedersen commit-
ment scheme and an interactive zero-knowledge range argument with high-cost
transactions and limited scalability. The second construction uses zkSNARK,
which improves the protocol scalability due to the constant proof size and verifi-
cation cost. However, it requires a trusted setup to generate the proving and ver-
ification keys. Finally, the third construction utilizes Intel SGX as a trusted exe-
cution environment to determine the auction winner in a full privacy-preserving
way with high performance. However, Intel SGX technology is not mature tech-
nology yet, and it faces multiple attacks that compromise its security.

Cartlidge et al. [12] utilized SCALE-MAMBA, a multi-party computation
(MPC) framework, to emulate a trusted third party. The authors designed three
constructions to assess the feasibility of using MPC in stock markets. They argue
that it is not practical yet to run continuous double-sided auctions. On the other
hand, the periodic auctions and volume matching constructions show promising
results. Although this protocol provides strong secrecy, it requires a heavy pre-
processing phase in addition to the inherent highly interactive communications
between parties.

1 https://github.com/hsg88/PeriodicAuction.

https://github.com/hsg88/PeriodicAuction

Publicly Verifiable and Secrecy Preserving Periodic Auctions 351

3 Preliminaries

3.1 Assumptions and Notations

Throughout the paper, an adversary A is a probabilistic interactive Turing
Machine that runs in a polynomial time in the security parameter λ. Let G

be a cyclic group of prime order p with generators g and h. Let Z
∗
p denote

Zp\{0}, and x ←$Z
∗
p denote uniform sampling of an element from Z

∗
p. We rep-

resent vectors by bold font, e.g. a is a vector with elements (a1, . . . , an). Finally,
let H : {0, 1}∗ → Z

∗
p denote a cryptographic collision resistant hash function.

3.2 ElGamal Encryption

We utilize ElGamal encryption scheme where messages are encoded in the expo-
nent. It consists of the following algorithms:

• (x, y) ← K(G, p, g): it samples a secret key x ←$Zp, and generates a public
key y = gx.

• c ← Ency(m, r): it encrypts a message m ∈ Zp using a blinding factor r ←$Zp

by the public key y, and outputs a ciphertext c = (c1, c2) = (gr, gmyr).
• gm ← Decx(c): it decrypts the ciphertext c by the secret key x, and outputs

gm ← c2 · c−x
1 . One needs to brute-force the discrete log of gm to recover m

which is affordable for small values (e.g., when m is a 32-bit value).

3.3 Pedersen Commitment

Pedersen commitment [13] is a non-interactive commitment scheme that has per-
fectly hiding and computationally binding properties. It consists of the following
algorithms:

• X ← Com(x, r): it commits to a message x ∈ Zp using blinding factor r ←$Zp,
and outputs X = gxhr.

• {�/⊥} ← Vfy(X,x, r): it verifies whether X commits to x with blinding
factor r, and outputs � on success, otherwise, it outputs ⊥.

Pedersen commitments are additively homomorphic. For instance, given the com-
mitments Com(x1, r1) and Com(x2, r2), one can compute Com(x1 + x2, r1 + r2) =
Com(x1, r2)Com(x2, r2) without knowing the committed values.

352 H. S. Galal and A. M. Youssef

3.4 Zero-Knowledge Proof of Knowledge

A zero-knowledge proof of knowledge is a protocol that allows a prover to con-
vince a verifier that a certain statement holds without revealing any information
beyond that fact. An argument is a proof which only holds if the prover is com-
putationally bounded and certain computational hardness assumptions hold. We
consider arguments consisting of three interactive algorithms (Setup,P,V) run-
ning in probabilistic polynomial time. The Setup algorithm takes 1λ as input,
and produces a common reference string (CRS) denoted by Σcce. The tran-
scripts produced by P and V when interacting on inputs s and t is denoted
by tr ← 〈P(s),V(t)〉. We write 〈P(s),V(t)〉 = b to denote whether the verifier
accepts b = 1, or rejects b = 0. Let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary
polynomial-time decidable relation. We call w a witness for a statement x if
(σ, x, w) ∈ R. Additionally, we define the CRS-dependent language

Lσ = {x|∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w in R. Zero-knowledge arguments
have the following three properties.

1. Completeness: the verifier will always accept a proof generated by an honest
prover.

2. Soundness: the verifier will not accept a false proof except with a negligible
probability.

3. Zero-knowledge: the verifier does not learn any information about the witness
from the transcripts exchanged with the prover.

Fiat-Shamir heuristic [14] can transform the interactive triple (Setup,P,V) to
non-interactive zero-knowledge (NIZK) proof in the random oracle model.

3.5 Zero-Knowledge Range Proof

A zero-knowledge range proof allows a prover to convince a verifier that a com-
mitted value falls within a given range. One of the recent constructions is Bullet-
proofs [15], which has a short logarithmic proof size O(log(n)) in the bit-width
of the range. The proof generation and verification times scale linearly with n.
More importantly, it does not require a trusted setup. In particular, given a
commitment X = gxhr ∈ G for a witness x ∈ Zp, Bulletproofs allows a prover
to generate the following NIZK argument:

{(g, h ∈ G,X;x, r) : X = gxhr ∧ x ∈ [0, 2n − 1]}

Bulletproofs allows the generation of an efficient aggregate argument for a
vector of commitments. Specifically, given a vector of m commitments, the aggre-
gate argument is smaller than the total size of m simple arguments. We refer to
the protocol generating aggregate range arguments as BP = (Setup,P,V), which
consists of the following probabilistic polynomial-time algorithms:

Publicly Verifiable and Secrecy Preserving Periodic Auctions 353

1. σ ← BP.Setup(1λ, n,m): it takes λ as the security parameter, n as the range
bit-width, and m as the vector cardinality; and outputs Σcce as the CRS.

2. π ← BP.P(σ,X,x, r): it takes a vector of commitments X along with the
opening vectors x and r; and generates an argument π to prove

{(X;x, r) : Xi = gxihri ∧ xi ∈ [0, 2n − 1]}

3. {�/⊥} ← BP.V(σ,X, π): it returns � if it accepts π; otherwise, it returns ⊥.

3.6 Evaluator-Prover Model

The evaluator-prover (EP) model [16] provides a practical framework for secrecy
preserving proofs of correctness. Involved parties secretly submit input val-
ues (x1, . . . , xn) to the EP entity. The EP privately computes a function
y = f(x1, . . . , xn), outputs the value y, and generates a proof of the correctness.
Parties accept the result on successful verification of the proof of correctness.
The EP model is secrecy preserving if the proof does not reveal any information
about the inputs beyond what is implied by the result.

Note that the EP model does not maintain strong secrecy [17], which man-
dates that the EP cannot disclose information about the inputs. However, the
notion of secrecy preserving is still useful in the context of periodic auctions.
More specifically, at the end of each round, information about the MCP and
MCV are published, which gives more hints about the inputs. Hence, the main
requirement here is to ensure that the operator cannot exploit this information to
its advantage. In particular, the operator must not have access to the submitted
orders until the end of the submission phase.

4 Basic Protocols

In this section, we present two zero-knowledge arguments protocols that are
utilized to build the periodic auction.

4.1 Zero-Knowledge Proof of Consistent Commitment Encryption

We design an honest-verifier zero-knowledge Σcce, which is shown in Fig. 1, to
prove that an ElGamal ciphertext hides the committed value of a Pedersen
commitment. To motivate the need for this protocol, suppose that Alice has
sent Bob a commitment X = gxhr for an arbitrary value x. Later, she reveals
the committed value x to Bob by encrypting it in a ciphertext c = (c1, c2) =
(gr, gxyr) using Bob’s public key y with the same blinding factor r. Alice wants
to convince Carol that she has encrypted the committed value x in the ciphertext
c using Bob’s public key. More precisely, Alice wants to generate the following
argument:{(g, h, c,X, y;x, r) : c1 = gr ∧ c2 = gxyr ∧ X = gxhr}

354 H. S. Galal and A. M. Youssef

Fig. 1. Σcce protocol

We utilize Fiat-Shamir heuristic to convert the Σcce protocol into NIZK
argument by using a hash function to get the challenge e ← H(c,X, y, a1, a2, A).
We define the following two PPT algorithms for this protocol:

1. π ← Σcce.P(c,X, y, x, r). It generates a proof π to prove that the ciphertext
c is an encryption of the opening value x for the commitment X.

2. {0, 1} ← Σcce.V(c,X, π). It returns 1 if it has successfully verified the proof
π for a ciphertext c and a commitment X; otherwise, it returns 0.

4.2 Zero-Knowledge Argument of Ordering

We build a protocol ProveOrder to prove that the committed values for a vector
of Pedersen commitments are in descending order without revealing any infor-
mation beyond that fact, as shown in Fig. 2. More specifically, given a vector of
commitments X of size m+1 to a vector of elements x in [0, 2n−1], we say that x
is in descending order if the differences between successive elements xi, xi+1 are
non-negative values. Furthermore, since Pedersen commitments are additively
homomorphic, one can compute the commitments vector X̂ to the differences
between successive elements xi, xi+1 given their commitments Xi,Xi+1. Now,
we can utilize aggregate Bulletproofs to prove that the commitments in X̂ are
commitments to elements in the range [0, 2n − 1]. Note that we can also prove
ascending order by simply reversing the elements in the vectors.

Publicly Verifiable and Secrecy Preserving Periodic Auctions 355

Fig. 2. ProveOrder protocol

By default, this protocol inherits the completeness and zero-knowledge prop-
erties of Bulletproofs [15]. To ensure the soundness, we have a condition on the
value of 2n. Specifically, as the operation xi − xi+1 is carried out in Zp, then,
the condition 2n < p

2 must hold to ensure that negative differences do not fall
in the range [0, 2n − 1].

It is worth mentioning that the implementation of Fiat-Shamir heuristic can
compromise the security of Σcce and ProveOrder protocols. More precisely, these
protocols are susceptible to replay attacks by the adversary when they are used
with blockchain. For example, the adversary can replay an arbitrary trader’s
proof to the smart contract without knowing any witness, yet her proof will
be successfully accepted. To prevent this attack, we include the address of the
transaction sender as one of the inputs to the hash function that computes the
verifier challenges. Consequently, the adversary’s proof will be rejected because
the verifier challenges computed by the smart contract will be different from
those computed for the replayed proof.

5 Periodic Auction Protocol Design

5.1 System Model

In this protocol, there are three entities, namely, traders, an operator, and a
smart contract. The operator and traders interact indirectly through the smart
contract using their accounts on the blockchain.

1. Traders are the buyers and sellers who want to exchange their assets through
the auction.

2. An operator is the EP entity that privately receives orders and evaluates the
MCP and MCV, and proves their correctness to the smart contract.

356 H. S. Galal and A. M. Youssef

3. A smart contract publicly verifies the zero-knowledge proofs submitted by
traders and the operator, as well as serves as a secure bulletin-board.

5.2 High-Level Flow of the Protocol

The operator deploys the smart contract and initializes it by a set of public
parameters. In Appendix A, we show the pseudocode for the smart contract.
Each operation performed by the traders or the operator results in a piece of
data and zero-knowledge proof, which will be submitted to the smart contract.
The smart contract verifies the proof, and upon success, it stores the associated
data. A single round of the periodic auction protocol consists of the following
three phases:

1. Traders commit to their orders, and utilize Bulletproofs to generate an aggre-
gate range proof.

2. Traders encrypt their orders by the operator’s public key, and utilize Σcce

protocol to prove the consistency between ciphertext and commitments.
3. The operator does the following:

(a) Access price and quantity values in orders.
(b) Determine the MCP and MCV.
(c) Generate proof of correctness for MCP and MCV.

6 Protocol Design

6.1 Smart Contract Deployment and Parameters Setup

The protocol starts by the operator Alice generating the public parameter σ
by running the setup algorithm of Bulletproofs for a security parameter λ, a
bit-width n, and number of commitments m. Then, she generates a key-pair
x, y as the secret and public keys for ElGamal encryption scheme, respectively.
Additionally, she defines the time-window of each phase by the vector t.

σ ← BP.Setup(1λ, n,m)
x, y ← K(G, p, g),
t = (t1, t2, t3)

Next, she deploys the smart contract and initializes it with the parameters
(σ, y, t) and locks a fixed collateral deposit D.

6.2 Phase One: Submission of Orders

Traders submit their orders before the block-height t1. For example, a trader
Bob wants to buy v units of the auctioned asset at a price u. He creates his
order as follows:

r ←$Z
2
p

U ← Com(u, r1)
V ← Com(v, r2)
π ← BP.P(σ, (U, V), (u, v), r)

Publicly Verifiable and Secrecy Preserving Periodic Auctions 357

First, he creates the commitments U and V for the price and quantity, respec-
tively. Subsequently, the trader generates an aggregate range proof π to assert
that the price and quantity values are within the range, i.e. u, v ∈ [0, 2n −1]. It is
worth mentioning that in the prototype, this phase uses a different Bulletproof
setup where m = 2 since there are two commitments only. Finally, he sends
a transaction that includes the parameters (dir, U, V, π) where dir indicates
whether the order is a bid or an offer.

Upon receiving the transaction, the smart contract checks whether the cur-
rent block-height is less than t1, and the transaction has a collateral deposit D.
Then, it verifies the aggregate range proof π for the commitments U and V .
Finally, it stores the commitments in either the list of Bids or the list of Offers
based on the value of dir.

It is worth mentioning that front-running has a little impact in periodic
auctions in contrast to continuous mainly because orders will be settled at a
single MCP regardless of orders sequence. Still, this protocol provides protection
against front-running for three main reasons. First, the commitments U and V
are perfectly hiding. Second, the aggregate range proof π is zero-knowledge,
hence, π does not reveal any information about the witness u and v beyond the
fact that they are in range [0, 2n − 1]. Third, there is an idle period between the
first and second phases to consider the possibility of revealing orders on minor
blockchain forks that will be discarded.

6.3 Phase Two: Revealing Orders

Traders utilize ElGamal encryption to reveal their orders to Alice before the
block-height t2. Therefore, Bob retrieves Alice’s public key y from the smart
contract and encrypts the opening values (u, r1) and (v, r2) as follows:

cu ← Ency(u, r1), πu ← Σcce.P(cu, U, y, u, r1)
cv ← Ency(v, r2), πv ← Σcce.P(cv, V, y, v, r2)

Then, he utilizes Σcce protocol to generate the proofs πu and πv to prove that
the ciphertext cu and cv encrypt the opening values (u, r1) and (v, r2) of commit-
ments U and V using Alice’s public key y, respectively. Subsequently, he sends
a transaction which includes the parameters (cu, cv, πu, πv).

Initially, the smart contract checks if the transaction is sent within the right
time window between t1 and t2. Then, it searches for the commitments (U, V)
corresponding to transaction sender in either Bids or Offers. Subsequently,
it verifies the proofs πu and πv. Alice can monitor the transactions submitted
to the smart contract during this phase to recover the ciphertext cu and cv.
In practice, Alice can efficiently retrieve the ciphertext by listening to events
triggered on the smart contract.

6.4 Phase Three: Matching Orders

At the beginning of this phase, Alice instructs the smart contract to find unre-
vealed orders, remove them, and penalize their owners. Accordingly, she has

358 H. S. Galal and A. M. Youssef

access to the price and quantity values of revealed orders. She performs the
following tasks to determine the MCP and MCV before block-height t3:

1. Sort the bids descendingly and the offers ascendingly by price.
2. Compute the cumulative quantity in bids and offers.
3. Finds the MCP that clears the highest cumulative quantity, i.e. MCV.
4. Send the MCP and MCV along with proofs of correctness to the smart con-

tract.

She can generate proof of correctness by creating an order with the MCP and
MCV values. Then, she inserts that order in the sorted lists of bids and offers
consisting of prices and cumulative quantities. Finally, she utilizes ProveOrder
protocol to prove the sort on price and cumulative quantity commitments. Note
that cumulative quantity commitments can be easily computed since Pedersen
commitments are additively homomorphic.

Let B and S denote the lists of bids and offers where the numbers of orders
in each list are M and N , respectively. Each order in B and S is encoded as
a tuple (U, V, Vc, u, r1, v, r2, vc, rc) of price, quantity, and cumulative quantity
commitments and their opening values. Note that, at the beginning, Vc, vc, rc

are empty. Alice performs the first task as follows:

Sort(B, DESCENDING), Sort(S, ASCENDING)

The Sort function sorts the elements in the input list according to the specified
criteria on the price values. For example, the elements in B and S are relocated
such that:

∀i ∈ [1,M − 1], Bi.u > Bi+1.u

∀j ∈ [1, N − 1], Sj .u < Sj+1.u

Next, for each order in B and S, she computes the cumulative quantities as:

∀i ∈ [1,M], Bi.(Vc, vc, rc) ← B.(
i∏

k=1

Vk,
i∑

k=1

vk,
i∑

k=1

r2,k)

∀j ∈ [1, N], Sj .(Vc, vc, rc) ← S.(
j∏

k=1

Vk,
j∑

k=1

vk,
j∑

k=1

r2,k)

Subsequently, she finds the intersection range between prices in B and S. Then,
for this range, take the middle point as MCP denoted by p, and the lowest
cumulative quantity as MCV denoted by l. After that, she generates an order
M with commitments to p and l as follows:

P ← Com(p, 0), L ← Com(l, 0)
M = (P, 0, L, p, 0, 0, 0, l, 0)

Note that, the blinding values in commitments of M are set to zero as we want
the commitments to be binding only. Moreover, p and l will be posted on the
smart contract eventually, we just need them in commitment form to be utilized

Publicly Verifiable and Secrecy Preserving Periodic Auctions 359

in the ProveOrder protocol. Finally, she inserts M in both B and S while
preserving the ordering:

B.Insert(M), S.Insert(M)

Now, Alice utilizes ProveOrder protocol to prove the correctness of MCP p
and MCV l as follows:

π1 ← ProveOrder.P(B.(U ,u, r1), DESCEND)
π2 ← ProveOrder.P(B.(Vc ,vc , rc), ASCEND)
π3 ← ProveOrder.P(S.(U ,u, r1), ASCEND)
π4 ← ProveOrder.P(S.(Vc ,vc , rc), ASCEND)
π = (π1, π2, π3, π4)

In the smart contract, the indices of orders in Bids and Offers depend entirely
on their arrival time. Hence, Alice creates two positioning vectors χ and γ that
will be used by the smart contract as proxies to access Bids and Offers in their
sorted order, respectively. Finally, Alice sends a transaction which contains the
parameters (p, l,χ,γ,π) to the smart contract.

The smart contract checks that the transaction is sent by Alice between
block-heights t2 and t3. Then, it checks whether p, l ∈ [0, 2n − 1]. After that, it
appends the order M in Bids and Offers. Finally, it verifies the proofs π before
accepting and storing p and l.

Upon successful verification, the smart contract refunds the collateral
deposits to Alice and owners of unsettled orders. On the other hand, the smart
contract keeps the collateral deposits of owners of executed orders locked for the
settlement of the assets exchange phase off-chain. Conversely, if the verification
was not successful or the Alice failed to send the proofs π before block-height
t3, then the smart contract slashes her deposit and refunds the traders.

7 Performance Evaluation

In this section, we evaluate the performance measurement of the proposed pro-
tocol and assess its feasibility.

7.1 Evaluation

We report the measurements of the two main building blocks that constitutes the
periodic auction protocol, namely, Σcce and ProveOrder protocols n Table 1. The
proof size is measured by the number of elements in G and Zp. For the verifier,
we report the number of elliptic curve operations required to verify proofs.

360 H. S. Galal and A. M. Youssef

Table 1. Performance of ProveOrder and Σcce protocol.

Performance # ProveOrder Σcce Protocol

Proof size G 2(log2(n) + log2(m)) + 4 3

Zp 5 2

Verifier operations mul 11 + 2n + m 8

add 7 + 2n + m 5

In Ethereum, the point addition and point multiplication operations cost 150
and 6000 gas, respectively. Hence, we can measure the transaction gas cost of ver-
ifying the submitted proofs. In Fig. 3, we report the performance measurements:
proof size, prover time, and gas cost of proof verification by the smart contract
with respect to the total number of orders for the transactions: SubmitOrder,
RevealOrder, and ClearMarket. Obviously, the transaction SubmitOrder and
RevealOrder have constant measurements as opposed to ClearMarket transac-
tion which scale linearly with the number of orders.

10 20 30 40 50 60 70 80 90100

103

104

105

Orders

B
yt
es

Proof Size

10 20 30 40 50 60 70 80 90100

105

106

Orders

G
as

Verification Gas Cost

10 20 30 40 50 60 70 80 90100
101

102

103

104

105

Orders

m
ill
is
ec
on

ds

Prover Time

10 20 30 40 50 60 70 80 90100

103

104

105

Phase Length

#
T
ra
ns
ac
ti
on

pe
r
P
ha

se

Prover Time

SubmitOrder RevealOrder ClearMarket

Fig. 3. Performance measurements of the periodic auction protocol

The current block gas limit on Ethereum is roughly 10 M gas. Hence, we can
estimate the number of transactions that fit in a single block. More importantly,

Publicly Verifiable and Secrecy Preserving Periodic Auctions 361

we can estimate the theoretical number of SubmitOrder and RevealOrder trans-
actions that the smart contract can receive during the first and second phases for
different phase lengths as shown in Fig. 3. The SubmitOrder transaction incurs
the cost of verifying ProveOrder proof where n = 16 and m = 2. Similarly, the
RevealOrder transaction incurs the cost of verifying Σcce proof. Accordingly,
the transaction cost of SubmitOrder and RevealOrder are roughly 276150 and
48750 gas, respectively. Note that, in practice, the gas cost for each transaction
is higher since there are additional operations involving data access and control
flow.

Furthermore, we can estimate the highest number of orders that can be
processed by a single ClearMarket transaction before exceeding the 10M gas
block limit. Typically, the ClearMarket transaction requires verification of two
ProveOrder proofs for M bids and two ProveOrder proofs for N offers. For con-
venience, assume that we have an equal number of bids and offers M = N , hence,
the ClearMarket transaction incurs the verification cost of four ProveOrder
proofs of M commitments. Accordingly, the ClearMarket transaction can the-
oretically process up to ≈ 728 orders before exceeding the block gas limit. Cer-
tainly, in practice, this number is lower due to the gas cost associated with
operations other than proof verification.

8 Conclusion

We presented publicly verifiable secrecy preserving periodic auction protocol.
The protocol depends on two zero-knowledge proofs, namely, proof of consistent
commitment encryption and proof of ordering. Furthermore, we implemented a
prototype and evaluated its performance to assess its feasibility. Based on the
result, we believe that the periodic auction protocol is a feasible and secure
alternative to dark pools.

Appendix A Smart Contract Pseudocode

1: function SubmitOrder(dir, U, V, π)
2: require(msg.value = D)
3: require(msg.blockNumber < t1)
4: require(BP.V(σ2, (U, V), π))
5: if dir = BUY then
6: Bids[msg.sender] ← (U, V)
7: else
8: Offers[msg.sender] ← (U, V)
9: end if

10: end function
1: function RevealOrder(cu, cv, πu, πv)

362 H. S. Galal and A. M. Youssef

2: require(t1 < msg.blockNumber < t2)
3: (U, V) ← FindOrder(msg.sender)
4: require((U, V) �= NULL)
5: require(Σ.V(cu, U, y, πu))
6: require(Σ.V(cv, V, y, πv))
7: emit RevealEvent(msg.sender, cu, cv)
8: end function
1: function ClearMarket(p, l,χ,γ,π)
2: require(t2 < msg.blockNumber < t3)
3: require(msg.sender = Alice)
4: RemoveUnrevealedOrders()
5: require(p ∈ [0, 2n − 1] ∧ l ∈ [0, 2n − 1])
6: O = (gp, gl)
7: Bids[Alice] ← O
8: Offers[Alice] ← O
9: Relocate(Bids,χ)

10: Relocate(Offers,γ)
11: U1 ← Bids.U
12: V1 ← CumulativeQuantity(Bids.V)
13: U2 ← Offers.U
14: V2 ← CumulativeQuantity(Offers.V)
15: require(ProveOrder.V(σ,U1, π1))
16: require(ProveOrder.V(σ, V1, π2))
17: require(ProveOrder.V(σ,U2, π3, ASCEND))
18: require(ProveOrder.V(σ, V2, π4))
19: Store p, l
20: end function

References

1. Thorpe, C., Parkes, D.C.: Cryptographic securities exchanges. In: Dietrich, S.,
Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 163–178. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77366-5 16

2. Sec charges citigroup for dark pool misrepresentations. https://www.sec.gov/news/
press-release/2018-193 (2018)

3. Sec charges itg with misleading dark pool subscribers. https://www.sec.gov/news/
press-release/2018-256 (2018)

4. Barclays, credit suisse charged with dark pool violations. https://www.sec.gov/
news/pressrelease/2016-16.html (2016)

5. Markets in financial instruments directive ii. https://www.esma.europa.eu/policy-
rules/mifid-ii-and-mifir (2018)

6. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
7. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
8. Jutla, C.S.: Upending stock market structure using secure multi-party computa-

tion. IACR Cryptology ePrint Arch. 2015, 550 (2015)

https://doi.org/10.1007/978-3-540-77366-5_16
https://www.sec.gov/news/press-release/2018-193
https://www.sec.gov/news/press-release/2018-193
https://www.sec.gov/news/press-release/2018-256
https://www.sec.gov/news/press-release/2018-256
https://www.sec.gov/news/pressrelease/2016-16.html
https://www.sec.gov/news/pressrelease/2016-16.html
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir

Publicly Verifiable and Secrecy Preserving Periodic Auctions 363

9. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 265–278.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 18

10. Galal, H.S., Youssef, A.M.: Succinctly verifiable sealed-bid auction smart con-
tract. In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Livraga, G., Rios, R. (eds.)
DPM/CBT-2018. LNCS, vol. 11025, pp. 3–19. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00305-0 1

11. Galal, H.S., Youssef, A.M.: Trustee: full privacy preserving Vickrey auction on top
of ethereum. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.)
FC 2019. LNCS, vol. 11599, pp. 190–207. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-43725-1 14

12. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: Pro-
ceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pp. 148–159. ACM (2019)

13. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

14. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73 (1993)

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334. IEEE (2018)

16. Micali, S., Rabin, M.O.: Cryptography miracles, secure auctions, matching problem
verification. Commun. ACM 57(2), 85–93 (2014)

17. Parkes, D.C., Thorpe, C., Li, W.: Achieving trust without disclosure: dark pools
and a role for secrecy-preserving verification. In: Proceedings of the Third Confer-
ence on Auctions, Market Mechanisms and Their Applications (2015)

https://doi.org/10.1007/978-3-662-58820-8_18
https://doi.org/10.1007/978-3-030-00305-0_1
https://doi.org/10.1007/978-3-030-00305-0_1
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/978-3-030-43725-1_14
https://doi.org/10.1007/3-540-46766-1_9

EthVer: Formal Verification
of Randomized Ethereum Smart Contracts

Łukasz Mazurek(B)

University of Warsaw, Warsaw, Poland
lukasz.mazurek@crypto.edu.pl

Abstract. Despite the great potential capabilities and the mature tech-
nological solutions, the smart contracts have never been used at a large
scale, one of the reasons being the lack of good methods to verify the
correctness and security of the contracts—although the technology itself
(e.g. the Ethereum platform) is well studied and secure, the actual
smart contracts are human-made and thus inherently error-prone. As
a consequence, critical vulnerabilities in the contracts are discovered and
exploited every few months. The most prominent example of a buggy con-
tract was the infamous DAO attack—a successful attack on the largest
Ethereum contract in June 2016 resulting in $70 mln-worth Ether stolen
and the hard fork of the Ethereum network (80% of Ethereum users
decided to revert the transaction and hence two parallel transaction his-
tories exist from that event).

The main contribution of this work is the automatic method of formal
verification of randomized Ethereum smart contracts. We formally define
and implement the translation of the contracts into MDP (Markov deci-
sion process) formal models which can be verified using the PRISM model
checker—a state of the art tool for formal verification of models. As a
proof of concept, we use our tool, EthVer, to verify two smart contracts
from the literature: the Rock-Paper-Scissors protocol from K. Delmolino
et al., Step by step towards creating a safe smart contract: Lessons and
insights from a cryptocurrency lab. and the Micropay 1 protocol from R.
Pass, a. shelat, Micropayments for decentralized currencies.

Keywords: Cryptocurrencies · Ethereum · Smart contracts ·
Verification · Formal methods · Model checking

1 Introduction

The notion of a smart contract was first introduced in 1997 by Nick Szabo [29].
The main idea behind smart contracts is that many contractual clauses (such
as collateral, bonding, delineation of property rights, etc.) can be embedded in
the hardware and software and smart contracts are protocols that can serve
as digital agreements between the users of the network—the fulfillment of the
agreement is automatically guaranteed by the design of the system instead of
some external authority like banks, governments or courts.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 364–380, 2021.
https://doi.org/10.1007/978-3-662-63958-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_30&domain=pdf
http://orcid.org/0000-0003-3296-3138
https://doi.org/10.1007/978-3-662-63958-0_30

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 365

The first practical implementations of smart contracts emerged together with
the introduction of Bitcoin in 2009 [23], however they gained their popularity five
years later when Ethereum [10] was announced—the first fully operational digital
platform dedicated particularly for smart contracts, much more convenient to
use and with much larger capabilities than Bitcoin.

Despite their huge potential capabilities, smart contracts have never been
adopted on a large scale, one of the reasons being the fact that it is difficult
to verify the correctness and security of the contract. As a consequence, crit-
ical vulnerabilities are discovered and exploited every few months [1–3]. The
most prominent example of a buggy contract was the infamous DAO attack
[15]—a successful attack on the largest Ethereum contract in June 2016 result-
ing in $70 mln-worth Ether stolen and the hard fork of the Ethereum network
(80% of Ethereum users decided to revert the transaction and hence two parallel
Ethereum blockchains exist from that event).

Several approaches to verification of smart contracts have been proposed,
including the automatic and semi-automatic tools which analyze the contract
code and check if it satisfies some set of predefined security properties [22,24,32]
or user-defined properties [8,11,18–20]. The other line of work focuses on provid-
ing tools to help creating smart contracts that follow some security patterns by
design [25,28,31]. All these approaches suffer from the following limitation: they
focus only on the security of the contract code without analyzing the outcome
of the scenario of its usage. In other words, the traditional verification tools
answer the questions: Is this contract guaranteed to not “crash”? Can it end up
in an unwanted state? Will the contract function be always executed till the end?
In contrast, none of the methods answers the question: What will be the result
if I use the contract in the following way? Furthermore, we are not aware of
any solution which verifies the randomized smart contracts and its probabilistic
properties, for example: Are the chances of winning in that lottery indeed equal
to 1/2?

1.1 Our Contribution

The main contribution of this work is an automatic method for verifying random-
ized protocols built on top of Ethereum smart contracts. We introduce the ETV
language which allows to easily create such protocols using the syntax of Solidity
(the main contract language of Ethereum). Furthermore, we formally define the
translation of such protocols into the Markov decision processes (MDPs) which
can be verified for security and correctness using the PRISM model checker—a
state of the art tool for formal verification of models. The formal translation
is accompanied by the implementation of EthVer—a fully operational compiler
that translates an ETV program into a MDP in the PRISM syntax. As a proof of
concept we use our tool to compile and verify two protocols from the literature:
the Rock-Paper-Scissors protocol from K. Delmolino et al., Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab.
[14] and the Micropay 1 protocol from R. Pass, a. shelat, Micropayments for
decentralized currencies [26].

366 Ł. Mazurek

What distinguishes our work is that we model not only the smart contract
code but also the scenario of its execution. The syntax of the contract part
of ETV language is a slightly modified syntax of Solidity (the programming
language of Ethereum smart contracts), while the syntax of the scenario part is
very similar to web3.js JavaScript library (the library used to execute Ethereum
smart contracts). This makes the usage of ETV intuitive to anyone familiar with
Solidity and web3.js. We are not aware of any other tool that allows to verify
the scenario of smart contract execution in such a way. Also, to the best of our
knowledge, our method is the first one that allows to verify the probabilistic
properties of randomized smart contracts.

Another novel feature of the ETV language is the abstract construction
for cryptographic commitments and digital signatures—the important crypto-
graphic primitives present in many smart contracts. The EthVer compiler not
only translates these abstract objects into MDP (which allows verification) but
also provides the exact implementation of commitments and signatures in Solid-
ity and web3.js. This prevents the user from implementing them by hand, which
might me cumbersome and error-prone. We are not aware of any other extension
to Solidity which offers such functionality.

The full code of the EthVer compiler, as well as the extended version of this
paper are available at the EthVer project page1.

1.2 Related Work

Among the existing solutions for verification of smart contracts we can distin-
guish two main groups which can be summarized as the verification approach in
which the contract is checked for compliance with some specification or security
policy and the design approach which simplifies the smart contracts creation
process by providing frameworks for their development. Below we analyze the
related work falling into these two categories and describe how EthVer differs
from the existing solutions.

Verification Approach. This group contains static analysis tools for auto-
mated bug-finding [22,24,32] that verify the code for satisfying some pre-defined
security properties, such as the correct order of transactions, timestamp depen-
dency, prodigality or liveness. The other group of tools [8,18,19] provides semi-
automatic methods for proving the contract-specific properties. These tools
require some manual interaction from the user, such as specifying the loop invari-
ants in the bytecode. Another work [9] analyzes Ethereum contracts by trans-
lating them into a functional language F ∗. The language provides verification
methods and an interactive proof assistant, however the translation supports
only a part of the EVM syntax. Other solutions [12,17] provide dynamic moni-
toring of the predefined security properties, such as transaction order dependency

1 https://github.com/lukmaz/ethver.

https://github.com/lukmaz/ethver

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 367

or callback free executions, a lack of which is claimed to be the source of com-
mon bugs. Both of these methods provide the defense from only a subset of the
possible vulnerabilities in the contracts.

All the solutions mentioned in the previous paragraph are able to analyze
only the Ethereum Virtual Machine (EVM) pre-compiled bytecode. The other
tool [20] analyzes the high-level Solidity contract code using symbolic model
checking for the user-defined policies. However the policies are restricted to
quantifier-free first-order logic, so this method can only solve the state reachabil-
ity problem and hence, e.g., cannot verify probabilistic properties. Another inter-
esting approach [11] provides a game-theoretic framework in which the smart
contract is translated into a concurrent game and the properties of this game are
further analyzed using the novel method of abstraction-refinement. This method
offers much lower computational complexity than the exact model checking of
the whole model, however it does not provide the exact result of the verification,
but only the lower and upper bound.

There are several other tools that provide static analysis for generic properties
[4–7,30]. None of them is however accompanied by a scientific paper so the full
specifications of the actual verification methods are hard to identify.

Design Approach. One example of a high-level language that impose secure
design of the smart contract is Simplicity [25]. It is however a general purpose
language for smart contracts with no compiler to the EVM bytecode. Another
interesting tool allows exporting the compiled code to the intermediate language
WhyML2 which in turn can be checked for security patterns using the program
verification platform Why3 [16]. This tool however does not support the full
range of properties to verify, in particular it cannot verify probabilistic prop-
erties. A slightly different approach [31] introduces security patterns—the best
practices that must be met while developing the contract code, such as, e.g., per-
forming calls at the end of a function. This approach however does not allow to
specify custom properties to be satisfied by the contract.

1.3 EthVer

The EthVer compiler falls somehow between the verification approach and design
approach—it is able to verify the actual code of Ethereum smart contract (and
also the scenario of its usage), however it requires the contract code to be written
in the ETV language which is a slightly modified version of Solidity. Furthermore
it allows to verify any custom property written in a dedicated language, including
the probabilistic properties.

To the best of our knowledge, none of the solutions described in this section
offers the exact model checking of the probabilistic properties of the randomized
contract. Moreover, the existing approaches focus on verifying the contract with-
out taking into account the pattern of execution of the contract by the users.

2 https://why3.lri.fr.

https://why3.lri.fr

368 Ł. Mazurek

Instead, in EthVer we verify the protocol which consists of the contract and the
scenario of usage of the contract by the users. Hence, we are able to verify not
only the correctness and security of the contract code, but also the instructions
on how to use the contract.

It is worth noting here, that the two features of EthVer described above
allows to perform the full formal verification of the rock-paper-scissors protocol
[14] and the Micropay 1 protocol [26], which cannot be done in any of the other
tools analyzed in this section. We briefly describe this analysis in Sect. 7.

2 Preliminaries

2.1 Ethereum Languages

The actual code of Ethereum smart contracts is written in the machine code of
Ethereum Virtual Machine (EVM). However, the platform provides several high
level, user-friendly languages to write the code of a contract with the Solidity
language being the most popular among them. The syntax of Solidity is based
on JavaScript with some extra features added to handle the flow of money and
cryptographic operations. Calling a contract function is realized by sending a
special transaction to the contract address. There are several convenient GUI
tools to deploy and execute smart contracts, such as, e.g., a desktop applica-
tion Ethereum Wallet or a web application Remix as well as the console client
geth3. Under the hood they all use the JavaScript API with the web3.js library4

which provides the basic functions to interact with the contract as well as some
cryptographic functions widely used in smart contracts (such as hash functions
and digital signatures). The main web3.js function to interact with a contract is
the sendTransaction method which is called on a contract function object and
takes as arguments the arguments to the function and the sender address (the
from: field) as well as the value attached to the transaction. The example usage
of the sendTransaction function is listed below:

Bank.deposit.sendTransaction(1,
{from: "0x14723a09acff6d2a60dcdf7aa4aff308fddc160c",

value: web3.utils.toWei("5", "finney")});

Note that the transaction value must be passed as an integer number of wei
(1 wei = 10−18 ether), however, the web3.utils.toWei function can be used to
easily convert from different units like finney (1 finney = 0.001 ether).

2.2 The PRISM Model Checker

PRISM is a probabilistic model checker, a tool originally described in [21]. It is
designed for formal modeling and analysis of systems which present random or
probabilistic behavior. Many smart contracts fit into this category, so we decided

3 http://ethereum.org/.
4 http://web3js.readthedocs.io/.

http://ethereum.org/
http://web3js.readthedocs.io/

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 369

to use PRISM as the backbone for our formal verification of Ethereum smart
contracts.

PRISM supports different types of models, including discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs), probabilistic automata (PAs), probabilistic timed automata
(PTAs). In EthVer we decided to use Markov decision processes, since they allow
non-determinism and hence are the best fit for randomized protocols built on
top of smart contracts.

The PRISM model is defined as a set of states and transitions between them.
Each transition is represented with a command of form

[label] guards -> updates;

where guards are the conditions needed to be met in order for the transition to
be enabled, updates represent the probabilistic choices in the algorithm, and label
is an optional identifier of the transition used for synchronization. The syntax
of the updates is as follows:

p1 : update1 + p2 : update2 + . . . + pn : updaten

The updates list reflects the situation when several transitions are possible from
the same state and the choice of the actual transition is probabilistic: the i-
th transition happens with probability pi and results in updatei of the model
variables.

For more detailed introduction to PRISM please refer to appendix A of the
extended version of the paper5.

2.3 Cryptographic Commitments

A cryptographic commitment scheme is a protocol which consists of two phases:
commit and open (the second phase is also referred to as the reveal phase). In
the most common implementation during the commit phase the user chooses a
value r to which they will be committed, chooses a random value s and computes
c = H(r, s) where H is a hash function (a collision-resilient function that is hard
to invert). Then the user publishes the hash c while keeping r and s secret.

In the open phase the user reveals the chosen values r and s and anyone can
use c to verify if the author of the commitment didn’t change r. The crypto-
graphic commitments are hiding and binding in the sense that:

– the value of c reveals no information about r,
– once the values of r and c are fixed, it is infeasible to come up with another

value of r matching the same c.

5 Recall that the extended version of the paper as well as the code of EthVer and
example contracts are available at https://github.com/lukmaz/ethver.

https://github.com/lukmaz/ethver

370 Ł. Mazurek

Ethereum provides a convenient way to implement the cryptographic com-
mitments using SHA-3 function (also known as keccak256):

hash = web3.utils.sha3(web3.utils.
toHex(r). substr (2)+ web3.utils.toHex(s))

Listing 1.1. Computing the commitment in
web3.js v1.0.0

uint8 r; string s; bytes32 c =
keccak256(abi.encodePacked(48+r,s))

Listing 1.2. Computing the commit-
ment in Solidity v0.5.2

Note the different names of the hash function and the subtle differences in
passing the arguments. These differences follow from different APIs used by
Solidity and web3.js, but the underlying hash function is the same.

2.4 Digital Signatures

Ethereum supports digital signatures based on elliptic curve cryptography imple-
menting the SECP-256k1 standard as described in [13]. The web3.js library pro-
vides two useful functions: web3.eth.accounts.sign(m, sk) for signing and
web3.eth.accounts.recover(m, signature) for recovering the public key of
the author of the signature. Solidity provides the function ecrecover (hash, v,
r, s) which takes the hash of the messages and (v, r, s) values, which are the 3
parts of the signature6. In the most common scenario the signatures are cre-
ated off-chain in web3.js and then they are later verified by the contract. Due to
different APIs of Solidity and web3.js, a special care is needed for the format of
numbers passed to the sign and recover functions. Listings 1.3 and 1.4 show
an example code for signing a message in web3.js and verifying the obtained
signature in Solidity7.

r2_ = web3.utils.toHex(r2). substr (2);
concat = c + web3.utils.padLeft(r2_ , 2)

+ a.toLowerCase (). substr (2);
msg = "msg" + web3.utils.sha3(concat);
s = web3.eth.accounts.sign(msg , privKey);

Listing 1.3. Signing a message in web3.js
v1.0.0

string header = "\ x19Ethereum
Signed Message :\ n69msg0x ";

bytes data = hexToBytes(keccak256(
abi.encodePacked(c,r2,a)));

bytes32 msgHash = keccak256(
abi.encodePacked(header , data));

return ecrecover(msgHash ,
s_v , s_r , s_s) == a));

Listing 1.4. Verifying the signature
in Solidity v0.5.2

3 Interacting with the Contract

The code of a smart contract does not carry all the information needed for
verification. Consider a simple Bank contract written in Solidity:
6 Note that we don’t describe here how to sign messages in Solidity. In fact, Solidity

does not provide convenient API for this. The reason is that a private key is required
to sign and we rarely want to do this in the contract code, because we do not want
to reveal the private keys to public.

7 This is the actual code of computing and verifying the signature σ = sig(c, r2, a)
from the Micropay 1 protocol (cf. Sect. 7).

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 371

contract Bank {
unit balance;

function deposit () public payable {
balance = balance + msg.value;}

function withdraw(uint amount) public {
i f (amount <= balance) {

balance = balance - amount;
msg.sender.transfer(amount);}}}

Listing 1.5. A simple Bank contract

Is this a secure smart contract? The answer to this question depends on how
we want to use the contract and what behavior of the contract is expected. For
example, this contract can be considered secure if we want a bank in which
anyone can deposit money and then anyone can withdraw it. On the other hand,
if we define the security of the bank with the rule that only the person who has
deposited the money can withdraw it, then of course this contract is not secure.

In order to concretize the requirements for the contract we must formulate
the scenario and the properties which we want to be satisfied. In case of the
Bank contract they can be as follows:

Scenario:

– User A deposits 10 finney8.
– User A withdraws 10 finney.

Properties:

– User A gets back his deposited 10 finney.

Of course this property is not always satisfied, which can be shown using the
counterexample scenario in which user A deposits 10 finney and then user B
withdraws the same 10 finney. After that the user A no longer can withdraw 10
finney, since the contract account is already empty.

Although this scenario of using the Bank contract may look artificial (why
not to use the contract in a different way?), in case of many contracts, the
scenario of the proper usage is obvious and well defined. Consider, e.g., a simple
lottery in which user A bets 10 finney and wins 20 finney with probability 1/2
(otherwise loses). In such case, the scenario and the properties for user A are as
follows:

Scenario:

– User A deposits 10 finney.
– User A waits for the result of the lottery.

Properties:

– With probability 1/2: the user A receives the reward of 20 finney.
– With probability 1/2: the user A receives nothing.
8 Recall that 1 finney = 0.001 ETH is a denomination of Ether, the currency of

Ethereum. For simplicity, we neglect the transaction fees, unless stated otherwise.

372 Ł. Mazurek

4 The ETV Language

To model a contract with its scenario in a verifiable way we introduce the ETV
language. The ETV program consists of two parts: the first part is a slightly
modified Solidity code of the contract, while the second part represents the
scenario using web3.js commands.

4.1 Bounded Integers

The main issue with the verification of smart contracts in PRISM is the usage of
bounded integers in PRISM. The reason for it is that a new state in the PRISM
model is created for every valuation of the variables, and thus increasing the
range of variables increases the number of states in the model in the exponential
way. On the other hand, in Solidity/web3.js the smallest type for storing integers
is uint8 which is capable of storing numbers from the range [0, 255]. Frequently
we use such type to store the variables which can have only a small number of
different values (e.g., only 0, 1 or 2) and we do not need the whole range of
uint8.

Because of this limitation we introduce in ETV the bounded integer type
uint(N) which in practice is the main difference between ETV and Solidi-
ty/web3.js.

4.2 Communication

A protocol can contain some operations that are performed directly between the
parties of the protocol (without interaction with the blockchain), for example
exchanging hash values. We define a dedicated communication section for such
operations in the ETV language. Such approach allows us to properly model
the adversarial behavior by allowing the malicious party to also execute the
commands from the communication section.

4.3 Cryptographic Primitives

The other important feature of the ETV language is the abstract syntax for
cryptographic primitives, such as hashes, commitments and signatures. Such
primitives can be (a) translated into PRISM which allows to verify the proper-
ties of the contract and (b) translated into the actual implementation in Solidity
and web3.js which reduces the probability that the user implements it incor-
rectly. The last feature is especially important because the current versions of
Ethereum programming languages (Solidity v0.5.2 and web3.js v1.0.0) present
large differences in the API for the cryptographic functions and a special care
must be taken to make sure that the Solidity part and the web3.js part of the
code operates on the same numbers9.
9 Examples of the syntax of commitments and signatures in Solidity and web3.js have

already been presented in Sect. 2.3 and 2.4.

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 373

5 The Compiler

The main practical result of this work is the implementation of EthVer—a
compiler written in Haskell that takes as the input an ETV file (let us call
it example.etv) and produces:

– example.sol—the contract code in Solidity which can be directly deployed
to the Ethereum blockchain,

– example.scen—the scenario of the execution of the contract containing the
exact JavaScript web3.js commands which can be directly used to execute
the contract,

– example.prism—the PRISM Markov decision process (MDP), which can be
directly used in the PRISM model checker.

While translating ETV code to Solidity and web3.js is straightforward, the
translation from ETV to PRISM MDP is highly nontrivial and was the main
challenge during creation of EthVer. In the next section we describe the core
concepts behind this translation and their implementation in EthVer.

Furthermore, in the extended version of the paper we formally define the
full syntax and the semantics of the ETV language (appendices B and C). In
appendix D we formally define the translation from ETV to MDP and prove
that it preserves the semantics of ETV.

6 Modeling the Protocol as Markov Decision Process

In this section we present the core concepts of EthVer—the way in which we
translate an ETV program into a Markov decision process (MDP).

6.1 Modeling the Contract Execution

We model the main part of the contract using 4 PRISM modules10: player0,
player1, contract, blockchain. We show the role of each module on the exam-
ple of the simple Bank contract (cf. listing 1.5) and the following scenario of its
usage:

– User A deposits 10 finney.
– User A withdraws 10 finney.

We model the honest execution of the scenario with the following commands in
the player0 module:

module player0
[broadcast_deposit] (state0 = 1) -> (state0 ’ = 2)

& (deposit_value0 ’ = 10);
[broadcast_withdraw] (state0 = 2) -> (state0 ’ = 3)

& (withdraw_amount0 ’ = 10);
endmodule

10 A PRISM model can consists of several modules, each corresponding to a different
part of the system and each with a separate set of variables.

374 Ł. Mazurek

Each command sets the value as well as all the arguments of the function call
and then triggers the corresponding commands in contract and blockchain
modules using the PRISM synchronization mechanism—the command with a
non-empty label (the string in square brackets) can be executed only in parallel
with the corresponding function with the same label in other modules (as long
as such command exists in other modules).

The actual process of calling the contract function consists of two phases: in
the first phase, in parallel to [broadcast_*] command from player0 module,
PRISM executes the synchronized command from the blockchain module which
stores the information that this function call is now in the broadcast state. Then
at some later point PRISM can take one of the function calls from the broadcast
state and actually execute the corresponding contract code. This is accomplished
by another pair of synchronized commands from blockchain and contract
modules11.

6.2 Modeling the Adversary

Although the verification of the honest execution of the protocol is important,
we frequently face vulnerabilities in the contracts which reveal themselves only
when one (or more) of the participants misbehave, i.e., deviate from following
the scenario. In order to model the adversarial player, we decided to give them
the ability to interact with the contract in an arbitrary way. More concretely, the
adversary can call any function of the contract, in any order, with any
arguments, as many times as wanted. With such definition of the adversary
we can model any 2-player contract12 in one of the 3 following modes:

– honest mode—honest player 0 vs honest player 1
– adversarial player 0 mode—malicious player 0 vs honest player 1
– adversarial player 1 mode—honest player 0 vs malicious player 1

6.3 Modeling the Communication

As it was already discussed in Sect. 4.2, some protocols contain phases in which
the players do off-chain computation and exchange the computed numbers with-
out calling the contract. Since these procedures do not involve the actual exe-
cution of the contract code, they should not be handled in the same way as the

11 The same pattern of a two-phase function execution could be accomplished using only
the player0 and contract modules, however because of visibility of the variables
in PRISM, the blockchain module is needed to correctly pass the arguments of the
call.

12 The current version of EthVer is limited to 2-players protocols only. However, all
the security claims as well as the formal translation defined in appendix D of the
extended version of the paper hold also for protocols with larger number of players.
Note that although EthVer accepts only 2-player protocols, it verifies the contract
also against the attacks in which more adversarial players join the protocol at the
same time.

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 375

contract calls are. On the other hand, we do not want to limit the capabilities
of an adversarial player, and hence we need to give the adversary the possibility
of performing these procedures at any time, with any arguments (like in case of
contract calls). We model every such action as a communication function that
are called during honest scenario execution and can also be freely called by the
adversary.

These communication functions are stored in the separate communication
section of the ETV code. The syntax of such functions is very similar to the
syntax of contract functions, with the only difference that it cannot handle the
money transfers. These functions translate to the communication module in the
PRISM code which can be triggered using the PRISM synchronization mecha-
nism from the player modules in a similar fashion to the contract function (but
without going through the broadcast state and without involving the blockchain
module).

6.4 Modeling the Cryptographic Commitments

Recall that in the standard implementation of random commitments (Sect. 2.3)
during the commit phase two random numbers (r and s) are generated and then
they are later revealed during the open phase. Since all variables in PRISM are
public, we cannot just store r and s as PRISM variables, because it will break
the hiding property of the commitment. It follows from the fact that MDPs are
non-deterministic and for MDPs we always compute the maximal (or minimal)
probability Pmax/Pmin, where the probability is computed over all the random
choices, while the maximum (minimum) is taken over all the non-deterministic
choices of the model and hence the non-deterministic choices must be done before
the random choices.

To best illustrate the problem, consider a simple game in which A creates a
commitment by choosing r and s at random and then B tries to guess r before
the revealing phase. If we store the value of r in a variable right after the commit
phase, then the automaton that models B can non-deterministically choose the
correct value of r (since now there is no more randomness in the protocol) and
win the game. Hence, in order to properly model the real behavior of keeping
r secret, we need to not store the final value of r during the commit phase and
postpone the actual random choice until the open phase.

In our implementation each commitment in PRISM can be in one of the fol-
lowing states: init, committed, or revealed. All the commitments start in the init
state. During the honest scenario, when the player creates a random commit-
ment, the appropriate variable switches to the committed state, but no actual
choice of the value is made. During the open phase, the player needs to call a
separate revealCmt method which performs the actual random choice. After this
call, the commitment variable switches from the committed state to the revealed
state.

Using the same mechanism the adversary can either commit to a random
value (by switching to the committed state and postponing the actual choice
until the revealing phase) or he can immediately commit to the value of his choice

376 Ł. Mazurek

by switching directly to the revealed state. In both cases he cannot later change
the chosen value. This models the real implementation of the commitments in
which the chosen value also cannot be changed after the commitment is created.

This approach is realized in EthVer by providing the cmt_uint type and
functions randomCmt and verCmt which implement directly the described func-
tionality.

6.5 Modeling the Digital Signatures

We introduce a templated type for the signatures: signature(T1, T2, ...).
The types T1, T2, . . . are the types of the fields of the signature—the values that
we want to sign (when we want to sign more than one value, we usually concate-
nate them before signing). For the signature type we provide two constructions
to create and to verify the signature:

sigma = sign(c, r2, a);
verSig(verAddress , sigma , (c, r2, a));

We model the signatures in PRISM in the following way:

– each signature is initially in the init state,
– there is a separate PRISM variable for each field of the signature as well as

for the address of the author of the signature,
– whenever a signature is created, the fields are assigned with the values being

signed (and the author’s address); these fields’ values cannot be later changed.

The adversary is not allowed to change any field of the existing signature. How-
ever to not limit their ability to interact with the contract in any way at any
time, we allow them to freely create new signatures, i.e., to sign any data at any
time with their own key.

6.6 Modeling the Time

Solidity natively supports creating contracts dependent on time using the now
variable. Moreover, we introduce in ETV the wait(condition, time) state-
ment which implements the conditional wait: after reaching that point of the
scenario, the party pauses the execution of the protocol until the condition is
satisfied or a particular time has passed.

We model the time in PRISM using the time_elapsed variable and the
synchronized commands labeled [time_step]. The time_elapsed counter is
increased in either of the two cases:

– all the honest parties have finished all of their allowed scenarios steps and are
waiting on the wait statement,

– the honest party has finished all of their allowed scenarios steps while the
adversary decides to not execute any step.

This reflects the assumption that the honest parties always follow the protocol
and execute every scenario step within a given time limit while the adversary can
interrupt the protocol at any time and refuse to execute a scenario step within
the time limit.

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 377

7 Case Study: Verification of Two Protocols from the
Literature

As a proof of concept we use the EthVer compiler to formally verify two protocols
from the literature: The Rock-Paper-Scissors protocol from K. Delmolino et al.,
Step by step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. [14], and The Micropay 1 protocol from R. Pass, a. shelat,
Micropayments for decentralized currencies [26]. The results of verification of
these protocols are broadly described in appendices E and F of the extended
version of this paper.

In the first work [14] the authors analyze the actual smart contract for the
Rock-Paper-Scissors game which was created by undergrad students during the
cryptocurrency lab. The authors point out several typical mistakes that were
made during designing this contract and present a few good programming prac-
tices to avoid such bugs in the future. Using EthVer we were able to automati-
cally find all the contract bugs and fix all of them. The case study is iterative—
after each bug fix we rerun the verification and every time the EthVer shows us
the next bug of the protocol. Using this iterative method we implement 6 bug
fixes in total which finally lead us to the correct version of the contract.

It must be stressed, that in the original paper the authors analyze the contract
and fix all the bugs by hand. In contrast, in our experiment the only manual
action is that we rewrite the original contract to the ETV language (which
requires only a few minor tweaks) and then EthVer automatically finds all the
bugs and provides the counterexample for each of them which make it easy to
fix the bugs.

In the second paper [26] the authors present the Micropay 1 protocol—a
smart contract which can serve as a platform for micropayments—fast and cheap
off-chain transactions which only occasionally require the interaction with the
blockchain. In the original version of the paper [26] (published on the 22nd ACM
CCS ’15 conference) the authors describe a buggy version of the protocol—the
contract is vulnerable to so called front-running attack. After the publication we
discovered the bug (it was also discovered independently by Joseph Bonneau) and
contacted the authors with our findings. As a result, they published the corrected
version of the paper [27]. In case of this protocol we also were able to find and
fix the bug using EthVer. Again, the EthVer has found the bug automatically,
which means that if the authors verified the protocol before publication using
EthVer or a similar tool, they would discover the attack and the buggy version
of the contract would never be published.

Our case study involved 9 tested models in total (7 versions of the RPS
contract and 2 versions of the Micropay contract13). The Table 1 shows the
performance of all the test runs. Each test was performed on a laptop with Intel
Core i7-4750HQ CPU @ 2.00GHz and 8 GB RAM.

13 The ETV code of all tested models is available in the project repository, https://
github.com/lukmaz/ethver.

https://github.com/lukmaz/ethver
https://github.com/lukmaz/ethver

378 Ł. Mazurek

Table 1. Performance of all the test runs

Protocol Number of states Model checking time

rps v1 1.6M 130 s
rps v1a 1.2M 72 s
rps v1b 1.9M 75 s
rps v2 0.8M 66 s
rps v3 6.6M 470 s
rps v3a 5.3M 264 s
rps v4 5.2M 238 s
micropay v1 16M 24 min
micropay v2 490M 124 min

8 Conclusions

In this work we present the EthVer compiler—a novel tool for formal verification
of Ethereum smart contracts. We have developed a dedicated ETV language for
designing secure and verifiable contracts. We have formally defined and proved
the correctness of the translation of this language to Markov decision process
(MDP) models in PRISM. This translation has been implemented in Haskell and
works as a standalone computer program.

The novelty of our approach lies in the three features: (1) the verification of
the whole cryptographic protocol consisting of a smart contract and a scenario
of its execution, (2) the verification of probabilistic properties of randomized
contracts, and (3) the abstract language construction for cryptographic com-
mitments and signatures, which can be automatically translated into the actual
Ethereum code and into the PRISM model. To the best of our knowledge, no
other verification approach offers any of these 3 functionalities.

The automatic verification of the model generated by EthVer is possible due
to our original method of modeling the contract as MDP. Our technique allows
to verify the correctness and security of the honest execution of the protocol and
also verifies the protocol against the attacks of the adversarial user. Moreover,
in case the vulnerability of the protocol is found, our tool returns the counterex-
ample—the execution path which leads to the undesired state of the protocol.

As a proof of concept we used EthVer to verify two smart contracts from
the literature. In both cases EthVer was able to automatically find the bugs
that were claimed to be found manually by the authors. This means that the
vulnerable contracts would not have been created if the authors had used EthVer
for their verification.

The experiments results show that the verification is practical—it can be
performed on a medium-class PC within a reasonable time frame. However, the
experiments revealed also the inherent limitation of our method—the size of the
model (and hence the verification time) grows exponentially with the number
of parameters of the contract. Therefore our method is most suitable for the

EthVer: Formal Verification of Randomized Ethereum Smart Contracts 379

contracts of a limited size—for larger models the exact model checking is not
possible and other verification methods must be used.

References

1. Accidental bug may have frozen $280 million worth of digital coin ether in a cryp-
tocurrency wallet. https://www.cnbc.com/2017/11/08/accidental-bug-may-have-
frozen-280-worth-of-ether-on-parity-wallet.html. Accessed 2 Mar 2019

2. How to find $10m just by reading the blockchain. https://coinspectator.com/news/
539/how-to-find-10m-just-by-reading-the-blockchain. Accessed 2 Mar 2019

3. An in-depth look at the parity multisig bug. http://hackingdistributed.com/2017/
07/22/deep-dive-parity-bug/. Accessed 2 Mar 2019

4. Manticore. https://github.com/trailofbits/manticore
5. Mythril. https://github.com/ConsenSys/mythril
6. Smartcheck. https://github.com/smartdec/smartcheck
7. solgraph. https://github.com/raineorshine/solgraph
8. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart

contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, pp. 66–77.
ACM, New York (2018). https://doi.org/10.1145/3167084

9. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96. ACM (2016)

10. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper.
Accessed 22 Aug 2016

11. Chatterjee, K., Goharshady, A.K., Velner, Y.: Quantitative analysis of smart con-
tracts. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 739–767. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_26

12. Cook, T., Latham, A., Lee, J.H.: Dappguard: active monitoring and defense for
solidity smart contracts. Retrieved July 18, 2018 (2017)

13. Courtois, N.T., Grajek, M., Naik, R.: Optimizing SHA256 in bitcoin mining. In:
Kotulski, Z., Księżopolski, B., Mazur, K. (eds.) CSS 2014. CCIS, vol. 448, pp. 131–
144. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44893-9_12

14. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4_6

15. Falkon, S.: The story of the DAO – its history and consequences (2017).
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-
71e6a8a551ee

16. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

17. Grossman, S., et al.: Online detection of effectively callback free objects with appli-
cations to smart contracts. In: Proceedings of the ACM on Programming Lan-
guages 2(POPL), pp. 1–28 (2017)

https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://coinspectator.com/news/539/how-to-find-10m-just-by-reading-the-blockchain
https://coinspectator.com/news/539/how-to-find-10m-just-by-reading-the-blockchain
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://github.com/smartdec/smartcheck
https://github.com/raineorshine/solgraph
https://doi.org/10.1145/3167084
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-319-89884-1_26
https://doi.org/10.1007/978-3-662-44893-9_12
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://doi.org/10.1007/978-3-642-37036-6_8

380 Ł. Mazurek

18. Hildenbrandt, E., et al.: Kevm: a complete formal semantics of the ethereum virtual
machine. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pp. 204–217 (2018). https://doi.org/10.1109/CSF.2018.00022

19. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Financial Cryptography Workshops (2017)

20. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: analyzing safety of smart con-
tracts. In: NDSS, pp. 1–12 (2018)

21. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

22. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf

24. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference, pp. 653–663 (2018)

25. O’Connor, R.: Simplicity: a new language for blockchains. In: Proceedings of the
2017 Workshop on Programming Languages and Analysis for Security, pp. 107–120
(2017)

26. Pass, R., Shelat, A.: Micropayments for decentralized currencies. In: Ray, I., Li,
N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference on Computer and Com-
munications Security, pp. 207–218. ACM Press, Denver (2015). https://doi.org/10.
1145/2810103.2813713

27. Pass, R., Shelat, A.: Micropayments for decentralized currencies. Cryptology ePrint
Archive, Report 2016/332 (2016). http://eprint.iacr.org/2016/332

28. Pettersson, J., Edström, R.: Safer smart contracts through type-driven develop-
ment. Master’s thesis. Chalmers University of Technology, Sweden (2016)

29. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

30. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.:
Security: practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
pp. 67–82. ACM, New York (2018). https://doi.org/10.1145/3243734.3243780

31. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosys-
tem and solidity. In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pp. 2–8. IEEE (2018)

32. Zhou, E., et al.: Security assurance for smart contract. In: 2018 9th IFIP Interna-
tional Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5.
IEEE (2018)

https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2810103.2813713
https://doi.org/10.1145/2810103.2813713
http://eprint.iacr.org/2016/332
https://doi.org/10.1145/3243734.3243780

Absentia: Secure Multiparty
Computation on Ethereum

Didem Demirag(B) and Jeremy Clark

Concordia University, Montréal, Canada
d demira@encs.concordia.ca

Abstract. This paper describes a blockchain-based approach for secure
function evaluation (SFE) in the setting where multiple participants have
private inputs (multiparty computation) that no other individual should
learn. The emphasis of Absentia is reducing the participants’ work to
a bare minimum, where they can effectively have the computation per-
formed in their absence and they can trust the result. While we use an
SFE protocol (Mix and Match) that can operate perfectly well without
a blockchain, the blockchain does add value in at least three impor-
tant ways: (1) the SFE protocol requires a secure bulletin board and
blockchains are the most widely deployed data structure with bulletin
board properties (immutability and non-equivocation under reasonable
assumptions); (2) blockchains provide a built-in mechanism to financially
compensate participants for the work they perform; and (3) a publicly
verifiable SFE protocol can be checked by the blockchain network itself,
absolving the users of having to verify that the function was executed
correctly. We benchmark Absentia on Ethereum. While it is too costly to
be practical (a single gate costs thousands of dollars), it sets a research
agenda for future improvements. We also alleviate the cost by compos-
ing it with Arbitrum, a layer 2 ‘roll-up’ for Ethereum which reduces the
costs by 94%.

1 Introduction

Consider the traditional setting for multiparty computation (MPC) with a twist:
Alice and Bob each have some data, they would like to know the output from
running an agreed-upon function on their data, each does not want the other
(or anyone else) to learn their data, and they want to simply submit their data
(e.g., encrypted) to a trustworthy system and come back later for the result,
which will always be correct. They are willing to pay for this service and they
accept that, only in the worst case of full collusion between the operators of
this service (called trustees), their inputs may be exposed—but a single honest
trustee protects their privacy.

We assume the reader is familiar with blockchain technology, Ethereum, and
smart contracts or decentralized apps (DApps). Can these technologies help? In
theory? In practice? We seek to answer these questions through direct exper-
imentation. The abstract above builds the argument for why blockchain can
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 381–396, 2021.
https://doi.org/10.1007/978-3-662-63958-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_31&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_31

382 D. Demirag and J. Clark

help: (1) it provides an integral point of coordination where trustees can post
and track progress on the evaluation; (2) it provides an in-band solution for pay-
ing the trustees (in either a cryptocurrency like ETH or in a stablecoin pegged
to the value of governmental currency like the USD) in a way that is contingent
on their performance; and (3) the blockchain itself can serve as the public veri-
fier and can reject any protocol proof that is not correct. When Alice and Bob
retrieve the result (whether in plaintext or individually encrypted under their
keys), they know it must be correct—otherwise it would not be there waiting
for them.

Our experiments show that while in theory the idea is sound and we are
able to successfully perform a secure function evaluation of a single logic gate
(NAND gate) on Ethereum, the costs today are too prohibitive for it to be
considered practical. We then turn to so-called layer-2 solutions and show that
Arbitrum [14] can make Absentia substantially more practical (with room for
further improvement).

1.1 Key Design Decisions

Note that we use the more precise term secure function evaluation (SFE) to
describe the stateless, one-shot evaluation that Absentia provides. We think
of SFE as a subset of secure multiparty computation (MPC)—a more general
setting which includes stateful computations performed over time.

Design Decision: Trustee Model. In keeping with our priority for a submit-and-
go protocol, someone has to perform the actual evaluation of the function on the
inputs. We call these entities trustees. We require that the number of trustees (n)
can be chosen independently of the number of inputs. In Absentia, we assume
all trustees (n-out-of-n) participate (and can identify any that do not). However
Absentia could be modified to allow the protocol to proceed if only a threshold
(t out of n) of trustees participate—however, also reduces the number of trustees
that need to collude to break the privacy of the protocol.

The remaining question is how can Alice and Bob find trustees they assume
will not collude? We have several suggestions: (1) it could be based on per-
sonal connections; (2) perhaps commercial entities would emerge with either
pre-established reputations or earn their reputation over time (similar to oracle
providers today); confidence might increase if they offer legally enforceable terms
of service; or (3) trustees could be picked at random from a large set of trustees.
While (3) may not sound convincing, it is essentially same threat model as the
anonymous web-browsing tool Tor which is trusted by many vulnerable users
(perhaps Tor also uses flavours of (1) via its Entry Guard program).

Design Decision: Ethereum. While we are not the first to explore multi-party
computation and its relationship to blockchain (see Sect. 2.1), we believe we
are the first to implement an SFE/MPC protocol on a public, commonly used
blockchain; namely, Ethereum. The first research question we ask is whether
SFE/MPC is even feasible on Ethereum, given the heavy cryptography it uses.

Absentia: Secure Multiparty Computation on Ethereum 383

Our paper establishes a benchmark that we hope to see improved through future
research. Ethereum itself has scheduled scalability plans including Ethereum 2.0
(more transactions per second), and a lot of community resources are also being
spent examining and implementing layer 2 solutions that move blockchain func-
tionality off of the main chain without sacrificing many of its security benefits.
Technologies include state channels, sidechains, and roll-ups [12]. To experiment
with these technologies, we also deploy and benchmark critical components of
Absentia on Arbitrum [14], a recently proposed system for optimistic roll-ups
(described more in Sect. 4). We now turn to another avenue for improvement,
using state-of-the-art MPC protocols.

Design Decision: Mix and Match. Starting with Yao in 1982 [21], the question
of how to securely evaluate a general function, when inputs are held by multiple
people, has generated a rich body of literature in cryptography. In choosing
an SFE/MPC protocol for the basis of Absentia, we looked for one with the
following properties:

1. Trustee model. As justified above, we seek an SFE/MPC protocol that
lets the input holders (e.g., Alice and Bob) offload their inputs to a set of
non-colluding trustees for evaluation.

2. Publicly verifiable (a.k.a. publicly auditable or universally verifiable).
Many MPC/SFE protocols are in the semi-honest (i.e., honest-but-curious)
model. Some are resilient to covert or malicious adversaries. We require that
not only can adversarial behaviour be detected by the participates in the
protocol, but that it can be detected by anyone (i.e., the public). This allows
(a) Alice and Bob to offload the computational work to the trustees and still
ensure the output is correct, even if they did not directly participate, and (b)
Alice and Bob can go further and offload the verification itself to someone
they trust—the Ethereum network in this case.

3. Identifiable aborts. If the protocol does not reach completion, anyone can
establish which trustee aborted. Financial incentives can be attached to par-
ticipation and timeliness.

4. Elliptic curve operations. While Ethereum can in theory implement dif-
ferent types of cryptography (RSA groups, integer-based discrete logarithms
groups, lattices, etc..), it has native support for its own cryptographic opera-
tions (ECDSA signatures) on the elliptic curve secp256k1. For ease of imple-
mentation, we prefer a SFE/MPC with the same cryptographic setting.

5. Circuit type. When the function to be evaluated is represented as a circuit,
the circuit could be based on logic gates (i.e., NAND gates) or arithmetic
operations (e.g., additions and multiplications in a modular group). We are
indifferent to this design parameter.

One SFE protocol to meet our purposes is Mix and Match [13] and we chose
it based on our familiarity with it. We are also aware that the state-of-the-art
MPC protocols are based on a different paradigm—based on Beaver triples [4]—
initiated by the SPDZ protocol [9,10] with many followups (HighGear is a recent

384 D. Demirag and J. Clark

example [15]). While SPDZ uses lattice-based somewhat homomorphic encryp-
tion (SME), this is during a pre-computation phase and Absentia (for now)
assumes all pre-computation has been validated. SPDZ also appears amenable to
a trustee model and one paper explores a publicly verifiable variant [3], however
since the authors do not compare themselves to Mix and Match, it would be a
full research project to determine if it is indeed faster. We note that it is not obvi-
ously categorically faster—for example, by not requiring public key operations
at all: the publicly verifiable variant uses Pedersen commitments extensively.

We are not aware of an explicit proof that Mix and Match is publicly veri-
fiable, however every step of the protocol is covered by a trustee issuing a non-
interactive zero knowledge proof and it is later assumed to be by the authors in
their auction application [13]. Stated a different way, it appears that even when
all trustees fully collude, trustees can only break privacy (and not integrity)
with the exception of one sub-protocol, as noted by the authors [13], called the
plaintext equality test (PET). Despite the caveat, many have used the PET pro-
tocol as if it is publicly verifiable (some making justifications based on statistical
arguments). Recently it was shown these statistical arguments are not sufficient,
but the PET protocol can be made verifiable, even when all trustees collude,
with a simple additional check on the final output [17].

2 Preliminaries

2.1 Related Work

The blockchain literature has explored SFE and MPC in several regards. Perhaps
the closest to Absentia is Enigma [22] which offers stateful MPC as a service.
The original academic proposal utilizes a custom blockchain. Now as a commer-
cial project, the emphasis is on providing generic smart contracts with privacy.
Enigma runs on a Cosmos/Tendermint-based chain, with an Ethereum bridge
contract that allows swapping crypto-assets. Absentia is different in the follow-
ing regards: (1) users provide the circuit they want evaluated, (2) Absentia does
not use trusted execution environments (TEE), and (3) we benchmark running
natively on Ethereum. Like Enigma, Hawk also provides a privacy wrapper for
contracts [16] based on succinct zero knowledge. A fair MPC is described as an
application of Hawk but not implemented.

The literature has also explored moving computation off-chain while not los-
ing privacy or correctness, however from the perspective of a single entity’s secret
data (i.e., verifiable computing as opposed to SFE/MPC). Examples include
Zexe [6], ZkVM [1], and Raziel [19]. Another research direction, initiated by
Andrychowicz et al. [2], explores how blockchain technologies can support an
off-chain MPC to provide fairness. By contrast, Absentia is performing the SFE
on the blockchain. Closely related to SFE/MPC are zero knowledge proofs, whose
uses in blockchain are now too prolific to adequately summarize here.

Absentia: Secure Multiparty Computation on Ethereum 385

2.2 Background

We provide a basic overview of the Mix and Match protocol for secure function
evaluation (SFE), while referring the reader to the original paper by Jakobsson
and Juels for the full details [13]. Mix and Match uses a partially homomor-
phic encryption scheme; we instantiate it with additive exponential Elgamal [8].
We implement it over the elliptic curve secp256k1 which is used natively by
Ethereum (we describe later how this results in savings).

Mix and Match: Pre-computation. In a pre-computation stage, the following
tasks are completed. First, a set of n trustees, identified by public keys, are cho-
sen. A threshold of trustees needed to complete the protocol can also be chosen,
however we implement the simplest case: 2-out-of-2 (we call this distributed as
opposed to threshold). Next, the trustees use a distributed key generation (DKG)
protocol for creating n shares of the decryption key, one for each trustee, as well
as a single joint public key. Exponential Elgamal supports DKG and threshold
decryption [18].

In Mix and Match, a circuit of the function to be evaluated is produced using
multi-input and multi-output lookup tables. We evaluate a single binary NAND
gate (a universal gate that can create any circuit) which corresponds to a lookup
table with two binary inputs (one from Alice and one from Bob) and a single
binary output. During a pre-computation stage, the circuit for the function is
established as a sequence of lookup tables (the output from one table can be
used as an input to another). Each element of each lookup table is individually
encrypted under the trustees’ public key (we denote an encryption of x as �x�):

A B Out

�0� �0� �1�

�1� �0� �1�

�0� �1� �1�

�1� �1� �0�

The encrypted table is then permuted row-wise. Each trustee mixes the rows,
rerandomizes each ciphertext, and proves in zero knowledge that the result is
correct:

A B Out

�0� �1� �1�

�1� �0� �1�

�1� �1� �0�

�0� �0� �1�

Complete circuits of such tables can be pre-computed by the trustees before
Alice and Bob provide their inputs. Practically speaking, if sets of trustees were
pre-established, they could prepare circuits for commonly requested functions

386 D. Demirag and J. Clark

and post them publicly. When Alice and Bob decide to do an SFE, they can
choose the pre-computed circuit (produced by a specific set of trustees). For the
purposes of this paper, we assume circuits have been pre-computed and verified.
In the future we may extend Absentia to accept a circuit and complete set of
proofs to verify its correct construction, but for this paper, we concentrate on
building a verifier for the online phase.

Plaintext Equality Test (PET). Let 〈�x�, �y�〉 denote two exponential Elgamal
ciphertexts; encryptions of x and y respectively. The trustees will first compute
�z� = �x − y� using the additively homomorphic property. If the values are the
same, z = 0; otherwise z �= 0. Each trustee will choose a random ri �= 0, compute
�ẑi� = �ri ∗ ẑi−1� (where ẑ0 := z) and prove correctness in zero knowledge.
The resultant �ẑ� = �

∏
ri ∗ z� will still be �0� when x = y and will encrypt a

randomly distributed non-zero integer otherwise. (The original proposal [13] lets
each trustee blind without using the result from the previous trustee—this adds
asynchronicity but requires a critical security correction [17]). In the final step,
the trustees decrypt and reveal ẑ. If ẑ = 0, the equality test returns True; and
returns False otherwise.

Mix and Match: Online Phase. At this stage, Alice and Bob provide their inputs
〈�a�, �b�〉. The trustees can begin with Alice’s input �a� and they compute a PET
between �a� and each ciphertext in the column corresponding to Alice’s input.
They do the same for Bob. They locate the row that returns true for every input
column. The encrypted output(s) of this row can then be (1) transferred as an
input to the next gate, (2) decrypted publicly if it is a final output, or (3) proxy
re-encrypted for Alice (and/or Bob)—meaning it is obliviously and verifiably
changed by the trustees from an encryption under the trustees’ joint public key
to an encryption under Alice’s. For simplicity in Absentia, we implement (2).
We illustrate for the previous example and a = 1 and b = 0:

A B Out

PET(�a�, �0�) = F PET(�b�, �1�) = F

PET(�a�, �1�) = T PET(�b�, �0�) = T �1� is selected

PET(�a�, �1�) = T PET(�b�, �1�) = F

PET(�a�, �0�) = F PET(�b�, �0�) = T

3 Absentia: System Design

High Level Flow. Figure 1 illustrates a high level overview of how participants
interact with Absentia. The main contract of the system is the Absentia-DApp
(mixmatch.sol), which can create sub-contracts: PET Sub-DApp (PET.sol).
Note that Fig. 1 is stylized and the exact implementation might split/join certain
function calls but it provides an accurate mental model of participation within
the system.

Absentia: Secure Multiparty Computation on Ethereum 387

Alice PET
Sub-DApp Trustee 1* Trustee 2Bob Absentia

DApp

Alice PET
Sub-DApp Trustee 1* Trustee 2Bob Absentia

DApp

Loop

1

4

16

2

3

5

6

7

8

9

10

11

12

13

14

15

17

18

Deposit Ciphertext and Fee

Deposit Ciphertext and Fee

Load Circuit Ciphertexts

Create PET Contracts

Lock Fees

Create PET Contracts

PET: Subtraction

PET: Submit Blinded Value and ZKP

PET: Submit Blinded Value and ZKP

PET: Partial Decryption and ZKP

Equal or Not Equal

Determine Output

Output: Partial Decryption and ZKP

Output: Partial Decryption and ZKP

Transfer Fees to Trustees

Retrieve Result

Retrieve Result

PET: Partial Decryption and ZKP

[For Each PET]

Fig. 1. Overview of Absentia.

At the beginning of the protocol, the contracts are deployed, identifying Alice,
Bob, and the trustees (by Ethereum address). Alice and Bob both submit their
encrypted input, and deposit fees that will be paid to the trustees for completing
the protocol. We consider Absentia submit-and-go because Alice and Bob do not
have to perform any other functions during the execution of the protocol.

Certain tasks are public operations that can be performed by anyone. For
our analysis, we assume that Trustee 1 is the leader (denoted Trustee 1* with
an asterisk) and always does these tasks. It is substantially more work, so it
might improve the protocol to balance these operations between trustees or to
compensate the leader more than the other trustees.

The actual Mix and Match operations done by each trustee is done off-chain
using their share of the private key and other secrets (like randomizers) which
are always offline. Ethereum is used to record the output of each step, record
a zero-knowledge proof that the step was performed correctly, and to actually
validate this proof. The DApp will reject any outputs accompanied by invalid
or incomplete proofs. All proofs are Σ-protocols (specifically Schnorr [20] or
Chaum-Pedersen [7]) made non-interactive with (strong [5]) Fiat-Shamir [11].
As this is not our main contribution, we refer the reader to the original paper
by Jakobsson and Juels for the full details how these proofs are used in Mix and
Match [13].

For each gate, the Absentia DApp creates enough instances of the PETs
(e.g., 8 instances for a binary gate) to perform the evaluation. The trustees then

388 D. Demirag and J. Clark

interact with the PET contract, running each to completion (a state machine
governs each step of the protocol). Note that for simplicity, Absentia requires
the trustees to go in a specified order but the underlying protocol is amenable
to some concurrency. Once enough PETs are complete that the output is deter-
mined, the leader can assert this to the Absentia DApp which will check the
state of the PET contracts to confirm. The final output is staged for decryption
by the trustees. Alice and Bob can find it on the Absentia DApp. For simplic-
ity, the result is in plaintext however Absentia could be modified to support
proxy re-encryption instead of decryption which would leave two final cipher-
texts, encrypted respectively under public keys specified by Alice and Bob.

Payments. Absentia allows Alice and Bob to pay Trustee 1 and Trustee 2 upon
completion of the protocol. We implement a simple proof-of-concept payment
scheme while noting more elaborate schemes are possible. As implemented, Alice
and Bob can deposit and withdraw ETH. The protocol cannot begin until their
accounts hold enough to satisfy the fee (and if they hold more, the excess can
be withdrawn at any time). Once the protocol begins, the funds for the fee are
locked in escrow within the contract. If the protocol reaches finality, the funds
are transferred to the accounts of Trustee 1 and 2 who can then withdraw (Note
we use standard re-entrancy protection1 on withdraws.) If the protocol times out
without reaching finality, the fees are returned to Alice’s and Bob’s accounts.

An alternative incentive scheme might pay trustees gradually for each step
of the protocol they complete and then a larger bonus for completing. Since
Absentia can identify which trustee aborts the protocol (a useful feature that
is not always possible in SFE/MPC protocols), trustees could also be required
to post a payment (stake) to act as a fidelity bond. They financially commit to
completing the protocol in a timely fashion and their stake is taken (slashed) if
they do not.

Code Layout. Absentia is implemented in Solidity. All our code and tests are
open source.2 The trustees can perform their operations and generate their proofs
in a language of their choice; we implement this in Mathematica (which we also
use to generate test vectors for validating the Solidity code). Mixmatch.sol and
PET.sol consists of 214 and 388 lines (SLOC) of Solidity code respectively. We
adapt a standard library for elliptic curve operations.3

One optimization we implement concerns scalar multiplication over elliptic
curves. Since Solidity is verifying proofs in Absentia, it only has to verify mul-
tiplications rather than perform them. Put another way, the trustee supplying
the proof to Absentia already knows what the result of every multiplication is
and can provide these values. As it turns out, it is cheaper to verify a multipli-

1 Open Zeppelin’s ReentrancyGuard.sol.
2 https://github.com/MadibaGroup/2017-Absentia.
3 Orbs’ ECops.sol.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/MadibaGroup/2017-Absentia
https://github.com/orbs-network/elliptic-curve-solidity/blob/master/ECops.sol

Absentia: Secure Multiparty Computation on Ethereum 389

Table 1. Code size for mixmatch.sol

Code Size (bytes)

Bytecode 27,178

Deployed 26,774

Initialisation and constructor code 404

cation than compute one by ‘abusing’ Ethereum’s relatively inexpensive opcode
for validating ECDSA signatures.4

Since Absentia generates a lot of PETs to perform the protocol, we imple-
ment this aspect with a factory design pattern. In this pattern, each PET is
a stand-alone contract. The Mix and Match contract can create instances of
these PET contracts and deploy them at new addresses. Our measurements (see
below and Table 2) demonstrate that the factory pattern has certain drawbacks.
Mixmatch.sol must deploy with a full copy of PET.sol’s bytecode in order for it
to deploy instances of PET.sol. This results a contract size that is large. Also the
function (Create Row) that creates (two) PETs each time it is called is the most
expensive function in the system and costs 8, 741, 453 gas (gas is Ethereum’s
metric for the cost of a computation).

All contracts enforce the order in which the functions can execute through
state changes maintained within the contract. Key state changes emit events.

3.1 Measurements

Testing Platform. To test Absentia, we use Truffle on a local Ethereum
blockchain. Our test files are included on the code repository. We also dupli-
cated Absentia’s functionality in Mathematica to help establish correctness.

Code size. The code size for mixmatch.sol is outlined in Table 1. When any
Ethereum contract is first deployed, the constructor can only be run once. Thus
the constructor code does not need to be referenced for further invocations and
is not stored with the deployed bytecode (but can be found in the calldata of
the deployment transaction).

When compiled, mixmatch.sol is 26, 774 bytes (plus a constructor of 404
bytes). Because of the factory design, this includes the bytecode to create
PET.sol contracts. Ethereum limits contracts to ≈24KB (per EIP170).5 We
simply adjust Truffle’s limit to allow us to benchmark it as a single contract.
However it cannot be deployed on Ethereum today as is. Straightforward options
to bring the code under the limit include: (1) taking PET.sol out of the contract
and having the leader deploy each PET contract and load the addresses back

4 V. Buterin, 2018. You can *kinda* abuse ECRECOVER to do ECMUL in secp256
k1 today.

5 In 2016 when EIP170 was finalized, a 24KB contract could not deploy without
crossing the block gas limit, however the gas limit has increased substantially since.

https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384
https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384

390 D. Demirag and J. Clark

Table 2. Gas costs per function and who runs the function: Alice (A), Bob (B), Trustee
1 as the leader (T1*), or Trustee 2 (T2). Note that many functions are run more than
once.

Contract Function Gas Gas cost ($)

ec.sol Deploy contract 595,517 31.94

Mixmatch.sol
(Absentia DApp)

Deploy contract 6,091,398 326.75

A&B: Load funds 28,040 1.50

1*: Load outputs 300,798 16.13

T1*: Create row 8,741,453 468.90

T1*: Find matching row 37,547 2.01

T1*: Find matching value 40,868 2.19

T1*: Create final decryption 4,430,611 237.66

A&B: Withdraw excess funds 41,110 2.21

A&B: Withdraw funds 39,221 2.10

PET.sol (PET
Sub-DApp)

Deploy Contract 4,681,858 251.14

A&B or T1*: Load ciphertexts 304,668 16.34

T1*: Subtraction 242,131 12.99

T1*: Randomization ZKP 815,340 43.74

T2: Randomization ZKP 393,561 21.11

T1*: Partial dec ZKP 364,298 19.54

T2: Partial cec ZKP 363,612 19.50

T1*: Full cecryption 107,086 5.74

T1*: Load final ciphertexts 173,945 9.33

Table 3. Cost for each participant.

Alice Bob Trustee1* Trustee2

Number of transactions 5 5 44 17

Total gas cost 1,246,712 1,246,712 52,952,603 6,420,996

Total cost in USD 66.87 66.87 2840.41 344.43

into mixmatch.sol; (2) move stateless functions to libraries; (3) split the con-
tract up arbitrarily and use delegatecall to execute the pieces in a common
context; or (4) find ways to optimize the code to reduce its size (it is academic,
proof of concept code, and is very close to the limit, so this should be feasible).

Gas Costs. Table 2 provides the cost to deploy Absentia’s two contracts and one
library, as well as the gas costs of each function. Note that many functions are
invoked more than once in a complete run of Absentia. The gas costs are as

Absentia: Secure Multiparty Computation on Ethereum 391

Table 4. Cost of scaling absentia

Setting Total gas

1 gate, 2 trustees 61,867,023

2 gate, 2 trustees 121,240,622

1 gate, 3 trustees 68,288,019

reported in Truffle’s local network (Ganache). To convert gas into USD, we use
1 gas = 87 Gwei as recorded on Dec 01, 2020.6 The price of ETH is $615.07 for
the same date.7

As the leader of the protocol, Trustee 1 (T1*) has to perform more operations
than the other participants. Table 3 shows the costs per participant. Particularly
expensive tasks for the leader is loading all the ciphertexts for the circuit into
the contract and initializing the memory needed, in particular for each PET,
for the working memory. This is why, for example, Randomization ZKP is so
expensive for T1 as compared to T2 (the code of both functions is identical but
gas costs are 815, 340 versus 393, 561). Trustee 1 initializes many state variables
(more expensive in Ethereum) that are not needed once the function completes;
while trustee 2 overwrites the variables (less expensive in Ethereum). The next
function, Partial Decryption, continues overwriting these variables.

Our design has some room for improvement. For example, in the current
implementation, Alice and Bob have to deposit their inputs for each PET con-
tract that is created (8 in total). A better design pattern (more consistent with
Fig. 1) would have Alice and Bob deposit once in mixandmatch.sol and have the
factory contract initialize the PETS with the correct values. Another improve-
ment would aim to reduce the total transaction count for each participant by
merging operations that are performed in a sequence by the same participant
(we split them into logic blocks to better showcase what the gas was being spent
on).

In Table 4, we show how Absentia scales with additional gates and additional
trustees. If we want to evaluate a two gate circuit, Alice and Bob still perform
the same number of transactions but nearly all of the rest of the functions are
run twice as many times. Note that if the output of one gate is fed into the next
gate, the leader (T1*) will load the inputs for the second gate. Going back to
a single gate, increasing the number of trustees from 2 to 3 is not as expensive.
Each additional trustee has a marginal cost equal to Trustee 2’s cost in Table 3.

4 Absentia on Layer 2

4.1 Roll-Ups

A loose collection of technologies, called Layer 2 solutions, have been proposed
to address certain shortcomings of operating directly on Ethereum (Layer 1)
6 Etherscan.
7 Coinmarketcap.

https://etherscan.io/chart/gasprice
https://coinmarketcap.com/currencies/ethereum/historical-data/

392 D. Demirag and J. Clark

User Bridge (Ethereum) DApp (Arbitrum) Validator

Request: run function
1

Fetch from bridge inbox
2

Evaluate function
3

Update the state
4

Sync ArbOS
5

User Bridge (Ethereum) DApp (Arbitrum) Validator

Fig. 2. Overview of arbitrum transaction submission.

or other blockchains [12]. These solutions generally strive for one or more of
the following: reducing transaction latency, increasing transaction throughput,
or reducing gas costs. In the case of Absentia, reducing gas costs is paramount.
However Layer 2 solutions can also change the threat model; for Absentia, we
require that Alice and Bob can trust the final output without having to verify
any proofs themselves.

The most appropriate layer 2 technology for our requirements is called a
roll-up which targets gas costs. In Ethereum, every transaction is executed (and
thus validated) by every Ethereum node. In a roll-up, transactions are executed
by off-chain nodes called validators. Validators try to convince the Ethereum
network that the result of the transaction execution (i.e., the state change of
the EVM) is correct without the Ethereum nodes having to execute it.

Since Ethereum nodes cannot just ignore the Ethereum protocol’s specifi-
cations for how to validate transactions, the roll-up cannot be implemented on
Layer 1. Rather it is implemented inside its own DApp (Layer 2). This Layer
2 DApp is effectively a container, operating by its own custom consensus rules,
for DApps that want roll-up functionality. The tradeoff is they are isolated from
regular L1 DApps without some additional protocols (e.g., interoperability sup-
port for currency/token transfers and external function calls). For Absentia, we
do not require interoperability with L1 other than having a currency in L2 to
pay the trustees.

There are at least two ways to convince on-chain participants that an off-
chain computation was performed correctly. The first is to prove it with a suc-
cinct proof. SNARKs are one proof-type for general computations that are more
efficient to verify than performing the computation itself. A second approach
(called an optimistic rollup) is to have a validator assert the result and then
allow for anyone to dispute it before finalizing it. Resolving disputes is always
possible by having the Ethereum nodes perform the computation itself, but dis-
putes can be settled in a more succinct way (see [14]). If Alice demonstrates that

Absentia: Secure Multiparty Computation on Ethereum 393

Table 5. Comparison between deploying a plaintext equality test on Ethereum and
deploying on arbitrum (via Ethereum). The links show the reader the actual transac-
tions of a test-run on Kovan/Arbitrum’s respective block explorers. Size is the calldata
in bytes.

Function Ethereum Arbitrum

Tx Gas L1 L1 L2 L2 Size

Tx Gas Tx ArbGas

Deploy ec Link 1, 103, 372 Link 80,152 Link 1, 304, 481 4978

Deploy PET Link 5, 266, 352 Link 386,079 Link 4, 260, 273 24,172

Load Ciphertexts Link 305, 309 Link 7869 Link 820, 507 742

Subtraction Link 260, 729 Link 5469 Link 4, 789, 799 550

T1 Randomization ZKP Link 819, 877 Link 11,488 Link 10, 972, 720 644

T2 Randomization ZKP Link 398, 245 Link 11,440 Link 11, 069, 485 742

T1 Partial Dec ZKP Link 366, 636 Link 11,452 Link 10, 692, 786 742

T2 Partial Dec ZKP Link 366, 089 Link 11,512 Link 10, 689, 113 742

Full Decryption Link 124, 816 Link 6236 Link 4, 258, 675 422

a validator is wrong, the validator is financially punished and Alice is rewarded.
Such validators do less work than Ethereum nodes (as well as validators that
have to produce SNARKs)—therefore, optimistic rollups enable substantially
lower gas costs.

4.2 Arbitrum

Arbitrum is a Layer 2 solution proposed in a USENIX Security paper [14] and
now maintained as a commercial project by Offchain Labs. Currently, they
operate an optimistic rollup on Ethereum. Instead of operating all Arbitrum
contracts (called ArbOS) in a container DApp on Ethereum, ArbOS instead
operates as a side-chain. A bridge contract on Ethereum serves as an interface
between Ethereum and Arbitrum. Figure 2 shows how function calls work on
Arbitrum. A user initiates a transaction on Ethereum to the Bridge Contract
with the instruction to deploy a contract or run a function, along with all the
data required for Arbitrum to perform this transaction. A validator sees new
transactions in the inbox of the bridge, executes one and asserts the result to
ArbOS. After a dispute period, the transaction is considered finalized. Periodi-
cally, the entire state of ArbOS is committed back to Ethereum. As all Arbitrum
transactions are recorded on Ethereum, anyone can compute and compare the
current ArbOS state.

4.3 Absentia on Arbitrum

Testing Platform. Arbitrum runs a testnet with a bridge on Ethereum’s Kovan
testnet. As mentioned above, Absentia is too large to deploy (as a factory con-
tract) within Ethereum’s contract size limit. To experiment with Arbitrum, we

https://kovan.etherscan.io/tx/0x088af056a640c1fe2188678e52484f89b7ba0bd9345bb0578d91c96aa480c59c
https://kovan.etherscan.io/tx/0xa80f0eb0408f8f1c760abbc223b6a3b24780aba4b85f96ecbd6fb0dfe94bd606
https://explorer.offchainlabs.com/#/tx/0x7c82717b52cb133c8855c0833d3cbf9ded19f884764fce78de3bb4e27feb63cd
https://kovan.etherscan.io/tx/0xb76cda2c91907234afc0b971df893a6dbcdf83d482d2ff3d7d29b4a0b313002f
https://kovan.etherscan.io/tx/0x2ec73b92474c991d7b9f8ad1c46f95ef9125513897badb0c0c5faa19bd5b9a55
https://explorer.offchainlabs.com/#/tx/0x2b1e63c81ca8ab7f4a6fe5333daab515a4e7408121771ae58e205ee037bceb50
https://kovan.etherscan.io/tx/0x2cb4bf0f6ce9fc7cabf0c152fdc61ccfff00a0f2e717c85da7eab806fa101b5b
https://kovan.etherscan.io/tx/0x612e19481fff4ddd1c2dfe260908f15c7c74072a1e733597b4bab1c1209169f4
https://explorer.offchainlabs.com/#/tx/0x28b3fa1a91d6d6e13005d352940861a026ac029fbc13a58dc969e98ffb5b392c
https://kovan.etherscan.io/tx/0x6eeb3031c81af252df1fb806ae0a57643c20792df7336004465c6a74792c0016
https://kovan.etherscan.io/tx/0xa31a5653f3bfbdf7bcce4520c2a4f0e8d38fbc5c19036548199f805a4997cf68
https://explorer.offchainlabs.com/#/tx/0xbeff60af08f1b88deabe690322e26794d87595b332f1f1d01095a6a4528c4254
https://kovan.etherscan.io/tx/0x30e8ccff5af6f3489ba2dc11e3198f0216487f380aa2a66ddf97e94650490e88
https://kovan.etherscan.io/tx/0xc08cc82908b7e87e8ddc75695c4f29c3bce3d9a8caced144f003c59e23f4690e
https://explorer.offchainlabs.com/#/tx/0xe3d1ba8bc653397dd67f3bfb602db0acce617668dc2ae2f30e038b4137a60e24
https://kovan.etherscan.io/tx/0x6dd05a76c771089144583a685c2fb9a6b566a626aa86b568230faf83268fdd92
https://kovan.etherscan.io/tx/0xd790b2edd8800a183068b3253d7e5b00e57d850bce8d9b8572494539b58c7e3c
https://explorer.offchainlabs.com/#/tx/0x71535a6b6d0124cbd61a4993e5e831cc4ba151eec60b1c368a79686f3f5bc1f4
https://kovan.etherscan.io/tx/0x477b3e6b645cc672bbbe99ea3e7fa227962a3e1222071c266442a5ab8366e1bb
https://kovan.etherscan.io/tx/0xdd0ffc715dc5733bee36fd99d51898cf978de27ece76777099c4570929039a25
https://explorer.offchainlabs.com/#/tx/0x9f7fba14177790f6dad6ad9bb0ec3017803b466a27182768b11163162a3961c3
https://kovan.etherscan.io/tx/0x59a6282197cbd71b2c25cd5f3547b41ca7baf33322088f35273c97fce5cf8b56
https://kovan.etherscan.io/tx/0xb2a71505f192dd2119634ddd69070c52eb3a3d993aeb632ea8f823eb62f26e84
https://explorer.offchainlabs.com/#/tx/0x724578f12940ebd653613c5037576540ce129ef277e4db67aff135711327e8f8
https://kovan.etherscan.io/tx/0x172804db2abcef274dedfad8f31f84a0bb26c87826842589537f1d511402b282
https://kovan.etherscan.io/tx/0x10788165eacbbe25066c163fa0cf7a5af07da32c05af001d0f05ad8946974c6e
https://explorer.offchainlabs.com/#/tx/0x3515cc045805f2f9af9f378f4725ab4845679ca15ecd2e86758f8d53eb9a7353

394 D. Demirag and J. Clark

implement only the PET sub-module as a standalone contract. We run the tests
with Truffle. Instead of sending transactions to the Arbitrum bridge (as in Fig. 2),
Arbitrum runs a service for developers where transactions are sent (off-chain) to
a relay server (called an Aggregator) which will batch all pending transactions
together as a single Kovan transaction to the bridge (and pay the gas). However
we report the measurements as if the participants were sending the transactions
themselves.

Gas Costs. Table 5 compares the cost of running a plaintext equality test (PET)
on Ethereum (specifically Kovan testnet) and running it on Layer 2 (L2) with
Arbitrum. Note the Ethereum numbers differ slightly from Table 2 as it is
deployed on a different testnet (Kovan instead of private) and we modified it
slightly to be a stand-alone DApp.

Arbitrum creates two transactions (recall Fig. 2): the Ethereum gas cost of
relaying the (layer 1 or L1) transaction to the Arbitrum bridge, and the cost
for the validator to execute the function, measured in ArbGas. The cost of the
first Arbitrum transaction (L1 Gas) is paid with ETH but is invariant to its
computational complexity. It is essentially only a function of its size (compare
L1 Gas to Size). Note that the gas costs listed on the Kovan block explorer
(links under L1 Tx) are for aggregated batches of transactions. We report what
the cost would be to send it directly (not through an aggregator).

The ArbGas cost on Arbitrum should be similar to the gas cost on Ethereum,
however validators do not run EVM bytecode directly. It is translated into Arbi-
trum virtual machine (AVM) bytecode which has its own opcodes and ArbGas
costs. ArbGas has no market price currently. It is expected to be much cheaper
than Ethereum’s gas. In practice, the trustees could act as validators for Absen-
tia transactions as they have to perform the computation anyways. Therefore
we approximate arbgas as free.

A run of PET on Ethereum costs 9,011,425 gas (or 483.38 USD), while on
Arbitrum the cost is 531,697 gas (or 28.52 USD). In this use case, Arbitrum
reduces Ethereum gas costs by 94%.

5 Concluding Remarks

Ethereum can complement secure function evaluation protocols by enabling coor-
dination, providing incentives, and enforcing correctness. Given recent develop-
ments in Ethereum toward performance and scalability, we felt it was an appro-
priate time to benchmark how expensive SFE is on Ethereum. Even though we
expected it to be expensive, we did not imagine a single binary NAND gate
would cost thousands of dollars on Ethereum. Most ‘interesting’ circuits are
probably at least hundreds of gates, with many applications that would require
many orders of magnitude more.

Despite this, we argue that Absentia is still an important research contribu-
tion. It proves the concept works, establishes a lower bound, and it sets a new
research challenge: through improvements, how many gates can be evaluated

Absentia: Secure Multiparty Computation on Ethereum 395

for, say, under $100 USD? Today it might be less than one but we are confident
that future research can improve that number substantially. For example, our
code can be further optimized; the latest MPC techniques can be applied; and
Σ-protocols can be replaced with succinct zero-knowledge proofs. Meanwhile,
Layer 1 and Layer 2 technologies will continue progressing.

Acknowledgements. We thank the reviewers who helped to improve our paper.
J. Clark acknowledges support for this research project from the National Sci-
ences and Engineering Research Council (NSERC)/ Raymond Chabot Grant Thorn-
ton/Catallaxy Industrial Research Chair in Blockchain Technologies and the AMF
(Autorité des Marchés Financiers).

References

1. Andreev, O., Glickstein, B., Niu, V., Rinearson, T., Sur, D., Yun, C.: ZkVM: fast,
private, flexible blockchain contracts. Technical report, Online (2019)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-
tiparty computations on bitcoin. In: IEEE Symposium on Security and Privacy
(2014)

3. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. In: SCN (2014)

4. Beaver, D.: Commodity-based cryptography. In: ACM STOC (1997)
5. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the

fiat-shamir heuristic and applications to helios. In: ASIACRYPT (2012)
6. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling

decentralized private computation. In: IEEE Symposium on Security and Privacy
(2020)

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO (1992)
8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-

authority election scheme. In: EUROCRYPT (1997)
9. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-

cal covertly secure mpc for dishonest majority-or: breaking the spdz limits. In:
ESORICS (2013)

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO (2012)

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: CRYPTO, pp. 186–194 (1986)

12. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: Financial Cryptography (2020)

13. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: ASIACRYPT (2000)

14. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
Scalable, private smart contracts. In: USENIX Security (2018)

15. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making spdz great again. In: EURO-
CRYPT (2018)

16. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE Sympo-
sium on Security and Privacy (2016)

396 D. Demirag and J. Clark

17. McMurtry, E., Pereira, O., Teague, V.: When is a test not a proof? In: ESORICS
(2020)

18. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: EURO-
CRYPT (1991)

19. Sánchez, D.C.: Raziel: Private and verifiable smart contracts on blockchains. Tech-
nical report, arXiv arXiv:1807.09484 (2018)

20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

21. Yao, A.C.: Protocols for secure computations. In: IEEE FOCS (1982)
22. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect

personal data. In: IWPE (2015)

http://arxiv.org/abs/1807.09484
https://doi.org/10.1007/BF00196725

Empirical Analysis of On-chain Voting
with Smart Contracts

Robert Muth(B) and Florian Tschorsch(B)

Technische Universität Berlin, Berlin, Germany
{muth,florian.tschorsch}@tu-berlin.de

Abstract. Blockchains and smart contracts promise transparency, ver-
ifiability, and self-enforcing agreements. Against this background, novel
use cases such as decentralized governance platforms that implement vot-
ing to collectively manage funds have emerged. While a number of argu-
ments against blockchain-based voting exist, we still see a relevance. In
this paper, we therefore present a quantitative analysis of the Ethereum
blockchain with respect to voting. To this end, we develop a blockchain
analysis toolchain that we use to analyze 3 173 smart contracts on the
Ethereum Mainnet with voting functionality. We extract insights on the
complexity of deployed voting methods and reveal a trend towards a
centralization of funds, i.e., five smart contracts manage 98% of funds
comprising more than four million USD. We additionally analyze the fea-
sibility of on-chain voting for Ethereum as well as other well-established
blockchains that are used for voting, i.e., Bitcoin and Dash.

Keywords: Blockchain · Analysis · Voting · Smart contract

1 Introduction

The blockchain’s integrity and transparent storage space make it tempting to
implement blockchain-based online voting [8,10,14] as everyone can verify the
correct execution. In particular, blockchains such as Ethereum [27], which pro-
vide an opportunity to implement smart contracts [24], inherently allow to verify
whether a vote was stored and counted correctly. However, it has been shown
and argued that blockchain-based online voting has fundamental issues [8,19],
including security [18,23] and privacy [9] problems.

While blockchain-based online voting certainly polarizes, on-chain voting
is still being used for reasons such as the decentralized governance of funds.
Most prominently, decentralized autonomous organizations (DAOs), e.g., the
DAO [11], allow fundraising and enable stakeholders to manage the distribu-
tion of funds with on-chain voting. Smart contracts render the decision-making
process transparent and self enforcing. Since its debut in 2016, the DAO raised
approximately 150 million USD, but at the same time lost about 60 million USD
due to an exploit [1]. While we distance ourselves from the idea of blockchain-
based online voting, e.g., for official elections, we argue that on-chain voting still
requires attention and further research.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 397–412, 2021.
https://doi.org/10.1007/978-3-662-63958-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_32&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_32

398 R. Muth and F. Tschorsch

In this paper, we show the relevance of on-chain voting and derive limita-
tions in terms of scalability and transaction costs. To this end, we scan the
Ethereum Mainnet for smart contracts with voting functionality and analyze
their usage with respect to registered votes, gas costs, and fundings. In order to
understand the scalability potential of on-chain voting, we analyze past resid-
ual blockchain capacities of Ethereum and evaluate the feasibility of small and
large-scale votings. We also look beyond Ethereum and discuss other leading
blockchains, including Bitcoin [17] and the governance network of Dash [6]. We
provide a publicly available repository with the collected data sets and our anal-
ysis pipeline. Our presented database driven analysis approach is compatible
with Google BigQuery and therefore does not require any advanced setup.

In our empirical analysis, we found 3 173 deployed Ethereum smart contracts
related to voting, which currently hold 11 794 ETH, or more than 4.5 million USD
(as of October 30, 2020). From these smart contracts, we identified 88 instances
of the DAO (deployed smart contracts that are based on the original DAO source
code), which in total received 5 928 votes, so far. Over the past years, voting
smart contracts in general accumulated and processed 29 337 ETH. Our analysis
suggests a continuously high amount of monetary investments in and interaction
with voting smart contracts, indicating a high popularity and relevance. Besides
the relevance, we conclude that blockchain voting suffers from scalability issues
that render large-scale votings either not feasible in a reasonable time, or very
expensive, or both.

The main contributions of this paper can be summarized as follows:

– We develop an analysis pipeline to reveal voting smart contracts on the
Ethereum blockchain and present an overview of key metrics, which empha-
size the relevance of on-chain voting (see Sect. 3)

– We assess the limitations of on-chain voting with a model-based comparison
of blockchain specifications as well as an analysis using historic block data
(see Sect. 4)

– We give an outlook on other relevant blockchain with on-chain voting, i.e.,
Bitcoin and Dash (see Sect. 5)

In addition to our main contributions, we discuss related work in Sect. 2 and
conclude the paper in Sect. 6.

2 Related Work

There is a large body of work on blockchain-based voting, proposing various
designs to conduct votings using blockchain technologies [5,10,12,16]. Most
notably, McCorry et al. [16] developed a smart contract for boardroom voting
with maximum voter privacy. Since we do not propose any new voting schemes,
these contributions are orthogonal to our work.

In this paper, we analyze the multitude of on-chain voting regardless of any
specific use case or property. A series of contributions investigate blockchain

Empirical Analysis of On-chain Voting with Smart Contracts 399

data with respect to various other aspects, including privacy [2,22], data stor-
age [15], and smart contract metrics [20]. Moreover, model-based analysis on the
security [13] and scalability [4] of blockchains in general exist. Specific to voting,
Heiberg et al. [8] evaluate the trade-offs of blockchain-based voting on a qualita-
tive level. They discuss aspects such as complexity, costs, and scale, which go in
a similar direction as our paper. We complement their discussion however with
an empirical analysis and reveal new insights, for example, on the magnitude of
on-chain voting.

Methodically similar to our approach, are [7,20,21,26]. Victor and Lüders [26]
inspect the Ethereum blockchain for token implementations, which are managed
by the ERC-201 smart contract template. While EIP-12022 proposes a simi-
lar standard for voting smart contracts, it is not as established as the ERC-20
compatible token standards. Fröwis et al. [7] search for token-related behav-
ior with symbolic execution analysis techniques and compare the effectiveness
of both methodologies. The diversity of voting schemes, features, and privacy
mechanisms make it more difficult to identify voting smart contracts by their
bytecode. We therefore propose an analysis pipeline that uses generic voting
signatures from other sources in addition to established method signatures. In
contrast to automated smart contract inspection, the authors of [20,21] present
approaches that are based on manually collected exchange listings and corre-
sponding source code publications on CoinMarketCap and Etherscan.

3 Relevance of On-Chain Voting

In this section, we reveal the magnitude of on-chain voting in Ethereum. We are
particularly interested in the diversity of voting smart contracts with respect to
cost and fundings.

3.1 Analysis Toolchain and Methodology

Typically, analyzing blockchains requires a synchronized node with all valid
transactions. With Geth, the Ethereum foundation provides such a node, which
has been optimized to save computational resources and memory. As it turns
out, the very data-efficient data structures make it difficult to quickly analyze
historic data. For this reason, we instead used Google BigQuery3 as source to
Ethereum Mainnet transactions. BigQuery is a Google Cloud service for big
data analysis, which provides a public dataset with all current Ethereum trans-
actions, block details, and smart contracts in a SQL database. As shown in
Fig. 1, we use BigQuery as transactions source and to execute complex SQL
queries for analysis. The advantage of SQL databases is the ability to index past
transactions and query them efficiently (at the cost of additional storage and
memory consumption which BigQuery compensates with cloud resources). We
1 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
2 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md
3 https://cloud.google.com/bigquery

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md
https://cloud.google.com/bigquery

400 R. Muth and F. Tschorsch

EIP-1202 Interface

4byte.directory

Github Source Codes Voting Method
Signatures

Jupyter
Notebook

Sig. Hashes

BigQuery/
Ethereum ETL

SQL

Votings
Ethereum
Mainnet

Transactions

Pre-Processing Analysis Source

Fig. 1. Our blockchain-based voting analysis toolchain with a Jupyter Notebook and
BigQuery (or Ethereum ETL) based on given pre-processed method signatures.

developed a Jupyter Notebook, which manages the analysis process, i.e., prepar-
ing input data from pre-processing, compiling SQL statements, monitoring the
execution, and preparing the results. Alternatively to our cloud-based approach,
the database can be generated locally using a full node and Ethereum ETL4

without BigQuery.
While smart contracts are generally stored publicly on the Ethereum block-

chain, only the compiled bytecode, i.e., EVM code, is available. Similar to high-
level programming languages, the original source code compiles to an assembly-
style language. To this end, compilers remove comments and substitute iden-
tifiers, which render the bytecode difficult to understand without the original
source code. In addition, method signatures of smart contracts, i.e., method
name and parameter list, are represented by a hash pointer. More specifically,
the first for 4 bytes of a method signature’s Keccak (SHA-3) hash value are used
to point to the respective stack code position. Since Keccak is a cryptographic
hash function, it is not possible to infer the method signature from the hash
value directly. Hence, it is neither straight forward to search for a certain type
of smart contract nor for a partial method signature.

In order to analyze the Ethereum blockchain, we searched for hash values of
method signatures that are usually part of voting smart contracts. As shown in
Fig. 1 as part of the pre-processing, we collected the hashed method signatures
of the EIP-1202 voting interface, which provides a standardized set of methods
for voting. In addition, we used the Ethereum Function Signature Database5,
which provides a list of method signatures and their corresponding hash values
based on known smart contract source codes and user submissions. We used the
database’s RESTful API to search for methods containing ‘vote’, ‘voting’, or
‘ballot’. As a result, we get a list of method signature and hash value tuples,
which are related to voting. We use these tuples to retrieve the smart contracts
that actually implement the respective method. Finally, we analyzed the source
code of the DAO smart contract on Github for identifying transactions to the
original instance and deployed copies with them same interface methods.

Inevitably, the approach may lead to some positives as well as false negatives.
For example, generic method signatures lead to a false classification of some

4 https://github.com/blockchain-etl/ethereum-etl
5 https://www.4byte.directory

https://github.com/blockchain-etl/ethereum-etl
https://www.4byte.directory

Empirical Analysis of On-chain Voting with Smart Contracts 401

smart contracts, e.g., setStatus(...) of the EIP-1202 or dropVotes(...).
We also encountered hash collisions that indicated voting methods in a smart
contract but did not belong to voting upon closer inspection. For example,
the method signatures voting var(address,uint256,int128,int128) and
totalSupply() share the same hash value 0x18160ddd and lead to false-
positives. In an attempt of manual inspection, we excluded these instances for
our analysis. In order to prioritize precision (over sensitivity), we considered
smart contracts that implement at least two method signatures related to vot-
ing only. Since the bytecode in the blockchain remains a black box, though, we
cannot exclude false classification entirely.

The described methodology enables analyses of Ethereum smart contracts
in general and can be used to reveal a multitude statistics. We used it to ana-
lyze voting smart contracts with respect to scale and gas cost in general and
the interaction with these contracts in particular. We inspected the Ethereum
blockchain for the timespan between October 16, 2017 and October 30, 2020.
Moreover, we developed a Jupyter Notebook6 which connects to BigQuery, our
own local data records (e.g., historical exchange rates), and other external data
sources. A data dump of the following results, the implementation to gather the
data set independently, and our full analysis pipeline to reproduce the results is
publicly available on GitHub.7

3.2 Voting Complexity

In total, we found 1 458 relevant method signatures related to voting, which are
implemented in 5 185 smart contracts. Overall, 1 272 059 transactions interacted
with these smart contracts and called 129 855 times one of the voting methods.
After data cleaning, 3 173 voting smart contracts remain and are subject of the
following analysis.

In Table 1, we show the ten most often called voting methods and their aver-
age consumed gas. None of the deployed voting smart contracts implemented
EIP-1202 completely, but 82 of them implemented at least a subset of its stan-
dardized method signatures. While most of the method signatures in Table 1
are not surprising, methods 5, 6, and 9 let us expect a commit-and-reveal vot-
ing scheme, where voters submit their vote cryptographically concealed, e.g.,
by using a hash function, and reveal their individual vote later with another
transaction. Since such a scheme is more complex, it typically requires more gas.

Method signatures with more than one parameter mostly belong to smart
contracts that conduct multiple votings and allow to specify a proposal. For
example, most calls with method signature 7 belong to a DAO smart contract
that conducts multiple votings, where the byte32 parameter references the pro-
posal and the uint256 parameter encodes the user’s choice.

In Fig. 2, we compare the complexity of voting methods to the number of
method calls. The required gas (on the x axis) is an indicator of the compu-
tational complexity. We grouped gas values in buckets of 100 · 103 gas. The
6 https://colab.research.google.com/drive/1oIxMjJu7LQvSMnXiIgC9S 5CgGA 5d2R
7 https://github.com/robmuth/blockchain-voting-analysis

https://colab.research.google.com/drive/1oIxMjJu7LQvSMnXiIgC9S_5CgGA_5d2R
https://github.com/robmuth/blockchain-voting-analysis

402 R. Muth and F. Tschorsch

Table 1. Top ten voting methods with respect to their number of calls.

Calls Hash Signature � Gas � Gas price

1 80 676 0x0121b93f vote(uint256) 71 k 2.4Gwei

2 6 996 0xb384abef vote(uint256,uint256) 31 k 28.3Gwei

3 6 420 0xfc36e15b vote(string) 32 k 3.2Gwei

4 4 534 0xddb6e116 vote(uint16) 47 k 3.7Gwei

5 2 930 0x6cbf9c5e commitVote(uint256,bytes32,.. 164 k 3.8Gwei

6 2 624 0x5e8254ea commitVoteOnProposal(bytes32,.. 110 k 7.0Gwei

7 2 161 0x9ef1204c vote(bytes32,uint256) 151 k 9.6Gwei

8 2 124 0xcff9293a vote(uint32,uint32) 51 k 12.1Gwei

9 2 009 0xb11d8bb8 revealVote(uint256,uint256,.. 62 k 3.4Gwei

10 1 817 0x3850f804 castVote(uint256,uint256[],.. 139 k 41.1Gwei

Table 2. Top four smart contracts with respect to their funds.

Smart contract Funds in ETH

Received Balance

1 N/A (Congress Contract)
0x3de0c040705d50d62d1c36bde0ccbad20606515a

5 028 5 010 ($ 1 918 k)

2 Unicorn Token (Congress Contract)
0xfb6916095ca1df60bb79ce92ce3ea74c37c5d359

5 891 4 595 ($ 1 760 k)

3 HONG/hongcoin
0x9fa8fa61a10ff892e4ebceb7f4e0fc684c2ce0a9

3 936 1 003 ($ 384 k)

4 Dogecoin-Ethereum Bounty
0xdbf03b407c01e7cd3cbea99509d93f8dddc8c6fb

6 592 597 ($ 228 k)

consumed gas ranges from 18 120 gas to a maximum of 4 442 268 gas with an
average of 82 431 gas. The figure also shows that most voting method calls
consume between 100 000 and 200 000 gas (mind the log scale).

3.3 Acquired Funds

Many smart contracts combine one way or another voting with the management
of funds. In Table 2, we therefore show the top four deployed voting smart con-
tracts with respect to their funds. We differentiate between the overall received
funds and their current balance (as of October 30, 2020). For example, the Uni-
corn Token uses the Ethereum Foundation DAO Congress contract that allows
members to deposit ETH and submit proposals for fundraising; the other mem-
bers then can vote if the proposal is accepted. After the voting period ends and
a pre-defined quorum accepted the proposal, the ETH will be transferred to the
proposer automatically.

Empirical Analysis of On-chain Voting with Smart Contracts 403

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

3
2
0
0

3
3
0
0

3
7
0
0

3
8
0
0

4
4
0
0

4
5
0
0

100

103

106

5
54

0 99
12

3
6
20

0
55

8
73 79 12

6
11

4 5 10 7 14 8 5 3 6 6 8
3 7 3 3 4

1 1 1 2 2 1 2 1 1 1

Maximum Gas ·103

V
ot
e
M
et
ho

d
C
al
ls

(L
og

ar
it
hm

ic
Sc

al
e)

Voting method calls

Fig. 2. Complexity of voting methods (measured in gas) in comparison to the number
of calls (in total 110 361 calls).

0 20 40 60 80 100 120 140 160 180 200 220 240

100

102

104

Found Voting Smart Contract Instance

E
th
er

(L
og

ar
it
hm

ic
Sc

al
e)

Received

Balance

Fig. 3. Received and current balance of ether per voting smart contract, limited to 247
of 3 173 smart contracts in total (as of 2020-10-30).

In Fig. 3, we show the distribution of funds (limited to 247 of 3 173 voting
smart contracts which have received ETH). We can clearly observe a long tail dis-
tribution (log scale). However, many of the originally acquired funds are already
withdrawn. From the overall received funds, 0.05% are still deposited. That is,
all analyzed voting smart contracts together have a balance of more than 11
941 ETH, which equals more than 4.8 million USD8. The amount of acquired
funds can be considered an indicator for the relevance of on-chain voting.

3.4 Trend

In order to get an understanding of the trend, we analyzed the transactions
as a time series over the past five years since Ethereum’s release in 2015. We
particularly focus on the interest and relevance of votings in Ethereum over time.

In Fig. 4, we show the number of voting method calls (left y axis) as well as
the number of deployed smart contracts related to voting (right y axis). Once

8 Exchange rate at the time of writing was 407 USD per ETH (source: coinbase.com)

404 R. Muth and F. Tschorsch

2015 2016 2017 2018 2019 2020

0
200
400
600
800
1 000
1 200
1 400
1 600

Year

D
ep

lo
ye
d
Sm

ar
t
C
on

tr
ac
ts

0
40 000
80 000

120 000
160 000
200 000
240 000

V
ot
e
M
et
ho

d
C
al
ls

Deployed voting contracts

Transactions to contracts

Fig. 4. Number of newly deployed voting smart contracts and transactions to them by
year (2015-09-06 – 2020-10-30).

2015 2016 2017 2018 2019 2020
100

105

1010

Year

E
th
er

(L
og

ar
it
hm

ic
Sc

al
e)

Deposits

Withdrawals

Balance (cumulative)

Fig. 5. Ether deposits and withdrawals to voting smart contracts and corresponding
balances of voting smart contracts per year (2015-09-06 – 2020-10-30).

deployed, smart contracts remain active and are not counted again in the follow-
ing years, i.e., the figure shows deployment of new smart contracts. In addition,
we analyzed the deposits, withdrawals, and corresponding balances of each vot-
ing smart contract over time, which are shown in Fig. 5.

We generally observe that with the debut of the DAO [11] in 2016, the number
of smart contracts with voting functionalities as well as the number of transac-
tions that interact with voting contracts increases with a peak in 2018. After
2018, we observe a decline of both metrics. While the trend might suggest a
decline in interest, the balances remain stable over time. Upon closer examina-
tion, comparing Fig. 3 and Fig. 5, the total balance in 2020 is almost entirely
contributed by the top five voting contracts (with more than 500 ETH). That
is, while previously the balances were distributed over many smart contracts,
we can infer that funds are more centralized now. We conclude that the dynam-
ics and interactions of voting smart contracts declined over time, but on-chain
voting has in terms of funding still a relevance.

Empirical Analysis of On-chain Voting with Smart Contracts 405

Transactions
(Gas)

bl
oc

kG
as
Li
m
it

Time

Block Generation Rate

Block #1 Block #2 Block #3 Block #4

Fig. 6. Blockchain partially filled with transactions, leaving residual gas.

4 Feasibility Analysis

In the following, we present a feasibility analysis of on-chain voting. In particular,
we analyze scalability limitations using a model-based analysis as well as an
empirical analysis based on historical blockchain data.

4.1 Block Capacities

One of the central scalability parameters is the maximum number of transactions
per block interval, i.e., transaction throughput, which eventually also limits the
possible number of votes. Ethereum aims for a block generation rate of 15 s and
continuously allows miners to agree on a block gas limit [27] that limits the
size of new blocks. The notion of gas was introduced to measure computational
complexity of transactions. Ethereum accordingly charges transaction fees based
on the transaction’s complexity. The sender of a transaction sets a price in ether
(ETH), which determines the amount she is willing to pay per computational
unit, i.e., the gas price.

Depending on the number of transactions per block and their complexity,
transactions might not make use of the available block gas limit and leave residual
gas. In Fig. 6, we visualize the concept of the gas consumption and residual gas.
The residual gas determines the space for additional transactions on top of the
baseline activities of Ethereum. Later, we make use of the notion of residual gas
to evaluate feasibility and scale of on-chain voting.

4.2 Model-Based Scalability Analysis

Our analysis is based on overly optimistic model-based assumptions to reveal
upper limits, which enables us to make fundamental statements on the
(in)feasibility of on-chain voting. To this end, we start with a number of votes μ
that we would like to cast. We are then interested in the number of blocks n that
are necessary to cast μ votes. Given the block generation rate, we can approxi-
mate the time it takes to mine n blocks, which we denote with Δ. For a block i
with a blockGasLimit(i) and a certain gasCost per vote, we can calculate the
maximum number of votes per block by blockGasLimit(i)/gasCost.

406 R. Muth and F. Tschorsch

Table 3. Required blocks n and duration Δ [HH:MM] for different voting implemen-
tations; median and median absolute deviation (MAD) are based on residual block
capacities (monthly intervals between 2015-12-28 and 2020-10-30).

Implementation Blocks n Duration Δ

Model Median MAD Model Median MAD

Small-scale Ethereum Näıve 4 18 5 00:01 00:04 00:02

Ethereum Minimal Voting 7 37 14 00:02 00:09 00:05

Ethereum The DAO 25 118 43 00:07 00:30 00:13

Bitcoin Näıve 1 3 2 00:10 00:29 00:29

Dash 1 1 0 00:02 00:02 00:00

Large-scale Ethereum Näıve 175 783 299 00:44 03:24 01:22

Ethereum Minimal Voting 350 1 634 677 01:28 06:46 02:56

Ethereum The DAO 1 250 7 320 3 232 05:13 33:46 14:19

Bitcoin Näıve 3 25 20 00:30 05:12 04:38

Dash 10 10 0 00:25 00:21 00:05

Based on our blockchain analysis results from Sect. 3, we evaluate two dif-
ferent scales of voting. Since our measurements show that most voting methods
were called between 2 k–7 k times, we consider μ = 2000 to be a small-scale
voting, and μ = 100 000 to represent future large-scale votings. Moreover, we
introduce three on-chain voting “schemes”, which are either overly simple or
taken from our previous analysis. Please note that these simple voting schemes
are not meant to facilitate general voting principles, e.g., anonymity and secrecy.

The näıve voting provides different addresses, each representing a voting
option. Voters can transfer coins to the respective address until the voting ends,
where the balances determine the final voting result. This näıve approach can
basically be implemented in every cryptocurrency. In Ethereum, the gas costs
are 21 000 gas.

The minimal voting uses a smart contract for counting votes. To this end,
we implemented a synthetic voting smart contract that only consists of a single
method for counting votes (available in our Github repository). We are aware,
though, that the Solidity compiler does not generate perfectly optimized byte-
code. While an optimized voting smart contract with a completely assembly-style
built bytecode would need less gas, we consider the Solidity compiler the most
prevalent way to compile smart contract code. After deployment, the minimal
voting requires at least 41 897 gas per method call.

For the purpose of more realistic statements, we also analyzed the median gas
costs of votes to the DAO. To this end, we used our analysis pipeline described in
the previous section, which yields 150 k gas per DAO voting call. As expected,
this is more complex than our minimal voting as it also manages funds and
quorum regulations.

In Table 3, we show the minimum duration of small-scale and large-scale
votings for the various voting schemes (see “Model” columns). For Ethereum,

Empirical Analysis of On-chain Voting with Smart Contracts 407

we assumed a block gas limit of 12 · 106 gas and a block generation rate of 15 s.
For comparability, we also included the näıve voting for Bitcoin and Dash, which
we discuss later in Sect. 5. Based on this initial evaluation, we can expect that
small-scale on-chain voting is generally feasible in reasonable bounds. At the
same time, large-scale votings require under idealistic circumstances more than
four hours for the näıve voting scheme, or even about 34 h for the DAO voting
smart contract.

4.3 Residual Capacities Analysis

In the following, we enrich our model-based evaluation with historic block-
chain data to determine the residual gas limits in Ethereum. This approach
provides a more realistic assessment of limitations. More specifically, we define
residualGas(i) = blockGasLimit(i) − usedGas(i) for a block i. Please note that
in Ethereum the block gas limit is block specific and changes over time. The
residual gas is therefore determined by the used gas at a certain point in time.

In Table 3, we show the median number of blocks n as well as the duration Δ
for historic data in addition to our model-based evaluation. We calculated n
and Δ starting with the last mined block of 2020-10-30 and repeated the process
for each preceding month until the genesis block of Ethereum (2015-07-30). In
general, our measurements yield values under the (unlikely) condition that all
voters submit their votes in a perfectly aligned and coordinated order. We use
this approach to provide an (optimistic) understanding for the minimum gas
needed to deploy and cast a single vote. Since we repeated the evaluation multiple
times by shifting starting points in monthly intervals, we present the median
absolute deviation (MAD).

The results show that simple small-scale and large-scale voting yield reason-
able performance with approx. 30 min or less for 2 k votes, and between 30–90 min
for 100 k votes. The exception is the more complex DAO implementation, which
takes more than 5 h.

4.4 Economic Analysis

Since gas cost can be directly translated to ETH, we can also estimate the eco-
nomic efficiency of on-chain voting. As a first impression, we consider a median
gas price 2.0 Gwei

Gas (SD = 5.92) for the 121 980 voting method calls from our
data set. We used an exchange rate of 407 USD per ETH as before. Hence, we
can approximate the price of a vote for our minimal voting scheme that approxi-
mately yields 0.03 USD per vote. For more realistic gas cost, i.e., the most called
voting methods require between 100–200 gas, our price approximation ranges
between 0.08 USD and 0.16 USD per vote.

Voting costs are a relevant factor for high reachability and inclusive partici-
pation. While fees for casting a vote might serve as Sybil protection, they might
also deter voters. In general, fees set a higher participation threshold. In order
to maximize participation, transaction costs should be as low as possible for
submitting votes—or just not be charged, at all. Unfortunately, smart contracts

408 R. Muth and F. Tschorsch

in Ethereum are not able to pay the transaction fees for the senders, e.g., for
calling chosen voting methods. It is possible to implement smart contracts that
refund transaction fees within the same transaction, but it still requires voters
to own initial ETH for paying the transaction fee in advance. Voters who do not
own any ETH hence face a greater hurdle to participate.

Interestingly enough, we want to point out an approach that is able to store
and release gas to cover some of the gas costs itself. Projects like the GasToken9

exploit gas reserving opcodes (i.e., SSTORE and CREATE/SELFDESTRUCT) for sav-
ing gas when the gas price is low and releasing it when gas is more expensive.
Unfortunately, releasing reserved gas requires gas itself. That is, the transac-
tion costs can be reduced but not covered completely, which leaves us back to
the original problem that voters need an initial ETH fund. For enabling future-
oriented use cases that require broad involvement, e.g., participatory budgeting
or crowd funding, we believe new solutions are required to open on-chain voting.

5 Voting Beyond Ethereum

In the following, we consider other well-established cryptocurrencies, namely
Bitcoin [17] and Dash [6], that can also be used for voting one way or another.

5.1 Bitcoin

Several proposals for Bitcoin-based voting exist [3,25,28]. Unfortunately, due do
the lack of a full-fledged scripting language, Bitcoin heavily relies on external
infrastructure to conduct votings, which makes it difficult to inspect the block-
chain and reliably extract information with respect to voting. While we have
found indications for on-chain voting, infrastructures have been shut down and
therefore prevent analysis. Regardless, it is worth mentioning that Bitcoin min-
ers implement voting functionality directly in the blockchain protocol to agree
on improvement proposals.10

We can however assume that voting would have at least the same trans-
action requirements (w.r.t. transaction size and cost) as transferring coins. On
this basis, we analyze residual transaction capacities of past blocks and derive
the maximum of possible votes over that time span. To this end, we need to
consider the specifics and changes of the segregated witness proposal,11 which
tackles signature malleability issues and therefore separates signature data from
the transaction’s hashes. As a result, the maximum block size is then limited by
the notion of block weight, i.e., block weight < 4 ·106, which corresponds approx-
imately to a block size of 4 MB. A standard Bitcoin transaction for transferring
coins from one address to another (P2WSH) with segregated witness requires a
block weight of approximately 110 (median over all corresponding transactions
until Oct 2020 with a standard deviation of 0.069). Other parameters include a
target block generation rate of 10 min.
9 https://github.com/projectchicago/gastoken

10 https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
11 https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

https://github.com/projectchicago/gastoken
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

Empirical Analysis of On-chain Voting with Smart Contracts 409

2015 2016 2017 2018 2019 2020
0
25
50
75
100
125
150
175

Year

P
ro
po

sa
ls

0
20 000
40 000
60 000
80 000

100 000
120 000
140 000

V
ot
es

Proposals

Votes (yes and no)

Fig. 7. Dash governance proposals and votes, by year (2015-08-27–2020-10-26).

Evaluation. We analyzed Bitcoin for small-scale and large-scale scenarios with
minimal transaction weights, which corresponds to our näıve voting implementa-
tion. In addition to a model-based evaluation, we also investigated the residual
block capacities. Table 3 shows the minimum amount of blocks as well as the
time span it would take to cast μ votes. We assumed a transaction weight of
110 per vote. While Ethereum requires at least 4 min, Bitcoin requires 29 min
for small-scale votings. Please note that Bitcoin indicates very high MAD for
n and Δ. Hence, Bitcoin’s residual capacities fluctuate significantly compared
to Ethereum, which makes it more difficult to make predictions. For large-scale
voting, Bitcoin requires significantly less blocks (due to the larger block size)
and despite its slower block generation rate is faster than Ethereum.

5.2 Dash Governance Platform Analysis

Dash [6] was released in 2014, initially named Xcoin and later Darkcoin. Dash
does not support smart contracts in the same way as Ethereum, but implements
dedicated governance mechanisms directly in its protocols. During the mining
process new coins will be split and distributed over three stakeholders: master
nodes and miners receive each 40%, and the remaining 20% go to Dash’s Decen-
tralized Governance by Blockchain (DGBB) funding platform. Master nodes
then can vote on public proposals for distributing the collected funds.

The Dash Governance Platform (DGP) is natively implemented in Dash’s
application protocols and therefore can be monitored by all nodes that have
joined the network (also at DashCentral12). After a pre-defined voting phase, the
number of yes-votes minus the no-votes must exceed 10% of the total number of
master nodes for a proposal to pass. Otherwise, the proposal will be rejected.

Evaluation. We analyzed 577 proposals between 2015-08-27 and 2020-10-26.
During that time, 379 proposals were funded. In Fig. 7, we show the total num-
ber of votes and the number of proposals per year. Dash’s governance proposals
started at the same year as the first voting smart contracts with Ethereum in
12 https://www.dashcentral.org

https://www.dashcentral.org

410 R. Muth and F. Tschorsch

2015. Dash shows an increase and peak of newly created proposals and votings
between 2016 and 2018, and similar to Ethereum, a steady decrease of interest
afterwards. Dash’s number of proposals at the peak is approximately 8 times is
lower compared to Ethereum (c.f. Fig. 4). Note that the analysis of Dash is more
precise and does not suppress any false-positives, which means that the differ-
ence to Ethereum is probably even higher. The number of votes at peak times
is approximately 1–3 times smaller, when compared to Ethereum. All successful
proposals collected 131 453 DASH, which equals approximately 14.7 million USD
according to the corresponding exchange rates at the time of funding.13 Even
though the presented votings were not conducted on-chain, the blockchain’s pro-
tocol automatically pays out fundings with Dash’s cryptocurrency and therefore
supports the role of on-chain voting.

Additionally, we evaluated the residual capacities of Dash. While Dash is
based on Bitcoin, it does not support segregated witness and aims for a block
generation rate of 2.5 min with a maximum block size of 2 MB. As shown in
Table 3, Dash does not have such a high transaction load as Bitcoin or Ethereum,
which directly leads to high residual capacities and therefore better performance
for small-scale and large-scale voting. Our measurements show even better results
than our model approximation, because the proof-of-work consensus generated
new blocks faster than expected. We nevertheless would expect higher durations
with the same general load, i.e., residual capacity, as in Bitcoin.

6 Conclusion

In this paper, we have shown that on-chain voting has become a relevant use case
in Ethereum, most often, to collectively manage funds. To this end, we presented
our blockchain analysis toolchain, that we used to identify and analyze voting
smart contracts with respect to their popularity, complexity, and funds. On the
one hand, our benchmark of transactions to voting smart contracts and their
respective fundings confirm a high relevance. On the other hand, we observed a
trend of centralization due to the popularity of DAO contracts.

We further used these insights to assess the feasibility of future large-scale
voting on blockchains. Therefore, we also evaluated other well-established block-
chains, i.e., Bitcoin and Dash. While small-scale voting scenarios seem feasible on
all analyzed blockchains, large-scale voting suffers from severe scalability issues.
Although our model-based calculations indicate that large-scale votings can the-
oretically be conducted in reasonable times under perfect conditions, our mea-
surements on well-established public blockchains show that minimum durations
increase significantly due to the limited transaction throughput.

Despite all the flaws of blockchain-based voting, We have shown that on-chain
voting has a relevance, e.g., for governance aspects of blockchains. We therefore
believe that improving on-chain voting schemes with respect to security, privacy,
inclusiveness, and fairness is still necessary and relevant at the same time.

13 http://coinmarketcap.com/en/currencies/dash/historical-data/ (2020-11-16)

http://coinmarketcap.com/en/currencies/dash/historical-data/

Empirical Analysis of On-chain Voting with Smart Contracts 411

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

2. Béres, F., Seres, I.A., Benczúr, A.A., Quintyne-Collins, M.: Blockchain is Watching
You: Profiling and Deanonymizing Ethereum Users. CoRR (2020)

3. Bistarelli, S., Mantilacci, M., Santancini, P., Santini, F.: An end-to-end voting-
system based on bitcoin. In: SAC. ACM (2017)

4. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

5. Dimitriou, T.: Efficient, coercion-free and universally verifiable blockchain-based
voting. Comput. Netw. (2020)

6. Duffield, E., Diaz, D.: Dash: A Payments-Focused Cryptocurrency (2018). https://
github.com/dashpay/dash/wiki/Whitepaper. Accessed 26 Oct 2020

7. Fröwis, M., Fuchs, A., Böhme, R.: Detecting token systems on Ethereum. In: Gold-
berg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 93–112. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32101-7 7

8. Heiberg, S., Kubjas, I., Siim, J., Willemson, J.: On Trade-offs of Applying Block
Chains for Electronic Voting Bulletin Boards. E-Vote-ID (2018)

9. Henry, R., Herzberg, A., Kate, A.: Blockchain access privacy: challenges and direc-
tions. IEEE Secur. Priv. (2018)

10. Hjalmarsson, F.P., Hreioarsson, G.K., Hamdaqa, M., Hjálmtýsson, G.: Blockchain-
based e-voting system. In: IEEE CLOUD (2018)

11. Jentzsch, C.: Decentralized Autonomous Organization to Automate Governance.
White Paper (2016)

12. Killer, C., Rodrigues, B., Matile, R., Scheid, E.J., Stiller, B.: Design and imple-
mentation of cast-as-intended verifiability for a blockchain-based voting system.
In: SAC. ACM (2020)

13. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: Proceedings of WEIS (2013)

14. Kshetri, N., Voas, J.M.: Blockchain-enabled e-voting. IEEE Softw. (2018)
15. Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary block-

chain content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 23

16. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting
with maximum voter privacy. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp.
357–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 20

17. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
18. National Academies of Sciences, Engineering, and Medicine and others: Securing

the Vote: Protecting American Democracy, pp. 103–105 (2018)
19. Park, S., Specter, M., Narula, N., Rivest, R.L.: Going from Bad to Worse: From

Internet Voting to Blockchain Voting (2020). https://people.csail.mit.edu/rivest/
pubs/PSNR20.pdf. Accessed 24 Nov 2020

20. Pinna, A., Ibba, S., Baralla, G., Tonelli, R., Marchesi, M.: A massive analysis of
ethereum smart contracts empirical study and code metrics. IEEE Access (2019)

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
https://doi.org/10.1007/978-3-030-32101-7_7
https://doi.org/10.1007/978-3-662-58387-6_23
https://doi.org/10.1007/978-3-662-58387-6_23
https://doi.org/10.1007/978-3-319-70972-7_20
https://people.csail.mit.edu/rivest/pubs/PSNR20.pdf
https://people.csail.mit.edu/rivest/pubs/PSNR20.pdf

412 R. Muth and F. Tschorsch

21. Reibel, P., Yousaf, H., Meiklejohn, S.: Short paper: an exploration of code diversity
in the cryptocurrency landscape. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 73–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32101-7 5

22. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Social-
Com/PASSAT. IEEE Computer Society (2011)

23. Specter, M.A., Koppel, J., Weitzner, D.: The ballot is busted before the blockchain:
a security analysis of Voatz, the first internet voting application used in U.S. federal
elections. In: 29th USENIX Security Symposium (2020)

24. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

25. Tian, H., Fu, L., He, J.: A simpler bitcoin voting protocol. In: Chen, X., Lin,
D., Yung, M. (eds.) Inscrypt 2017. LNCS, vol. 10726, pp. 81–98. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75160-3 7

26. Victor, F., Lüders, B.K.: Measuring Ethereum-based ERC20 token networks. In:
Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 113–129. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 8

27. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger,
Byzantium Revision 7E819EC, 20 October 2019

28. Zhao, Z., Chan, T.-H.H.: How to vote privately using bitcoin. In: Qing, S.,
Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 82–96.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6 8

https://doi.org/10.1007/978-3-030-32101-7_5
https://doi.org/10.1007/978-3-030-32101-7_5
https://doi.org/10.1007/978-3-319-75160-3_7
https://doi.org/10.1007/978-3-030-32101-7_8
https://doi.org/10.1007/978-3-319-29814-6_8

WTSC – Foundations

Mirroring Public Key Infrastructures to
Blockchains for On-Chain Authentication

Ulrich Gallersdörfer1(B) , Friederike Groschupp2 , and Florian Matthes1

1 Technical University Munich, Munich, Germany
{ulrich.gallersdoerfer,matthes}@tum.de

2 Department of Computer Science, ETH Zurich, Zurich, Switzerland
friederike.groschupp@inf.ethz.ch

Abstract. In blockchain systems, the lack of established identity man-
agement processes pose a problem for applications requiring smart con-
tract owners to be authenticated. One issue that previously proposed
solutions face is the accumulation of a critical mass of trusted data
that makes the system usable. In this work, we propose an identity
assertion and verification framework for Ethereum that overcomes this
bootstrapping problem. It achieves this by leveraging TLS certificates,
which are part of the established infrastructure that is commonly used for
authenticating internet connections. We design and implement an TLS
certificate-based authentication framework whose key features are the
smart contract-based validation and storage of certificates and address-
identity bindings. Looking at the current TLS ecosystem, we find that a
large share of all domain certificates is issued by a small number of inter-
mediate and root certificates. Therefore, we decide to store and maintain
certificates in one smart contract to minimize processing costs. The eval-
uation of our prototype implementation shows that the associated cost of
our system is within a feasible operating range, with the costs of submit-
ting a new certificate currently averaging around $1.81 and the cost of
creating an address-identity binding averaging around $1.32. Our system
is a pragmatic and, most importantly, quickly bootstrapped method for
an identity assertion and verification framework for Ethereum.

Keywords: Blockchain · Authentication · Smart contracts ·
Ethereum · Certificates

1 Introduction

The world wide web relies on public key infrastructures (PKI) to reliably identify
and authenticate remote communication partners, enabling the Internet as we
know it. The Domain Name System (DNS) allows users to identify and direct
their requests to the respective party behind a domain name (e.g., example.org)
[22]. TLS/SSL-certificates1, which are distributed securely through the TLS-
PKI, map public cryptographic keys to these domains names to enhance the
1 Often, the terms TLS and SSL are used interchangeably. In this paper, we only use

the term TLS.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 415–430, 2021.
https://doi.org/10.1007/978-3-662-63958-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_33&domain=pdf
http://orcid.org/0000-0001-5339-4486
http://orcid.org/0000-0002-5726-0159
https://doi.org/10.1007/978-3-662-63958-0_33

416 U. Gallersdörfer et al.

communication by ensuring the privacy and integrity of messages as well as con-
firming that a user is talking to the intended party [27]. In contrast, blockchain
networks, such as Bitcoin [24] or Ethereum [32], do not currently offer a well-
established identity management system with human-friendly names. The native
decentralized identity management solely depends on private and public key
pairs registered on the blockchain2. While this prevents malicious parties from
directly interfering with transactions, it does not facilitate the authentication of
the counter party, as the public key is not mapped to a real-world identity.

Efforts to bridge this gap currently focus on establishing new identity man-
agement solutions which are guided by the blockchain core principles of decen-
tralization and trustlessness: No party should be required to solely run the sys-
tem or be able to interfere with its operation. A well-known example for such a
system is Ethereum Name Service (ENS) [15]. ENS allows for the decentralized
registration of domain names with the top level domain .eth to be used within
the Ethereum blockchain. However, such newly-established and decentralized
systems face huge bootstrapping issues.

Bootstrapping is a serious issue for these projects, as they face lack of adop-
tion from two distinct groups: users and service providers, e.g. companies. First,
enterprises need to support these upcoming standards and integrate them in
their applications and wallets. Second, users need to install and use these wal-
lets, understand the functionality, and recognize the implications of these specific
standards. Both groups are hesitant to invest their time and money in these sys-
tems as long as it lacks adoption of the respective counterpart.

For that reason, we explore and evaluate the mirroring of existing, estab-
lished PKIs and their certificates (alongside unique attributes such as a name)
to blockchain networks. We rely on a two-fold approach:

1. Set up an on-chain structure to insert and verify the validity of the certificates
managed in the PKI, resulting in the existence of trustworthy certificates and
their attributes in the blockchain, and

2. enable the signature verification of these certificates, such that statements
signed by the private key of these certificates can be verified on chain.

This system allows us to verify on-chain statements3 made with certificates
that bind the respective unique attribute of the certificate to a smart contract or
Externally Owned Account (EOA). Afterwards, third party smart contracts can
verify whether the binding is valid and commence interactions with the account.

Several different PKIs are suitable for investigation in our work. Therefore,
we allow the usage of any PKI that supports X.509 certificates [7]. In this paper,
we evaluate our approach with the broadly used TLS public key infrastructure.
Certificates issued via the TLS PKI are bound to fully qualified domain names
(FQDNs) as unique attributes. This allows us to bind a smart contracts to
FQDNs. As 98% of all website visits rely on TLS [11], bootstrapping issues are
eased.
2 Often, a subset of the hash of the public key is used, e.g., 0x42Ff4fa0...89024.
3 We refer to these statements as endorsements. The definition follows in Sect. 2.

Mirroring PKI to Blockchains for On-Chain Authentication 417

In this work, we investigate two questions:

– How can naming attributes of existing PKIs be leveraged in a on-chain
blockchain context?

– What are the constraints of leveraging existing PKIs in a blockchain environ-
ment?

The paper is organized as follows: Sect. 2 introduces the key concepts of the
design and architecture of the on-chain PKI verification system. In Sect. 3, we
discuss the suitability of the TLS PKI and evaluate key metrics of the system
such as costs and fulfillment of the requirements. In Sect. 4 we compare our
approach to related work and conclude the paper in Sect. 5.

We refer readers who are not familiar with the TLS ecosystem to [27] and
readers who are not familiar with blockchain technology and Ethereum to [4,25]
for background information on these topics.

2 System Design and Architecture

The aim of our system is to enable users or smart contracts to verify that an
Ethereum account (an EOA or a smart contract) is assigned the name attribute
of a X.509 certificate. Trusted root certificate authorities sign (indirectly via
intermediary certificates when applicable) domain certificates, which we after-
ward use to create signatures that allow us to verify the assignment of an account
to a domain. To verify that such an assignment is created and is valid on-chain,
we require several components in our system: First, endorsements (Sect. 2.1)
contain details about the assignment of an account to a name attribute. The
on-chain certificate database (Sect. 2.2) ensures the validity of newly added
root-, intermediary- or server-certificates. The on-chain endorsement database
(Sect. 2.3) checks the attribution as well as context-dependent properties of the
respective certificates such as time or trusted root certificates4.

2.1 Endorsement

We define the endorsement of an Ethereum address as the signature of the
address value together with optional associated data. An endorsement indicates
that the endorser claims to own the address, i.e., that they receive ingoing funds,
control outgoing funds, vouch for data associated with the address, and are the
originator of outgoing transactions. Endorsements need to present some kind
of liability and make only sense in scenarios where an adversary cannot gain
advantage by signing an address they do not control.

To standardize the endorsement and avoid misuse, we specify the format and
content of endorsements. This means the endorsements must be unambiguous.
In particular, endorsements need to meet the following requirements:

4 We provide the option to define the set of trusted issuers to keep the system open
and flexible for any other X.509-based PKI.

418 U. Gallersdörfer et al.

– An endorsement issued for one Ethereum address may not be reused for
another Ethereum address because otherwise malicious parties could imper-
sonate the owner of the TLS certificate.

– It must be clear to which web domain an address is linked, as otherwise no
clear attribution is available. The situation when this is unclear might arise
when a certificate is issued for multiple web domains.

– It must be possible to identify the domain certificate with which the endorse-
ment was created in order to retrieve the public key and to check the validity
and revocation status of the certificate.

– It should be possible for the issuer to specify an expiration date of the endorse-
ment, as a service provider might decide to offer a service only for a specific
amount of time.

An endorsement comprises a signature and an associated claim. The signature
is computed over the hash of the claim. The claim contains the address account
addr, the web domain IDdomain, the unique certificate identifier IDcert, and the
optional expiration date dateexp. We informally characterize the claim C in (1)
and the endorsement E in (2).

C = {addr|IDdomain|IDcert|dateexp} (1)

E = {C, sign(hash(C), keypriv)} (2)

2.2 On-Chain X.509 Certificate Storage and Validation

There is no absolute truth on the validity of TLS certificates as different entities
might trust different root certificate authorities. Therefore, we need to design a
mechanism that allows TLS certificate validation solely based on user preferences
and in the context of the Ethereum blockchain. Only if this is possible, we can
later validate endorsements on-chain.

To remove any dependency on external systems, the information that is
required for certification validation needs to reside on-chain. We call this app-
roach mirroring (a part of) the TLS PKI to Ethereum. The information that is
required to validate a certificate is the whole certificate chain from server to
root certificate, the set of trust anchors as defined by the verifier, and the
validation procedures.

The validation procedure for X.509 certificates can be implemented and
offered on-chain as an Ethereum library. It is a security-critical component, needs
to be carefully implemented, and the source code needs to be openly available
to be trusted by users. As the set of trust anchors is specific to the verifier, each
contract that acts as verifier needs to declare their own set.

Due to the nature of the TLS-PKI (which we further evaluate in Sect. 3) we
store certificate chains in one central contract. Previously added certificates need
to be stored only once. Additionally, if the validity of a certificate and its chain
is asserted by the database when it is submitted and only valid certificates are
accepted, the validation of the certificate needs to be performed only once and

Mirroring PKI to Blockchains for On-Chain Authentication 419

can be shared by multiple server certificates. When verifiers are interested in the
validity of an endorsement, they are not required to verify the certificate chain
again.

A difficulty with the migration approach is the assertion of the revocation
status of certificates. Both common revocation mechanisms, namely Certifi-
cate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP)
responses, are documents that are valid for a certain time period and are com-
monly signed with the issuer private key and can consequently be verified on-
chain. The idea is that the database entries of certificates can be updated with
the current corresponding revocation information. This needs to be repeated
while the certificate is valid and the validity period of the revocation status
information expires. If a certificate is revoked, its status cannot be changed any-
more.

In the following, we describe the CRUD (create, read, update, delete) oper-
ations for certificates stored on the certificate database contract.

Create. Certificates are submitted to the database one-by-one. Anyone can
submit certificates. Before a certificate is stored, it is confirmed that it is valid.
This check is performed in accordance to RFC 5280 [7]. As the signature of
the certificate needs to be verified, the certificate must either be a self-signed
certificate or the certificate’s issuer’s certificate must already be stored in
the database. The validity period of the certificate must not be expired. If
the certificate validation is successful, the relevant information is retrieved
from the certificate and stored in the database. This includes a pointer to the
entry of the issuer certificate; in the case of self-signed certificates, it is the
certificate itself. The revocation status information is set to unknown. If the
certificate validation is not successful, the certificate is rejected.
Any self-signed certificate with valid format and content can be added to the
database and subsequently act as trust anchor. This enables anyone to create
and maintain their own application-specific PKI.

Read. Certificate information can be retrieved from the database with a unique
certificate identifier. The certificate chain can be retrieved thanks to the point-
ers that refer to the issuer of each certificate.

Update. The only information that can be updated is the revocation status of
certificates. For this purpose, either the CRL or the OCSP response corre-
sponding to a certificate can be submitted. The submitted information is only
used to update the revocation status information if it is valid and signed by
the certificate’s issuer. For the CRL, the certificate status is considered as not
revoked when its serial number is not contained in the CRL and considered
as revoked when it is contained. For OCSP responses, the certificate status
is updated to the status that is contained in the response. In both cases,
information about the time of the last update and the expiry date are stored.
Once a certificate is marked as revoked in the database, the state cannot be
reversed to unknown or not revoked.
Other certificate attributes cannot be updated in the database as all informa-
tion reflects the information of the submitted certificate. If altered information

420 U. Gallersdörfer et al.

is required, a newly issued certificate must be submitted with a new unique
certificate identifier.

Delete. Once submitted, certificates cannot be deleted. This is because other
certificates and endorsements may rely on this certificate and their validity
and revocation status cannot be verified sufficiently if certificates and their
chain of trust are missing.

2.3 On-Chain Endorsement Validation

To make a decision on trust based on an account endorsement, the verifier relies
on three components: 1) The validity of the signer certificate including its
chain, the validity of the signature in the endorsement, and the verifier’s
trusted root authorities. The verifier can define its own set of trusted roots,
if they want to rely on alternative X.509 based PKIs. We also need to take into
account the context, especially the time of the verification. Both certificates and
endorsements contain information about their expiry.

The validity of the signer certificate and its chain is ensured by the on-
chain certificate storage (see Sect. 2.2) which a potential verifier relies on. As
the endorsement itself links to the respective certificate, the certificate and its
public key can be obtained cost-efficiently. The verifier only needs to verify that
the certificate is present in the database, that the root certificate is part of
the previously defined trusted roots, that the validity period has not expired,
and that the certificate has not been revoked. These operations are significantly
cheaper than performing the full validation for a certificate chain.

The validity of the endorsement follows a similar approach: Upon retrieval
of the public key of the respective certificate, the verifier is able to check if
the private key of the respective certificate actually created the signature in
the endorsement. Again, they need to validate that the validity period has not
expired and that the endorsement has not been revoked. As this signature ver-
ification is an expensive operation in blockchains, we further propose a central
database for endorsements to execute these operations only once.

Endorsement Database. In addition to the certificate database, we propose a
central database for storing endorsements. Besides the cost-reduction of verifying
endorsements, providing a central database empowers verifiers to proactively
and conveniently search for endorsements. Such a database query can have two
distinct goals: The verifier might either be interested whether and by whom a
specific Ethereum address was endorsed or whether there exist endorsements for
a specific web domain. In addition, a central data base facilitates the revocation
of endorsements. Another advantage is that the endorsement can be validated
upon submission, subsequent parties interested in the endorsement do not need
to perform the validation again.

The external-endorsement database provides the following functionality:

Create. An endorsement E, as defined in Sect. 2.1, is submitted to the database.
The validation procedure retrieves the certificate with the certificate ID
IDcert, checks that the certificate is issued for the web domain IDdomain,

Mirroring PKI to Blockchains for On-Chain Authentication 421

and obtains the public key keypub. If the endorsement’s signature is valid and
not expired, the endorsement it stored in the database.

Read. Endorsements can be retrieved with addr or IDdomain as key. As mul-
tiple endorsements per account or web domain may exist, the query returns
a set of endorsements. The querying party is responsible for checking the
endorsements for one that is signed by a certificate whose root certificate
they trust.

Update. Endorsements themselves are immutable information. The only asso-
ciated information that may change is the revocation status. If the original
issuer of an endorsement wants to revoke it, they sign the respective infor-
mation and store it with the endorsement.

Delete. Unexpired endorsements may not be deleted from the database. Some
applications might also accept expired endorsements, therefore, expired
endorsements should not be deleted while it is allowed to do so. However,
if an endorsement was revoked, the revocation information should persist.

Revocation of Endorsements. External endorsements can be revoked by
updating their revocation flag. For this purpose, the corresponding certificate
owner can create a “revocation signature” which has the following format:

R = sign(hash(addr|IDdomain|dateexp|0xFF), keypriv) (3)

This revocation information is submitted to the endorsement database. The
smart contract verifies the correctness of the provided signature and, if the sig-
nature is valid, marks the endorsement as revoked. Again, a previously revoked
endorsement (similar to certificates) can never be valid again. A new endorse-
ment has to be created.

3 Evaluation and Discussion

To assess our system in the context of the TLS-PKI, we first need to understand
the structure and organization of the TLS certificate hierarchy. This PKI is a
well established system which is omnipresent in today’s world wide web. Since
2013, over 3.7 billion certificates have been logged in Certificate Transparency
[18]. As this enormous data set is not really accessible5, we use certificate data
provided by Censys [8]. Censys provides a database of certificates that can be
conveniently queried online. We define two subsets of certificates: Subset S1

contains all root, intermediary, and domain certificates that (1) belong to a
commonly trusted certificate chain6 (2) were added to Censys before the 21st

of April 2020 and (3) expire after this date. In total, 204,166,070 certificates
fulfill these requirements. Subset S2 contains the domain certificates of the top
5 Assuming conservatively 1500 bytes per certificate, this data set would amount

roughly to 5 Tebibyte.
6 We use the Mozilla NSS root store: https://www.mozilla.org/en-US/about/

governance/policies/security-group/certs/, accessed 09/05/2020.

https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/

422 U. Gallersdörfer et al.

1,000 most visited websites7. After eliminating invalid, expired and duplicate
certificates and certificates with an invalid trust path, S2 contains 869 unique
domain certificates. We use S1 for a general understanding of the TLS ecosystem
(Sect. 3.1 and use S2 to test and evaluate compatibility (Sect. 3.2) and costs of
our system (Sect. 3.3). Afterwards, we discuss security implications of our system
in Sect. 3.4.

3.1 TLS-PKI Structure

Out of the 204,166,070 certificates in S1, 3,345 are certificate authority (CA)
certificates, 204,162,724 are domain certificates, and one certificate is of version
X.509 v1 and does therefore not include this information. We define a level-x
certificate as a certificate where the shortest trusted path to the root certificate
contains x certificates. In S1, 153 certificates are level-1 certificates (meaning that
153 certificates are in the root store), 2,387 are level-2 certificates, 203,838,127
are level-3-certificates, 325,196 are level-4 certificates, and a negligible number
of 207 are level-5 certificates. This means that the most common structure for
chains of trust is “domain certificate – intermediate certificate – root certificate”.
There are no certificates that are level 6 or higher.

It can be expected that each CA certificate is responsible for issuing and
maintaining a significant amount of certificates. To find out whether there are
differences regarding the number of certificates depending on one CA certificate,
we examine S1 in a bottom-up approach: We group domain certificates by their
issuer and count the number of certificates in each group. From the cardinality of
the groups, we can derive the number of intermediate and ultimately the number
of root certificates required to cover a certain percentage of domain certificates.

At first, we take a look at intermediate certificates that issue domain cer-
tificates and order them by how many valid certificates they issued. The by far
most prevalent issuer of domain certificates is “Let’s Encrypt Authority X3”,
the currently active intermediate for Let’s Encrypt with 123,826,849 issued cer-
tificates, a share of over 60%. The top five intermediates together cover over 91%
of domain certificates, eight intermediates are required for 95% and 26 for 99%.

Of course, these numbers do not represent the total numbers of CA certifi-
cates required to cover the domain certificates as we must take root certificates
and, in case of chains containing more than three certificates, additional interme-
diate certificates in account. A first look at the data shows that root certificates
do not scale quite as well as the intermediate certificates: The top six inter-
mediate certificates are all signed by unique roots. This means that in total,
2 × 6 = 12 CA certificates are required to cover 93% of certificates. A share of
98% of certificates can be covered by 37 CA certificates, divided in 24 level-2
(intermediate) certificates and 13 level-1 (root) certificates.

The numbers show that it is possible to validate the vast majority of domain
certificates even when only a small subset of existing root and intermediate cer-
tificates are available. Centralizing the validation and storage of certificates takes

7 https://www.alexa.com/topsites, accessed 09/05/2020.

https://www.alexa.com/topsites

Mirroring PKI to Blockchains for On-Chain Authentication 423

advantage of this property. The addition of a new certificate only requires the
validation of the certificate itself instead of its whole chain if the respective CA
certificates already reside in the system. A decentralized approach, where certifi-
cate chains are stored and validated by independent smart contracts, cannot take
advantage of this. Asymptotically, adding a domain certificate incurs the cost
of validating one domain certificate for the centralized approach, while it incurs
the cost of validating one root, one intermediate, and one domain certificate in
the decentralized approach.

3.2 Compatibility

To test the compatibility of our prototype Solidity implementation8 of our system
and to measure its performance with real and commonly used certificates, we
rely on data set S2. Out of this set, we remove certificates whose certificate
chain contains signatures that are using algorithms not yet supported by our
implementation, such as ECDSA or SHA-384. Our final testing set is comprised
of 576 certificates that serve 660 different domains, in addition to 47 intermediate
and 21 root certificates that are required for valid trust chains. This means that
our testing set contains 644 certificates in total.

We create a fresh instance of our system and consecutively add all root,
intermediate, and domain certificates. All certificates are accepted as valid and
added to the database. This complies with the desired behavior, as we have
only included valid certificates in this test data set. Furthermore, none of the
certificates contains a critical extension that our validation routine does not
support (as we describe in Sect. 3.4). Considering the nature of our data set,
this is a good indicator that special critical extensions are uncommon for TLS
certificates and that our implementation is compatible with most certificates.

3.3 Costs and Performance

The usage cost in form of transaction fees of the Ethereum smart contract is
an important factor to the success and viability of our system and demand
cost-efficiency especially for the verifier. To gain a perspective on the cost to
be expected, we once again consider the modified data set S2 from Sect. 3.2.
Although we outline related in Sect. 4, comparative approaches for gas costs
remain complex, as the feature set of our proposed solution does not directly
compare to other currently existing systems.

Certificates. We submit all certificates in this set with one certificate per
transaction. Figure 1 displays the observed gas usage by transaction, grouped
by root, intermediate, and domain certificates. Table 1 displays the concrete

8 An implementation of our prototype is available in [10]. The implementation cur-
rently supports the cryptographic algorithms RSA, SHA-1, and SHA-256.

424 U. Gallersdörfer et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·106

Root

Intermediate

Domain

Gas used

Fig. 1. Amount of gas used for the submission of root, intermediate, and domain
certificates in the data set S2. The graph displays the minimum, median, and maximum
value and the first and third quartile of each set.

Table 1. Minimal, first quartile, median, third quartile, and maximum cost of certifi-
cate submission in gas usage, ether, and US dollar.

Root certificate Intermediate certificate Domain certificate

Gas Ether $ Gas Ether $ Gas Ether $

Min 705,035 0.0078 1.60 750,584 0.0083 1.70 544,777 0.0060 1.23

1st 770,455 0.0086 1.77 762,129 0.0085 1.75 733,073 0.0081 1.66

Med 1,105,114 0.0123 2.53 783,324 0.0087 1.79 793,954 0.0088 1.81

3rd 1,170,981 0.0130 2.67 832,031 0.0092 1.89 903,813 0.0100 2.06

Max 1,537,513 0.0171 3.52 1,233,724 0.0137 2.82 4,503,213 0.0500 10.3

numbers for gas usage, ether and USD cost by transaction9. We observe the
following results: The median value of the root certificates is the highest. We
conclude that this is the case because the majority of root certificate is self-signed
using SHA-1, whose computation on Ethereum costs significantly more than
SHA-256. The cost for intermediate certificates is quite homogeneous, with some
outliers that are signed using SHA-1. For domain certificates the submission cost
differs significantly. As domain certificates are commonly issued using the up-
to-date SHA-256, the choice of algorithm is not the source of this circumstance.
Instead, the reason of this occurrence is the size of domain certificates, especially
the number of subject alternative names it specifies. The larger a certificate, the
more it costs to parse and validate it, and the larger the SAN field, the more
gas is payed for writing it to storage. The most costly certificate specifies 225
subject alternative names.

In Sect. 3.1, we showed that by adding 13 root and 24 intermediate certifi-
cates, we can cover 98% of all certificates. Calculating with an average gas usage

9 We assume a gas fee of 11.1 Gwei and a conversion rate of 206 US dollar per ether,
as observed on the 30th of April 2020 on https://coinmarketcap.com.

https://coinmarketcap.com

Mirroring PKI to Blockchains for On-Chain Authentication 425

of 1,041,580 for submitting a root certificate and 825,926 for submitting an inter-
mediate certificate, an initial investment of (1,041,580 · 13) + (825,926 · 24) =
33,362,764 gas (equivalent to $75.60) would mean that afterwards 98% of all cur-
rent certificates can be added and only incur the cost for the domain certificate
submission.

Endorsements. The cost of adding an endorsement does not fluctuate as much
as for certificates as the only one signature algorithm is used (RSA-SHA256) and
endorsements are constant in size except for the length of the domain name. For
submitting an endorsement to the external database, we measure a cost of around
577,219 gas ($1.32).

3.4 Security Considerations

The security of our system relies on three pillars: (i) the implementation of
the certificate validation routine and the databases, (ii) the integrity of the
TLS system and its certificate authorities, and (iii) the ability of users to map
domain names to real-world identities. We briefly discuss these three aspects in
this section.

Security of the Certificate and Endorsement Frameworks. We utilized
a smart contract engineering process [28] and purposefully designed and imple-
mented our system in a way that does not give one or a number of entities
privileges for the system. Once the system is deployed, it is an immutable piece
of code. On the one side, this means that our system cannot be subject to any
kind of censorship and cannot be influenced by an authorized party. On the other
side, this means that errors and vulnerabilities cannot be patched. Therefore,
the system must be crafted cautiously.

In the past, the validation of TLS certificates has been a troublesome topic:
Many TLS certificate verifier applications have been shown to have critical flaws
that lead to invalid certificates being accepted. We aim to minimize the possi-
bility of such critical flaws with two methods. Firstly, we keep the capability of
our validation routine purposefully small and support only the most important
extension types. Less functionality means less surface for errors and attack vec-
tors. Secondly, we make sure that our implementation does not repeat mistakes
that were made in the past [1,6,21]. However, this is no guarantee for correctness
and in the future, code audits, further testing, and possibly formal verification
should be performed before the system is deployed.

Security of the TLS Ecosystem. In the past, the TLS PKI has been under
criticism as all trust is transferred to CAs, which makes them a single point of
failure, and CA misbehavior has not been unobserved in the past. However, as
the TLS system is widely adopted and “too big to fail”, in the past a lot of
considerations have been made to improve its security. For example, with the

426 U. Gallersdörfer et al.

introduction of CT [18], a large step has been made towards the transparency
of the TLS PKI and the issuance processes of CAs. It is no longer possible for
a CA to issue a fraudulent certificate undetected. Furthermore, due to its wide
deployment, the TLS ecosystem has been thoroughly investigated by security
researchers in the past and in the present. A system that is set-up newly does
not profit from these efforts but still requires trust anchors for bootstrapping
and endorsing identity information.

Mapping Domain Names to Real-World Identities. The foundational
assumption of using TLS certificates for an authentication framework is that
domain names can be linked reliably to real-world identities. This assumes that
users have the ability and knowledge to connect a domain name to an organiza-
tion or person and vice versa. Usually, this is the case as users have experience
with using domain names on the internet and as domain names are constructed
to be human-friendly, for example by consisting of the company name.

One threat to this approach is typosquatting, the intentional registration of
slight misspelling of well-known domain names [30]. While these domains are
often used to display advertisements on the web [23], they pose a risk to our
system. An attacker might use a typosquatting domain and trick users into
using their similar domain or count on users accidentally misspelling a domain.
However, we deem the chance of mistyping or misreading an Ethereum address
higher and the use of domain names as identifying information more reliable.

4 Related Work

In this section we introduce previous work and ongoing efforts with goals or
approaches similar to ours. In Subsect. 4.1 we briefly describe several proposals
that aim to improve certain properties of PKIs by relying on blockchain tech-
nology. We discuss the Ethereum Name Service in Subsect. 4.2.

4.1 Blockchain-Based PKI Solutions

There exist numerous proposals to integrate blockchains and existing PKI infras-
tructure. However, the focus of these approaches is not to provide identity solu-
tions for blockchain applications, but to leverage the blockchain for improving
the properties of (the TLS) PKI. These works are nevertheless relevant as migrat-
ing part of the PKI on-chain for Internet purposes has the side effect using the
information for on-chain authentication as information is readily available. Giv-
ing an overview of all research that has been done in this field is out of the scope
of this paper, so we focus on approaches that target Ethereum or Ethereum-like
blockchains and include CAs for issuing certificates. Various other approaches
[2,3,9,12,26,29,31] do not include CAs in their design and introduce web-of-
trust like solutions instead, which means the incompatibility with existing pro-
tocols does not solve the inherent bootstrapping problem, or they rely on newly
designed blockchains.

Mirroring PKI to Blockchains for On-Chain Authentication 427

CBPKI [16] is a proposal for a cloud blockchain-based public key infrastruc-
ture where stateless CAs residing in the cloud are combined with certificate
information stored on a blockchain. The approach does not fit our requirements
as only the certificate hash is stored on-chain, but not relevant information such
as the subject name or the public key, and as it relies on CAs adapting to it and
issuing a new type of certificate. CertChain [5], a decentralized and tamper-proof
tool for auditing certificates, does not meet our requirements as it is built on a
new certificate format, an adapted implementation of Ethereum, and a new type
of CAs that also act as miners in the blockchain network. Instant Karma PKI
(IKP) [19] is a smart contract-based incentivization platform aiming to prevent
fraudulent issuing of TLS certificates: Clients can define policies concerning cer-
tificates issued for their domain and CAs can sell insurance against misbehavior.
IKP focuses strongly on improving the security of the TLS ecosystem, but does
not align with our goals as certificates are not presented to the blockchain unless
they are fraudulent and CAs have to take significant action to make the system
work. A blockchain-based PKI management framework is presented in [33]. CAs
create smart contracts corresponding to store information about the issuance
and revocation of certificates. When a verifier receives a certificate, they refer to
the smart contract and verify that the hash is contained, that the certificate is
not revoked, and that the chain of trust is valid. Just as the approaches before,
this proposal relies on proactive CAs. Additionally, a new certificate format is
required and only the certificate hash is stored on-chain, which is not sufficient
for an on-chain authentication framework. Kubilay et al. introduce CertLedger,
a PKI system with the intention of shifting trust from CAs to the blockchain
and providing certificate and revocation transparency [17]. CertLedger manages
the validation, storing and revocation of certificates. Clients do not validate
certificates or maintain their own root store any longer, they simply refer to
CertLedger for certificate-related information. In addition, CertLedger provides
a transparent revocation system and allows owners of certificates – not just the
issuers – to revoke them. While this proposal fulfills many of our goals, it does
not allow open participation: The set of trusted CAs is defined by CertLedger
board and all validation decisions are made depending on it. This means that
(i) the CertLedger board needs to be fully trusted by clients, (ii) clients cannot
distrust individual CAs, and (iii) clients cannot add root certificates for specific
applications.

4.2 Ethereum Name Service

Ethereum Name Service (ENS) was launched in 2017 and aims to provide a
decentralized way to address blockchain resources in a human-friendly way [15]
by resolving human-readable names to Ethereum addresses. ENS is curated
by the Ethereum Foundation and is described in three Ethereum Improve-
ment Proposals: EIP-137, EIP-162, and EIP-181 [13,14,20]. ENS names are
dot-separated hierarchical names called domains; currently, the only supported
top-level domain (TLD) is “.eth”. TLDs are owned by smart contracts called
registrars. The owner of a domain can create subdomains and transfer the own-
ership of the subdomains to other parties.

428 U. Gallersdörfer et al.

The ENS architecture consists of two central components: Registries and
resolvers. As “.eth” is currently the only supported TLD, there exists one reg-
istry. The “.eth”.registry is currently controlled by a 4-of-7 multisig. It is planned
to transfer control to a decentralized account in the future [4]. A registry con-
tains a list of all its subdomains and its respective owners, resolvers, and cache
expiration. All Ethereum accounts that support the relevant standards can be
the owner of a domain. Resolvers are responsible for translating the domain to
an actual Ethereum address.

Once ENS is established, it is a cost-efficient and decentralized system pro-
viding human-readable identities to Ethereum addresses. One problem, however,
remains: Domain ownership can be acquired through auctions and the highest
bidder wins. This means that ENS domain names cannot be intuitively mapped
to real-world identities. Furthermore, there is no judicial system in place which
would allow to redistribute individual domains, for example in the case of imper-
sonation. The decentralization of ENS and the inability to e.g., recover lost
domains can be considered as a second nature to blockchain-based applications,
however make real-world adoption difficult.

5 Conclusion and Future Work

In this work, we present the conceptual idea, design, and evaluation of a TLS-
certificate-based authentication framework for Ethereum. In our framework,
identities can be asserted and verified based on TLS certificates that are sub-
mitted to and validated by a central database. Identity owners that want to link
their identity to an Ethereum account can create endorsements. An endorse-
ment links information about the account address and the domain name, and
contains a signature that was created with the certificate’s private key and con-
firms the identity binding. Subsequently, users can obtain this endorsement to
authenticate Ethereum accounts they aim to interact with.

The great strength of our system is that it overcomes the bootstrapping prob-
lem: Any identity owner can submit their certificate and endorsement without
depending on other stakeholders. Under the assumption that certificate authori-
ties are trusted, we can leverage a massive amount of verifiable/verified identity
information that is readily available. However, we also acknowledge that our
system comes with drawbacks: The TLS system is considered fragmented and
not secure enough by some researchers, our system enables authentication only
for certificate owners, the on-chain validation of TLS certificates is costly, and
storing certificate information increases the size of the Ethereum blockchain.
However, we believe that solutions or mitigations can be found to lower the
negative impact of these drawbacks. Overall, our framework serves as a prag-
matic and feasible approach to establish a system for the identity assertion and
verification on Ethereum in a timely manner.

One main goal of future work should be to investigate whether a TLS-
certificate-based authentication framework can be used in combination with
an identity management system or naming service developed specifically for

Mirroring PKI to Blockchains for On-Chain Authentication 429

Ethereum. A combination of the approaches could utilize the strengths of both:
The certificate-based approach can boost the bootstrapping phase of the sys-
tem. The information acquired in the bootstrapping phase can then be used to
populate the system with further, certificate-independent information. The aim
is to make the system gradually independent from the TLS ecosystem, thereby
improving the security of the framework.

References

1. Akhawe, D., Amann, B., Vallentin, M., Sommer, R.: Here’s my cert, so trust me,
maybe? Understanding TLS errors on the web. In: Proceedings of the 22nd Inter-
national Conference on World Wide Web, pp. 59–70 (2013)

2. Al-Bassam, M.: SCPKI: a smart contract-based PKI and identity system. In: Pro-
ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,
pp. 35–40 (2017)

3. Ali, M., Nelson, J., Shea, R., Freedman, M.J.: Blockstack: a global naming and
storage system secured by blockchains. In: USENIX Annual Technical Conference,
pp. 181–194 (2016)

4. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and DApps, 1st edn. O’Reilly Media, Beijing (2018)

5. Chen, J., Yao, S., Yuan, Q., He, K., Ji, S., Du, R.: CertChain: public and efficient
certificate audit based on blockchain for TLS connections. In: Proceedings - IEEE
INFOCOM, October 2018

6. Chen, Y., Su, Z.: Guided differential testing of certificate validation in SSL/TLS
implementations. In: 2015 10th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2015 - Proceedings, New York, New York, USA,
August 2015. http://dl.acm.org/citation.cfm?doid=2786805.2786835

7. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. Technical report (2008)

8. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search
engine backed by internet-wide scanning. In: 22nd ACM Conference on Computer
and Communications Security (2015)

9. Fromknecht, C., Velicanu, D.: A decentralized public key infrastructure with iden-
tity retention. Cryptology ePrint Archive (2014)

10. Gallersdörfer, U., Groschupp, F., Matthes, F.: Supplementary Material to Mirror-
ing Public Key Infrastructures to Blockchains for On-Chain Authentication (2021).
https://github.com/UliGall/paper-mirroring-pki

11. Google: HTTPS encryption on the web (2020). https://transparencyreport.google.
com/https/overview

12. Hammi, M.T., Bellot, P., Serhrouchni, A.: BCTrust: a decentralized authentica-
tion blockchain-based mechanism. In: 2018 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–6. IEEE (2018)

13. Johnson, N.: EIP-137: Ethereum Domain Name Service - Specification. https://
eips.ethereum.org/EIPS/eip-137

14. Johnson, N.: EIP-181: ENS support for reverse resolution of Ethereum addresses.
https://eips.ethereum.org/EIPS/eip-181

15. Johnson, N., Lau, J., Eigenmann, D., Millegan, B.: Ethereum Name Service (2020).
https://github.com/ensdomains

http://dl.acm.org/citation.cfm?doid=2786805.2786835
https://github.com/UliGall/paper-mirroring-pki
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://eips.ethereum.org/EIPS/eip-137
https://eips.ethereum.org/EIPS/eip-137
https://eips.ethereum.org/EIPS/eip-181
https://github.com/ensdomains

430 U. Gallersdörfer et al.

16. Khieu, B., Moh, M.: CBPKI: cloud blockchain-based public key infrastructure. In:
Proceedings of the 2019 ACM Southeast Conference, ACMSE 2019, New York,
New York, USA, pp. 58–63, April 2019

17. Kubilay, M.Y., Kiraz, M.S., Mantar, H.A.: CertLedger: a new PKI model with
certificate transparency based on blockchain. Comput. Secur. 85, 333–352 (2019)

18. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. Technical report,
6962, RFC Editor (2013)

19. Matsumoto, S., Reischuk, R.M.: IKP: turning a PKI around with decentralized
automated incentives. In: Proceedings - IEEE Symposium on Security and Privacy,
pp. 410–426. IEEE, May 2017. http://ieeexplore.ieee.org/document/7958590/

20. Maurelian, Johnson, N., Van de Sande, A.: EIP-162: Initial ENS Hash Registrar.
https://eips.ethereum.org/EIPS/eip-162

21. Meyer, C., Schwenk, J.: SoK: lessons learned from SSL/TLS attacks. In: Kim, Y.,
Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 189–209. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05149-9 12

22. Mockapetris, P., Dunlap, K.J.: Development of the domain name system, vol. 18.
ACM (1988)

23. Moore, T., Edelman, B.: Measuring the perpetrators and funders of typosquatting.
In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 175–191. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14577-3 15

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
25. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton Univer-
sity Press (2016)

26. Patsonakis, C., Samari, K., Roussopoulos, M., Kiayias, A.: Towards a smart
contract-based, decentralized, public-key infrastructure. In: Capkun, S., Chow,
S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 299–321. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02641-7 14

27. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. Technical
report, 8446, RFC Editor (2018)

28. Sillaber, C., Waltl, B., Treiblmaier, H., Gallersdörfer, U., Felderer, M.: Laying
the foundation for smart contract development: an integrated engineering process
model. Inf. Syst. e-Bus. Manag. 1–20 (2020). https://doi.org/10.1007/s10257-020-
00465-5

29. Singla, A., Bertino, E.: Blockchain-based PKI solutions for IoT. In: Proceedings -
4th IEEE International Conference on Collaboration and Internet Computing, CIC
2018, pp. 9–15. Institute of Electrical and Electronics Engineers Inc., November
2018

30. Spaulding, J., Upadhyaya, S., Mohaisen, A.: The landscape of domain name
typosquatting: techniques and countermeasures. In: Proceedings - 2016 11th Inter-
national Conference on Availability, Reliability and Security, ARES 2016, pp. 284–
289. Institute of Electrical and Electronics Engineers Inc., December 2016

31. Wang, Z., Lin, J., Cai, Q., Wang, Q., Zha, D., Jing, J.: Blockchain-based certifi-
cate transparency and revocation transparency. IEEE Trans. Dependable Secure
Comput. (2020)

32. Wood, D.G.: Ethereum: a Secure Decentralized Generalized Transaction Ledger
(2017)

33. Yakubov, A., Shbair, W.M., Wallbom, A., Sanda, D., State, R.: A blockchain-
based PKI management framework. In: 2018 IEEE/IFIP Network Operations and
Management Symposium, NOMS 2018 (2018)

http://ieeexplore.ieee.org/document/7958590/
https://eips.ethereum.org/EIPS/eip-162
https://doi.org/10.1007/978-3-319-05149-9_12
https://doi.org/10.1007/978-3-642-14577-3_15
https://doi.org/10.1007/978-3-030-02641-7_14
https://doi.org/10.1007/s10257-020-00465-5
https://doi.org/10.1007/s10257-020-00465-5

Reactive Key-Loss Protection
in Blockchains

Sam Blackshear1, Konstantinos Chalkias1(B), Panagiotis Chatzigiannis2,
Riyaz Faizullabhoy1, Irakliy Khaburzaniya1, Eleftherios Kokoris Kogias1,3,

Joshua Lind1, David Wong1, and Tim Zakian1

1 Novi Financial/Facebook Research, Menlo Park, USA
kostascrypto@fb.com

2 George Mason University, Fairfax, USA
3 IST Austria, Klosterneuburg, Austria

Abstract. We present a novel approach for blockchain asset owners to
reclaim their funds in case of accidental private-key loss or transfer to a
mistyped address. Our solution can be deployed upon failure or absence
of proactively implemented backup mechanisms, such as secret sharing
and cold storage. The main advantages against previous proposals is it
does not require any prior action from users and works with both single-
key and multi-sig accounts. We achieve this by a 3-phase Commit() →
Reveal() → Claim() − or − Challenge() smart contract that enables
accessing funds of addresses for which the spending key is not available.
We provide an analysis of the threat and incentive models and formalize
the concept of reactive KEy-Loss Protection (KELP).

Keywords: Blockchain · Smart contracts · Key-loss protection ·
Front-running · Key management · Commitment scheme

1 Introduction

One of the main criticisms over the usability of cryptographic protocols is that of
key-management. This problem is further aggravated in the context of blockchain
systems and decentralized finance, where users need to frequently use their keys
to sign transactions. To add insult to injury, even users that manage to carefully
handle their keys are not fully protected since software bugs or simple human
errors can result in sending funds to the wrong address which might not have a
known associated key.

A side-effect of poor key-management is losing access to the signing key mate-
rial, without necessarily this being compromised. That can happen for various
reasons, the most common being accidentally deleting a key, forgetting a pass-
word and malfunctioned or even discarded hard disks [27] that make private keys

P. Chatzigiannis—Did part of this work during an internship at Novi Financial/Face-
book Research.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 431–450, 2021.
https://doi.org/10.1007/978-3-662-63958-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_34&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_34

432 S. Blackshear et al.

unrecoverable. Several solutions exist towards alleviating this problem, however
the vast majority, if not all, are proactive. The latter means that users should be
educated enough to setup a backup mechanism [6] or to secret-share their key
with trusted parties [19] or their social-circle [16]. Unfortunately, these solutions
have yet to gain traction, due to the extra steps required, as well as the need
to trust someone to hold custody of secret information without abusing them.
Additionally, they do not address the second problem of mistyped addresses
since such an error is by definition unexpected.

In this paper we address both problems with a single solution, the time-lock
based reactive KEy-Loss Protection (KELP). On a first glance, reactive recovery
looks impossible since by definition the recovering party does not hold a secret to
convince the blockchain of being the owner of some locked account. In essence,
the rightful owner of that account seems indistinguishable from the adversary.

In KELP, we circumvent this paradox by taking advantage of the fact that
there exists information asymmetry, between the account owner and everyone
else, on whether a key has actually been lost. Specifically, it is usually the account
owner who knows this information first. Based on this assumption, users can
claim ownership of any address, but the real owner of such an address has the
right within some time to cancel any claim by showing that the secret-key of
the address is still available via a proof-of-possession logic, i.e., by signing a new
transaction. Thus, a claim can succeed only when the key has indeed been lost,
which, the owner of the account is in unique position to know.

A naive protocol, however, is susceptible to two potential attack vectors that
should be addressed:

– Front-running: Given the lack of atomicity in blockchains, an adversary can
see the pending claim transaction and front-run it by invoking the claim first.

– Random testing: Since a claim transaction does not need approval from the
account holder, the adversary can randomly try to claim funds from a large
number of accounts.

To address these challenges, KELP employs multiple defensive mechanisms.
To protect against front-running attacks, we (a) use a commit-then-reveal scheme
and (b) let parties produce cover traffic on their accounts [15], by periodically
transmitting “fake” lost-key claims, tricking the adversary to front-run them.
The cover traffic is then coupled with our protection from random testing, where
we automatically require a fee during the claim process which is given to the
owner of the challenged address. As a result, an adversary that falsely tries to
front-run will be penalized by paying these claim fees, which significantly reduces
the incentives and potential rewards of distributed or targeted attacks.

1.1 Background and Related Works

Mistyped Addresses. Due to the irreversible nature of blockchains, transac-
tions can neither be cancelled nor reversed once put in a verified block. Addresses
are long enough that many accidental typos have been reported in the past [17],

KELP - Reactive Key-Loss Protection 433

where funds have been sent to accounts for which the private key is unknown.
When this happens, it is impossible to reclaim these coins and they are essen-
tially burnt forever. Until now, most of the proposed solutions can only offer
proactive defenses and include the following:

– append a checksum to the address format. For instance, Bitcoin addresses
have an embedded checksum code where mistyping a character would result
to another valid address with a very slim probability of about 1 to 4.3 billion.
However other blockchains, like Ethereum, do not officially apply checksum
protection; but there exist related proposals [11]. A 2018 analysis reported
that at least over 12,000 Ether have been lost forever due to typos up to block
height 5 million [26];

– use QR codes, which have an embedded Reed Solomon error correction to
demotivate unfriendly textual copy paste typos [20];

– address creation with a different script. Unlike other systems, the
account-based Diem blockchain natively supports two different transaction
types for (a) generating addresses and (b) sending funds to existing accounts
only, similarly to the traditional bank account system [1]. This reduces the
probability of accidentally sending coins to mistyped addresses, as the account
should already exist to receive funds.

Key-Loss. There exist several different ways to protect blockchain assets
against accidental key loss or compromise attacks, but until now there was not
a generic solution for users to regain access to accounts for which the key is
unrecoverable. Obviously, if the signing key is compromised (or if there is a
protocol bug), attackers can directly transfer assets to accounts they own. Prag-
matically, there are not a lot of things we can reactively do for the above, apart
from initiating a legal investigation or agreeing as a community on forking the
blockchain [14]. However, just losing access to the key is a different scenario
where although funds remain in the account, nobody can use them. Our KELP
approach is probably the first generic reactive solution to cases where the key
has not been compromised yet. Before we explain how it works, we need to enlist
the current state of the art in key management and account recovering.

Usually, it is a “wallet” that provides the service for users to generate, store
and manage private keys of blockchain addresses. These are mainly categorized
as software, hardware, paper and website wallets and they provide different func-
tionalities and security threat assumptions. More demanding custodial wallets
have also implemented advanced key management and backup processes to a-
priori minimize the risk of key loss. On top of that, modern cryptographic and
blockchain protocols emerged, such as hierarchical deterministic key generation
and efficient secret sharing protocols. Briefly, a list of current key management
and recovery techniques is provided below:

– cold storage, where the key resides in a medium that is not connected to
the internet, thereby protecting the secret from unauthorized access and other
vulnerabilities. Examples include writing down the key on a paper and using

434 S. Blackshear et al.

a safe or offline Hardware Security Module (HSM). Even these however are
susceptible to data or hardware degradation under extreme circumstances,
and require a secure (and sometimes expensive) process;

– custodial services, where one can delegate key management or backup to
a third party that safeguards a sealed copy of the signing key. Although,
this is similar to the traditional method of using safes or notaries, it requires
an interactive (and sometimes slow) process to recover the key, while the
maintenance cost might be significant [12];

– distributed key, where using Shamir’s secret sharing [19], concrete threshold
elliptic curve signature schemes or secure multiparty computations (MPC),
the key material is distributed to multiple nodes [8]. Most of these solutions
are interactive per signing or they are complex in terms of implementation,
while some of them do not guarantee accountability on who (from these par-
ties) signed. In [12], a few reasonable enhancements are provided to improve
the practicality of these schemes;

– multi-signatures M-of-N . Some Blockchains like Bitcoin and Diem
natively support the so called multi-sig or M-of-N addresses, a type of sig-
nature that combines multiple unique key signatures into one concatenated
statement. Although they are easier to implement and solve the accountabil-
ity issues of other threshold schemes, these transactions are more expensive
as they require at least M signatures to be submitted on-chain. Moreover,
in blockchains where this functionality is not natively supported, such as
Ethereum, problematic smart contract implementations that simulate this
logic have caused loss of funds in the past [10];

– deterministic key generation, such as the BIP32 [21] protocol, which
requires to store or encrypt a single master seed that derives all of the other
account keys;

– social recovery, like EIP55 [16] where users select a list of Ethereum
addresses, called “guardians”, which can authorize the recovery of a private
key. A similar approach is supported in Diem blockchain [2] via the rotation
capability, where an account can delegate the power of its key rotation to
another account or smart contract logic;

– password-derived keys, usually via the BIP39 protocol which uses a
mnemonic phrase, a group of at least 12 easy to remember words, to serve
as a back up to regenerate a private key or master seed. In practice though,
many wallets recommend writing down and safely store the phrase, and simi-
larly to common passwords, there have been reports of people forgetting their
mnemonics [13];

– biometrics-recovery. As a solution to weak memorability of passwords,
the work in [5] proposes recovery from secret loss by splitting a biometric-
encrypted key to multiple nodes. Apart from the limitation of requiring a
trusted third party, the recommendation of using fingerprints is questionable,
since they are relatively easy to be reconstructed from high resolution images;

– vault transactions, a special type of transaction which enforces its output
to be locked for a period of time [25]. During the time lock, the legitimate
account owner has the option to abort the vault transaction using a secondary

KELP - Reactive Key-Loss Protection 435

recovery key, typically stored offline, providing some form of private key theft
protection. In case the recovery key also gets compromised, this effectively
blocks the funds from being spent (as both the attacker and the legitimate
owner would use the recovery key, aborting all transactions). Fraud proofs
[28] also share a similar concept;

– paralysis proofs are based on SGX enclaves and smart contracts and focus
on threshold or multi-sig keys only [32]. In short, they enable recovery of funds
when enough signers become provably unavailable, which results to not being
able to satisfy the threshold. To the best of our knowledge, this is the only
existing reactive key recovery solution in the literature, however it focuses on
a different problem and only works for M-of-N key-structures, but not single
keys.

1.2 Our Contributions

We have designed a novel 3-phase time-lock based smart contract that enables
key recovery in case of key loss or sending funds to unknown addresses. The
major benefits of our approach is that in the best of our knowledge it is the
first generic solution that requires no prior action from its legitimate holder.
Our contract’s basic parameters rely on time periods and fees, which need to be
carefully selected to mitigate and discourage potential abuse by attackers.

We present our protocol and discuss these considerations in Sect. 2. Section 3
discusses several considerations towards the contract’s practical deployment that
need to be taken into account for balancing the contract’s usability and its
attack surface. Finally, in Sect. 4 we show potential contract extensions that are
applicable to specific blockchains.

2 KELP Protocol

We provide a description of the time-lock KEy-Loss Protection (KELP) logic, a
three-phase smart contract that allows reclaiming funds from a locked blockchain
address after an account spending-key loss. KELP relies on on-chain time locked
commitments, similarly to HTLC smart contracts [29] used in atomic swaps (or
layer-2 channel opening/closing) to defend against front-running attacks.

We describe the protocol in two parts: first we present the protocol in terms of
generic parameters, and then, in a separate section, we discuss potential appro-
priate choices for these parameters.

2.1 General Protocol Description

Assuming a hash function h and two time-lock periods t1 and t2, a key-loss
protection smart contract KELP = (KELP.Commit,KELP.Reveal,KELP.Claim,
KELP.Challenge) is a four function logic defined as follows:

436 S. Blackshear et al.

Fig. 1. KELP Commit() → Reveal() → Claim() flow.

KELP.Commit
KELP.Commit(addressc, addressr, nonce) → com, fee1 is a transaction which
can be executed by any user who wants to claim ownership of addressc for
which they believe the spending key has been lost or forgotten. It outputs a
commitment value com = h(addressc||addressr||nonce), which is recorded in
the blockchain1 (Fig. 1).

The commitment indicates that, in case of a successful claim, the owner-
ship of addressc will be transferred to the owner of addressr. The mechanism
of this transfer is blockchain-specific. For example, in some blockchains, funds
of addressc can be simply moved to addressr. In other blockchains, addressr
may specify a new spending key to be associated with addressc. In cases when
addressr cannot be set to arbitrary values (e.g. when addressr must already
exist on chain), an extra nonce should be included in the commitment to make
guessing of addressc and addressr impractical via brute-force attacks.

For the commitment to be recorded in the blockchain, an extra fee1 must be
included with the Commit transaction. Unlike a regular transaction fee, fee1 is
not paid to miners/validators but to the user who successfully executes one of the
Claim or Challenge transactions. The purpose of this fee is to discourage random-
testing attacks where malicious actors try to issue claims against a large number
of accounts in hopes of randomly finding one for which the key has indeed been
lost. The magnitude of fee1 can be set using a variety of strategies, some of
which we discuss in Sect. 2.2.

KELP.Reveal
KELP.Reveal(com) → addressc, addressr, nonce, fee2 is a transaction executed
by the user who previously executed a Commit transaction for the specified
commitment. The purpose of this transaction is to reveal addressc in the clear
1 Note that com can be implemented with any reasonable and efficient commitment

scheme i.e., via HMACs, but typically a regular hash function is already available
as part of the underlying blockchain’s instruction set.

KELP - Reactive Key-Loss Protection 437

so that, in cases when the account’s key has not been lost, the legitimate account
owner has an opportunity to challenge the claim.

It is important that the user revealing the claim should wait until their
Commit transaction gets finalized to avoid front-running. Specifically, if the
Commit transaction has not been finalized, and since addressc is now exposed,
someone else (e.g. miner, block producer) could claim its ownership by executing
Commit and Reveal transactions of their own ahead of the original Commit.

Before accepting a revealed claim, a KELP contract checks that:

– h(addressc||addressr||nonce) is equal to the com value form the correspond-
ing Commit transaction;

– timeof(Reveal) − timeof(Commit) < t1, where timeof() is a function which
returns time (e.g. as block height) of when a transaction was included into
the blockchain;

– Sufficiently large fee2 was included with the transaction. The appropriate
magnitude of fee2 can be set using a variety of strategies, some of which we
discuss in Sect. 2.2.

– There are no active claims against addressc, or if there are, the new claim
can override the currently active claim. We say that claim A can override
claim B if timeof(CommitA) < timeof(CommitB).

More informally, for a claim to be accepted by the contract, the Reveal trans-
action must be executed within t1 period of the corresponding Commit, it must
include a large enough fee2, and it must be able to override other active claims
against the account, if any. This way, only one revealed claim is possible against
an account at a given point in time.

If a revealed claim is accepted by the contract, both fee1 and fee2 are
immediately transferred to the account at addressc, however, account ownership
is not transferred until successful execution of Claim transaction.

KELP.Claim
KELP.Claim(addressc, addressr, nonce) → com is a transaction which transfers
ownership of addressc to the owner of addressr. This transaction is accepted by
the contract only if:

– com commitment corresponds to a currently active claim against addressc;
– timeof(Claim) − timeof(Reveal) > t2. This ensures that the period allotted

for the account owner to challenge the claim has elapsed. For practical con-
siderations of choosing the value for t2 please refer to the following section,
but in general it should be on the order of months or even years.

Upon successful execution of a Claim transaction, the ownership of addressc is
transferred to the owner of addressr. As mentioned earlier, the exact mechanism
of ownership transfer is blockchain-specific. In some blockchains this may include
transferring balances between the accounts involved, while in other blockchains,
it might update spending keys associated with addressc.

438 S. Blackshear et al.

It is important to note that the cost of a successful claim is negligible. This is
because both fee1 and fee2 are added to the balance of the account at addressc
upon successful execution of the Reveal transaction. Thus, a successful Claim
execution has the effect of refunding these fees to the owner of addressr.

KELP.Challenge
KELP.Challenge(addressc, signaturec) → cancelclaim is a transaction executed
by the owner of addressc to protect the account from malicious claims. This
transaction must include a proof that the spending key associated with the
account has not been lost - e.g. a signaturec generated with the account’s spend-
ing key. However, the exact implementation of such transaction is blockchain-
specific. For example, in some blockchains, any regular transaction executed from
addressc may suffice, while in other blockchains, the Challenge may need to be
a special type of transaction.

Executing a Challenge immediately cancels any potential claim (up to that
moment) against the account, and, in effect, transfers fee1 and fee2 of the
unsuccessful claim to the owner of addressc. Assuming the value fee1 + fee2 is
significant, this mechanism makes unsuccessful claims very costly, and discour-
ages users from submitting claims unless they are confident that an account’s
spending key has indeed been lost or forgotten.

All in all, one can compare KELP to legal challenges, where any body can
mount a legal case against somebody else but a claim without merit will be
quickly rejected and the costs of doing so should be prohibitive.

2.2 Protocol Parameters

This section analyzes the four parameters involved in the KELP protocol:

1. t1 - time period during which a committed claim must be revealed.
2. t2 - time period after which a revealed claim can be executed.
3. fee1 - extra fee included with Commit transaction.
4. fee2 - extra fee included with Reveal transaction.

Optimal values for these parameters are highly blockchain-specific and
depend on such properties as consensus algorithm (e.g. finality times), blockchain
structure (e.g. UTXO vs. account-based), degree of centralization etc. We, there-
fore, leave in-context analysis of these parameters to future research, and provide
only general guidelines and considerations as to how they can be chosen.

Parameter t1. The purpose of this parameter is to set an upper bound on the
time a committed claim can remain hidden. To prevent front-running attacks,
t1 should be no shorter than the time it takes for a transaction to be finalized.
However, setting t1 to higher values has an additional benefit as it provides more
opportunity for Reveal transactions to be included into the blockchain. This can
protect against censorship attacks where a powerful adversary can try to delay
block inclusion of Reveal transactions in hopes that t1 expires and they will be
able to execute Commit and Reveal transactions of their own.

KELP - Reactive Key-Loss Protection 439

At the same time, setting t1 to very large values (or even to infinity) is
not desirable because it would enable malicious actors to issue a large number
of Commit transactions against many (or even most) accounts. These commit-
ments will linger in the blockchain, bloating the state and potentially imposing
significant burden on node operators. More importantly, a large number of lin-
gering claim commitments makes it risky for a legitimate users to initiate account
recovery via the KELP protocol as it increases the probability that there exists
a claim commitment against a user’s account which predates the Commit trans-
action which the user could issue.

Given the above considerations, setting t1 to a period between several hours
and several days may be appropriate in most cases.

Parameter t2. The purpose of this parameter is to provide sufficient time for a
legitimate account owner to challenge an adversarial claim. This period should
be long enough for the account owner to:

1. Detect a revealed claim against their account;
2. Execute Challenge transaction against the active claim.

Both of these may require significant time. Detecting a claim may be complicated
by a number of factors including physical unavailability of the account owner
for prolong periods of time. Similarly, executing Challenge transactions may be
delayed by the spending key being stored in cold storage or protected by a
complicated multi-sig recovery scheme. Moreover, a powerful adversary may try
to censor the network and prevent inclusion of Challenge transaction into the
blockchain until t2 elapses. Long t2 periods would reduce feasibility of such
attacks as maintaining complete censorship control over a decentralized network
for prolonged periods of time is increasingly difficult.

Thus, depending on the specifics of the underlying blockchain, it may be
appropriate to set t2 to a period of several months or even years.

Parameter fee1. The purpose of this parameter is to increase the cost of
opportunistic Commit transactions and discourage malicious actors from issuing
a large number of claim commitments. In this way, this parameter is similar to
relatively short t1 periods. However, whereas short t1 periods force such actors
to periodically renew their opportunistic claims, relatively large fee1 increases
the cost of every such claim.

An important consideration for fee1 parameter is that it should not reveal
any information about the account against which Commit transaction is exe-
cuted. Otherwise, malicious actors may de-anonymize the account for which the
spending key has been lost and attempt to front-run the Commit transaction of
the legitimate account owner. Thus, we are not making fee1 proportional to the
balance of the account in question.

However, it is desirable to make fee1 large enough to make random-testing
attacks impractical for the vast majority of accounts. One strategy to achieve
this could be to make fee1 proportional to the balance of an average account
on the network. For example, if the average account holds a balance of $1,000,
fee1 could be set to $100. This will make opportunistic Commit transactions

440 S. Blackshear et al.

against most accounts impractical. At the same time, since fee1 is returned to
the account owner upon successful execution of Claim transaction, such a high
fee has a negligible impact on the cost of a legitimate claim.

Parameter fee2. The purpose of this parameter is to increase the cost of
opportunistic Reveal transactions and discourage malicious actors from making
illegitimate claims. It is similar to fee1, however, while the magnitude of fee1
may provide sufficient protection for most accounts, it is disproportionately low
as compared to balances of high-value accounts. Thus, a malicious actor may
choose to periodically execute Commit transactions against a relatively small set
of high-value accounts (and pay the associated fees), in hopes that if a spending
key of one such account is lost, they will be able to override the legitimate Reveal
transaction and recoup their “investment”.

To mitigate this attack, we need to make the cost of an unsuccessful claim
unbearably high. However, since imposing outsized fees at Commit time will
make the protocol unsuitable for most users, we impose additional fees at Reveal
time, when the account becomes publicly known. This allows us to make fee2
proportional to the balance of the account in question. Such a proportion should
be significant, but its exact value could vary based on the specifics of the under-
lying network, and thus, we leave it to future economic incentives research and
analysis.

Assuming fee2 represents a significant portion of the claimed account’s bal-
ance (e.g. 10%), to reveal their claim, malicious actors would need to be very
confident that their Reveal transaction cannot be overridden by someone else’s
Reveal with an earlier corresponding Commit. Avoiding such situations would
require a very high degree of coordination between all potential adversaries, and
may not be feasible in practice.

Moreover, a legitimate account owner can exacerbate this uncertainty by
periodically, at random intervals, issuing “fake” Commit and Reveal transactions
against their own account. To potential attackers, this would look like an initia-
tion of KELP protocol, implying that the account’s owner lost its spending key.
Thus, if there is an attacker with a preemptive Commit against the account, they
will execute a Reveal transaction of their own to override the Reveal transaction
of the legitimate owner. However, since the key is not lost, the legitimate owner
can immediately challenge the claims and receive fee1 + fee2 as a reward.

It is important to note that the cost of a “fake” claim is negligible to the
legitimate account owner. This follows from the fact that both fee1 and fee2
are returned to the account regardless of whether the claim is overridden by the
attacker’s claim or not. However, in cases when the original claim is overridden
by the attacker, the legitimate account owner will receive an additional reward
in the form of fee1 and fee2 from the attacker’s claim. This may provide a
sufficient incentive for owners of high-value accounts to periodically engage in
this “bluffing” behavior.

KELP - Reactive Key-Loss Protection 441

2.3 Considerations for Practical Deployments

Besides selecting values for the four parameters described above, a real-world
deployment of KELP protocol will need to address a number of issues which we
briefly discuss in this section.

Optionality and Defaults. It is important to understand that the KELP pro-
tocol does modify the trust model somewhat (see Sect. 3 for additional discus-
sion). Therefore, we do not recommend it as a mandatory feature for all accounts
of a blockchain. Instead, it could be an optional feature which users can freely
enable or disable on per-account basis. The exact mechanism of how to do so is
blockchain-specific. In some blockchains this could be done via an account-level
flag, in others, this would require a new address format. We, therefore, leave a
more detailed discussion of the exact mechanism to future in-context research.

Assuming KELP is adapted as an optional account-level feature, the question
arises as to whether it should be enabled by default. A conservative approach
would be to have it disabled by default, and require users to explicitly opt-in to
use the feature. However, this approach has two notable drawbacks:

1. Any funds sent to non-existent addresses become unrecoverable as non-
existent addresses would have KELP disabled by default.

2. It could lead to a relatively small number of KELP-enabled accounts, thereby
reducing the anonymity set of Commit transactions, and in general, making
random-testing attacks more viable.

Both of these drawbacks can be mitigated by a number of blockchain-specific
strategies. For example, in some blockchains, sending funds to a non-existent
address is impossible by design [1]. Similarly, attractiveness of random-testing
attacks can be reduced by higher fee1 and more aggressive “bluffing” strate-
gies as described in the previous section. We, therefore, make no recommenda-
tion on whether KELP should be enabled by default, and leave this question
to future blockchain-specific analysis. Finally it is made clear that in the case
where KELP is optionally enabled, this contradicts to our original statement
of offering a completely reactive mechanism. However, even in such a scenario,
the actions required are more straightforward than existing proactive practices,
mainly because there is no requirement of complex cryptography protocols, stor-
ing and/or delegating secrets.

Wallet Support. Before KELP-enabled accounts can be supported by a block-
chain, care must be taken to ensure that there is enough support in the entire
ecosystem for this feature. Specifically, wallets which desire to support KELP-
enabled accounts should be able to provide the following functionality:

1. Implement a proactive claim notification system and detect revealed claims
submitted against accounts managed by the wallet;

442 S. Blackshear et al.

2. Issue challenge transactions against detected claims;2
3. Issue cover transactions by faking KELP commits periodically;
4. Execute full key recovery protocol for a user-provided address.

While implementing these may not be overly difficult in software wallets, many
custodial services implement their logic in specialized equipment such as HSMs
or with multi-signature keys, which may prove non-trivial to update in practice.
Thus, to enable KELP on a blockchain in a backward-compatible way, KELP
feature should be either disabled by default, or it should be introduced in a way
which would make it impossible for legacy wallets to generate KELP-enabled
accounts.

KELP.Challenge Transaction. Rather than having the KELP.Challenge
transaction be a distinct transaction type, it is desirable to have any regu-
lar transaction issued from an account to have the effect of KELP.Challenge
transaction, in that it would cancel any revealed claim against the account. In
blockchains where this can be implemented, legacy wallets would still be able
to defend themselves against attackers attempting to falsely claim their keys, as
long as they can monitor the chain and detect adversarial Reveal transactions.

2.4 Reactive Recovery and Synchrony Assumptions

KELP is a construction that can be seen as a simulation of a special layer-
2 construction. The two abstract parties transacting are (a) the owner of the
account who lost access to the key and (b) the claimer. The goal of the protocol
is to securely communicate the knowledge that the secret key of (a) has been
lost, similarly to opening and closing a layer-2 channel on-chain, which can be
challenged. Obviously, in the happy scenario of KELP, the same user has the
role of both parties in this hypothetical channel.

Modelling KELP as such, we can investigate the impossibility result intro-
duced by Zyamatin et al. [31], which shows that recovery needs either a time-
synchrony assumption (as we do in KELP via periods t1 and t2) or some abstract,
potentially distributed, trusted third party (as done in proactive recovery mech-
anisms [19,25]). To the best of our knowledge, the only channel construction that
does not assume synchrony employs threshold security assumptions [4], a clas-
sic proactive recovery mechanism, which implies that KELP’s reactive recovery
approach and synchrony assumptions go hand-in-hand.

3 Trust Model and Attack Vectors

In this section we discuss the underlying trust model and potential attack vec-
tors against KELP. It is important to separate potential threats into two broad
categories:
2 More proactive ways to issue challenges include for example an intelligent wallet that

learns its owner’s behaviour (frequency of use), so that it can distinguish between
the state in which a user simply hasn’t logged in for a while, and the state in which
they have misplaced their key, automatically issuing challenges in the former state.

KELP - Reactive Key-Loss Protection 443

1. Attacks against user accounts which are enabled by the KELP protocol. In
such cases, we assume that a user has not lost their keys, but an attacker is
trying to exploit some aspect of the KELP protocol to steal their funds.

2. Attacks against successful execution of the KELP protocol. For these attacks,
we assume that a user has lost their key, and the attacker is trying to interfere
with the user’s ability to reclaim their funds via the KELP protocol.

3.1 New Attacks Against User Accounts

Long-Range Censorship Attack. An adversary which can censor arbitrary
transactions on the network for prolonged periods may be able to steal funds
from any KELP-enabled account. Such an adversary can issue Commit and Reveal
transactions against a target account, and then censor any Challenge transactions
from the legitimate account owner. Once t2 period elapses, the adversary can
issue a Claim transaction, thereby completing the attack and taking control of
the user’s funds.

Therefore, our trust assumption for KELP protocol is that the ability to
censor transactions for prolonged periods of time is not feasible in the underlying
blockchain. The exact duration of such a period is defined by the t2 parameter,
which can be made excessively large (e.g., months or years). We would argue that
if there exists a party which can censor arbitrary transactions on the network
for a period of several years, then the network is not secure in the first place.

Key Destruction Attack. An adversary which can destroy a user’s key (or
delay the user’s ability to use their key for a long period of time), can attack
the user’s account as follows: the adversary destroys the key and immediately
executes a Commit transaction against the account with a now destroyed key.
Then, once t1 period elapses, the attacker executes a Reveal transaction, and
eventually, a Claim transaction. Since the key is lost, the legitimate account
owner has no way of challenging the claim. A potential defence against this threat
is presented in Sect. 4, via the so called dead man’s key. Also, such adversaries
might be disincentivised by the fact that they do not have knowledge on whether
the key owner makes use of offline backups, possibly handwritten.

3.2 Attacks Against Fund Recovery

Short-Range Censorship Attack. An adversary which can slow down inclu-
sion of transactions into the blockchain, may attempt to do the following: upon
seeing a Reveal transaction, the adversary may delay its inclusion into the
blockchain, and instead execute their own Commit transaction against addressc
specified in the original Reveal transaction. If time t1 expires before the original
Reveal transaction can be included into the blockchain, the adversary will issue
their own Reveal transaction followed by a Claim transaction, thereby stealing
the funds.

Potential mitigating strategies against this attack are sufficiently long t1 peri-
ods, and periodic cover transaction “faking” KELP commits and reveals.

444 S. Blackshear et al.

Random Testing Attack. Malicious actors can proactively issue Commit
transactions against a large number of accounts in hopes that owners of some
of these accounts will eventually lose their keys and try to reclaim their funds
via the KELP protocol. Then, upon seeing a Reveal transaction from one such
account, the attacker can issue a Reveal transaction of their own against the same
account. Assuming that the attacker’s proactive Commit transaction predates a
Commit transaction of the legitimate account owner, the attacker will override
the original Reveal, and once t2 period elapses, will execute a Claim transaction,
thereby receiving control of the funds.

To further increase the effectiveness of this attack, an attacker might issue
proactive commits for accounts using heuristic techniques, e.g. focus on high-
value accounts which have been dormant for a while.

Potential mitigating strategies against this attack include:

– Relatively short t1 periods, which would force the attacker to periodically
renew their preemptive Commits thereby decreasing the probability that the
attacker’s Commit would predate the Commit of a legitimate user (or a commit
of another malicious actor).

– Relatively high fee1 and fee2 to make issuing preemptive Commits against
a large number of accounts costly, and to make the cost of an unsuccessful
claim unbearably high.

– Periodic cover transaction from legitimate account owners “faking” KELP
commits and reveals against their accounts, thereby increasing uncertainty of
whether a Reveal transaction can be indicative of a key loss.

Side-Channel Attack. Revealing a committer’s identity via spending account
and/or transactor’s IP disclosure will result in a reduced list of potential
addresses that the Commit refers to. For instance, the account address that
submitted a Commit transaction might leak information about the committed
address, enabling bruteforce front-running attacks to be more targeted. Such
information can be extracted by analyzing the transaction graph.

There exist tools for hiding sender’s identity, here is a short list:

– ZCash [9] provides sender/receiver identity hiding, but unfortunately it does
not support arbitrary smart contracts yet;

– Monero [30] does partial identity mixing by creating smaller anonymity sets,
but again no custom smart contracts are supported;

– CoinJoin [22] type of mixers could work as intermediate services, but still one
needs to trust the mixing third party entity;

– similarly to CoinJoin, third party services can offer such a functionality
via non-disclosure agreements and business deals. For instance, associations
might undertake this role in permissioned systems like Algorand [24], Corda
[18], Hyperledger [3] and Diem [2];

– indistinguishable regular and commit transactions, as discussed in the Exten-
sions section;

KELP - Reactive Key-Loss Protection 445

– using TOR and/or VPNs could help on obfuscating the committer’s IP
address;

– using pre-purchased anonymous tokens as shown in Sect. 4;
– using a brand new address, and ensuring this is totally independent from

previous transactions made by the same user.

4 Extensions

We already mentioned cover transactions and using a regular (transfer coins)
script to simulate a Challenge as potential features of KELP. Here we present
several useful extensions of the generic KELP protocol, some of them being
applicable to specific blockchains only.

Indistinguishable Transactions. As already mentioned, by de-anonymizing
a committer’s address, the set of address candidates who lost the key can be
reduced by transaction graph analysis [23]. One way to circumvent this issue is by
making regular and commit transactions indistinguishable. This will make every
transaction in the system looking like a potential commit. A simple approach is to
expect all of the transactions to carry a 32-byte metadata value, which works as
a commitment (i.e., HMAC) to a referred script. Transactions not requiring any
commitment can just attach a random nonce, so that any transaction becomes
a commit candidate and thus increasing the committers anonymity set. This is
not only applicable to KELP, but a generic obfuscation pattern for other commit
- reveal schemes where hiding committer’s identity is important.

Anonymous Commit Tokens. Another option to avoid revealing commit-
ter’s identity is by using pre-purchased anonymous tokens [7]. In such a model,
selected entities can issue tokens which work as anonymous cashier checks. Then,
instead of spending from a UTXO or account address, one just submits a pur-
chased token which carries some value and an embedded gas/fee payment logic.

Dead Man’s Key. As a defense against key destruction attacks, one could
specify a secondary key for the account - a dead man’s key. This key can have
weaker storage restrictions and can be distributed more freely as its only role
is to issue Challenge transactions. To execute a successful attack, the adversary
would need to destroy both the signing key and all copies of this secondary key.

Key Rotation vs. Claiming Funds. Interestingly, Diem blockchain offers a
feature where the address and spending key are decoupled. We can gain advan-
tage of this property and upon a successful Claim, the committer gets a permis-
sion to rotate the account’s key instead of transferring its funds to a different
address. Among the others, this allows for fully controlling the account’s state
and not just the funds, which is ideal in cases where this address continues to
be advertised in QR codes or shared between friends and businesses, and thus
might keep receiving assets after the Claim.

Committing to Sequence-ID. Both Ethereum and Diem use a sequence-
ID under an account state, which increments on each transaction as a defense

446 S. Blackshear et al.

against replay attacks. It also works as an indicator on how many transactions
an account submitted until the most current block. If KELP was implemented
for these blockchains, we should include the current sequence-ID of the account
who lost the key as part of the commitment hash. That would allow for an
easier implementation logic to check if any transaction occurred after Commit,
which would imply that the key was not lost. Thus, regular transactions would
invalidate any active Commit, which makes KELP compatible with already up
and running custodial wallets that haven’t implement the challenge logic yet.

Customizable KELP Parameters. In Sect. 2.3 we discussed if KELP should
be an optional feature or the default logic. Going a step further, we could allow
custom values for all of the four KELP parameters (t1, t2, fee1, fee2) at account
level. That offers extra flexibility to custodial or unhosted users to control how
KELP works for their account in particular. For instance, custodial wallets who
can monitor the chain at real-time, might set high fees for important accounts
and smaller time periods for faster recovery.

Acknowledgements. The authors would like to thank all anonymous reviewers of
FC21 WTSC workshop for comments and suggestions that greatly improved the quality
of this paper.

A KELP Implementation in Diem Blockchain

In this appendix, we present an implementation of the KELP protocol for the
Diem Framework v1.2. The code is mostly a straightforward, but has a few
Diem-specific features that we will explain here:

Automatic Challenges Using Sequence Numbers. Like many other blockchains,
Diem accounts have sequence numbers that are incremented each time a trans-
action is sent from the account. Our implementation timestamps each reveal on
addressc with the sequence number of addressc. In the code for claim, we check
that no transactions have been sent from addressc since the reveal. This ensures
that any transaction sent from addressc is implicitly a challenge.

Reclaiming Entire Accounts with KeyRotationCapability. Diem accounts support
key rotation. Each account a has a unique KeyRotationCapability {a: address }

resource whose holder has the permission to rotate the authentication key for a.
An account that opts in to KELP recovery must give its KeyRotationCapability

to the KELP resource. KELP then uses this resource to rotate the key for a in
the logic for claim. This allows the claiming party to completely regain control
of the account, not just its funds.

Using the signerType To Avoid Some Uses of addressr. The Move language
has a type called signer3 that represents an authenticated user with a specific
address. Our implementation leverages this type to omit some uses of addressr

3 https://developers.diem.com/docs/move/move-signer.

https://developers.diem.com/docs/move/move-signer

KELP - Reactive Key-Loss Protection 447

from the protocol. For example: we don’t need to include addressr in the Commit
message because we use signer to ensure that a commit and reveal transaction
originate from the same address.
module 0x1::KELP {

use 0x1::BCS;
use 0x1::Errors;
use 0x1::Diem::{Self, Diem};
use 0x1::DiemAccount::{Self, KeyRotationCapability};
use 0x1::DiemTimestamp;
use 0x1::Hash;
use 0x1::Signer;
use 0x1::Vector;
use 0x1::XUS::XUS;

/// Published under an account that supports KELP recovery
struct KELP has key {

/// Key rotation capability for the account that has enabled KELP recovery
rotate_cap: KeyRotationCapability,
/// Size of the commit fee
fee1_amount: u64,
/// Size of the reveal fee
fee2_amount: u64,
/// pooled fees from commit and reveal transactions
fees: Diem<XUS>,
/// Length of challenge period between commit and reveal
t1: u64,
/// Length of challenge period between reveal and claim
t2: u64,

}

/// Published under an account that has performed a Commit operation to initiate recovery
struct Commit has key, store {

/// sha3(KELP address | nonce)
commit: vector<u8>,
/// Locked fee to be deposited upon reveal
fee1: Diem<XUS>,
/// Time when the commit occurred
commit_time: u64,

}

/// Published under an account that has performed a successful Reveal operation
struct Reveal has key, store {

/// Time when the reveal occurred
reveal_time: u64,
/// Sequence number of the KELP account at the time of the reveal
reveal_seq: u64,

}

const EBAD_REVEAL: u64 = 0;
const EBAD_CHALLENGE: u64 = 1;
const EBAD_CLAIM: u64 = 2;
const EREVEAL_TOO_SOON: u64 = 3;
const ECLAIM_TOO_SOON: u64 = 4;

/// Enable KELP recovery for ‘account‘
public(script) fun initialize(

account_r: &signer, fee1_amount: u64, fee2_amount: u64, t1: u64, t2: u64
) {

let rotate_cap = DiemAccount::extract_key_rotation_capability(account_r);
let fees = Diem::zero<XUS>();
move_to(

account_r,
KELP { rotate_cap, fee1_amount, fee2_amount, fees, t1, t2 }

)
}

/// Commit to a future claim on a KELP account
public(script) fun commit(account_r: &signer, commit: vector<u8>, fee1: Diem<XUS>) {

let commit_time = DiemTimestamp::now_seconds();
move_to(account_r, Commit { commit, fee1, commit_time })

}

448 S. Blackshear et al.

/// Reveal a previous claim on a KELP account
public(script) fun reveal(

account_r: &signer, address_c: address, nonce: vector<u8>, fee2: Diem<XUS>
) acquires Commit, KELP {

let address_r = Signer::address_of(account_r);
let Commit { commit, fee1, commit_time } = move_from<Commit>(address_r);
let message = BCS::to_bytes(&address_c);
Vector::append<u8>(&mut message, nonce);
assert(Hash::sha3_256(message) == commit, Errors::invalid_argument(EBAD_REVEAL));

let kelp = borrow_global_mut<KELP>(address_c);
let reveal_time = DiemTimestamp::now_seconds();
assert(reveal_time - commit_time > kelp.t1, Errors::limit_exceeded(EREVEAL_TOO_SOON));

let reveal_seq = DiemAccount::sequence_number(address_c);
move_to(account_r, Reveal { reveal_time, reveal_seq });

// sweep the commit and reveal fees into the KELP resource
Diem::deposit(&mut kelp.fees, fee1);
Diem::deposit(&mut kelp.fees, fee2)

}

/// Finalize a claim on a KELP account
public(script) fun claim(

account_r: &signer, new_key: vector<u8>, address_c: address
): Diem<XUS> acquires Reveal, KELP {

let address_r = Signer::address_of(account_r);
let Reveal { reveal_time, reveal_seq } = move_from<Reveal>(address_r);
let kelp = borrow_global_mut<KELP>(address_c);
let claim_time = DiemTimestamp::now_seconds();
// ensure the reveal was not invalidated by a subsequent "challenge" (i.e., a

transaction sent
// from address_c)
assert(reveal_seq < DiemAccount::sequence_number(address_c),

Errors::limit_exceeded(EBAD_CLAIM));
// ensure the reveal happened afer the conclusion of the challenge period
assert(claim_time - reveal_time > kelp.t2, Errors::limit_exceeded(ECLAIM_TOO_SOON));

// successful claim. allower claimer to reclaim account by rotating key
DiemAccount::rotate_authentication_key(&kelp.rotate_cap, new_key);

// return fees to the claimer
Diem::withdraw_all(&mut kelp.fees)

}

/// Collect all commit/reveal fees in the KELP resource under ‘account‘. This can be called
by

/// the owner of the KELP resource at any time. Note: a transaction that calls ‘collect_fees‘
/// will also (implicitly) issue a challenge by incrementing ‘account‘’s sequence number.
public(script) fun collect_fees(account_c: &signer): Diem<XUS> acquires KELP {

let address_c = Signer::address_of(account_c);
let kelp = borrow_global_mut<KELP>(address_c);
// return fees to the challenger
Diem::withdraw_all(&mut kelp.fees)

}
}

References

1. Diem documentation - accounts (2020). https://developers.diem.com/docs/core/
accounts/#creating-accounts

2. Amsden, Z., et al.: The Libra blockchain. Calibra corp, p. 29 (2019)
3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-

missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, 23–26 April 2018, pp. 30:1–30:15 (2018)

https://developers.diem.com/docs/core/accounts/#creating-accounts
https://developers.diem.com/docs/core/accounts/#creating-accounts

KELP - Reactive Key-Loss Protection 449

4. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Brick: asynchronous state
channels. CoRR (2019). http://arxiv.org/abs/1905.11360

5. Aydar, M., Cetin, S.C., Ayvaz, S., Aygun, B.: Private key encryption and recovery
in blockchain. arXiv preprint arXiv:1907.04156 (2019)

6. Baldimtsi, F., Camenisch, J., Hanzlik, L., Krenn, S., Lehmann, A., Neven, G.:
Recovering lost device-bound credentials. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 307–327. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 15

7. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 1087–1098 (2013)

8. Battagliola, M., Longo, R., Meneghetti, A., Sala, M.: A provably-unforgeable
threshold EdDSA with an offline recovery party (2020)

9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press, May 2014. https://doi.org/10.1109/SP.2014.36

10. Brenner, M.: How I snatched 153,037 ETH after a bad tinder date (2017). https://
eprint.iacr.org/2019/1128

11. Buterin, V., Van de Sande, A.: EIP-55: Mixed-case checksum address encoding
(2016). https://eips.ethereum.org/EIPS/eip-55

12. Di Nicola, V., Longo, R., Mazzone, F., Russo, G.: Resilient custody of crypto-
assets, and threshold multisignatures. Mathematics 8(10), 1773 (2020)

13. Duncan1949: Lost passphrase for extra account on trezor (2015). https://www.
reddit.com/r/TREZOR/comments/33i03g/lost passphrase for extra account on
trezor

14. Falkon, S.: The story of the DAO - its history and consequences (2017).
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-
71e6a8a551ee

15. Grube, T., Thummerer, M., Daubert, J., Mühlhäuser, M.: Cover traffic: a trade of
anonymity and efficiency. In: Livraga, G., Mitchell, C. (eds.) STM 2017. LNCS,
vol. 10547, pp. 213–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68063-7 15

16. Guilherme Schmidt, R., Mota, M., Buterin, V.: naxe: Secret multisig
recovery (2019). https://gitlab.com/status-im/docs/EIPs/blob/secret-multisig-
recovery/EIPS/eip-2429.md

17. Haig, S.: Eth community discuss DAO for reversing funds lost to wrong
addresses (2020). https://cointelegraph.com/news/eth-community-discuss-dao-
for-reversing-funds-lost-to-wrong-addresses

18. Hearn, M.: Corda: A distributed ledger. https://www.r3.com/wp-content/
uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf

19. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 276–
291 (2016). https://doi.org/10.1109/EuroSP.2016.30

20. Khan, A.G., Zahid, A.H., Hussain, M., Riaz, U.: Security of cryptocurrency using
hardware wallet and QR code. In: 2019 International Conference on Innovative
Computing (ICIC), pp. 1–10. IEEE (2019)

21. Khovratovich, D., Law, J.: BIP32-Ed25519: hierarchical deterministic keys over a
non-linear keyspace. In: 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pp. 27–31. IEEE (2017)

http://arxiv.org/abs/1905.11360
http://arxiv.org/abs/1907.04156
https://doi.org/10.1007/978-3-319-28166-7_15
https://doi.org/10.1109/SP.2014.36
https://eprint.iacr.org/2019/1128
https://eprint.iacr.org/2019/1128
https://eips.ethereum.org/EIPS/eip-55
https://www.reddit.com/r/TREZOR/comments/33i03g/lost_passphrase_for_extra_account_on_trezor
https://www.reddit.com/r/TREZOR/comments/33i03g/lost_passphrase_for_extra_account_on_trezor
https://www.reddit.com/r/TREZOR/comments/33i03g/lost_passphrase_for_extra_account_on_trezor
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://doi.org/10.1007/978-3-319-68063-7_15
https://doi.org/10.1007/978-3-319-68063-7_15
https://gitlab.com/status-im/docs/EIPs/blob/secret-multisig-recovery/EIPS/eip-2429.md
https://gitlab.com/status-im/docs/EIPs/blob/secret-multisig-recovery/EIPS/eip-2429.md
https://cointelegraph.com/news/eth-community-discuss-dao-for-reversing-funds-lost-to-wrong-addresses
https://cointelegraph.com/news/eth-community-discuss-dao-for-reversing-funds-lost-to-wrong-addresses
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://doi.org/10.1109/EuroSP.2016.30

450 S. Blackshear et al.

22. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world. bitcointalk.org (2013)
23. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men

with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140 (2013)

24. Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR (2016). http://
arxiv.org/abs/1607.01341

25. Möser, M., Eyal, I., Gün Sirer, E.: Bitcoin covenants. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 126–141. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 9

26. Pfeffer, J.: Over 12,000 ether are lost forever due to typos (2018). https://media.
consensys.net/over-12-000-ether-are-lost-forever-due-to-typos-f6ccc35432f8

27. Pollock, D.: Infamous discarded hard drive holding 7,500 bitcoins would be worth
$80 million today (2017). https://cointelegraph.com/news/infamous-discarded-
hard-drive-holding-7500-bitcoins-would-be-worth-80-million-today

28. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire! Penalizing equivocation
by loss of bitcoins. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2015, pp. 219–230. Association for Com-
puting Machinery, New York (2015). https://doi.org/10.1145/2810103.2813686

29. TierNolan: Bitcoin wiki: Atomic cross-chain trading (2013). https://en.bitcoin.it/
wiki/Atomic swap

30. Van Saberhagen, N.: Cryptonote v 2.0 (2013). https://cryptonote.org/whitepaper.
pdf

31. Zamyatin, A., et al.: SoK: communication across distributed ledgers. Cryptology
ePrint Archive, Report 2019/1128 (2019). https://eprint.iacr.org/2019/1128

32. Zhang, F., Daian, P., Kaptchuk, G., Bentov, I., Miers, I., Juels, A.: Paralysis proofs:
secure access-structure updates for cryptocurrencies and more. Cryptology ePrint
Archive, Report 2018/096 (2018). https://eprint.iacr.org/2018/096

http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-662-53357-4_9
https://media.consensys.net/over-12-000-ether-are-lost-forever-due-to-typos-f6ccc35432f8
https://media.consensys.net/over-12-000-ether-are-lost-forever-due-to-typos-f6ccc35432f8
https://cointelegraph.com/news/infamous-discarded-hard-drive-holding-7500-bitcoins-would-be-worth-80-million-today
https://cointelegraph.com/news/infamous-discarded-hard-drive-holding-7500-bitcoins-would-be-worth-80-million-today
https://doi.org/10.1145/2810103.2813686
https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/wiki/Atomic_swap
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2019/1128
https://eprint.iacr.org/2018/096

Merkle Trees Optimized for Stateless
Clients in Bitcoin

Bolton Bailey(B) and Suryanarayana Sankagiri

University of Illinois Urbana-Champaign, Champaign, IL, USA
boltonb2@illinois.edu

Abstract. The ever-growing size of the Bitcoin UTXO state is a factor
preventing nodes with limited storage capacity from validating transac-
tions. Cryptographic accumulators, such as Merkle trees, offer a viable
solution to the problem. Full nodes create a Merkle tree from the UTXO
set, while stateless nodes merely store the root of the Merkle tree. When
provided with a proof, stateless nodes can verify that a transaction’s
inputs belong to the UTXO set. In this work, we present a system-
atic study of Merkle tree based accumulators, with a focus on factors
that reduce the proof size. Based on the observation that UTXOs typi-
cally have a short lifetime, we propose that recent UTXOs be co-located
in the tree. When proofs for different transactions are batched, such a
design reduces the per-transaction proof size. We provide details of our
implementation of this idea, describing certain optimizations that further
reduce the proof size in practice. On Bitcoin data before August 2019,
we show that our design achieves a 4.6x reduction in proof size vis-a-vis
UTREEXO [10], which is a different Merkle-tree based system designed
to support stateless nodes.

1 Introduction

Bitcoin and other cryptocurrencies are peer-to-peer systems, designed to main-
tain an ordered ledger of transactions. Peers participate in a blockchain protocol
to come to a consensus on the state of the ledger. Roughly speaking, the state
specifies the amount of currency each public key has in the system. A peer that
stores the state can validate a transaction, i.e., check whether it double spends a
coin, or whether it leads to some account balance going negative. In Bitcoin, the
state of the system consists of the set of unspent transaction outputs (UTXOs) at
any given time. Every transaction spends some UTXOs (except coinbase trans-
actions), and generates new ones in turn. The state is updated after each block
by deleting the spent UTXOs and adding the newly generated ones.

The size of the state in any cryptocurrency system can be quite large, making
it difficult for peers to store the entire state. For example, in Bitcoin, the state
currently contains about 70 million UTXOs, which requires about four gigabytes

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 451–466, 2021.
https://doi.org/10.1007/978-3-662-63958-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_35&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_35

452 B. Bailey and S. Sankagiri

(GB) to store, and is expected to keep growing with time. This is a major
scalability issue for cryptocurrencies. A stateless cryptocurrency system, built
around a cryptographic accumulator scheme, is a promising solution to this issue.
It works on the principle that storing the entire state is not a necessity for a
peer to verify transactions; it can do so if it is provided with a proof that the
transaction is consistent with the current state. In such a system, a stateless
client merely stores an accumulator, which is a compact representation of the
state. When provided with a witness of a particular UTXO, it can prove for
itself that the UTXO is part of the state. A computationally bounded adversary
cannot generate a witness for a UTXO that is not part of the state.

A cryptographic accumulator scheme can be thought of as a primitive that
is a generalization of a hash function. Like a hash, it provides a compact repre-
sentation of a set of values, which is also binding. In addition, it also provides
the means of generating short witnesses for each element in the set (or a subset
of elements); a hash function does not have this feature. The witnesses and the
accumulator together act as a proof that the element is part of the set. For a for-
mal definition of cryptographic accumulators and a survey of different designs,
see [8]. An accumulator scheme is dynamic if it supports additions and deletions
from the accumulated set. Specifically, given only the witness for a particular ele-
ment and the accumulator, a party can compute the accumulator of the new set
with the element deleted. Moreover, given the accumulator, a party can compute
the accumulator of the new set with any element added. To enable a stateless
cryptocurrency, we need dynamic accumulators.

In this work, we study the design of Merkle tree based accumulator schemes
(henceforth, simply referred to as Merkle trees) for stateless clients in Bitcoin.
Here, the accumulated set is the set of UTXOs, i.e., the state of the system.
A Merkle tree is (typically) a binary tree, with each tree node containing hash
pointers to its children. The leaf nodes contain hash pointers to the UTXOs. The
hash of the root node of the tree is the accumulator, which stateless peers store.
Any change in the UTXO set is reflected in the accumulator. The witness (or
proof) of a UTXO consists of the branch of tree nodes from the corresponding leaf
to the root node. A stateless peer verifies the proof of a UTXO by checking that
the leaf node has a hash pointer to the UTXO, the root node’s hash equals the
accumulator, and the internal hashes in the proof are consistent. More generally,
the proof for a subset of UTXOs is a sub-tree of the entire Merkle tree. We refer
the reader to Chapter 1 of [16] for a detailed description of Merkle trees.

The use of Merkle trees as accumulators is well known, and the idea of using
them to enable stateless cryptocurrencies has also been around since at least
2010 [15]. Recently, the UTREEXO project [10] applied this idea to real Bitcoin
data. Their proposed system consists of bridge servers and stateless clients. The
bridge servers store the whole Merkle tree, while stateless clients store a small
number of hashes of the tree nodes. For every block that arrives in the system,

Merkle Trees Optimized for Stateless Clients in Bitcoin 453

a bridge server provides stateless clients the required sub-tree to prove that
the UTXOs consumed by transactions in the block are part of the state. An
important aspect of UTREEXO’s design is that the size of the witnesses is small
enough for it to be viable in practice. This is remarkable given that theoretically
speaking, proof sizes for Merkle trees can be quite large; in fact, this is cited
as a major drawback of such schemes [3]. The average proof size required per
block is an important metric to minimize, as it is a communication and storage
overhead for a stateless cryptocurrency system.

1.1 Our Contributions

In this work, we explore whether it is possible to further reduce the proof size
required in a stateless Bitcoin system, by altering the construction of the Merkle
tree. We identify two factors that influence the batched proof size. The first
factor is the height of the Merkle tree. The height of a balanced (binary) tree
with n elements is Θ(log n). The total proof size for k elements is thus O(k log n).
The design of UTREEXO keeps the tree balanced [10]. The second factor is the
location of the UTXOs for which a batch proof is sought. When considering
multiple elements, their individual witnesses (proofs) may have some overlapping
tree nodes. These nodes need not be repeated in the proof data provided for a
single block. The batched proof size is minimized if the leaves whose proof we
require are co-located in the tree.

While it is possible to design the Merkle tree such that it is balanced with
certainty, one cannot say the same when it comes to co-locating UTXOs that
will be spent together. Indeed, when a new UTXO is added to the tree, it may
be spent at any time in the future. Thus, the worst-case proof size for proving a
batch of k among n UTXOs cannot be better than Θ(k log n). The main insight
of our work is that if we analyze average-case proof sizes instead of worst-case
proof sizes, we can build a system that does much better in practice.

Empirical analysis of Bitcoin data reveals that most UTXOs have very short
lifetimes (see Fig. 2 in [10]). Stated differently, a large fraction of the UTXOs
being spent in a block are likely to be recently added. By arranging UTXOs
in the Merkle tree in the same order in which they arrive in the system, it is
likely that a large fraction of the UTXOs being spent are co-located. This simple
design leads to a significant reduction in the batch proof size, on average.

To elaborate, our contributions are twofold:

– We develop a probabilistic model where the lifetimes of UTXOs have a power-
law distribution with index α, consistent with their empirically observed
statistics. Under this model, we prove that the batch proof size required per
block is O(d + kα), where d is the depth of the tree, and k is the number of
UTXOs added per block. This is proven in Sect. 2.

454 B. Bailey and S. Sankagiri

Fig. 1. The size of the proof data required to validate each block in Bitcoin, shown for
our implementation and UTREEXO. The plot is smoothed by taking a rolling average
over 1000 blocks. The plot is shown for blocks up to height 591, 000, which corresponds
to August 2019. Totaled over this duration, the UTREEXO proof size is 269.3 GB,
whereas ours is 58.2 GB, about a 4.6 factor smaller than UTREEXO. Note that this
data does not include hashes of TXOs included in blocks.

– We build a system implementation of our idea in Go, based on the open-
source UTREEXO project [10]. In particular, we implement a Merkle Trie,
wherein UTXOs are kept in the order in which they arrive. We demonstrate
that our design significantly outperforms UTREEXO in terms of the average
proof-size required per block (see Fig. 1). The implementation details of our
system are given in Sect. 3.

We now take a closer look at the extent to which co-location helps in reducing
the batch proof size. Consider the examples given in Fig. 2. Both images highlight
the branches of the Merkle tree required to prove the existence of three UTXOs.
In the first, the relevant UTXOs are spaced apart, while in the second, they are
co-located. One can observe that the total number of nodes to be included in
the proof is larger when the UTXOs are spaced farther apart. Indeed, when all
k UTXOs being proven are adjacent and the tree is balanced with depth d, the
proof size reduces to O(d + k). This is because the smallest sub-tree containing
the k pertinent leaves has size O(k), and the branch leading down to the sub-tree

Merkle Trees Optimized for Stateless Clients in Bitcoin 455

is of length at most d. The remarkable and somewhat surprising result of Sect. 2
is that we get nearly the same order complexity even when the UTXOs being
proven are randomly chosen (with appropriate assumptions on the distribution).

Remark 1. The term ‘node’ is reserved for a vertex in the Merkle tree, which
contains hash pointers to its children. For individuals participating in the system,
we use the terms ‘peer’, ‘server’, ‘client’.

1.2 Related Work

The concept of a stateless cryptocurrency seems to originate in the bit-
cointalk.org forum1. Miller was the first to suggest red-black Merkle trees as
an accumulator for bitcoin state in2.

The main point of comparison for this paper is UTREEXO [10], the project
off of which our code is based. The UTREEXO paper considers a few techniques
that we did not, including client-side caching of Merkle tree data to reduce proof
size and including the block hash in the leaves to harden against collision attacks.
An interesting direction for future work might be to see if these concepts can be
ported to our system.

Non-Hash Based Accumulators. Other forms of cryptographic accumulators
exist that are not based on Merkle trees. These include hidden order group
accumulators, which depend on the RSA assumption or groups of unknown order.
This line of work originated with [1]. Progress has been made on these types of
accumulators on several fronts: [4] shows how to create dynamic accumulators
under this scheme. [13] allowed non-membership proofs. [3] showed how to batch
groups of operations on these accumulators to make the proofs smaller. This
work, as well as [5], expanded these ideas to vector commitments, which allow
for commitments to key-value stores. A downside of many of these constructions
is that to instantiate them over an RSA group requires a trusted setup. To avoid
this, [14] and [9] show how constructions of class groups can be used that do
not require this setup - although operations in class groups use more expensive
number-theoretic operations. [6] avoid this in a different way - they show how a
multi-party computation to generate an RSA modulus which remains secure if
any of the participants are honest.

1 https://bitcointalk.org/index.php?topic=505.0.
2 https://bitcointalk.org/index.php?topic=101734.0.

https://bitcointalk.org/index.php?topic=505.0
https://bitcointalk.org/index.php?topic=101734.0

456 B. Bailey and S. Sankagiri

Fig. 2. Two examples, one where we require the proof of three elements that are spread
out over the Merkle tree, one where the three elements are close together. The figure
demonstrates the value of having proved elements close together in the tree: The total
proof size is less for the bottom tree.

Other accumulators are based on bilinear curve pairings [11,17]. These types
of accumulators also have very small proof sizes, but they also rely on trusted
setups.

Ultimately, these accumulators have benefits over Merkle trees in that they
have constant proof sizes, but they have some drawbacks: They require big-
integer arithmetic operations that may take time, they are based on more recent
cryptographic assumptions, and they are not post-quantum secure.

Merkle Trees Optimized for Stateless Clients in Bitcoin 457

2 Average-Case Hash Accumulator Complexity

In this section, we will describe constructions for accumulators. We will then
introduce an idealized probabilistic model for arrival of and sending of transac-
tions. We will then prove some theorems about the average case performance of
various accumulators under this model.

2.1 Accumulators

As stated in the introduction, our approach to constructing practically efficient
Merkle tree accumulators is to, as much as possible, cause UTXOs that are
spent in the same block to be co-located in the tree. One observation made
by UTREEXO was that UTXO durations in the blockchain tend to follow a
power-law pattern, which results in the most recently added UTXOs being the
most likely to be spent in any block. With this is mind, it is prudent to consider
designs that will keep all UTXOs in the tree in the order in which they were
inserted, so that the most recently added UTXOs will all be co-located in the
right side of the tree. We discuss a few designs for Merkle trees and the extent
to which they accomplish this.

UTREEXO. The UTREEXO accumulator maintains a list of at most log2 n
perfect binary Merkle trees containing the UTXOs. When a batch of elements
is removed, each binary tree decomposes into a set of smaller trees, which are
then recombined until there is at most one tree of each depth.

UTREEXO has the benefit that there is no overhead in the form of tree
nodes containing further data beyond the hashes of the children. However, it
does not keep the hashes of UTXOs in the order in which they are inserted,
since the recombination algorithm will necessarily sometimes switch the order
of subtrees. It is still the case that the new UTXOs in a block will initially be
co-located immediately after being added by virtue of being added in the same
tree - but as time goes on, the recombination process may take them apart. How
fast this happens depends on the details of the recombination algorithm, which
can potentially be implemented in multiple ways, and which is described in the
appendix of [10].

Red-Black Merkle Trees. By red-black Merkle tree, we mean a red-black
tree [12] in which all references in internal nodes to other nodes are replaced by
cryptographic hashes of the contents of those other nodes. The elements of the
accumulated set are stored in the leaves of the tree. To use a red-black Merkle
tree as an accumulator for the Bitcoin UTXO set, a counter is maintained that
tracks the total number of TXOs ever added to the state, and each new TXO is
keyed with the next number. To perform a batch addition of k UTXOs to the
tree, one first creates a red-black tree out of the k new leaves, then joins this
with the existing tree. Note that the time to add a new collection of k elements

458 B. Bailey and S. Sankagiri

to the right of an n leaf red-black tree is O(log(n)) (see [2] Lemma 2) and the
proof size is therefore also O(log(n)).

As we have mentioned, Miller introduced the idea of using a red-black Merkle
tree as an accumulator for Bitcoin UTXOs in a forum post. The benefit of red-
black Merkle trees is that they are self-balancing and therefore have depth that
is logarithmic in their size. They therefore achieve the worst case bound on
batch proof size of O(k log n), where n is the state size. However, they have
some drawbacks. One is that the set of nodes required to prove a collection of
members of the accumulator is sometimes less than the set of nodes required
to delete those members - the deletion process may require “rotations” which
necessitate additional data. Another drawback is that, while the depth of the
red-black tree is O(log n), the number of nodes in a tree of depth d can range
from 2d/2 to 2d, which makes analysis of the efficiency of the accumulator hard.
Merkleizations of other self-balancing trees such as AVL trees could also be
considered, but they have many of the same properties we will just focus on
red-black trees here. An implementation of red-black Merkle trees exists3.

Insertion-Order Indexed Merkle Tries. A Merkle trie, or Merkle Patricia
tree, is another cryptographic accumulator. Analogous to red-black Merkle trees,
a Merkle trie is a trie [7] in which references in internal nodes to other nodes are
replaced by hashes.

Merkle tries are used in the Ethereum protocol [18], which, unlike Bitcoin,
uses an account model rather than a UTXO model. Nevertheless, we can adapt
the data structure for use in tracking UTXOs in the same way as we do for the
red-black Merkle tree: We maintain a counter of the number of UTXOs that
have been added to the trie and assign numbers to each new UTXO using the
counter.

A drawback of this scheme is that we do not have the same guarantee that
the depth of the trie will be O(log(n)) where n is the number of elements of
the accumulated set as we do for the balanced trees. Instead, we have a max
depth of O(log(N)) where N is the total number of elements that have ever
passed through the accumulator - for Bitcoin, the difference in these numbers is
only about a factor of 10, so there is not a big difference in the logarithms of
these values. We will show, under some assumptions, that this difference does
not affect the asymptotics of the proof size in the average case. Nevertheless, the
trie algorithm is less complex, and the trie seems to be more efficient in practice
(see Sect. 3 for details). Tries also have the useful property that the collection of
proofs of a batch can be used by a stateless client to delete that batch.

2.2 A Model for Transaction Durations

The theoretical work for this paper will frame a blockchain in terms of a random
process of transaction outputs which enter and leave the blockchain at specific

3 https://github.com/amiller/redblackmerkle.

https://github.com/amiller/redblackmerkle

Merkle Trees Optimized for Stateless Clients in Bitcoin 459

block numbers. Specifically, let ki,t be the number of t-duration-TXOs introduced
in block i, (that is, the number of TXOs that were created in block i and spent
in block i + t. Our theorems will depend on some idealized assumptions about
the distribution of ki,t:

Assumption 1. The total number of TXOs entering the blockchain in a given
block k =

∑∞
t=1 ki,t is constant.

This assumption reflects that fact that Bitcoin and other cryptocurrencies,
by virtue of having a maximum block size, have a fixed cap on the number of
TXOs that can be introduced in a block.

Assumption 2. The duration for an individual TXO within a block is indepen-
dent of other TXOs and is zeta-distributed. That is, the probability that a TXO
will last t blocks is

t−α/ζ(α)

for some α > 1 fixed across all TXOs and blocks.

This assumption reflects the observation that there appears to be a power-law
effect in the number of t-duration-TXOs [10].

Note that under these assumptions, taking 1 < α < 2, the state size of the
blockchain will grow without bound (but sublinearly).

Theorem 1. Under Assumptions 1 and 2, the expected size of the state at block
height B is ≈ k

ζ(α)(2−α) · B2−α

Proof. The expected size of the state equals the sum of the expected numbers
of UTXOs introduced in each block which remain at block B. Equivalently, it is
the sum from 1 to B of the number of i duration UTXOs introduced in the last
i blocks

B∑

i=1

i · k · i−α/ζ(α) = k ·
B∑

i=1

i1−α/ζ(α)

And from Riemann sum approximations, we have

(B + 1)2−α − 1
2 − α

=
∫ B+1

1

i1−αdi ≤
B∑

i=1

i1−α ≤ 1 +
∫ B

1

i1−αdi = 1 +
B2−α − 1

2 − α

��

2.3 Average-Case Asymptotics for Insertion-Order Indexed Merkle
Tries

We will first introduce a lemma about the probability of a TXO being spent
based on its rank among all TXOs ever added to the blockchain.

Lemma 1. Consider the blockchain under Assumptions 1 and 2 at some block b.
Let xi be the ith most recently added TXO (including those added then deleted).
Then the probability xi is spent in the current block is ≤ kα

iαζ(α) .

460 B. Bailey and S. Sankagiri

Proof. By Assumption 1, k TXOs are added per block, so xi was necessarily
introduced �i/k� blocks before the current block. By Assumption 2, the proba-
bility of such a TXO being spent in the current block is

Pr[x is spent] =
�i/k�−α

ζ(α)
≤ (i/k)−α

ζ(α)

��
We will now state our main result, which shows that in the limit as the state

becomes large, the expected proof size is essentially the same that of a proof of
a single element:

Theorem 2. Let T be the insertion-order indexed Merkle trie (of depth d) of
UTXOs in the blockchain just before block B. Then under Assumptions 1 and 2,
the expected size of the subtree S consisting of the branches to all TXOs that are
spent in block B is ≤ d + O(kα), where the O hides factors that depend on α.

Proof. As a simplification, consider a trie T ′ consisting of all UTXOs ever added
to the accumulator, without removal. Since every node in S appears in T ′ at
the same location, it suffices to prove the bound on the size of S′, the union of
branches to spent TXOs in this complete trie.

For 1 ≤ i ≤ d define ni to be the rightmost node in T ′ such that the subtree
rooted at that node has depth i. Note that there exists such a subtree for every
i: By induction on the depth of the tree, nd is the root of the tree, and either the
left or right subtree is depth d − 1. The parent of every ni other than the root
is an ni, since if the subtree rooted at this node has depth j, there cannot be a
subtree to the right of it with depth j, or else there would be a subtree of that
with depth i, contradicting the fact that ni is the root of the rightmost depth i
subtree.

We can therefore bound the size of S′ by splitting T ′ into disjoint subsets:
Consider the partition of T consisting of the set {ni, 1 ≤ i ≤ d} and then
T1, T2, . . . , Td, where Ti is the set of nodes that are in the subtree rooted at ni,
but not in any subtree rooted at nj for j < i.

E[|S|] ≤ E[|S′|]

≤ d +
d∑

i=1

E[|S′ ∩ Ti|].

Since the branches in Ti in the subtree are of height at most the depth of the
subtree, we get

≤ d +
d∑

i=1

i · E[# spent leaves in Ti|].

Merkle Trees Optimized for Stateless Clients in Bitcoin 461

We can loosen this to put it in terms of the maximum number of leaves in Ti

and maximum probability of leaf inclusion

≤ d +
d∑

i=1

i · 2i · max
x∈Ti

Pr[x is spent in current block]

The leaves of Ti must be entirely to the right of each element of the subtree
at ni−1. The left subtree of ni−1 has at least 2i−2 leaves, since for the node to
exist in the complete trie, its left child must be a complete perfect binary tree
of depth 2i−2. Therefore, there are at least 1

4 · 2i leaves to the right of each leaf
in Ti. We can therefore bound the probability of one of these leaves being spent
using Lemma 1.

E[|S|] ≤ d +
d∑

i=1

i · 2i · max
x∈Ti

Pr[x is spent in current block]

≤ d +
d∑

i=1

i · 2i · kα

(14 · 2i)αζ(α)

= d +
4αkα

ζ(α)

d∑

i=1

i · (21−α)i

≤ d +
4αkα

ζ(α)

∞∑

i=1

i · (21−α)i

= d +
4αkα

ζ(α)
· 2α+1

(2α − 2)2

2.4 Mixed Average-Case Adversarial Setting

It is worth asking what happens if the Merkle Trie accumulator is attacked by
an adversary who wishes to increase the size of the proofs by spamming the
blockchain. To consider this case, we consider a modification of our previous
assumptions:

Assumption 3. In any block, the number of TXOs introduced is k = ka + kr,
where kr are chosen according to a zeta distribution, and the other ka are chosen
adversarially.

We see that even if some of the transactions are adversarial, this only hurts
the performance of the algorithm by an amount proportional to the amount of
adversarial power.

462 B. Bailey and S. Sankagiri

Theorem 3. Let T be the insertion-order indexed Merkle trie (of depth d) of
UTXOs in the blockchain just before block B. Then under Assumption 3, the
expected size of the subtree S consisting of the branches to all TXOs that are
spent in block B is ≤ d+O(kα)+ dka, where the O hides factors that depend on
α.

Proof. Following the proof of Theorem 2, we see that for the expected size of
the subset of S associated with the zeta-distributed TXOs, the same bound of
d + 4αkα

ζ(α) · 2α+1

(2α−2)2 applies. The only remaining nodes to account for are in the
branches associated with adversarial TXOs, which can number at most dka, the
height of the tree times the number of such branches.

3 Practical Implementation

In this section, we describe the details of our Merkle trie accumulator, to be used
in a stateless Bitcoin system. We first specify the exact construction of the trie,
and what parts are stored by bridge servers and stateless clients respectively.
We then specify the operations performed by servers and clients upon receiving
a block. In particular, we specify how the batch proof for a block is constructed.

Construction of a Merkle Trie. In our design, all UTXOs are assigned a
unique index, which is a 64-bit unsigned integer. The numbers are assigned to
the UTXOs in the order in which they appear in the blockchain starting from
0. Given that the UTXOs are indexed, it is possible to assemble them into a
Merkle trie. There are a variety of ways to create the node data structure4 - our
approach is as follows: The Merkle trie is a collection of tree nodes, each of which
contains a left hash pointer, a right hash pointer, and a prefix, which represents
the range of indices of all UTXOs below the node. A hash pointer is simply the
SHA-256 hash of a piece of data, which serves as a means of recovering the data
provided it is stored in a hash map. Tree nodes are either internal nodes or leaf
nodes. For internal nodes, the hash pointers refer to other tree nodes, while for
leaf nodes, both the left and right hash pointer refer to the same UTXO. Thus,
a leaf node can be distinguished from an internal node by checking if its hash
pointers are equal or not. There is a single root node, which does not have a
parent. Thus, the collection of tree nodes forms a single binary tree. The total
size of a tree node is 72 bytes, with 32 bytes for each of the hash pointers, and
8 bytes for the prefix.

We now elaborate on the role of the prefix, and how it is constructed. The
prefix is represented as a 64-bit unsigned integer. For a leaf node, the prefix
represents the index of the corresponding UTXO. For an internal node, the
prefix represents a range of the form [k · 2i, (k + 1) · 2i), for any non-negative
integer k and positive integer i. The value of the prefix itself is (2k + 1) · 2i.
For example, the prefix 8 denotes the range [0, 8), while the prefix 10 denotes

4 https://ethresear.ch/t/binary-trie-format/7621/6.

https://ethresear.ch/t/binary-trie-format/7621/6

Merkle Trees Optimized for Stateless Clients in Bitcoin 463

the range [4, 6). Note that any positive integer n can be written in the form
(2k + 1) · 2i for a unique k, i. Furthermore, an internal node must have at least
two unique UTXOs among its descendants, and thus covers a range whose width
is at least two. Thus, the range of values below an internal node is represented
compactly by a single integer, of 8 bytes.

A bridge server stores two hash maps: one that maps the hash of a UTXO
to its index, and the other that maps the hash of a tree node to the tree node
itself. In order to retrieve the branch of the tree leading to a target UTXO,
a bridge server first retrieves the index of the target, and then descends the
Merkle trie starting from the root node. At each node, it checks whether the
index it is seeking is in the lesser half of the prefix range or the greater half. If
the former, it retrieves the left child of the node; else, it retrieves the right child.
In our implementation, we use a combination of RAM and disk memory to store
both the hash maps. The reading and writing operations from RAM are much
faster, but the total amount of RAM available is sometimes insufficient to store
the entire tree. We populate the RAM according to a ‘least recently used’ rule.
Whenever a new entry is created, it is written into the RAM portion of the hash
map; if space is limited, the least recently used key-value pair is moved to the
disk. A stateless client merely needs to store the hashes of the nodes along the
right most branch of the Merkle trie, i.e., the branch from the root node to the
UTXO with the highest index.

Construction and Verification of a Proof. In order to verify that a particu-
lar UTXO is part of the state, a sufficient proof consists of all the tree nodes from
the root node to the leaf node corresponding to the target UTXO. A stateless
client, which holds the target UTXO and the accumulator, can verify that the
leaf node has a hash pointer to the target, and each subsequent node points to
the one preceding it, with the hash of the root node matching the accumulator.
However, this is overkill; a stateless client does not need to know the hashes of
the nodes along the path. It suffices for it to know the hashes of the siblings of
all the nodes in the path, along with the prefix lengths of the nodes in the path.
The nodes along the path can then be reconstructed based on this information.
In particular, to reconstruct the leaf node, the stateless client only needs to know
the index of the UTXO from the bridge server. Therefore, in our implementa-
tion, the proof consists of the index of the targeted UTXO, the prefix lengths
of all nodes in the Merkle tree leading up to the target, and the hashes of the
siblings of those nodes. Note that the number of prefixes equals the number of
locations, and that they are provided in the same order in the proof. This suffices
for a stateless client to reconstruct the whole branch of tree nodes and verify the
proof.

464 B. Bailey and S. Sankagiri

Fig. 3. An example of a batch proof in our implementation. The nodes in the branches
leading down to the targets are shown in bold; the prefix lengths and targets from
these nodes are given in the proof. In addition, the hashes of the relevant sibling
nodes are specified. These nodes are labeled in the figure with their hash. In the real
implementation, the hashes are 32 bytes long, and the prefixes/targets are 64 bits long.

Batching the proof for multiple targets provides even greater savings in the
proof size. A tree node, which is a sibling of one of the nodes in the proof of a
certain target, may lie on the proof branch of another target. In this case, the
hash of this node needn’t be included as part of the proof. This is best illustrated
via the example shown in Fig. 3. If we were only concerned with the proof for
target 0101, we would have to include the hash of the right child of the root node.
When batched together with additional proofs, this node will be reconstructed
by the stateless client, and hence its hash needn’t be included. In the example
of Fig. 3, the proof needs to include three targets, five prefix lengths and three
hashes; without batching, nine prefix lengths and nine hashes would be required
(three for each branch). We specify the hashes and the prefix lengths in the
order they would be encountered in a depth-first search (DFS) for the targets.
Having a specific order allows the stateless clients to reconstruct the tree nodes
correctly.

In our design, a further reduction in proof size is achieved by using a standard
compression function (we use zlib) to compress the batch proof data. In practice,
we observe that this helps compress our proofs by ∼20–40%. This reduction
is due to the list of targets and prefix lengths in the proof, which are fairly
structured strings of bits. In contrast, the hashes in the proof are random strings
of bits and cannot be compressed effectively.

Modifying the Merkle Trie. In processing each block, the Merkle trie held by
the bridge server is modified by first removing all UTXOs spent during the block,

Merkle Trees Optimized for Stateless Clients in Bitcoin 465

then adding all new UTXOs. Nodes are removed by descending the tree in DFS
order, identifying all nodes that will be removed from the tree, removing them,
then recomputing the hashes of all nodes whose descendants have changed. Thus,
deletion is best implemented as a recursive function. Note that the tree nodes
that are modified in the deletion process are exactly the set of tree nodes that
are (implicitly) included in the proof. This allows the stateless clients to perform
the same set of computations as a bridge server, and compute the intermediate
accumulator of the state when UTXOs are deleted.

Nodes are added in a batch by composing new nodes into trees, then adding
those trees to the existing trie as subtrees of new nodes. Our technique of index-
ing UTXOs in an increasing order and ordering them into a trie implies that all
new UTXOs get added to the right side of the tree. In fact, while adding UTXOs,
only the nodes on the right most branch of the tree are modified. For a stateless
client to correctly compute the updated accumulator, it must keep track of the
hashes of the right most branch. Thus, strictly speaking, the accumulator is not
a single hash, but a set of hashes along a branch. The number of hashes grows as
log N , where N is the total number of UTXOs seen until the present moment.

4 Conclusion

This paper presents a new technique for constructing Merkle trees. We have
shown, both in a theoretical model and in a practical implementation, that this
approach has benefits over existing Merkle accumulator techniques. The code
for our project is available on Github5.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under the Graduate Research Fellowship Program with Grant No.
DGE – 1746047 and under Grant No. CCF 19-00636. The authors would like to thank
Andrew Miller for his advice on the project.

References

1. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

2. Blelloch, G., Ferizovic, D., Sun, Y.: Parallel ordered sets using join. arXiv preprint
arXiv:1602.02120 (2016)

3. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

4. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

5 https://github.com/surya-sankagiri/utreexo.

https://doi.org/10.1007/3-540-48285-7_24
http://arxiv.org/abs/1602.02120
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://github.com/surya-sankagiri/utreexo

466 B. Bailey and S. Sankagiri

5. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally
aggregatable vector commitments and applications to verifiable decentralized stor-
age (2020)

6. Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T.: Dio-
genes: Lightweight scalable RSA modulus generation with a dishonest majority
(2020)

7. De La Briandais, R.: File searching using variable length keys. In: Western Joint
Computer Conference, pp. 295–298. IRE-AIEE-ACM 1959 (Western), Association
for Computing Machinery, 3–5 March 1959, New York, NY, USA (1959)

8. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 7

9. Dobson, S., Galbraith, S.D., Smith, B.: Trustless groups of unknown order with
hyperelliptic curves (2020)

10. Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the bitcoin
utxo set. IACR Cryptol. ePrint Arch. 2019, p. 611 (2019)

11. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for
multiple vector commitments. Cryptology ePrint Archive, Report 2020/419 (2020).
https://eprint.iacr.org/2020/419

12. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: 19th
Annual Symposium on Foundations of Computer Science, pp. 8–21 (1978)

13. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 17

14. Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7 14

15. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
ACM SIGPLAN Not. 49(1), 411–423 (2014)

16. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies: A Comprehensive Introduction. Princeton Univer-
sity Press, Princeton (2016)

17. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. IACR Cryp-
tol. ePrint Arch. 2020, p. 527 (2020)

18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014)

https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://eprint.iacr.org/2020/419
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/978-3-642-31284-7_14

Soft Power: Upgrading Chain
Macroeconomic Policy Through Soft

Forks

Dionysis Zindros(B)

University of Athens, Athens, Greece

Abstract. Macroeconomic policy in a blockchain system concerns the
algorithm that decides the payment schedule for miners and thus its
money mint rate. It governs the amounts, distributions, beneficiaries and
conditions required for money supply payments to participants by the
system. While most chains today employ simple policies such as a con-
stant amount per block, several cryptocurrencies have sprung up that
put forth more interesting policies. As blockchains become a more popu-
lar form of money, these policies inevitably are becoming more complex.
A chain with a simple policy will often need to switch over to a differ-
ent policy. Until now, it was believed that such upgrades require a hard
fork – after all, they are changing the money supply, a central part of
the system, and unupgraded miners cannot validate blocks that deviate
from those hard-coded rules. In this paper, we present a mechanism that
allows a chain to upgrade from one policy to another through a soft fork.
Our proposed mechanism works in today’s Ethereum blockchain without
any changes and can support a very generic class of monetary policies
that satisfy a few basic bounds. Our construction is presented in the
form of a smart contract. We showcase the usefulness of our proposal by
describing several interesting applications of policy changes. Notably, we
put forth a mechanism that makes Non-Interactive Proofs of Proof-of-
Work unbribable, a previously open problem.

1 Introduction

At the heart of every blockchain [1] system lives a mechanism that distributes
rewards to its validators. The mechanism incentivizes miners to mine in proof-of-
work [2] chains and minters to mint in proof-of-stake [3] systems. Additionally,
it is an ingenius mechanism to distribute new money when no central bank is
present.

Today’s blockchain systems employ various policies detailing how exactly the
proceeds from mining are distributed to miners. Most of these policies are quite
simple. For example, Bitcoin’s policy rewards the miner of each block with a
constant amount of bitcoin, currently 12.5 BTC. This amount is halved every
four years. Ethereum miners receive 2 ETH, but the system also rewards uncle
blocks [4,5]. A more interesting system is Monero’s [6], where a system of smooth

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 467–481, 2021.
https://doi.org/10.1007/978-3-662-63958-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_36&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_36

468 D. Zindros

emission is employed. Instead of halving the money supply in a stair function
fashion, they slowly decrease the supply block-by-block.

Regardless of what economic policy a chain employs, sooner or later the
policy might need to be updated. This becomes necessary as cryptocurrencies
are adopted more widely and the community learns about what works bet-
ter economically. Ethereum’s Constantinople hard fork, in which rewards were
adjusted [7], constitutes one such example. In fact, as we will showcase in the
applications section, some macroeconomic mechanism updates help with incen-
tivizing correct execution of the core consensus protocol.

It is clear that modifying policy is useful and sometimes necessary. But how
can policy changes be applied? As the above Ethereum example illustrates, they
are easy to do with a hark fork. Indeed, until now, folklore wisdom suggested
that any upgrades to the macroeconomics of a chain required a hard fork and
were impossible to implement through a soft fork. After all, how can unupgraded
miners accept blocks paying according to different rules? One instance illustrat-
ing the severity of the problem is a block paying out a higher reward in the new
policy than what it used to pay in the old policy. It seems inherently difficult to
achieve backwards compatibility when it comes to such drastic changes.

We put forth the first construction which allows policy changes through soft
forks. In our path to doing so, we give a definition of what the macroeconomic
policy is. Our construction is compatible with the current Ethereum blockchain
and is implemented through a smart contract. The mechanism works for any
changes in policy, as long as the new policy is economically compatible with the
old one. It mandates that, in the long run, no more money can be generated by
the new policy.

We illustrate the usefulness of our construction by presenting some applica-
tions. One notable application is a construction which patches the bribery attack
on Non-Interactive Proofs of Proof-of-Work (NIPoPoWs). As the patch requires
correct incentivization embeded in the consensus mechanism, it is impossible to
apply without policy changes. Even though we do it through a soft fork, we are
the first to propose a bribery-resilient variant of the NIPoPoWs protocol in gen-
eral, as this attack remained an open problem before this work. The correction
of this outstanding issue was an important motivation behind the present work.

Related Work. Forking mechanisms in blockchains have been a topic of con-
tention. A complete overview of hard forks and soft forks is given by Buterin [8]
(who also presents some convincing arguments of why hard forks can sometimes
be preferable). In addition to soft forks, velvet forks [9,10] present an interest-
ing, and softer, alternative, although they are not always possible and great care
must be taken when adopting them [11]. Even in the case of hard forks, core
changes to consensus mechanisms must be deployed with prudence [12].

Smart contracts [13] were first used to distribute mining proceeds in the work
of Luu et al. [14]. Our construction is inspired by their clever approach. Non-
Interactive Proofs of Proof-of-Work (NIPoPoWs) were introduced by Kiayias
et al. [9]. The bribing attack against them, which we patch in this work, was

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 469

discovered by Bünz et al. [15]. Karantias et al. [16] perform convincing measure-
ments that illustrate such attacks have not happened in the wild (yet).

Contributions. In this paper, we make the following key contributions:

– We formally define what a chain macroeconomic policy is. Our definition is
generic and can be any algorithm that satisfies certain basic conditions.

– We define the notion of economic compatibility between policies, a necessary
and sufficient condition for soft fork upgradability between policies.

– We put forth a generic mechanism for upgrading the macroeconomic policy
of a chain through a soft fork and present it in the form of a smart contract.

– We present several applications of our scheme. Notably, we resolve the open
problem of Non-Interactive Proof of Proof-of-Work (NIPoPoW) bribability.

2 Preliminaries

Blockchain systems maintain consensus through the dissemination of chains. A
chain C is a finite sequence of blocks, and each block B is a triplet (x, s, ctr). A
block id is the cryptographically secure hash of the triplet H(x, s, ctr). Here, x
denotes the set of confirmed messages (transactions), s denotes the block id of
the previous block in the chain, and ctr denotes the leader election information,
a nonce in the case of proof-of-work systems or a signature in the case of proof-
of-stake systems. The first block in the chain is the genesis block G in which s
is taken to be the empty string ε by convention. We write C � C′ if C is a (not
necessarily strict) prefix of C′. We denote by C[i] the ith block of the chain (zero-
based). We use the Python range notation C[i:j] to denote the subsequence of
blocks, or subchain, from i (inclusive) to j (exclusive). Omitting an index takes
the subchain from the beginning or to the end respectively.

We denote E an execution of our blockchain protocol [17,18]. The execution
captures the messages exchanged by all parties throughout, as well as the random
coins produced during the mining process. We use κ to denote the security
parameter.

The block language LB is the set of all syntactically valid blocks and the
chain language LC ⊆ L∗

B is the set of all valid chains.
Recall that a blockchain can be upgraded with a soft fork or a hard fork. In

both cases, the code of the node is modified and the new software is distributed
to the users. Some of the users adopt the new code and those are known as new
or upgraded miners. The ones that do not upgrade are the old or unupgraded
miners who are running the old version of the node. Once downloaded, the new
code is activated after a designated activation block height. The upgraded soft-
ware contains new rules that govern the generation and validation of blocks. In
both cases, the old rules are not forwards compatible with the new rules: If an
old node generates an old-style block, it will not be validated by upgraded min-
ers. In the case of a soft fork, the new rules are backwards compatible with the
old rules: If a new node generates a new-style block, it will be validated by old
miners. Provided the upgraded miners constitute a majority, unupgraded nodes

470 D. Zindros

will still follow the longest chain, which will contain only upgraded blocks. Their
own blocks will be rejected, so they will be economically pushed to upgrade their
software. However, in a hard fork, the new rules are not backwards compatible
with the old rules: New nodes generate blocks that do not validate according
to old rules. As such, the two populations create two distinct chains after the
activation block height, which constitutes a chain fork. This is sometimes viewed
as dangerous. Nevertheless, even in the case of hard forks, the old population
typically eventually upgrades to the new rules and their temporary fork is aban-
doned.

3 Macroeconomic Policies

A chain policy defines how payouts are given to miners (or minters). While for
simple policies it could be a constant, more complex policies may depend on the
whole state C of the system.

Definition 1 (Macroeconomic Policy). Let LC be the chain language. We
call a function £ : LC × N → R

+ of the system a macroeconomic policy if the
function is efficiently computable and for every two chains C, C′ such that C � C′,
it holds that £(C, i) ≤ £(C′, i). The system pays out an amount of £(C, i) to the
validator of the ith block in C.

The above definition captures, quite generically, what the rewards of a miner
can be. The requirement that the function is monotonic is necessary, as it pre-
scribes that money given out cannot be retroactively taken back. While the
rewards can depend just on i, the ability of the function to inspect the whole
chain C allows the system to employ complex rules. Additionally, note that it is
possible that |C| > i. In that case, the policy may decide to pay out rewards to a
miner later during the system’s execution. We allow the function to output real
positive amounts payable, even though most systems employ integer outputs to
avoid floating-point errors.

Let us look at a couple of typical policies for illustration purposes. Bitcoin’s
policy is a step function which began at 50 BTC per block and halves every
210,000 blocks. Additionally, rewards cannot be withdrawn for another c = 100
blocks, a constraint known as the maturation time:

£BTC(C, i) =

{
0, if |C| + c < i
50
2j , otherwise

, where j = � i

210000
�

Monero’s policy emits money smoothly, which they argue [6] can help prevent
infrastructural problems due to dramatic increases in hashrate when compared
to Bitcoin’s. Instead, they give out one 218th of their remaining money supply
per block. Their maturation time is c = 60 blocks.

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 471

£XMR(C, i) =

{
0, if |C| + c < i
264−1−∑i−1

j=0 £XMR(C,j)

218 , otherwise

Note here that it so happens that an upgrade from Bitcoin’s policy to
Monero’s policy could take place with a soft fork without any special mecha-
nism, as long as Monero’s supply is scaled appropriately to be upper bound by
Bitcoin’s at every block (see Fig. 1).

In both systems, the payouts are deterministic (and in the steady state do
not depend on C), and the total supply at every point in time is

∑|C|
i=0 £(C, i).

In fact, the total supply is bounded, and the bound is lim|C|→∞
∑|C|

i=0 £(C, i).
Some systems, such as DOGE do not have a maximum total supply and this
limit diverges.

Ethereum’s policy is a little trickier. A block can receive a reward even if
it does not belong on the adopted chain. Instead, uncle blocks are rewarded,
too [4,5]. In this system, the function £ is defined on blocktrees instead of chains.
The parameter i is generalized to denote any path in the blocktree, and the
prefix notation � must, of course, be amended accordingly to mean subgraph.
Any chain system whose consensus is based on a DAG [19,20] instead of a tree
can be thus augmented. As long as the language LC is appropriately defined,
our definition stands, albeit with a more complex interpretation. In this case, as
the total supply depends on the execution (and in particular how many uncles
it contains), it cannot be calculated exactly.

Fig. 1. Bitcoin’s staircase rewards compared to Monero’s smooth emission with Bitcoin
upper bounding Monero.

472 D. Zindros

Let us now determine whether two policies are backwards compatible. We
begin with a strict definition.

Definition 2 (Economic Compatibility). A new policy £′ is backwards
compatible with an old policy £ with respect to chain C if

|C|−1∑
i=0

£(C, i) ≥
|C|−1∑
i=0

£′(C, i) .

The two policies are backwards compatible if they are compatible with respect to
every chain.

Compatibility mandates that the new policy does not pay out more money
than the old policy for a particular chain. Note how this requirement is not made
for every block, but instead throughout history. This leniency opens the door for
upgrading to quite a wide range of policies. For example, for the same total
supply, Bitcoin’s policy is backwards compatible with Monero’s: Bitcoin begins
by paying a smaller amount per block than Monero. This money is accumulated.
After a while, Monero’s supply has dropped and Bitcoin is paying more per block
than Monero. However, the accumulated money can make up for the difference at
every point in time (see Fig. 2). Our construction in the next section will make
it clear how this accumulation can take place in chains with smart contract
support.

Fig. 2. Bitcoin’s staircase rewards compared to Monero’s smooth emission with the
same total reward.

Generally, our policies will not be required to be strictly compatible. Instead,
we will only mandate that they are compatible eventually.

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 473

Definition 3 (Eventual Compatibility). A new policy £′ is eventually back-
wards compatible with an old policy £ with delay d with respect to an execution
E if for every chain C adopted during the execution, for any i, j ∈ N such that
0 ≤ i + d < j < |C|, there is a k ∈ N such that i ≤ k < j and £′ is backwards
compatible with £ with respect to chain C[:k].

Eventual backwards compatibility does not require that the new policy
remains solvent all of the time. Instead, it promises that the miners will be
paid out eventually, even though they may have to wait up to time d until the
policy becomes solvent and has the money to pay them.

For example, for the same given total supply, Monero’s policy is eventually
backwards compatible with Bitcoin’s: While initially Monero will require higher
payments than Bitcoin, eventually Monero’s smooth emission will reduce the
supply sufficiently to drop below Bitcoin’s reward (see Fig. 2). After this, and
when a certain number of blocks have been produced, a sufficient amount of
money will have accumulated to be able to pay back the miners who mined
more worthy Monero coins in the past. While the miners may have to wait for
a delay d for the policy to achieve solvency, they will eventually be paid the
correct amount.

To account for unlikely events, we relax this requirement further and require
that eventual compatibility is only achieved with high probability in the security
parameter (over the randomness of the execution). This relaxation enables us
to build non-deterministic policies, as long as they are well-behaved with high
probability.

It is useful to point out that backwards economic compatibility is a notion
useful beyond soft and hard forks. It indicates that the new policy does not
generate, in total, more money than the old policy. This implies that any previous
assumption on upper bounds in supply is not violated (one such example is any
total supply firewall limitation in the case of a sidechain [21]). Beyond a useful
technical propertly, economic compatibility is primarily an economic assumption.

4 Construction

Our construction is based on a simple premise: Instead of paying out the miner
directly, we can pay the proceeds of mining into a smart contract beneficiary.
Before the soft fork begins, the smart contract is deployed on the old network.
This deployment is verified by old and new miners alike. The soft fork then
mandates that, after a particular activation block height, new blocks always pay
into this smart contract’s address. Blocks that do not pay into the designated
address are rejected as invalid. Old miners accept new blocks because they just
have a new valid beneficiary, and it so happens that it is the same for all the
blocks they see, but without any notion of its semantics.

Once the beneficiary contract is deployed, it is responsible for managing the
policy of the chain. It collects the proceeds of the old policy into its reserves and
pays out the miners accordingly. If the new policy is backwards compatible with

474 D. Zindros

the old one with respect to every chain, the contract remains solvent. However,
if the compatibility is only eventual, the contract will be insolvent at certain
points in time. To address this, it gives out promises to pay miners, which are
assembled in a balance sheet, akin to an ERC-20 [22] smart contract. This money
can then be collected at a later time, when the contract becomes solvent again,
which is guaranteed to occur after d blocks.

We illustrate our generic construction, parametrized by the new policy £ in
Algorithm 1. The contract is initially instantiated to an address as a regular
contract. Anyone can do this, but it would typically be done by the cryptocur-
rency developers. The contract deployment address is noted and embeded into
the code of the upgraded node software. The contract has three methods. The
default method is paid out when the contract is designated as the beneficiary
of any block. At this point, it is unclear what the identity of the miner is. The
miner who actually produced the block places their identity in the form of their
public key into a designated location within the block. In the case of Bitcoin soft
forks, this is typically the coinbase transaction, but in a smart-contract-enabled
blockchain, which our construction requires, this can be done more cleanly by
the call to the identify method of our smart contract, in which the miner creates
a transaction calling it and passing their public key pk as an argument to the
call. The method call records the identity of the miner. Naturally, the miner
must take care to drop from their block transactions of adversarial users calling
the identify method, to avoid enterprising usurpers.

After the miner has identified themselves, they can claim the payout from the
new policy by invoking the claim function. This function takes a block index i
and evaluates the policy £ on the current chain C. Therefore it might need to be
called at a later point by the miner to account for, say, maturation constraints.
Note here that typically the policy will only depend on a small subset of the
blocks in C and so not all of it needs to be evaluated. While some blockchains
allow for access to past blocks liberally [23], the contract can replicate such
behavior locally [24] if needed to recreate any portion of the chain required by
the policy.

The function records the payout as delivered to the miner so that it cannot
be doubly claimed. However, the payment is not actually delivered to the miner
beyond a promise to pay, recorded in the balance sheet balances of the contract.
If and when the contract becomes solvent, the miner can then call withdraw to
get their money in the real native currency, such as Ether in our case. This
behavior is similar to the balances maintained by an ERC-20 contract. In fact,
the beneficiary contract can be a fully fledged ERC-20 contract, in which case
the miners will be able to use their promise-to-pay tokens as if it were real ether.

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 475

Algorithm 1. The smart contract beneficiary which acts as a decentralized
macroeconomic policy manager for policy £.
1: contract Policy£
2: balances ← ∅
3: claims ← ∅
4: identities ← ∅
5: payable function default()
6: � Collect proceeds from this block, but do not pay it out yet
7: end function
8: function identify(pk)
9: identities[block.id] ← pk

10: end function
11: function claim(i)
12: C ← get chain()
13: miner ← identities[i]
14: v ← £(C, i) � The particular policy is invoked at this point
15: D ← v − claims[i] � D will be positive due to monotonicity of £
16: claims[i] ← v
17: balances[miner] ← balances[miner] + D � Create a promise to pay later
18: end function
19: function withdraw(v) � An ERC-20-style withdrawal
20: require(balances[msg.sender] ≥ v)
21: require(address(this).balance ≥ v) � Ensure the contract is solvent
22: balances[msg.sender] ← balances[msg.sender] − v
23: msg.sender.send(v)
24: end function
25: end contract

5 Blinded Mining

We have already seen that simple policies such as Bitcoin’s and Monero’s can
be upgraded between one another. It should also be clear that increasing the
reward maturation time is easily implementable.

One interesting and more complex policy involves requiring miners to gen-
erate and commit to a value χ during their block generation. The commitment
h = H(χ) is placed in the block instead. The value χ is to be kept secret until
after k blocks have passed, at which point the value should be revealed soon
after, and certainly before 2k blocks have passed. This blinded mining process
can be a useful tool for constructing consensus protocols that can withstand an
adaptive adversary or suppression attacks [25].

A cryptoeconomic incentivization of the above protocol can be achieved with
the following policy:

476 D. Zindros

£(C, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c if C[i:i + k] contain no χ

but C[i + k:i + 2k] contains χ

(1 + ε)c if the above holds, and C[i] is the first block
to reveal χ′ for block C[i − j] with j < k

0 otherwise

where h = H(χ), h′ = H(χ′) are the commitments in i, i − j respectively.

Here, the miner who mined the ith block is rewarded with c only once they
reveal the value χ. This revealing can be made in an appropriately structured
transaction, even if they do not mine any future blocks. This requirements man-
dates a sort of availability by the miner: They are not paid until they reveal
their committed value, and they must ensure they remain online to do so. Addi-
tionally, the miner must reveal it before 2k blocks, or else their rewards are
gone. Lastly, if the value is leaked sooner, i.e., before k blocks have passed, to
a different miner, that miner is rewarded with εc extra rewards, in addition to
their c that they receive for playing fairly. This 0 < ε < 1 slashes the miner
who revealed the value too soon. The value ε must be large enough (0 < ε) to
incentivize competing miners to find the value and reveal it sooner, but small
enough to incentivize the miner of i to keep the value secret (ε 	 1 to account
for the time value of money).

6 Unbribability

A notable achievement possible with a policy upgrade is making NIPoPoWs
unbribable. While the precise details of the NIPoPoW protocol are beyond the
scope of this work, let us review the essential parts here to motivate the discus-
sion.

In a proof-of-work chain, a block B satisfies the proof-of-work equation
H(B) ≤ T , where T denotes the mining target (this can be a constant or a
variable). Some blocks satisfy this equation better than others, and specifically
achieve H(B) ≤ T

2µ for some μ ∈ N. Such blocks are called μ-superblocks (or
superblocks of level μ).

The NIPoPoW protocol posits that a superlight client, which functions as
an SPV node to the blockchain, can synchronize from a full node by receiving
only a small sample of superblocks. More concretely, if the full node presents a
subsequence of m ∈ N superblocks of level μ, then the superlight client is con-
vinced that approximately m2μ regular blocks exist in the underlying chain, but
these do not need to be sent over the network. Leveraging this basic clever idea,
the protocol achieves an exponential improvement in communication complexity
compared to legacy SPV clients [9]. The parameter m has a minimum value, but
can be increased as needed to ensure security (with a corresponding performance
penalty).

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 477

A block is a μ-superblock with probability 2−μ, so they are exceedingly rare
as μ increases. Unfortunately, they are rewarded only as much as regular blocks.
As such, an adversary can cheaply bribe miners to keep such blocks secret [15]. In
this attack, the adversary requests that the miners never broadcast these blocks
into the network, and pays the miners behind-the-scenes in exchange for this
commitment. In fact, such bribes can even be written in the form of a smart
contract, completely removing the need for the adversary and the miners to
maintain rogue offchain communication channels. While honest miners will not
succumb to such behavior, rational miners might. A rational adversary is also
incentivized to give out such bribes if they wish to convince a superlight client
that a large amount of money has been transferred to them (the exact amount
can be calculated using the methods of Bonneau et al. [26]).

We now put forth a method for defending against this attack. The attack
becomes uneconomical if the reward schedule of the chain is modified so that a
μ-superblock’s worth is proportional to the amount of underlying blocks it cap-
tures. More precisely, each μ-superblock must be worth 2μ more than a regular
block, provided at least m superblocks of level μ have appeared on the net-
work. In this case, bribing to suppress superblocks capturing a certain amount
of proof-of-work requires the same bribe as suppressing the whole underlying
chain. As long as such bribes are not economical (an assumption required for
the blockchain to function), superblock bribes are not economical either.

To make this new policy backwards compatible with the old policy, the value
of regular blocks must be reduced. But how should we ascribe value to these
blocks? Suppose the old policy pays out 1 unit of currency per block. If a regular
block (which is not a superblock) pays out a value of c and a μ-superblock (which
is not a μ + 1 level superblock) pays out a value of 2μc, then we are led to the
following paradox: The expected value of the reward diverges:

E[£(C, i)] =
∞∑

μ=0

c2μ+1Pr[H(B) ≤ T

2μ
] =

∞∑
μ=0

c2μ+12−μ = ∞

However, the probability of such divergence is negligible. We will make use
of this fact to construct a policy that is eventually backwards compatible with
the constant policy with overwhelming probability in the security parameter
κ. The policy progresses in epochs. In each epoch j, a constant cj is adopted
as the reward of a 0-level block. Within each epoch, the invariant that each
block of level μ is worth 2μ more than each regular block is maintained, i.e.,
£(C, i1) = 2μ£(C, i2) where C[i1] is a regular block and C[i2] is a μ-superblock
(however, this invariant is not maintained across epochs). We will now define
the lengths of these epochs and the value cj .

Consider a chain C with length |C|, a superblock level μ, and a constant m.
Observe that the number X of μ-superblocks appearing in C follows a binomial
distribution with a Bernoulli probability of success p = 2−μ and |C| trials. As
such, E[X] = 2−μ|C|. We can now examine whether at least m superblocks of
some level μ have appeared in this chain. Call this event default. We want our
system to avoid this event, as it will imply that our policy will become insolvent.

478 D. Zindros

Let us consider the case when E[X] < m, and so we do not expect the bad event
to occur. Still, we wish for the probability of the event occurring to be negligible.
Let δ be the value such that m = (1 + δ)2−μ|C|, i.e., δ = m

2−µ|C| − 1 > 0.
Since the trials are mutually independent Bernoulli trials, we can apply a

Chernoff bound to obtain:

Pr[default] = Pr[X ≥ m] = Pr[X ≥ (1 + δ)E[X]] < e−δ2 E[X]
3

When does this probability attain a value negligible in the security parameter
κ? We have:

e−δ2 E[X]
3 ≤ 2κ ⇔ δ22−μ|C|

3
lg e ≥ κ

Replacing δ with its value, we obtain the following sufficient condition for
solvency:

(
m

2−μ|C| − 1)2
2−μ|C|

3
lg e ≥ κ

⇔ m2

2−μ
+ 2−μ|C| ≥ 3κ

lg e
+ 2m

⇐ m2

2−μ|C| ≥ 3κ

lg e
+ 2m

⇔2−μ|C| ≤ m2

3κ
lg e + 2m

.

Observe that the right-hand side is a constant, call it ζ. We can therefore
be certain with overwhelming probability in κ that superblocks of levels μ or
higher will not appear in chains of length |C| or less. This immediately leads to
an algorithm for epoch evolution: Begin at epoch j = 1 in which the reward is c1

2 .
As long as our chain |C| has size below 2μζ, we treat our system as if superblocks
of level μ and above will never appear. Blocks of levels 0, 1, · · · , μ−1 receive pay
out rewards of cj , 2cj , · · · , 2μ−1cj . The expected reward per block in this epoch
is E[£j] =

∑μ−1
i=0 cj2i/2i+1 = jcj

2 . Whenever a chain size of 2μζ is reached, the
epoch advances to j + 1 and the reward is updated so that E[£j+1] = E[£j].
Solving for cj+1, the new reward at level 0 then becomes cj+1 = j

j+1cj . As
you can see, these do not change the reward by much, and the update happens
exponentially more rarely as time goes by.

The above construction lets us state the following lemma:

Lemma 1 (Compatibility of NIPoPoW rewards). The policy £ described
above is eventually backwards compatible with a policy of constant rewards of
amount (1 + ε) c1

2 with overwhelming probability in κ.

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 479

Proof (Sketch). The proof is immediate from the above construction. Each epoch
j with maximum chain length |C| maintains an expected payout per block which
is E[£j] = c1

2 . This is ensured with overwhelming probability in κ, as it was
argued through the above Chernoff bound that superblocks of level μ ≥ ζ

|C|
appear with only negligible probability. Applying a union bound over all epochs
ensures a negligible probability of failure overall in the parameter κ − log(L)
where L denotes the total execution time (as the number of epochs grows loga-
rithmically in L). Each block reward is independent from the rest. The deposits
available to the policy are the sum of these rewards and are bounded by a Cher-
noff bound. Thus, this sum will converge with high probability to its expectation
after a sufficient number of blocks d. As (1 + ε) c1

2 > c1
2 this ensures eventual

compatibility. The delay d depends on the choice of the parameter ε. A trade-
off exists between lowering the reward slightly to ensure eventual compatibility
more quickly. �

7 More Complex Upgrades

Multiple Upgrades. One outstanding question is how to apply a policy
upgrade £′′ on top of a chain in which a policy upgrade £′ has already been
applied; that is, how to apply multiple policy upgrades in series. The solution
is to employ yet another smart contract as a second intermediate step between
the block reward and the miner.

The approach works by having £′ manage the first policy by receiving the
money of the legacy policy £ as before. When the time comes to call the identify
function, the second soft fork requires the pk provided to be the second smart
contract to which £′′ is deployed. As such, the first smart contract always pays
out into the second. The miner variable in any valid execution of the first smart
contract always takes on the address of the second smart contract after the sec-
ond soft fork. The second smart contract can then have its own identify function,
which uses a different portion of the block to identify the final receipient. The
technique can be used repeatedly in series, as illustrated in Fig. 3.

legacy
policy

smart
contract

£1

smart
contract

£2

smart
contract

£n

...
minerminer
miner

miner

i

miner
miner

Fig. 3. A series of upgrades £1, · · · ,£n. Each of the contracts maintains its own bal-
ance and pays into the next. Only the final contract distributes proceeds to the true
miners.

More Complex Policies. For simplicity, our definition of the policy £(C, i)
returns the amount payable to the miner who mined the block C[i]. It is possible

480 D. Zindros

to devise of more complex policies in which the policy pays out multiple people
per block or in general does not have just one receipient per block. One such
example is a policy that distributes payments to miners who are mining blocks
often. It is easy to generalize the definition of policies to allow for such a sce-
nario. The function is defined to be £(C) and returns a dictionary mapping from
address to amount payable. The monotonocity condition is then the obvious
generalization of our previous condition: Given two chains C � C′, the keys in
the dictionary £(C) must be a subset of the keys in the dictionary £(C′). Addi-
tionally, for every key in both dictionaries, the value in £(C) must be smaller
than or equal to the value in £(C′).

References

1. Nakamoto S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (2008)

2. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

3. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

4. Kiayias A., Panagiotakos G.: Speed-Security Tradeoffs in Blockchain Protocols.
IACR Cryptol. ePrint Arch.: vol. 2015, p. 1019 (2015)

5. Kiayias, A., Panagiotakos, G.: On trees, chains and fast transactions in the block-
chain. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368,
pp. 327–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25283-
0 18

6. Van Saberhagen, N.: CryptoNote v2.0. https://cryptonote.org/whitepaper.pdf
(2013)

7. Schoedon, A.: EIP-1234: Constantinople Difficulty Bomb Delay and Block Reward
Adjustment. https://eips.ethereum.org/EIPS/eip-1234 (2018)

8. Buterin, V.: Hard Forks, Soft Forks, Defaults and Coercion. http://web.archive.
org/web/20080207010024/www.808multimedia.com/winnt/kernel.htm (2017)

9. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 27

10. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt,
W.J.: A wild velvet fork appears! inclusive blockchain protocol changes in prac-
tice. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 31–42. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 3

11. Kiayias, A., Polydouri, A., Zindros, D.: The Velvet Path to Superlight Blockchain
Clients. IACR Cryptology ePrint Archive: http://eprint.iacr.org/2020/1122 (2020)

12. Ciampi, M., Karayannidis, N., Kiayias, A., Zindros, D.: Updatable blockchains.
In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol.
12309, pp. 590–609. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59013-0 29

13. Buterin V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-030-25283-0_18
https://doi.org/10.1007/978-3-030-25283-0_18
https://cryptonote.org/whitepaper.pdf
https://eips.ethereum.org/EIPS/eip-1234
http://web.archive.org/web/20080207010024/www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/www.808multimedia.com/winnt/kernel.htm
https://doi.org/10.1007/978-3-030-51280-4_27
https://doi.org/10.1007/978-3-662-58820-8_3
http://eprint.iacr.org/2020/1122
https://doi.org/10.1007/978-3-030-59013-0_29
https://doi.org/10.1007/978-3-030-59013-0_29

Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks 481

14. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smartpool: practical decentralized
pooled mining. In: 26th USENIX Security Symposium (USENIX Security 17), pp.
1409–1426 (2017)

15. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: Super-Light Clients for Cryp-
tocurrencies (2020)

16. Karantias, K., Kiayias, A., Zindros, D.: Compact storage of superblocks for NIPo-
PoW applications. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.)
Mathematical Research for Blockchain Economy. SPBE, pp. 77–91. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-37110-4 6

17. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II:
vol. 9057 of LNCS, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10: updated version at http://eprint.iacr.org/2014/765

18. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

19. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: A Fast and Scalable Cryp-
tocurrency Protocol. IACR Cryptology ePrint Archive: vol. 2016: http://eprint.
iacr.org/2016/1159

20. Sompolinsky, Y., Wyborski, S., Zohar, A.: PHANTOM and GHOSTDAG: A Scal-
able Generalization of Nakamoto Consensus. IACR Cryptology ePrint Archive:
http://eprint.iacr.org/2018/104 (2018)

21. Kiayias, A., Gaži, P., Zindros, D.: Proof-of-stake sidechains. In: IEEE Symposium
on Security and Privacy. IEEE (2019)

22. Vogelsteller, F., Buterin, V.: ERC-20 Token Standard, September 2017. https://
github.com/ethereum/EIPs/blob/master/EIPS/eip-20-tokenstandard.md (2015)

23. Buterin, V.: Blockhash refactoring. https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-210.md (2017)

24. Karantias, K., Kiayias, A., Zindros, D.: Smart contract derivatives. In: Pardalos,
P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.) Mathematical Research for Block-
chain Economy. SPBE, pp. 1–8. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53356-4 1

25. Zindros, D.: Decentralized Blockchain Interoperability. Ph.D. thesis (2020)
26. Bonneau, J., Clark, J., Goldfeder, S.: On Bitcoin as a public randomness source.

IACR Cryptology ePrint Archive: vol. 2015: https://eprint.iacr.org/2015/1015.pdf
(2015)

https://doi.org/10.1007/978-3-030-37110-4_6
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2014/765
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
http://eprint.iacr.org/2016/1159
http://eprint.iacr.org/2016/1159
http://eprint.iacr.org/2018/104
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-tokenstandard.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-tokenstandard.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md
https://doi.org/10.1007/978-3-030-53356-4_1
https://doi.org/10.1007/978-3-030-53356-4_1
https://eprint.iacr.org/2015/1015.pdf

Privacy-Preserving Resource Sharing
Using Permissioned Blockchains
(The Case of Smart Neighbourhood)

Sepideh Avizheh(B), Mahmudun Nabi, Saoreen Rahman, Setareh Sharifian,
and Reihaneh Safavi-Naini

University of Calgary, Alberta, Canada
{sepideh.avizheh1,mahmudun.nabi1,saoreen.rahman,ssharifi,rei}@ucalgary.ca

Abstract. In a resource sharing system users offer goods and services
with specified conditions that if met, the access will be granted. Tradi-
tional resource sharing systems use a trusted intermediary that mediates
users’ interactions. Our work is motivated by a decentralized resource
sharing platform (proposed in WTSC’20) that uses a permissioned
blockchain to allow users to share their digital items with their specified
attributed-based access policies that are enforced through a set of smart
contracts, and removes the need for a trusted intermediary. The system
however allows users’ accesses to be traced, and has limited availability as
access to a resource requires its owner to be on-line. We design a decen-
tralized attribute-based access control system that achieves the same
functionality while preserving the privacy of user’s access, and automat-
ing access which removes the need for the resource owner to be online.
We use two cryptographic primitives, Ciphertext Policy Attribute-Based
Encryption (CP-ABE), and ring signatures, and design smart contracts
that allow specification and cryptographic enforcement of the users’ spec-
ified policies. We analyze the security and privacy of the system, provide
the description of smart contracts and give a proof of concept imple-
mentation of the smart contracts and cryptographic algorithms that are
used in the system. Our design and implementation are general and can
be used for privacy-preserving resource sharing with fine-grained access
control in other settings including data and information sharing among
collaborating parties.

Keywords: Privacy-preserving resource sharing · Blockchain · Smart
contract · Attribute-based access control · Attribute-based encryption ·
Anonymous authentication · Smart neighborhood

1 Introduction

Resource sharing platforms enable peers to acquire, provide, or share goods
and services through intermediary service providers. Sharing platforms such as
Airbnb [1] and Uber [2] are centralized online platforms that connect resource
owners with resource providers, and manage their interactions and payments.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 482–504, 2021.
https://doi.org/10.1007/978-3-662-63958-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_37&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_37

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 483

In centralized systems the platform provider is a single Trusted Authority (TA)
that mediates all interactions. Centralized designs have the drawback of having
a single point of failure and a single TA with full access to users’ data. This is
not only highly privacy-invasive, but in the case of compromise of TA, reveals
all users information and their history of interactions.

In WTSC 2020, a decentralized resource sharing platform for digital items in
smart neighbourhoods was proposed [3] that addresses some of the shortcomings
of the centralized systems. Authors motivated their work by considering a smart
neighbourhood application where an initial trust among parties (and so willing-
ness to share) exists because of the geographic proximity, but there is a need
for user control of their sharing so that they are confident about the outcome.
Authors proposed a decentralized system that uses a permissioned blockchain
that is maintained by a set of Consensus nodes (or C-nodes for short), and
enables users to specify conditions of access to their resource and be confident
that they will be enforced. Sharing will be among “registered” users of the sys-
tem that are approved by the C-nodes that use proof of authority consensus
among themselves to control access to the blockchain. C-nodes verify transac-
tions to ensure they are generated by registered users and publish them on
the blockchain. The system uses attribute-based access control to allow users to
express fine-grained conditions of access to resources by specifying associated
attribute-based access policies. Resources have certificates for their properties
(attributes) that can be verified by users. A resource requester provides their
(certified) attributes in their request. The request will be verified by the C-
nodes for matching the stated policy. If the request is accepted, the resource
owner issues an access token that allows the requester to access the resource.
Authors designed a set of smart contracts that automates and implements the
system and enforces the stated access policies, effectively removing the need for
a single TA. The system however has major drawbacks: it offers no privacy for
users and allows their attributes and accesses to be visible by the C-nodes and
the resource providers; and it has limited availability: for accessing a resource,
the resource provider must be online to issue the access token. We redesign
the system to provide privacy for users’ access, and automate users’ access and
remove the need for the resource owner to mediate each request.

1.1 Our Contributions

We use two cryptographic building blocks, a Ciphertext Policy Attribute-based
Encryption (CP-ABE) [4] to cryptographically enforce access control, and anony-
mous authentication and access using ring signature [5], that together will allow
secure private access to resources without the need for the resource owner to
be online. Using CP-ABE protects the need to send the requesters’ attributes
in plaintext to the blockchain, and ring signature enables anonymous authen-
tication and access request validation, preventing traceability of the requests.
Effective use of these primitives needs an overhaul of smart contracts in [3] and
design of a new set of contracts. We provide a detailed security and privacy anal-

484 S. Avizheh et al.

ysis of our design, and provide a proof of concept implementation to demonstrate
feasibility of using advanced cryptographic primitives in real-life applications.

Although our work is motivated by sharing digital items in smart neighbour-
hood, our design and implementation are general and will have wider applications
for privacy-preserving sharing of digital items with fine-grained access control,
for example, sharing documents among collaborating organizations based on an
access policy.

Proposed System. The system consists of a number of entities that interact
through the blockchain and smart contracts to publish and access resources
according to the stated policies.

Entities. Users must register to the system. We consider three types of author-
ities: (i) Blockchain Authority (BA) that consists of the set of C-nodes, and
performs user registration, maintain the blockchain and membership of the
users, and verify identity of requesters; (ii) Certificate Authorities (CA) that
are trusted for issuing certificates for attributes of users and shareable digital
objects, and certificates will be verifiable by the BAs as well as the users; and
(iii) CP-ABE Attribute Authority (CP-ABE AA) that is responsible for gener-
ating CP-ABE private and public keys for registered users (registration by BA)
according to their attributes.

Smart Contracts. We use smart contracts to allow users to advertise their dig-
ital objects together with the specified access policy, and securely provide the
requested information to the users. We design a set of interconnected smart
contracts to achieve these goals with higher privacy.

We consider the following smart contracts:

i. User directory contract (uDir): this contract is deployed by the blockchain
authority (BA), and holds the public identity information of the registered
users. The shared information of each user consists of a pseudonym and a
public key certificate (that includes the user’s public key) that has been
issued by one of the C-nodes. The information in this contract can be (non-
anonymously) requested by users from BA and will be used by users for
anonymous authentication and hiding their identity among a group (using
ring signature).

ii. Object directory contract (oDir): this contract is deployed by the BA and
contains the user information (same as included in uDir) and their shareable
items information (one entry per item) including, object Id, description, a
link to the objPropRep and objACC contracts.

iii. Object property repository contract (objPropRep) is deployed by the
resource owner. It holds the Id and properties of the shareable object.

iv. Object access control contract (objACC) is deployed by the resource owner.
It holds the object Id, the access policy and CP-ABE encrypted metadata
of the resource.

v. Adjudicator contract (Adj): this contract is deployed by BA, and allows
requesters to report misbehaviors. The system can choose a verifier to vali-
date the reports and penalize the misbehaving owners.

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 485

The smart contracts and the data stored by them are part of the permissioned
blockchain and are accessible to registered users upon making a request.

User Authentication. BA runs an authentication service AuthServ, that reg-
ister users, provide public key certificate, and verify users’ requests to access
blockchain. We consider that a user access request has the following format: it
consists of two parts, (i) the request (e.g., a function call to a smart contract to
read some data), and (ii) a signature which endorses the request. In practice, an
access request can be simply a transaction or a more complex information unit
depending on the implementation and the underlying blockchain system. For pri-
vacy, the user identity is verified through an anonymous authentication protocol,
and the signature of the request will be based on an anonymous signature.

We use a challenge and response anonymous authentication, where the
response is the ring signature [5] of the prover on the challenge sent by the
verifier. The challenge in our system is obtained from a randomness beacon ser-
vice (provided by the BA) that is broadcasted at regular intervals. The random
string has length � that is determined by the system security level (we use � = 512
bits in our implementation). The signature of each request (for e.g. an issued
transaction) will include the current value of the challenge, and will be consid-
ered valid (after verification of the signature) if it has been generated within a
defined interval (timeliness). This effectively combines user authentication and
request validation (i.e. request is issued by a registered user within a close time
interval). The request that is sent to the BA will be encrypted using the BA’s
public key.

Processing a Request. There are two types of requests, (i) non-anonymous
requests which are used to browse blockchain and obtain information about
existing resources and users, and (ii) anonymous requests, which are used for a
specific resource. The sequence of steps in making a request to access an item,
and its processing are as follows: (i) User Br authenticates itself to an AuthServ
using a traditional digital signature, gets the interfaces of uDir and oDir con-
tracts (by issuing non-anonymous requests), and browses oDir and uDir con-
tracts on the blockchain by making another non-anonymous requests; (ii) Br

makes an anonymous request (using ring signature) to the objPropRep contract
for an object O that is listed in oDir; AuthServ authenticates the (anonymous)
request of Br and passes it to objPropRep contract; (iii) Br receives the proper-
ties of the object O and the corresponding certificates, and if verified, makes an
anonymous access request for the object O to the objACC contract; (v) AuthServ
authenticates the (anonymous) request of Br and passes it to the objACC con-
tract; (vi) Br receives the access policies and the CP-ABE encrypted metadata,
and decrypts it using its CP-ABE private key. If the private key matches the
access policy of CP-ABE encrypted metadata, Br will obtain the link to the
object O. Note that the response to anonymous requests are returned to all ring
members that are determined by the requester upon issuing a request.

Security and Privacy. We use a CP-ABE scheme to ensure a requester whose
attributes satisfy the item’s stated policy is able to decrypt it (security), and

486 S. Avizheh et al.

use ring signature based authentication protocol to ensure that accesses are by
authorized users (security), and the BA and the resource owner cannot link
the access requests to the resource requester (privacy). Outsiders will only see
encrypted communications. A detailed security and privacy analysis is given in
Sect. 4.

Proof of Concept Implementation. We use Ganache [6] to setup the required
private (permissioned) Ethereum blockchain infrastructure. Smart contracts are
written in Solidity language using Remix IDE [7], and Truffle is used for con-
tract deployment and run of the experiments. We evaluate computation cost
of using cryptographic primitives namely, (CP-ABE) [4], ring signature [5] and
AES symmetric key encryption scheme [8], as well as the execution cost of the
smart contract functions in Ethereum blockchain. Our results are presented in
Sect. 5 and show viability of our system for real-world applications.

Organization. Section 2 reviews preliminaries, Sect. 3 describes the details of
our system, assumptions and security goals and user’s interaction with the sys-
tem. Section 4 gives the security and privacy analysis of the proposed system.
Section 5 gives the details of the implementation and evaluation result, and
finally Sect. 6 concludes the paper.

1.2 Related Work

Anonymous access and participation in system has been used in a variety of
applications including electronic voting [9], e-mail [10], and social networking
[11]. Access control models have evolved over years and new models that more
efficiently capture the requirements have been proposed [12,13]. Attribute-Based
Access Control (ABAC) is a more recent model that allows a fine-grained app-
roach to express access control requirements [14,15]. In cryptographic systems,
attribute-based encryption (ABE), first proposed by Sahai and Waters [16], are
proposed to allow access control based on attributes of decryptor. Goyal et al.
[17] introduced ciphertext policy attribute-based encryption (CP-ABE), where
each ciphertext is associated with an access structure. A user receives a secret
key associated with their set of attributes and is able to decrypt a ciphertext if
and only if their attributes satisfy the access structure of the ciphertext. Bethen-
court et al. [4] proposed the first CP-ABE construction using the generic bilinear
group model [18,19]. CP-ABE is then used in many privacy-preserving resource
sharing infrastructures including [20–24].

Using blockchain to store and enforce access control policies are given in
[25–27]. In [28], smart contracts are used for enforcing role-based access control
policies. The work of [29] uses smart contracts to establish an access control for
IoT systems. In [30], a blockchain-enabled decentralized capability-based access
control is proposed for propagation and revocation of the access authorization.
A multi-authority attribute-based access control scheme is proposed in [31]. The
work of [31] uses Ethereum smart contracts to develop an attribute-based access
control system. Smart contracts for access control have also been considered in
[32–34]. We motivate our work based on [3] and redesign it to ensure privacy of

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 487

user’s access and automating the user’s access. The set of smart contracts in our
work differs from [3], for example the ACC contract in [3] checks whether the
attributes of user match the stated access policy of the resource (enforcement of
policy is done on chain) whereas we use CP-ABE to evaluate the access policies
(so the enforcement of policy is done off-chain).

2 Preliminaries

In this section, we introduce our notations and the cryptographic primitives that
are central to our work.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE). A CP-
ABE scheme CP-ABE consists of four algorithms: (i) the setup algorithm
CP-ABE.Setup(1λ) that for a security parameter λ, generates the master secret
key msk and the system’s public key pkabe; (ii) the key generation algorithm
CP-ABE.KGen(1λ) that generates the CP-ABE private key skabe for a given
attribute set attr; (iii) the encryption algorithm CP-ABE.Enc that takes a mas-
sage m, and a policy P and produces the ciphertext cCP -ABE ; and (iv) the
decryption algorithm CP-ABE.Dec that takes a ciphertext cCP -ABE that is
obtained as above and a private key skabe and outputs m if attr, the associated
attribute set of skabe, satisfies the policy P , else returns ⊥. In our implementa-
tion we use Bethencourt et al. CP-ABE scheme [4].

Ring Signature: Ring signature [5] is an anonymous signature scheme that
hides a user’s public key among a set of N public keys, making the signer of the
message the holder of one of the N keys. A ring signature scheme RingS consists
of three algorithms: (i) A key generation algorithm RingS.KGen(1λ) that takes
the security parameter λ and produces a set R of N public and private key pairs
R = {(pki, ski), i ∈ {1, 2 · · · N}}; (ii) Signature generation algorithm RingS.Sig
signs a message m using the signer’s private key ski, and the public keys in R,
and outputs a ring signature σR; and (iii) RingS.Vf that takes public keys in R,
message m, and the signature σR as input and verifies the signature: if valid,
returns 1, else 0. A secure ring signature ensures anonymity, unlinkability, and
existential unforgeability.

Blockchain and Smart Contracts. A blockchain is a distributed ledger tech-
nology which stores data (transactions) in a growing chain of ordered blocks
that are securely and irreversibly linked to each other through a cryptographic
hash function. All peer nodes who run the system use a consensus algorithm
to agree on the validity and the order of blocks [35]. We consider permissioned
blockchains where the consensus algorithm is run by a set of privileged comput-
ing nodes, referred to as Blockchain Authorities (BA in this paper)1, that verify
transactions of users, and if verification succeeds, publish the result on the chain
based on an agreed consensus algorithm. The consensus algorithm is a Proof of
Authority algorithm that will be defined and agreed upon by the BAs at the

1 These nodes were referred to as C-nodes in [3].

488 S. Avizheh et al.

time of system setup. A permissioned blockchain is only accessible to registered
members of the system. In non-permissioned blockchain such as Ethereum [36]
anyone can join the blockchain and participate in the consensus algorithm.

Smart contract is a computer program that runs in a blockchain consensus com-
puting network [37]. Each program instruction is agreed upon through the con-
sensus algorithm and so the execution of the program will be trusted.

Randomness Beacon. A randomness beacon is a service that periodically gen-
erates and publishes (broadcasts) a random string. Randomness beacons must
be unpredictable, unbiased and available [38]. An additional desirable property
of randomness beacon is public verifiability that ensure the claimed randomness
of the beacon. An example of a randomness beacon is the NIST randomness
beacon [39] that uses hardware-generated randomness.

3 System Design

We consider three types of authorities: (i) Blockchain authorities, BAs, that
register users and issue certificates for users’ public keys (for a digital signa-
ture algorithm), authenticate users (cf. Sect. 3.2 for more details), and manage
interaction of users with the blockchain. Each BA also runs a randomness bea-
con service that broadcasts random numbers at regular intervals. BA publishes
two public keys, one public key is for verifying the signed certificates, and the
second public key is for an encryption algorithm that is employed by the users
to communicate with blockchain. (ii) Certificate authorities, CAs, verify users
attributes and objects’ properties, and issue the corresponding certificates for
them. CA is also responsible for checking the legal restrictions of the objects
and only issues certificate for valid objects. (iii) CP-ABE attribute authority,
CP -ABE AA, generates a master secret key msk and a system public key pkabe

for the CP-ABE cryptosystem, and publishes on the blockchain. It also generates
private keys for users (corresponding to their certified attributes).

Let Ao be a user who owns object O, and Br denote a user who makes a
request r. The resource owner Ao can deploy contracts for their objects on the
blockchain that will be visible to all registered users. A contract can hold the
information about multiple objects, and can be updated by Ao.

Owners will be represented by pseudonyms that can be mapped to their
identities by the BA who has registered the user and so are traceable by that
specific BA when they use their public keys.

User authentication to BA is through a challenge-response authentication
protocol between the user and the BA, where BA issues a random challenge,
and the user response is the signed challenge, together with the request. A user
can use their secret key to sign the request and the challenge, in which case
their pseudonym will be known by BA (the BA who has registered the user
additionally knows the real identity of the user), or use a ring signature for
anonymous authentication. The challenge in both cases is obtained by the latest
broadcasted randomness. More details on this protocol in Subsect. 3.2.

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 489

We consider five contracts in the system: User directory contract
(uDir), Object directory contract (oDir), object property repository contract
(objPropRep), object access control contract (objACC) and Adjudicator con-
tract (Adj). uDir, oDir, and Adj are deployed on the blockchain by BA when
the system is set up and they hold the information related to all users. objACC
and objPropRep are deployed by resource owners, upon sharing a resource. A
user Br who makes a request may receive an object that does not match its
advertised properties. In such cases, the requester can report misbehavior to BA
that is implemented by the Adjudicator contract. The details of contracts are
given in Subsect. 3.3.

3.1 Security Goals

We consider the following entities: (i) users, (ii) BA, (iii) CA and CP-ABE AA,
and (iv) outsiders.

Trust Assumptions. We assume BA is semi-honest: they follow the protocol but
want to infer information about users and their accesses. For example, BA may
link requesters and owners, or link requests of users. CA and CP-ABE AA are
fully trusted: they follow the protocol and manage the keys as required. Users
can deviate arbitrarily from the protocol: an owner may be unregistered, claim
properties that the object does not have, or provide invalid link to the object.
Users may be curious about others.

Security. The goal is to ensure that access to an object is only granted if (i)
the requester is registered, and (ii) the user’s specified access policy is satisfied.

Privacy. We consider two privacy requirements.

i. Registered users, BA, and outsiders cannot link the requester of an object
O to the object owner;

ii. Registered users, BA, and outsiders should not be able to link access
requests of users.

In our privacy analysis we consider two cases:

i. Pre-interaction case, where the system is ready to function (user registration
and advertising resources are complete) but no browsing or access request
has been made to the BA;

ii. Post-interaction case, where some successful interactions to view or access
objects have been made.

We define information leakage (privacy breach) of the system as the difference
between the views of an entity in the above two cases and what can be inferred
from it.

490 S. Avizheh et al.

3.2 Authentication and Requests

We use Beacon(t) as the challenge (random value) for user authentication across
the system for the time period [t, t + 1]. A user response will be generated
using the digital signature scheme DS = (DS.KGen, DS.Sig, DS.Vf) and user’s
private key, on a request that includes Beacon(t). For anonymous authentication,
a ring signature based on this signature scheme will be used. Steps of response
generation are as follows.

(i) Get auxiliary information that are required for sending a request to
blockchain (e.g. list of registered users for choosing the public key set setpk,
the pubic key of AuthServ for encryption).

(ii) Use rt = Beacon(t) where current time is in [t, t + 1].
(iii) Sign (pkTY P ||m||rt) where m is the request, rt is as defined above, and

pkTY P is the public key of signature type TY P ∈ {S, RS}, where S and
RS denote traditional digital signature and ring signature, respectively. Let
σ denote the signature value. The response is (m, r, σ, pkTY P).

We consider two types of requests, (i) non-anonymous requests, which are used
for browsing the blockchain2, and (ii) anonymous requests that target a specific
resource. For non-anonymous requests, pkTY P is the public key of the user3. For
anonymous requests, pkTY P is equal to a set setpk of public keys that belong to a
set of registered users in the system (it includes the public key of the requester),
and will be used in the ring signature.

We require transmitted request to the blockchain be encrypted with the BA’s
(precisely AuthServ) public key PkAS . Users will use pkAS to encrypt their
request to BA, C = Enc(pkAS , (m, r, σ, pkTY P)). Then, AuthServ decrypts
C, and verifies the requester and request as follows.

(i) Verify that r = Beacon(t) for the time interval [t, t + 1] that user is sending
the message.

(ii) Verify that pkTY P has been already recorded in uDir contract.
(iii) Verify σ based on the signature type specified by PkTY P , i.e., result =

DS.Vf(σ, pkTY P ||m||r, pkTY P). If result = 1 send (m, pkTY P) to
blockchain, otherwise send reject to the user.

Choosing Ring Members. We assume setpk comprises of two subsets setpk =
set1 ∪ set2; set1 contains public keys that are randomly chosen from the list of
registered users, and set2 is randomly selected public keys from the pkset of last
request issued to BA. We assume that the size of ring is determined based on
the total number of malicious users in the system such that it can guarantee in
each randomly chosen ring at least two parties are honest (the signer and one of
the ring members).

Due to the properties of the ring signature and random beacon, our authen-
tication system provides anonymity, unlinkability, existential unforgeability, and
real-time authentication (please see Appendix A for more details).
2 We highlight that the requests of resource owner to BA are also non-anonymous.
3 We can use the ring signature with ring size equal to 1 as a regular signature.

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 491

3.3 Smart Contracts

The details of contracts are given below (see Appendix C for abstract of con-
tracts). Note that all the contracts have a self-destruct method (to make the
contracts inaccessible) which can be called only by the contract owner.

User Directory Contract (uDir): This contract holds a table containing the
pseudonym and public key certificate (that includes the public key) of registered
users. These information can be browsed by requesters to form the set of public
keys setpk for the ring signature. This contract has the following interfaces:

– registerUser(): is used by AuthServ to set the information of registered
users.

– deleteUser(): is used by Adj contract (if a user misbehaves) or AuthServ
to delete the information about the user.

– getUsersInfo(): is used by requesters to get the information of registered
users in the system.

Object Directory Contract (oDir): This contract holds a table of object Id,
pseudonym and public key of the resource owner, description of the object,
address of the objACC contract, ABI of objACC contract, address of the
objPropRep contract, and ABI of the objPropRep contract (cf. Table 1). This
contract has the following interfaces:

Table 1. oDir contract

Oid pIdo pko ODesc objACC

address

objACC ABI objPropRep

address

objPropRep ABI

Mi Alice 0x456ab7 Cartoon, 90m, 0xfd45322 [setAccessInfo(Mi), ...] 0xab49871 [setPropertyInfo(Mi), ...)]

– registerResource(): is used by each resource owner to register their objects
and provide information for accessing the objects.

– updateResource(): is used by resource owners to update their resources.
Only the user whose public key has been stored in the table is able to update
the object.

– deleteResource(): is used by resource owners and Adj contract to delete
the information of the inaccessible objects.

– getContractInfo(): is used by requesters to retrieve the address and ABI
of the objACC and objPropRep for all objects.

– getAdvertiseInfo(): is used by objACC to get the advertisement info for a
specific object including the owners information and object description.

Object Property Repository Contract (objPropRep): This contract is
deployed by each resource owner and stores the list of objects, their properties,
and certificates (cf. Table 2). objPropRep has the following interface:

492 S. Avizheh et al.

Table 2. objPropRep table

Oid Properties Cert

Mi prop1, ..., propν certMi
CA

– setPropertyInfo(): is used only by the resource owner to add a new object
and its properties and certificates.

– getPropertyInfo(): is used by requesters and objACC contract to retrieve
the information of a specific resource. objACC only receives the properties of
the object, whereas requesters will receive both the properties and certificates
of the requested object.

– updatePropertyInfo(): is used only by the resource owner to update the
information of a specific object.

– deletePropertyInfo(): is used by the resource owner and Adj to remove
the information of the resources which are no longer accessible or valid.

Access Control Contract (objACC): This contract is deployed by each
resource owner to upload the ciphertexts (cf. Table 3) and policies that are
required for decrypting the CP-ABE ciphertext.

Table 3. objACC table

Oid Ciphertext Access policies

Mi cCP−ABE(M(cO)) Age > 6, Preference = local ∨ international, club membership = Club2

– addAccessInfo(): is used only by the resource owner to add a CP-ABE
encrypted metadata and its access policies.

– updateAccessInfo(): is used by the resource owner to update CP-ABE
encrypted metadata and policy for an object.

– deleteAccessInfo(): is used by the resource owner and Adj to remove the
information of objects that are not accessible or valid anymore.

– getAccessInfo(): is used by requesters to get the CP-ABE encrypted meta-
data and the access policies to decrypt CP-ABE metadata.

– setContractAddress(): is used by the owner to set the address of the
objPropRep and oDir contracts.

– getRequestHistory(): is used to retrieve the history of the requests that
has been made to the contract. Each objACC contract stores the requests,
i.e. the authentication information provided by the requester, the Oid of the
accessed object, and the time of the request.

Adjudicator Contract (Adj): This contract is used to record misbehaviors. It
keeps a table containing the Oid of the resource, the public key of the resource
owner, the misbehavior, time of report, and state of the complain. Note that
since we are ensuring anonymity for requesters Adj cannot be used to record
the misbehavior of requesters (unlike [3]). However, if a resource owner provides
invalid link, a requester can anonymously complain about it for further checks
by a trusted entity (verifier) that is determined by BA. (c.f. Table 4)

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 493

Table 4. Adj table

Oid pko Misbehavior Time State

Mi 0x4598abc678 Incorrect link 10:05 12/9/2020 Unchecked

– registerVerifier(): is used by BA to set a verifier(s) who can check the
complains.

– reportMisbehavior(): is used by requesters to complain about a resource
owner and object information.

– setMisbehaviorState(): is used by the specified verifier to set the result of
checking the misbehavior. Adj contract calls deleteResource(Mi) of oDir,
deletePropertyInfo(Mi) of objPropRep, and deleteAccessInfo(Mi) of
objACC contracts to delete the information about the resources that are
proved to be incorrect and calls deleteUser(pko) of uDir contract to delete
the resource owners who are misbehaving.

– getLatestMisbehavior(): is used by users to get the information of the
latest misbehavior for a specific resource owner.

3.4 Interactions of Users with System

There are three stages in our scheme (cf. AppendixB for the algorithm).

1. Registration:
(a) Each user with IdAo

(or similarly IdBr
for requester) chooses their

pseudonym pIdAo
and present it to the blockchain authority (BA) at the

time of registration and gets the public-private key pair (PkAo
, SkAo

) and
a certificate certBA

PkAo
(corresponding to user’s public key). Once the reg-

istration is complete, the BA publishes the list (pIdAo
, PkAo

, certBA
PkAo

)
to blockchain.

(b) User Ao contacts the certificate authority and gets certificate for their set
of attributes and the properties of the objects they hold.

(c) The user contacts CP-ABE AA and uses their public key certificate to
authenticate themselves, and obtain attribute private keys attached to
their pIdAo

(or PkAo
).

2. Advertising a resource (please refer to [40] for the flow of advertising a
resource):

(a) User Ao who is the resource owner wants to advertise a digital object O.
Ao encrypts the object O using a symmetric key, cO = Enc(k, O) and
uploads cO to the cloud.

(b) Next, Ao creates CP-ABE metadata (M(cO)). M(cO) consists of (i) addi-
tional resource content description, (ii) symmetric key k, and (iii) down-
load link of the resource content (link to encrypted file). Ao then encrypts
the M(cO) with policy PO using CP-ABE encryption scheme and gets the
encrypted metadata cCP -ABE(M(cO)).

(c) Ao deploys two contracts to share their objects: (i)objACC, and
(ii)objPropRep.

494 S. Avizheh et al.

(d) The blockchain authority (BA) deploys three contracts. (i) uDir, (ii) oDir,
and (iii) Adj.

(e) When Ao adds an object, or updates an object in objACC contract, objACC
retrieves the information of the objects, including objects descriptions
and properties, as well as Ao’s information, including its pseudonym and
public key from the oDir and objPropRep contracts and issues an event
to all registered users containing the advertisement information.

3. Request and access (see Fig. 1 for the flow of request and access):
(a) User Br browses uDir to obtain the list of registered users and chooses

the ring members according to Sect. 3.2. Then, Br browses oDir to find
an object O that they want to get access to that. User Br forms a request
(either for getting data from objPropRep contract or objACC contract)
that includes (Oid), signs it using a ring signature and sends it to BA.

(b) BA runs an authentication service (AuthServ). AuthServ verifies the
signed request, and if valid the respective contract (objPropRepO or
objACCO) returns the requested data to requester Br, where O is the
object (note that the response of anonymous requests are returned, in
encrypted form, to all ring members determined by Br upon making a
request). Br decrypts the CP-ABE metadata using their CP-ABE pri-
vate key and gets access to the object.

Fig. 1. Sequence diagram of requesting access from a resource requester.

4 Security and Privacy Analysis

For security we need to show that only registered users whose attributes match
the specified access policies of their requested object can obtain access. For privacy
we only consider post-interaction phase, and show that (i) no registered user or
BA is able to link a request to an existing resource owner, (ii) no registered
user or BA is able to link the access requests of a resource requester to their

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 495

previous requests, and (iii) no outsider can link the requests. For pre-interaction
phase, published contracts can be used to develop a profile of a resource owner’s
resources. Protection of this profile is not a design goal of the system.

Security. We consider four cases: (i) outsiders are not able to access the object,
(ii) requesters with attributes different from the access policies cannot get access
to the object, (iii) requesters who were a registered user in some point of time
but they have been removed from the system (for e.g. because of misbehaving)
are not able to get access to any object that matches their attributes later, and
(iv) honest requesters with attributes specified in access policies of an object can
get access to the object.

Case (i) is true since any entity who issues a request proves to BA that they
are a registered user, through the ring signature-based anonymous authentication
scheme. Due to the unforgeability of this scheme, an outsider adversary cannot
generate a valid ring signature for a new request. If the outsider adversary can
successfully capture one of honest user’s requests in time tm (by eavesdropping
the communication channel), it cannot use it in a later time tr > tm. The reason
is that the beacon value at time of request tr is different from the beacon value
at time tm and BA will reject the requests with stale random value.

Case (ii) is ensured because of the security of CP-ABE scheme. All registered
users can retrieve the CP-ABE encrypted metadata, but only the users with valid
CP-ABE private keys can decrypt it and get access to the object. The CP-ABE
private keys are issued by CP-ABE AA who is trusted, and generates private
keys after verifying the attribute certificates (which have been issued by trusted
CA).

Case (iii) is guaranteed because of the use of beacons in our authentica-
tion scheme. Note that we assume the private/public keys never expire, and a
CP-ABE encrypted metadata can be decrypted with any valid CP-ABE private
key. If we do not use beacon in our authentication scheme, any user who has
been removed from the system can capture other users’ requests (by eavesdrop-
ping on their communication channel to BA) and send it later in time. As the
authentication passes, attacker can get access to CP-ABE encrypted metadata
(which it can decrypt). However, we protect against this attack by using fresh
randomness. The copied requests will not pass the authentication, because we
assume the time duration for pulsating a new random value is less than the time
required for the attacker to copy a request, and hence the request contains a
stale random value, which will be rejected by BA.

Case (iv) is ensured because of the correctness property of the anonymous
authentication and CP-ABE scheme. The registered users can pass the authen-
tication and retrieve the CP-ABE encrypted metadata. Users who hold a valid
CP-ABE private key can decrypt the CP-ABE encrypted metadata correctly
and obtain the link to the object (if the resource owner is malicious and the link
is not correct, the requesters can report the misbehavior to Adj contract which
can be checked by verifiers of the system).

Privacy. We use the users’ and the BAs’ views to determine the privacy breach.
For pre-interaction privacy analysis, a registered user can see uDir, oDir, and

496 S. Avizheh et al.

owners contracts objPropRep and objACC and can develop a profile of the
resource owner only by analyzing the advertisement that is published by the
resource owner. As stated earlier we do not seek a solution for owners. We show
the privacy only for the post-interaction regime; (i) no registered user and BA
are able to link a request to an existing resource owner, (ii) no registered user and
BA are able to link the access requests of a resource requester to their previous
requests, and (iii) no outsider can link the requests.

Case (i) is guaranteed because resource requesters use anonymous authen-
tication to prove that they are registered users. Due to the anonymity of our
authentication scheme (described in Sect. 3.2), the public key of the requester
will not be revealed to BA. Additionally, BA only publishes the request of the
requester and its ring information to the blockchain. Therefore, other users can-
not determine who is the requester. Even if other users know the real identity
of a set of public keys in a given ring, since at least two honest parties exist in
each ring, for an honest requester the level of anonymity is equal to 1

2 in the
worst case. Malicious users are not able to choose invalid private/public keys in
order to break anonymity of the scheme, since we have a registration stage that
validates the generation of public keys.

Case (ii) is guaranteed because (a) the attributes of requester are not revealed
to BA (requester decrypts the CP-ABE encrypted metadata off-chain), and (b)
the unlinkability property of our anonymous authentication scheme (described in
Sect. 3.2). BA only sees a set of public keys (a ring) which consists of a subset of
public keys chosen from previous requests (rings have intersection) that provides
unlinkability for consecutive requests made by a requester.

Case (iii) is ensured since outsiders cannot see the requests sent to BA and
received by users (the requests are encrypted using the public key provided by
BA and the response messages are encrypted and returned to users that their
public keys exist in the issued request).

5 Implementation

In this section, we give details of our implementation for resource sharing in a
permissioned Ethereum network. The goal of our proof-of-concept implementa-
tion is to analyze the practicality of our proposed model by measuring the cost
(in time) of the cryptographic operations in our system and the cost (in gas) for
the blockchain operations.

5.1 System Setup

Actors: We consider users (e.g., resource owner and resource requester),
a blockchain authority, a certificate authority and a CP-ABE attribute
authority.

Blockchain Setup: For proof of concept implementation, we use a private
(permissioned) Ethereum blockchain to set up the required blockchain infras-
tructure that will be maintained by the blockchain authorities (BA). BA deploys

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 497

the smart contracts (uDir, oDir and Adj) and Ao deploys the smart contracts
(objPropRep and objACC), in the blockchain.

Crypto Tools: We use OpenSSL library [41] for creating certificates, object
identifier (Oid) (using SHA256), and generating public-private key pairs. In
addition, for the symmetric key encryption scheme, we use OpenSSL library sup-
ported AES-256-CBC encryption scheme. For the ring signature we use imple-
mentation of the original algorithm by Rivest et al. [5] and for CP-ABE we use
CP-ABE toolkit supported by advanced crypto software collection service [42].

Device specification: We evaluate the performance of our system on Windows
10 with a 3.60 GHz Intel Core i7 CPU and 8 GB RAM.

Smart contracts in the system: We consider the five smart contracts pro-
posed in Sect. 3.3. All the smart contracts are written in Solidity language and
developed using the remix IDE. Abstracts of these contracts are given in the
AppendixC4.

5.2 Evaluation

To show the practicality of our proposed scheme, we measured the user’s cost
in different phases: (i) registration, (ii) resource advertising and (iii) resource
request. We implemented an example scenario of a movie sharing for our eval-
uation (see [40] for the example details). We used Ganache [6], as a private
(permissioned) Ethereum blockchain, Remix IDE [7] for writing the smart con-
tracts in Solidity and Truffle to deploy and run experiments.

For registration, we measure the cost in terms of time. Table 5 shows the
average time required for each user to generate the RSA keys along with the
(fixed) size of the keys.

For resource advertising, we used AES-256-CBC encryption scheme on the
object “Tom’s Trip to Moon” of size 16MB and used CP-ABE encryption scheme
to get the CP-ABE metadata. Note that the size of the CP-ABE encrypted
metadata depends only on the size of the access policies and it is independent
of the object size. The reason is that the CP-ABE encrypted metadata contains
the symmetric encryption key (e.g., AES 256-bit key) and the link to the object.
The encryption and key generation times are shown in Table 5 with size of the
outputs for each of these operations. Using the CP-ABE toolkit, it takes 0.023
seconds to generate master and CP-ABE public key. The size of master key is
156 bytes and the size of public key is 888 byte (in total 1044 byte). Moreover,
each Ethereum operation is associated with an explicit cost which is expressed
in gas [37]. We measure the cost (in terms of gas) of program execution in
Ethereum blockchain by the resource owner for deploying two smart contracts
and for executing different functions (e.g., add, update or delete) in the smart
contracts. Table 6 shows the gas required for each of the mentioned tasks.

4 The codes of our smart contracts are available in [40].

498 S. Avizheh et al.

Table 5. Cost of cryptographic
operations

Algorithm Time (ms.) Size (bytes) Actor

Public key

generation

(RSA)

0.055 451 Ao, Br

AES

Encryption

10.704 6361840 Ao

AES

Decryption

5.266 6361816 Br

CP-ABE

private key

generation

1.526 71353 Ao

CP-ABE

private key

generation

2.526 119227 Br

CP-ABE

encryption

75.177 4024 Ao

CP-ABE

decryption

0.107 496 Br

Ring

signature

generation

2.834 4981 Br

Ring

signature

verification

1.513 - BA

Certificate

generation

25.23 1009 BA

Table 6. Cost of blockchain operations (by
resource owner)

Tasks objACC (gas) objProRep (gas) oDir (gas)

Deployment 1070938 1064347 NA

Add 1307190 1243438 NA

Update 437233 418354 NA

Delete 159076 151414 NA

RegisterResource NA NA 614273

In case of a resource request, the costs includes the CP-ABE key generation,
ring signature generation and CP-ABE decryption which are shown in Table 5.
During this phase, for authentication, the BA sends a challenge (i.e., a ran-
dom string) of size 512 bits to the requester, and the requester responds with
a transaction (signed using ring signature with ring size 10) that includes this
challenge value. The requester also needs to make calls to smart contract func-
tions in order to get the required object information (e.g., CP-ABE encrypted
metadata, object access policy etc.). Since these function calls does not alter the
state of the blockchain (i.e., does not change any variable’s value in the contract),
there is no cost associated to these calls.

In summary, our proof of concept implementation results in Table 5 shows
that the overhead for the cryptographic operations are not high. In addition,
it should be noted that, although we measured the gas cost of the smart con-
tract function execution in Table 6, for our model, this cost is not vital as we
consider a permissioned blockchain setting. The goal is to estimate the com-
plexity of operations performed on blockchain, provide a benchmark for possible
future comparisons, and show the concrete cost in case the smart contracts are
deployed on a public blockchain. Overall, the values in the tables indicate that
our proposed model is feasible for developing real-world applications.

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 499

6 Concluding Remarks

We designed and provided a proof of concept implementation of a blockchain-
based privacy-preserving resource sharing platform that enforces user defined
attribute-based access policies. Our design uses cryptographic algorithms to pro-
vide privacy and direct enforcement of access policies. By leveraging these prim-
itives one needs to balance security and efficiency. For example increasing the
level of anonymity will decrease the efficiency of system, since the time required
for generating and verifying ring signature will increase with the size of the
anonymity set.

There are limitations in our design that can be addressed in future work.
Firstly, using CP-ABE for enforcing policies requires users to obtain their private
keys from CP -ABE AA which results in a single point of trust for the system
(allowing CP -ABE AA to be able to access all the resources). Distributing this
role among multiple authorities using multi-authority ABE schemes [43,44] can
significantly improve this limitation. A second challenge in using CP-ABE is the
change in the user attributes that will affect their private keys. Efficient updating
of users’ private keys to reflect their current attribute sets, will be an interesting
direction for future research also.

Our work can be extended in a number of ways including, providing
anonymity for the resource provider, developing the platform into a marketplace
by linking it to a cryptocurrency, providing an effective support for adjudication
and handling of complaints, and formal analysis of the system’s security and
privacy.

A On the Security of Anyonymous Authentication

We consider a ring signature that provides basic anonymity, unlinkability, and
existential unforgeability (for the formal definitions please see [45]). Because we
have a registration authority which checks the validity of generated keys, and we
assume that there are at least two honest members in the ring, the ring signa-
ture is not vulnerable to adversarially-chosen key attacks and basic anonymity is
sufficient for our system. Choosing part of the ring randomly prevents the BAs
from finding a pattern for the ring used by a particular requester in multiple
requests and ensures that anonymity is preserved even in multiple executions of
the protocol. Additionally, We assume that the random challenge that is con-
catenated with the message is unpredictable and unbiasable, and it can provide
real-time authentication for users. However, in our authentication scheme, all
users that are making request in the same time interval use the same random
challenge, this is different from existing point to point authentication schemes.
The question is whether the multicast of the challenge random value can give an
opportunity to the attacker to break the security of the scheme, specifically, to
an outsider to replay the message of an honest user. However, we assume that
the time interval for generating a beacon is less than the time that is needed
for the attacker to capture and resend the message to BA. So, if attacker sends

500 S. Avizheh et al.

the copied message the authentication fails. For unlinkability, we consider that
the chosen rings by different (or even same) requesters has intersection with
each other and provides some level of mixing. This prevents the BAs to link the
consecutive requests from a requester.

B Interactions in Different Phases

The interactions between different entities of our system are shown in the follow-
ing Algorithm 1 where the highlighted lines represent the interactions that involve
blockchain.

Algorithm 1. Interactions in proposed resource sharing system.
(Registration) */

1: User A chooses pseudonym pidA and (pkA, skA)
2: A → BA: pidA, (PKA, SKA)

3: BA → A: cert
pkA
BA

4: BA: deploy contract uDir

5: BA → uDir: registerUser (pidA, pkA, cert
pkA
BA)

6: A → CA: request certificates
7: CA → A: certificate for user attribute and propO � propO : properties of object O
8: A → CP − ABEAA: register(certBA

pkA
)

9: CP -ABEAA → A: (pkA
CP−ABE , skA

CP−ABE)

(Advertising resource) */
10: A: get cO = Enc(k, O) and upload cO to cloud

11: A: create CP-ABE metadata (M(cO)), and encrypt it to cCP−ABE(M(cO))

12: A: deploy objPropRep contract with (O, propO, certCA
O)

13: A: deploy objACC contract with (O, accO, cCP−ABE(M(cO)))

14: BA: deploy user directory contract (uDir) and object directory contract (oDir)

15: A → oDir: registerResource(Oid, pid, pkA, ODesc, address and ABI of objACC and objPropRep)

Requesting an access */
16: A → oDir: Oid

17: oDir → A: (object description, address of objACC/objPropRep)

18: A → objACC/objPropRep: Oid

19: objPropRep → A: (properties, certificate)

20: objACC → A: encrypted metadata (cCP−ABE(M(cO))), policies (accO)

21: A: decrypt cCP−ABE(M(cO)) using its secret key skA
CP−ABE

C Smart Contracts in Our System

We have five smart contracts and the abstract of these contracts are given below
(cf. Algorithms 2 to 6).

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 501

Algorithm 2. Abstract uDir smart contract.
contract uDir {

constructor (address Adjudicator);
modifier (onlyAuthServ, onlyAdjAuth, onlyBA);
function registerUser (string pseudonym, string pk, string certificate) onlyAuthServ public
function deleteUser(string pk) onlyAdjAuth public
function getUsersInfo(string pk) public
function selfDestruct() onlyBA public }

Algorithm 3. Abstract oDir smart contract.
contract oDir {

constructor (address Adjudicator);
modifier (onlyObjectOwner, onlyOwnerAdj, onlyBA);
function registerResource (bytes32 Oid, string pid, string pk, string Desc, address

ACC addr, string ACC abi, address PR addr, string PR abi) public
function updateResource(bytes32 Oid, string desc) onlyObjectOwner public
function deleteResource(bytes32 Oid) onlyOwnerAdj public
function getContractInfo(bytes32 Oid) public
function getAdvertiseInfo(bytes32 Oid) public
function selfDestruct() onlyBA public }

Algorithm 4. Abstract objPropRep smart contract.
contract objPropRep {

constructor (address objACC);
modifier (onlyOwner, onlyOwnerAdj);
function setPropertyInfo (bytes32 Oid, string properties, string certificate) onlyOwner

public
function updatePropertyInfo(bytes32 Oid, string properties, string certificate) onlyOwner

public
function deletePropertyInfo(bytes32 Oid) onlyOwnerAdj public
function getPropertyInfo(bytes32 Oid) public
function selfDestruct() onlyOwner public }

Algorithm 5. Abstract objACC smart contract.
contract objACC {

constructor ();
modifier (onlyOwner, onlyOwnerAdj);
function addAccessInfo (bytes32 Oid, string CM , string[] policy) onlyOwner public
function updateAccessInfo(bytes32 Oid, string CM , string[] policy) onlyOwner public
function deleteAccessInfo(bytes32 Oid) onlyOwnerAdj public
function getAccessInfo(bytes32 Oid) public
function setContractAddress(address oPropRep, address oDir) onlyOwner public
function getRequestHistory(bytes32 Oid) public
function selfDestruct() onlyOwner public }

Algorithm 6. Abstract Adj smart contract.
contract Adj {

constructor ();
modifier (onlyBA, onlyVerifier);
function registerVerifier (address verifier) onlyBA public
function reportMisbehavior(bytes32 Oid, string pk, string misbehaviour, uint time) public
function setMisbehaviorState(string state, bytes32 Oid, string pk) onlyVerifier public
function getLatestMisbehavior(string pk) public
function selfDestruct() onlyBA public }

502 S. Avizheh et al.

References

1. Airbnb, Inc.: Vacation rental company (2020). https://www.airbnb.com
2. Uber Technologies, Inc.: Transport company (2020). https://www.uber.com
3. Muni Venkateswarlu, K., Avizheh, S., Safavi-Naini, R.: A blockchain based app-

roach to resource sharing in smart neighbourhoods. In: Bernhard, M., et al. (eds.)
FC 2020. LNCS, vol. 12063, pp. 550–567. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-54455-3 39

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334.
IEEE (2007)

5. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

6. Ganache: Ganache one click blockchain (2019). https://www.trufflesuite.com/
ganache

7. Remix: Remix-solidity ide (2019). https://remix.ethereum.org
8. Daemen, J., Rijmen, V.: Announcing the advanced encryption standard (AES). In:

Federal Information Processing Standards Publication 197, pp. 1–51, 3 (2001)
9. Baiardi, F., Falleni, A., Granchi, R., Martinelli, F., Petrocchi, M., Vaccarelli, A.:

SEAS, a secure e-voting protocol: design and implementation. Comput. Secur.
24(8), 642–652 (2005)

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Xie, Q., Hengartner, U.: Privacy-preserving matchmaking for mobile social net-
working secure against malicious users. In: 2011 9th Annual International Confer-
ence on Privacy, Security and Trust, pp. 252–259. IEEE (2011)

12. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

13. Sandhu, R.S.: Role-based access control. In: Advances in Computers, vol. 46, pp.
237–286. Elsevier (1998)

14. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST Special Publication 800-162 (2013)

15. Ahmed, T., Sandhu, R., Park, J.: Classifying and comparing attribute-based and
relationship-based access control. In: Proceedings of the 7th ACM on Conference
on Data and Application Security and Privacy, pp. 59–70 (2017)

16. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 (2006)

18. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

19. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

20. Narayan, S., Gagné, M., Safavi-Naini, R.: Privacy preserving EHR system using
attribute-based infrastructure. In: Proceedings of the 2010 ACM Workshop on
Cloud Computing Security Workshop, pp. 47–52 (2010)

https://www.airbnb.com
https://www.uber.com
https://doi.org/10.1007/978-3-030-54455-3_39
https://doi.org/10.1007/978-3-030-54455-3_39
https://doi.org/10.1007/3-540-45682-1_32
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://remix.ethereum.org
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-69053-0_18

Privacy-Preserving Resource Sharing Using Permissioned Blockchains 503

21. Wan, Z., Deng, R.H., et al.: HASBE: a hierarchical attribute-based solution for
flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics
Secur. 7(2), 743–754 (2011)

22. Jung, T., Li, X.-Y., Wan, Z., Wan, M.: Privacy preserving cloud data access with
multi-authorities. In: 2013 Proceedings IEEE INFOCOM, pp. 2625–2633. IEEE
(2013)

23. Belguith, S., Kaaniche, N., Jemai, A., Laurent, M., Attia, R.: PAbAC: a privacy
preserving attribute based framework for fine grained access control in clouds. In:
13th International Conference on Security and Cryptography, SECRYPT 2016,
vol. 4, pp. 133–146. SciTePress (2016)

24. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

25. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: using blockchain to protect
personal data. In: 2015 IEEE Security and Privacy Workshops, pp. 180–184. IEEE
(2015)

26. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access control.
In: Chen, L.Y., Reiser, H.P. (eds.) DAIS 2017. LNCS, vol. 10320, pp. 206–220.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59665-5 15

27. Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: FairAccess: a new blockchain-based
access control framework for the internet of things. Secur. Commun. Netw. 9(18),
5943–5964 (2016)

28. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access
control for the internet of things. IEEE IoT J. 6(2), 1594–1605 (2018)

29. Cruz, J.P., Kaji, Y., Yanai, N.: RBAC-SC: role-based access control using smart
contract. IEEE Access 6, 12240–12251 (2018)

30. Xu, R., Chen, Y., Blasch, E., Chen, G.: BlendCAC: a blockchain-enabled decentral-
ized capability-based access control for IoTs. In: 2018 IEEE International Confer-
ence on Internet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pp. 1027–1034. IEEE (2018)

31. Guo, H., Meamari, E., Shen, C.-C.: Multi-authority attribute-based access con-
trol with smart contract. In: Proceedings of the 2019 International Conference on
Blockchain Technology, pp. 6–11 (2019)

32. Maesa, D.D.F., Mori, P., Ricci, L.: Blockchain based access control services. In:
2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1379–
1386. IEEE (2018)

33. Maesa, D.D.F., Mori, P., Ricci, L.: A blockchain based approach for the definition
of auditable access control systems. Comput. Secur. 84, 93–119 (2019)

34. Tapas, N., Longo, F., Merlino, G., Puliafito, A.: Experimenting with smart con-
tracts for access control and delegation in IoT. Fut. Gener. Comput. Syst. 111,
324–338 (2020)

35. Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in
blockchain. IEEE Access 7, 148550–148575 (2019)

36. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform, white paper (2014)

37. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, vol. 151, pp. 1–32 (2014)

https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-319-59665-5_15

504 S. Avizheh et al.

38. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptol. ePrint Arch. 2015, 1015 (2015)

39. Kelsey, J., Brandão, L.T., Peralta, R., Booth, H.: A reference for randomness
beacons: format and protocol version 2, Technical report, National Institute of
Standards and Technology (2019)

40. Code: Privacy-preserving resource sharing (2021). https://github.com/mnr-18/
Privacy-preserving-Resource-Sharing

41. The OpenSSL Project: OpenSSL: The open source toolkit for SSL/TLS. www.
openssl.org. Accessed April 2003

42. Bethencourt, J.: Advanced Crypto Software Collection. http://acsc.cs.utexas.edu/
cpabe/. Accessed December 2006

43. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 28

44. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 121–130 (2009)

45. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

https://github.com/mnr-18/Privacy-preserving-Resource-Sharing
https://github.com/mnr-18/Privacy-preserving-Resource-Sharing
www.openssl.org
www.openssl.org
http://acsc.cs.utexas.edu/cpabe/
http://acsc.cs.utexas.edu/cpabe/
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4

WWTSC – Attacks’ Analysis

SoK: Algorithmic Incentive Manipulation
Attacks on Permissionless PoW

Cryptocurrencies

Aljosha Judmayer1,2(B), Nicholas Stifter1,2, Alexei Zamyatin3, Itay Tsabary4,
Ittay Eyal4, Peter Gaži5, Sarah Meiklejohn6, and Edgar Weippl2

1 SBA Research, Vienna, Austria
{ajudmayer,nstifter}@sba-research.org

2 Uni Wien, Vienna, Austria
edgar.weippl@univie.ac.at

3 Imperial College London, London, England
a.zamyatin@imperial.ac.uk

4 Technion and IC3, Haifa, Israel
Ittay@technion.ac.il

5 IOHK, Singapore, Singapore
peter.gazi@iohk.io

6 University College London, London, England
s.meiklejohn@ucl.ac.uk

Abstract. A long standing question in the context of cryptocurrencies
based on Nakamoto consensus is whether such constructions are incen-
tive compatible, i.e., the intended properties of the system emerge from
the appropriate utility model for participants. Bribing and other related
attacks, such as front-running or Goldfinger attacks, aim to directly influ-
ence the incentives of actors within (or outside) of the targeted cryptocur-
rency system. The theoretical possibility of bribing attacks on cryptocur-
rencies was discussed early on in the cryptocurrency community and
various different techniques and approaches have since been proposed.
Some of these attacks are designed to gain in-band profits, while oth-
ers intend to break the mechanism design and render the cryptocurrency
worthless. In this paper, we systematically expose the large but scattered
body of research in this area which has accumulated over the years. We
summarize these bribing attacks and similar techniques that leverage
on programmatic execution and verification under the term algorithmic
incentive manipulation (AIM) attacks, and show that the problem space
is not yet fully explored. Based on our analysis we present several research
gaps and opportunities that warrant further investigation. In particular,
we highlight no- and near-fork attacks as a powerful, yet largely under-
estimated, AIM category that raises serious security concerns not only
for smart contract platforms.

Keywords: Algorithmic incentive manipulation · Cryptocurrencies ·
Bribing · Goldfinger · Front-running

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 507–532, 2021.
https://doi.org/10.1007/978-3-662-63958-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_38&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_38

508 A. Judmayer et al.

1 Introduction

Bitcoin, and most of its cryptocurrency descendants, is based on what is termed
Nakamoto consensus [16,47,55]. In a nutshell, Nakamoto consensus enables any-
one to initiate valid state transitions to a replicated state machine if they solve a
cryptographic puzzle of sufficient hardness that depends on the prior state. This
is usually implemented by appending a block of ordered transactions and an
appropriate proof-of-work [21] to a directed rooted and cryptographically linked
tree of other blocks. The path to the leaf with the highest depth (resp. difficulty)
is called the longest (heaviest) chain and thus the current state of the system.

A crucial part of this so-called permissionless [60] consensus concept is the
utilization of incentives in the protocol design to provide a motivation for miners
to participate. A long-standing question in this regard is whether or not this con-
struction is incentive compatible, i.e., that the intended properties of the system
emerge from the appropriate utility model for miners [14,15]. As Nakamoto did
not provide a formal description of the protocol in [47], several attempts towards
formalization1 have been made to prove certain security properties of the pro-
tocol. Thereby, most approaches, such as [13,26,28,48], do assume a sufficient
honest majority of miners without considering incentives, or like [12] explicitly
do not consider bribing attacks to manipulate incentives of participants.

Bribing attacks target incentive compatibility and assume that at least some
miners accept bribes to maximize their profit. Hereby, bribing not necessarily
refers to illegal activity, but merely that a payment is made in exchange for a
certain action [15]. If the attacker, together with all bribable miners, can gain
a sizable portion of the computational power even for a short period of time,
attacks are likely to succeed. To the best of our knowledge, the first discussions
of bribery attacks on Bitcoin date back to a bitcointalk forum post from 2012 by
a user called cunicula [18]. Since then attacks on incentives in cryptocurrencies
have been sporadically discussed in the cryptocurrency community [11,40], with
the first peer reviewed paper on the subject presented in 2016 by Bonneau [14].
Over the years several different techniques and approaches of bribing attacks
have been proposed [11,14,18,31,32,37,40,42–44,56,58,59,61]. These proposals
vary regarding their system models, technical methods and evaluation criteria,
which makes comparing them a challenging task. What all this approaches have
in common is that they are targeted to manipulate the incentives of actors in
the cryptocurrency ecosystem.

All these attacks, as well as meta arguments [14,15,17,25,36] and recent
research [19,35] have fueled the debate around incentives in Nakamoto consen-
sus. A key observation hereby noted in Bonneau [14] and Budish [17] is, that
the security guarantees of Nakamoto consensus against bribing attacks to facil-
itate double-spending, are linear in the number of blocks and the expenditure
on mining power to produce them (in terms of financial resources required).
In contrast, the achievable security guarantees of many other investments in
IT security, like for example traditional usage of cryptography, are designed to

1 For a summary see [55].

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 509

“yield convex returns” [17]. Large scale temporary majority attacks, in which an
attacker overtakes a cryptocurrency for a short period of time, have gained fur-
ther practical importance as they have been observed more frequently in recent
history [5,6,8,9].

Lately, also other attempts to manipulate incentives targeted to influence the
order of transactions within a not yet mined block [19,22,32] (front-running),
or to exclude transactions [32,61] have received increased attention, as some less
sophisticated variants of them have been observed in the wild already [4,19].
These attacks show that the security properties of Nakamoto consensus under
real-world incentives are still not fully understood, not only by cryptocurrency
users and smart contract developers, but also in the research community.

This paper aims to systematize the landscape of research on attacks that tar-
get the incentives of actors within – and through the use of – cryptocurrencies.
To systematically expose the large body of research on bribing-, front-running-
Goldfinger- and other related attacks, we jointly consider them under the gen-
eral term algorithmic incentive manipulation attacks (AIM). Thereby, we want
to distinguish programmatic ways to setup and execute incentive attacks on
cryptocurrencies using cryptocurrencies, from “classical” bribing attacks, like
for example using a suitcase full of cash to bribe miners, as the latter does not
require technical means, but at the same time lacks technical enforcement [14].
The classification of AIM attacks in this paper forms a necessary prerequisite
and basis for the comparison and discussion of work in this field – being it attacks
or meta arguments. In summary, our contributions are:

1. A definition of algorithmic incentive manipulation (AIM) providing a unified
view of different approaches targeting the incentives of actors.

2. A generalized attack model for AIM.
3. A classification framework for AIM that is applicable to describe a broad

class of attacks.
4. A classification of existing AIM approaches and discussion of main observa-

tions and gaps.

1.1 Structure of This Work

We start by giving a definition of AIM in Sect. 2. Next, in Sect. 3, we provide a
generalized attack model that can be readily applied to most presented attacks
by adjusting the provided parameters. We then present the main classification
criteria for AIM in Sect. 4. The classification and analysis of existing attacks
is provided in Sect. 5, by comparing them property by property. In Sect. 6 we
highlight the challenges when comparing costs and profits of AIM attacks. We
conclude by discussing the relation of AIM to other ways of gaining capacity in
Nakamoto consensus and present directions for future work in Sect. 7.

2 Algorithmic Incentive Manipulation

To meaningfully partake in a Nakamoto consensus protocol, a certain capacity
of a scarce resource is required. In case of Proof-of-Work (PoW) these resources

510 A. Judmayer et al.

are mining hardware and electricity to solve cryptographic puzzles. In [15] the
different ways to gain capacity in Nakamoto consensus are grouped into four
different strategies: rent, bribe, build and buy out. It is well known, that an actor
who builds a new datacenter running specialized mining hardware, or rents GPU
clusters, or buys existing mining hardware from current miners can increase
his influence on the targeted cryptocurrency and thereby (depending on his
resources) potentially launch attacks [15,17]. This permissionlessness [60] which
allows such kinds of attacks is a desired property of Nakamoto consensus based
on PoW2.

In this paper we want to focus on methods of algorithmic incentive manip-
ulation (AIM) to gain capacity in permissionless PoW based cryptocurrencies,
as all existing attacks which fall into this category – and are classified in this
paper – explicitly target PoW systems. Algorithmic or “virtual” methods of
gaining capacity rely on the usage of game theory and cryptocurrencies to per-
form payments which are cryptographically secured and dependent on certain
conditions. This ability of cryptocurrencies to tie payments to the fulfillment of
certain conditions, like for example the existence of prior transactions, or the
successful execution of smart contract invocations, are a way to promise credible
but conditioned payments.

Utilizing such techniques, AIM methods do not involve the physical transfer
of resources, like buying, or building and maintaining hardware. Instead, these
methods assume that at least some fraction of actors within, or outside of the
system behaves rationally in the sense that they want to maximize their short-
term profits3. Some approaches for AIM have been referred to as bribing, but
AIM goes beyond of what is currently viewed as a bribing attack in the literature,
as they should incorporate Goldfinger [38] and front-running [19,22] attacks as
well. Therefore our broader definition is as follows:

Definition 1. Algorithmic Incentive Manipulation (AIM) utilizes either cred-
ible threats, or conditioned rewards denominated in cryptocurrency units, to
incentivize certain actions, within a targeted cryptocurrency system, to be taken
by capable actors.

Hereby, the definition of capable actor depends on the requirements of the con-
crete attack, as well as the targeted system. For most attacks, the timely creation
and submission of valid PoW solutions – complying to the required difficulty – is
necessary to qualify as a capable actor. If the target would be a Proof-of-Stake
(PoS) cryptocurrency for example, a capable actor would be required to control
voting stake.

2 In comparison, in proof-of-stake (PoS) cryptocurrencies it would not be possible to
rent or build new capacity, as all stake eligible for voting has to exist in the system
already [15].

3 For a discussion on rationality in this context see, Sect. 7.

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 511

3 Generalized Attack Model for AIM

For all analyzed AIM attacks we describe the following generalized attack model,
which can readily be applied in most cases.4 If an analyzed attack deviates from
this model, it is highlighted in detail when the attack is described.

As most bribing and related attacks in this area are designed to target Bit-
coin, Ethereum, or other derived cryptocurrencies, we also focus in our model
on AIM in permissionless [60] proof-of-work (PoW) cryptocurrencies. That is,
we assume protocols adhering to the design principles of Bitcoin, or its back-
bone protocol [27,47,48], which is sometimes referred to as Nakamoto consen-
sus [20,55]. Within the attacked cryptocurrency we differentiate between miners,
who participate in the consensus protocol and attempt to solve PoW-puzzles,
and clients, who do not engage in such activities. As in previous work on brib-
ing attacks [14,42,44,56], the set of miners is assumed to be fixed, as well as
their respective computational power within the network is assumed to remain
constant.

To abstract from currency details, we use the term value as a universal
denomination for the purchasing power of a certain amount of cryptocurrency
units or any other out-of-band funds such as fiat currency. Miners and clients
may own cryptocurrency units and are able to transfer them (i.e., their value)
by creating and broadcasting valid transactions within the network. Moreover,
in most prior work [42,44,57] the simplifying assumption is made that exchange
rates remain constant over the duration of the attack.

Actors. Our generalized attack model splits participating miners into three
groups and their roles remain static for the attack duration. Categories fol-
low the BAR (Byzantine, Altruistic, Rational) [10,41] rational behavior model.
Additionally, we define the victim(s) as another group or individual without
hashrate.

– Byzantine miners or attacker (s): The attacker B wants to execute an
AIM attack on a target cryptocurrency. B is in control of bribing funds fB > 0
that can be in-band or out-of-band, depending on the attack scenario. He has
some or no hashrate pB ≥ 0 in the target cryptocurrency. The attacker may
deviate arbitrarily from the protocol rules.

– Altruistic or honest miner (s): Altruistic miners A are honest and always
follow the protocol rules, hence they will not accept bribes to mine on a dif-
ferent chain-state or deviate from the rules, even if it would offer larger profit.
Miners A control some or no hashrate pA ≥ 0 in the target cryptocurrency.

– Rational or bribable miner (s): Rational miners R control hashrate
pR > 0 in the target cryptocurrency. They aim to maximize their short term
profits in terms of value. We consider such miners “bribable”, i.e., they follow

4 Only the Proof-of-Stale blocks [43,59] attack, as well as Fomo 3D [4] are funda-
mentally different: The former is targeted to attack mining pools, while the latter is
designed as an exit scam, but can also lead to scenarios resembling an attack.

512 A. Judmayer et al.

strategies that deviate from the protocol rules as long as they are expected
to yield higher profits than being honest. For our analyses we assume that
rational miners do not concurrently engage in other rational strategies such
as selfish mining [24].

– Victim (s): The set of victims or a single victim, which loses value if the
bribing attack is to be successful. The victims control zero hashrate, and
therefore can be viewed as a client.

It holds that pB + pA + pR = 1. The assumption that the victim of a AIM
attack has no hashrate is plausible, as the majority of transaction in Bitcoin or
Ethereum are made by clients which do not have any hashrate in the system
they are using. Nonetheless, this assumption is often left implicit (e.g. [42]).

Some bribing attacks (e.g. [56]) implicitly model victims (in this case the
betrayed collaborators of the double-spending attack) as honest, i.e., as strictly
following the protocol. We emphasise that this is not necessarily the case, espe-
cially if economically rational counter-attacks by the victim should be considered.
This distinction between rational and honest victims is more important if V is
in possession of some hashrate, but even in a setting where V has no hashrate,
he can use his funds (fV) for counter attacks.

Whenever we refer to an attack as trustless, we imply that no trusted third
party is needed between the briber and the bribee to ensure correct payments
are performed for the desired actions. It is clearly desirable from the attacker’s
perspective to design AIM attacks in a way that the attacker (s) as well as the
collaborating miners have no incentive to betray each other if they are econom-
ically rational.

Communication and Timing. As previous AIM attacks, we assume that all
miners in the target cryptocurrency have perfect knowledge about the attack once
it has started, if not stated differently. Miners with imperfect information can be
modelled by adding their respective hashrate to the hashrate of altruistic miners
(pA). All participants communicate through message passing over a peer-to-peer
gossip network, which we assume implements a reliable broadcast functionality.
This does not mean, that every transmitted transaction will make it into the
next block, as the block size is bounded by the underlying blockchain protocol.
Analogous to [27], we model the adversary as “rushing”, meaning that he gets
to see all other players’ messages before he decides his on strategy.

If more than one cryptocurrency is involved in the considered scenario, for
example when out-of-band payments should be performed in another cryptocur-
rency, an additional funding cryptocurrency is assumed. While the attack is
performed on a target cryptocurrency, the funding cryptocurrency is used to
orchestrate and fund it. In such a case, we also assume that the difficulty and
thus the mean block interval of the funding chain is fixed for the duration of the
attack. Further, no additional attacks are concurrently being launched against
either of the cryptocurrencies.

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 513

4 Classification Framework for AIM

We first introduce a general classification along four main dimensions: the state
of the targeted transaction(s); the intended impact on these transactions; the
required interference with consensus, i.e., the depth of blockchain reorganiza-
tions caused by forks for the attack to be successful; and finally the used pay-
ment methods. Besides these main distinguishing properties, there are also other
characteristics which are introduced when they become relevant during the clas-
sification of existing AIM attacks in Sect. 5. To get a feel for our classification
framework and the herein introduced dimensions, see Sect.A for an example
usage.

4.1 State of Targeted Transactions

A core goal for permissionless PoW cryptocurrencies is to achieve an (eventu-
ally) consistent and totally ordered log of transactions that define the global
state of the shared ledger. Therefore, our classification uses a transaction-centric
viewpoint to systematize different attacks and their relation to the underlying
consensus. We differentiate between three states a transaction can be in from
the perspective of a participant (miner or client):

– unconfirmed5, the transaction has been broadcasted in the respective P2P
network;

– confirmed, the transaction has been confirmed by at least one block, i.e.,
has been included in a block;

– settled, the transaction has been confirmed by at least k blocks, where k
is defined by the recipient of the transaction. We denote kparticipant to refer
to the confirmation policy of a participant if it is not clear from the context
e.g., kV denotes the confirmation policy of the victim.

4.2 Intended Impact/Influence on Transactions

We further separate between the following four main types of how AIM can have
an influence on transactions and their ordering:

– transaction revision, change a previously proposed, possibly confirmed or
settled transaction;

– transaction exclusion/censorship, exclude a specific transaction, or set
of transactions, from the log of transactions for a bounded amount of time
i.e., the transaction remains unconfirmed.

– transaction ordering, change either the proposed, confirmed or already
settled upon order of transactions;

– transaction triggering, incentivize the creation of one or multiple transac-
tions by a specific actor or group of actors, e.g., trigger spending transactions
for anyone-can-spend outputs.

5 Sometimes also referred to as proposed, or published in related literature.

514 A. Judmayer et al.

The design paradigms of the underlying cryptocurrency have to be consid-
ered to assess the impact and effects of the mentioned manipulation methods.
For example, the impact of transaction (re)ordering in a smart contract capable
cryptocurrency, is greater than for a cryptocurrency platform which does not
support smart contracts. Conversely, the censorship of undesired transactions is
easier to define programmatically in an UTXO based model, as there can only
be one transaction spending a certain unspent output, compared to a smart
contract capable cryptocurrency where a transaction to a smart contract can be
routed through several layers of contract invocations. Therefore, influence meth-
ods such as transaction ordering and exclusion have variable impact depending
on the targeted platform. Similarly, the ability to invalidate a transaction can
result from successfully performing one or more of the above transaction manip-
ulation types. Thereby, the definition of “invalid” depends on the underlying
cryptocurrency and is different for UTXO and account-based models. For exam-
ple, to invalidate a transaction to a smart contract in Ethereum two approaches
exists: Either a transaction is not accepted because a transaction with the same
nonce was already included in Ethereum, or the transaction throws an excep-
tion during execution because it operates on a (unexpectedly) changed state.
The first would be a result of transaction revision, while the later can happen
because of a change in the order of invoked transactions or the exclusion of a
previous transaction.

Some AIM attacks may allow multiple types of transaction manipulation
at the same time, while others are specifically constructed to support only one
method (see Table 1). Depending on the state of the targeted transaction(s)
(proposed, confirmed, settled) the attack might vary in cost and in the required
level of interference with consensus.

4.3 Required Interference with Consensus

While the previous classification of transaction manipulation attacks describes
the intended impact, here we consider the required interference with consensus
by which they can be achieved. Specifically, we introduce three different fork
requirements:

– Deep-fork required, where a fork with depth of at least � exceeding a secu-
rity parameter kV is necessary (i.e., � > kV). The victim defines kV [26,54]
and it refers to its required number of confirmation blocks for accepting trans-
actions6. In other words, the victim indirectly defines the required minimum
fork length � by his choice of kV .

– Near-fork required, where the required fork depth is not dependent on kV ,
but forks might be required. In other words, the attacker defines the gap kgap
(which can be smaller than kV) he wants to overcome.7

6 We emphasize that each transaction has a recipient (and thus a potential victim
with an individual kV), in practice there is no global security parameter k which
holds for all transactions.

7 The length of kgap also depends on the attacker’s resources and willingness to
succeed (e.g., to exclude a certain block).

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 515

– No-fork required, where no blockchain reorganization is necessary at all
(i.e., � = 0).

The required interference with consensus specifies the chain reorganization
needed. A classical double-spending attack scenario [49,54] can be considered
as a transaction revision attempt in which a single attacker aims at producing
a longer chain (possibly in secret [24,52]) than the main chain to revert one
(or possibly many) of his own transactions. Therefore, this attack requires deep
forks (� > k) to reorganize the chain. Since the classic case attacker is assumed
to have full control over the required hashrate to perform the attack, he can
also arbitrarily order and exclude transactions from the longest chain. Clearly,
an attacker with more than 50% of the hashrate is able to eventually produce
a longer chain with probability one and thus can revert/undo any transaction
and permanently perform all four kinds of transaction manipulation attacks by
providing a longer chain.8

No-fork attacks distinguish themselves from the other two categories by aim-
ing to manipulate miner’s block proposals rather than (preliminary) consensus
decisions, i.e., already mined blocks. In the context of PoW cryptocurrencies,
manipulating a miner’s block proposal means influencing the input block used
for finding and adding a valid PoW. Deep- and near-fork attacks seek to undo
state-updates to the ledger that are already confirmed by subsequent PoW.

4.4 Used Payment Method

AIM attacks either pay for compliant behaviour, or they penalize for non-
compliant actions. How this mechanism is set up depends on the attack in ques-
tion, but there are three general methods that differ in which currency is used
for the payment.

– In-band payment: The payment is performed in the target cryptocurrency.
Most early bribing attacks where designed to gain in-band profits, like for
example checklocktime bribes [14], whale transactions [42] or history revision
contracts in Ethereum [44].

– Out-of-band payment: The payment is performed in another currency, the
so-called funding cryptocurrency. Some AIM attacks which utilize out-of-band
funding where designed as Goldfinger attacks, like for example Goldfinger-
Con [44] and Pitchforks [31]. Others can be executed as Goldfinger attack,
or with the goal to gain in-band profits, like for example [56], or the out-of-
band variants of P2W attacks [32]. This highlights that AIM attacks which
are intended to destroy a Cryptocurrency, i.e., perform a Goldfinger attack,
inherently requite methods of out-of-band funding.

– Threat: No direct payment is performed, but a credible threat is constructed
that non-compliant behaviour could lead to losses [11,46].

8 Actually the heaviest chain by PoW, e.g., in Bitcoin measured in difficulty periods.

516 A. Judmayer et al.

5 Classification of Existing AIM Approaches

Equipped with our generalized attack model and the classification by state of
and intended impact on transactions as well as the resulting required interference
with consensus, we now inspect and compare existing AIM attacks within this
section. Table 1 presents an overview of our systematization of existing proposals.
Each row represents a different attack (in chronological order of their release)
and columns outline respective properties.

5.1 Impact on Transactions

The different ways of how AIM attacks can have an impact on transactions are
outlined in Sect. 4.2.

Tx Revision: In the first bribing attack, proposed by Bonneau [14], the use of
lock time transactions is suggested, which are only valid on the attacker’s chain,
but there they can be claimed by anyone (anyone-can-spend outputs). Miners
are hence expected to be incentivized to mine blocks on the attacker’s chain to
collect these bribes as inputs in new transactions included in their new blocks. As
a by-product one transaction per new block is triggered to claim the anyone-can-
spend output. Therefore, transaction triggering is technically achieved, but set
into parenthesis as it is not the main intent of the attack. A variation of the check-
locktime bribes which does not trigger additional transactions was proposed by
Liao and Katz [42] and uses high fee transactions (whale transactions) to provide
incentives for miners to join the attack. In [44] they proposed a smart contract
(HistoryRevisionCon) which pays additional in-band rewards to miners of the
attacker’s desired Ethereum chain branch, iff the effects of the double-spending
transaction have occurred on this branch. Strictly speaking, this attack also trig-
gers transactions as the promised rewards have to be claimed by the bribees from
the smart contract. The mentioned attacks ([14,42,44]) rely on in-band pay-
ments and are designed to replace or revise a specific transaction, i.e., perform a
single double-spend. As a consequence, they do not consider defining the order
or exclusion of arbitrary transactions. Except for the double-spending transac-
tion itself, the block content of subsequent blocks can freely be defined by the
bribed miners. Thus – if not explicitly considered – also the blocks produced by
the bribed miners will not be fully under control of the adversary. Therefore,
it would be possible for such miners to also perform a double-spend of one of
their transactions for free, by piggybacking on the attack financed by the original
attacker.

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 517

T
a
b
le

1
.
C

o
m

p
a
ri

so
n

o
f
ex

is
ti

n
g

A
IM

a
p
p
ro

a
ch

es
o
n

cr
y
p
to

cu
rr

en
ci

es
in

ch
ro
n
o
lo
gi
ca
l
o
rd
er

a
cc

o
rd

in
g

to
th

ei
r

a
p
p
ea

ra
n
ce

.
A

p
ro

p
er

ty
is

m
a
rk

ed
w

it
h

✓
if

it
is

a
ch

ie
v
ed

a
n
d

w
it

h
✗

o
th

er
w

is
e,

−
is

u
se

d
if

a
p
ro

p
er

ty
d
o
es

n
o
t

a
p
p
ly

.
If

th
e

sy
m

b
o
l
is

w
it

h
in

b
ra

ck
et

s,
e.

g
.,

(✓
),

th
is

m
ea

n
s
th

a
t
th

is
p
ro

p
er

y
is

a
ch

ie
v
ed

(o
r
ca

n
b
e

a
u
g
m

en
te

d
),

b
u
t
th

is
w

a
s
in

it
ia

ll
y

n
o
t
d
is

cu
ss

ed
o
r
co

n
si

d
er

ed
b
y

th
e

a
u
th

o
rs

.
∼

m
ea

n
s

th
a
t

th
e

p
ro

p
er

ty
ca

n
n
o
t

b
e

cl
ea

rl
y

m
a
p
p
ed

to
a
n
y

o
f

th
e

p
re

v
io

u
sl

y
d
efi

n
ed

ca
te

g
o
ri

es
w

it
h
o
u
t

fu
rt

h
er

d
et

a
il
s

o
r

d
is

cu
ss

io
n

w
h
ic

h
is

g
iv

en
in

th
e

te
x
tu

a
l
d
es

cr
ip

ti
o
n
.
�

m
ea

n
s

th
a
t

th
is

a
tt

a
ck

a
im

s
a
g
a
in

st
m

in
in

g
p
o
o
ls

a
n
d

h
en

ce
is

n
o
t

in
te

n
d
ed

to
m

a
n
ip

u
la

te
th

e
co

n
te

n
t

o
f
th

e
b
lo

ck
ch

a
in

.
†m

ea
n
s

th
a
t

th
e

p
a
p
er

d
o
es

n
o
t

ex
p
li
ci

tl
y

sp
ec

if
y

th
e

o
u
t-

o
f-
b
a
n
d

p
ay

m
en

t
m

et
h
o
d

b
u
t

a
ss

u
m

es
it

s
co

rr
ec

tn
es

s.

T
x

re
v
.
T
x

o
rd

.
T
x

e
x
c
l.

T
x

tr
ig
.
R
e
q
u
ir
e
d

in
te

rf
e
re

n
c
e

w
it
h

c
o
n
se

n
su

s

A
tt
a
c
k
e
r
h
a
sh

ra
te

p
B

R
a
ti
o
n
a
l

h
a
sh

ra
te

p
R

D
is
tr
a
c
ts

h
a
sh

ra
te

R
e
q
u
ir
e
s

sm
a
rt

c
o
n
tr
a
c
t

P
a
y
m
e
n
t

T
ru

st
le
ss

fo
r

a
tt
a
c
k
e
r

T
ru

st
le
ss

fo
r

c
o
ll
a
b
o
ra

to
r

S
u
b
si
d
y

C
o
m

p
e
n
sa

te
s

if
a
tt
a
c
k

fa
il
s

B
ri
b
e
ry

[1
8
]

✓
✗

✗
(✓

)
D
e
e
p

fo
rk

≈
(0

,
1 2
)

≈
[
1 2

,
1
)

✗
✗

in
-b

a
n
d

✓
∼

✗
✗

D
a
rk

si
d
e
a
tt
a
c
k

[4
0
]

✓
(✓

)
(✓

)
✗

D
e
e
p

fo
rk

≈
(0

,
1 2
)

≈
[0

,
1
)

✗
✗

in
-b

a
n
d

✗
✓

✗
✗

F
e
a
th

e
r-
fo
rk

s
[1
1
]

✗
✗

✓
✗

N
e
a
r-
/
N
o

fo
rk

s

≈
(0

,
1 2
)

≈
[
1 2

−
1
)

✗
✗

th
re

a
t

–
–

–
–

C
h
e
c
k
lo
c
k
ti
m

e
b
ri
b
e
s
[1
4
]

✓
✗

✗
(✓

)
D
e
e
p

fo
rk

✗
≈

[
1 2

,
1
]

✗
✗

in
-b

a
n
d

✓
∼

✗
✗

N
e
g
a
ti
v
e
fe
e
m

in
in

g
p
o
o
l
[1
4
]

✓
(✓

)
✓

✗
N
e
a
r-
/
N
o
-

/
D
e
e
p

fo
rk

s

✗
≈

[
1 2

,
1
]

✗
✗

o
u
t-
o
f-
b
a
n
d

✗
✗

✗
✓

S
c
ri
p
t
p
u
z
z
le

d
o
u
b
le
-s
p
e
n
d

[5
6
]

✓
(✓

)
✓

(✓
)

D
e
e
p

fo
rk

(0
,
1 2
)

1
−

p
B

✓
✗

in
-b

a
n
d

∼
✗

✗
∼

S
c
ri
p
t
p
u
z
z
le

3
8
.2
%

a
tt
a
c
k

[5
6
]

✗
(✓

)
✓

?
†

N
e
a
r-
/
N
o

fo
rk

s

[0
.3
8
2
,
1 2
)

1
−

p
B

✓
?
†

o
u
t-
o
f-
b
a
n
d

?
†

?
†

✗
✓

W
h
a
le

tr
a
n
sa

c
ti
o
n
s
[4
2
]

✓
✗

✗
✗

D
e
e
p

fo
rk

(0
,
1 2
)

1
−

p
B

✗
✗

in
-b

a
n
d

✓
∼

✗
✗

P
ro

o
f-
o
f-
st
a
le

b
lo
c
k
s
[4
3
,5

9
]

-�
-�

-�
(✓

)
-�

✗
–

✓
✓

o
u
t-
o
f-
b
a
n
d

∼
✓

✗
✓

F
o
m

o
3
D

g
a
m

e
[4
]

–
–

–
✓

N
o

fo
rk

✗
[0
,1
]

✗
✓

in
-b

a
n
d

✓
✓

✗
∼

C
e
n
so

rs
h
ip

C
o
n

[4
4
]

✗
(✓

)
✓

(✓
)

N
e
a
r-
/
N
o

fo
rk

s

[
1 3

,
1 2
)

[
1 3

,
2 3
)

✓
✓

in
-b

a
n
d

∼
✗

✓
✗

H
is
to

ry
R
e
v
is
io
n
C
o
n

[4
4
]

✓
✗

✗
(✓

)
D
e
e
p

fo
rk

✗
≈

[
1 2

,
1
]

✗
✓

in
-b

a
n
d

✓
∼

✓
✗

G
o
ld

fi
n
g
e
rC

o
n

[4
4
]

–
–

✓
a
ll

(✓
)

N
o

fo
rk

✗
≈

[
1 2

,
1
]

✗
✓

o
u
t-
o
f-
b
a
n
d

✓
✓

✗
✓

R
a
c
e
to

th
e
d
o
o
r
[1
5
]

–
–

–
✓

N
o

fo
rk

✗
[0
,1
]

✗
✓

o
.o
.-

b
a
n
d
/
th

re
a
t

✓
✓

✗
∼

P
it
c
h
fo
rk

s
[3
1
]

–
–

✓
a
ll

✗
N
o

fo
rk

✗
(
1 3

,
1
]

∼
✗

o
u
t-
o
f-
b
a
n
d

✓
✓

✓
✗

F
ro

n
t-
ru

n
n
in

g
[1
9
,2

2
]

✗
✓

✗
(✓

)
N
o

fo
rk

✗
(0

,
1
]

✗
✗

in
-b

a
n
d

✗
✓

✗
✓

P
a
y

p
e
r
m

in
e
r
c
e
n
so

rs
h
ip

[6
1
]

✗
✗

✓
–

N
o

fo
rk

✗
1

✗
✓

in
-b

a
n
d

∼
∼

✗
✗

P
a
y

p
e
r
b
lo
c
k

c
e
n
so

rs
h
ip

[6
1
]

✗
✗

✓
–

N
o

fo
rk

✗
1

✗
✓

in
-b

a
n
d

∼
∼

✗
✓

P
a
y

p
e
r
c
o
m

m
it

c
e
n
so

rs
h
ip

[6
1
]

✗
✗

✓
–

N
e
a
r-
/
N
o

fo
rk

✗
1

✗
✓

in
-b

a
n
d

∼
∼

✗
✗

P
2
W

T
x

E
x
c
l.

&
O
rd

[3
2
]

✗
✓

✓
(✓

)
N
e
a
r-
/
N
o

fo
rk

✗
[
1 2

,
1
]

✗
✓

o
u
t-
o
f-
b
a
n
d

✓
✓

✗
✓

P
2
W

T
x

R
e
v
.
&

E
x
c
l.

&
O
rd

.
[3
2
]

✓
✓

✓
(✓

)
D
e
e
p

fo
rk

✗
[
1 2

,
1
]

✗
✓

o
u
t-
o
f-
b
a
n
d

✓
✓

✗
✓

P
2
W

T
x

O
rd

.
(i
n
-b

a
n
d
)
[3
2
]

✗
✓

✗
(✓

)
N
o

fo
rk

✗
(0

,
1
]

✗
✓

in
-b

a
n
d

✓
✓

✗
✗

P
2
W

T
x

E
x
c
l.

(i
n
-b

a
n
d
)
[3
2
]

✗
✗

✓
(✓

)
N
e
a
r-
/
N
o

fo
rk

✗
[
1 2

,
1
]

✗
✓

in
-b

a
n
d

✓
✓

✗
✗

B
D
o
s
[4
6
]

–
–

✓
a
ll

✗
N
e
a
r-
/
N
o

fo
rk

≈
[0

.2
1
,
1 2
)(

f
o
r
B

T
C
)
1

✗
/

✓
✗

th
re

a
t

–
–

–
–

H
T
L
C

b
ri
b
in

g
[3
7
,5

8
]

✗
✗

✓
✗

N
e
a
r-
/
N
o

fo
rk

✗
1

✗
✗

in
-b

a
n
d

✓
∼

✗
✗

518 A. Judmayer et al.

Tx Exclusion: There is one notable exception which was specifically designed
to exclude transactions: CensorshipCon [44] rewards mining uncle blocks to
distract the hashrate of bribable miners, which in turn enables the attacker to
overtake the Ethereum blockchain s.t., blocks exclusively come from the attacker.
Since this attack is in-band, it only works in Ethereum and relies on the uncle
block reward scheme of Ethereum to subsidise the attack, i.e., reduce the value
of the required bribes. To succeed, it requires that the hashrate of the attacker
is larger than 1

3 and the hashrate of the bribable miners to be between [13 , 2
3). If

the attack is successful it allows for arbitrary transaction ordering as well and
thus also for arbitrary transaction exclusion, as all blocks appended to the main
chain during the attack come from the attacker.

GoldfingerCon [44] can be seen as a special case of the transaction exclu-
sion attack which rewards Bitcoin miners for mining empty blocks with the help
of an Ethereum smart contract. In this case, all transactions are excluded to
reduce the utility of the respective cryptocurrency for all its users. So called
Goldfinger attacks have been first described by Kroll et al. [38], but Goldfinger-
Con was the first practical instantiation. The name is derived from the James
Bond movie villain Goldfinger, who seeks to destroy the gold reserves stored
in Fort Knox to increase the value of his own holdings. An important aspect
of Goldfinger attacks is that the payments have to be performed out-of-band
since, if successful, the value of the targeted cryptocurrency is intended to drop.
Similarly, Pitchforks [31] leverage merged mining [33] to subsidize the creation
of empty (or specially crafted) blocks in the attacked parent chain [31]. As with
all Goldfinger-style attacks, the attacker is required to achieve utility outside of
the cryptocurrency economy he wants to attack [38]. In case of the Pitchfork
attack, the external utility comes from a hard-fork, which creates a new cryp-
tocurrency. In this new cryptocurrency, the merge-mined PoW consists of blocks
which attack the forked parent cryptocurrency, e.g., are empty. As the hashrate
is repurposed in this case, it is technically not directed anywhere else i.e., not
distracted.

Distracted hashrate is redirected from the valid tip(s) of the attacked
blockchain to some other form of puzzle, or alternative branch, that does not
contribute to state transitions of the targeted cryptocurrency. The Script puzzle
38.2% [56] and CensorshipCon attack [44] distract hashrate of bribable miners
to gain an advantage over the remaining honest miners. The former redirects
the hashrate from the main chain towards puzzles which promise more rewards
than honest mining, the later rewards uncle block mining in Ethereum. The goal
of both attacks is that the attacker gains the majority of the hashrate in the
respective main chain, and he can hence arbitrarily exclude, or order transac-
tions. Although, the attack does not explicitly aim to allow the specific ordering
of certain transactions, this capability is achieved as a by-product. Neither attack
is reverting blocks to change history, which is a different scenario and requires
further analysis in this context, as reverting blocks would change the incentives
of miners which have produced them.

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 519

Also in Script Puzzle double-spend [56] PoW like puzzles, offering in-band
rewards, are published within the respective cryptocurrency with the intent to
distract the hashrate of rational miners. Using the gained advantage to overtake
the main chain requires attacker hashrate. Again, transaction ordering comes
as a by-product and was not an explicit design goal, but theoretically this is
the only existing attack utilizing in-band payments, which can achieve the three
properties: revision, ordering and exclusion. Although, upon successful execution
rational miners are deprived of their bribes as the previously hidden attack chain
becomes the longest chain and does not pay the promised puzzle rewards. This
renders the attack non-repeatable against rational miners.

Tx rev./ord./excl.: There are only two proposed attack methods which achieve
these three properties in an out-of-band payment scenario: negative-fee mining
pools [14] and P2W Tx Rev. & Excl. & Ord. [32]. A negative-fee mining pool
is like a classic mining pool, except that it pays out an above-market return.
“Because such a pool would lose money on expectation, no honest pool should
be able to match this reward” [14]. As with most classic mining pools9 the pool
operator can define the content of a block proposal and hence forge arbitrary
attack blocks. Even if miners are rational and hence willing to actively participate
in such operations, this approach has at least two major limitations: First, miners
would still have to trust the pool owner to pay out the promised rewards. Second,
miners could report only solutions which are below the current difficulty target
(shares) to prove that they are working for the pool, but withhold blocks which
actually match the difficulty target. Thereby, they would potentially gain profits
by pretending to participate in the attack/pool without actually doing so. This
miner’s dilemma is a general problem for mining pools [23].

The smart contract design presented in [32] resolves the limitations of
negative-fee mining pools by automating the payment of bribes to complacent
miners without requiring any further interaction of the attacker. Thereby, the
attacker publishes block templates to the smart contract and offers a bribe for
the first miner who can provide a valid PoW solution for such a template. As
only payments for valid PoW solutions are provided by the smart contract, it is
ensured that the actions of bribees are specifically targeted to aid the attacker. If
the attacker deems that the ongoing attack is not likely to succeed, he can stop
the investment of further funds by not publishing any further block templates.

Tx Triggering: The are only two existing AIM techniques, which are intended
to trigger transactions: The Fomo3D game [4] and the race to the door Goldfinger
attack sketched by Bonneau [15]. In an race to the door, the attacker “credibly
commits” to buy out half of all funds present in the targeted cryptocurrency, to
utilize them for destroying the system. Therefore, the price the attacker has to
pay for those funds is likely to drop the more users decide to sell, increasing the
likelihood of the attack to succeed. This creates a vicious cycle, resulting in a race
to the door. The idea was not presented in great detail and mainly discussed in

9 In P2Pool for example, there is no single operator which can define the content of
a block proposal.

520 A. Judmayer et al.

context of overtaking PoS/PoW cryptocurrencies, but of course such an attack
would also trigger sell transactions. Moreover, there are plenty of ways to attack
the value of a cryptocurrency while holding substantial amounts of it that are
left unexplored.

There are multiple variants of Fomo3D, but roughly the rules are as follows.
In this game, which is open for everybody, the last account which has purchased
a ticket wins when a timer goes to zero and every purchase again increases
the timer by 30 s. This leads to the situation that transactions are triggered by
rational players as soon as the timer gets close to zero. It was conjectured that
the game would never end, but in august 2018 the first round of the game ended
and the winner collected 10, 469 Ether (≈ $2.1M USD at that time)10. It can be
argued that a single instance of this game does not qualify as an “attack”, but
the same concept of presumably “free money” available to grab from a smart
contract can also be used as an attack method (see our discussion in Sect. 7).
The interesting aspect about these tx triggering attacks is, that they have effects
for any hashrate of rational miners as long as there are rational clients. Even if
pR = 0, rational clients in the network will issue transactions.

Tx Ordering: Dedicated ordering attacks, like front-running [19,22], P2W Tx
Excl.& Ord., or P2W Tx Ord. (in-band) [32], target unconfirmed or confirmed
transactions and therefore are cheaper as their interference with consensus is less
severe.

5.2 Required Interference with Consensus

The concept of required interference with consensus is outlined in Sect. 4.3 and
classifies if an attack can be realized without, with a near- or with a deep-fork.
Depending on the scenario and the desired attack outcome, e.g., if only order-
ing is relevant, deep forks are not necessarily required. For example if, the vic-
tim accepts unconfirmed transactions, transaction revision can happen without
any fork by simply updating the transaction. Bitcoin [2] as well as Ethereum
allow something like replace-by-fee i.e., if there is a transaction signed by the
same sender with the same nonce but a significantly higher gas value [3], the
transaction with the higher gas value replaces the original one in certain clients.
This circumstance is also used in the context of front-running [19,22]. But front-
running is only a subset of possible (re-)ordering attacks, as it might be desirable
to place a transactions more accurately in between two other transaction, e.g.,
as required for exploiting the BlockKing contract [53].

Prior to 2018, ordering attacks on smart contract cryptocurrencies have
not been intensively studied [34,53]. This has recently changed as order fair-
ness has been exposed as a fundamental issue in leader based consensus proto-
cols [19,35,39]. In context of Nakamoto consensus, every miner that is capable
of producing blocks can define the order of the transactions in his blocks. This
10 The winner flooded the network with unrelated high gas transactions to custom

smart contracts which congested the network blocking other “last” payments to the
game.

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 521

circumstance alone can be used to gain an advantage in certain scenarios e.g.,
where transactions race against each other to collect something that is claimable
by everybody like an anyone-can-spend transaction, the reward of a puzzle, or
arbitrage11. But when rational actors are assumed, there are also scenarios where
the ordering of transactions can be manipulated by attackers which are not nec-
essarily miners themself, but have funds at their disposal to launch incentive
attacks. In classical front-running miners are incentivized to prioritize transac-
tions because they carry a larger fee. This however is not a consensus rule and
thus lacks enforcement, as transaction with the highest fee can still be included
at the end of a block, resulting in an all-pay auction [19]. In [32] an in-band as
well as an out-of-band AIM attack is proposed, which allow arbitrary transaction
ordering while only paying if the desired ordering is observed. Both attacks can
be executed without any hashrate assuming rational miners.

5.3 Required Hashrate

Required attacker hashrate. pB specifies how much hashrate is required to
be under direct control of the attack (without considering the effects of AIM)
for the attack to be successful. As observable in Table 1 there are three attacks
which require pB > 0. The Script Puzzle 38.2% attack is designed to overtake the
blockchain entirely by offering alternative script puzzles with higher rewards to
distract the hashrate of rational miners. This allows an adversary with appropri-
ate hashrate to establish a computational majority and gain a net profit without
considering double-spending attacks. In Script Puzzle double-spend the adver-
sary has no explicit minimum hashrate requirement, however low hashrate has
to be compensated with more puzzle funds. Moreover, it is designed as a single-
shot double-spending attack that, if successful, deprives rational miners of their
bribes. CensorshipCon uses a smart contract to offer in-band bribes for mining
uncle blocks to distract hashrate. Thus, it requires attacker hashrate to include
uncle blocks from rational miners in the main chain. Since it has to include all
mined uncle blocks, it requires the hashrate of the attacker to be larger than 1

3
and the hashrate of the bribable miners to be between [13 , 2

3).
It makes sense to bound the attacker hashrate below 1

2 since otherwise the
attacker has no need to perform bribing attacks as he could overtake the chain
single handedly.

Required rational hashrate. pR specifies how much hashrate is requited to
be under control of rational miners for the attack to have a chance to succeed as
described and evaluated in the respective paper. Generally, all bribing attacks
have to assume that at least some of the miners are rational and hence bribable.
Generally, it makes sense to assume that more than half of the miners are rational
s.t. attacks have at realistic change to win longer block races. Both Script Puzzle
11 Interestingly the problem of racing transaction was known very early on in the

cryptocurrency community, which lead to the first fork of Bitcoin, i.e., Namecoin [1,
33], which introduced a commit reveal scheme to prevent races while registering
domain names on the blockchain.

522 A. Judmayer et al.

attacks require all miners to be rational, i.e., pB + pR = 1, as well as the Pay
per ... attacks (pR = 1).

However, the attacks observed in practise provide no guarantees for the
attacker that the desired ordering is achieved even if the highest transaction
fee has been paid as the resulting game is an all pay auction [19].

5.4 Payment Method

This specifies where the payments to the bribees are performed (see 4.4). It can
be argued that miners will try not to harm the value of their own cryptocurrency
holdings by accepting in-band bribes, hence out-of-band AIM are of particular
interest. Subsidy means that the attack leverages some characteristic of the
cryptocurrency, or the environment to become cheaper. In case of Censorship-
Con the rewards from uncle blocks are used to subsidize the attack, whereas in
Pitchforks the additional income from merged mining is used as an incentive.

Compensates if attack fails refers to the property that at least a portion
of the bribe is paid irrespective of the outcome. To successfully engage rational
miners, attacks such as Checklocktime bribes [14], Whale Transactions [42] and
HistoryRevisionCon [44], must pay high rewards in case of success to compensate
the financial risk faced by bribees if the attack fails despite of their participa-
tion. So far the only attack which facilitates transaction revision that achieves
this property is [32]. Script Puzzle double-spend defrauds the bribed miners if
successful and hence actually only pays out rewards if it fails. In front-running
attacks, high transaction fees are usually incurred even if the desired ordering
effect is not achieved. Thus, in this case it is also an undesirable property for the
attacker. The same holds true for negative-fee mining pools as rewards have to
be paid for performed work even if no attack block fulfilling the difficulty target
has been submitted by a miner.

5.5 Trustlessness

Trustless for attacker specifies if the attack itself can be exploited by allowing
collaborating/bribed miners to profit without adhering to the attack. For exam-
ple, Script Puzzle attacks require some form of freshness guarantee to prevent
bribees from intentionally waiting until the attack fails before computing puzzle
solutions to obtain rewards. It is also possible to claim rewards for stale honest
blocks that are later on submitted as uncles to the CensorshipCon. Also in naive
front-running attacks the attacker has no guarantee that the desired ordering
will be achieved by paying a high fee. The Pay per . . . attacks are only modelled
theoretically without providing concrete instantiation. Therefore, it cannot be
evaluated in this regard.

Trustless for collaborator specifies if bribees have to trust the attacker that
they will receive their payments, if they adhere to the attack. In Checklock-
time bribes a lock time on individual transaction outputs intends to ensure that
they cannot be spent before a particular block height, even by the creator. This

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 523

ensures that at each height a locked output is released and split into a anyone-
can-spend and another locked output. However, the holder of the associated
private key can cheat, by creating a conflicting/racing transaction, which also
becomes valid after the intended lock time has passed. This conflicting trans-
action, transfers the whole output back to the owner without an additional
anyone-can-spend output. However, this attempt is only possible if the attacker
is under control of some hashrate pB > 0, as a miner would never prefer this
transaction before the other. The same holds true for Whale Transactions, or
HTLC bribes since the attacker has to provide new high fee transactions for each
block on the attack chain at each step of the attack. While HistoryRevisionCon
does not explicitly consider trustlessness for collaborating miners, an augmen-
tation is possible12, CensorshipCon requires that the attacker includes blocks
produced by collaborating miners as uncle blocks and thus is not trustless. The
Script Puzzle double-spend attack is designed as a one-shot attack that defrauds
collaborators. The Script Puzzle 38.2% attack does not specify how payments
are performed and assumes a working trusteless out-of-band payment method.

6 Costs, Profits and Extractable Value

In this section we want to highlight the challenges of comparing existing AIM
attacks with respect to their costs and potential profits.

First of all, the presented attacks differ significantly with respect to their
system- and attack models, which have diverse goals regarding their intended
influence on transactions (revision, ordering, exclusion, triggering), as well as
varying assumptions regarding the capabilities of the attacker, e.g., hashrate
and funds.

Second, not all existing proposals have analyzed the involved costs and gains
in a comparable way. Attacks such as the Script Puzzle double-spend or Cen-
sorshipCon express the required funds in terms of the hashrate which is also
required to successfully execute it [44,56]. For transaction revision using Whale
Transaction or P2W attacks [32,42] concrete values are provided while at the
same time no hashrate is required. In GoldfingerCon [44] only the costs of invok-
ing the smart contract are provided.

Costs: What stands out in the comparison of costs is that: i) Attacks which
compensate collaborating rational miners even if the attack fails are cheaper.
The reason for this is that such attacks do not have to provide high bribes
to account for the risks faced by bribees if the attack is unsuccessful [32,61].
ii) Attacks which exclusively focus on transaction exclusion or (re)ordering of
unconfirmed transactions are substantially cheaper as they only compete with
the fee, i.e., extractable value, of the transaction(s) in conflict [19,32,37,58,61].

12 The issue stems from the fact that the bribing contract checks the balance of the
Ethereum account which should receive the bribing funds before issuing any bribes,
but without any additional locking constraints these funds can be moved by the
attacker once received.

524 A. Judmayer et al.

Profit: To calculate the profit of the attack it is important to estimate the
costs as well as the extractable value. In this context, the term miner extractable
value [19] has been coined to describe the value which can be extracted by a
miner by including a certain transaction in terms of fees or guaranteed prof-
its through token arbitrage. In relation to other AIM attacks surveyed in this
paper, this leads to an interesting observation: We argue that the extractable
value of a transaction for a certain party can not readily be determined by exclu-
sively looking at the cryptocurrency system in which this transaction is to be
performed. The reason is that there might be additional protocols like colored
coins [50] or out-of-band payments from AIM attacks at play, which can influence
the (miner) extractable value of a given transaction. This is an instantiation of
a more general observation that game-theoretic analysis is not composable.

The question whether AIM is profitable can be summarized by comparing the
extractable value as well as the costs of the attack and the behaviour intended
by the protocol designer. The following simplified equation was adapted from
Böhme [7].

EV(attack) − costs attack > EV(follow protocol) − costs follow protocol

Let’s assume two unconfirmed, but conflicting Bitcoin transactions (tx1, tx2) are
competing for a place in the next block. If the extractable fee of one transaction
is greater than for the other Fee(tx1) > Fee(tx2), it would be rational from the
miner to include tx1, since EV(tx1) = Fee(tx1). But if there is a side payment,
due to an AIM attack on a different funding cryptocurrency (e.g., Ethereuem)
for including tx2, which leads to the situation that EV(tx2) > EV(tx1), then the
situation for the rational miner changes. In this case, the reason for the change
is not directly visible in Bitcoin.

The question whether it is possible to upper-bound the extractable value was
also touched by Budish [17] in a different setting and from the perspective of
double-spending attacks only. Under a simplified model, the extractable value
of a double-spend is the transferred value of coins13. To calculate the required
rewards and fees for making double-spending attacks economically unattractive,
the author assumed that in the worst case every transaction in a block is poten-
tially up for double-spending and highlights that the relation between reward and
fees, compared to the value transferred in Bitcoin makes such attacks economi-
cally feasible in theory. An instantiation of an attack in which every transaction
of a block can theoretically become a target for double-spending, has been pro-
posed in [32], where a crowdfunded attack is described, utilizing smart-contracts.
The goal is to distribute the costs of multiple double-spend attempts in the same
block to the set of transacting entities.

By these examples, we see that it is hard or even impossible to accurately
bound the extractable value of transactions (and thus blocks) in a multi cryp-
tocurrency ecosystem by solely looking at data from one cryptocurrency. A
related meta argument was presented in [25].
13 The dependency between transaction value and confirmation time kV , is also dis-

cussed in [54].

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 525

7 Discussion

We finally discuss the relation of AIM to other ways of gaining capacity in
Nakamoto consensus, as well as highlight open questions and directions for future
work in this area.

Relationship of AIM to Other Ways of Gaining Capacity: In the
paper [15] an excellent classification of different methods on how to gain capac-
ity in Nakamoto consensus is provided. These methods are separated into: rent,
build, bribe and buy out. Hereby, rent, buy out as well as build refer to classi-
cal methods of renting hardware, buying cryptocurrency units at exchanges, or
building new datacenters for mining. We augment this classification and argue
that AIM can be used to construct algorithmic ways for all these methods.
Table 2 depicts an augmented version from [15] showing the different methods
of how to obtain capacity in Nakamoto consensus.

According to the original classification in [15], bribing is a temporary attack,
which utilizes existing resources of miners. If the terms new and existing, in
the context of PoW capacity, are to be interpreted from the perspective of the
targeted system, then some existing attacks which rely on out-of-band payments
would also classify as rent. The reason for this is: They are also able to attract
new capacity currently bound in other cryptocurrencies which utilize the same
PoW algorithm, like [31,32,56]. Capacity which is present in a different cryp-
tocurrency is also new to the targeted cryptocurrency if miners decide to switch
for supporting an attack.

We further argue that buy out attacks can theoretically be done algorithmi-
cally using cross-chain atomic swaps [30] (or any other blockchain interlinking
protocol). A race to the door style attack [15] in combination with cross-chain
atomic swaps can be imagined to perform Goldfinger style attacks on smart
contract capable PoW cryptocurrencies. Hereby, out-of-band payments are used
to buy out cryptocurrency units, through a smart contract, which is going to
use these previously bought cryptocurrency assets to perform a denial of ser-
vice attack by dumping the previously bought crypto assets on the market as
freely available for anyone to claim after a certain timeout. If there is a limit
for what is claimable per transaction, as well as the requirement of a high fee,
this on-chain faucet construction will trigger a flood of transactions as soon as
the timeout is reached. In this case, existing funds are bought and permanently
redistributed with the intent to perform a denial-of-service attack and at the
same time collapse the market due to increased supply.

It remains to be shown that it is theoretically possible to build permanent
AIM attacks. Arguably, any Goldfinger attack, such as GoldfingerCon [44], which
creates enough external utility to refuel the attack, can in theory be constructed
in a way to run permanently. Although, it is unlikely that a Goldfinger attack
has to be continued infinitely long if the intended effects have already occurred.
An attack which also discusses its perpetuity is the Script puzzle 38.2% attack.
In this case the attack can also theoretically be used to permanently overtake the
chain by supplying puzzles that provide out-of-band reward and thereby overtake

526 A. Judmayer et al.

the original blockchain with 38.2% of the total hashrate. Also, the pitchfork [31],
in which the additional revenue stream to sustain the attack comes from a fork of
the targeted cryptocurrency and not from a previously determined bribing fund,
can in theory be sustained infinitely long. Whether the attack can be sustained
depends on the value of the newly generated cryptocurrency. An interesting
analogy exists between any permanent AIM attack and a cryptocurrency itself.
From the perspective of a miner who exclusively mines on puzzles for any of
these three permanent attacks, there is no difference to mining on any other
PoW based cryptocurrency other than the format of the associated PoW.

Mitigation and Counter Attacks: The presented systematization has a very
attack centric view on the issue at hand. This is due to the selection of papers,
which almost all have a very attack-focused viewpoint. Therefore, counter mea-
sures and counter attacks are often omitted in these papers, or not discussed to
a great extent.

Nevertheless, for the victim(s) counter bribing might be a viable strategy
against AIM. The difficulty of successfully executing counter bribing highly
depends on the respective scenario. In the end, counter bribing can also be
countered by counter-counter bribing and so forth. Therefore, as soon as this
route is taken, the result becomes a bidding game. Against transaction exclusion
attacks, counter bribing can be performed by increasing the fee of the transaction
to be excluded such that it surpasses the value promised for not including the
transaction. If defenders have imperfect information, they may not be able to
immediately respond with counter bribes. In this case some of the attack chain
blocks may have already been mined, or even take the lead, before they are rec-
ognized by defenders. Counter bribing then necessitates a fork, and thus a more
expensive transaction revision attack, leading to asymmetric costs in the bidding
game. This illustrates an important aspect of AIM, namely their visibility. On
the one hand, sufficiently many rational miners of the targeted cryptocurrency
have to recognize that an attack is occurring, otherwise they won’t join in and
the attack is likely to fail. On the other hand, if the victims of the attack recog-
nize its existence, they can initiate and coordinate a counter bribing attack. So
the optimal conditions for AIM arise if all rational miners have been informed
directly about the attack, while all victims/merchants do not monitor the chain
to check if an attack is going on and are not miners themselves. If the payments
are made out-of-band, they are rendered more stealthy to victims who only mon-
itor the targeted cryptocurrency. It can hence be argued that counter attacks by
victims are harder to execute as they are not immediately aware of the bribing
value that is being bet against them on a different funding cryptocurrency. We
also follow the argument in [14] that requiring clients to monitor the chain and
actively engage in counter bribing is undesirable, and out-of-band attacks further
amplify this problem as clients would have to concurrently monitor a variety of
cryptocurrencies.

To prevent repercussions, participating miners can make use of the fact that
the PoW mining process itself does not require any strong identity by using
different payout addresses. Of course their received rewards can be traced, but

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 527

available privacy techniques could be used to camouflage the real recipient of
the funds, e.g., [29,45,51].

Situation in PoS: Since all considered attacks target PoW cryptocurrencies,
the applicability of AIM on PoS cryptocurrencies is not sufficiently understood
yet. It remains to be understood which techniques are transferable to PoS cryp-
tocurrencies, and which additional mitigations (e.g., providing collateral, slash-
ing) can increase the induced costs of attacks in this setting.

Rationality and Practicality of Attacks: All AIM attacks assume some
form of rational behaviour of participants. In practise although, it is hard to
define rational behaviour in a general way, as also the individual investments
and the long term interests of miners play an important role. Although, there
may be scenarios where miners are capable of providing PoW for a targeted
cryptocurrency, but at the same time do not have any long-term interest in
the well-being of the target. Consider the real-world example of Bitcoin and
BitcoinCash which utilize the same form of PoW and can be considered rivals.
Thus, the question if the proposed attacks are possible in practice is difficult
to answer scientifically. There is already empirical evidence from previous large
scale attacks by miners, especially on smaller cryptocurrencies as well as AIM
attacks [5,6,8,9,19]. These cases demonstrate that large scale attacks happen
and that the topic of incentives in cryptocurrencies is an area deserves further
study.

Acknowledgements. We would like to thank the participants of the Dagstuhl Semi-
nar 18152 (Blockchains, Smart Contracts and Future Applications), especially Samuel
Christie and Sebastian Faust, as well as the participants of the Dagstuhl Seminar 18461
(Blockchain Security at Scale) for all the frutiful discussions.

This paper is based upon work partially supported by (1) the Christian-Doppler-
Laboratory for Security and Quality Improvement in the Production System Lifecy-
cle; The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs, the Nation Foundation for Research, Technology and Development and Univer-
sity of Vienna, Faculty of Computer Science, Security & Privacy Group is gratefully
acknowledged; (2) SBA Research; the competence center SBA Research (SBA-K1)
funded within the framework of COMET Competence Centers for Excellent Technolo-
gies by BMVIT, BMDW, and the federal state of Vienna, managed by the FFG; (3)
the FFG Bridge 1 project 864738 PR4DLT. (4) the Israel Science Foundation (5) the
Israel Cyber Bureau (6) the Technion Hiroshi Fujiwara cyber-security research center

A Example Use of Our Classification Framework

Whether an attack is executable with or without a fork depends on the intended
impact on transactions as well as on the state of the targeted transaction. For
example, transaction revision where the victim accepts kV = 0 (zero confirma-
tions) may be executable as no-fork attacks. Other attacks, such as performing
a double spend where the victim has been carefully chosen kV [54], may require
deep-forks because they need to substantially affect consensus and violate the

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18152
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18461

528 A. Judmayer et al.

security assumption that the common prefix of the blockchain remains stable.
Transaction exclusion (censorship) may require near-forks to exclude the latest
blocks which include the respective transaction.

With our classification framework, we can map front-running [19,22,32] as
an attack which aims to influence transaction ordering, while targeting uncon-
firmed transactions (state of targeted transactions). Compared to that, the so
called time-bandit attack [19] also aims to influence transaction ordering, but
targets confirmed or even agreed transactions. Note that strictly speaking a
time-bandit attack is not AIM, as it does not incentivize other participants to
aid the attack, but instead relies on “classic” methods like performing a rental
attack to temporarily hold the majority of the hashrate.

B Ways to gain capacity in Nakamoto Consensus

Table 2. Strategies to gain capacity in Nakamoto consensus according to [15], aug-
mented with AIM strategies (colored background).

Duration of control

Temporary Permanent

Source

PoW New
Rent Build

AIM AIM

PoW & PoS Existing
Bribe Buy out

AIM AIM

References

1. Namecoin: https://www.namecoin.org/. Accessed 15 Sept 2020
2. Replace by fee in bitcoin: https://en.bitcoin.it/wiki/Replace by fee. Accessed 23

Dec 2020
3. Replace by fee in openethereum: https://openethereum.github.io/Transactions-

Queue.html. Accessed 23 Dec 2020
4. How the winner got Fomo3D prize - a detailed explanation. medium (2018).

https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-
explanation-b30a69b7813f. Accessed 15 Sept 2020

5. Bitcoin cash miners undo attacker’s transactions with 51% attack’. coin-
desk (2019). https://www.coindesk.com/bitcoin-cash-miners-undo-attackers-
transactions-with-51-attack. Accessed 15 Sept 2020

6. Ethereum classic 51% attack – the reality of proof-of-work. cointele-
graph (2019). https://cointelegraph.com/news/ethereum-classic-51-attack-the-
reality-of-proof-of-work. Accessed 15 Sep 2020

7. Talk: A primer on economics for cryptocurrencies. School of Blocks, Blockchain
summer school at TU Wien (2019). https://bdlt.school/files/slides/talk-rainer-b
%C3%B6hme-a-primer-on-economics-for-cryptocurrencies.pdf. Accessed 15 Sept
2020

https://www.namecoin.org/
https://en.bitcoin.it/wiki/Replace_by_fee
https://openethereum.github.io/Transactions-Queue.html
https://openethereum.github.io/Transactions-Queue.html
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://www.coindesk.com/bitcoin-cash-miners-undo-attackers-transactions-with-51-attack
https://www.coindesk.com/bitcoin-cash-miners-undo-attackers-transactions-with-51-attack
https://cointelegraph.com/news/ethereum-classic-51-attack-the-reality-of-proof-of-work
https://cointelegraph.com/news/ethereum-classic-51-attack-the-reality-of-proof-of-work
https://bdlt.school/files/slides/talk-rainer-b%C3%B6hme-a-primer-on-economics-for-cryptocurrencies.pdf
https://bdlt.school/files/slides/talk-rainer-b%C3%B6hme-a-primer-on-economics-for-cryptocurrencies.pdf

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 529

8. Bitcoin gold (btg) was 51% attacked. github (2020), https://gist.github.com/
metalicjames/71321570a105940529e709651d0a9765. Accessed 15 Sept 2020

9. Ethereum classic suffers second 51% attack in a week. coindesk (2020).
https://www.coindesk.com/ethereum-classic-suffers-second-51-attack-in-a-week.
Accessed 15 Sept 2020

10. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: Bar fault
tolerance for cooperative services. In: ACM SIGOPS Operating Systems Review,
vol. 39, pp. 45–58. ACM (2005). http://www.dcc.fc.up.pt/∼Ines/aulas/1314/
SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services
%20-%20UIUC.pdf

11. socrates1024 (Andrew Miller): Feather-forks: enforcing a blacklist with sub-50
12. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does

it work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rij-
men, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 2, https://eprint.iacr.
org/2018/138.pdf

13. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11, https://eprint.iacr.org/2017/149.pdf

14. Bonneau, J.: Why buy when you can rent? Bribery attacks on bitcoin consensus.
In: BITCOIN 2016: Proceedings of the 3rd Workshop on Bitcoin and Blockchain
Research, February 2016. http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf

15. Bonneau, Joseph: Hostile Blockchain Takeovers (Short Paper). In: Zohar, A.,
et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 92–100. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-662-58820-8 7, http://fc18.ifca.ai/bitcoin/papers/
bitcoin18-final17.pdf

16. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (2015). http://www.ieee-security.org/TC/
SP2015/papers-archived/6949a104.pdf

17. Budish, E.: The economic limits of bitcoin and the blockchain. Technical report,
National Bureau of Economic Research (2018). https://faculty.chicagobooth.edu/
eric.budish/research/Economic-Limits-Bitcoin-Blockchain.pdf

18. Cunicula: Bribery: The double double spend. Bitcoin Forum. https://bitcointalk.
org/index.php?topic=122291. Accessed 31 Jan 2021

19. Daian, P., et al: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Secu-
rity and Privacy, SP 2020, San Francisco, CA, USA, 18–21 May 2020, pp. 910–
927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040, https://arxiv.
org/pdf/1904.05234.pdf

20. Dembo, A., et al.: Everything is a race and nakamoto always wins (2020)
21. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-

ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-48071-4 10, https://web.cs.dal.ca/
∼abrodsky/7301/readings/DwNa93.pdf

https://gist.github.com/metalicjames/71321570a105940529e709651d0a9765
https://gist.github.com/metalicjames/71321570a105940529e709651d0a9765
https://www.coindesk.com/ethereum-classic-suffers-second-51-attack-in-a-week
http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf
http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf
http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf
https://doi.org/10.1007/978-3-319-78375-8_2
https://eprint.iacr.org/2018/138.pdf
https://eprint.iacr.org/2018/138.pdf
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://eprint.iacr.org/2017/149.pdf
http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf
https://doi.org/10.1007/978-3-662-58820-8_7
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final17.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final17.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a104.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a104.pdf
https://faculty.chicagobooth.edu/eric.budish/research/Economic-Limits-Bitcoin-Blockchain.pdf
https://faculty.chicagobooth.edu/eric.budish/research/Economic-Limits-Bitcoin-Blockchain.pdf
https://bitcointalk.org/index.php?topic=122291
https://bitcointalk.org/index.php?topic=122291
https://doi.org/10.1109/SP40000.2020.00040
https://arxiv.org/pdf/1904.05234.pdf
https://arxiv.org/pdf/1904.05234.pdf
https://doi.org/10.1007/3-540-48071-4_10
https://web.cs.dal.ca/~abrodsky/7301/readings/DwNa93.pdf
https://web.cs.dal.ca/~abrodsky/7301/readings/DwNa93.pdf

530 A. Judmayer et al.

22. Eskandari, S., Moosavi, S., Clark, J.: Sok: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala,
M. (eds.) Financial Cryptography and Data Security - FC 2019 International
Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, 18–22 February
2019, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11599, pp.
170–189. Springer (2019). https://doi.org/10.1007/978-3-030-43725-1 13, https://
arxiv.org/pdf/1902.05164.pdf

23. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 89–103. IEEE (2015). http://arxiv.org/pdf/1411.7099

24. Eyal, I., Sirer, E.G.: Majority Is Not Enough: Bitcoin Mining Is Vulnerable.
In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–
454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28,
http://arxiv.org/pdf/1311.0243

25. Ford, B., Böhme, R.: Rationality is Self-Defeating in Permissionless Systems
(2019). https://arxiv.org/pdf/1910.08820.pdf, eprint: arXiv:1910.08820

26. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2015–34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, 26–30 April 2015, Sofia, Bul-
garia, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp.
281–310. Springer (2015). https://doi.org/10.1007/978-3-662-46803-6 10, https://
eprint.iacr.org/2014/765.pdf

27. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty (2016). http://eprint.iacr.org/2016/1048.pdf. Accessed 6 Feb
2017

28. Gaži, P., Kiayias, A., Russell, A.: Tight consistency bounds for bitcoin. Cryptology
ePrint Archive, Report 2020/661 (2020). https://eprint.iacr.org/2020/661

29. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous
on-blockchain and off-blockchain bitcoin transactions. Cryptology ePrint Archive,
Report 2016/056 (2016). https://eprint.iacr.org/2016/056.pdf. Accessed 3 Oct
2017

30. Herlihy, M.: Atomic cross-chain swaps. In: Newport, C., Keidar, I. (eds.) Pro-
ceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC 2018, Egham, United Kingdom, 23–27 July 2018, pp. 245–254. ACM (2018).
https://arxiv.org/pdf/1801.09515.pdf

31. Judmayer, A., Stifter, N., Schindler, P., Weippl, E.: Pitchforks in cryptocurrencies:
enforcing rule changes through offensive forking- and consensus techniques (short
paper). In: CBT 2018: Proceedings of the International Workshop on Cryptocur-
rencies and Blockchain Technology, September 2018. https://www.sba-research.
org/wp-content/uploads/2018/09/judmayer2018pitchfork 2018-09-05.pdf

32. Judmayer, A., et al.: Pay to win: cheap, crowdfundable, cross-chain algorith-
mic incentive manipulation attacks on pow cryptocurrencies. Cryptology ePrint
Archive, Report 2019/775 (2019). https://eprint.iacr.org/2019/775

33. Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged min-
ing: Curse or cure? In: CBT 2017: Proceedings of the International Workshop on
Cryptocurrencies and Blockchain Technology, September 2017. https://eprint.iacr.
org/2017/791.pdf

34. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, 18–21 February 2018, San Diego, California, USA. The Internet
Society (2018). http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/
2018/02/ndss2018 09-1 Kalra paper.pdf

https://doi.org/10.1007/978-3-030-43725-1_13
https://arxiv.org/pdf/1902.05164.pdf
https://arxiv.org/pdf/1902.05164.pdf
http://arxiv.org/pdf/1411.7099
https://doi.org/10.1007/978-3-662-45472-5_28
http://arxiv.org/pdf/1311.0243
https://arxiv.org/pdf/1910.08820.pdf
http://arxiv.org/abs/1910.08820
https://doi.org/10.1007/978-3-662-46803-6_10
https://eprint.iacr.org/2014/765.pdf
https://eprint.iacr.org/2014/765.pdf
http://eprint.iacr.org/2016/1048.pdf
https://eprint.iacr.org/2020/661
https://eprint.iacr.org/2016/056.pdf
https://arxiv.org/pdf/1801.09515.pdf
https://www.sba-research.org/wp-content/uploads/2018/09/judmayer2018pitchfork_2018-09-05.pdf
https://www.sba-research.org/wp-content/uploads/2018/09/judmayer2018pitchfork_2018-09-05.pdf
https://eprint.iacr.org/2019/775
https://eprint.iacr.org/2017/791.pdf
https://eprint.iacr.org/2017/791.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf

SoK: AIM Attacks on Permissionless PoW Cryptocurrencies 531

35. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO
2020–40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, 17–21 August 2020, CA, USA, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 12172, pp. 451–480. Springer (2020). https://doi.org/10.
1007/978-3-030-56877-1 16, https://eprint.iacr.org/2020/269

36. Ketsdever, S., Fischer, M.J.: Incentives don’t solve blockchain’s problems (2019).
https://arxiv.org/pdf/1905.04792.pdf

37. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Timelocked bribes. Cryptology
ePrint Archive, Report 2020/774 (2020). https://eprint.iacr.org/2020/774

38. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013, p. 11 (2013).
https://pdfs.semanticscholar.org/c55a/6c95b869938b817ed3fe3ea482bc65a7206b.
pdf

39. Kursawe, K.: Wendy, the good little fairness widget. IACR Cryptol. ePrint Arch.
2020, 885 (2020). https://eprint.iacr.org/2020/885

40. Lerner, S.D.: The bitcoin eternal choice for the dark side attack (ECDSA).
https://bitslog.com/2013/06/26/the-bitcoin-eternal-choice-for-the-dark-side-
attack-ecdsa/. Accessed 31 Jan 2021

41. Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: Bar
gossip. In: Proceedings of the 7th symposium on Operating systems design and
implementation. pp. 191–204. USENIX Association (2006), http://www.cs.utexas.
edu/users/dahlin/papers/bar-gossip-apr-2006.pdf

42. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-
ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

43. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: SmartPool: practical decentralized
pooled mining. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, 16–18 August 2017, pp.
1409–1426. USENIX Association (2017). http://eprint.iacr.org/2017/019.pdf

44. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 3–18. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-58820-8 1, http://fc18.ifca.ai/bitcoin/
papers/bitcoin18-final14.pdf

45. Meiklejohn, S., Mercer, R.: Möbius: trustless tumbling for transaction privacy.
Proc. Priv. Enhancing Technol. 2018(2), 105–121 (2018). https://doi.org/10.1515/
popets-2018-0015, http://eprint.iacr.org/2017/881.pdf

46. Mirkin, M., Ji, Y., Pang, J., Klages-Mundt, A., Eyal, I., Juels, A.: BDoS: blockchain
denial-of-service. In: Proceedings of the 2020 ACM SIGSAC conference on Com-
puter and Communications Security, pp. 601–619 (2020)

47. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, December 2008.
https://bitcoin.org/bitcoin.pdf. Accessed 1 Jul 2015

48. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2017–36th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, 30 April–4 May 2017, Paris,
France, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10211, pp.
643–673 (2017). https://doi.org/10.1007/978-3-319-56614-6 22, https://doi.org/
10.1007/978-3-319-56614-6 22

49. Rosenfeld, M.: Analysis of hashrate-based double spending (2014). https://arxiv.
org/pdf/1402.2009.pdf. Accessed 9 Mar 2016

https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-030-56877-1_16
https://eprint.iacr.org/2020/269
https://arxiv.org/pdf/1905.04792.pdf
https://eprint.iacr.org/2020/774
https://pdfs.semanticscholar.org/c55a/6c95b869938b817ed3fe3ea482bc65a7206b.pdf
https://pdfs.semanticscholar.org/c55a/6c95b869938b817ed3fe3ea482bc65a7206b.pdf
https://eprint.iacr.org/2020/885
https://bitslog.com/2013/06/26/the-bitcoin-eternal-choice-for-the-dark-side-attack-ecdsa/
https://bitslog.com/2013/06/26/the-bitcoin-eternal-choice-for-the-dark-side-attack-ecdsa/
http://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf
http://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf
https://doi.org/10.1007/978-3-319-70278-0_17
http://eprint.iacr.org/2017/019.pdf
https://doi.org/10.1007/978-3-662-58820-8_1
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1515/popets-2018-0015
http://eprint.iacr.org/2017/881.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://arxiv.org/pdf/1402.2009.pdf
https://arxiv.org/pdf/1402.2009.pdf

532 A. Judmayer et al.

50. Rosenfeld, M.: Overview of colored coins (2012). https://bitcoil.co.il/BitcoinX.pdf.
Accessed 9 Mar 2016

51. Ruffing, Tim, Moreno-Sanchez, Pedro, Kate, Aniket: CoinShuffle: practical
decentralized coin mixing for bitcoin. In: Kuty�lowski, Miros�law, Vaidya,
Jaideep (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11212-1 20, http://crypsys.mmci.uni-
saarland.de/projects/CoinShuffle/coinshuffle.pdf

52. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) Financial Cryptography and Data
Security - 20th International Conference, FC 2016, 22–26 February 2016, Christ
Church, Barbados, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 9603, pp. 515–532. Springer (2016). https://doi.org/10.1007/978-3-662-54970-
4 30, http://arxiv.org/pdf/1507.06183.pdf

53. Sergey, I., Kumar, A., Hobor, A.: Temporal properties of smart contracts. In:
Leveraging Applications of Formal Methods, Verification and Validation. Indus-
trial Practice - 8th International Symposium, ISoLA 2018, 5–9 November 2018,
Limassol, Cyprus, Proceedings, Part IV, pp. 323–338 (2018). https://ilyasergey.
net/papers/temporal-isola18.pdf

54. Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited (2016). http://arxiv.
org/pdf/1605.09193.pdf. Accessed 4 July 2016

55. Stifter, N., Judmayer, A., Schindler, P., Zamyatin, A., Weippl, E.: Agreement with
satoshi - on the formalization of nakamoto consensus. Cryptology ePrint Archive,
Report 2018/400 (2018). https://eprint.iacr.org/2018/400.pdf

56. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Financial Cryptography and Data Security (FC 2016), February 2016. https://
www.comp.nus.edu.sg/∼prateeks/papers/38Attack.pdf

57. Tsabary, I., Eyal, I.: The gap game. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 713–728. ACM (2018).
https://arxiv.org/pdf/1805.05288.pdf

58. Tsabary, I., Yechieli, M., Eyal, I.: MAD-HTLC: because HTLC is crazy-cheap to
attack. CoRR abs/2006.12031 (2020). https://arxiv.org/abs/2006.12031

59. Velner, Y., Teutsch, J., Luu, L.: Smart contracts make bitcoin mining pools vul-
nerable. In: Brenner, M., et al. (eds.) Financial Cryptography and Data Security -
FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
7 April 2017, Sliema, Malta, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 10323, pp. 298–316. Springer (2017). https://doi.org/10.1007/978-3-
319-70278-0 19, http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf

60. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591,
pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-
4 9, http://vukolic.com/iNetSec 2015.pdf

61. Winzer, F., Herd, B., Faust, S.: Temporary censorship attacks in the presence
of rational miners. In: 2019 IEEE European Symposium on Security and Pri-
vacy Workshops, EuroS&P Workshops 2019, 17–19 June 2019, Stockholm, Swe-
den, pp. 357–366. IEEE (2019). https://doi.org/10.1109/EuroSPW.2019.00046,
https://eprint.iacr.org/2019/748

https://bitcoil.co.il/BitcoinX.pdf
https://doi.org/10.1007/978-3-319-11212-1_20
http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle/coinshuffle.pdf
http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle/coinshuffle.pdf
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_30
http://arxiv.org/pdf/1507.06183.pdf
https://ilyasergey.net/papers/temporal-isola18.pdf
https://ilyasergey.net/papers/temporal-isola18.pdf
http://arxiv.org/pdf/1605.09193.pdf
http://arxiv.org/pdf/1605.09193.pdf
https://eprint.iacr.org/2018/400.pdf
https://www.comp.nus.edu.sg/~prateeks/papers/38Attack.pdf
https://www.comp.nus.edu.sg/~prateeks/papers/38Attack.pdf
https://arxiv.org/pdf/1805.05288.pdf
https://arxiv.org/abs/2006.12031
https://doi.org/10.1007/978-3-319-70278-0_19
https://doi.org/10.1007/978-3-319-70278-0_19
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-39028-4_9
http://vukolic.com/iNetSec_2015.pdf
https://doi.org/10.1109/EuroSPW.2019.00046
https://eprint.iacr.org/2019/748

Pay to Win: Cheap, Cross-Chain Bribing
Attacks on PoW Cryptocurrencies

Aljosha Judmayer1,2(B), Nicholas Stifter1,2, Alexei Zamyatin3, Itay Tsabary4,
Ittay Eyal4, Peter Gaži5, Sarah Meiklejohn6, and Edgar Weippl2

1 SBA Research, Vienna, Austria
{ajudmayer,nstifter}@sba-research.org

2 Uni Wien, Vienna, Austria
edgar.weippl@univie.ac.at

3 Imperial College London, London, UK
a.zamyatin@imperial.ac.uk

4 Technion and IC3, Haifa, Israel
Ittay@technion.ac.il

5 IOHK, Kowloon, Hong Kong
peter.gazi@iohk.io

6 University College London, London, UK
s.meiklejohn@ucl.ac.uk

Abstract. In this paper we extend the attack landscape of bribing
attacks on cryptocurrencies by presenting a new method, which we call
Pay-To-Win (P2W). To the best of our knowledge, it is the first approach
capable of facilitating double-spend collusion across different blockchains.
Moreover, our technique can also be used to specifically incentivize trans-
action exclusion or (re)ordering. For our construction we rely on smart
contracts to render the payment and receipt of bribes trustless for the
briber as well as the bribee. Attacks using our approach are operated and
financed out-of-band i.e., on a funding cryptocurrency, while the conse-
quences are induced in a different target cryptocurrency. Hereby, the
main requirement is that smart contracts on the funding cryptocurrency
are able to verify consensus rules of the target. For a concrete instanti-
ation of our P2W method, we choose Bitcoin as a target and Ethereum
as a funding cryptocurrency. Our P2W method is designed in a way that
reimburses collaborators even in the case of an unsuccessful attack. Inter-
estingly, this actually renders our approach approximately one order of
magnitude cheaper than comparable bribing techniques (e.g., the whale
attack). We demonstrate the technical feasibility of P2W attacks through
publishing all relevant artifacts of this paper, ranging from calculations
of success probabilities to a fully functional proof-of-concept implemen-
tation, consisting of an Ethereum smart contract and a Python client.

Keywords: Algorithmic incentive manipulation · Bribing · Smart
contracts · Ethereum · Bitcoin

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 533–549, 2021.
https://doi.org/10.1007/978-3-662-63958-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_39&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_39

534 A. Judmayer et al.

1 Introduction

“The system is secure as long as honest nodes collectively control
more CPU power than any cooperating group of attacker nodes.” Satoshi
Nakamoto [19].

Despite an ever growing body of research in the field of cryptocurrencies, it is
an open question if Bitcoin, and thus Nakamoto consensus, is incentive compat-
ible under practical conditions, i.e., that the intended properties of the system
emerge from the appropriate utility model [3,4]. Bribing attacks, in particular,
target incentive compatibility and assume that at least some of the miners act
rationally , i.e., they accept bribes to maximize their profit. If the attacker,
together with all bribable miners, can gain a sizable portion of the computa-
tional power, even for a short period of time, attacks are likely to succeed.

Since the first descriptions of bribing attacks [4,6], various attack approaches,
which tamper with the incentives of protocol participants, have been pre-
sented for different scenarios and models. As bribing [15,17,22,24], front-
running [7,8,12] Goldfinger [3,11,13] and other related attacks, all intend to
manipulate the incentives of rational actors in the system, we jointly consider
them under the general term algorithmic incentive manipulation (AIM). So far,
most proposed AIM attack strategies focus on optimizing a player’s (miner’s)
utility by accepting in-band bribes, i.e., payments in the respective cryptocur-
rency [4,15,17,24] Thus, a common argument against the practicality of such
attacks is that miners have little incentive to participate, as they would put
the economic value of their respective cryptocurrency at risk, harming their
own income stream. Another common counter argument against in-band brib-
ing attacks is that they are considered expensive for an adversary (e.g., costs
of several hundred bitcoins for one successful attack [15]), or require substantial
amounts of computing power by the attacker.

In this paper, we present an AIM attack method called Pay-To-Win (P2W),
which generalizes the construction of different AIM attacks on PoW Cryptocur-
rencies by leveraging smart contract platforms. Our attack requires no attacker
hashrate, and an order of magnitude less funds than comparable attacks (i.e.,
the whale attack). To highlight the technical and economical feasibility of our
approach, we provide a concrete instantiations of our P2W design, representing
a new bribing attack. It uses a smart contract capable funding cryptocurrency
(Ethereum) to finance and operate an attack on a (different) target cryptocur-
rency (Bitcoin). All bribes are paid in the funding cryptocurrency, i.e., out-of-
band. Prior to our attacks, out-of-band payments have only been used in the
context of Goldfinger-attacks, where the goal of an attacker is to destroy a com-
peting cryptocurrency to gain some undefined external utility [13]. The attacks
we present in this paper can be performed based on either strategy, using in-
band profit, or as out-of-band Goldfinger-style attacks to destroy the value of the
targeted cryptocurrency. In a multi-cryptocurrency world, P2W attacks demon-
strate that utilizing out-of-band payments can pose an even greater threat to
cryptocurrencies, as the argument that miners won’t harm their own income

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 535

stream must be critically examined in this context. Consider as an example two
PoW cryptocurrencies that share the same PoW algorithm and have competing
interests, for example Bitcoin and Bitcoin Cash. If rational Bitcoin miners face
the opportunity of earning Ether for performing attacks on Bitcoin Cash, they
may be willing to redirect their hashrate for this purpose, especially if they are
guaranteed to receive the promised out-of-band rewards/bribes.

We show that such sophisticated trustless out-of-band attacks on Bitcoin-like
protocols can readily be constructed, given any state-of-the-art smart contract
platform capable for verifying the consensus rules of the target for the duration of
the attack. Moreover, we show that the cost for an attacker can be considerably
reduced by guaranteeing that participating bribees are reimbursed. Furthermore,
cross-chain transaction ordering attacks can also be executed as targeted bribing
attacks using our method. This possibility for rational miners to (trustlessly)
auction the contents of their block proposals (i.e., votes) to the highest bidder
raises fundamental questions on the security and purported guarantees of most
permissionless blockchains.

Contribution: We propose a new design pattern, called Pay-To-Win (P2W), for
out-of-band algorithmic incentive manipulation (AIM) attacks. To highlight the
concept behind our design approach, we provide a new out-of-band AIM attack to
incentivize double-spend collusion (Sect. 3.1).1 On the technical level, we intro-
duce ephemeral mining relays, as an underlying construction which is required
to execute our trustless, time-bounded, cross-chain attack method. Moreover we
describe guaranteed payment of bribed miners even if the attack fails, which
actually reduces the costs of such attacks. All artifacts reaching from calcula-
tions, simulations, a PoC and scripts used to derive the operational costs are
available online.2

2 Model

We focus on permissionless proof-of-work (PoW) cryptocurrencies, as the major-
ity of related bribing attacks target Bitcoin, Ethereum, and systems with a sim-
ilar design. That is, we assume protocols adhering to the design principles of
Bitcoin [19], generally referred to as Nakamoto consensus, or Bitcoin backbone
protocol [10,20]. Within the attacked cryptocurrency we differentiate between
miners, who participate in the consensus protocol and attempt to solve PoW-
puzzles, and clients, who do not engage in such activities. Following the models
of related work [4,15,17,22], we assume the set of miners to be fixed, and their
respective computational power within the network to remain constant.

To abstract from currency details, we use the term value as a universal
denomination for the purchasing power of cryptocurrency units, or any other

1 Three other new attacks which we also described, as well as an in-depth analysis of
the herein proposed attack, can be found in the extended version of the paper.

2 Link to repository blinded for review.

536 A. Judmayer et al.

out-of-band funds such as fiat currency. Miners and clients may own cryptocur-
rency units and are able to transfer them (i.e., their value) by creating and broad-
casting valid transactions within the network. Moreover, as in prior work [15,17],
we likewise make the simplifying assumption that exchange rates are constant
over the duration of the attack.

In this work we follow the established BAR-model [14] and split participat-
ing miners into three groups and their roles remain static for the duration of
the attack. Additionally, we define the victim(s) as another group or individual
without hashrate.

Byzantine Miners or Attacker(s) (Blofeld): The attacker B wants to exe-
cute an incentive attack on a target cryptocurrency. B is in control of bribing
funds fB > 0 and has some, or no hashrate (pB ≥ 0) in the target cryptocurrency.
B may deviate arbitrarily from the protocol rules.

Altruistic or Honest Miner(s) (Alice): Altruistic miners A are honest and
always follow the protocol rules, hence they will not accept bribes to mine on a
different chain-state or deviate from the rules, even if it would offer larger profit.
Miners A control some or no hashrate pA ≥ 0 in the target cryptocurrency.

Rational or Bribable Miner(s) (Rachel): Rational miners R controlling
hashrate pR > 0 in the target cryptocurrency They aim to maximize their
short term profits in terms of value. We consider such miners “bribable”, i.e.,
they follow strategies that deviate from the protocol rules as long as they are
expected to yield higher profits than being honest. For our analyses we assume
rational miners do not concurrently engage in other rational strategies.

Victim(s) (Vincent): The set of victims, or a single victim, which loses value
if the bribing attack is to be successful. The victims control zero hashrate, and
therefore can be viewed as a client.

It holds that pB + pA + pR = 1. The assumption that the victim of an AIM
attack has no hashrate is plausible, as the majority of transactions in Bitcoin
or Ethereum are made by clients which do not have any hashrate in the system
they are using.

Whenever we refer to an attack as trustless, we imply that no trusted third
party is needed between briber and bribee to ensure correct payments are per-
formed for the desired actions. Thus the goal is to design AIM in a way that the
attacker(s), as well as the collaborating miners, have no incentive to betray each
other if they are economically rational.

Communication and Timing: Participants communicate through message
passing over a peer-to-peer gossip network, which we assume implements a reli-
able broadcast functionality. As previous bribing attacks, we further assume that
all miners in the target cryptocurrency have perfect knowledge about the attack
once it has started. Analogous to [10], we model the adversary Blofeld as rush-
ing, meaning that he gets to see all other players messages before he decides
his strategy, e.g., executes his attack. While the attack is performed on a target
cryptocurrency, the distinct funding cryptocurrency is used to orchestrate and

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 537

fund it. We also assume that the difficulty and the mean block interval of the
funding chain is fixed for the duration of the attack, and that no additional
attacks are concurrently being launched against either cryptocurrency.

3 P2W Attack Method

In this section, we introduce a new approach for algorithmic incentive manipu-
lation attacks, which we call Pay-To-Win (P2W). Our approach relies on smart
contracts and the specification of block templates by the attacker. These tem-
plates define the desired block structure for which Blofeld is willing to provide
rewards in form of bribes. We consider out-of-band attacks to be technically more
challenging, as well as more powerful regarding their capabilities (see below),
therefore we focus on out-of-band attacks in this paper.3 As the payment is
performed out-of-band, we differentiate between a target cryptocurrency, where
the attack is to be executed, and a funding cryptocurrency, where the attack is
coordinated and funded. While the funding cryptocurrency must support suffi-
ciently expressive smart contracts, there are no such requirements for the tar-
get cryptocurrency. For presentation purposes, we choose Bitcoin as target and
Ethereum as the funding cryptocurrency to instantiate and describe our attacks.
Theoretically, the attack can be funded on any smart contract-capable funding
cryptocurrency, which is able to verify the PoW of the target. This advantage of
being fund- and operable on any appropriate smart contract capable cryptocur-
rency renders these P2W attacks arguably more difficult to detect and protect
against, as the victim(s) would have to monitor multiple, if not all, possible
funding blockchains. Moreover, our attacks can also use additional privacy pre-
serving techniques available on the funding cryptocurrency (e.g., [18]) to hinder
the traceability of funds and transactions of involved parties. Another advan-
tage of out-of-band payments is, that they are not bound to the exchange value
of the targeted cryptocurrency and thus can also be used for Goldfinger style
attacks [3,13], as the assumption that miners of the target cryptocurrency would
not harm their own revenue channel does not necessarily hold true anymore. This
is an even more compelling argument in a world where multiple cryptocurrencies
either share the same PoW algorithm, or hardware can be effectively used for
mining other forms of PoW.

Our construction requires a combination of a smart contract based mining
pool [16,23] and a temporary chain relay.4 We call this underlying construction
an ephemeral mining relay (EMR).5 Chain relays are smart contracts which allow

3 We also describe and evaluate three new in-band attacks targeting transaction order-
ing and transaction exclusion in the extended version of this paper. A in-band
transaction exclusion attack was also described and analyzed in concurrent work
by Winzer et al. [24], but no concrete instantiation was given.

4 cf. https://github.com/ethereum/btcrelay.
5 We use the term “ephemeral” as the mining relay is instantiated only temporarily

and does not require verification of the entire blockchain, but only the few blocks
relevant for the attack.

https://github.com/ethereum/btcrelay

538 A. Judmayer et al.

to verify the state of other blockchains, however, a naive chain relay implemen-
tation only allows to verify that a certain block (or transaction) was included in
a chain with the most accumulated proof-of-work (i.e., heaviest chain). It does
not allow to verify whether the blocks and transactions included in this heaviest
chain are indeed valid, i.e., adhere to the consensus rules of the corresponding
blockchain. In contrast to previous proposals, our EMR needs to be capable of
validating if blocks adhere to the consensus rules of the target cryptocurrency.
This is achieved by sufficiently restricting the allowed block structure. In our
case the set of transactions within blocks generated by collaborating miners is
specified by the block template provided by the adversary. As Blofeld wants to
submit collected PoW solutions to Bitcoin, it is in his best interest to provide
only templates including valid transactions. Conversely, collaborating rational
miners do not care if the block template they mine on is actually valid in Bit-
coin, since the rewards they receive for solutions are guaranteed to be paid out
by the smart contract in Ethereum.

Summarizing, our EMR takes care that the promised rewards are only paid
to complacent bribees which have actively contributed to the attack. Therefore,
the introduced attack can be considered trustless, both for the attacker as well
as the collaborating bribed miners. Moreover, the attack does not require the
adversary to control any hashrate, i.e., we assume pB = 0. To demonstrate the
feasibility of our approach and the described attack, we implemented a fully
functional prototype of our attack and evaluated its costs in Ethereum. The
source code and all other artifacts of the evaluation are available on Github.6

3.1 Transaction Revision, Exclusion and Ordering Attack

To illustrate all underlying concepts, we present them within the context of a
concrete attack. While we focus on transaction revision in our description, the
presented attack also bears the possibility for arbitrary transaction exclusion
and ordering. To execute our attack, Blofeld must construct a smart contract
which temporarily rewards the creation of attacker-defined blocks on the target
cryptocurrency. After its initialization, the smart contract can be used by him as
well as by other collaborating miners/attackers/bribees to coordinate the attack
and manage the investment and payout of funds.

Initialization Phase (deploy, init): First the attacker (Blofeld) creates the
uninitialized attack contract and publishes it on the Ethereum blockchain. This
is done with a deploy transaction included in some Ethereum block e0 from an
Ethereum account controlled by the attacker.7 Then, Blofeld creates a conflict-
ing pair of Bitcoin transactions. The spending transaction txB is published on
6 Link to repository blinded for review.
7 It is also possible to deploy and initialize the attack contract at the same time

(e1), but publishing an uninitialized attack contract upfront ensures that potential
collaborators can audit it and familiarize themselves with the procedure. In any case,
it is important that the double-spend transaction tx′

B is disclosed after block bkV

on the main chain, as otherwise Vincent may recognize the double-spending attack
and refuse to release the goods.

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 539

the main chain in Bitcoin immediately, and the double-spending transaction tx′
B

is kept secret. After the confirmation period of kV blocks (defined by the victim
V) has passed on the Bitcoin main chain, Blofeld releases an initialization trans-
action, which defines the conditions of the attack in the smart contract on the
Ethereum chain. The block e1 represents the first block on the Ethereum chain
after the Bitcoin block bkV

has been published.
In e1 the contract is initialized with kV + 1 new Bitcoin block templates,

each carrying the transactions from the original chain to collect their fees, but
instead of txB the conflicting transaction tx′

B is included. Collaborating miners
are now free to mine these new block templates. For the first template they are
only allowed to change the nonce and the coinbase field to find a valid PoW
and include their payout Ethereum address in the coinbase. This prevents front
running of solutions (see Sect. 3.1). Once a solution has been found, it has to
be submitted by the respective miner to the attack contract, which verifies the
correctness of the PoW and that only allowed fields (nonce and coinbase) have
been changed. After the first block (b′

1) in the sequence, also the previous block
hashes of subsequent blocks ({b′

2, . . . }) have to be adjusted by collaborating
miners. If a submitted solution is valid, the contract knows which previous block
hash it must use to verify the next solution and so forth.

As soon as Blofeld becomes aware that a valid solution was broadcasted in the
Ethereum P2P network, he uses the PoW solution to complete the whole block
and submits it to the Bitcoin P2P network. Blofeld and the collaborating miners
have an incentive to submit solutions timely. The collaborating miners want to
collect an additional bribe ε in case the attack succeeds, and the attacker wants
his blocks included in the Bitcoin main chain to receive the Bitcoin block rewards
to his Bitcoin address, and in the best case, perform a successful double-spend.

Attack Phase (update): Bribed miners now proceed to mine kV +1 blocks on
the attack chain. If additional blocks are found on the main chain, the attacker
can update the attack contract with new block templates for blocks kV + 2 to
N , where N is the maximum number of attack blocks that can be funded by
the adversary. Note that N is not necessarily known by Vincent, Rachel or any
other observer.

Payout Phase (pay): The payout phase starts as soon as the attack phase has
ended. This happens when kB blocks have been mined on top of the last block
for which a block template has been provided to the smart contract. In the best
case, this happens at block T = kV + 1 + kB , but in our example one update
with an additional block template was required, leading to T = kV + 2 + kB .
The delta of kB is a security parameter defined by the attacker, which should
ensure that every participant had enough time to submit information about the
longest Bitcoin chain to the contract and that the sequence of blocks relevant
for the attack has received sufficient confirmations.8

8 Ideally kB is specified as an acceptance policy logarithmic in the chain’s length as
described in [21].

540 A. Judmayer et al.

The attack terminates as soon as the first block of height T is committed to
the contract. This can be a block of the main chain, or the attack chain. After
the attack has terminated, the contract unlocks the payment of compensations
and rewards for the miners of the associated blocks. Now all miners who joined
the attack and contributed blocks can collect their compensations and/or bribes
from the contract.

To accurately pay out funds, the contract on Ethereum has to determine
which chain in Bitcoin has won the race and is now the longest chain. Thereby,
the contract has to distinguish between two possible outcomes:

Attack Failed (Main chain wins): In this case the contract must compensate the
bribed miners for their contributed blocks to the attack chain, which are now
stale. These are at most {b′

1, . . . , b
′
N}, Every collaborating miner who mined and

successfully submitted a block to the attack contract receives the original Bitcoin
reward (in Ether) for that block, without an additional ε.

Ethereum block
Zero or more blocks in between

Bitcoin block Rewarded blockBlock not yet mined

Failed: Successful: 1 1 1

target chain
(B

itcoin)
funding chain
(Ethereum

)

Fig. 1. Example blockchain structure and resulting payouts of a failed, and a success-
ful attack. The colored blocks are rewarded by the attack contract, either with their
original value (reward + fee normalized to 1) or with an additional ε if the attack was
successful. The numbers above colored blocks indicate those normalized rewards.

Attack Succeeded (Attack chain wins): If the attack chain wins, then the contract
executes the following actions: 1) Fully compensate the miners of kV main chain
blocks starting from b1, which are now stale. This is necessary to provide an
incentive also for those miners to switch and contribute to the attack chain,
as they otherwise would lose their rewards from blocks they contributed to the
main chain if the attack is successful. 2) Pay the miner of every attack chain
block, b′

1 to b′
kV +2 in our example (max. till b′

N), the full block reward plus an
additional ε as a bribe in Ether.

Figure 1 shows the different stages of the attack on the funding cryptocur-
rency, as well as two different outcomes (failed and successful attack) on the
target cryptocurrency. The paid out compensations (block rewards normalized
to 1) and bribes (ε) are given above the respective blocks. Upon being invoked
with a miner’s cash-out transaction, the contract checks if the attack has already
finished, i.e., a valid chain up to block height T is known, and which chain has
won the race. Then the contract pays out accordingly.

Incentives to Submit Blocks: Since collaborating miners are competing for
mined attack chain blocks and want the attack to be successful to receive the

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 541

additional bribes, they have an incentive to timely submit their attack chain
blocks to the contract. In any case, for every (valid) submitted Bitcoin attack
chain block, the full Bitcoin reward is paid in Ether by the contract. In case
of a successful attack an additional ε is paid. Therefore, Blofeld who initialized
the contract and provided the funds has an incentive to submit the relevant
part of the main chain, if a conflicting longer chain ({b1, . . . , bT }) exists, since
he would pay an additional ε for every block otherwise. Moreover, Blofeld has
an incentive to submit every completed Bitcoin block (with the PoW provided
by the bribees) to the Bitcoin network, because he is the one who receives the
full Bitcoin block rewards as specified in his Bitcoin block template. Ethereum
Payout Address Derivation: To determine the correct Ethereum payout
addresses of collaborating miners, the following approaches are feasible: As soon
as bribed miners start participating in the attack, they directly provide their
Ethereum address as additional data in the coinbase field of every submitted
Bitcoin block on the attack chain. As miners of the blocks b1 to bkV

, may not have
disclosed their Ethereum address in the coinbase field already, another technique
has to be used. For blocks where miners were not yet aware of the attack, they
must prove to the contract that they indeed mined the respective block(s). If
Pay-to-Pubkey outputs have been used in the respective coinbase transactions,
the Bitcoin address public key can be used to derive the corresponding Ethereum
address, as described and implemented in the Goldfinger attack example in [17].
This can also be achieved by providing the ECDSA public keys corresponding to
Pay-to-PubKey-Hash payouts from the respective coinbase outputs to the smart
contract. Thereby, the contract can verify if the keys correspond to the respective
Bitcoin addresses and also derive the corresponding Ethereum addresses, as they
rely on the same signature scheme.

3.2 Evaluation with Solely Rational Miners (pR = 1)

As rational miners will participate in the attack as long as it is expected to
yield more profit than honest mining, the remaining question is, what budget
in Ether is required by Blofeld (fB) for the attack to succeed. As the Bitcoin
block rewards and bribes have to be payed out in Ether, we assume a fixed
exchange rate between cryptocurrencies to derive our lower bound in terms of
BTC required. Blofeld has to lock funds in the attack contract for each sub-
mitted block template, to ensure complacent miners can be certain to receive
their rewards if they submit blocks and thus are incentivized to join the attack.
Therefore, the duration of the attack is the main driver for the required budget.
As the duration is dependent on the security parameter kV chosen by Vincent,
N > kV has to hold for an attack to be feasible.

Necessary Attack Budget: For Bitcoin, a common choice is kV = 6 requir-
ing N to be at least 7. The budget of the attack contract must cover all rewards
which could potentially be paid out by the contract. For the most expensive
case, which is a successful attack, this encompasses: The bribes (ε) as well as

542 A. Judmayer et al.

Bitcoin block rewards including fees9 (rb), which we previously normalized to
1 in Fig. 1. Assuming the current block reward (6.25 BTC), average fees (≈2
BTC), operational costs (coperational = 0.5 BTC), as well as a bribe of ε = 1
BTC, this leads to a budget of 114.75 BTC which has to be provided to the
attack contract in Ether upfront s.t., fB = kV · rb + N · (rb + ε) + coperational .
As Blofeld receives the Bitcoin block rewards in case of a successful attack, the
actual costs of the attack are much smaller than the required budget Blofeld
has to lock in the contract.

Costs and Profitability of a Successful Attack: If the attack is successful,
then Blofeld earns the block rewards on the main chain in BTC which compen-
sate his payouts to bribed miners in Ether. The costs for a successful attack
are thus reduced by N · rb main chain blocks, whereas rewards must be paid for
N ·(rb+ε) block templates. The remaining costs of a successful attack stem from
the kV · rb main chain blocks that have to be compensated on the attack chain
s.t., csuccess = kV · rb +N · ε+ coperational. The initial kV compensations are nec-
essary to provide the same incentive for all miners that have already produced
blocks on the main chain to switch to the attack chain. Since we assume rational
miners, the attack in this scenario is always successful if N > kV and ε > 0 hold.
For Bitcoin, this means that the costs of a successful double spend with kV = 6
and rb = 8.25 and ε = 1 are csuccess = 57 BTC. For a successful attack to be
profitable, the value of the double-spend (vd) has to be greater than this value. In
Bitcoin, transactions carrying more than 57 BTC are observed regularly.10 For
comparison, in its cheapest configuration, the whale attack costs approximately
770 BTC [15], but it was simulated for a previous Bitcoin reward epoch, where
block rewards have been higher. Even if we assume rb = 12.5 BTC, our attack
would cost 94.5 BTC, which is considerably lower than the whale attack. The
remaining difference to our approach is that the whale attack does not assume
all miners to be rational. In Sect. 3.3 we also extend our evaluation to this model
by introducing altruistic miners.

Costs of a Failed Attack: Although the attack cannot fail in a model where
all miners are rational and the attacker has enough budget, it is relevant for
a scenario where pR < 1 to determine the worst case cost for an unsuccessful
attack. In the worst case, the attack duration is N and not a single block pro-
duced by complacent miners (according to a published block template) made
it into the main chain. Then the costs are determined by the duration N and
the block rewards including fees (rb) s.t., cfail = N · rb + coperational . Setting the
same values for rb and N amounts to approximately cfail = 58.25 BTC in our
example.

9 In a concrete attack of course rb is not constant, but given by the coinbase output
values of every submitted block.

10 cf. https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time
(2020-10),value(6000000000..)\#.

https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time(2020-10),value(6000000000..)\#
https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time(2020-10),value(6000000000..)\#

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 543

3.3 Evaluation with Altruistic Miners (pA > 0 ∧ pR + pA = 1)

We now discuss a more realistic scenario where not all miners switch to the
attack chain immediately, i.e., some of them act altruistically. Altruistic miners
follow the protocol rules and only switch to the attack chain if it becomes the
longest chain in the network – but do not attempt to optimize their revenue,
contrary to economically rational, i.e., bribable, miners.11

We derive the probability of the attack chain to win a race against altruistic
miners, based on the budget of the attacker and the initial gap between those
chains which has to be overcome kgap where kgap is initially set to kgap = kV .
The difference between kV and kgap is that kgap can increase when altruistic
miners find a new block, while kV is static. In other words, the attack chain
must find kgap+1 more blocks than the altruistic main chain – but must achieve
this within the upper bound of N blocks (maximum funded attack duration).
Each new block is appended to the main chain with probability pA, and to the
attack chain with probability pR respectively (pA + pR = 1). We therefore seek
all possible series of blocks being appended to either chain, and calculate the sum
of the probabilities of the series which lead to a successful attack. In a successful
series i ∈ N blocks are added to the main chain and kgap + i+1 blocks are added
to the attack chain. The probability for such a series is p

kgap+i+1
R · piA.

For any prefix strictly shorter than the whole series, the number of appended
blocks to the attack chain is smaller than kgap+1, as otherwise the attack would
have ended sooner. It follows that the last block in a successful series is always
appended to the attack chain. The number of combinations for such a series
is derived similarly to Bertrand’s ballot theorem, with a difference of kgap for
the starting point. Assuming the attacker can only fund up to N blocks on the
attack chain, the probability of a successful attack is hence given by:

i≤N−kgap−1∑

i=0

(
kgap + 2i

i

)
−

(
kgap + 2i

i − 1

)
· p

kgap+i+1
R · piA (1)

Using formula 1 we can calculate the success probability of the attack. Clearly,
the attack requires N > kV to have a chance of being successful. As with the
classical 51% attacks, the attack eventually succeeds once the bribable hash rate
is above the 50% threshold and the number of payable blocks N grows. In other
words, assuming more than pR > 0.5 rational hashrate, bribing attacks are
eventually successful if they can be funded long enough. The relevant question
is how expensive it is to sustain the attack for a long enough period s.t., the
attack is expected to be successful.

11 Another explanation can be that some miners have imperfect information, which
might be the case in practice.

544 A. Judmayer et al.

Table 1. Comparison of attack costs for kV = 6, all costs given in BTC. The costs
for the whale attack are the average from 106 simulation results provided in [15]. For
comparision different Bitcoin block reward epochs (12.5 and 6.25 BTC) are provided
for our P2W attack, all with coperational = 0.5 BTC, and average fee per block of 2
BTC and a bribe ε = 1 BTC.

Rational
hashrate
pR

Average whale attack
costs epoch reward
12.5 cwhale in BTC

P2W epoch
reward 12.5
cexpected in BTC

P2W cost
compared
to whale

P2W N
average

P2W epoch
reward 6.25
cexpected in BTC

0.532 293e+23 196.50 ≈0.00% 109 159.00

0.670 999.79 108.50 10.85% 21 71.00

0.764 768.09 101.50 13.21% 14 64.00

0.828 1265.14 98.50 7.79% 11 61.00

0.887 1205.00 96.50 8.01% 9 59.00

0.931 1806.67 96.50 5.34% 9 59.00

0.968 2178.58 95.50 4.38% 8 58.00

0.999 2598.64 95.50 3.67% 8 58.00

Table 1 shows a comparison between the expected costs of a successful P2W
attack, against the average costs of 106 simulations of the whale attack as pre-
sented in [15]. At a first glance, given that the attacker must pay collaborating
miners regardless of the outcome of the attack, one may assume that the costs
faced by the attacker are high compared to other bribing schemes. However, this
is not the case. In our attack miners face no risk from participation – requir-
ing only a low bribe value to incentivize sufficient participation for a successful
attack, contrary to existing bribing attacks like the whale attack.

It can be observed that, in contrast to the whale attack, our attack becomes
cheaper when pR grows large since the race is won faster and therefore fewer
bribes have to be paid. Moreover, the whale attack has to pay substantially more
funds to account for the risk rational miners face if the attack fails. Our approach
is hence approximately ≈87% to ≈96% cheaper than the whale attack. For pR =
0.532 the difference is so large, that the costs of our P2W attack are insignificant
compared to the whale attack. The switch to a new Bitcoin block reward epoch
has further reduced the costs of the attack s.t., the costs of a successful double-
spending attack (kV = 6) using our technique are around 60 BTC. In October
2020 alone, there where around 60 thousand Bitcoin transactions with outputs
greater than 60 BTC.12

3.4 Evalution of the Operational Costs

We implement a fully functional attack contract including the EMR on
Ethereum, which is capable of verifying the state of the Bitcoin blockchain.13

12 c.f. https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time
(2020-10),value(6000000000..)\#.

13 Blinded for review.

https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time(2020-10),value(6000000000..)\#
https://blockchair.com/bitcoin/outputs?s=value(desc),time(desc)&q=time(2020-10),value(6000000000..)\#

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 545

We use Solidity v0.6.2 and a local Ganache instance for cost analysis, with a
current gas price of 45 Gwei and an exchange rate 500 USD/ETH. Submitting
a block template for a Bitcoin block amounts to 302,228 Gas ($ 6.80 USD). The
costs for submitting and verifying a new Bitcoin block are 468,273 Gas ($ 10.54
USD) in the worst case. In total the costs of an example attack on Bitcoin with
kV = 6 and kB = 6 are about $ 355.24 USD. This confirms that the costs for
maintaining an attack contract including an EMR are marginal when compared
to the potential scale of incentive attacks described in this paper. For compar-
ison, the reward for a single Bitcoin block (excluding transaction fees) at the
time of writing is approximately $ 120 000 USD.

4 Discussion and Mitigations

Our AIM attack highlights the security dependency between transaction value
and confirmation time kV , as also stated in [21]. As with the negative-fee mining
pools presented by Bonneau in [4], there exists an interesting analogy between
such an incentive manipulation attack and a mining pool. At an abstract level,
the presented attack relies on a construction comparable to a mining pool, where
the pool owner/attack operator defines specific rules for block creation for the
targeted cryptocurrency within a smart contract. Moreover, every participant
must be able to claim their promised rewards in a trustless fashion, based on
the submitted blocks and state of the targeted cryptocurrency. The construction
of an ephemeral mining relay, presented within this paper, provides exactly this
functionality. Luu et al. [16] also proposes a mining pool (Smart pool) which itself
is governed by a smart contract. However, its design and intended application
scenarios did not consider use-cases with malicious intent. Smart pool does not
enforce any properties regarding the content and validity of submitted blocks
beyond a valid PoW, as an intrinsic incentive among participants is assumed to
earn mining rewards in the target cryptocurrency, which is only possible if valid
blocks have been created.

Practical Possibility: The focus of this paper is to improve upon existing
attacks and demonstrate the technical feasibility of advanced bribing attacks, as
well as to evaluate the associated costs. Hereby, the long term interests of miners
of course also play an important role. There may be scenarios where miners are
capable of providing PoW for a target blockchain, but at the same time do not
have any long-term interest in the well-being of the target. Consider the real-
world example of Bitcoin and Bitcoin Cash which utilize the same form of PoW
and can be considered competitors. Thus, the question if the proposed attacks are
possible in practice is difficult to answer scientifically. There is already empirical
evidence from previous large scale attacks by miners, e.g., recent 51% attacks on
Ethereum Classic and Bitcoin Gold, as well as incentive manipulation attacks
and front-running [7]. To the best of our knowledge, none of the observed attacks
has been as sophisticated as the new technique proposed in this paper, but of
course, they can get better over time. Nevertheless, these cases demonstrate that
large scale attacks happen, and that the topic of incentives in cryptocurrencies

546 A. Judmayer et al.

is an area which deserves further study. We see our paper as another important
contribution in this direction.

Counter Attacks: Counter bribing refers to the technique of countering brib-
ing attacks with other bribing attacks [3,4]. For the victim(s), counter bribing
is a viable strategy against AIM. The difficulty of successfully executing counter
bribing highly depends on the respective scenario. In the end, counter brib-
ing can also be countered by counter-counter bribing and so forth. Therefore,
as soon as this route is taken, the result becomes a bidding game. If defend-
ers have imperfect information, they may not be able to immediately respond
with counter bribes. This illustrates an important aspect of AIM, namely their
visibility. On the one hand, sufficiently many rational miners of the target cryp-
tocurrency have to recognize that an attack is occurring, otherwise they won’t
join in and the attack is likely to fail. On the other hand, if the victims of the
attack recognize its existence, they can initiate and coordinate a counter bribing
attack. So the optimal conditions for AIM arise if all rational miners have been
informed directly about the attack, while all victims/merchants do not monitor
the chain to check if an attack is going on and are not miners themselves.

The great benefit of the herein described attacks is that bribes are paid out-
of-band. Hereby, our attacks are rendered more stealthy to victims, who only
monitor the target cryptocurrency. Of course their received rewards can be traced
in the funding cryptocurrency, but available privacy techniques may be used to
camouflage the real recipient of the funds e.g., [18]. It can hence be argued that
counter attacks by victims are harder to execute as they are not immediately
aware of the bribing value that is being bet against them on a different funding
cryptocurrency. We also follow the argument in [4] that requiring clients to
monitor the chain and actively engage in counter bribing is undesirable, and
our out-of-band attacks further amplifies this problem as clients would have to
concurrently monitor a variety of cryptocurrencies.

Cross-chain Verifiability: One crucial aspect of our attacks is that a smart
contract within the funding cryptocurrency must be able to validate core pro-
tocol and consensus rules of the target chain, in particular it must be able to
determine the validity of blocks. If this is not possible, the attack cannot be
executed trustlessly. For example, it is currently not possible to execute an AIM
against Litecoin using Ethereum as a funding cryptocurrency in a fully trust-
less manner, as it is economically unfeasible to verify the Scrypt hash function
within a smart contract. However, it is generally beyond the reach of an individ-
ual cryptocurrency to dictate or enforce what other cryptocurrencies support in
future versions of their smart contract languages. Thus, any such defensive deci-
sion of the target cryptocurrency may be mitigated by future changes in another
cryptocurrency. Hence, such measures can not guarantee lasting protection.

5 Implications and Future Work

In this paper we introduced a new AIM attack method called Pay-To-
Win (P2W) and showed that attacks utilizing the described techniques can

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 547

readily be constructed given current smart contract platforms. The implica-
tions of our proposed method (and related AIM/bribing attacks) regarding the
security guarantees of PoW cryptocurrencies are not yet conclusive and topic of
future work. On the theoretical side, embedding and modeling incentive attacks
in formalisms of Nakamoto style cryptocurrencies is non-trivial, as prevalent
approaches do not consider rational participants [2,9,20], or explicitly exclude
bribing [1]. Furthermore, no agreed upon game theoretic analysis technique for
(PoW) cryptocurrencies currently exits, and it remains an open question if such
an analysis could be rendered universally composable. The generalization and
inclusion of AIM attacks and rational behavior in formal analysis frameworks for
Nakamoto consensus based cryptocurrency designs, including approaches such
as Proof-of-Stake, hence poses an interesting and important open research chal-
lenge. On the practical side, our new attack, as well as the existing body of
research on AIM, demonstrates that it is not only the hashrate distribution
among permissionless PoW based cryptocurrencies that plays a central role in
defining their underlying security guarantees. The ratio of rational miners and
available funds for performing AIM also form a key component, as rational min-
ers can be incentivized to act as accomplices to an attacker. The possibility
of trustless out-of-band attacks highlights that being able to cryptographically
interlink cryptocurrencies increases this attack surface. Further, smart contract
based AIM introduces the possibility to align the interests of multiple attack-
ers who want to perform double-spends during the same time period, making
low value double-spends theoretically feasible (as economically analyzed in [5]).
Together with the topic of counter bribing, new research directions are opened
up that raise fundamental questions on the incentive compatibility of Nakamoto
consensus. Real world attacks targeting incentives, such as front-running [7],
demonstrate that the existence of incentives cannot be ignored in PoW cryp-
tocurrencies. To accurately reflect the security properties of permissionless PoW
cryptocurrencies, some form of rationality has to be taken into account. The
problem is, that as soon as rational players are considered, all previously pro-
posed AIM/bribing methods, as well as the attack described in this paper, lead to
interesting questions whether or not the incentive structures of prevalent cryp-
tocurrencies actually encourage desirable outcomes. Even more so, in a world
where multiple cryptocurrencies coexist it is likely not sufficient to model them
individually as closed and independent systems.

Acknowledgements. We would like to thank the participants of the Dagstuhl Semi-
nar 18152 (Blockchains, Smart Contracts and Future Applications), especially Samuel
Christie and Sebastian Faust, as well as the participants of the Dagstuhl Seminar 18461
(Blockchain Security at Scale) for all the frutiful discussions.

This paper is based upon work partially supported by (1) the Christian-Doppler-
Laboratory for Security and Quality Improvement in the Production System Lifecy-
cle; The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs, the Nation Foundation for Research, Technology and Development and Univer-
sity of Vienna, Faculty of Computer Science, Security & Privacy Group is gratefully
acknowledged; (2) SBA Research; the competence center SBA Research (SBA-K1)

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18152
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18461

548 A. Judmayer et al.

funded within the framework of COMET Competence Centers for Excellent Tech-
nologies by BMVIT, BMDW, and the federal state of Vienna, managed by the FFG;
(3) the FFG Bridge 1 project 864738 PR4DLT. (4) the US-Israel Binational Science
Foundation (BSF) (5) the Israel Cyber Bureau (6) the Technion Hiroshi Fujiwara
cyber-security research center.

References

1. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

2. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

3. Bonneau, J.: Hostile blockchain takeovers (short paper). In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 92–100. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 7

4. Bonneau, J.: Why buy when you can rent? Bribery attacks on bitcoin consensus.
In: 3rd Workshop on Bitcoin and Blockchain Research, BITCOIN 2016 (2016)

5. Budish, E.: The economic limits of bitcoin and the blockchain. Technical report,
National Bureau of Economic Research (2018)

6. Cunicula: Bribery: The double double spend. https://bitcointalk.org/index.php?
topic=122291. Accessed 31 Jan 2021

7. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE SP (2020)

8. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: FC 2019 - WTSC Workshop (2019)

9. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

10. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty (2016). Accessed 06 Feb 2017

11. Judmayer, A., Stifter, N., Schindler, P., Weippl, E.: Pitchforks in cryptocurrencies:
enforcing rule changes through offensive forking- and consensus techniques (short
paper). In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Livraga, G., Rios, R. (eds.)
DPM/CBT -2018. LNCS, vol. 11025, pp. 197–206. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00305-0 15

12. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting the laws of
order in smart contracts (2018)

13. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: Proceedings of WEIS (2013)

14. Li, H.C., et al.: Bar gossip. In: USENIX OSDI (2006)
15. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-

ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

16. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: SmartPool: practical decentralized
pooled mining. In: USENIX Security Symposium (2017)

https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-662-58820-8_7
https://doi.org/10.1007/978-3-662-58820-8_7
https://bitcointalk.org/index.php?topic=122291
https://bitcointalk.org/index.php?topic=122291
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-030-00305-0_15
https://doi.org/10.1007/978-3-030-00305-0_15
https://doi.org/10.1007/978-3-319-70278-0_17

Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies 549

17. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 3–18. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-58820-8 1

18. Meiklejohn, S., Mercer, R.: Möbius: trustless tumbling for transaction privacy. In:
Proceedings on Privacy Enhancing Technologies (2018)

19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, December 2008
20. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

21. Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited (2016). Accessed 04
July 2016

22. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

23. Velner, Y., Teutsch, J., Luu, L.: Smart contracts make bitcoin mining pools vul-
nerable. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 298–316.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 19

24. Winzer, F., Herd, B., Faust, S.: Temporary censorship attacks in the presence of
rational miners. In: IEEE EuroS&P Workshops 2019 (2019)

https://doi.org/10.1007/978-3-662-58820-8_1
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-662-54970-4_29
https://doi.org/10.1007/978-3-319-70278-0_19

WTSC – DeFi and Tokens

SoK: Lending Pools in Decentralized
Finance

Massimo Bartoletti1, James Hsin-yu Chiang2(B), and Alberto Lluch Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

jchi@dtu.dk

Abstract. Lending pools are decentralized applications which allow
mutually untrusted users to lend and borrow crypto-assets. These appli-
cations feature complex, highly parametric incentive mechanisms to equi-
librate the loan market. This complexity makes the behaviour of lending
pools difficult to understand and to predict: indeed, ineffective incentives
and attacks could potentially lead to emergent unwanted behaviours.
Reasoning about lending pools is made even harder by the lack of exe-
cutable models of their behaviour: to precisely understand how users
interact with lending pools, eventually one has to inspect their implemen-
tations, where the incentive mechanisms are intertwined with low-level
implementation details. Further, the variety of existing implementations
makes it difficult to distill the common aspects of lending pools. We sys-
tematize the existing knowledge about lending pools, leveraging a new
formal model of interactions with users, which reflects the archetypal
features of mainstream implementations. This enables us to prove some
general properties of lending pools, and to precisely describe vulnerabili-
ties and attacks. We also discuss the role of lending pools in the broader
context of decentralized finance and identify relevant research challenges.

1 Introduction

The emergence of permissionless, public blockchains has given birth to an entire
ecosystem of crypto-tokens representing digital assets. Facilitated and acceler-
ated by smart contracts and standardized token interfaces [1], these so-called
decentralized finance (DeFi) applications promise an open alternative to the tra-
ditional financial system. One of the main DeFi applications are lending pools,
which incentivize users to lend some of their crypto-assets to borrowers. Unlike
in traditional finance, all the parameters of a loan, like its interests, maturity
periods or token prices, are determined by a smart contract, which also defines
mechanisms to incentivize honest behaviour (e.g., loans are eventually repaid),
economic growth and stability. As of April 2021, the two main lending pool plat-
forms hold $13.5B [26] and $6.4B [24] worth of tokens in their smart contracts.

Lending pools are inherently hard to design. Besides the typical difficulty
of implementing secure smart contracts [2–4,38], lending pools feature complex
economic incentive mechanisms, which make it difficult to understand when a
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 553–578, 2021.
https://doi.org/10.1007/978-3-662-63958-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_40&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_40

554 M. Bartoletti et al.

lending pool actually achieves the economic goals it was designed for. As a
matter of fact, a recent failure of the oracle price feed used by the Compound
lending pool platform led to $100M of collateral being (incorrectly) liquidated
[16]. Indeed, most current literature in DeFi is devoted to study the economic
impact of these incentive mechanisms [45,46,52,53,55,59].

The problem is made even more complex by the absence of abstract oper-
ational descriptions of the behaviour of lending pools. Current descriptions are
either high-level economic models [52,53,59], or the actual implementations.
While, on the one hand, economic models are useful to understand the macro-
scopic financial aspects of lending pools, on the other hand they do not precisely
describe their interactions with users. Still, understanding these interactions is
crucial to determine if a lending pool is vulnerable to attacks where some users
deviate from the expected behaviour. Implementations, instead, reflect the exact
actual behaviour, but at a level of detail that makes high-level understanding
and reasoning unfeasible.

Contributions. This paper presents a systematic analysis of the behaviour of
lending pools, of their properties, vulnerabilities, and of the related literature.
Based on a thorough inspection of the implementations of the two main lending
pool platforms, Compound [14] and Aave [7], we synthesise a formal, operational
model of the interactions between users and lending pools, encompassing their
incentive mechanisms. More specifically, our contributions are:

1. a formal model of lending pools, which precisely describes their interactions as
transitions of a state machine. Our model captures all the typical transactions
of lending pools, and all the main economic features, like collateralization,
exchange rates, token prices, and interest accrual (Sect. 3);

2. the formalization and proof of fundamental behavioural properties of lending
pools, which were informally stated in literature, and are expected to be
satisfied by any implementation (Sect. 4);

3. the formalization of relevant properties of the incentive mechanisms of lending
pools, and a discussion of their vulnerabilities and attacks (Sect. 5);

4. a thorough discussion on the interplay between lending pools and other DeFi
archetypes, like stable coins and automated market makers (Sect. 7) and the
identification of relevant research challenges (Sect. 8).

Overall, our contributions help address the aforementioned challenges in the
design of lending pools. Firstly, our formal model provides a precise understand-
ing of the behaviour of lending pools, abstracting from low-level implementation
details. Our model is faithful to mainstream lending pool implementations like
Compound [14] and Aave [7]; still, for the sake of clarity, we have introduced
high-level abstractions over low-level details: we discuss the differences between
our model and the actual lending pool platforms in Sect. 6. Secondly, our formal-
isation of the properties of the incentive mechanisms of lending pools makes it
easier to understand and analyse their vulnerabilities and attacks. In this regard,
our model is directly amenable for its interpretation as an executable specifica-
tion, thus paving the way for automatic analysis techniques, which may include

SoK: Lending Pools in Decentralized Finance 555

mechanised proofs of contract properties and agent-based simulations of lending
pools and other DeFi contracts. Due to space constraints, we provide the proofs
of our statements in a separate technical report [56].

2 Background

Lending pools (in short, LPs) are financial applications which create a market of
loans of crypto-assets, providing incentive mechanisms to equilibrate the market.
We now overview the main features of LPs; a glossary of terms is in Table 1.

Users can lend assets to an LP by transferring tokens from their accounts to
the LP. In return, they receive a claim, represented as tokens minted by the LP,
which can later be redeemed for an equal or increased amount of tokens, of the
same token type of the original deposit. Lending is incentivized by interest or fees:
the depositor speculates that the claim will be redeemable for a value greater
than the value of the original deposit. Users can redeem claims by transferring
minted tokens to the LP, which pays back the original tokens (with accrued
interest) to the redeemer, simultaneously burning the minted tokens. However,
redeeming claims is not always possible, as the LP could not have a sufficient
balance of the original tokens, as these may have been lent to other users.

User initiate a loan by borrowing tokens deposited to an LP. To incentivise
users to eventually repay the loan, borrowing requires to provide a collateral.
Collaterals can be either tokens deposited to the LP when the loan is initiated,

Table 1. Glossary of financial terms used in Lending Pools.

Token A digital representation of some asset, transferable between users.

Token type A set of tokens. Tokens of a given type are interchangeable (or

fungible), whereas tokens of different token types are not.

Native token The default token type of a blockchain (e.g., ETH for Ethereum).

Token price The price of a token type τ is the amount of units of a given native

crypto-currency (or fiat currency) needed to buy one unit of τ.

Lender A user who transfers units of a token type in return for a claim on a

full repayment in the future, which may include additional fees or

interest.

Claim A right to token units in the future. Claims are represented as tokens,

which are minted and destroyed as claims are created and redeemed.

Minting Creation of tokens performed by the LP upon deposits.

Borrower A user who wishes to obtain a loan of token type τ. The borrower is

required to hold collateral of another token τ ′ to secure the loan.

Collateral A user balance of tokens which can be seized if the user does not

adequately repay a loan.

Collateralization The ratio of deposited collateral value over the borrower’s total loan

value.

Liquidation When the collateralization of user A falls below a minimum threshold

it is undercollateralized: here, a user B can repay a fraction of A’s

loan, in return for a discounted amount of A’s collateral seized by B.

Interest rate The rate of loan growth when accruing interest.

556 M. Bartoletti et al.

and locked for the whole loan duration, or they can be tokens held by the bor-
rower but seizable by the LP when a user fails to repay a loan. An unpaid loan of
A can be liquidated by B, who pays (part of) A’s loan in return for a discounted
amount of A’s collateral. For this to be possible, the value of the collateral must
be greater than that of the loan. To incentivize deposits, loans accrue interest,
which increase a user’s loan amount by the interest rate.

3 Lending Pools

In this section we introduce a formal model of lending pools, focussing on the
common features implemented by the main LP platforms. We make our model
parametric w.r.t. platform-specific features, like e.g. interest rate models, and
we abstract from some advanced features, like e.g. governance (we discuss the
differences between our model and the main LP platforms in Sect. 6).

3.1 Lending Pools Basics

We assume a set of users A, ranged over by A,A′ , . . ., and a set of token types
T, ranged over by τ, τ ′, Units of these token types can be freely transferred
between users, deposited into LPs, and borrowed. When a user deposits units
of τ into an LP, she receives in return units of a token {τ} minted by the LP.
We denote with Tm = {{τ} | τ ∈ T} the set of minted token types. We use
v, v′, r, r′ to range over nonnegative real numbers (R+

0). We write r : τ to denote
r units of a token type τ (and similarly, we write r : {τ} for minted token types).

Wallets and Lending Pools. We model the wallet of a user A as a term
A[σ], where the partial map σ ∈ T ∪ Tm ⇀ R+

0 represents A’s token holdings.
We model a lending pool as a pair of the form (r : τ, δ), where r is the amount
of tokens of type τ ∈ T deposited in the LP, and the map δ ∈ A → R+

0 represents
the users’ debts of tokens of type τ.

Blockchain States and Transactions. We formalise the interaction between
users and the blockchain as a labelled transition system. Labels T ,T′ , . . . rep-
resent transactions (see Table 2), while states Γ, Γ ′, . . . are compositions of

Table 2. Transactions.

A : xfer(B, v : τ) A transfers v units of τ to B

A : dep(v : τ) A deposits v units of τ, receiving units of minted token {τ}
A : mxfer(B, v : {τ}) A transfers v units of {τ} to B

A : bor(v : τ) A borrows v units of τ

int All loans accrue interest

A : rep(v : τ) A repays v units on A’s debt in τ

A : rdm(v : {τ}) A redeems v units of {τ}, receiving units of τ

A : liq(B, v : τ, {τ ′}) A repays v units of B’s debt in τ, seizing units of {τ ′} from B

SoK: Lending Pools in Decentralized Finance 557

wallets, LPs, and a single price oracle P ∈ T → R+
0 \ {0} which prices tokens.

We represent states as terms of the form:

A1[σ1] | · · · | An[σn] | (r1 : τ1, δ1) | · · · | (rk : τk, δk) | P

where all Ai are distinct, and τi �= τj for all i �= j. A state Γ is initial when it only
contains a price oracle and a set of wallets, holding only non-minted tokens. We
treat states as sets of terms: hence, Γ and Γ ′ are equivalent when they contain
the same terms; for a term Q, we write Q ∈ Γ when Γ = Q | Γ ′, for some Γ ′.

Exchange Rate. The exchange rate of a token type τ in a state Γ represents
the share of deposited units of τ over the units of the associated minted tokens.
Before formalising it, we define the auxiliary notion of supply of a token type
t ∈ T ∪ Tm in a state Γ, i.e. the sum of the balances of t in all the wallets in Γ,
and possibly in the LPs. It is defined inductively as:

splyt(A[σ]) = σ(t) splyt(r : τ, δ) =

{
r if t = τ

0 otherwise

splyt(P) = 0 splyt(Γ | Γ ′) = splyt(Γ) + splyt(Γ ′)

(1)

Then, we define the exchange rate ERτ(Γ) as:

ERτ(Γ) =

⎧⎪⎨
⎪⎩

r +
∑

A δ(A)
sply{τ}(Γ)

if Γ = (r : τ, δ) | Γ ′, r > 0

1 otherwise

(2)

The idea is that, while initially there is a 1/1 correspondence between minted
and deposited tokens, when interest is accrued this relation changes to the benefit
of lenders.

Net Worth and Collateralization. The value of A’s tokens in a state Γ,
denoted by VΓ(A), is the sum of the values of all (non-minted) tokens in A’s
wallet (the value is the product between token amount and price):

VΓ(A) =
∑

τ∈T σ(τ) · P(τ) if Γ = A[σ] | P | Γ ′ (3)

We define similarly the value V m(A) of minted tokens held by A. To determine
the value of {τ}, its price is equated to that of the underlying token τ:

V m
Γ (A) =

∑
τ∈T σ({τ}) · ERτ(Γ) · P(τ) if Γ = A[σ] | P | Γ ′ (4)

The value V d(A) of A’s debt is the sum of the value of tokens borrowed by A:

V d
Γ (A) =

∑
i∈I δi(A) · P(τi) if Γ = ‖ i∈I(ri : τi, δi) | ‖ jAj [σj] | P (5)

The net worth of a user is the value of the tokens in her wallet (both minted
and non-minted), minus the value of her debt:

WΓ(A) = VΓ(A) + V m
Γ (A) − V d

Γ (A) (6)

558 M. Bartoletti et al.

Γ0 = A[100 : τ0] | B[50 : τ1] | P = {1/τ0, 1/τ1}
1. A:dep(50:τ0)

Γ1 = A[50 : τ0, 50 : {τ0}] | (50 : τ0, {}) | · · ·
2. B:dep(50:τ1)

Γ2 = B[50 : {τ1}] | (50 : τ1, {}) | · · ·
3. B:bor(30:τ0)

CΓ3(B) = 1.7}
Γ3 = B[30 : τ0, · · ·] | (20 : τ0, {30/B}) | · · ·

4. int
CΓ4(B) = 1.5,ERτ0(Γ4) = 1.1}

Γ4 = · · · | (20 : τ0, {34/B}) | · · ·
5. B:rep(5:τ0)

CΓ5(B) = 1.7}
Γ5 = B[25 : τ0, · · ·] | (25 : τ0, {29/B}) | · · ·

6. px {CΓ6(B) = 1.3 < Cmin}
Γ6 = · · · | P = {1.3/τ0, · · · }

7. A:liq(B,13:τ0,{τ1})
CΓ7(B) = 1.5 = Cmin}

Γ7 = A[37 : τ0, 19 : {τ1}, · · ·] | B[31 : {τ1}, · · ·] | (38 : τ0, {16/B}) | · · ·
8. A:rdm(10:{τ0})

{

{

{

{

{ERτ0(Γ8) = 1.1}
Γ8 = A[48 : τ0, 40 : τ0 ,] (27 : τ0, 16/B)

Fig. 1. Interactions between two users and a lending pool.

The collateralization of a user is the ratio of the value of her minted tokens
and the value of her debt:

CΓ(A) =

{
V m

Γ (A) / V d
Γ (A) if V d

Γ (A) > 0
+∞ otherwise

(7)

State-Update Operators. We use the standard notation σ{v/x} to update a
partial map σ at point x: namely, σ{v/x}(x) = v, while σ{v/x}(y) = σ(y) for y �=
x. Given a partial map σ ∈ T∪Tm ⇀ R+

0 , a partial operation ◦ ∈ R+
0 ×R+

0 ⇀ R+
0 ,

t ∈ T ∪ Tm and v ∈ R+
0 , we define the partial map σ ◦ v : t as follows:

σ ◦ v : t =

{
σ{v′

/t} if t ∈ dom σ and v′ = σ(t) ◦ v ∈ R+
0

σ{v/t} if t �∈ dom σ

3.2 An Overview of Lending Pools Behaviour

Before formalizing the behaviour of lending pools, we give some intuition through
an example involving users A and B. We display their interactions in Fig. 1.

In the initial state, A has 100 units of τ0, B has 50 units of τ1, and the price
of both token types is 1. In the first two steps, A and B deposit 50 units of τ0

SoK: Lending Pools in Decentralized Finance 559

and τ1, for which they receive equal amounts of minted tokens {τ0} and {τ1}.
We denote with {} the function λA.0 (i.e., no user has debts).

Next, B borrows 30 : τ0. The 50 minted tokens of type {τ1} in B’s wallet
serve as collateral for the loan. The collateralization of B is the ratio between
the value of B’s balance of {τ1} and the value of B’s debt of τ0, according to (7).
Assuming a minimum collateralization threshold of Cmin = 1.5, B could borrow
up to 33 units of τ1, given the collateral of 50 : {τ1}. Nonetheless, B decides to
leave some margin to manage future price volatility and the accrual of interest,
which can both negatively affect collateralization. In the state Γ3, the map {30/B}
in the LP for τ0 represents that B’s debt of τ0 is 30, while the other users have
no debt.

In step 4, interest accrues on B’s debt. Here, we assume that the interest
rate is 12%, so B’s debt grows from 30 to 34 units of τ1. In step 5, B repays 5
units of τ0 to reduce the risk of becoming liquidated, which can occur when B’s
collateralization falls below the threshold Cmin = 1.5.

Despite this effort, the price is updated in step 6, increasing P(τ0) by 30%
relative to P(τ1), thereby decreasing the relative value of B’s collateral to B’s
loan. As a result, the collateralization of B drops below the threshold Cmin .

In step 7, A liquidates 13 : τ0 of B’s debt, restoring B’s collateralization
to Cmin , and simultaneously seizing 19 : {τ1} from B’s balance. The exchange
of 13 : τ0 for 19 : {τ1} implies a liquidation discount, which ensures that the
liquidation is profitable for any user performing it.

In step 8, A redeems 10 : {τ0}, receiving 11 : τ0 in exchange. Here, each unit
of {τ0} is now exchanged for more than 1 unit of τ0, due to accrued interest.

3.3 Lending Pools Semantics

We now present the rules which define the transitions between lending pool
states. In all the rules, denote with Γ0 the state before the transition, and with
Γ1 the state after the transition. An extended running example (Figs. 2, 4, 5, 6
and 7) illustrates all the peculiar aspects of these rules.

Token Transfer. The transaction A : xfer(B, v : τ), represents the transfer of
v : τ from A to B. Its effect on the state is specified by the following rule:

σA(τ) ≥ v

A[σA] | B[σB] | Γ
A:xfer(B,v:τ)−−−−−−−−→ A[σA − v : τ] | B[σB + v : τ] | Γ

[Xfer]

Rule [Xfer] states that the transfer is permitted whenever the sender has a
sufficient balance. Note that the rule only allows transfers of non-minted tokens;
transfers of minted tokens is specified by rule [MXfer] below.

Deposit. A user A can deposit v units of a (non-minted) token τ by performing
the transaction A : dep(v : τ). Upon the first deposit of τ, A receives exactly v
units of the minted token {τ}:

σ(τ) ≥ v (: τ,) �∈ Γ

A[σ] | Γ
A:dep(v:τ)−−−−−−→ A[σ − v : τ + v : {τ}] | (v : τ, λA.0) | Γ

[Dep0]

560 M. Bartoletti et al.

Γ0 = A[100 : τ0, 300 : τ1] | B[50 : τ0, 50 : τ2] | C[100 : τ2] | P
1. A:dep(100:τ0)

Γ1 = A[0 : τ0, 100 : {τ0}, · · ·] | (100 : τ0, {}) | · · ·
2. A:dep(150:τ1)

Γ2 = A[150 : {τ1}, · · ·] | (150 : τ1, {}) | · · ·
3. B:dep(50:τ0)

Γ3 = B[0 : τ0, 50 : {τ0}, · · ·] | (150 : τ0, {}) | · · ·
4. B:dep(50:τ2)

Γ4 = B[0 : τ2, 50 : {τ2}, · · ·] | (50 : τ2, {}) | · · ·
5. C:dep(100:τ2)

Γ5 = C[0 : τ2, 100 : τ2] (150 : τ2,)

Fig. 2. Running example: deposit actions

The first rule premise ensures that A’s balance is sufficient. The second
premise checks that no LP for τ is already present in the state. The map λA.0
represents the fact that, in the newly created LP, the debt of each user is 0.

For further deposits of τ, the LP mints new units of {τ}. Their amount v′

is the ratio between the deposited amount v and the exchange rate ERτ(Γ0)
between τ and {τ}, defined in (2).

σ(τ) ≥ v v′ = v/ERτ(Γ0)

A[σ] | (r : τ, δ) | Γ
A:dep(v:τ)−−−−−−→ A[σ − v : τ + v′ : {τ}] | (r + v : τ, δ) | Γ

[Dep]

Figure 2 exemplifies users depositing funds to the LP. In step 1, A deposits
100 units of τ0. Since this is the first deposit of τ0, the LP mints exactly 100
units of {τ0}, and transfers these units to A. In step 2, A deposits 150 units
of τ1; similarly to the previous case, A receives 150 units of {τ1}. In step 3, B
deposits 50 units of τ0. Since τ0 was already deposited, the LP mints 50 units of
{τ0}, and transfers them to B. Finally, in steps 4 and 5, B and C deposit units
of τ2; after that, the balances of tokens τ0, τ1, τ2 in the LP total 150 units.

Transfer of Minted Tokens. Minted tokens can be transferred between users,
provided that, after the transfer, the sender has enough minted tokens to use as
collateral. More specifically, we require that the collateralization of the sender
in the target state is above a constant threshold Cmin > 1.

σA({τ}) ≥ v CΓ1(A) ≥ Cmin

A[σA] | B[σB] | Γ
A:mxfer(B,v:{τ})−−−−−−−−−−→ A[σA − v : {τ}] | B[σB + v : {τ}] | Γ

[MXfer]

Borrow. Any user can borrow units of a token type τ from an LP, provided
that the LP has a sufficient balance of τ, and that the user has enough minted

SoK: Lending Pools in Decentralized Finance 561

tokens to use as collateral.

r ≥ v > 0 CΓ1(A) ≥ Cmin

A[σ] | (r : τ, δ) | Γ
A:bor(v:τ)−−−−−−→ A[σ + v : τ] | (r − v : τ, δ{δ(A)+v/A}) | Γ

[Bor]

We exemplify bor transactions in Fig. 3. Users B and C borrow amounts of τ0

and τ1 at steps 6–8, keeping their collateralization above Cmin , which is assumed
to be 1.5. C’s collateralization decreases from 3.3 to 1.7 upon step 8: this is due
to the increase in V d(C), whilst V m(C) remains constant at 100.

Γ5 = B[50 : {τ0}, 50 : {τ2}] | C[100 : {τ2}] | (150 : τ0, {}) | (150 : τ1, {}) | · · ·
6. B:bor(50:τ1)

CΓ6(B) = 2.0}
Γ6 = B[50 : τ1, · · ·] | (100 : τ1, {50/B}) | · · ·

7. C:bor(30:τ0)
CΓ7(C) = 3.3}

Γ7 = C[30 : τ0, · · ·] | (120 : τ0, {30/C}) | · · ·
8. C:bor(30:τ1)

{

{

{CΓ8(C) = 1.7}
Γ8 = C[30 : τ1,] (70 : τ1, 50/B, 30/C)

Fig. 3. Running example: borrow actions

The collateralization of a user depends on the amount of minted tokens she
possesses, the amount of tokens she has borrowed, and the price of all tokens
involved. Hence, collateralization is potentially sensitive to all actions that can
affect those values. This includes both interest accrual and changes in token
prices (which are unpredictable), as we shall see. Borrowers must therefore main-
tain a safety margin in order to protect against potential liquidations.

Interest Accrual. Interest accrual models the periodic application of interest
to loan amounts and can be executed in any state. The action applies a token-
specific interest to each loan, updating the debt mapping for all users.

∀i ∈ I : ∀A : δ′
i(A) = δi(A) · (1 + IΓ0(τi)) (: ,) �∈ Γ

‖ i∈I(ri : τi, δi) | Γ
int−→ ‖ i∈I(ri : τi, δ′

i) | Γ
[Int]

Existing lending pool platforms deploy different algorithmic interest rate
models [53]. We leave our model parametric w.r.t. interest rates, and only require
that the interest rate is positive, a property that all models in [53] satisfy:

IΓ(τ) > 0 (8)

We extend our running example with three interest updates in Fig. 4, result-
ing in the increase of all loan amounts. Each subsequent execution of int decreases
the collateralization of users B and C, since the V d of both borrowers increases
as interest is applied (7).

562 M. Bartoletti et al.

Γ8 = (120 : τ0, {30/C}) | (70 : τ1, {50/B, 30/C}) | · · ·
9. int

CΓ9(B) = 1.9,CΓ9(C) = 1.6}
Γ9 = (120 : τ0, {31/C}) | (70 : τ1, {53/B, 32/C}) | · · ·

10. int
CΓ10(B) = 1.8,CΓ10(C) = 1.5}

Γ10 = (120 : τ0, {32/C}) | (70 : τ1, {56/B, 34/C}) | · · ·
11. int

CΓ11(B) = 1.7,CΓ11(C) = 1.4}
Γ11 = (120 : τ0, 33/C) (70 : τ1, 59/B, 36/C)

{

{

{

Fig. 4. Running example: interest accrual

Repay. A user with a loan can repay part of it by executing a rep transaction:

σ(τ) ≥ v > 0 δ(A) ≥ v

A[σ] | (r : τ, δ) | Γ
A:rep(v:τ)−−−−−−→ A[σ − v : τ] | (r + v : τ, δ{δ(A)−v/A}) | Γ

[Rep]

This increases the collateralization of the repaying user, as V d is reduced (7).
Users must always maintain a sufficient collateralization, to cope with adverse
effects of interest accruals and price updates.

In Fig. 5, C is suffering from low collateralization after the last interest accrual
in step 11. Here, CΓ(C) is equal to Cmin = 1.5. The subsequent repayment of 15
units of τ0 increases C’s collateralization back to 1.9.

Γ11 = C[30 : τ0, 30 : τ1, 100 : {τ2}] | (120 : τ0, {33/C}) | (70 : τ1, {59/B, 36/C}) | · · ·
12. C:rep(15:τ0) {CΓ12(C) = 1.9}

Γ12 = C[15 : τ0,] (135 : τ0, 18/C)

Fig. 5. Running example: repay actions

Redeem. A user without any loans can redeem minted tokens {τ} for the under-
lying tokens if enough units of τ remain in the LP. A user with a non-zero loan
amount of any token can only redeem minted tokens such that the resulting col-
lateralization is not below Cmin . This constraint does not apply to users without
loans, as minted tokens are not used as collateral.

σ({τ}) ≥ v v′ = v · ERτ(Γ0) r ≥ v′ CΓ1(A) ≥ Cmin

A[σ] | (r : τ, δ) | Γ
A:rdm(v:{τ})−−−−−−−−→ A[σ − v : {τ} + v′ : τ] | (r − v′ : τ, δ) | Γ

[Rdm]

We exemplify rdm transactions in Fig. 6. From Fig. 5, B has a non-zero
loan amount, hence she can only redeem 11 : {τ2} before her collateralization
decreases to Cmin = 1.5, at which B cannot further redeem. Since A has no
loans, she can redeem as many tokens {τ0} as the LP balance permits. For A’s

SoK: Lending Pools in Decentralized Finance 563

redeeming of 50 : {τ0} for 51 : τ0 the exchange rate is > 1, because of the accrued
interest during the prior execution of int. By contrast, the exchange rate for B is
1, as no loan exists on τ2, and thus no interest was accrued. The minted tokens
{τ2} and {τ0} returned to the LP by B and A are burnt.

Γ12 = A[0 : {τ0}, 100 : {τ0}, · · ·] | (135 : τ0, {18/C}) |
B[50 : {τ0}, 50 : τ1, 50 : {τ2}] | (150 : τ2, {}) | · · ·

13. B:rdm(11:{τ2})
CΓ13(B) = 1.5, ERτ2(Γ12) = 1}

Γ13 = B[11 : τ2, 39 : {τ2}, · · ·] | (139 : τ2, {}) | · · ·
14. A:rdm(50:{τ0})

{

{ERτ0(Γ13) = 1.02}
Γ14 = A[51 : τ0, 50 : τ0 ,] (84 : τ0, 18/C)

Fig. 6. Running example: redeem actions

Liquidation. When the collateralization of a user B is below the threshold Cmin ,
another user A can liquidate part of B’s loan, in return for a discounted amount
of minted tokens seized from B. A can execute liq if she has enough balance to
repay a fraction of the lent token, and if B has a sufficient balance of seizable,
minted tokens. The maximum seizable amount is bounded by B’s balance of the
minted token and by the resulting collateralization of B, which cannot exceed
Cmin . After this threshold, B’s collateralization is restored, and B is no longer
liquidatable.

σA(τ) ≥ v σB({τ ′}) ≥ v′ δ(B) ≥ v

CΓ0(B) < Cmin CΓ1(B) ≤ Cmin

v′ = v · P(τ)
P(τ ′) · rliq

A[σA] | B[σB] | (r : τ, δ) | Γ
A:liq(B,v:τ,{τ ′})−−−−−−−−−−→

A[σA − v : τ + v′ : {τ ′}] | B[σB − v′ : {τ ′}] | (r + v : τ, δ{δ(B)−v/B}) | Γ

[Liq]

where we require that:
Cmin > rliq > 1 (9)

The constraint rliq > 1 implies a discount applied to the seized amount received
by the liquidator, as more value is received than repaid. In [Liq], there are no
constraints on the collateralization of the liquidator A: its balance of minted
tokens increases whilst its lent token amounts remain unchanged, thus always
increasing its collateralization (7).

For the liquidations in Fig. 7, we set rliq = 1.1. After the price update in
step 15, both B and C are undercollateralized. C is liquidated by A in step 16,
which restores CΓ(C) to 1.5. By contrast, CΓ(B) is 0.9 after the price update.
Subsequent liquidations by A seize all units {τ0} and {τ2} from B’s wallet.
However, B still has a debt of 11 : τ1. This debt is unrecoverable, since there is
no incentive to repay or liquidate it, given the lack of collateral.

564 M. Bartoletti et al.

Γ14 = A[150 : τ1, 50 : {τ0}, · · ·] | B[50 : {τ0}, 39 : {τ2}, · · ·] | C[100 : {τ2}, · · ·] |
(70 : τ1, {59/B, 36/C}) | · · · | P = {1/τ0, 1/τ1, 1/τ2}

15. px
CΓ15(B) = 0.9,CΓ15(C) = 1.3}

Γ15 = · · · | P = {1.7/τ1, · · · }
16. A:liq(C,27:τ1,{τ2})

CΓ16(C) = 1.5}
Γ16 = A[123 : τ1, 50 : {τ2}, · · ·] | C[50 : {τ2}, · · ·] | (97 : τ1, {59/C, 9/C}) | · · ·

17. A:liq(B,27:τ1,{τ0})
CΓ17(B) = 0.7}

Γ17 = A[96 : τ1, 100 : {τ0}, · · ·] | B[0 : {τ0}, · · ·] | (124 : τ1, {32/B, 9/C}) | · · ·
18. A:liq(B,21:τ1,{τ2})

{

{

{

{CΓ18(B) = 0}
Γ18 = A[75 : τ1, 89 : τ2 ,] B[0 : τ2 ,] (145 : τ1, 11/B, 9/C)

Fig. 7. Running example: liquidation actions

Price Updates. Finally, the price oracle can be updated non-deterministically:

P | Γ
px−→ P ′ | Γ [Px]

4 Fundamental Properties of Lending Pools

We now establish some fundamental properties of lending pools. A crucial prop-
erty is that the exchange rate of any token τ either strictly increases, when users
have loans on τ, or remain stable otherwise. This guarantees that stocks of the
minted token {τ} will gain value.

Lemma 1. Let Γ = (r : τ, δ) | · · · , and let Γ
T−→ Γ ′. Then:

(a) if T = int and δ(A) > 0 for some A, then ERτ(Γ) < ERτ(Γ ′);
(b) otherwise, ERτ(Γ) = ERτ(Γ ′).

Lemma 2 establishes that the supply of any (non-minted) token is constant.

Lemma 2. Let Γ
T−→ Γ ′. Then, for all τ ∈ T: splyτ(Γ) = splyτ(Γ ′).

The net worth of a user can be increased in short or long sequences of tran-
sitions. In general, there is no winning strategy (in the game-theoretic sense)
for a single user who wants to increase her net worth, unless she can control
price updates. However, under certain conditions, winning strategies exist. We
consider first a simple 1-player game where a user can choose her next action to
improve her net worth in the next state. Lemma 3 shows that liquidation is the
only action that allows the user to increases her net worth in a single step.

Lemma 3. Let Γ
A:�(···)−−−−→ Γ ′. Then:

(a) if � = liq, then WΓ(A) < WΓ ′(A);
(b) otherwise, WΓ(A) = WΓ ′(A).

SoK: Lending Pools in Decentralized Finance 565

Since this is the winning strategy for all users, but liquidations may be limited
by the amount of debts and collaterals, an adversary with the power to drop or
reorder transactions could potentially monopolize liquidations for itself. We refer
to Sect. 7 for additional discussion of such attacks.

We now consider a slightly extended game, where A guesses that the adver-
sary is going to fire int, resulting in Γ0

int−→ Γ1, but can still perform an action

A : �(· · ·) before int, resulting in Γ0
A:�(···)−−−−→ Γ ′

0
int−→ Γ ′

1. Here, A’s goal is to choose
her action � such that WΓ ′

1
(A) ≥ WΓ1(A). Lemma 4 shows that A can achieve

this goal by performing deposit, repay, or liquidation actions.

Lemma 4. Let Γ0
int−→ Γ1 and Γ0

A:�(···)−−−−→ Γ ′
0

int−→ Γ ′
1. Then:

(a) if � ∈ {liq, dep, rep}, then WΓ ′
1
(A) ≥ WΓ1(A);

(b) otherwise, WΓ ′
1
(A) ≤ WΓ1(A).

Overall, Lemmas 3 and 4 determine the set of actions to consider (together
with their parameters) to maximize short-term improvements in net worth.

5 Lending Pool Safety, Vulnerabilities and Attacks

In this section we discuss further properties of lending pools, focusing on risks
which could lead to unsecured loans or exploitation by malicious actors. In par-
ticular, we consider user collateralization and availability of token funds in LPs
(utilization): if these can be targeted by an attacker, the motivation is to limit
the LP functionality (denial-of-service) or to make the victim incur losses, which
in some cases may imply a gain for the attacker. We consider attackers with
the ability to perform some of the actions of the LP model, or even update the
price oracle. More powerful attackers that can drop or reorder transactions are
discussed in Sect. 7.

5.1 Collateralization Bounds and Risks

The lending pool design assumes that loans are secured by collateral: liquidations
thereof are incentivised in order to recover loans if the borrowing users fail to
repay. However, collateral liquidation is exposed to risks. First, the incentive to
liquidate is only effective if the liquidator values the seized collateral higher than
the value of the repaid loan amount, implying a profit. Second, large fluctuations
in token price may reduce the relative value of the collateral, eventually making
loans partially unrecoverable. Further, an attacker with the ability to update
token prices can force users to become undercollateralized, and then seize the
collateral of victims without repaying any loans.

LP-Minted Token Risk. Lending pools must determine the appropriate levels
of collateralization based on token prices given by the oracle. However, the value
of minted tokens is unpredictable, since they are not determined by price oracles
(recall that the domain of P does not include minted tokens). The definition of

566 M. Bartoletti et al.

collateralization in (7) values minted tokens at the same price as their underlying
token, just like LP implementations [9,18] do. However, since minted tokens are
only redeemable if the LP has sufficient funds (see rule [Rdm]), it may happen
that users value minted tokens at a lower price than their underlying tokens.
This happens e.g. when the funds in LPs are low, which may prevent users from
performing redeem actions. Lending pool designs do not account for this, running
the risk of incorrectly pricing minted tokens.

Safe Collateralization. Assuming a correct valuation of minted tokens, under-
collateralized loans should be swiftly liquidated, given the incentivization pro-
vided by the liquidation discount. Furthermore, the user collateral value should
be high enough, such that the user’s loan amount is sufficiently repaid by liquida-
tions to recover the user collateralization back to Cmin . Therefore, we introduce
two notions of safe collateralization.

Inspired by [55], we say that a state is ε-collateralization safe when the ratio
between the value of the debt of undercollateralized users and the total value of
the debt is less than ε: ∑

CΓ (A)<Cmin
V d

Γ (A)∑
A V d

Γ (A)
≤ ε (10)

If the liquidation incentive is effective, a value below ε should not persist,
as users promptly execute liquidations. The efficiency of liquidations has been
studied in [59]. Note that large volumes of seized collaterals which are immedi-
ately sold on external markets may delay further liquidations, as investigated in
[52], due to the external market’s finite capacity to absorb such a sell-off.

The notion of ε-collateralization safety does not account for undercollater-
alized loans which are non-recoverable, as previously illustrated in Fig. 7. The
set of non-recoverable, undercollateralized users are those with a collateraliza-
tion below rliq. The non-recoverable value of a user’s debt is defined as V nrd

Γ

in (11). It represents the remaining value of the debt of a user A should it be
fully liquidated, such that no further collateral can be seized.

V nrd
Γ (A) =

{
V d

Γ (A) − V m
Γ (A)

rliq
iff CΓ(A) < rliq

0 otherwise
(11)

From (9) and (11) it follows that when A’s collateralization is below rliq, the
discounted value of the collateral can no longer reach the remaining debt value.

We say that a state is strongly ε-collateralization safe when the fraction of
the non-recoverable debt value over the total debt value is below ε:∑

A V nrd
Γ (A)∑

A V d
Γ (A)

≤ ε (12)

Condition (12) is stronger than (10): if a state is strongly ε-collateralization
safe, then it is also ε-collateralization safe. Given equal denominators of (10)
and (12), this is a consequence of comparing numerators: note that the numerator

SoK: Lending Pools in Decentralized Finance 567

of (10) is greater than that of (12), as V d
Γ (A) is greater than V nrd

Γ (A), and the
set {A | CΓ(A) < Cmin} is a superset of {A | CΓ(A) < rliq} by (11).

Strong price volatility is a risk for ε-collateralization safety, as a sharp drop
in price can immediately reduce a previously over-collateralized user to become
under-collateralized: such an immediate drop leaves the user with no opportunity
to maintain its collateralization with repayments.

Attacks on Safe Collateralization. Malicious agents which can perform price
updates can therefore influence the evolution of the LP to lead it to a state that
is not ε-collateralization safe or not strongly ε-collateralization safe.

For example, an attacker controlling the price oracle could act as follows.
First, she would perform price updates to make any user undercollateralized.
The attacker can then perform liquidations on these users and benefit from the
discount resulting from both the price update and rliq. The attacker has maxi-
mized her profits by updating P such that V m

Γ (B) in (7) is close to zero, where B
is a user under attack. In this case, A : liq(B, v : τ, {τ ′}) can be performed with
a small v, and repeated liquidations for different minted tokens can be executed
to seize the full balance of B’s collateral.

As a matter of fact, a recent failure of the oracle price feed used by the
Compound LP implementation led to $100M of collateral being (incorrectly)
liquidated [16]. Though it is unclear whether this was an intentional exploit or
not, it illustrates the feasibility of such a price oracle attack.

5.2 Utilization Bounds and Risks

The utilization of a token τ is the fraction of units of τ currently lent to users:

Uτ(Γ) =

∑
A δ(A)

r +
∑

A δ(A)
if Γ = (r : τ, δ) | Γ ′ (13)

This notion plays a crucial role in the incentive mechanism of LPs, as
explained in [53]: as a matter of fact, it is often used as a key parameter of
interest rate models in implementations [25,27] and literature [53].

Over- and Under-Utilization. Note that Uτ(Γ) ranges between 0 and 1. We
say that τ is under-utilized if its utilization is 0 and over-utilized when it is 1.
A state is under-utilized (resp. over-utilized) if it contains under-utilized (resp.
over-utilized) tokens.

Under-utilization occurs when some units of τ have been deposited, but not
borrowed by any user. This implies that interest accrual does not increase the
debt of any user, as so the exchange rate of τ in (2) remains constant, thereby
not resulting in any gain for lenders.

On the other hand, over-utilization occurs when some users have borrowed
units of τ, but the LP has no deposited funds of τ. In this case, users can neither
borrow nor redeem.

568 M. Bartoletti et al.

Under- and over-utilization should be avoided. An optimal utilization of a
token type τ strikes a balance between the competing objectives of interest maxi-
mization and the ability for users to borrow τ tokens or to redeem {τ} tokens. The
interest rate models described in [53] intend to incentivize actions of both borrow-
ers and lenders to discover an equilibrium between under- and over-utilization.
Informally, this is achieved with interest rate models which rise and fall with uti-
lization: increasing utilization and interest rates incentivize deposits and repay-
ment of loans. Decreasing utilization and interest rates incentivize redeems and
additional loan borrowing.

We now discuss under- and over-utilization attacks: note that the first kind
of attacks is weaker than the second kind, as funds can still be safely recovered
in case of under-utilization.

Under-Utilization Attacks. Under-utilization attacks can be achieved by an
attacker interested in reducing the interest accrual for depositors, or in discour-
aging the borrowing of a token τ. The attacker can temporarily reduce utiliza-
tion by repaying large amounts of loans. The effectiveness of this approach will
depend on the amounts of τ repaid by the attacker, as a lowered utilization can
also reduce the interest rate (in certain models [53]), thereby incentivizing addi-
tional borrowing. An attacker which can update the price oracle can lower the
collateralization of borrowers arbitrarily, thereby incentivizing repayments and
liquidations to target lower utilization of specific tokens.

Over-Utilization Attacks. Over-utilization attack could be achieved by an
attacker interested in preventing redeem or borrow actions on τ. The attacker can
do this by redeeming all units of τ, while avoiding loans to be repaid or liquidated.
We illustrate an over-utilization attack in Fig. 8. Users A and C initially hold the
entire supply of τ0 in their wallets. User A colludes with B to steal C’s balance
of τ0: in steps 1–2, A and B deposit 100 : τ0 and 100 : τ1, respectively. User B
uese her balance of 100 : {τ1} as a collateral to borrow 50 : τ0 from the LP in
step 3. At this point, A and B are acting as lender and borrower of τ0, for which
the utilization is 0.5. User C, having observed an opportunity to earn interest
on τ0 decides to deposit 50 : τ0 in step 4. However, user A still has a balance
of 100 : {τ0}, which she redeems in step 5. Now, users A and B have removed
all units of τ0 from the LP, pushing the utilization of τ0 to 1, and preventing C
from redeeming the minted tokens in his wallet. Of course, B cannot redeem her
minted tokens of type {τ1}, since her loan has not been repaid, but this can be
considered the cost of the attack.

SoK: Lending Pools in Decentralized Finance 569

Γ0 = A[100 : τ0] | B[100 : τ1] | C[50 : τ0] | P = {1/τ0, 1/τ1}
1.A:dep(100:τ0)

Γ1 = A[100 : {τ0}] | (100 : τ0, {}) | · · ·
2. B:dep(100:τ1)

Γ2 = B[100 : {τ1}] | (100 : τ1, {}) | · · ·
3. B:bor(50:τ0) {CΓ3(B) = 2}

Γ3 = B[50 : τ0, 100 : {τ1}] | (50 : τ0, {50/B}) | · · ·
4. C:dep(50:τ0)

Γ4 = C[50 : {τ0}] | (100 : τ0, {50/B}) | · · ·
5. A:rdm(100:{τ0})

Γ5 = A[100 : τ0] C[50 : τ0] (0 : τ0, 50/B)

Fig. 8. An over-utilization attack.

6 Differences Between Our Model and LP Platforms

We have synthesised our model from informal descriptions in the literature and
the implementation and documentation of lending pools Compound [27] and
Aave [25]. To distill a usable, succinct model we have abstracted some imple-
mentation details, that could be incorporated in the model at the cost of a more
complex presentation. We discuss here some of the main abstractions we made.

The original implementations of Compound and Aave gave administrators
control over the economic parameters of the LP, i.e. Cmin , rliq, and the inter-
est rate function. This made administrators of such early versions privileged
users, who could in principle prevent honest depositors, borrowers and liquida-
tors from withdrawing funds. A Compound administrator, for example, can
replace application logic which computes collateralization and authorizes sup-
ported tokens [13]. Later versions of these platforms have introduced governance
tokens (respectively, COMP and AAVE), which are allocated to initial investors
or to LP users, who earn units of such tokens upon each interaction. Gover-
nance tokens allow holders to propose, vote for, and apply changes in economic
parameters, including interest rate functions. By contrast, our model assumes
that economic parameters are fixed, and omits governance tokens.

In implementations, adding a new token type to the LP must be authorized
by the governance mechanisms. By contrast, in our model any user can add a
new token type to the LP by just performing the first deposit of tokens of that
type. Implementations also allow administrators or governance to assign weights
to each token type. This is intended to adjust collateralization and liquidation
thresholds Cmin and rliq for the predicted price volatility of token types present
in a user’s loan and collateral. Further, implementations require users to pay
fees upon actions. These fees are accumulated in a reserve controlled by the

570 M. Bartoletti et al.

governance mechanisms of the LP, and intended to act as a buffer in case of
unforeseen events. Our model does not feature token-specific weights and fees.

User liquidations in implementations are limited to repay a maximum frac-
tion of the loan amount [5,15]. However, this implementation constraint can be
bypassed by a user employing multiple accounts, so we omit it in our model.

Lending pool platforms implement the update of interest accrual in a lazy
fashion: since smart contracts cannot trigger transactions, periodic interest
accrual would rely on a trusted user to reliably perform such actions, introducing
a source of corruption. Therefore, interest accrual is performed whenever a user
performs an action which requires up-to-date loan amounts. Here, the interest
rate in implementations is not recomputed for each time period. Instead, a single
interest rate is applied to the period since the last interest accrual [8,17] in order
to reduce the cost of execution, leading to inaccuracies in loan interest.

Comparison with Other LP Models. Besides the actual LP platforms, we
compare our model with other models of LPs in the literature.

The liquidation model of [52] is meant to simulate interactions between lend-
ing pool liquidations and token exchange markets in times of high price volatility.
Unlike in our model, [52] performs liquidations in aggregate, and it omits indi-
vidual user actions. The interest rate functions of [53] formalize various interest
rate strategies used by LP implementations, and can be seen as complementary
to our work. Indeed, even if we did not incorporate such functions directly in our
model (for brevity), they could be easily included as instances of IΓ(τ) in rule
[Int]. The work [59] introduces an LP state model, which is instantiated with his-
torical user transactions observable in the Compound implementation deployed
on Ethereum. The model abstraction facilitates the observation of state effects
of each interaction, and investigates the (historical) latency of user liquidations
following the undercollateralization of borrowing accounts. Aforementioned work
prioritizes high-level analysis over model fidelity: indeed, the lending pool prop-
erties and attacks we present are a direct consequence of the precision in our
lending pool semantics.

The emergent behaviour of lending pools in times of high price volatility is
examined in [52] by simulation of a lending pool liquidation model. Here, a large
price drop can cause many accounts to become undercollateralized: assuming liq-
uidators sell off collateral at an external market for units of the repaid token type,
the authors suggest that limited market demand for collateral tokens may pre-
vent liquidations from being executed, thereby posing a risk to ε-collateralization
safety as we have defined in Eqs. (10 and (12).

Lending pool behaviour at the user level is modelled in [55], which sim-
ulates agents interacting with the Compound implementation to examine the
evolution of liquidatable and undercollateralized debt, notions similar to (strong)
ε-collateralization safety (10) (12). [45,46] examine the competition for user
deposits between staking in proof-of-stake systems and lending pools: in the
case where lending pools are believed to be more profitable, users may shift
deposits away from the staking contract of the underlying consensus protocol
towards lending pools, thereby endangering the security of the system.

SoK: Lending Pools in Decentralized Finance 571

Lending pool interest rate behaviour is examined in [53], where empirical
behaviour of interest rate models in Compound [27], Aave [25] and dYdX [19]
are analyzed. In particular, the authors observe a statistically significant coupling
in interest rates between deployed lending pools, suggesting that the dynamic
interest models are effective in discovering a global interest rate equilibrium for
a given token. Our formal model is parameterized by the interest rate, that must
always be positive (8): since this property holds for all interest rate functions in
[53], our model can be instantiated with them.

7 DeFi Archetypes Beyond Lending Pools

We now discuss the interplay between lending pools and other DeFi archetypes,
like algorithmic stable coins, automated market makers, margin trading and flash
loans, which are all predominantly deployed on the Ethereum blockchain [41].
We refer to [66] for an overview of these DeFi archetypes.

Algorithmic Stable Coins. MakerDAO [21] is the leading algorithmic stable
coin and is credited with being one of the earliest DeFi projects. It incorporates
several features found in lending pools, such as deposits, minting, and collater-
alization. As of April 2021, $7.5B [30] worth of crypto-tokens are locked in the
MakerDAO implementation. Users are incentivized to interact with the smart
contract to mint or redeem DAI tokens. This, in turn, adjusts the supply of
DAI such that a stable value against the reference price (e.g., USD) is main-
tained. Synthetic tokens are similar to algorithmic stable coins but may track
an asset price such as gold or other real-world assets. Reference asset prices are
determined by price oracles.

The work [58] introduces a taxonomy for various price stabilization mecha-
nisms, providing insight into the functionality of such contracts. The work [52]
uncovers a vulnerability in the governance design of MakerDAO, allowing an
attacker to utilize flash loans to steal funds from the contract. The empirical per-
formance of MakerDAO’s oracles is studied in [51], which also proposes alternate
price feed aggregation models to improve oracle accuracy. Finally, [48] investi-
gates the optimal bidding strategy for collateral liquidators in MakerDAO, which
is executed by through user auctions.

Stable coins which track prices of real-world currencies (e.g. USD) exhibit a
price stability useful for lending pools: users with stable collateral or loan values
have a lower likelihood of suddenly becoming undercollateralized.

Automated Market Makers. Automated market makers (AMMs) allow users
to exchange units of a token τ for units of another token τ ′ and vice-versa. AMMs
do not match opposing actions of buyers and sellers: users simply exchange
tokens with an AMM, where the exchange rate is determined algorithmically as
a function of the AMM state. Hence, the dynamic exchange rate of an AMM is
affected with each user interaction. As of April 2021, leading AMMs Uniswap
[34] and Curve Finance [28] hold $5.3B [33] and $4.6B [28] worth of tokens and
feature an estimated $1.3B [33] and $180M [28] worth of token exchanges every
day.

572 M. Bartoletti et al.

The work [36] investigates algorithmic exchange rate models and defines the
user arbitrage problem, where a profit-seeking agent must determine the opti-
mal set of AMMs (with differing exchange rates) to interact with: given such
arbitrage opportunities will be exploited by rational users, it is expected that
exchange rates across AMMs remain consistent. AMM price models can fail: the
constant product exchange rate model implemented by Uniswap [34] and Curve
[29] is simple, but can theoretically reach a state where the the exchange rate
is arbitrarily high. The work [65] proposes bounded exchange rate models to
address this issue.

A theory of AMMs is proposed in [57], formally specifying their possible
interactions and their economic mechanisms. This allows [57] to develop a con-
currency theory of AMMs: in particular, it shows that sequences of deposit
and redeem actions can be ordered interchangeably, resulting in observationally
equivalent states. Be leveraging the formal model, [57] establishes fundamen-
tal properties of AMMs, like e.g. the preservation of deposited token supplies,
and token liquidity, which ensures that deposited tokens cannot be frozen in an
AMM. Further, it devises a general solution to the arbitrage problem, the main
game-theoretic foundation behind the economic mechanisms of AMMs.

The work [35] suggests that AMMs track global average token prices effec-
tively. As such, AMMs can inform price oracles: such oracles, however, only
update price information with each new block [23] computed from time-weighted
price averages of AMMs over the past block interval. This increases the cost of
manipulating prices of the oracle, as the manipulated price must be sustained
over a period of time. We note that lending pool implementations do not rely
on oracles which derive prices from AMM states.

AMMs suffer from front-running attacks, where an attacking user observes
the victim’s unconfirmed token exchange transaction, and sequences its own
transaction prior to that of the victim. A front-running attack on an AMM
user takes advantage of the update in exchange rate resulting from the victim’s
token exchange, who ends up paying a higher price, as illustrated in [67]. Front-
running of smart contracts is investigated more generally in [50]: mitigations
such as commit-and-reveal schemes are proposed, which come with an increased
cost for user-contract interactions. In the context of AMMs, [47] introduces the
notion of gas auctions, where adversarial users compete to front-run a given
AMM exchange transaction by outbidding each others transaction fee.

We note that similar attacks can be modeled with an attacker that can drop
or reorder transactions in our lending pool model. Such an attacker can trivially
defer attempts of a borrower to repay a loan: subsequent interest accrual will
eventually cause the user to become undercollateralized, so that the attacker
can liquidate the victim. Such an attacker can also monopolize all liquidations
for herself, preventing other users from executing such an action. The work [47]
suggests that miners may be incentivized to perform such attacks due to gain
resulting from liquidation discounts.

Margin Trading. An important use case of lending pools are leveraged long
or short positions initiated by users, also referred to as margin trading. In a

SoK: Lending Pools in Decentralized Finance 573

leveraged long position of τ against τ ′, the user speculates that the price of the
former will increase against the price of the latter: a user borrows τ ′ at a lending
pool against collateral deposited in τ, and then exchanges the borrowed units of
τ ′ back to τ at a token exchange or an AMM. The user will now earn an amplified
profit if the price of τ appreciates relative to τ ′, since both the borrowed balance
and redeemable collateral in τ appreciates in value whilst only the loan repayable
with τ ′ decreases in value. A leveraged short position simply reverses the token
types. Margin trading contracts such as bZx Fulcrum [11] combine lending and
AMM functionalities to offer margin trades through a single smart contract.
However, since such margin trading contracts perform large token exchanges
at external AMMs, attackers can use such actions to manipulate AMM prices,
as shown in [60]. Furthermore, the scope of such attacks is magnified when
performed with flash loans.

Flash Loans. Any smart contract holding tokens can expose flash loan func-
tionality, allowing users to borrow and return a loan within a single atomic
transaction group. Atomic transaction groups are sequences of actions from a
single user, which must execute to completion or not execute at all. They can
be implemented in Ethereum by user-defined smart contracts [6], and they are
natively supported by Algorand [39]. As such, flash loans are guaranteed to be
repaid or not executed at all. The work [64] introduces a framework to iden-
tify flash loan transactions on the Ethereum blockchain for an analysis of their
intended use-cases, which include arbitrage transactions, account liquidations
(in lending pools or stable coins) and attacks on smart contracts. Our model can
be easily extended to encompass flash loan semantics.

Flash loans have been used in several recent attacks [10,12,20,22,60]. The
flash loan attack on bZx Fulcrum described in [60] involves sending the bor-
rowed tokens to a margin trading contract, which, in turn, initiates a large token
exchange at an external AMM: here, the large amount of exchanged tokens causes
a significant shift in dynamic AMM exchange rate, which represents an arbitrage
opportunity exploited by the attacker in several execution steps involving other
contracts. Flash loans provide attackers with access to very large token values
to initiate attacks.

8 Research Challenges

Our model already allows us to formally establish properties of LPs (Sect. 4),
and to precisely describe potential attacks to LPs as sequences of user actions
(Sect. 5). However, lending pools operate within a wider DeFi ecosystem, com-
posed by a set of collaborating or competing agents, interacting through possi-
bly separate contract execution environments enabled by miners, who may have
transaction ordering privileges and their own goals [47]. We highlight some open
research challenges for the compositional security in DeFi systems, where we
expect lending pool applications to play a central role.

Agent Strategies. As shown in Lemma 3, there exist rational lending pool
actions which always increase the net worth of the agent. We contrast such

574 M. Bartoletti et al.

risk-free rational strategies against those which are speculative, driven by an
agent’s expectation of a future system state which is not guaranteed: depositing
or borrowing from an LP are speculative strategies, as they are motivated by an
expectation of future interest, which are, in turn, regulated by future actions of
borrowers and depositors.

Whereas there appears to be a clear path towards formal specification
of rational strategies in DeFi systems, the specification of speculative agent
behaviour in DeFi remains an open question. For individual DeFi archetypes,
agent-based models have been proposed [23,55] with a focus on rational
behaviour, yet the specification of economically speculative strategies in a richer
composition of DeFi application remains an open research challenge.

Classical agent-based models from economic disciplines feature specifica-
tion techniques of economically (speculative) agent behaviour: here, we also
observe that stochastic model checking tools from formal methods are increas-
ingly deployed [63] in the economic research community and suggest that stochas-
tic model checking of agent-based models of DeFi systems may provide a path
forward towards the automatic analysis of agent strategies.

A Model of Transaction Concurrency. As exemplified by Lemma 4, actions
in lending pools and DeFi are generally not concurrent. In particular, the
exploitation of non-concurrency in AMM’s has received much attention, where
an actor with transaction ordering privileges can benefit from ordering its own
transaction before and after that of the victim [54,67] for financial benefit. More
generally, the ability of miners to extract value beyond transaction fees from
specific sequences of DeFi interactions has been denoted miner-extractable-value
(MEV) [47]. For LP applications, a rational miner is incentivized to perform liq-
uidation actions itself, thereby invalidating liquidation attempts by other users:
this may support the security of LP’s, as loans are quickly liquidated. How-
ever, it also highlights the challenges in developing a formal model of a DeFi
system composed of different DeFi applications. Such a model must feature a
notion of incentive-consistent action sequences in the presence of rational agents
with transaction ordering privileges, such that any miner interaction with DeFi
applications are intended and beneficial the security of the DeFi system.

Towards the goal of exploring action concurrency in a composed DeFi system,
[62] models user functionality enabled by composing an AMM and LP: here, an
AMM pair offers swaps between two stable coin types, which are provided by
depositors. The deposited stable coins, however, are forwarded to lending pools,
thus enabling AMM depositors to also earn interest in addition to swap fees. The
resulting agent model is implemented as communicating sequential processes,
allowing the exploration of different action sequences.

We note, however, that such analysis is further complicated by atomic chains
of transactions, such as those obtained by nested contract calls in Ethereum.
Here, the sequencing of individual actions within the call-chain is determined
by the authorizing user: this can result in DeFi exploits amplified by flash loans
[42,60,64]. As transactions, call-chains must also exhibit consistency with miner
transaction ordering incentives: here, a lack of formal models to integrate call-
chain semantics with formal models of MEV remains apparent.

SoK: Lending Pools in Decentralized Finance 575

A model of transaction ordering may ultimately facilitate the automated
analysis of a DeFi system specification which includes lending pools, given that
it narrows the set of valid interaction sequences. Given sufficiently specified
agent strategies, such a theory may pave the way towards novel model checking
techniques in DeFi.

Cryptographic Protocol Composition. Cryptographic protocols play an
increasingly central role in DeFi systems, as they allow DeFi applications to
keep private selected parts of the application state: public execution introduces
incentives (MEV) which challenge DeFi security, but the public execution of
user actions also compromises privacy. The popularity of crypto-asset mixers
[32] powered by ZK-SNARK proofs on the Ethereum blockchain foreshadows
the emergence of privacy-focused DeFi applications, which in turn, may open
new approaches to mitigate MEV. Private order-matching has been proposed
with multi-party-computation techniques [43], and we foresee similar techniques
for DeFi applications. Furthermore, advanced cryptographic protocols improve
scalability: many DeFi applications have migrated to ZK-rollups [31] in order to
absorb the increased user demand on the Ethereum blockchain.

For the secure composition of cryptographic protocols deployed for both
privacy and scalability, the formal methods community may contribute both
classical information flow [44] analysis techniques and cryptographic protocol
composition analysis [49]: as a multitude of privacy-focused and scalable appli-
cations are composed in a single system, we highlight the formal analysis of safe
cryptographic protocol composition in DeFi as an new research frontier.

Domain-Specific Languages. Since the analysis of security aspects of DeFi
applications will invariably involve specifications of agents and miners, higher
abstractions of DeFi specification will arguably be of interest to the DeFi and
formal methods communities. Domain-specific languages with formal semantics
(e.g. [37,40,61]) provide suitable specification means for such abstractions. More-
over, they fulfill two purposes: firstly, they enable formal reasoning and security
proofs. Secondly, DeFi-specific languages can provide built-in security guaran-
tees, given a foundational theory of the underlying DeFi system.

Acknowledgements. Massimo Bartoletti is partially supported by Conv. Fondazione
di Sardegna & Atenei Sardi project F74I19000900007 ADAM. James Hsin-yu Chiang
is supported by the PhD School of DTU Compute. Alberto Lluch Lafuente is partially
supported by the EU H2020-SU-ICT-03-2018 Project No. 830929 CyberSec4Europe
(cybersec4europe.eu).

References

1. ERC-20 token standard (2015). https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-20.md

2. Understanding the DAO attack, June 2016. http://www.coindesk.com/
understanding-dao-hack-journalists/

3. Parity Wallet security alert, July 2017. https://paritytech.io/blog/security-alert.
html

https://www.cybersec4europe.eu
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html

576 M. Bartoletti et al.

4. A Postmortem on the Parity Multi-Sig library self-destruct, November 2017.
https://goo.gl/Kw3gXi

5. Aave maximum liquidation amount (2020). https://github.com/aave/
aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/
lendingpool/LendingPoolLiquidationManager.sol#L181

6. Aave v1 flashloan receiver interface (2020). https://github.com/aave/aave-
protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/flashloan/
interfaces/IFlashLoanReceiver.sol#L11

7. Aave v1 implementation (2020). https://github.com/aave/aave-protocol/tree/
efaeed363da70c64b5272bd4b8f468063ca5c361

8. Aave v1 simplified interest (2020). https://github.com/aave/aave-protocol/blob/
efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/libraries/CoreLibrary.
sol#L423

9. Aave valuation of atokens (2020). https://github.com/aave/aave-protocol/
blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/
LendingPoolDataProvider.sol#L114

10. Akropolis Defi attack (2020). https://cryptonews.com/news/defi-akropolis-drops-
20-following-a-usd-2m-heavy-hack-8299.htm

11. bzx fulcrum website (2020). https://fulcrum.trade
12. Coindesk: Value DeFi attack (2020). https://www.coindesk.com/value-defi-suffers-

6m-flash-loan-attack
13. Compound comptroller setter (2020). https://github.com/compound-finance/

compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/
CToken.sol#L1152

14. Compound implementation (2020). https://github.com/compound-finance/
compound-protocol/tree/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6

15. Compound maximum liquidation amount (2020). https://github.com/compound-
finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/
contracts/ComptrollerG5.sol#L510

16. Compound oracle attack (2020). https://news.bitcoin.com/100-million-liquidated-
on-defi-protocol-compound-following-oracle-exploit

17. Compound simplified interest (2020). https://github.com/compound-finance/
compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/
CToken.sol#L423

18. Compound valuation of ctokens (2020). https://github.com/compound-finance/
compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/
ComptrollerG5.sol#L753

19. dydx website (2020). https://dydx.exchange
20. Harvest Finance flashloan attack post-mortem (2020). https://medium.com/

harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
21. Makerdao website (2020). https://makerdao.com
22. Origin Dollar attack (2020). https://cryptonews.com/news/4th-major-defi-hack-

in-a-month-origin-dollar-loses-usd-7m-8331.htm
23. Uniswap oracle template (2020). https://github.com/Uniswap/uniswap-

v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/
examples/ExampleOracleSimple.sol

24. Aave markets website (2021). https://app.aave.com/markets
25. Aave website (2021). https://www.aave.com
26. Compound markets website (2021). https://compound.finance/markets
27. Compound website (2021). https://www.compound.finance

https://goo.gl/Kw3gXi
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/LendingPoolLiquidationManager.sol#L181
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/LendingPoolLiquidationManager.sol#L181
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/LendingPoolLiquidationManager.sol#L181
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/flashloan/interfaces/IFlashLoanReceiver.sol#L11
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/flashloan/interfaces/IFlashLoanReceiver.sol#L11
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/flashloan/interfaces/IFlashLoanReceiver.sol#L11
https://github.com/aave/aave-protocol/tree/efaeed363da70c64b5272bd4b8f468063ca5c361
https://github.com/aave/aave-protocol/tree/efaeed363da70c64b5272bd4b8f468063ca5c361
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/libraries/CoreLibrary.sol#L423
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/libraries/CoreLibrary.sol#L423
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/libraries/CoreLibrary.sol#L423
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/LendingPoolDataProvider.sol#L114
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/LendingPoolDataProvider.sol#L114
https://github.com/aave/aave-protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/lendingpool/LendingPoolDataProvider.sol#L114
https://cryptonews.com/news/defi-akropolis-drops-20-following-a-usd-2m-heavy-hack-8299.htm
https://cryptonews.com/news/defi-akropolis-drops-20-following-a-usd-2m-heavy-hack-8299.htm
https://fulcrum.trade
https://www.coindesk.com/value-defi-suffers-6m-flash-loan-attack
https://www.coindesk.com/value-defi-suffers-6m-flash-loan-attack
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/CToken.sol#L1152
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/CToken.sol#L1152
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/CToken.sol#L1152
https://github.com/compound-finance/compound-protocol/tree/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6
https://github.com/compound-finance/compound-protocol/tree/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.sol#L510
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.sol#L510
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.sol#L510
https://news.bitcoin.com/100-million-liquidated-on-defi-protocol-compound-following-oracle-exploit
https://news.bitcoin.com/100-million-liquidated-on-defi-protocol-compound-following-oracle-exploit
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/CToken.sol#L423
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/CToken.sol#L423
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/CToken.sol#L423
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.sol#L753
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.sol#L753
https://github.com/compound-finance/compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.sol#L753
https://dydx.exchange
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://makerdao.com
https://cryptonews.com/news/4th-major-defi-hack-in-a-month-origin-dollar-loses-usd-7m-8331.htm
https://cryptonews.com/news/4th-major-defi-hack-in-a-month-origin-dollar-loses-usd-7m-8331.htm
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.sol
https://app.aave.com/markets
https://www.aave.com
https://compound.finance/markets
https://www.compound.finance

SoK: Lending Pools in Decentralized Finance 577

28. Curve statistics (2021). https://www.curve.fi/dailystats
29. Curve website (2021). https://www.curve.fi
30. Defi pulse website (2021). https://defipulse.com
31. Starkware (2021). https://starkware.co/
32. Tornado (2021). https://tornado.cash/
33. Uniswap statistics (2021). https://info.uniswap.org
34. Uniswap website (2021). https://www.uniswap.org
35. Angeris, G., Chitra, T.: Improved price oracles: Constant function market makers.

arXiv preprint arXiv:2003.10001 (2020), https://arxiv.org/abs/2003.10001
36. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of

uniswap markets. Cryptoeconomic Systems Journal (2019). https://ssrn.com/
abstract=3602203

37. Arusoaie, A.: Certifying Findel derivatives for blockchain. J. Logical Algebraic
Methods Programm. 121, 100665 (2021). https://doi.org/10.1016/j.jlamp.2021.
100665

38. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

39. Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., Zunino, R.: A formal model of
Algorand smart contracts. In: Financial Cryptography (2021). (to appear) https://
arxiv.org/abs/2009.12140

40. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. ACM
CCS (2018). https://doi.org/10.1145/3243734.3243795

41. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

42. Cao, Y., Zou, C., Cheng, X.: Flashot: a snapshot of flash loan attack on DeFi
ecosystem. arXiv preprint arXiv:2102.00626 (2021). https://arxiv.org/abs/2102.
00626

43. Baum, C., David, B., Frederiksen, T.: P2DEX: Privacy-Preserving Decentralized
Cryptocurrency Exchange. Cryptology ePrint Archive, Report 2021/283 (2021).
https://eprint.iacr.org/2021/283

44. Cecchetti, E., Yao, S., Ni, H., Myers, A.C.: Compositional Security for Reentrant
Applications. arXiv preprint arXiv:2103.08577 (2021). http://arxiv.org/abs/2103.
08577

45. Chitra, T.: Competitive equilibria between staking and on-chain lending. arXiv
preprint arXiv:2001.00919 (2019). https://arxiv.org/abs/2001.00919

46. Chitra, T., Evans, A.: Why stake when you can borrow? Available at SSRN 3629988
(2020). http://dx.doi.org/10.2139/ssrn.3629988

47. Daian, P., et al.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

48. Darlin, M., Papadis, N., Tassiulas, L.: Optimal bidding strategy for maker auctions.
arXiv preprint arXiv:2009.07086 (2020). https://arxiv.org/abs/2009.07086

49. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

50. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1 13

https://www.curve.fi/dailystats
https://www.curve.fi
https://defipulse.com
https://starkware.co/
https://tornado.cash/
https://info.uniswap.org
https://www.uniswap.org
http://arxiv.org/abs/2003.10001
https://arxiv.org/abs/2003.10001
https://ssrn.com/abstract=3602203
https://ssrn.com/abstract=3602203
https://doi.org/10.1016/j.jlamp.2021.100665
https://doi.org/10.1016/j.jlamp.2021.100665
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://arxiv.org/abs/2009.12140
https://arxiv.org/abs/2009.12140
https://doi.org/10.1145/3243734.3243795
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/2102.00626
https://arxiv.org/abs/2102.00626
https://arxiv.org/abs/2102.00626
https://eprint.iacr.org/2021/283
http://arxiv.org/abs/2103.08577
http://arxiv.org/abs/2103.08577
http://arxiv.org/abs/2103.08577
http://arxiv.org/abs/2001.00919
https://arxiv.org/abs/2001.00919
http://dx.doi.org/10.2139/ssrn.3629988
https://doi.org/10.1109/SP40000.2020.00040
http://arxiv.org/abs/2009.07086
https://arxiv.org/abs/2009.07086
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13

578 M. Bartoletti et al.

51. Gu, W.C., Raghuvanshi, A., Boneh, D.: Empirical measurements on pricing Oracles
and decentralized governance for stablecoins. Available at SSRN 3611231 (2020).
http://dx.doi.org/10.2139/ssrn.3611231

52. Gudgeon, L., Pérez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis. In: Crypto Valley Conference on Blockchain Technology (CVCBT),
pp. 1–15. IEEE (2020). https://doi.org/10.1109/CVCBT50464.2020.00005

53. Gudgeon, L., Werner, S., Perez, D., Knottenbelt, W.J.: Defi protocols for loan-
able funds: Interest rates, liquidity and market efficiency. In: ACM Conference on
Advances in Financial Technologies, pp. 92–112 (2020). https://doi.org/10.1145/
3419614.3423254

54. Qin, K., Zhou, L., Gervais, A.: Quantifying Blockchain Extractable Value: How
dark is the forest? arXiv preprint arXiv:2101.05511 (2021). https://arxiv.org/abs/
2101.05511

55. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An Analysis of the Market Risk
to Participants in the Compound Protocol https://scfab.github.io/2020/FAB2020
p5.pdf

56. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: Lending Pools in Decen-
tralized Finance. arXiv preprint arXiv:2012.13230 (2020). https://arxiv.org/abs/
2012.13230

57. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of Automated Market
Makers in DeFi. arXiv preprint arXiv:2102.11350 (2021). https://arxiv.org/abs/
2102.11350

58. Moin, A., Sekniqi, K., Sirer, E.G.: SoK: a classification framework for stablecoin
designs. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 174–
197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 11

59. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: Defi on a knife-edge.
In: Financial Cryptography (2021). (to appear) https://arxiv.org/abs/2009.13235

60. Qin, K., Zhou, L., Livshits, B., Gervais: Attacking the DeFi Ecosystem with Flash
Loans for Fun and Profit. In: Financial Cryptography (2021). (to appear) https://
arxiv.org/abs/2003.03810

61. Lamela Seijas, P., Thompson, S.: Marlowe: financial contracts on blockchain. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 356–375.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 27

62. Tolmach, P., Li, Y., Lin, S.W., Liu, Y.: Formal analysis of composable DeFi proto-
cols. In: 1st Workshop on Decentralized Finance (2021), (to appear) https://arxiv.
org/abs/2103.00540

63. Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Automated and Dis-
tributed Statistical Analysis of Economic Agent-Based Models. arXiv preprint
arXiv:2102.05405 (2021) https://arxiv.org/abs/2102.05405

64. Wang, D., et al.: Towards understanding flash loan and its applications in defi
ecosystem. arXiv preprint arXiv:2010.12252 (2020). https://arxiv.org/abs/2010.
12252

65. Wang, Y.: Automated market makers for decentralized finance (defi). arXiv
preprint arXiv:2009.01676 (2020). https://arxiv.org/abs/2009.01676

66. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: Sok: Decentralized Finance (DeFi). arXiv preprint arXiv:2101.08778 (2021),
https://arxiv.org/abs/2101.08778

67. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-Frequency Trading
on Decentralized On-Chain Exchanges. arXiv preprint arXiv:2009.14021 (2020).
https://arxiv.org/abs/2009.14021

http://dx.doi.org/10.2139/ssrn.3611231
https://doi.org/10.1109/CVCBT50464.2020.00005
https://doi.org/10.1145/3419614.3423254
https://doi.org/10.1145/3419614.3423254
http://arxiv.org/abs/2101.05511
https://arxiv.org/abs/2101.05511
https://arxiv.org/abs/2101.05511
https://scfab.github.io/2020/FAB2020_p5.pdf
https://scfab.github.io/2020/FAB2020_p5.pdf
http://arxiv.org/abs/2012.13230
https://arxiv.org/abs/2012.13230
https://arxiv.org/abs/2012.13230
http://arxiv.org/abs/2102.11350
https://arxiv.org/abs/2102.11350
https://arxiv.org/abs/2102.11350
https://doi.org/10.1007/978-3-030-51280-4_11
https://arxiv.org/abs/2009.13235
https://arxiv.org/abs/2003.03810
https://arxiv.org/abs/2003.03810
https://doi.org/10.1007/978-3-030-03427-6_27
https://arxiv.org/abs/2103.00540
https://arxiv.org/abs/2103.00540
http://arxiv.org/abs/2102.05405
https://arxiv.org/abs/2102.05405
http://arxiv.org/abs/2010.12252
https://arxiv.org/abs/2010.12252
https://arxiv.org/abs/2010.12252
http://arxiv.org/abs/2009.01676
https://arxiv.org/abs/2009.01676
http://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778
http://arxiv.org/abs/2009.14021
https://arxiv.org/abs/2009.14021

Standardized Crypto-Loans
on the Cardano Blockchain

Dmytro Kondratiuk1, Pablo Lamela Seijas1 , Alexander Nemish1,
and Simon Thompson1,2(B)

1 IOHK, Wan Chai, Hong Kong
{dmytro.kondratiuk,pablo.lamela,alexander.nemish,simon.thompson}@iohk.io

2 School of Computing, University of Kent, Kent, UK
s.j.thompson@kent.ac.uk

Abstract. Crypto-loans are innovative financial instruments that allow
trustless peer-to-peer lending, and potentially providing a safe and con-
venient source of liquidity for cryptocurrency holders. In this paper we
explore a smart contract framework for building standardised crypto-
loans using the Marlowe domain-specific language and the ACTUS stan-
dard for financial contracts.

Keywords: ACTUS · Blockchain · Cardano · Finance · Haskell ·
Marlowe · Smart contract · Static analysis

1 Introduction

Smart contracts – programs that run in a blockchain environment – can be
defined in a variety of ways [9]. Many such approaches are general purpose,
and can be used to program any kind of contract it makes sense to run on a
blockchain; moreover, they tend to be expressive enough to be Turing complete
(in some cases with restrictions on the runtime environment). For example, Plu-
tus, the general-purpose language running on the Cardano blockchain [3], is a
dialect of Haskell. Another approach is to develop special-purpose or domain-
specific languages (DSLs) which embody a particular application domain: Mar-
lowe [8] is a high-level DSL for writing financial contracts on the Cardano
blockchain.

In this paper we explore ways in which contracts described in ACTUS (Algo-
rithmic Contract Types Unified Standards) can be defined in the contract lan-
guages Marlowe, Plutus and Haskell. Of course, Plutus or Haskell are able to
express these contracts, but rendering them in Marlowe brings extra advan-
tages. Marlowe is defined to provide a range of guarantees by design: a Marlowe
contract will only make a finite number of interactions with its environment,
and its lifetime can be read off from the code for a contract; moreover, when
the contract terminates, any assets held by the contract will automatically be
returned to the participants. None of these guarantees can be provided by a
general purpose language.
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 579–594, 2021.
https://doi.org/10.1007/978-3-662-63958-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_41&domain=pdf
http://orcid.org/0000-0002-1730-1219
http://orcid.org/0000-0002-2350-301X
https://doi.org/10.1007/978-3-662-63958-0_41

580 D. Kondratiuk et al.

Each Marlowe contract has a finite set of possible execution paths, and so it is
possible to analyse the complete behaviour of a contract without running it. Such
static analysis, based on SMT solving [12], can be used to check properties of a
contract; for example, it is possible to check whether a contract will honour all the
Pay constructs that it contains, however it is executed. In the case that a Pay can
fail, the analysis gives an example trace showing how that failure happens. The
language design and static analysis provide assurance that Marlowe contracts
are much less likely to “misbehave” than contracts written in a general-purpose
language like Solidity.

In implementing ACTUS on Cardano we are able to provide further assur-
ance in three other ways. First, we are able to use the declarative nature of
Haskell to transliterate ACTUS formulas term-by-term into an executable form
in Haskell. Secondly, we are able to use random, property-based testing to val-
idate the Haskell implementation against another written in Java. Finally, we
are able to automatically generate ACTUS contracts in Marlowe from the terms
– i.e. parameters – of the contracts; for a simple loan these would include the
start and end dates of the loan and the amount loaned (the ‘principal’). The
generated contracts use the executable spec in calculating values of cash flows
in the Marlowe contracts.

The contribution of our work is to show that that it is possible to implement
financial contracts on blockchain in a way that multiple forms of assurance are
provided: from the language itself, from the static analysis, and from custom
property verification. The development environment for Marlowe, the Marlowe
Playground1, also provides a simulation environment for contracts for stepping
forwards (and backwards) through contract execution, and thus allowing users
to validate that contracts perform as they should. In addition, implementing
ACTUS provides a suitable benchmark against which to assess the design of
Marlowe; we illustrate how the implementation has led to the addition of a
conditional expression construct to the language.

In the remainder of the paper, Sect. 2 covers the relevant financial back-
ground, including the ACTUS financial standard. Section 3 builds an executable
specification of ACTUS in Haskell, and this is used in Sect. 4 to generate the
Marlowe code for an ACTUS contract from the contract terms. Section 5 explains
how tokens are used to represent ownership of roles in a running contract, and
Sect. 6 describes how we provide assurance that contracts behave as they should.
Section 7 examines related work and Sect. 8 concludes.

A note on notation: typewriter font will be used for Marlowe constructs
while math font will be used for mathematical formulas and pseudo-code.

2 Financial Contracts

In this section we give a brief introduction to financial contracts, and to loans
in particular, and then describe the ACTUS financial standard.

1 https://alpha.marlowe.iohkdev.io/#/.

https://alpha.marlowe.iohkdev.io/#/

Standardized Crypto-Loans on the Cardano Blockchain 581

2.1 Crypto-Loans

A loan is a form of debt incurred by an individual or other entity. The lender
advances a sum of money to the borrower. In return, the borrower agrees to a
certain set of terms including any finance charges, interest, repayment date, and
other conditions [10].

Cryptocurrency-backed loans must have collateral when there is no trust
between party and counterparty. While a loan is usually settled in a stable-coin
currency (e.g. USDT/USDC), collateral is typically denominated in a cryptocur-
rency (e.g. BTC). The purpose of such a loan is to give the borrower access to
the fiat value of their crypto-funds without actually selling them for fiat. The
borrower pays interest in exchange for gaining liquidity.

Every loan has a positive net payoff (return minus investment) that is either
rendered as a one-time payment – often called a zero-coupon bond (ZCB) – or by
scheduling payment of the interest. The rate of interest could be fixed throughout
the lifetime of a contract: for example, zero-risk bonds have a fixed interest
proportional to the inflation rate. However, in the generic case the interest rate
is variable and depends on an external factor agreed in advance, and the rate is
periodically updated by observing the state of that factor.

Such loans often represent an investment in a particular venture or industry.
As a somewhat fictional example, one could imagine a cryptocurrency miner
who decided to scale their crypto-farm: a loan (in USD) with variable interest
that directly depends on cryptocurrency prices would be more attractive for a
miner because it would directly correlate with miner’s profits. For example, if
the price of the cryptocurrency goes down in a particular month the borrower
would have to pay lower interest, and so would always pay a fixed share of the
profits. In a more traditional setup the interest rate could depend on prices of
other commodities: a canonical example would be a power plant taking a loan
with interest depending on electricity prices.

In both cases, the prices of cryptocurrency or electricity become a driver for
the interest rate. However, one cannot simply take the bare price of the asset
and turn it into a rate. In order to make units of measurement compatible with
each other adjustments should be made. Fluctuations of the interest rate driver
are embedded thus:

Δr = capfloor(driver ∗ multiplier + spread − interestRatet−1)

interestRatet = capfloor(interestRatet−1 + Δr),

where capfloor is a function that limits the range of fluctuation, and so limiting
the lender’s exposure to risk:

capfloor(x) = max(min(x, floor), cap)

The spread parameter here loosely represents the difference between the average
prime rate that the lender expects – the benchmark yield – and the rate imposed

582 D. Kondratiuk et al.

by the driver: the higher the spread, the higher the resulting interest rate. The
multiplier rescales the interest rate curve in order to represent the changes to
be made converting between different units of measurement: how many rate
percentage points you would get for a USD-to-kilowatt conversion and so on.

In the context of ACTUS and similar frameworks, there is one more factor
influencing interest rates thorough scaling:

interestPayment = interestScalingFactor ∗ interestRate ∗ notional

This scaling is dynamic and loosely adjusts for variance (volatility) of the asset
that the interest rate driver represents.

Interest Accrual and Capitalisation. A counterparty might decide to reinvest
profit received as interest from the loan. In the simplest case, this renders as
compound interest. This can be modelled through interest accrual and capi-
talisation (conversion of income or assets into capital); for instance, contracts
from the ACTUS specification accrue interest between interest payments and
can transfer interest to a notional during interest capitalisation event (IPCL).

Overall, variable interest rates introduce a certain risk for a lender, thus they
can be subject to hedging. While any instrument that depends on the same
risk factor (interest rate driver) would suffice, the most popular way to hedge a
variable interest rate loan is an interest rate swap. This instrument allows two
(or more) parties to exchange their incomes - one from a fixed interest rate loan,
the other from a variable-rate loan.

Counterparty Risk. Trustless setups, especially ones in the cryptocurrency world,
including decentralised smart-contracts and exchanges, require no trust between
party and counterparty involved in a contract. In case of a loan, this literally
means that counterparty has zero obligation to pay the money back, thus render-
ing the loan useless for a party. Such risks are usually addressed by introducing
collaterals, as in the following scenario.

1. Alice would like to borrow 1000 USD
2. She has Bitcoin assets cost around 1500 USD, which she intends to hold

throughout a year, so Alice has high confidence in the market (she expects
prices to double or triple)

3. Bob would like to lend 1000 USD and get an interest higher than traditional
interest rate offered by banks (let’s say 15% instead of 10%). He is either
bearish or neutral towards Bitcoin.

4. Alice transfers her BTC as collateral to a contract, and Bob transfers his
USD to Alice

5. If Alice pays the interest and notional on time, and the BTC price does not
render collateral worthless, she can get her collateral back; otherwise the loan
gets liquidated and the collateral is transferred to Bob.

Standardized Crypto-Loans on the Cardano Blockchain 583

2.2 ACTUS

The Algorithmic Contract Types Unified Standards (ACTUS) [1] define the logic
embedded in legal agreements that eventually turn the contract terms into actual
cash flows, or more generally business events. Most of its basic contract types
represent different variations of lending contracts. ACTUS provides additional
benefit of being regulatory friendly, and the ACTUS foundation provides a set
of tools allowing Monte-Carlo simulations of ACTUS contracts.

ACTUS relies on a state machine formalism in order to describe the behaviour
of a given contract. Every payoff – i.e. transfer of funds in or out of a contract
– can be inferred for any given state. Every state can be derived from previous
events and observed risk factors:

payoff i = POF (statei)

pathi = STF (ct, ev1) ◦ STF (ct, ev2) ◦ . . . ◦ STF (ct, evi)

statei = pathi(INIT (ct)),

where ct stands for contract terms, INIT returns initial state, sched returns
scheduled events, STF takes contract terms, event, and state and returns the
next state, and POF returns the payoff in a state.

2.3 Oracles

In order to support variable interest rates and scaling, ACTUS requires a smart
contract to be able to observe the value of a given risk factor, such as an interest
rate, at a particular point in time t. This is due to the state of the risk factor
not being known at instantiation time.

riskfactorit = Orf (i, t)

In the case of the Cardano blockchain, these values are usually provided through
an oracle mechanism [11]. An oracle could be a trusted party providing necessary
data or network of parties under consensus [2].

From a Marlowe DSL perspective, the exact mechanism that provides exter-
nal data is less important, as Marlowe abstracts over IO by requiring a particular
type of input – a Choice – that is protected with a cryptographic signature by
the source of the choice. As a result, the event of receiving data from an oracle
is treated the same as receiving numeric input in other languages.

3 Building an Executable Specification of ACTUS

ACTUS is defined in a textual specification2 which, while expressed in math-
ematical notation, is essentially informal. In this section we describe how this
2 Available from https://www.actusfrf.org/techspecs.

https://www.actusfrf.org/techspecs

584 D. Kondratiuk et al.

specification is turned into an executable version by rendering it in Haskell. This
translation is in fact a transliteration, since notation, variable names and so forth
are respected.

3.1 Rendering the Specification in Haskell

The ACTUS standard is specified in terms of scheduling, payoff and state tran-
sition functions that are polymorphic on event and contract type, as noted in
Sect. 2.2 above. The specification also follows quite specific naming conventions
that are incompatible with Haskell’s conventions. The executable specification
follows original ACTUS conventions as closely as possible in order to ease code
base maintenance when faced with updates of the ACTUS spec repository3.

Using Haskell itself as a DSL for explicitly encoding formulas without using
advanced language idioms also simplifies code generation. In case of ACTUS this
comes at a cost reduced type-safety, handling nullable values explicitly introduces
risk of exceptions. However this risk is addressed using property-based testing,
and in particular QuickCheck generators. This is discussed in more detail in
Sect. 6 below.

3.2 Utilising Polymorphism to Abstract over Basic Operations

In order to keep our executable specification independent of the carrier – whether
it is a smart-contract engine, proof assistant, analytical framework or even
machine learning model – we abstract over the underlying representation of
state variables,

-- Definitions/ContractState.hs
data ContractStatePoly a b = ContractStatePoly
{

tmd :: b
, nt :: a
, ipnr :: a
, ipac :: a
, feac :: a
, fac :: a
, nsc :: a
, isc :: a
, prf :: ContractStatus
, sd :: b
, prnxt :: a
, ipcb :: a

} deriving (Show)

and arithmetic operations,

3 https://github.com/actusfrf/actus-techspecs.

https://github.com/actusfrf/actus-techspecs

Standardized Crypto-Loans on the Cardano Blockchain 585

-- Ops.hs
class ActusOps a where

_min :: a -> a -> a
_max :: a -> a -> a
_zero :: a
_one :: a

class ActusNum a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
(/) :: a -> a -> a

class YearFractionOps a b where
_y :: DCC -> a -> a -> a -> b

class DateOps a b where
_lt :: a -> a -> b --returns pseudo-boolean

class RoleSignOps a where
_r :: ContractRole -> a

Thus, every formula in the executable spec could be instantiated to:

– a formula on some atomic type, like Double or Day, which could be used to
directly compute cash-flows for analytical purposes or precompute payoffs for
smart contracts that do not depend on oracles; or

– a formula representing a piece of abstract syntax, e.g. a Marlowe Value or
Observation, that could be used to generate smart contracts that depend on
oracles or to generate code in another language, such as Agda.

This approach of abstracting formulas has a limitation of not allowing condi-
tionals to be expressed in an abstract way: in other words, there is no ActusIf
typeclass. Luckily most of conditional expressions in ACTUS specification don’t
depend on variable state of a contract, they depend on ContractTerms that
are known in advance during contract generation. This allows us to dispatch
appropriate formulas during generation rather than execution.

The only exception to this are the rare situations where we need to compare
2 state variables and choose either formula′ or 0 depending on the result of the
comparison result:

formula(st) =

{
formula′(st) var1(st) < var2(st)
0 otherwise

We rely on a pseudo-Boolean less than function in order to address that:

formula(st) = pseudoLt(var1(st), var2(st))) ∗ formula′

586 D. Kondratiuk et al.

pseudoLt(a, b) = Cond(a > b, 1, 0)

3.3 Contract Term Representation and Explicit Applicability

In order to simplify serialisation and deserialisation of contract terms across
ACTUS related services maintained by Cardano we rely on “superposed” repre-
sentation of contract terms: all ACTUS contract types are represented with the
same type.

While such a representation allows both encoder and decoder to express any
ACTUS contract terms, it also allows for invalid combinations of terms (for
example PRNXT cannot be applied to a PAM contract), which means contracts
require specific validation that is implemented by means of the applicability
function:

Applicability : ContractTerms → Bool

ACTUS standard defines a family of applicability functions polymorphic on
contract type:

Applicability : ContractType × ContractTerms → ApplicabilityType

where applicability could be: none, always, nullable, or multiple.
In order to build superposed contract terms type for such functions, we have

to resolve conflicting applicability types for merged contract terms using the
following resolution rules:

weaken(a1, a2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nullable a1 = none ∧ a2 = always

nullable a1 = always ∧ a2 = none

a1 priority(a1) > priority(a2)
a2 otherwise

priority(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x = always

1 x = none

2 x = nullable

3 x = multiple

where ai is the applicability of a given term of the ith contract type to be merged.

4 Generating Marlowe Contracts from Standardised
ACTUS Contract Terms

In this section we describe how concrete Marlowe contracts are generated from
the terms – i.e. parameters – of standard ACTUS contracts. We also describe
the implementation of the system, and reflect on the limitations of generating
contracts in Marlowe, where contracts have a predefined lifetime and a predefined
collection of interactions with contract participants.

Standardized Crypto-Loans on the Cardano Blockchain 587

Fig. 1. Modules responsible for contract generation.

4.1 Overall Architecture

A generated contract is essentially a continuation chain of smaller contracts:

588 D. Kondratiuk et al.

chainlink(t) = receiveData(t) ◦ calculatePayoff(t) ◦ processPayoff(t)

contract(ct) = collaterals(ct) ◦ INIT (ct) ◦
∏

t∈SCHED(ct)

chainlink(t)

where the component receiveData asks an oracle for Marlowe Choice if needed,
and calculatePayoff calculates the payoff formula. For fixed-rate contracts this
is optimised into a pre-calculated constant function. The processPayoff function
awaits the Deposit of a payoff amount from a party: if the deposit is made them
it directs the funds to a counterparty, otherwise it transfers the collateral to the
counterparty and closes the contract.

The principal components of the system are shown in Fig. 1. There are three
categories of components representing ACTUS functions: specification with for-
mulas, formula wiring for fixed rates (produces precomputed payoffs) and for-
mula wiring for variable rates, which produces Marlowe-code that computes
payoffs. Different types of wiring correspond to different implementations of
ActusOps implementations (either Double or Value).

The chain is generated from the fixed schedule of events, known in advance
of execution, using the SCHED() function from ACTUS, as shown in Fig. 2.

Fig. 2. Chain of sub-contracts representing ACTUS logic

Standardized Crypto-Loans on the Cardano Blockchain 589

4.2 Avoiding Exponential Growth

Marlowe contracts are finite, and in particular Marlowe itself does not have
constructs for functions or recursion; these are available in the Haskell and
JavaScript embeddings of Marlowe, but they are unrolled on translation to pure
Marlowe. Naive usage of the If operator in Marlowe could lead to exponential
growth of a contract, as in this pesudocode example:

if condition
then

perform something1()
continue()

else
perform something2()
continue()

Translating this to Marlowe would inline contents of continue() twice and,
given that ACTUS contracts are essentially generated using continuation as an
accumulator, this would lead to exponential explosion of the size of any ACTUS
contract that has conditionals in their state transition logic.

An example of such logic would be cap/floor limitations on interest rates:

adjusted = max(min(original, f loor), cap)

We addressed this issue by introducing the Cond expression construct in order
to represent conditional expressions, rather than only conditional contracts as
was the case before. Instead of using the If contract to decide the value of some
variable, we use a conditional expression instead. Cond is a pure function that
returns a value depending on a condition, in contrast to the If contract that
chooses between two continuation contracts.

4.3 Limitations Due to Termination

Marlowe doesn’t allow contracts that run indefinitely, even if their recursion is
productive, as would be the case in a perpetual swap contract, for example.
We therefore cannot support certain contract types from ACTUS specification,
namely the ones that don’t have a defined maturity date (like UMP).

There is a possible workaround: contracts with no maturity date could be
represented as actors with a finite number of state transitions. We prototyped
this approach, however it does seem more prone to errors comparing to rendering
predefined schedules. More importantly, it greatly affects static analysis because
the number of reduction steps in the contract grows from

Nscheduled = count(event)

to

NstateTransitions =
max(date(event)) − min(date(event))

precision

590 D. Kondratiuk et al.

4.4 Fixed-Point Precision

For numeric types Marlowe supports Integers, while ACTUS is expressed in
terms of real numbers. In order to model a real number in such a setup we rely
on fixed-point precision. The algebra looks like this:

(+) = AddValue -- x/n + y/n = (x + y)/n
(-) = SubValue -- x/n - y/n = (x - y)/n
a * b = Scale (1 % marloweFixedPoint) $ MulValue a b

-- x/n * y/n = (x * y)/n^2

We scale all numbers with marloweFixedPoint factor - which only requires mod-
ification of MulValue. We plan to move Marlowe to fixed-precision numbers for
the on-blockchain implementation available later in 2021.

4.5 Representing Actus State in a Marlowe Contract

The Marlowe DSL does not support any notion of records, the variables can only
be of type “Integer”. In order to map contract state – ContractStatePoly – we
pack a set of Marlowe variables of type Value and Observation, representing
the previous (t − 1) state, passing them into ContractStatePoly, to apply the
polymorphic state transition, and finally unpack ContractStatePoly into a set of
Marlowe variables representing the state at t:

stt = unpack(stateTransition(pack(stt−1))),

where pack is a chain of UseValue constructs and unpack is a chain of Lets.

Representing State Transitions in Marlowe. Marlowe is a declarative language,
and so in particular it does not support mutable variables. We therefore represent
the state at stage t (stt) literally through this naming convention:

variableName(name, t) =
concat(name, ’_’, t)

generateAccessor(name, t) =
UseValue variableName(name, t)

generateSetter(name, t, formula) =
Let variableName(name, t) formula

4.6 Actus Labs

In order to demonstrate and test the capabilities of Actus generators, a visual
online Blockly-based tool was developed for the Marlowe Playground. The Actus
Labs tool, shown in Fig. 3, allows users to construct contract terms visually to
generate a corresponding Marlowe contract and then to try it out in a simulation
environment.

Standardized Crypto-Loans on the Cardano Blockchain 591

Fig. 3. Actus Labs - an online tool for generating Actus contracts for Marlowe.

5 Tokenization

Every participant of a Marlowe contact is described by a Role which is in its
turn represented through a unique non-fungible token, created at the time that
the contract instantiated on the blockchain. This makes every ACTUS contract
a tradable security, allowing a participant to sell its share in a contract by selling
a corresponding role token.

Role tokens can potentially allow more complex manipulation over such
shares, especially when the share represents an incoming cash flow; in that case,
participants send funds to a party represented by a given token. Such a token
would represent a positive cashflow, which in turn could not only become trad-
able but could also allow the derivation of tokens representing fractional parts
of a particular cash flow in a contract.

Moreover, this process turns ACTUS loans into derivatives. For example,
contracts like Interest Rate Swap (and Swaps in general) could be approximated
by an Atomic Swap of tokens representing incoming cash flows from loans. For
example, if Alice has fixed income from a loan, or some other investment, and Bob
has comparable but variable (fluctuating) income, Bob can hedge by swapping
cash flows with Alice. If Alice’s income is locked with token1 and Bob’s income
is locked with token2 then an atomic swap of those tokens is equivalent to a
swap of cash flows.

592 D. Kondratiuk et al.

6 Assurance

This section explains how we provide assurance to users of our Marlowe ACTUS
contracts by means of property-based testing and SMT-based static analysis.

6.1 QuickCheck for Cross-Testing

First, we are able to test the executable Haskell implementation of ACTUS
for smart-contracts by comparing it with an existing implementation written in
Java. To do this a simple property-based test in QuickCheck [4] was introduced,
where we generate contract terms and risk factors randomly to test the property.

∀ct.∀rf. getCashF lows(“haskell”, ct, rf) ≡ getCashF lows(“java”, ct, rf)

where ct represents contract terms, rf is risk factor model, and getCashFlows()
returns a set of (date,payoff) tuples.

6.2 QuickCheck for Verification

QuickCheck contract terms generators also allow us to check other properties
of a Marlowe contract. This could be enhanced with Marlowe’s static analysis
feature by utilising the Assert operator:

do
let contractTerms = sample(qcgenerator)

contract = generateMarloweContract(contractTerms)
contractWithAssert = appendAssertion(contract, assertion)

runStaticAnalysis(contractWithAssert)

While this scenario does not cover all possible contracts, it could guarantee
that property holds for a statistically significant fraction of a contract.

6.3 Static Analysis for Verification

Using static analysis for Marlowe [7] it is possible fully to check a particular
contract instead of using random sampling. That would allow some refinements:

– More balanced sampling: the space of contract terms depends linearly on
the coverage, e.g. if we cover 10% of all possible contract terms - we’ll
cover 10% of all contracts. Different contracts have different sets of risk
factors, and so different search spaces. For instance, a contract with 3
risk factors (e.g. 3 observations of an interest rate) would span over n3

values while a contract with 10 risk factors would span over n10. Meanwhile,
the space of all risk factors in all contracts doesn’t linearly depend on the cov-
erage - some contracts might have more risk factor observations and some -
less. So covering 10% of all contracts doesn’t necessary mean covering 10%
of all possible observations.

Standardized Crypto-Loans on the Cardano Blockchain 593

– Dependency tracking: an SMT-solver is potentially likely to be more aware
of execution paths that lead to the failure of a test, a feature that could
significantly reduce search space.

– Completeness: if not timed out, SMT-solving is decidable while sampling is
semi-decidable.

6.4 Securing Collateral Logic with Auto-Refund Warnings

By design, the Marlowe interpreter always refunds any assets held in a contract
when it terminates. This is done in order to ensure that no funds are lost forever.
The funds are returned to whoever’s internal account holds them.

However, this presents as a problem in certain cases where ownership of the
funds could not be determined automatically. For example, if Alice puts collateral
in a crypto-loan contract she would formally maintain ownership, which means
she would get automatically refunded when a Close construct is reached.

This implicit refund is easy to overlook by smart-contract developers as plain
Close is often used as a default action in case of unexpected behaviour like
timeouts, and especially a Choice timeout. This can easily lead to costly mistakes
if Alice maliciously decides to exploit an auto-refund feature in order to get her
collateral without paying back, as in the following scenario:

1. Alice creates a contract where a Deposit timeout would lead to Close
2. Bob doesn’t know or test the timeout path. Even if Bob is a programmer, he

might not be aware that Closeing the contract would cause the collateral to
be refunded to Alice.

3. Alice puts her collateral in the contract and gets the notional from Bob.
4. Alice doesn’t pay for the loan: i.e. there is a Deposit timeout.
5. Alice gets her collateral back.
6. Bob loses his notional.

In order to prevent this from happening, an additional Auto-Refund security
check was introduced as part of static analysis tooling which notifies users about
all Close constructs that can lead to automatic refunds and encourages users to
write explicit logic for edge cases.

7 Related Work

Unlike current mainstream DeFi lending approaches, our Marlowe ACTUS
implementation relies on trade-matching instead of pooling. While asset pooling
is proven to be superior to order-book based approaches when it comes to auto-
mated market makers, using it for lending has been shown to be more susceptible
to attacks [5]. Moving trade matching off-chain also improves scalability of the
protocol - every loan is a separate contract, thus there is no global state.

There are frameworks, like ISDA Common Domain Model [6], providing a
more precise representation of the business processes involved in institutional
trading as well as code-generation capabilities. However, due to its structural
simplicity, ACTUS is more suited for generating code in a financial domain spe-
cific language like Marlowe rather than general-purpose one like Java or Haskell.

594 D. Kondratiuk et al.

8 Conclusion

The Marlowe language was explicitly designed as a set of building blocks for
financial contracts that could be combined by anyone familiar with basic pro-
gramming. The Marlowe ACTUS generators improve on that by providing a way
to automatically combine blocks based on standardised requirements specified
by the user. Marlowe ACTUS also provides a toolkit for cross-testing against
the original ACTUS spec, a framework for adding new contract types, cash-flow
visualisations and verification tooling.

We are very grateful to colleagues at Quanterall and Finley and Kegan McIl-
waine of the University of Wyoming for their contributions to this project.

References

1. ACTUS. https://www.actusfrf.org/. Accessed 02 Feb 2020
2. Beniiche, A.: A study of blockchain oracles (2020). https://arxiv.org/abs/2004.

07140. Accessed 04 Feb 2020
3. Brünjes, L., Gabbay, M.J.: UTxO- vs account-based smart contract blockchain

programming paradigms. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS,
vol. 12478, pp. 73–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 6

4. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: ICFP 2000. ACM, New York (2000). https://doi.org/10.1145/
351240.351266

5. Flash-loan attack definition. https://www.coindesk.com/harvest-finance-24m-
attack-triggers-570m-bank-run-in-latest-defi-exploit. Accessed 02 Feb 2020

6. ISDA Common Domain Model. https://www.isda.org/2019/10/14/isda-common-
domain-model/. Accessed 02 Feb 2020

7. Lamela Seijas, P., Smith, D., Thompson, S.: Efficient static analysis of Marlowe
contracts. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp.
161–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6 11

8. Lamela Seijas, P., Thompson, S.: Marlowe: financial contracts on blockchain. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 356–375.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 27

9. Lamela Seijas, P., Thompson, S., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016).
https://eprint.iacr.org/2016/1156

10. Loan definition. https://www.investopedia.com/terms/l/loan.asp. Accessed 02 Feb
2020

11. Mammadzada, K., Iqbal, M., Milani, F., Garćıa-Bañuelos, L., Matulevičius, R.:
Blockchain oracles: a framework for blockchain-based applications. In: Asatiani,
A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 19–34. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58779-6 2

12. Vanegue, J., Heelan, S., Rolles, R.: SMT solvers for software security. In: Proceed-
ings of the 6th USENIX Conference on Offensive Technologies, WOOT 2012, p. 9.
USENIX Association, USA (2012)

https://www.actusfrf.org/
https://arxiv.org/abs/2004.07140
https://arxiv.org/abs/2004.07140
https://doi.org/10.1007/978-3-030-61467-6_6
https://doi.org/10.1007/978-3-030-61467-6_6
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://www.coindesk.com/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit
https://www.coindesk.com/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit
https://www.isda.org/2019/10/14/isda-common-domain-model/
https://www.isda.org/2019/10/14/isda-common-domain-model/
https://doi.org/10.1007/978-3-030-61467-6_11
https://doi.org/10.1007/978-3-030-03427-6_27
https://eprint.iacr.org/2016/1156
https://www.investopedia.com/terms/l/loan.asp
https://doi.org/10.1007/978-3-030-58779-6_2

Fairness in ERC Token Markets:
A Case Study of CryptoKitties

Kentaro Sako1,2, Shin’ichiro Matsuo1,3(B), and Sachin Meier1

1 Georgetown University, Washington, USA
Shinichiro.Matsuo@georgetown.edu

2 Waseda University, Shinjuku City, Japan
3 NTT Research Inc., Tokyo, Japan

Abstract. Fairness is an important trait of open, free markets.
Ethereum is a platform meant to enable digital, decentralized markets.
Though many researchers debate the market’s fairness, there are few dis-
cussions around the fairness of automated markets, such as those hosted
on Ethereum. In this paper, using pilot studies, we consider unfair fac-
tors caused by adding the program. Because CryptoKitties is one of the
major blockchain-based games and has been in operation for an extended
period of time, we focus on its market to examine fairness. As a result,
we concluded that a gene determination algorithm in this game has lit-
tle randomness, and a significant advantage to gain profit is given to
players who know its bias over those who do not. We state incomplete-
ness and impact of the algorithm and other factors. Besides, we suppose
countermeasures to reduce CryptoKitties’ unfairness as a market.

Keywords: CryptoKitties · Smart contracts · Financial market
fairness

1 Introduction

1.1 Background

After Bitcoin was proposed, many challenges are conducted to make economic
activities performed autonomously without any trusted party. Bitcoin tries to
realize such a space for a simple application like payment. On the other hand,
with Solidity and another language, Ethereum tries to realize “smart contract”
beyond the payment process. The movement is recently expanding decentral-
ized finance. When we deal with the simple payment process, requirements on
application-level security are a bit simple, preventing double-spending in the case
of bitcoin. The amount of payment is assumed to be correctly agreed among the
payer and payee. KYC/AML is the other regulatory requirement under debate.

On the other hand, in the case of a smart contract, such requirements become
complicated. Throughout our experience regarding Initial Coin Offering, there is
a potential to scam due to asymmetric knowledge and some unfair situation for

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 595–610, 2021.
https://doi.org/10.1007/978-3-662-63958-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_42&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_42

596 K. Sako et al.

participants. One of the significant expectations of permissionless block-chain
mechanism and smart contract as its application is to provide transparency and
fairness of an economic system. It may be true for payment applications like
Bitcoin and cryptocurrency, but it is unknown if we can expect the same fruits
for smart contracts.

Although there is a lot of research about the ordinary financial system’s
fairness, they do not discuss the fairness of markets run autonomously by pro-
gramming code. When we try to discuss the fairness of smart contracts, we need
to consider two aspects, at minimum, addition to the concept of the fairness of
the ordinary financial system; (1) effect by autonomous execution, and (2) trust
of the programming code. Autonomous execution may make users difficult to
manage their assets and strategy and understand their financial transactions are
executed over a fair setting. The user should trust the programming code of the
smart contract platform. Though the developers claim that the programming
code is disclosed at GitHub for transparency, average users do not have enough
capability to understand the code. As an example of supply chain risks, it is hard
to prove the execution code is the same as the source code at GitHub repository.

At the time of writing of this paper, we do not have good criteria to evaluate
if a specific smart contract platform/application is fair or not. Though it is
big research to discuss the fairness of smart contracts, it is worth conducting
research on the source of the unfairness of smart contracts. This direction will
be the basis of such evaluation criteria.

1.2 Our Contribution

This research discusses the potential unfairness of a market created by the smart
contract. For example, we analyze CryptoKitties, a blockchain-based game, and
make the most use of smart contracts on Ethereum to evaluate if it is fair or not as
a market. According to [1], its economic effect is more than forty million dollars.
Thus, the existence of potential unfairness may lead to a question regarding
legitimacy as a place to exchange cryptocurrency.

We investigated the internal algorithm of CryptoKitties to determine the
price of each kitty potentially. In particular, we focus on how an ERC-721 token
is created in CryptoKitties. In this game, a kitty is produced as an ERC-721
token. We assume that each player’s goal at this game is the player earns ETHs
by exchanging tokens and enjoying the kitty. The characteristics of a newly born
kitty, an ERC-721 token, are determined by this game’s gene algorithm. If this
algorithm is not fair, there is a risk that users will unfairly lose ETHs. We also
research trading tokens among the owner of kitties. It gives all users a chance to
get kitties.

As a result of the research, we found that CryptoKitties does not satisfy some
fair market conditions. The gene determination algorithm does not have qualified
randomness, and it has a huge influence on the determination of characters of
a newborn kitty. It is a source of asymmetry of knowledge. Only a person who
knows the nature of the random function can predict a potential new kitty’s
characteristics. Therefore, it is possible to guess which kitty produces the most

Fairness in ERC Token Markets: A Case Study of CryptoKitties 597

valuable kitty. We found that only users, who know this bias and can buy kitties
that give birth to valuable kitties, can earn more ETHs. When a player tries
to sell a kitty cheaper than the breeding fee, his revenue will be smaller than
his cost. Thus, the game has an unrealistic assumption on players’ literacy; all
people must have the ability to understand the algorithm. This fact does not
mean that all players have opportunities to gain profit. Moreover, currently, the
auction format in CryptoKitties has information asymmetry by conspiring with
a seller and a bidder. When the seller tells the bidder when his auction starts, it
is difficult for other players to participate because the bidder makes a successful
bid as soon as it starts. We indicate that CryptoKitties may be providing an
unfair environment for many users.

In this paper, we argue conditions that a fair market should be kept in Sect. 2.
In practice, we compare CryptoKitties and fair market conditions in Sect. 3.
Section 4 mentions countermeasures that may make CryptoKitties fairer. We
consider other vulnerabilities of CryptoKitties in Sect. 5. Finally, we conclude
our research in Sect. 6.

1.3 Related Work

Alesja Serada et al. He studied CryptoKitties as a subject to see how blockchain
will shape future game design. He examined the relationship between token own-
ership and the value construction of CryptoKitties. In addition, he showed how
the breeding and market aspects of kitty work concerning maintaining the game
economy. As a result, the authors showed that the kitty’s value is decreasing
because there is no upper limit to the number of kitties that can be bred. The
value of Gen 0 kitties, which cannot be created by breeding, decreased as well.
We also showed that the existence of a transaction fee GAS could hinder the
intervention of new users. He concludes that these are the points that make the
game economy unsustainable [8].

Charlotte et al. Based on that “trust without trust,” blockchain has emerged
as a disruptive technology that is considered an alternative to law. The authors
doubt that whether participants can transact with each other without the need
for legally sanctioned trust. The authors specifically highlight the need for users
to verify that a Dapps (short for decentralized applications) really does fall under
it. He focuses on some Dapps, including CryptoKitties. Since it is possible that
CryptoKitties is not decentralized, it is marketing as a Dapp may be misleading
to users. The reason why kitty is considered immutable and cannot be taken
away from others is the blockchain’s immutability. However, only the market
uses its properties. Charlotte points out that it is vulnerability, and some can
cheat others to execute a dishonest contract [9].

598 K. Sako et al.

2 Considering the Fairness of Financial Services Based
on Smart Contract

2.1 Preliminary

Blockchain. Blockchain is a database commonly used as a ledger for cryptocur-
rencies. Satoshi Nakamoto proposed it as a bitcoin ledger in 2008 [2]. Blockchain
has some special characteristics; it enables decentralized systems, immutable
data, transparency, and anonymity.

A blockchain consists of many blocks. Each block contains transactions, a
timestamp, a previous hash, and a nonce. A transaction has a sender address, a
recipient address, and a value.

There is no administrator in the blockchain. Instead, every member of the
network manages blockchain data. A Peer-to-Peer network connects the partici-
pants as nodes. Each node has blockchain data. If someone creates a new block,
he sends all nodes connecting him to the block. These nodes will send other
nodes when they receive the block. Soon, everyone will have that information.

So, how do users make a new block? First, block creators called miners to
determine a block which they want to connect their block. If they determine the
transactions in that block are legitimate, they will make the previous hash of
their block the hash value of that block. It is called a blockchain because the
blocks are connected like a chain by hashing. If there are six or more blocks
connected behind a block, it is considered correct. Next, miners select transac-
tions which they thought right ones and each transaction fee is high. If a miner
creates a new block, he is rewarded with new coins. In the Ethereum blockchain,
the transaction fee is called “Gas”. Then, miners calculate “nonce” so that a
block hash value is less than the threshold. As a block has nonce, if they change
its value, they will also alter the block hash value. This threshold is set so that
miners can find a nonce in 10 min, making it difficult for multiple blocks to be
created simultaneously. If a block is easily created, it is immediately assumed to
be the correct one, and they will approve suspicious transactions. The threshold
prevents this. Finding the nonce is called Proof-of-Work (PoW), and the process
of making the block is called mining. In this way, blockchain is a decentralized
system.

Other properties also meet. A block created once will be saved in every
node’s server. an attacker must attack all nodes in order to successfully alter
the blockchain. As it is too difficult, no participants can alter blocks. Besides,
they can see all blocks. So, blockchain has transparency, such as seeing which
address a cryptocurrency originated from. By using this, we know an address’
balance. Of course, other users can not steal its cryptocurrency, thanks to the
UTXO system [12]. However, bitcoin and Ethereum addresses have anonymity
so that people can not figure out a real person who has the address.

Smart Contract. Nick Szabo proposed smart contracts in the 1990s [3]. We
define a contract in advance. Nobody can change it once defined. When a person

Fairness in ERC Token Markets: A Case Study of CryptoKitties 599

agrees with its definition, the contract is executed. His and the contractor’s
settlement will be run automatically. We need no third party to run this contract.
Take a vending machine, for example; the pre-definition is the product’s price and
pictures displayed. By selecting a juice, it is correctly executed until settlement.
If the input is the same, smart contracts must have the same output. For a given
contract, if the input is the same, the result must be the same regardless of who
performs it. If this is not the case, then different people can buy the same juice at
different prices. This would make smart contracts unreliable and different from
the concept.

Ethereum is the first cryptocurrency to be able to operate smart contracts.
With writing pre-definition on blockchain, all users do not re-write it. After pre-
definition, programming code Solidity runs contracts. Thanks to this system, we
can exchange ETHs safely.

CryptoKitties. CryptoKitties is one of the most famous blockchain-based
games [5]. Axiom Zen created this game in 2017 [4]. We show CryptoKitties’
overview in Fig. 1. In this game, users exchange ERC-721 tokens for ETHs.
ERC-721 is a non-fungible token(NFT) transferred on the Ethereum blockchain.
Unlike cryptocurrency tokens, NFTs are unique tokens, with specific parameters.
Each ERC-721 token differs in its value. In CryptoKitties, an ERC-721 token
is treated as a kitty. Again, players exchange kitties for ETHs. These kitties
have an ID, gene, and generation. A kitty’s ID is assigned in the order of birth,
and the algorithm written in Solidity determines the gene that determines the
appearance of the kitty. The generation of a child kitty is one greater than the
generation of the parent kitties. By birthing and trading kitties, users aim to
earn ETHs. This game’s source code is written in Solidity. So, all trades and

Fig. 1. CryptoKitties’ overview

600 K. Sako et al.

breeding in this game are executed by smart contracts. Not only transactions
but kitties’ data are on the blockchain.

There are two ways to obtain a kitty. One is winning an auction. The auction
of CryptoKitties is the dutch system that the exhibited kitty’s price goes down
as time passes. There are two types of auctions; standard and rental. When a
user wins a standard auction, he can get a kitty. In case of rental, a winner has
to return the kitty after breeding, another way to get a kitty.

A user can get a new kitty created by the gene determine algorithm. To make
a kitty, he needs to choose two parent kitties that are inputs of the algorithm.
Parent kitties can be chosen from those that they already own, or one of them
can be a kitty he won at a rental auction. After selecting parent kitties, he can
get a baby kitty. Thus, this process is called breeding. A player has to pay 0.008
Eth when he lets two kitties breed. Since a kitty has no gender, it can be either
a matron or a sire. The breeding defines a baby kitty’s gene and generation. A
kitty’s generation settles its breeding period [13,14]. It has 14 kinds; the longest is
two weeks, and the shortest is one minute. When a kitty is created, the cooldown
period is determined by its generation, and from that point on, each time it is
bred, the period increases by one kind. After breeding, until this period of time
has passed, a matron kitty cannot reproduce. Through this kind of trading and
breeding, players can get expensive kitties and sell them for a profit.

2.2 Fairness in CryptoKitties Market

In terms of economics, a fair market should keep the following criteria [10].
According to [10], every player has opportunities to profit and take risks equally.
A market must also prevent cheating. Information asymmetry, where some peo-
ple know information about making a profit, must remain relatively small. The
trading environment must also be equal for all participants. Finally, fairness
includes adopting some measures to protect the weak.

We apply these requirements to CryptoKitties. We consider CryptoKitties’
opportunities and information to gain profit, cheating, trading, and the inferior.
To begin with, getting and selling a high-value kitty is the way to make ETHs.
So, an equal chance in this game means that all players can get high-value kitties.
If you get a valuable kitty, you can sell this kitty and earn a lot of ETHs. Then,
we assume CryptoKitties’ cheating. It is earning ETHs unfairly. Since players
need to get kitties to earn, we focus on the way to obtain a kitty. Now, there are
two methods to get a kitty: winning an auction or breeding. So, cheating could
be winning the kitty without following the rules at the auction or obtaining it
by tampering with the breeding algorithm. CryptoKitties must not allow either
action.

Information about kitties is essential for players to maintain a relatively
symmetric market. For example, what kind of kitty is being sold and at what
price? How is a new kitty created? Such information should not be limited to
certain parties. Next, we check the trading environment. Again, players can get
a kitty by auction or breeding. It is the only auction that a player trades his
kitty with other players. Therefore, there should be a rule of auction so that no

Fairness in ERC Token Markets: A Case Study of CryptoKitties 601

one has a disadvantage. Finally, we define the weak. According to [10], it takes
players without sufficient information, or poor negotiation skills or judgement as
examples. We have already defined information as about a kitty. Then, a player’s
bargaining power has to do with how valuable kitties he can get to gain profit. If
he has a lot of ETHs, he will get many kitties and valuable ones. Thus, this ability
is related to financial resources. Besides, as mentioned in Sect. 2.1, the gene
determination algorithm expresses how it creates a kitty. If a player understands
this game’s algorithm, he knows and can judge which kitty he should get and how
kitties he should select as parents to gain profit. With understanding this game’s
algorithm and making the right decisions, he can make money, so judgment is
affected by how well he understands this game. He will try to understand the
algorithm written in Solidity to obtain an expensive kitty. Hence, the ability to
judge is related to the ability to read Solidity. Therefore, we define the weak as
players who have little ETHs and can not read Solidity.

We found that CryptoKitties does not meet some of condition that we show
below. Condition No.1 and No.2 are rules for protecting the socially vulnerable.
Other states provide opportunities to gain profit for all users. We point out that
this game does not meet all conditions except for No.4 in Sect. 3. In Sect. 5, we
mention that CryptoKitties may not satisfy with Condition No.1, 3, and 4 as a
future work.

1. Non-rich players should not be at a disadvantage.
2. Players who cannot read Solidity should not be at a disadvantage.
3. All users should be notified of all trading opportunities.
4. The player base should be large enough such that the supply and demand

behavior of a few players do not affect the entire market.
5. All users should have an equal chance for profit.

3 Analysis on CryptoKitties and Its Impact to Fairness

3.1 Analysis on Gene Determination Algorithm

Gene, one of a kitty’s parameters, is a 240-bits number and depends on Gene
Determine Algorithm, as shown in Algorithm 1. Again, gene defines a kitty’s
appearance. In detail, each of the five bits determines an element of appearance.
For example, the ninth five bits correspond to the kitty’s eyes’ color. This algo-
rithm is a smart contract and determined by the mixGenes function defined in
GeneScience.sol [13]. In this algorithm, a gene array is used. Its length is 48,
and each cell corresponds to an element of the kitty’s appearance. The first cell
is the last 5 bits of gene value. The second cell is the second last 5 bits of gene
value. In the same way, determine all of the cells of the gene array. We elucidate
whether the gene determination algorithm that builds the value of tokens to be
traded in the market makes the market unfair.

The first step in this algorithm between lines 6 and 21 is a swap for parents’
genes. Before the swap, the gene value is divided into twelve groups. Each group
has four cells; the first four cells are group 0, the second four cells are group 1,

602 K. Sako et al.

Algorithm 1. Gene determination algorithm
1: matron := matron gene array
2: sire := sire gene array
3: child := child gene array
4: hash := SHA-256(target block), hash[i] means i-th bit of hash
5: k = 0, k uses for hash
6: for i = 0 . . . 11 do
7: for j = 2 . . . 0 do
8: if hash[k : k + 2] == 0 then
9: swap(matron[i ∗ 4 + j],matron[i ∗ 4 + j + 1])

10: end if
11: k+ = 2
12: end for
13: end for
14: for i = 0 . . . 11 do
15: for j = 2 . . . 0 do
16: if hash[k : k + 2] == 0 then
17: swap(sire[i ∗ 4 + j], sire[i ∗ 4 + j + 1])
18: end if
19: k+ = 2
20: end for
21: end for
22: for i = 0 . . . 47 do
23: mutated = false
24: if i%4 == 0 then
25: if abs(matron[i] − sire[i]) == 1 and min(matron[i], sire[i])%2 == 0 then
26: if hash[k : k + 3] <= 1 then
27: child[i] = smallT/2 +16
28: k+ = 3
29: mutated = true
30: end if
31: end if
32: end if
33: if !mutated then
34: if hash[k] == 1 then
35: child[i] = matron[i]
36: else
37: child[i] = sire[i]
38: end if
39: k+ = 1
40: end if
41: end for
42: return child

and so on. Within each group, the swap operation is to change the order of the
gene array. Next, the SHA-256 hash value of a block on the Ethereum blockchain,
called the “target block”, is involved in the algorithm. Six bits of the hash value
of the target block are used for the swap in one group. Group 0 uses the last

Fairness in ERC Token Markets: A Case Study of CryptoKitties 603

six bits, and group 1 uses the second last six bits and same as below. Let us
say the four cells in the group are a0, a1, a2, and, a3 starting with the one with
the smallest index. If the last two bits among six bits are both zero, a2 and a3
are swapped. Then, if the next two bits are both zero, a1 and a2 are swapped.
Finally, if the remaining two bits are both zero, a0 and a1 are swapped.

The next operation between lines 22 and 41 is to fill the cells of the gene array
of the kitty to be born one by one (for i = 0 to 47). There are two methods for
genetic determination in a new kitty; inheritance and mutation. The first action
executed in this operation is checking to see if cell i of the parents meets the
requirements for mutation. If two cells are satisfied with 1, 2, and either 3-a or
3-b in below, the formula (1) determines the child gene’s cell i. In that formula,
smallT means the smaller of the two parents’ cell i.

1 i is multiple of 4
2 the absolute value of matron cell i and sire cell i is 1, and smaller one is even
3-a the smaller cell value is less than 22, and the lower three bits of the unused

bits in the hash value of the target block are 001 or 000
3-b the smaller cell value is not less than 22, and the three bits of the unused

bits in the hash value of the target block are 000.

cell = smallT/2 + 16 (1)

When any of the conditions are not met, a baby inherits either parent’s cell. If
the lowest bit of the unused bits in the hash value of the target block is 1, cell
i of a child gene will inherit from the matron’s gene. If not, it inherits from the
sire.

In short, a baby gene is dependent on its parents’ gene and target block hash.
All kitties’ genes are on the blockchain. By using Etherscan, a block explorer, we
can check any kitty’s genes. Then, what is the target block? We can predict the
attributes of the newborn kitty if we know the hash value. If it means randomly
choosing one of all the blocks on the blockchain, we can not infer the outcome.
However, the target block is somewhat limited and predictable. The target block
is a block that will be issued when a matron kitty becomes fertile again. Specifi-
cally, there is a variable that stores the frequency of block creation. The product
of that value and the matron kitty’s breeding period corresponds to the blocks
issued when she can breed again. We can find out the breeding period of the
kitty from CryptoKitties’ official page. Therefore, we know when the breeding
period ends, and the block issued at that time or thereabouts becomes the target
block. By calculating the hash value of the target block, we can predict a baby
gene.

The fact that the results are predictable means that CryptoKitties has
not satisfied conditions 1 and 5 of fairness, as defined in Sect. 2. First, the
blockchain’s transparency allows us to see what kitties are traded at a high
price. Since we can expect breeding results, it is also possible to predict parent
kitties to produce ones that match these trends. If we can make a successful bid
to them, we will get a good kitty and earn ETHs.

604 K. Sako et al.

However, in this kind of competition, well-financed users will have an
immense advantage. We prove this by setting up a simple environment for Cryp-
toKitties. First of all, we use “Cattribute”, which means the attribute of kitty.
In this market, there are 324 kinds of Cattribute. Let us take “driver” one of the
Cattribute as an example. As of Jan. 13, there were 24 “driver” kitties in the
market, and when we checked the gene sequences of all of them, we found that
No.0 is 15 and No.36 is 23 in common. Therefore, we expect that the kitty that
satisfies these two points has a “driver”. In case of other Cattribute, “domina-
tor”, we found that No.0 is 28 and No.28 is 23 in common. Also, for a Cattribute,
the first kitty to belong to that it gets Diamond. The first 10 kitties to belong
to it will get Gilded, and the first 100 kitties will get Amethyst. From then on,
these jewels are called “Family Jewels”, as shown in Fig. 2 [6]. According to [7],
the minimum price for each Jewel 5, 0.5, 0.07, 0.009 Eth, in order of rarity.
Since these prices are positively correlated with rarity, the environment we set
up should be like that. So, our environment will adopt these prices. In other
words, all kitties with Diamonds are assumed to be 5 Eth. For the other kitties,
we take those kitties that can produce X Eth will be sold for X/2 Eth. For
example, a kitty that can reliably give birth to a Diamond kitty would be priced
at 2.5 Eth. Also, the minimum price of kitty to be sold in the market shall be
0.004 Eth. This amount is the minimum in the market as of Jan. 13.

Fig. 2. Family jewels

The key is a kitty who has Diamond, which represents the pioneer of that
Cattribute. Assuming that the value remains the same as more kitties of the
same Cattribute, if a player gets a Diamond kitty, his earnings will be greater.
Specifically, he gives birth to 499 kitties so that all of them inherit Diamond
kitty’s Cattribute and gets family jewels. He will get 9 Gilded, 90 Amethyst,
and 400 Lapis kitties. Selling all kitties, his earnings will be 14.4 Eth. (0.5 ∗ 9 +
0.07 ∗ 90 + 0.009 ∗ 400) Thus, the player who has a Diamond kitty will gain a
lot of profit. Then, in order for this to happen, you need to win the auction or
mutate and give birth to the Diamond kitty.

This algorithm will make it easy to know which kitty to get to make money.
Such kitty is in high demand, and users with financial resources are more likely
to win its competition. Alice, who has little ETHs, can not buy Diamond kitty
because it is expensive. So, to get these kitties, she has to birth them from
other kitties. She can expect which kitties will give birth to a Diamond kitty.
However, it is difficult for her to get these parent kitties because they are also in
high demand. Since we can predict what kind of kitty will be born, some players

Fairness in ERC Token Markets: A Case Study of CryptoKitties 605

may repeatedly give birth to make a parent kitty. But, Alice can not do a lot of
births because a fee of 0.008 Eth is charged for breeding, and again she has little
ETHs. For Alice to make a profit, she needs to do things differently. It is a way
of making a lot of small gains. However, since the birth fee is 0.008 Eth, selling a
normal kitty will negatively affect revenue. So, she ought to sell kitties that have
family jewels. As with the Diamond kitty, they are in high demand, and Alice
will be hard to get them. Therefore, since the profit opportunity for players who
do not have a lot of ETHs is small, CryptoKitties violates Condition No.1 and
No.5.

3.2 The Readability of Solidity Source Code

Based on the previous section, rich players can make money, but is it really
possible for everyone? Next is focusing on the actions they will take. The most
important thing is understanding the gene determination algorithm. When they
try to give birth to a Diamond kitty, they must find a Cattribute that has not
been found yet. Besides, they have to choose parent kitties so that a Diamond
kitty is created. In other cases, when trying to produce other kitties with family
jewels from a Diamond kitty, they also have to select parent kitties so that the
child inherits a parent’s Cattribute. So, to make money, they need to understand
the algorithm’s behavior.

However, not everyone will be able to understand this algorithm. The main
reason is that it is only written in Solidity. People who lack this Solidity knowl-
edge will find it almost impossible to understand the algorithm. There is a con-
siderable gap between those who can understand Solidity and those who can
not, which significantly affects profit opportunities. Therefore, the results are
contrary to Condition No.2 and No.5.

3.3 Auction in CryptoKitties

In this game, trading kitty is always done through auctions. So, users can only
get kitties from the auction market. In this auction, a seller decides the starting
and ending price of a kitty and auction. He can then start the auction with his
intentions. According to condition No.3, a fair market should provide information
about a trade for all players. It needs an environment where they know what
kind of transactions exist. In this sense, information on what type of kitty is on
sale and what price must be shared with all users.

However, when an exhibitor, Alice, and a user, Bob, are colluding, other
players, Charlie, have little chance to get Alice’s kitty. Alice tells when her
auction tries to start Bob. As soon as her auction starts, Bob bids for her kitty,
and Charlie can not see its trading. For example, Alice gives Bob a Diamond
kitty in this way. Other players can not get her kitty, and Bob can get it and
its child kitties. They have the same Cattribute as their parent’s one and with
family jewels. As a result, only Bob can gain profits. It contradicts condition
No.3 and also enhances to expand information asymmetry.

606 K. Sako et al.

4 Enhancement of Fairness

4.1 Gene Determination Algorithm

As mentioned in Sect. 3.1, we state that it is difficult for not rich players to
gain profit in CryptoKitties. To earn ETHs, players need to sell a valuable kitty.
Users with financial resources have the advantage of getting that kitty at auction.
The method of giving birth and getting a kitty is also easier for wealthy users
than ordinary ones. Because the outcome of the gene determination algorithm
is predictable, so the demand for parent cats is high, and only rich people can
afford them.

If the gene determination algorithm’s output is unpredictable, everyone may
have a chance to gain profit. With that algorithm, no one would know which
parent kitties would produce a valuable kitty. All players do not know which
kitties as parent kitties will make a profitable kitty. As a result, the value of the
parent kitties that produced a valuable kitty is unknown. Therefore, there is a
possibility that even a cheap kitty can give birth. If kitties are reasonable, many
users can bid on them, so we think the game will be fairer than it is now.

However, there is a problem with introducing an unpredictable system in
CryptoKitties. Again, this algorithm is written in Solidity and a smart contract.
Smart contracts should output the same result if the input is the same. So, smart
contracts cannot use a random number generator. Therefore, we have to consider
the system without a random number.

To add an external randomness source in deciding the gene, we suggest that
the users jointly create a random number as an input to a hash function (e.g.,
SHA-256) instead of creating value from a block on the blockchain. For instance,
when someone does breeding, everyone chooses a random number. The sum of
them which users submit will be the input to a secure hash function. As all users
cannot predict the input, its output is also unpredictable. This game’s usability
will not be compromised if a tool automatically generates and sends a random
number every time requested. It provides fairness to the market since every user
can have a chance to get a high-value ERC-721 token and trade it to ETHs. We
show this system’s overview in Fig. 3.

4.2 The Readability of Solidity Source Code

We explained that if a player does not understand the gene determination algo-
rithm, he may not get a valuable kitty from kitties he has in Sect. 3.2. For
example, though he has a Diamond kitty, he could not inherit its Cattribute to
its kitties. He will not make ETHs because the kitty without Family Jewels is
expected not popular. On the other hand, if another player understands the algo-
rithm, he will create expensive kitties. We expect that there are significant gaps
to opportunities to gain profit between knowledgable players and not. In order
to make CryptoKitties fair, this game should fix so that all users can understand
its gene algorithm. However, we insist that CryptoKitties does not achieve it.

Fairness in ERC Token Markets: A Case Study of CryptoKitties 607

Fig. 3. Countermeasure’s overview

The readability of a programming language is not high, and it is estimated that
more people cannot read it than those who can.

We assert that CryptoKitties needs a system so that more people can figure
it out. These game managers should explain the gene determination algorithm
through multiple representations, such as diagrams, flowcharts, language descrip-
tions, and so on. It is expected that a variety of explanatory methods will reduce
the information asymmetry about the gene determination algorithm, and this
game will satisfy with Condition No.2.

4.3 Auction in CryptoKitties

We show that when a seller and a bidder are colluding, it is difficult for other
players to get the seller’s kitty in Sect. 3.3. Though other players will not cre-
ate this kitty’s children, the bidder can. The seller gains profit by selling the
kitty, and the bidder also earns ETHs by selling child kitties of his kitty. But,
other players have no opportunities to gain profit from the kitty. We argue that
CryptoKitties does not provide an environment that every user has a chance to
gain profit equally. This problem stems from the fact that the time between the
auction starts and the winning bid is too short.

CryptoKitties should create an auction where everyone has an opportunity
to trade. One countermeasure is that supposing it allows a certain amount of
time, one hour, for example, between when a player puts up an item and when
it becomes available for bidding. During this period, players not a part of the
collusion will have time to react to the new bid. We hope that it enhances to
give all users a chance to get the kitty and make money.

608 K. Sako et al.

5 Future Work

5.1 Proof of Stake

In the Ethereum environment, there is an assumption that no user has a large
enough ETHs to impact the market significantly. The symbol of this is Proof-
of-Stake (PoS). Suppose hypothetically; some users had a substantial amount of
ETHs that could change the market value significantly. This situation does not
satisfy with Condition No.4. In that case, it is quite likely that those users would
be able to get the right to create blocks many times. There is no bias towards
users’ chance in terms of a decentralized system, which means to have the right
to create. However, there is no countermeasure to prevent this from happening,
and playability could be lost considerably.

5.2 Secret Trading

We state that transactions can only be conducted through the auction market.
However, is this really the case? We find some suspicious transactions, as shown
in Fig. 4 [11]. They traded kitties for nothing and without going through an
auction possibly. We can not figure out how they traded. If they really sold
using other methods, this game does not meet condition 3 and will be reversed.
This game should also take measures for such cases.

Fig. 4. One example of suspicious transactions

5.3 Blockchain Anonymity

Ethereum’s blockchain is guaranteed to be anonymous. The blockchain address
cannot be tied to who the actual user. However, there is one problem that arises
from this. That is insider trading. Insider trading is that a person who has

Fairness in ERC Token Markets: A Case Study of CryptoKitties 609

inside information about a company buys or sells shares before the information
about the material fact is made public. Or, this company’s employees trade
them. In order to discover these transactions, it is necessary to know who made
them. Unfortunately, it is so difficult to find them in the blockchain environment
because of blockchain anonymity. If its developer takes part in this game and
earns a large ETHs, we will not see his illegal activity. Thus, CryptoKitties
should prove that they are not doing this.

5.4 Fee of Transaction and Breeding

We argue that Gas and breeding fee are an obstacle to the motivation to trade for
the average user. Transaction fee, GAS, is a miner’s motivation because if he has
a right to create a block, all GAS in the block will be his income. Miners tend to
select transactions whose GAS are high. Therefore, wealthy users’ transactions
are apt to be approved since they pay high GAS. Besides, the Breed fee, currently
0.008 ETH, is CryptoKitties managers’ income. When a player tries to breed his
kitties, he pays ETHs in exchange for a new kitty. Users who can afford ETHs
can breed or exchange kitty without hesitation. In contrast, for other players,
their action count is limited. So, they have fewer opportunities to get good kitties
and gain profit than rich people. In other words, these fees do not help conditions
No.1 and No.5. One countermeasure we think is decreasing the breeding fee to
prevent limiting trading for non-rich players.

6 Conclusion

We found that CryptoKitties does not satisfy with four conditions that fair
markets should keep. The gene determination algorithm which affects the ERC-
721 token value is not satisfied with two conditions. We show that we can predict
we will produce a token. In the environment we set, a player can not gain profit
when he creates and sells a cheap token because of the breeding fee. So, he
needs to sell a token whose value is more than the breeding fee. Since we can
know which token we will make, we know tokens that can produce high-value
ones. Thus, rich players are more easily to get lucrative limited tokens. Besides,
people who can understand this algorithm are limited because the only Solidity
expresses this algorithm. Users who know this bias have a significant advantage
in playing CryptoKitties. Also, there is a problem with its trading market. When
two players are colluding, it will be possible to attack them by not allowing others
to trade with them.

We also mention the countermeasures of these problems. In the case of the
gene algorithm, it needs an unpredictable system. Since this problem stems from
seeing the input of the hash value it is using; we propose that all users determine
its input. Moreover, describing these mechanisms in other than a programming
language will reduce the information asymmetry. Finally, as one cause is that
from the auction starts to the winning bid is too short, one method would be
noticing what kitties have been put up for auction and allow a certain amount

610 K. Sako et al.

of time before the bidding starts. We propose these improvements, but there are
other problems in CryptoKitties.

References

1. CryptoKitties’ users and economic effect. https://corporate.coincheck.com/2020/
10/06/117.html. Accessed 9 Jan 2021

2. Satoshi Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
https://bitcoin.org/bitcoin.pdf

3. Nick Szabo: Smart Contracts: Building Blocks for Digital Markets (2018)
4. Axiom Zen: CryptoKitties: Collectible and Breedable Cats Empowered

by Blockchain Technology (2017). https://drive.google.com/open?id=1soo-
eAaJHzhw XhFGMJp3VNcQoM43byS

5. CryptoKitties. https://www.cryptokitties.co/. Accessed 9 Jan 2021
6. CryptoKitties official guide for family jewels. https://guide.cryptokitties.co/guide/

cat-features/family-jewels. Accessed 9 Jan 2021
7. Family jewels’ minimum amount. https://kittyhelper.co/. Accessed 9 Jan 2021
8. Serada, A., Sihvonen, T., Tuomas Harviainen, J.: CryptoKitties and the new

ludic economy: how blockchain introduces value, ownership, and scarcity in dig-
ital gaming. Games Culture 1555412019898305 (2020). https://doi.org/10.1177/
1555412019898305

9. Ducuing, C.: How to make sure my cryptokitties are here forever? The comple-
mentary roles of blockchain and the law to bring trust. Eur. J. Risk Regul. 10(2),
315–329 (2019). https://doi.org/10.1017/err.2019.39

10. The concept of fairness in financial transactions. https://www.imes.boj.or.jp/
research/papers/japanese/kk18-5-1.pdf. Accessed 9 Jan 2021

11. One example of suspicious transactions. https://etherscan.io/tx/
0x3591b36cfd443fd686ba8015d93f82832a6bf007b438caa6f342679601145e9e.
Accessed 20 Jan 2021

12. Bitcoin UTXO. https://river.com/learn/bitcoins-utxo-model/. Accessed 26 Jan
2021

13. CryptoKitties source code. https://github.com/cryptocopycats/awesome-
cryptokitties/tree/master/contracts. Accessed 26 Jan 2021

14. CryptoKitties cooldown speed. https://guide.cryptokitties.co/guide/cat-features/
cooldown-speed. Accessed 26 Jan 2021

https://corporate.coincheck.com/2020/10/06/117.html
https://corporate.coincheck.com/2020/10/06/117.html
https://bitcoin.org/bitcoin.pdf
https://drive.google.com/open?id=1soo-eAaJHzhw_XhFGMJp3VNcQoM43byS
https://drive.google.com/open?id=1soo-eAaJHzhw_XhFGMJp3VNcQoM43byS
https://www.cryptokitties.co/
https://guide.cryptokitties.co/guide/cat-features/family-jewels
https://guide.cryptokitties.co/guide/cat-features/family-jewels
https://kittyhelper.co/
https://doi.org/10.1177/1555412019898305
https://doi.org/10.1177/1555412019898305
https://doi.org/10.1017/err.2019.39
https://www.imes.boj.or.jp/research/papers/japanese/kk18-5-1.pdf
https://www.imes.boj.or.jp/research/papers/japanese/kk18-5-1.pdf
https://etherscan.io/tx/0x3591b36cfd443fd686ba8015d93f82832a6bf007b438caa6f342679601145e9e
https://etherscan.io/tx/0x3591b36cfd443fd686ba8015d93f82832a6bf007b438caa6f342679601145e9e
https://river.com/learn/bitcoins-utxo-model/
https://github.com/cryptocopycats/awesome-cryptokitties/tree/master/contracts
https://github.com/cryptocopycats/awesome-cryptokitties/tree/master/contracts
https://guide.cryptokitties.co/guide/cat-features/cooldown-speed
https://guide.cryptokitties.co/guide/cat-features/cooldown-speed

Coins, Covid, Keynes and K-Shaped
Recovery

Pepi Martinez(B), William Huang, and Bud Mishra

New York University & RxCovea, New York, USA
{pepi,wwh237,mishra}@nyu.edu

Abstract. Reckless monetary policy, especially in the wake of a pan-
demic, amplifies the gap between the extreme ends of the income distri-
bution, thus exacerbating the long term effects of income inequality and
loss of human capital. Attempts of federal stimulus bills fall short in tim-
ing and size, including directing spending towards those most in need.
We propose a general smart contract protocol that distributes funds to
targeted individuals with programmatic spending enforceability, allevi-
ating the K-Shape recovery that current monetary policy is creating and
turn it into the desired V-Shape. Utilizing incentive structures, our model
directs spending to help stimulate the economies of targeted communities
and struggling businesses. Smart contracts remove the current inefficien-
cies in the political trust and permission-based solution and allow for
more transparency, verification, and incentives to help one’s community
in times of need. Such a system allows for a more positive and direct
relationship between those with funds and those who need funds.

Keywords: Smart contract · Economic stimulus · Donation fund ·
Incentive systems · Spend tracking

1 Introduction

Since the middle of March 2020, seeking to reduce the impact of the coronavirus
on the economy, the Federal Reserve (FED) has been injecting unprecedented
amounts of liquidity into the market with various policies like Repurchase Agree-
ment Operations (REPO), Quantitative Easing (QE), the purchasing of Corpo-
rate Debt Bonds and Mortgage Backed Securities (MBS), direct business lending
programs (PMCCF, SMCCF, MSLP, and PPP), and “helicopter” cash stimulus
to private citizens. Such prescriptions are based on a rigorous framework intro-
duced by John Maynard Keynes, aptly named “Keynesian Economics,” which
emphasizes the importance of increasing government spending in times of eco-
nomic crisis to stimulate demand. However, despite the initial objectives of this
policy, it does not always stimulate the economy in positive ways according to our
analysis of current government spending programs. We introduce the hypothesis

B. Mishra—Mentor.

c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 611–627, 2021.
https://doi.org/10.1007/978-3-662-63958-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_43&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_43

612 P. Martinez et al.

that although Keynesian monetary policy is arguably most responsible for the
large income inequality, inflated asset prices, and sub optimal full employment, it
could be rescued with the help of a decentralized and transparent fund distribu-
tion system based on smart contracts. In this report, we examine this hypothesis
in two ways. First, we analyze historical interest rates, Federal Reserve balance
sheets, and unemployment data among other data sets to analyze the correlations
between these variables and the FED mandate. Second, we propose a design of
a decentralized smart contract protocol to generate a V -shaped recovery, thus
blunting the sharp inequality that could result from a K-shaped recovery.

Keynes and Modern Stimulus
Keynesian monetary policy rose to prominence as an antidote to the Great
Depression, and continued to be deployed during times of crisis, such as the 2008
housing recession and the 2020 COVID-19 crisis. Keynesian monetary policies
were aggressively deployed and sustained throughout the Obama administra-
tion as an antidote to the 2008 housing recession, leveraging sustained lowered
interest rates and increased federal spending to bolster economic growth. They
were again installed with the onset of COVID-19 and the ensuing recession as
the federal government under the Trump administration plummeted the already
deflated interest rate to all-time lows. As shown by both responses to these crises,
the three main tools the Federal Reserve utilizes to establish Keynesian monetary
policies and stimulate the economy comprise of the following: (1) Interest rates,
which determines the spending and borrowing in the economy; (2) Quantita-
tive Easing (QE) and balance sheet expansion, which refers to when the Federal
Reserve buys financial assets from the open market; and (3) Repurchase Agree-
ments (Repo), loans the Federal Reserve credits to businesses overnight. With
these tools and policies, the Federal Reserve hopes to stimulate recovery during
recessions. However, despite the Federal Reserve’s initial objectives or intentions,
it does not always stimulate the economy in a positive way—one must judge poli-
cies by their results, and not by the intentions of its founders. We attempt to
prove this in the following sections by analyzing historical macroeconomic data
against the Federal Reserve’s mandate. We will also further explore possibilities
made ubiquitously accessible via decentralized and “trustless” smart contract
technologies.

Keynesian Supply Side Shocks
With the onset of the Covid-19 pandemic, governments began shutting down
contact-intensive sectors of the economy to protect public health. A shutdown
in one sector of the economy, although endogenous, may create a negative spiral
in the demand of sectors unaffected by the shutdown [1]. Demand deficiencies
can thus spiral multiplicatively, and cause an anemic recovery as opposed to
the desired V-shape due to firm exits and heightened levels of unemployment,
resulting in permanent losses of human capital.

To illustrate, imagine a market sector comprised of K-12 teachers and daycare
firms during the pandemic. Teachers that are sent home no longer require daycare

Coins, Covid, Keynes and K-Shaped Recovery 613

services as they can take care of their own children. Although the shutdown did
not directly affect the daycare sector, its demand is still affected by the shutdown
of K-12 schools. Additionally, some of the teachers who are laid off no longer
receive income, diminishing their overall spending on other sectors and adding
to demand problems of firms originally unaffected by the original shutdown.
Another example: restaurants that closed due to pandemic reasons no longer
require accounting services, leaving accounting firms with fewer customers and
decreased cash flows. This decrease in cash flow results in many firms deciding
that they no longer require office spaces, chaining adjacent sector shocks into a
series of cross-sector demand losses.

These Keynesian supply shocks can have dire consequences to the overall
economy and drag on the recovery process. The exits of firms can also cause a
spiral of demand shocks—if sector one shuts down and sector two requires their
goods as material inputs, they would also be forced to shut down. These endoge-
nous outcomes feed back into themselves and perpetuate their losses throughout
the economy as a whole.

We propose that the fundamental issue with sector imbalances and monetary
policy is the lack of complete information acquirable by central planners, as the
computation required to understand the holistic needs of individuals and busi-
nesses are far greater than any central authority can efficiently manage. Instead,
we propose a decentralized smart contract system that allows for intertempo-
ral demand imbalances to level out through programmable monetary policies
across sectors, created and governed by trusted agents who decide upon the rules
and methods of fund distributions. Decentralization allows for small community-
driven structures of distribution that better understand the needs of participants,
stemming from locality-driven information completeness.

We will explore the effectiveness of current centralized policies in the following
section, and propose a smart contract protocol that would allow anyone to create
a fund with enforceable distribution and spending rules.

2 Effectiveness of Current Monetary Policy

Our experiment requires performing linear regression on predictor and response
variables. Each of the predictor variables are key levers the Federal Reserve
uses to enact monetary policy. Since these variables are ubiquitously observable,
suitably parametrized smart-contracts can be implemented to embody Keyne-
sian framework scalably, evolvably and decentrally. In the years prior to 2008,
interest rates were the key tool the Federal Reserve used to influence the amount
of spending in the economy. However, due to recent economic downturns along
with other political and macro economic factors, interest rates have been his-
torically low, hovering between 0–2%. This constraint requires the analysis of
the other predictor variable—the Federal Reserve balance sheet. The FED bal-
ance sheet shows the outstanding assets and liabilities at the FED, which grows
when the Federal Reserve “prints money” to buy assets from financial institu-
tions to inject money into the economy, and contracts when the FED sells these

614 P. Martinez et al.

assets. The combination of these variables shows us a clear picture of Federal
Reserve actions. While there are certain desirable qualities to such centralized
approaches, it is not necessarily the only plausible approach - especially in the
absence of suitable institutions and their governance. To test this hypothesis, we
evaluated the “standard” centralized approach as follows.

The Federal Reserve’s core mandate states that their mission is to keep unem-
ployment rates low while maintaining a slow and steady growth of inflation,
which we measure through Consumer Price Index (CPI). Based on their respec-
tive actions through balance sheet expansion and interest rates controls, we are
looking to find high correlations between each predictor and response variables
that reflect this core mandate. Correlations are measured by adjusted r-squared
values and high r-squared values will be interpreted as values above 0.2, which
compensates for the lagging indicator effect.

Linear Regression Analysis
For each regression set we provide the regression statistics, coefficient table, and
the corresponding interpretation. The full set of predictor vs. response variable
analysis can be found in the appendix (Fig.1).

Fig. 1. Balance sheet vs unemployment

Statistical Conclusion
The key finding from this study is the statistically significant, negative correla-
tion between interest rates and unemployment and the nonexistent correlation

Coins, Covid, Keynes and K-Shaped Recovery 615

between the balance sheet expansion and decreased unemployment. This find-
ing is strong evidence against Keynesian monetary policies as it is currently
employed, indicating that funds injected through the current monetary system
appears to have no effect on unemployment—and where there is an effect, the
effect is counterproductive. There are a couple of reasons we conjectured to
explain this phenomenon. First, it is possible that decreased interest rates make
it easier for businesses to accrue bad debt as the threshold for borrowing is sub-
stantially lowered. This disparity increases the rate of loan delinquencies and
decreases the rate of overall productivity in the economy as businesses with low
productivity are propped up in the system. Secondly, our data hints that the
majority of monetary stimulus does not trickle down to people in the bottom
rings of the socioeconomic ladder, and is instead captured by large corporations
and the wealthy in the form of equity markets. The current rise of stock mar-
ket prices is strong evidence of the latter, as we see the stock market grow to
unprecedented highs as an effect of FED monetary policies.

Through careful analysis and examination of our hypothesis, we reach the
conclusion that Keynesian monetary policy as enacted today, whose initial objec-
tive is to stimulate the economy in times of crisis, is responsible for inflated asset
prices and sub-optimal full employment. Therefore, we propose a smart contract
system that would alleviate the fundamental issues of fund distribution and
accountability, as discussed in our analysis in modern US monetary policy, by
removing existing bottlenecks between those with funds and those in need of
funds.

In the full research paper, we will perform realistic simulations to gauge the
effect of monetary policies deployed on smart contracts.

3 Maneki Protocol Fundamentals

From our analysis of US monetary policies, we identified several glaring problems
with money distribution today. These problems plague both public and private
fund distribution, eroding trust between fund providers and recipients due to the
lack of built-in accountability and transparency at the fund distribution layer.
We discuss each of the problems below.

Distribution Fraud
Perhaps the most prominent problem with current government spending pro-
grams is the lax verification (fraud detection and credible threat) systems asso-
ciated with them, leading to billions of taxpayer money lost annually. A couple
of figures illustrate the enormity of the problem:

– A report from Association of Certified Fraud Examiners (ACFE) in 2012 finds
that non-profit fraud amounts to roughly 5% of organizational revenue each
year. Using this estimation, public charities alone are losing around $100B to
fraud annually [3].

616 P. Martinez et al.

– The US Department of Labor estimates a loss of around $3.5B in unemploy-
ment insurance fraud annually [4].

– In September 2020, the Department of Justice (DOJ) charged 57 individuals
who received more than $157 million from the Paycheck Protection Program
(PPP) with fraud after they revealed the funds collected were not spent on
employee wages, and instead on enriching the individuals. The DOJ went on
to say that “the total amount of fraud is unclear at this point, and more
charges are expected over the coming months and year” [5].

– From the March 2020 $2.2T government stimulus alone, an estimated $40B
in losses can be attributed to collection fraud [6].

The issues with money distribution cannot only be attributed to a failure
of fraud detection systems. Rather, it highlights the inability of current spend-
ing programs to prevent recipient and spending fraud at the distribution level.
For example, PPP’s goal of protecting employee wages falls short because a
significant portion of the money received by corporations are not paid out to
employees. This narrative signals a need for change in the way we distribute
money today.

Loss of Trust
The inability to prevent monetary fraud in existing distribution systems directly
results in a loss of public trust in money distribution systems. This trustlessness
is especially prevalent in young adults today, who according to Pew Research
Center, have become increasingly less confident in key institutions (e.g., police
officers and business leaders) compared to older generations [10]. The loss of
trust creates a negative cycle of people becoming less willing to make donations
compared to before. Indeed, donation levels are at historic lows, only 73% of the
US population donated to charities in 2020, down 9% nationwide since 2017 [9].

Large and Fragmented Network
A large part of why distribution fraud exists can be attributed to the scale, com-
plexity, and fragmented nature of many spending programs. A popular form of
collection fraud (Sybil fraud) occurs when an individual creates multiple aliases
to double or triple one’s collection from the same or different programs. Because
many programs do not have robust Know-Your-Customer (KYC) infrastruc-
ture in place, and programs generally do not share recipient information with
other organizations, it becomes impossible to track fund distribution across many
spending programs.

Today’s spending programs are very limited in their ways to control recipient
spending once the funds are distributed. Government programs rely on financial
audits, which are costly and non-exhaustive; nonprofits and charities rely on
accumulating funds to distribute capital and goods to the right people, using
distribution processes that often lack transparency and public trust. This issue
deflates the overall amount people would donate, perpetuating the negative cycle.

Coins, Covid, Keynes and K-Shaped Recovery 617

Centralized Brokers
A centralized broker provides a single point of failure for any fund. If the broker
is compromised, all donations are instantly compromised as well. Donors looking
for a way to ensure their funds are properly distributed to the right people need
to trust and verify the entities they donate to, increasing the barrier of entry for
donors.

Smart Contract Protocol
To address the many issues surrounding money distribution systems today, we
propose the creation of a smart contract protocol that leverages the distributed,
synchronized, and immutable nature of blockchain systems to protect donors
and recipients, expose spending insights, such as historical spend for a fund, and
improve on fund distribution infrastructure through programmatic rules.

Maneki leverages blockchain properties like immutable transaction trails to
enable the quick detection of fund abusers, and provide smart contract-enabled
guarantees to fund distribution such as fund dispensing from the contracts only
if certain conditions are met. These conditions are provided by donors who create
the funds at the outset, and enforced at distribution time. Recipients who are
eligible may then apply, having fully understood and agreed to the conditions
for receiving such funds. More examples of fund rules and their creation process
are provided in the next section. By using smart contracts, needed transparency
can be provided to both parties.

The next section explores the protocol in more depth, identifying the different
stakeholders, smart contract flows, and real-world use cases.

4 Maneki Protocol

The Maneki platform is a smart contract protocol that enables trustless distri-
bution of funds in a transparent manner. The protocol aims to strengthen trust
between fund providers and recipients through mechanisms that incentivize peo-
ple to donate and receive more. Maneki leverages existing benefits of blockchain
technology and is designed as a Layer-2 solution built on top of payment tokens.
As such, any payment-based blockchain supporting smart contract implementa-
tion can deploy the Maneki protocol on top to further secure fund distribution
and spend tracking on the original payment system. Such payment tokens may
include any form of Central Bank Digital Currencies (CBDC), ERC-20 payment
tokens, and other payment-based tokens with smart contract capabilities.

Best conveyed by Hayek, “law and language have been allowed to develop for
millennia while the improvement of money has been frozen and restricted from
private experimentation.” This is no longer the case today. With the advent
of Bitcoin and other decentralized payment tokens, governments and citizens
alike are rethinking the role and functions of money. Maneki is a smart contract
protocol that provides private citizens, philanthropists, and even governments
the ability to experiment on an ever-improving system of money distribution

618 P. Martinez et al.

enforced by smart contracts. Maneki utilizes smart contracts to enforce accu-
rate distribution and spending of allocated funds, providing trust through the
transparent system of execution. It aims to serve as a general framework to
improve upon the money distribution system, much like how language and law
have developed in the modern time.

In this paper, we outline several real-world use cases that can greatly benefit
from the use of Maneki.

Stakeholders
The Maneki protocol revolves around two types of stakeholders. Donors cre-
ate public or private funds that other donors can also contribute to, and dis-
tribute to recipients specified by the funds’ rules. Fund rules are smart contract
enforced logic that is programmed into each fund that specifies how funds are
distributed and spent. Public funds can be contributed to by any blockchain-
registered entity, and donors can specify and vote on fund rules based on the
amount of funds contributed. Private funds are controlled by the entities who
create them, and new donors may be added to contribute, determined by the
administrators of those funds.

Recipients apply to funds and are approved based on existing fund rules. For
example, a fund may only distribute to teenagers in low-income areas, and dic-
tate that the money can only be spent on educational supplies. Once a recipient
is approved for a fund and agrees to the fund rules, they receive those funds
and can only spend them in accordance to the rules. If recipients try to spend
funds against the fund rules, a penalty can be enacted against them in the form
of reduced reputation that may influence future fund applications. Repeated
offenses may lead to participation withdrawal from the funds they attempt to
abuse. Through these smart contracts a crypto coin circulating among the recip-
ients may get connected and valuated against donors’ funds, and this in turn
may attract or repel additional donors.

Smart Contracts
Maneki’s smart contracts leverage blockchain’s history of immutable transactions
to perform integrity checks and verify distribution before money is deployed.
After fund deployment, they serve to enforce and incentivize spending habits
dictated by the fund rules. We believe that over time, these fund rules can create
creative and complex incentive structures that are utilized to deploy money to
the right people and for the right causes. The smart contracts enable distribution
and tracking processes that provide security and trust to the fund distribution
process for both donors and recipients, ultimately resulting in more efficient
money deployment through targeted spending.

Fund Distribution
There are two types of accounts registered on Maneki. Individual accounts, which
comprise of donors and recipients who transact in fund distribution, and business

Coins, Covid, Keynes and K-Shaped Recovery 619

accounts who receive payment from fund recipients. Business accounts will be
discussed in more detail in the Recipient Spending section. Account creation is
enforced by a KYC/identity solution powered by either the central government,
in the case of a CBDC implementation, or existing providers such as Civic. Each
account is then remembered by the Maneki protocol, who register each individual
with exactly one account to protect from double dipping and reputational Sybil
attacks.

Once recipients authorize their accounts, they allow the sharing of cer-
tain information with funds, similar to using OAuth solutions like Google log-
in today. Recipients can specify funds to automatically enroll in based on their
needs, and also request to join funds they are qualified for. A REQUEST FUNDS
contract allows a business or individual to request funding from a specific pro-
gram.

Donors create and manage funds using a suite of smart contracts:

– The FUND CREATE contract allows donors to create a fund. Each fund
exists as its own entity and administrators of the fund provide rules that
govern it. These rules include requirements for recipient eligibility, fund gov-
ernance and voting structure, distribution schedules, and spending conditions,
among other fund settings. Funds can be donated to by anyone if public, and
selected individuals if private.

– The FUND UPDATE contract updates existing contracts’ rules that can
change distribution schedule, eligibility criteria, and any other mutable fund
rules. Eligibility of a fund can be configured to trigger based on many cri-
teria. For example, a fund may specify that only people who are vaccinated
for COVID-19 are eligible to receive funds. This type of interaction requires
off-chain validation that may be integrated into the onchain ecosystem via
oracle solutions.

– The FUND DISTRIBUTE contract triggers fund distribution, either man-
ually or programmatically. Prior to distribution, the contract rechecks the
rules of the fund, reconciles recipient list against current eligibility criteria,
and finally assigns predetermined number of tokens to each member on the
recipient list.

Fund rules are flexible by nature, allowing donors to best direct their money
to the causes most aligned with their respective values. They can choose and
enforce eligibility criteria to a fund based on the geography of recipients, income
levels, spending history patterns, among many other parameters as long as the
condition is sourced and provided by a trusted oracle. An example of a useful
fund rule in a government-backed stimulus funds is a trigger that returns funds
if they are not spent after a set period of time. Such a rule encourages individual
spending, increasing money velocity and decreasing the risk of hyperinflation.
This implementation allows for the enforcement of stimulus packages that are
predictably spent, increasing aggregate spending without needing to wait for
banks to create credit. Fund rule flexibility ensures that donors feel confident
that their funds will truly go where they intended them to, and that funds can
adapt based on changing needs for both existing and potential future funds.

620 P. Martinez et al.

Recipient Spending
The protocol allows two types of spend tracking: checking of fund rules in real-
time and spend provenance.

Every time a recipient spends from one of their fund allocations, they invoke
the SPEND FUNDS contract in real-time. The SPEND FUNDS contract is the
most widely used contract in the protocol. The contract imposes a set of spend-
ing rules specified in the fund rules, then validates the spend transaction based
on valid recipient addresses and account balances. Participating businesses on
the platform register their products on the Maneki protocol so the contract can
deterministically track and enforce spending. The Maneki protocol enforces a
protocol-wide product categorization data standard to facilitate spend tracking,
similar to a more robust version of Merchant Category Codes (MCC) used by
banks and credit card providers today. As such, SPEND FUNDS contracts con-
firm that funds are spent as donors intended, while addressing recipient needs.

The second part of spend tracking leverages blockchain’s immutable nature
to provide spend provenance insights at a fund, individual, and business level.
Spend data on the blockchain can be indexed to provide aggregate spending
data and money flows to fund creators to improve future fund rule changes,
identify distribution errors, and provide protocol-wide reputation for all entities.
Each entity’s spending data are cryptographically secured and private, accessible
only with permission from the entity. In other words, entities have the right to
explicitly grant funds to certain spending data or personal information.

5 Use Cases

The general architecture of the Maneki protocol aims to enable the identification
of better fund management systems. To this end, we explore several fund use
cases that can benefit from the protocol today.

5.1 Government Stimulus Funding

One of the key failures of the Payment Protection Program (PPP) is the vague
and non-enforceable language around protecting employee wages due to unfore-
seen supply shocks, the primary reason for the fund’s existence. As a direct result,
many corporations receive billions of dollars in taxpayer money in the form of
loans and grants, only to lay off their employees shortly after. Through this dis-
tribution system alone, millions of working class Americans are defrauded while
executives enrich themselves at an unprecedented time of crisis. While these
actions of a few are ethically deplorable, it is the money distribution design that
is fundamentally flawed, allowing for poorly regulated access to these funds.

A fund built on top of Maneki protocol would ensure that stimulus funds are
tracked, businesses are spending the money based on loan and grant stipulations,
and individuals are receiving the money from employers. Every interaction would
be regulated and enforced by smart contract execution. Throughout the fund
lifecycle, the government is able to analyze the efficiency of fund deployment

Coins, Covid, Keynes and K-Shaped Recovery 621

to change the fund’s rules to optimize fund allocation for the future, all based
on historical fund performance. Individuals will also be able to receive a larger
share of the stimulus spending, decreasing income inequality and encouraging
domestic spending as a whole.

5.2 Unemployment Insurance

Similar to PPP, unemployment insurance administered today suffers from dis-
tribution errors and collection fraud. In 2015, the US Department of Labor esti-
mated a loss of $3.5B in unemployment insurance at an error rate of 10.7% [7]. A
state-administered fund distribution application built on Maneki could provide
clear provenance insurance collection and work history of any individual, giving
the state department a clear understanding of the fund distribution lifecycle.
Smart contract execution serves not only to prevent funds from collection fraud,
but can also be used to protect against the common issue of people misunder-
standing the rules and terms of unemployment insurance collection. Further-
more, the state may derive spending insights based on an individual’s employ-
ment history, if permissioned by the individual, to assist in finding employment.
For example, if John Doe has not found a job within 2 months, an agent can
be dispatched to offer job search assistance. Similar applications can be built
to power government funded programs like TANF or SNAP (i.e., food stamp
program), where funds can be distributed to a predetermined set of individuals
who qualify, and spending rules are attached to each fund allocation.

5.3 Donation and Fundraising Platforms

As Maneki’s general structure allows it to be deployed on any type of payment
blockchain with smart contract capabilities, donation and fundraising applica-
tions powered by Maneki smart contracts pose an interesting alternative for
people looking to donate money outside of traditional nonprofits. For example,
a donation platform can utilize Maneki smart contracts built on top of Diem
(formerly known as Libra) to source capital for user-proposed causes. Donors on
the platform can create funds for specific causes and invite others to donate, with
the added benefits of recipient spending enforcement and transparent insights
on fund usage. These funds provide a way for any individual or group to raise,
distribute, and track money spent for any purpose, using a transparent and
trustworthy set of smart contracts. As a result, recipients benefit from broader
access to capital and a fairer system of fund distribution while donors ensure
the security of their funds.

5.4 Managing Keynesian Supply Shocks

As government funds created on smart contracts have access to aggregated infor-
mation across many different programs, they allow for the creation of intertem-
poral rules between economic sectors to alleviate the demand imbalances created

622 P. Martinez et al.

by Keynesian supply shocks. Preset conditions triggered by smart contracts can
automatically execute the interest rate changes or employer-side tax rates by
sector, allowing monetary policies to be deployed in a targeted fashion. In this
scenario, agents create contracts on the Maneki platform that correct asymme-
tries in demand between sectors by either easing or tightening conditions based
on the health of a particular sector. For instance, the technology industry has
benefited greatly since the onset of pandemic-driven shutdowns, while the restau-
rant sector is in fallout. By lowering interest rates or payroll taxes for only the
affected industries, fund creators can perform macroeconomic policies that are
better informed on a per sector basis, resulting in less fund leakage and higher
efficiency.

Fig. 2. Maneki contract alleviating sector imbalances. A detailed simulation and anal-
ysis of the recovery dynamics will appear in the full paper. Imagine Sector 1 represents
college education sector and Sector 2 k-12 education sector: two sectors one thriving
under impersonal interaction and the other suffering from a lack of in-person inter-
action. A pandemic induced supply shock to Sector 2 may lead to a partial demand
for the Sector 1 infrastructure to be used by Sector 2, and covered by donations from
Sector 1 governed by Maneki Smart contracts.

Coins, Covid, Keynes and K-Shaped Recovery 623

A realistic simulation will appear in the full paper showing how a Maneki
smart contract can help alleviate Keynesian Supply Shocks [1].

Other forms of macroeconomic policies can be deployed and monitored more
effectively through the use of smart contracts. For instance, a widely-known cor-
relation between REPO and market volatility can be modeled on the Maneki
protocol to create a micro lending structure that automatically eases FED lend-
ing conditions based on liquidity conditions between sectors. While we primarily
tackle ineffective government spending in this paper, the customizability and
adaptability of the protocol allows for the creation and growth of an infinite
number of incentive structures (Fig. 2).

6 Conclusion

Modern monetary policies derived from Keynesian economics amplifies the wage
gap separating the ends of the income distribution. The attempts of federal stim-
ulus bills fall short in execution and size, including directing spending towards
the most in need. A smart contract system that distributes funds directly to
communities and individual payments while incentivizing good spending behav-
ior would alleviate the K-Shape recovery that current monetary policies are cre-
ating. By utilizing mechanism and incentive designs, our model directs spending
to help stimulate the economies of small communities and struggling businesses.
The usage of smart contracts removes the many inefficiencies in current bureau-
cratic solutions and allows for more transparency, trust, and incentives to help
one’s community in times of need.

Appendix: Linear Regression Charts

(See Figs. 3, 4, 5, 6, 7, 8 and 9)

624 P. Martinez et al.

Fig. 3. Predictor and response variables

Fig. 4. Response expectations

Coins, Covid, Keynes and K-Shaped Recovery 625

Fig. 5. Interest rate vs unemployment

Fig. 6. Balance sheet vs CPI

Fig. 7. Balance sheet vs delinquencies

626 P. Martinez et al.

Fig. 8. Interest rate vs CPI

Fig. 9. Interest rate vs delinquencies

References

1. Guerrieri, V., Lorenzoni, G., Straub, L., Werning, I.: Macroeconomic Implications
of COVID-19: Can Negative Supply Shocks Cause Demand Shortages? National
Bureau of Economic Research (2020)

2. Deloitte. https://www2.deloitte.com/us/en/insights/industry/public-sector/
fraud-waste-and-abuse-in-entitlement-programs-benefits-fraud.html

3. Association of Certified Fraud Examiners. https://www.acfe.com/press-release.
aspx?id=4294973129

4. Semiannual Report to Congress. https://www.oig.dol.gov/public/semiannuals/84.
pdf

5. Washington Post. https://www.washingtonpost.com/business/2020/09/10/ppp-
fraud-charges/

6. Los Angeles Times. https://www.latimes.com/politics/story/2021-03-02/
criminals-stole-billions-in-covid-19-unemployment-benefits-new-relief-bill-wont-
stop-a-repeat

7. Gov Tech. https://www.govtech.com/data/Aiming-Analytics-at-Our-35-Billion-
Unemployment-Insurance-Problem.html

https://www2.deloitte.com/us/en/insights/industry/public-sector/fraud-waste-and-abuse-in-entitlement-programs-benefits-fraud.html
https://www2.deloitte.com/us/en/insights/industry/public-sector/fraud-waste-and-abuse-in-entitlement-programs-benefits-fraud.html
https://www.acfe.com/press-release.aspx?id=4294973129
https://www.acfe.com/press-release.aspx?id=4294973129
https://www.oig.dol.gov/public/semiannuals/84.pdf
https://www.oig.dol.gov/public/semiannuals/84.pdf
https://www.washingtonpost.com/business/2020/09/10/ppp-fraud-charges/
https://www.washingtonpost.com/business/2020/09/10/ppp-fraud-charges/
https://www.latimes.com/politics/story/2021-03-02/criminals-stole-billions-in-covid-19-unemployment-benefits-new-relief-bill-wont-stop-a-repeat
https://www.latimes.com/politics/story/2021-03-02/criminals-stole-billions-in-covid-19-unemployment-benefits-new-relief-bill-wont-stop-a-repeat
https://www.latimes.com/politics/story/2021-03-02/criminals-stole-billions-in-covid-19-unemployment-benefits-new-relief-bill-wont-stop-a-repeat
https://www.govtech.com/data/Aiming-Analytics-at-Our-35-Billion-Unemployment-Insurance-Problem.html
https://www.govtech.com/data/Aiming-Analytics-at-Our-35-Billion-Unemployment-Insurance-Problem.html

Coins, Covid, Keynes and K-Shaped Recovery 627

8. Small Business Administration. https://www.sba.gov/funding-programs/loans/
coronavirus-relief-options/paycheck-protection-program

9. Gallup. https://news.gallup.com/poll/310880/percentage-americans-donating-
charity-new-low.aspx

10. Pew Research Center. https://www.pewresearch.org/fact-tank/2019/08/06/
young-americans-are-less-trusting-of-other-people-and-key-institutions-than-
their-elders

https://www.sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program
https://www.sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-protection-program
https://news.gallup.com/poll/310880/percentage-americans-donating-charity-new-low.aspx
https://news.gallup.com/poll/310880/percentage-americans-donating-charity-new-low.aspx
https://www.pewresearch.org/fact-tank/2019/08/06/young-americans-are-less-trusting-of-other-people-and-key-institutions-than-their-elders
https://www.pewresearch.org/fact-tank/2019/08/06/young-americans-are-less-trusting-of-other-people-and-key-institutions-than-their-elders
https://www.pewresearch.org/fact-tank/2019/08/06/young-americans-are-less-trusting-of-other-people-and-key-institutions-than-their-elders

Author Index

Ackerer, Damien 177
Ali, Zain 197
Angel, James 21
Angeris, Guillermo 65
Avizheh, Sepideh 482

Bailey, Bolton 451
Baldimtsi, Foteini 197
Bartoletti, Massimo 227, 553
Blackshear, Sam 431
Blom, Michelle 235
Böhme, Rainer 39
Brandao, Joao P. 197

Canard, Sébastien 290
Chalkias, Konstantinos 431
Chang, Joseph 197
Chatzigiannis, Panagiotis 431
Chiang, James Hsin-yu 227, 553
Chitra, Tarun 65
Clark, Jeremy 136, 306, 381

Danos, Vincent 207
Demirag, Didem 381
Dubovitskaya, Alevtina 177

Evans, Alex 65
Eyal, Ittay 507, 533

Faizullabhoy, Riyaz 431
Florian, Martin 39

Galal, Hisham S. 348
Gallersdörfer, Ulrich 415
Gawlikowicz, W. 80
Gaži, Peter 507, 533
Groschupp, Friederike 415

Haines, Thomas 279
Heiberg, Sven 263
Herranz, Javier 315
Huang, William 611
Hulays, Rafeh 197

Jensen, Johannes Rude 109
Jie, Jay 162
Judmayer, Aljosha 507, 533

Kaim, Guillaume 290
Kaleem, Mudabbir 115
Keller, Patrik 39
Khaburzaniya, Irakliy 431
Khalloufi, Hamza El 207
Kogias, Eleftherios Kokoris 431
Kondratiuk, Dmytro 579
Krips, Kristjan 263
Kugler, Maurice 197
Kursawe, Klaus 191

Lafuente, Alberto Lluch 227, 553
Li, Hui 97
Li, Jiasun 171, 197
Li, Yi 149
Lin, Shang-Wei 149
Lin, Shaokai 162
Lind, Joshua 431
Liu, Yang 149

Mannan, Mohammad 136
Mannerings, B. 80
Martinez, Pepi 611
Martínez, Ramiro 315
Matsuo, Shin’ichiro 595
Matthes, Florian 415
Mazurek, Łukasz 364
Meier, Sachin 54, 595
Meiklejohn, Sarah 507, 533
Mishra, Bud 611
Muth, Robert 397

Nabi, Mahmudun 482
Nejadgholi, Mahdi 306
Nemish, Alexander 579

Olivieri, Luca 333

630 Author Index

Pernice, Ingolf Gunnar Anton 124
Poinsot, Antoine 3
Prat, Julien 207

Rahman, Saoreen 482
Roenne, Peter 279
Rønne, Peter B. 251
Ross, Omri 109
Roux-Langlois, Adeline 290
Rudolph, T. 80
Ryan, Peter Y. A. 251

Safavi-Naini, Reihaneh 482
Sako, Kentaro 595
Salehi, Mehdi 136
Sánchez, Manuel 315
Sankagiri, Suryanarayana 451
Seijas, Pablo Lamela 579
Sharifian, Setareh 482
Shi, Weidong 115
Showers, Eric 197
Šiška, D. 80
Sjöberg, Vilhelm 162
Smyth, Ben 251
Spoto, Fausto 333
Stark, Philip B. 235
Stifter, Nicholas 507, 533
Stuckey, Peter J. 235
Sun, Xinyuan 162
Swambo, Jacob 3

Tagliaferro, Fabio 333
Taylor, Ryan 47
Teague, Vanessa 235
Thompson, Simon 579
Tolmach, Palina 149
Traoré, Jacques 290
Tsabary, Itay 507, 533
Tschorsch, Florian 397

Ushida, Ryosuke 21

von Wachter, Victor 109
Vukcevic, Damjan 235

Weippl, Edgar 507, 533
Willemson, Jan 263
Wong, David 431
Wright, Aaron 54

Xu, Jiahua 177

Yang, Nan 306
Youssef, Amr M. 348
Yuan, Yuming 97

Zakian, Tim 431
Zamyatin, Alexei 507, 533
Zhao, Wenqi 97
Zindros, Dionysis 467

	 CoDecFin 2021 Preface
	 CoDecFin 2021 Organization
	 DeFi 2021 Preface
	 DeFi 2021 Organization
	 VOTING 2021 Preface
	 VOTING 2021 Organization
	 WTSC 2021 Preface
	 WTSC 2021 Organization
	 Contents
	CoDecFin – DeFi Risks
	Risk Framework for Bitcoin Custody Operation with the Revault Protocol
	1 Introduction
	2 Overview of Revault Custody Protocol
	2.1 Revault Architecture Components
	2.2 Revault Transaction Set
	2.3 Stakeholders' Signing Routine
	2.4 Managers' Spending Process

	3 Methodology
	3.1 Operational Security Models
	3.2 Attack-Tree Formalism
	3.3 On Risk Analysis

	4 Risk Model
	4.1 Common Attack Sub-Trees
	4.2 Attack-Trees

	5 Conclusion
	References

	Regulatory Considerations on Centralized Aspects of DeFi Managed by DAOs
	1 Introduction
	1.1 Background and Terminology
	1.2 Related Works
	1.3 Contributions

	2 Governance of DeFi Managed by DAO
	2.1 Corporate and Internet Governance as Dual Reference Points
	2.2 Individual DeFi Project Governance
	2.3 Ecosystem Governance

	3 Regulatory Considerations on Centralized Aspects
	3.1 Admin Keys
	3.2 Governance Token Holders
	3.3 Other Centralized Factors

	4 Conclusion and Future Works
	References

	CoDecFin – AML/KYC and Privacy
	Collaborative Deanonymization
	1 Introduction
	2 Scenario and Model
	3 Collaborative Backtracking
	3.1 Individual Testimony
	3.2 Group Testimony
	3.3 Dealing with the Risk of False Testimonies

	4 Forward Tracking
	4.1 Testimonies for Forward Tracking
	4.2 Blacklisting and Cover Transactions

	5 Conclusion and Outlook
	References

	Re: FinCEN Docket Number FINCEN-2020-0020; RIN 1506-AB47; Requirements for Certain Transactions Involving Convertible Virtual Currency or Digital Assets
	1 Introduction
	2 Dash Is Not an Anonymity-Enhanced Cryptocurrency
	3 Dash Is Rarely, if Ever, Used for Illicit Activities or in Connection with Darknet Marketplaces
	4 The U.S. Government's Mischaracterization of Dash has had a Significant, Material, and Adverse Impact
	5 Conclusion

	Analyzing FinCEN's Proposed Regulation Relating to AML and KYC Laws
	1 Introduction
	2 Overview of FinCEN Proposal
	2.1 Recordkeeping and Verification Requirement
	2.2 Additional Data Collection

	3 Analysis of Public Comments
	3.1 Institutional Responses
	3.2 Blockchain Developers
	3.3 Individuals

	4 Potential Legal Challenges
	4.1 Fourth Amendment Concerns
	4.2 International Privacy Concerns

	5 Conclusion
	References

	DeFi – Protocol Design
	Optimal Fees for Geometric Mean Market Makers
	1 Introduction
	2 Problem Description
	3 Fees for G3Ms
	4 Conclusion
	A G3M Arbitrage Results
	B Proof of Boundary Conditions
	C Optimality Conditions
	References

	Market Based Mechanisms for Incentivising Exchange Liquidity Provision
	1 Introduction
	1.1 Motivation
	1.2 Literature Review

	2 Dynamic Liquidity Rewards
	2.1 Voting Based Mechanism
	2.2 Radical Market Method
	2.3 Offer Stack Meeting Liquidity Demand
	2.4 Distributing Fees

	3 Agent Based Models
	3.1 Two Competing Market Makers in a Single Market - Not Modelling Liquidity Demand
	3.2 Multiple Competing Market Makers - Basic Liquidity Demand Model

	4 Measuring Liquidity Provision
	5 Conclusion
	References

	Understand Volatility of Algorithmic Stablecoin: Modeling, Verification and Empirical Analysis
	1 Introduction
	2 Background
	2.1 Rebase (Ampleforth)
	2.2 Seigniorage Share (Basis Cash)
	2.3 Partial-Collateral (Frax)

	3 Modeling and Verification
	3.1 Modeling of Stablecoin
	3.2 Formal Verification

	4 Empirical Analysis
	5 Related Work
	6 Conclusion
	References

	Measuring Asset Composability as a Proxy for DeFi Integration
	1 Introduction
	2 Method
	3 Results
	4 Discussion and Conclusion
	References

	Demystifying Pythia: A Survey of ChainLink Oracles Usage on Ethereum
	1 Introduction
	2 ChainLink Overview
	3 Study Design
	3.1 Data Collection
	3.2 Study Objectives

	4 Results
	4.1 Usage Trends and Demographics
	4.2 Oracle Adaption in the Market
	4.3 Oracle Pricing
	4.4 Oracle Servicing Delays

	5 Analysis and Conclusion
	References

	On Stablecoin Price Processes and Arbitrage
	1 Introduction
	2 Related Work
	3 Stablecoin Arbitrage and the CBAF Model
	4 Data and Econometric Approach
	5 Results
	6 Conclusion
	A Robustness
	B Tables
	References

	Red-Black Coins: Dai Without Liquidations
	1 Introductory Remarks
	1.1 Contributions and Related Work

	2 Financial Characteristics
	2.1 How Much Should You Pay for a Black Coin?
	2.2 Why Would You Want a Red Coin?

	3 Research Agenda: Extending Red-Black Coins
	3.1 Fungibility
	3.2 Redemption
	3.3 Under-Collateralization
	3.4 Autonomy

	4 Concluding Remarks
	References

	DeFi – Formal Attack Analysis
	Formal Analysis of Composable DeFi Protocols
	1 Introduction
	2 Background
	2.1 DeFi Protocols
	2.2 Formal Modeling and Verification

	3 Methodology
	3.1 Protocol Formal Modeling
	3.2 Protocol Composition

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	How to Exploit a DeFi Project
	1 Overview
	A Past Exploits on DeFi Projects
	References

	DeFi – Economics and Regulation
	DeFi as an Information Aggregator
	1 Introduction
	2 Analytical Results
	References

	A Game-Theoretic Analysis of Cross-ledger Swaps with Packetized Payments
	1 Introduction
	1.1 Background
	1.2 Contribution

	2 A Game-Theoretic Analysis
	2.1 Framework
	2.2 A Short Packetized Payment Game

	3 Discussion
	3.1 Collateral Deposit
	3.2 Reputation Mechanism

	4 Conclusion and Future Work
	References

	DeFi – MEV and Illicit Activity
	Wendy Grows Up: More Order Fairness
	1 Introduction
	2 The Framework Protocol
	3 Fairness Functions
	4 Other Example Fairness Definitions
	4.1 Timed Order Fairness
	4.2 Capitalist Fairness with Social Security

	5 Implementation Notes
	References

	Measuring Illicit Activity in DeFi: The Case of Ethereum
	1 Introduction
	2 Ethereum Basics
	3 Our Methodology
	4 Robustness: Expanding the Malicious Set
	5 Conclusion
	References

	DeFi – Order Routing and Formal Methods
	Global Order Routing on Exchange Networks
	1 Introduction
	2 Prices, Plans, Profits
	3 Orders, Routes, Arbitrage
	3.1 Smart Order Routing
	3.2 Arbitrage
	3.3 Existence

	4 Lower Bounds
	4.1 Routing on Independent Paths
	4.2 Arbitraging Simple Cycles

	5 Cyclic Arbitrage: The Uniswap Case
	5.1 Closed Formulas for Arbitrage
	5.2 Some Empirical Results

	6 Conclusions
	A The Uniswap Graph
	B Some Empirical Results
	References

	Towards a Theory of Decentralized Finance
	1 DeFi Archetypes and Their Formalization
	2 Next Steps, Challenges and Opportunities
	3 Concluding Remarks
	References

	Voting
	Auditing Hamiltonian Elections
	1 Introduction
	2 Hamiltonian Elections
	3 Auditing Fundamentals
	3.1 Estimating Sample Size and Risk

	4 Auditing Viability
	4.1 Viability: Plurality Hamiltonian Elections
	4.2 Viability: Instant-Runoff Hamiltonian Elections

	5 Auditing Delegate Assignment
	6 Experiments
	7 Conclusion
	References

	Cast-as-Intended: A Formal Definition and Case Studies
	1 Introduction
	2 Security Definition
	3 Examples
	3.1 Prêt à Voter
	3.2 Benaloh
	3.3 MarkPledge
	3.4 ThreeBallot

	4 Tracker-Based Schemes
	4.1 Example: Selene

	5 Outlook
	References

	Mobile Voting – Still Too Risky?
	1 Introduction
	2 Methodology
	3 Issues with Browser Based Voting
	3.1 Privacy
	3.2 Integrity
	3.3 Availability

	4 Issues with a Standalone Voting Application
	4.1 Privacy
	4.2 Integrity
	4.3 Availability

	5 Discussion, Conclusions and Future Work
	References

	New Standards for E-Voting Systems: Reflections on Source Code Examinations
	1 Introduction
	1.1 The Problem
	1.2 Outline of the Paper

	2 The Case Study
	2.1 Introduction
	2.2 Background
	2.3 Case Study Recommendation

	3 Recommendations
	3.1 Design and Analysis Phase
	3.2 Build Phase
	3.3 Maintain Phase

	4 Conclusion
	References

	Post-quantum Online Voting Scheme
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Online Voting Definition and Security Properties

	3 Our Construction
	3.1 Cryptographic Primitives
	3.2 Threshold Functionalities
	3.3 Our Scheme
	3.4 Security of Our Scheme

	4 Conclusion
	References

	Short Paper: Ballot Secrecy for Liquid Democracy
	1 Introductory Remarks
	2 Preliminaries
	2.1 Systems of Democracy
	2.2 Past Experiments and Uses

	3 Assumptions
	4 Ballot Secrecy for Liquid Democracy
	4.1 Delegation Cycles
	4.2 Unexpected Delegations
	4.3 Unaccountable Delegates

	5 Concluding Remarks
	References

	Shorter Lattice-Based Zero-Knowledge Proofs for the Correctness of a Shuffle
	1 Introduction
	1.1 State of the Art
	1.2 Arithmetic Circuits for Shuffles
	1.3 Our Results
	1.4 Organization

	2 Preliminaries
	2.1 Ideal Lattices: RLWE Problems and Public Key Encryption
	2.2 Zero-Knowledge Arguments for the Satisfiability of Arithmetic Circuits
	2.3 Bene Networks

	3 The Proposed Protocol
	3.1 The Circuit that Encodes a Shuffle
	3.2 Non-interactive Proof of Circuit Satisfiability, with Fiat-Shamir
	3.3 The Resulting Protocol

	4 Analysis: Efficiency, Security and Possible Improvements
	4.1 Complexity Analysis and Possible Choices of Parameters
	4.2 Security Analysis

	References

	WTSC – Security and Verification
	On-Chain Smart Contract Verification over Tendermint
	1 Introduction
	2 On-Chain Code Verification
	3 Implementation
	4 Experiments
	5 Evolution of Code Verification
	6 Discussion
	References

	Publicly Verifiable and Secrecy Preserving Periodic Auctions
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Assumptions and Notations
	3.2 ElGamal Encryption
	3.3 Pedersen Commitment
	3.4 Zero-Knowledge Proof of Knowledge
	3.5 Zero-Knowledge Range Proof
	3.6 Evaluator-Prover Model

	4 Basic Protocols
	4.1 Zero-Knowledge Proof of Consistent Commitment Encryption
	4.2 Zero-Knowledge Argument of Ordering

	5 Periodic Auction Protocol Design
	5.1 System Model
	5.2 High-Level Flow of the Protocol

	6 Protocol Design
	6.1 Smart Contract Deployment and Parameters Setup
	6.2 Phase One: Submission of Orders
	6.3 Phase Two: Revealing Orders
	6.4 Phase Three: Matching Orders

	7 Performance Evaluation
	7.1 Evaluation

	8 Conclusion
	References

	EthVer: Formal Verification of Randomized Ethereum Smart Contracts
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 EthVer

	2 Preliminaries
	2.1 Ethereum Languages
	2.2 The PRISM Model Checker
	2.3 Cryptographic Commitments
	2.4 Digital Signatures

	3 Interacting with the Contract
	4 The ETV Language
	4.1 Bounded Integers
	4.2 Communication
	4.3 Cryptographic Primitives

	5 The Compiler
	6 Modeling the Protocol as Markov Decision Process
	6.1 Modeling the Contract Execution
	6.2 Modeling the Adversary
	6.3 Modeling the Communication
	6.4 Modeling the Cryptographic Commitments
	6.5 Modeling the Digital Signatures
	6.6 Modeling the Time

	7 Case Study: Verification of Two Protocols from the Literature
	8 Conclusions
	References

	Absentia: Secure Multiparty Computation on Ethereum
	1 Introduction
	1.1 Key Design Decisions

	2 Preliminaries
	2.1 Related Work
	2.2 Background

	3 Absentia: System Design
	3.1 Measurements

	4 Absentia on Layer 2
	4.1 Roll-Ups
	4.2 Arbitrum
	4.3 Absentia on Arbitrum

	5 Concluding Remarks
	References

	Empirical Analysis of On-chain Voting with Smart Contracts
	1 Introduction
	2 Related Work
	3 Relevance of On-Chain Voting
	3.1 Analysis Toolchain and Methodology
	3.2 Voting Complexity
	3.3 Acquired Funds
	3.4 Trend

	4 Feasibility Analysis
	4.1 Block Capacities
	4.2 Model-Based Scalability Analysis
	4.3 Residual Capacities Analysis
	4.4 Economic Analysis

	5 Voting Beyond Ethereum
	5.1 Bitcoin
	5.2 Dash Governance Platform Analysis

	6 Conclusion
	References

	WTSC – Foundations
	Mirroring Public Key Infrastructures to Blockchains for On-Chain Authentication
	1 Introduction
	2 System Design and Architecture
	2.1 Endorsement
	2.2 On-Chain X.509 Certificate Storage and Validation
	2.3 On-Chain Endorsement Validation

	3 Evaluation and Discussion
	3.1 TLS-PKI Structure
	3.2 Compatibility
	3.3 Costs and Performance
	3.4 Security Considerations

	4 Related Work
	4.1 Blockchain-Based PKI Solutions
	4.2 Ethereum Name Service

	5 Conclusion and Future Work
	References

	Reactive Key-Loss Protection in Blockchains
	1 Introduction
	1.1 Background and Related Works
	1.2 Our Contributions

	2 KELP Protocol
	2.1 General Protocol Description
	2.2 Protocol Parameters
	2.3 Considerations for Practical Deployments
	2.4 Reactive Recovery and Synchrony Assumptions

	3 Trust Model and Attack Vectors
	3.1 New Attacks Against User Accounts
	3.2 Attacks Against Fund Recovery

	4 Extensions
	A KELP Implementation in Diem Blockchain
	References

	Merkle Trees Optimized for Stateless Clients in Bitcoin
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Average-Case Hash Accumulator Complexity
	2.1 Accumulators
	2.2 A Model for Transaction Durations
	2.3 Average-Case Asymptotics for Insertion-Order Indexed Merkle Tries
	2.4 Mixed Average-Case Adversarial Setting

	3 Practical Implementation
	4 Conclusion
	References

	Soft Power: Upgrading Chain Macroeconomic Policy Through Soft Forks
	1 Introduction
	2 Preliminaries
	3 Macroeconomic Policies
	4 Construction
	5 Blinded Mining
	6 Unbribability
	7 More Complex Upgrades
	References

	Privacy-Preserving Resource Sharing Using Permissioned Blockchains
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 System Design
	3.1 Security Goals
	3.2 Authentication and Requests
	3.3 Smart Contracts
	3.4 Interactions of Users with System

	4 Security and Privacy Analysis
	5 Implementation
	5.1 System Setup
	5.2 Evaluation

	6 Concluding Remarks
	A On the Security of Anyonymous Authentication
	B Interactions in Different Phases
	C Smart Contracts in Our System
	References

	WWTSC – Attacks’ Analysis
	SoK: Algorithmic Incentive Manipulation Attacks on Permissionless PoW Cryptocurrencies
	1 Introduction
	1.1 Structure of This Work

	2 Algorithmic Incentive Manipulation
	3 Generalized Attack Model for AIM
	4 Classification Framework for AIM
	4.1 State of Targeted Transactions
	4.2 Intended Impact/Influence on Transactions
	4.3 Required Interference with Consensus
	4.4 Used Payment Method

	5 Classification of Existing AIM Approaches
	5.1 Impact on Transactions
	5.2 Required Interference with Consensus
	5.3 Required Hashrate
	5.4 Payment Method
	5.5 Trustlessness

	6 Costs, Profits and Extractable Value
	7 Discussion
	A Example Use of Our Classification Framework
	B Ways to gain capacity in Nakamoto Consensus
	References

	Pay to Win: Cheap, Cross-Chain Bribing Attacks on PoW Cryptocurrencies
	1 Introduction
	2 Model
	3 P2W Attack Method
	3.1 Transaction Revision, Exclusion and Ordering Attack
	3.2 Evaluation with Solely Rational Miners (pR= 1)
	3.3 Evaluation with Altruistic Miners (pA> 0 pR+ pA= 1)
	3.4 Evalution of the Operational Costs

	4 Discussion and Mitigations
	5 Implications and Future Work
	References

	WTSC – DeFi and Tokens
	SoK: Lending Pools in Decentralized Finance
	1 Introduction
	2 Background
	3 Lending Pools
	3.1 Lending Pools Basics
	3.2 An Overview of Lending Pools Behaviour
	3.3 Lending Pools Semantics

	4 Fundamental Properties of Lending Pools
	5 Lending Pool Safety, Vulnerabilities and Attacks
	5.1 Collateralization Bounds and Risks
	5.2 Utilization Bounds and Risks

	6 Differences Between Our Model and LP Platforms
	7 DeFi Archetypes Beyond Lending Pools
	8 Research Challenges
	References

	Standardized Crypto-Loans on the Cardano Blockchain
	1 Introduction
	2 Financial Contracts
	2.1 Crypto-Loans
	2.2 ACTUS
	2.3 Oracles

	3 Building an Executable Specification of ACTUS
	3.1 Rendering the Specification in Haskell
	3.2 Utilising Polymorphism to Abstract over Basic Operations
	3.3 Contract Term Representation and Explicit Applicability

	4 Generating Marlowe Contracts from Standardised ACTUS Contract Terms
	4.1 Overall Architecture
	4.2 Avoiding Exponential Growth
	4.3 Limitations Due to Termination
	4.4 Fixed-Point Precision
	4.5 Representing Actus State in a Marlowe Contract
	4.6 Actus Labs

	5 Tokenization
	6 Assurance
	6.1 QuickCheck for Cross-Testing
	6.2 QuickCheck for Verification
	6.3 Static Analysis for Verification
	6.4 Securing Collateral Logic with Auto-Refund Warnings

	7 Related Work
	8 Conclusion
	References

	Fairness in ERC Token Markets: A Case Study of CryptoKitties
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Work

	2 Considering the Fairness of Financial Services Based on Smart Contract
	2.1 Preliminary
	2.2 Fairness in CryptoKitties Market

	3 Analysis on CryptoKitties and Its Impact to Fairness
	3.1 Analysis on Gene Determination Algorithm
	3.2 The Readability of Solidity Source Code
	3.3 Auction in CryptoKitties

	4 Enhancement of Fairness
	4.1 Gene Determination Algorithm
	4.2 The Readability of Solidity Source Code
	4.3 Auction in CryptoKitties

	5 Future Work
	5.1 Proof of Stake
	5.2 Secret Trading
	5.3 Blockchain Anonymity
	5.4 Fee of Transaction and Breeding

	6 Conclusion
	References

	Coins, Covid, Keynes and K-Shaped Recovery
	1 Introduction
	2 Effectiveness of Current Monetary Policy
	3 Maneki Protocol Fundamentals
	4 Maneki Protocol
	5 Use Cases
	5.1 Government Stimulus Funding
	5.2 Unemployment Insurance
	5.3 Donation and Fundraising Platforms
	5.4 Managing Keynesian Supply Shocks

	6 Conclusion
	References

	Author Index

