
Solving Finite-Linear-Path CTL-Formulas
Using the CEGAR Approach

Torsten Liebke(B) and Karsten Wolf

Universität Rostock, Institut für Informatik, Rostock, Germany
{torsten.liebke,karsten.wolf}@uni-rostock.de

Abstract. Petri nets are an established formal method for modelling
and verifying asynchronous, concurrent and distributed systems. To ver-
ify a specification, given as a temporal logic formula, state space methods
often encounter the state space explosion problem. We propose a veri-
fication technique to solve the CTL query E (φ U ψ) using the Petri
net state equation with a counterexample guided abstraction refinement
(CEGAR) approach. As a side product we show that (EX)kφ formulas
can be solved with the CEGAR approach as well. We use these special
formulas as building bricks to solve the class of finite-linear-path CTL-
formulas. The proposed techniques are strong at invalidating infeasible
behaviour. In addition to this it will often terminate quickly. We are also
introducing quick-checks for solving EG φ under certain circumstances.

Keywords: Petri nets · Verification · Structural analysis · CEGAR ·
ILP

1 Introduction

Explicit model checking algorithms encounter the state space explosion problem.
A different concept to verify the reachability problem was introduced in [8]
and extended by [3,4]. This concept is based on the structure of Petri nets
and decreases the state space explosion problem significantly. It transforms the
problem to an integer linear programming (ILP) problem, which runs iteratively
based on counterexample guided abstraction refinement, proposed in [2].

Due to the fact that ILP-problems can become infeasible, the CEGAR app-
roach is especially good to verify negative results. This makes it a valuable
complement to explicit model checking algorithms, which are in general good
for verifying positive results, due to the on-the-fly effect.

In [6] it is shown that it is beneficial to use specialized routines for com-
mon formulas to increase the number of verifiable problems. We propose two
techniques to solve the CTL queries E(φ U ψ) and (EX)kφ with the CEGAR
approach for Petri nets. Using well known tautologies, also A(φ R ψ) and (AX)kφ
are solvable with these techniques. [6] also shows that only 62.3% of the E(φ
U ψ)/A(φ R ψ) formulas from the Model Checking Contest 2018 [1] are solved
using the explicit model checker LoLA 2 [9]. This is due to the reason that the
c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 150–164, 2021.
https://doi.org/10.1007/978-3-662-63079-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_7&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_7

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 151

on-the-fly effect has no or very limited impact in some cases, e.g. when φ ∧ ¬ψ
holds in the entire state space. For this case, the CEGAR approach we are intro-
ducing will terminate very quickly, stating that the ILP-problem is infeasible
and thus the result of the formula is false.

We use these specialized routines as building bricks to solve a much bigger
class of formulas, namely the finite-linear-path CTL-formulas. This class is char-
acterized by two facts: First, the formulas are ending in a final marking, hence,
they are finite and secondly, they have a linear witness path without branch-
ing. Using tautologies we can again check both the existential and the universal
finite-linear-path formulas.

One drawback is that termination of the introduced approach is not guar-
anteed, which makes the procedure incomplete [8]. This drawback vanishes if
a portfolio approach is applied where traditional algorithms are combined with
the newly introduced methods.

We also introduce some quick-checks for verifying EG φ using the presence
of deadlocks or the absence of certain transition invariants.

2 Basic Definitions

We consider place/transition Petri nets.

Definition 1 (place/transition net). A place/transition net [P, T, F,W,m0]
consists of a finite set P of places, a finite set T of transitions, a set F ⊆
(P × T) ∪ (T × P) of arcs, a mapping W : (P × T) ∪ (T × P) −→ N where
[x, y] /∈ F if and only if W ([x, y]) = 0, and an initial marking m0. A marking is
a mapping m : P −→ N.

Transition t is enabled in marking m if, for all p ∈ P , m(p) ≥ W ([p, t]).
Firing an enabled transition in m yields the marking m′ where, for all p, m′(p) =
m(p) − W ([p, t]) + W ([t, p]). This is denoted m

t−→ m′.

Every Petri net defines a labeled transition system where the set of mark-
ings reachable from m0 form the set of states, m0 is the initial state, and the
firing relation just defined forms the labeled transition relation. We restrict our
considerations to Petri nets where the related transition system is finite.

The incidence matrix of a Petri net N is a matrix CN : P ×T −→ Z where, for
all p ∈ P, t ∈ T , CN (p, t) = W (t, p) − W (p, t). The incidence matrix is involved
in important and well-known results of Petri net theory. If it is clear to which
Petri net the incidence matrix belongs then we only write C.

Definition 2 (Reachability problem). Given is a tuple (N,m,m′) consisting
of a Petri net N and two markings m,m′. A marking m′ is reachable from
marking m in a Petri net N , if there exists a firing sequence w ∈ T ∗ with
m

w−→ m′. The set of all reachable markings in N starting in m is written as
RN (m). The question whether m′ ∈ RN (m) is called the reachability problem.

The feasibility of the Petri net state equation is a necessary condition for a
positive answer to this question.

152 T. Liebke and K. Wolf

Proposition 1 (Petri net state equation). Let w ∈ T ∗ be a firing sequence
of N , that is, the sequence of labels on a path from some marking m to a marking
m′ in the transition system corresponding to N . Then it holds

m + C · ℘(w) = m′

where ℘(w) is a vector and |℘(w)(t)| is the number of occurrences of t in the
sequence w.

In the sequel, we shall refer to ℘(w) as the Parikh vector of w.

Definition 3 (T-invariant). A Parikh vector ℘(w) is called a T -invariant if
C · ℘(w) = 0. If the firing sequence w is executable, we call ℘(w) realizable.

A realizable T-invariant is a cycle in the state space and will not change the
marking.

Definition 4 (Solution space). The solution of the Petri net state equation
m + C · ℘(w) = m′ can be written as the sum of a base solution and a period
vector, which is a linear combination of T-invariants: ℘(w) = b+

∑
i niyi, where

b ∈ N
T is the base solution and ni ∈ N is the coefficient of the T-invariant

yi ∈ N
T [3,8].

3 Increasing and Decreasing Transitions

Consider a formal sum s = k1p1 + · · · + knpn, which we also call atomic propo-
sition. Every marking m turns this sum into the integer number vs(m) =
k1m(p1) + · · · + knm(pn). We can immediately derive from the firing rule of
Petri nets:

Definition 5 (Delta). Let s be a formal sum and t a transition, then Δt,s is
defined as Δt,s = k1C(p1, t) + · · · + knC(pn, t).

Lemma 1. For all markings m, m
t−→ m′ implies vs(m) + Δt,s = vs(m′).

Proof. Apply the Petri net state equation. �	
As we assume the transition system to be finite, there is only a finite range

of values that vs(m) can take. Call an integer number k a lower bound for formal
sum s if, for any reachable marking m, vs(m) ≥ k, and upper bound for s if, for
any reachable m, vs(m) ≤ k. There exist several approaches in Petri net theory
for computing bounds. As an example, we can solve the following optimisation
problem where s is the objective function (to be minimised or maximised) and
the state equation serves as side condition. If the problem yields a solution with
non-diverging value for the objective function, that value is a lower (resp. upper)
bound for s.

Based on Lemma 1, we can identify increasing and decreasing transitions.

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 153

Definition 6 (Increasing, decreasing). Given an atomic proposition of the
form s ≤ k. Let L be a lower bound and U an upper bound for s. We call
transition t w.r.t. the formal sum s:

1. weakly increasing iff Δt,s < 0
2. weakly decreasing iff Δt,s > 0
3. strongly increasing iff there is an upper bound U for s where Δt,s ≤ k − U
4. strongly decreasing iff there is a lower bound L for s where Δt,s > k − L.

The terminology may sound strange at first glance. However, increasing tran-
sitions have the tendency to turn a false proposition into a true one while decreas-
ing transitions help turning a true proposition into a false one.

Let p ≤ 0 be an atomic proposition where p is the number of tokens on place
p in a Petri net. Then all transitions in the preset of p are strongly decreasing.

Lemma 2. Consider markings m and m′, transition t with m
t−→ m′ and atomic

proposition s ≤ k.

1. If s ≤ k is false in m and true in m′ then t is weakly increasing w.r.t. s.
2. If s ≤ k is true in m and false in m′ then t is weakly decreasing w.r.t. s.
3. If t is strongly increasing w.r.t. s ≤ k then s ≤ k is true in m′.
4. If t is strongly decreasing w.r.t. s ≤ k then s ≤ k is false in m′.

Proof. Regarding 1, we have vs(m) > k and vs(m′) ≤ k. By Lemma 1, we
conclude Δt,s < 0. Regarding 3, we have vs(m) ≥ L (since L is a lower bound).
Hence, vs(m′) = vs(m) + Δt,s ≤ L + Δt,s and, according to Definition 6,
vs(m′) ≤ k. �	

4 CEGAR Approach for Reachability Analysis in Petri
Nets

Abstraction is a powerful method for verifying systems. It omits irrelevant details
of the system behaviours, to simplify the analysis and verification. Finding the
right abstraction is hard. If it is too coarse, the verification might fail and if it
is too fine, the state space explosion problem might occur. A solution is to use
some initial abstraction [2], which is an overapproximation of the original system
and then iteratively refine the abstraction based on spurious counterexamples.

In our case, the Petri net state equation is the initial abstraction for the
reachability problem. Solving the state equation is a non-negative integer linear
programming problem. The objective function for the ILP-problem is the short-
est firing sequence of the Parikh vector f(w) =

∑
t∈T |℘(w)(t)| leading from the

initial marking m to the final marking m′.
The feasibility of this linear system is a necessary condition for reachability,

but not a sufficient one. We distinguish between three different situations:

– If the linear system is infeasible, the necessary condition is violated and the
final marking is not reachable.

154 T. Liebke and K. Wolf

– If the linear system has a realizable solution, then the final marking is reach-
able.

– If the linear system has an unrealizable solution, which is a counterexample,
then the abstraction has to be refined.

If we have an unrealizable solution, then there exists at least one t ∈ T
which fired less than |℘(w)(t)| times. To produce a new solution which avoids
the spurious one, we build a refined abstraction using inequalities for the ILP-
problem.

Definition 7 (Constraints). We define two types of constraints, both being
linear inequalities over transitions [8].

– Jump constraints have the form |ti| < n, with n ∈ N and ti ∈ T where |ti|
represents the firing count of transition t. Using the fact that base solutions
are pairwise incomparable, jump constraints intend to generate a new base
solution.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n with ni ∈ Z, n ∈ N, and
ti ∈ T . Increment constraints are used to get a new non-base solution, i.e.,
T-invariants are added, since their interleaving with another sequence w may
turn w from unrealizable to realizable.

Adding the two types of constrains to existing solutions we can traverse
through the solution space and check whether the unrealizable solution of our
linear system becomes realizable or whether the ILP-problem becomes infeasible.

Definition 8 (Partial solutions). Let N = (P, T, F,W,m) be a Petri net
and m′ ∈ RN (m) a reachability problem. A partial solution is a tuple ps =
(Γ, ℘(w), σ, r) with:

– Γ is the set of jump and increment constraints. Together with the state equa-
tion they form the ILP-problem.

– ℘(w) is the minimal solution fulfilling the ILP-problem.
– σ is a firing sequence with m

σ−→ and ℘(σ) ≤ ℘(w).
– r is the remainder with r = ℘(w) − ℘(σ) and ∀t ∈ T : (r(t) > 0 =⇒ ¬m

σt−→).

Partial solutions are produced during the examination of the solution ℘(w)
of the ILP-problem by exploring the state space of N . For this an explicit model
checking algorithm with reachability preserving stubborn sets [7] can be used to
build a tree of reachable markings, such that for all transitions t ∈ T it holds
that they only occur |℘(w)(t)| times. Stubborn sets, which are concerned with
only one ordering of transitions, are very useful here, to avoid the explosion of
the solution space. Each path to a leaf represents a maximal firing sequence of
a new partial solution. If a partial solution has an empty remainder r = 0, it is
a full solution and the reachability problem is satisfied. If no full solution exists,
℘(w) might be realizable by another firing sequence σ′, or by adding a jump
constraint to get to a new base solution, or by adding an increment constraint
to get additional tokens for transitions with r(t) > 0. If all possible partial
solutions are explored and no full solution is found, the reachability problem can
not be satisfied.

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 155

Theorem 1 (Reachability of solutions). If the reachability problem has a
solution, a realizable solution of the state equation can be reached by constantly
appending the minimal solution with constraints [8].

As stated in [3] it is an open question, whether this procedure always termi-
nates.

5 Solving E (φ U ψ) with the CEGAR Approach

Definition 9 (E(φ U ψ)). Let N = (P, T, F,W,m) be a Petri net and φ and ψ

two propositions. m |= E(φ U ψ) ⇐⇒ ∃w ∈ T ∗ : m
w−→ m′, with ∃i ∈ N ∀j <

i : (mj |= φ) ∧ (mi |= ψ). Which means that in every state along path w, φ is
true until a state is reached where ψ is true.

It is well known that EF ψ can be rewritten as E (true U ψ). To solve E(φ
U ψ), where φ and ψ are atomic propositions, we solve EF ψ with the CEGAR
approach. In addition to this we introduce additional (balance) constraints to
keep φ true along the path. Furthermore we cut-off paths in the exploration of
partial solutions, whenever states are reached where both φ and ψ are false.

Definition 10 (Balance constraints). Given a Petri net N = (P, T, F,W,m)
and an atomic proposition ψ and φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn,
where si is a formal sum, 0 ≤ i ≤ n and i, k, n ∈ N. Ti = {t ∈ T |Δt,si

�=
0} is the set of transitions which can change the value of si. It contains all
weakly/strongly increasing/decreasing transitions w.r.t. to si. We call Ti,ψ ⊆ Ti

the set of decreasing transitions w.r.t si, which are at the same time increasing
w.r.t ψ: Ti,ψ = {t ∈ Ti|Δt,si

> 0 ∧ Δt,φ < 0}. We define variables δi, which
are 0, if Ti,ψ = ∅ and otherwise are MAX(Δt,si

|t ∈ Ti,ψ). The δi-offset is the
maximum arc weight of all transitions that can change the value of si ≤ ki from
true to false and ψ from false to true. Let θi = ki − vsi

(m) be the offset, which
is the number of tokens that can be consumed from the initial marking and still
leave the truth value of si ≤ ki unchanged. We call ∀si :

∑
t∈Ti

Δt,si
≤ θi + δi

balance constraints w.r.t. si and m.

Fig. 1. The minimal solution for this Petri net and the formula E (p1 > 0) U (p3 > 0)
is t1t2. Since t1 is weakly decreasing w.r.t. p1 > 0, the balance constraint adds the
weakly increasing transition t0 to the solution.

As an example, consider Fig. 1 and the formula E (p1 > 0) U (p3 > 0). Note
that this formula and every other formula can be rewritten into the required

156 T. Liebke and K. Wolf

s ≤ k-format: E (−p1 ≤ −1) U (−p3 ≤ −1). To satisfy the formula, we check
EF p3 > 0, while keeping p1 > 0 true along the path. The minimal solution to
the ILP would be the firing vector (t1, t2), m

t1t2−−→ m′, where m′ satisfies p3 > 0.
But after firing the weakly decreasing transition t1 w.r.t. p1 > 0, a marking
m′′ = (p0, p2) is reached that does neither satisfy p3 > 0 nor p1 > 0. To avoid
this marking, the balance constraint would add the weakly increasing transition
t0 to the solution vector, m

t0t1t2−−−−→ m′, to keep p1 > 0 true.
Balance constraints in general ensure that the sum of all increasing and

decreasing transitions w.r.t. a formal sum s is smaller than the offset, which
is based on the initial marking and the maximal arc weight of all transitions
t ∈ Ti,ψ. In case the offset θi is negative, φ is violated and E(φ U ψ) has the value
of ψ. We detect this case in the initial marking, before we compute the balance
constraints and can return with a definitive answer directly in the beginning.
Balance constraints make sure that φ is not violated and ψ is true in the final
marking. The only transitions which are allowed to violate φ are in the set Ti,ψ

and they have also the effect to turn ψ to true. Due this effect, if such transitions
exist, they tend to occur at the end of the firing sequence, but not exclusively.
We add the balance constraints to our initial abstraction, the state equation and
run the CEGAR algorithm for EF ψ.

Lemma 3. Given a Petri net N = (P, T, F,W,m) and formula φ = s0 ≤ k0 ∧
s1 ≤ k1∧· · ·∧sn ≤ kn, where si is a formal sum and k ∈ N and m |= φ. Adding
to the ILP-problem all balance constraints for φ and checking that θi ≥ 0, then
it is guaranteed that after executing the entire firing sequence given as a solution
℘(w) to the ILP-problem that ψ is true. It also ensures that if a complete firing
sequence exists, φ is true along the path and is only violated, if at all, in the final
marking, where ψ holds.

Proof. Regarding the second claim, we know, based on Definition 6, that only
increasing/decreasing transitions affect si ≤ ki. The offset θi ensures that the
truth value of si ≤ ki stays unchanged. The balance constraint ensures that φ is
not violated minus the δi-offset, which ensures the possibility of a firing sequence
which does not violate φ along the path, until ψ holds.

If the set Ti,ψ is not empty, the δi-offset based on the maximum of Δt,si

ensures that transitions are not ignored in the balance constraint that violate φ
but also turn ψ to true. The additional offset, which is the maximal arc weight
of the transitions in the set, is enough to make sure that only one transition
is allowed to fire, with the effect of making φ false and ψ true. We use the
maximum, since an arc weight, which is not the maximum, will have a smaller
effect and will not change the outcome. Transitions from the set Ti,ψ can also
fire, if they are in a different context, i.e. when they do not turn φ to false.

Theorem 1 ensures that if the complete solution ℘(w) is fired, we get to the
final marking m′ which satisfies ψ. �	

Lemma 3 only ensures that m′ |= ψ, where m′ is the final marking after firing
the entire solution ℘(w). But it does not guarantee that intermediate markings

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 157

satisfy φ. This is due to the fact that also decreasing transitions w.r.t. φ are
allowed to fire.

Lemma 4. In the exploration of the solution space cutting off paths in markings
m∗, with m∗ |= ¬φ ∧ ¬ψ results in keeping only partial solutions which can
become full solutions.

Proof. Based on Definition 9, marking m∗ |= ¬φ ∧ ¬ψ violates the property
E(φ U ψ). All paths extending m∗ are also violating E(φ U ψ) and no extension
to the path can make the property true. �	

t0
p0

t1

p1

t2
p2

t3
p3

p4

t4 t5

p5

Fig. 2. For the given Petri net and the formula E (p1 + p2 > 0) U (p3 > 0), the
minimal solution (t0, t1) is cut off. With the CEGAR approach we jump to the next
base solution (t2, t3), which is only a partial one. The T-invariant (t4, t5) is added with

the next CEGAR step and provides a full solution, m
t5t2t3(t4)−−−−−−→ m′.

Consider, for example, the Petri net in Fig. 2 and the formula E (p1+p2 > 0)
U (p3 > 0). The minimal solution to the ILP is (t0, t1). After firing t0, a marking
m′ = (p0, p5) is reached that violates p1 + p2 > 0 and p3 > 0. Lemma 4 ensures
that this solution is cut off. There are also no increasing transitions we can add
to this solution. Using the CEGAR approach, we jump to a new base solution,
(t2, t3). But this solution is only a partial solution due to the fact that neither t2
nor t3 can fire. At this point, the CEGAR approach adds the T-invariant (t4, t5)
from which tokens can be borrowed. Now we have a full solution and we get the

path m
t2t3t4(t5)−−−−−−→ m′ which satisfies p1 + p2 > 0 until (p3 > 0) is satisfied.

158 T. Liebke and K. Wolf

Theorem 2. Let N = (P, T, F,W,m) be a Petri net, ψ an atomic proposition
and φ a proposition of the form φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn, where
si is a formal sum and i, k, n ∈ N and it holds that m |= φ. If E(φ U ψ)
has a realizable solution in the solution space, it can be reached by solving EF
ψ using the CEGAR approach from [8] and by adding all balance constraints to
the initial abstraction and cutting-off all paths in m∗ in the exploration of the
solution space, whenever m∗ with m∗ |= ¬φ ∧ ¬ψ is reached.

Proof. In [8] EF ψ is proved. We constantly add jump and increment constraints
to get to a full solution, such that the final marking m′ of this solution satisfies
ψ, m′ |= ψ. Lemma 3 ensures that we only get solutions, such that after firing
the complete solution ℘(w), φ holds. Lemma 4 makes sure that φ is not violated
along the path. �	

6 Solving (EX)kφ with the CEGAR Approach

Definition 11 ((EX)kφ). Given a Petri net N = (P, T, F,W,m), a proposition
φ and k ∈ N \ {0}. m |= (EX)kφ ⇐⇒ ∃w ∈ T k : m

w−→ mk ∧ mk |= φ. This
means there exists a path m

w−→ mk with |w| = k transitions in it and mk |= φ.

For example for k = 2 this means (EX)2φ = EX EX φ ⇐⇒ ∃t1t2 ∈ T 2 :
m

t1t2−−→ mk ∧ mk |= φ. To solve (EX)kφ, we solve EF φ. In addition to this
we introduce an additional (length) constraint which ensures that the length of
sequence w of the ILP-problem solution ℘(w) is equal to k.

Definition 12 (Length constraint). Given a proposition of the form (EX)kφ
with k ∈ N \ {0} and an atomic proposition φ. We call

∑
t∈T |℘(w)(t)| = k a

length constraint.

The sum of the number of occurrences of all transitions in the Parikh vector
℘(w) should exactly be k. To make the proposition true, marking mk, which is
reached after firing k transitions, must satisfy φ.

Theorem 3. Given a Petri net N = (P, T, F,W,m) and proposition (EX)kφ
with k ∈ N\{0}. If (EX)kφ has a realizable solution in the solution space, it can
be reached by solving EF φ using the CEGAR approach from [8] and by adding
the length constraint to the initial abstraction.

Proof. Based on Definition 11, m |= (EX)kφ ⇐⇒ ∃w ∈ T k ∧m
w−→ m′ ∧m′ |=

φ. The length constraint
∑

t∈T |℘(w)(t)| = k from Definition 12 ensures that
only solutions ℘(w) of the ILP-problem are found, such that the length of the
firing sequence is exactly k and results in the final marking mk |= φ. �	

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 159

7 Solving Finite-linear-path CTL-formulas
with the CEGAR Approach

Theorems 1-3 are solving simple CTL-formulas. They all have in common that
they have a linear and finite witness path. We use this building bricks to solve
a larger class of CTL-formulas with the CEGAR approach. Namely the class of
finite-linear-path formulas.

Definition 13 (Existential finite-linear-path formula). If φ and ψ are
existential finite-linear-path formulas and ρ is an atomic proposition, then the
following formulas are existential finite-linear-path formulas:

– ρ (the base of the inductive definition);
– EF φ;
– EX φ;
– E(ρ U φ);
– φ ∨ ψ;
– φ ∧ ρ;

The existentially quantified formulas are paired with the universally quan-
tified formulas. These two formulas can be reduced to each other by negation.
Hence, they permit the application of the same verification techniques. The class
of CTL-formulas is extended to the universal finite-linear-path formulas, which
use the path as a counterexample. The class is defined accordingly:

Definition 14 (Universal finite-linear-path formula). If φ and ψ are uni-
versal finite-linear-path formulas and ρ is an atomic proposition, then the fol-
lowing formulas are universal finite-linear-path formulas:

– ρ (the base of the inductive definition);
– AG φ;
– AX φ;
– A(ρ R φ);
– φ ∧ ψ;
– φ ∨ ρ;

It is easy to see that the negation of an existential finite-linear-path for-
mula is indeed a universal finite-linear-path formula and vice versa. That is, we
may restrict subsequent considerations to existential finite-linear-path formulas.
Universal finite-linear-path formulas can be verified by checking their negation.

We introduce the concept of how to solve this class of formulas with an
example. The interesting part of this class are formulas which have nested CTL-
operators, e.g. E (ρ1 U (E (ρ2 U φ))). The idea is to use for each CTL-operator
one state equation with its own set of variables and constraints and then solve
the entire ILP-problem.

In our example the first objective would be to solve the left/outer EU-
formula. That is, we have to reach a marking m′ |= ρ2 while keeping ρ1
true. For this we have to solve the ILP-problem consisting of the state equation

160 T. Liebke and K. Wolf

m+C ·℘(w)1 = m′ and the balance constraints for ρ1. The second objective is to
solve the right/inner EU-formula. Here we are doing the same things as before,
that is, we have to reach a marking m′′ |= φ while keeping ρ2 true. We now
add to the ILP-problem a slightly different state equation, m′ +C ·℘(w)2 = m′′,
where we start in the marking m′, which we reached from the first state equation
and furthermore we introduce a new set of variables ℘(w)2 for our second Parikh
vector to reach the final marking m′′. The balance constraints to keep ρ2 true
are added as well. Both state equations can be linked together into one equation,
m + C · ℘(w)1 + C · ℘(w)2 = m′′.

Definition 15 (ILP-problem for existential finite-linear-path formula).
Let N = (P, T, F,W,m) be a Petri net and φ be an existential finite-linear-path
formula, which contains i ∈ N CTL-operators. We call the following an ILP-
problem for an existential finite-linear-path formula or in short ILPφ:

For all CTL-operators add a new set of variables for the Parikh vector ℘(w)i

and the product of C · ℘(w)i to the state equation:

m + C · ℘(w)1 + . . . + C · ℘(w)i = m′.

Also add for all EU-operators balance constraints and for EX-operators length
constraints based on their corresponding variables.

Once we build the initial ILP-problem we can use the CEGAR approach to
find either a realizable solution or to add enough constraints to make the ILP-
problem infeasible to verify that no solution exists. While realizing the solution
it is important to first use all the transitions from the first Parikh vector ℘(w)1
to keep the structure of the formula in place. ℘(w)1 keeps ρ1 true until ρ2 is
reached. If all transitions from ℘(w)1 are used in the realization we can start
with the transitions of ℘(w)2.

Definition 16 (Realization ordering). Let N = (P, T, F,W,m) be a Petri
net, φ an existential finite-linear-path formula, which contains i ∈ N CTL-
operators and ILPφ the corresponding ILP-problem. To keep the structure of φ in
place while realizing a solution of ILPφ it must hold that ∀j, k ∈ N : 0 ≤ j < k ≤ i
the transitions from ℘(w)j must be realized before the transitions of ℘(w)k. We
call this the realization ordering.

Theorem 4. Let N = (P, T, F,W,m) be a Petri net, φ be an existential finite-
linear-path formula and ILPφ be an ILP-problem for the existential finite-linear-
path formula φ based on Definition 15. If φ has a realizable solution in the
solution space, it can be reached by using Theorems 1–3 with ILPφ as the initial
ILP-problem and using the realization ordering based on Definition 16 for finding
a realizable solution.

Proof. We proceed by induction, according to Definition 13.
Case ρ (atomic proposition): In CTL an atomic proposition is satisfied, if it
holds in the initial marking. Based on Definition 15 and the fact that no CTL-
operator is present, no product of C · ℘(w) is added to the equation. It follows

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 161

that m = m′, which means that the atomic proposition must hold in the initial
marking.
Case EF φ: This case can be traced back to Case E(ρ U φ) using the tautology
EF φ ⇐⇒ E(TRUE U φ).
Case EX φ: Definition 15 ensures that C ·℘(w) is added to the state equation and
that the length constraint for EX φ is added to the ILP-problem. A witness path
for EX φ is an existential finite-linear-path to the next marking which satisfies φ.
The path extended by a witness path for φ at the final marking (which exists by
induction hypothesis) yields a witness path for EX φ. Theorem 3 makes sure that
if a realizable solution exists, the witness path for EX φ is found and Definition
16 ensures that the witness path is added at the correct position to keep the
structure of the formula in place.
Case E(ρ U φ): This case is similar to the previous one. Definition 15 ensures
that C · ℘(w) is added to the state equation and that the balance constraints
are added to the ILP-problem. A witness path for E(ρ U φ) is an existential
finite-linear-path where ρ is true in every marking until a marking is reached
where φ holds. Theorem 2 makes sure that if a realizable solution exists, the
witness path for E(ρ U φ) is found and Definition 16 ensures that the witness
path is added at the correct marking (which exists by induction hypothesis) to
keep the structure of the formula in place.
Case φ ∨ ψ: If φ is satisfied then there exists a witness path for φ for which the
induction hypothesis may be applied. Otherwise, there is a witness path for ψ
for which again the induction hypothesis applies. A formula like EX φ ∨ ψ is
rewritten to EX φ ∨ EX ψ and both sides are verified separately.
Case φ ∧ ρ: In this case, φ and ρ are satisfied. Since ρ is an atomic proposition,
only the initial marking of the path is concerned. Hence, the induction hypothesis
applied to φ yields the desired result. �	

8 Partially Solving EG φ with the CEGAR Approach

Definition 17 (EG φ). Let N = (P, T, F,W,m) be a Petri net and φ a propo-
sitions. m |= EG φ ⇐⇒ ∃w ∈ T ∗ : m

w−→ m′, with ∀i ∈ N : (mi |= φ). This
means that in every state along a path w, φ is true.

Definition 18 (DEADLOCK). Given a Petri net N = (P, T, F,W,m). N
has a deadlock if there exist a reachable marking from m in which no transition
is activated.

φ is true along a path w, if at least one of two conditions is fulfilled. Either
there exists an infinite path containing a cycle or the path ends in a deadlock.
Precisely:

1. If the path is infinite then there exists a cycle and the path can be split into
two parts w1w2 with m

w1−−→ m′ w2−−→ m′, where w1 is a path leading to a
marking m′, from which a cycle starts, namely w2, which goes back to m′.
Each state in both w1 and w2 satisfies φ and w2 can be repeated infinitely
often.

162 T. Liebke and K. Wolf

2. If the paths ends in a deadlock every state including the last one, the deadlock
state, must satisfy φ.

In both cases we can use the knowledge about the existence of a deadlock
to create necessary or sufficient quick-checks to solve EG φ. If the Petri net has
no deadlocks, the only possibility to satisfy EG φ is if a cycle can be reached
while φ stays true and the cycle keeps φ also true in every state. The cycle is
basically a T-invariant and we can reformulate the problem of solving EG φ into
solving the state equation once and finding a T-invariant while keeping φ true,

m
m+C·℘(w1)=m′
−−−−−−−−−−→ m′ C·℘(w2)=0−−−−−−−→ m′.
Solving the first part, the state equation, is problematic due to fact that

m′ is not known. The reason for this is that there can be exponentially many
T-invariants which keep φ true in every state. In addition to this we would have
to solve the problem of finding a minimal marking to fire a T-invariant, where
minimal is in regard to the entire token number in the marking. It would also
make no difference if minimal is in regard to the componentwise comparison
of markings, meaning that no more token can be removed. To the best of our
knowledge there is no polynomial algorithm known for this problem. We could
use a brute-force-method where we calculate for every sequence of a T-invariant,
which are all permutations, the minimal required markings to fire completely. All
markings can then be compared and we can search for the minimal markings.
The runtime for this method would be exponential. This, in connection with
the possibility of exponentially many T-invariants, is not a suitable approach to
solve EG φ.

But on the other hand the second part can be used to build a necessary
condition check. If no T-invariant exists that keeps φ true and the Petri net has
no deadlocks we know that EG φ can never be true. To check this we can add
to the ILP-problem for finding an invariant an adjusted version of the balance
constraint from Definition 10.

Definition 19 (Minimum constraints). Let N = (P, T, F,W,m) be a Petri
net and a proposition φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn, where si is a
formal sum, 0 ≤ i ≤ n and i, k, n ∈ N. Ti = {t ∈ T |Δt,si

�= 0} is the set
of transitions which can change the value of si. It contains all weakly/strongly
increasing/decreasing transitions w.r.t. to si. We call ∀si :

∑
t∈Ti

Δt,si
≤ 0

minimum constraints w.r.t. si.

These constraints ensure that the sum of all increasing and decreasing transi-
tions is smaller than or equal to zero. Otherwise the truth value of the proposition
will be changed.

Proposition 2. Given a Petri net N = (P, T, F,W,m) and a proposition φ =
s0 ≤ k0 ∧ s1 ≤ k1 ∧ · · · ∧ sn ≤ kn, where si is a formal sum and i, k, n ∈ N and it
holds that m |= φ. If the Petri net has no deadlocks and if the ILP-problem for
finding a T-invariant, C · ℘(w) = 0 in addition with the minimum constraints
has no solution, then EG φ is also false, m �|= EG φ.

Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach 163

Proof. Based on Definition 17 if the Petri net has no deadlocks then the only way
to satisfy EG φ is to find a cycle which keeps φ true in every state. If there exists
such a cycle it must be a T-invariant and based on Definition 3 the equation
C ·℘(w) = 0 must have a solution. The minimum constraints based on Definition
19 ensure that φ stays true in the cycle. If the ILP-problem, C · ℘(w) = 0 plus
the minimum constraints, is infeasible, then no T-invariant, therefore no cycle
exists, that keeps φ true. It follows that EG φ can never be true. �	

In case the Petri net has deadlocks we can build a sufficient quick-check. We
use the fact that EG φ is true if the path ends in a deadlock and every state
along the path satisfies φ. In CTL this condition can be rewritten to E(φ U (φ ∧
DEADLOCK)), where the DEADLOCK predicate can be easily expressed as a
conjunction of disjunctions over atomic propositions.

Proposition 3. Given a Petri net N = (P, T, F,W,m) with deadlocks and an
atomic proposition φ. If the ILP-problem for E(φ U (φ ∧ DEADLOCK)) has a
realizable solution, then EG φ is true, m |= EG φ.

Proof. If the Petri net has deadlocks, then based on Definition 17 EG φ is among
others true, if a path which satisfies φ in every state ends in a deadlock. Definition
9 states that φ is true until ψ holds and ψ is in this case φ ∧ DEADLOCK. �	

9 Conclusion and Future Work

We proposed two promising techniques to solve E(φ U ψ) and (EX)kφ with the
CEGAR approach for Petri nets and used this as building bricks to solve the class
of finite-linear-path CTL-formulas. The main concept is to use constraints on
the Parikh vector. We refine the over approximation iteratively until it becomes
a realizable solution or infeasible. We also introduced quick-checks for solving
EG φ under certain circumstances.

To solve E(φ U ψ), we solve EF ψ and keep φ true in every state along the
path. To keep φ true, we introduced the concept of balance constraints for the
ILP-problem to ensure that an atomic proposition is true after firing the entire
solution vector. Furthermore we used a cut-off criterion to ensure that φ is also
true in every state along the path. For solving (EX)kφ we introduced the concept
of a length constraint, which makes sure that we only get solutions of length k.
The finite-linear-path formulas are using the proposed techniques for solving E(φ
U ψ) and (EX)kφ in addition to an ILP-problem that is build dependent on the
CTL-operators contained in the finite-linear-path formula. To verify EG φ with
a necessary quick-check in the absence of deadlocks we proposed a minimum
constraints which ensure that when no T-invariant is found, EG φ must be
false. As a sufficient quick-check in the presence of deadlocks we introduced the
deadlock-constraint and check if E(φ U (φ ∧ DEADLOCK)) has a realizable
solution. All proposed techniques are based on solving ILP-problems and thus
avoiding the state space explosion problem.

These techniques will be implemented in LoLA 2 [9]. LoLA 2 is an explicit
model checker and is every year on the podium of the Model Checking Contest

164 T. Liebke and K. Wolf

for Petri nets. Once implemented we expect that the proposed approach will
increase the verification performance for this formulas significantly. Especially
in case of a negative result, the procedure will terminate quickly, due to the fact
that the ILP-problem will become infeasible. We expect a similar performance
increase as it was the case for the CEGAR approach for reachability analysis,
where the performance of LoLA 2 increased from solving under 80% to over 90%
in the Model Checking Contest.

Acknowledgements. This study is an extended version of [5]. We thank the anony-
mous reviewers of both PNSE and ToPNoC for their comments.

References

1. Amparore, E.G., et al.: Presentation of the 9th edition of the model checking contest.
In: Tools and Algorithms for the Construction and Analysis of Systems - 25 Years
of TACAS: TOOLympics, Held as Part of ETAPS 2019, 6–11 April 2019, Prague,
Czech Republic, Proceedings, Part III, pp. 50–68 (2019)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification, 12th International Con-
ference, CAV 2000, 15–19 July 2000, Chicago, IL, USA, Proceedings, pp. 154–169
(2000)

3. Hajdu, Á., Vörös, A., Bartha, T.: New Search strategies for the petri net CEGAR
approach. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115,
pp. 309–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2 16

4. Hajdu, Á., Vörös, A., Bartha, T., Mártonka, Z.: Extensions to the CEGAR approach
on Petri nets. Acta Cybern. 21(3), 401–417 (2014)

5. Liebke, T., Wolf, K.: Solving E (φ U ψ) using the CEGAR approach. In: Moldt,
D., Kindler, E., Wimmer, M. (eds.) Petri Nets and Software Engineering. Interna-
tional Workshop, PNSE 2019, Aachen, Germany, June 24, 2019. CEUR Workshop
Proceedings. CEUR-WS.org, vol. 2424, pp. 47–56 (2019)

6. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 18

7. Schmidt, K.: Stubborn sets for standard properties. In: Application and Theory of
Petri Nets 1999, 20th International Conference, ICATPN 1999, 21–25 June 1999,
Williamsburg, Virginia, USA, Proceedings, pp. 46–65 (1999)

8. Wimmel , H., Wolf, K.: Applying CEGAR to the Petri net state equation. In:
Tools and Algorithms for the Construction and Analysis of Systems - 17th Interna-
tional Conference, TACAS 2011, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2011, 26 March – 3 April, Saarbrücken,
Germany, 2011. Proceedings, pp. 224–238 (2011)

9. Wolf, K.: Petri net model checking with LoLA 2. In: Application and Theory of
Petri Nets and Concurrency - 39th International Conference, PETRI NETS 2018,
24–29 June 2018, Bratislava, Slovakia, Proceedings, pp. 351–362 (2018)

https://doi.org/10.1007/978-3-319-19488-2_16
https://doi.org/10.1007/978-3-030-21571-2_18

	Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach
	1 Introduction
	2 Basic Definitions
	3 Increasing and Decreasing Transitions
	4 CEGAR Approach for Reachability Analysis in Petri Nets
	5 Solving E (U) with the CEGAR Approach
	6 Solving (EX)k with the CEGAR Approach
	7 Solving Finite-linear-path CTL-formulas with the CEGAR Approach
	8 Partially Solving EG with the CEGAR Approach
	9 Conclusion and Future Work
	References

