
A Two-Player Asynchronous Game
on Fully Observable Petri Nets

Federica Adobbati, Luca Bernardinello(B), and Lucia Pomello

DISCo, Università degli Studi di Milano - Bicocca, Viale Sarca 336 U14, Milan, Italy
luca.bernardinello@unimib.it

Abstract. A Petri net is distributed if its elements can be assigned to
a set of locations so that each element belongs to exactly one location,
and each transition belongs to the same location as its input places.

We define an asynchronous game played on the unfolding of a dis-
tributed net with two locations, the ‘user’ and the ‘environment’. The
user can control the transitions in its location. A play in the game is a
run in the unfolding, together with a sequence of cuts in that run. The
rules of the game require that the environment satisfies a progress con-
straint: no transition in its location can be indefinitely postponed. In the
general case, the game can be defined so that the user can observe only
some transitions. In this paper, we only consider the case in which all
transitions are observable, and study a reachability problem, in which
the user tries to fire a target transition. We propose an algorithm which
decides if the user has a winning strategy and, if so, computes a winning
strategy.

1 Introduction

The ideas behind this paper were conceived while studying the problem of weak
observable liveness [3,6], where we suppose that a Petri net models a system
comprising a user and an environment; the user controls a subset of transitions,
and observes a subset of transitions. The aim of the user is to force liveness of a
special transition (the target), whatever the behaviour of the environment. The
environment is supposed to guarantee progress of uncontrollable transitions.

The problem can be stated as deciding whether the user has a strategy allow-
ing him to achieve his aim, irrespective of the choices of the environment. The
strategy is formalized as a response function, mapping observations (sequences
of observable transitions) to sets of controllable transitions.

In a first attempt to develop an algorithm for finding a strategy, the problem
was translated into an infinite game on a finite graph, where the finite graph is
derived from the marking graph of the net [3]. Besides the usual problem of state
explosion, this approach hides the potential concurrency in the net, by using an
interleaving semantics.

Hence, the authors started to explore the idea of defining an asynchronous
game, to be played on the unfoldings of Petri nets, in which to encode the

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 126–149, 2021.
https://doi.org/10.1007/978-3-662-63079-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_6&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_6

A Two-Player Asynchronous Game on Fully Observable Petri Nets 127

weak observable liveness problem, but also several other problems, formalized
by defining a suitable aim for the user. Such a game was proposed in [4], where
its application to weak observable liveness was studied.

Other possible applications of such a game could be in the general frame of
verification, adaptation and control of distributed systems; so that, in the case
of a winning strategy for the user with respect to a specific behavioral property,
the system model could be adapted imposing that specific property, for example
by adding an interacting component which implements the user behavior by
synthesising the winning strategy; a reference for this sort of applications could
be for example [12].

In this paper, we consider distributed net systems, in which all choices are
local to one component, restricted to the case of exactly two components, user
and environment, where the user has a sequential behaviour, whereas in the
environment, transitions can be concurrent with each other, and with user’s
transitions.

We propose an asynchronous game played on the unfolding of the system in
a general setting, so that by defining proper strategies, we can adapt the same
model for the verification of different properties. Here we study a reachability
problem, in which the user tries to fire a target transition.

In the general case, in which the user can observe the occurrence of only some
environment’s transitions, the definition of the game on unfolding may allow to
define a winning strategy for the user, whereas this would be not possible by
considering a game based on interleaving semantics. This fact has been briefly
discussed on the basis of an example in [2] and is motivated by the fact that,
in the unfolding, it is possible to distinguish different occurrences of the same
transition, occurrences which can be differently related to other occurrences of
another transition. In this way, the structure of the unfolding, even with partial
observability, may allow to reconstruct the unobservable evolution of the system.

Obviously, the lack of information may even prevent to find a winning strat-
egy; the chances of having a winning strategy for the user increase by observing
as much as possible the behaviour of the environment; and if the user has no
strategy by observing every transitions, there is no hope in the case of partial
observability.

As a first step towards the identification of an algorithm in the general case
of partial observability, in this paper we assume full observability, and propose
an algorithm on the unfolding which decides if the user has a winning strategy
and, if so, it computes such a winning strategy.

The paper, which is an extended, revised version of [1], is structured as
follows. In the next section, we recall the needed notions about Petri nets, dis-
tributed Petri nets, and unfoldings, In Sect. 3 we define the general game, and
the notions of strategy and winning strategy. The problem of controlled reacha-
bility is introduced in Sect. 4, together with the algorithm looking for a winning
strategy. Several approaches to notions of asynchronous games are briefly dis-
cussed in Sect. 5, while prospects for future developments are presented in the
final section.

128 F. Adobbati et al.

2 Petri Nets

Petri nets model concurrent systems. The basic elements of a net are local states
(places) and local transitions. The global state of a net is distributed among its
local states. When a transition occurs, it changes the value of local states in its
neighbourhood. Several types of nets have been defined and studied. Here, we
use 1-safe net systems.

Definition 1. A net is a triple N = (P, T, F), where P and T are disjoint sets.
The elements of P are called places and represented by circles, the elements of
T are called transitions and represented by squares. F is called flow relation,
with F ⊆ (P × T) ∪ (T × P), and is represented by arcs.

Let x ∈ P ∪ T be an element of the net; the pre-set of x is the set •x = {y ∈
P ∪ T | (y, x) ∈ F}, the post-set of x is the set x• = {y ∈ P ∪ T | (x, y) ∈ F}.

We assume that any transition has non-empty pre-set and post-set: ∀t ∈ T ,
•t �= ∅ and t• �= ∅.

A net is infinite if P ∪ T is infinite, finite otherwise.
Two transitions, t1 and t2, are independent if (•t1 ∪ t•1) and (•t2 ∪ t•2) are

disjoint.
A net N ′ = (P ′, T ′, F ′) is a subnet of N = (P, T, F) if P ′ ⊆ P , T ′,⊆ T , and

F ′ is F restricted to the elements in N ′.

Definition 2. A net system is a quadruple Σ = (P, T, F,m0) consisting of a
finite net N = (P, T, F) and an initial marking m0 : P → N.

A transition t is enabled at a marking m, denoted m[t〉, if, for each p in •t,
m(p) > 0. A transition t, enabled at m, can occur (or fire) producing a new
marking

m′(p) =

⎧
⎪⎨

⎪⎩

m(p) + 1 if p ∈ t• \ •t
m(p) − 1 if p ∈ •t \ t•

m(p) otherwise

A marking m′ is reachable from another marking m, if there is a sequence
t1t2 . . . tn such that m[t1〉m1[t2〉 . . . mn−1[tn〉m′; in this case, we write m′ ∈ [m〉.
The set of reachable markings is the set of markings reachable from the initial
marking m0, denoted [m0〉.

A net system is 1-safe if, for each reachable marking m, and each place p,
m(p) ≤ 1. Markings in 1-safe net systems can, and will be, considered as subsets
of places.

In a net system, two transitions, t1 and t2, are concurrent at a marking m if
they are independent and both enabled at m.

The non sequential behaviour of 1-safe net systems can be recorded by occur-
rence nets, which are used to represent by a single object the set of potential
histories of a net system. In the following, by F ∗ we denote the reflexive and
transitive closure of F .

Two elements x, y ∈ P ∪ T are said to be in conflict, denoted x#y, iff there
exist t1, t2 ∈ T : t1 �= t2, t1F

∗x, t2F
∗y ∧ ∃p ∈ •t1 ∩ •t2.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 129

Definition 3. A net N = (B,E, F) is an occurrence net if

– for all b ∈ B, |•b| ≤ 1
– F ∗ is a partial order on B ∪ E
– for all x ∈ B ∪ E, the set {y ∈ B ∪ E | yF ∗x} is finite
– for all x ∈ B ∪ E, x#x does not hold

We will say that two elements x and y, x �= y, of N are concurrent, and write
x co y, if they are not ordered by F ∗, and they are not in conflict.

By min(N) we will denote the set of minimal elements with respect to the
partial order induced by F ∗.

A B-cut of N is a maximal set of pairwise concurrent elements of B. B-cuts
represent potential global states through which a process can go in a history of
the system. By analogy with net systems, we will sometimes say that an event
e of an occurrence net is enabled at a B-cut γ, denoted γ[e〉, if •e ⊆ γ. We will
denote by γ + e the B-cut (γ\•e) ∪ e•. A B-cut is a deadlock cut if no event is
enabled at it.

Let Γ be the set of B-cuts of N . A partial order on Γ can be defined as
follows: let γ1, γ2 be two B-cuts. We say γ1 < γ2 iff

1. ∀y ∈ γ2∃x ∈ γ1 : xF ∗y
2. ∀x ∈ γ1∃y ∈ γ2 : xF ∗y
3. ∃x ∈ γ1,∃y ∈ γ2 : xF+y

In words, γ1 < γ2 if any condition in the second B-cut is or follows a condition of
the first B-cut and any condition in the first B-cut is or comes before a condition
of the second B-cut (and there exists at least one condition coming before).

A sequence of B-cuts, γ0γ1 . . . γi . . . is increasing if γi < γi+1 for all i ≥ 0.
We will say that an event e ∈ E precedes a B-cut γ, and write e < γ, iff

there is y ∈ γ such that eF+y. In this case, each element of γ either follows e or
is concurrent with e in the partial order induced by the occurrence net.

Definition 4. A branching process of Σ = (P, T, F,m0) is an occurrence net
N = (B,E, F), together with a labelling function μ : B ∪ E → P ∪ T , such that

– μ(B) ⊆ P and μ(E) ⊆ T
– for all e ∈ E, the restriction of μ to •e is a bijection between •e and •μ(e);

the same holds for e•

– the restriction of μ to min(N) is a bijection between min(N) and m0

– for all e1, e2 ∈ E, if •e1 = •e2 and μ(e1) = μ(e2), then e1 = e2

A run of Σ is a branching process (N,μ) such that the conflict relation of the
underlying occurrence net is empty.

For γ a B-cut of N , the set {μ(b) | b ∈ γ} is a reachable marking of Σ, and we
refer to it as the marking corresponding to γ.

Let (N1, μ1) and (N2, μ2) be two branching processes of Σ. We say that
(N1, μ1) is a prefix of (N2, μ2) if N1 is a subnet of N2, and

130 F. Adobbati et al.

– min(N1) = min(N2)
– if b ∈ B1 and (e, b) ∈ F2, then e ∈ E1

– if e ∈ E1, and b is either a precondition or a postcondition of e in N2, then
b ∈ B1

For any 1-safe net system Σ, there exists a unique, up to isomorphism, maximal
branching process of Σ. We will call it the unfolding of Σ, and denote it by
unf(Σ) (see [7]).

A run of Σ describes a particular history of Σ, in which conflicts have been
solved. Any run of Σ is a prefix of the unfolding unf(Σ); we will also say that
it is a run on unf(Σ).

In this paper we are interested in Petri nets modelling systems in which a
User controls a subset of transitions, while interacting with an Environment.
Intuitively, this means that the User can decide whether to fire such a transition
when it is enabled.

We also assume that choices among transitions are local either to the Envi-
ronment or to the User, and that transitions controlled by the User are never
concurrent with each other, while they can be concurrent with transitions in the
Environment.

As a formal setting, we refer to the so-called distributed net systems, as
introduced and studied in [5] and in [10].

Definition 5. A distributed net system over a set L of locations is a 1-safe net
system Σ = (P, T, F,m0) together with a map

λ : (P ∪ T) → L

such that for every p ∈ P , t ∈ T , if p ∈ •t, then λ(p) = λ(t).

In this paper, we consider the special case of distributed net systems 〈Σ,λ〉
such that L = {Environment,User}, i.e. of distributed net systems with only
two components, representing the Environment and the User, respectively; we
assume that the User controls all transitions in its location, and these transitions
are never concurrent with each other. From now on, by distributed net system
we will mean a net system satisfying these constraints.

In distributed net systems, when a transition is enabled, it can never be
disabled by the occurrence of transitions belonging to different components. In
the case of a cycle this observation justifies the following lemma.

Lemma 1. Let 〈Σ,λ〉 be a distributed net system with two locations, A and G.
Let m be a marking, and

m1[t1〉m2[t2〉m3[...〉m1

be a firing sequence with λ(ti) = A for each i. Then, if λ(t) = G, and t is enabled
at mi for some i between the two repetitions of m1, then t is enabled at mj for
each mj in the cycle.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 131

The notions of unfolding and run apply in the obvious ways to distributed net
systems. We will use Ec to denote the set of controllable events in the unfolding
(occurrences of controllable transitions, performed by the User), and Enc =
E \ Ec to denote uncontrollable events. Uncontrollable transitions are meant to
represent actions performed by the Environment.

In the graphical representation, controllable transitions and events will be
represented by black squares.

Fig. 1. A distributed net system with two locations

Example 1. Figure 1 shows a distributed net system with two locations. Places
are not explicitly divided into the two components, because their partition can
be inferred by their post-transitions. A prefix of the unfolding of the system is
shown in Fig. 2. Each element of the unfolding is decorated with the label of an
element in the net, with an exponent which distinguishes different occurrences
of the same element. The dotted line suggests that the unfolding goes on by
repeating occurrences of transitions t1 and t2, and of their neighbouring places.

3 An Asynchronous Game on the Unfolding

Let Σ be a distributed net system with two locations, Environment and User.
We assume that the Environment is subject to a progress (or weak fairness)
property: if an uncontrollable transition is enabled, then it will eventually either
fire or become disabled.

We define a game on unf(Σ). A play in the game is a run, weakly fair with
respect to uncontrollable transitions, together with an increasing sequence of
B-cuts, which can be seen as a potential record of the play as observed by an
external entity. Several transitions can occur between two contiguous cuts in the
sequence.

132 F. Adobbati et al.

Fig. 2. The unfolding of the distributed net system in Fig. 1

Definition 6. Let ρ = (Bρ, Eρ, Fρ, μρ) be a run on unf(Σ) and π = γ0, γ1, · · · ,
γi, · · · an increasing sequence of B-cuts. The pair (ρ, π) is said to be a play if:

– ∀e ∈ Enc\Eρ, the net obtained by adding e and its postconditions to ρ is not
a run of unf(Σ);

– ∀e ∈ Eρ there is a B-cut γi ∈ π such that e < γi.

In general, the winning condition for the User is defined by a set of plays. The
significant cases to analyse are those in which the winning set is determined by
a property that we are interested in investigating on the model.

For example, let us suppose that we are interested in knowing if a user is able
to force the occurrence of a target transition once. We can model this problem
as a game in which the User wins a play if the corresponding run contains an
occurrence of the target transition.

Another possible goal of a play, as analysed for example in [9], is to verify if
it is always possible to avoid a certain marking in a controllable system. In this
case the User wins those plays in which there are no cuts associated with that
marking. Whatever the goal of the game is, a strategy is a function formalizing
the behaviour of the User during a play.

In general, one might suppose that the User cannot observe everything in the
system. For instance, it might not directly observe firings of some transitions in
the Environment. In this paper, we suppose that the User can see all occurrences
of transitions. This implies that the User can determine the current cut in the
unfolding on the basis of the transition occurrences observed so far; hence, a
strategy can be defined as a map from B-cuts to sets of controllable events.

Definition 7. Let Γ be the set of B-cuts in unf(Σ). A strategy is a function
α : Γ → 2Ec such that for every γ ∈ Γ and for every e ∈ Ec, if e ∈ α(γ), then e
is enabled in γ.

Definition 8. Let (ρ, π) be a play. An event e ∈ Ec is finally postponed in
(ρ, π) iff there is a cut γi ∈ π in which e is enabled and such that ∀k ≥ i, γk[e〉.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 133

Definition 9. Let (ρ, π) be a play and α be a strategy. An event e ∈ Ec is finally
eligible in (ρ, π) by α iff there is a cut γi ∈ π such that e ∈ α(γi) and ∀k ≥ i,
e ∈ α(γk).

A play complies with a strategy if all controllable events in the play have been
chosen according to the strategy, and no controllable event is finally postponed
and eligible.

Definition 10. Let ρ = (Bρ, Eρ, Fρ, μρ) be a run in unf(Σ), π = γ1γ2, ... be an
increasing infinite sequence of B-cuts and α be a strategy. The pair (ρ, π) is an
α−play iff:

1. (ρ, π) is a play;
2. For every controllable event e belonging to Eρ, there must be a B-cut γi ∈ π

such that e ∈ α(γi) and γi+1 = (γi\•e) ∪ e•.
3. If |Eρ ∩Ec| < ∞, there is no event e ∈ Ec ∩Eρ finally eligible by α and finally

postponed in the play.

A strategy α : Γ → 2Ec is winning iff the User wins all the α-plays. In general,
if there is a winning strategy, it is not unique.

Example 2. The net system shown in Fig. 1 is distributed, with two locations.
Define a game on its unfolding, shown in Fig. 2, so that the User wins a play if
the play contains an occurrence of t7.

By inspecting the net, it is clear that a winning strategy for the User consists
in waiting for the Environment to choose between t5 and t6, and then fire,
respectively, either t8 or t9. Since the Environment cannot postpone its choice
forever, and will be forced to eventually fire either t3 or t4, the User will be
able to fire t7, and win the game. Formally, the winning strategy can be defined
as follows: α({p11, p

1
6, p}) = {t19}, where p is any occurrence of either p9 or p10,

α({p11, p
1
5}) = {t18}, α({p27}) = {t27}, α({p17, p}) = {t17}, where p is any occurrence

of either p9 or p10, α(γ) = ∅ for any other B-cut γ. In particular, α({p11, p
1
2}) = ∅,

to encode the decision to wait, in the initial cut, for the Environment to choose
its first move. Figure 3 shows an α-play.

4 Controlled Reachability

In this section we apply the general idea of asynchronous game to a specific
reachability problem, and propose an algorithm to determine if the User has a
winning strategy.

Let 〈Σ,λ〉, where Σ = (P, T, F,m0), be a distributed net system. The prob-
lem of controlled reachability consists in determining if the User is able to lead
the system to fire a certain transition once, despite the Environment behaviour,
starting from the initial marking. This can be analysed through a game on the
unfolding. Let t be the target transition; we define as winning condition for the
User the set of plays (ρ, π) in which there is an event e ∈ Eρ labelled with t.

134 F. Adobbati et al.

Fig. 3. An α-play on the unfolding in Fig. 2

A target transition t is controllably reachable in Σ if, and only if, there is a
strategy α on unf(Σ) such that the User wins every α-play. Example 2 above
can be seen as a game of controlled reachability. The strategy discussed in the
example is a winning strategy for this game.

Fig. 4. A distributed net system

Example 3. The net shown in Fig. 4 is distributed, with two locations. Consider
the game of controlled reachability played on its unfolding, shown in Fig. 5,
where the target transition is t4. If the Environment cooperates with the User
by eventually choosing t1, then the target is reached. However, the Environment
can choose t2 at every cut consisting in an occurrence of p1. The Environment
is subject to a weak fairness constraint, but not to a strong fairness constraint.
Hence, irrespective of the strategy chosen by the User, an infinite play made of
repeated occurrences of the cycle p1, t2, p2, t3, p1 is admissible.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 135

Fig. 5. The (prefix of the) unfolding of the net system shown in Fig. 4

In a general case, given a strategy α, there are infinitely many α−plays in
unf(Σ), and some plays could be infinite, hence the exhaustive exploration of
them would take infinite time. We propose an algorithm that, given a distributed
net system and a target transition, establishes if there is a winning strategy for
the controlled reachability of the target and, if so, computes a winning strategy.

4.1 Algorithm for a Winning Strategy

In this section we present the algorithm looking for a winning strategy for the
reachability of a target transition on fully observable systems, and we illustrate
it on the system in Fig. 1, already discussed in Example 2. The algorithm we
present generates a prefix of the unfolding of a given net system, deciding whether
there exists a winning strategy for the User. In the positive case, it gives as
output a strategy as a function on reachable markings; the strategy is initially
associated to B-cuts of the unfolding, but the algorithm works so that, for distinct
cuts corresponding to the same marking, the strategy gives the same answer.

The input data are the following:

– A net in which the transitions are enumerated so that all the uncontrollable
transitions precede all the controllable ones. If the target is a controllable
transition, it must be the first of the controllable transitions.

– The position of the first controllable transition.
– The initial marking m0 of the system.
– The target transition.

The value of these variables is available for all the functions of the algorithm
and does not change during its execution.

The core of the algorithm is the recursive function unf exploration (see
Algorithm 1), which unfolds the net by exploring reachable cuts, and constructs
at the same time a prefix of the unfolding and a strategy.

The function takes five input arguments:

1. γ: the cut that must be analysed;
2. M : the list of markings associated to the cuts already analysed in the current

run;
3. El: the list of events that fired in the current run;

136 F. Adobbati et al.

4. e: the last event added to the current run, leading to γ;
5. sz: the set of events enabled in γ that are part of a cycle or that are in conflict

with events that are in a cycle.

It returns a Boolean variable, that is equal to True if there is a winning strat-
egy, for all the plays passing from the input cut γ consistent with the strategy,
False otherwise. In addition, it possibly modifies the prefix and the strategy,
initially empty, filling them with events, cuts and choices already explored.

The first time that the function is called, the input consists always in the
initial cut γ0 in the unfolding, empty lists for the list of visited markings, the list
of analysed events and the list of events that are part of cycles or in conflict with
them (those events will be discovered during the execution of the algorithm), a
fictitious event i. The function unf exploration uses some auxiliary functions:

– enab n is a function that has an input cut and returns the list of uncontrol-
lable events which are enabled in that specific cut;

– similarly, enab c returns the controllable enabled events.
– extract returns the first element of an input list, and the list deprived of

this element.
– stable zone returns the set of events that can be part of a cycle, and those

in conflict with them.

Let us recall that we denote with γ + e the cut obtained by firing the event
e in the cut γ.

The function constructs every run by adding uncontrollable events until one
of the following cases occurs: (1) the target occurs; (2) a deadlock cut is reached
or a cut is reached in which only transitions that are part of a cycle or that are
in conflict with events in a cycle are enabled; (3) a cut that has been previously
analysed is reached (two subcases are considered); (4) a cut is reached in which
no uncontrollable event is enabled, and some controllable events are enabled; (5)
a cut is reached corresponding to a marking which has already been visited in the
current run, and there are not uncontrollable enabled events that are concurrent
with all the ones that occurred between the two equivalent markings.

In case (1), the current run corresponds to a play won by the User; hence
the function tries to backtrack along choices among uncontrollable events, if
possible. Symmetrically, in case (2), the current run corresponds to a play won
by the Environment; hence, the function tries to backtrack along choices among
controllable events, if possible. In cases (3), the current run is the prefix of a
set of runs that have been already analysed. The User wins or loses according
to the analysis previously done. In case (4), a controllable event is added, and
the exploration restarts from the new cut. Finally, in case (5), if possible, a
controllable event is added, and the exploration restarts from the new cut; if
this is not possible, the run corresponds to a play won by the Environment and
the function tries to backtrack and change the previous controllable choices.

Example 4. Consider the net system shown in Fig. 1, and its unfolding (Fig. 2),
where the ordering on the set of transitions is given by their indices. Starting from

A Two-Player Asynchronous Game on Fully Observable Petri Nets 137

Algorithm 1. Unfolding exploration
function unf exploration(γ, M , El, e, sz)

if e == target then return true
else if γ is a deadlock or enables only transitions in sz then return false
else if γ ∈ Γbad then return false
else if γ ∈ Γgood then return true
else if μ(γ) ∈ M then return explore cut c(γ, M, El)
else if enab n(γ) �= ∅ then

E =enab n(γ)
repeat

e0, E = extract(E)
v = unf exploration(γ + e0, M.append(μ(γ)), E.append(e), e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
end if

until E == ∅ ∨ v == false
if v == true then

if γ ∈ ver then
sz =stable zone(E)
v = Unf exploration(γ, M, El, e)

else
Γgood.append(γ)

end if
else

Γbad.append(γ)
end if
return v

else
E =enab c(γ)
repeat

e0, E = extract(E)
v = Unf exploration(γ + e0, M.append(μ(γ)), El.append(e), e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
str = str ∪ [γ, e0]

end if
until E == ∅ ∨ v == true
if v == true then

if γ ∈ ver then
sz =stable zone(E)
v = Unf exploration(γ, M, El, e)

else
Γgood.append(γ)

end if
else

Γbad.append(γ)
end if
return v

end if
end function

138 F. Adobbati et al.

the initial B-cut, the algorithm adds the event t15, reaching a cut in which only
controllable transitions are enabled. It then adds t18, reaching the cut {p13, p

1
5},

and starts again adding uncontrollable transitions. This run will lead to the
target event t27, hence it is not necessary to backtrack on controllable events.

The next backtracking step goes back to the initial cut, and starts exploring a
new run by adding t16; from {p11, p

1
6, p

1
10}, the events t11 and t12 fire. This produces

the cut {p11, p
1
6, p

2
10}, that corresponds to a marking that has already been visited.

Hence, the controllable event t18 is added, leading to a cut in which only the cycle
formed by occurrences of t1 and t2 can occur, thus repeating the same marking.
The algorithm backtracks and tries t19. The events t21 and t14 are enabled in
{p14, p

1
6, p

2
10}. Due to the order of the transitions of the net, t21 and t22 occur,

reproducing the same marking. In order to guarantee the progress of the system,
the algorithm adds only events that have been enabled since the first repetition
of the marking associated with the current cut and have never been disabled
from that moment on.

In Example 4, the only event that satisfies these requirements is t14. By pro-
ceeding in this way, the algorithm continues until the target is reached.

In the following, we explain in detail how unf exploration works in a
general step of execution of the algorithm. If γ is a cut of a play on the unfolding,
one of these situations is verified:

1. γ is not a deadlock, it enables events that are not part of cycles or in conflict
with them, has not been previously analysed, it is the first time that the
associated marking is visited in the play, the target has not occurred yet and
there are k uncontrollable enabled transitions to analyse in μ(γ). In this case,
the prefix of the play currently ending with γ is extended in k different plays,
each of them obtained by adding a different uncontrollable event after γ. The
output for this step is True only if the values returned by all recursive calls
on the cuts that immediately follow γ is True.
Considering the system in Fig. 1 and its unfolding (Fig. 2), we find the
described situation in the initial cut of the unfolding: in {p11, p

1
2}, both the

events t16 and t15 are enabled. Therefore, the algorithm extends the current
prefix considering the two plays obtained by adding the two events and the
cuts that follow their occurrence.

2. γ is not a deadlock, μ(γ) has never been analysed in the play, the target
did not fire in the previous part of the play and the only enabled events
that are not part of cycles or in conflict with them are controllable. In this
case, the algorithm analyses the controllable events in the order induced by
enumeration of the transitions in the net, until it finds an extension that
returns True as output or it ends the analysis of all the controllable events
enabled in γ.
Referring to Fig. 2, the cut {p11, p

1
5} enables t18 and t19. The algorithm starts

constructing the play with t18. After verifying that the User wins all the α-
plays passing from the cut {p13, p

1
5}, the function does not continue with the

analysis of t19, and returns the Boolean value True.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 139

3. Either γ is a deadlock, or all the enabled events are part of a cycle or in
conflict with events in a cycle, or γ follows the target transition. These are
base cases for the recursive algorithm. Their occurrence stops the exploration
for that play. If the target fired, the algorithm returns True, in all the other
cases of this situation, it returns False.
In the considered example, all the plays ending with a cut in which there is
an occurrence of p8 are winning for the User (because an occurrence of t7 has
necessarily fired).

4. γ has already been considered in a previous step. In this case, the analysis
stops and the function returns True, if the first analysis of the cut returned
True, and False otherwise. This case is verified in case of concurrency in the
Environment component.

5. μ(γ) was already visited in the play. In this case, the algorithm checks if any
controllable event fired between the two repetitions. If this happens it returns
False. (This is justified by the fact that the victory of the user cannot depend
on the choice of a controllable transition that contributes to a cycle without
the target.) Otherwise, it analyses only the events that are enabled and con-
current with all the ones fired in the cycle. If there are uncontrollable events
among them, then it behaves as in 1; if there are only controllable events, it
behaves as in 2; if there is no event satisfying the requirements, it behaves
like in a deadlock situation.
During the execution of the algorithm on the system in Fig. 1, the cut
{p13, p

1
6, p

3
10} is analysed. The only enabled event is t31, but it is not added

to the play, because it depends on the repeated occurrences of transitions t1
and t2, that create a cycle in the system. Hence, the algorithm returns False
for this particular play. Later, changing the controllable choice, it analyses
the cut {p14, p

1
6, p

3
10}. In this cut, t14 is enabled and concurrent with all the

occurrences of t1 and t2, hence, the algorithm extends the play with it.

The functions explore cut c (Algorithm 2) and f (Algorithm 3) deal with
concurrency. Specifically, explore cut c is called by unf exploration when
a cut associated with a marking repeated in the run is detected. The function f
is called by explore cut c; it takes the current cut, the list of the previously
visited markings, and the list of events that have been fired. It checks whether
a controllable event fired in the cycle; if not, it returns the list E of events
concurrent with all the events occurred after the first cut in the run associated
to the same marking as the current one. The events in E are the only ones
considered by explore cut c to extend the prefix of the run.

In Algorithm 2, there are two more auxiliary functions:

– ENC takes a list of events as input, and returns only the uncontrollable ones.
– Symmetrically, EC takes a list as input, and returns the controllable events

in it.

Both unf exploration and explore cut c are responsible for the con-
struction of the prefix and the strategy. The prefix is updated every time that
unf exploration returns the value True (with the exception of the very first

140 F. Adobbati et al.

call). When this happens, the receiving function appends to the prefix a triple
consisting of its input cut γ, the following cut γ + e that was in input to the
call to the function that just returned True, and the event e. If the added event
e is controllable, then the strategy is also updated. In particular, the algorithm
appends the input cut γ coupled with the controllable transition μ(e) to the
current strategy.

At the end of the execution of unf exploration, if there is a winning
strategy, it is defined on the cuts of the prefix. To complete it, we have to
define it on the markings, detect the parts of the plays corresponding to a cyclic
behaviour on the system and, if the strategy chooses a transition immediately
after them, the algorithm has to fill the strategy, attributing the same choice to
all the markings in the cycle.

4.2 Discussion

In this section, we discuss the correctness of the proposed algorithm.

Lemma 2. Every play exploration ends due to one of the following ending
criteria:

1. The target fires. In this case the User wins all the α−plays with the constructed
prefix.

2. The play reaches a deadlock cut γ before reaching the target. In this case the
User loses the play.

3. The play reaches a cut in which the target has not fired, and the only enabled
transitions can be part of cycles or in conflict with transitions that can be part
of a cycle. In this case the user loses the play.

4. The play reaches a cut γ that was previously analysed.
5. The play reaches a cut γ′ such that there is another cut γ : γ < γ′ for which

μ(γ) = μ(γ′), γ corresponds to the first occurrence of μ(γ) in the play, and
– either γ′ does not enable any event that is concurrent with all the events

occurred between γ and γ′,
– or there is a controllable event e such that γ < e < γ′.

If the prefix is consistent with the strategy, the User loses at least an α−play.

Moreover, if α is a strategy defined on the markings, then, for every prefix of an
α−play determined with one of these criteria, we can decide if the User wins all
the α−plays starting with such a prefix.

Proof. 1. If the target fired in the prefix, then every play with such a prefix is
winning for the User, because it includes the target.

2. If the target does not fire and the play is in a deadlock, the prefix coincides
with the whole play. Since it does not have the target, it is losing for the User.

3. If the target does not fire and the only enabled transitions can be part of a
cycle or in conflict with transitions in cycles, then the user cannot prevent
the environment to remain in the cycles forever (the transitions in a cycle are
uncontrollable by construction). Since the target is not part of this cycle, the
user cannot be sure to reach it.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 141

Algorithm 2. Cuts associated with markings already visited in the prefix
Input: the cut γ that must be analysed, the ordered list M and E of the markings
and events that occurred in the run before γ.

function explore cut c(γ, M, El)
E, Elreap = f(γ, M, El)
if E = ∅ ∨ EC(Elreap) �= ∅ then return false
else

E = f(γ, M)
Enc = ENC(E)
Ec = EC(E)
if Enc �= ∅ then

v = true
repeat

e0, Enc = extract(Enc)
v = unf exploration(γ + e0, M, e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
end if

until Enc == ∅ ∨ v == false
if v == true then

Γgood.append(γ)
else

Γbad.append(γ)
end if
ver.append(μ(γ), Elreap)
return v

else
v = false
repeat

e0, Ec = extract(Ec)
v = unf exploration(γ + e0, M, e0)
if v == true then

unf = unf ∪[γ, e0, γ + e0]
str = str ∪ [γ, e0]

end if
until Ec == ∅ ∨ v == true
if v == true then

Γgood.append(γ)
else

Γbad.append(γ)
end if
ver.append(μ(γ), Elreap)
return v

end if
end if

end function

142 F. Adobbati et al.

Algorithm 3. Events that are concurrent with the ones that already fired in
the run
Input: the cut γ that must be analysed and the ordered lists M, El of the markings
and the events that occurred in the run before γ.
Output: list of events that have been enabled from the cut associated with the first
occurrence of the marking μ(γ) to the current cut γ, list of events that occurred in the
run between the two repetitions on μ(γ).

function f(γ, M, El)
i = 0
while M [i] �= μ(γ) do

i = i+1
end while
Elreap = El[i : len(El)]
E = []
for all e ∈enab c(γ) do

if μ(e) enabled in m ∀m ∈ M [i : len(M)] then
E.append(e)

end if
end for

return E, Elreap

end function

Algorithm 4. Full strategy
v = unf exploration(γ0, [], i)
if v == True then

str = cuts to markings()
str = complete strategy()

end if

4. If two prefixes end with the same cut γ, it means that they differ only for the
order in which the concurrent events occurred, and their possible elongations
are the same. The winning condition for the User does not depend on the
order in which events occurred, but only from the presence of the target in
the run. Hence, if the algorithm is requested to analyse a cut for which it has
already determined if α is winning, it can immediately stop and return the
same answer.

5. First, we have to show that if the play does not reach the target, does not
end with a deadlock, and does not reach a cut previously analysed, then this
last criterion is verified. The number of reachable markings in the system is
finite, hence after a number of steps equal at most to the number of reachable
markings, the algorithm analyses a cut γ′, such that μ(γ) = μ(γ′), where γ is a
cut preceding γ′ and belonging to the same play. Let us suppose that k events
are enabled in γ′ and concurrent with all the ones fired between γ and γ′. The
algorithm adds one of these to the play and continues as before. If the play
reaches a cut γ′′ such that μ(γ) = μ(γ′′), then the events that the algorithm
analyses are necessarily strictly less then k, because they should be concurrent

A Two-Player Asynchronous Game on Fully Observable Petri Nets 143

both with the events occurred between γ and γ′ and with those fired between
γ′ and γ′′. Since for every repetition, the number of events satisfying the
requirements to be added decreases, after at most k cuts corresponding to
the same marking μ(γ), the third criterion is satisfied. Notice that this does
not depend on the specific cut: the same reasoning applies to all markings.
The next step is showing that if there is an α−play with such a prefix, then
there is at least an α−play in which the User loses. We first consider the
case in which there are not enabled events concurrent with all the ones in the
cycle. If the prefix follows the strategy α, then the play repeating infinitely
many times the behaviour of the prefix is an α−play and the target never
occurs. We cannot guarantee that the User will lose all the α-plays with such
a prefix, but the fact that there is at least one is enough to state that α is
not a winning strategy for the User. Secondly, we consider the case where a
controllable transition fired between two occurrences of the same marking.
By construction, the algorithm analyses controllable events only when all the
significant uncontrollable events have been fired; hence, there cannot be any
uncontrollable event that is concurrent with the cycle and that leads to the
target, otherwise it would have been analysed before in the prefix. Again, if
the prefix is consistent with the strategy, the play that repeats infinitely often
the cycle is an α−play and does not contain the target.

��
A consequence of Lemma 2 is the termination of the algorithm. We proved that
every prefix constructed by the algorithm is finite. The number of considered
α−plays is also finite, because at every step there is only a finite number of
enabled events to extend the prefix.

By construction, if the algorithm finds a winning strategy, all the runs in the
prefix: (1) are consistent with the strategy, and (2) contain the target.

(1) All the plays in the list are consistent with the strategy. Every time that
the algorithm analyses a cut γ and chooses to extend the prefix with a
controllable event, it explores all the plays including γ and, one by one,
each of the controllable enabled events. It stops when it finds a controllable
enabled event such that, from the cut of the unfolding following this event,
the User has a winning strategy. When this happens, the prefix is updated,
adding the event and the cuts preceding and following it. Also the strategy is
updated, choosing the associated controllable transition in γ. In this way, at
every step, all the parts of runs in the prefix constructed until that moment
are consistent with the strategy updated until that moment. If in γ there
is no controllable enabled event such that, after it, the User has a winning
strategy, then the part of the prefix already generated is not connected to
the initial cut in the unfolding, since the event connecting this part to γ is
not added to the prefix. At the same way, if there is a winning strategy, it
cannot depend on the strategy calculated on the disconnected parts of the
unfolding. If the algorithm finds a winning strategy and a disconnected part
was found, since the algorithm chooses a controllable event in γ only when
it is necessary to win, then there must be another cut in the prefix, that

144 F. Adobbati et al.

precedes γ in the partial order, in which the algorithm adds a controllable
transition that allows the User to avoid γ.

(2) All maximal runs in the prefix contain the target. If a run ends without
the target, then the strategy allowing that run is not winning and must be
changed. If it cannot be changed, then the algorithm will not state that there
is a winning strategy, hence there must be a controllable node in which the
decision previously taken can be changed. When another possible choice is
analysed, all parts of runs depending on the previous one are deleted. Hence
all the remained runs contain the target.

If the algorithm finds a winning strategy, every play in the unfolding consistent
with this strategy is equivalent to an extension of a play in the prefix. This is
shown in two steps.

1. Let us first consider the case without uncontrollable cyclic behaviours of the
system.
The strategy α constructed by the algorithm chooses a controllable transition
only if there are not uncontrollable enabled ones. Let {t1, ..., tn} be a set of
uncontrollable transitions in a play, so that after their occurrence, there are
not other uncontrollable enabled transitions. In whatever order the transitions
are considered, the cut in the unfolding after their occurrence is the same, and
the strategy will choose the same transition, because the following part of the
unfolding is every time visited in the same way. Considering an α−play, there
must be a prefix of its run in the unfolding, because all the uncontrollable
transitions are analysed in all the uncontrollable cuts of the prefix and the
strategy chooses only a transition for every cut, hence the controllable choices
must be the same of the ones considered in the prefix. This is enough to state
that the play is won by the User, because in the common prefix of the run
there is the target transition.

2. If there are uncontrollable cyclic behaviours, such that there is a concur-
rent enabled transition leading to the target, then there is more variety in
the possible α−plays, because the strategy is defined on markings in which
uncontrollable events are enabled. Anyway, if an α-play has a prefix with
the same events of one of the prefixes produced by the algorithm, then it is
won by the User, regardless of the order of the cuts in the play. Some of the
α−plays have a longer uncontrollable part, because if an uncontrollable tran-
sition would be finally enabled, or a controllable transition would be finally
enabled and eligible, there must be a certain point in which it will fire, but
the precise point is unknown. However, since we complete every cycle at least
once and from every cut that is not a repetition all the possible uncontrol-
lable extensions are explored, and since the part of the unfolding starting
from a given cut is isomorphic to the part of the unfolding starting from
every cut corresponding to the same marking, the uncontrollable sequence of
the α−play can be divided in parts such that an isomorphic one has been
considered by the algorithm.

Based on the previous observations, if the algorithm finds a winning strategy,
the proposed strategy is winning in the unfolding.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 145

Finally, we wish to show that if the algorithm states the existence of a winning
strategy and proposes one on the cuts of the prefix, to complete it adding the
same choice to all the markings that are part of a cycle is necessary and does
not change the correctness.

– Let us suppose that a cycle with only uncontrollable transitions is in the
net, and there is a controllable enabled transition that is concurrent with
all the transitions in the cycle and which is necessary for the victory of the
User. The strategy constructed together with the prefix adds the choice of
the controllable transition only in the cut associated to the last repeated
marking. This strategy is incomplete, because the chosen transition is not
finally eligible, since every time that the system is in a marking of the cycle
that is not the one that has been repeated in the prefix, the strategy does not
choose it. To overcome this problem we fill the strategy by adding the choice
of the controllable transition in every marking along the cycle.

– This preserves the correctness of the strategy. Actually, if γ is a cut that in
a certain play is between γ1 and γ2 with γ1 < γ2 and μ(γ1) = μ(γ2) and α′

is the strategy computed by Algorithm 1 and translated on markings, then
necessarily α′(μ(γ)) = α′(μ(γ1)) or α′(μ(γ)) = ∅.
Specifically, if α′(μ(γ)) �= ∅, then it has to be α′(μ(γ)) = α′(μ(γ1)). Let us
suppose that {ti} = α′(μ(γ)), {tj} = α′(μ(γ2)) and ti precedes tj in the
enumeration defined by the input net. Then, ti is not a winning choice in
μ(γ2), but there is a play that leads from γ to γ2 and between these two
cuts only uncontrollable events fire (because the controllable component is
sequential). The algorithm updates the strategy in a cut only if, starting
from that cut, the User is able to win every play. This cannot be the case,
because the play can arrive in γ2 and the User loses the play. Reasoning in
the same way, it cannot be that ti follows tj in the enumeration. Hence it
must be {ti} = α′(μ(γ)) = α′(μ(γ1)).
If μ(γ) is never visited more than once in any run, then α′(μ(γ)) = ∅. We
construct a final strategy α such that α = α′ for every marking m in which
α′(m) �= ∅ and α(m′) = α′(m1) for all m′ such that there is a play in the
unfolding with two cuts γ1, γ2 : μ(γ1) = μ(γ2) = m1 and a cut γ : μ(γ) = m′

and γ1 < γ < γ2.
The marking m′ could be reached in more than one run, and if it is part of
two different uncontrollable cycles, with different repeated markings, there
could be the doubt that α(m′) is not well defined, but this is not possible.
Let us suppose that there is another play in the unfolding with two cuts
γ′
1, γ

′
2 : μ(γ′

1) = μ(γ′
2) = m2 �= m1 and a cut γ′ : μ(γ′) = μ(γ) = m′ and

γ′
1 < γ′ < γ′

2. We have to show that if there is a winning strategy, then
α′(μ(γ1)) = α′(μ(γ′

1)). By contradiction, let us assume {ti} = α′(μ(γ1)),
{tj} = α′(μ(γ′

1)) and ti precedes tj in the enumeration (the opposite case
is equivalent due to the symmetry of definitions). Then, ti is not a winning
choice for γ′

1, otherwise it would have been chosen before analysing tj . If ti is
not winning for γ′

1, then it cannot be winning from γ1, because, starting from
γ1 the play can arrive in γ firing only uncontrollable transitions, and from γ

146 F. Adobbati et al.

there is a path made only by uncontrollable transitions to a cut γ′′
2 such that

μ(γ′′
2) = μ(γ′

1). Since the unfolding starting from γ′′
2 is isomorphic to the one

starting from γ′
1, if the strategy is not winning from γ′

1 it cannot be winning
from γ′′

2 and therefore from γ1.

4.3 Experiments

This work is mainly theoretical, and a full experimental evaluation of the algo-
rithm is beyond the aim of this paper. However, we tested the algorithm on some
preliminary examples, and we plan to extend experimentation in future works.
The set of the examples that we considered and a Python implementation of the
algorithm are available at https://github.com/MC3-lab/PNstrunf.

The parameters of the net that we think are important to consider are: (1)
the number of elements in the net; (2) the number of controllable transitions;
(3) the level of concurrency, i.e. the maximum number of concurrent transitions
that are enabled in a reachable marking; (4) the presence of cycles. We evaluate
the performance of the algorithm by showing the total number of calls to the
functions unf exploration and explore cut c, and the number of cuts in
the prefix at the end of the execution. The results of the experiments are shown in
Table 1. In all these cases, the User has a winning strategy. From the results, we
see that the level of concurrency and the cycles increase the computational cost
of the algorithm. In some cases, cycles raise a lot the number of necessary steps
to arrive at the solutions, without contributing in the research of the strategy
(this is the case in the comparison between the nets bc and bc2). We are currently
working to develop a preprocessing of the net, in order to identify these inactive
part that may not be considered in the research of the strategy.

Table 1. Results of the experiments

Net |P ∪ T | |K| Conc Cycles #calls g dim

Heart 15 2 2 no 10 8

Double heart 26 2 3 No 31 24

Big heart 141 30 2 No 355 126

HeartC 19 2 2 Yes 20 14

bc 23 2 3 No 19 16

bc2 27 2 4 Yes 1882 1162

10conc0 32 0 10 No 5122 1024

10conc1 32 1 10 No 2307 1025

10conc2 32 2 10 No 1028 258

conc 12 2 3 Yes 255 143

https://github.com/MC3-lab/PNstrunf

A Two-Player Asynchronous Game on Fully Observable Petri Nets 147

5 Other Approaches to Asynchronous Games

The general notion of asynchronous game presented in this paper was defined in
[4], where it was applied to a problem of controlled liveness, under the hypothesis
of full observability.

An asynchronous game on Petri nets was also defined by Finkbeiner and
Olderog in [9]. This game is developed for Place/Transition nets, and is played on
their unfoldings. The players are represented by tokens, moving on the places of
the unfolding, divided into two teams: system and environment. System players
have an equivalent function as the User in the game defined by [4] and used
in this paper. Their objective is to guarantee a safety property. For example,
the aim might be to avoid reaching a certain place. The places are divided into
system places, where system players can move, and environment places, reserved
to environment players. The strategy is defined on each place and states which
is the next place where a token has to move. Places are the central elements in
this game, in contrast to the game in [4] where the focus is on transitions.

The information available to the players is another difference. In [4], and in
our approach, this information consists in observed transitions. If a transition
is observable, then the User knows whether the transition occurred or not. If a
transition is unobservable, then there is no way for the User to know whether it
occurred, unless he can infer this from observations. In the game described by
Finkbeiner and Olderog, the players communicate by means of synchronizations.
Participating in the same transition, they acquire the knowledge of the past of
the players that take part to the synchronization. One or the other approach
may be more convenient for the User/System depending on the structure of the
system and on the property that has to be verified.

In [9] a strategy for the System is defined on the unfolding of the net system,
and must be fair, i.e. if a System player can move, then it must do it. This
requirement avoids the trivial case in which safety is verified just because the
players refuse to move. In the game in [4] for a similar reason, progress is granted
by the environment. In that case the User wishes to force a transition to occur
infinitely often. In almost every case this goal would be impossible to reach if
the environment does not fire any of its transitions.

Under the restricted hypothesis of just one environment player (and an arbi-
trary number of system players), and complete information, Bernd Finkbeiner,
Manuel Gieseking and Ernst-Rüdiger Olderog developed a tool, presented in [8],
finding a strategy for the game as defined in [9]. The tool translates the game
to a standard two-players game over finite graphs.

A different approach for the verification of properties through asynchronous
games was developed by several authors, among which Glynn Winskel in [13]
and Julian Gutierrez in [11]. The game is defined on event structures. An event
structure is a set of events in which a partial order and a conflict relation are
defined. Event structures are in relation with Petri nets used in this paper: given
an occurrence net, there is always an event structure with the same partial order
and the same conflict relations of the events in the occurrence net. The opposite
is also true: constructing an occurrence net in which the partial order between

148 F. Adobbati et al.

events is the same as in an event structure is always possible. However, this
occurrence net is not always equivalent to the unfolding of a Petri net. As in
the game in [9], the two players have limited knowledge of what happens in the
system. When two or more events cause the occurrence of another one, there is
an exchange of information that can be used by the strategy. Gutierrez shows
that the game can be applied to the bisimulation problem and model-checking.

6 Conclusions

In this work we have presented an algorithm for the computation of a strategy
for a reachability problem in a distributed net system with full observability.
The algorithm has been implemented and tested on different nets. The next
step consists in studying its complexity.

We plan to apply the general idea of the game to different problems and to
define proper algorithms to find winning strategies in each case.

On the theoretical side, we will consider the case of partial observability. In
this extended case the definition of a strategy needs to be redefined, because
in general, if only some transitions are observable, the current marking of the
system, and the current cut on the unfolding, are unknown. Moreover, while
with full observability the information given by the observations on the system
or on the unfolding is the same, with partial observability a strategy on the
unfolding may be able to distinguish two different evolutions of the system, even
if the observed transitions are the same. This happens because in the structure
of the unfolding there is a track of the different stories of the system, hence being
able to distinguish two events corresponding to the same transition would mean
being able to reconstruct also the unobservable story of the system up to every
observed event.

In addition, we will study the possibility of implementing the strategy, by
adding causal dependencies between controllable and uncontrollable transitions,
formalizing them with the insertion of new places in the net. If it is possible for
a winning strategy to be implemented in such a way, then the goal of the User
will be reached in every execution of the obtained net system.

Another future generalization is increasing the number of players. It would
be interesting to analyse a game in which more than two players try to reach
a goal, eventually in a cooperative or in a competitive way, and considering a
game in which concurrency is allowed also in the User component.

Acknowledgments. This work has been partially supported by MIUR. The authors
thank the anonymous referees for their useful comments.

A Two-Player Asynchronous Game on Fully Observable Petri Nets 149

References

1. Adobbati, F., Bernardinello, L., Pomello, L.: An asynchronous game on distributed
Petri nets. In: Moldt, D., Kindler, E., Wimmer, M. (eds.) Proceedings of the
International Workshop on Petri Nets and Software Engineering (PNSE 2019),
co-located with the 40th International Conference on Application and Theory of
Petri Nets and Concurrency Petri Nets 2019 and the 19th International Confer-
ence on Application of Concurrency to System Design ACSD 2019 and the 1st
IEEE International Conference on Process Mining Process Mining 2019, Aachen,
Germany, June 23–28, 2019. CEUR Workshop Proceedings, vol. 2424, pp. 17–36.
CEUR-WS.org (2019). http://ceur-ws.org/Vol-2424/paper2.pdf

2. Adobbati, F., Bernardinello, L., Pomello, L.: Asynchronous games on Petri nets
and partial order. In: Cherubini, A., Sabadini, N., Tini, S. (eds.) Proceedings of
the 20th Italian Conference on Theoretical Computer Science, ICTCS 2019, Como,
Italy, September 9–11, 2019. CEUR Workshop Proceedings, vol. 2504, pp. 139–144.
CEUR-WS.org (2019). http://ceur-ws.org/Vol-2504/paper17.pdf

3. Bernardinello, L., Kılınç, G., Pomello, L.: Weak observable liveness and infinite
games on finite graphs. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017.
LNCS, vol. 10258, pp. 181–199. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57861-3 12

4. Bernardinello, L., Pomello, L., Puerto Aubel, A., Villa, A.: Checking weak observ-
able liveness on unfoldings through asynchronous games. In: Moldt, D., Kindler,
E., Rölke, H. (eds.) Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE2018), Bratislava, Slovakia, June 24–29, 2018. CEUR
Workshop Proceedings, vol. 2138, pp. 15–34. CEUR-WS.org (2018). http://ceur-
ws.org/Vol-2138/paper1.pdf

5. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

6. Desel, J., Kılınç, G.: Observable liveness of Petri nets. Acta Inf. 52(2), 153–174
(2015). https://doi.org/10.1007/s00236-015-0218-1

7. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6), 575–591 (1991).
https://doi.org/10.1007/BF01463946

8. Finkbeiner, B., Gieseking, M., Olderog, E.: Adam: causality-based synthesis of
distributed systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 433–439. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 25

9. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with
causal memory. Inf. Comput. 253, 181–203 (2017). https://doi.org/10.1016/j.ic.
2016.07.006

10. van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.: On characterising dis-
tributability. Logical Methods in Comput. Sci. 9(3) (2013). https://doi.org/10.
2168/LMCS-9(3:17)2013

11. Gutierrez, J.: Concurrent logic games on partial orders. In: Beklemishev, L.D., de
Queiroz, R. (eds.) WoLLIC 2011. LNCS (LNAI), vol. 6642, pp. 146–160. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20920-8 17

12. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. IEEE
77(1), 81 (1989)

13. Winskel, G.: Distributed games and strategies. arXiv preprint arXiv:1607.03760
(2016)

http://ceur-ws.org/Vol-2424/paper2.pdf
http://ceur-ws.org/Vol-2504/paper17.pdf
https://doi.org/10.1007/978-3-319-57861-3_12
https://doi.org/10.1007/978-3-319-57861-3_12
http://ceur-ws.org/Vol-2138/paper1.pdf
http://ceur-ws.org/Vol-2138/paper1.pdf
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1007/s00236-015-0218-1
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.2168/LMCS-9(3:17)2013
https://doi.org/10.2168/LMCS-9(3:17)2013
https://doi.org/10.1007/978-3-642-20920-8_17
http://arxiv.org/abs/1607.03760

	A Two-Player Asynchronous Game on Fully Observable Petri Nets
	1 Introduction
	2 Petri Nets
	3 An Asynchronous Game on the Unfolding
	4 Controlled Reachability
	4.1 Algorithm for a Winning Strategy
	4.2 Discussion
	4.3 Experiments

	5 Other Approaches to Asynchronous Games
	6 Conclusions
	References

